xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/explow.c (revision 796c32c94f6e154afc9de0f63da35c91bb739b45)
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2    Copyright (C) 1987-2015 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "rtl.h"
27 #include "hash-set.h"
28 #include "machmode.h"
29 #include "vec.h"
30 #include "double-int.h"
31 #include "input.h"
32 #include "alias.h"
33 #include "symtab.h"
34 #include "wide-int.h"
35 #include "inchash.h"
36 #include "real.h"
37 #include "tree.h"
38 #include "stor-layout.h"
39 #include "tm_p.h"
40 #include "flags.h"
41 #include "except.h"
42 #include "hard-reg-set.h"
43 #include "function.h"
44 #include "hashtab.h"
45 #include "statistics.h"
46 #include "fixed-value.h"
47 #include "insn-config.h"
48 #include "expmed.h"
49 #include "dojump.h"
50 #include "explow.h"
51 #include "calls.h"
52 #include "emit-rtl.h"
53 #include "varasm.h"
54 #include "stmt.h"
55 #include "expr.h"
56 #include "insn-codes.h"
57 #include "optabs.h"
58 #include "libfuncs.h"
59 #include "ggc.h"
60 #include "recog.h"
61 #include "langhooks.h"
62 #include "target.h"
63 #include "common/common-target.h"
64 #include "output.h"
65 
66 static rtx break_out_memory_refs (rtx);
67 
68 
69 /* Truncate and perhaps sign-extend C as appropriate for MODE.  */
70 
71 HOST_WIDE_INT
72 trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode)
73 {
74   int width = GET_MODE_PRECISION (mode);
75 
76   /* You want to truncate to a _what_?  */
77   gcc_assert (SCALAR_INT_MODE_P (mode)
78 	      || POINTER_BOUNDS_MODE_P (mode));
79 
80   /* Canonicalize BImode to 0 and STORE_FLAG_VALUE.  */
81   if (mode == BImode)
82     return c & 1 ? STORE_FLAG_VALUE : 0;
83 
84   /* Sign-extend for the requested mode.  */
85 
86   if (width < HOST_BITS_PER_WIDE_INT)
87     {
88       HOST_WIDE_INT sign = 1;
89       sign <<= width - 1;
90       c &= (sign << 1) - 1;
91       c ^= sign;
92       c -= sign;
93     }
94 
95   return c;
96 }
97 
98 /* Return an rtx for the sum of X and the integer C, given that X has
99    mode MODE.  INPLACE is true if X can be modified inplace or false
100    if it must be treated as immutable.  */
101 
102 rtx
103 plus_constant (machine_mode mode, rtx x, HOST_WIDE_INT c,
104 	       bool inplace)
105 {
106   RTX_CODE code;
107   rtx y;
108   rtx tem;
109   int all_constant = 0;
110 
111   gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
112 
113   if (c == 0)
114     return x;
115 
116  restart:
117 
118   code = GET_CODE (x);
119   y = x;
120 
121   switch (code)
122     {
123     CASE_CONST_SCALAR_INT:
124       return immed_wide_int_const (wi::add (std::make_pair (x, mode), c),
125 				   mode);
126     case MEM:
127       /* If this is a reference to the constant pool, try replacing it with
128 	 a reference to a new constant.  If the resulting address isn't
129 	 valid, don't return it because we have no way to validize it.  */
130       if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
131 	  && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
132 	{
133 	  tem = plus_constant (mode, get_pool_constant (XEXP (x, 0)), c);
134 	  tem = force_const_mem (GET_MODE (x), tem);
135 	  if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
136 	    return tem;
137 	}
138       break;
139 
140     case CONST:
141       /* If adding to something entirely constant, set a flag
142 	 so that we can add a CONST around the result.  */
143       if (inplace && shared_const_p (x))
144 	inplace = false;
145       x = XEXP (x, 0);
146       all_constant = 1;
147       goto restart;
148 
149     case SYMBOL_REF:
150     case LABEL_REF:
151       all_constant = 1;
152       break;
153 
154     case PLUS:
155       /* The interesting case is adding the integer to a sum.  Look
156 	 for constant term in the sum and combine with C.  For an
157 	 integer constant term or a constant term that is not an
158 	 explicit integer, we combine or group them together anyway.
159 
160 	 We may not immediately return from the recursive call here, lest
161 	 all_constant gets lost.  */
162 
163       if (CONSTANT_P (XEXP (x, 1)))
164 	{
165 	  rtx term = plus_constant (mode, XEXP (x, 1), c, inplace);
166 	  if (term == const0_rtx)
167 	    x = XEXP (x, 0);
168 	  else if (inplace)
169 	    XEXP (x, 1) = term;
170 	  else
171 	    x = gen_rtx_PLUS (mode, XEXP (x, 0), term);
172 	  c = 0;
173 	}
174       else if (rtx *const_loc = find_constant_term_loc (&y))
175 	{
176 	  if (!inplace)
177 	    {
178 	      /* We need to be careful since X may be shared and we can't
179 		 modify it in place.  */
180 	      x = copy_rtx (x);
181 	      const_loc = find_constant_term_loc (&x);
182 	    }
183 	  *const_loc = plus_constant (mode, *const_loc, c, true);
184 	  c = 0;
185 	}
186       break;
187 
188     default:
189       break;
190     }
191 
192   if (c != 0)
193     x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
194 
195   if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
196     return x;
197   else if (all_constant)
198     return gen_rtx_CONST (mode, x);
199   else
200     return x;
201 }
202 
203 /* If X is a sum, return a new sum like X but lacking any constant terms.
204    Add all the removed constant terms into *CONSTPTR.
205    X itself is not altered.  The result != X if and only if
206    it is not isomorphic to X.  */
207 
208 rtx
209 eliminate_constant_term (rtx x, rtx *constptr)
210 {
211   rtx x0, x1;
212   rtx tem;
213 
214   if (GET_CODE (x) != PLUS)
215     return x;
216 
217   /* First handle constants appearing at this level explicitly.  */
218   if (CONST_INT_P (XEXP (x, 1))
219       && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
220 						XEXP (x, 1)))
221       && CONST_INT_P (tem))
222     {
223       *constptr = tem;
224       return eliminate_constant_term (XEXP (x, 0), constptr);
225     }
226 
227   tem = const0_rtx;
228   x0 = eliminate_constant_term (XEXP (x, 0), &tem);
229   x1 = eliminate_constant_term (XEXP (x, 1), &tem);
230   if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
231       && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
232 						*constptr, tem))
233       && CONST_INT_P (tem))
234     {
235       *constptr = tem;
236       return gen_rtx_PLUS (GET_MODE (x), x0, x1);
237     }
238 
239   return x;
240 }
241 
242 
243 /* Return a copy of X in which all memory references
244    and all constants that involve symbol refs
245    have been replaced with new temporary registers.
246    Also emit code to load the memory locations and constants
247    into those registers.
248 
249    If X contains no such constants or memory references,
250    X itself (not a copy) is returned.
251 
252    If a constant is found in the address that is not a legitimate constant
253    in an insn, it is left alone in the hope that it might be valid in the
254    address.
