xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/explow.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2    Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3    1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4    Free Software Foundation, Inc.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "except.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "hard-reg-set.h"
37 #include "insn-config.h"
38 #include "ggc.h"
39 #include "recog.h"
40 #include "langhooks.h"
41 #include "target.h"
42 #include "output.h"
43 
44 static rtx break_out_memory_refs (rtx);
45 static void emit_stack_probe (rtx);
46 
47 
48 /* Truncate and perhaps sign-extend C as appropriate for MODE.  */
49 
50 HOST_WIDE_INT
51 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
52 {
53   int width = GET_MODE_BITSIZE (mode);
54 
55   /* You want to truncate to a _what_?  */
56   gcc_assert (SCALAR_INT_MODE_P (mode));
57 
58   /* Canonicalize BImode to 0 and STORE_FLAG_VALUE.  */
59   if (mode == BImode)
60     return c & 1 ? STORE_FLAG_VALUE : 0;
61 
62   /* Sign-extend for the requested mode.  */
63 
64   if (width < HOST_BITS_PER_WIDE_INT)
65     {
66       HOST_WIDE_INT sign = 1;
67       sign <<= width - 1;
68       c &= (sign << 1) - 1;
69       c ^= sign;
70       c -= sign;
71     }
72 
73   return c;
74 }
75 
76 /* Return an rtx for the sum of X and the integer C.  */
77 
78 rtx
79 plus_constant (rtx x, HOST_WIDE_INT c)
80 {
81   RTX_CODE code;
82   rtx y;
83   enum machine_mode mode;
84   rtx tem;
85   int all_constant = 0;
86 
87   if (c == 0)
88     return x;
89 
90  restart:
91 
92   code = GET_CODE (x);
93   mode = GET_MODE (x);
94   y = x;
95 
96   switch (code)
97     {
98     case CONST_INT:
99       return GEN_INT (INTVAL (x) + c);
100 
101     case CONST_DOUBLE:
102       {
103 	unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
104 	HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
105 	unsigned HOST_WIDE_INT l2 = c;
106 	HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
107 	unsigned HOST_WIDE_INT lv;
108 	HOST_WIDE_INT hv;
109 
110 	add_double (l1, h1, l2, h2, &lv, &hv);
111 
112 	return immed_double_const (lv, hv, VOIDmode);
113       }
114 
115     case MEM:
116       /* If this is a reference to the constant pool, try replacing it with
117 	 a reference to a new constant.  If the resulting address isn't
118 	 valid, don't return it because we have no way to validize it.  */
119       if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
120 	  && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
121 	{
122 	  tem
123 	    = force_const_mem (GET_MODE (x),
124 			       plus_constant (get_pool_constant (XEXP (x, 0)),
125 					      c));
126 	  if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
127 	    return tem;
128 	}
129       break;
130 
131     case CONST:
132       /* If adding to something entirely constant, set a flag
133 	 so that we can add a CONST around the result.  */
134       x = XEXP (x, 0);
135       all_constant = 1;
136       goto restart;
137 
138     case SYMBOL_REF:
139     case LABEL_REF:
140       all_constant = 1;
141       break;
142 
143     case PLUS:
144       /* The interesting case is adding the integer to a sum.
145 	 Look for constant term in the sum and combine
146 	 with C.  For an integer constant term, we make a combined
147 	 integer.  For a constant term that is not an explicit integer,
148 	 we cannot really combine, but group them together anyway.
149 
150 	 Restart or use a recursive call in case the remaining operand is
151 	 something that we handle specially, such as a SYMBOL_REF.
152 
153 	 We may not immediately return from the recursive call here, lest
154 	 all_constant gets lost.  */
155 
156       if (CONST_INT_P (XEXP (x, 1)))
157 	{
158 	  c += INTVAL (XEXP (x, 1));
159 
160 	  if (GET_MODE (x) != VOIDmode)
161 	    c = trunc_int_for_mode (c, GET_MODE (x));
162 
163 	  x = XEXP (x, 0);
164 	  goto restart;
165 	}
166       else if (CONSTANT_P (XEXP (x, 1)))
167 	{
168 	  x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
169 	  c = 0;
170 	}
171       else if (find_constant_term_loc (&y))
172 	{
173 	  /* We need to be careful since X may be shared and we can't
174 	     modify it in place.  */
175 	  rtx copy = copy_rtx (x);
176 	  rtx *const_loc = find_constant_term_loc (&copy);
177 
178 	  *const_loc = plus_constant (*const_loc, c);
179 	  x = copy;
180 	  c = 0;
181 	}
182       break;
183 
184     default:
185       break;
186     }
187 
188   if (c != 0)
189     x = gen_rtx_PLUS (mode, x, GEN_INT (c));
190 
191   if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
192     return x;
193   else if (all_constant)
194     return gen_rtx_CONST (mode, x);
195   else
196     return x;
197 }
198 
199 /* If X is a sum, return a new sum like X but lacking any constant terms.
200    Add all the removed constant terms into *CONSTPTR.
201    X itself is not altered.  The result != X if and only if
202    it is not isomorphic to X.  */
203 
204 rtx
205 eliminate_constant_term (rtx x, rtx *constptr)
206 {
207   rtx x0, x1;
208   rtx tem;
209 
210   if (GET_CODE (x) != PLUS)
211     return x;
212 
213   /* First handle constants appearing at this level explicitly.  */
214   if (CONST_INT_P (XEXP (x, 1))
215       && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
216 						XEXP (x, 1)))
217       && CONST_INT_P (tem))
218     {
219       *constptr = tem;
220       return eliminate_constant_term (XEXP (x, 0), constptr);
221     }
222 
223   tem = const0_rtx;
224   x0 = eliminate_constant_term (XEXP (x, 0), &tem);
225   x1 = eliminate_constant_term (XEXP (x, 1), &tem);
226   if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
227       && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
228 						*constptr, tem))
229       && CONST_INT_P (tem))
230     {
231       *constptr = tem;
232       return gen_rtx_PLUS (GET_MODE (x), x0, x1);
233     }
234 
235   return x;
236 }
237 
238 /* Return an rtx for the size in bytes of the value of EXP.  */
239 
240 rtx
241 expr_size (tree exp)
242 {
243   tree size;
244 
245   if (TREE_CODE (exp) == WITH_SIZE_EXPR)
246     size = TREE_OPERAND (exp, 1);
247   else
248     {
249       size = tree_expr_size (exp);
250       gcc_assert (size);
251       gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
252     }
253 
254   return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
255 }
256 
257 /* Return a wide integer for the size in bytes of the value of EXP, or -1
258    if the size can vary or is larger than an integer.  */
259 
260 HOST_WIDE_INT
261 int_expr_size (tree exp)
262 {
263   tree size;
264 
265   if (TREE_CODE (exp) == WITH_SIZE_EXPR)
266     size = TREE_OPERAND (exp, 1);
267   else
268     {
269       size = tree_expr_size (exp);
270       gcc_assert (size);
271     }
272 
273   if (size == 0 || !host_integerp (size, 0))
274     return -1;
275 
276   return tree_low_cst (size, 0);
277 }
278 
279 /* Return a copy of X in which all memory references
280    and all constants that involve symbol refs
281    have been replaced with new temporary registers.
