1 /* Subroutines for manipulating rtx's in semantically interesting ways. 2 Copyright (C) 1987-2017 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 21 #include "config.h" 22 #include "system.h" 23 #include "coretypes.h" 24 #include "target.h" 25 #include "function.h" 26 #include "rtl.h" 27 #include "tree.h" 28 #include "memmodel.h" 29 #include "tm_p.h" 30 #include "expmed.h" 31 #include "optabs.h" 32 #include "emit-rtl.h" 33 #include "recog.h" 34 #include "diagnostic-core.h" 35 #include "stor-layout.h" 36 #include "except.h" 37 #include "dojump.h" 38 #include "explow.h" 39 #include "expr.h" 40 #include "common/common-target.h" 41 #include "output.h" 42 43 static rtx break_out_memory_refs (rtx); 44 45 46 /* Truncate and perhaps sign-extend C as appropriate for MODE. */ 47 48 HOST_WIDE_INT 49 trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode) 50 { 51 int width = GET_MODE_PRECISION (mode); 52 53 /* You want to truncate to a _what_? */ 54 gcc_assert (SCALAR_INT_MODE_P (mode) 55 || POINTER_BOUNDS_MODE_P (mode)); 56 57 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */ 58 if (mode == BImode) 59 return c & 1 ? STORE_FLAG_VALUE : 0; 60 61 /* Sign-extend for the requested mode. */ 62 63 if (width < HOST_BITS_PER_WIDE_INT) 64 { 65 HOST_WIDE_INT sign = 1; 66 sign <<= width - 1; 67 c &= (sign << 1) - 1; 68 c ^= sign; 69 c -= sign; 70 } 71 72 return c; 73 } 74 75 /* Return an rtx for the sum of X and the integer C, given that X has 76 mode MODE. INPLACE is true if X can be modified inplace or false 77 if it must be treated as immutable. */ 78 79 rtx 80 plus_constant (machine_mode mode, rtx x, HOST_WIDE_INT c, 81 bool inplace) 82 { 83 RTX_CODE code; 84 rtx y; 85 rtx tem; 86 int all_constant = 0; 87 88 gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode); 89 90 if (c == 0) 91 return x; 92 93 restart: 94 95 code = GET_CODE (x); 96 y = x; 97 98 switch (code) 99 { 100 CASE_CONST_SCALAR_INT: 101 return immed_wide_int_const (wi::add (rtx_mode_t (x, mode), c), mode); 102 case MEM: 103 /* If this is a reference to the constant pool, try replacing it with 104 a reference to a new constant. If the resulting address isn't 105 valid, don't return it because we have no way to validize it. */ 106 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF 107 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0))) 108 { 109 rtx cst = get_pool_constant (XEXP (x, 0)); 110 111 if (GET_CODE (cst) == CONST_VECTOR 112 && GET_MODE_INNER (GET_MODE (cst)) == mode) 113 { 114 cst = gen_lowpart (mode, cst); 115 gcc_assert (cst); 116 } 117 if (GET_MODE (cst) == VOIDmode || GET_MODE (cst) == mode) 118 { 119 tem = plus_constant (mode, cst, c); 120 tem = force_const_mem (GET_MODE (x), tem); 121 /* Targets may disallow some constants in the constant pool, thus 122 force_const_mem may return NULL_RTX. */ 123 if (tem && memory_address_p (GET_MODE (tem), XEXP (tem, 0))) 124 return tem; 125 } 126 } 127 break; 128 129 case CONST: 130 /* If adding to something entirely constant, set a flag 131 so that we can add a CONST around the result. */ 132 if (inplace && shared_const_p (x)) 133 inplace = false; 134 x = XEXP (x, 0); 135 all_constant = 1; 136 goto restart; 137 138 case SYMBOL_REF: 139 case LABEL_REF: 140 all_constant = 1; 141 break; 142 143 case PLUS: 144 /* The interesting case is adding the integer to a sum. Look 145 for constant term in the sum and combine with C. For an 146 integer constant term or a constant term that is not an 147 explicit integer, we combine or group them together anyway. 148 149 We may not immediately return from the recursive call here, lest 150 all_constant gets lost. */ 151 152 if (CONSTANT_P (XEXP (x, 1))) 153 { 154 rtx term = plus_constant (mode, XEXP (x, 1), c, inplace); 155 if (term == const0_rtx) 156 x = XEXP (x, 0); 157 else if (inplace) 158 XEXP (x, 1) = term; 159 else 160 x = gen_rtx_PLUS (mode, XEXP (x, 0), term); 161 c = 0; 162 } 163 else if (rtx *const_loc = find_constant_term_loc (&y)) 164 { 165 if (!inplace) 166 { 167 /* We need to be careful since X may be shared and we can't 168 modify it in place. */ 169 x = copy_rtx (x); 170 const_loc = find_constant_term_loc (&x); 171 } 172 *const_loc = plus_constant (mode, *const_loc, c, true); 173 c = 0; 174 } 175 break; 176 177 default: 178 break; 179 } 180 181 if (c != 0) 182 x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode)); 183 184 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF) 185 return x; 186 else if (all_constant) 187 return gen_rtx_CONST (mode, x); 188 else 189 return x; 190 } 191 192 /* If X is a sum, return a new sum like X but lacking any constant terms. 193 Add all the removed constant terms into *CONSTPTR. 194 X itself is not altered. The result != X if and only if 195 it is not isomorphic to X. */ 196 197 rtx 198 eliminate_constant_term (rtx x, rtx *constptr) 199 { 200 rtx x0, x1; 201 rtx tem; 202 203 if (GET_CODE (x) != PLUS) 204 return x; 205 206 /* First handle constants appearing at this level explicitly. */ 207 if (CONST_INT_P (XEXP (x, 1)) 208 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr, 209 XEXP (x, 1))) 210 && CONST_INT_P (tem)) 211 { 212 *constptr = tem; 213 return eliminate_constant_term (XEXP (x, 0), constptr); 214 } 215 216 tem = const0_rtx; 217 x0 = eliminate_constant_term (XEXP (x, 0), &tem); 218 x1 = eliminate_constant_term (XEXP (x, 1), &tem); 219 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0)) 220 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), 221 *constptr, tem)) 222 && CONST_INT_P (tem)) 223 { 224 *constptr = tem; 225 return gen_rtx_PLUS (GET_MODE (x), x0, x1); 226 } 227 228 return x; 229 } 230 231 232 /* Return a copy of X in which all memory references 233 and all constants that involve symbol refs 234 have been replaced with new temporary registers. 235 Also emit code to load the memory locations and constants 236 into those registers. 237 238 If X contains no such constants or memory references, 239 X itself (not a copy) is returned. 240 241 If a constant is found in the address that is not a legitimate constant 242 in an insn, it is left alone in the hope that it might be valid in the 243 address. 244 245 X may contain no arithmetic except addition, subtraction and multiplication. 246 Values returned by expand_expr with 1 for sum_ok fit this constraint. */ 247 248 static rtx 249 break_out_memory_refs (rtx x) 250 { 251 if (MEM_P (x) 252 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x) 253 && GET_MODE (x) != VOIDmode)) 254 x = force_reg (GET_MODE (x), x); 255 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS 256 || GET_CODE (x) == MULT) 257 { 258 rtx op0 = break_out_memory_refs (XEXP (x, 0)); 259 rtx op1 = break_out_memory_refs (XEXP (x, 1)); 260 261 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1)) 262 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1); 263 } 264 265 return x; 266 } 267 268 /* Given X, a memory address in address space AS' pointer mode, convert it to 269 an address in the address space's address mode, or vice versa (TO_MODE says 270 which way). We take advantage of the fact that pointers are not allowed to 271 overflow by commuting arithmetic operations over conversions so that address 272 arithmetic insns can be used. IN_CONST is true if this conversion is inside 273 a CONST. NO_EMIT is true if no insns should be emitted, and instead 274 it should return NULL if it can't be simplified without emitting insns. */ 275 276 rtx 277 convert_memory_address_addr_space_1 (machine_mode to_mode ATTRIBUTE_UNUSED, 278 rtx x, addr_space_t as ATTRIBUTE_UNUSED, 279 bool in_const ATTRIBUTE_UNUSED, 280 bool no_emit ATTRIBUTE_UNUSED) 281 { 282 #ifndef POINTERS_EXTEND_UNSIGNED 283 