255 
256    X may contain no arithmetic except addition, subtraction and multiplication.
257    Values returned by expand_expr with 1 for sum_ok fit this constraint.  */
258 
259 static rtx
260 break_out_memory_refs (rtx x)
261 {
262   if (MEM_P (x)
263       || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
264 	  && GET_MODE (x) != VOIDmode))
265     x = force_reg (GET_MODE (x), x);
266   else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
267 	   || GET_CODE (x) == MULT)
268     {
269       rtx op0 = break_out_memory_refs (XEXP (x, 0));
270       rtx op1 = break_out_memory_refs (XEXP (x, 1));
271 
272       if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
273 	x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
274     }
275 
276   return x;
277 }
278 
279 /* Given X, a memory address in address space AS' pointer mode, convert it to
280    an address in the address space's address mode, or vice versa (TO_MODE says
281    which way).  We take advantage of the fact that pointers are not allowed to
282    overflow by commuting arithmetic operations over conversions so that address
283    arithmetic insns can be used. IN_CONST is true if this conversion is inside
284    a CONST. NO_EMIT is true if no insns should be emitted, and instead
285    it should return NULL if it can't be simplified without emitting insns.  */
286 
287 rtx
288 convert_memory_address_addr_space_1 (machine_mode to_mode ATTRIBUTE_UNUSED,
289 				     rtx x, addr_space_t as ATTRIBUTE_UNUSED,
290 				     bool in_const ATTRIBUTE_UNUSED,
291 				     bool no_emit ATTRIBUTE_UNUSED)
292 {
293 #ifndef POINTERS_EXTEND_UNSIGNED
294   gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
295   return x;
296 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
297   machine_mode pointer_mode, address_mode, from_mode;
298   rtx temp;
299   enum rtx_code code;
300 
301   /* If X already has the right mode, just return it.  */
302   if (GET_MODE (x) == to_mode)
303     return x;
304 
305   pointer_mode = targetm.addr_space.pointer_mode (as);
306   address_mode = targetm.addr_space.address_mode (as);
307   from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
308 
309   /* Here we handle some special cases.  If none of them apply, fall through
310      to the default case.  */
311   switch (GET_CODE (x))
312     {
313     CASE_CONST_SCALAR_INT:
314       if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
315 	code = TRUNCATE;
316       else if (POINTERS_EXTEND_UNSIGNED < 0)
317 	break;
318       else if (POINTERS_EXTEND_UNSIGNED > 0)
319 	code = ZERO_EXTEND;
320       else
321 	code = SIGN_EXTEND;
322       temp = simplify_unary_operation (code, to_mode, x, from_mode);
323       if (temp)
324 	return temp;
325       break;
326 
327     case SUBREG:
328       if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
329 	  && GET_MODE (SUBREG_REG (x)) == to_mode)
330 	return SUBREG_REG (x);
331       break;
332 
333     case LABEL_REF:
334       temp = gen_rtx_LABEL_REF (to_mode, LABEL_REF_LABEL (x));
335       LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
336       return temp;
337 
338     case SYMBOL_REF:
339       temp = shallow_copy_rtx (x);
340       PUT_MODE (temp, to_mode);
341       return temp;
342 
343     case CONST:
344       temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0), as,
345 						  true, no_emit);
346       return temp ? gen_rtx_CONST (to_mode, temp) : temp;
347 
348     case PLUS:
349     case MULT:
350       /* For addition we can safely permute the conversion and addition
351 	 operation if one operand is a constant and converting the constant
352 	 does not change it or if one operand is a constant and we are
353 	 using a ptr_extend instruction  (POINTERS_EXTEND_UNSIGNED < 0).
354 	 We can always safely permute them if we are making the address
355 	 narrower. Inside a CONST RTL, this is safe for both pointers
356 	 zero or sign extended as pointers cannot wrap. */
357       if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
358 	  || (GET_CODE (x) == PLUS
359 	      && CONST_INT_P (XEXP (x, 1))
360 	      && ((in_const && POINTERS_EXTEND_UNSIGNED != 0)
361 		  || XEXP (x, 1) == convert_memory_address_addr_space_1
362 				     (to_mode, XEXP (x, 1), as, in_const,
363 				      no_emit)
364                   || POINTERS_EXTEND_UNSIGNED < 0)))
365 	{
366 	  temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0),
367 						      as, in_const, no_emit);
368 	  return (temp ? gen_rtx_fmt_ee (GET_CODE (x), to_mode,
369 					 temp, XEXP (x, 1))
370 		       : temp);
371 	}
372       break;
373 
374     default:
375       break;
376     }
377 
378   if (no_emit)
379     return NULL_RTX;
380 
381   return convert_modes (to_mode, from_mode,
382 			x, POINTERS_EXTEND_UNSIGNED);
383 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
384 }
385 
386 /* Given X, a memory address in address space AS' pointer mode, convert it to
387    an address in the address space's address mode, or vice versa (TO_MODE says
388    which way).  We take advantage of the fact that pointers are not allowed to
389    overflow by commuting arithmetic operations over conversions so that address
390    arithmetic insns can be used.  */
391 
392 rtx
393 convert_memory_address_addr_space (machine_mode to_mode, rtx x, addr_space_t as)
394 {
395   return convert_memory_address_addr_space_1 (to_mode, x, as, false, false);
396 }
397 
398 
399 /* Return something equivalent to X but valid as a memory address for something
400    of mode MODE in the named address space AS.  When X is not itself valid,
401    this works by copying X or subexpressions of it into registers.  */
402 
403 rtx
404 memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as)
405 {
406   rtx oldx = x;
407   machine_mode address_mode = targetm.addr_space.address_mode (as);
408 
409   x = convert_memory_address_addr_space (address_mode, x, as);
410 
411   /* By passing constant addresses through registers
412      we get a chance to cse them.  */
413   if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
414     x = force_reg (address_mode, x);
415 
416   /* We get better cse by rejecting indirect addressing at this stage.
417      Let the combiner create indirect addresses where appropriate.
418      For now, generate the code so that the subexpressions useful to share
419      are visible.  But not if cse won't be done!  */
420   else
421     {
422       if (! cse_not_expected && !REG_P (x))
423 	x = break_out_memory_refs (x);
424 
425       /* At this point, any valid address is accepted.  */
426       if (memory_address_addr_space_p (mode, x, as))
427 	goto done;
428 
429       /* If it was valid before but breaking out memory refs invalidated it,
430 	 use it the old way.  */
431       if (memory_address_addr_space_p (mode, oldx, as))
432 	{
433 	  x = oldx;
434 	  goto done;
435 	}
436 
437       /* Perform machine-dependent transformations on X
438 	 in certain cases.  This is not necessary since the code
439 	 below can handle all possible cases, but machine-dependent
440 	 transformations can make better code.  */
441       {
442 	rtx orig_x = x;
443 	x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
444 	if (orig_x != x && memory_address_addr_space_p (mode, x, as))
445 	  goto done;
446       }
447 
448       /* PLUS and MULT can appear in special ways
449 	 as the result of attempts to make an address usable for indexing.
450 	 Usually they are dealt with by calling force_operand, below.
451 	 But a sum containing constant terms is special
452 	 if removing them makes the sum a valid address:
453 	 then we generate that address in a register
454 	 and index off of it.  We do this because it often makes
455 	 shorter code, and because the addresses thus generated
456 	 in registers often become common subexpressions.  */
457       if (GET_CODE (x) == PLUS)
458 	{
459 	  rtx constant_term = const0_rtx;
460 	  rtx y = eliminate_constant_term (x, &constant_term);
461 	  if (constant_term == const0_rtx
462 	      || ! memory_address_addr_space_p (mode, y, as))
463 	    x = force_operand (x, NULL_RTX);
464 	  else
465 	    {
466 	      y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
467 	      if (! memory_address_addr_space_p (mode, y, as))
468 		x = force_operand (x, NULL_RTX);
469 	      else
470 		x = y;
471 	    }
472 	}
473 
474       else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
475 	x = force_operand (x, NULL_RTX);
476 
477       /* If we have a register that's an invalid address,
478 	 it must be a hard reg of the wrong class.  Copy it to a pseudo.  */
479       else if (REG_P (x))
480 	x = copy_to_reg (x);
481 
482       /* Last resort: copy the value to a register, since
483 	 the register is a valid address.  */
484       else
485 	x = force_reg (address_mode, x);
486     }
487 
488  done:
489 
490   gcc_assert (memory_address_addr_space_p (mode, x, as));
491   /* If we didn't change the address, we are done.  Otherwise, mark
492      a reg as a pointer if we have REG or REG + CONST_INT.  */
493   if (oldx == x)
494     return x;
495   else if (REG_P (x))
496     mark_reg_pointer (x, BITS_PER_UNIT);
497   else if (GET_CODE (x) == PLUS
498 	   && REG_P (XEXP (x, 0))
499 	   && CONST_INT_P (XEXP (x, 1)))
500     mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
501 
502   /* OLDX may have been the address on a temporary.  Update the address
503      to indicate that X is now used.  */
504   update_temp_slot_address (oldx, x);
505 
506   return x;
507 }
508 
509 /* Convert a mem ref into one with a valid memory address.