282    Also emit code to load the memory locations and constants
283    into those registers.
284 
285    If X contains no such constants or memory references,
286    X itself (not a copy) is returned.
287 
288    If a constant is found in the address that is not a legitimate constant
289    in an insn, it is left alone in the hope that it might be valid in the
290    address.
291 
292    X may contain no arithmetic except addition, subtraction and multiplication.
293    Values returned by expand_expr with 1 for sum_ok fit this constraint.  */
294 
295 static rtx
296 break_out_memory_refs (rtx x)
297 {
298   if (MEM_P (x)
299       || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
300 	  && GET_MODE (x) != VOIDmode))
301     x = force_reg (GET_MODE (x), x);
302   else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
303 	   || GET_CODE (x) == MULT)
304     {
305       rtx op0 = break_out_memory_refs (XEXP (x, 0));
306       rtx op1 = break_out_memory_refs (XEXP (x, 1));
307 
308       if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
309 	x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
310     }
311 
312   return x;
313 }
314 
315 /* Given X, a memory address in address space AS' pointer mode, convert it to
316    an address in the address space's address mode, or vice versa (TO_MODE says
317    which way).  We take advantage of the fact that pointers are not allowed to
318    overflow by commuting arithmetic operations over conversions so that address
319    arithmetic insns can be used.  */
320 
321 rtx
322 convert_memory_address_addr_space (enum machine_mode to_mode ATTRIBUTE_UNUSED,
323 				   rtx x, addr_space_t as ATTRIBUTE_UNUSED)
324 {
325 #ifndef POINTERS_EXTEND_UNSIGNED
326   gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
327   return x;
328 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
329   enum machine_mode pointer_mode, address_mode, from_mode;
330   rtx temp;
331   enum rtx_code code;
332 
333   /* If X already has the right mode, just return it.  */
334   if (GET_MODE (x) == to_mode)
335     return x;
336 
337   pointer_mode = targetm.addr_space.pointer_mode (as);
338   address_mode = targetm.addr_space.address_mode (as);
339   from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
340 
341   /* Here we handle some special cases.  If none of them apply, fall through
342      to the default case.  */
343   switch (GET_CODE (x))
344     {
345     case CONST_INT:
346     case CONST_DOUBLE:
347       if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
348 	code = TRUNCATE;
349       else if (POINTERS_EXTEND_UNSIGNED < 0)
350 	break;
351       else if (POINTERS_EXTEND_UNSIGNED > 0)
352 	code = ZERO_EXTEND;
353       else
354 	code = SIGN_EXTEND;
355       temp = simplify_unary_operation (code, to_mode, x, from_mode);
356       if (temp)
357 	return temp;
358       break;
359 
360     case SUBREG:
361       if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
362 	  && GET_MODE (SUBREG_REG (x)) == to_mode)
363 	return SUBREG_REG (x);
364       break;
365 
366     case LABEL_REF:
367       temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
368       LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
369       return temp;
370       break;
371 
372     case SYMBOL_REF:
373       temp = shallow_copy_rtx (x);
374       PUT_MODE (temp, to_mode);
375       return temp;
376       break;
377 
378     case CONST:
379       return gen_rtx_CONST (to_mode,
380 			    convert_memory_address_addr_space
381 			      (to_mode, XEXP (x, 0), as));
382       break;
383 
384     case PLUS:
385     case MULT:
386       /* For addition we can safely permute the conversion and addition
387 	 operation if one operand is a constant and converting the constant
388 	 does not change it or if one operand is a constant and we are
389 	 using a ptr_extend instruction  (POINTERS_EXTEND_UNSIGNED < 0).
390 	 We can always safely permute them if we are making the address
391 	 narrower.  */
392       if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
393 	  || (GET_CODE (x) == PLUS
394 	      && CONST_INT_P (XEXP (x, 1))
395 	      && (XEXP (x, 1) == convert_memory_address_addr_space
396 				   (to_mode, XEXP (x, 1), as)
397                  || POINTERS_EXTEND_UNSIGNED < 0)))
398 	return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
399 			       convert_memory_address_addr_space
400 				 (to_mode, XEXP (x, 0), as),
401 			       XEXP (x, 1));
402       break;
403 
404     default:
405       break;
406     }
407 
408   return convert_modes (to_mode, from_mode,
409 			x, POINTERS_EXTEND_UNSIGNED);
410 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
411 }
412 
413 /* Return something equivalent to X but valid as a memory address for something
414    of mode MODE in the named address space AS.  When X is not itself valid,
415    this works by copying X or subexpressions of it into registers.  */
416 
417 rtx
418 memory_address_addr_space (enum machine_mode mode, rtx x, addr_space_t as)
419 {
420   rtx oldx = x;
421   enum machine_mode address_mode = targetm.addr_space.address_mode (as);
422 
423   x = convert_memory_address_addr_space (address_mode, x, as);
424 
425   /* By passing constant addresses through registers
426      we get a chance to cse them.  */
427   if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
428     x = force_reg (address_mode, x);
429 
430   /* We get better cse by rejecting indirect addressing at this stage.
431      Let the combiner create indirect addresses where appropriate.
432      For now, generate the code so that the subexpressions useful to share
433      are visible.  But not if cse won't be done!  */
434   else
435     {
436       if (! cse_not_expected && !REG_P (x))
437 	x = break_out_memory_refs (x);
438 
439       /* At this point, any valid address is accepted.  */
440       if (memory_address_addr_space_p (mode, x, as))
441 	goto done;
442 
443       /* If it was valid before but breaking out memory refs invalidated it,
444 	 use it the old way.  */
445       if (memory_address_addr_space_p (mode, oldx, as))
446 	{
447 	  x = oldx;
448 	  goto done;
449 	}
450 
451       /* Perform machine-dependent transformations on X
452 	 in certain cases.  This is not necessary since the code
453 	 below can handle all possible cases, but machine-dependent
454 	 transformations can make better code.  */
455       {
456 	rtx orig_x = x;
457 	x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
458 	if (orig_x != x && memory_address_addr_space_p (mode, x, as))
459 	  goto done;
460       }
461 
462       /* PLUS and MULT can appear in special ways
463 	 as the result of attempts to make an address usable for indexing.
