1 /* Emit RTL for the GCC expander. 2 Copyright (C) 1987-2013 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 21 /* Middle-to-low level generation of rtx code and insns. 22 23 This file contains support functions for creating rtl expressions 24 and manipulating them in the doubly-linked chain of insns. 25 26 The patterns of the insns are created by machine-dependent 27 routines in insn-emit.c, which is generated automatically from 28 the machine description. These routines make the individual rtx's 29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch], 30 which are automatically generated from rtl.def; what is machine 31 dependent is the kind of rtx's they make and what arguments they 32 use. */ 33 34 #include "config.h" 35 #include "system.h" 36 #include "coretypes.h" 37 #include "tm.h" 38 #include "diagnostic-core.h" 39 #include "rtl.h" 40 #include "tree.h" 41 #include "tm_p.h" 42 #include "flags.h" 43 #include "function.h" 44 #include "expr.h" 45 #include "regs.h" 46 #include "hard-reg-set.h" 47 #include "hashtab.h" 48 #include "insn-config.h" 49 #include "recog.h" 50 #include "bitmap.h" 51 #include "basic-block.h" 52 #include "ggc.h" 53 #include "debug.h" 54 #include "langhooks.h" 55 #include "df.h" 56 #include "params.h" 57 #include "target.h" 58 59 struct target_rtl default_target_rtl; 60 #if SWITCHABLE_TARGET 61 struct target_rtl *this_target_rtl = &default_target_rtl; 62 #endif 63 64 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx) 65 66 /* Commonly used modes. */ 67 68 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */ 69 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */ 70 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */ 71 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */ 72 73 /* Datastructures maintained for currently processed function in RTL form. */ 74 75 struct rtl_data x_rtl; 76 77 /* Indexed by pseudo register number, gives the rtx for that pseudo. 78 Allocated in parallel with regno_pointer_align. 79 FIXME: We could put it into emit_status struct, but gengtype is not able to deal 80 with length attribute nested in top level structures. */ 81 82 rtx * regno_reg_rtx; 83 84 /* This is *not* reset after each function. It gives each CODE_LABEL 85 in the entire compilation a unique label number. */ 86 87 static GTY(()) int label_num = 1; 88 89 /* We record floating-point CONST_DOUBLEs in each floating-point mode for 90 the values of 0, 1, and 2. For the integer entries and VOIDmode, we 91 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX 92 is set only for MODE_INT and MODE_VECTOR_INT modes. */ 93 94 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE]; 95 96 rtx const_true_rtx; 97 98 REAL_VALUE_TYPE dconst0; 99 REAL_VALUE_TYPE dconst1; 100 REAL_VALUE_TYPE dconst2; 101 REAL_VALUE_TYPE dconstm1; 102 REAL_VALUE_TYPE dconsthalf; 103 104 /* Record fixed-point constant 0 and 1. */ 105 FIXED_VALUE_TYPE fconst0[MAX_FCONST0]; 106 FIXED_VALUE_TYPE fconst1[MAX_FCONST1]; 107 108 /* We make one copy of (const_int C) where C is in 109 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT] 110 to save space during the compilation and simplify comparisons of 111 integers. */ 112 113 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1]; 114 115 /* Standard pieces of rtx, to be substituted directly into things. */ 116 rtx pc_rtx; 117 rtx ret_rtx; 118 rtx simple_return_rtx; 119 rtx cc0_rtx; 120 121 /* A hash table storing CONST_INTs whose absolute value is greater 122 than MAX_SAVED_CONST_INT. */ 123 124 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def))) 125 htab_t const_int_htab; 126 127 /* A hash table storing memory attribute structures. */ 128 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs))) 129 htab_t mem_attrs_htab; 130 131 /* A hash table storing register attribute structures. */ 132 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs))) 133 htab_t reg_attrs_htab; 134 135 /* A hash table storing all CONST_DOUBLEs. */ 136 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def))) 137 htab_t const_double_htab; 138 139 /* A hash table storing all CONST_FIXEDs. */ 140 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def))) 141 htab_t const_fixed_htab; 142 143 #define cur_insn_uid (crtl->emit.x_cur_insn_uid) 144 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid) 145 #define first_label_num (crtl->emit.x_first_label_num) 146 147 static rtx change_address_1 (rtx, enum machine_mode, rtx, int); 148 static void set_used_decls (tree); 149 static void mark_label_nuses (rtx); 150 static hashval_t const_int_htab_hash (const void *); 151 static int const_int_htab_eq (const void *, const void *); 152 static hashval_t const_double_htab_hash (const void *); 153 static int const_double_htab_eq (const void *, const void *); 154 static rtx lookup_const_double (rtx); 155 static hashval_t const_fixed_htab_hash (const void *); 156 static int const_fixed_htab_eq (const void *, const void *); 157 static rtx lookup_const_fixed (rtx); 158 static hashval_t mem_attrs_htab_hash (const void *); 159 static int mem_attrs_htab_eq (const void *, const void *); 160 static hashval_t reg_attrs_htab_hash (const void *); 161 static int reg_attrs_htab_eq (const void *, const void *); 162 static reg_attrs *get_reg_attrs (tree, int); 163 static rtx gen_const_vector (enum machine_mode, int); 164 static void copy_rtx_if_shared_1 (rtx *orig); 165 166 /* Probability of the conditional branch currently proceeded by try_split. 167 Set to -1 otherwise. */ 168 int split_branch_probability = -1; 169 170 /* Returns a hash code for X (which is a really a CONST_INT). */ 171 172 static hashval_t 173 const_int_htab_hash (const void *x) 174 { 175 return (hashval_t) INTVAL ((const_rtx) x); 176 } 177 178 /* Returns nonzero if the value represented by X (which is really a 179 CONST_INT) is the same as that given by Y (which is really a 180 HOST_WIDE_INT *). */ 181 182 static int 183 const_int_htab_eq (const void *x, const void *y) 184 { 185 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y)); 186 } 187 188 /* Returns a hash code for X (which is really a CONST_DOUBLE). */ 189 static hashval_t 190 const_double_htab_hash (const void *x) 191 { 192 const_rtx const value = (const_rtx) x; 193 hashval_t h; 194 195 if (GET_MODE (value) == VOIDmode) 196 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value); 197 else 198 { 199 h = real_hash (CONST_DOUBLE_REAL_VALUE (value)); 200 /* MODE is used in the comparison, so it should be in the hash. */ 201 h ^= GET_MODE (value); 202 } 203 return h; 204 } 205 206 /* Returns nonzero if the value represented by X (really a ...) 207 is the same as that represented by Y (really a ...) */ 208 static int 209 const_double_htab_eq (const void *x, const void *y) 210 { 211 const_rtx const a = (const_rtx)x, b = (const_rtx)y; 212 213 if (GET_MODE (a) != GET_MODE (b)) 214 return 0; 215 if (GET_MODE (a) == VOIDmode) 216 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b) 217 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b)); 218 else 219 return real_identical (CONST_DOUBLE_REAL_VALUE (a), 220 CONST_DOUBLE_REAL_VALUE (b)); 221 } 222 223 /* Returns a hash code for X (which is really a CONST_FIXED). */ 224 225 static hashval_t 226 const_fixed_htab_hash (const void *x) 227 { 228 const_rtx const value = (const_rtx) x; 229 hashval_t h; 230 231 h = fixed_hash (CONST_FIXED_VALUE (value)); 232 /* MODE is used in the comparison, so it should be in the hash. */ 233 h ^= GET_MODE (value); 234 return h; 235 } 236 237 /* Returns nonzero if the value represented by X (really a ...) 238 is the same as that represented by Y (really a ...). */ 239 240 static int 241 const_fixed_htab_eq (const void *x, const void *y) 242 { 243 const_rtx const a = (const_rtx) x, b = (const_rtx) y; 244 245 if (GET_MODE (a) != GET_MODE (b)) 246 return 0; 247 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b)); 248 } 249 250 /* Returns a hash code for X (which is a really a mem_attrs *). */ 251 252 static hashval_t 253 mem_attrs_htab_hash (const void *x) 254 { 255 const mem_attrs *const p = (const mem_attrs *) x; 256 257 return (p->alias ^ (p->align * 1000) 258 ^ (p->addrspace * 4000) 259 ^ ((p->offset_known_p ? p->offset : 0) * 50000) 260 ^ ((p->size_known_p ? p->size : 0) * 2500000) 261 ^ (size_t) iterative_hash_expr (p->expr, 0)); 262 } 263 264 /* Return true if the given memory attributes are equal. */ 265 266 bool 267 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q) 268 { 269 return (p->alias == q->alias 270 && p->offset_known_p == q->offset_known_p 271 && (!p->offset_known_p || p->offset == q->offset) 272 && p->size_known_p == q->size_known_p 273 && (!p->size_known_p || p->size == q->size) 274 && p->align == q->align 275 && p->addrspace == q->addrspace 276 && (p->expr == q->expr 277 || (p->expr != NULL_TREE && q->expr != NULL_TREE 278 && operand_equal_p (p->expr, q->expr, 0)))); 279 } 280 281 /* Returns nonzero if the value represented by X (which is really a 282 mem_attrs *) is the same as that given by Y (which is also really a 283 mem_attrs *). */ 284 285 static int 286 mem_attrs_htab_eq (const void *x, const void *y) 287 { 288 return mem_attrs_eq_p ((const mem_attrs *) x, (const mem_attrs *) y); 289 } 290 291 /* Set MEM's memory attributes so that they are the same as ATTRS. */ 292 293 static void 294 set_mem_attrs (rtx mem, mem_attrs *attrs) 295 { 296 void **slot; 297 298 /* If everything is the default, we can just clear the attributes. */ 299 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)])) 300 { 301 MEM_ATTRS (mem) = 0; 302 return; 303 } 304 305 slot = htab_find_slot (mem_attrs_htab, attrs, INSERT); 306 if (*slot == 0) 307 { 308 *slot = ggc_alloc_mem_attrs (); 309 memcpy (*slot, attrs, sizeof (mem_attrs)); 310 } 311 312 MEM_ATTRS (mem) = (mem_attrs *) *slot; 313 } 314 315 /* Returns a hash code for X (which is a really a reg_attrs *). */ 316 317 static hashval_t 318 reg_attrs_htab_hash (const void *x) 319 { 320 const reg_attrs *const p = (const reg_attrs *) x; 321 322 return ((p->offset * 1000) ^ (intptr_t) p->decl); 323 } 324 325 /* Returns nonzero if the value represented by X (which is really a 326 reg_attrs *) is the same as that given by Y (which is also really a 327 reg_attrs *). */ 328 329 static int 330 reg_attrs_htab_eq (const void *x, const void *y) 331 { 332 const reg_attrs *const p = (const reg_attrs *) x; 333 const reg_attrs *const q = (const reg_attrs *) y; 334 335 return (p->decl == q->decl && p->offset == q->offset); 336 } 337 /* Allocate a new reg_attrs structure and insert it into the hash table if 338 one identical to it is not already in the table. We are doing this for 339 MEM of mode MODE. */ 340 341 static reg_attrs * 342 get_reg_attrs (tree decl, int offset) 343 { 344 reg_attrs attrs; 345 void **slot; 346 347 /* If everything is the default, we can just return zero. */ 348 if (decl == 0 && offset == 0) 349 return 0; 350 351 attrs.decl = decl; 352 attrs.offset = offset; 353 354 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT); 355 if (*slot == 0) 356 { 357 *slot = ggc_alloc_reg_attrs (); 358 memcpy (*slot, &attrs, sizeof (reg_attrs)); 359 } 360 361 return (reg_attrs *) *slot; 362 } 363 364 365 #if !HAVE_blockage 366 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule, 367 and to block register equivalences to be seen across this insn. */ 368 369 rtx 370 gen_blockage (void) 371 { 372 rtx x = gen_rtx_ASM_INPUT (VOIDmode, ""); 373 MEM_VOLATILE_P (x) = true; 374 return x; 375 } 376 #endif 377 378 379 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and 380 don't attempt to share with the various global pieces of rtl (such as 381 frame_pointer_rtx). */ 382 383 rtx 384 gen_raw_REG (enum machine_mode mode, int regno) 385 { 386 rtx x = gen_rtx_raw_REG (mode, regno); 387 ORIGINAL_REGNO (x) = regno; 388 return x; 389 } 390 391 /* There are some RTL codes that require special attention; the generation 392 functions do the raw handling. If you add to this list, modify 393 special_rtx in gengenrtl.c as well. */ 394 395 rtx 396 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg) 397 { 398 void **slot; 399 400 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT) 401 return const_int_rtx[arg + MAX_SAVED_CONST_INT]; 402 403 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1 404 if (const_true_rtx && arg == STORE_FLAG_VALUE) 405 return const_true_rtx; 406 #endif 407 408 /* Look up the CONST_INT in the hash table. */ 409 slot = htab_find_slot_with_hash (const_int_htab, &arg, 410 (hashval_t) arg, INSERT); 411 if (*slot == 0) 412 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg); 413 414 return (rtx) *slot; 415 } 416 417 rtx 418 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode) 419 { 420 return GEN_INT (trunc_int_for_mode (c, mode)); 421 } 422 423 /* CONST_DOUBLEs might be created from pairs of integers, or from 424 REAL_VALUE_TYPEs. Also, their length is known only at run time, 425 so we cannot use gen_rtx_raw_CONST_DOUBLE. */ 426 427 /* Determine whether REAL, a CONST_DOUBLE, already exists in the 428 hash table. If so, return its counterpart; otherwise add it 429 to the hash table and return it. */ 430 static rtx 431 lookup_const_double (rtx real) 432 { 433 void **slot = htab_find_slot (const_double_htab, real, INSERT); 434 if (*slot == 0) 435 *slot = real; 436 437 return (rtx) *slot; 438 } 439 440 /* Return a CONST_DOUBLE rtx for a floating-point value specified by 441 VALUE in mode MODE. */ 442 rtx 443 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode) 444 { 445 rtx real = rtx_alloc (CONST_DOUBLE); 446 PUT_MODE (real, mode); 447 448 real->u.rv = value; 449 450 return lookup_const_double (real); 451 } 452 453 /* Determine whether FIXED, a CONST_FIXED, already exists in the 454 hash table. If so, return its counterpart; otherwise add it 455 to the hash table and return it. */ 456 457 static rtx 458 lookup_const_fixed (rtx fixed) 459 { 460 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT); 461 if (*slot == 0) 462 *slot = fixed; 463 464 return (rtx) *slot; 465 } 466 467 /* Return a CONST_FIXED rtx for a fixed-point value specified by 468 VALUE in mode MODE. */ 469 470 rtx 471 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode) 472 { 473 rtx fixed = rtx_alloc (CONST_FIXED); 474 PUT_MODE (fixed, mode); 475 476 fixed->u.fv = value; 477 478 return lookup_const_fixed (fixed); 479 } 480 481 /* Constructs double_int from rtx CST. */ 482 483 double_int 484 rtx_to_double_int (const_rtx cst) 485 { 486 double_int r; 487 488 if (CONST_INT_P (cst)) 489 r = double_int::from_shwi (INTVAL (cst)); 490 else if (CONST_DOUBLE_AS_INT_P (cst)) 491 { 492 r.low = CONST_DOUBLE_LOW (cst); 493 r.high = CONST_DOUBLE_HIGH (cst); 494 } 495 else 496 gcc_unreachable (); 497 498 return r; 499 } 500 501 502 /* Return a CONST_DOUBLE or CONST_INT for a value specified as 503 a double_int. */ 504 505 rtx 506 immed_double_int_const (double_int i, enum machine_mode mode) 507 { 508 return immed_double_const (i.low, i.high, mode); 509 } 510 511 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair 512 of ints: I0 is the low-order word and I1 is the high-order word. 513 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the 514 implied upper bits are copies of the high bit of i1. The value 515 itself is neither signed nor unsigned. Do not use this routine for 516 non-integer modes; convert to REAL_VALUE_TYPE and use 517 CONST_DOUBLE_FROM_REAL_VALUE. */ 518 519 rtx 520 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode) 521 { 522 rtx value; 523 unsigned int i; 524 525 /* There are the following cases (note that there are no modes with 526 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT): 527 528 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use 529 gen_int_mode. 530 2) If the value of the integer fits into HOST_WIDE_INT anyway 531 (i.e., i1 consists only from copies of the sign bit, and sign 532 of i0 and i1 are the same), then we return a CONST_INT for i0. 533 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */ 534 if (mode != VOIDmode) 535 { 536 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT 537 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT 538 /* We can get a 0 for an error mark. */ 539 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT 540 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT); 541 542 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT) 543 return gen_int_mode (i0, mode); 544 } 545 546 /* If this integer fits in one word, return a CONST_INT. */ 547 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0)) 548 return GEN_INT (i0); 549 550 /* We use VOIDmode for integers. */ 551 value = rtx_alloc (CONST_DOUBLE); 552 PUT_MODE (value, VOIDmode); 553 554 CONST_DOUBLE_LOW (value) = i0; 555 CONST_DOUBLE_HIGH (value) = i1; 556 557 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++) 558 XWINT (value, i) = 0; 559 560 return lookup_const_double (value); 561 } 562 563 rtx 564 gen_rtx_REG (enum machine_mode mode, unsigned int regno) 565 { 566 /* In case the MD file explicitly references the frame pointer, have 567 all such references point to the same frame pointer. This is 568 used during frame pointer elimination to distinguish the explicit 569 references to these registers from pseudos that happened to be 570 assigned to them. 571 572 If we have eliminated the frame pointer or arg pointer, we will 573 be using it as a normal register, for example as a spill 574 register. In such cases, we might be accessing it in a mode that 575 is not Pmode and therefore cannot use the pre-allocated rtx. 576 577 Also don't do this when we are making new REGs in reload, since 578 we don't want to get confused with the real pointers. */ 579 580 if (mode == Pmode && !reload_in_progress && !lra_in_progress) 581 { 582 if (regno == FRAME_POINTER_REGNUM 583 && (!reload_completed || frame_pointer_needed)) 584 return frame_pointer_rtx; 585 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER 586 if (regno == HARD_FRAME_POINTER_REGNUM 587 && (!reload_completed || frame_pointer_needed)) 588 return hard_frame_pointer_rtx; 589 #endif 590 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER 591 if (regno == ARG_POINTER_REGNUM) 592 return arg_pointer_rtx; 593 #endif 594 #ifdef RETURN_ADDRESS_POINTER_REGNUM 595 if (regno == RETURN_ADDRESS_POINTER_REGNUM) 596 return return_address_pointer_rtx; 597 #endif 598 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM 599 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM 600 && fixed_regs[PIC_OFFSET_TABLE_REGNUM]) 601 return pic_offset_table_rtx; 602 if (regno == STACK_POINTER_REGNUM) 603 return stack_pointer_rtx; 604 } 605 606 #if 0 607 /* If the per-function register table has been set up, try to re-use 608 an existing entry in that table to avoid useless generation of RTL. 609 610 This code is disabled for now until we can fix the various backends 611 which depend on having non-shared hard registers in some cases. Long 612 term we want to re-enable this code as it can significantly cut down 613 on the amount of useless RTL that gets generated. 614 615 We'll also need to fix some code that runs after reload that wants to 616 set ORIGINAL_REGNO. */ 617 618 if (cfun 619 && cfun->emit 620 && regno_reg_rtx 621 && regno < FIRST_PSEUDO_REGISTER 622 && reg_raw_mode[regno] == mode) 623 return regno_reg_rtx[regno]; 624 #endif 625 626 return gen_raw_REG (mode, regno); 627 } 628 629 rtx 630 gen_rtx_MEM (enum machine_mode mode, rtx addr) 631 { 632 rtx rt = gen_rtx_raw_MEM (mode, addr); 633 634 /* This field is not cleared by the mere allocation of the rtx, so 635 we clear it here. */ 636 MEM_ATTRS (rt) = 0; 637 638 return rt; 639 } 640 641 /* Generate a memory referring to non-trapping constant memory. */ 642 643 rtx 644 gen_const_mem (enum machine_mode mode, rtx addr) 645 { 646 rtx mem = gen_rtx_MEM (mode, addr); 647 MEM_READONLY_P (mem) = 1; 648 MEM_NOTRAP_P (mem) = 1; 649 return mem; 650 } 651 652 /* Generate a MEM referring to fixed portions of the frame, e.g., register 653 save areas. */ 654 655 rtx 656 gen_frame_mem (enum machine_mode mode, rtx addr) 657 { 658 rtx mem = gen_rtx_MEM (mode, addr); 659 MEM_NOTRAP_P (mem) = 1; 660 set_mem_alias_set (mem, get_frame_alias_set ()); 661 return mem; 662 } 663 664 /* Generate a MEM referring to a temporary use of the stack, not part 665 of the fixed stack frame. For example, something which is pushed 666 by a target splitter. */ 667 rtx 668 gen_tmp_stack_mem (enum machine_mode mode, rtx addr) 669 { 670 rtx mem = gen_rtx_MEM (mode, addr); 671 MEM_NOTRAP_P (mem) = 1; 672 if (!cfun->calls_alloca) 673 set_mem_alias_set (mem, get_frame_alias_set ()); 674 return mem; 675 } 676 677 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if 678 this construct would be valid, and false otherwise. */ 679 680 bool 681 validate_subreg (enum machine_mode omode, enum machine_mode imode, 682 const_rtx reg, unsigned int offset) 683 { 684 unsigned int isize = GET_MODE_SIZE (imode); 685 unsigned int osize = GET_MODE_SIZE (omode); 686 687 /* All subregs must be aligned. */ 688 if (offset % osize != 0) 689 return false; 690 691 /* The subreg offset cannot be outside the inner object. */ 692 if (offset >= isize) 693 return false; 694 695 /* ??? This should not be here. Temporarily continue to allow word_mode 696 subregs of anything. The most common offender is (subreg:SI (reg:DF)). 