510    Pass through anything else unchanged.  */
511 
512 rtx
513 validize_mem (rtx ref)
514 {
515   if (!MEM_P (ref))
516     return ref;
517   ref = use_anchored_address (ref);
518   if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
519 				   MEM_ADDR_SPACE (ref)))
520     return ref;
521 
522   /* Don't alter REF itself, since that is probably a stack slot.  */
523   return replace_equiv_address (ref, XEXP (ref, 0));
524 }
525 
526 /* If X is a memory reference to a member of an object block, try rewriting
527    it to use an anchor instead.  Return the new memory reference on success
528    and the old one on failure.  */
529 
530 rtx
531 use_anchored_address (rtx x)
532 {
533   rtx base;
534   HOST_WIDE_INT offset;
535   machine_mode mode;
536 
537   if (!flag_section_anchors)
538     return x;
539 
540   if (!MEM_P (x))
541     return x;
542 
543   /* Split the address into a base and offset.  */
544   base = XEXP (x, 0);
545   offset = 0;
546   if (GET_CODE (base) == CONST
547       && GET_CODE (XEXP (base, 0)) == PLUS
548       && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
549     {
550       offset += INTVAL (XEXP (XEXP (base, 0), 1));
551       base = XEXP (XEXP (base, 0), 0);
552     }
553 
554   /* Check whether BASE is suitable for anchors.  */
555   if (GET_CODE (base) != SYMBOL_REF
556       || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
557       || SYMBOL_REF_ANCHOR_P (base)
558       || SYMBOL_REF_BLOCK (base) == NULL
559       || !targetm.use_anchors_for_symbol_p (base))
560     return x;
561 
562   /* Decide where BASE is going to be.  */
563   place_block_symbol (base);
564 
565   /* Get the anchor we need to use.  */
566   offset += SYMBOL_REF_BLOCK_OFFSET (base);
567   base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
568 			     SYMBOL_REF_TLS_MODEL (base));
569 
570   /* Work out the offset from the anchor.  */
571   offset -= SYMBOL_REF_BLOCK_OFFSET (base);
572 
573   /* If we're going to run a CSE pass, force the anchor into a register.
574      We will then be able to reuse registers for several accesses, if the
575      target costs say that that's worthwhile.  */
576   mode = GET_MODE (base);
577   if (!cse_not_expected)
578     base = force_reg (mode, base);
579 
580   return replace_equiv_address (x, plus_constant (mode, base, offset));
581 }
582 
583 /* Copy the value or contents of X to a new temp reg and return that reg.  */
584 
585 rtx
586 copy_to_reg (rtx x)
587 {
588   rtx temp = gen_reg_rtx (GET_MODE (x));
589 
590   /* If not an operand, must be an address with PLUS and MULT so
591      do the computation.  */
592   if (! general_operand (x, VOIDmode))
593     x = force_operand (x, temp);
594 
595   if (x != temp)
596     emit_move_insn (temp, x);
597 
598   return temp;
599 }
600 
601 /* Like copy_to_reg but always give the new register mode Pmode
602    in case X is a constant.  */
603 
604 rtx
605 copy_addr_to_reg (rtx x)
606 {
607   return copy_to_mode_reg (Pmode, x);
608 }
609 
610 /* Like copy_to_reg but always give the new register mode MODE
611    in case X is a constant.  */
612 
613 rtx
614 copy_to_mode_reg (machine_mode mode, rtx x)
615 {
616   rtx temp = gen_reg_rtx (mode);
617 
618   /* If not an operand, must be an address with PLUS and MULT so
619      do the computation.  */
620   if (! general_operand (x, VOIDmode))
621     x = force_operand (x, temp);
622 
623   gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
624   if (x != temp)
625     emit_move_insn (temp, x);
626   return temp;
627 }
628 
629 /* Load X into a register if it is not already one.
630    Use mode MODE for the register.
631    X should be valid for mode MODE, but it may be a constant which
632    is valid for all integer modes; that's why caller must specify MODE.
633 
634    The caller must not alter the value in the register we return,
635    since we mark it as a "constant" register.  */
636 
637 rtx
638 force_reg (machine_mode mode, rtx x)
639 {
640   rtx temp, set;
641   rtx_insn *insn;
642 
643   if (REG_P (x))
644     return x;
645 
646   if (general_operand (x, mode))
647     {
648       temp = gen_reg_rtx (mode);
649       insn = emit_move_insn (temp, x);
650     }
651   else
652     {
653       temp = force_operand (x, NULL_RTX);
654       if (REG_P (temp))
655 	insn = get_last_insn ();
656       else
657 	{
658 	  rtx temp2 = gen_reg_rtx (mode);
659 	  insn = emit_move_insn (temp2, temp);
660 	  temp = temp2;
661 	}
662     }
663 
664   /* Let optimizers know that TEMP's value never changes
665      and that X can be substituted for it.  Don't get confused
666      if INSN set something else (such as a SUBREG of TEMP).  */
667   if (CONSTANT_P (x)
668       && (set = single_set (insn)) != 0
669       && SET_DEST (set) == temp
670       && ! rtx_equal_p (x, SET_SRC (set)))
671     set_unique_reg_note (insn, REG_EQUAL, x);
672 
673   /* Let optimizers know that TEMP is a pointer, and if so, the
674      known alignment of that pointer.  */
675   {
676     unsigned align = 0;
677     if (GET_CODE (x) == SYMBOL_REF)
678       {
679         align = BITS_PER_UNIT;
680 	if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
681 	  align = DECL_ALIGN (SYMBOL_REF_DECL (x));
682       }
683     else if (GET_CODE (x) == LABEL_REF)
684       align = BITS_PER_UNIT;
685     else if (GET_CODE (x) == CONST
686 	     && GET_CODE (XEXP (x, 0)) == PLUS
687 	     && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
688 	     && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
689       {
690 	rtx s = XEXP (XEXP (x, 0), 0);
691 	rtx c = XEXP (XEXP (x, 0), 1);
692 	unsigned sa, ca;
693 
694 	sa = BITS_PER_UNIT;
695 	if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
696 	  sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
697 
698 	if (INTVAL (c) == 0)
699 	  align = sa;
700 	else
701 	  {
702 	    ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
703 	    align = MIN (sa, ca);
704 	  }
705       }
706 
707     if (align || (MEM_P (x) && MEM_POINTER (x)))
708       mark_reg_pointer (temp, align);
709   }
710 
711   return temp;
712 }
713 
714 /* If X is a memory ref, copy its contents to a new temp reg and return
715    that reg.  Otherwise, return X.  */
716 
717 rtx
718 force_not_mem (rtx x)
719 {
720   rtx temp;
721 
722   if (!MEM_P (x) || GET_MODE (x) == BLKmode)
723     return x;
724 
725   temp = gen_reg_rtx (GET_MODE (x));
726 
727   if (MEM_POINTER (x))
728     REG_POINTER (temp) = 1;
729 
730   emit_move_insn (temp, x);
731   return temp;
732 }
733 
734 /* Copy X to TARGET (if it's nonzero and a reg)
735    or to a new temp reg and return that reg.
736    MODE is the mode to use for X in case it is a constant.  */
737 
738 rtx
739 copy_to_suggested_reg (rtx x, rtx target, machine_mode mode)
740 {
741   rtx temp;
742 
743   if (target && REG_P (target))
744     temp = target;
745   else
746     temp = gen_reg_rtx (mode);
747 
748   emit_move_insn (temp, x);
749   return temp;
750 }
751 
752 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
753    PUNSIGNEDP points to the signedness of the type and may be adjusted
754    to show what signedness to use on extension operations.
