1 /* Emit RTL for the GCC expander. 2 Copyright (C) 1987-2020 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 21 /* Middle-to-low level generation of rtx code and insns. 22 23 This file contains support functions for creating rtl expressions 24 and manipulating them in the doubly-linked chain of insns. 25 26 The patterns of the insns are created by machine-dependent 27 routines in insn-emit.c, which is generated automatically from 28 the machine description. These routines make the individual rtx's 29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch], 30 which are automatically generated from rtl.def; what is machine 31 dependent is the kind of rtx's they make and what arguments they 32 use. */ 33 34 #include "config.h" 35 #include "system.h" 36 #include "coretypes.h" 37 #include "memmodel.h" 38 #include "backend.h" 39 #include "target.h" 40 #include "rtl.h" 41 #include "tree.h" 42 #include "df.h" 43 #include "tm_p.h" 44 #include "stringpool.h" 45 #include "insn-config.h" 46 #include "regs.h" 47 #include "emit-rtl.h" 48 #include "recog.h" 49 #include "diagnostic-core.h" 50 #include "alias.h" 51 #include "fold-const.h" 52 #include "varasm.h" 53 #include "cfgrtl.h" 54 #include "tree-eh.h" 55 #include "explow.h" 56 #include "expr.h" 57 #include "builtins.h" 58 #include "rtl-iter.h" 59 #include "stor-layout.h" 60 #include "opts.h" 61 #include "predict.h" 62 #include "rtx-vector-builder.h" 63 #include "gimple.h" 64 #include "gimple-ssa.h" 65 #include "gimplify.h" 66 67 struct target_rtl default_target_rtl; 68 #if SWITCHABLE_TARGET 69 struct target_rtl *this_target_rtl = &default_target_rtl; 70 #endif 71 72 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx) 73 74 /* Commonly used modes. */ 75 76 scalar_int_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */ 77 scalar_int_mode word_mode; /* Mode whose width is BITS_PER_WORD. */ 78 scalar_int_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */ 79 80 /* Datastructures maintained for currently processed function in RTL form. */ 81 82 struct rtl_data x_rtl; 83 84 /* Indexed by pseudo register number, gives the rtx for that pseudo. 85 Allocated in parallel with regno_pointer_align. 86 FIXME: We could put it into emit_status struct, but gengtype is not able to deal 87 with length attribute nested in top level structures. */ 88 89 rtx * regno_reg_rtx; 90 91 /* This is *not* reset after each function. It gives each CODE_LABEL 92 in the entire compilation a unique label number. */ 93 94 static GTY(()) int label_num = 1; 95 96 /* We record floating-point CONST_DOUBLEs in each floating-point mode for 97 the values of 0, 1, and 2. For the integer entries and VOIDmode, we 98 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX 99 is set only for MODE_INT and MODE_VECTOR_INT modes. */ 100 101 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE]; 102 103 rtx const_true_rtx; 104 105 REAL_VALUE_TYPE dconst0; 106 REAL_VALUE_TYPE dconst1; 107 REAL_VALUE_TYPE dconst2; 108 REAL_VALUE_TYPE dconstm1; 109 REAL_VALUE_TYPE dconsthalf; 110 111 /* Record fixed-point constant 0 and 1. */ 112 FIXED_VALUE_TYPE fconst0[MAX_FCONST0]; 113 FIXED_VALUE_TYPE fconst1[MAX_FCONST1]; 114 115 /* We make one copy of (const_int C) where C is in 116 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT] 117 to save space during the compilation and simplify comparisons of 118 integers. */ 119 120 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1]; 121 122 /* Standard pieces of rtx, to be substituted directly into things. */ 123 rtx pc_rtx; 124 rtx ret_rtx; 125 rtx simple_return_rtx; 126 rtx cc0_rtx; 127 128 /* Marker used for denoting an INSN, which should never be accessed (i.e., 129 this pointer should normally never be dereferenced), but is required to be 130 distinct from NULL_RTX. Currently used by peephole2 pass. */ 131 rtx_insn *invalid_insn_rtx; 132 133 /* A hash table storing CONST_INTs whose absolute value is greater 134 than MAX_SAVED_CONST_INT. */ 135 136 struct const_int_hasher : ggc_cache_ptr_hash<rtx_def> 137 { 138 typedef HOST_WIDE_INT compare_type; 139 140 static hashval_t hash (rtx i); 141 static bool equal (rtx i, HOST_WIDE_INT h); 142 }; 143 144 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab; 145 146 struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def> 147 { 148 static hashval_t hash (rtx x); 149 static bool equal (rtx x, rtx y); 150 }; 151 152 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab; 153 154 struct const_poly_int_hasher : ggc_cache_ptr_hash<rtx_def> 155 { 156 typedef std::pair<machine_mode, poly_wide_int_ref> compare_type; 157 158 static hashval_t hash (rtx x); 159 static bool equal (rtx x, const compare_type &y); 160 }; 161 162 static GTY ((cache)) hash_table<const_poly_int_hasher> *const_poly_int_htab; 163 164 /* A hash table storing register attribute structures. */ 165 struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs> 166 { 167 static hashval_t hash (reg_attrs *x); 168 static bool equal (reg_attrs *a, reg_attrs *b); 169 }; 170 171 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab; 172 173 /* A hash table storing all CONST_DOUBLEs. */ 174 struct const_double_hasher : ggc_cache_ptr_hash<rtx_def> 175 { 176 static hashval_t hash (rtx x); 177 static bool equal (rtx x, rtx y); 178 }; 179 180 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab; 181 182 /* A hash table storing all CONST_FIXEDs. */ 183 struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def> 184 { 185 static hashval_t hash (rtx x); 186 static bool equal (rtx x, rtx y); 187 }; 188 189 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab; 190 191 #define cur_insn_uid (crtl->emit.x_cur_insn_uid) 192 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid) 193 #define first_label_num (crtl->emit.x_first_label_num) 194 195 static void set_used_decls (tree); 196 static void mark_label_nuses (rtx); 197 #if TARGET_SUPPORTS_WIDE_INT 198 static rtx lookup_const_wide_int (rtx); 199 #endif 200 static rtx lookup_const_double (rtx); 201 static rtx lookup_const_fixed (rtx); 202 static rtx gen_const_vector (machine_mode, int); 203 static void copy_rtx_if_shared_1 (rtx *orig); 204 205 /* Probability of the conditional branch currently proceeded by try_split. */ 206 profile_probability split_branch_probability; 207 208 /* Returns a hash code for X (which is a really a CONST_INT). */ 209 210 hashval_t 211 const_int_hasher::hash (rtx x) 212 { 213 return (hashval_t) INTVAL (x); 214 } 215 216 /* Returns nonzero if the value represented by X (which is really a 217 CONST_INT) is the same as that given by Y (which is really a 218 HOST_WIDE_INT *). */ 219 220 bool 221 const_int_hasher::equal (rtx x, HOST_WIDE_INT y) 222 { 223 return (INTVAL (x) == y); 224 } 225 226 #if TARGET_SUPPORTS_WIDE_INT 227 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */ 228 229 hashval_t 230 const_wide_int_hasher::hash (rtx x) 231 { 232 int i; 233 unsigned HOST_WIDE_INT hash = 0; 234 const_rtx xr = x; 235 236 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++) 237 hash += CONST_WIDE_INT_ELT (xr, i); 238 239 return (hashval_t) hash; 240 } 241 242 /* Returns nonzero if the value represented by X (which is really a 243 CONST_WIDE_INT) is the same as that given by Y (which is really a 244 CONST_WIDE_INT). */ 245 246 bool 247 const_wide_int_hasher::equal (rtx x, rtx y) 248 { 249 int i; 250 const_rtx xr = x; 251 const_rtx yr = y; 252 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr)) 253 return false; 254 255 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++) 256 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i)) 257 return false; 258 259 return true; 260 } 261 #endif 262 263 /* Returns a hash code for CONST_POLY_INT X. */ 264 265 hashval_t 266 const_poly_int_hasher::hash (rtx x) 267 { 268 inchash::hash h; 269 h.add_int (GET_MODE (x)); 270 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) 271 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]); 272 return h.end (); 273 } 274 275 /* Returns nonzero if CONST_POLY_INT X is an rtx representation of Y. */ 276 277 bool 278 const_poly_int_hasher::equal (rtx x, const compare_type &y) 279 { 280 if (GET_MODE (x) != y.first) 281 return false; 282 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) 283 if (CONST_POLY_INT_COEFFS (x)[i] != y.second.coeffs[i]) 284 return false; 285 return true; 286 } 287 288 /* Returns a hash code for X (which is really a CONST_DOUBLE). */ 289 hashval_t 290 const_double_hasher::hash (rtx x) 291 { 292 const_rtx const value = x; 293 hashval_t h; 294 295 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode) 296 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value); 297 else 298 { 299 h = real_hash (CONST_DOUBLE_REAL_VALUE (value)); 300 /* MODE is used in the comparison, so it should be in the hash. */ 301 h ^= GET_MODE (value); 302 } 303 return h; 304 } 305 306 /* Returns nonzero if the value represented by X (really a ...) 307 is the same as that represented by Y (really a ...) */ 308 bool 309 const_double_hasher::equal (rtx x, rtx y) 310 { 311 const_rtx const a = x, b = y; 312 313 if (GET_MODE (a) != GET_MODE (b)) 314 return 0; 315 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode) 316 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b) 317 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b)); 318 else 319 return real_identical (CONST_DOUBLE_REAL_VALUE (a), 320 CONST_DOUBLE_REAL_VALUE (b)); 321 } 322 323 /* Returns a hash code for X (which is really a CONST_FIXED). */ 324 325 hashval_t 326 const_fixed_hasher::hash (rtx x) 327 { 328 const_rtx const value = x; 329 hashval_t h; 330 331 h = fixed_hash (CONST_FIXED_VALUE (value)); 332 /* MODE is used in the comparison, so it should be in the hash. */ 333 h ^= GET_MODE (value); 334 return h; 335 } 336 337 /* Returns nonzero if the value represented by X is the same as that 338 represented by Y. */ 339 340 bool 341 const_fixed_hasher::equal (rtx x, rtx y) 342 { 343 const_rtx const a = x, b = y; 344 345 if (GET_MODE (a) != GET_MODE (b)) 346 return 0; 347 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b)); 348 } 349 350 /* Return true if the given memory attributes are equal. */ 351 352 bool 353 mem_attrs_eq_p (const class mem_attrs *p, const class mem_attrs *q) 354 { 355 if (p == q) 356 return true; 357 if (!p || !q) 358 return false; 359 return (p->alias == q->alias 360 && p->offset_known_p == q->offset_known_p 361 && (!p->offset_known_p || known_eq (p->offset, q->offset)) 362 && p->size_known_p == q->size_known_p 363 && (!p->size_known_p || known_eq (p->size, q->size)) 364 && p->align == q->align 365 && p->addrspace == q->addrspace 366 && (p->expr == q->expr 367 || (p->expr != NULL_TREE && q->expr != NULL_TREE 368 && operand_equal_p (p->expr, q->expr, 0)))); 369 } 370 371 /* Set MEM's memory attributes so that they are the same as ATTRS. */ 372 373 static