697 Generally, backends are doing something sketchy but it'll take time to 698 fix them all. */ 699 if (omode == word_mode) 700 ; 701 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field 702 is the culprit here, and not the backends. */ 703 else if (osize >= UNITS_PER_WORD && isize >= osize) 704 ; 705 /* Allow component subregs of complex and vector. Though given the below 706 extraction rules, it's not always clear what that means. */ 707 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode)) 708 && GET_MODE_INNER (imode) == omode) 709 ; 710 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs, 711 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to 712 represent this. It's questionable if this ought to be represented at 713 all -- why can't this all be hidden in post-reload splitters that make 714 arbitrarily mode changes to the registers themselves. */ 715 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode) 716 ; 717 /* Subregs involving floating point modes are not allowed to 718 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but 719 (subreg:SI (reg:DF) 0) isn't. */ 720 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode)) 721 { 722 if (! (isize == osize 723 /* LRA can use subreg to store a floating point value in 724 an integer mode. Although the floating point and the 725 integer modes need the same number of hard registers, 726 the size of floating point mode can be less than the 727 integer mode. LRA also uses subregs for a register 728 should be used in different mode in on insn. */ 729 || lra_in_progress)) 730 return false; 731 } 732 733 /* Paradoxical subregs must have offset zero. */ 734 if (osize > isize) 735 return offset == 0; 736 737 /* This is a normal subreg. Verify that the offset is representable. */ 738 739 /* For hard registers, we already have most of these rules collected in 740 subreg_offset_representable_p. */ 741 if (reg && REG_P (reg) && HARD_REGISTER_P (reg)) 742 { 743 unsigned int regno = REGNO (reg); 744 745 #ifdef CANNOT_CHANGE_MODE_CLASS 746 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode)) 747 && GET_MODE_INNER (imode) == omode) 748 ; 749 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode)) 750 return false; 751 #endif 752 753 return subreg_offset_representable_p (regno, imode, offset, omode); 754 } 755 756 /* For pseudo registers, we want most of the same checks. Namely: 757 If the register no larger than a word, the subreg must be lowpart. 758 If the register is larger than a word, the subreg must be the lowpart 759 of a subword. A subreg does *not* perform arbitrary bit extraction. 760 Given that we've already checked mode/offset alignment, we only have 761 to check subword subregs here. */ 762 if (osize < UNITS_PER_WORD 763 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode)))) 764 { 765 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode; 766 unsigned int low_off = subreg_lowpart_offset (omode, wmode); 767 if (offset % UNITS_PER_WORD != low_off) 768 return false; 769 } 770 return true; 771 } 772 773 rtx 774 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset) 775 { 776 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset)); 777 return gen_rtx_raw_SUBREG (mode, reg, offset); 778 } 779 780 /* Generate a SUBREG representing the least-significant part of REG if MODE 781 is smaller than mode of REG, otherwise paradoxical SUBREG. */ 782 783 rtx 784 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg) 785 { 786 enum machine_mode inmode; 787 788 inmode = GET_MODE (reg); 789 if (inmode == VOIDmode) 790 inmode = mode; 791 return gen_rtx_SUBREG (mode, reg, 792 subreg_lowpart_offset (mode, inmode)); 793 } 794 795 796 /* Create an rtvec and stores within it the RTXen passed in the arguments. */ 797 798 rtvec 799 gen_rtvec (int n, ...) 800 { 801 int i; 802 rtvec rt_val; 803 va_list p; 804 805 va_start (p, n); 806 807 /* Don't allocate an empty rtvec... */ 808 if (n == 0) 809 { 810 va_end (p); 811 return NULL_RTVEC; 812 } 813 814 rt_val = rtvec_alloc (n); 815 816 for (i = 0; i < n; i++) 817 rt_val->elem[i] = va_arg (p, rtx); 818 819 va_end (p); 820 return rt_val; 821 } 822 823 rtvec 824 gen_rtvec_v (int n, rtx *argp) 825 { 826 int i; 827 rtvec rt_val; 828 829 /* Don't allocate an empty rtvec... */ 830 if (n == 0) 831 return NULL_RTVEC; 832 833 rt_val = rtvec_alloc (n); 834 835 for (i = 0; i < n; i++) 836 rt_val->elem[i] = *argp++; 837 838 return rt_val; 839 } 840 841 /* Return the number of bytes between the start of an OUTER_MODE 842 in-memory value and the start of an INNER_MODE in-memory value, 843 given that the former is a lowpart of the latter. It may be a 844 paradoxical lowpart, in which case the offset will be negative 845 on big-endian targets. */ 846 847 int 848 byte_lowpart_offset (enum machine_mode outer_mode, 849 enum machine_mode inner_mode) 850 { 851 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode)) 852 return subreg_lowpart_offset (outer_mode, inner_mode); 853 else 854 return -subreg_lowpart_offset (inner_mode, outer_mode); 855 } 856 857 /* Generate a REG rtx for a new pseudo register of mode MODE. 858 This pseudo is assigned the next sequential register number. */ 859 860 rtx 861 gen_reg_rtx (enum machine_mode mode) 862 { 863 rtx val; 864 unsigned int align = GET_MODE_ALIGNMENT (mode); 865 866 gcc_assert (can_create_pseudo_p ()); 867 868 /* If a virtual register with bigger mode alignment is generated, 869 increase stack alignment estimation because it might be spilled 870 to stack later. */ 871 if (SUPPORTS_STACK_ALIGNMENT 872 && crtl->stack_alignment_estimated < align 873 && !crtl->stack_realign_processed) 874 { 875 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align); 876 if (crtl->stack_alignment_estimated < min_align) 877 crtl->stack_alignment_estimated = min_align; 878 } 879 880 if (generating_concat_p 881 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT 882 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT)) 883 { 884 /* For complex modes, don't make a single pseudo. 885 Instead, make a CONCAT of two pseudos. 886 This allows noncontiguous allocation of the real and imaginary parts, 887 which makes much better code. Besides, allocating DCmode 888 pseudos overstrains reload on some machines like the 386. */ 889 rtx realpart, imagpart; 890 enum machine_mode partmode = GET_MODE_INNER (mode); 891 892 realpart = gen_reg_rtx (partmode); 893 imagpart = gen_reg_rtx (partmode); 894 return gen_rtx_CONCAT (mode, realpart, imagpart); 895 } 896 897 /* Make sure regno_pointer_align, and regno_reg_rtx are large 898 enough to have an element for this pseudo reg number. */ 899 900 if (reg_rtx_no == crtl->emit.regno_pointer_align_length) 901 { 902 int old_size = crtl->emit.regno_pointer_align_length; 903 char *tmp; 904 rtx *new1; 905 906 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2); 907 memset (tmp + old_size, 0, old_size); 908 crtl->emit.regno_pointer_align = (unsigned char *) tmp; 909 910 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2); 911 memset (new1 + old_size, 0, old_size * sizeof (rtx)); 912 regno_reg_rtx = new1; 913 914 crtl->emit.regno_pointer_align_length = old_size * 2; 915 } 916 917 val = gen_raw_REG (mode, reg_rtx_no); 918 regno_reg_rtx[reg_rtx_no++] = val; 919 return val; 920 } 921 922 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */ 923 924 bool 925 reg_is_parm_p (rtx reg) 926 { 927 tree decl; 928 929 gcc_assert (REG_P (reg)); 930 decl = REG_EXPR (reg); 931 return (decl && TREE_CODE (decl) == PARM_DECL); 932 } 933 934 /* Update NEW with the same attributes as REG, but with OFFSET added 935 to the REG_OFFSET. */ 936 937 static void 938 update_reg_offset (rtx new_rtx, rtx reg, int offset) 939 { 940 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg), 941 REG_OFFSET (reg) + offset); 942 } 943 944 /* Generate a register with same attributes as REG, but with OFFSET 945 added to the REG_OFFSET. */ 946 947 rtx 948 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, 949 int offset) 950 { 951 rtx new_rtx = gen_rtx_REG (mode, regno); 952 953 update_reg_offset (new_rtx, reg, offset); 954 return new_rtx; 955 } 956 957 /* Generate a new pseudo-register with the same attributes as REG, but 958 with OFFSET added to the REG_OFFSET. */ 959 960 rtx 961 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset) 962 { 963 rtx new_rtx = gen_reg_rtx (mode); 964 965 update_reg_offset (new_rtx, reg, offset); 966 return new_rtx; 967 } 968 969 /* Adjust REG in-place so that it has mode MODE. It is assumed that the 970 new register is a (possibly paradoxical) lowpart of the old one. */ 971 972 void 973 adjust_reg_mode (rtx reg, enum machine_mode mode) 974 { 975 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg))); 976 PUT_MODE (reg, mode); 977 } 978 979 /* Copy REG's attributes from X, if X has any attributes. If REG and X 980 have different modes, REG is a (possibly paradoxical) lowpart of X. */ 981 982 void 983 set_reg_attrs_from_value (rtx reg, rtx x) 984 { 985 int offset; 986 bool can_be_reg_pointer = true; 987 988 /* Don't call mark_reg_pointer for incompatible pointer sign 989 extension. */ 990 while (GET_CODE (x) == SIGN_EXTEND 991 || GET_CODE (x) == ZERO_EXTEND 992 || GET_CODE (x) == TRUNCATE 993 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x))) 994 { 995 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend) 996 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED) 997 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED)) 998 can_be_reg_pointer = false; 999 #endif 1000 x = XEXP (x, 0); 1001 } 1002 1003 /* Hard registers can be reused for multiple purposes within the same 1004 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN 1005 on them is wrong. */ 1006 if (HARD_REGISTER_P (reg)) 1007 return; 1008 1009 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x)); 1010 if (MEM_P (x)) 1011 { 1012 if (MEM_OFFSET_KNOWN_P (x)) 1013 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x), 1014 MEM_OFFSET (x) + offset); 1015 if (can_be_reg_pointer && MEM_POINTER (x)) 1016 mark_reg_pointer (reg, 0); 1017 } 1018 else if (REG_P (x)) 1019 { 1020 if (REG_ATTRS (x)) 1021 update_reg_offset (reg, x, offset); 1022 if (can_be_reg_pointer && REG_POINTER (x)) 1023 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x))); 1024 } 1025 } 1026 1027 /* Generate a REG rtx for a new pseudo register, copying the mode 1028 and attributes from X. */ 1029 1030 rtx 1031 gen_reg_rtx_and_attrs (rtx x) 1032 { 1033 rtx reg = gen_reg_rtx (GET_MODE (x)); 1034 set_reg_attrs_from_value (reg, x); 1035 return reg; 1036 } 1037 1038 /* Set the register attributes for registers contained in PARM_RTX. 1039 Use needed values from memory attributes of MEM. */ 1040 1041 void 1042 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem) 1043 { 1044 if (REG_P (parm_rtx)) 1045 set_reg_attrs_from_value (parm_rtx, mem); 1046 else if (GET_CODE (parm_rtx) == PARALLEL) 1047 { 1048 /* Check for a NULL entry in the first slot, used to indicate that the 1049 parameter goes both on the stack and in registers. */ 1050 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1; 1051 for (; i < XVECLEN (parm_rtx, 0); i++) 1052 { 1053 rtx x = XVECEXP (parm_rtx, 0, i); 1054 if (REG_P (XEXP (x, 0))) 1055 REG_ATTRS (XEXP (x, 0)) 1056 = get_reg_attrs (MEM_EXPR (mem), 1057 INTVAL (XEXP (x, 1))); 1058 } 1059 } 1060 } 1061 1062 /* Set the REG_ATTRS for registers in value X, given that X represents 1063 decl T. */ 1064 1065 void 1066 set_reg_attrs_for_decl_rtl (tree t, rtx x) 1067 { 1068 if (GET_CODE (x) == SUBREG) 1069 { 1070 gcc_assert (subreg_lowpart_p (x)); 1071 x = SUBREG_REG (x); 1072 } 1073 if (REG_P (x)) 1074 REG_ATTRS (x) 1075 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x), 1076 DECL_MODE (t))); 1077 if (GET_CODE (x) == CONCAT) 1078 { 1079 if (REG_P (XEXP (x, 0))) 1080 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0); 1081 if (REG_P (XEXP (x, 1))) 1082 REG_ATTRS (XEXP (x, 1)) 1083 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0)))); 1084 } 1085 if (GET_CODE (x) == PARALLEL) 1086 { 1087 int i, start; 1088 1089 /* Check for a NULL entry, used to indicate that the parameter goes 1090 both on the stack and in registers. */ 1091 if (XEXP (XVECEXP (x, 0, 0), 0)) 1092 start = 0; 1093 else 1094 start = 1; 1095 1096 for (i = start; i < XVECLEN (x, 0); i++) 1097 { 1098 rtx y = XVECEXP (x, 0, i); 1099 if (REG_P (XEXP (y, 0))) 1100 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1))); 1101 } 1102 } 1103 } 1104 1105 /* Assign the RTX X to declaration T. */ 1106 1107 void 1108 set_decl_rtl (tree t, rtx x) 1109 { 1110 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x; 1111 if (x) 1112 set_reg_attrs_for_decl_rtl (t, x); 1113 } 1114 1115 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true 1116 if the ABI requires the parameter to be passed by reference. */ 1117 1118 void 1119 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p) 1120 { 1121 DECL_INCOMING_RTL (t) = x; 1122 if (x && !by_reference_p) 1123 set_reg_attrs_for_decl_rtl (t, x); 1124 } 1125 1126 /* Identify REG (which may be a CONCAT) as a user register. */ 1127 1128 void 1129 mark_user_reg (rtx reg) 1130 { 1131 if (GET_CODE (reg) == CONCAT) 1132 { 1133 REG_USERVAR_P (XEXP (reg, 0)) = 1; 1134 REG_USERVAR_P (XEXP (reg, 1)) = 1; 1135 } 1136 else 1137 { 1138 gcc_assert (REG_P (reg)); 1139 REG_USERVAR_P (reg) = 1; 1140 } 1141 } 1142 1143 /* Identify REG as a probable pointer register and show its alignment 1144 as ALIGN, if nonzero. */ 1145 1146 void 1147 mark_reg_pointer (rtx reg, int align) 1148 { 1149 if (! REG_POINTER (reg)) 1150 { 1151 REG_POINTER (reg) = 1; 1152 1153 if (align) 1154 REGNO_POINTER_ALIGN (REGNO (reg)) = align; 1155 } 1156 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg))) 1157 /* We can no-longer be sure just how aligned this pointer is. */ 1158 REGNO_POINTER_ALIGN (REGNO (reg)) = align; 1159 } 1160 1161 /* Return 1 plus largest pseudo reg number used in the current function. */ 1162 1163 int 1164 max_reg_num (void) 1165 { 1166 return reg_rtx_no; 1167 } 1168 1169 /* Return 1 + the largest label number used so far in the current function. */ 1170 1171 int 1172 max_label_num (void) 1173 { 1174 return label_num; 1175 } 1176 1177 /* Return first label number used in this function (if any were used). */ 1178 1179 int 1180 get_first_label_num (void) 1181 { 1182 return first_label_num; 1183 } 1184 1185 /* If the rtx for label was created during the expansion of a nested 1186 function, then first_label_num won't include this label number. 1187 Fix this now so that array indices work later. */ 1188 1189 void 1190 maybe_set_first_label_num (rtx x) 1191 { 1192 if (CODE_LABEL_NUMBER (x) < first_label_num) 1193 first_label_num = CODE_LABEL_NUMBER (x); 1194 } 1195 1196 /* Return a value representing some low-order bits of X, where the number 1197 of low-order bits is given by MODE. Note that no conversion is done 1198 between floating-point and fixed-point values, rather, the bit 1199 representation is returned. 1200 1201 This function handles the cases in common between gen_lowpart, below, 1202 and two variants in cse.c and combine.c. These are the cases that can 1203 be safely handled at all points in the compilation. 1204 1205 If this is not a case we can handle, return 0. */ 1206 1207 rtx 1208 gen_lowpart_common (enum machine_mode mode, rtx x) 1209 { 1210 int msize = GET_MODE_SIZE (mode); 1211 int xsize; 1212 int offset = 0; 1213 enum machine_mode innermode; 1214 1215 /* Unfortunately, this routine doesn't take a parameter for the mode of X, 1216 so we have to make one up. Yuk. */ 1217 innermode = GET_MODE (x); 1218 if (CONST_INT_P (x) 1219 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT) 1220 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0); 1221 else if (innermode == VOIDmode) 1222 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0); 1223 1224 xsize = GET_MODE_SIZE (innermode); 1225 1226 gcc_assert (innermode != VOIDmode && innermode != BLKmode); 1227 1228 if (innermode == mode) 1229 return x; 1230 1231 /* MODE must occupy no more words than the mode of X. */ 1232 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD 1233 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)) 1234 return 0; 1235 1236 /* Don't allow generating paradoxical FLOAT_MODE subregs. */ 1237 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize) 1238 return 0; 1239 1240 offset = subreg_lowpart_offset (mode, innermode); 1241 1242 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND) 1243 && (GET_MODE_CLASS (mode) == MODE_INT 1244 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)) 1245 { 1246 /* If we are getting the low-order part of something that has been 1247 sign- or zero-extended, we can either just use the object being 1248 extended or make a narrower extension. If we want an even smaller 1249 piece than the size of the object being extended, call ourselves 1250 recursively. 1251 1252 This case is used mostly by combine and cse. */ 1253 1254 if (GET_MODE (XEXP (x, 0)) == mode) 1255 return XEXP (x, 0); 1256 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))) 1257 return gen_lowpart_common (mode, XEXP (x, 0)); 1258 else if (msize < xsize) 1259 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0)); 1260 } 1261 else if (GET_CODE (x) == SUBREG || REG_P (x) 1262 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR 1263 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x)) 1264 return simplify_gen_subreg (mode, x, innermode, offset); 1265 1266 /* Otherwise, we can't do this. */ 1267 return 0; 1268 } 1269 1270 rtx 1271 gen_highpart (enum machine_mode mode, rtx x) 1272 { 1273 unsigned int msize = GET_MODE_SIZE (mode); 1274 rtx result; 1275 1276 /* This case loses if X is a subreg. To catch bugs early, 1277 complain if an invalid MODE is used even in other cases. */ 1278 gcc_assert (msize <= UNITS_PER_WORD 1279 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x))); 1280 1281 result = simplify_gen_subreg (mode, x, GET_MODE (x), 1282 subreg_highpart_offset (mode, GET_MODE (x))); 1283 gcc_assert (result); 1284 1285 /* simplify_gen_subreg is not guaranteed to return a valid operand for 1286 the target if we have a MEM. gen_highpart must return a valid operand, 1287 emitting code if necessary to do so. */ 1288 if (MEM_P (result)) 1289 { 1290 result = validize_mem (result); 1291 gcc_assert (result); 1292 } 1293 1294 return result; 1295 } 1296 1297 /* Like gen_highpart, but accept mode of EXP operand in case EXP can 1298 be VOIDmode constant. */ 1299 rtx 1300 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp) 1301 { 1302 if (GET_MODE (exp) != VOIDmode) 1303 { 1304 gcc_assert (GET_MODE (exp) == innermode); 1305 return gen_highpart (outermode, exp); 1306 } 1307 return simplify_gen_subreg (outermode, exp, innermode, 1308 subreg_highpart_offset (outermode, innermode)); 1309 } 1310 1311 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */ 1312 1313 unsigned int 1314 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode) 1315 { 1316 unsigned int offset = 0; 1317 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode)); 1318 1319 if (difference > 0) 1320 { 1321 if (WORDS_BIG_ENDIAN) 1322 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD; 1323 if (BYTES_BIG_ENDIAN) 1324 offset += difference % UNITS_PER_WORD; 1325 } 1326 1327 return offset; 1328 } 1329 1330 /* Return offset in bytes to get OUTERMODE high part 1331 of the value in mode INNERMODE stored in memory in target format. */ 1332 unsigned int 1333 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode) 1334 { 1335 unsigned int offset = 0; 1336 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode)); 1337 1338 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode)); 1339 1340 if (difference > 0) 1341 { 1342 if (! WORDS_BIG_ENDIAN) 1343 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD; 1344 if (! BYTES_BIG_ENDIAN) 1345 offset += difference % UNITS_PER_WORD; 1346 } 1347 1348 return offset; 1349 } 1350 1351 /* Return 1 iff X, assumed to be a SUBREG, 1352 refers to the least significant part of its containing reg. 1353 If X is not a SUBREG, always return 1 (it is its own low part!). */ 1354 1355 int 1356 subreg_lowpart_p (const_rtx x) 1357 { 1358 if (GET_CODE (x) != SUBREG) 1359 return 1; 1360 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode) 1361 return 0; 1362 1363 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x))) 1364 == SUBREG_BYTE (x)); 1365 } 1366 1367 /* Return true if X is a paradoxical subreg, false otherwise. */ 1368 bool 1369 paradoxical_subreg_p (const_rtx x) 1370 { 1371 if (GET_CODE (x) != SUBREG) 1372 return false; 1373 return (GET_MODE_PRECISION (GET_MODE (x)) 1374 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))); 1375 } 1376 1377 /* Return subword OFFSET of operand OP. 1378 The word number, OFFSET, is interpreted as the word number starting 1379 at the low-order address. OFFSET 0 is the low-order word if not 1380 WORDS_BIG_ENDIAN, otherwise it is the high-order word. 1381 1382 If we cannot extract the required word, we return zero. Otherwise, 1383 an rtx corresponding to the requested word will be returned. 1384 1385 VALIDATE_ADDRESS is nonzero if the address should be validated. Before 1386 reload has completed, a valid address will always be returned. After 1387 reload, if a valid address cannot be returned, we return zero. 1388 1389 If VALIDATE_ADDRESS is zero, we simply form the required address; validating 1390 it is the responsibility of the caller. 1391 1392 MODE is the mode of OP in case it is a CONST_INT. 1393 1394 ??? This is still rather broken for some cases. The problem for the 1395 moment is that all callers of this thing provide no 'goal mode' to 1396 tell us to work with. This exists because all callers were written 1397 in a word based SUBREG world. 