755 
756    FOR_RETURN is nonzero if the caller is promoting the return value
757    of FNDECL, else it is for promoting args.  */
758 
759 machine_mode
760 promote_function_mode (const_tree type, machine_mode mode, int *punsignedp,
761 		       const_tree funtype, int for_return)
762 {
763   /* Called without a type node for a libcall.  */
764   if (type == NULL_TREE)
765     {
766       if (INTEGRAL_MODE_P (mode))
767 	return targetm.calls.promote_function_mode (NULL_TREE, mode,
768 						    punsignedp, funtype,
769 						    for_return);
770       else
771 	return mode;
772     }
773 
774   switch (TREE_CODE (type))
775     {
776     case INTEGER_TYPE:   case ENUMERAL_TYPE:   case BOOLEAN_TYPE:
777     case REAL_TYPE:      case OFFSET_TYPE:     case FIXED_POINT_TYPE:
778     case POINTER_TYPE:   case REFERENCE_TYPE:
779       return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
780 						  for_return);
781 
782     default:
783       return mode;
784     }
785 }
786 /* Return the mode to use to store a scalar of TYPE and MODE.
787    PUNSIGNEDP points to the signedness of the type and may be adjusted
788    to show what signedness to use on extension operations.  */
789 
790 machine_mode
791 promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode,
792 	      int *punsignedp ATTRIBUTE_UNUSED)
793 {
794 #ifdef PROMOTE_MODE
795   enum tree_code code;
796   int unsignedp;
797 #endif
798 
799   /* For libcalls this is invoked without TYPE from the backends
800      TARGET_PROMOTE_FUNCTION_MODE hooks.  Don't do anything in that
801      case.  */
802   if (type == NULL_TREE)
803     return mode;
804 
805   /* FIXME: this is the same logic that was there until GCC 4.4, but we
806      probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
807      is not defined.  The affected targets are M32C, S390, SPARC.  */
808 #ifdef PROMOTE_MODE
809   code = TREE_CODE (type);
810   unsignedp = *punsignedp;
811 
812   switch (code)
813     {
814     case INTEGER_TYPE:   case ENUMERAL_TYPE:   case BOOLEAN_TYPE:
815     case REAL_TYPE:      case OFFSET_TYPE:     case FIXED_POINT_TYPE:
816       PROMOTE_MODE (mode, unsignedp, type);
817       *punsignedp = unsignedp;
818       return mode;
819       break;
820 
821 #ifdef POINTERS_EXTEND_UNSIGNED
822     case REFERENCE_TYPE:
823     case POINTER_TYPE:
824       *punsignedp = POINTERS_EXTEND_UNSIGNED;
825       return targetm.addr_space.address_mode
826 	       (TYPE_ADDR_SPACE (TREE_TYPE (type)));
827       break;
828 #endif
829 
830     default:
831       return mode;
832     }
833 #else
834   return mode;
835 #endif
836 }
837 
838 
839 /* Use one of promote_mode or promote_function_mode to find the promoted
840    mode of DECL.  If PUNSIGNEDP is not NULL, store there the unsignedness
841    of DECL after promotion.  */
842 
843 machine_mode
844 promote_decl_mode (const_tree decl, int *punsignedp)
845 {
846   tree type = TREE_TYPE (decl);
847   int unsignedp = TYPE_UNSIGNED (type);
848   machine_mode mode = DECL_MODE (decl);
849   machine_mode pmode;
850 
851   if (TREE_CODE (decl) == RESULT_DECL
852       || TREE_CODE (decl) == PARM_DECL)
853     pmode = promote_function_mode (type, mode, &unsignedp,
854                                    TREE_TYPE (current_function_decl), 2);
855   else
856     pmode = promote_mode (type, mode, &unsignedp);
857 
858   if (punsignedp)
859     *punsignedp = unsignedp;
860   return pmode;
861 }
862 
863 
864 /* Controls the behaviour of {anti_,}adjust_stack.  */
865 static bool suppress_reg_args_size;
866 
867 /* A helper for adjust_stack and anti_adjust_stack.  */
868 
869 static void
870 adjust_stack_1 (rtx adjust, bool anti_p)
871 {
872   rtx temp;
873   rtx_insn *insn;
874 
875 #ifndef STACK_GROWS_DOWNWARD
876   /* Hereafter anti_p means subtract_p.  */
877   anti_p = !anti_p;
878 #endif
879 
880   temp = expand_binop (Pmode,
881 		       anti_p ? sub_optab : add_optab,
882 		       stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
883 		       OPTAB_LIB_WIDEN);
884 
885   if (temp != stack_pointer_rtx)
886     insn = emit_move_insn (stack_pointer_rtx, temp);
887   else
888     {
889       insn = get_last_insn ();
890       temp = single_set (insn);
891       gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
892     }
893 
894   if (!suppress_reg_args_size)
895     add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
896 }
897 
898 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
899    This pops when ADJUST is positive.  ADJUST need not be constant.  */
900 
901 void
902 adjust_stack (rtx adjust)
903 {
904   if (adjust == const0_rtx)
905     return;
906 
907   /* We expect all variable sized adjustments to be multiple of
908      PREFERRED_STACK_BOUNDARY.  */
909   if (CONST_INT_P (adjust))
910     stack_pointer_delta -= INTVAL (adjust);
911 
912   adjust_stack_1 (adjust, false);
913 }
914 
915 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
916    This pushes when ADJUST is positive.  ADJUST need not be constant.  */
917 
918 void
919 anti_adjust_stack (rtx adjust)
920 {
921   if (adjust == const0_rtx)
922     return;
923 
924   /* We expect all variable sized adjustments to be multiple of
925      PREFERRED_STACK_BOUNDARY.  */
926   if (CONST_INT_P (adjust))
927     stack_pointer_delta += INTVAL (adjust);
928 
929   adjust_stack_1 (adjust, true);
930 }
931 
932 /* Round the size of a block to be pushed up to the boundary required
933    by this machine.  SIZE is the desired size, which need not be constant.  */
934 
935 static rtx
936 round_push (rtx size)
937 {
938   rtx align_rtx, alignm1_rtx;
939 
940   if (!SUPPORTS_STACK_ALIGNMENT
941       || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
942     {
943       int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
944 
945       if (align == 1)
946 	return size;
947 
948       if (CONST_INT_P (size))
949 	{
950 	  HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
951 
952 	  if (INTVAL (size) != new_size)
953 	    size = GEN_INT (new_size);
954 	  return size;
955 	}
956 
957       align_rtx = GEN_INT (align);
958       alignm1_rtx = GEN_INT (align - 1);
959     }
960   else
961     {
962       /* If crtl->preferred_stack_boundary might still grow, use
963 	 virtual_preferred_stack_boundary_rtx instead.  This will be
964 	 substituted by the right value in vregs pass and optimized
965 	 during combine.  */
966       align_rtx = virtual_preferred_stack_boundary_rtx;
967       alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
968 				   NULL_RTX);
969     }
970 
971   /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
972      but we know it can't.  So add ourselves and then do
973      TRUNC_DIV_EXPR.  */
974   size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
975 		       NULL_RTX, 1, OPTAB_LIB_WIDEN);
976   size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
977 			NULL_RTX, 1);
978   size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
979 
980   return size;
981 }
982 
983 /* Save the stack pointer for the purpose in SAVE_LEVEL.  PSAVE is a pointer
984    to a previously-created save area.  If no save area has been allocated,
985    this function will allocate one.  If a save area is specified, it
986    must be of the proper mode.  */
987 
988 void
989 emit_stack_save (enum save_level save_level, rtx *psave)
990 {
991   rtx sa = *psave;
992   /* The default is that we use a move insn and save in a Pmode object.  */
993   rtx (*fcn) (rtx, rtx) = gen_move_insn;
994   machine_mode mode = STACK_SAVEAREA_MODE (save_level);
995 
996   /* See if this machine has anything special to do for this kind of save.  */
997   switch (save_level)
998     {
999 #ifdef HAVE_save_stack_block
1000     case SAVE_BLOCK:
1001       if (HAVE_save_stack_block)
1002 	fcn = gen_save_stack_block;
1003       break;
1004 #endif
1005 #ifdef HAVE_save_stack_function
1006     case SAVE_FUNCTION:
1007       if (HAVE_save_stack_function)
1008 	fcn = gen_save_stack_function;
1009       break;
1010 #endif
1011 #ifdef HAVE_save_stack_nonlocal
1012     case SAVE_NONLOCAL:
1013       if (HAVE_save_stack_nonlocal)
1014 	fcn = gen_save_stack_nonlocal;
1015       break;
1016 #endif
1017     default:
1018       break;
1019     }
1020 
1021   /* If there is no save area and we have to allocate one, do so.  Otherwise
1022      verify the save area is the proper mode.  */
1023 
1024   if (sa == 0)
1025     {
1026       if (mode != VOIDmode)
1027 	{
1028 	  if (save_level == SAVE_NONLOCAL)
1029 	    *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1030 	  else
1031 	    *psave = sa = gen_reg_rtx (mode);
1032 	}
1033     }
1034 
1035   do_pending_stack_adjust ();
1036   if (sa != 0)
1037     sa = validize_mem (sa);
1038   emit_insn (fcn (sa, stack_pointer_rtx));
1039 }
1040 
1041 /* Restore the stack pointer for the purpose in SAVE_LEVEL.  SA is the save
1042    area made by emit_stack_save.  If it is zero, we have nothing to do.  */
1043 
1044 void
1045 emit_stack_restore (enum save_level save_level, rtx sa)
1046 {
1047   /* The default is that we use a move insn.  */
1048   rtx (*fcn) (rtx, rtx) = gen_move_insn;
1049 
1050   /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1051      STACK_POINTER and HARD_FRAME_POINTER.