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode); 284 return x; 285 #else /* defined(POINTERS_EXTEND_UNSIGNED) */ 286 machine_mode pointer_mode, address_mode, from_mode; 287 rtx temp; 288 enum rtx_code code; 289 290 /* If X already has the right mode, just return it. */ 291 if (GET_MODE (x) == to_mode) 292 return x; 293 294 pointer_mode = targetm.addr_space.pointer_mode (as); 295 address_mode = targetm.addr_space.address_mode (as); 296 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode; 297 298 /* Here we handle some special cases. If none of them apply, fall through 299 to the default case. */ 300 switch (GET_CODE (x)) 301 { 302 CASE_CONST_SCALAR_INT: 303 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)) 304 code = TRUNCATE; 305 else if (POINTERS_EXTEND_UNSIGNED < 0) 306 break; 307 else if (POINTERS_EXTEND_UNSIGNED > 0) 308 code = ZERO_EXTEND; 309 else 310 code = SIGN_EXTEND; 311 temp = simplify_unary_operation (code, to_mode, x, from_mode); 312 if (temp) 313 return temp; 314 break; 315 316 case SUBREG: 317 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x))) 318 && GET_MODE (SUBREG_REG (x)) == to_mode) 319 return SUBREG_REG (x); 320 break; 321 322 case LABEL_REF: 323 temp = gen_rtx_LABEL_REF (to_mode, label_ref_label (x)); 324 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x); 325 return temp; 326 327 case SYMBOL_REF: 328 temp = shallow_copy_rtx (x); 329 PUT_MODE (temp, to_mode); 330 return temp; 331 332 case CONST: 333 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0), as, 334 true, no_emit); 335 return temp ? gen_rtx_CONST (to_mode, temp) : temp; 336 337 case PLUS: 338 case MULT: 339 /* For addition we can safely permute the conversion and addition 340 operation if one operand is a constant and converting the constant 341 does not change it or if one operand is a constant and we are 342 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0). 343 We can always safely permute them if we are making the address 344 narrower. Inside a CONST RTL, this is safe for both pointers 345 zero or sign extended as pointers cannot wrap. */ 346 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode) 347 || (GET_CODE (x) == PLUS 348 && CONST_INT_P (XEXP (x, 1)) 349 && ((in_const && POINTERS_EXTEND_UNSIGNED != 0) 350 || XEXP (x, 1) == convert_memory_address_addr_space_1 351 (to_mode, XEXP (x, 1), as, in_const, 352 no_emit) 353 || POINTERS_EXTEND_UNSIGNED < 0))) 354 { 355 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0), 356 as, in_const, no_emit); 357 return (temp ? gen_rtx_fmt_ee (GET_CODE (x), to_mode, 358 temp, XEXP (x, 1)) 359 : temp); 360 } 361 break; 362 363 default: 364 break; 365 } 366 367 if (no_emit) 368 return NULL_RTX; 369 370 return convert_modes (to_mode, from_mode, 371 x, POINTERS_EXTEND_UNSIGNED); 372 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */ 373 } 374 375 /* Given X, a memory address in address space AS' pointer mode, convert it to 376 an address in the address space's address mode, or vice versa (TO_MODE says 377 which way). We take advantage of the fact that pointers are not allowed to 378 overflow by commuting arithmetic operations over conversions so that address 379 arithmetic insns can be used. */ 380 381 rtx 382 convert_memory_address_addr_space (machine_mode to_mode, rtx x, addr_space_t as) 383 { 384 return convert_memory_address_addr_space_1 (to_mode, x, as, false, false); 385 } 386 387 388 /* Return something equivalent to X but valid as a memory address for something 389 of mode MODE in the named address space AS. When X is not itself valid, 390 this works by copying X or subexpressions of it into registers. */ 391 392 rtx 393 memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as) 394 { 395 rtx oldx = x; 396 machine_mode address_mode = targetm.addr_space.address_mode (as); 397 398 x = convert_memory_address_addr_space (address_mode, x, as); 399 400 /* By passing constant addresses through registers 401 we get a chance to cse them. */ 402 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)) 403 x = force_reg (address_mode, x); 404 405 /* We get better cse by rejecting indirect addressing at this stage. 406 Let the combiner create indirect addresses where appropriate. 407 For now, generate the code so that the subexpressions useful to share 408 are visible. But not if cse won't be done! */ 409 else 410 { 411 if (! cse_not_expected && !REG_P (x)) 412 x = break_out_memory_refs (x); 413 414 /* At this point, any valid address is accepted. */ 415 if (memory_address_addr_space_p (mode, x, as)) 416 goto done; 417 418 /* If it was valid before but breaking out memory refs invalidated it, 419 use it the old way. */ 420 if (memory_address_addr_space_p (mode, oldx, as)) 421 { 422 x = oldx; 423 goto done; 424 } 425 426 /* Perform machine-dependent transformations on X 427 in certain cases. This is not necessary since the code 428 below can handle all possible cases, but machine-dependent 429 transformations can make better code. */ 430 { 431 rtx orig_x = x; 432 x = targetm.addr_space.legitimize_address (x, oldx, mode, as); 433 if (orig_x != x && memory_address_addr_space_p (mode, x, as)) 434 goto done; 435 } 436 437 /* PLUS and MULT can appear in special ways 438 as the result of attempts to make an address usable for indexing. 439 Usually they are dealt with by calling force_operand, below. 440 But a sum containing constant terms is special 441 if removing them makes the sum a valid address: 442 then we generate that address in a register 443 and index off of it. We do this because it often makes 444 shorter code, and because the addresses thus generated 445 in registers often become common subexpressions. */ 446 if (GET_CODE (x) == PLUS) 447 { 448 rtx constant_term = const0_rtx; 449 rtx y = eliminate_constant_term (x, &constant_term); 450 if (constant_term == const0_rtx 451 || ! memory_address_addr_space_p (mode, y, as)) 452 x = force_operand (x, NULL_RTX); 453 else 454 { 455 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term); 456 if (! memory_address_addr_space_p (mode, y, as)) 457 x = force_operand (x, NULL_RTX); 458 else 459 x = y; 460 } 461 } 462 463 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS) 464 x = force_operand (x, NULL_RTX); 465 466 /* If we have a register that's an invalid address, 467 it must be a hard reg of the wrong class. Copy it to a pseudo. */ 468 else if (REG_P (x)) 469 x = copy_to_reg (x); 470 471 /* Last resort: copy the value to a register, since 472 the register is a valid address. */ 473 else 474 x = force_reg (address_mode, x); 475 } 476 477 done: 478 479 gcc_assert (memory_address_addr_space_p (mode, x, as)); 480 /* If we didn't change the address, we are done. Otherwise, mark 481 a reg as a pointer if we have REG or REG + CONST_INT. */ 482 if (oldx == x) 483 return x; 484 else if (REG_P (x)) 485 mark_reg_pointer (x, BITS_PER_UNIT); 486 else if (GET_CODE (x) == PLUS 487 && REG_P (XEXP (x, 0)) 488 && CONST_INT_P (XEXP (x, 1))) 489 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT); 490 491 /* OLDX may have been the address on a temporary. Update the address 492 to indicate that X is now used. */ 493 update_temp_slot_address (oldx, x); 494 495 return x; 496 } 497 498 /* Convert a mem ref into one with a valid memory address. 