464 	 Usually they are dealt with by calling force_operand, below.
465 	 But a sum containing constant terms is special
466 	 if removing them makes the sum a valid address:
467 	 then we generate that address in a register
468 	 and index off of it.  We do this because it often makes
469 	 shorter code, and because the addresses thus generated
470 	 in registers often become common subexpressions.  */
471       if (GET_CODE (x) == PLUS)
472 	{
473 	  rtx constant_term = const0_rtx;
474 	  rtx y = eliminate_constant_term (x, &constant_term);
475 	  if (constant_term == const0_rtx
476 	      || ! memory_address_addr_space_p (mode, y, as))
477 	    x = force_operand (x, NULL_RTX);
478 	  else
479 	    {
480 	      y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
481 	      if (! memory_address_addr_space_p (mode, y, as))
482 		x = force_operand (x, NULL_RTX);
483 	      else
484 		x = y;
485 	    }
486 	}
487 
488       else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
489 	x = force_operand (x, NULL_RTX);
490 
491       /* If we have a register that's an invalid address,
492 	 it must be a hard reg of the wrong class.  Copy it to a pseudo.  */
493       else if (REG_P (x))
494 	x = copy_to_reg (x);
495 
496       /* Last resort: copy the value to a register, since
497 	 the register is a valid address.  */
498       else
499 	x = force_reg (address_mode, x);
500     }
501 
502  done:
503 
504   gcc_assert (memory_address_addr_space_p (mode, x, as));
505   /* If we didn't change the address, we are done.  Otherwise, mark
506      a reg as a pointer if we have REG or REG + CONST_INT.  */
507   if (oldx == x)
508     return x;
509   else if (REG_P (x))
510     mark_reg_pointer (x, BITS_PER_UNIT);
511   else if (GET_CODE (x) == PLUS
512 	   && REG_P (XEXP (x, 0))
513 	   && CONST_INT_P (XEXP (x, 1)))
514     mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
515 
516   /* OLDX may have been the address on a temporary.  Update the address
517      to indicate that X is now used.  */
518   update_temp_slot_address (oldx, x);
519 
520   return x;
521 }
522 
523 /* Convert a mem ref into one with a valid memory address.
524    Pass through anything else unchanged.  */
525 
526 rtx
527 validize_mem (rtx ref)
528 {
529   if (!MEM_P (ref))
530     return ref;
531   ref = use_anchored_address (ref);
532   if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
533 				   MEM_ADDR_SPACE (ref)))
534     return ref;
535 
536   /* Don't alter REF itself, since that is probably a stack slot.  */
537   return replace_equiv_address (ref, XEXP (ref, 0));
538 }
539 
540 /* If X is a memory reference to a member of an object block, try rewriting
541    it to use an anchor instead.  Return the new memory reference on success
542    and the old one on failure.  */
543 
544 rtx
545 use_anchored_address (rtx x)
546 {
547   rtx base;
548   HOST_WIDE_INT offset;
549 
550   if (!flag_section_anchors)
551     return x;
552 
553   if (!MEM_P (x))
554     return x;
555 
556   /* Split the address into a base and offset.  */
557   base = XEXP (x, 0);
558   offset = 0;
559   if (GET_CODE (base) == CONST
560       && GET_CODE (XEXP (base, 0)) == PLUS
561       && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
562     {
563       offset += INTVAL (XEXP (XEXP (base, 0), 1));
564       base = XEXP (XEXP (base, 0), 0);
565     }
566 
567   /* Check whether BASE is suitable for anchors.  */
568   if (GET_CODE (base) != SYMBOL_REF
569       || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
570       || SYMBOL_REF_ANCHOR_P (base)
571       || SYMBOL_REF_BLOCK (base) == NULL
572       || !targetm.use_anchors_for_symbol_p (base))
573     return x;
574 
575   /* Decide where BASE is going to be.  */
576   place_block_symbol (base);
577 
578   /* Get the anchor we need to use.  */
579   offset += SYMBOL_REF_BLOCK_OFFSET (base);
580   base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
581 			     SYMBOL_REF_TLS_MODEL (base));
582 
583   /* Work out the offset from the anchor.  */
584   offset -= SYMBOL_REF_BLOCK_OFFSET (base);
585 
586   /* If we're going to run a CSE pass, force the anchor into a register.
587      We will then be able to reuse registers for several accesses, if the
588      target costs say that that's worthwhile.  */
589   if (!cse_not_expected)
590     base = force_reg (GET_MODE (base), base);
591 
592   return replace_equiv_address (x, plus_constant (base, offset));
593 }
594 
595 /* Copy the value or contents of X to a new temp reg and return that reg.  */
596 
597 rtx
598 copy_to_reg (rtx x)
599 {
600   rtx temp = gen_reg_rtx (GET_MODE (x));
601 
602   /* If not an operand, must be an address with PLUS and MULT so
603      do the computation.  */
604   if (! general_operand (x, VOIDmode))
605     x = force_operand (x, temp);
606 
607   if (x != temp)
608     emit_move_insn (temp, x);
609 
610   return temp;
611 }
612 
613 /* Like copy_to_reg but always give the new register mode Pmode
614    in case X is a constant.  */
615 
616 rtx
617 copy_addr_to_reg (rtx x)
618 {
619   return copy_to_mode_reg (Pmode, x);
620 }
621 
622 /* Like copy_to_reg but always give the new register mode MODE
623    in case X is a constant.  */
624 
625 rtx
626 copy_to_mode_reg (enum machine_mode mode, rtx x)
627 {
628   rtx temp = gen_reg_rtx (mode);
629 
630   /* If not an operand, must be an address with PLUS and MULT so
631      do the computation.  */
632   if (! general_operand (x, VOIDmode))
633     x = force_operand (x, temp);
634 
635   gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
636   if (x != temp)
637     emit_move_insn (temp, x);
638   return temp;
639 }
640 
641 /* Load X into a register if it is not already one.
642    Use mode MODE for the register.
643    X should be valid for mode MODE, but it may be a constant which
644    is valid for all integer modes; that's why caller must specify MODE.
645 
646    The caller must not alter the value in the register we return,
647    since we mark it as a "constant" register.  */
648 
649 rtx
650 force_reg (enum machine_mode mode, rtx x)
651 {
652   rtx temp, insn, set;
653 
654   if (REG_P (x))
655     return x;
656 
657   if (general_operand (x, mode))
658     {
659       temp = gen_reg_rtx (mode);
660       insn = emit_move_insn (temp, x);
661     }
662   else
663     {
664       temp = force_operand (x, NULL_RTX);
665       if (REG_P (temp))
666 	insn = get_last_insn ();
667       else
668 	{
669 	  rtx temp2 = gen_reg_rtx (mode);
670 	  insn = emit_move_insn (temp2, temp);
671 	  temp = temp2;
672 	}
673     }
674 
675   /* Let optimizers know that TEMP's value never changes
676      and that X can be substituted for it.  Don't get confused
677      if INSN set something else (such as a SUBREG of TEMP).  */
678   if (CONSTANT_P (x)
679       && (set = single_set (insn)) != 0
680       && SET_DEST (set) == temp
681       && ! rtx_equal_p (x, SET_SRC (set)))
682     set_unique_reg_note (insn, REG_EQUAL, x);
683 
684   /* Let optimizers know that TEMP is a pointer, and if so, the
685      known alignment of that pointer.  */
686   {
687     unsigned align = 0;
688     if (GET_CODE (x) == SYMBOL_REF)
689       {
690         align = BITS_PER_UNIT;
691 	if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
692 	  align = DECL_ALIGN (SYMBOL_REF_DECL (x));
693       }
694     else if (GET_CODE (x) == LABEL_REF)
695       align = BITS_PER_UNIT;
696     else if (GET_CODE (x) == CONST
697 	     && GET_CODE (XEXP (x, 0)) == PLUS
698 	     && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
699 	     && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
700       {
701 	rtx s = XEXP (XEXP (x, 0), 0);
702 	rtx c = XEXP (XEXP (x, 0), 1);
703 	unsigned sa, ca;
704 
705 	sa = BITS_PER_UNIT;
706 	if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
707 	  sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
708 
709 	ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
710 
711 	align = MIN (sa, ca);
712       }
713 
714     if (align || (MEM_P (x) && MEM_POINTER (x)))
715       mark_reg_pointer (temp, align);
716   }
717 
718   return temp;
719 }
720 
721 /* If X is a memory ref, copy its contents to a new temp reg and return
722    that reg.  Otherwise, return X.  */
723 
724 rtx
725 force_not_mem (rtx x)
726 {
727   rtx temp;
728 
729   if (!MEM_P (x) || GET_MODE (x) == BLKmode)
730     return x;
731 
732   temp = gen_reg_rtx (GET_MODE (x));
733 
734   if (MEM_POINTER (x))
735     REG_POINTER (temp) = 1;
736 
737   emit_move_insn (temp, x);
738   return temp;
739 }
740 
741 /* Copy X to TARGET (if it's nonzero and a reg)
742    or to a new temp reg and return that reg.