1052      If stack_realign_fp, the x86 backend emits a prologue that aligns only
1053      STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1054      aligned variables, which is reflected in ix86_can_eliminate.
1055      We normally still have the realigned STACK_POINTER that we can use.
1056      But if there is a stack restore still present at reload, it can trigger
1057      mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1058      FRAME_POINTER into a hard reg.
1059      To prevent this situation, we force need_drap if we emit a stack
1060      restore.  */
1061   if (SUPPORTS_STACK_ALIGNMENT)
1062     crtl->need_drap = true;
1063 
1064   /* See if this machine has anything special to do for this kind of save.  */
1065   switch (save_level)
1066     {
1067 #ifdef HAVE_restore_stack_block
1068     case SAVE_BLOCK:
1069       if (HAVE_restore_stack_block)
1070 	fcn = gen_restore_stack_block;
1071       break;
1072 #endif
1073 #ifdef HAVE_restore_stack_function
1074     case SAVE_FUNCTION:
1075       if (HAVE_restore_stack_function)
1076 	fcn = gen_restore_stack_function;
1077       break;
1078 #endif
1079 #ifdef HAVE_restore_stack_nonlocal
1080     case SAVE_NONLOCAL:
1081       if (HAVE_restore_stack_nonlocal)
1082 	fcn = gen_restore_stack_nonlocal;
1083       break;
1084 #endif
1085     default:
1086       break;
1087     }
1088 
1089   if (sa != 0)
1090     {
1091       sa = validize_mem (sa);
1092       /* These clobbers prevent the scheduler from moving
1093 	 references to variable arrays below the code
1094 	 that deletes (pops) the arrays.  */
1095       emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1096       emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1097     }
1098 
1099   discard_pending_stack_adjust ();
1100 
1101   emit_insn (fcn (stack_pointer_rtx, sa));
1102 }
1103 
1104 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1105    function.  This function should be called whenever we allocate or
1106    deallocate dynamic stack space.  */
1107 
1108 void
1109 update_nonlocal_goto_save_area (void)
1110 {
1111   tree t_save;
1112   rtx r_save;
1113 
1114   /* The nonlocal_goto_save_area object is an array of N pointers.  The
1115      first one is used for the frame pointer save; the rest are sized by
1116      STACK_SAVEAREA_MODE.  Create a reference to array index 1, the first
1117      of the stack save area slots.  */
1118   t_save = build4 (ARRAY_REF,
1119 		   TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1120 		   cfun->nonlocal_goto_save_area,
1121 		   integer_one_node, NULL_TREE, NULL_TREE);
1122   r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1123 
1124   emit_stack_save (SAVE_NONLOCAL, &r_save);
1125 }
1126 
1127 /* Return an rtx representing the address of an area of memory dynamically
1128    pushed on the stack.
1129 
1130    Any required stack pointer alignment is preserved.
1131 
1132    SIZE is an rtx representing the size of the area.
1133 
1134    SIZE_ALIGN is the alignment (in bits) that we know SIZE has.  This
1135    parameter may be zero.  If so, a proper value will be extracted
1136    from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1137 
1138    REQUIRED_ALIGN is the alignment (in bits) required for the region
1139    of memory.
1140 
1141    If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1142    stack space allocated by the generated code cannot be added with itself
1143    in the course of the execution of the function.  It is always safe to
1144    pass FALSE here and the following criterion is sufficient in order to
1145    pass TRUE: every path in the CFG that starts at the allocation point and
1146    loops to it executes the associated deallocation code.  */
1147 
1148 rtx
1149 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1150 			      unsigned required_align, bool cannot_accumulate)
1151 {
1152   HOST_WIDE_INT stack_usage_size = -1;
1153   rtx_code_label *final_label;
1154   rtx final_target, target;
1155   unsigned extra_align = 0;
1156   bool must_align;
1157 
1158   /* If we're asking for zero bytes, it doesn't matter what we point
1159      to since we can't dereference it.  But return a reasonable
1160      address anyway.  */
1161   if (size == const0_rtx)
1162     return virtual_stack_dynamic_rtx;
1163 
1164   /* Otherwise, show we're calling alloca or equivalent.  */
1165   cfun->calls_alloca = 1;
1166 
1167   /* If stack usage info is requested, look into the size we are passed.
1168      We need to do so this early to avoid the obfuscation that may be
1169      introduced later by the various alignment operations.  */
1170   if (flag_stack_usage_info)
1171     {
1172       if (CONST_INT_P (size))
1173 	stack_usage_size = INTVAL (size);
1174       else if (REG_P (size))
1175         {
1176 	  /* Look into the last emitted insn and see if we can deduce
1177 	     something for the register.  */
1178 	  rtx_insn *insn;
1179 	  rtx set, note;
1180 	  insn = get_last_insn ();
1181 	  if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1182 	    {
1183 	      if (CONST_INT_P (SET_SRC (set)))
1184 		stack_usage_size = INTVAL (SET_SRC (set));
1185 	      else if ((note = find_reg_equal_equiv_note (insn))
1186 		       && CONST_INT_P (XEXP (note, 0)))
1187 		stack_usage_size = INTVAL (XEXP (note, 0));
1188 	    }
1189 	}
1190 
1191       /* If the size is not constant, we can't say anything.  */
1192       if (stack_usage_size == -1)
1193 	{
1194 	  current_function_has_unbounded_dynamic_stack_size = 1;
1195 	  stack_usage_size = 0;
1196 	}
1197     }
1198 
1199   /* Ensure the size is in the proper mode.  */
1200   if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1201     size = convert_to_mode (Pmode, size, 1);
1202 
1203   /* Adjust SIZE_ALIGN, if needed.  */
1204   if (CONST_INT_P (size))
1205     {
1206       unsigned HOST_WIDE_INT lsb;
1207 
1208       lsb = INTVAL (size);
1209       lsb &= -lsb;
1210 
1211       /* Watch out for overflow truncating to "unsigned".  */
1212       if (lsb > UINT_MAX / BITS_PER_UNIT)
1213 	size_align = 1u << (HOST_BITS_PER_INT - 1);
1214       else
1215 	size_align = (unsigned)lsb * BITS_PER_UNIT;
1216     }
1217   else if (size_align < BITS_PER_UNIT)
1218     size_align = BITS_PER_UNIT;
1219 
1220   /* We can't attempt to minimize alignment necessary, because we don't
1221      know the final value of preferred_stack_boundary yet while executing
1222      this code.  */
1223   if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1224     crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1225 
1226   /* We will need to ensure that the address we return is aligned to
1227      REQUIRED_ALIGN.  If STACK_DYNAMIC_OFFSET is defined, we don't
1228      always know its final value at this point in the compilation (it
1229      might depend on the size of the outgoing parameter lists, for
1230      example), so we must align the value to be returned in that case.