void 374 set_mem_attrs (rtx mem, mem_attrs *attrs) 375 { 376 /* If everything is the default, we can just clear the attributes. */ 377 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)])) 378 { 379 MEM_ATTRS (mem) = 0; 380 return; 381 } 382 383 if (!MEM_ATTRS (mem) 384 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem))) 385 { 386 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> (); 387 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs)); 388 } 389 } 390 391 /* Returns a hash code for X (which is a really a reg_attrs *). */ 392 393 hashval_t 394 reg_attr_hasher::hash (reg_attrs *x) 395 { 396 const reg_attrs *const p = x; 397 398 inchash::hash h; 399 h.add_ptr (p->decl); 400 h.add_poly_hwi (p->offset); 401 return h.end (); 402 } 403 404 /* Returns nonzero if the value represented by X is the same as that given by 405 Y. */ 406 407 bool 408 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y) 409 { 410 const reg_attrs *const p = x; 411 const reg_attrs *const q = y; 412 413 return (p->decl == q->decl && known_eq (p->offset, q->offset)); 414 } 415 /* Allocate a new reg_attrs structure and insert it into the hash table if 416 one identical to it is not already in the table. We are doing this for 417 MEM of mode MODE. */ 418 419 static reg_attrs * 420 get_reg_attrs (tree decl, poly_int64 offset) 421 { 422 reg_attrs attrs; 423 424 /* If everything is the default, we can just return zero. */ 425 if (decl == 0 && known_eq (offset, 0)) 426 return 0; 427 428 attrs.decl = decl; 429 attrs.offset = offset; 430 431 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT); 432 if (*slot == 0) 433 { 434 *slot = ggc_alloc<reg_attrs> (); 435 memcpy (*slot, &attrs, sizeof (reg_attrs)); 436 } 437 438 return *slot; 439 } 440 441 442 #if !HAVE_blockage 443 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule, 444 and to block register equivalences to be seen across this insn. */ 445 446 rtx 447 gen_blockage (void) 448 { 449 rtx x = gen_rtx_ASM_INPUT (VOIDmode, ""); 450 MEM_VOLATILE_P (x) = true; 451 return x; 452 } 453 #endif 454 455 456 /* Set the mode and register number of X to MODE and REGNO. */ 457 458 void 459 set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno) 460 { 461 unsigned int nregs = (HARD_REGISTER_NUM_P (regno) 462 ? hard_regno_nregs (regno, mode) 463 : 1); 464 PUT_MODE_RAW (x, mode); 465 set_regno_raw (x, regno, nregs); 466 } 467 468 /* Initialize a fresh REG rtx with mode MODE and register REGNO. */ 469 470 rtx 471 init_raw_REG (rtx x, machine_mode mode, unsigned int regno) 472 { 473 set_mode_and_regno (x, mode, regno); 474 REG_ATTRS (x) = NULL; 475 ORIGINAL_REGNO (x) = regno; 476 return x; 477 } 478 479 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and 480 don't attempt to share with the various global pieces of rtl (such as 481 frame_pointer_rtx). */ 482 483 rtx 484 gen_raw_REG (machine_mode mode, unsigned int regno) 485 { 486 rtx x = rtx_alloc (REG MEM_STAT_INFO); 487 init_raw_REG (x, mode, regno); 488 return x; 489 } 490 491 /* There are some RTL codes that require special attention; the generation 492 functions do the raw handling. If you add to this list, modify 493 special_rtx in gengenrtl.c as well. */ 494 495 rtx_expr_list * 496 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list) 497 { 498 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr, 499 expr_list)); 500 } 501 502 rtx_insn_list * 503 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list) 504 { 505 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn, 506 insn_list)); 507 } 508 509 rtx_insn * 510 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn, 511 basic_block bb, rtx pattern, int location, int code, 512 rtx reg_notes) 513 { 514 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode, 515 prev_insn, next_insn, 516 bb, pattern, location, code, 517 reg_notes)); 518 } 519 520 rtx 521 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg) 522 { 523 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT) 524 return const_int_rtx[arg + MAX_SAVED_CONST_INT]; 525 526 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1 527 if (const_true_rtx && arg == STORE_FLAG_VALUE) 528 return const_true_rtx; 529 #endif 530 531 /* Look up the CONST_INT in the hash table. */ 532 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg, 533 INSERT); 534 if (*slot == 0) 535 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg); 536 537 return *slot; 538 } 539 540 rtx 541 gen_int_mode (poly_int64 c, machine_mode mode) 542 { 543 c = trunc_int_for_mode (c, mode); 544 if (c.is_constant ()) 545 return GEN_INT (c.coeffs[0]); 546 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode)); 547 return immed_wide_int_const (poly_wide_int::from (c, prec, SIGNED), mode); 548 } 549 550 /* CONST_DOUBLEs might be created from pairs of integers, or from 551 REAL_VALUE_TYPEs. Also, their length is known only at run time, 552 so we cannot use gen_rtx_raw_CONST_DOUBLE. */ 553 554 /* Determine whether REAL, a CONST_DOUBLE, already exists in the 555 hash table. If so, return its counterpart; otherwise add it 556 to the hash table and return it. */ 557 static rtx 558 lookup_const_double (rtx real) 559 { 560 rtx *slot = const_double_htab->find_slot (real, INSERT); 561 if (*slot == 0) 562 *slot = real; 563 564 return *slot; 565 } 566 567 /* Return a CONST_DOUBLE rtx for a floating-point value specified by 568 VALUE in mode MODE. */ 569 rtx 570 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode) 571 { 572 rtx real = rtx_alloc (CONST_DOUBLE); 573 PUT_MODE (real, mode); 574 575 real->u.rv = value; 576 577 return lookup_const_double (real); 578 } 579 580 /* Determine whether FIXED, a CONST_FIXED, already exists in the 581 hash table. If so, return its counterpart; otherwise add it 582 to the hash table and return it. */ 583 584 static rtx 585 lookup_const_fixed (rtx fixed) 586 { 587 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT); 588 if (*slot == 0) 589 *slot = fixed; 590 591 return *slot; 592 } 593 594 /* Return a CONST_FIXED rtx for a fixed-point value specified by 595 VALUE in mode MODE. */ 596 597 rtx 598 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode) 599 { 600 rtx fixed = rtx_alloc (CONST_FIXED); 601 PUT_MODE (fixed, mode); 602 603 fixed->u.fv = value; 604 605 return lookup_const_fixed (fixed); 606 } 607 608 #if TARGET_SUPPORTS_WIDE_INT == 0 609 /* Constructs double_int from rtx CST. */ 610 611 double_int 612 rtx_to_double_int (const_rtx cst) 613 { 614 double_int r; 615 616 if (CONST_INT_P (cst)) 617 r = double_int::from_shwi (INTVAL (cst)); 618 else if (CONST_DOUBLE_AS_INT_P (cst)) 619 { 620 r.low = CONST_DOUBLE_LOW (cst); 621 r.high = CONST_DOUBLE_HIGH (cst); 622 } 623 else 624 gcc_unreachable (); 625 626 return r; 627 } 628 #endif 629 630 #if TARGET_SUPPORTS_WIDE_INT 631 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table. 632 If so, return its counterpart; otherwise add it to the hash table and 633 return it. */ 634 635 static rtx 636 lookup_const_wide_int (rtx wint) 637 { 638 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT); 639 if (*slot == 0) 640 *slot = wint; 641 642 return *slot; 643 } 644 #endif 645 646 /* Return an rtx constant for V, given that the constant has mode MODE. 647 The returned rtx will be a CONST_INT if V fits, otherwise it will be 648 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT 649 (if TARGET_SUPPORTS_WIDE_INT). */ 650 651 static rtx 652 immed_wide_int_const_1 (const wide_int_ref &v, machine_mode mode) 653 { 654 unsigned int len = v.get_len (); 655 /* Not scalar_int_mode because we also allow pointer bound modes. */ 656 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode)); 657 658 /* Allow truncation but not extension since we do not know if the 659 number is signed or unsigned. */ 660 gcc_assert (prec <= v.get_precision ()); 661 662 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT) 663 return gen_int_mode (v.elt (0), mode); 664 665 #if TARGET_SUPPORTS_WIDE_INT 666 { 667 unsigned int i; 668 rtx value; 669 unsigned int blocks_needed 670 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT; 671 672 if (len > blocks_needed) 673 len = blocks_needed; 674 675 value = const_wide_int_alloc (len); 676 677 /* It is so tempting to just put the mode in here. Must control 678 myself ... */ 679 PUT_MODE (value, VOIDmode); 680 CWI_PUT_NUM_ELEM (value, len); 681 682 for (i = 0; i < len; i++) 683 CONST_WIDE_INT_ELT (value, i) = v.elt (i); 684 685 return lookup_const_wide_int (value); 686 } 687 #else 688 return immed_double_const (v.elt (0), v.elt (1), mode); 689 #endif 690 } 691 692 #if TARGET_SUPPORTS_WIDE_INT == 0 693 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair 694 of ints: I0 is the low-order word and I1 is the high-order word. 695 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the 696 implied upper bits are copies of the high bit of i1. The value 697 itself is neither signed nor unsigned. Do not use this routine for 698 non-integer modes; convert to REAL_VALUE_TYPE and use 699 const_double_from_real_value. */ 700 701 rtx 702 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode) 703 { 704 rtx value; 705 unsigned int i; 706 707 /* There are the following cases (note that there are no modes with 708 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT): 709 710 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use 711 gen_int_mode. 712 2) If the value of the integer fits into HOST_WIDE_INT anyway 713 (i.e., i1 consists only from copies of the sign bit, and sign 714 of i0 and i1 are the same), then we return a CONST_INT for i0. 