1 /* Subroutines for manipulating rtx's in semantically interesting ways. 2 Copyright (C) 1987-2015 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 21 #include "config.h" 22 #include "system.h" 23 #include "coretypes.h" 24 #include "tm.h" 25 #include "diagnostic-core.h" 26 #include "rtl.h" 27 #include "hash-set.h" 28 #include "machmode.h" 29 #include "vec.h" 30 #include "double-int.h" 31 #include "input.h" 32 #include "alias.h" 33 #include "symtab.h" 34 #include "wide-int.h" 35 #include "inchash.h" 36 #include "real.h" 37 #include "tree.h" 38 #include "stor-layout.h" 39 #include "tm_p.h" 40 #include "flags.h" 41 #include "except.h" 42 #include "hard-reg-set.h" 43 #include "function.h" 44 #include "hashtab.h" 45 #include "statistics.h" 46 #include "fixed-value.h" 47 #include "insn-config.h" 48 #include "expmed.h" 49 #include "dojump.h" 50 #include "explow.h" 51 #include "calls.h" 52 #include "emit-rtl.h" 53 #include "varasm.h" 54 #include "stmt.h" 55 #include "expr.h" 56 #include "insn-codes.h" 57 #include "optabs.h" 58 #include "libfuncs.h" 59 #include "ggc.h" 60 #include "recog.h" 61 #include "langhooks.h" 62 #include "target.h" 63 #include "common/common-target.h" 64 #include "output.h" 65 66 static rtx break_out_memory_refs (rtx); 67 68 69 /* Truncate and perhaps sign-extend C as appropriate for MODE. */ 70 71 HOST_WIDE_INT 72 trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode) 73 { 74 int width = GET_MODE_PRECISION (mode); 75 76 /* You want to truncate to a _what_? */ 77 gcc_assert (SCALAR_INT_MODE_P (mode) 78 || POINTER_BOUNDS_MODE_P (mode)); 79 80 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */ 81 if (mode == BImode) 82 return c & 1 ? STORE_FLAG_VALUE : 0; 83 84 /* Sign-extend for the requested mode. */ 85 86 if (width < HOST_BITS_PER_WIDE_INT) 87 { 88 HOST_WIDE_INT sign = 1; 89 sign <<= width - 1; 90 c &= (sign << 1) - 1; 91 c ^= sign; 92 c -= sign; 93 } 94 95 return c; 96 } 97 98 /* Return an rtx for the sum of X and the integer C, given that X has 99 mode MODE. INPLACE is true if X can be modified inplace or false 100 if it must be treated as immutable. */ 101 102 rtx 103 plus_constant (machine_mode mode, rtx x, HOST_WIDE_INT c, 104 bool inplace) 105 { 106 RTX_CODE code; 107 rtx y; 108 rtx tem; 109 int all_constant = 0; 110 111 gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode); 112 113 if (c == 0) 114 return x; 115 116 restart: 117 118 code = GET_CODE (x); 119 y = x; 120 121 switch (code) 122 { 123 CASE_CONST_SCALAR_INT: 124 return immed_wide_int_const (wi::add (std::make_pair (x, mode), c), 125 mode); 126 case MEM: 127 /* If this is a reference to the constant pool, try replacing it with 128 a reference to a new constant. If the resulting address isn't 129 valid, don't return it because we have no way to validize it. */ 130 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF 131 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0))) 132 { 133 tem = plus_constant (mode, get_pool_constant (XEXP (x, 0)), c); 134 tem = force_const_mem (GET_MODE (x), tem); 135 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0))) 136 return tem; 137 } 138 break; 139 140 case CONST: 141 /* If adding to something entirely constant, set a flag 142 so that we can add a CONST around the result. */ 143 if (inplace && shared_const_p (x)) 144 inplace = false; 145 x = XEXP (x, 0); 146 all_constant = 1; 147 goto restart; 148 149 case SYMBOL_REF: 150 case LABEL_REF: 151 all_constant = 1; 152 break; 153 154 case PLUS: 155 /* The interesting case is adding the integer to a sum. Look 156 for constant term in the sum and combine with C. For an 157 integer constant term or a constant term that is not an 158 explicit integer, we combine or group them together anyway. 159 160 We may not immediately return from the recursive call here, lest 161 all_constant gets lost. */ 162 163 if (CONSTANT_P (XEXP (x, 1))) 164 { 165 rtx term = plus_constant (mode, XEXP (x, 1), c, inplace); 166 if (term == const0_rtx) 167 x = XEXP (x, 0); 168 else if (inplace) 169 XEXP (x, 1) = term; 170 else 171 x = gen_rtx_PLUS (mode, XEXP (x, 0), term); 172 c = 0; 173 } 174 else if (rtx *const_loc = find_constant_term_loc (&y)) 175 { 176 if (!inplace) 177 { 178 /* We need to be careful since X may be shared and we can't 179 modify it in place. */ 180 x = copy_rtx (x); 181 const_loc = find_constant_term_loc (&x); 182 } 183 *const_loc = plus_constant (mode, *const_loc, c, true); 184 c = 0; 185 } 186 break; 187 188 default: 189 break; 190 } 191 192 if (c != 0) 193 x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode)); 194 195 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF) 196 return x; 197 else if (all_constant) 198 return gen_rtx_CONST (mode, x); 199 else 200 return x; 201 } 202 203 /* If X is a sum, return a new sum like X but lacking any constant terms. 204 Add all the removed constant terms into *CONSTPTR. 205 X itself is not altered. The result != X if and only if 206 it is not isomorphic to X. */ 207 208 rtx 209 eliminate_constant_term (rtx x, rtx *constptr) 210 { 211 rtx x0, x1; 212 rtx tem; 213 214 if (GET_CODE (x) != PLUS) 215 return x; 216 217 /* First handle constants appearing at this level explicitly. */ 218 if (CONST_INT_P (XEXP (x, 1)) 219 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr, 220 XEXP (x, 1))) 221 && CONST_INT_P (tem)) 222 { 223 *constptr = tem; 224 return eliminate_constant_term (XEXP (x, 0), constptr); 225 } 226 227 tem = const0_rtx; 228 x0 = eliminate_constant_term (XEXP (x, 0), &tem); 229 x1 = eliminate_constant_term (XEXP (x, 1), &tem); 230 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0)) 231 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), 232 *constptr, tem)) 233 && CONST_INT_P (tem)) 234 { 235 *constptr = tem; 236 return gen_rtx_PLUS (GET_MODE (x), x0, x1); 237 } 238 239 return x; 240 } 241 242 243 /* Return a copy of X in which all memory references 244 and all constants that involve symbol refs 245 have been replaced with new temporary registers. 246 Also emit code to load the memory locations and constants 247 into those registers. 248 249 If X contains no such constants or memory references, 250 X itself (not a copy) is returned. 251 252 If a constant is found in the address that is not a legitimate constant 253 in an insn, it is left alone in the hope that it might be valid in the 254 address. 255 256 X may contain no arithmetic except addition, subtraction and multiplication. 