1398 Now use of this function can be deprecated by simplify_subreg in most 1399 cases. 1400 */ 1401 1402 rtx 1403 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode) 1404 { 1405 if (mode == VOIDmode) 1406 mode = GET_MODE (op); 1407 1408 gcc_assert (mode != VOIDmode); 1409 1410 /* If OP is narrower than a word, fail. */ 1411 if (mode != BLKmode 1412 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)) 1413 return 0; 1414 1415 /* If we want a word outside OP, return zero. */ 1416 if (mode != BLKmode 1417 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode)) 1418 return const0_rtx; 1419 1420 /* Form a new MEM at the requested address. */ 1421 if (MEM_P (op)) 1422 { 1423 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD); 1424 1425 if (! validate_address) 1426 return new_rtx; 1427 1428 else if (reload_completed) 1429 { 1430 if (! strict_memory_address_addr_space_p (word_mode, 1431 XEXP (new_rtx, 0), 1432 MEM_ADDR_SPACE (op))) 1433 return 0; 1434 } 1435 else 1436 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0)); 1437 } 1438 1439 /* Rest can be handled by simplify_subreg. */ 1440 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD)); 1441 } 1442 1443 /* Similar to `operand_subword', but never return 0. If we can't 1444 extract the required subword, put OP into a register and try again. 1445 The second attempt must succeed. We always validate the address in 1446 this case. 1447 1448 MODE is the mode of OP, in case it is CONST_INT. */ 1449 1450 rtx 1451 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode) 1452 { 1453 rtx result = operand_subword (op, offset, 1, mode); 1454 1455 if (result) 1456 return result; 1457 1458 if (mode != BLKmode && mode != VOIDmode) 1459 { 1460 /* If this is a register which can not be accessed by words, copy it 1461 to a pseudo register. */ 1462 if (REG_P (op)) 1463 op = copy_to_reg (op); 1464 else 1465 op = force_reg (mode, op); 1466 } 1467 1468 result = operand_subword (op, offset, 1, mode); 1469 gcc_assert (result); 1470 1471 return result; 1472 } 1473 1474 /* Returns 1 if both MEM_EXPR can be considered equal 1475 and 0 otherwise. */ 1476 1477 int 1478 mem_expr_equal_p (const_tree expr1, const_tree expr2) 1479 { 1480 if (expr1 == expr2) 1481 return 1; 1482 1483 if (! expr1 || ! expr2) 1484 return 0; 1485 1486 if (TREE_CODE (expr1) != TREE_CODE (expr2)) 1487 return 0; 1488 1489 return operand_equal_p (expr1, expr2, 0); 1490 } 1491 1492 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN 1493 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or 1494 -1 if not known. */ 1495 1496 int 1497 get_mem_align_offset (rtx mem, unsigned int align) 1498 { 1499 tree expr; 1500 unsigned HOST_WIDE_INT offset; 1501 1502 /* This function can't use 1503 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem) 1504 || (MAX (MEM_ALIGN (mem), 1505 MAX (align, get_object_alignment (MEM_EXPR (mem)))) 1506 < align)) 1507 return -1; 1508 else 1509 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1); 1510 for two reasons: 1511 - COMPONENT_REFs in MEM_EXPR can have NULL first operand, 1512 for <variable>. get_inner_reference doesn't handle it and 1513 even if it did, the alignment in that case needs to be determined 1514 from DECL_FIELD_CONTEXT's TYPE_ALIGN. 1515 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR 1516 isn't sufficiently aligned, the object it is in might be. */ 1517 gcc_assert (MEM_P (mem)); 1518 expr = MEM_EXPR (mem); 1519 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem)) 1520 return -1; 1521 1522 offset = MEM_OFFSET (mem); 1523 if (DECL_P (expr)) 1524 { 1525 if (DECL_ALIGN (expr) < align) 1526 return -1; 1527 } 1528 else if (INDIRECT_REF_P (expr)) 1529 { 1530 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align) 1531 return -1; 1532 } 1533 else if (TREE_CODE (expr) == COMPONENT_REF) 1534 { 1535 while (1) 1536 { 1537 tree inner = TREE_OPERAND (expr, 0); 1538 tree field = TREE_OPERAND (expr, 1); 1539 tree byte_offset = component_ref_field_offset (expr); 1540 tree bit_offset = DECL_FIELD_BIT_OFFSET (field); 1541 1542 if (!byte_offset 1543 || !host_integerp (byte_offset, 1) 1544 || !host_integerp (bit_offset, 1)) 1545 return -1; 1546 1547 offset += tree_low_cst (byte_offset, 1); 1548 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT; 1549 1550 if (inner == NULL_TREE) 1551 { 1552 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field)) 1553 < (unsigned int) align) 1554 return -1; 1555 break; 1556 } 1557 else if (DECL_P (inner)) 1558 { 1559 if (DECL_ALIGN (inner) < align) 1560 return -1; 1561 break; 1562 } 1563 else if (TREE_CODE (inner) != COMPONENT_REF) 1564 return -1; 1565 expr = inner; 1566 } 1567 } 1568 else 1569 return -1; 1570 1571 return offset & ((align / BITS_PER_UNIT) - 1); 1572 } 1573 1574 /* Given REF (a MEM) and T, either the type of X or the expression 1575 corresponding to REF, set the memory attributes. OBJECTP is nonzero 1576 if we are making a new object of this type. BITPOS is nonzero if 1577 there is an offset outstanding on T that will be applied later. */ 1578 1579 void 1580 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp, 1581 HOST_WIDE_INT bitpos) 1582 { 1583 HOST_WIDE_INT apply_bitpos = 0; 1584 tree type; 1585 struct mem_attrs attrs, *defattrs, *refattrs; 1586 addr_space_t as; 1587 1588 /* It can happen that type_for_mode was given a mode for which there 1589 is no language-level type. In which case it returns NULL, which 1590 we can see here. */ 1591 if (t == NULL_TREE) 1592 return; 1593 1594 type = TYPE_P (t) ? t : TREE_TYPE (t); 1595 if (type == error_mark_node) 1596 return; 1597 1598 /* If we have already set DECL_RTL = ref, get_alias_set will get the 1599 wrong answer, as it assumes that DECL_RTL already has the right alias 1600 info. Callers should not set DECL_RTL until after the call to 1601 set_mem_attributes. */ 1602 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t)); 1603 1604 memset (&attrs, 0, sizeof (attrs)); 1605 1606 /* Get the alias set from the expression or type (perhaps using a 1607 front-end routine) and use it. */ 1608 attrs.alias = get_alias_set (t); 1609 1610 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type); 1611 MEM_POINTER (ref) = POINTER_TYPE_P (type); 1612 1613 /* Default values from pre-existing memory attributes if present. */ 1614 refattrs = MEM_ATTRS (ref); 1615 if (refattrs) 1616 { 1617 /* ??? Can this ever happen? Calling this routine on a MEM that 1618 already carries memory attributes should probably be invalid. */ 1619 attrs.expr = refattrs->expr; 1620 attrs.offset_known_p = refattrs->offset_known_p; 1621 attrs.offset = refattrs->offset; 1622 attrs.size_known_p = refattrs->size_known_p; 1623 attrs.size = refattrs->size; 1624 attrs.align = refattrs->align; 1625 } 1626 1627 /* Otherwise, default values from the mode of the MEM reference. */ 1628 else 1629 { 1630 defattrs = mode_mem_attrs[(int) GET_MODE (ref)]; 1631 gcc_assert (!defattrs->expr); 1632 gcc_assert (!defattrs->offset_known_p); 1633 1634 /* Respect mode size. */ 1635 attrs.size_known_p = defattrs->size_known_p; 1636 attrs.size = defattrs->size; 1637 /* ??? Is this really necessary? We probably should always get 1638 the size from the type below. */ 1639 1640 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type; 1641 if T is an object, always compute the object alignment below. */ 1642 if (TYPE_P (t)) 1643 attrs.align = defattrs->align; 1644 else 1645 attrs.align = BITS_PER_UNIT; 1646 /* ??? If T is a type, respecting mode alignment may *also* be wrong 1647 e.g. if the type carries an alignment attribute. Should we be 1648 able to simply always use TYPE_ALIGN? */ 1649 } 1650 1651 /* We can set the alignment from the type if we are making an object, 1652 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */ 1653 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type)) 1654 attrs.align = MAX (attrs.align, TYPE_ALIGN (type)); 1655 1656 else if (TREE_CODE (t) == MEM_REF) 1657 { 1658 tree op0 = TREE_OPERAND (t, 0); 1659 if (TREE_CODE (op0) == ADDR_EXPR 1660 && (DECL_P (TREE_OPERAND (op0, 0)) 1661 || CONSTANT_CLASS_P (TREE_OPERAND (op0, 0)))) 1662 { 1663 if (DECL_P (TREE_OPERAND (op0, 0))) 1664 attrs.align = DECL_ALIGN (TREE_OPERAND (op0, 0)); 1665 else if (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))) 1666 { 1667 attrs.align = TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (op0, 0))); 1668 #ifdef CONSTANT_ALIGNMENT 1669 attrs.align = CONSTANT_ALIGNMENT (TREE_OPERAND (op0, 0), 1670 attrs.align); 1671 #endif 1672 } 1673 if (TREE_INT_CST_LOW (TREE_OPERAND (t, 1)) != 0) 1674 { 1675 unsigned HOST_WIDE_INT ioff 1676 = TREE_INT_CST_LOW (TREE_OPERAND (t, 1)); 1677 unsigned HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT; 1678 attrs.align = MIN (aoff, attrs.align); 1679 } 1680 } 1681 else 1682 /* ??? This isn't fully correct, we can't set the alignment from the 1683 type in all cases. */ 1684 attrs.align = MAX (attrs.align, TYPE_ALIGN (type)); 1685 } 1686 1687 else if (TREE_CODE (t) == TARGET_MEM_REF) 1688 /* ??? This isn't fully correct, we can't set the alignment from the 1689 type in all cases. */ 1690 attrs.align = MAX (attrs.align, TYPE_ALIGN (type)); 1691 1692 /* If the size is known, we can set that. */ 1693 tree new_size = TYPE_SIZE_UNIT (type); 1694 1695 /* If T is not a type, we may be able to deduce some more information about 1696 the expression. */ 1697 if (! TYPE_P (t)) 1698 { 1699 tree base; 1700 bool align_computed = false; 1701 1702 if (TREE_THIS_VOLATILE (t)) 1703 MEM_VOLATILE_P (ref) = 1; 1704 1705 /* Now remove any conversions: they don't change what the underlying 1706 object is. Likewise for SAVE_EXPR. */ 1707 while (CONVERT_EXPR_P (t) 1708 || TREE_CODE (t) == VIEW_CONVERT_EXPR 1709 || TREE_CODE (t) == SAVE_EXPR) 1710 t = TREE_OPERAND (t, 0); 1711 1712 /* Note whether this expression can trap. */ 1713 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t); 1714 1715 base = get_base_address (t); 1716 if (base) 1717 { 1718 if (DECL_P (base) 1719 && TREE_READONLY (base) 1720 && (TREE_STATIC (base) || DECL_EXTERNAL (base)) 1721 && !TREE_THIS_VOLATILE (base)) 1722 MEM_READONLY_P (ref) = 1; 1723 1724 /* Mark static const strings readonly as well. */ 1725 if (TREE_CODE (base) == STRING_CST 1726 && TREE_READONLY (base) 1727 && TREE_STATIC (base)) 1728 MEM_READONLY_P (ref) = 1; 1729 1730 if (TREE_CODE (base) == MEM_REF 1731 || TREE_CODE (base) == TARGET_MEM_REF) 1732 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base, 1733 0)))); 1734 else 1735 as = TYPE_ADDR_SPACE (TREE_TYPE (base)); 1736 } 1737 else 1738 as = TYPE_ADDR_SPACE (type); 1739 1740 /* If this expression uses it's parent's alias set, mark it such 1741 that we won't change it. */ 1742 if (component_uses_parent_alias_set (t)) 1743 MEM_KEEP_ALIAS_SET_P (ref) = 1; 1744 1745 /* If this is a decl, set the attributes of the MEM from it. */ 1746 if (DECL_P (t)) 1747 { 1748 attrs.expr = t; 1749 attrs.offset_known_p = true; 1750 attrs.offset = 0; 1751 apply_bitpos = bitpos; 1752 new_size = DECL_SIZE_UNIT (t); 1753 attrs.align = DECL_ALIGN (t); 1754 align_computed = true; 1755 } 1756 1757 /* If this is a constant, we know the alignment. */ 1758 else if (CONSTANT_CLASS_P (t)) 1759 { 1760 attrs.align = TYPE_ALIGN (type); 1761 #ifdef CONSTANT_ALIGNMENT 1762 attrs.align = CONSTANT_ALIGNMENT (t, attrs.align); 1763 #endif 1764 align_computed = true; 1765 } 1766 1767 /* If this is a field reference, record it. */ 1768 else if (TREE_CODE (t) == COMPONENT_REF) 1769 { 1770 attrs.expr = t; 1771 attrs.offset_known_p = true; 1772 attrs.offset = 0; 1773 apply_bitpos = bitpos; 1774 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1))) 1775 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1)); 1776 } 1777 1778 /* If this is an array reference, look for an outer field reference. */ 1779 else if (TREE_CODE (t) == ARRAY_REF) 1780 { 1781 tree off_tree = size_zero_node; 1782 /* We can't modify t, because we use it at the end of the 1783 function. */ 1784 tree t2 = t; 1785 1786 do 1787 { 1788 tree index = TREE_OPERAND (t2, 1); 1789 tree low_bound = array_ref_low_bound (t2); 1790 tree unit_size = array_ref_element_size (t2); 1791 1792 /* We assume all arrays have sizes that are a multiple of a byte. 1793 First subtract the lower bound, if any, in the type of the 1794 index, then convert to sizetype and multiply by the size of 1795 the array element. */ 1796 if (! integer_zerop (low_bound)) 1797 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index), 1798 index, low_bound); 1799 1800 off_tree = size_binop (PLUS_EXPR, 1801 size_binop (MULT_EXPR, 1802 fold_convert (sizetype, 1803 index), 1804 unit_size), 1805 off_tree); 1806 t2 = TREE_OPERAND (t2, 0); 1807 } 1808 while (TREE_CODE (t2) == ARRAY_REF); 1809 1810 if (DECL_P (t2)) 1811 { 1812 attrs.expr = t2; 1813 attrs.offset_known_p = false; 1814 if (host_integerp (off_tree, 1)) 1815 { 1816 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1); 1817 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT; 1818 attrs.align = DECL_ALIGN (t2); 1819 if (aoff && (unsigned HOST_WIDE_INT) aoff < attrs.align) 1820 attrs.align = aoff; 1821 align_computed = true; 1822 attrs.offset_known_p = true; 1823 attrs.offset = ioff; 1824 apply_bitpos = bitpos; 1825 } 1826 } 1827 else if (TREE_CODE (t2) == COMPONENT_REF) 1828 { 1829 attrs.expr = t2; 1830 attrs.offset_known_p = false; 1831 if (host_integerp (off_tree, 1)) 1832 { 1833 attrs.offset_known_p = true; 1834 attrs.offset = tree_low_cst (off_tree, 1); 1835 apply_bitpos = bitpos; 1836 } 1837 /* ??? Any reason the field size would be different than 1838 the size we got from the type? */ 1839 } 1840 } 1841 1842 /* If this is an indirect reference, record it. */ 1843 else if (TREE_CODE (t) == MEM_REF 1844 || TREE_CODE (t) == TARGET_MEM_REF) 1845 { 1846 attrs.expr = t; 1847 attrs.offset_known_p = true; 1848 attrs.offset = 0; 1849 apply_bitpos = bitpos; 1850 } 1851 1852 if (!align_computed) 1853 { 1854 unsigned int obj_align; 1855 unsigned HOST_WIDE_INT obj_bitpos; 1856 get_object_alignment_1 (t, &obj_align, &obj_bitpos); 1857 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1); 1858 if (obj_bitpos != 0) 1859 obj_align = (obj_bitpos & -obj_bitpos); 1860 attrs.align = MAX (attrs.align, obj_align); 1861 } 1862 } 1863 else 1864 as = TYPE_ADDR_SPACE (type); 1865 1866 if (host_integerp (new_size, 1)) 1867 { 1868 attrs.size_known_p = true; 1869 attrs.size = tree_low_cst (new_size, 1); 1870 } 1871 1872 /* If we modified OFFSET based on T, then subtract the outstanding 1873 bit position offset. Similarly, increase the size of the accessed 1874 object to contain the negative offset. */ 1875 if (apply_bitpos) 1876 { 1877 gcc_assert (attrs.offset_known_p); 1878 attrs.offset -= apply_bitpos / BITS_PER_UNIT; 1879 if (attrs.size_known_p) 1880 attrs.size += apply_bitpos / BITS_PER_UNIT; 1881 } 1882 1883 /* Now set the attributes we computed above. */ 1884 attrs.addrspace = as; 1885 set_mem_attrs (ref, &attrs); 1886 } 1887 1888 void 1889 set_mem_attributes (rtx ref, tree t, int objectp) 1890 { 1891 set_mem_attributes_minus_bitpos (ref, t, objectp, 0); 1892 } 1893 1894 /* Set the alias set of MEM to SET. */ 1895 1896 void 1897 set_mem_alias_set (rtx mem, alias_set_type set) 1898 { 1899 struct mem_attrs attrs; 1900 1901 /* If the new and old alias sets don't conflict, something is wrong. */ 1902 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem))); 1903 attrs = *get_mem_attrs (mem); 1904 attrs.alias = set; 1905 set_mem_attrs (mem, &attrs); 1906 } 1907 1908 /* Set the address space of MEM to ADDRSPACE (target-defined). */ 1909 1910 void 1911 set_mem_addr_space (rtx mem, addr_space_t addrspace) 1912 { 1913 struct mem_attrs attrs; 1914 1915 attrs = *get_mem_attrs (mem); 1916 attrs.addrspace = addrspace; 1917 set_mem_attrs (mem, &attrs); 1918 } 1919 1920 /* Set the alignment of MEM to ALIGN bits. */ 1921 1922 void 1923 set_mem_align (rtx mem, unsigned int align) 1924 { 1925 struct mem_attrs attrs; 1926 1927 attrs = *get_mem_attrs (mem); 1928 attrs.align = align; 1929 set_mem_attrs (mem, &attrs); 1930 } 1931 1932 /* Set the expr for MEM to EXPR. */ 1933 1934 void 1935 set_mem_expr (rtx mem, tree expr) 1936 { 1937 struct mem_attrs attrs; 1938 1939 attrs = *get_mem_attrs (mem); 1940 attrs.expr = expr; 1941 set_mem_attrs (mem, &attrs); 1942 } 1943 1944 /* Set the offset of MEM to OFFSET. */ 1945 1946 void 1947 set_mem_offset (rtx mem, HOST_WIDE_INT offset) 1948 { 1949 struct mem_attrs attrs; 1950 1951 attrs = *get_mem_attrs (mem); 1952 attrs.offset_known_p = true; 1953 attrs.offset = offset; 1954 set_mem_attrs (mem, &attrs); 1955 } 1956 1957 /* Clear the offset of MEM. */ 1958 1959 void 1960 clear_mem_offset (rtx mem) 1961 { 1962 struct mem_attrs attrs; 1963 1964 attrs = *get_mem_attrs (mem); 1965 attrs.offset_known_p = false; 1966 set_mem_attrs (mem, &attrs); 1967 } 1968 1969 /* Set the size of MEM to SIZE. */ 1970 1971 void 1972 set_mem_size (rtx mem, HOST_WIDE_INT size) 1973 { 1974 struct mem_attrs attrs; 1975 1976 attrs = *get_mem_attrs (mem); 1977 attrs.size_known_p = true; 1978 attrs.size = size; 1979 set_mem_attrs (mem, &attrs); 1980 } 1981 1982 /* Clear the size of MEM. */ 1983 1984 void 1985 clear_mem_size (rtx mem) 1986 { 1987 struct mem_attrs attrs; 1988 1989 attrs = *get_mem_attrs (mem); 1990 attrs.size_known_p = false; 1991 set_mem_attrs (mem, &attrs); 1992 } 1993 1994 /* Return a memory reference like MEMREF, but with its mode changed to MODE 1995 and its address changed to ADDR. (VOIDmode means don't change the mode. 1996 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the 1997 returned memory location is required to be valid. The memory 1998 attributes are not changed. */ 1999 2000 static rtx 2001 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate) 2002 { 2003 addr_space_t as; 2004 rtx new_rtx; 2005 2006 gcc_assert (MEM_P (memref)); 2007 as = MEM_ADDR_SPACE (memref); 2008 if (mode == VOIDmode) 2009 mode = GET_MODE (memref); 2010 if (addr == 0) 2011 addr = XEXP (memref, 0); 2012 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0) 2013 && (!validate || memory_address_addr_space_p (mode, addr, as))) 2014 return memref; 2015 2016 if (validate) 2017 { 2018 if (reload_in_progress || reload_completed) 2019 gcc_assert (memory_address_addr_space_p (mode, addr, as)); 2020 else 2021 addr = memory_address_addr_space (mode, addr, as); 2022 } 2023 2024 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref)) 2025 return memref; 2026 2027 new_rtx = gen_rtx_MEM (mode, addr); 2028 MEM_COPY_ATTRIBUTES (new_rtx, memref); 2029 return new_rtx; 2030 } 2031 2032 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what 2033 way we are changing MEMREF, so we only preserve the alias set. */ 2034 2035 rtx 2036 change_address (rtx memref, enum machine_mode mode, rtx addr) 2037 { 2038 rtx new_rtx = change_address_1 (memref, mode, addr, 1); 2039 enum machine_mode mmode = GET_MODE (new_rtx); 2040 struct mem_attrs attrs, *defattrs; 2041 2042 attrs = *get_mem_attrs (memref); 2043 defattrs = mode_mem_attrs[(int) mmode]; 2044 attrs.expr = NULL_TREE; 2045 attrs.offset_known_p = false; 2046 attrs.size_known_p = defattrs->size_known_p; 2047 attrs.size = defattrs->size; 2048 attrs.align = defattrs->align; 2049 2050 /* If there are no changes, just return the original memory reference. */ 2051 if (new_rtx == memref) 2052 { 2053 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs)) 2054 return new_rtx; 2055 2056 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0)); 2057 MEM_COPY_ATTRIBUTES (new_rtx, memref); 2058 } 2059 2060 set_mem_attrs (new_rtx, &attrs); 2061 return new_rtx; 2062 } 2063 2064 /* Return a memory reference like MEMREF, but with its mode changed 2065 to MODE and its address offset by OFFSET bytes. If VALIDATE is 2066 nonzero, the memory address is forced to be valid. 2067 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS 2068 and the caller is responsible for adjusting MEMREF base register. 2069 If ADJUST_OBJECT is zero, the underlying object associated with the 2070 memory reference is left unchanged and the caller is responsible for 2071 dealing with it. Otherwise, if the new memory reference is outside 2072 the underlying object, even partially, then the object is dropped. 