715 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */ 716 scalar_mode smode; 717 if (is_a <scalar_mode> (mode, &smode) 718 && GET_MODE_BITSIZE (smode) <= HOST_BITS_PER_WIDE_INT) 719 return gen_int_mode (i0, mode); 720 721 /* If this integer fits in one word, return a CONST_INT. */ 722 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0)) 723 return GEN_INT (i0); 724 725 /* We use VOIDmode for integers. */ 726 value = rtx_alloc (CONST_DOUBLE); 727 PUT_MODE (value, VOIDmode); 728 729 CONST_DOUBLE_LOW (value) = i0; 730 CONST_DOUBLE_HIGH (value) = i1; 731 732 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++) 733 XWINT (value, i) = 0; 734 735 return lookup_const_double (value); 736 } 737 #endif 738 739 /* Return an rtx representation of C in mode MODE. */ 740 741 rtx 742 immed_wide_int_const (const poly_wide_int_ref &c, machine_mode mode) 743 { 744 if (c.is_constant ()) 745 return immed_wide_int_const_1 (c.coeffs[0], mode); 746 747 /* Not scalar_int_mode because we also allow pointer bound modes. */ 748 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode)); 749 750 /* Allow truncation but not extension since we do not know if the 751 number is signed or unsigned. */ 752 gcc_assert (prec <= c.coeffs[0].get_precision ()); 753 poly_wide_int newc = poly_wide_int::from (c, prec, SIGNED); 754 755 /* See whether we already have an rtx for this constant. */ 756 inchash::hash h; 757 h.add_int (mode); 758 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) 759 h.add_wide_int (newc.coeffs[i]); 760 const_poly_int_hasher::compare_type typed_value (mode, newc); 761 rtx *slot = const_poly_int_htab->find_slot_with_hash (typed_value, 762 h.end (), INSERT); 763 rtx x = *slot; 764 if (x) 765 return x; 766 767 /* Create a new rtx. There's a choice to be made here between installing 768 the actual mode of the rtx or leaving it as VOIDmode (for consistency 769 with CONST_INT). In practice the handling of the codes is different 770 enough that we get no benefit from using VOIDmode, and various places 771 assume that VOIDmode implies CONST_INT. Using the real mode seems like 772 the right long-term direction anyway. */ 773 typedef trailing_wide_ints<NUM_POLY_INT_COEFFS> twi; 774 size_t extra_size = twi::extra_size (prec); 775 x = rtx_alloc_v (CONST_POLY_INT, 776 sizeof (struct const_poly_int_def) + extra_size); 777 PUT_MODE (x, mode); 778 CONST_POLY_INT_COEFFS (x).set_precision (prec); 779 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) 780 CONST_POLY_INT_COEFFS (x)[i] = newc.coeffs[i]; 781 782 *slot = x; 783 return x; 784 } 785 786 rtx 787 gen_rtx_REG (machine_mode mode, unsigned int regno) 788 { 789 /* In case the MD file explicitly references the frame pointer, have 790 all such references point to the same frame pointer. This is 791 used during frame pointer elimination to distinguish the explicit 792 references to these registers from pseudos that happened to be 793 assigned to them. 794 795 If we have eliminated the frame pointer or arg pointer, we will 796 be using it as a normal register, for example as a spill 797 register. In such cases, we might be accessing it in a mode that 798 is not Pmode and therefore cannot use the pre-allocated rtx. 799 800 Also don't do this when we are making new REGs in reload, since 801 we don't want to get confused with the real pointers. */ 802 803 if (mode == Pmode && !reload_in_progress && !lra_in_progress) 804 { 805 if (regno == FRAME_POINTER_REGNUM 806 && (!reload_completed || frame_pointer_needed)) 807 return frame_pointer_rtx; 808 809 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER 810 && regno == HARD_FRAME_POINTER_REGNUM 811 && (!reload_completed || frame_pointer_needed)) 812 return hard_frame_pointer_rtx; 813 #if !HARD_FRAME_POINTER_IS_ARG_POINTER 814 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM 815 && regno == ARG_POINTER_REGNUM) 816 return arg_pointer_rtx; 817 #endif 818 #ifdef RETURN_ADDRESS_POINTER_REGNUM 819 if (regno == RETURN_ADDRESS_POINTER_REGNUM) 820 return return_address_pointer_rtx; 821 #endif 822 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM 823 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM 824 && fixed_regs[PIC_OFFSET_TABLE_REGNUM]) 825 return pic_offset_table_rtx; 826 if (regno == STACK_POINTER_REGNUM) 827 return stack_pointer_rtx; 828 } 829 830 #if 0 831 /* If the per-function register table has been set up, try to re-use 832 an existing entry in that table to avoid useless generation of RTL. 833 834 This code is disabled for now until we can fix the various backends 835 which depend on having non-shared hard registers in some cases. Long 836 term we want to re-enable this code as it can significantly cut down 837 on the amount of useless RTL that gets generated. 838 839 We'll also need to fix some code that runs after reload that wants to 840 set ORIGINAL_REGNO. */ 841 842 if (cfun 843 && cfun->emit 844 && regno_reg_rtx 845 && regno < FIRST_PSEUDO_REGISTER 846 && reg_raw_mode[regno] == mode) 847 return regno_reg_rtx[regno]; 848 #endif 849 850 return gen_raw_REG (mode, regno); 851 } 852 853 rtx 854 gen_rtx_MEM (machine_mode mode, rtx addr) 855 { 856 rtx rt = gen_rtx_raw_MEM (mode, addr); 857 858 /* This field is not cleared by the mere allocation of the rtx, so 859 we clear it here. */ 860 MEM_ATTRS (rt) = 0; 861 862 return rt; 863 } 864 865 /* Generate a memory referring to non-trapping constant memory. */ 866 867 rtx 868 gen_const_mem (machine_mode mode, rtx addr) 869 { 870 rtx mem = gen_rtx_MEM (mode, addr); 871 MEM_READONLY_P (mem) = 1; 872 MEM_NOTRAP_P (mem) = 1; 873 return mem; 874 } 875 876 /* Generate a MEM referring to fixed portions of the frame, e.g., register 877 save areas. */ 878 879 rtx 880 gen_frame_mem (machine_mode mode, rtx addr) 881 { 882 rtx mem = gen_rtx_MEM (mode, addr); 883 MEM_NOTRAP_P (mem) = 1; 884 set_mem_alias_set (mem, get_frame_alias_set ()); 885 return mem; 886 } 887 888 /* Generate a MEM referring to a temporary use of the stack, not part 889 of the fixed stack frame. For example, something which is pushed 890 by a target splitter. */ 891 rtx 892 gen_tmp_stack_mem (machine_mode mode, rtx addr) 893 { 894 rtx mem = gen_rtx_MEM (mode, addr); 895 MEM_NOTRAP_P (mem) = 1; 896 if (!cfun->calls_alloca) 897 set_mem_alias_set (mem, get_frame_alias_set ()); 898 return mem; 899 } 900 901 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if 902 this construct would be valid, and false otherwise. */ 903 904 bool 905 validate_subreg (machine_mode omode, machine_mode imode, 906 const_rtx reg, poly_uint64 offset) 907 { 908 poly_uint64 isize = GET_MODE_SIZE (imode); 909 poly_uint64 osize = GET_MODE_SIZE (omode); 910 911 /* The sizes must be ordered, so that we know whether the subreg 912 is partial, paradoxical or complete. */ 913 if (!ordered_p (isize, osize)) 914 return false; 915 916 /* All subregs must be aligned. */ 917 if (!multiple_p (offset, osize)) 918 return false; 919 920 /* The subreg offset cannot be outside the inner object. */ 921 if (maybe_ge (offset, isize)) 922 return false; 923 924 poly_uint64 regsize = REGMODE_NATURAL_SIZE (imode); 925 926 /* ??? This should not be here. Temporarily continue to allow word_mode 927 subregs of anything. The most common offender is (subreg:SI (reg:DF)). 928 Generally, backends are doing something sketchy but it'll take time to 929 fix them all. */ 930 if (omode == word_mode) 931 ; 932 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field 933 is the culprit here, and not the backends. */ 934 else if (known_ge (osize, regsize) && known_ge (isize, osize)) 935 ; 936 /* Allow component subregs of complex and vector. Though given the below 937 extraction rules, it's not always clear what that means. */ 938 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode)) 939 && GET_MODE_INNER (imode) == omode) 940 ; 941 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs, 942 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to 943 represent this. It's questionable if this ought to be represented at 944 all -- why can't this all be hidden in post-reload splitters that make 945 arbitrarily mode changes to the registers themselves. */ 946 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode) 947 ; 948 /* Subregs involving floating point modes are not allowed to 949 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but 950 (subreg:SI (reg:DF) 0) isn't. */ 951 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode)) 952 { 953 if (! (known_eq (isize, osize) 954 /* LRA can use subreg to store a floating point value in 955 an integer mode. Although the floating point and the 956 integer modes need the same number of hard registers, 957 the size of floating point mode can be less than the 958 integer mode. LRA also uses subregs for a register 959 should be used in different mode in on insn. */ 960 || lra_in_progress)) 961 return false; 962 } 963 964 /* Paradoxical subregs must have offset zero. */ 965 if (maybe_gt (osize, isize)) 966 return known_eq (offset, 0U); 967 968 /* This is a normal subreg. Verify that the offset is representable. */ 969 970 /* For hard registers, we already have most of these rules collected in 971 subreg_offset_representable_p. */ 972 if (reg && REG_P (reg) && HARD_REGISTER_P (reg)) 973 { 974 unsigned int regno = REGNO (reg); 975 976 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode)) 977 && GET_MODE_INNER (imode) == omode) 978 ; 979 else if (!REG_CAN_CHANGE_MODE_P (regno, imode, omode)) 980 return false; 981 982 return subreg_offset_representable_p (regno, imode, offset, omode); 983 } 984 985 /* The outer size must be ordered wrt the register size, otherwise 986 we wouldn't know at compile time how many registers the outer 987 mode occupies. */ 988 if (!ordered_p (osize, regsize)) 989 return false; 990 991 /* For pseudo registers, we want most of the same checks. Namely: 992 993 Assume that the pseudo register will be allocated to hard registers 994 that can hold REGSIZE bytes each. If OSIZE is not a multiple of REGSIZE, 995 the remainder must correspond to the lowpart of the containing hard 996 register. If BYTES_BIG_ENDIAN, the lowpart is at the highest offset, 997 otherwise it is at the lowest offset. 998 999 Given that we've already checked the mode and offset alignment, 1000 we only have to check subblock subregs here. */ 1001 if (maybe_lt (osize, regsize) 1002 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode)))) 1003 { 1004 /* It is invalid for the target to pick a register size for a mode 1005 that isn't ordered wrt to the size of that mode. */ 1006 poly_uint64 block_size = ordered_min (isize, regsize); 1007 unsigned int start_reg; 1008 poly_uint64 offset_within_reg; 1009 if (!can_div_trunc_p (offset, block_size, &start_reg, &offset_within_reg) 1010 || (BYTES_BIG_ENDIAN 1011 ? maybe_ne (offset_within_reg, block_size - osize) 1012 : maybe_ne (offset_within_reg, 0U))) 1013 return false; 1014 } 1015 return true; 1016 } 1017 1018 rtx 1019 gen_rtx_SUBREG (machine_mode mode, rtx reg, poly_uint64 offset) 1020 { 1021 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset)); 1022 return gen_rtx_raw_SUBREG (mode, reg, offset); 1023 } 1024 1025 /* Generate a SUBREG representing the least-significant part of REG if MODE 1026 is smaller than mode of REG, otherwise paradoxical SUBREG. */ 1027 1028 rtx 1029 gen_lowpart_SUBREG (machine_mode mode, rtx reg) 1030 { 1031 machine_mode inmode; 1032 1033 inmode = GET_MODE (reg); 1034 if (inmode == VOIDmode) 1035 inmode = mode; 1036 return gen_rtx_SUBREG (mode, reg, 1037 subreg_lowpart_offset (mode, inmode)); 1038 } 1039 1040 rtx 1041 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc, 1042 enum var_init_status status) 1043 { 1044 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc); 1045 PAT_VAR_LOCATION_STATUS (x) = status; 1046 return x; 1047 } 1048 1049 1050 /* Create an rtvec and stores within it the RTXen passed in the arguments. */ 1051 1052 rtvec 1053 gen_rtvec (int n, ...) 