257 Values returned by expand_expr with 1 for sum_ok fit this constraint. */ 258 259 static rtx 260 break_out_memory_refs (rtx x) 261 { 262 if (MEM_P (x) 263 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x) 264 && GET_MODE (x) != VOIDmode)) 265 x = force_reg (GET_MODE (x), x); 266 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS 267 || GET_CODE (x) == MULT) 268 { 269 rtx op0 = break_out_memory_refs (XEXP (x, 0)); 270 rtx op1 = break_out_memory_refs (XEXP (x, 1)); 271 272 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1)) 273 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1); 274 } 275 276 return x; 277 } 278 279 /* Given X, a memory address in address space AS' pointer mode, convert it to 280 an address in the address space's address mode, or vice versa (TO_MODE says 281 which way). We take advantage of the fact that pointers are not allowed to 282 overflow by commuting arithmetic operations over conversions so that address 283 arithmetic insns can be used. IN_CONST is true if this conversion is inside 284 a CONST. NO_EMIT is true if no insns should be emitted, and instead 285 it should return NULL if it can't be simplified without emitting insns. */ 286 287 rtx 288 convert_memory_address_addr_space_1 (machine_mode to_mode ATTRIBUTE_UNUSED, 289 rtx x, addr_space_t as ATTRIBUTE_UNUSED, 290 bool in_const ATTRIBUTE_UNUSED, 291 bool no_emit ATTRIBUTE_UNUSED) 292 { 293 #ifndef POINTERS_EXTEND_UNSIGNED 294 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode); 295 return x; 296 #else /* defined(POINTERS_EXTEND_UNSIGNED) */ 297 machine_mode pointer_mode, address_mode, from_mode; 298 rtx temp; 299 enum rtx_code code; 300 301 /* If X already has the right mode, just return it. */ 302 if (GET_MODE (x) == to_mode) 303 return x; 304 305 pointer_mode = targetm.addr_space.pointer_mode (as); 306 address_mode = targetm.addr_space.address_mode (as); 307 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode; 308 309 /* Here we handle some special cases. If none of them apply, fall through 310 to the default case. */ 311 switch (GET_CODE (x)) 312 { 313 CASE_CONST_SCALAR_INT: 314 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)) 315 code = TRUNCATE; 316 else if (POINTERS_EXTEND_UNSIGNED < 0) 317 break; 318 else if (POINTERS_EXTEND_UNSIGNED > 0) 319 code = ZERO_EXTEND; 320 else 321 code = SIGN_EXTEND; 322 temp = simplify_unary_operation (code, to_mode, x, from_mode); 323 if (temp) 324 return temp; 325 break; 326 327 case SUBREG: 328 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x))) 329 && GET_MODE (SUBREG_REG (x)) == to_mode) 330 return SUBREG_REG (x); 331 break; 332 333 case LABEL_REF: 334 temp = gen_rtx_LABEL_REF (to_mode, LABEL_REF_LABEL (x)); 335 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x); 336 return temp; 337 338 case SYMBOL_REF: 339 temp = shallow_copy_rtx (x); 340 PUT_MODE (temp, to_mode); 341 return temp; 342 343 case CONST: 344 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0), as, 345 true, no_emit); 346 return temp ? gen_rtx_CONST (to_mode, temp) : temp; 347 348 case PLUS: 349 case MULT: 350 /* For addition we can safely permute the conversion and addition 351 operation if one operand is a constant and converting the constant 352 does not change it or if one operand is a constant and we are 353 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0). 354 We can always safely permute them if we are making the address 355 narrower. Inside a CONST RTL, this is safe for both pointers 356 zero or sign extended as pointers cannot wrap. */ 357 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode) 358 || (GET_CODE (x) == PLUS 359 && CONST_INT_P (XEXP (x, 1)) 360 && ((in_const && POINTERS_EXTEND_UNSIGNED != 0) 361 || XEXP (x, 1) == convert_memory_address_addr_space_1 362 (to_mode, XEXP (x, 1), as, in_const, 363 no_emit) 364 || POINTERS_EXTEND_UNSIGNED < 0))) 365 { 366 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0), 367 as, in_const, no_emit); 368 return (temp ? gen_rtx_fmt_ee (GET_CODE (x), to_mode, 369 temp, XEXP (x, 1)) 370 : temp); 371 } 372 break; 373 374 default: 375 break; 376 } 377 378 if (no_emit) 379 return NULL_RTX; 380 381 return convert_modes (to_mode, from_mode, 382 x, POINTERS_EXTEND_UNSIGNED); 383 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */ 384 } 385 386 /* Given X, a memory address in address space AS' pointer mode, convert it to 387 an address in the address space's address mode, or vice versa (TO_MODE says 388 which way). We take advantage of the fact that pointers are not allowed to 389 overflow by commuting arithmetic operations over conversions so that address 390 arithmetic insns can be used. */ 391 392 rtx 393 convert_memory_address_addr_space (machine_mode to_mode, rtx x, addr_space_t as) 394 { 395 return convert_memory_address_addr_space_1 (to_mode, x, as, false, false); 396 } 397 398 399 /* Return something equivalent to X but valid as a memory address for something 400 of mode MODE in the named address space AS. When X is not itself valid, 401 this works by copying X or subexpressions of it into registers. */ 402 403 rtx 404 memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as) 405 { 406 rtx oldx = x; 407 machine_mode address_mode = targetm.addr_space.address_mode (as); 408 409 x = convert_memory_address_addr_space (address_mode, x, as); 410 411 /* By passing constant addresses through registers 412 we get a chance to cse them. */ 413 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)) 414 x = force_reg (address_mode, x); 415 416 /* We get better cse by rejecting indirect addressing at this stage. 417 Let the combiner create indirect addresses where appropriate. 418 For now, generate the code so that the subexpressions useful to share 419 are visible. But not if cse won't be done! */ 420 else 421 { 422 if (! cse_not_expected && !REG_P (x)) 423 x = break_out_memory_refs (x); 424 425 /* At this point, any valid address is accepted. */ 426 if (memory_address_addr_space_p (mode, x, as)) 427 goto done; 428 429 /* If it was valid before but breaking out memory refs invalidated it, 430 use it the old way. */ 431 if (memory_address_addr_space_p (mode, oldx, as)) 432 { 433 x = oldx; 434 goto done; 435 } 436 437 /* Perform machine-dependent transformations on X 438 in certain cases. This is not necessary since the code 439 below can handle all possible cases, but machine-dependent 440 transformations can make better code. */ 441 { 442 rtx orig_x = x; 443 x = targetm.addr_space.legitimize_address (x, oldx, mode, as); 444 if (orig_x != x && memory_address_addr_space_p (mode, x, as)) 445 goto done; 446 } 447 448 /* PLUS and MULT can appear in special ways 449 as the result of attempts to make an address usable for indexing. 450 Usually they are dealt with by calling force_operand, below. 451 But a sum containing constant terms is special 452 if removing them makes the sum a valid address: 453 then we generate that address in a register 454 and index off of it. We do this because it often makes 455 shorter code, and because the addresses thus generated 456 in registers often become common subexpressions. */ 457 if (GET_CODE (x) == PLUS) 458 { 459 rtx constant_term = const0_rtx; 460 rtx y = eliminate_constant_term (x, &constant_term); 461 if (constant_term == const0_rtx 462 || ! memory_address_addr_space_p (mode, y, as)) 463 x = force_operand (x, NULL_RTX); 464 else 465 { 466 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term); 467 if (! memory_address_addr_space_p (mode, y, as)) 468 x = force_operand (x, NULL_RTX); 469 else 470 x = y; 471 } 472 } 473 474 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS) 475 x = force_operand (x, NULL_RTX); 476 477 /* If we have a register that's an invalid address, 478 it must be a hard reg of the wrong class. Copy it to a pseudo. */ 479 else if (REG_P (x)) 480 x = copy_to_reg (x); 481 482 /* Last resort: copy the value to a register, since 483 the register is a valid address. */ 484 else 485 x = force_reg (address_mode, x); 486 } 487 488 done: 489 490 gcc_assert (memory_address_addr_space_p (mode, x, as)); 491 /* If we didn't change the address, we are done. Otherwise, mark 492 a reg as a pointer if we have REG or REG + CONST_INT. */ 493 if (oldx == x) 494 return x; 495 else if (REG_P (x)) 496 mark_reg_pointer (x, BITS_PER_UNIT); 497 else if (GET_CODE (x) == PLUS 498 && REG_P (XEXP (x, 0)) 499 && CONST_INT_P (XEXP (x, 1))) 500 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT); 501 502 /* OLDX may have been the address on a temporary. Update the address 503 to indicate that X is now used. */ 504 update_temp_slot_address (oldx, x); 505 506 return x; 507 } 508 509 /* Convert a mem ref into one with a valid memory address. 