2073 SIZE, if nonzero, is the size of an access in cases where MODE 2074 has no inherent size. */ 2075 2076 rtx 2077 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset, 2078 int validate, int adjust_address, int adjust_object, 2079 HOST_WIDE_INT size) 2080 { 2081 rtx addr = XEXP (memref, 0); 2082 rtx new_rtx; 2083 enum machine_mode address_mode; 2084 int pbits; 2085 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs; 2086 unsigned HOST_WIDE_INT max_align; 2087 #ifdef POINTERS_EXTEND_UNSIGNED 2088 enum machine_mode pointer_mode 2089 = targetm.addr_space.pointer_mode (attrs.addrspace); 2090 #endif 2091 2092 /* VOIDmode means no mode change for change_address_1. */ 2093 if (mode == VOIDmode) 2094 mode = GET_MODE (memref); 2095 2096 /* Take the size of non-BLKmode accesses from the mode. */ 2097 defattrs = mode_mem_attrs[(int) mode]; 2098 if (defattrs->size_known_p) 2099 size = defattrs->size; 2100 2101 /* If there are no changes, just return the original memory reference. */ 2102 if (mode == GET_MODE (memref) && !offset 2103 && (size == 0 || (attrs.size_known_p && attrs.size == size)) 2104 && (!validate || memory_address_addr_space_p (mode, addr, 2105 attrs.addrspace))) 2106 return memref; 2107 2108 /* ??? Prefer to create garbage instead of creating shared rtl. 2109 This may happen even if offset is nonzero -- consider 2110 (plus (plus reg reg) const_int) -- so do this always. */ 2111 addr = copy_rtx (addr); 2112 2113 /* Convert a possibly large offset to a signed value within the 2114 range of the target address space. */ 2115 address_mode = get_address_mode (memref); 2116 pbits = GET_MODE_BITSIZE (address_mode); 2117 if (HOST_BITS_PER_WIDE_INT > pbits) 2118 { 2119 int shift = HOST_BITS_PER_WIDE_INT - pbits; 2120 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift)) 2121 >> shift); 2122 } 2123 2124 if (adjust_address) 2125 { 2126 /* If MEMREF is a LO_SUM and the offset is within the alignment of the 2127 object, we can merge it into the LO_SUM. */ 2128 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM 2129 && offset >= 0 2130 && (unsigned HOST_WIDE_INT) offset 2131 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT) 2132 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0), 2133 plus_constant (address_mode, 2134 XEXP (addr, 1), offset)); 2135 #ifdef POINTERS_EXTEND_UNSIGNED 2136 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid 2137 in that mode, we merge it into the ZERO_EXTEND. We take advantage of 2138 the fact that pointers are not allowed to overflow. */ 2139 else if (POINTERS_EXTEND_UNSIGNED > 0 2140 && GET_CODE (addr) == ZERO_EXTEND 2141 && GET_MODE (XEXP (addr, 0)) == pointer_mode 2142 && trunc_int_for_mode (offset, pointer_mode) == offset) 2143 addr = gen_rtx_ZERO_EXTEND (address_mode, 2144 plus_constant (pointer_mode, 2145 XEXP (addr, 0), offset)); 2146 #endif 2147 else 2148 addr = plus_constant (address_mode, addr, offset); 2149 } 2150 2151 new_rtx = change_address_1 (memref, mode, addr, validate); 2152 2153 /* If the address is a REG, change_address_1 rightfully returns memref, 2154 but this would destroy memref's MEM_ATTRS. */ 2155 if (new_rtx == memref && offset != 0) 2156 new_rtx = copy_rtx (new_rtx); 2157 2158 /* Conservatively drop the object if we don't know where we start from. */ 2159 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p)) 2160 { 2161 attrs.expr = NULL_TREE; 2162 attrs.alias = 0; 2163 } 2164 2165 /* Compute the new values of the memory attributes due to this adjustment. 2166 We add the offsets and update the alignment. */ 2167 if (attrs.offset_known_p) 2168 { 2169 attrs.offset += offset; 2170 2171 /* Drop the object if the new left end is not within its bounds. */ 2172 if (adjust_object && attrs.offset < 0) 2173 { 2174 attrs.expr = NULL_TREE; 2175 attrs.alias = 0; 2176 } 2177 } 2178 2179 /* Compute the new alignment by taking the MIN of the alignment and the 2180 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET 2181 if zero. */ 2182 if (offset != 0) 2183 { 2184 max_align = (offset & -offset) * BITS_PER_UNIT; 2185 attrs.align = MIN (attrs.align, max_align); 2186 } 2187 2188 if (size) 2189 { 2190 /* Drop the object if the new right end is not within its bounds. */ 2191 if (adjust_object && (offset + size) > attrs.size) 2192 { 2193 attrs.expr = NULL_TREE; 2194 attrs.alias = 0; 2195 } 2196 attrs.size_known_p = true; 2197 attrs.size = size; 2198 } 2199 else if (attrs.size_known_p) 2200 { 2201 gcc_assert (!adjust_object); 2202 attrs.size -= offset; 2203 /* ??? The store_by_pieces machinery generates negative sizes, 2204 so don't assert for that here. */ 2205 } 2206 2207 set_mem_attrs (new_rtx, &attrs); 2208 2209 return new_rtx; 2210 } 2211 2212 /* Return a memory reference like MEMREF, but with its mode changed 2213 to MODE and its address changed to ADDR, which is assumed to be 2214 MEMREF offset by OFFSET bytes. If VALIDATE is 2215 nonzero, the memory address is forced to be valid. */ 2216 2217 rtx 2218 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr, 2219 HOST_WIDE_INT offset, int validate) 2220 { 2221 memref = change_address_1 (memref, VOIDmode, addr, validate); 2222 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0); 2223 } 2224 2225 /* Return a memory reference like MEMREF, but whose address is changed by 2226 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor 2227 known to be in OFFSET (possibly 1). */ 2228 2229 rtx 2230 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2) 2231 { 2232 rtx new_rtx, addr = XEXP (memref, 0); 2233 enum machine_mode address_mode; 2234 struct mem_attrs attrs, *defattrs; 2235 2236 attrs = *get_mem_attrs (memref); 2237 address_mode = get_address_mode (memref); 2238 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset); 2239 2240 /* At this point we don't know _why_ the address is invalid. It 2241 could have secondary memory references, multiplies or anything. 2242 2243 However, if we did go and rearrange things, we can wind up not 2244 being able to recognize the magic around pic_offset_table_rtx. 2245 This stuff is fragile, and is yet another example of why it is 2246 bad to expose PIC machinery too early. */ 2247 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx, 2248 attrs.addrspace) 2249 && GET_CODE (addr) == PLUS 2250 && XEXP (addr, 0) == pic_offset_table_rtx) 2251 { 2252 addr = force_reg (GET_MODE (addr), addr); 2253 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset); 2254 } 2255 2256 update_temp_slot_address (XEXP (memref, 0), new_rtx); 2257 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1); 2258 2259 /* If there are no changes, just return the original memory reference. */ 2260 if (new_rtx == memref) 2261 return new_rtx; 2262 2263 /* Update the alignment to reflect the offset. Reset the offset, which 2264 we don't know. */ 2265 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)]; 2266 attrs.offset_known_p = false; 2267 attrs.size_known_p = defattrs->size_known_p; 2268 attrs.size = defattrs->size; 2269 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT); 2270 set_mem_attrs (new_rtx, &attrs); 2271 return new_rtx; 2272 } 2273 2274 /* Return a memory reference like MEMREF, but with its address changed to 2275 ADDR. The caller is asserting that the actual piece of memory pointed 2276 to is the same, just the form of the address is being changed, such as 2277 by putting something into a register. */ 2278 2279 rtx 2280 replace_equiv_address (rtx memref, rtx addr) 2281 { 2282 /* change_address_1 copies the memory attribute structure without change 2283 and that's exactly what we want here. */ 2284 update_temp_slot_address (XEXP (memref, 0), addr); 2285 return change_address_1 (memref, VOIDmode, addr, 1); 2286 } 2287 2288 /* Likewise, but the reference is not required to be valid. */ 2289 2290 rtx 2291 replace_equiv_address_nv (rtx memref, rtx addr) 2292 { 2293 return change_address_1 (memref, VOIDmode, addr, 0); 2294 } 2295 2296 /* Return a memory reference like MEMREF, but with its mode widened to 2297 MODE and offset by OFFSET. This would be used by targets that e.g. 2298 cannot issue QImode memory operations and have to use SImode memory 2299 operations plus masking logic. */ 2300 2301 rtx 2302 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset) 2303 { 2304 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0); 2305 struct mem_attrs attrs; 2306 unsigned int size = GET_MODE_SIZE (mode); 2307 2308 /* If there are no changes, just return the original memory reference. */ 2309 if (new_rtx == memref) 2310 return new_rtx; 2311 2312 attrs = *get_mem_attrs (new_rtx); 2313 2314 /* If we don't know what offset we were at within the expression, then 2315 we can't know if we've overstepped the bounds. */ 2316 if (! attrs.offset_known_p) 2317 attrs.expr = NULL_TREE; 2318 2319 while (attrs.expr) 2320 { 2321 if (TREE_CODE (attrs.expr) == COMPONENT_REF) 2322 { 2323 tree field = TREE_OPERAND (attrs.expr, 1); 2324 tree offset = component_ref_field_offset (attrs.expr); 2325 2326 if (! DECL_SIZE_UNIT (field)) 2327 { 2328 attrs.expr = NULL_TREE; 2329 break; 2330 } 2331 2332 /* Is the field at least as large as the access? If so, ok, 2333 otherwise strip back to the containing structure. */ 2334 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST 2335 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0 2336 && attrs.offset >= 0) 2337 break; 2338 2339 if (! host_integerp (offset, 1)) 2340 { 2341 attrs.expr = NULL_TREE; 2342 break; 2343 } 2344 2345 attrs.expr = TREE_OPERAND (attrs.expr, 0); 2346 attrs.offset += tree_low_cst (offset, 1); 2347 attrs.offset += (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1) 2348 / BITS_PER_UNIT); 2349 } 2350 /* Similarly for the decl. */ 2351 else if (DECL_P (attrs.expr) 2352 && DECL_SIZE_UNIT (attrs.expr) 2353 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST 2354 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0 2355 && (! attrs.offset_known_p || attrs.offset >= 0)) 2356 break; 2357 else 2358 { 2359 /* The widened memory access overflows the expression, which means 2360 that it could alias another expression. Zap it. */ 2361 attrs.expr = NULL_TREE; 2362 break; 2363 } 2364 } 2365 2366 if (! attrs.expr) 2367 attrs.offset_known_p = false; 2368 2369 /* The widened memory may alias other stuff, so zap the alias set. */ 2370 /* ??? Maybe use get_alias_set on any remaining expression. */ 2371 attrs.alias = 0; 2372 attrs.size_known_p = true; 2373 attrs.size = size; 2374 set_mem_attrs (new_rtx, &attrs); 2375 return new_rtx; 2376 } 2377 2378 /* A fake decl that is used as the MEM_EXPR of spill slots. */ 2379 static GTY(()) tree spill_slot_decl; 2380 2381 tree 2382 get_spill_slot_decl (bool force_build_p) 2383 { 2384 tree d = spill_slot_decl; 2385 rtx rd; 2386 struct mem_attrs attrs; 2387 2388 if (d || !force_build_p) 2389 return d; 2390 2391 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl), 2392 VAR_DECL, get_identifier ("%sfp"), void_type_node); 2393 DECL_ARTIFICIAL (d) = 1; 2394 DECL_IGNORED_P (d) = 1; 2395 TREE_USED (d) = 1; 2396 spill_slot_decl = d; 2397 2398 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx); 2399 MEM_NOTRAP_P (rd) = 1; 2400 attrs = *mode_mem_attrs[(int) BLKmode]; 2401 attrs.alias = new_alias_set (); 2402 attrs.expr = d; 2403 set_mem_attrs (rd, &attrs); 2404 SET_DECL_RTL (d, rd); 2405 2406 return d; 2407 } 2408 2409 /* Given MEM, a result from assign_stack_local, fill in the memory 2410 attributes as appropriate for a register allocator spill slot. 2411 These slots are not aliasable by other memory. We arrange for 2412 them all to use a single MEM_EXPR, so that the aliasing code can 2413 work properly in the case of shared spill slots. */ 2414 2415 void 2416 set_mem_attrs_for_spill (rtx mem) 2417 { 2418 struct mem_attrs attrs; 2419 rtx addr; 2420 2421 attrs = *get_mem_attrs (mem); 2422 attrs.expr = get_spill_slot_decl (true); 2423 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr)); 2424 attrs.addrspace = ADDR_SPACE_GENERIC; 2425 2426 /* We expect the incoming memory to be of the form: 2427 (mem:MODE (plus (reg sfp) (const_int offset))) 2428 with perhaps the plus missing for offset = 0. */ 2429 addr = XEXP (mem, 0); 2430 attrs.offset_known_p = true; 2431 attrs.offset = 0; 2432 if (GET_CODE (addr) == PLUS 2433 && CONST_INT_P (XEXP (addr, 1))) 2434 attrs.offset = INTVAL (XEXP (addr, 1)); 2435 2436 set_mem_attrs (mem, &attrs); 2437 MEM_NOTRAP_P (mem) = 1; 2438 } 2439 2440 /* Return a newly created CODE_LABEL rtx with a unique label number. */ 2441 2442 rtx 2443 gen_label_rtx (void) 2444 { 2445 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX, 2446 NULL, label_num++, NULL); 2447 } 2448 2449 /* For procedure integration. */ 2450 2451 /* Install new pointers to the first and last insns in the chain. 2452 Also, set cur_insn_uid to one higher than the last in use. 2453 Used for an inline-procedure after copying the insn chain. */ 2454 2455 void 2456 set_new_first_and_last_insn (rtx first, rtx last) 2457 { 2458 rtx insn; 2459 2460 set_first_insn (first); 2461 set_last_insn (last); 2462 cur_insn_uid = 0; 2463 2464 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS) 2465 { 2466 int debug_count = 0; 2467 2468 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1; 2469 cur_debug_insn_uid = 0; 2470 2471 for (insn = first; insn; insn = NEXT_INSN (insn)) 2472 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID) 2473 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn)); 2474 else 2475 { 2476 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn)); 2477 if (DEBUG_INSN_P (insn)) 2478 debug_count++; 2479 } 2480 2481 if (debug_count) 2482 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count; 2483 else 2484 cur_debug_insn_uid++; 2485 } 2486 else 2487 for (insn = first; insn; insn = NEXT_INSN (insn)) 2488 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn)); 2489 2490 cur_insn_uid++; 2491 } 2492 2493 /* Go through all the RTL insn bodies and copy any invalid shared 2494 structure. This routine should only be called once. */ 2495 2496 static void 2497 unshare_all_rtl_1 (rtx insn) 2498 { 2499 /* Unshare just about everything else. */ 2500 unshare_all_rtl_in_chain (insn); 2501 2502 /* Make sure the addresses of stack slots found outside the insn chain 2503 (such as, in DECL_RTL of a variable) are not shared 2504 with the insn chain. 2505 2506 This special care is necessary when the stack slot MEM does not 2507 actually appear in the insn chain. If it does appear, its address 2508 is unshared from all else at that point. */ 2509 stack_slot_list = copy_rtx_if_shared (stack_slot_list); 2510 } 2511 2512 /* Go through all the RTL insn bodies and copy any invalid shared 2513 structure, again. This is a fairly expensive thing to do so it 2514 should be done sparingly. */ 2515 2516 void 2517 unshare_all_rtl_again (rtx insn) 2518 { 2519 rtx p; 2520 tree decl; 2521 2522 for (p = insn; p; p = NEXT_INSN (p)) 2523 if (INSN_P (p)) 2524 { 2525 reset_used_flags (PATTERN (p)); 2526 reset_used_flags (REG_NOTES (p)); 2527 if (CALL_P (p)) 2528 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p)); 2529 } 2530 2531 /* Make sure that virtual stack slots are not shared. */ 2532 set_used_decls (DECL_INITIAL (cfun->decl)); 2533 2534 /* Make sure that virtual parameters are not shared. */ 2535 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl)) 2536 set_used_flags (DECL_RTL (decl)); 2537 2538 reset_used_flags (stack_slot_list); 2539 2540 unshare_all_rtl_1 (insn); 2541 } 2542 2543 unsigned int 2544 unshare_all_rtl (void) 2545 { 2546 unshare_all_rtl_1 (get_insns ()); 2547 return 0; 2548 } 2549 2550 2551 /* Check that ORIG is not marked when it should not be and mark ORIG as in use, 2552 Recursively does the same for subexpressions. */ 2553 2554 static void 2555 verify_rtx_sharing (rtx orig, rtx insn) 2556 { 2557 rtx x = orig; 2558 int i; 2559 enum rtx_code code; 2560 const char *format_ptr; 2561 2562 if (x == 0) 2563 return; 2564 2565 code = GET_CODE (x); 2566 2567 /* These types may be freely shared. */ 2568 2569 switch (code) 2570 { 2571 case REG: 2572 case DEBUG_EXPR: 2573 case VALUE: 2574 CASE_CONST_ANY: 2575 case SYMBOL_REF: 2576 case LABEL_REF: 2577 case CODE_LABEL: 2578 case PC: 2579 case CC0: 2580 case RETURN: 2581 case SIMPLE_RETURN: 2582 case SCRATCH: 2583 /* SCRATCH must be shared because they represent distinct values. */ 2584 return; 2585 case CLOBBER: 2586 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg 2587 clobbers or clobbers of hard registers that originated as pseudos. 2588 This is needed to allow safe register renaming. */ 2589 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER 2590 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0))) 2591 return; 2592 break; 2593 2594 case CONST: 2595 if (shared_const_p (orig)) 2596 return; 2597 break; 2598 2599 case MEM: 2600 /* A MEM is allowed to be shared if its address is constant. */ 2601 if (CONSTANT_ADDRESS_P (XEXP (x, 0)) 2602 || reload_completed || reload_in_progress) 2603 return; 2604 2605 break; 2606 2607 default: 2608 break; 2609 } 2610 2611 /* This rtx may not be shared. If it has already been seen, 2612 replace it with a copy of itself. */ 2613 #ifdef ENABLE_CHECKING 2614 if (RTX_FLAG (x, used)) 2615 { 2616 error ("invalid rtl sharing found in the insn"); 2617 debug_rtx (insn); 2618 error ("shared rtx"); 2619 debug_rtx (x); 2620 internal_error ("internal consistency failure"); 2621 } 2622 #endif 2623 gcc_assert (!RTX_FLAG (x, used)); 2624 2625 RTX_FLAG (x, used) = 1; 2626 2627 /* Now scan the subexpressions recursively. */ 2628 2629 format_ptr = GET_RTX_FORMAT (code); 2630 2631 for (i = 0; i < GET_RTX_LENGTH (code); i++) 2632 { 2633 switch (*format_ptr++) 2634 { 2635 case 'e': 2636 verify_rtx_sharing (XEXP (x, i), insn); 2637 break; 2638 2639 case 'E': 2640 if (XVEC (x, i) != NULL) 2641 { 2642 int j; 2643 int len = XVECLEN (x, i); 2644 2645 for (j = 0; j < len; j++) 2646 { 2647 /* We allow sharing of ASM_OPERANDS inside single 2648 instruction. */ 2649 if (j && GET_CODE (XVECEXP (x, i, j)) == SET 2650 && (GET_CODE (SET_SRC (XVECEXP (x, i, j))) 2651 == ASM_OPERANDS)) 2652 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn); 2653 else 2654 verify_rtx_sharing (XVECEXP (x, i, j), insn); 2655 } 2656 } 2657 break; 2658 } 2659 } 2660 return; 2661 } 2662 2663 /* Go through all the RTL insn bodies and clear all the USED bits. */ 2664 2665 static void 2666 reset_all_used_flags (void) 2667 { 2668 rtx p; 2669 2670 for (p = get_insns (); p; p = NEXT_INSN (p)) 2671 if (INSN_P (p)) 2672 { 2673 reset_used_flags (PATTERN (p)); 2674 reset_used_flags (REG_NOTES (p)); 2675 if (CALL_P (p)) 2676 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p)); 2677 if (GET_CODE (PATTERN (p)) == SEQUENCE) 2678 { 2679 int i; 2680 rtx q, sequence = PATTERN (p); 2681 2682 for (i = 0; i < XVECLEN (sequence, 0); i++) 2683 { 2684 q = XVECEXP (sequence, 0, i); 2685 gcc_assert (INSN_P (q)); 2686 reset_used_flags (PATTERN (q)); 2687 reset_used_flags (REG_NOTES (q)); 2688 if (CALL_P (q)) 2689 reset_used_flags (CALL_INSN_FUNCTION_USAGE (q)); 2690 } 2691 } 2692 } 2693 } 2694 2695 /* Go through all the RTL insn bodies and check that there is no unexpected 2696 sharing in between the subexpressions. */ 2697 2698 DEBUG_FUNCTION void 2699 verify_rtl_sharing (void) 2700 { 2701 rtx p; 2702 2703 timevar_push (TV_VERIFY_RTL_SHARING); 2704 2705 reset_all_used_flags (); 2706 2707 for (p = get_insns (); p; p = NEXT_INSN (p)) 2708 if (INSN_P (p)) 2709 { 2710 verify_rtx_sharing (PATTERN (p), p); 2711 verify_rtx_sharing (REG_NOTES (p), p); 2712 if (CALL_P (p)) 2713 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (p), p); 2714 } 2715 2716 reset_all_used_flags (); 2717 2718 timevar_pop (TV_VERIFY_RTL_SHARING); 2719 } 2720 2721 /* Go through all the RTL insn bodies and copy any invalid shared structure. 2722 Assumes the mark bits are cleared at entry. */ 2723 2724 void 2725 unshare_all_rtl_in_chain (rtx insn) 2726 { 2727 for (; insn; insn = NEXT_INSN (insn)) 2728 if (INSN_P (insn)) 2729 { 2730 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn)); 2731 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn)); 2732 if (CALL_P (insn)) 2733 CALL_INSN_FUNCTION_USAGE (insn) 2734 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn)); 2735 } 2736 } 2737 2738 /* Go through all virtual stack slots of a function and mark them as 2739 shared. We never replace the DECL_RTLs themselves with a copy, 2740 but expressions mentioned into a DECL_RTL cannot be shared with 2741 expressions in the instruction stream. 2742 2743 Note that reload may convert pseudo registers into memories in-place. 2744 Pseudo registers are always shared, but MEMs never are. Thus if we 2745 reset the used flags on MEMs in the instruction stream, we must set 2746 them again on MEMs that appear in DECL_RTLs. */ 2747 2748 static void 2749 set_used_decls (tree blk) 2750 { 2751 tree t; 2752 2753 /* Mark decls. */ 2754 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t)) 2755 if (DECL_RTL_SET_P (t)) 2756 set_used_flags (DECL_RTL (t)); 2757 2758 /* Now process sub-blocks. */ 2759 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t)) 2760 set_used_decls (t); 2761 } 2762 2763 /* Mark ORIG as in use, and return a copy of it if it was already in use. 2764 Recursively does the same for subexpressions. Uses 2765 copy_rtx_if_shared_1 to reduce stack space. */ 2766 2767 rtx 2768 copy_rtx_if_shared (rtx orig) 2769 { 2770 copy_rtx_if_shared_1 (&orig); 2771 return orig; 2772 } 2773 2774 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in 2775 use. Recursively does the same for subexpressions. */ 2776 2777 static void 2778 copy_rtx_if_shared_1 (rtx *orig1) 2779 { 2780 rtx x; 2781 int i; 2782 enum rtx_code code; 2783 rtx *last_ptr; 2784 const char *format_ptr; 2785 int copied = 0; 2786 int length; 2787 2788 /* Repeat is used to turn tail-recursion into iteration. */ 2789 repeat: 2790 x = *orig1; 2791 2792 if (x == 0) 2793 return; 2794 2795 code = GET_CODE (x); 2796 2797 /* These types may be freely shared. */ 2798 2799 switch (code) 2800 { 2801 case REG: 2802 case DEBUG_EXPR: 2803 case VALUE: 2804 CASE_CONST_ANY: 2805 case SYMBOL_REF: 2806 case LABEL_REF: 2807 case CODE_LABEL: 2808 case PC: 2809 case CC0: 2810 case RETURN: 2811 case SIMPLE_RETURN: 2812 case SCRATCH: 2813 /* SCRATCH must be shared because they represent distinct values. */ 2814 return; 2815 case CLOBBER: 2816 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg 2817 clobbers or clobbers of hard registers that originated as pseudos. 