xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/explow.c (revision 404ee5b9334f618040b6cdef96a0ff35a6fc4636)
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2    Copyright (C) 1987-2017 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "expmed.h"
31 #include "optabs.h"
32 #include "emit-rtl.h"
33 #include "recog.h"
34 #include "diagnostic-core.h"
35 #include "stor-layout.h"
36 #include "except.h"
37 #include "dojump.h"
38 #include "explow.h"
39 #include "expr.h"
40 #include "common/common-target.h"
41 #include "output.h"
42 
43 static rtx break_out_memory_refs (rtx);
44 
45 
46 /* Truncate and perhaps sign-extend C as appropriate for MODE.  */
47 
48 HOST_WIDE_INT
49 trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode)
50 {
51   int width = GET_MODE_PRECISION (mode);
52 
53   /* You want to truncate to a _what_?  */
54   gcc_assert (SCALAR_INT_MODE_P (mode)
55 	      || POINTER_BOUNDS_MODE_P (mode));
56 
57   /* Canonicalize BImode to 0 and STORE_FLAG_VALUE.  */
58   if (mode == BImode)
59     return c & 1 ? STORE_FLAG_VALUE : 0;
60 
61   /* Sign-extend for the requested mode.  */
62 
63   if (width < HOST_BITS_PER_WIDE_INT)
64     {
65       HOST_WIDE_INT sign = 1;
66       sign <<= width - 1;
67       c &= (sign << 1) - 1;
68       c ^= sign;
69       c -= sign;
70     }
71 
72   return c;
73 }
74 
75 /* Return an rtx for the sum of X and the integer C, given that X has
76    mode MODE.  INPLACE is true if X can be modified inplace or false
77    if it must be treated as immutable.  */
78 
79 rtx
80 plus_constant (machine_mode mode, rtx x, HOST_WIDE_INT c,
81 	       bool inplace)
82 {
83   RTX_CODE code;
84   rtx y;
85   rtx tem;
86   int all_constant = 0;
87 
88   gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
89 
90   if (c == 0)
91     return x;
92 
93  restart:
94 
95   code = GET_CODE (x);
96   y = x;
97 
98   switch (code)
99     {
100     CASE_CONST_SCALAR_INT:
101       return immed_wide_int_const (wi::add (rtx_mode_t (x, mode), c), mode);
102     case MEM:
103       /* If this is a reference to the constant pool, try replacing it with
104 	 a reference to a new constant.  If the resulting address isn't
105 	 valid, don't return it because we have no way to validize it.  */
106       if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
107 	  && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
108 	{
109 	  rtx cst = get_pool_constant (XEXP (x, 0));
110 
111 	  if (GET_CODE (cst) == CONST_VECTOR
112 	      && GET_MODE_INNER (GET_MODE (cst)) == mode)
113 	    {
114 	      cst = gen_lowpart (mode, cst);
115 	      gcc_assert (cst);
116 	    }
117 	  if (GET_MODE (cst) == VOIDmode || GET_MODE (cst) == mode)
118 	    {
119 	      tem = plus_constant (mode, cst, c);
120 	      tem = force_const_mem (GET_MODE (x), tem);
121 	      /* Targets may disallow some constants in the constant pool, thus
122 		 force_const_mem may return NULL_RTX.  */
123 	      if (tem && memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
124 		return tem;
125 	    }
126 	}
127       break;
128 
129     case CONST:
130       /* If adding to something entirely constant, set a flag
131 	 so that we can add a CONST around the result.  */
132       if (inplace && shared_const_p (x))
133 	inplace = false;
134       x = XEXP (x, 0);
135       all_constant = 1;
136       goto restart;
137 
138     case SYMBOL_REF:
139     case LABEL_REF:
140       all_constant = 1;
141       break;
142 
143     case PLUS:
144       /* The interesting case is adding the integer to a sum.  Look
145 	 for constant term in the sum and combine with C.  For an
146 	 integer constant term or a constant term that is not an
147 	 explicit integer, we combine or group them together anyway.
148 
149 	 We may not immediately return from the recursive call here, lest
150 	 all_constant gets lost.  */
151 
152       if (CONSTANT_P (XEXP (x, 1)))
153 	{
154 	  rtx term = plus_constant (mode, XEXP (x, 1), c, inplace);
155 	  if (term == const0_rtx)
156 	    x = XEXP (x, 0);
157 	  else if (inplace)
158 	    XEXP (x, 1) = term;
159 	  else
160 	    x = gen_rtx_PLUS (mode, XEXP (x, 0), term);
161 	  c = 0;
162 	}
163       else if (rtx *const_loc = find_constant_term_loc (&y))
164 	{
165 	  if (!inplace)
166 	    {
167 	      /* We need to be careful since X may be shared and we can't
168 		 modify it in place.  */
169 	      x = copy_rtx (x);
170 	      const_loc = find_constant_term_loc (&x);
171 	    }
172 	  *const_loc = plus_constant (mode, *const_loc, c, true);
173 	  c = 0;
174 	}
175       break;
176 
177     default:
178       break;
179     }
180 
181   if (c != 0)
182     x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
183 
184   if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
185     return x;
186   else if (all_constant)
187     return gen_rtx_CONST (mode, x);
188   else
189     return x;
190 }
191 
192 /* If X is a sum, return a new sum like X but lacking any constant terms.
193    Add all the removed constant terms into *CONSTPTR.
194    X itself is not altered.  The result != X if and only if
195    it is not isomorphic to X.  */
196 
197 rtx
198 eliminate_constant_term (rtx x, rtx *constptr)
199 {
200   rtx x0, x1;
201   rtx tem;
202 
203   if (GET_CODE (x) != PLUS)
204     return x;
205 
206   /* First handle constants appearing at this level explicitly.  */
207   if (CONST_INT_P (XEXP (x, 1))
208       && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
209 						XEXP (x, 1)))
210       && CONST_INT_P (tem))
211     {
212       *constptr = tem;
213       return eliminate_constant_term (XEXP (x, 0), constptr);
214     }
215 
216   tem = const0_rtx;
217   x0 = eliminate_constant_term (XEXP (x, 0), &tem);
218   x1 = eliminate_constant_term (XEXP (x, 1), &tem);
219   if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
220       && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
221 						*constptr, tem))
222       && CONST_INT_P (tem))
223     {
224       *constptr = tem;
225       return gen_rtx_PLUS (GET_MODE (x), x0, x1);
226     }
227 
228   return x;
229 }
230 
231 
232 /* Return a copy of X in which all memory references
233    and all constants that involve symbol refs
234    have been replaced with new temporary registers.
235    Also emit code to load the memory locations and constants
236    into those registers.
237 
238    If X contains no such constants or memory references,
239    X itself (not a copy) is returned.
240 
241    If a constant is found in the address that is not a legitimate constant
242    in an insn, it is left alone in the hope that it might be valid in the
243    address.