1054 { 1055 int i; 1056 rtvec rt_val; 1057 va_list p; 1058 1059 va_start (p, n); 1060 1061 /* Don't allocate an empty rtvec... */ 1062 if (n == 0) 1063 { 1064 va_end (p); 1065 return NULL_RTVEC; 1066 } 1067 1068 rt_val = rtvec_alloc (n); 1069 1070 for (i = 0; i < n; i++) 1071 rt_val->elem[i] = va_arg (p, rtx); 1072 1073 va_end (p); 1074 return rt_val; 1075 } 1076 1077 rtvec 1078 gen_rtvec_v (int n, rtx *argp) 1079 { 1080 int i; 1081 rtvec rt_val; 1082 1083 /* Don't allocate an empty rtvec... */ 1084 if (n == 0) 1085 return NULL_RTVEC; 1086 1087 rt_val = rtvec_alloc (n); 1088 1089 for (i = 0; i < n; i++) 1090 rt_val->elem[i] = *argp++; 1091 1092 return rt_val; 1093 } 1094 1095 rtvec 1096 gen_rtvec_v (int n, rtx_insn **argp) 1097 { 1098 int i; 1099 rtvec rt_val; 1100 1101 /* Don't allocate an empty rtvec... */ 1102 if (n == 0) 1103 return NULL_RTVEC; 1104 1105 rt_val = rtvec_alloc (n); 1106 1107 for (i = 0; i < n; i++) 1108 rt_val->elem[i] = *argp++; 1109 1110 return rt_val; 1111 } 1112 1113 1114 /* Return the number of bytes between the start of an OUTER_MODE 1115 in-memory value and the start of an INNER_MODE in-memory value, 1116 given that the former is a lowpart of the latter. It may be a 1117 paradoxical lowpart, in which case the offset will be negative 1118 on big-endian targets. */ 1119 1120 poly_int64 1121 byte_lowpart_offset (machine_mode outer_mode, 1122 machine_mode inner_mode) 1123 { 1124 if (paradoxical_subreg_p (outer_mode, inner_mode)) 1125 return -subreg_lowpart_offset (inner_mode, outer_mode); 1126 else 1127 return subreg_lowpart_offset (outer_mode, inner_mode); 1128 } 1129 1130 /* Return the offset of (subreg:OUTER_MODE (mem:INNER_MODE X) OFFSET) 1131 from address X. For paradoxical big-endian subregs this is a 1132 negative value, otherwise it's the same as OFFSET. */ 1133 1134 poly_int64 1135 subreg_memory_offset (machine_mode outer_mode, machine_mode inner_mode, 1136 poly_uint64 offset) 1137 { 1138 if (paradoxical_subreg_p (outer_mode, inner_mode)) 1139 { 1140 gcc_assert (known_eq (offset, 0U)); 1141 return -subreg_lowpart_offset (inner_mode, outer_mode); 1142 } 1143 return offset; 1144 } 1145 1146 /* As above, but return the offset that existing subreg X would have 1147 if SUBREG_REG (X) were stored in memory. The only significant thing 1148 about the current SUBREG_REG is its mode. */ 1149 1150 poly_int64 1151 subreg_memory_offset (const_rtx x) 1152 { 1153 return subreg_memory_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)), 1154 SUBREG_BYTE (x)); 1155 } 1156 1157 /* Generate a REG rtx for a new pseudo register of mode MODE. 1158 This pseudo is assigned the next sequential register number. */ 1159 1160 rtx 1161 gen_reg_rtx (machine_mode mode) 1162 { 1163 rtx val; 1164 unsigned int align = GET_MODE_ALIGNMENT (mode); 1165 1166 gcc_assert (can_create_pseudo_p ()); 1167 1168 /* If a virtual register with bigger mode alignment is generated, 1169 increase stack alignment estimation because it might be spilled 1170 to stack later. */ 1171 if (SUPPORTS_STACK_ALIGNMENT 1172 && crtl->stack_alignment_estimated < align 1173 && !crtl->stack_realign_processed) 1174 { 1175 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align); 1176 if (crtl->stack_alignment_estimated < min_align) 1177 crtl->stack_alignment_estimated = min_align; 1178 } 1179 1180 if (generating_concat_p 1181 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT 1182 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT)) 1183 { 1184 /* For complex modes, don't make a single pseudo. 1185 Instead, make a CONCAT of two pseudos. 1186 This allows noncontiguous allocation of the real and imaginary parts, 1187 which makes much better code. Besides, allocating DCmode 1188 pseudos overstrains reload on some machines like the 386. */ 1189 rtx realpart, imagpart; 1190 machine_mode partmode = GET_MODE_INNER (mode); 1191 1192 realpart = gen_reg_rtx (partmode); 1193 imagpart = gen_reg_rtx (partmode); 1194 return gen_rtx_CONCAT (mode, realpart, imagpart); 1195 } 1196 1197 /* Do not call gen_reg_rtx with uninitialized crtl. */ 1198 gcc_assert (crtl->emit.regno_pointer_align_length); 1199 1200 crtl->emit.ensure_regno_capacity (); 1201 gcc_assert (reg_rtx_no < crtl->emit.regno_pointer_align_length); 1202 1203 val = gen_raw_REG (mode, reg_rtx_no); 1204 regno_reg_rtx[reg_rtx_no++] = val; 1205 return val; 1206 } 1207 1208 /* Make sure m_regno_pointer_align, and regno_reg_rtx are large 1209 enough to have elements in the range 0 <= idx <= reg_rtx_no. */ 1210 1211 void 1212 emit_status::ensure_regno_capacity () 1213 { 1214 int old_size = regno_pointer_align_length; 1215 1216 if (reg_rtx_no < old_size) 1217 return; 1218 1219 int new_size = old_size * 2; 1220 while (reg_rtx_no >= new_size) 1221 new_size *= 2; 1222 1223 char *tmp = XRESIZEVEC (char, regno_pointer_align, new_size); 1224 memset (tmp + old_size, 0, new_size - old_size); 1225 regno_pointer_align = (unsigned char *) tmp; 1226 1227 rtx *new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, new_size); 1228 memset (new1 + old_size, 0, (new_size - old_size) * sizeof (rtx)); 1229 regno_reg_rtx = new1; 1230 1231 crtl->emit.regno_pointer_align_length = new_size; 1232 } 1233 1234 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */ 1235 1236 bool 1237 reg_is_parm_p (rtx reg) 1238 { 1239 tree decl; 1240 1241 gcc_assert (REG_P (reg)); 1242 decl = REG_EXPR (reg); 1243 return (decl && TREE_CODE (decl) == PARM_DECL); 1244 } 1245 1246 /* Update NEW with the same attributes as REG, but with OFFSET added 1247 to the REG_OFFSET. */ 1248 1249 static void 1250 update_reg_offset (rtx new_rtx, rtx reg, poly_int64 offset) 1251 { 1252 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg), 1253 REG_OFFSET (reg) + offset); 1254 } 1255 1256 /* Generate a register with same attributes as REG, but with OFFSET 1257 added to the REG_OFFSET. */ 1258 1259 rtx 1260 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno, 1261 poly_int64 offset) 1262 { 1263 rtx new_rtx = gen_rtx_REG (mode, regno); 1264 1265 update_reg_offset (new_rtx, reg, offset); 1266 return new_rtx; 1267 } 1268 1269 /* Generate a new pseudo-register with the same attributes as REG, but 1270 with OFFSET added to the REG_OFFSET. */ 1271 1272 rtx 1273 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset) 1274 { 1275 rtx new_rtx = gen_reg_rtx (mode); 1276 1277 update_reg_offset (new_rtx, reg, offset); 1278 return new_rtx; 1279 } 1280 1281 /* Adjust REG in-place so that it has mode MODE. It is assumed that the 1282 new register is a (possibly paradoxical) lowpart of the old one. */ 1283 1284 void 1285 adjust_reg_mode (rtx reg, machine_mode mode) 1286 { 1287 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg))); 1288 PUT_MODE (reg, mode); 1289 } 1290 1291 /* Copy REG's attributes from X, if X has any attributes. If REG and X 1292 have different modes, REG is a (possibly paradoxical) lowpart of X. */ 1293 1294 void 1295 set_reg_attrs_from_value (rtx reg, rtx x) 1296 { 1297 poly_int64 offset; 1298 bool can_be_reg_pointer = true; 1299 1300 /* Don't call mark_reg_pointer for incompatible pointer sign 1301 extension. */ 1302 while (GET_CODE (x) == SIGN_EXTEND 1303 || GET_CODE (x) == ZERO_EXTEND 1304 || GET_CODE (x) == TRUNCATE 1305 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x))) 1306 { 1307 #if defined(POINTERS_EXTEND_UNSIGNED) 1308 if (((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED) 1309 || (GET_CODE (x) == ZERO_EXTEND && ! POINTERS_EXTEND_UNSIGNED) 1310 || (paradoxical_subreg_p (x) 1311 && ! (SUBREG_PROMOTED_VAR_P (x) 1312 && SUBREG_CHECK_PROMOTED_SIGN (x, 1313 POINTERS_EXTEND_UNSIGNED)))) 1314 && !targetm.have_ptr_extend ()) 1315 can_be_reg_pointer = false; 1316 #endif 1317 x = XEXP (x, 0); 1318 } 1319 1320 /* Hard registers can be reused for multiple purposes within the same 1321 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN 1322 on them is wrong. */ 1323 if (HARD_REGISTER_P (reg)) 1324 return; 1325 1326 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x)); 1327 if (MEM_P (x)) 1328 { 1329 if (MEM_OFFSET_KNOWN_P (x)) 1330 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x), 1331 MEM_OFFSET (x) + offset); 1332 if (can_be_reg_pointer && MEM_POINTER (x)) 1333 mark_reg_pointer (reg, 0); 1334 } 1335 else if (REG_P (x)) 1336 { 1337 if (REG_ATTRS (x)) 1338 update_reg_offset (reg, x, offset); 1339 if (can_be_reg_pointer && REG_POINTER (x)) 1340 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x))); 1341 } 1342 } 1343 1344 /* Generate a REG rtx for a new pseudo register, copying the mode 1345 and attributes from X. */ 1346 1347 rtx 1348 gen_reg_rtx_and_attrs (rtx x) 1349 { 1350 rtx reg = gen_reg_rtx (GET_MODE (x)); 1351 set_reg_attrs_from_value (reg, x); 1352 return reg; 1353 } 1354 1355 /* Set the register attributes for registers contained in PARM_RTX. 1356 Use needed values from memory attributes of MEM. */ 1357 1358 void 1359 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem) 1360 { 1361 if (REG_P (parm_rtx)) 1362 set_reg_attrs_from_value (parm_rtx, mem); 1363 else if (GET_CODE (parm_rtx) == PARALLEL) 1364 { 1365 /* Check for a NULL entry in the first slot, used to indicate that the 1366 parameter goes both on the stack and in registers. */ 1367 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1; 1368 for (; i < XVECLEN (parm_rtx, 0); i++) 1369 { 1370 rtx x = XVECEXP (parm_rtx, 0, i); 1371 if (REG_P (XEXP (x, 0))) 1372 REG_ATTRS (XEXP (x, 0)) 1373 = get_reg_attrs (MEM_EXPR (mem), 1374 INTVAL (XEXP (x, 1))); 1375 } 1376 } 1377 } 1378 1379 /* Set the REG_ATTRS for registers in value X, given that X represents 1380 decl T. */ 1381 1382 void 1383 set_reg_attrs_for_decl_rtl (tree t, rtx x) 1384 { 1385 if (!t) 1386 return; 1387 tree tdecl = t; 1388 if (GET_CODE (x) == SUBREG) 1389 { 1390 gcc_assert (subreg_lowpart_p (x)); 1391 x = SUBREG_REG (x); 1392 } 1393 if (REG_P (x)) 1394 REG_ATTRS (x) 1395 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x), 1396 DECL_P (tdecl) 1397 ? DECL_MODE (tdecl) 1398 : TYPE_MODE (TREE_TYPE (tdecl)))); 1399 if (GET_CODE (x) == CONCAT) 1400 { 1401 if (REG_P (XEXP (x, 0))) 1402 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0); 1403 if (REG_P (XEXP (x, 1))) 1404 REG_ATTRS (XEXP (x, 1)) 1405 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0)))); 1406 } 1407 if (GET_CODE (x) == PARALLEL) 1408 { 1409 int i, start; 1410 1411 /* Check for a NULL entry, used to indicate that the parameter goes 1412 both on the stack and in registers. */ 1413 if (XEXP (XVECEXP (x, 0, 0), 0)) 1414 start = 0; 1415 else 1416 start = 1; 1417 1418 for (i = start; i < XVECLEN (x, 0); i++) 1419 { 1420 rtx y = XVECEXP (x, 0, i); 1421 if (REG_P (XEXP (y, 0))) 1422 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1))); 1423 } 1424 } 1425 } 1426 1427 /* Assign the RTX X to declaration T. */ 1428 1429 void 1430 set_decl_rtl (tree t, rtx x) 1431 { 1432 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x; 1433 if (x) 1434 set_reg_attrs_for_decl_rtl (t, x); 1435 } 1436 1437 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true 