743    MODE is the mode to use for X in case it is a constant.  */
744 
745 rtx
746 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
747 {
748   rtx temp;
749 
750   if (target && REG_P (target))
751     temp = target;
752   else
753     temp = gen_reg_rtx (mode);
754 
755   emit_move_insn (temp, x);
756   return temp;
757 }
758 
759 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
760    PUNSIGNEDP points to the signedness of the type and may be adjusted
761    to show what signedness to use on extension operations.
762 
763    FOR_RETURN is nonzero if the caller is promoting the return value
764    of FNDECL, else it is for promoting args.  */
765 
766 enum machine_mode
767 promote_function_mode (const_tree type, enum machine_mode mode, int *punsignedp,
768 		       const_tree funtype, int for_return)
769 {
770   switch (TREE_CODE (type))
771     {
772     case INTEGER_TYPE:   case ENUMERAL_TYPE:   case BOOLEAN_TYPE:
773     case REAL_TYPE:      case OFFSET_TYPE:     case FIXED_POINT_TYPE:
774     case POINTER_TYPE:   case REFERENCE_TYPE:
775       return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
776 						  for_return);
777 
778     default:
779       return mode;
780     }
781 }
782 /* Return the mode to use to store a scalar of TYPE and MODE.
783    PUNSIGNEDP points to the signedness of the type and may be adjusted
784    to show what signedness to use on extension operations.  */
785 
786 enum machine_mode
787 promote_mode (const_tree type ATTRIBUTE_UNUSED, enum machine_mode mode,
788 	      int *punsignedp ATTRIBUTE_UNUSED)
789 {
790   /* FIXME: this is the same logic that was there until GCC 4.4, but we
791      probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
792      is not defined.  The affected targets are M32C, S390, SPARC.  */
793 #ifdef PROMOTE_MODE
794   const enum tree_code code = TREE_CODE (type);
795   int unsignedp = *punsignedp;
796 
797   switch (code)
798     {
799     case INTEGER_TYPE:   case ENUMERAL_TYPE:   case BOOLEAN_TYPE:
800     case REAL_TYPE:      case OFFSET_TYPE:     case FIXED_POINT_TYPE:
801       PROMOTE_MODE (mode, unsignedp, type);
802       *punsignedp = unsignedp;
803       return mode;
804       break;
805 
806 #ifdef POINTERS_EXTEND_UNSIGNED
807     case REFERENCE_TYPE:
808     case POINTER_TYPE:
809       *punsignedp = POINTERS_EXTEND_UNSIGNED;
810       return targetm.addr_space.address_mode
811 	       (TYPE_ADDR_SPACE (TREE_TYPE (type)));
812       break;
813 #endif
814 
815     default:
816       return mode;
817     }
818 #else
819   return mode;
820 #endif
821 }
822 
823 
824 /* Use one of promote_mode or promote_function_mode to find the promoted
825    mode of DECL.  If PUNSIGNEDP is not NULL, store there the unsignedness
826    of DECL after promotion.  */
827 
828 enum machine_mode
829 promote_decl_mode (const_tree decl, int *punsignedp)
830 {
831   tree type = TREE_TYPE (decl);
832   int unsignedp = TYPE_UNSIGNED (type);
833   enum machine_mode mode = DECL_MODE (decl);
834   enum machine_mode pmode;
835 
836   if (TREE_CODE (decl) == RESULT_DECL
837       || TREE_CODE (decl) == PARM_DECL)
838     pmode = promote_function_mode (type, mode, &unsignedp,
839                                    TREE_TYPE (current_function_decl), 2);
840   else
841     pmode = promote_mode (type, mode, &unsignedp);
842 
843   if (punsignedp)
844     *punsignedp = unsignedp;
845   return pmode;
846 }
847 
848 
849 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
850    This pops when ADJUST is positive.  ADJUST need not be constant.  */
851 
852 void
853 adjust_stack (rtx adjust)
854 {
855   rtx temp;
856 
857   if (adjust == const0_rtx)
858     return;
859 
860   /* We expect all variable sized adjustments to be multiple of
861      PREFERRED_STACK_BOUNDARY.  */
862   if (CONST_INT_P (adjust))
863     stack_pointer_delta -= INTVAL (adjust);
864 
865   temp = expand_binop (Pmode,
866 #ifdef STACK_GROWS_DOWNWARD
867 		       add_optab,
868 #else
869 		       sub_optab,
870 #endif
871 		       stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
872 		       OPTAB_LIB_WIDEN);
873 
874   if (temp != stack_pointer_rtx)
875     emit_move_insn (stack_pointer_rtx, temp);
876 }
877 
878 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
879    This pushes when ADJUST is positive.  ADJUST need not be constant.  */
880 
881 void
882 anti_adjust_stack (rtx adjust)
883 {
884   rtx temp;
885 
886   if (adjust == const0_rtx)
887     return;
888 
889   /* We expect all variable sized adjustments to be multiple of
890      PREFERRED_STACK_BOUNDARY.  */
891   if (CONST_INT_P (adjust))
892     stack_pointer_delta += INTVAL (adjust);
893 
894   temp = expand_binop (Pmode,
895 #ifdef STACK_GROWS_DOWNWARD
896 		       sub_optab,
897 #else
898 		       add_optab,
899 #endif
900 		       stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
901 		       OPTAB_LIB_WIDEN);
902 
903   if (temp != stack_pointer_rtx)
904     emit_move_insn (stack_pointer_rtx, temp);
905 }
906 
907 /* Round the size of a block to be pushed up to the boundary required
908    by this machine.  SIZE is the desired size, which need not be constant.  */
909 
910 static rtx
911 round_push (rtx size)
912 {
913   int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
914 
915   if (align == 1)
916     return size;
917 
918   if (CONST_INT_P (size))
919     {
920       HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
921 
922       if (INTVAL (size) != new_size)
923 	size = GEN_INT (new_size);
924     }
925   else
926     {
927       /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
928 	 but we know it can't.  So add ourselves and then do
929 	 TRUNC_DIV_EXPR.  */
930       size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
931 			   NULL_RTX, 1, OPTAB_LIB_WIDEN);
932       size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
933 			    NULL_RTX, 1);
934       size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
935     }
936 
937   return size;
938 }
939 
940 /* Save the stack pointer for the purpose in SAVE_LEVEL.  PSAVE is a pointer
941    to a previously-created save area.  If no save area has been allocated,
942    this function will allocate one.  If a save area is specified, it
943    must be of the proper mode.