499 Pass through anything else unchanged. */ 500 501 rtx 502 validize_mem (rtx ref) 503 { 504 if (!MEM_P (ref)) 505 return ref; 506 ref = use_anchored_address (ref); 507 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0), 508 MEM_ADDR_SPACE (ref))) 509 return ref; 510 511 /* Don't alter REF itself, since that is probably a stack slot. */ 512 return replace_equiv_address (ref, XEXP (ref, 0)); 513 } 514 515 /* If X is a memory reference to a member of an object block, try rewriting 516 it to use an anchor instead. Return the new memory reference on success 517 and the old one on failure. */ 518 519 rtx 520 use_anchored_address (rtx x) 521 { 522 rtx base; 523 HOST_WIDE_INT offset; 524 machine_mode mode; 525 526 if (!flag_section_anchors) 527 return x; 528 529 if (!MEM_P (x)) 530 return x; 531 532 /* Split the address into a base and offset. */ 533 base = XEXP (x, 0); 534 offset = 0; 535 if (GET_CODE (base) == CONST 536 && GET_CODE (XEXP (base, 0)) == PLUS 537 && CONST_INT_P (XEXP (XEXP (base, 0), 1))) 538 { 539 offset += INTVAL (XEXP (XEXP (base, 0), 1)); 540 base = XEXP (XEXP (base, 0), 0); 541 } 542 543 /* Check whether BASE is suitable for anchors. */ 544 if (GET_CODE (base) != SYMBOL_REF 545 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base) 546 || SYMBOL_REF_ANCHOR_P (base) 547 || SYMBOL_REF_BLOCK (base) == NULL 548 || !targetm.use_anchors_for_symbol_p (base)) 549 return x; 550 551 /* Decide where BASE is going to be. */ 552 place_block_symbol (base); 553 554 /* Get the anchor we need to use. */ 555 offset += SYMBOL_REF_BLOCK_OFFSET (base); 556 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset, 557 SYMBOL_REF_TLS_MODEL (base)); 558 559 /* Work out the offset from the anchor. */ 560 offset -= SYMBOL_REF_BLOCK_OFFSET (base); 561 562 /* If we're going to run a CSE pass, force the anchor into a register. 563 We will then be able to reuse registers for several accesses, if the 564 target costs say that that's worthwhile. */ 565 mode = GET_MODE (base); 566 if (!cse_not_expected) 567 base = force_reg (mode, base); 568 569 return replace_equiv_address (x, plus_constant (mode, base, offset)); 570 } 571 572 /* Copy the value or contents of X to a new temp reg and return that reg. */ 573 574 rtx 575 copy_to_reg (rtx x) 576 { 577 rtx temp = gen_reg_rtx (GET_MODE (x)); 578 579 /* If not an operand, must be an address with PLUS and MULT so 580 do the computation. */ 581 if (! general_operand (x, VOIDmode)) 582 x = force_operand (x, temp); 583 584 if (x != temp) 585 emit_move_insn (temp, x); 586 587 return temp; 588 } 589 590 /* Like copy_to_reg but always give the new register mode Pmode 591 in case X is a constant. */ 592 593 rtx 594 copy_addr_to_reg (rtx x) 595 { 596 return copy_to_mode_reg (Pmode, x); 597 } 598 599 /* Like copy_to_reg but always give the new register mode MODE 600 in case X is a constant. */ 601 602 rtx 603 copy_to_mode_reg (machine_mode mode, rtx x) 604 { 605 rtx temp = gen_reg_rtx (mode); 606 607 /* If not an operand, must be an address with PLUS and MULT so 608 do the computation. */ 609 if (! general_operand (x, VOIDmode)) 610 x = force_operand (x, temp); 611 612 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode); 613 if (x != temp) 614 emit_move_insn (temp, x); 615 return temp; 616 } 617 618 /* Load X into a register if it is not already one. 619 Use mode MODE for the register. 620 X should be valid for mode MODE, but it may be a constant which 621 is valid for all integer modes; that's why caller must specify MODE. 622 623 The caller must not alter the value in the register we return, 624 since we mark it as a "constant" register. */ 625 626 rtx 627 force_reg (machine_mode mode, rtx x) 628 { 629 rtx temp, set; 630 rtx_insn *insn; 631 632 if (REG_P (x)) 633 return x; 634 635 if (general_operand (x, mode)) 636 { 637 temp = gen_reg_rtx (mode); 638 insn = emit_move_insn (temp, x); 639 } 640 else 641 { 642 temp = force_operand (x, NULL_RTX); 643 if (REG_P (temp)) 644 insn = get_last_insn (); 645 else 646 { 647 rtx temp2 = gen_reg_rtx (mode); 648 insn = emit_move_insn (temp2, temp); 649 temp = temp2; 650 } 651 } 652 653 /* Let optimizers know that TEMP's value never changes 654 and that X can be substituted for it. Don't get confused 655 if INSN set something else (such as a SUBREG of TEMP). */ 656 if (CONSTANT_P (x) 657 && (set = single_set (insn)) != 0 658 && SET_DEST (set) == temp 659 && ! rtx_equal_p (x, SET_SRC (set))) 660 set_unique_reg_note (insn, REG_EQUAL, x); 661 662 /* Let optimizers know that TEMP is a pointer, and if so, the 663 known alignment of that pointer. */ 664 { 665 unsigned align = 0; 666 if (GET_CODE (x) == SYMBOL_REF) 667 { 668 align = BITS_PER_UNIT; 669 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x))) 670 align = DECL_ALIGN (SYMBOL_REF_DECL (x)); 671 } 672 else if (GET_CODE (x) == LABEL_REF) 673 align = BITS_PER_UNIT; 674 else if (GET_CODE (x) == CONST 675 && GET_CODE (XEXP (x, 0)) == PLUS 676 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF 677 && CONST_INT_P (XEXP (XEXP (x, 0), 1))) 678 { 679 rtx s = XEXP (XEXP (x, 0), 0); 680 rtx c = XEXP (XEXP (x, 0), 1); 681 unsigned sa, ca; 682 683 sa = BITS_PER_UNIT; 684 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s))) 685 sa = DECL_ALIGN (SYMBOL_REF_DECL (s)); 686 687 if (INTVAL (c) == 0) 688 align = sa; 689 else 690 { 691 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT; 692 align = MIN (sa, ca); 693 } 694 } 695 696 if (align || (MEM_P (x) && MEM_POINTER (x))) 697 mark_reg_pointer (temp, align); 698 } 699 700 return temp; 701 } 702 703 /* If X is a memory ref, copy its contents to a new temp reg and return 704 that reg. Otherwise, return X. */ 705 706 rtx 707 force_not_mem (rtx x) 708 { 709 rtx temp; 710 711 if (!MEM_P (x) || GET_MODE (x) == BLKmode) 712 return x; 713 714 temp = gen_reg_rtx (GET_MODE (x)); 715 716 if (MEM_POINTER (x)) 717 REG_POINTER (temp) = 1; 718 719 emit_move_insn (temp, x); 720 return temp; 721 } 722 723 /* Copy X to TARGET (if it's nonzero and a reg) 724 or to a new temp reg and return that reg. 725 MODE is the mode to use for X in case it is a constant. */ 726 727 rtx 728 copy_to_suggested_reg (rtx x, rtx target, machine_mode mode) 729 { 730 rtx temp; 731 732 if (target && REG_P (target)) 733 temp = target; 734 else 735 temp = gen_reg_rtx (mode); 736 737 emit_move_insn (temp, x); 738 return temp; 739 } 740 741 /* Return the mode to use to pass or return a scalar of TYPE and MODE. 742 PUNSIGNEDP points to the signedness of the type and may be adjusted 743 to show what signedness to use on extension operations. 744 745 FOR_RETURN is nonzero if the caller is promoting the return value 746 of FNDECL, else it is for promoting args. */ 747 748 machine_mode 749 promote_function_mode (const_tree type, machine_mode mode, int *punsignedp, 750 const_tree funtype, int for_return) 751 { 752 /* Called without a type node for a libcall. */ 753 if (type == NULL_TREE) 754 { 755 if (INTEGRAL_MODE_P (mode)) 756 return targetm.calls.promote_function_mode (NULL_TREE, mode, 757 punsignedp, funtype, 758 for_return); 759 else 760 return mode; 761 } 762 763 switch (TREE_CODE (type)) 764 { 765 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: 766 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE: 767 case POINTER_TYPE: case REFERENCE_TYPE: 768 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype, 769 for_return); 770 771 default: 772 return mode; 773 } 774 } 775 /* Return the mode to use to store a scalar of TYPE and MODE. 776 PUNSIGNEDP points to the signedness of the type and may be adjusted 777 to show what signedness to use on extension operations. */ 778 779 machine_mode 780 promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode, 781 int *punsignedp ATTRIBUTE_UNUSED) 782 { 783 #ifdef PROMOTE_MODE 784 enum tree_code code; 785 int unsignedp; 786 #endif 787 788 /* For libcalls this is invoked without TYPE from the backends 789 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that 790 case. */ 791 if (type == NULL_TREE) 792 return mode; 793 794 /* FIXME: this is the same logic that was there until GCC 4.4, but we 795 