510 Pass through anything else unchanged. */ 511 512 rtx 513 validize_mem (rtx ref) 514 { 515 if (!MEM_P (ref)) 516 return ref; 517 ref = use_anchored_address (ref); 518 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0), 519 MEM_ADDR_SPACE (ref))) 520 return ref; 521 522 /* Don't alter REF itself, since that is probably a stack slot. */ 523 return replace_equiv_address (ref, XEXP (ref, 0)); 524 } 525 526 /* If X is a memory reference to a member of an object block, try rewriting 527 it to use an anchor instead. Return the new memory reference on success 528 and the old one on failure. */ 529 530 rtx 531 use_anchored_address (rtx x) 532 { 533 rtx base; 534 HOST_WIDE_INT offset; 535 machine_mode mode; 536 537 if (!flag_section_anchors) 538 return x; 539 540 if (!MEM_P (x)) 541 return x; 542 543 /* Split the address into a base and offset. */ 544 base = XEXP (x, 0); 545 offset = 0; 546 if (GET_CODE (base) == CONST 547 && GET_CODE (XEXP (base, 0)) == PLUS 548 && CONST_INT_P (XEXP (XEXP (base, 0), 1))) 549 { 550 offset += INTVAL (XEXP (XEXP (base, 0), 1)); 551 base = XEXP (XEXP (base, 0), 0); 552 } 553 554 /* Check whether BASE is suitable for anchors. */ 555 if (GET_CODE (base) != SYMBOL_REF 556 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base) 557 || SYMBOL_REF_ANCHOR_P (base) 558 || SYMBOL_REF_BLOCK (base) == NULL 559 || !targetm.use_anchors_for_symbol_p (base)) 560 return x; 561 562 /* Decide where BASE is going to be. */ 563 place_block_symbol (base); 564 565 /* Get the anchor we need to use. */ 566 offset += SYMBOL_REF_BLOCK_OFFSET (base); 567 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset, 568 SYMBOL_REF_TLS_MODEL (base)); 569 570 /* Work out the offset from the anchor. */ 571 offset -= SYMBOL_REF_BLOCK_OFFSET (base); 572 573 /* If we're going to run a CSE pass, force the anchor into a register. 574 We will then be able to reuse registers for several accesses, if the 575 target costs say that that's worthwhile. */ 576 mode = GET_MODE (base); 577 if (!cse_not_expected) 578 base = force_reg (mode, base); 579 580 return replace_equiv_address (x, plus_constant (mode, base, offset)); 581 } 582 583 /* Copy the value or contents of X to a new temp reg and return that reg. */ 584 585 rtx 586 copy_to_reg (rtx x) 587 { 588 rtx temp = gen_reg_rtx (GET_MODE (x)); 589 590 /* If not an operand, must be an address with PLUS and MULT so 591 do the computation. */ 592 if (! general_operand (x, VOIDmode)) 593 x = force_operand (x, temp); 594 595 if (x != temp) 596 emit_move_insn (temp, x); 597 598 return temp; 599 } 600 601 /* Like copy_to_reg but always give the new register mode Pmode 602 in case X is a constant. */ 603 604 rtx 605 copy_addr_to_reg (rtx x) 606 { 607 return copy_to_mode_reg (Pmode, x); 608 } 609 610 /* Like copy_to_reg but always give the new register mode MODE 611 in case X is a constant. */ 612 613 rtx 614 copy_to_mode_reg (machine_mode mode, rtx x) 615 { 616 rtx temp = gen_reg_rtx (mode); 617 618 /* If not an operand, must be an address with PLUS and MULT so 619 do the computation. */ 620 if (! general_operand (x, VOIDmode)) 621 x = force_operand (x, temp); 622 623 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode); 624 if (x != temp) 625 emit_move_insn (temp, x); 626 return temp; 627 } 628 629 /* Load X into a register if it is not already one. 630 Use mode MODE for the register. 631 X should be valid for mode MODE, but it may be a constant which 632 is valid for all integer modes; that's why caller must specify MODE. 633 634 The caller must not alter the value in the register we return, 635 since we mark it as a "constant" register. */ 636 637 rtx 638 force_reg (machine_mode mode, rtx x) 639 { 640 rtx temp, set; 641 rtx_insn *insn; 642 643 if (REG_P (x)) 644 return x; 645 646 if (general_operand (x, mode)) 647 { 648 temp = gen_reg_rtx (mode); 649 insn = emit_move_insn (temp, x); 650 } 651 else 652 { 653 temp = force_operand (x, NULL_RTX); 654 if (REG_P (temp)) 655 insn = get_last_insn (); 656 else 657 { 658 rtx temp2 = gen_reg_rtx (mode); 659 insn = emit_move_insn (temp2, temp); 660 temp = temp2; 661 } 662 } 663 664 /* Let optimizers know that TEMP's value never changes 665 and that X can be substituted for it. Don't get confused 666 if INSN set something else (such as a SUBREG of TEMP). */ 667 if (CONSTANT_P (x) 668 && (set = single_set (insn)) != 0 669 && SET_DEST (set) == temp 670 && ! rtx_equal_p (x, SET_SRC (set))) 671 set_unique_reg_note (insn, REG_EQUAL, x); 672 673 /* Let optimizers know that TEMP is a pointer, and if so, the 674 known alignment of that pointer. */ 675 { 676 unsigned align = 0; 677 if (GET_CODE (x) == SYMBOL_REF) 678 { 679 align = BITS_PER_UNIT; 680 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x))) 681 align = DECL_ALIGN (SYMBOL_REF_DECL (x)); 682 } 683 else if (GET_CODE (x) == LABEL_REF) 684 align = BITS_PER_UNIT; 685 else if (GET_CODE (x) == CONST 686 && GET_CODE (XEXP (x, 0)) == PLUS 687 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF 688 && CONST_INT_P (XEXP (XEXP (x, 0), 1))) 689 { 690 rtx s = XEXP (XEXP (x, 0), 0); 691 rtx c = XEXP (XEXP (x, 0), 1); 692 unsigned sa, ca; 693 694 sa = BITS_PER_UNIT; 695 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s))) 696 sa = DECL_ALIGN (SYMBOL_REF_DECL (s)); 697 698 if (INTVAL (c) == 0) 699 align = sa; 700 else 701 { 702 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT; 703 align = MIN (sa, ca); 704 } 705 } 706 707 if (align || (MEM_P (x) && MEM_POINTER (x))) 708 mark_reg_pointer (temp, align); 709 } 710 711 return temp; 712 } 713 714 /* If X is a memory ref, copy its contents to a new temp reg and return 715 that reg. Otherwise, return X. */ 716 717 rtx 718 force_not_mem (rtx x) 719 { 720 rtx temp; 721 722 if (!MEM_P (x) || GET_MODE (x) == BLKmode) 723 return x; 724 725 temp = gen_reg_rtx (GET_MODE (x)); 726 727 if (MEM_POINTER (x)) 728 REG_POINTER (temp) = 1; 729 730 emit_move_insn (temp, x); 731 return temp; 732 } 733 734 /* Copy X to TARGET (if it's nonzero and a reg) 735 or to a new temp reg and return that reg. 736 MODE is the mode to use for X in case it is a constant. */ 737 738 rtx 739 copy_to_suggested_reg (rtx x, rtx target, machine_mode mode) 740 { 741 rtx temp; 742 743 if (target && REG_P (target)) 744 temp = target; 745 else 746 temp = gen_reg_rtx (mode); 747 748 emit_move_insn (temp, x); 749 return temp; 750 } 751 752 /* Return the mode to use to pass or return a scalar of TYPE and MODE. 753 PUNSIGNEDP points to the signedness of the type and may be adjusted 754 to show what signedness to use on extension operations. 