944 
945    The insns are emitted after insn AFTER, if nonzero, otherwise the insns
946    are emitted at the current position.  */
947 
948 void
949 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
950 {
951   rtx sa = *psave;
952   /* The default is that we use a move insn and save in a Pmode object.  */
953   rtx (*fcn) (rtx, rtx) = gen_move_insn;
954   enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
955 
956   /* See if this machine has anything special to do for this kind of save.  */
957   switch (save_level)
958     {
959 #ifdef HAVE_save_stack_block
960     case SAVE_BLOCK:
961       if (HAVE_save_stack_block)
962 	fcn = gen_save_stack_block;
963       break;
964 #endif
965 #ifdef HAVE_save_stack_function
966     case SAVE_FUNCTION:
967       if (HAVE_save_stack_function)
968 	fcn = gen_save_stack_function;
969       break;
970 #endif
971 #ifdef HAVE_save_stack_nonlocal
972     case SAVE_NONLOCAL:
973       if (HAVE_save_stack_nonlocal)
974 	fcn = gen_save_stack_nonlocal;
975       break;
976 #endif
977     default:
978       break;
979     }
980 
981   /* If there is no save area and we have to allocate one, do so.  Otherwise
982      verify the save area is the proper mode.  */
983 
984   if (sa == 0)
985     {
986       if (mode != VOIDmode)
987 	{
988 	  if (save_level == SAVE_NONLOCAL)
989 	    *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
990 	  else
991 	    *psave = sa = gen_reg_rtx (mode);
992 	}
993     }
994 
995   if (after)
996     {
997       rtx seq;
998 
999       start_sequence ();
1000       do_pending_stack_adjust ();
1001       /* We must validize inside the sequence, to ensure that any instructions
1002 	 created by the validize call also get moved to the right place.  */
1003       if (sa != 0)
1004 	sa = validize_mem (sa);
1005       emit_insn (fcn (sa, stack_pointer_rtx));
1006       seq = get_insns ();
1007       end_sequence ();
1008       emit_insn_after (seq, after);
1009     }
1010   else
1011     {
1012       do_pending_stack_adjust ();
1013       if (sa != 0)
1014 	sa = validize_mem (sa);
1015       emit_insn (fcn (sa, stack_pointer_rtx));
1016     }
1017 }
1018 
1019 /* Restore the stack pointer for the purpose in SAVE_LEVEL.  SA is the save
1020    area made by emit_stack_save.  If it is zero, we have nothing to do.
1021 
1022    Put any emitted insns after insn AFTER, if nonzero, otherwise at
1023    current position.  */
1024 
1025 void
1026 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
1027 {
1028   /* The default is that we use a move insn.  */
1029   rtx (*fcn) (rtx, rtx) = gen_move_insn;
1030 
1031   /* See if this machine has anything special to do for this kind of save.  */
1032   switch (save_level)
1033     {
1034 #ifdef HAVE_restore_stack_block
1035     case SAVE_BLOCK:
1036       if (HAVE_restore_stack_block)
1037 	fcn = gen_restore_stack_block;
1038       break;
1039 #endif
1040 #ifdef HAVE_restore_stack_function
1041     case SAVE_FUNCTION:
1042       if (HAVE_restore_stack_function)
1043 	fcn = gen_restore_stack_function;
1044       break;
1045 #endif
1046 #ifdef HAVE_restore_stack_nonlocal
1047     case SAVE_NONLOCAL:
1048       if (HAVE_restore_stack_nonlocal)
1049 	fcn = gen_restore_stack_nonlocal;
1050       break;
1051 #endif
1052     default:
1053       break;
1054     }
1055 
1056   if (sa != 0)
1057     {
1058       sa = validize_mem (sa);
1059       /* These clobbers prevent the scheduler from moving
1060 	 references to variable arrays below the code
1061 	 that deletes (pops) the arrays.  */
1062       emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1063       emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1064     }
1065 
1066   discard_pending_stack_adjust ();
1067 
1068   if (after)
1069     {
1070       rtx seq;
1071 
1072       start_sequence ();
1073       emit_insn (fcn (stack_pointer_rtx, sa));
1074       seq = get_insns ();
1075       end_sequence ();
1076       emit_insn_after (seq, after);
1077     }
1078   else
1079     emit_insn (fcn (stack_pointer_rtx, sa));
1080 }
1081 
1082 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1083    function.  This function should be called whenever we allocate or
1084    deallocate dynamic stack space.  */
1085 
1086 void
1087 update_nonlocal_goto_save_area (void)
1088 {
1089   tree t_save;
1090   rtx r_save;
1091 
1092   /* The nonlocal_goto_save_area object is an array of N pointers.  The
1093      first one is used for the frame pointer save; the rest are sized by
1094      STACK_SAVEAREA_MODE.  Create a reference to array index 1, the first
1095      of the stack save area slots.  */
1096   t_save = build4 (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1097 		   integer_one_node, NULL_TREE, NULL_TREE);
1098   r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1099 
1100   emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
1101 }
1102 
1103 /* Return an rtx representing the address of an area of memory dynamically
1104    pushed on the stack.  This region of memory is always aligned to
1105    a multiple of BIGGEST_ALIGNMENT.
1106 
1107    Any required stack pointer alignment is preserved.
1108 
1109    SIZE is an rtx representing the size of the area.
1110    TARGET is a place in which the address can be placed.
1111 
1112    KNOWN_ALIGN is the alignment (in bits) that we know SIZE has.  */
1113 
1114 rtx
1115 allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1116 {
1117   /* If we're asking for zero bytes, it doesn't matter what we point
1118      to since we can't dereference it.  But return a reasonable
1119      address anyway.  */
1120   if (size == const0_rtx)
1121     return virtual_stack_dynamic_rtx;
1122 
1123   /* Otherwise, show we're calling alloca or equivalent.  */
1124   cfun->calls_alloca = 1;
1125 
1126   /* Ensure the size is in the proper mode.  */
1127   if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1128     size = convert_to_mode (Pmode, size, 1);
1129 
1130   /* We can't attempt to minimize alignment necessary, because we don't
1131      know the final value of preferred_stack_boundary yet while executing
1132      this code.  */
1133   crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1134 
1135   /* We will need to ensure that the address we return is aligned to
1136      BIGGEST_ALIGNMENT.  If STACK_DYNAMIC_OFFSET is defined, we don't
1137      always know its final value at this point in the compilation (it
1138      might depend on the size of the outgoing parameter lists, for
1139      example), so we must align the value to be returned in that case.