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE 796 is not defined. The affected targets are M32C, S390, SPARC. */ 797 #ifdef PROMOTE_MODE 798 code = TREE_CODE (type); 799 unsignedp = *punsignedp; 800 801 switch (code) 802 { 803 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: 804 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE: 805 PROMOTE_MODE (mode, unsignedp, type); 806 *punsignedp = unsignedp; 807 return mode; 808 809 #ifdef POINTERS_EXTEND_UNSIGNED 810 case REFERENCE_TYPE: 811 case POINTER_TYPE: 812 *punsignedp = POINTERS_EXTEND_UNSIGNED; 813 return targetm.addr_space.address_mode 814 (TYPE_ADDR_SPACE (TREE_TYPE (type))); 815 #endif 816 817 default: 818 return mode; 819 } 820 #else 821 return mode; 822 #endif 823 } 824 825 826 /* Use one of promote_mode or promote_function_mode to find the promoted 827 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness 828 of DECL after promotion. */ 829 830 machine_mode 831 promote_decl_mode (const_tree decl, int *punsignedp) 832 { 833 tree type = TREE_TYPE (decl); 834 int unsignedp = TYPE_UNSIGNED (type); 835 machine_mode mode = DECL_MODE (decl); 836 machine_mode pmode; 837 838 if (TREE_CODE (decl) == RESULT_DECL && !DECL_BY_REFERENCE (decl)) 839 pmode = promote_function_mode (type, mode, &unsignedp, 840 TREE_TYPE (current_function_decl), 1); 841 else if (TREE_CODE (decl) == RESULT_DECL || TREE_CODE (decl) == PARM_DECL) 842 pmode = promote_function_mode (type, mode, &unsignedp, 843 TREE_TYPE (current_function_decl), 2); 844 else 845 pmode = promote_mode (type, mode, &unsignedp); 846 847 if (punsignedp) 848 *punsignedp = unsignedp; 849 return pmode; 850 } 851 852 /* Return the promoted mode for name. If it is a named SSA_NAME, it 853 is the same as promote_decl_mode. Otherwise, it is the promoted 854 mode of a temp decl of same type as the SSA_NAME, if we had created 855 one. */ 856 857 machine_mode 858 promote_ssa_mode (const_tree name, int *punsignedp) 859 { 860 gcc_assert (TREE_CODE (name) == SSA_NAME); 861 862 /* Partitions holding parms and results must be promoted as expected 863 by function.c. */ 864 if (SSA_NAME_VAR (name) 865 && (TREE_CODE (SSA_NAME_VAR (name)) == PARM_DECL 866 || TREE_CODE (SSA_NAME_VAR (name)) == RESULT_DECL)) 867 { 868 machine_mode mode = promote_decl_mode (SSA_NAME_VAR (name), punsignedp); 869 if (mode != BLKmode) 870 return mode; 871 } 872 873 tree type = TREE_TYPE (name); 874 int unsignedp = TYPE_UNSIGNED (type); 875 machine_mode mode = TYPE_MODE (type); 876 877 /* Bypass TYPE_MODE when it maps vector modes to BLKmode. */ 878 if (mode == BLKmode) 879 { 880 gcc_assert (VECTOR_TYPE_P (type)); 881 mode = type->type_common.mode; 882 } 883 884 machine_mode pmode = promote_mode (type, mode, &unsignedp); 885 if (punsignedp) 886 *punsignedp = unsignedp; 887 888 return pmode; 889 } 890 891 892 893 /* Controls the behavior of {anti_,}adjust_stack. */ 894 static bool suppress_reg_args_size; 895 896 /* A helper for adjust_stack and anti_adjust_stack. */ 897 898 static void 899 adjust_stack_1 (rtx adjust, bool anti_p) 900 { 901 rtx temp; 902 rtx_insn *insn; 903 904 /* Hereafter anti_p means subtract_p. */ 905 if (!STACK_GROWS_DOWNWARD) 906 anti_p = !anti_p; 907 908 temp = expand_binop (Pmode, 909 anti_p ? sub_optab : add_optab, 910 stack_pointer_rtx, adjust, stack_pointer_rtx, 0, 911 OPTAB_LIB_WIDEN); 912 913 if (temp != stack_pointer_rtx) 914 insn = emit_move_insn (stack_pointer_rtx, temp); 915 else 916 { 917 insn = get_last_insn (); 918 temp = single_set (insn); 919 gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx); 920 } 921 922 if (!suppress_reg_args_size) 923 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta)); 924 } 925 926 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes). 927 This pops when ADJUST is positive. ADJUST need not be constant. */ 928 929 void 930 adjust_stack (rtx adjust) 931 { 932 if (adjust == const0_rtx) 933 return; 934 935 /* We expect all variable sized adjustments to be multiple of 936 PREFERRED_STACK_BOUNDARY. */ 937 if (CONST_INT_P (adjust)) 938 stack_pointer_delta -= INTVAL (adjust); 939 940 adjust_stack_1 (adjust, false); 941 } 942 943 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes). 944 This pushes when ADJUST is positive. ADJUST need not be constant. */ 945 946 void 947 anti_adjust_stack (rtx adjust) 948 { 949 if (adjust == const0_rtx) 950 return; 951 952 /* We expect all variable sized adjustments to be multiple of 953 PREFERRED_STACK_BOUNDARY. */ 954 if (CONST_INT_P (adjust)) 955 stack_pointer_delta += INTVAL (adjust); 956 957 adjust_stack_1 (adjust, true); 958 } 959 960 /* Round the size of a block to be pushed up to the boundary required 961 by this machine. SIZE is the desired size, which need not be constant. */ 962 963 static rtx 964 round_push (rtx size) 965 { 966 rtx align_rtx, alignm1_rtx; 967 968 if (!SUPPORTS_STACK_ALIGNMENT 969 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT) 970 { 971 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT; 972 973 if (align == 1) 974 return size; 975 976 if (CONST_INT_P (size)) 977 { 978 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align; 979 980 if (INTVAL (size) != new_size) 981 size = GEN_INT (new_size); 982 return size; 983 } 984 985 align_rtx = GEN_INT (align); 986 alignm1_rtx = GEN_INT (align - 1); 987 } 988 else 989 { 990 /* If crtl->preferred_stack_boundary might still grow, use 991 virtual_preferred_stack_boundary_rtx instead. This will be 992 substituted by the right value in vregs pass and optimized 993 during combine. */ 994 align_rtx = virtual_preferred_stack_boundary_rtx; 995 alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1), 996 NULL_RTX); 997 } 998 999 /* CEIL_DIV_EXPR needs to worry about the addition overflowing, 1000 but we know it can't. So add ourselves and then do 1001 TRUNC_DIV_EXPR. */ 1002 size = expand_binop (Pmode, add_optab, size, alignm1_rtx, 1003 NULL_RTX, 1, OPTAB_LIB_WIDEN); 1004 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx, 1005 NULL_RTX, 1); 1006 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1); 1007 1008 return size; 1009 } 1010 1011 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer 1012 to a previously-created save area. If no save area has been allocated, 1013 this function will allocate one. If a save area is specified, it 1014 must be of the proper mode. */ 1015 1016 void 1017 emit_stack_save (enum save_level save_level, rtx *psave) 1018 { 1019 rtx sa = *psave; 1020 /* The default is that we use a move insn and save in a Pmode object. */ 1021 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn; 1022 machine_mode mode = STACK_SAVEAREA_MODE (save_level); 1023 1024 /* See if this machine has anything special to do for this kind of save. */ 1025 switch (save_level) 1026 { 1027 case SAVE_BLOCK: 1028 if (targetm.have_save_stack_block ()) 1029 fcn = targetm.gen_save_stack_block; 1030 break; 1031 case SAVE_FUNCTION: 1032 if (targetm.have_save_stack_function ()) 1033 fcn = targetm.gen_save_stack_function; 1034 break; 1035 case SAVE_NONLOCAL: 1036 if (targetm.have_save_stack_nonlocal ()) 1037 fcn = targetm.gen_save_stack_nonlocal; 1038 break; 1039 default: 1040 break; 1041 } 1042 1043 /* If there is no save area and we have to allocate one, do so. Otherwise 1044 verify the save area is the proper mode. */ 1045 1046 if (sa == 0) 1047 { 1048 if (mode != VOIDmode) 1049 { 1050 if (save_level == SAVE_NONLOCAL) 1051 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0); 1052 else 1053 *psave = sa = gen_reg_rtx (mode); 1054 } 1055 } 1056 1057 do_pending_stack_adjust (); 1058 if (sa != 0) 1059 sa = validize_mem (sa); 1060 emit_insn (fcn (sa, stack_pointer_rtx)); 1061 } 1062 1063 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save 1064 area made by emit_stack_save. If it is zero, we have nothing to do. */ 1065 1066 void 1067 emit_stack_restore (enum save_level save_level, rtx sa) 1068 { 1069 /* The default is that we use a move insn. */ 1070 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn; 1071 1072 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both 1073 STACK_POINTER and HARD_FRAME_POINTER. 