244 
245    X may contain no arithmetic except addition, subtraction and multiplication.
246    Values returned by expand_expr with 1 for sum_ok fit this constraint.  */
247 
248 static rtx
249 break_out_memory_refs (rtx x)
250 {
251   if (MEM_P (x)
252       || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
253 	  && GET_MODE (x) != VOIDmode))
254     x = force_reg (GET_MODE (x), x);
255   else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
256 	   || GET_CODE (x) == MULT)
257     {
258       rtx op0 = break_out_memory_refs (XEXP (x, 0));
259       rtx op1 = break_out_memory_refs (XEXP (x, 1));
260 
261       if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
262 	x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
263     }
264 
265   return x;
266 }
267 
268 /* Given X, a memory address in address space AS' pointer mode, convert it to
269    an address in the address space's address mode, or vice versa (TO_MODE says
270    which way).  We take advantage of the fact that pointers are not allowed to
271    overflow by commuting arithmetic operations over conversions so that address
272    arithmetic insns can be used. IN_CONST is true if this conversion is inside
273    a CONST. NO_EMIT is true if no insns should be emitted, and instead
274    it should return NULL if it can't be simplified without emitting insns.  */
275 
276 rtx
277 convert_memory_address_addr_space_1 (machine_mode to_mode ATTRIBUTE_UNUSED,
278 				     rtx x, addr_space_t as ATTRIBUTE_UNUSED,
279 				     bool in_const ATTRIBUTE_UNUSED,
280 				     bool no_emit ATTRIBUTE_UNUSED)
281 {
282 #ifndef POINTERS_EXTEND_UNSIGNED
283   gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
284   return x;
285 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
286   machine_mode pointer_mode, address_mode, from_mode;
287   rtx temp;
288   enum rtx_code code;
289 
290   /* If X already has the right mode, just return it.  */
291   if (GET_MODE (x) == to_mode)
292     return x;
293 
294   pointer_mode = targetm.addr_space.pointer_mode (as);
295   address_mode = targetm.addr_space.address_mode (as);
296   from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
297 
298   /* Here we handle some special cases.  If none of them apply, fall through
299      to the default case.  */
300   switch (GET_CODE (x))
301     {
302     CASE_CONST_SCALAR_INT:
303       if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
304 	code = TRUNCATE;
305       else if (POINTERS_EXTEND_UNSIGNED < 0)
306 	break;
307       else if (POINTERS_EXTEND_UNSIGNED > 0)
308 	code = ZERO_EXTEND;
309       else
310 	code = SIGN_EXTEND;
311       temp = simplify_unary_operation (code, to_mode, x, from_mode);
312       if (temp)
313 	return temp;
314       break;
315 
316     case SUBREG:
317       if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
318 	  && GET_MODE (SUBREG_REG (x)) == to_mode)
319 	return SUBREG_REG (x);
320       break;
321 
322     case LABEL_REF:
323       temp = gen_rtx_LABEL_REF (to_mode, label_ref_label (x));
324       LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
325       return temp;
326 
327     case SYMBOL_REF:
328       temp = shallow_copy_rtx (x);
329       PUT_MODE (temp, to_mode);
330       return temp;
331 
332     case CONST:
333       temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0), as,
334 						  true, no_emit);
335       return temp ? gen_rtx_CONST (to_mode, temp) : temp;
336 
337     case PLUS:
338     case MULT:
339       /* For addition we can safely permute the conversion and addition
340 	 operation if one operand is a constant and converting the constant
341 	 does not change it or if one operand is a constant and we are
342 	 using a ptr_extend instruction  (POINTERS_EXTEND_UNSIGNED < 0).
343 	 We can always safely permute them if we are making the address
344 	 narrower. Inside a CONST RTL, this is safe for both pointers
345 	 zero or sign extended as pointers cannot wrap. */
346       if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
347 	  || (GET_CODE (x) == PLUS
348 	      && CONST_INT_P (XEXP (x, 1))
349 	      && ((in_const && POINTERS_EXTEND_UNSIGNED != 0)
350 		  || XEXP (x, 1) == convert_memory_address_addr_space_1
351 				     (to_mode, XEXP (x, 1), as, in_const,
352 				      no_emit)
353                   || POINTERS_EXTEND_UNSIGNED < 0)))
354 	{
355 	  temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0),
356 						      as, in_const, no_emit);
357 	  return (temp ? gen_rtx_fmt_ee (GET_CODE (x), to_mode,
358 					 temp, XEXP (x, 1))
359 		       : temp);
360 	}
361       break;
362 
363     default:
364       break;
365     }
366 
367   if (no_emit)
368     return NULL_RTX;
369 
370   return convert_modes (to_mode, from_mode,
371 			x, POINTERS_EXTEND_UNSIGNED);
372 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
373 }
374 
375 /* Given X, a memory address in address space AS' pointer mode, convert it to
376    an address in the address space's address mode, or vice versa (TO_MODE says
377    which way).  We take advantage of the fact that pointers are not allowed to
378    overflow by commuting arithmetic operations over conversions so that address
379    arithmetic insns can be used.  */
380 
381 rtx
382 convert_memory_address_addr_space (machine_mode to_mode, rtx x, addr_space_t as)
383 {
384   return convert_memory_address_addr_space_1 (to_mode, x, as, false, false);
385 }
386 
387 
388 /* Return something equivalent to X but valid as a memory address for something
389    of mode MODE in the named address space AS.  When X is not itself valid,
390    this works by copying X or subexpressions of it into registers.  */
391 
392 rtx
393 memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as)
394 {
395   rtx oldx = x;
396   machine_mode address_mode = targetm.addr_space.address_mode (as);
397 
398   x = convert_memory_address_addr_space (address_mode, x, as);
399 
400   /* By passing constant addresses through registers
401      we get a chance to cse them.  */
402   if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
403     x = force_reg (address_mode, x);
404 
405   /* We get better cse by rejecting indirect addressing at this stage.
406      Let the combiner create indirect addresses where appropriate.
407      For now, generate the code so that the subexpressions useful to share
408      are visible.  But not if cse won't be done!  */
409   else
410     {
411       if (! cse_not_expected && !REG_P (x))
412 	x = break_out_memory_refs (x);
413 
414       /* At this point, any valid address is accepted.  */
415       if (memory_address_addr_space_p (mode, x, as))
416 	goto done;
417 
418       /* If it was valid before but breaking out memory refs invalidated it,
419 	 use it the old way.  */
420       if (memory_address_addr_space_p (mode, oldx, as))
421 	{
422 	  x = oldx;
423 	  goto done;
424 	}
425 
426       /* Perform machine-dependent transformations on X
427 	 in certain cases.  This is not necessary since the code
428 	 below can handle all possible cases, but machine-dependent
429 	 transformations can make better code.  */
430       {
431 	rtx orig_x = x;
432 	x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
433 	if (orig_x != x && memory_address_addr_space_p (mode, x, as))
434 	  goto done;
435       }
436 
437       /* PLUS and MULT can appear in special ways
438 	 as the result of attempts to make an address usable for indexing.
439 	 Usually they are dealt with by calling force_operand, below.
440 	 But a sum containing constant terms is special
441 	 if removing them makes the sum a valid address:
442 	 then we generate that address in a register
443 	 and index off of it.  We do this because it often makes
444 	 shorter code, and because the addresses thus generated
445 	 in registers often become common subexpressions.  */
446       if (GET_CODE (x) == PLUS)
447 	{
448 	  rtx constant_term = const0_rtx;
449 	  rtx y = eliminate_constant_term (x, &constant_term);
450 	  if (constant_term == const0_rtx
451 	      || ! memory_address_addr_space_p (mode, y, as))
452 	    x = force_operand (x, NULL_RTX);
453 	  else
454 	    {
455 	      y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
456 	      if (! memory_address_addr_space_p (mode, y, as))
457 		x = force_operand (x, NULL_RTX);
458 	      else
459 		x = y;
460 	    }
461 	}
462 
463       else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
464 	x = force_operand (x, NULL_RTX);
465 
466       /* If we have a register that's an invalid address,
467 	 it must be a hard reg of the wrong class.  Copy it to a pseudo.  */
468       else if (REG_P (x))
469 	x = copy_to_reg (x);
470 
471       /* Last resort: copy the value to a register, since
472 	 the register is a valid address.  */
473       else
474 	x = force_reg (address_mode, x);
475     }
476 
477  done:
478 
479   gcc_assert (memory_address_addr_space_p (mode, x, as));
480   /* If we didn't change the address, we are done.  Otherwise, mark
481      a reg as a pointer if we have REG or REG + CONST_INT.  */
482   if (oldx == x)
483     return x;
484   else if (REG_P (x))
485     mark_reg_pointer (x, BITS_PER_UNIT);
486   else if (GET_CODE (x) == PLUS
487 	   && REG_P (XEXP (x, 0))
488 	   && CONST_INT_P (XEXP (x, 1)))
489     mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
490 
491   /* OLDX may have been the address on a temporary.  Update the address
492      to indicate that X is now used.  */
493   update_temp_slot_address (oldx, x);
494 
495   return x;
496 }
497 
498 /* Convert a mem ref into one with a valid memory address.