2818 This is needed to allow safe register renaming. */ 2819 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER 2820 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0))) 2821 return; 2822 break; 2823 2824 case CONST: 2825 if (shared_const_p (x)) 2826 return; 2827 break; 2828 2829 case DEBUG_INSN: 2830 case INSN: 2831 case JUMP_INSN: 2832 case CALL_INSN: 2833 case NOTE: 2834 case BARRIER: 2835 /* The chain of insns is not being copied. */ 2836 return; 2837 2838 default: 2839 break; 2840 } 2841 2842 /* This rtx may not be shared. If it has already been seen, 2843 replace it with a copy of itself. */ 2844 2845 if (RTX_FLAG (x, used)) 2846 { 2847 x = shallow_copy_rtx (x); 2848 copied = 1; 2849 } 2850 RTX_FLAG (x, used) = 1; 2851 2852 /* Now scan the subexpressions recursively. 2853 We can store any replaced subexpressions directly into X 2854 since we know X is not shared! Any vectors in X 2855 must be copied if X was copied. */ 2856 2857 format_ptr = GET_RTX_FORMAT (code); 2858 length = GET_RTX_LENGTH (code); 2859 last_ptr = NULL; 2860 2861 for (i = 0; i < length; i++) 2862 { 2863 switch (*format_ptr++) 2864 { 2865 case 'e': 2866 if (last_ptr) 2867 copy_rtx_if_shared_1 (last_ptr); 2868 last_ptr = &XEXP (x, i); 2869 break; 2870 2871 case 'E': 2872 if (XVEC (x, i) != NULL) 2873 { 2874 int j; 2875 int len = XVECLEN (x, i); 2876 2877 /* Copy the vector iff I copied the rtx and the length 2878 is nonzero. */ 2879 if (copied && len > 0) 2880 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem); 2881 2882 /* Call recursively on all inside the vector. */ 2883 for (j = 0; j < len; j++) 2884 { 2885 if (last_ptr) 2886 copy_rtx_if_shared_1 (last_ptr); 2887 last_ptr = &XVECEXP (x, i, j); 2888 } 2889 } 2890 break; 2891 } 2892 } 2893 *orig1 = x; 2894 if (last_ptr) 2895 { 2896 orig1 = last_ptr; 2897 goto repeat; 2898 } 2899 return; 2900 } 2901 2902 /* Set the USED bit in X and its non-shareable subparts to FLAG. */ 2903 2904 static void 2905 mark_used_flags (rtx x, int flag) 2906 { 2907 int i, j; 2908 enum rtx_code code; 2909 const char *format_ptr; 2910 int length; 2911 2912 /* Repeat is used to turn tail-recursion into iteration. */ 2913 repeat: 2914 if (x == 0) 2915 return; 2916 2917 code = GET_CODE (x); 2918 2919 /* These types may be freely shared so we needn't do any resetting 2920 for them. */ 2921 2922 switch (code) 2923 { 2924 case REG: 2925 case DEBUG_EXPR: 2926 case VALUE: 2927 CASE_CONST_ANY: 2928 case SYMBOL_REF: 2929 case CODE_LABEL: 2930 case PC: 2931 case CC0: 2932 case RETURN: 2933 case SIMPLE_RETURN: 2934 return; 2935 2936 case DEBUG_INSN: 2937 case INSN: 2938 case JUMP_INSN: 2939 case CALL_INSN: 2940 case NOTE: 2941 case LABEL_REF: 2942 case BARRIER: 2943 /* The chain of insns is not being copied. */ 2944 return; 2945 2946 default: 2947 break; 2948 } 2949 2950 RTX_FLAG (x, used) = flag; 2951 2952 format_ptr = GET_RTX_FORMAT (code); 2953 length = GET_RTX_LENGTH (code); 2954 2955 for (i = 0; i < length; i++) 2956 { 2957 switch (*format_ptr++) 2958 { 2959 case 'e': 2960 if (i == length-1) 2961 { 2962 x = XEXP (x, i); 2963 goto repeat; 2964 } 2965 mark_used_flags (XEXP (x, i), flag); 2966 break; 2967 2968 case 'E': 2969 for (j = 0; j < XVECLEN (x, i); j++) 2970 mark_used_flags (XVECEXP (x, i, j), flag); 2971 break; 2972 } 2973 } 2974 } 2975 2976 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used 2977 to look for shared sub-parts. */ 2978 2979 void 2980 reset_used_flags (rtx x) 2981 { 2982 mark_used_flags (x, 0); 2983 } 2984 2985 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used 2986 to look for shared sub-parts. */ 2987 2988 void 2989 set_used_flags (rtx x) 2990 { 2991 mark_used_flags (x, 1); 2992 } 2993 2994 /* Copy X if necessary so that it won't be altered by changes in OTHER. 2995 Return X or the rtx for the pseudo reg the value of X was copied into. 2996 OTHER must be valid as a SET_DEST. */ 2997 2998 rtx 2999 make_safe_from (rtx x, rtx other) 3000 { 3001 while (1) 3002 switch (GET_CODE (other)) 3003 { 3004 case SUBREG: 3005 other = SUBREG_REG (other); 3006 break; 3007 case STRICT_LOW_PART: 3008 case SIGN_EXTEND: 3009 case ZERO_EXTEND: 3010 other = XEXP (other, 0); 3011 break; 3012 default: 3013 goto done; 3014 } 3015 done: 3016 if ((MEM_P (other) 3017 && ! CONSTANT_P (x) 3018 && !REG_P (x) 3019 && GET_CODE (x) != SUBREG) 3020 || (REG_P (other) 3021 && (REGNO (other) < FIRST_PSEUDO_REGISTER 3022 || reg_mentioned_p (other, x)))) 3023 { 3024 rtx temp = gen_reg_rtx (GET_MODE (x)); 3025 emit_move_insn (temp, x); 3026 return temp; 3027 } 3028 return x; 3029 } 3030 3031 /* Emission of insns (adding them to the doubly-linked list). */ 3032 3033 /* Return the last insn emitted, even if it is in a sequence now pushed. */ 3034 3035 rtx 3036 get_last_insn_anywhere (void) 3037 { 3038 struct sequence_stack *stack; 3039 if (get_last_insn ()) 3040 return get_last_insn (); 3041 for (stack = seq_stack; stack; stack = stack->next) 3042 if (stack->last != 0) 3043 return stack->last; 3044 return 0; 3045 } 3046 3047 /* Return the first nonnote insn emitted in current sequence or current 3048 function. This routine looks inside SEQUENCEs. */ 3049 3050 rtx 3051 get_first_nonnote_insn (void) 3052 { 3053 rtx insn = get_insns (); 3054 3055 if (insn) 3056 { 3057 if (NOTE_P (insn)) 3058 for (insn = next_insn (insn); 3059 insn && NOTE_P (insn); 3060 insn = next_insn (insn)) 3061 continue; 3062 else 3063 { 3064 if (NONJUMP_INSN_P (insn) 3065 && GET_CODE (PATTERN (insn)) == SEQUENCE) 3066 insn = XVECEXP (PATTERN (insn), 0, 0); 3067 } 3068 } 3069 3070 return insn; 3071 } 3072 3073 /* Return the last nonnote insn emitted in current sequence or current 3074 function. This routine looks inside SEQUENCEs. */ 3075 3076 rtx 3077 get_last_nonnote_insn (void) 3078 { 3079 rtx insn = get_last_insn (); 3080 3081 if (insn) 3082 { 3083 if (NOTE_P (insn)) 3084 for (insn = previous_insn (insn); 3085 insn && NOTE_P (insn); 3086 insn = previous_insn (insn)) 3087 continue; 3088 else 3089 { 3090 if (NONJUMP_INSN_P (insn) 3091 && GET_CODE (PATTERN (insn)) == SEQUENCE) 3092 insn = XVECEXP (PATTERN (insn), 0, 3093 XVECLEN (PATTERN (insn), 0) - 1); 3094 } 3095 } 3096 3097 return insn; 3098 } 3099 3100 /* Return the number of actual (non-debug) insns emitted in this 3101 function. */ 3102 3103 int 3104 get_max_insn_count (void) 3105 { 3106 int n = cur_insn_uid; 3107 3108 /* The table size must be stable across -g, to avoid codegen 3109 differences due to debug insns, and not be affected by 3110 -fmin-insn-uid, to avoid excessive table size and to simplify 3111 debugging of -fcompare-debug failures. */ 3112 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID) 3113 n -= cur_debug_insn_uid; 3114 else 3115 n -= MIN_NONDEBUG_INSN_UID; 3116 3117 return n; 3118 } 3119 3120 3121 /* Return the next insn. If it is a SEQUENCE, return the first insn 3122 of the sequence. */ 3123 3124 rtx 3125 next_insn (rtx insn) 3126 { 3127 if (insn) 3128 { 3129 insn = NEXT_INSN (insn); 3130 if (insn && NONJUMP_INSN_P (insn) 3131 && GET_CODE (PATTERN (insn)) == SEQUENCE) 3132 insn = XVECEXP (PATTERN (insn), 0, 0); 3133 } 3134 3135 return insn; 3136 } 3137 3138 /* Return the previous insn. If it is a SEQUENCE, return the last insn 3139 of the sequence. */ 3140 3141 rtx 3142 previous_insn (rtx insn) 3143 { 3144 if (insn) 3145 { 3146 insn = PREV_INSN (insn); 3147 if (insn && NONJUMP_INSN_P (insn) 3148 && GET_CODE (PATTERN (insn)) == SEQUENCE) 3149 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1); 3150 } 3151 3152 return insn; 3153 } 3154 3155 /* Return the next insn after INSN that is not a NOTE. This routine does not 3156 look inside SEQUENCEs. */ 3157 3158 rtx 3159 next_nonnote_insn (rtx insn) 3160 { 3161 while (insn) 3162 { 3163 insn = NEXT_INSN (insn); 3164 if (insn == 0 || !NOTE_P (insn)) 3165 break; 3166 } 3167 3168 return insn; 3169 } 3170 3171 /* Return the next insn after INSN that is not a NOTE, but stop the 3172 search before we enter another basic block. This routine does not 3173 look inside SEQUENCEs. */ 3174 3175 rtx 3176 next_nonnote_insn_bb (rtx insn) 3177 { 3178 while (insn) 3179 { 3180 insn = NEXT_INSN (insn); 3181 if (insn == 0 || !NOTE_P (insn)) 3182 break; 3183 if (NOTE_INSN_BASIC_BLOCK_P (insn)) 3184 return NULL_RTX; 3185 } 3186 3187 return insn; 3188 } 3189 3190 /* Return the previous insn before INSN that is not a NOTE. This routine does 3191 not look inside SEQUENCEs. */ 3192 3193 rtx 3194 prev_nonnote_insn (rtx insn) 3195 { 3196 while (insn) 3197 { 3198 insn = PREV_INSN (insn); 3199 if (insn == 0 || !NOTE_P (insn)) 3200 break; 3201 } 3202 3203 return insn; 3204 } 3205 3206 /* Return the previous insn before INSN that is not a NOTE, but stop 3207 the search before we enter another basic block. This routine does 3208 not look inside SEQUENCEs. */ 3209 3210 rtx 3211 prev_nonnote_insn_bb (rtx insn) 3212 { 3213 while (insn) 3214 { 3215 insn = PREV_INSN (insn); 3216 if (insn == 0 || !NOTE_P (insn)) 3217 break; 3218 if (NOTE_INSN_BASIC_BLOCK_P (insn)) 3219 return NULL_RTX; 3220 } 3221 3222 return insn; 3223 } 3224 3225 /* Return the next insn after INSN that is not a DEBUG_INSN. This 3226 routine does not look inside SEQUENCEs. */ 3227 3228 rtx 3229 next_nondebug_insn (rtx insn) 3230 { 3231 while (insn) 3232 { 3233 insn = NEXT_INSN (insn); 3234 if (insn == 0 || !DEBUG_INSN_P (insn)) 3235 break; 3236 } 3237 3238 return insn; 3239 } 3240 3241 /* Return the previous insn before INSN that is not a DEBUG_INSN. 3242 This routine does not look inside SEQUENCEs. */ 3243 3244 rtx 3245 prev_nondebug_insn (rtx insn) 3246 { 3247 while (insn) 3248 { 3249 insn = PREV_INSN (insn); 3250 if (insn == 0 || !DEBUG_INSN_P (insn)) 3251 break; 3252 } 3253 3254 return insn; 3255 } 3256 3257 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN. 3258 This routine does not look inside SEQUENCEs. */ 3259 3260 rtx 3261 next_nonnote_nondebug_insn (rtx insn) 3262 { 3263 while (insn) 3264 { 3265 insn = NEXT_INSN (insn); 3266 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn))) 3267 break; 3268 } 3269 3270 return insn; 3271 } 3272 3273 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN. 3274 This routine does not look inside SEQUENCEs. */ 3275 3276 rtx 3277 prev_nonnote_nondebug_insn (rtx insn) 3278 { 3279 while (insn) 3280 { 3281 insn = PREV_INSN (insn); 3282 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn))) 3283 break; 3284 } 3285 3286 return insn; 3287 } 3288 3289 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN; 3290 or 0, if there is none. This routine does not look inside 3291 SEQUENCEs. */ 3292 3293 rtx 3294 next_real_insn (rtx insn) 3295 { 3296 while (insn) 3297 { 3298 insn = NEXT_INSN (insn); 3299 if (insn == 0 || INSN_P (insn)) 3300 break; 3301 } 3302 3303 return insn; 3304 } 3305 3306 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN; 3307 or 0, if there is none. This routine does not look inside 3308 SEQUENCEs. */ 3309 3310 rtx 3311 prev_real_insn (rtx insn) 3312 { 3313 while (insn) 3314 { 3315 insn = PREV_INSN (insn); 3316 if (insn == 0 || INSN_P (insn)) 3317 break; 3318 } 3319 3320 return insn; 3321 } 3322 3323 /* Return the last CALL_INSN in the current list, or 0 if there is none. 3324 This routine does not look inside SEQUENCEs. */ 3325 3326 rtx 3327 last_call_insn (void) 3328 { 3329 rtx insn; 3330 3331 for (insn = get_last_insn (); 3332 insn && !CALL_P (insn); 3333 insn = PREV_INSN (insn)) 3334 ; 3335 3336 return insn; 3337 } 3338 3339 /* Find the next insn after INSN that really does something. This routine 3340 does not look inside SEQUENCEs. After reload this also skips over 3341 standalone USE and CLOBBER insn. */ 3342 3343 int 3344 active_insn_p (const_rtx insn) 3345 { 3346 return (CALL_P (insn) || JUMP_P (insn) 3347 || (NONJUMP_INSN_P (insn) 3348 && (! reload_completed 3349 || (GET_CODE (PATTERN (insn)) != USE 3350 && GET_CODE (PATTERN (insn)) != CLOBBER)))); 3351 } 3352 3353 rtx 3354 next_active_insn (rtx insn) 3355 { 3356 while (insn) 3357 { 3358 insn = NEXT_INSN (insn); 3359 if (insn == 0 || active_insn_p (insn)) 3360 break; 3361 } 3362 3363 return insn; 3364 } 3365 3366 /* Find the last insn before INSN that really does something. This routine 3367 does not look inside SEQUENCEs. After reload this also skips over 3368 standalone USE and CLOBBER insn. */ 3369 3370 rtx 3371 prev_active_insn (rtx insn) 3372 { 3373 while (insn) 3374 { 3375 insn = PREV_INSN (insn); 3376 if (insn == 0 || active_insn_p (insn)) 3377 break; 3378 } 3379 3380 return insn; 3381 } 3382 3383 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */ 3384 3385 rtx 3386 next_label (rtx insn) 3387 { 3388 while (insn) 3389 { 3390 insn = NEXT_INSN (insn); 3391 if (insn == 0 || LABEL_P (insn)) 3392 break; 3393 } 3394 3395 return insn; 3396 } 3397 3398 /* Return the last label to mark the same position as LABEL. Return LABEL 3399 itself if it is null or any return rtx. */ 3400 3401 rtx 3402 skip_consecutive_labels (rtx label) 3403 { 3404 rtx insn; 3405 3406 if (label && ANY_RETURN_P (label)) 3407 return label; 3408 3409 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn)) 3410 if (LABEL_P (insn)) 3411 label = insn; 3412 3413 return label; 3414 } 3415 3416 #ifdef HAVE_cc0 3417 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER 3418 and REG_CC_USER notes so we can find it. */ 3419 3420 void 3421 link_cc0_insns (rtx insn) 3422 { 3423 rtx user = next_nonnote_insn (insn); 3424 3425 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE) 3426 user = XVECEXP (PATTERN (user), 0, 0); 3427 3428 add_reg_note (user, REG_CC_SETTER, insn); 3429 add_reg_note (insn, REG_CC_USER, user); 3430 } 3431 3432 /* Return the next insn that uses CC0 after INSN, which is assumed to 3433 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter 3434 applied to the result of this function should yield INSN). 3435 3436 Normally, this is simply the next insn. However, if a REG_CC_USER note 3437 is present, it contains the insn that uses CC0. 3438 3439 Return 0 if we can't find the insn. */ 3440 3441 rtx 3442 next_cc0_user (rtx insn) 3443 { 3444 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX); 3445 3446 if (note) 3447 return XEXP (note, 0); 3448 3449 insn = next_nonnote_insn (insn); 3450 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE) 3451 insn = XVECEXP (PATTERN (insn), 0, 0); 3452 3453 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn))) 3454 return insn; 3455 3456 return 0; 3457 } 3458 3459 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER 3460 note, it is the previous insn. */ 3461 3462 rtx 3463 prev_cc0_setter (rtx insn) 3464 { 3465 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX); 3466 3467 if (note) 3468 return XEXP (note, 0); 3469 3470 insn = prev_nonnote_insn (insn); 3471 gcc_assert (sets_cc0_p (PATTERN (insn))); 3472 3473 return insn; 3474 } 3475 #endif 3476 3477 #ifdef AUTO_INC_DEC 3478 /* Find a RTX_AUTOINC class rtx which matches DATA. */ 3479 3480 static int 3481 find_auto_inc (rtx *xp, void *data) 3482 { 3483 rtx x = *xp; 3484 rtx reg = (rtx) data; 3485 3486 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC) 3487 return 0; 3488 3489 switch (GET_CODE (x)) 3490 { 3491 case PRE_DEC: 3492 case PRE_INC: 3493 case POST_DEC: 3494 case POST_INC: 3495 case PRE_MODIFY: 3496 case POST_MODIFY: 3497 if (rtx_equal_p (reg, XEXP (x, 0))) 3498 return 1; 3499 break; 3500 3501 default: 3502 gcc_unreachable (); 3503 } 3504 return -1; 3505 } 3506 #endif 3507 3508 /* Increment the label uses for all labels present in rtx. */ 3509 3510 static void 3511 mark_label_nuses (rtx x) 3512 { 3513 enum rtx_code code; 3514 int i, j; 3515 const char *fmt; 3516 3517 code = GET_CODE (x); 3518 if (code == LABEL_REF && LABEL_P (XEXP (x, 0))) 3519 LABEL_NUSES (XEXP (x, 0))++; 3520 3521 fmt = GET_RTX_FORMAT (code); 3522 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 3523 { 3524 if (fmt[i] == 'e') 3525 mark_label_nuses (XEXP (x, i)); 3526 else if (fmt[i] == 'E') 3527 for (j = XVECLEN (x, i) - 1; j >= 0; j--) 3528 mark_label_nuses (XVECEXP (x, i, j)); 3529 } 3530 } 3531 3532 3533 /* Try splitting insns that can be split for better scheduling. 3534 PAT is the pattern which might split. 3535 TRIAL is the insn providing PAT. 3536 LAST is nonzero if we should return the last insn of the sequence produced. 3537 3538 If this routine succeeds in splitting, it returns the first or last 3539 replacement insn depending on the value of LAST. Otherwise, it 3540 returns TRIAL. If the insn to be returned can be split, it will be. */ 3541 3542 rtx 3543 try_split (rtx pat, rtx trial, int last) 3544 { 3545 rtx before = PREV_INSN (trial); 3546 rtx after = NEXT_INSN (trial); 3547 int has_barrier = 0; 3548 rtx note, seq, tem; 3549 int probability; 3550 rtx insn_last, insn; 3551 int njumps = 0; 3552 3553 /* We're not good at redistributing frame information. */ 3554 if (RTX_FRAME_RELATED_P (trial)) 3555 return trial; 3556 3557 if (any_condjump_p (trial) 3558 && (note = find_reg_note (trial, REG_BR_PROB, 0))) 3559 split_branch_probability = INTVAL (XEXP (note, 0)); 3560 probability = split_branch_probability; 3561 3562 seq = split_insns (pat, trial); 3563 3564 split_branch_probability = -1; 3565 3566 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER. 3567 We may need to handle this specially. */ 3568 if (after && BARRIER_P (after)) 3569 { 3570 has_barrier = 1; 3571 after = NEXT_INSN (after); 3572 } 3573 3574 if (!seq) 3575 return trial; 3576 3577 /* Avoid infinite loop if any insn of the result matches 3578 the original pattern. */ 3579 insn_last = seq; 3580 while (1) 3581 { 3582 if (INSN_P (insn_last) 3583 && rtx_equal_p (PATTERN (insn_last), pat)) 3584 return trial; 3585 if (!NEXT_INSN (insn_last)) 3586 break; 3587 insn_last = NEXT_INSN (insn_last); 3588 } 3589 3590 /* We will be adding the new sequence to the function. The splitters 3591 may have introduced invalid RTL sharing, so unshare the sequence now. */ 3592 unshare_all_rtl_in_chain (seq); 3593 3594 /* Mark labels. */ 3595 for (insn = insn_last; insn ; insn = PREV_INSN (insn)) 3596 { 3597 if (JUMP_P (insn)) 3598 { 3599 mark_jump_label (PATTERN (insn), insn, 0); 3600 njumps++; 3601 if (probability != -1 3602 && any_condjump_p (insn) 3603 && !find_reg_note (insn, REG_BR_PROB, 0)) 3604 { 3605 /* We can preserve the REG_BR_PROB notes only if exactly 3606 one jump is created, otherwise the machine description 3607 is responsible for this step using 3608 split_branch_probability variable. */ 3609 gcc_assert (njumps == 1); 3610 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability)); 3611 } 3612 } 3613 } 3614 3615 /* If we are splitting a CALL_INSN, look for the CALL_INSN 3616 in SEQ and copy any additional information across. */ 3617 if (CALL_P (trial)) 3618 { 3619 for (insn = insn_last; insn ; insn = PREV_INSN (insn)) 3620 if (CALL_P (insn)) 3621 { 3622 rtx next, *p; 3623 3624 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the 3625 target may have explicitly specified. */ 3626 p = &CALL_INSN_FUNCTION_USAGE (insn); 3627 while (*p) 3628 p = &XEXP (*p, 1); 3629 *p = CALL_INSN_FUNCTION_USAGE (trial); 3630 3631 /* If the old call was a sibling call, the new one must 3632 be too. */ 3633 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial); 3634 3635 /* If the new call is the last instruction in the sequence, 3636 it will effectively replace the old call in-situ. Otherwise 3637 we must move any following NOTE_INSN_CALL_ARG_LOCATION note 3638 so that it comes immediately after the new call. */ 3639 if (NEXT_INSN (insn)) 3640 for (next = NEXT_INSN (trial); 3641 next && NOTE_P (next); 3642 next = NEXT_INSN (next)) 3643 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION) 3644 { 3645 remove_insn (next); 3646 add_insn_after (next, insn, NULL); 3647 break; 3648 } 3649 } 3650 } 3651 3652 /* Copy notes, particularly those related to the CFG. */ 3653 for (note = REG_NOTES (trial); note; note = XEXP (note, 1)) 3654 { 3655 switch (REG_NOTE_KIND (note)) 3656 { 3657 case REG_EH_REGION: 3658 copy_reg_eh_region_note_backward (note, insn_last, NULL); 3659 break; 3660 3661 case REG_NORETURN: 3662 case REG_SETJMP: 3663 case REG_TM: 3664 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn)) 3665 { 3666 if (CALL_P (insn)) 3667 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0)); 3668 } 3669 break; 3670 3671 case REG_NON_LOCAL_GOTO: 3672 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn)) 3673 { 3674 if (JUMP_P (insn)) 3675 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0)); 3676 } 3677 break; 3678 3679 #ifdef AUTO_INC_DEC 3680 case REG_INC: 3681 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn)) 3682 { 3683 rtx reg = XEXP (note, 0); 3684 if (!FIND_REG_INC_NOTE (insn, reg) 3685 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0) 3686 add_reg_note (insn, REG_INC, reg); 3687 } 3688 break; 3689 #endif 3690 3691 case REG_ARGS_SIZE: 3692 fixup_args_size_notes (NULL_RTX, insn_last, INTVAL (XEXP (note, 0))); 3693 break; 3694 3695 default: 3696 break; 3697 } 3698 } 3699 3700 /* If there are LABELS inside the split insns increment the 3701 usage count so we don't delete the label. */ 3702 if (INSN_P (trial)) 3703 { 3704 insn = insn_last; 3705 while (insn != NULL_RTX) 3706 { 3707 /* JUMP_P insns have already been "marked" above. */ 3708 if (NONJUMP_INSN_P (insn)) 3709 mark_label_nuses (PATTERN (insn)); 3710 3711 insn = PREV_INSN (insn); 3712 } 3713 } 3714 3715 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial)); 3716 3717 delete_insn (trial); 3718 if (has_barrier) 3719 emit_barrier_after (tem); 3720 3721 /* Recursively call try_split for each new insn created; by the 3722 time control returns here that insn will be fully split, so 3723 set LAST and continue from the insn after the one returned. 