1074 If stack_realign_fp, the x86 backend emits a prologue that aligns only 1075 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing 1076 aligned variables, which is reflected in ix86_can_eliminate. 1077 We normally still have the realigned STACK_POINTER that we can use. 1078 But if there is a stack restore still present at reload, it can trigger 1079 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate 1080 FRAME_POINTER into a hard reg. 1081 To prevent this situation, we force need_drap if we emit a stack 1082 restore. */ 1083 if (SUPPORTS_STACK_ALIGNMENT) 1084 crtl->need_drap = true; 1085 1086 /* See if this machine has anything special to do for this kind of save. */ 1087 switch (save_level) 1088 { 1089 case SAVE_BLOCK: 1090 if (targetm.have_restore_stack_block ()) 1091 fcn = targetm.gen_restore_stack_block; 1092 break; 1093 case SAVE_FUNCTION: 1094 if (targetm.have_restore_stack_function ()) 1095 fcn = targetm.gen_restore_stack_function; 1096 break; 1097 case SAVE_NONLOCAL: 1098 if (targetm.have_restore_stack_nonlocal ()) 1099 fcn = targetm.gen_restore_stack_nonlocal; 1100 break; 1101 default: 1102 break; 1103 } 1104 1105 if (sa != 0) 1106 { 1107 sa = validize_mem (sa); 1108 /* These clobbers prevent the scheduler from moving 1109 references to variable arrays below the code 1110 that deletes (pops) the arrays. */ 1111 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode))); 1112 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx)); 1113 } 1114 1115 discard_pending_stack_adjust (); 1116 1117 emit_insn (fcn (stack_pointer_rtx, sa)); 1118 } 1119 1120 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current 1121 function. This should be called whenever we allocate or deallocate 1122 dynamic stack space. */ 1123 1124 void 1125 update_nonlocal_goto_save_area (void) 1126 { 1127 tree t_save; 1128 rtx r_save; 1129 1130 /* The nonlocal_goto_save_area object is an array of N pointers. The 1131 first one is used for the frame pointer save; the rest are sized by 1132 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first 1133 of the stack save area slots. */ 1134 t_save = build4 (ARRAY_REF, 1135 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)), 1136 cfun->nonlocal_goto_save_area, 1137 integer_one_node, NULL_TREE, NULL_TREE); 1138 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE); 1139 1140 emit_stack_save (SAVE_NONLOCAL, &r_save); 1141 } 1142 1143 /* Record a new stack level for the current function. This should be called 1144 whenever we allocate or deallocate dynamic stack space. */ 1145 1146 void 1147 record_new_stack_level (void) 1148 { 1149 /* Record the new stack level for nonlocal gotos. */ 1150 if (cfun->nonlocal_goto_save_area) 1151 update_nonlocal_goto_save_area (); 1152 1153 /* Record the new stack level for SJLJ exceptions. */ 1154 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ) 1155 update_sjlj_context (); 1156 } 1157 1158 /* Return an rtx doing runtime alignment to REQUIRED_ALIGN on TARGET. */ 1159 static rtx 1160 align_dynamic_address (rtx target, unsigned required_align) 1161 { 1162 /* CEIL_DIV_EXPR needs to worry about the addition overflowing, 1163 but we know it can't. So add ourselves and then do 1164 TRUNC_DIV_EXPR. */ 1165 target = expand_binop (Pmode, add_optab, target, 1166 gen_int_mode (required_align / BITS_PER_UNIT - 1, 1167 Pmode), 1168 NULL_RTX, 1, OPTAB_LIB_WIDEN); 1169 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target, 1170 gen_int_mode (required_align / BITS_PER_UNIT, 1171 Pmode), 1172 NULL_RTX, 1); 1173 target = expand_mult (Pmode, target, 1174 gen_int_mode (required_align / BITS_PER_UNIT, 1175 Pmode), 1176 NULL_RTX, 1); 1177 1178 return target; 1179 } 1180 1181 /* Return an rtx through *PSIZE, representing the size of an area of memory to 1182 be dynamically pushed on the stack. 1183 1184 *PSIZE is an rtx representing the size of the area. 1185 1186 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This 1187 parameter may be zero. If so, a proper value will be extracted 1188 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed. 1189 1190 REQUIRED_ALIGN is the alignment (in bits) required for the region 1191 of memory. 1192 1193 If PSTACK_USAGE_SIZE is not NULL it points to a value that is increased for 1194 the additional size returned. */ 1195 void 1196 get_dynamic_stack_size (rtx *psize, unsigned size_align, 1197 unsigned required_align, 1198 HOST_WIDE_INT *pstack_usage_size) 1199 { 1200 unsigned extra = 0; 1201 rtx size = *psize; 1202 1203 /* Ensure the size is in the proper mode. */ 1204 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode) 1205 size = convert_to_mode (Pmode, size, 1); 1206 1207 if (CONST_INT_P (size)) 1208 { 1209 unsigned HOST_WIDE_INT lsb; 1210 1211 lsb = INTVAL (size); 1212 lsb &= -lsb; 1213 1214 /* Watch out for overflow truncating to "unsigned". */ 1215 if (lsb > UINT_MAX / BITS_PER_UNIT) 1216 size_align = 1u << (HOST_BITS_PER_INT - 1); 1217 else 1218 size_align = (unsigned)lsb * BITS_PER_UNIT; 1219 } 1220 else if (size_align < BITS_PER_UNIT) 1221 size_align = BITS_PER_UNIT; 1222 1223 /* We can't attempt to minimize alignment necessary, because we don't 1224 know the final value of preferred_stack_boundary yet while executing 1225 this code. */ 1226 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY) 1227 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY; 1228 1229 /* We will need to ensure that the address we return is aligned to 1230 REQUIRED_ALIGN. At this point in the compilation, we don't always 1231 know the final value of the STACK_DYNAMIC_OFFSET used in function.c 1232 (it might depend on the size of the outgoing parameter lists, for 1233 example), so we must preventively align the value. We leave space 1234 in SIZE for the hole that might result from the alignment operation. */ 1235 1236 extra = (required_align - BITS_PER_UNIT) / BITS_PER_UNIT; 1237 size = plus_constant (Pmode, size, extra); 1238 size = force_operand (size, NULL_RTX); 1239 1240 if (flag_stack_usage_info && pstack_usage_size) 1241 *pstack_usage_size += extra; 1242 1243 if (extra && size_align > BITS_PER_UNIT) 1244 size_align = BITS_PER_UNIT; 1245 1246 /* Round the size to a multiple of the required stack alignment. 1247 Since the stack is presumed to be rounded before this allocation, 1248 this will maintain the required alignment. 1249 1250 If the stack grows downward, we could save an insn by subtracting 1251 SIZE from the stack pointer and then aligning the stack pointer. 1252 The problem with this is that the stack pointer may be unaligned 1253 between the execution of the subtraction and alignment insns and 1254 some machines do not allow this. Even on those that do, some 1255 signal handlers malfunction if a signal should occur between those 1256 insns. Since this is an extremely rare event, we have no reliable 1257 way of knowing which systems have this problem. So we avoid even 1258 momentarily mis-aligning the stack. */ 1259 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0) 1260 { 1261 size = round_push (size); 1262 1263 if (flag_stack_usage_info && pstack_usage_size) 1264 { 1265 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT; 1266 *pstack_usage_size = 1267 (*pstack_usage_size + align - 1) / align * align; 1268 } 1269 } 1270 1271 *psize = size; 1272 } 1273 1274 /* Return an rtx representing the address of an area of memory dynamically 1275 pushed on the stack. 