499    Pass through anything else unchanged.  */
500 
501 rtx
502 validize_mem (rtx ref)
503 {
504   if (!MEM_P (ref))
505     return ref;
506   ref = use_anchored_address (ref);
507   if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
508 				   MEM_ADDR_SPACE (ref)))
509     return ref;
510 
511   /* Don't alter REF itself, since that is probably a stack slot.  */
512   return replace_equiv_address (ref, XEXP (ref, 0));
513 }
514 
515 /* If X is a memory reference to a member of an object block, try rewriting
516    it to use an anchor instead.  Return the new memory reference on success
517    and the old one on failure.  */
518 
519 rtx
520 use_anchored_address (rtx x)
521 {
522   rtx base;
523   HOST_WIDE_INT offset;
524   machine_mode mode;
525 
526   if (!flag_section_anchors)
527     return x;
528 
529   if (!MEM_P (x))
530     return x;
531 
532   /* Split the address into a base and offset.  */
533   base = XEXP (x, 0);
534   offset = 0;
535   if (GET_CODE (base) == CONST
536       && GET_CODE (XEXP (base, 0)) == PLUS
537       && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
538     {
539       offset += INTVAL (XEXP (XEXP (base, 0), 1));
540       base = XEXP (XEXP (base, 0), 0);
541     }
542 
543   /* Check whether BASE is suitable for anchors.  */
544   if (GET_CODE (base) != SYMBOL_REF
545       || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
546       || SYMBOL_REF_ANCHOR_P (base)
547       || SYMBOL_REF_BLOCK (base) == NULL
548       || !targetm.use_anchors_for_symbol_p (base))
549     return x;
550 
551   /* Decide where BASE is going to be.  */
552   place_block_symbol (base);
553 
554   /* Get the anchor we need to use.  */
555   offset += SYMBOL_REF_BLOCK_OFFSET (base);
556   base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
557 			     SYMBOL_REF_TLS_MODEL (base));
558 
559   /* Work out the offset from the anchor.  */
560   offset -= SYMBOL_REF_BLOCK_OFFSET (base);
561 
562   /* If we're going to run a CSE pass, force the anchor into a register.
563      We will then be able to reuse registers for several accesses, if the
564      target costs say that that's worthwhile.  */
565   mode = GET_MODE (base);
566   if (!cse_not_expected)
567     base = force_reg (mode, base);
568 
569   return replace_equiv_address (x, plus_constant (mode, base, offset));
570 }
571 
572 /* Copy the value or contents of X to a new temp reg and return that reg.  */
573 
574 rtx
575 copy_to_reg (rtx x)
576 {
577   rtx temp = gen_reg_rtx (GET_MODE (x));
578 
579   /* If not an operand, must be an address with PLUS and MULT so
580      do the computation.  */
581   if (! general_operand (x, VOIDmode))
582     x = force_operand (x, temp);
583 
584   if (x != temp)
585     emit_move_insn (temp, x);
586 
587   return temp;
588 }
589 
590 /* Like copy_to_reg but always give the new register mode Pmode
591    in case X is a constant.  */
592 
593 rtx
594 copy_addr_to_reg (rtx x)
595 {
596   return copy_to_mode_reg (Pmode, x);
597 }
598 
599 /* Like copy_to_reg but always give the new register mode MODE
600    in case X is a constant.  */
601 
602 rtx
603 copy_to_mode_reg (machine_mode mode, rtx x)
604 {
605   rtx temp = gen_reg_rtx (mode);
606 
607   /* If not an operand, must be an address with PLUS and MULT so
608      do the computation.  */
609   if (! general_operand (x, VOIDmode))
610     x = force_operand (x, temp);
611 
612   gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
613   if (x != temp)
614     emit_move_insn (temp, x);
615   return temp;
616 }
617 
618 /* Load X into a register if it is not already one.
619    Use mode MODE for the register.
620    X should be valid for mode MODE, but it may be a constant which
621    is valid for all integer modes; that's why caller must specify MODE.
622 
623    The caller must not alter the value in the register we return,
624    since we mark it as a "constant" register.  */
625 
626 rtx
627 force_reg (machine_mode mode, rtx x)
628 {
629   rtx temp, set;
630   rtx_insn *insn;
631 
632   if (REG_P (x))
633     return x;
634 
635   if (general_operand (x, mode))
636     {
637       temp = gen_reg_rtx (mode);
638       insn = emit_move_insn (temp, x);
639     }
640   else
641     {
642       temp = force_operand (x, NULL_RTX);
643       if (REG_P (temp))
644 	insn = get_last_insn ();
645       else
646 	{
647 	  rtx temp2 = gen_reg_rtx (mode);
648 	  insn = emit_move_insn (temp2, temp);
649 	  temp = temp2;
650 	}
651     }
652 
653   /* Let optimizers know that TEMP's value never changes
654      and that X can be substituted for it.  Don't get confused
655      if INSN set something else (such as a SUBREG of TEMP).  */
656   if (CONSTANT_P (x)
657       && (set = single_set (insn)) != 0
658       && SET_DEST (set) == temp
659       && ! rtx_equal_p (x, SET_SRC (set)))
660     set_unique_reg_note (insn, REG_EQUAL, x);
661 
662   /* Let optimizers know that TEMP is a pointer, and if so, the
663      known alignment of that pointer.  */
664   {
665     unsigned align = 0;
666     if (GET_CODE (x) == SYMBOL_REF)
667       {
668         align = BITS_PER_UNIT;
669 	if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
670 	  align = DECL_ALIGN (SYMBOL_REF_DECL (x));
671       }
672     else if (GET_CODE (x) == LABEL_REF)
673       align = BITS_PER_UNIT;
674     else if (GET_CODE (x) == CONST
675 	     && GET_CODE (XEXP (x, 0)) == PLUS
676 	     && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
677 	     && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
678       {
679 	rtx s = XEXP (XEXP (x, 0), 0);
680 	rtx c = XEXP (XEXP (x, 0), 1);
681 	unsigned sa, ca;
682 
683 	sa = BITS_PER_UNIT;
684 	if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
685 	  sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
686 
687 	if (INTVAL (c) == 0)
688 	  align = sa;
689 	else
690 	  {
691 	    ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
692 	    align = MIN (sa, ca);
693 	  }
694       }
695 
696     if (align || (MEM_P (x) && MEM_POINTER (x)))
697       mark_reg_pointer (temp, align);
698   }
699 
700   return temp;
701 }
702 
703 /* If X is a memory ref, copy its contents to a new temp reg and return
704    that reg.  Otherwise, return X.  */
705 
706 rtx
707 force_not_mem (rtx x)
708 {
709   rtx temp;
710 
711   if (!MEM_P (x) || GET_MODE (x) == BLKmode)
712     return x;
713 
714   temp = gen_reg_rtx (GET_MODE (x));
715 
716   if (MEM_POINTER (x))
717     REG_POINTER (temp) = 1;
718 
719   emit_move_insn (temp, x);
720   return temp;
721 }
722 
723 /* Copy X to TARGET (if it's nonzero and a reg)
724    or to a new temp reg and return that reg.
725    MODE is the mode to use for X in case it is a constant.  */
726 
727 rtx
728 copy_to_suggested_reg (rtx x, rtx target, machine_mode mode)
729 {
730   rtx temp;
731 
732   if (target && REG_P (target))
733     temp = target;
734   else
735     temp = gen_reg_rtx (mode);
736 
737   emit_move_insn (temp, x);
738   return temp;
739 }
740 
741 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
742    PUNSIGNEDP points to the signedness of the type and may be adjusted
743    to show what signedness to use on extension operations.
744 
745    FOR_RETURN is nonzero if the caller is promoting the return value
746    of FNDECL, else it is for promoting args.  */
747 
748 machine_mode
749 promote_function_mode (const_tree type, machine_mode mode, int *punsignedp,
750 		       const_tree funtype, int for_return)
751 {
752   /* Called without a type node for a libcall.  */
753   if (type == NULL_TREE)
754     {
755       if (INTEGRAL_MODE_P (mode))
756 	return targetm.calls.promote_function_mode (NULL_TREE, mode,
757 						    punsignedp, funtype,
758 						    for_return);
759       else
760 	return mode;
761     }
762 
763   switch (TREE_CODE (type))
764     {
765     case INTEGER_TYPE:   case ENUMERAL_TYPE:   case BOOLEAN_TYPE:
766     case REAL_TYPE:      case OFFSET_TYPE:     case FIXED_POINT_TYPE:
767     case POINTER_TYPE:   case REFERENCE_TYPE:
768       return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
769 						  for_return);
770 
771     default:
772       return mode;
773     }
774 }
775 /* Return the mode to use to store a scalar of TYPE and MODE.