755 756 FOR_RETURN is nonzero if the caller is promoting the return value 757 of FNDECL, else it is for promoting args. */ 758 759 machine_mode 760 promote_function_mode (const_tree type, machine_mode mode, int *punsignedp, 761 const_tree funtype, int for_return) 762 { 763 /* Called without a type node for a libcall. */ 764 if (type == NULL_TREE) 765 { 766 if (INTEGRAL_MODE_P (mode)) 767 return targetm.calls.promote_function_mode (NULL_TREE, mode, 768 punsignedp, funtype, 769 for_return); 770 else 771 return mode; 772 } 773 774 switch (TREE_CODE (type)) 775 { 776 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: 777 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE: 778 case POINTER_TYPE: case REFERENCE_TYPE: 779 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype, 780 for_return); 781 782 default: 783 return mode; 784 } 785 } 786 /* Return the mode to use to store a scalar of TYPE and MODE. 787 PUNSIGNEDP points to the signedness of the type and may be adjusted 788 to show what signedness to use on extension operations. */ 789 790 machine_mode 791 promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode, 792 int *punsignedp ATTRIBUTE_UNUSED) 793 { 794 #ifdef PROMOTE_MODE 795 enum tree_code code; 796 int unsignedp; 797 #endif 798 799 /* For libcalls this is invoked without TYPE from the backends 800 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that 801 case. */ 802 if (type == NULL_TREE) 803 return mode; 804 805 /* FIXME: this is the same logic that was there until GCC 4.4, but we 806 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE 807 is not defined. The affected targets are M32C, S390, SPARC. */ 808 #ifdef PROMOTE_MODE 809 code = TREE_CODE (type); 810 unsignedp = *punsignedp; 811 812 switch (code) 813 { 814 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: 815 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE: 816 PROMOTE_MODE (mode, unsignedp, type); 817 *punsignedp = unsignedp; 818 return mode; 819 break; 820 821 #ifdef POINTERS_EXTEND_UNSIGNED 822 case REFERENCE_TYPE: 823 case POINTER_TYPE: 824 *punsignedp = POINTERS_EXTEND_UNSIGNED; 825 return targetm.addr_space.address_mode 826 (TYPE_ADDR_SPACE (TREE_TYPE (type))); 827 break; 828 #endif 829 830 default: 831 return mode; 832 } 833 #else 834 return mode; 835 #endif 836 } 837 838 839 /* Use one of promote_mode or promote_function_mode to find the promoted 840 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness 841 of DECL after promotion. */ 842 843 machine_mode 844 promote_decl_mode (const_tree decl, int *punsignedp) 845 { 846 tree type = TREE_TYPE (decl); 847 int unsignedp = TYPE_UNSIGNED (type); 848 machine_mode mode = DECL_MODE (decl); 849 machine_mode pmode; 850 851 if (TREE_CODE (decl) == RESULT_DECL 852 || TREE_CODE (decl) == PARM_DECL) 853 pmode = promote_function_mode (type, mode, &unsignedp, 854 TREE_TYPE (current_function_decl), 2); 855 else 856 pmode = promote_mode (type, mode, &unsignedp); 857 858 if (punsignedp) 859 *punsignedp = unsignedp; 860 return pmode; 861 } 862 863 864 /* Controls the behaviour of {anti_,}adjust_stack. */ 865 static bool suppress_reg_args_size; 866 867 /* A helper for adjust_stack and anti_adjust_stack. */ 868 869 static void 870 adjust_stack_1 (rtx adjust, bool anti_p) 871 { 872 rtx temp; 873 rtx_insn *insn; 874 875 #ifndef STACK_GROWS_DOWNWARD 876 /* Hereafter anti_p means subtract_p. */ 877 anti_p = !anti_p; 878 #endif 879 880 temp = expand_binop (Pmode, 881 anti_p ? sub_optab : add_optab, 882 stack_pointer_rtx, adjust, stack_pointer_rtx, 0, 883 OPTAB_LIB_WIDEN); 884 885 if (temp != stack_pointer_rtx) 886 insn = emit_move_insn (stack_pointer_rtx, temp); 887 else 888 { 889 insn = get_last_insn (); 890 temp = single_set (insn); 891 gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx); 892 } 893 894 if (!suppress_reg_args_size) 895 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta)); 896 } 897 898 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes). 899 This pops when ADJUST is positive. ADJUST need not be constant. */ 900 901 void 902 adjust_stack (rtx adjust) 903 { 904 if (adjust == const0_rtx) 905 return; 906 907 /* We expect all variable sized adjustments to be multiple of 908 PREFERRED_STACK_BOUNDARY. */ 909 if (CONST_INT_P (adjust)) 910 stack_pointer_delta -= INTVAL (adjust); 911 912 adjust_stack_1 (adjust, false); 913 } 914 915 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes). 916 This pushes when ADJUST is positive. ADJUST need not be constant. */ 917 918 void 919 anti_adjust_stack (rtx adjust) 920 { 921 if (adjust == const0_rtx) 922 return; 923 924 /* We expect all variable sized adjustments to be multiple of 925 PREFERRED_STACK_BOUNDARY. */ 926 if (CONST_INT_P (adjust)) 927 stack_pointer_delta += INTVAL (adjust); 928 929 adjust_stack_1 (adjust, true); 930 } 931 932 /* Round the size of a block to be pushed up to the boundary required 933 by this machine. SIZE is the desired size, which need not be constant. */ 934 935 static rtx 936 round_push (rtx size) 937 { 938 rtx align_rtx, alignm1_rtx; 939 940 if (!SUPPORTS_STACK_ALIGNMENT 941 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT) 942 { 943 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT; 944 945 if (align == 1) 946 return size; 947 948 if (CONST_INT_P (size)) 949 { 950 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align; 951 952 if (INTVAL (size) != new_size) 953 size = GEN_INT (new_size); 954 return size; 955 } 956 957 align_rtx = GEN_INT (align); 958 alignm1_rtx = GEN_INT (align - 1); 959 } 960 else 961 { 962 /* If crtl->preferred_stack_boundary might still grow, use 963 virtual_preferred_stack_boundary_rtx instead. This will be 964 substituted by the right value in vregs pass and optimized 965 during combine. */ 966 align_rtx = virtual_preferred_stack_boundary_rtx; 967 alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1), 968 NULL_RTX); 969 } 970 971 /* CEIL_DIV_EXPR needs to worry about the addition overflowing, 972 but we know it can't. So add ourselves and then do 973 TRUNC_DIV_EXPR. */ 974 size = expand_binop (Pmode, add_optab, size, alignm1_rtx, 975 NULL_RTX, 1, OPTAB_LIB_WIDEN); 976 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx, 977 NULL_RTX, 1); 978 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1); 979 980 return size; 981 } 982 983 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer 984 to a previously-created save area. If no save area has been allocated, 985 this function will allocate one. If a save area is specified, it 986 must be of the proper mode. */ 987 988 void 989 emit_stack_save (enum save_level save_level, rtx *psave) 990 { 991 rtx sa = *psave; 992 /* The default is that we use a move insn and save in a Pmode object. */ 993 rtx (*fcn) (rtx, rtx) = gen_move_insn; 994 machine_mode mode = STACK_SAVEAREA_MODE (save_level); 995 996 /* See if this machine has anything special to do for this kind of save. */ 997 switch (save_level) 998 { 999 #ifdef HAVE_save_stack_block 1000 case SAVE_BLOCK: 1001 if (HAVE_save_stack_block) 1002 fcn = gen_save_stack_block; 1003 break; 1004 #endif 1005 #ifdef HAVE_save_stack_function 1006 case SAVE_FUNCTION: 1007 if (HAVE_save_stack_function) 1008 fcn = gen_save_stack_function; 1009 break; 1010 #endif 1011 #ifdef HAVE_save_stack_nonlocal 1012 case SAVE_NONLOCAL: 1013 if (HAVE_save_stack_nonlocal) 1014 fcn = gen_save_stack_nonlocal; 1015 break; 1016 #endif 1017 default: 1018 break; 1019 } 1020 1021 /* If there is no save area and we have to allocate one, do so. Otherwise 1022 verify the save area is the proper mode. */ 1023 1024 if (sa == 0) 1025 { 1026 if (mode != VOIDmode) 1027 { 1028 if (save_level == SAVE_NONLOCAL) 1029 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0); 1030 else 1031 *psave = sa = gen_reg_rtx (mode); 1032 } 1033 } 1034 1035 do_pending_stack_adjust (); 1036 if (sa != 0) 1037 sa = validize_mem (sa); 1038 emit_insn (fcn (sa, stack_pointer_rtx)); 1039 } 1040 1041 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save 1042 area made by emit_stack_save. If it is zero, we have nothing to do. */ 1043 1044 void 1045 emit_stack_restore (enum save_level save_level, rtx sa) 1046 { 1047 /* The default is that we use a move insn. */ 1048 rtx (*fcn) (rtx, rtx) = gen_move_insn; 1049 1050 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both 1051 STACK_POINTER and HARD_FRAME_POINTER. 