1276 1277 Any required stack pointer alignment is preserved. 1278 1279 SIZE is an rtx representing the size of the area. 1280 1281 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This 1282 parameter may be zero. If so, a proper value will be extracted 1283 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed. 1284 1285 REQUIRED_ALIGN is the alignment (in bits) required for the region 1286 of memory. 1287 1288 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the 1289 stack space allocated by the generated code cannot be added with itself 1290 in the course of the execution of the function. It is always safe to 1291 pass FALSE here and the following criterion is sufficient in order to 1292 pass TRUE: every path in the CFG that starts at the allocation point and 1293 loops to it executes the associated deallocation code. */ 1294 1295 rtx 1296 allocate_dynamic_stack_space (rtx size, unsigned size_align, 1297 unsigned required_align, bool cannot_accumulate) 1298 { 1299 HOST_WIDE_INT stack_usage_size = -1; 1300 rtx_code_label *final_label; 1301 rtx final_target, target; 1302 1303 /* If we're asking for zero bytes, it doesn't matter what we point 1304 to since we can't dereference it. But return a reasonable 1305 address anyway. */ 1306 if (size == const0_rtx) 1307 return virtual_stack_dynamic_rtx; 1308 1309 /* Otherwise, show we're calling alloca or equivalent. */ 1310 cfun->calls_alloca = 1; 1311 1312 /* If stack usage info is requested, look into the size we are passed. 1313 We need to do so this early to avoid the obfuscation that may be 1314 introduced later by the various alignment operations. */ 1315 if (flag_stack_usage_info) 1316 { 1317 if (CONST_INT_P (size)) 1318 stack_usage_size = INTVAL (size); 1319 else if (REG_P (size)) 1320 { 1321 /* Look into the last emitted insn and see if we can deduce 1322 something for the register. */ 1323 rtx_insn *insn; 1324 rtx set, note; 1325 insn = get_last_insn (); 1326 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size)) 1327 { 1328 if (CONST_INT_P (SET_SRC (set))) 1329 stack_usage_size = INTVAL (SET_SRC (set)); 1330 else if ((note = find_reg_equal_equiv_note (insn)) 1331 && CONST_INT_P (XEXP (note, 0))) 1332 stack_usage_size = INTVAL (XEXP (note, 0)); 1333 } 1334 } 1335 1336 /* If the size is not constant, we can't say anything. */ 1337 if (stack_usage_size == -1) 1338 { 1339 current_function_has_unbounded_dynamic_stack_size = 1; 1340 stack_usage_size = 0; 1341 } 1342 } 1343 1344 get_dynamic_stack_size (&size, size_align, required_align, &stack_usage_size); 1345 1346 target = gen_reg_rtx (Pmode); 1347 1348 /* The size is supposed to be fully adjusted at this point so record it 1349 if stack usage info is requested. */ 1350 if (flag_stack_usage_info) 1351 { 1352 current_function_dynamic_stack_size += stack_usage_size; 1353 1354 /* ??? This is gross but the only safe stance in the absence 1355 of stack usage oriented flow analysis. */ 1356 if (!cannot_accumulate) 1357 current_function_has_unbounded_dynamic_stack_size = 1; 1358 } 1359 1360 do_pending_stack_adjust (); 1361 1362 final_label = NULL; 1363 final_target = NULL_RTX; 1364 1365 /* If we are splitting the stack, we need to ask the backend whether 1366 there is enough room on the current stack. If there isn't, or if 1367 the backend doesn't know how to tell is, then we need to call a 1368 function to allocate memory in some other way. This memory will 1369 be released when we release the current stack segment. The 1370 effect is that stack allocation becomes less efficient, but at 1371 least it doesn't cause a stack overflow. */ 1372 if (flag_split_stack) 1373 { 1374 rtx_code_label *available_label; 1375 rtx ask, space, func; 1376 1377 available_label = NULL; 1378 1379 if (targetm.have_split_stack_space_check ()) 1380 { 1381 available_label = gen_label_rtx (); 1382 1383 /* This instruction will branch to AVAILABLE_LABEL if there 1384 are SIZE bytes available on the stack. */ 1385 emit_insn (targetm.gen_split_stack_space_check 1386 (size, available_label)); 1387 } 1388 1389 /* The __morestack_allocate_stack_space function will allocate 1390 memory using malloc. If the alignment of the memory returned 1391 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to 1392 make sure we allocate enough space. */ 1393 if (MALLOC_ABI_ALIGNMENT >= required_align) 1394 ask = size; 1395 else 1396 ask = expand_binop (Pmode, add_optab, size, 1397 gen_int_mode (required_align / BITS_PER_UNIT - 1, 1398 Pmode), 1399 NULL_RTX, 1, OPTAB_LIB_WIDEN); 1400 1401 func = init_one_libfunc ("__morestack_allocate_stack_space"); 1402 1403 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode, 1404 1, ask, Pmode); 1405 1406 if (available_label == NULL_RTX) 1407 return space; 1408 1409 final_target = gen_reg_rtx (Pmode); 1410 1411 emit_move_insn (final_target, space); 1412 1413 final_label = gen_label_rtx (); 1414 emit_jump (final_label); 1415 1416 emit_label (available_label); 1417 } 1418 1419 /* We ought to be called always on the toplevel and stack ought to be aligned 1420 properly. */ 1421 gcc_assert (!(stack_pointer_delta 1422 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT))); 1423 1424 /* If needed, check that we have the required amount of stack. Take into 1425 account what has already been checked. */ 1426 if (STACK_CHECK_MOVING_SP) 1427 ; 1428 else if (flag_stack_check == GENERIC_STACK_CHECK) 1429 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE, 1430 size); 1431 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK) 1432 probe_stack_range (STACK_CHECK_PROTECT, size); 1433 1434 /* Don't let anti_adjust_stack emit notes. */ 1435 suppress_reg_args_size = true; 1436 1437 /* Perform the required allocation from the stack. Some systems do 1438 this differently than simply incrementing/decrementing from the 1439 stack pointer, such as acquiring the space by calling malloc(). */ 1440 if (targetm.have_allocate_stack ()) 1441 { 1442 struct expand_operand ops[2]; 1443 /* We don't have to check against the predicate for operand 0 since 1444 TARGET is known to be a pseudo of the proper mode, which must 1445 be valid for the operand. */ 1446 create_fixed_operand (&ops[0], target); 1447 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true); 1448 expand_insn (targetm.code_for_allocate_stack, 2, ops); 1449 } 1450 else 1451 { 1452 int saved_stack_pointer_delta; 1453 1454 if (!STACK_GROWS_DOWNWARD) 1455 emit_move_insn (target, virtual_stack_dynamic_rtx); 1456 1457 /* Check stack bounds if necessary. */ 1458 if (crtl->limit_stack) 1459 { 1460 rtx available; 1461 rtx_code_label *space_available = gen_label_rtx (); 1462 if (STACK_GROWS_DOWNWARD) 1463 available = expand_binop (Pmode, sub_optab, 1464 stack_pointer_rtx, stack_limit_rtx, 1465 NULL_RTX, 1, OPTAB_WIDEN); 1466 else 1467 available = expand_binop (Pmode, sub_optab, 1468 stack_limit_rtx, stack_pointer_rtx, 1469 NULL_RTX, 1, OPTAB_WIDEN); 1470 1471 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1, 1472 space_available); 1473 if (targetm.have_trap ()) 1474 emit_insn (targetm.gen_trap ()); 1475 else 1476 error ("stack limits not supported on this target"); 1477 emit_barrier (); 1478 emit_label (space_available); 1479 } 1480 1481 saved_stack_pointer_delta = stack_pointer_delta; 1482 1483 if (flag_stack_check && STACK_CHECK_MOVING_SP) 1484 anti_adjust_stack_and_probe (size, false); 1485 else 1486 anti_adjust_stack (size); 1487 1488 /* Even if size is constant, don't modify stack_pointer_delta. 