776    PUNSIGNEDP points to the signedness of the type and may be adjusted
777    to show what signedness to use on extension operations.  */
778 
779 machine_mode
780 promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode,
781 	      int *punsignedp ATTRIBUTE_UNUSED)
782 {
783 #ifdef PROMOTE_MODE
784   enum tree_code code;
785   int unsignedp;
786 #endif
787 
788   /* For libcalls this is invoked without TYPE from the backends
789      TARGET_PROMOTE_FUNCTION_MODE hooks.  Don't do anything in that
790      case.  */
791   if (type == NULL_TREE)
792     return mode;
793 
794   /* FIXME: this is the same logic that was there until GCC 4.4, but we
795      probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
796      is not defined.  The affected targets are M32C, S390, SPARC.  */
797 #ifdef PROMOTE_MODE
798   code = TREE_CODE (type);
799   unsignedp = *punsignedp;
800 
801   switch (code)
802     {
803     case INTEGER_TYPE:   case ENUMERAL_TYPE:   case BOOLEAN_TYPE:
804     case REAL_TYPE:      case OFFSET_TYPE:     case FIXED_POINT_TYPE:
805       PROMOTE_MODE (mode, unsignedp, type);
806       *punsignedp = unsignedp;
807       return mode;
808 
809 #ifdef POINTERS_EXTEND_UNSIGNED
810     case REFERENCE_TYPE:
811     case POINTER_TYPE:
812       *punsignedp = POINTERS_EXTEND_UNSIGNED;
813       return targetm.addr_space.address_mode
814 	       (TYPE_ADDR_SPACE (TREE_TYPE (type)));
815 #endif
816 
817     default:
818       return mode;
819     }
820 #else
821   return mode;
822 #endif
823 }
824 
825 
826 /* Use one of promote_mode or promote_function_mode to find the promoted
827    mode of DECL.  If PUNSIGNEDP is not NULL, store there the unsignedness
828    of DECL after promotion.  */
829 
830 machine_mode
831 promote_decl_mode (const_tree decl, int *punsignedp)
832 {
833   tree type = TREE_TYPE (decl);
834   int unsignedp = TYPE_UNSIGNED (type);
835   machine_mode mode = DECL_MODE (decl);
836   machine_mode pmode;
837 
838   if (TREE_CODE (decl) == RESULT_DECL && !DECL_BY_REFERENCE (decl))
839     pmode = promote_function_mode (type, mode, &unsignedp,
840                                    TREE_TYPE (current_function_decl), 1);
841   else if (TREE_CODE (decl) == RESULT_DECL || TREE_CODE (decl) == PARM_DECL)
842     pmode = promote_function_mode (type, mode, &unsignedp,
843                                    TREE_TYPE (current_function_decl), 2);
844   else
845     pmode = promote_mode (type, mode, &unsignedp);
846 
847   if (punsignedp)
848     *punsignedp = unsignedp;
849   return pmode;
850 }
851 
852 /* Return the promoted mode for name.  If it is a named SSA_NAME, it
853    is the same as promote_decl_mode.  Otherwise, it is the promoted
854    mode of a temp decl of same type as the SSA_NAME, if we had created
855    one.  */
856 
857 machine_mode
858 promote_ssa_mode (const_tree name, int *punsignedp)
859 {
860   gcc_assert (TREE_CODE (name) == SSA_NAME);
861 
862   /* Partitions holding parms and results must be promoted as expected
863      by function.c.  */
864   if (SSA_NAME_VAR (name)
865       && (TREE_CODE (SSA_NAME_VAR (name)) == PARM_DECL
866 	  || TREE_CODE (SSA_NAME_VAR (name)) == RESULT_DECL))
867     {
868       machine_mode mode = promote_decl_mode (SSA_NAME_VAR (name), punsignedp);
869       if (mode != BLKmode)
870 	return mode;
871     }
872 
873   tree type = TREE_TYPE (name);
874   int unsignedp = TYPE_UNSIGNED (type);
875   machine_mode mode = TYPE_MODE (type);
876 
877   /* Bypass TYPE_MODE when it maps vector modes to BLKmode.  */
878   if (mode == BLKmode)
879     {
880       gcc_assert (VECTOR_TYPE_P (type));
881       mode = type->type_common.mode;
882     }
883 
884   machine_mode pmode = promote_mode (type, mode, &unsignedp);
885   if (punsignedp)
886     *punsignedp = unsignedp;
887 
888   return pmode;
889 }
890 
891 
892 
893 /* Controls the behavior of {anti_,}adjust_stack.  */
894 static bool suppress_reg_args_size;
895 
896 /* A helper for adjust_stack and anti_adjust_stack.  */
897 
898 static void
899 adjust_stack_1 (rtx adjust, bool anti_p)
900 {
901   rtx temp;
902   rtx_insn *insn;
903 
904   /* Hereafter anti_p means subtract_p.  */
905   if (!STACK_GROWS_DOWNWARD)
906     anti_p = !anti_p;
907 
908   temp = expand_binop (Pmode,
909 		       anti_p ? sub_optab : add_optab,
910 		       stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
911 		       OPTAB_LIB_WIDEN);
912 
913   if (temp != stack_pointer_rtx)
914     insn = emit_move_insn (stack_pointer_rtx, temp);
915   else
916     {
917       insn = get_last_insn ();
918       temp = single_set (insn);
919       gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
920     }
921 
922   if (!suppress_reg_args_size)
923     add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
924 }
925 
926 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
927    This pops when ADJUST is positive.  ADJUST need not be constant.  */
928 
929 void
930 adjust_stack (rtx adjust)
931 {
932   if (adjust == const0_rtx)
933     return;
934 
935   /* We expect all variable sized adjustments to be multiple of
936      PREFERRED_STACK_BOUNDARY.  */
937   if (CONST_INT_P (adjust))
938     stack_pointer_delta -= INTVAL (adjust);
939 
940   adjust_stack_1 (adjust, false);
941 }
942 
943 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
944    This pushes when ADJUST is positive.  ADJUST need not be constant.  */
945 
946 void
947 anti_adjust_stack (rtx adjust)
948 {
949   if (adjust == const0_rtx)
950     return;
951 
952   /* We expect all variable sized adjustments to be multiple of
953      PREFERRED_STACK_BOUNDARY.  */
954   if (CONST_INT_P (adjust))
955     stack_pointer_delta += INTVAL (adjust);
956 
957   adjust_stack_1 (adjust, true);
958 }
959 
960 /* Round the size of a block to be pushed up to the boundary required
961    by this machine.  SIZE is the desired size, which need not be constant.  */
962 
963 static rtx
964 round_push (rtx size)
965 {
966   rtx align_rtx, alignm1_rtx;
967 
968   if (!SUPPORTS_STACK_ALIGNMENT
969       || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
970     {
971       int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
972 
973       if (align == 1)
974 	return size;
975 
976       if (CONST_INT_P (size))
977 	{
978 	  HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
979 
980 	  if (INTVAL (size) != new_size)
981 	    size = GEN_INT (new_size);
982 	  return size;
983 	}
984 
985       align_rtx = GEN_INT (align);
986       alignm1_rtx = GEN_INT (align - 1);
987     }
988   else
989     {
990       /* If crtl->preferred_stack_boundary might still grow, use
991 	 virtual_preferred_stack_boundary_rtx instead.  This will be
992 	 substituted by the right value in vregs pass and optimized
993 	 during combine.  */
994       align_rtx = virtual_preferred_stack_boundary_rtx;
995       alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
996 				   NULL_RTX);
997     }
998 
999   /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1000      but we know it can't.  So add ourselves and then do
1001      TRUNC_DIV_EXPR.  */
1002   size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
1003 		       NULL_RTX, 1, OPTAB_LIB_WIDEN);
1004   size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
1005 			NULL_RTX, 1);
1006   size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
1007 
1008   return size;
1009 }
1010 
1011 /* Save the stack pointer for the purpose in SAVE_LEVEL.  PSAVE is a pointer
1012    to a previously-created save area.  If no save area has been allocated,
1013    this function will allocate one.  If a save area is specified, it
1014    must be of the proper mode.  */
1015 
1016 void
1017 emit_stack_save (enum save_level save_level, rtx *psave)
1018 {
1019   rtx sa = *psave;
1020   /* The default is that we use a move insn and save in a Pmode object.  */
1021   rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1022   machine_mode mode = STACK_SAVEAREA_MODE (save_level);
1023 
1024   /* See if this machine has anything special to do for this kind of save.  */
1025   switch (save_level)
1026     {
1027     case SAVE_BLOCK:
1028       if (targetm.have_save_stack_block ())
1029 	fcn = targetm.gen_save_stack_block;
1030       break;
1031     case SAVE_FUNCTION:
1032       if (targetm.have_save_stack_function ())
1033 	fcn = targetm.gen_save_stack_function;
1034       break;
1035     case SAVE_NONLOCAL:
1036       if (targetm.have_save_stack_nonlocal ())
1037 	fcn = targetm.gen_save_stack_nonlocal;
1038       break;
1039     default:
1040       break;
1041     }
1042 
1043   /* If there is no save area and we have to allocate one, do so.  Otherwise
1044      verify the save area is the proper mode.  */
1045 
1046   if (sa == 0)
1047     {
1048       if (mode != VOIDmode)
1049 	{
1050 	  if (save_level == SAVE_NONLOCAL)
1051 	    *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1052 	  else
1053 	    *psave = sa = gen_reg_rtx (mode);
1054 	}
1055     }
1056 
1057   do_pending_stack_adjust ();
1058   if (sa != 0)
1059     sa = validize_mem (sa);
1060   emit_insn (fcn (sa, stack_pointer_rtx));
1061 }
1062 
1063 /* Restore the stack pointer for the purpose in SAVE_LEVEL.  SA is the save
1064    area made by emit_stack_save.  If it is zero, we have nothing to do.  */
1065 
1066 void
1067 emit_stack_restore (enum save_level save_level, rtx sa)
1068 {
1069   /* The default is that we use a move insn.  */
1070   rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1071 
1072   /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1073      STACK_POINTER and HARD_FRAME_POINTER.