1052 If stack_realign_fp, the x86 backend emits a prologue that aligns only 1053 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing 1054 aligned variables, which is reflected in ix86_can_eliminate. 1055 We normally still have the realigned STACK_POINTER that we can use. 1056 But if there is a stack restore still present at reload, it can trigger 1057 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate 1058 FRAME_POINTER into a hard reg. 1059 To prevent this situation, we force need_drap if we emit a stack 1060 restore. */ 1061 if (SUPPORTS_STACK_ALIGNMENT) 1062 crtl->need_drap = true; 1063 1064 /* See if this machine has anything special to do for this kind of save. */ 1065 switch (save_level) 1066 { 1067 #ifdef HAVE_restore_stack_block 1068 case SAVE_BLOCK: 1069 if (HAVE_restore_stack_block) 1070 fcn = gen_restore_stack_block; 1071 break; 1072 #endif 1073 #ifdef HAVE_restore_stack_function 1074 case SAVE_FUNCTION: 1075 if (HAVE_restore_stack_function) 1076 fcn = gen_restore_stack_function; 1077 break; 1078 #endif 1079 #ifdef HAVE_restore_stack_nonlocal 1080 case SAVE_NONLOCAL: 1081 if (HAVE_restore_stack_nonlocal) 1082 fcn = gen_restore_stack_nonlocal; 1083 break; 1084 #endif 1085 default: 1086 break; 1087 } 1088 1089 if (sa != 0) 1090 { 1091 sa = validize_mem (sa); 1092 /* These clobbers prevent the scheduler from moving 1093 references to variable arrays below the code 1094 that deletes (pops) the arrays. */ 1095 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode))); 1096 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx)); 1097 } 1098 1099 discard_pending_stack_adjust (); 1100 1101 emit_insn (fcn (stack_pointer_rtx, sa)); 1102 } 1103 1104 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current 1105 function. This function should be called whenever we allocate or 1106 deallocate dynamic stack space. */ 1107 1108 void 1109 update_nonlocal_goto_save_area (void) 1110 { 1111 tree t_save; 1112 rtx r_save; 1113 1114 /* The nonlocal_goto_save_area object is an array of N pointers. The 1115 first one is used for the frame pointer save; the rest are sized by 1116 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first 1117 of the stack save area slots. */ 1118 t_save = build4 (ARRAY_REF, 1119 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)), 1120 cfun->nonlocal_goto_save_area, 1121 integer_one_node, NULL_TREE, NULL_TREE); 1122 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE); 1123 1124 emit_stack_save (SAVE_NONLOCAL, &r_save); 1125 } 1126 1127 /* Return an rtx representing the address of an area of memory dynamically 1128 pushed on the stack. 1129 1130 Any required stack pointer alignment is preserved. 1131 1132 SIZE is an rtx representing the size of the area. 1133 1134 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This 1135 parameter may be zero. If so, a proper value will be extracted 1136 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed. 1137 1138 REQUIRED_ALIGN is the alignment (in bits) required for the region 1139 of memory. 1140 1141 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the 1142 stack space allocated by the generated code cannot be added with itself 1143 in the course of the execution of the function. It is always safe to 1144 pass FALSE here and the following criterion is sufficient in order to 1145 pass TRUE: every path in the CFG that starts at the allocation point and 1146 loops to it executes the associated deallocation code. */ 1147 1148 rtx 1149 allocate_dynamic_stack_space (rtx size, unsigned size_align, 1150 unsigned required_align, bool cannot_accumulate) 1151 { 1152 HOST_WIDE_INT stack_usage_size = -1; 1153 rtx_code_label *final_label; 1154 rtx final_target, target; 1155 unsigned extra_align = 0; 1156 bool must_align; 1157 1158 /* If we're asking for zero bytes, it doesn't matter what we point 1159 to since we can't dereference it. But return a reasonable 1160 address anyway. */ 1161 if (size == const0_rtx) 1162 return virtual_stack_dynamic_rtx; 1163 1164 /* Otherwise, show we're calling alloca or equivalent. */ 1165 cfun->calls_alloca = 1; 1166 1167 /* If stack usage info is requested, look into the size we are passed. 1168 We need to do so this early to avoid the obfuscation that may be 1169 introduced later by the various alignment operations. */ 1170 if (flag_stack_usage_info) 1171 { 1172 if (CONST_INT_P (size)) 1173 stack_usage_size = INTVAL (size); 1174 else if (REG_P (size)) 1175 { 1176 /* Look into the last emitted insn and see if we can deduce 1177 something for the register. */ 1178 rtx_insn *insn; 1179 rtx set, note; 1180 insn = get_last_insn (); 1181 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size)) 1182 { 1183 if (CONST_INT_P (SET_SRC (set))) 1184 stack_usage_size = INTVAL (SET_SRC (set)); 1185 else if ((note = find_reg_equal_equiv_note (insn)) 1186 && CONST_INT_P (XEXP (note, 0))) 1187 stack_usage_size = INTVAL (XEXP (note, 0)); 1188 } 1189 } 1190 1191 /* If the size is not constant, we can't say anything. */ 1192 if (stack_usage_size == -1) 1193 { 1194 current_function_has_unbounded_dynamic_stack_size = 1; 1195 stack_usage_size = 0; 1196 } 1197 } 1198 1199 /* Ensure the size is in the proper mode. */ 1200 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode) 1201 size = convert_to_mode (Pmode, size, 1); 1202 1203 /* Adjust SIZE_ALIGN, if needed. */ 1204 if (CONST_INT_P (size)) 1205 { 1206 unsigned HOST_WIDE_INT lsb; 1207 1208 lsb = INTVAL (size); 1209 lsb &= -lsb; 1210 1211 /* Watch out for overflow truncating to "unsigned". */ 1212 if (lsb > UINT_MAX / BITS_PER_UNIT) 1213 size_align = 1u << (HOST_BITS_PER_INT - 1); 1214 else 1215 size_align = (unsigned)lsb * BITS_PER_UNIT; 1216 } 1217 else if (size_align < BITS_PER_UNIT) 1218 size_align = BITS_PER_UNIT; 1219 1220 /* We can't attempt to minimize alignment necessary, because we don't 1221 know the final value of preferred_stack_boundary yet while executing 1222 this code. */ 1223 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY) 1224 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY; 1225 1226 /* We will need to ensure that the address we return is aligned to 1227 REQUIRED_ALIGN. If STACK_DYNAMIC_OFFSET is defined, we don't 1228 always know its final value at this point in the compilation (it 1229 might depend on the size of the outgoing parameter lists, for 1230 example), so we must align the value to be returned in that case. 1231 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if 1232 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined). 1233 We must also do an alignment operation on the returned value if 1234 the stack pointer alignment is less strict than REQUIRED_ALIGN. 