1489 The constant size alloca should preserve 1490 crtl->preferred_stack_boundary alignment. */ 1491 stack_pointer_delta = saved_stack_pointer_delta; 1492 1493 if (STACK_GROWS_DOWNWARD) 1494 emit_move_insn (target, virtual_stack_dynamic_rtx); 1495 } 1496 1497 suppress_reg_args_size = false; 1498 1499 /* Finish up the split stack handling. */ 1500 if (final_label != NULL_RTX) 1501 { 1502 gcc_assert (flag_split_stack); 1503 emit_move_insn (final_target, target); 1504 emit_label (final_label); 1505 target = final_target; 1506 } 1507 1508 target = align_dynamic_address (target, required_align); 1509 1510 /* Now that we've committed to a return value, mark its alignment. */ 1511 mark_reg_pointer (target, required_align); 1512 1513 /* Record the new stack level. */ 1514 record_new_stack_level (); 1515 1516 return target; 1517 } 1518 1519 /* Return an rtx representing the address of an area of memory already 1520 statically pushed onto the stack in the virtual stack vars area. (It is 1521 assumed that the area is allocated in the function prologue.) 1522 1523 Any required stack pointer alignment is preserved. 1524 1525 OFFSET is the offset of the area into the virtual stack vars area. 1526 1527 REQUIRED_ALIGN is the alignment (in bits) required for the region 1528 of memory. */ 1529 1530 rtx 1531 get_dynamic_stack_base (HOST_WIDE_INT offset, unsigned required_align) 1532 { 1533 rtx target; 1534 1535 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY) 1536 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY; 1537 1538 target = gen_reg_rtx (Pmode); 1539 emit_move_insn (target, virtual_stack_vars_rtx); 1540 target = expand_binop (Pmode, add_optab, target, 1541 gen_int_mode (offset, Pmode), 1542 NULL_RTX, 1, OPTAB_LIB_WIDEN); 1543 target = align_dynamic_address (target, required_align); 1544 1545 /* Now that we've committed to a return value, mark its alignment. */ 1546 mark_reg_pointer (target, required_align); 1547 1548 return target; 1549 } 1550 1551 /* A front end may want to override GCC's stack checking by providing a 1552 run-time routine to call to check the stack, so provide a mechanism for 1553 calling that routine. */ 1554 1555 static GTY(()) rtx stack_check_libfunc; 1556 1557 void 1558 set_stack_check_libfunc (const char *libfunc_name) 1559 { 1560 gcc_assert (stack_check_libfunc == NULL_RTX); 1561 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name); 1562 } 1563 1564 /* Emit one stack probe at ADDRESS, an address within the stack. */ 1565 1566 void 1567 emit_stack_probe (rtx address) 1568 { 1569 if (targetm.have_probe_stack_address ()) 1570 emit_insn (targetm.gen_probe_stack_address (address)); 1571 else 1572 { 1573 rtx memref = gen_rtx_MEM (word_mode, address); 1574 1575 MEM_VOLATILE_P (memref) = 1; 1576 1577 /* See if we have an insn to probe the stack. */ 1578 if (targetm.have_probe_stack ()) 1579 emit_insn (targetm.gen_probe_stack (memref)); 1580 else 1581 emit_move_insn (memref, const0_rtx); 1582 } 1583 } 1584 1585 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive. 1586 FIRST is a constant and size is a Pmode RTX. These are offsets from 1587 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add 1588 or subtract them from the stack pointer. */ 1589 1590 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP) 1591 1592 #if STACK_GROWS_DOWNWARD 1593 #define STACK_GROW_OP MINUS 1594 #define STACK_GROW_OPTAB sub_optab 1595 #define STACK_GROW_OFF(off) -(off) 1596 #else 1597 #define STACK_GROW_OP PLUS 1598 #define STACK_GROW_OPTAB add_optab 1599 #define STACK_GROW_OFF(off) (off) 1600 #endif 1601 1602 void 1603 probe_stack_range (HOST_WIDE_INT first, rtx size) 1604 { 1605 /* First ensure SIZE is Pmode. */ 1606 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode) 1607 size = convert_to_mode (Pmode, size, 1); 1608 1609 /* Next see if we have a function to check the stack. */ 1610 if (stack_check_libfunc) 1611 { 1612 rtx addr = memory_address (Pmode, 1613 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode, 1614 stack_pointer_rtx, 1615 plus_constant (Pmode, 1616 size, first))); 1617 emit_library_call (stack_check_libfunc, LCT_THROW, VOIDmode, 1, addr, 1618 Pmode); 1619 } 1620 1621 /* Next see if we have an insn to check the stack. */ 1622 else if (targetm.have_check_stack ()) 1623 { 1624 struct expand_operand ops[1]; 1625 rtx addr = memory_address (Pmode, 1626 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode, 1627 stack_pointer_rtx, 1628 plus_constant (Pmode, 1629 size, first))); 1630 bool success; 1631 create_input_operand (&ops[0], addr, Pmode); 1632 success = maybe_expand_insn (targetm.code_for_check_stack, 1, ops); 1633 gcc_assert (success); 1634 } 1635 1636 /* Otherwise we have to generate explicit probes. If we have a constant 1637 small number of them to generate, that's the easy case. */ 1638 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL) 1639 { 1640 HOST_WIDE_INT isize = INTVAL (size), i; 1641 rtx addr; 1642 1643 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until 1644 it exceeds SIZE. If only one probe is needed, this will not 1645 generate any code. Then probe at FIRST + SIZE. */ 1646 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL) 1647 { 1648 addr = memory_address (Pmode, 1649 plus_constant (Pmode, stack_pointer_rtx, 1650 STACK_GROW_OFF (first + i))); 1651 emit_stack_probe (addr); 1652 } 1653 1654 addr = memory_address (Pmode, 1655 plus_constant (Pmode, stack_pointer_rtx, 1656 STACK_GROW_OFF (first + isize))); 1657 emit_stack_probe (addr); 1658 } 1659 1660 /* In the variable case, do the same as above, but in a loop. Note that we 1661 must be extra careful with variables wrapping around because we might be 1662 at the very top (or the very bottom) of the address space and we have to 1663 be able to handle this case properly; in particular, we use an equality 1664 test for the loop condition. */ 1665 else 1666 { 1667 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp; 1668 rtx_code_label *loop_lab = gen_label_rtx (); 1669 rtx_code_label *end_lab = gen_label_rtx (); 1670 1671 /* Step 1: round SIZE to the previous multiple of the interval. */ 1672 1673 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */ 1674 rounded_size 1675 = simplify_gen_binary (AND, Pmode, size, 1676 gen_int_mode (-PROBE_INTERVAL, Pmode)); 1677 rounded_size_op = force_operand (rounded_size, NULL_RTX); 1678 1679 1680 /* Step 2: compute initial and final value of the loop counter. */ 1681 1682 /* TEST_ADDR = SP + FIRST. */ 1683 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode, 1684 stack_pointer_rtx, 1685 gen_int_mode (first, Pmode)), 1686 NULL_RTX); 1687 1688 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */ 1689 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode, 1690 test_addr, 1691 rounded_size_op), NULL_RTX); 1692 1693 1694 /* Step 3: the loop 1695 1696 while (TEST_ADDR != LAST_ADDR) 1697 { 1698 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL 1699 probe at TEST_ADDR 1700 } 1701 1702 probes at FIRST + N * PROBE_INTERVAL for values of N from 1 1703 until it is equal to ROUNDED_SIZE. */ 1704 1705 emit_label (loop_lab); 1706 1707 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */ 1708 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1, 1709 end_lab); 1710 1711 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */ 1712 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr, 1713 gen_int_mode (PROBE_INTERVAL, Pmode), test_addr, 1714 1, OPTAB_WIDEN); 1715 1716 gcc_assert (temp == test_addr); 1717 1718 /* Probe at TEST_ADDR. */ 1719 emit_stack_probe (test_addr); 1720 1721 emit_jump (loop_lab); 1722 1723 emit_label (end_lab); 1724 1725 1726 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time 1727 that SIZE is equal to ROUNDED_SIZE. */ 