1140      (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1141      STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1142      We must also do an alignment operation on the returned value if
1143      the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1144 
1145      If we have to align, we must leave space in SIZE for the hole
1146      that might result from the alignment operation.  */
1147 
1148 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1149 #define MUST_ALIGN 1
1150 #else
1151 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1152 #endif
1153 
1154   if (MUST_ALIGN)
1155     size
1156       = force_operand (plus_constant (size,
1157 				      BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1158 		       NULL_RTX);
1159 
1160 #ifdef SETJMP_VIA_SAVE_AREA
1161   /* If setjmp restores regs from a save area in the stack frame,
1162      avoid clobbering the reg save area.  Note that the offset of
1163      virtual_incoming_args_rtx includes the preallocated stack args space.
1164      It would be no problem to clobber that, but it's on the wrong side
1165      of the old save area.
1166 
1167      What used to happen is that, since we did not know for sure
1168      whether setjmp() was invoked until after RTL generation, we
1169      would use reg notes to store the "optimized" size and fix things
1170      up later.  These days we know this information before we ever
1171      start building RTL so the reg notes are unnecessary.  */
1172   if (!cfun->calls_setjmp)
1173     {
1174       int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1175 
1176       /* ??? Code below assumes that the save area needs maximal
1177 	 alignment.  This constraint may be too strong.  */
1178       gcc_assert (PREFERRED_STACK_BOUNDARY == BIGGEST_ALIGNMENT);
1179 
1180       if (CONST_INT_P (size))
1181 	{
1182 	  HOST_WIDE_INT new_size = INTVAL (size) / align * align;
1183 
1184 	  if (INTVAL (size) != new_size)
1185 	    size = GEN_INT (new_size);
1186 	}
1187       else
1188 	{
1189 	  /* Since we know overflow is not possible, we avoid using
1190 	     CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead.  */
1191 	  size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1192 				GEN_INT (align), NULL_RTX, 1);
1193 	  size = expand_mult (Pmode, size,
1194 			      GEN_INT (align), NULL_RTX, 1);
1195 	}
1196     }
1197   else
1198     {
1199       rtx dynamic_offset
1200 	= expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1201 			stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1202 
1203       size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1204 			   NULL_RTX, 1, OPTAB_LIB_WIDEN);
1205     }
1206 #endif /* SETJMP_VIA_SAVE_AREA */
1207 
1208   /* Round the size to a multiple of the required stack alignment.
1209      Since the stack if presumed to be rounded before this allocation,
1210      this will maintain the required alignment.
1211 
1212      If the stack grows downward, we could save an insn by subtracting
1213      SIZE from the stack pointer and then aligning the stack pointer.
1214      The problem with this is that the stack pointer may be unaligned
1215      between the execution of the subtraction and alignment insns and
1216      some machines do not allow this.  Even on those that do, some
1217      signal handlers malfunction if a signal should occur between those
1218      insns.  Since this is an extremely rare event, we have no reliable
1219      way of knowing which systems have this problem.  So we avoid even
1220      momentarily mis-aligning the stack.  */
1221 
1222   /* If we added a variable amount to SIZE,
1223      we can no longer assume it is aligned.  */
1224 #if !defined (SETJMP_VIA_SAVE_AREA)
1225   if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1226 #endif
1227     size = round_push (size);
1228 
1229   do_pending_stack_adjust ();
1230 
1231  /* We ought to be called always on the toplevel and stack ought to be aligned
1232     properly.  */
1233   gcc_assert (!(stack_pointer_delta
1234 		% (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1235 
1236   /* If needed, check that we have the required amount of stack.  Take into
1237      account what has already been checked.  */
1238   if (STACK_CHECK_MOVING_SP)
1239     ;
1240   else if (flag_stack_check == GENERIC_STACK_CHECK)
1241     probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1242 		       size);
1243   else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1244     probe_stack_range (STACK_CHECK_PROTECT, size);
1245 
1246   /* Don't use a TARGET that isn't a pseudo or is the wrong mode.  */
1247   if (target == 0 || !REG_P (target)
1248       || REGNO (target) < FIRST_PSEUDO_REGISTER
1249       || GET_MODE (target) != Pmode)
1250     target = gen_reg_rtx (Pmode);
1251 
1252   mark_reg_pointer (target, known_align);
1253 
1254   /* Perform the required allocation from the stack.  Some systems do
1255      this differently than simply incrementing/decrementing from the
1256      stack pointer, such as acquiring the space by calling malloc().  */
1257 #ifdef HAVE_allocate_stack
1258   if (HAVE_allocate_stack)
1259     {
1260       enum machine_mode mode = STACK_SIZE_MODE;
1261       insn_operand_predicate_fn pred;
1262 
1263       /* We don't have to check against the predicate for operand 0 since
1264 	 TARGET is known to be a pseudo of the proper mode, which must
1265 	 be valid for the operand.  For operand 1, convert to the
1266 	 proper mode and validate.  */
1267       if (mode == VOIDmode)
1268 	mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1269 
1270       pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1271       if (pred && ! ((*pred) (size, mode)))
1272 	size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1273 
1274       emit_insn (gen_allocate_stack (target, size));
1275     }
1276   else
1277 #endif
1278     {
1279 #ifndef STACK_GROWS_DOWNWARD
1280       emit_move_insn (target, virtual_stack_dynamic_rtx);
1281 #endif
1282 
1283       /* Check stack bounds if necessary.  */
1284       if (crtl->limit_stack)
1285 	{
1286 	  rtx available;
1287 	  rtx space_available = gen_label_rtx ();
1288 #ifdef STACK_GROWS_DOWNWARD
1289 	  available = expand_binop (Pmode, sub_optab,
1290 				    stack_pointer_rtx, stack_limit_rtx,
1291 				    NULL_RTX, 1, OPTAB_WIDEN);
1292 #else
1293 	  available = expand_binop (Pmode, sub_optab,
1294 				    stack_limit_rtx, stack_pointer_rtx,
1295 				    NULL_RTX, 1, OPTAB_WIDEN);
1296 #endif
1297 	  emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1298 				   space_available);
1299 #ifdef HAVE_trap
1300 	  if (HAVE_trap)
1301 	    emit_insn (gen_trap ());
1302 	  else
1303 #endif
1304 	    error ("stack limits not supported on this target");
1305 	  emit_barrier ();
1306 	  emit_label (space_available);
1307 	}
1308 
1309       if (flag_stack_check && STACK_CHECK_MOVING_SP)
1310 	anti_adjust_stack_and_probe (size, false);
1311       else
1312 	anti_adjust_stack (size);
1313 
1314 #ifdef STACK_GROWS_DOWNWARD
1315       emit_move_insn (target, virtual_stack_dynamic_rtx);
1316 #endif
1317     }
1318 
1319   if (MUST_ALIGN)
1320     {
1321       /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1322 	 but we know it can't.  So add ourselves and then do
1323 	 TRUNC_DIV_EXPR.  */
1324       target = expand_binop (Pmode, add_optab, target,
1325 			     GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1326 			     NULL_RTX, 1, OPTAB_LIB_WIDEN);