1074      If stack_realign_fp, the x86 backend emits a prologue that aligns only
1075      STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1076      aligned variables, which is reflected in ix86_can_eliminate.
1077      We normally still have the realigned STACK_POINTER that we can use.
1078      But if there is a stack restore still present at reload, it can trigger
1079      mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1080      FRAME_POINTER into a hard reg.
1081      To prevent this situation, we force need_drap if we emit a stack
1082      restore.  */
1083   if (SUPPORTS_STACK_ALIGNMENT)
1084     crtl->need_drap = true;
1085 
1086   /* See if this machine has anything special to do for this kind of save.  */
1087   switch (save_level)
1088     {
1089     case SAVE_BLOCK:
1090       if (targetm.have_restore_stack_block ())
1091 	fcn = targetm.gen_restore_stack_block;
1092       break;
1093     case SAVE_FUNCTION:
1094       if (targetm.have_restore_stack_function ())
1095 	fcn = targetm.gen_restore_stack_function;
1096       break;
1097     case SAVE_NONLOCAL:
1098       if (targetm.have_restore_stack_nonlocal ())
1099 	fcn = targetm.gen_restore_stack_nonlocal;
1100       break;
1101     default:
1102       break;
1103     }
1104 
1105   if (sa != 0)
1106     {
1107       sa = validize_mem (sa);
1108       /* These clobbers prevent the scheduler from moving
1109 	 references to variable arrays below the code
1110 	 that deletes (pops) the arrays.  */
1111       emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1112       emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1113     }
1114 
1115   discard_pending_stack_adjust ();
1116 
1117   emit_insn (fcn (stack_pointer_rtx, sa));
1118 }
1119 
1120 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1121    function.  This should be called whenever we allocate or deallocate
1122    dynamic stack space.  */
1123 
1124 void
1125 update_nonlocal_goto_save_area (void)
1126 {
1127   tree t_save;
1128   rtx r_save;
1129 
1130   /* The nonlocal_goto_save_area object is an array of N pointers.  The
1131      first one is used for the frame pointer save; the rest are sized by
1132      STACK_SAVEAREA_MODE.  Create a reference to array index 1, the first
1133      of the stack save area slots.  */
1134   t_save = build4 (ARRAY_REF,
1135 		   TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1136 		   cfun->nonlocal_goto_save_area,
1137 		   integer_one_node, NULL_TREE, NULL_TREE);
1138   r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1139 
1140   emit_stack_save (SAVE_NONLOCAL, &r_save);
1141 }
1142 
1143 /* Record a new stack level for the current function.  This should be called
1144    whenever we allocate or deallocate dynamic stack space.  */
1145 
1146 void
1147 record_new_stack_level (void)
1148 {
1149   /* Record the new stack level for nonlocal gotos.  */
1150   if (cfun->nonlocal_goto_save_area)
1151     update_nonlocal_goto_save_area ();
1152 
1153   /* Record the new stack level for SJLJ exceptions.  */
1154   if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
1155     update_sjlj_context ();
1156 }
1157 
1158 /* Return an rtx doing runtime alignment to REQUIRED_ALIGN on TARGET.  */
1159 static rtx
1160 align_dynamic_address (rtx target, unsigned required_align)
1161 {
1162   /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1163      but we know it can't.  So add ourselves and then do
1164      TRUNC_DIV_EXPR.  */
1165   target = expand_binop (Pmode, add_optab, target,
1166 			 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1167 				       Pmode),
1168 			 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1169   target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1170 			  gen_int_mode (required_align / BITS_PER_UNIT,
1171 					Pmode),
1172 			  NULL_RTX, 1);
1173   target = expand_mult (Pmode, target,
1174 			gen_int_mode (required_align / BITS_PER_UNIT,
1175 				      Pmode),
1176 			NULL_RTX, 1);
1177 
1178   return target;
1179 }
1180 
1181 /* Return an rtx through *PSIZE, representing the size of an area of memory to
1182    be dynamically pushed on the stack.
1183 
1184    *PSIZE is an rtx representing the size of the area.
1185 
1186    SIZE_ALIGN is the alignment (in bits) that we know SIZE has.  This
1187    parameter may be zero.  If so, a proper value will be extracted
1188    from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1189 
1190    REQUIRED_ALIGN is the alignment (in bits) required for the region
1191    of memory.
1192 
1193    If PSTACK_USAGE_SIZE is not NULL it points to a value that is increased for
1194    the additional size returned.  */
1195 void
1196 get_dynamic_stack_size (rtx *psize, unsigned size_align,
1197 			unsigned required_align,
1198 			HOST_WIDE_INT *pstack_usage_size)
1199 {
1200   unsigned extra = 0;
1201   rtx size = *psize;
1202 
1203   /* Ensure the size is in the proper mode.  */
1204   if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1205     size = convert_to_mode (Pmode, size, 1);
1206 
1207   if (CONST_INT_P (size))
1208     {
1209       unsigned HOST_WIDE_INT lsb;
1210 
1211       lsb = INTVAL (size);
1212       lsb &= -lsb;
1213 
1214       /* Watch out for overflow truncating to "unsigned".  */
1215       if (lsb > UINT_MAX / BITS_PER_UNIT)
1216 	size_align = 1u << (HOST_BITS_PER_INT - 1);
1217       else
1218 	size_align = (unsigned)lsb * BITS_PER_UNIT;
1219     }
1220   else if (size_align < BITS_PER_UNIT)
1221     size_align = BITS_PER_UNIT;
1222 
1223   /* We can't attempt to minimize alignment necessary, because we don't
1224      know the final value of preferred_stack_boundary yet while executing
1225      this code.  */
1226   if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1227     crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1228 
1229   /* We will need to ensure that the address we return is aligned to
1230      REQUIRED_ALIGN.  At this point in the compilation, we don't always
1231      know the final value of the STACK_DYNAMIC_OFFSET used in function.c
1232      (it might depend on the size of the outgoing parameter lists, for
1233      example), so we must preventively align the value.  We leave space
1234      in SIZE for the hole that might result from the alignment operation.  */
1235 
1236   extra = (required_align - BITS_PER_UNIT) / BITS_PER_UNIT;
1237   size = plus_constant (Pmode, size, extra);
1238   size = force_operand (size, NULL_RTX);
1239 
1240   if (flag_stack_usage_info && pstack_usage_size)
1241     *pstack_usage_size += extra;
1242 
1243   if (extra && size_align > BITS_PER_UNIT)
1244     size_align = BITS_PER_UNIT;
1245 
1246   /* Round the size to a multiple of the required stack alignment.
1247      Since the stack is presumed to be rounded before this allocation,
1248      this will maintain the required alignment.