1231      (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1232      STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1233      We must also do an alignment operation on the returned value if
1234      the stack pointer alignment is less strict than REQUIRED_ALIGN.
1235 
1236      If we have to align, we must leave space in SIZE for the hole
1237      that might result from the alignment operation.  */
1238 
1239   must_align = (crtl->preferred_stack_boundary < required_align);
1240   if (must_align)
1241     {
1242       if (required_align > PREFERRED_STACK_BOUNDARY)
1243 	extra_align = PREFERRED_STACK_BOUNDARY;
1244       else if (required_align > STACK_BOUNDARY)
1245 	extra_align = STACK_BOUNDARY;
1246       else
1247 	extra_align = BITS_PER_UNIT;
1248     }
1249 
1250   /* ??? STACK_POINTER_OFFSET is always defined now.  */
1251 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1252   must_align = true;
1253   extra_align = BITS_PER_UNIT;
1254 #endif
1255 
1256   if (must_align)
1257     {
1258       unsigned extra = (required_align - extra_align) / BITS_PER_UNIT;
1259 
1260       size = plus_constant (Pmode, size, extra);
1261       size = force_operand (size, NULL_RTX);
1262 
1263       if (flag_stack_usage_info)
1264 	stack_usage_size += extra;
1265 
1266       if (extra && size_align > extra_align)
1267 	size_align = extra_align;
1268     }
1269 
1270   /* Round the size to a multiple of the required stack alignment.
1271      Since the stack if presumed to be rounded before this allocation,
1272      this will maintain the required alignment.
1273 
1274      If the stack grows downward, we could save an insn by subtracting
1275      SIZE from the stack pointer and then aligning the stack pointer.
1276      The problem with this is that the stack pointer may be unaligned
1277      between the execution of the subtraction and alignment insns and
1278      some machines do not allow this.  Even on those that do, some
1279      signal handlers malfunction if a signal should occur between those
1280      insns.  Since this is an extremely rare event, we have no reliable
1281      way of knowing which systems have this problem.  So we avoid even
1282      momentarily mis-aligning the stack.  */
1283   if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1284     {
1285       size = round_push (size);
1286 
1287       if (flag_stack_usage_info)
1288 	{
1289 	  int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1290 	  stack_usage_size = (stack_usage_size + align - 1) / align * align;
1291 	}
1292     }
1293 
1294   target = gen_reg_rtx (Pmode);
1295 
1296   /* The size is supposed to be fully adjusted at this point so record it
1297      if stack usage info is requested.  */
1298   if (flag_stack_usage_info)
1299     {
1300       current_function_dynamic_stack_size += stack_usage_size;
1301 
1302       /* ??? This is gross but the only safe stance in the absence
1303 	 of stack usage oriented flow analysis.  */
1304       if (!cannot_accumulate)
1305 	current_function_has_unbounded_dynamic_stack_size = 1;
1306     }
1307 
1308   final_label = NULL;
1309   final_target = NULL_RTX;
1310 
1311   /* If we are splitting the stack, we need to ask the backend whether
1312      there is enough room on the current stack.  If there isn't, or if
1313      the backend doesn't know how to tell is, then we need to call a
1314      function to allocate memory in some other way.  This memory will
1315      be released when we release the current stack segment.  The
1316      effect is that stack allocation becomes less efficient, but at
1317      least it doesn't cause a stack overflow.  */
1318   if (flag_split_stack)
1319     {
1320       rtx_code_label *available_label;
1321       rtx ask, space, func;
1322 
1323       available_label = NULL;
1324 
1325 #ifdef HAVE_split_stack_space_check
1326       if (HAVE_split_stack_space_check)
1327 	{
1328 	  available_label = gen_label_rtx ();
1329 
1330 	  /* This instruction will branch to AVAILABLE_LABEL if there
1331 	     are SIZE bytes available on the stack.  */
1332 	  emit_insn (gen_split_stack_space_check (size, available_label));
1333 	}
1334 #endif
1335 
1336       /* The __morestack_allocate_stack_space function will allocate
1337 	 memory using malloc.  If the alignment of the memory returned
1338 	 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1339 	 make sure we allocate enough space.  */
1340       if (MALLOC_ABI_ALIGNMENT >= required_align)
1341 	ask = size;
1342       else
1343 	{
1344 	  ask = expand_binop (Pmode, add_optab, size,
1345 			      gen_int_mode (required_align / BITS_PER_UNIT - 1,
1346 					    Pmode),
1347 			      NULL_RTX, 1, OPTAB_LIB_WIDEN);
1348 	  must_align = true;
1349 	}
1350 
1351       func = init_one_libfunc ("__morestack_allocate_stack_space");
1352 
1353       space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1354 				       1, ask, Pmode);
1355 
1356       if (available_label == NULL_RTX)
1357 	return space;
1358 
1359       final_target = gen_reg_rtx (Pmode);
1360 
1361       emit_move_insn (final_target, space);
1362 
1363       final_label = gen_label_rtx ();
1364       emit_jump (final_label);
1365 
1366       emit_label (available_label);
1367     }
1368 
1369   do_pending_stack_adjust ();
1370 
1371  /* We ought to be called always on the toplevel and stack ought to be aligned
1372     properly.  */
1373   gcc_assert (!(stack_pointer_delta
1374 		% (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1375 
1376   /* If needed, check that we have the required amount of stack.  Take into
1377      account what has already been checked.  */
1378   if (STACK_CHECK_MOVING_SP)
1379     ;
1380   else if (flag_stack_check == GENERIC_STACK_CHECK)
1381     probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1382 		       size);
1383   else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1384     probe_stack_range (STACK_CHECK_PROTECT, size);
1385 
1386   /* Don't let anti_adjust_stack emit notes.  */
1387   suppress_reg_args_size = true;
1388 
1389   /* Perform the required allocation from the stack.  Some systems do
1390      this differently than simply incrementing/decrementing from the
1391      stack pointer, such as acquiring the space by calling malloc().  */
1392 #ifdef HAVE_allocate_stack
1393   if (HAVE_allocate_stack)
1394     {
1395       struct expand_operand ops[2];
1396       /* We don't have to check against the predicate for operand 0 since
1397 	 TARGET is known to be a pseudo of the proper mode, which must
1398 	 be valid for the operand.  */
1399       create_fixed_operand (&ops[0], target);
1400       create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1401       expand_insn (CODE_FOR_allocate_stack, 2, ops);
1402     }
1403   else
1404 #endif
1405     {
1406       int saved_stack_pointer_delta;
1407 
1408 #ifndef STACK_GROWS_DOWNWARD
1409       emit_move_insn (target, virtual_stack_dynamic_rtx);
1410 #endif
1411 
1412       /* Check stack bounds if necessary.  */
1413       if (crtl->limit_stack)
1414 	{
1415 	  rtx available;
1416 	  rtx_code_label *space_available = gen_label_rtx ();
1417 #ifdef STACK_GROWS_DOWNWARD
1418 	  available = expand_binop (Pmode, sub_optab,
1419 				    stack_pointer_rtx, stack_limit_rtx,
1420 				    NULL_RTX, 1, OPTAB_WIDEN);
1421 #else
1422 	  available = expand_binop (Pmode, sub_optab,
1423 				    stack_limit_rtx, stack_pointer_rtx,
1424 				    NULL_RTX, 1, OPTAB_WIDEN);
1425 #endif
1426 	  emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1427 				   space_available);
1428 #ifdef HAVE_trap
1429 	  if (HAVE_trap)
1430 	    emit_insn (gen_trap ());
1431 	  else
1432 #endif
1433 	    error ("stack limits not supported on this target");
1434 	  emit_barrier ();
1435 	  emit_label (space_available);
1436 	}
1437 
1438       saved_stack_pointer_delta = stack_pointer_delta;
1439 
1440       if (flag_stack_check && STACK_CHECK_MOVING_SP)
1441 	anti_adjust_stack_and_probe (size, false);
1442       else
1443 	anti_adjust_stack (size);
1444 
1445       /* Even if size is constant, don't modify stack_pointer_delta.