1327       target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1328 			      GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1329 			      NULL_RTX, 1);
1330       target = expand_mult (Pmode, target,
1331 			    GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1332 			    NULL_RTX, 1);
1333     }
1334 
1335   /* Record the new stack level for nonlocal gotos.  */
1336   if (cfun->nonlocal_goto_save_area != 0)
1337     update_nonlocal_goto_save_area ();
1338 
1339   return target;
1340 }
1341 
1342 /* A front end may want to override GCC's stack checking by providing a
1343    run-time routine to call to check the stack, so provide a mechanism for
1344    calling that routine.  */
1345 
1346 static GTY(()) rtx stack_check_libfunc;
1347 
1348 void
1349 set_stack_check_libfunc (rtx libfunc)
1350 {
1351   stack_check_libfunc = libfunc;
1352 }
1353 
1354 /* Emit one stack probe at ADDRESS, an address within the stack.  */
1355 
1356 static void
1357 emit_stack_probe (rtx address)
1358 {
1359   rtx memref = gen_rtx_MEM (word_mode, address);
1360 
1361   MEM_VOLATILE_P (memref) = 1;
1362 
1363   /* See if we have an insn to probe the stack.  */
1364 #ifdef HAVE_probe_stack
1365   if (HAVE_probe_stack)
1366     emit_insn (gen_probe_stack (memref));
1367   else
1368 #endif
1369     emit_move_insn (memref, const0_rtx);
1370 }
1371 
1372 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1373    FIRST is a constant and size is a Pmode RTX.  These are offsets from
1374    the current stack pointer.  STACK_GROWS_DOWNWARD says whether to add
1375    or subtract them from the stack pointer.  */
1376 
1377 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1378 
1379 #ifdef STACK_GROWS_DOWNWARD
1380 #define STACK_GROW_OP MINUS
1381 #define STACK_GROW_OPTAB sub_optab
1382 #define STACK_GROW_OFF(off) -(off)
1383 #else
1384 #define STACK_GROW_OP PLUS
1385 #define STACK_GROW_OPTAB add_optab
1386 #define STACK_GROW_OFF(off) (off)
1387 #endif
1388 
1389 void
1390 probe_stack_range (HOST_WIDE_INT first, rtx size)
1391 {
1392   /* First ensure SIZE is Pmode.  */
1393   if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1394     size = convert_to_mode (Pmode, size, 1);
1395 
1396   /* Next see if we have a function to check the stack.  */
1397   if (stack_check_libfunc)
1398     {
1399       rtx addr = memory_address (Pmode,
1400 				 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1401 					         stack_pointer_rtx,
1402 					         plus_constant (size, first)));
1403       emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1404 			 Pmode);
1405     }
1406 
1407   /* Next see if we have an insn to check the stack.  */
1408 #ifdef HAVE_check_stack
1409   else if (HAVE_check_stack)
1410     {
1411       rtx addr = memory_address (Pmode,
1412 				 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1413 					         stack_pointer_rtx,
1414 					         plus_constant (size, first)));
1415       insn_operand_predicate_fn pred
1416 	= insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1417       if (pred && !((*pred) (addr, Pmode)))
1418 	addr = copy_to_mode_reg (Pmode, addr);
1419 
1420       emit_insn (gen_check_stack (addr));
1421     }
1422 #endif
1423 
1424   /* Otherwise we have to generate explicit probes.  If we have a constant
1425      small number of them to generate, that's the easy case.  */
1426   else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1427     {
1428       HOST_WIDE_INT isize = INTVAL (size), i;
1429       rtx addr;
1430 
1431       /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1432 	 it exceeds SIZE.  If only one probe is needed, this will not
1433 	 generate any code.  Then probe at FIRST + SIZE.  */
1434       for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1435 	{
1436 	  addr = memory_address (Pmode,
1437 				 plus_constant (stack_pointer_rtx,
1438 				 		STACK_GROW_OFF (first + i)));
1439 	  emit_stack_probe (addr);
1440 	}
1441 
1442       addr = memory_address (Pmode,
1443 			     plus_constant (stack_pointer_rtx,
1444 					    STACK_GROW_OFF (first + isize)));
1445       emit_stack_probe (addr);
1446     }
1447 
1448   /* In the variable case, do the same as above, but in a loop.  Note that we
1449      must be extra careful with variables wrapping around because we might be
1450      at the very top (or the very bottom) of the address space and we have to
1451      be able to handle this case properly; in particular, we use an equality
1452      test for the loop condition.  */
1453   else
1454     {
1455       rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1456       rtx loop_lab = gen_label_rtx ();
1457       rtx end_lab = gen_label_rtx ();
1458 
1459 
1460       /* Step 1: round SIZE to the previous multiple of the interval.  */
1461 
1462       /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL  */
1463       rounded_size
1464 	= simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1465       rounded_size_op = force_operand (rounded_size, NULL_RTX);
1466 
1467 
1468       /* Step 2: compute initial and final value of the loop counter.  */
1469 
1470       /* TEST_ADDR = SP + FIRST.  */
1471       test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1472 					 	 stack_pointer_rtx,
1473 					 	 GEN_INT (first)), NULL_RTX);
1474 
1475       /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE.  */
1476       last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1477 						 test_addr,
1478 						 rounded_size_op), NULL_RTX);
1479 
1480 
1481       /* Step 3: the loop
1482 
1483 	 while (TEST_ADDR != LAST_ADDR)
1484 	   {
1485 	     TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1486 	     probe at TEST_ADDR
1487 	   }
1488 
1489 	 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1490 	 until it is equal to ROUNDED_SIZE.  */
1491 
1492       emit_label (loop_lab);
1493 
1494       /* Jump to END_LAB if TEST_ADDR == LAST_ADDR.  */
1495       emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1496 			       end_lab);
1497 
1498       /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL.  */
1499       temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1500 			   GEN_INT (PROBE_INTERVAL), test_addr,
1501 			   1, OPTAB_WIDEN);
1502 
1503       gcc_assert (temp == test_addr);
1504 
1505       /* Probe at TEST_ADDR.  */
1506       emit_stack_probe (test_addr);
1507 
1508       emit_jump (loop_lab);
1509 
1510       emit_label (end_lab);
1511 
1512 
1513       /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1514 	 that SIZE is equal to ROUNDED_SIZE.  */
1515 
1516       /* TEMP = SIZE - ROUNDED_SIZE.  */
1517       temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1518       if (temp != const0_rtx)
1519 	{
1520 	  rtx addr;
1521 
1522 	  if (GET_CODE (temp) == CONST_INT)
1523 	    {
1524 	      /* Use [base + disp} addressing mode if supported.  */
1525 	      HOST_WIDE_INT offset = INTVAL (temp);
1526 	      addr = memory_address (Pmode,
1527 				     plus_constant (last_addr,
1528 						    STACK_GROW_OFF (offset)));
1529 	    }
1530 	  else
1531 	    {
1532 	      /* Manual CSE if the difference is not known at compile-time.  */
1533 	      temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1534 	      addr = memory_address (Pmode,
1535 				     gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1536 						     last_addr, temp));
1537 	    }
1538 
1539 	  emit_stack_probe (addr);
1540 	}
1541     }
1542 }
1543 