1249 
1250      If the stack grows downward, we could save an insn by subtracting
1251      SIZE from the stack pointer and then aligning the stack pointer.
1252      The problem with this is that the stack pointer may be unaligned
1253      between the execution of the subtraction and alignment insns and
1254      some machines do not allow this.  Even on those that do, some
1255      signal handlers malfunction if a signal should occur between those
1256      insns.  Since this is an extremely rare event, we have no reliable
1257      way of knowing which systems have this problem.  So we avoid even
1258      momentarily mis-aligning the stack.  */
1259   if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1260     {
1261       size = round_push (size);
1262 
1263       if (flag_stack_usage_info && pstack_usage_size)
1264 	{
1265 	  int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1266 	  *pstack_usage_size =
1267 	    (*pstack_usage_size + align - 1) / align * align;
1268 	}
1269     }
1270 
1271   *psize = size;
1272 }
1273 
1274 /* Return an rtx representing the address of an area of memory dynamically
1275    pushed on the stack.
1276 
1277    Any required stack pointer alignment is preserved.
1278 
1279    SIZE is an rtx representing the size of the area.
1280 
1281    SIZE_ALIGN is the alignment (in bits) that we know SIZE has.  This
1282    parameter may be zero.  If so, a proper value will be extracted
1283    from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1284 
1285    REQUIRED_ALIGN is the alignment (in bits) required for the region
1286    of memory.
1287 
1288    If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1289    stack space allocated by the generated code cannot be added with itself
1290    in the course of the execution of the function.  It is always safe to
1291    pass FALSE here and the following criterion is sufficient in order to
1292    pass TRUE: every path in the CFG that starts at the allocation point and
1293    loops to it executes the associated deallocation code.  */
1294 
1295 rtx
1296 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1297 			      unsigned required_align, bool cannot_accumulate)
1298 {
1299   HOST_WIDE_INT stack_usage_size = -1;
1300   rtx_code_label *final_label;
1301   rtx final_target, target;
1302 
1303   /* If we're asking for zero bytes, it doesn't matter what we point
1304      to since we can't dereference it.  But return a reasonable
1305      address anyway.  */
1306   if (size == const0_rtx)
1307     return virtual_stack_dynamic_rtx;
1308 
1309   /* Otherwise, show we're calling alloca or equivalent.  */
1310   cfun->calls_alloca = 1;
1311 
1312   /* If stack usage info is requested, look into the size we are passed.
1313      We need to do so this early to avoid the obfuscation that may be
1314      introduced later by the various alignment operations.  */
1315   if (flag_stack_usage_info)
1316     {
1317       if (CONST_INT_P (size))
1318 	stack_usage_size = INTVAL (size);
1319       else if (REG_P (size))
1320         {
1321 	  /* Look into the last emitted insn and see if we can deduce
1322 	     something for the register.  */
1323 	  rtx_insn *insn;
1324 	  rtx set, note;
1325 	  insn = get_last_insn ();
1326 	  if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1327 	    {
1328 	      if (CONST_INT_P (SET_SRC (set)))
1329 		stack_usage_size = INTVAL (SET_SRC (set));
1330 	      else if ((note = find_reg_equal_equiv_note (insn))
1331 		       && CONST_INT_P (XEXP (note, 0)))
1332 		stack_usage_size = INTVAL (XEXP (note, 0));
1333 	    }
1334 	}
1335 
1336       /* If the size is not constant, we can't say anything.  */
1337       if (stack_usage_size == -1)
1338 	{
1339 	  current_function_has_unbounded_dynamic_stack_size = 1;
1340 	  stack_usage_size = 0;
1341 	}
1342     }
1343 
1344   get_dynamic_stack_size (&size, size_align, required_align, &stack_usage_size);
1345 
1346   target = gen_reg_rtx (Pmode);
1347 
1348   /* The size is supposed to be fully adjusted at this point so record it
1349      if stack usage info is requested.  */
1350   if (flag_stack_usage_info)
1351     {
1352       current_function_dynamic_stack_size += stack_usage_size;
1353 
1354       /* ??? This is gross but the only safe stance in the absence
1355 	 of stack usage oriented flow analysis.  */
1356       if (!cannot_accumulate)
1357 	current_function_has_unbounded_dynamic_stack_size = 1;
1358     }
1359 
1360   do_pending_stack_adjust ();
1361 
1362   final_label = NULL;
1363   final_target = NULL_RTX;
1364 
1365   /* If we are splitting the stack, we need to ask the backend whether
1366      there is enough room on the current stack.  If there isn't, or if
1367      the backend doesn't know how to tell is, then we need to call a
1368      function to allocate memory in some other way.  This memory will
1369      be released when we release the current stack segment.  The
1370      effect is that stack allocation becomes less efficient, but at
1371      least it doesn't cause a stack overflow.  */
1372   if (flag_split_stack)
1373     {
1374       rtx_code_label *available_label;
1375       rtx ask, space, func;
1376 
1377       available_label = NULL;
1378 
1379       if (targetm.have_split_stack_space_check ())
1380 	{
1381 	  available_label = gen_label_rtx ();
1382 
1383 	  /* This instruction will branch to AVAILABLE_LABEL if there
1384 	     are SIZE bytes available on the stack.  */
1385 	  emit_insn (targetm.gen_split_stack_space_check
1386 		     (size, available_label));
1387 	}
1388 
1389       /* The __morestack_allocate_stack_space function will allocate
1390 	 memory using malloc.  If the alignment of the memory returned
1391 	 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1392 	 make sure we allocate enough space.  */
1393       if (MALLOC_ABI_ALIGNMENT >= required_align)
1394 	ask = size;
1395       else
1396 	ask = expand_binop (Pmode, add_optab, size,
1397 			    gen_int_mode (required_align / BITS_PER_UNIT - 1,
1398 					  Pmode),
1399 			    NULL_RTX, 1, OPTAB_LIB_WIDEN);
1400 
1401       func = init_one_libfunc ("__morestack_allocate_stack_space");
1402 
1403       space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1404 				       1, ask, Pmode);
1405 
1406       if (available_label == NULL_RTX)
1407 	return space;
1408 
1409       final_target = gen_reg_rtx (Pmode);
1410 
1411       emit_move_insn (final_target, space);
1412 
1413       final_label = gen_label_rtx ();
1414       emit_jump (final_label);
1415 
1416       emit_label (available_label);
1417     }
1418 
1419  /* We ought to be called always on the toplevel and stack ought to be aligned
1420     properly.  */
1421   gcc_assert (!(stack_pointer_delta
1422 		% (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1423 
1424   /* If needed, check that we have the required amount of stack.  Take into
1425      account what has already been checked.  */
1426   if (STACK_CHECK_MOVING_SP)
1427     ;
1428   else if (flag_stack_check == GENERIC_STACK_CHECK)
1429     probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1430 		       size);
1431   else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1432     probe_stack_range (STACK_CHECK_PROTECT, size);
1433 
1434   /* Don't let anti_adjust_stack emit notes.  */
1435   suppress_reg_args_size = true;
1436 
1437   /* Perform the required allocation from the stack.  Some systems do
1438      this differently than simply incrementing/decrementing from the
1439      stack pointer, such as acquiring the space by calling malloc().  */
1440   if (targetm.have_allocate_stack ())
1441     {
1442       struct expand_operand ops[2];
1443       /* We don't have to check against the predicate for operand 0 since
1444 	 TARGET is known to be a pseudo of the proper mode, which must
1445 	 be valid for the operand.  */
1446       create_fixed_operand (&ops[0], target);
1447       create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1448       expand_insn (targetm.code_for_allocate_stack, 2, ops);
1449     }
1450   else
1451     {
1452       int saved_stack_pointer_delta;
1453 
1454       if (!STACK_GROWS_DOWNWARD)
1455 	emit_move_insn (target, virtual_stack_dynamic_rtx);
1456 
1457       /* Check stack bounds if necessary.  */
1458       if (crtl->limit_stack)
1459 	{
1460 	  rtx available;
1461 	  rtx_code_label *space_available = gen_label_rtx ();
1462 	  if (STACK_GROWS_DOWNWARD)
1463 	    available = expand_binop (Pmode, sub_optab,
1464 				      stack_pointer_rtx, stack_limit_rtx,
1465 				      NULL_RTX, 1, OPTAB_WIDEN);
1466 	  else
1467 	    available = expand_binop (Pmode, sub_optab,
1468 				      stack_limit_rtx, stack_pointer_rtx,
1469 				      NULL_RTX, 1, OPTAB_WIDEN);
1470 
1471 	  emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1472 				   space_available);
1473 	  if (targetm.have_trap ())
1474 	    emit_insn (targetm.gen_trap ());
1475 	  else
1476 	    error ("stack limits not supported on this target");
1477 	  emit_barrier ();
1478 	  emit_label (space_available);
1479 	}
1480 
1481       saved_stack_pointer_delta = stack_pointer_delta;
1482 
1483       if (flag_stack_check && STACK_CHECK_MOVING_SP)
1484 	anti_adjust_stack_and_probe (size, false);
1485       else
1486 	anti_adjust_stack (size);
1487 
1488       /* Even if size is constant, don't modify stack_pointer_delta.