1235 1236 If we have to align, we must leave space in SIZE for the hole 1237 that might result from the alignment operation. */ 1238 1239 must_align = (crtl->preferred_stack_boundary < required_align); 1240 if (must_align) 1241 { 1242 if (required_align > PREFERRED_STACK_BOUNDARY) 1243 extra_align = PREFERRED_STACK_BOUNDARY; 1244 else if (required_align > STACK_BOUNDARY) 1245 extra_align = STACK_BOUNDARY; 1246 else 1247 extra_align = BITS_PER_UNIT; 1248 } 1249 1250 /* ??? STACK_POINTER_OFFSET is always defined now. */ 1251 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET) 1252 must_align = true; 1253 extra_align = BITS_PER_UNIT; 1254 #endif 1255 1256 if (must_align) 1257 { 1258 unsigned extra = (required_align - extra_align) / BITS_PER_UNIT; 1259 1260 size = plus_constant (Pmode, size, extra); 1261 size = force_operand (size, NULL_RTX); 1262 1263 if (flag_stack_usage_info) 1264 stack_usage_size += extra; 1265 1266 if (extra && size_align > extra_align) 1267 size_align = extra_align; 1268 } 1269 1270 /* Round the size to a multiple of the required stack alignment. 1271 Since the stack if presumed to be rounded before this allocation, 1272 this will maintain the required alignment. 1273 1274 If the stack grows downward, we could save an insn by subtracting 1275 SIZE from the stack pointer and then aligning the stack pointer. 1276 The problem with this is that the stack pointer may be unaligned 1277 between the execution of the subtraction and alignment insns and 1278 some machines do not allow this. Even on those that do, some 1279 signal handlers malfunction if a signal should occur between those 1280 insns. Since this is an extremely rare event, we have no reliable 1281 way of knowing which systems have this problem. So we avoid even 1282 momentarily mis-aligning the stack. */ 1283 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0) 1284 { 1285 size = round_push (size); 1286 1287 if (flag_stack_usage_info) 1288 { 1289 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT; 1290 stack_usage_size = (stack_usage_size + align - 1) / align * align; 1291 } 1292 } 1293 1294 target = gen_reg_rtx (Pmode); 1295 1296 /* The size is supposed to be fully adjusted at this point so record it 1297 if stack usage info is requested. */ 1298 if (flag_stack_usage_info) 1299 { 1300 current_function_dynamic_stack_size += stack_usage_size; 1301 1302 /* ??? This is gross but the only safe stance in the absence 1303 of stack usage oriented flow analysis. */ 1304 if (!cannot_accumulate) 1305 current_function_has_unbounded_dynamic_stack_size = 1; 1306 } 1307 1308 final_label = NULL; 1309 final_target = NULL_RTX; 1310 1311 /* If we are splitting the stack, we need to ask the backend whether 1312 there is enough room on the current stack. If there isn't, or if 1313 the backend doesn't know how to tell is, then we need to call a 1314 function to allocate memory in some other way. This memory will 1315 be released when we release the current stack segment. The 1316 effect is that stack allocation becomes less efficient, but at 1317 least it doesn't cause a stack overflow. */ 1318 if (flag_split_stack) 1319 { 1320 rtx_code_label *available_label; 1321 rtx ask, space, func; 1322 1323 available_label = NULL; 1324 1325 #ifdef HAVE_split_stack_space_check 1326 if (HAVE_split_stack_space_check) 1327 { 1328 available_label = gen_label_rtx (); 1329 1330 /* This instruction will branch to AVAILABLE_LABEL if there 1331 are SIZE bytes available on the stack. */ 1332 emit_insn (gen_split_stack_space_check (size, available_label)); 1333 } 1334 #endif 1335 1336 /* The __morestack_allocate_stack_space function will allocate 1337 memory using malloc. If the alignment of the memory returned 1338 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to 1339 make sure we allocate enough space. */ 1340 if (MALLOC_ABI_ALIGNMENT >= required_align) 1341 ask = size; 1342 else 1343 { 1344 ask = expand_binop (Pmode, add_optab, size, 1345 gen_int_mode (required_align / BITS_PER_UNIT - 1, 1346 Pmode), 1347 NULL_RTX, 1, OPTAB_LIB_WIDEN); 1348 must_align = true; 1349 } 1350 1351 func = init_one_libfunc ("__morestack_allocate_stack_space"); 1352 1353 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode, 1354 1, ask, Pmode); 1355 1356 if (available_label == NULL_RTX) 1357 return space; 1358 1359 final_target = gen_reg_rtx (Pmode); 1360 1361 emit_move_insn (final_target, space); 1362 1363 final_label = gen_label_rtx (); 1364 emit_jump (final_label); 1365 1366 emit_label (available_label); 1367 } 1368 1369 do_pending_stack_adjust (); 1370 1371 /* We ought to be called always on the toplevel and stack ought to be aligned 1372 properly. */ 1373 gcc_assert (!(stack_pointer_delta 1374 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT))); 1375 1376 /* If needed, check that we have the required amount of stack. Take into 1377 account what has already been checked. */ 1378 if (STACK_CHECK_MOVING_SP) 1379 ; 1380 else if (flag_stack_check == GENERIC_STACK_CHECK) 1381 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE, 1382 size); 1383 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK) 1384 probe_stack_range (STACK_CHECK_PROTECT, size); 1385 1386 /* Don't let anti_adjust_stack emit notes. */ 1387 suppress_reg_args_size = true; 1388 1389 /* Perform the required allocation from the stack. Some systems do 1390 this differently than simply incrementing/decrementing from the 1391 stack pointer, such as acquiring the space by calling malloc(). */ 1392 #ifdef HAVE_allocate_stack 1393 if (HAVE_allocate_stack) 1394 { 1395 struct expand_operand ops[2]; 1396 /* We don't have to check against the predicate for operand 0 since 1397 TARGET is known to be a pseudo of the proper mode, which must 1398 be valid for the operand. */ 1399 create_fixed_operand (&ops[0], target); 1400 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true); 1401 expand_insn (CODE_FOR_allocate_stack, 2, ops); 1402 } 1403 else 1404 #endif 1405 { 1406 int saved_stack_pointer_delta; 1407 1408 #ifndef STACK_GROWS_DOWNWARD 1409 emit_move_insn (target, virtual_stack_dynamic_rtx); 1410 #endif 1411 1412 /* Check stack bounds if necessary. */ 1413 if (crtl->limit_stack) 1414 { 1415 rtx available; 1416 rtx_code_label *space_available = gen_label_rtx (); 1417 #ifdef STACK_GROWS_DOWNWARD 1418 available = expand_binop (Pmode, sub_optab, 1419 stack_pointer_rtx, stack_limit_rtx, 1420 NULL_RTX, 1, OPTAB_WIDEN); 1421 #else 1422 available = expand_binop (Pmode, sub_optab, 1423 stack_limit_rtx, stack_pointer_rtx, 1424 NULL_RTX, 1, OPTAB_WIDEN); 1425 #endif 1426 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1, 1427 space_available); 1428 #ifdef HAVE_trap 1429 if (HAVE_trap) 1430 emit_insn (gen_trap ()); 1431 else 1432 #endif 1433 error ("stack limits not supported on this target"); 1434 emit_barrier (); 1435 emit_label (space_available); 1436 } 1437 1438 saved_stack_pointer_delta = stack_pointer_delta; 1439 1440 if (flag_stack_check && STACK_CHECK_MOVING_SP) 1441 anti_adjust_stack_and_probe (size, false); 1442 else 1443 anti_adjust_stack (size); 1444 1445 /* Even if size is constant, don't modify stack_pointer_delta. 