3724 We can't use next_active_insn here since AFTER may be a note. 3725 Ignore deleted insns, which can be occur if not optimizing. */ 3726 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem)) 3727 if (! INSN_DELETED_P (tem) && INSN_P (tem)) 3728 tem = try_split (PATTERN (tem), tem, 1); 3729 3730 /* Return either the first or the last insn, depending on which was 3731 requested. */ 3732 return last 3733 ? (after ? PREV_INSN (after) : get_last_insn ()) 3734 : NEXT_INSN (before); 3735 } 3736 3737 /* Make and return an INSN rtx, initializing all its slots. 3738 Store PATTERN in the pattern slots. */ 3739 3740 rtx 3741 make_insn_raw (rtx pattern) 3742 { 3743 rtx insn; 3744 3745 insn = rtx_alloc (INSN); 3746 3747 INSN_UID (insn) = cur_insn_uid++; 3748 PATTERN (insn) = pattern; 3749 INSN_CODE (insn) = -1; 3750 REG_NOTES (insn) = NULL; 3751 INSN_LOCATION (insn) = curr_insn_location (); 3752 BLOCK_FOR_INSN (insn) = NULL; 3753 3754 #ifdef ENABLE_RTL_CHECKING 3755 if (insn 3756 && INSN_P (insn) 3757 && (returnjump_p (insn) 3758 || (GET_CODE (insn) == SET 3759 && SET_DEST (insn) == pc_rtx))) 3760 { 3761 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n"); 3762 debug_rtx (insn); 3763 } 3764 #endif 3765 3766 return insn; 3767 } 3768 3769 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */ 3770 3771 static rtx 3772 make_debug_insn_raw (rtx pattern) 3773 { 3774 rtx insn; 3775 3776 insn = rtx_alloc (DEBUG_INSN); 3777 INSN_UID (insn) = cur_debug_insn_uid++; 3778 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID) 3779 INSN_UID (insn) = cur_insn_uid++; 3780 3781 PATTERN (insn) = pattern; 3782 INSN_CODE (insn) = -1; 3783 REG_NOTES (insn) = NULL; 3784 INSN_LOCATION (insn) = curr_insn_location (); 3785 BLOCK_FOR_INSN (insn) = NULL; 3786 3787 return insn; 3788 } 3789 3790 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */ 3791 3792 static rtx 3793 make_jump_insn_raw (rtx pattern) 3794 { 3795 rtx insn; 3796 3797 insn = rtx_alloc (JUMP_INSN); 3798 INSN_UID (insn) = cur_insn_uid++; 3799 3800 PATTERN (insn) = pattern; 3801 INSN_CODE (insn) = -1; 3802 REG_NOTES (insn) = NULL; 3803 JUMP_LABEL (insn) = NULL; 3804 INSN_LOCATION (insn) = curr_insn_location (); 3805 BLOCK_FOR_INSN (insn) = NULL; 3806 3807 return insn; 3808 } 3809 3810 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */ 3811 3812 static rtx 3813 make_call_insn_raw (rtx pattern) 3814 { 3815 rtx insn; 3816 3817 insn = rtx_alloc (CALL_INSN); 3818 INSN_UID (insn) = cur_insn_uid++; 3819 3820 PATTERN (insn) = pattern; 3821 INSN_CODE (insn) = -1; 3822 REG_NOTES (insn) = NULL; 3823 CALL_INSN_FUNCTION_USAGE (insn) = NULL; 3824 INSN_LOCATION (insn) = curr_insn_location (); 3825 BLOCK_FOR_INSN (insn) = NULL; 3826 3827 return insn; 3828 } 3829 3830 /* Add INSN to the end of the doubly-linked list. 3831 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */ 3832 3833 void 3834 add_insn (rtx insn) 3835 { 3836 PREV_INSN (insn) = get_last_insn(); 3837 NEXT_INSN (insn) = 0; 3838 3839 if (NULL != get_last_insn()) 3840 NEXT_INSN (get_last_insn ()) = insn; 3841 3842 if (NULL == get_insns ()) 3843 set_first_insn (insn); 3844 3845 set_last_insn (insn); 3846 } 3847 3848 /* Add INSN into the doubly-linked list after insn AFTER. This and 3849 the next should be the only functions called to insert an insn once 3850 delay slots have been filled since only they know how to update a 3851 SEQUENCE. */ 3852 3853 void 3854 add_insn_after (rtx insn, rtx after, basic_block bb) 3855 { 3856 rtx next = NEXT_INSN (after); 3857 3858 gcc_assert (!optimize || !INSN_DELETED_P (after)); 3859 3860 NEXT_INSN (insn) = next; 3861 PREV_INSN (insn) = after; 3862 3863 if (next) 3864 { 3865 PREV_INSN (next) = insn; 3866 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE) 3867 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn; 3868 } 3869 else if (get_last_insn () == after) 3870 set_last_insn (insn); 3871 else 3872 { 3873 struct sequence_stack *stack = seq_stack; 3874 /* Scan all pending sequences too. */ 3875 for (; stack; stack = stack->next) 3876 if (after == stack->last) 3877 { 3878 stack->last = insn; 3879 break; 3880 } 3881 3882 gcc_assert (stack); 3883 } 3884 3885 if (!BARRIER_P (after) 3886 && !BARRIER_P (insn) 3887 && (bb = BLOCK_FOR_INSN (after))) 3888 { 3889 set_block_for_insn (insn, bb); 3890 if (INSN_P (insn)) 3891 df_insn_rescan (insn); 3892 /* Should not happen as first in the BB is always 3893 either NOTE or LABEL. */ 3894 if (BB_END (bb) == after 3895 /* Avoid clobbering of structure when creating new BB. */ 3896 && !BARRIER_P (insn) 3897 && !NOTE_INSN_BASIC_BLOCK_P (insn)) 3898 BB_END (bb) = insn; 3899 } 3900 3901 NEXT_INSN (after) = insn; 3902 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE) 3903 { 3904 rtx sequence = PATTERN (after); 3905 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn; 3906 } 3907 } 3908 3909 /* Add INSN into the doubly-linked list before insn BEFORE. This and 3910 the previous should be the only functions called to insert an insn 3911 once delay slots have been filled since only they know how to 3912 update a SEQUENCE. If BB is NULL, an attempt is made to infer the 3913 bb from before. */ 3914 3915 void 3916 add_insn_before (rtx insn, rtx before, basic_block bb) 3917 { 3918 rtx prev = PREV_INSN (before); 3919 3920 gcc_assert (!optimize || !INSN_DELETED_P (before)); 3921 3922 PREV_INSN (insn) = prev; 3923 NEXT_INSN (insn) = before; 3924 3925 if (prev) 3926 { 3927 NEXT_INSN (prev) = insn; 3928 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE) 3929 { 3930 rtx sequence = PATTERN (prev); 3931 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn; 3932 } 3933 } 3934 else if (get_insns () == before) 3935 set_first_insn (insn); 3936 else 3937 { 3938 struct sequence_stack *stack = seq_stack; 3939 /* Scan all pending sequences too. */ 3940 for (; stack; stack = stack->next) 3941 if (before == stack->first) 3942 { 3943 stack->first = insn; 3944 break; 3945 } 3946 3947 gcc_assert (stack); 3948 } 3949 3950 if (!bb 3951 && !BARRIER_P (before) 3952 && !BARRIER_P (insn)) 3953 bb = BLOCK_FOR_INSN (before); 3954 3955 if (bb) 3956 { 3957 set_block_for_insn (insn, bb); 3958 if (INSN_P (insn)) 3959 df_insn_rescan (insn); 3960 /* Should not happen as first in the BB is always either NOTE or 3961 LABEL. */ 3962 gcc_assert (BB_HEAD (bb) != insn 3963 /* Avoid clobbering of structure when creating new BB. */ 3964 || BARRIER_P (insn) 3965 || NOTE_INSN_BASIC_BLOCK_P (insn)); 3966 } 3967 3968 PREV_INSN (before) = insn; 3969 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE) 3970 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn; 3971 } 3972 3973 3974 /* Replace insn with an deleted instruction note. */ 3975 3976 void 3977 set_insn_deleted (rtx insn) 3978 { 3979 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn)); 3980 PUT_CODE (insn, NOTE); 3981 NOTE_KIND (insn) = NOTE_INSN_DELETED; 3982 } 3983 3984 3985 /* Remove an insn from its doubly-linked list. This function knows how 3986 to handle sequences. */ 3987 void 3988 remove_insn (rtx insn) 3989 { 3990 rtx next = NEXT_INSN (insn); 3991 rtx prev = PREV_INSN (insn); 3992 basic_block bb; 3993 3994 /* Later in the code, the block will be marked dirty. */ 3995 df_insn_delete (NULL, INSN_UID (insn)); 3996 3997 if (prev) 3998 { 3999 NEXT_INSN (prev) = next; 4000 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE) 4001 { 4002 rtx sequence = PATTERN (prev); 4003 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next; 4004 } 4005 } 4006 else if (get_insns () == insn) 4007 { 4008 if (next) 4009 PREV_INSN (next) = NULL; 4010 set_first_insn (next); 4011 } 4012 else 4013 { 4014 struct sequence_stack *stack = seq_stack; 4015 /* Scan all pending sequences too. */ 4016 for (; stack; stack = stack->next) 4017 if (insn == stack->first) 4018 { 4019 stack->first = next; 4020 break; 4021 } 4022 4023 gcc_assert (stack); 4024 } 4025 4026 if (next) 4027 { 4028 PREV_INSN (next) = prev; 4029 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE) 4030 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev; 4031 } 4032 else if (get_last_insn () == insn) 4033 set_last_insn (prev); 4034 else 4035 { 4036 struct sequence_stack *stack = seq_stack; 4037 /* Scan all pending sequences too. */ 4038 for (; stack; stack = stack->next) 4039 if (insn == stack->last) 4040 { 4041 stack->last = prev; 4042 break; 4043 } 4044 4045 gcc_assert (stack); 4046 } 4047 if (!BARRIER_P (insn) 4048 && (bb = BLOCK_FOR_INSN (insn))) 4049 { 4050 if (NONDEBUG_INSN_P (insn)) 4051 df_set_bb_dirty (bb); 4052 if (BB_HEAD (bb) == insn) 4053 { 4054 /* Never ever delete the basic block note without deleting whole 4055 basic block. */ 4056 gcc_assert (!NOTE_P (insn)); 4057 BB_HEAD (bb) = next; 4058 } 4059 if (BB_END (bb) == insn) 4060 BB_END (bb) = prev; 4061 } 4062 } 4063 4064 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */ 4065 4066 void 4067 add_function_usage_to (rtx call_insn, rtx call_fusage) 4068 { 4069 gcc_assert (call_insn && CALL_P (call_insn)); 4070 4071 /* Put the register usage information on the CALL. If there is already 4072 some usage information, put ours at the end. */ 4073 if (CALL_INSN_FUNCTION_USAGE (call_insn)) 4074 { 4075 rtx link; 4076 4077 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0; 4078 link = XEXP (link, 1)) 4079 ; 4080 4081 XEXP (link, 1) = call_fusage; 4082 } 4083 else 4084 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage; 4085 } 4086 4087 /* Delete all insns made since FROM. 4088 FROM becomes the new last instruction. */ 4089 4090 void 4091 delete_insns_since (rtx from) 4092 { 4093 if (from == 0) 4094 set_first_insn (0); 4095 else 4096 NEXT_INSN (from) = 0; 4097 set_last_insn (from); 4098 } 4099 4100 /* This function is deprecated, please use sequences instead. 4101 4102 Move a consecutive bunch of insns to a different place in the chain. 4103 The insns to be moved are those between FROM and TO. 4104 They are moved to a new position after the insn AFTER. 4105 AFTER must not be FROM or TO or any insn in between. 4106 4107 This function does not know about SEQUENCEs and hence should not be 4108 called after delay-slot filling has been done. */ 4109 4110 void 4111 reorder_insns_nobb (rtx from, rtx to, rtx after) 4112 { 4113 #ifdef ENABLE_CHECKING 4114 rtx x; 4115 for (x = from; x != to; x = NEXT_INSN (x)) 4116 gcc_assert (after != x); 4117 gcc_assert (after != to); 4118 #endif 4119 4120 /* Splice this bunch out of where it is now. */ 4121 if (PREV_INSN (from)) 4122 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to); 4123 if (NEXT_INSN (to)) 4124 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from); 4125 if (get_last_insn () == to) 4126 set_last_insn (PREV_INSN (from)); 4127 if (get_insns () == from) 4128 set_first_insn (NEXT_INSN (to)); 4129 4130 /* Make the new neighbors point to it and it to them. */ 4131 if (NEXT_INSN (after)) 4132 PREV_INSN (NEXT_INSN (after)) = to; 4133 4134 NEXT_INSN (to) = NEXT_INSN (after); 4135 PREV_INSN (from) = after; 4136 NEXT_INSN (after) = from; 4137 if (after == get_last_insn()) 4138 set_last_insn (to); 4139 } 4140 4141 /* Same as function above, but take care to update BB boundaries. */ 4142 void 4143 reorder_insns (rtx from, rtx to, rtx after) 4144 { 4145 rtx prev = PREV_INSN (from); 4146 basic_block bb, bb2; 4147 4148 reorder_insns_nobb (from, to, after); 4149 4150 if (!BARRIER_P (after) 4151 && (bb = BLOCK_FOR_INSN (after))) 4152 { 4153 rtx x; 4154 df_set_bb_dirty (bb); 4155 4156 if (!BARRIER_P (from) 4157 && (bb2 = BLOCK_FOR_INSN (from))) 4158 { 4159 if (BB_END (bb2) == to) 4160 BB_END (bb2) = prev; 4161 df_set_bb_dirty (bb2); 4162 } 4163 4164 if (BB_END (bb) == after) 4165 BB_END (bb) = to; 4166 4167 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x)) 4168 if (!BARRIER_P (x)) 4169 df_insn_change_bb (x, bb); 4170 } 4171 } 4172 4173 4174 /* Emit insn(s) of given code and pattern 4175 at a specified place within the doubly-linked list. 4176 4177 All of the emit_foo global entry points accept an object 4178 X which is either an insn list or a PATTERN of a single 4179 instruction. 4180 4181 There are thus a few canonical ways to generate code and 4182 emit it at a specific place in the instruction stream. For 4183 example, consider the instruction named SPOT and the fact that 4184 we would like to emit some instructions before SPOT. We might 4185 do it like this: 4186 4187 start_sequence (); 4188 ... emit the new instructions ... 4189 insns_head = get_insns (); 4190 end_sequence (); 4191 4192 emit_insn_before (insns_head, SPOT); 4193 4194 It used to be common to generate SEQUENCE rtl instead, but that 4195 is a relic of the past which no longer occurs. The reason is that 4196 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE 4197 generated would almost certainly die right after it was created. */ 4198 4199 static rtx 4200 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb, 4201 rtx (*make_raw) (rtx)) 4202 { 4203 rtx insn; 4204 4205 gcc_assert (before); 4206 4207 if (x == NULL_RTX) 4208 return last; 4209 4210 switch (GET_CODE (x)) 4211 { 4212 case DEBUG_INSN: 4213 case INSN: 4214 case JUMP_INSN: 4215 case CALL_INSN: 4216 case CODE_LABEL: 4217 case BARRIER: 4218 case NOTE: 4219 insn = x; 4220 while (insn) 4221 { 4222 rtx next = NEXT_INSN (insn); 4223 add_insn_before (insn, before, bb); 4224 last = insn; 4225 insn = next; 4226 } 4227 break; 4228 4229 #ifdef ENABLE_RTL_CHECKING 4230 case SEQUENCE: 4231 gcc_unreachable (); 4232 break; 4233 #endif 4234 4235 default: 4236 last = (*make_raw) (x); 4237 add_insn_before (last, before, bb); 4238 break; 4239 } 4240 4241 return last; 4242 } 4243 4244 /* Make X be output before the instruction BEFORE. */ 4245 4246 rtx 4247 emit_insn_before_noloc (rtx x, rtx before, basic_block bb) 4248 { 4249 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw); 4250 } 4251 4252 /* Make an instruction with body X and code JUMP_INSN 4253 and output it before the instruction BEFORE. */ 4254 4255 rtx 4256 emit_jump_insn_before_noloc (rtx x, rtx before) 4257 { 4258 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL, 4259 make_jump_insn_raw); 4260 } 4261 4262 /* Make an instruction with body X and code CALL_INSN 4263 and output it before the instruction BEFORE. */ 4264 4265 rtx 4266 emit_call_insn_before_noloc (rtx x, rtx before) 4267 { 4268 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL, 4269 make_call_insn_raw); 4270 } 4271 4272 /* Make an instruction with body X and code DEBUG_INSN 4273 and output it before the instruction BEFORE. */ 4274 4275 rtx 4276 emit_debug_insn_before_noloc (rtx x, rtx before) 4277 { 4278 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL, 4279 make_debug_insn_raw); 4280 } 4281 4282 /* Make an insn of code BARRIER 4283 and output it before the insn BEFORE. */ 4284 4285 rtx 4286 emit_barrier_before (rtx before) 4287 { 4288 rtx insn = rtx_alloc (BARRIER); 4289 4290 INSN_UID (insn) = cur_insn_uid++; 4291 4292 add_insn_before (insn, before, NULL); 4293 return insn; 4294 } 4295 4296 /* Emit the label LABEL before the insn BEFORE. */ 4297 4298 rtx 4299 emit_label_before (rtx label, rtx before) 4300 { 4301 gcc_checking_assert (INSN_UID (label) == 0); 4302 INSN_UID (label) = cur_insn_uid++; 4303 add_insn_before (label, before, NULL); 4304 return label; 4305 } 4306 4307 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */ 4308 4309 rtx 4310 emit_note_before (enum insn_note subtype, rtx before) 4311 { 4312 rtx note = rtx_alloc (NOTE); 4313 INSN_UID (note) = cur_insn_uid++; 4314 NOTE_KIND (note) = subtype; 4315 BLOCK_FOR_INSN (note) = NULL; 4316 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note))); 4317 4318 add_insn_before (note, before, NULL); 4319 return note; 4320 } 4321 4322 /* Helper for emit_insn_after, handles lists of instructions 4323 efficiently. */ 4324 4325 static rtx 4326 emit_insn_after_1 (rtx first, rtx after, basic_block bb) 4327 { 4328 rtx last; 4329 rtx after_after; 4330 if (!bb && !BARRIER_P (after)) 4331 bb = BLOCK_FOR_INSN (after); 4332 4333 if (bb) 4334 { 4335 df_set_bb_dirty (bb); 4336 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last)) 4337 if (!BARRIER_P (last)) 4338 { 4339 set_block_for_insn (last, bb); 4340 df_insn_rescan (last); 4341 } 4342 if (!BARRIER_P (last)) 4343 { 4344 set_block_for_insn (last, bb); 4345 df_insn_rescan (last); 4346 } 4347 if (BB_END (bb) == after) 4348 BB_END (bb) = last; 4349 } 4350 else 4351 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last)) 4352 continue; 4353 4354 after_after = NEXT_INSN (after); 4355 4356 NEXT_INSN (after) = first; 4357 PREV_INSN (first) = after; 4358 NEXT_INSN (last) = after_after; 4359 if (after_after) 4360 PREV_INSN (after_after) = last; 4361 4362 if (after == get_last_insn()) 4363 set_last_insn (last); 4364 4365 return last; 4366 } 4367 4368 static rtx 4369 emit_pattern_after_noloc (rtx x, rtx after, basic_block bb, 4370 rtx (*make_raw)(rtx)) 4371 { 4372 rtx last = after; 4373 4374 gcc_assert (after); 4375 4376 if (x == NULL_RTX) 4377 return last; 4378 4379 switch (GET_CODE (x)) 4380 { 4381 case DEBUG_INSN: 4382 case INSN: 4383 case JUMP_INSN: 4384 case CALL_INSN: 4385 case CODE_LABEL: 4386 case BARRIER: 4387 case NOTE: 4388 last = emit_insn_after_1 (x, after, bb); 4389 break; 4390 4391 #ifdef ENABLE_RTL_CHECKING 4392 case SEQUENCE: 4393 gcc_unreachable (); 4394 break; 4395 #endif 4396 4397 default: 4398 last = (*make_raw) (x); 4399 add_insn_after (last, after, bb); 4400 break; 4401 } 4402 4403 return last; 4404 } 4405 4406 /* Make X be output after the insn AFTER and set the BB of insn. If 4407 BB is NULL, an attempt is made to infer the BB from AFTER. */ 4408 4409 rtx 4410 emit_insn_after_noloc (rtx x, rtx after, basic_block bb) 4411 { 4412 return emit_pattern_after_noloc (x, after, bb, make_insn_raw); 4413 } 4414 4415 4416 /* Make an insn of code JUMP_INSN with body X 4417 and output it after the insn AFTER. */ 4418 4419 rtx 4420 emit_jump_insn_after_noloc (rtx x, rtx after) 4421 { 4422 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw); 4423 } 4424 4425 /* Make an instruction with body X and code CALL_INSN 4426 and output it after the instruction AFTER. */ 4427 4428 rtx 4429 emit_call_insn_after_noloc (rtx x, rtx after) 4430 { 4431 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw); 4432 } 4433 4434 /* Make an instruction with body X and code CALL_INSN 4435 and output it after the instruction AFTER. */ 4436 4437 rtx 4438 emit_debug_insn_after_noloc (rtx x, rtx after) 4439 { 4440 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw); 4441 } 4442 4443 /* Make an insn of code BARRIER 4444 and output it after the insn AFTER. */ 4445 4446 rtx 4447 emit_barrier_after (rtx after) 4448 { 4449 rtx insn = rtx_alloc (BARRIER); 4450 4451 INSN_UID (insn) = cur_insn_uid++; 4452 4453 add_insn_after (insn, after, NULL); 4454 return insn; 4455 } 4456 4457 /* Emit the label LABEL after the insn AFTER. */ 4458 4459 rtx 4460 emit_label_after (rtx label, rtx after) 4461 { 4462 gcc_checking_assert (INSN_UID (label) == 0); 4463 INSN_UID (label) = cur_insn_uid++; 4464 add_insn_after (label, after, NULL); 4465 return label; 4466 } 4467 4468 /* Emit a note of subtype SUBTYPE after the insn AFTER. */ 4469 4470 rtx 4471 emit_note_after (enum insn_note subtype, rtx after) 4472 { 4473 rtx note = rtx_alloc (NOTE); 4474 INSN_UID (note) = cur_insn_uid++; 4475 NOTE_KIND (note) = subtype; 4476 BLOCK_FOR_INSN (note) = NULL; 4477 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note))); 4478 add_insn_after (note, after, NULL); 4479 return note; 4480 } 4481 4482 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC. 4483 MAKE_RAW indicates how to turn PATTERN into a real insn. */ 4484 4485 static rtx 4486 emit_pattern_after_setloc (rtx pattern, rtx after, int loc, 4487 rtx (*make_raw) (rtx)) 4488 { 4489 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw); 4490 4491 if (pattern == NULL_RTX || !loc) 4492 return last; 4493 4494 after = NEXT_INSN (after); 4495 while (1) 4496 { 4497 if (active_insn_p (after) && !INSN_LOCATION (after)) 4498 INSN_LOCATION (after) = loc; 4499 if (after == last) 4500 break; 4501 after = NEXT_INSN (after); 4502 } 4503 return last; 4504 } 4505 4506 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN 4507 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after 4508 any DEBUG_INSNs. */ 4509 4510 static rtx 4511 emit_pattern_after (rtx pattern, rtx after, bool skip_debug_insns, 4512 rtx (*make_raw) (rtx)) 4513 { 4514 rtx prev = after; 4515 4516 if (skip_debug_insns) 4517 while (DEBUG_INSN_P (prev)) 4518 prev = PREV_INSN (prev); 4519 4520 if (INSN_P (prev)) 4521 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev), 4522 make_raw); 4523 else 4524 return emit_pattern_after_noloc (pattern, after, NULL, make_raw); 4525 } 4526 4527 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */ 4528 rtx 4529 emit_insn_after_setloc (rtx pattern, rtx after, int loc) 4530 { 4531 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw); 4532 } 4533 4534 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */ 4535 rtx 4536 emit_insn_after (rtx pattern, rtx after) 4537 { 4538 return emit_pattern_after (pattern, after, true, make_insn_raw); 4539 } 4540 4541 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */ 4542 rtx 4543 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc) 4544 { 4545 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw); 4546 } 4547 4548 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */ 4549 rtx 4550 emit_jump_insn_after (rtx pattern, rtx after) 4551 { 4552 return emit_pattern_after (pattern, after, true, make_jump_insn_raw); 4553 } 4554 4555 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */ 4556 rtx 4557 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc) 