1489 	 The constant size alloca should preserve
1490 	 crtl->preferred_stack_boundary alignment.  */
1491       stack_pointer_delta = saved_stack_pointer_delta;
1492 
1493       if (STACK_GROWS_DOWNWARD)
1494 	emit_move_insn (target, virtual_stack_dynamic_rtx);
1495     }
1496 
1497   suppress_reg_args_size = false;
1498 
1499   /* Finish up the split stack handling.  */
1500   if (final_label != NULL_RTX)
1501     {
1502       gcc_assert (flag_split_stack);
1503       emit_move_insn (final_target, target);
1504       emit_label (final_label);
1505       target = final_target;
1506     }
1507 
1508   target = align_dynamic_address (target, required_align);
1509 
1510   /* Now that we've committed to a return value, mark its alignment.  */
1511   mark_reg_pointer (target, required_align);
1512 
1513   /* Record the new stack level.  */
1514   record_new_stack_level ();
1515 
1516   return target;
1517 }
1518 
1519 /* Return an rtx representing the address of an area of memory already
1520    statically pushed onto the stack in the virtual stack vars area.  (It is
1521    assumed that the area is allocated in the function prologue.)
1522 
1523    Any required stack pointer alignment is preserved.
1524 
1525    OFFSET is the offset of the area into the virtual stack vars area.
1526 
1527    REQUIRED_ALIGN is the alignment (in bits) required for the region
1528    of memory.  */
1529 
1530 rtx
1531 get_dynamic_stack_base (HOST_WIDE_INT offset, unsigned required_align)
1532 {
1533   rtx target;
1534 
1535   if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1536     crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1537 
1538   target = gen_reg_rtx (Pmode);
1539   emit_move_insn (target, virtual_stack_vars_rtx);
1540   target = expand_binop (Pmode, add_optab, target,
1541 			 gen_int_mode (offset, Pmode),
1542 			 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1543   target = align_dynamic_address (target, required_align);
1544 
1545   /* Now that we've committed to a return value, mark its alignment.  */
1546   mark_reg_pointer (target, required_align);
1547 
1548   return target;
1549 }
1550 
1551 /* A front end may want to override GCC's stack checking by providing a
1552    run-time routine to call to check the stack, so provide a mechanism for
1553    calling that routine.  */
1554 
1555 static GTY(()) rtx stack_check_libfunc;
1556 
1557 void
1558 set_stack_check_libfunc (const char *libfunc_name)
1559 {
1560   gcc_assert (stack_check_libfunc == NULL_RTX);
1561   stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1562 }
1563 
1564 /* Emit one stack probe at ADDRESS, an address within the stack.  */
1565 
1566 void
1567 emit_stack_probe (rtx address)
1568 {
1569   if (targetm.have_probe_stack_address ())
1570     emit_insn (targetm.gen_probe_stack_address (address));
1571   else
1572     {
1573       rtx memref = gen_rtx_MEM (word_mode, address);
1574 
1575       MEM_VOLATILE_P (memref) = 1;
1576 
1577       /* See if we have an insn to probe the stack.  */
1578       if (targetm.have_probe_stack ())
1579         emit_insn (targetm.gen_probe_stack (memref));
1580       else
1581         emit_move_insn (memref, const0_rtx);
1582     }
1583 }
1584 
1585 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1586    FIRST is a constant and size is a Pmode RTX.  These are offsets from
1587    the current stack pointer.  STACK_GROWS_DOWNWARD says whether to add
1588    or subtract them from the stack pointer.  */
1589 
1590 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1591 
1592 #if STACK_GROWS_DOWNWARD
1593 #define STACK_GROW_OP MINUS
1594 #define STACK_GROW_OPTAB sub_optab
1595 #define STACK_GROW_OFF(off) -(off)
1596 #else
1597 #define STACK_GROW_OP PLUS
1598 #define STACK_GROW_OPTAB add_optab
1599 #define STACK_GROW_OFF(off) (off)
1600 #endif
1601 
1602 void
1603 probe_stack_range (HOST_WIDE_INT first, rtx size)
1604 {
1605   /* First ensure SIZE is Pmode.  */
1606   if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1607     size = convert_to_mode (Pmode, size, 1);
1608 
1609   /* Next see if we have a function to check the stack.  */
1610   if (stack_check_libfunc)
1611     {
1612       rtx addr = memory_address (Pmode,
1613 				 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1614 					         stack_pointer_rtx,
1615 					         plus_constant (Pmode,
1616 								size, first)));
1617       emit_library_call (stack_check_libfunc, LCT_THROW, VOIDmode, 1, addr,
1618 			 Pmode);
1619     }
1620 
1621   /* Next see if we have an insn to check the stack.  */
1622   else if (targetm.have_check_stack ())
1623     {
1624       struct expand_operand ops[1];
1625       rtx addr = memory_address (Pmode,
1626 				 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1627 					         stack_pointer_rtx,
1628 					         plus_constant (Pmode,
1629 								size, first)));
1630       bool success;
1631       create_input_operand (&ops[0], addr, Pmode);
1632       success = maybe_expand_insn (targetm.code_for_check_stack, 1, ops);
1633       gcc_assert (success);
1634     }
1635 
1636   /* Otherwise we have to generate explicit probes.  If we have a constant
1637      small number of them to generate, that's the easy case.  */
1638   else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1639     {
1640       HOST_WIDE_INT isize = INTVAL (size), i;
1641       rtx addr;
1642 
1643       /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1644 	 it exceeds SIZE.  If only one probe is needed, this will not
1645 	 generate any code.  Then probe at FIRST + SIZE.  */
1646       for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1647 	{
1648 	  addr = memory_address (Pmode,
1649 				 plus_constant (Pmode, stack_pointer_rtx,
1650 				 		STACK_GROW_OFF (first + i)));
1651 	  emit_stack_probe (addr);
1652 	}
1653 
1654       addr = memory_address (Pmode,
1655 			     plus_constant (Pmode, stack_pointer_rtx,
1656 					    STACK_GROW_OFF (first + isize)));
1657       emit_stack_probe (addr);
1658     }
1659 
1660   /* In the variable case, do the same as above, but in a loop.  Note that we
1661      must be extra careful with variables wrapping around because we might be
1662      at the very top (or the very bottom) of the address space and we have to
1663      be able to handle this case properly; in particular, we use an equality
1664      test for the loop condition.  */
1665   else
1666     {
1667       rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1668       rtx_code_label *loop_lab = gen_label_rtx ();
1669       rtx_code_label *end_lab = gen_label_rtx ();
1670 
1671       /* Step 1: round SIZE to the previous multiple of the interval.  */
1672 
1673       /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL  */
1674       rounded_size
1675 	= simplify_gen_binary (AND, Pmode, size,
1676 			       gen_int_mode (-PROBE_INTERVAL, Pmode));
1677       rounded_size_op = force_operand (rounded_size, NULL_RTX);
1678 
1679 
1680       /* Step 2: compute initial and final value of the loop counter.  */
1681 
1682       /* TEST_ADDR = SP + FIRST.  */
1683       test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1684 					 	 stack_pointer_rtx,
1685 						 gen_int_mode (first, Pmode)),
1686 				 NULL_RTX);
1687 
1688       /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE.  */
1689       last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1690 						 test_addr,
1691 						 rounded_size_op), NULL_RTX);
1692 
1693 
1694       /* Step 3: the loop
1695 
1696 	 while (TEST_ADDR != LAST_ADDR)
1697 	   {
1698 	     TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1699 	     probe at TEST_ADDR
1700 	   }
1701 
1702 	 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1703 	 until it is equal to ROUNDED_SIZE.  */
1704 
1705       emit_label (loop_lab);
1706 
1707       /* Jump to END_LAB if TEST_ADDR == LAST_ADDR.  */
1708       emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1709 			       end_lab);
1710 
1711       /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL.  */
1712       temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1713 			   gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
1714 			   1, OPTAB_WIDEN);
1715 
1716       gcc_assert (temp == test_addr);
1717 
1718       /* Probe at TEST_ADDR.  */
1719       emit_stack_probe (test_addr);
1720 
1721       emit_jump (loop_lab);
1722 
1723       emit_label (end_lab);
1724 
1725 
1726       /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1727 	 that SIZE is equal to ROUNDED_SIZE.  */