1438 if the ABI requires the parameter to be passed by reference. */ 1439 1440 void 1441 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p) 1442 { 1443 DECL_INCOMING_RTL (t) = x; 1444 if (x && !by_reference_p) 1445 set_reg_attrs_for_decl_rtl (t, x); 1446 } 1447 1448 /* Identify REG (which may be a CONCAT) as a user register. */ 1449 1450 void 1451 mark_user_reg (rtx reg) 1452 { 1453 if (GET_CODE (reg) == CONCAT) 1454 { 1455 REG_USERVAR_P (XEXP (reg, 0)) = 1; 1456 REG_USERVAR_P (XEXP (reg, 1)) = 1; 1457 } 1458 else 1459 { 1460 gcc_assert (REG_P (reg)); 1461 REG_USERVAR_P (reg) = 1; 1462 } 1463 } 1464 1465 /* Identify REG as a probable pointer register and show its alignment 1466 as ALIGN, if nonzero. */ 1467 1468 void 1469 mark_reg_pointer (rtx reg, int align) 1470 { 1471 if (! REG_POINTER (reg)) 1472 { 1473 REG_POINTER (reg) = 1; 1474 1475 if (align) 1476 REGNO_POINTER_ALIGN (REGNO (reg)) = align; 1477 } 1478 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg))) 1479 /* We can no-longer be sure just how aligned this pointer is. */ 1480 REGNO_POINTER_ALIGN (REGNO (reg)) = align; 1481 } 1482 1483 /* Return 1 plus largest pseudo reg number used in the current function. */ 1484 1485 int 1486 max_reg_num (void) 1487 { 1488 return reg_rtx_no; 1489 } 1490 1491 /* Return 1 + the largest label number used so far in the current function. */ 1492 1493 int 1494 max_label_num (void) 1495 { 1496 return label_num; 1497 } 1498 1499 /* Return first label number used in this function (if any were used). */ 1500 1501 int 1502 get_first_label_num (void) 1503 { 1504 return first_label_num; 1505 } 1506 1507 /* If the rtx for label was created during the expansion of a nested 1508 function, then first_label_num won't include this label number. 1509 Fix this now so that array indices work later. */ 1510 1511 void 1512 maybe_set_first_label_num (rtx_code_label *x) 1513 { 1514 if (CODE_LABEL_NUMBER (x) < first_label_num) 1515 first_label_num = CODE_LABEL_NUMBER (x); 1516 } 1517 1518 /* For use by the RTL function loader, when mingling with normal 1519 functions. 1520 Ensure that label_num is greater than the label num of X, to avoid 1521 duplicate labels in the generated assembler. */ 1522 1523 void 1524 maybe_set_max_label_num (rtx_code_label *x) 1525 { 1526 if (CODE_LABEL_NUMBER (x) >= label_num) 1527 label_num = CODE_LABEL_NUMBER (x) + 1; 1528 } 1529 1530 1531 /* Return a value representing some low-order bits of X, where the number 1532 of low-order bits is given by MODE. Note that no conversion is done 1533 between floating-point and fixed-point values, rather, the bit 1534 representation is returned. 1535 1536 This function handles the cases in common between gen_lowpart, below, 1537 and two variants in cse.c and combine.c. These are the cases that can 1538 be safely handled at all points in the compilation. 1539 1540 If this is not a case we can handle, return 0. */ 1541 1542 rtx 1543 gen_lowpart_common (machine_mode mode, rtx x) 1544 { 1545 poly_uint64 msize = GET_MODE_SIZE (mode); 1546 machine_mode innermode; 1547 1548 /* Unfortunately, this routine doesn't take a parameter for the mode of X, 1549 so we have to make one up. Yuk. */ 1550 innermode = GET_MODE (x); 1551 if (CONST_INT_P (x) 1552 && known_le (msize * BITS_PER_UNIT, 1553 (unsigned HOST_WIDE_INT) HOST_BITS_PER_WIDE_INT)) 1554 innermode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require (); 1555 else if (innermode == VOIDmode) 1556 innermode = int_mode_for_size (HOST_BITS_PER_DOUBLE_INT, 0).require (); 1557 1558 gcc_assert (innermode != VOIDmode && innermode != BLKmode); 1559 1560 if (innermode == mode) 1561 return x; 1562 1563 /* The size of the outer and inner modes must be ordered. */ 1564 poly_uint64 xsize = GET_MODE_SIZE (innermode); 1565 if (!ordered_p (msize, xsize)) 1566 return 0; 1567 1568 if (SCALAR_FLOAT_MODE_P (mode)) 1569 { 1570 /* Don't allow paradoxical FLOAT_MODE subregs. */ 1571 if (maybe_gt (msize, xsize)) 1572 return 0; 1573 } 1574 else 1575 { 1576 /* MODE must occupy no more of the underlying registers than X. */ 1577 poly_uint64 regsize = REGMODE_NATURAL_SIZE (innermode); 1578 unsigned int mregs, xregs; 1579 if (!can_div_away_from_zero_p (msize, regsize, &mregs) 1580 || !can_div_away_from_zero_p (xsize, regsize, &xregs) 1581 || mregs > xregs) 1582 return 0; 1583 } 1584 1585 scalar_int_mode int_mode, int_innermode, from_mode; 1586 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND) 1587 && is_a <scalar_int_mode> (mode, &int_mode) 1588 && is_a <scalar_int_mode> (innermode, &int_innermode) 1589 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &from_mode)) 1590 { 1591 /* If we are getting the low-order part of something that has been 1592 sign- or zero-extended, we can either just use the object being 1593 extended or make a narrower extension. If we want an even smaller 1594 piece than the size of the object being extended, call ourselves 1595 recursively. 1596 1597 This case is used mostly by combine and cse. */ 1598 1599 if (from_mode == int_mode) 1600 return XEXP (x, 0); 1601 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (from_mode)) 1602 return gen_lowpart_common (int_mode, XEXP (x, 0)); 1603 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (int_innermode)) 1604 return gen_rtx_fmt_e (GET_CODE (x), int_mode, XEXP (x, 0)); 1605 } 1606 else if (GET_CODE (x) == SUBREG || REG_P (x) 1607 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR 1608 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x) 1609 || CONST_POLY_INT_P (x)) 1610 return lowpart_subreg (mode, x, innermode); 1611 1612 /* Otherwise, we can't do this. */ 1613 return 0; 1614 } 1615 1616 rtx 1617 gen_highpart (machine_mode mode, rtx x) 1618 { 1619 poly_uint64 msize = GET_MODE_SIZE (mode); 1620 rtx result; 1621 1622 /* This case loses if X is a subreg. To catch bugs early, 1623 complain if an invalid MODE is used even in other cases. */ 1624 gcc_assert (known_le (msize, (unsigned int) UNITS_PER_WORD) 1625 || known_eq (msize, GET_MODE_UNIT_SIZE (GET_MODE (x)))); 1626 1627 result = simplify_gen_subreg (mode, x, GET_MODE (x), 1628 subreg_highpart_offset (mode, GET_MODE (x))); 1629 gcc_assert (result); 1630 1631 /* simplify_gen_subreg is not guaranteed to return a valid operand for 1632 the target if we have a MEM. gen_highpart must return a valid operand, 1633 emitting code if necessary to do so. */ 1634 if (MEM_P (result)) 1635 { 1636 result = validize_mem (result); 1637 gcc_assert (result); 1638 } 1639 1640 return result; 1641 } 1642 1643 /* Like gen_highpart, but accept mode of EXP operand in case EXP can 1644 be VOIDmode constant. */ 1645 rtx 1646 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp) 1647 { 1648 if (GET_MODE (exp) != VOIDmode) 1649 { 1650 gcc_assert (GET_MODE (exp) == innermode); 1651 return gen_highpart (outermode, exp); 1652 } 1653 return simplify_gen_subreg (outermode, exp, innermode, 1654 subreg_highpart_offset (outermode, innermode)); 1655 } 1656 1657 /* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has 1658 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */ 1659 1660 poly_uint64 1661 subreg_size_lowpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes) 1662 { 1663 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes)); 1664 if (maybe_gt (outer_bytes, inner_bytes)) 1665 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */ 1666 return 0; 1667 1668 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN) 1669 return inner_bytes - outer_bytes; 1670 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN) 1671 return 0; 1672 else 1673 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes, 0); 1674 } 1675 1676 /* Return the SUBREG_BYTE for a highpart subreg whose outer mode has 1677 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */ 1678 1679 poly_uint64 1680 subreg_size_highpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes) 1681 { 1682 gcc_assert (known_ge (inner_bytes, outer_bytes)); 1683 1684 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN) 1685 return 0; 1686 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN) 1687 return inner_bytes - outer_bytes; 1688 else 1689 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes, 1690 (inner_bytes - outer_bytes) 1691 * BITS_PER_UNIT); 1692 } 1693 1694 /* Return 1 iff X, assumed to be a SUBREG, 1695 refers to the least significant part of its containing reg. 1696 If X is not a SUBREG, always return 1 (it is its own low part!). */ 1697 1698 int 1699 subreg_lowpart_p (const_rtx x) 1700 { 1701 if (GET_CODE (x) != SUBREG) 1702 return 1; 1703 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode) 1704 return 0; 1705 1706 return known_eq (subreg_lowpart_offset (GET_MODE (x), 1707 GET_MODE (SUBREG_REG (x))), 1708 SUBREG_BYTE (x)); 1709 } 1710 1711 /* Return subword OFFSET of operand OP. 1712 The word number, OFFSET, is interpreted as the word number starting 1713 at the low-order address. OFFSET 0 is the low-order word if not 1714 WORDS_BIG_ENDIAN, otherwise it is the high-order word. 1715 1716 If we cannot extract the required word, we return zero. Otherwise, 1717 an rtx corresponding to the requested word will be returned. 1718 1719 VALIDATE_ADDRESS is nonzero if the address should be validated. Before 1720 reload has completed, a valid address will always be returned. After 1721 reload, if a valid address cannot be returned, we return zero. 1722 1723 If VALIDATE_ADDRESS is zero, we simply form the required address; validating 1724 it is the responsibility of the caller. 1725 1726 MODE is the mode of OP in case it is a CONST_INT. 1727 1728 ??? This is still rather broken for some cases. The problem for the 1729 moment is that all callers of this thing provide no 'goal mode' to 1730 tell us to work with. This exists because all callers were written 1731 in a word based SUBREG world. 1732 Now use of this function can be deprecated by simplify_subreg in most 1733 cases. 1734 */ 1735 1736 rtx 1737 operand_subword (rtx op, poly_uint64 offset, int validate_address, 1738 machine_mode mode) 1739 { 1740 if (mode == VOIDmode) 1741 mode = GET_MODE (op); 1742 1743 gcc_assert (mode != VOIDmode); 1744 1745 /* If OP is narrower than a word, fail. */ 1746 if (mode != BLKmode 1747 && maybe_lt (GET_MODE_SIZE (mode), UNITS_PER_WORD)) 1748 return 0; 1749 1750 /* If we want a word outside OP, return zero. */ 1751 if (mode != BLKmode 1752 && maybe_gt ((offset + 1) * UNITS_PER_WORD, GET_MODE_SIZE (mode))) 1753 return const0_rtx; 1754 1755 /* Form a new MEM at the requested address. */ 1756 if (MEM_P (op)) 1757 { 1758 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD); 1759 1760 if (! validate_address) 1761 return new_rtx; 1762 1763 else if (reload_completed) 1764 { 1765 if (! strict_memory_address_addr_space_p (word_mode, 1766 XEXP (new_rtx, 0), 1767 MEM_ADDR_SPACE (op))) 1768 return 0; 1769 } 1770 else 1771 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0)); 1772 } 1773 1774 /* Rest can be handled by simplify_subreg. */ 1775 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD)); 1776 } 1777 1778 /* Similar to `operand_subword', but never return 0. If we can't 1779 extract the required subword, put OP into a register and try again. 