1446 The constant size alloca should preserve 1447 crtl->preferred_stack_boundary alignment. */ 1448 stack_pointer_delta = saved_stack_pointer_delta; 1449 1450 #ifdef STACK_GROWS_DOWNWARD 1451 emit_move_insn (target, virtual_stack_dynamic_rtx); 1452 #endif 1453 } 1454 1455 suppress_reg_args_size = false; 1456 1457 /* Finish up the split stack handling. */ 1458 if (final_label != NULL_RTX) 1459 { 1460 gcc_assert (flag_split_stack); 1461 emit_move_insn (final_target, target); 1462 emit_label (final_label); 1463 target = final_target; 1464 } 1465 1466 if (must_align) 1467 { 1468 /* CEIL_DIV_EXPR needs to worry about the addition overflowing, 1469 but we know it can't. So add ourselves and then do 1470 TRUNC_DIV_EXPR. */ 1471 target = expand_binop (Pmode, add_optab, target, 1472 gen_int_mode (required_align / BITS_PER_UNIT - 1, 1473 Pmode), 1474 NULL_RTX, 1, OPTAB_LIB_WIDEN); 1475 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target, 1476 gen_int_mode (required_align / BITS_PER_UNIT, 1477 Pmode), 1478 NULL_RTX, 1); 1479 target = expand_mult (Pmode, target, 1480 gen_int_mode (required_align / BITS_PER_UNIT, 1481 Pmode), 1482 NULL_RTX, 1); 1483 } 1484 1485 /* Now that we've committed to a return value, mark its alignment. */ 1486 mark_reg_pointer (target, required_align); 1487 1488 /* Record the new stack level for nonlocal gotos. */ 1489 if (cfun->nonlocal_goto_save_area != 0) 1490 update_nonlocal_goto_save_area (); 1491 1492 return target; 1493 } 1494 1495 /* A front end may want to override GCC's stack checking by providing a 1496 run-time routine to call to check the stack, so provide a mechanism for 1497 calling that routine. */ 1498 1499 static GTY(()) rtx stack_check_libfunc; 1500 1501 void 1502 set_stack_check_libfunc (const char *libfunc_name) 1503 { 1504 gcc_assert (stack_check_libfunc == NULL_RTX); 1505 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name); 1506 } 1507 1508 /* Emit one stack probe at ADDRESS, an address within the stack. */ 1509 1510 void 1511 emit_stack_probe (rtx address) 1512 { 1513 #ifdef HAVE_probe_stack_address 1514 if (HAVE_probe_stack_address) 1515 emit_insn (gen_probe_stack_address (address)); 1516 else 1517 #endif 1518 { 1519 rtx memref = gen_rtx_MEM (word_mode, address); 1520 1521 MEM_VOLATILE_P (memref) = 1; 1522 1523 /* See if we have an insn to probe the stack. */ 1524 #ifdef HAVE_probe_stack 1525 if (HAVE_probe_stack) 1526 emit_insn (gen_probe_stack (memref)); 1527 else 1528 #endif 1529 emit_move_insn (memref, const0_rtx); 1530 } 1531 } 1532 1533 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive. 1534 FIRST is a constant and size is a Pmode RTX. These are offsets from 1535 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add 1536 or subtract them from the stack pointer. */ 1537 1538 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP) 1539 1540 #ifdef STACK_GROWS_DOWNWARD 1541 #define STACK_GROW_OP MINUS 1542 #define STACK_GROW_OPTAB sub_optab 1543 #define STACK_GROW_OFF(off) -(off) 1544 #else 1545 #define STACK_GROW_OP PLUS 1546 #define STACK_GROW_OPTAB add_optab 1547 #define STACK_GROW_OFF(off) (off) 1548 #endif 1549 1550 void 1551 probe_stack_range (HOST_WIDE_INT first, rtx size) 1552 { 1553 /* First ensure SIZE is Pmode. */ 1554 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode) 1555 size = convert_to_mode (Pmode, size, 1); 1556 1557 /* Next see if we have a function to check the stack. */ 1558 if (stack_check_libfunc) 1559 { 1560 rtx addr = memory_address (Pmode, 1561 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode, 1562 stack_pointer_rtx, 1563 plus_constant (Pmode, 1564 size, first))); 1565 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr, 1566 Pmode); 1567 } 1568 1569 /* Next see if we have an insn to check the stack. */ 1570 #ifdef HAVE_check_stack 1571 else if (HAVE_check_stack) 1572 { 1573 struct expand_operand ops[1]; 1574 rtx addr = memory_address (Pmode, 1575 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode, 1576 stack_pointer_rtx, 1577 plus_constant (Pmode, 1578 size, first))); 1579 bool success; 1580 create_input_operand (&ops[0], addr, Pmode); 1581 success = maybe_expand_insn (CODE_FOR_check_stack, 1, ops); 1582 gcc_assert (success); 1583 } 1584 #endif 1585 1586 /* Otherwise we have to generate explicit probes. If we have a constant 1587 small number of them to generate, that's the easy case. */ 1588 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL) 1589 { 1590 HOST_WIDE_INT isize = INTVAL (size), i; 1591 rtx addr; 1592 1593 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until 1594 it exceeds SIZE. If only one probe is needed, this will not 1595 generate any code. Then probe at FIRST + SIZE. */ 1596 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL) 1597 { 1598 addr = memory_address (Pmode, 1599 plus_constant (Pmode, stack_pointer_rtx, 1600 STACK_GROW_OFF (first + i))); 1601 emit_stack_probe (addr); 1602 } 1603 1604 addr = memory_address (Pmode, 1605 plus_constant (Pmode, stack_pointer_rtx, 1606 STACK_GROW_OFF (first + isize))); 1607 emit_stack_probe (addr); 1608 } 1609 1610 /* In the variable case, do the same as above, but in a loop. Note that we 1611 must be extra careful with variables wrapping around because we might be 1612 at the very top (or the very bottom) of the address space and we have to 1613 be able to handle this case properly; in particular, we use an equality 1614 test for the loop condition. */ 1615 else 1616 { 1617 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp; 1618 rtx_code_label *loop_lab = gen_label_rtx (); 1619 rtx_code_label *end_lab = gen_label_rtx (); 1620 1621 /* Step 1: round SIZE to the previous multiple of the interval. */ 1622 1623 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */ 1624 rounded_size 1625 = simplify_gen_binary (AND, Pmode, size, 1626 gen_int_mode (-PROBE_INTERVAL, Pmode)); 1627 rounded_size_op = force_operand (rounded_size, NULL_RTX); 1628 1629 1630 /* Step 2: compute initial and final value of the loop counter. */ 1631 1632 /* TEST_ADDR = SP + FIRST. */ 1633 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode, 1634 stack_pointer_rtx, 1635 gen_int_mode (first, Pmode)), 1636 NULL_RTX); 1637 1638 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */ 1639 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode, 1640 test_addr, 1641 rounded_size_op), NULL_RTX); 1642 1643 1644 /* Step 3: the loop 1645 1646 while (TEST_ADDR != LAST_ADDR) 1647 { 1648 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL 1649 probe at TEST_ADDR 1650 } 1651 1652 probes at FIRST + N * PROBE_INTERVAL for values of N from 1 1653 until it is equal to ROUNDED_SIZE. */ 1654 1655 emit_label (loop_lab); 1656 1657 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */ 1658 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1, 1659 end_lab); 1660 1661 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */ 1662 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr, 1663 gen_int_mode (PROBE_INTERVAL, Pmode), test_addr, 1664 1, OPTAB_WIDEN); 1665 1666 gcc_assert (temp == test_addr); 1667 1668 /* Probe at TEST_ADDR. */ 1669 emit_stack_probe (test_addr); 1670 1671 emit_jump (loop_lab); 1672 1673 emit_label (end_lab); 1674 1675 1676 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time 1677 that SIZE is equal to ROUNDED_SIZE. */ 1678 1679 /* TEMP = SIZE - ROUNDED_SIZE. */ 1680 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size); 1681 if (temp != const0_rtx) 1682 { 1683 rtx addr; 1684 1685 if (CONST_INT_P (temp)) 1686 { 1687 /* Use [base + disp} addressing mode if supported. */ 1688 HOST_WIDE_INT offset = INTVAL (temp); 1689 addr = memory_address (Pmode, 1690 plus_constant (Pmode, last_addr, 1691 STACK_GROW_OFF (offset))); 1692 } 1693 else 1694 { 1695 /* Manual CSE if the difference is not known at compile-time. */ 1696 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op); 1697 addr = memory_address (Pmode, 1698 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode, 1699 last_addr, temp)); 1700 } 1701 1702 emit_stack_probe (addr); 1703 } 1704 } 1705 1706 /* Make sure nothing is scheduled before we are done. */ 1707 emit_insn (gen_blockage ()); 1708 } 1709 1710 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes) 1711 while probing it. This pushes when SIZE is positive. SIZE need not 1712 be constant. If ADJUST_BACK is true, adjust back the stack pointer 1713 by plus SIZE at the end. */ 1714 1715 void 1716 anti_adjust_stack_and_probe (rtx size, bool adjust_back) 1717 { 1718 /* We skip the probe for the first interval + a small dope of 4 words and 1719 probe that many bytes past the specified size to maintain a protection 1720 area at the botton of the stack. */ 1721 const int dope = 4 * UNITS_PER_WORD; 1722 1723 /* First ensure SIZE is Pmode. */ 1724 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode) 1725 size = convert_to_mode (Pmode, size, 1); 1726 1727 /* If we have a constant small number of probes to generate, that's the 1728 easy case. */ 1729 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL) 1730 { 1731 HOST_WIDE_INT isize = INTVAL (size), i; 1732 bool first_probe = true; 1733 1734 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for 1735 values of N from 1 until it exceeds SIZE. If only one probe is 1736 needed, this will not generate any code. Then adjust and probe 1737 to PROBE_INTERVAL + SIZE. */ 1738 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL) 1739 { 1740 if (first_probe) 1741 { 1742 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope)); 1743 first_probe = false; 1744 } 1745 else 1746 anti_adjust_stack (GEN_INT (PROBE_INTERVAL)); 1747 emit_stack_probe (stack_pointer_rtx); 1748 } 1749 1750 if (first_probe) 1751 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope)); 1752 else 1753 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i)); 1754 emit_stack_probe (stack_pointer_rtx); 1755 } 1756 1757 /* In the variable case, do the same as above, but in a loop. Note that we 1758 must be extra careful with variables wrapping around because we might be 1759 at the very top (or the very bottom) of the address space and we have to 1760 be able to handle this case properly; in particular, we use an equality 1761 test for the loop condition. */ 1762 else 1763 { 1764 rtx rounded_size, rounded_size_op, last_addr, temp; 1765 rtx_code_label *loop_lab = gen_label_rtx (); 1766 rtx_code_label *end_lab = gen_label_rtx (); 1767 1768 1769 /* Step 1: round SIZE to the previous multiple of the interval. */ 1770 1771 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */ 1772 rounded_size 1773 = simplify_gen_binary (AND, Pmode, size, 1774 gen_int_mode (-PROBE_INTERVAL, Pmode)); 1775 rounded_size_op = force_operand (rounded_size, NULL_RTX); 1776 1777 1778 /* Step 2: compute initial and final value of the loop counter. */ 1779 1780 /* SP = SP_0 + PROBE_INTERVAL. */ 1781 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope)); 1782 1783 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */ 1784 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode, 1785 stack_pointer_rtx, 1786 rounded_size_op), NULL_RTX); 1787 1788 1789 /* Step 3: the loop 1790 1791 while (SP != LAST_ADDR) 1792 { 1793 SP = SP + PROBE_INTERVAL 1794 probe at SP 1795 } 1796 1797 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for 1798 values of N from 1 until it is equal to ROUNDED_SIZE. */ 1799 1800 emit_label (loop_lab); 1801 1802 /* Jump to END_LAB if SP == LAST_ADDR. */ 1803 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX, 1804 Pmode, 1, end_lab); 1805 1806 /* SP = SP + PROBE_INTERVAL and probe at SP. */ 1807 anti_adjust_stack (GEN_INT (PROBE_INTERVAL)); 1808 emit_stack_probe (stack_pointer_rtx); 1809 1810 emit_jump (loop_lab); 1811 1812 emit_label (end_lab); 1813 1814 1815 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot 1816 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */ 1817 1818 /* TEMP = SIZE - ROUNDED_SIZE. */ 1819 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size); 1820 if (temp != const0_rtx) 1821 { 1822 /* Manual CSE if the difference is not known at compile-time. */ 1823 if (GET_CODE (temp) != CONST_INT) 1824 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op); 1825 anti_adjust_stack (temp); 1826 emit_stack_probe (stack_pointer_rtx); 1827 } 1828 } 1829 1830 /* Adjust back and account for the additional first interval. */ 1831 if (adjust_back) 1832 adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope)); 1833 else 1834 adjust_stack (GEN_INT (PROBE_INTERVAL + dope)); 1835 } 1836 1837 /* Return an rtx representing the register or memory location 1838 in which a scalar value of data type VALTYPE 1839 was returned by a function call to function FUNC. 1840 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise 1841 function is known, otherwise 0. 1842 OUTGOING is 1 if on a machine with register windows this function 1843 should return the register in which the function will put its result 1844 and 0 otherwise. */ 1845 1846 rtx 1847 hard_function_value (const_tree valtype, const_tree func, const_tree fntype, 1848 int outgoing ATTRIBUTE_UNUSED) 1849 { 1850 rtx val; 1851 1852 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing); 1853 1854 if (REG_P (val) 1855 && GET_MODE (val) == BLKmode) 1856 { 1857 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype); 1858 machine_mode tmpmode; 1859 1860 /* int_size_in_bytes can return -1. We don't need a check here 1861 since the value of bytes will then be large enough that no 1862 mode will match anyway. */ 1863 1864 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT); 1865 tmpmode != VOIDmode; 1866 tmpmode = GET_MODE_WIDER_MODE (tmpmode)) 1867 { 1868 /* Have we found a large enough mode? */ 1869 if (GET_MODE_SIZE (tmpmode) >= bytes) 1870 break; 1871 } 1872 1873 /* No suitable mode found. */ 1874 gcc_assert (tmpmode != VOIDmode); 1875 1876 PUT_MODE (val, tmpmode); 1877 } 1878 return val; 1879 } 1880 1881 /* Return an rtx representing the register or memory location 1882 in which a scalar value of mode MODE was returned by a library call. */ 1883 1884 rtx 1885 hard_libcall_value (machine_mode mode, rtx fun) 1886 { 1887 return targetm.calls.libcall_value (mode, fun); 1888 } 1889 1890 /* Look up the tree code for a given rtx code 1891 to provide the arithmetic operation for REAL_ARITHMETIC. 1892 The function returns an int because the caller may not know 1893 what `enum tree_code' means. */ 1894 1895 int 1896 rtx_to_tree_code (enum rtx_code code) 1897 { 1898 enum tree_code tcode; 1899 1900 switch (code) 1901 { 1902 case PLUS: 1903 tcode = PLUS_EXPR; 1904 break; 1905 case MINUS: 1906 tcode = MINUS_EXPR; 1907 break; 1908 case MULT: 1909 tcode = MULT_EXPR; 1910 break; 1911 case DIV: 1912 tcode = RDIV_EXPR; 1913 break; 1914 case SMIN: 1915 tcode = MIN_EXPR; 1916 break; 1917 case SMAX: 1918 tcode = MAX_EXPR; 1919 break; 1920 default: 1921 tcode = LAST_AND_UNUSED_TREE_CODE; 1922 break; 1923 } 1924 return ((int) tcode); 1925 } 1926 1927 #include "gt-explow.h" 1928