1446 	 The constant size alloca should preserve
1447 	 crtl->preferred_stack_boundary alignment.  */
1448       stack_pointer_delta = saved_stack_pointer_delta;
1449 
1450 #ifdef STACK_GROWS_DOWNWARD
1451       emit_move_insn (target, virtual_stack_dynamic_rtx);
1452 #endif
1453     }
1454 
1455   suppress_reg_args_size = false;
1456 
1457   /* Finish up the split stack handling.  */
1458   if (final_label != NULL_RTX)
1459     {
1460       gcc_assert (flag_split_stack);
1461       emit_move_insn (final_target, target);
1462       emit_label (final_label);
1463       target = final_target;
1464     }
1465 
1466   if (must_align)
1467     {
1468       /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1469 	 but we know it can't.  So add ourselves and then do
1470 	 TRUNC_DIV_EXPR.  */
1471       target = expand_binop (Pmode, add_optab, target,
1472 			     gen_int_mode (required_align / BITS_PER_UNIT - 1,
1473 					   Pmode),
1474 			     NULL_RTX, 1, OPTAB_LIB_WIDEN);
1475       target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1476 			      gen_int_mode (required_align / BITS_PER_UNIT,
1477 					    Pmode),
1478 			      NULL_RTX, 1);
1479       target = expand_mult (Pmode, target,
1480 			    gen_int_mode (required_align / BITS_PER_UNIT,
1481 					  Pmode),
1482 			    NULL_RTX, 1);
1483     }
1484 
1485   /* Now that we've committed to a return value, mark its alignment.  */
1486   mark_reg_pointer (target, required_align);
1487 
1488   /* Record the new stack level for nonlocal gotos.  */
1489   if (cfun->nonlocal_goto_save_area != 0)
1490     update_nonlocal_goto_save_area ();
1491 
1492   return target;
1493 }
1494 
1495 /* A front end may want to override GCC's stack checking by providing a
1496    run-time routine to call to check the stack, so provide a mechanism for
1497    calling that routine.  */
1498 
1499 static GTY(()) rtx stack_check_libfunc;
1500 
1501 void
1502 set_stack_check_libfunc (const char *libfunc_name)
1503 {
1504   gcc_assert (stack_check_libfunc == NULL_RTX);
1505   stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1506 }
1507 
1508 /* Emit one stack probe at ADDRESS, an address within the stack.  */
1509 
1510 void
1511 emit_stack_probe (rtx address)
1512 {
1513 #ifdef HAVE_probe_stack_address
1514   if (HAVE_probe_stack_address)
1515     emit_insn (gen_probe_stack_address (address));
1516   else
1517 #endif
1518     {
1519       rtx memref = gen_rtx_MEM (word_mode, address);
1520 
1521       MEM_VOLATILE_P (memref) = 1;
1522 
1523       /* See if we have an insn to probe the stack.  */
1524 #ifdef HAVE_probe_stack
1525       if (HAVE_probe_stack)
1526         emit_insn (gen_probe_stack (memref));
1527       else
1528 #endif
1529         emit_move_insn (memref, const0_rtx);
1530     }
1531 }
1532 
1533 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1534    FIRST is a constant and size is a Pmode RTX.  These are offsets from
1535    the current stack pointer.  STACK_GROWS_DOWNWARD says whether to add
1536    or subtract them from the stack pointer.  */
1537 
1538 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1539 
1540 #ifdef STACK_GROWS_DOWNWARD
1541 #define STACK_GROW_OP MINUS
1542 #define STACK_GROW_OPTAB sub_optab
1543 #define STACK_GROW_OFF(off) -(off)
1544 #else
1545 #define STACK_GROW_OP PLUS
1546 #define STACK_GROW_OPTAB add_optab
1547 #define STACK_GROW_OFF(off) (off)
1548 #endif
1549 
1550 void
1551 probe_stack_range (HOST_WIDE_INT first, rtx size)
1552 {
1553   /* First ensure SIZE is Pmode.  */
1554   if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1555     size = convert_to_mode (Pmode, size, 1);
1556 
1557   /* Next see if we have a function to check the stack.  */
1558   if (stack_check_libfunc)
1559     {
1560       rtx addr = memory_address (Pmode,
1561 				 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1562 					         stack_pointer_rtx,
1563 					         plus_constant (Pmode,
1564 								size, first)));
1565       emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1566 			 Pmode);
1567     }
1568 
1569   /* Next see if we have an insn to check the stack.  */
1570 #ifdef HAVE_check_stack
1571   else if (HAVE_check_stack)
1572     {
1573       struct expand_operand ops[1];
1574       rtx addr = memory_address (Pmode,
1575 				 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1576 					         stack_pointer_rtx,
1577 					         plus_constant (Pmode,
1578 								size, first)));
1579       bool success;
1580       create_input_operand (&ops[0], addr, Pmode);
1581       success = maybe_expand_insn (CODE_FOR_check_stack, 1, ops);
1582       gcc_assert (success);
1583     }
1584 #endif
1585 
1586   /* Otherwise we have to generate explicit probes.  If we have a constant
1587      small number of them to generate, that's the easy case.  */
1588   else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1589     {
1590       HOST_WIDE_INT isize = INTVAL (size), i;
1591       rtx addr;
1592 
1593       /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1594 	 it exceeds SIZE.  If only one probe is needed, this will not
1595 	 generate any code.  Then probe at FIRST + SIZE.  */
1596       for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1597 	{
1598 	  addr = memory_address (Pmode,
1599 				 plus_constant (Pmode, stack_pointer_rtx,
1600 				 		STACK_GROW_OFF (first + i)));
1601 	  emit_stack_probe (addr);
1602 	}
1603 
1604       addr = memory_address (Pmode,
1605 			     plus_constant (Pmode, stack_pointer_rtx,
1606 					    STACK_GROW_OFF (first + isize)));
1607       emit_stack_probe (addr);
1608     }
1609 
1610   /* In the variable case, do the same as above, but in a loop.  Note that we
1611      must be extra careful with variables wrapping around because we might be
1612      at the very top (or the very bottom) of the address space and we have to
1613      be able to handle this case properly; in particular, we use an equality
1614      test for the loop condition.  */
1615   else
1616     {
1617       rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1618       rtx_code_label *loop_lab = gen_label_rtx ();
1619       rtx_code_label *end_lab = gen_label_rtx ();
1620 
1621       /* Step 1: round SIZE to the previous multiple of the interval.  */
1622 
1623       /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL  */
1624       rounded_size
1625 	= simplify_gen_binary (AND, Pmode, size,
1626 			       gen_int_mode (-PROBE_INTERVAL, Pmode));
1627       rounded_size_op = force_operand (rounded_size, NULL_RTX);
1628 
1629 
1630       /* Step 2: compute initial and final value of the loop counter.  */
1631 
1632       /* TEST_ADDR = SP + FIRST.  */
1633       test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1634 					 	 stack_pointer_rtx,
1635 						 gen_int_mode (first, Pmode)),
1636 				 NULL_RTX);
1637 
1638       /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE.  */
1639       last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1640 						 test_addr,
1641 						 rounded_size_op), NULL_RTX);
1642 
1643 
1644       /* Step 3: the loop
1645 
1646 	 while (TEST_ADDR != LAST_ADDR)
1647 	   {
1648 	     TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1649 	     probe at TEST_ADDR
1650 	   }
1651 
1652 	 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1653 	 until it is equal to ROUNDED_SIZE.  */
1654 
1655       emit_label (loop_lab);
1656 
1657       /* Jump to END_LAB if TEST_ADDR == LAST_ADDR.  */
1658       emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1659 			       end_lab);
1660 
1661       /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL.  */
1662       temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1663 			   gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
1664 			   1, OPTAB_WIDEN);
1665 
1666       gcc_assert (temp == test_addr);
1667 
1668       /* Probe at TEST_ADDR.  */
1669       emit_stack_probe (test_addr);
1670 
1671       emit_jump (loop_lab);
1672 
1673       emit_label (end_lab);
1674 
1675 
1676       /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1677 	 that SIZE is equal to ROUNDED_SIZE.  */
1678 
1679       /* TEMP = SIZE - ROUNDED_SIZE.  */
1680       temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1681       if (temp != const0_rtx)
1682 	{
1683 	  rtx addr;
1684 