1780 The second attempt must succeed. We always validate the address in 1781 this case. 1782 1783 MODE is the mode of OP, in case it is CONST_INT. */ 1784 1785 rtx 1786 operand_subword_force (rtx op, poly_uint64 offset, machine_mode mode) 1787 { 1788 rtx result = operand_subword (op, offset, 1, mode); 1789 1790 if (result) 1791 return result; 1792 1793 if (mode != BLKmode && mode != VOIDmode) 1794 { 1795 /* If this is a register which cannot be accessed by words, copy it 1796 to a pseudo register. */ 1797 if (REG_P (op)) 1798 op = copy_to_reg (op); 1799 else 1800 op = force_reg (mode, op); 1801 } 1802 1803 result = operand_subword (op, offset, 1, mode); 1804 gcc_assert (result); 1805 1806 return result; 1807 } 1808 1809 mem_attrs::mem_attrs () 1810 : expr (NULL_TREE), 1811 offset (0), 1812 size (0), 1813 alias (0), 1814 align (0), 1815 addrspace (ADDR_SPACE_GENERIC), 1816 offset_known_p (false), 1817 size_known_p (false) 1818 {} 1819 1820 /* Returns 1 if both MEM_EXPR can be considered equal 1821 and 0 otherwise. */ 1822 1823 int 1824 mem_expr_equal_p (const_tree expr1, const_tree expr2) 1825 { 1826 if (expr1 == expr2) 1827 return 1; 1828 1829 if (! expr1 || ! expr2) 1830 return 0; 1831 1832 if (TREE_CODE (expr1) != TREE_CODE (expr2)) 1833 return 0; 1834 1835 return operand_equal_p (expr1, expr2, 0); 1836 } 1837 1838 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN 1839 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or 1840 -1 if not known. */ 1841 1842 int 1843 get_mem_align_offset (rtx mem, unsigned int align) 1844 { 1845 tree expr; 1846 poly_uint64 offset; 1847 1848 /* This function can't use 1849 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem) 1850 || (MAX (MEM_ALIGN (mem), 1851 MAX (align, get_object_alignment (MEM_EXPR (mem)))) 1852 < align)) 1853 return -1; 1854 else 1855 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1); 1856 for two reasons: 1857 - COMPONENT_REFs in MEM_EXPR can have NULL first operand, 1858 for <variable>. get_inner_reference doesn't handle it and 1859 even if it did, the alignment in that case needs to be determined 1860 from DECL_FIELD_CONTEXT's TYPE_ALIGN. 1861 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR 1862 isn't sufficiently aligned, the object it is in might be. */ 1863 gcc_assert (MEM_P (mem)); 1864 expr = MEM_EXPR (mem); 1865 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem)) 1866 return -1; 1867 1868 offset = MEM_OFFSET (mem); 1869 if (DECL_P (expr)) 1870 { 1871 if (DECL_ALIGN (expr) < align) 1872 return -1; 1873 } 1874 else if (INDIRECT_REF_P (expr)) 1875 { 1876 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align) 1877 return -1; 1878 } 1879 else if (TREE_CODE (expr) == COMPONENT_REF) 1880 { 1881 while (1) 1882 { 1883 tree inner = TREE_OPERAND (expr, 0); 1884 tree field = TREE_OPERAND (expr, 1); 1885 tree byte_offset = component_ref_field_offset (expr); 1886 tree bit_offset = DECL_FIELD_BIT_OFFSET (field); 1887 1888 poly_uint64 suboffset; 1889 if (!byte_offset 1890 || !poly_int_tree_p (byte_offset, &suboffset) 1891 || !tree_fits_uhwi_p (bit_offset)) 1892 return -1; 1893 1894 offset += suboffset; 1895 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT; 1896 1897 if (inner == NULL_TREE) 1898 { 1899 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field)) 1900 < (unsigned int) align) 1901 return -1; 1902 break; 1903 } 1904 else if (DECL_P (inner)) 1905 { 1906 if (DECL_ALIGN (inner) < align) 1907 return -1; 1908 break; 1909 } 1910 else if (TREE_CODE (inner) != COMPONENT_REF) 1911 return -1; 1912 expr = inner; 1913 } 1914 } 1915 else 1916 return -1; 1917 1918 HOST_WIDE_INT misalign; 1919 if (!known_misalignment (offset, align / BITS_PER_UNIT, &misalign)) 1920 return -1; 1921 return misalign; 1922 } 1923 1924 /* Given REF (a MEM) and T, either the type of X or the expression 1925 corresponding to REF, set the memory attributes. OBJECTP is nonzero 1926 if we are making a new object of this type. BITPOS is nonzero if 1927 there is an offset outstanding on T that will be applied later. */ 1928 1929 void 1930 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp, 1931 poly_int64 bitpos) 1932 { 1933 poly_int64 apply_bitpos = 0; 1934 tree type; 1935 class mem_attrs attrs, *defattrs, *refattrs; 1936 addr_space_t as; 1937 1938 /* It can happen that type_for_mode was given a mode for which there 1939 is no language-level type. In which case it returns NULL, which 1940 we can see here. */ 1941 if (t == NULL_TREE) 1942 return; 1943 1944 type = TYPE_P (t) ? t : TREE_TYPE (t); 1945 if (type == error_mark_node) 1946 return; 1947 1948 /* If we have already set DECL_RTL = ref, get_alias_set will get the 1949 wrong answer, as it assumes that DECL_RTL already has the right alias 1950 info. Callers should not set DECL_RTL until after the call to 1951 set_mem_attributes. */ 1952 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t)); 1953 1954 /* Get the alias set from the expression or type (perhaps using a 1955 front-end routine) and use it. */ 1956 attrs.alias = get_alias_set (t); 1957 1958 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type); 1959 MEM_POINTER (ref) = POINTER_TYPE_P (type); 1960 1961 /* Default values from pre-existing memory attributes if present. */ 1962 refattrs = MEM_ATTRS (ref); 1963 if (refattrs) 1964 { 1965 /* ??? Can this ever happen? Calling this routine on a MEM that 1966 already carries memory attributes should probably be invalid. */ 1967 attrs.expr = refattrs->expr; 1968 attrs.offset_known_p = refattrs->offset_known_p; 1969 attrs.offset = refattrs->offset; 1970 attrs.size_known_p = refattrs->size_known_p; 1971 attrs.size = refattrs->size; 1972 attrs.align = refattrs->align; 1973 } 1974 1975 /* Otherwise, default values from the mode of the MEM reference. */ 1976 else 1977 { 1978 defattrs = mode_mem_attrs[(int) GET_MODE (ref)]; 1979 gcc_assert (!defattrs->expr); 1980 gcc_assert (!defattrs->offset_known_p); 1981 1982 /* Respect mode size. */ 1983 attrs.size_known_p = defattrs->size_known_p; 1984 attrs.size = defattrs->size; 1985 /* ??? Is this really necessary? We probably should always get 1986 the size from the type below. */ 1987 1988 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type; 1989 if T is an object, always compute the object alignment below. */ 1990 if (TYPE_P (t)) 1991 attrs.align = defattrs->align; 1992 else 1993 attrs.align = BITS_PER_UNIT; 1994 /* ??? If T is a type, respecting mode alignment may *also* be wrong 1995 e.g. if the type carries an alignment attribute. Should we be 1996 able to simply always use TYPE_ALIGN? */ 1997 } 1998 1999 /* We can set the alignment from the type if we are making an object or if 2000 this is an INDIRECT_REF. */ 2001 if (objectp || TREE_CODE (t) == INDIRECT_REF) 2002 attrs.align = MAX (attrs.align, TYPE_ALIGN (type)); 2003 2004 /* If the size is known, we can set that. */ 2005 tree new_size = TYPE_SIZE_UNIT (type); 2006 2007 /* The address-space is that of the type. */ 2008 as = TYPE_ADDR_SPACE (type); 2009 2010 /* If T is not a type, we may be able to deduce some more information about 2011 the expression. */ 2012 if (! TYPE_P (t)) 2013 { 2014 tree base; 2015 2016 if (TREE_THIS_VOLATILE (t)) 2017 MEM_VOLATILE_P (ref) = 1; 2018 2019 /* Now remove any conversions: they don't change what the underlying 2020 object is. Likewise for SAVE_EXPR. */ 2021 while (CONVERT_EXPR_P (t) 2022 || TREE_CODE (t) == VIEW_CONVERT_EXPR 2023 || TREE_CODE (t) == SAVE_EXPR) 2024 t = TREE_OPERAND (t, 0); 2025 2026 /* Note whether this expression can trap. */ 2027 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t); 2028 2029 base = get_base_address (t); 2030 if (base) 2031 { 2032 if (DECL_P (base) 2033 && TREE_READONLY (base) 2034 && (TREE_STATIC (base) || DECL_EXTERNAL (base)) 2035 && !TREE_THIS_VOLATILE (base)) 2036 MEM_READONLY_P (ref) = 1; 2037 2038 /* Mark static const strings readonly as well. */ 2039 if (TREE_CODE (base) == STRING_CST 2040 && TREE_READONLY (base) 2041 && TREE_STATIC (base)) 2042 MEM_READONLY_P (ref) = 1; 2043 2044 /* Address-space information is on the base object. */ 2045 if (TREE_CODE (base) == MEM_REF 2046 || TREE_CODE (base) == TARGET_MEM_REF) 2047 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base, 2048 0)))); 2049 else 2050 as = TYPE_ADDR_SPACE (TREE_TYPE (base)); 2051 } 2052 2053 /* If this expression uses it's parent's alias set, mark it such 2054 that we won't change it. */ 2055 if (component_uses_parent_alias_set_from (t) != NULL_TREE) 2056 MEM_KEEP_ALIAS_SET_P (ref) = 1; 2057 2058 /* If this is a decl, set the attributes of the MEM from it. */ 2059 if (DECL_P (t)) 2060 { 2061 attrs.expr = t; 2062 attrs.offset_known_p = true; 2063 attrs.offset = 0; 2064 apply_bitpos = bitpos; 2065 new_size = DECL_SIZE_UNIT (t); 2066 } 2067 2068 /* ??? If we end up with a constant or a descriptor do not 2069 record a MEM_EXPR. */ 2070 else if (CONSTANT_CLASS_P (t) 2071 || TREE_CODE (t) == CONSTRUCTOR) 2072 ; 2073 2074 /* If this is a field reference, record it. */ 2075 else if (TREE_CODE (t) == COMPONENT_REF) 2076 { 2077 attrs.expr = t; 2078 attrs.offset_known_p = true; 2079 attrs.offset = 0; 2080 apply_bitpos = bitpos; 2081 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1))) 2082 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1)); 2083 } 2084 2085 /* Else record it. */ 2086 else 2087 { 2088 gcc_assert (handled_component_p (t) 2089 || TREE_CODE (t) == MEM_REF 2090 || TREE_CODE (t) == TARGET_MEM_REF); 2091 attrs.expr = t; 2092 attrs.offset_known_p = true; 2093 attrs.offset = 0; 2094 apply_bitpos = bitpos; 2095 } 2096 2097 /* If this is a reference based on a partitioned decl replace the 2098 base with a MEM_REF of the pointer representative we created 2099 during stack slot partitioning. */ 2100 if (attrs.expr 2101 && VAR_P (base) 2102 && ! is_global_var (base) 2103 && cfun->gimple_df->decls_to_pointers != NULL) 2104 { 2105 tree *namep = cfun->gimple_df->decls_to_pointers->get (base); 2106 if (namep) 2107 { 2108 attrs.expr = unshare_expr (attrs.expr); 2109 tree *orig_base = &attrs.expr; 2110 while (handled_component_p (*orig_base)) 2111 orig_base = &TREE_OPERAND (*orig_base, 0); 2112 tree aptrt = reference_alias_ptr_type (*orig_base); 2113 *orig_base = build2 (MEM_REF, TREE_TYPE (*orig_base), *namep, 2114 build_int_cst (aptrt, 0)); 2115 } 2116 } 2117 2118 /* Compute the alignment. */ 2119 unsigned int obj_align; 2120 unsigned HOST_WIDE_INT obj_bitpos; 2121 get_object_alignment_1 (t, &obj_align, &obj_bitpos); 2122 unsigned int diff_align = known_alignment (obj_bitpos - bitpos); 2123 if (diff_align != 0) 2124 obj_align = MIN (obj_align, diff_align); 2125 attrs.align = MAX (attrs.align, obj_align); 2126 } 2127 2128 poly_uint64 const_size; 2129 if (poly_int_tree_p (new_size, &const_size)) 2130 { 2131 attrs.size_known_p = true; 2132 attrs.size = const_size; 2133 } 2134 2135 /* If we modified OFFSET based on T, then subtract the outstanding 2136 bit position offset. Similarly, increase the size of the accessed 2137 object to contain the negative offset. */ 2138 if (maybe_ne (apply_bitpos, 0)) 2139 { 2140 gcc_assert (attrs.offset_known_p); 2141 poly_int64 bytepos = bits_to_bytes_round_down (apply_bitpos); 2142 attrs.offset -= bytepos; 2143 if (attrs.size_known_p) 2144 attrs.size += bytepos; 2145 } 2146 2147 /* Now set the attributes we computed above. */ 2148 attrs.addrspace = as; 2149 set_mem_attrs (ref, &attrs); 2150 } 2151 2152 void 2153 set_mem_attributes (rtx ref, tree t, int objectp) 2154 { 2155 set_mem_attributes_minus_bitpos (ref, t, objectp, 0); 2156 } 2157 2158 /* Set the alias set of MEM to SET. */ 2159 2160 void 2161 set_mem_alias_set (rtx mem, alias_set_type set) 2162 { 2163 /* If the new and old alias sets don't conflict, something is wrong. */ 2164 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem))); 2165 mem_attrs attrs (*get_mem_attrs (mem)); 2166 attrs.alias = set; 2167 set_mem_attrs (mem, &attrs); 2168 } 2169 2170 /* Set the address space of MEM to ADDRSPACE (target-defined). */ 2171 2172 void 2173 set_mem_addr_space (rtx mem, addr_space_t addrspace) 2174 { 2175 mem_attrs attrs (*get_mem_attrs (mem)); 2176 attrs.addrspace = addrspace; 2177 set_mem_attrs (mem, &attrs); 2178 } 2179 2180 /* Set the alignment of MEM to ALIGN bits. */ 2181 2182 void 2183 set_mem_align (rtx mem, unsigned int align) 2184 { 2185 mem_attrs attrs (*get_mem_attrs (mem)); 2186 attrs.align = align; 2187 set_mem_attrs (mem, &attrs); 2188 } 2189 2190 /* Set the expr for MEM to EXPR. */ 2191 2192 void 2193 set_mem_expr (rtx mem, tree expr) 2194 { 2195 mem_attrs attrs (*get_mem_attrs (mem)); 2196 attrs.expr = expr; 2197 set_mem_attrs (mem, &attrs); 2198 } 2199 2200 /* Set the offset of MEM to OFFSET. */ 2201 2202 void 2203 set_mem_offset (rtx mem, poly_int64 offset) 2204 { 2205 mem_attrs attrs (*get_mem_attrs (mem)); 2206 attrs.offset_known_p = true; 2207 attrs.offset = offset; 2208 set_mem_attrs (mem, &attrs); 2209 } 2210 2211 /* Clear the offset of MEM. */ 2212 2213 void 2214 clear_mem_offset (rtx mem) 2215 { 2216 mem_attrs attrs (*get_mem_attrs (mem)); 2217 attrs.offset_known_p = false; 2218 set_mem_attrs (mem, &attrs); 2219 } 2220 2221 /* Set the size of MEM to SIZE. */ 2222 2223 void 2224 set_mem_size (rtx mem, poly_int64 size) 2225 { 2226 mem_attrs attrs (*get_mem_attrs (mem)); 2227 attrs.size_known_p = true; 2228 attrs.size = size; 2229 set_mem_attrs (mem, &attrs); 2230 } 2231 2232 /* Clear the size of MEM. */ 2233 2234 void 2235 clear_mem_size (rtx mem) 2236 { 2237 mem_attrs attrs (*get_mem_attrs (mem)); 2238 attrs.size_known_p = false; 2239 set_mem_attrs (mem, &attrs); 2240 } 2241 2242 /* Return a memory reference like MEMREF, but with its mode changed to MODE 2243 and its address changed to ADDR. (VOIDmode means don't change the mode. 2244 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the 2245 returned memory location is required to be valid. INPLACE is true if any 2246 changes can be made directly to MEMREF or false if MEMREF must be treated 2247 as immutable. 2248 2249 The memory attributes are not changed. */ 2250 2251 static rtx 2252 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate, 2253 bool inplace) 2254 { 2255 addr_space_t as; 2256 rtx new_rtx; 2257 2258 gcc_assert (MEM_P (memref)); 2259 as = MEM_ADDR_SPACE (memref); 2260 if (mode == VOIDmode) 2261 mode = GET_MODE (memref); 2262 if (addr == 0) 2263 addr = XEXP (memref, 0); 2264 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0) 2265 && (!validate || memory_address_addr_space_p (mode, addr, as))) 2266 return memref; 2267 2268 /* Don't validate address for LRA. LRA can make the address valid 2269 by itself in most efficient way. */ 2270 if (validate && !lra_in_progress) 2271 { 2272 if (reload_in_progress || reload_completed) 2273 gcc_assert (memory_address_addr_space_p (mode, addr, as)); 2274 else 2275 addr = memory_address_addr_space (mode, addr, as); 2276 } 2277 2278 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref)) 2279 return memref; 2280 2281 if (inplace) 2282 { 2283 XEXP (memref, 0) = addr; 2284 return memref; 2285 } 2286 2287 new_rtx = gen_rtx_MEM (mode, addr); 2288 MEM_COPY_ATTRIBUTES (new_rtx, memref); 2289 return new_rtx; 2290 } 2291 2292 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what 2293 way we are changing MEMREF, so we only preserve the alias set. */ 2294 2295 rtx 2296 change_address (rtx memref, machine_mode mode, rtx addr) 2297 { 2298 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false); 2299 machine_mode mmode = GET_MODE (new_rtx); 2300 class mem_attrs *defattrs; 2301 2302 mem_attrs attrs (*get_mem_attrs (memref)); 2303 defattrs = mode_mem_attrs[(int) mmode]; 2304 attrs.expr = NULL_TREE; 2305 attrs.offset_known_p = false; 2306 attrs.size_known_p = defattrs->size_known_p; 2307 attrs.size = defattrs->size; 2308 attrs.align = defattrs->align; 2309 2310 /* If there are no changes, just return the original memory reference. */ 2311 if (new_rtx == memref) 2312 { 2313 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs)) 2314 return new_rtx; 2315 2316 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0)); 2317 MEM_COPY_ATTRIBUTES (new_rtx, memref); 2318 } 2319 2320 set_mem_attrs (new_rtx, &attrs); 2321 return new_rtx; 2322 } 2323 2324 /* Return a memory reference like MEMREF, but with its mode changed 2325 to MODE and its address offset by OFFSET bytes. If VALIDATE is 2326 nonzero, the memory address is forced to be valid. 2327 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS 2328 and the caller is responsible for adjusting MEMREF base register. 2329 If ADJUST_OBJECT is zero, the underlying object associated with the 2330 memory reference is left unchanged and the caller is responsible for 2331 dealing with it. Otherwise, if the new memory reference is outside 2332 the underlying object, even partially, then the object is dropped. 2333 SIZE, if nonzero, is the size of an access in cases where MODE 2334 has no inherent size. */ 2335 2336 rtx 2337 adjust_address_1 (rtx memref, machine_mode mode, poly_int64 offset, 2338 int validate, int adjust_address, int adjust_object, 2339 poly_int64 size) 2340 { 2341 rtx addr = XEXP (memref, 0); 2342 rtx new_rtx; 2343 scalar_int_mode address_mode; 2344 class mem_attrs attrs (*get_mem_attrs (memref)), *defattrs; 2345 unsigned HOST_WIDE_INT max_align; 2346 #ifdef POINTERS_EXTEND_UNSIGNED 2347 scalar_int_mode pointer_mode 2348 = targetm.addr_space.pointer_mode (attrs.addrspace); 2349 #endif 2350 2351 /* VOIDmode means no mode change for change_address_1. */ 2352 if (mode == VOIDmode) 2353 mode = GET_MODE (memref); 2354 2355 /* Take the size of non-BLKmode accesses from the mode. */ 2356 defattrs = mode_mem_attrs[(int) mode]; 2357 if (defattrs->size_known_p) 2358 size = defattrs->size; 2359 2360 /* If there are no changes, just return the original memory reference. */ 2361 if (mode == GET_MODE (memref) 2362 && known_eq (offset, 0) 2363 && (known_eq (size, 0) 2364 || (attrs.size_known_p && known_eq (attrs.size, size))) 2365 && (!validate || memory_address_addr_space_p (mode, addr, 2366 attrs.addrspace))) 2367 return memref; 2368 2369 /* ??? Prefer to create garbage instead of creating shared rtl. 2370 This may happen even if offset is nonzero -- consider 2371 (plus (plus reg reg) const_int) -- so do this always. */ 2372 addr = copy_rtx (addr); 2373 2374 /* Convert a possibly large offset to a signed value within the 2375 range of the target address space. */ 2376 address_mode = get_address_mode (memref); 2377 offset = trunc_int_for_mode (offset, address_mode); 2378 2379 if (adjust_address) 2380 { 2381 /* If MEMREF is a LO_SUM and the offset is within the alignment of the 2382 object, we can merge it into the LO_SUM. */ 2383 if (GET_MODE (memref) != BLKmode 2384 && GET_CODE (addr) == LO_SUM 2385 && known_in_range_p (offset, 2386 0, (GET_MODE_ALIGNMENT (GET_MODE (memref)) 2387 / BITS_PER_UNIT))) 2388 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0), 2389 plus_constant (address_mode, 2390 XEXP (addr, 1), offset)); 2391 #ifdef POINTERS_EXTEND_UNSIGNED 2392 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid 2393 in that mode, we merge it into the ZERO_EXTEND. We take advantage of 2394 the fact that pointers are not allowed to overflow. */ 2395 else if (POINTERS_EXTEND_UNSIGNED > 0 2396 && GET_CODE (addr) == ZERO_EXTEND 2397 && GET_MODE (XEXP (addr, 0)) == pointer_mode 2398 && known_eq (trunc_int_for_mode (offset, pointer_mode), offset)) 2399 addr = gen_rtx_ZERO_EXTEND (address_mode, 2400 plus_constant (pointer_mode, 2401 XEXP (addr, 0), offset)); 2402 #endif 2403 else 2404 addr = plus_constant (address_mode, addr, offset); 2405 } 2406 2407 new_rtx = change_address_1 (memref, mode, addr, validate, false); 2408 2409 /* If the address is a REG, change_address_1 rightfully returns memref, 2410 but this would destroy memref's MEM_ATTRS. */ 2411 if (new_rtx == memref && maybe_ne (offset, 0)) 2412 new_rtx = copy_rtx (new_rtx); 2413 2414 /* Conservatively drop the object if we don't know where we start from. */ 2415 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p)) 2416 { 2417 attrs.expr = NULL_TREE; 2418 attrs.alias = 0; 2419 } 2420 2421 /* Compute the new values of the memory attributes due to this adjustment. 