1728 
1729       /* TEMP = SIZE - ROUNDED_SIZE.  */
1730       temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1731       if (temp != const0_rtx)
1732 	{
1733 	  rtx addr;
1734 
1735 	  if (CONST_INT_P (temp))
1736 	    {
1737 	      /* Use [base + disp} addressing mode if supported.  */
1738 	      HOST_WIDE_INT offset = INTVAL (temp);
1739 	      addr = memory_address (Pmode,
1740 				     plus_constant (Pmode, last_addr,
1741 						    STACK_GROW_OFF (offset)));
1742 	    }
1743 	  else
1744 	    {
1745 	      /* Manual CSE if the difference is not known at compile-time.  */
1746 	      temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1747 	      addr = memory_address (Pmode,
1748 				     gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1749 						     last_addr, temp));
1750 	    }
1751 
1752 	  emit_stack_probe (addr);
1753 	}
1754     }
1755 
1756   /* Make sure nothing is scheduled before we are done.  */
1757   emit_insn (gen_blockage ());
1758 }
1759 
1760 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1761    while probing it.  This pushes when SIZE is positive.  SIZE need not
1762    be constant.  If ADJUST_BACK is true, adjust back the stack pointer
1763    by plus SIZE at the end.  */
1764 
1765 void
1766 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1767 {
1768   /* We skip the probe for the first interval + a small dope of 4 words and
1769      probe that many bytes past the specified size to maintain a protection
1770      area at the botton of the stack.  */
1771   const int dope = 4 * UNITS_PER_WORD;
1772 
1773   /* First ensure SIZE is Pmode.  */
1774   if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1775     size = convert_to_mode (Pmode, size, 1);
1776 
1777   /* If we have a constant small number of probes to generate, that's the
1778      easy case.  */
1779   if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1780     {
1781       HOST_WIDE_INT isize = INTVAL (size), i;
1782       bool first_probe = true;
1783 
1784       /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1785 	 values of N from 1 until it exceeds SIZE.  If only one probe is
1786 	 needed, this will not generate any code.  Then adjust and probe
1787 	 to PROBE_INTERVAL + SIZE.  */
1788       for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1789 	{
1790 	  if (first_probe)
1791 	    {
1792 	      anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1793 	      first_probe = false;
1794 	    }
1795 	  else
1796 	    anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1797 	  emit_stack_probe (stack_pointer_rtx);
1798 	}
1799 
1800       if (first_probe)
1801 	anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1802       else
1803 	anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
1804       emit_stack_probe (stack_pointer_rtx);
1805     }
1806 
1807   /* In the variable case, do the same as above, but in a loop.  Note that we
1808      must be extra careful with variables wrapping around because we might be
1809      at the very top (or the very bottom) of the address space and we have to
1810      be able to handle this case properly; in particular, we use an equality
1811      test for the loop condition.  */
1812   else
1813     {
1814       rtx rounded_size, rounded_size_op, last_addr, temp;
1815       rtx_code_label *loop_lab = gen_label_rtx ();
1816       rtx_code_label *end_lab = gen_label_rtx ();
1817 
1818 
1819       /* Step 1: round SIZE to the previous multiple of the interval.  */
1820 
1821       /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL  */
1822       rounded_size
1823 	= simplify_gen_binary (AND, Pmode, size,
1824 			       gen_int_mode (-PROBE_INTERVAL, Pmode));
1825       rounded_size_op = force_operand (rounded_size, NULL_RTX);
1826 
1827 
1828       /* Step 2: compute initial and final value of the loop counter.  */
1829 
1830       /* SP = SP_0 + PROBE_INTERVAL.  */
1831       anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1832 
1833       /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE.  */
1834       last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1835 						 stack_pointer_rtx,
1836 						 rounded_size_op), NULL_RTX);
1837 
1838 
1839       /* Step 3: the loop
1840 
1841 	 while (SP != LAST_ADDR)
1842 	   {
1843 	     SP = SP + PROBE_INTERVAL
1844 	     probe at SP
1845 	   }
1846 
1847 	 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1848 	 values of N from 1 until it is equal to ROUNDED_SIZE.  */
1849 
1850       emit_label (loop_lab);
1851 
1852       /* Jump to END_LAB if SP == LAST_ADDR.  */
1853       emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1854 			       Pmode, 1, end_lab);
1855 
1856       /* SP = SP + PROBE_INTERVAL and probe at SP.  */
1857       anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1858       emit_stack_probe (stack_pointer_rtx);
1859 
1860       emit_jump (loop_lab);
1861 
1862       emit_label (end_lab);
1863 
1864 
1865       /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1866 	 assert at compile-time that SIZE is equal to ROUNDED_SIZE.  */
1867 
1868       /* TEMP = SIZE - ROUNDED_SIZE.  */
1869       temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1870       if (temp != const0_rtx)
1871 	{
1872 	  /* Manual CSE if the difference is not known at compile-time.  */
1873 	  if (GET_CODE (temp) != CONST_INT)
1874 	    temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1875 	  anti_adjust_stack (temp);
1876 	  emit_stack_probe (stack_pointer_rtx);
1877 	}
1878     }
1879 
1880   /* Adjust back and account for the additional first interval.  */
1881   if (adjust_back)
1882     adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1883   else
1884     adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1885 }
1886 
1887 /* Return an rtx representing the register or memory location
1888    in which a scalar value of data type VALTYPE
1889    was returned by a function call to function FUNC.
1890    FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1891    function is known, otherwise 0.
1892    OUTGOING is 1 if on a machine with register windows this function
1893    should return the register in which the function will put its result
1894    and 0 otherwise.  */
1895 
1896 rtx
1897 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1898 		     int outgoing ATTRIBUTE_UNUSED)
1899 {
1900   rtx val;
1901 
1902   val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1903 
1904   if (REG_P (val)
1905       && GET_MODE (val) == BLKmode)
1906     {
1907       unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1908       machine_mode tmpmode;
1909 
1910       /* int_size_in_bytes can return -1.  We don't need a check here
1911 	 since the value of bytes will then be large enough that no
1912 	 mode will match anyway.  */
1913 
1914       for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1915 	   tmpmode != VOIDmode;
1916 	   tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1917 	{
1918 	  /* Have we found a large enough mode?  */
1919 	  if (GET_MODE_SIZE (tmpmode) >= bytes)
1920 	    break;
1921 	}
1922 
1923       /* No suitable mode found.  */
1924       gcc_assert (tmpmode != VOIDmode);
1925 
1926       PUT_MODE (val, tmpmode);
1927     }
1928   return val;
1929 }
1930 
1931 /* Return an rtx representing the register or memory location
1932    in which a scalar value of mode MODE was returned by a library call.  */
1933 
1934 rtx
1935 hard_libcall_value (machine_mode mode, rtx fun)
1936 {
1937   return targetm.calls.libcall_value (mode, fun);
1938 }
1939 
1940 /* Look up the tree code for a given rtx code
1941    to provide the arithmetic operation for real_arithmetic.
1942    The function returns an int because the caller may not know
1943    what `enum tree_code' means.  */
1944 
1945 int
1946 rtx_to_tree_code (enum rtx_code code)
1947 {
1948   enum tree_code tcode;
1949 
1950   switch (code)
1951     {
1952     case PLUS:
1953       tcode = PLUS_EXPR;
1954       break;
1955     case MINUS:
1956       tcode = MINUS_EXPR;
1957       break;
1958     case MULT:
1959       tcode = MULT_EXPR;
1960       break;
1961     case DIV:
1962       tcode = RDIV_EXPR;
1963       break;
1964     case SMIN:
1965       tcode = MIN_EXPR;
1966       break;
1967     case SMAX:
1968       tcode = MAX_EXPR;
1969       break;
1970     default:
1971       tcode = LAST_AND_UNUSED_TREE_CODE;
1972       break;
1973     }
1974   return ((int) tcode);
1975 }
1976 
1977 #include "gt-explow.h"
1978