4558 { 4559 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw); 4560 } 4561 4562 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */ 4563 rtx 4564 emit_call_insn_after (rtx pattern, rtx after) 4565 { 4566 return emit_pattern_after (pattern, after, true, make_call_insn_raw); 4567 } 4568 4569 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */ 4570 rtx 4571 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc) 4572 { 4573 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw); 4574 } 4575 4576 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */ 4577 rtx 4578 emit_debug_insn_after (rtx pattern, rtx after) 4579 { 4580 return emit_pattern_after (pattern, after, false, make_debug_insn_raw); 4581 } 4582 4583 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC. 4584 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP 4585 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN, 4586 CALL_INSN, etc. */ 4587 4588 static rtx 4589 emit_pattern_before_setloc (rtx pattern, rtx before, int loc, bool insnp, 4590 rtx (*make_raw) (rtx)) 4591 { 4592 rtx first = PREV_INSN (before); 4593 rtx last = emit_pattern_before_noloc (pattern, before, 4594 insnp ? before : NULL_RTX, 4595 NULL, make_raw); 4596 4597 if (pattern == NULL_RTX || !loc) 4598 return last; 4599 4600 if (!first) 4601 first = get_insns (); 4602 else 4603 first = NEXT_INSN (first); 4604 while (1) 4605 { 4606 if (active_insn_p (first) && !INSN_LOCATION (first)) 4607 INSN_LOCATION (first) = loc; 4608 if (first == last) 4609 break; 4610 first = NEXT_INSN (first); 4611 } 4612 return last; 4613 } 4614 4615 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN 4616 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert 4617 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an 4618 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */ 4619 4620 static rtx 4621 emit_pattern_before (rtx pattern, rtx before, bool skip_debug_insns, 4622 bool insnp, rtx (*make_raw) (rtx)) 4623 { 4624 rtx next = before; 4625 4626 if (skip_debug_insns) 4627 while (DEBUG_INSN_P (next)) 4628 next = PREV_INSN (next); 4629 4630 if (INSN_P (next)) 4631 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next), 4632 insnp, make_raw); 4633 else 4634 return emit_pattern_before_noloc (pattern, before, 4635 insnp ? before : NULL_RTX, 4636 NULL, make_raw); 4637 } 4638 4639 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */ 4640 rtx 4641 emit_insn_before_setloc (rtx pattern, rtx before, int loc) 4642 { 4643 return emit_pattern_before_setloc (pattern, before, loc, true, 4644 make_insn_raw); 4645 } 4646 4647 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */ 4648 rtx 4649 emit_insn_before (rtx pattern, rtx before) 4650 { 4651 return emit_pattern_before (pattern, before, true, true, make_insn_raw); 4652 } 4653 4654 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */ 4655 rtx 4656 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc) 4657 { 4658 return emit_pattern_before_setloc (pattern, before, loc, false, 4659 make_jump_insn_raw); 4660 } 4661 4662 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */ 4663 rtx 4664 emit_jump_insn_before (rtx pattern, rtx before) 4665 { 4666 return emit_pattern_before (pattern, before, true, false, 4667 make_jump_insn_raw); 4668 } 4669 4670 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */ 4671 rtx 4672 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc) 4673 { 4674 return emit_pattern_before_setloc (pattern, before, loc, false, 4675 make_call_insn_raw); 4676 } 4677 4678 /* Like emit_call_insn_before_noloc, 4679 but set insn_location according to BEFORE. */ 4680 rtx 4681 emit_call_insn_before (rtx pattern, rtx before) 4682 { 4683 return emit_pattern_before (pattern, before, true, false, 4684 make_call_insn_raw); 4685 } 4686 4687 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */ 4688 rtx 4689 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc) 4690 { 4691 return emit_pattern_before_setloc (pattern, before, loc, false, 4692 make_debug_insn_raw); 4693 } 4694 4695 /* Like emit_debug_insn_before_noloc, 4696 but set insn_location according to BEFORE. */ 4697 rtx 4698 emit_debug_insn_before (rtx pattern, rtx before) 4699 { 4700 return emit_pattern_before (pattern, before, false, false, 4701 make_debug_insn_raw); 4702 } 4703 4704 /* Take X and emit it at the end of the doubly-linked 4705 INSN list. 4706 4707 Returns the last insn emitted. */ 4708 4709 rtx 4710 emit_insn (rtx x) 4711 { 4712 rtx last = get_last_insn(); 4713 rtx insn; 4714 4715 if (x == NULL_RTX) 4716 return last; 4717 4718 switch (GET_CODE (x)) 4719 { 4720 case DEBUG_INSN: 4721 case INSN: 4722 case JUMP_INSN: 4723 case CALL_INSN: 4724 case CODE_LABEL: 4725 case BARRIER: 4726 case NOTE: 4727 insn = x; 4728 while (insn) 4729 { 4730 rtx next = NEXT_INSN (insn); 4731 add_insn (insn); 4732 last = insn; 4733 insn = next; 4734 } 4735 break; 4736 4737 #ifdef ENABLE_RTL_CHECKING 4738 case SEQUENCE: 4739 gcc_unreachable (); 4740 break; 4741 #endif 4742 4743 default: 4744 last = make_insn_raw (x); 4745 add_insn (last); 4746 break; 4747 } 4748 4749 return last; 4750 } 4751 4752 /* Make an insn of code DEBUG_INSN with pattern X 4753 and add it to the end of the doubly-linked list. */ 4754 4755 rtx 4756 emit_debug_insn (rtx x) 4757 { 4758 rtx last = get_last_insn(); 4759 rtx insn; 4760 4761 if (x == NULL_RTX) 4762 return last; 4763 4764 switch (GET_CODE (x)) 4765 { 4766 case DEBUG_INSN: 4767 case INSN: 4768 case JUMP_INSN: 4769 case CALL_INSN: 4770 case CODE_LABEL: 4771 case BARRIER: 4772 case NOTE: 4773 insn = x; 4774 while (insn) 4775 { 4776 rtx next = NEXT_INSN (insn); 4777 add_insn (insn); 4778 last = insn; 4779 insn = next; 4780 } 4781 break; 4782 4783 #ifdef ENABLE_RTL_CHECKING 4784 case SEQUENCE: 4785 gcc_unreachable (); 4786 break; 4787 #endif 4788 4789 default: 4790 last = make_debug_insn_raw (x); 4791 add_insn (last); 4792 break; 4793 } 4794 4795 return last; 4796 } 4797 4798 /* Make an insn of code JUMP_INSN with pattern X 4799 and add it to the end of the doubly-linked list. */ 4800 4801 rtx 4802 emit_jump_insn (rtx x) 4803 { 4804 rtx last = NULL_RTX, insn; 4805 4806 switch (GET_CODE (x)) 4807 { 4808 case DEBUG_INSN: 4809 case INSN: 4810 case JUMP_INSN: 4811 case CALL_INSN: 4812 case CODE_LABEL: 4813 case BARRIER: 4814 case NOTE: 4815 insn = x; 4816 while (insn) 4817 { 4818 rtx next = NEXT_INSN (insn); 4819 add_insn (insn); 4820 last = insn; 4821 insn = next; 4822 } 4823 break; 4824 4825 #ifdef ENABLE_RTL_CHECKING 4826 case SEQUENCE: 4827 gcc_unreachable (); 4828 break; 4829 #endif 4830 4831 default: 4832 last = make_jump_insn_raw (x); 4833 add_insn (last); 4834 break; 4835 } 4836 4837 return last; 4838 } 4839 4840 /* Make an insn of code CALL_INSN with pattern X 4841 and add it to the end of the doubly-linked list. */ 4842 4843 rtx 4844 emit_call_insn (rtx x) 4845 { 4846 rtx insn; 4847 4848 switch (GET_CODE (x)) 4849 { 4850 case DEBUG_INSN: 4851 case INSN: 4852 case JUMP_INSN: 4853 case CALL_INSN: 4854 case CODE_LABEL: 4855 case BARRIER: 4856 case NOTE: 4857 insn = emit_insn (x); 4858 break; 4859 4860 #ifdef ENABLE_RTL_CHECKING 4861 case SEQUENCE: 4862 gcc_unreachable (); 4863 break; 4864 #endif 4865 4866 default: 4867 insn = make_call_insn_raw (x); 4868 add_insn (insn); 4869 break; 4870 } 4871 4872 return insn; 4873 } 4874 4875 /* Add the label LABEL to the end of the doubly-linked list. */ 4876 4877 rtx 4878 emit_label (rtx label) 4879 { 4880 gcc_checking_assert (INSN_UID (label) == 0); 4881 INSN_UID (label) = cur_insn_uid++; 4882 add_insn (label); 4883 return label; 4884 } 4885 4886 /* Make an insn of code BARRIER 4887 and add it to the end of the doubly-linked list. */ 4888 4889 rtx 4890 emit_barrier (void) 4891 { 4892 rtx barrier = rtx_alloc (BARRIER); 4893 INSN_UID (barrier) = cur_insn_uid++; 4894 add_insn (barrier); 4895 return barrier; 4896 } 4897 4898 /* Emit a copy of note ORIG. */ 4899 4900 rtx 4901 emit_note_copy (rtx orig) 4902 { 4903 rtx note; 4904 4905 note = rtx_alloc (NOTE); 4906 4907 INSN_UID (note) = cur_insn_uid++; 4908 NOTE_DATA (note) = NOTE_DATA (orig); 4909 NOTE_KIND (note) = NOTE_KIND (orig); 4910 BLOCK_FOR_INSN (note) = NULL; 4911 add_insn (note); 4912 4913 return note; 4914 } 4915 4916 /* Make an insn of code NOTE or type NOTE_NO 4917 and add it to the end of the doubly-linked list. */ 4918 4919 rtx 4920 emit_note (enum insn_note kind) 4921 { 4922 rtx note; 4923 4924 note = rtx_alloc (NOTE); 4925 INSN_UID (note) = cur_insn_uid++; 4926 NOTE_KIND (note) = kind; 4927 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note))); 4928 BLOCK_FOR_INSN (note) = NULL; 4929 add_insn (note); 4930 return note; 4931 } 4932 4933 /* Emit a clobber of lvalue X. */ 4934 4935 rtx 4936 emit_clobber (rtx x) 4937 { 4938 /* CONCATs should not appear in the insn stream. */ 4939 if (GET_CODE (x) == CONCAT) 4940 { 4941 emit_clobber (XEXP (x, 0)); 4942 return emit_clobber (XEXP (x, 1)); 4943 } 4944 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x)); 4945 } 4946 4947 /* Return a sequence of insns to clobber lvalue X. */ 4948 4949 rtx 4950 gen_clobber (rtx x) 4951 { 4952 rtx seq; 4953 4954 start_sequence (); 4955 emit_clobber (x); 4956 seq = get_insns (); 4957 end_sequence (); 4958 return seq; 4959 } 4960 4961 /* Emit a use of rvalue X. */ 4962 4963 rtx 4964 emit_use (rtx x) 4965 { 4966 /* CONCATs should not appear in the insn stream. */ 4967 if (GET_CODE (x) == CONCAT) 4968 { 4969 emit_use (XEXP (x, 0)); 4970 return emit_use (XEXP (x, 1)); 4971 } 4972 return emit_insn (gen_rtx_USE (VOIDmode, x)); 4973 } 4974 4975 /* Return a sequence of insns to use rvalue X. */ 4976 4977 rtx 4978 gen_use (rtx x) 4979 { 4980 rtx seq; 4981 4982 start_sequence (); 4983 emit_use (x); 4984 seq = get_insns (); 4985 end_sequence (); 4986 return seq; 4987 } 4988 4989 /* Place a note of KIND on insn INSN with DATUM as the datum. If a 4990 note of this type already exists, remove it first. */ 4991 4992 rtx 4993 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum) 4994 { 4995 rtx note = find_reg_note (insn, kind, NULL_RTX); 4996 4997 switch (kind) 4998 { 4999 case REG_EQUAL: 5000 case REG_EQUIV: 5001 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn 5002 has multiple sets (some callers assume single_set 5003 means the insn only has one set, when in fact it 5004 means the insn only has one * useful * set). */ 5005 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn)) 5006 { 5007 gcc_assert (!note); 5008 return NULL_RTX; 5009 } 5010 5011 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes. 5012 It serves no useful purpose and breaks eliminate_regs. */ 5013 if (GET_CODE (datum) == ASM_OPERANDS) 5014 return NULL_RTX; 5015 5016 if (note) 5017 { 5018 XEXP (note, 0) = datum; 5019 df_notes_rescan (insn); 5020 return note; 5021 } 5022 break; 5023 5024 default: 5025 if (note) 5026 { 5027 XEXP (note, 0) = datum; 5028 return note; 5029 } 5030 break; 5031 } 5032 5033 add_reg_note (insn, kind, datum); 5034 5035 switch (kind) 5036 { 5037 case REG_EQUAL: 5038 case REG_EQUIV: 5039 df_notes_rescan (insn); 5040 break; 5041 default: 5042 break; 5043 } 5044 5045 return REG_NOTES (insn); 5046 } 5047 5048 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */ 5049 rtx 5050 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst) 5051 { 5052 rtx set = single_set (insn); 5053 5054 if (set && SET_DEST (set) == dst) 5055 return set_unique_reg_note (insn, kind, datum); 5056 return NULL_RTX; 5057 } 5058 5059 /* Return an indication of which type of insn should have X as a body. 5060 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */ 5061 5062 static enum rtx_code 5063 classify_insn (rtx x) 5064 { 5065 if (LABEL_P (x)) 5066 return CODE_LABEL; 5067 if (GET_CODE (x) == CALL) 5068 return CALL_INSN; 5069 if (ANY_RETURN_P (x)) 5070 return JUMP_INSN; 5071 if (GET_CODE (x) == SET) 5072 { 5073 if (SET_DEST (x) == pc_rtx) 5074 return JUMP_INSN; 5075 else if (GET_CODE (SET_SRC (x)) == CALL) 5076 return CALL_INSN; 5077 else 5078 return INSN; 5079 } 5080 if (GET_CODE (x) == PARALLEL) 5081 { 5082 int j; 5083 for (j = XVECLEN (x, 0) - 1; j >= 0; j--) 5084 if (GET_CODE (XVECEXP (x, 0, j)) == CALL) 5085 return CALL_INSN; 5086 else if (GET_CODE (XVECEXP (x, 0, j)) == SET 5087 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx) 5088 return JUMP_INSN; 5089 else if (GET_CODE (XVECEXP (x, 0, j)) == SET 5090 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL) 5091 return CALL_INSN; 5092 } 5093 return INSN; 5094 } 5095 5096 /* Emit the rtl pattern X as an appropriate kind of insn. 5097 If X is a label, it is simply added into the insn chain. */ 5098 5099 rtx 5100 emit (rtx x) 5101 { 5102 enum rtx_code code = classify_insn (x); 5103 5104 switch (code) 5105 { 5106 case CODE_LABEL: 5107 return emit_label (x); 5108 case INSN: 5109 return emit_insn (x); 5110 case JUMP_INSN: 5111 { 5112 rtx insn = emit_jump_insn (x); 5113 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN) 5114 return emit_barrier (); 5115 return insn; 5116 } 5117 case CALL_INSN: 5118 return emit_call_insn (x); 5119 case DEBUG_INSN: 5120 return emit_debug_insn (x); 5121 default: 5122 gcc_unreachable (); 5123 } 5124 } 5125 5126 /* Space for free sequence stack entries. */ 5127 static GTY ((deletable)) struct sequence_stack *free_sequence_stack; 5128 5129 /* Begin emitting insns to a sequence. If this sequence will contain 5130 something that might cause the compiler to pop arguments to function 5131 calls (because those pops have previously been deferred; see 5132 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust 5133 before calling this function. That will ensure that the deferred 5134 pops are not accidentally emitted in the middle of this sequence. */ 5135 5136 void 5137 start_sequence (void) 5138 { 5139 struct sequence_stack *tem; 5140 5141 if (free_sequence_stack != NULL) 5142 { 5143 tem = free_sequence_stack; 5144 free_sequence_stack = tem->next; 5145 } 5146 else 5147 tem = ggc_alloc_sequence_stack (); 5148 5149 tem->next = seq_stack; 5150 tem->first = get_insns (); 5151 tem->last = get_last_insn (); 5152 5153 seq_stack = tem; 5154 5155 set_first_insn (0); 5156 set_last_insn (0); 5157 } 5158 5159 /* Set up the insn chain starting with FIRST as the current sequence, 5160 saving the previously current one. See the documentation for 5161 start_sequence for more information about how to use this function. */ 5162 5163 void 5164 push_to_sequence (rtx first) 5165 { 5166 rtx last; 5167 5168 start_sequence (); 5169 5170 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last)) 5171 ; 5172 5173 set_first_insn (first); 5174 set_last_insn (last); 5175 } 5176 5177 /* Like push_to_sequence, but take the last insn as an argument to avoid 5178 looping through the list. */ 5179 5180 void 5181 push_to_sequence2 (rtx first, rtx last) 5182 { 5183 start_sequence (); 5184 5185 set_first_insn (first); 5186 set_last_insn (last); 5187 } 5188 5189 /* Set up the outer-level insn chain 5190 as the current sequence, saving the previously current one. */ 5191 5192 void 5193 push_topmost_sequence (void) 5194 { 5195 struct sequence_stack *stack, *top = NULL; 5196 5197 start_sequence (); 5198 5199 for (stack = seq_stack; stack; stack = stack->next) 5200 top = stack; 5201 5202 set_first_insn (top->first); 5203 set_last_insn (top->last); 5204 } 5205 5206 /* After emitting to the outer-level insn chain, update the outer-level 5207 insn chain, and restore the previous saved state. */ 5208 5209 void 5210 pop_topmost_sequence (void) 5211 { 5212 struct sequence_stack *stack, *top = NULL; 5213 5214 for (stack = seq_stack; stack; stack = stack->next) 5215 top = stack; 5216 5217 top->first = get_insns (); 5218 top->last = get_last_insn (); 5219 5220 end_sequence (); 5221 } 5222 5223 /* After emitting to a sequence, restore previous saved state. 5224 5225 To get the contents of the sequence just made, you must call 5226 `get_insns' *before* calling here. 5227 5228 If the compiler might have deferred popping arguments while 5229 generating this sequence, and this sequence will not be immediately 5230 inserted into the instruction stream, use do_pending_stack_adjust 5231 before calling get_insns. That will ensure that the deferred 5232 pops are inserted into this sequence, and not into some random 5233 location in the instruction stream. See INHIBIT_DEFER_POP for more 5234 information about deferred popping of arguments. */ 5235 5236 void 5237 end_sequence (void) 5238 { 5239 struct sequence_stack *tem = seq_stack; 5240 5241 set_first_insn (tem->first); 5242 set_last_insn (tem->last); 5243 seq_stack = tem->next; 5244 5245 memset (tem, 0, sizeof (*tem)); 5246 tem->next = free_sequence_stack; 5247 free_sequence_stack = tem; 5248 } 5249 5250 /* Return 1 if currently emitting into a sequence. */ 5251 5252 int 5253 in_sequence_p (void) 5254 { 5255 return seq_stack != 0; 5256 } 5257 5258 /* Put the various virtual registers into REGNO_REG_RTX. */ 5259 5260 static void 5261 init_virtual_regs (void) 5262 { 5263 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx; 5264 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx; 5265 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx; 5266 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx; 5267 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx; 5268 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM] 5269 = virtual_preferred_stack_boundary_rtx; 5270 } 5271 5272 5273 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */ 5274 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS]; 5275 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS]; 5276 static int copy_insn_n_scratches; 5277 5278 /* When an insn is being copied by copy_insn_1, this is nonzero if we have 5279 copied an ASM_OPERANDS. 5280 In that case, it is the original input-operand vector. */ 5281 static rtvec orig_asm_operands_vector; 5282 5283 /* When an insn is being copied by copy_insn_1, this is nonzero if we have 5284 copied an ASM_OPERANDS. 5285 In that case, it is the copied input-operand vector. */ 5286 static rtvec copy_asm_operands_vector; 5287 5288 /* Likewise for the constraints vector. */ 5289 static rtvec orig_asm_constraints_vector; 5290 static rtvec copy_asm_constraints_vector; 5291 5292 /* Recursively create a new copy of an rtx for copy_insn. 5293 This function differs from copy_rtx in that it handles SCRATCHes and 5294 ASM_OPERANDs properly. 5295 Normally, this function is not used directly; use copy_insn as front end. 5296 However, you could first copy an insn pattern with copy_insn and then use 5297 this function afterwards to properly copy any REG_NOTEs containing 5298 SCRATCHes. */ 5299 5300 rtx 5301 copy_insn_1 (rtx orig) 5302 { 5303 rtx copy; 5304 int i, j; 5305 RTX_CODE code; 5306 const char *format_ptr; 5307 5308 if (orig == NULL) 5309 return NULL; 5310 5311 code = GET_CODE (orig); 5312 5313 switch (code) 5314 { 5315 case REG: 5316 case DEBUG_EXPR: 5317 CASE_CONST_ANY: 5318 case SYMBOL_REF: 5319 case CODE_LABEL: 5320 case PC: 5321 case CC0: 5322 case RETURN: 5323 case SIMPLE_RETURN: 5324 return orig; 5325 case CLOBBER: 5326 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg 5327 clobbers or clobbers of hard registers that originated as pseudos. 5328 This is needed to allow safe register renaming. */ 5329 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER 5330 && ORIGINAL_REGNO (XEXP (orig, 0)) == REGNO (XEXP (orig, 0))) 5331 return orig; 5332 break; 5333 5334 case SCRATCH: 5335 for (i = 0; i < copy_insn_n_scratches; i++) 5336 if (copy_insn_scratch_in[i] == orig) 5337 return copy_insn_scratch_out[i]; 5338 break; 5339 5340 case CONST: 5341 if (shared_const_p (orig)) 5342 return orig; 5343 break; 5344 5345 /* A MEM with a constant address is not sharable. The problem is that 5346 the constant address may need to be reloaded. If the mem is shared, 5347 then reloading one copy of this mem will cause all copies to appear 5348 to have been reloaded. */ 5349 5350 default: 5351 break; 5352 } 5353 5354 /* Copy the various flags, fields, and other information. We assume 5355 that all fields need copying, and then clear the fields that should 5356 not be copied. That is the sensible default behavior, and forces 5357 us to explicitly document why we are *not* copying a flag. */ 5358 copy = shallow_copy_rtx (orig); 5359 5360 /* We do not copy the USED flag, which is used as a mark bit during 5361 walks over the RTL. */ 5362 RTX_FLAG (copy, used) = 0; 5363 5364 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */ 5365 if (INSN_P (orig)) 5366 { 5367 RTX_FLAG (copy, jump) = 0; 5368 RTX_FLAG (copy, call) = 0; 5369 RTX_FLAG (copy, frame_related) = 0; 5370 } 5371 5372 format_ptr = GET_RTX_FORMAT (GET_CODE (copy)); 5373 5374 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++) 5375 switch (*format_ptr++) 5376 { 5377 case 'e': 5378 if (XEXP (orig, i) != NULL) 5379 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i)); 5380 break; 5381 5382 case 'E': 5383 case 'V': 5384 if (XVEC (orig, i) == orig_asm_constraints_vector) 5385 XVEC (copy, i) = copy_asm_constraints_vector; 5386 else if (XVEC (orig, i) == orig_asm_operands_vector) 5387 XVEC (copy, i) = copy_asm_operands_vector; 5388 else if (XVEC (orig, i) != NULL) 5389 { 5390 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i)); 5391 for (j = 0; j < XVECLEN (copy, i); j++) 5392 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j)); 5393 } 5394 break; 5395 5396 case 't': 5397 case 'w': 5398 case 'i': 5399 case 's': 5400 case 'S': 5401 case 'u': 5402 case '0': 5403 /* These are left unchanged. */ 5404 break; 5405 5406 default: 5407 gcc_unreachable (); 5408 } 5409 5410 if (code == SCRATCH) 5411 { 5412 i = copy_insn_n_scratches++; 5413 gcc_assert (i < MAX_RECOG_OPERANDS); 5414 copy_insn_scratch_in[i] = orig; 5415 copy_insn_scratch_out[i] = copy; 5416 } 5417 else if (code == ASM_OPERANDS) 5418 { 5419 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig); 5420 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy); 5421 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig); 5422 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy); 5423 } 5424 5425 return copy; 5426 } 5427 5428 /* Create a new copy of an rtx. 5429 This function differs from copy_rtx in that it handles SCRATCHes and 5430 ASM_OPERANDs properly. 