1728 1729 /* TEMP = SIZE - ROUNDED_SIZE. */ 1730 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size); 1731 if (temp != const0_rtx) 1732 { 1733 rtx addr; 1734 1735 if (CONST_INT_P (temp)) 1736 { 1737 /* Use [base + disp} addressing mode if supported. */ 1738 HOST_WIDE_INT offset = INTVAL (temp); 1739 addr = memory_address (Pmode, 1740 plus_constant (Pmode, last_addr, 1741 STACK_GROW_OFF (offset))); 1742 } 1743 else 1744 { 1745 /* Manual CSE if the difference is not known at compile-time. */ 1746 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op); 1747 addr = memory_address (Pmode, 1748 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode, 1749 last_addr, temp)); 1750 } 1751 1752 emit_stack_probe (addr); 1753 } 1754 } 1755 1756 /* Make sure nothing is scheduled before we are done. */ 1757 emit_insn (gen_blockage ()); 1758 } 1759 1760 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes) 1761 while probing it. This pushes when SIZE is positive. SIZE need not 1762 be constant. If ADJUST_BACK is true, adjust back the stack pointer 1763 by plus SIZE at the end. */ 1764 1765 void 1766 anti_adjust_stack_and_probe (rtx size, bool adjust_back) 1767 { 1768 /* We skip the probe for the first interval + a small dope of 4 words and 1769 probe that many bytes past the specified size to maintain a protection 1770 area at the botton of the stack. */ 1771 const int dope = 4 * UNITS_PER_WORD; 1772 1773 /* First ensure SIZE is Pmode. */ 1774 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode) 1775 size = convert_to_mode (Pmode, size, 1); 1776 1777 /* If we have a constant small number of probes to generate, that's the 1778 easy case. */ 1779 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL) 1780 { 1781 HOST_WIDE_INT isize = INTVAL (size), i; 1782 bool first_probe = true; 1783 1784 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for 1785 values of N from 1 until it exceeds SIZE. If only one probe is 1786 needed, this will not generate any code. Then adjust and probe 1787 to PROBE_INTERVAL + SIZE. */ 1788 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL) 1789 { 1790 if (first_probe) 1791 { 1792 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope)); 1793 first_probe = false; 1794 } 1795 else 1796 anti_adjust_stack (GEN_INT (PROBE_INTERVAL)); 1797 emit_stack_probe (stack_pointer_rtx); 1798 } 1799 1800 if (first_probe) 1801 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope)); 1802 else 1803 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i)); 1804 emit_stack_probe (stack_pointer_rtx); 1805 } 1806 1807 /* In the variable case, do the same as above, but in a loop. Note that we 1808 must be extra careful with variables wrapping around because we might be 1809 at the very top (or the very bottom) of the address space and we have to 1810 be able to handle this case properly; in particular, we use an equality 1811 test for the loop condition. */ 1812 else 1813 { 1814 rtx rounded_size, rounded_size_op, last_addr, temp; 1815 rtx_code_label *loop_lab = gen_label_rtx (); 1816 rtx_code_label *end_lab = gen_label_rtx (); 1817 1818 1819 /* Step 1: round SIZE to the previous multiple of the interval. */ 1820 1821 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */ 1822 rounded_size 1823 = simplify_gen_binary (AND, Pmode, size, 1824 gen_int_mode (-PROBE_INTERVAL, Pmode)); 1825 rounded_size_op = force_operand (rounded_size, NULL_RTX); 1826 1827 1828 /* Step 2: compute initial and final value of the loop counter. */ 1829 1830 /* SP = SP_0 + PROBE_INTERVAL. */ 1831 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope)); 1832 1833 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */ 1834 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode, 1835 stack_pointer_rtx, 1836 rounded_size_op), NULL_RTX); 1837 1838 1839 /* Step 3: the loop 1840 1841 while (SP != LAST_ADDR) 1842 { 1843 SP = SP + PROBE_INTERVAL 1844 probe at SP 1845 } 1846 1847 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for 1848 values of N from 1 until it is equal to ROUNDED_SIZE. */ 1849 1850 emit_label (loop_lab); 1851 1852 /* Jump to END_LAB if SP == LAST_ADDR. */ 1853 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX, 1854 Pmode, 1, end_lab); 1855 1856 /* SP = SP + PROBE_INTERVAL and probe at SP. */ 1857 anti_adjust_stack (GEN_INT (PROBE_INTERVAL)); 1858 emit_stack_probe (stack_pointer_rtx); 1859 1860 emit_jump (loop_lab); 1861 1862 emit_label (end_lab); 1863 1864 1865 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot 1866 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */ 1867 1868 /* TEMP = SIZE - ROUNDED_SIZE. */ 1869 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size); 1870 if (temp != const0_rtx) 1871 { 1872 /* Manual CSE if the difference is not known at compile-time. */ 1873 if (GET_CODE (temp) != CONST_INT) 1874 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op); 1875 anti_adjust_stack (temp); 1876 emit_stack_probe (stack_pointer_rtx); 1877 } 1878 } 1879 1880 /* Adjust back and account for the additional first interval. */ 1881 if (adjust_back) 1882 adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope)); 1883 else 1884 adjust_stack (GEN_INT (PROBE_INTERVAL + dope)); 1885 } 1886 1887 /* Return an rtx representing the register or memory location 1888 in which a scalar value of data type VALTYPE 1889 was returned by a function call to function FUNC. 1890 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise 1891 function is known, otherwise 0. 1892 OUTGOING is 1 if on a machine with register windows this function 1893 should return the register in which the function will put its result 1894 and 0 otherwise. */ 1895 1896 rtx 1897 hard_function_value (const_tree valtype, const_tree func, const_tree fntype, 1898 int outgoing ATTRIBUTE_UNUSED) 1899 { 1900 rtx val; 1901 1902 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing); 1903 1904 if (REG_P (val) 1905 && GET_MODE (val) == BLKmode) 1906 { 1907 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype); 1908 machine_mode tmpmode; 1909 1910 /* int_size_in_bytes can return -1. We don't need a check here 1911 since the value of bytes will then be large enough that no 1912 mode will match anyway. */ 1913 1914 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT); 1915 tmpmode != VOIDmode; 1916 tmpmode = GET_MODE_WIDER_MODE (tmpmode)) 1917 { 1918 /* Have we found a large enough mode? */ 1919 if (GET_MODE_SIZE (tmpmode) >= bytes) 1920 break; 1921 } 1922 1923 /* No suitable mode found. */ 1924 gcc_assert (tmpmode != VOIDmode); 1925 1926 PUT_MODE (val, tmpmode); 1927 } 1928 return val; 1929 } 1930 1931 /* Return an rtx representing the register or memory location 1932 in which a scalar value of mode MODE was returned by a library call. */ 1933 1934 rtx 1935 hard_libcall_value (machine_mode mode, rtx fun) 1936 { 1937 return targetm.calls.libcall_value (mode, fun); 1938 } 1939 1940 /* Look up the tree code for a given rtx code 1941 to provide the arithmetic operation for real_arithmetic. 1942 The function returns an int because the caller may not know 1943 what `enum tree_code' means. */ 1944 1945 int 1946 rtx_to_tree_code (enum rtx_code code) 1947 { 1948 enum tree_code tcode; 1949 1950 switch (code) 1951 { 1952 case PLUS: 1953 tcode = PLUS_EXPR; 1954 break; 1955 case MINUS: 1956 tcode = MINUS_EXPR; 1957 break; 1958 case MULT: 1959 tcode = MULT_EXPR; 1960 break; 1961 case DIV: 1962 tcode = RDIV_EXPR; 1963 break; 1964 case SMIN: 1965 tcode = MIN_EXPR; 1966 break; 1967 case SMAX: 1968 tcode = MAX_EXPR; 1969 break; 1970 default: 1971 tcode = LAST_AND_UNUSED_TREE_CODE; 1972 break; 1973 } 1974 return ((int) tcode); 1975 } 1976 1977 #include "gt-explow.h" 1978