1544 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1545    while probing it.  This pushes when SIZE is positive.  SIZE need not
1546    be constant.  If ADJUST_BACK is true, adjust back the stack pointer
1547    by plus SIZE at the end.  */
1548 
1549 void
1550 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1551 {
1552   /* We skip the probe for the first interval + a small dope of 4 words and
1553      probe that many bytes past the specified size to maintain a protection
1554      area at the botton of the stack.  */
1555   const int dope = 4 * UNITS_PER_WORD;
1556 
1557   /* First ensure SIZE is Pmode.  */
1558   if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1559     size = convert_to_mode (Pmode, size, 1);
1560 
1561   /* If we have a constant small number of probes to generate, that's the
1562      easy case.  */
1563   if (GET_CODE (size) == CONST_INT && INTVAL (size) < 7 * PROBE_INTERVAL)
1564     {
1565       HOST_WIDE_INT isize = INTVAL (size), i;
1566       bool first_probe = true;
1567 
1568       /* Adjust SP and probe to PROBE_INTERVAL + N * PROBE_INTERVAL for
1569 	 values of N from 1 until it exceeds SIZE.  If only one probe is
1570 	 needed, this will not generate any code.  Then adjust and probe
1571 	 to PROBE_INTERVAL + SIZE.  */
1572       for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1573 	{
1574 	  if (first_probe)
1575 	    {
1576 	      anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1577 	      first_probe = false;
1578 	    }
1579 	  else
1580 	    anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1581 	  emit_stack_probe (stack_pointer_rtx);
1582 	}
1583 
1584       if (first_probe)
1585 	anti_adjust_stack (plus_constant (size, PROBE_INTERVAL + dope));
1586       else
1587 	anti_adjust_stack (plus_constant (size, PROBE_INTERVAL - i));
1588       emit_stack_probe (stack_pointer_rtx);
1589     }
1590 
1591   /* In the variable case, do the same as above, but in a loop.  Note that we
1592      must be extra careful with variables wrapping around because we might be
1593      at the very top (or the very bottom) of the address space and we have to
1594      be able to handle this case properly; in particular, we use an equality
1595      test for the loop condition.  */
1596   else
1597     {
1598       rtx rounded_size, rounded_size_op, last_addr, temp;
1599       rtx loop_lab = gen_label_rtx ();
1600       rtx end_lab = gen_label_rtx ();
1601 
1602 
1603       /* Step 1: round SIZE to the previous multiple of the interval.  */
1604 
1605       /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL  */
1606       rounded_size
1607 	= simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1608       rounded_size_op = force_operand (rounded_size, NULL_RTX);
1609 
1610 
1611       /* Step 2: compute initial and final value of the loop counter.  */
1612 
1613       /* SP = SP_0 + PROBE_INTERVAL.  */
1614       anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1615 
1616       /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE.  */
1617       last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1618 						 stack_pointer_rtx,
1619 						 rounded_size_op), NULL_RTX);
1620 
1621 
1622       /* Step 3: the loop
1623 
1624 	  while (SP != LAST_ADDR)
1625 	    {
1626 	      SP = SP + PROBE_INTERVAL
1627 	      probe at SP
1628 	    }
1629 
1630 	 adjusts SP and probes to PROBE_INTERVAL + N * PROBE_INTERVAL for
1631 	 values of N from 1 until it is equal to ROUNDED_SIZE.  */
1632 
1633       emit_label (loop_lab);
1634 
1635       /* Jump to END_LAB if SP == LAST_ADDR.  */
1636       emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1637 			       Pmode, 1, end_lab);
1638 
1639       /* SP = SP + PROBE_INTERVAL and probe at SP.  */
1640       anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1641       emit_stack_probe (stack_pointer_rtx);
1642 
1643       emit_jump (loop_lab);
1644 
1645       emit_label (end_lab);
1646 
1647 
1648       /* Step 4: adjust SP and probe to PROBE_INTERVAL + SIZE if we cannot
1649 	 assert at compile-time that SIZE is equal to ROUNDED_SIZE.  */
1650 
1651       /* TEMP = SIZE - ROUNDED_SIZE.  */
1652       temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1653       if (temp != const0_rtx)
1654 	{
1655 	  /* Manual CSE if the difference is not known at compile-time.  */
1656 	  if (GET_CODE (temp) != CONST_INT)
1657 	    temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1658 	  anti_adjust_stack (temp);
1659 	  emit_stack_probe (stack_pointer_rtx);
1660 	}
1661     }
1662 
1663   /* Adjust back and account for the additional first interval.  */
1664   if (adjust_back)
1665     adjust_stack (plus_constant (size, PROBE_INTERVAL + dope));
1666   else
1667     adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1668 }
1669 
1670 /* Return an rtx representing the register or memory location
1671    in which a scalar value of data type VALTYPE
1672    was returned by a function call to function FUNC.
1673    FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1674    function is known, otherwise 0.
1675    OUTGOING is 1 if on a machine with register windows this function
1676    should return the register in which the function will put its result
1677    and 0 otherwise.  */
1678 
1679 rtx
1680 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1681 		     int outgoing ATTRIBUTE_UNUSED)
1682 {
1683   rtx val;
1684 
1685   val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1686 
1687   if (REG_P (val)
1688       && GET_MODE (val) == BLKmode)
1689     {
1690       unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1691       enum machine_mode tmpmode;
1692 
1693       /* int_size_in_bytes can return -1.  We don't need a check here
1694 	 since the value of bytes will then be large enough that no
1695 	 mode will match anyway.  */
1696 
1697       for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1698 	   tmpmode != VOIDmode;
1699 	   tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1700 	{
1701 	  /* Have we found a large enough mode?  */
1702 	  if (GET_MODE_SIZE (tmpmode) >= bytes)
1703 	    break;
1704 	}
1705 
1706       /* No suitable mode found.  */
1707       gcc_assert (tmpmode != VOIDmode);
1708 
1709       PUT_MODE (val, tmpmode);
1710     }
1711   return val;
1712 }
1713 
1714 /* Return an rtx representing the register or memory location
1715    in which a scalar value of mode MODE was returned by a library call.  */
1716 
1717 rtx
1718 hard_libcall_value (enum machine_mode mode, rtx fun)
1719 {
1720   return targetm.calls.libcall_value (mode, fun);
1721 }
1722 
1723 /* Look up the tree code for a given rtx code
1724    to provide the arithmetic operation for REAL_ARITHMETIC.
1725    The function returns an int because the caller may not know
1726    what `enum tree_code' means.  */
1727 
1728 int
1729 rtx_to_tree_code (enum rtx_code code)
1730 {
1731   enum tree_code tcode;
1732 
1733   switch (code)
1734     {
1735     case PLUS:
1736       tcode = PLUS_EXPR;
1737       break;
1738     case MINUS:
1739       tcode = MINUS_EXPR;
1740       break;
1741     case MULT:
1742       tcode = MULT_EXPR;
1743       break;
1744     case DIV:
1745       tcode = RDIV_EXPR;
1746       break;
1747     case SMIN:
1748       tcode = MIN_EXPR;
1749       break;
1750     case SMAX:
1751       tcode = MAX_EXPR;
1752       break;
1753     default:
1754       tcode = LAST_AND_UNUSED_TREE_CODE;
1755       break;
1756     }
1757   return ((int) tcode);
1758 }
1759 
1760 #include "gt-explow.h"
1761