5431 INSN doesn't really have to be a full INSN; it could be just the 5432 pattern. */ 5433 rtx 5434 copy_insn (rtx insn) 5435 { 5436 copy_insn_n_scratches = 0; 5437 orig_asm_operands_vector = 0; 5438 orig_asm_constraints_vector = 0; 5439 copy_asm_operands_vector = 0; 5440 copy_asm_constraints_vector = 0; 5441 return copy_insn_1 (insn); 5442 } 5443 5444 /* Return a copy of INSN that can be used in a SEQUENCE delay slot, 5445 on that assumption that INSN itself remains in its original place. */ 5446 5447 rtx 5448 copy_delay_slot_insn (rtx insn) 5449 { 5450 /* Copy INSN with its rtx_code, all its notes, location etc. */ 5451 insn = copy_rtx (insn); 5452 INSN_UID (insn) = cur_insn_uid++; 5453 return insn; 5454 } 5455 5456 /* Initialize data structures and variables in this file 5457 before generating rtl for each function. */ 5458 5459 void 5460 init_emit (void) 5461 { 5462 set_first_insn (NULL); 5463 set_last_insn (NULL); 5464 if (MIN_NONDEBUG_INSN_UID) 5465 cur_insn_uid = MIN_NONDEBUG_INSN_UID; 5466 else 5467 cur_insn_uid = 1; 5468 cur_debug_insn_uid = 1; 5469 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1; 5470 first_label_num = label_num; 5471 seq_stack = NULL; 5472 5473 /* Init the tables that describe all the pseudo regs. */ 5474 5475 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101; 5476 5477 crtl->emit.regno_pointer_align 5478 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length); 5479 5480 regno_reg_rtx = ggc_alloc_vec_rtx (crtl->emit.regno_pointer_align_length); 5481 5482 /* Put copies of all the hard registers into regno_reg_rtx. */ 5483 memcpy (regno_reg_rtx, 5484 initial_regno_reg_rtx, 5485 FIRST_PSEUDO_REGISTER * sizeof (rtx)); 5486 5487 /* Put copies of all the virtual register rtx into regno_reg_rtx. */ 5488 init_virtual_regs (); 5489 5490 /* Indicate that the virtual registers and stack locations are 5491 all pointers. */ 5492 REG_POINTER (stack_pointer_rtx) = 1; 5493 REG_POINTER (frame_pointer_rtx) = 1; 5494 REG_POINTER (hard_frame_pointer_rtx) = 1; 5495 REG_POINTER (arg_pointer_rtx) = 1; 5496 5497 REG_POINTER (virtual_incoming_args_rtx) = 1; 5498 REG_POINTER (virtual_stack_vars_rtx) = 1; 5499 REG_POINTER (virtual_stack_dynamic_rtx) = 1; 5500 REG_POINTER (virtual_outgoing_args_rtx) = 1; 5501 REG_POINTER (virtual_cfa_rtx) = 1; 5502 5503 #ifdef STACK_BOUNDARY 5504 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY; 5505 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY; 5506 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY; 5507 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY; 5508 5509 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY; 5510 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY; 5511 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY; 5512 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY; 5513 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD; 5514 #endif 5515 5516 #ifdef INIT_EXPANDERS 5517 INIT_EXPANDERS; 5518 #endif 5519 } 5520 5521 /* Generate a vector constant for mode MODE and constant value CONSTANT. */ 5522 5523 static rtx 5524 gen_const_vector (enum machine_mode mode, int constant) 5525 { 5526 rtx tem; 5527 rtvec v; 5528 int units, i; 5529 enum machine_mode inner; 5530 5531 units = GET_MODE_NUNITS (mode); 5532 inner = GET_MODE_INNER (mode); 5533 5534 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner)); 5535 5536 v = rtvec_alloc (units); 5537 5538 /* We need to call this function after we set the scalar const_tiny_rtx 5539 entries. */ 5540 gcc_assert (const_tiny_rtx[constant][(int) inner]); 5541 5542 for (i = 0; i < units; ++i) 5543 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner]; 5544 5545 tem = gen_rtx_raw_CONST_VECTOR (mode, v); 5546 return tem; 5547 } 5548 5549 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when 5550 all elements are zero, and the one vector when all elements are one. */ 5551 rtx 5552 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v) 5553 { 5554 enum machine_mode inner = GET_MODE_INNER (mode); 5555 int nunits = GET_MODE_NUNITS (mode); 5556 rtx x; 5557 int i; 5558 5559 /* Check to see if all of the elements have the same value. */ 5560 x = RTVEC_ELT (v, nunits - 1); 5561 for (i = nunits - 2; i >= 0; i--) 5562 if (RTVEC_ELT (v, i) != x) 5563 break; 5564 5565 /* If the values are all the same, check to see if we can use one of the 5566 standard constant vectors. */ 5567 if (i == -1) 5568 { 5569 if (x == CONST0_RTX (inner)) 5570 return CONST0_RTX (mode); 5571 else if (x == CONST1_RTX (inner)) 5572 return CONST1_RTX (mode); 5573 else if (x == CONSTM1_RTX (inner)) 5574 return CONSTM1_RTX (mode); 5575 } 5576 5577 return gen_rtx_raw_CONST_VECTOR (mode, v); 5578 } 5579 5580 /* Initialise global register information required by all functions. */ 5581 5582 void 5583 init_emit_regs (void) 5584 { 5585 int i; 5586 enum machine_mode mode; 5587 mem_attrs *attrs; 5588 5589 /* Reset register attributes */ 5590 htab_empty (reg_attrs_htab); 5591 5592 /* We need reg_raw_mode, so initialize the modes now. */ 5593 init_reg_modes_target (); 5594 5595 /* Assign register numbers to the globally defined register rtx. */ 5596 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM); 5597 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM); 5598 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM); 5599 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM); 5600 virtual_incoming_args_rtx = 5601 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM); 5602 virtual_stack_vars_rtx = 5603 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM); 5604 virtual_stack_dynamic_rtx = 5605 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM); 5606 virtual_outgoing_args_rtx = 5607 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM); 5608 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM); 5609 virtual_preferred_stack_boundary_rtx = 5610 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM); 5611 5612 /* Initialize RTL for commonly used hard registers. These are 5613 copied into regno_reg_rtx as we begin to compile each function. */ 5614 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) 5615 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i); 5616 5617 #ifdef RETURN_ADDRESS_POINTER_REGNUM 5618 return_address_pointer_rtx 5619 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM); 5620 #endif 5621 5622 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) 5623 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM); 5624 else 5625 pic_offset_table_rtx = NULL_RTX; 5626 5627 for (i = 0; i < (int) MAX_MACHINE_MODE; i++) 5628 { 5629 mode = (enum machine_mode) i; 5630 attrs = ggc_alloc_cleared_mem_attrs (); 5631 attrs->align = BITS_PER_UNIT; 5632 attrs->addrspace = ADDR_SPACE_GENERIC; 5633 if (mode != BLKmode) 5634 { 5635 attrs->size_known_p = true; 5636 attrs->size = GET_MODE_SIZE (mode); 5637 if (STRICT_ALIGNMENT) 5638 attrs->align = GET_MODE_ALIGNMENT (mode); 5639 } 5640 mode_mem_attrs[i] = attrs; 5641 } 5642 } 5643 5644 /* Create some permanent unique rtl objects shared between all functions. */ 5645 5646 void 5647 init_emit_once (void) 5648 { 5649 int i; 5650 enum machine_mode mode; 5651 enum machine_mode double_mode; 5652 5653 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute 5654 hash tables. */ 5655 const_int_htab = htab_create_ggc (37, const_int_htab_hash, 5656 const_int_htab_eq, NULL); 5657 5658 const_double_htab = htab_create_ggc (37, const_double_htab_hash, 5659 const_double_htab_eq, NULL); 5660 5661 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash, 5662 const_fixed_htab_eq, NULL); 5663 5664 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash, 5665 mem_attrs_htab_eq, NULL); 5666 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash, 5667 reg_attrs_htab_eq, NULL); 5668 5669 /* Compute the word and byte modes. */ 5670 5671 byte_mode = VOIDmode; 5672 word_mode = VOIDmode; 5673 double_mode = VOIDmode; 5674 5675 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); 5676 mode != VOIDmode; 5677 mode = GET_MODE_WIDER_MODE (mode)) 5678 { 5679 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT 5680 && byte_mode == VOIDmode) 5681 byte_mode = mode; 5682 5683 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD 5684 && word_mode == VOIDmode) 5685 word_mode = mode; 5686 } 5687 5688 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); 5689 mode != VOIDmode; 5690 mode = GET_MODE_WIDER_MODE (mode)) 5691 { 5692 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE 5693 && double_mode == VOIDmode) 5694 double_mode = mode; 5695 } 5696 5697 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0); 5698 5699 #ifdef INIT_EXPANDERS 5700 /* This is to initialize {init|mark|free}_machine_status before the first 5701 call to push_function_context_to. This is needed by the Chill front 5702 end which calls push_function_context_to before the first call to 5703 init_function_start. */ 5704 INIT_EXPANDERS; 5705 #endif 5706 5707 /* Create the unique rtx's for certain rtx codes and operand values. */ 5708 5709 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case 5710 tries to use these variables. */ 5711 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++) 5712 const_int_rtx[i + MAX_SAVED_CONST_INT] = 5713 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i); 5714 5715 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT 5716 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT) 5717 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT]; 5718 else 5719 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE); 5720 5721 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode); 5722 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode); 5723 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode); 5724 5725 dconstm1 = dconst1; 5726 dconstm1.sign = 1; 5727 5728 dconsthalf = dconst1; 5729 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1); 5730 5731 for (i = 0; i < 3; i++) 5732 { 5733 const REAL_VALUE_TYPE *const r = 5734 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2); 5735 5736 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); 5737 mode != VOIDmode; 5738 mode = GET_MODE_WIDER_MODE (mode)) 5739 const_tiny_rtx[i][(int) mode] = 5740 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode); 5741 5742 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT); 5743 mode != VOIDmode; 5744 mode = GET_MODE_WIDER_MODE (mode)) 5745 const_tiny_rtx[i][(int) mode] = 5746 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode); 5747 5748 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i); 5749 5750 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); 5751 mode != VOIDmode; 5752 mode = GET_MODE_WIDER_MODE (mode)) 5753 const_tiny_rtx[i][(int) mode] = GEN_INT (i); 5754 5755 for (mode = MIN_MODE_PARTIAL_INT; 5756 mode <= MAX_MODE_PARTIAL_INT; 5757 mode = (enum machine_mode)((int)(mode) + 1)) 5758 const_tiny_rtx[i][(int) mode] = GEN_INT (i); 5759 } 5760 5761 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx; 5762 5763 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); 5764 mode != VOIDmode; 5765 mode = GET_MODE_WIDER_MODE (mode)) 5766 const_tiny_rtx[3][(int) mode] = constm1_rtx; 5767 5768 for (mode = MIN_MODE_PARTIAL_INT; 5769 mode <= MAX_MODE_PARTIAL_INT; 5770 mode = (enum machine_mode)((int)(mode) + 1)) 5771 const_tiny_rtx[3][(int) mode] = constm1_rtx; 5772 5773 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT); 5774 mode != VOIDmode; 5775 mode = GET_MODE_WIDER_MODE (mode)) 5776 { 5777 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)]; 5778 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner); 5779 } 5780 5781 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT); 5782 mode != VOIDmode; 5783 mode = GET_MODE_WIDER_MODE (mode)) 5784 { 5785 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)]; 5786 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner); 5787 } 5788 5789 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT); 5790 mode != VOIDmode; 5791 mode = GET_MODE_WIDER_MODE (mode)) 5792 { 5793 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0); 5794 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1); 5795 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3); 5796 } 5797 5798 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT); 5799 mode != VOIDmode; 5800 mode = GET_MODE_WIDER_MODE (mode)) 5801 { 5802 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0); 5803 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1); 5804 } 5805 5806 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT); 5807 mode != VOIDmode; 5808 mode = GET_MODE_WIDER_MODE (mode)) 5809 { 5810 FCONST0(mode).data.high = 0; 5811 FCONST0(mode).data.low = 0; 5812 FCONST0(mode).mode = mode; 5813 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE ( 5814 FCONST0 (mode), mode); 5815 } 5816 5817 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT); 5818 mode != VOIDmode; 5819 mode = GET_MODE_WIDER_MODE (mode)) 5820 { 5821 FCONST0(mode).data.high = 0; 5822 FCONST0(mode).data.low = 0; 5823 FCONST0(mode).mode = mode; 5824 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE ( 5825 FCONST0 (mode), mode); 5826 } 5827 5828 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM); 5829 mode != VOIDmode; 5830 mode = GET_MODE_WIDER_MODE (mode)) 5831 { 5832 FCONST0(mode).data.high = 0; 5833 FCONST0(mode).data.low = 0; 5834 FCONST0(mode).mode = mode; 5835 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE ( 5836 FCONST0 (mode), mode); 5837 5838 /* We store the value 1. */ 5839 FCONST1(mode).data.high = 0; 5840 FCONST1(mode).data.low = 0; 5841 FCONST1(mode).mode = mode; 5842 FCONST1(mode).data 5843 = double_int_one.lshift (GET_MODE_FBIT (mode), 5844 HOST_BITS_PER_DOUBLE_INT, 5845 SIGNED_FIXED_POINT_MODE_P (mode)); 5846 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE ( 5847 FCONST1 (mode), mode); 5848 } 5849 5850 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM); 5851 mode != VOIDmode; 5852 mode = GET_MODE_WIDER_MODE (mode)) 5853 { 5854 FCONST0(mode).data.high = 0; 5855 FCONST0(mode).data.low = 0; 5856 FCONST0(mode).mode = mode; 5857 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE ( 5858 FCONST0 (mode), mode); 5859 5860 /* We store the value 1. */ 5861 FCONST1(mode).data.high = 0; 5862 FCONST1(mode).data.low = 0; 5863 FCONST1(mode).mode = mode; 5864 FCONST1(mode).data 5865 = double_int_one.lshift (GET_MODE_FBIT (mode), 5866 HOST_BITS_PER_DOUBLE_INT, 5867 SIGNED_FIXED_POINT_MODE_P (mode)); 5868 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE ( 5869 FCONST1 (mode), mode); 5870 } 5871 5872 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT); 5873 mode != VOIDmode; 5874 mode = GET_MODE_WIDER_MODE (mode)) 5875 { 5876 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0); 5877 } 5878 5879 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT); 5880 mode != VOIDmode; 5881 mode = GET_MODE_WIDER_MODE (mode)) 5882 { 5883 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0); 5884 } 5885 5886 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM); 5887 mode != VOIDmode; 5888 mode = GET_MODE_WIDER_MODE (mode)) 5889 { 5890 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0); 5891 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1); 5892 } 5893 5894 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM); 5895 mode != VOIDmode; 5896 mode = GET_MODE_WIDER_MODE (mode)) 5897 { 5898 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0); 5899 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1); 5900 } 5901 5902 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i) 5903 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC) 5904 const_tiny_rtx[0][i] = const0_rtx; 5905 5906 const_tiny_rtx[0][(int) BImode] = const0_rtx; 5907 if (STORE_FLAG_VALUE == 1) 5908 const_tiny_rtx[1][(int) BImode] = const1_rtx; 5909 5910 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode); 5911 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode); 5912 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode); 5913 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode); 5914 } 5915 5916 /* Produce exact duplicate of insn INSN after AFTER. 5917 Care updating of libcall regions if present. */ 5918 5919 rtx 5920 emit_copy_of_insn_after (rtx insn, rtx after) 5921 { 5922 rtx new_rtx, link; 5923 5924 switch (GET_CODE (insn)) 5925 { 5926 case INSN: 5927 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after); 5928 break; 5929 5930 case JUMP_INSN: 5931 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after); 5932 break; 5933 5934 case DEBUG_INSN: 5935 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after); 5936 break; 5937 5938 case CALL_INSN: 5939 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after); 5940 if (CALL_INSN_FUNCTION_USAGE (insn)) 5941 CALL_INSN_FUNCTION_USAGE (new_rtx) 5942 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn)); 5943 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn); 5944 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn); 5945 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn); 5946 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx) 5947 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn); 5948 break; 5949 5950 default: 5951 gcc_unreachable (); 5952 } 5953 5954 /* Update LABEL_NUSES. */ 5955 mark_jump_label (PATTERN (new_rtx), new_rtx, 0); 5956 5957 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn); 5958 5959 /* If the old insn is frame related, then so is the new one. This is 5960 primarily needed for IA-64 unwind info which marks epilogue insns, 5961 which may be duplicated by the basic block reordering code. */ 5962 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn); 5963 5964 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label 5965 will make them. REG_LABEL_TARGETs are created there too, but are 5966 supposed to be sticky, so we copy them. */ 5967 for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) 5968 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND) 5969 { 5970 if (GET_CODE (link) == EXPR_LIST) 5971 add_reg_note (new_rtx, REG_NOTE_KIND (link), 5972 copy_insn_1 (XEXP (link, 0))); 5973 else 5974 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0)); 5975 } 5976 5977 INSN_CODE (new_rtx) = INSN_CODE (insn); 5978 return new_rtx; 5979 } 5980 5981 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER]; 5982 rtx 5983 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno) 5984 { 5985 if (hard_reg_clobbers[mode][regno]) 5986 return hard_reg_clobbers[mode][regno]; 5987 else 5988 return (hard_reg_clobbers[mode][regno] = 5989 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno))); 5990 } 5991 5992 location_t prologue_location; 5993 location_t epilogue_location; 5994 5995 /* Hold current location information and last location information, so the 5996 datastructures are built lazily only when some instructions in given 5997 place are needed. */ 5998 static location_t curr_location; 5999 6000 /* Allocate insn location datastructure. */ 6001 void 6002 insn_locations_init (void) 6003 { 6004 prologue_location = epilogue_location = 0; 6005 curr_location = UNKNOWN_LOCATION; 6006 } 6007 6008 /* At the end of emit stage, clear current location. */ 6009 void 6010 insn_locations_finalize (void) 6011 { 6012 epilogue_location = curr_location; 6013 curr_location = UNKNOWN_LOCATION; 6014 } 6015 6016 /* Set current location. */ 6017 void 6018 set_curr_insn_location (location_t location) 6019 { 6020 curr_location = location; 6021 } 6022 6023 /* Get current location. */ 6024 location_t 6025 curr_insn_location (void) 6026 { 6027 return curr_location; 6028 } 6029 6030 /* Return lexical scope block insn belongs to. */ 6031 tree 6032 insn_scope (const_rtx insn) 6033 { 6034 return LOCATION_BLOCK (INSN_LOCATION (insn)); 6035 } 6036 6037 /* Return line number of the statement that produced this insn. */ 6038 int 6039 insn_line (const_rtx insn) 6040 { 6041 return LOCATION_LINE (INSN_LOCATION (insn)); 6042 } 6043 6044 /* Return source file of the statement that produced this insn. */ 6045 const char * 6046 insn_file (const_rtx insn) 6047 { 6048 return LOCATION_FILE (INSN_LOCATION (insn)); 6049 } 6050 6051 /* Return true if memory model MODEL requires a pre-operation (release-style) 6052 barrier or a post-operation (acquire-style) barrier. While not universal, 6053 this function matches behavior of several targets. */ 6054 6055 bool 6056 need_atomic_barrier_p (enum memmodel model, bool pre) 6057 { 6058 switch (model & MEMMODEL_MASK) 6059 { 6060 case MEMMODEL_RELAXED: 6061 case MEMMODEL_CONSUME: 6062 return false; 6063 case MEMMODEL_RELEASE: 6064 return pre; 6065 case MEMMODEL_ACQUIRE: 6066 return !pre; 6067 case MEMMODEL_ACQ_REL: 6068 case MEMMODEL_SEQ_CST: 6069 return true; 6070 default: 6071 gcc_unreachable (); 6072 } 6073 } 6074 6075 #include "gt-emit-rtl.h" 6076