1685 	  if (CONST_INT_P (temp))
1686 	    {
1687 	      /* Use [base + disp} addressing mode if supported.  */
1688 	      HOST_WIDE_INT offset = INTVAL (temp);
1689 	      addr = memory_address (Pmode,
1690 				     plus_constant (Pmode, last_addr,
1691 						    STACK_GROW_OFF (offset)));
1692 	    }
1693 	  else
1694 	    {
1695 	      /* Manual CSE if the difference is not known at compile-time.  */
1696 	      temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1697 	      addr = memory_address (Pmode,
1698 				     gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1699 						     last_addr, temp));
1700 	    }
1701 
1702 	  emit_stack_probe (addr);
1703 	}
1704     }
1705 
1706   /* Make sure nothing is scheduled before we are done.  */
1707   emit_insn (gen_blockage ());
1708 }
1709 
1710 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1711    while probing it.  This pushes when SIZE is positive.  SIZE need not
1712    be constant.  If ADJUST_BACK is true, adjust back the stack pointer
1713    by plus SIZE at the end.  */
1714 
1715 void
1716 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1717 {
1718   /* We skip the probe for the first interval + a small dope of 4 words and
1719      probe that many bytes past the specified size to maintain a protection
1720      area at the botton of the stack.  */
1721   const int dope = 4 * UNITS_PER_WORD;
1722 
1723   /* First ensure SIZE is Pmode.  */
1724   if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1725     size = convert_to_mode (Pmode, size, 1);
1726 
1727   /* If we have a constant small number of probes to generate, that's the
1728      easy case.  */
1729   if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1730     {
1731       HOST_WIDE_INT isize = INTVAL (size), i;
1732       bool first_probe = true;
1733 
1734       /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1735 	 values of N from 1 until it exceeds SIZE.  If only one probe is
1736 	 needed, this will not generate any code.  Then adjust and probe
1737 	 to PROBE_INTERVAL + SIZE.  */
1738       for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1739 	{
1740 	  if (first_probe)
1741 	    {
1742 	      anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1743 	      first_probe = false;
1744 	    }
1745 	  else
1746 	    anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1747 	  emit_stack_probe (stack_pointer_rtx);
1748 	}
1749 
1750       if (first_probe)
1751 	anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1752       else
1753 	anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
1754       emit_stack_probe (stack_pointer_rtx);
1755     }
1756 
1757   /* In the variable case, do the same as above, but in a loop.  Note that we
1758      must be extra careful with variables wrapping around because we might be
1759      at the very top (or the very bottom) of the address space and we have to
1760      be able to handle this case properly; in particular, we use an equality
1761      test for the loop condition.  */
1762   else
1763     {
1764       rtx rounded_size, rounded_size_op, last_addr, temp;
1765       rtx_code_label *loop_lab = gen_label_rtx ();
1766       rtx_code_label *end_lab = gen_label_rtx ();
1767 
1768 
1769       /* Step 1: round SIZE to the previous multiple of the interval.  */
1770 
1771       /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL  */
1772       rounded_size
1773 	= simplify_gen_binary (AND, Pmode, size,
1774 			       gen_int_mode (-PROBE_INTERVAL, Pmode));
1775       rounded_size_op = force_operand (rounded_size, NULL_RTX);
1776 
1777 
1778       /* Step 2: compute initial and final value of the loop counter.  */
1779 
1780       /* SP = SP_0 + PROBE_INTERVAL.  */
1781       anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1782 
1783       /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE.  */
1784       last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1785 						 stack_pointer_rtx,
1786 						 rounded_size_op), NULL_RTX);
1787 
1788 
1789       /* Step 3: the loop
1790 
1791 	 while (SP != LAST_ADDR)
1792 	   {
1793 	     SP = SP + PROBE_INTERVAL
1794 	     probe at SP
1795 	   }
1796 
1797 	 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1798 	 values of N from 1 until it is equal to ROUNDED_SIZE.  */
1799 
1800       emit_label (loop_lab);
1801 
1802       /* Jump to END_LAB if SP == LAST_ADDR.  */
1803       emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1804 			       Pmode, 1, end_lab);
1805 
1806       /* SP = SP + PROBE_INTERVAL and probe at SP.  */
1807       anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1808       emit_stack_probe (stack_pointer_rtx);
1809 
1810       emit_jump (loop_lab);
1811 
1812       emit_label (end_lab);
1813 
1814 
1815       /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1816 	 assert at compile-time that SIZE is equal to ROUNDED_SIZE.  */
1817 
1818       /* TEMP = SIZE - ROUNDED_SIZE.  */
1819       temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1820       if (temp != const0_rtx)
1821 	{
1822 	  /* Manual CSE if the difference is not known at compile-time.  */
1823 	  if (GET_CODE (temp) != CONST_INT)
1824 	    temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1825 	  anti_adjust_stack (temp);
1826 	  emit_stack_probe (stack_pointer_rtx);
1827 	}
1828     }
1829 
1830   /* Adjust back and account for the additional first interval.  */
1831   if (adjust_back)
1832     adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1833   else
1834     adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1835 }
1836 
1837 /* Return an rtx representing the register or memory location
1838    in which a scalar value of data type VALTYPE
1839    was returned by a function call to function FUNC.
1840    FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1841    function is known, otherwise 0.
1842    OUTGOING is 1 if on a machine with register windows this function
1843    should return the register in which the function will put its result
1844    and 0 otherwise.  */
1845 
1846 rtx
1847 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1848 		     int outgoing ATTRIBUTE_UNUSED)
1849 {
1850   rtx val;
1851 
1852   val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1853 
1854   if (REG_P (val)
1855       && GET_MODE (val) == BLKmode)
1856     {
1857       unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1858       machine_mode tmpmode;
1859 
1860       /* int_size_in_bytes can return -1.  We don't need a check here
1861 	 since the value of bytes will then be large enough that no
1862 	 mode will match anyway.  */
1863 
1864       for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1865 	   tmpmode != VOIDmode;
1866 	   tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1867 	{
1868 	  /* Have we found a large enough mode?  */
1869 	  if (GET_MODE_SIZE (tmpmode) >= bytes)
1870 	    break;
1871 	}
1872 
1873       /* No suitable mode found.  */
1874       gcc_assert (tmpmode != VOIDmode);
1875 
1876       PUT_MODE (val, tmpmode);
1877     }
1878   return val;
1879 }
1880 
1881 /* Return an rtx representing the register or memory location
1882    in which a scalar value of mode MODE was returned by a library call.  */
1883 
1884 rtx
1885 hard_libcall_value (machine_mode mode, rtx fun)
1886 {
1887   return targetm.calls.libcall_value (mode, fun);
1888 }
1889 
1890 /* Look up the tree code for a given rtx code
1891    to provide the arithmetic operation for REAL_ARITHMETIC.
1892    The function returns an int because the caller may not know
1893    what `enum tree_code' means.  */
1894 
1895 int
1896 rtx_to_tree_code (enum rtx_code code)
1897 {
1898   enum tree_code tcode;
1899 
1900   switch (code)
1901     {
1902     case PLUS:
1903       tcode = PLUS_EXPR;
1904       break;
1905     case MINUS:
1906       tcode = MINUS_EXPR;
1907       break;
1908     case MULT:
1909       tcode = MULT_EXPR;
1910       break;
1911     case DIV:
1912       tcode = RDIV_EXPR;
1913       break;
1914     case SMIN:
1915       tcode = MIN_EXPR;
1916       break;
1917     case SMAX:
1918       tcode = MAX_EXPR;
1919       break;
1920     default:
1921       tcode = LAST_AND_UNUSED_TREE_CODE;
1922       break;
1923     }
1924   return ((int) tcode);
1925 }
1926 
1927 #include "gt-explow.h"
1928