2422 We add the offsets and update the alignment. */ 2423 if (attrs.offset_known_p) 2424 { 2425 attrs.offset += offset; 2426 2427 /* Drop the object if the new left end is not within its bounds. */ 2428 if (adjust_object && maybe_lt (attrs.offset, 0)) 2429 { 2430 attrs.expr = NULL_TREE; 2431 attrs.alias = 0; 2432 } 2433 } 2434 2435 /* Compute the new alignment by taking the MIN of the alignment and the 2436 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET 2437 if zero. */ 2438 if (maybe_ne (offset, 0)) 2439 { 2440 max_align = known_alignment (offset) * BITS_PER_UNIT; 2441 attrs.align = MIN (attrs.align, max_align); 2442 } 2443 2444 if (maybe_ne (size, 0)) 2445 { 2446 /* Drop the object if the new right end is not within its bounds. */ 2447 if (adjust_object && maybe_gt (offset + size, attrs.size)) 2448 { 2449 attrs.expr = NULL_TREE; 2450 attrs.alias = 0; 2451 } 2452 attrs.size_known_p = true; 2453 attrs.size = size; 2454 } 2455 else if (attrs.size_known_p) 2456 { 2457 gcc_assert (!adjust_object); 2458 attrs.size -= offset; 2459 /* ??? The store_by_pieces machinery generates negative sizes, 2460 so don't assert for that here. */ 2461 } 2462 2463 set_mem_attrs (new_rtx, &attrs); 2464 2465 return new_rtx; 2466 } 2467 2468 /* Return a memory reference like MEMREF, but with its mode changed 2469 to MODE and its address changed to ADDR, which is assumed to be 2470 MEMREF offset by OFFSET bytes. If VALIDATE is 2471 nonzero, the memory address is forced to be valid. */ 2472 2473 rtx 2474 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr, 2475 poly_int64 offset, int validate) 2476 { 2477 memref = change_address_1 (memref, VOIDmode, addr, validate, false); 2478 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0); 2479 } 2480 2481 /* Return a memory reference like MEMREF, but whose address is changed by 2482 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor 2483 known to be in OFFSET (possibly 1). */ 2484 2485 rtx 2486 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2) 2487 { 2488 rtx new_rtx, addr = XEXP (memref, 0); 2489 machine_mode address_mode; 2490 class mem_attrs *defattrs; 2491 2492 mem_attrs attrs (*get_mem_attrs (memref)); 2493 address_mode = get_address_mode (memref); 2494 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset); 2495 2496 /* At this point we don't know _why_ the address is invalid. It 2497 could have secondary memory references, multiplies or anything. 2498 2499 However, if we did go and rearrange things, we can wind up not 2500 being able to recognize the magic around pic_offset_table_rtx. 2501 This stuff is fragile, and is yet another example of why it is 2502 bad to expose PIC machinery too early. */ 2503 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx, 2504 attrs.addrspace) 2505 && GET_CODE (addr) == PLUS 2506 && XEXP (addr, 0) == pic_offset_table_rtx) 2507 { 2508 addr = force_reg (GET_MODE (addr), addr); 2509 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset); 2510 } 2511 2512 update_temp_slot_address (XEXP (memref, 0), new_rtx); 2513 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false); 2514 2515 /* If there are no changes, just return the original memory reference. */ 2516 if (new_rtx == memref) 2517 return new_rtx; 2518 2519 /* Update the alignment to reflect the offset. Reset the offset, which 2520 we don't know. */ 2521 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)]; 2522 attrs.offset_known_p = false; 2523 attrs.size_known_p = defattrs->size_known_p; 2524 attrs.size = defattrs->size; 2525 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT); 2526 set_mem_attrs (new_rtx, &attrs); 2527 return new_rtx; 2528 } 2529 2530 /* Return a memory reference like MEMREF, but with its address changed to 2531 ADDR. The caller is asserting that the actual piece of memory pointed 2532 to is the same, just the form of the address is being changed, such as 2533 by putting something into a register. INPLACE is true if any changes 2534 can be made directly to MEMREF or false if MEMREF must be treated as 2535 immutable. */ 2536 2537 rtx 2538 replace_equiv_address (rtx memref, rtx addr, bool inplace) 2539 { 2540 /* change_address_1 copies the memory attribute structure without change 2541 and that's exactly what we want here. */ 2542 update_temp_slot_address (XEXP (memref, 0), addr); 2543 return change_address_1 (memref, VOIDmode, addr, 1, inplace); 2544 } 2545 2546 /* Likewise, but the reference is not required to be valid. */ 2547 2548 rtx 2549 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace) 2550 { 2551 return change_address_1 (memref, VOIDmode, addr, 0, inplace); 2552 } 2553 2554 /* Return a memory reference like MEMREF, but with its mode widened to 2555 MODE and offset by OFFSET. This would be used by targets that e.g. 2556 cannot issue QImode memory operations and have to use SImode memory 2557 operations plus masking logic. */ 2558 2559 rtx 2560 widen_memory_access (rtx memref, machine_mode mode, poly_int64 offset) 2561 { 2562 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0); 2563 poly_uint64 size = GET_MODE_SIZE (mode); 2564 2565 /* If there are no changes, just return the original memory reference. */ 2566 if (new_rtx == memref) 2567 return new_rtx; 2568 2569 mem_attrs attrs (*get_mem_attrs (new_rtx)); 2570 2571 /* If we don't know what offset we were at within the expression, then 2572 we can't know if we've overstepped the bounds. */ 2573 if (! attrs.offset_known_p) 2574 attrs.expr = NULL_TREE; 2575 2576 while (attrs.expr) 2577 { 2578 if (TREE_CODE (attrs.expr) == COMPONENT_REF) 2579 { 2580 tree field = TREE_OPERAND (attrs.expr, 1); 2581 tree offset = component_ref_field_offset (attrs.expr); 2582 2583 if (! DECL_SIZE_UNIT (field)) 2584 { 2585 attrs.expr = NULL_TREE; 2586 break; 2587 } 2588 2589 /* Is the field at least as large as the access? If so, ok, 2590 otherwise strip back to the containing structure. */ 2591 if (poly_int_tree_p (DECL_SIZE_UNIT (field)) 2592 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (field)), size) 2593 && known_ge (attrs.offset, 0)) 2594 break; 2595 2596 poly_uint64 suboffset; 2597 if (!poly_int_tree_p (offset, &suboffset)) 2598 { 2599 attrs.expr = NULL_TREE; 2600 break; 2601 } 2602 2603 attrs.expr = TREE_OPERAND (attrs.expr, 0); 2604 attrs.offset += suboffset; 2605 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)) 2606 / BITS_PER_UNIT); 2607 } 2608 /* Similarly for the decl. */ 2609 else if (DECL_P (attrs.expr) 2610 && DECL_SIZE_UNIT (attrs.expr) 2611 && poly_int_tree_p (DECL_SIZE_UNIT (attrs.expr)) 2612 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (attrs.expr)), 2613 size) 2614 && known_ge (attrs.offset, 0)) 2615 break; 2616 else 2617 { 2618 /* The widened memory access overflows the expression, which means 2619 that it could alias another expression. Zap it. */ 2620 attrs.expr = NULL_TREE; 2621 break; 2622 } 2623 } 2624 2625 if (! attrs.expr) 2626 attrs.offset_known_p = false; 2627 2628 /* The widened memory may alias other stuff, so zap the alias set. */ 2629 /* ??? Maybe use get_alias_set on any remaining expression. */ 2630 attrs.alias = 0; 2631 attrs.size_known_p = true; 2632 attrs.size = size; 2633 set_mem_attrs (new_rtx, &attrs); 2634 return new_rtx; 2635 } 2636 2637 /* A fake decl that is used as the MEM_EXPR of spill slots. */ 2638 static GTY(()) tree spill_slot_decl; 2639 2640 tree 2641 get_spill_slot_decl (bool force_build_p) 2642 { 2643 tree d = spill_slot_decl; 2644 rtx rd; 2645 2646 if (d || !force_build_p) 2647 return d; 2648 2649 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl), 2650 VAR_DECL, get_identifier ("%sfp"), void_type_node); 2651 DECL_ARTIFICIAL (d) = 1; 2652 DECL_IGNORED_P (d) = 1; 2653 TREE_USED (d) = 1; 2654 spill_slot_decl = d; 2655 2656 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx); 2657 MEM_NOTRAP_P (rd) = 1; 2658 mem_attrs attrs (*mode_mem_attrs[(int) BLKmode]); 2659 attrs.alias = new_alias_set (); 2660 attrs.expr = d; 2661 set_mem_attrs (rd, &attrs); 2662 SET_DECL_RTL (d, rd); 2663 2664 return d; 2665 } 2666 2667 /* Given MEM, a result from assign_stack_local, fill in the memory 2668 attributes as appropriate for a register allocator spill slot. 2669 These slots are not aliasable by other memory. We arrange for 2670 them all to use a single MEM_EXPR, so that the aliasing code can 2671 work properly in the case of shared spill slots. */ 2672 2673 void 2674 set_mem_attrs_for_spill (rtx mem) 2675 { 2676 rtx addr; 2677 2678 mem_attrs attrs (*get_mem_attrs (mem)); 2679 attrs.expr = get_spill_slot_decl (true); 2680 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr)); 2681 attrs.addrspace = ADDR_SPACE_GENERIC; 2682 2683 /* We expect the incoming memory to be of the form: 2684 (mem:MODE (plus (reg sfp) (const_int offset))) 2685 with perhaps the plus missing for offset = 0. */ 2686 addr = XEXP (mem, 0); 2687 attrs.offset_known_p = true; 2688 strip_offset (addr, &attrs.offset); 2689 2690 set_mem_attrs (mem, &attrs); 2691 MEM_NOTRAP_P (mem) = 1; 2692 } 2693 2694 /* Return a newly created CODE_LABEL rtx with a unique label number. */ 2695 2696 rtx_code_label * 2697 gen_label_rtx (void) 2698 { 2699 return as_a <rtx_code_label *> ( 2700 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX, 2701 NULL, label_num++, NULL)); 2702 } 2703 2704 /* For procedure integration. */ 2705 2706 /* Install new pointers to the first and last insns in the chain. 2707 Also, set cur_insn_uid to one higher than the last in use. 2708 Used for an inline-procedure after copying the insn chain. */ 2709 2710 void 2711 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last) 2712 { 2713 rtx_insn *insn; 2714 2715 set_first_insn (first); 2716 set_last_insn (last); 2717 cur_insn_uid = 0; 2718 2719 if (param_min_nondebug_insn_uid || MAY_HAVE_DEBUG_INSNS) 2720 { 2721 int debug_count = 0; 2722 2723 cur_insn_uid = param_min_nondebug_insn_uid - 1; 2724 cur_debug_insn_uid = 0; 2725 2726 for (insn = first; insn; insn = NEXT_INSN (insn)) 2727 if (INSN_UID (insn) < param_min_nondebug_insn_uid) 2728 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn)); 2729 else 2730 { 2731 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn)); 2732 if (DEBUG_INSN_P (insn)) 2733 debug_count++; 2734 } 2735 2736 if (debug_count) 2737 cur_debug_insn_uid = param_min_nondebug_insn_uid + debug_count; 2738 else 2739 cur_debug_insn_uid++; 2740 } 2741 else 2742 for (insn = first; insn; insn = NEXT_INSN (insn)) 2743 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn)); 2744 2745 cur_insn_uid++; 2746 } 2747 2748 /* Go through all the RTL insn bodies and copy any invalid shared 2749 structure. This routine should only be called once. */ 2750 2751 static void 2752 unshare_all_rtl_1 (rtx_insn *insn) 2753 { 2754 /* Unshare just about everything else. */ 2755 unshare_all_rtl_in_chain (insn); 2756 2757 /* Make sure the addresses of stack slots found outside the insn chain 2758 (such as, in DECL_RTL of a variable) are not shared 2759 with the insn chain. 2760 2761 This special care is necessary when the stack slot MEM does not 2762 actually appear in the insn chain. If it does appear, its address 2763 is unshared from all else at that point. */ 2764 unsigned int i; 2765 rtx temp; 2766 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp) 2767 (*stack_slot_list)[i] = copy_rtx_if_shared (temp); 2768 } 2769 2770 /* Go through all the RTL insn bodies and copy any invalid shared 2771 structure, again. This is a fairly expensive thing to do so it 2772 should be done sparingly. */ 2773 2774 void 2775 unshare_all_rtl_again (rtx_insn *insn) 2776 { 2777 rtx_insn *p; 2778 tree decl; 2779 2780 for (p = insn; p; p = NEXT_INSN (p)) 2781 if (INSN_P (p)) 2782 { 2783 reset_used_flags (PATTERN (p)); 2784 reset_used_flags (REG_NOTES (p)); 2785 if (CALL_P (p)) 2786 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p)); 2787 } 2788 2789 /* Make sure that virtual stack slots are not shared. */ 2790 set_used_decls (DECL_INITIAL (cfun->decl)); 2791 2792 /* Make sure that virtual parameters are not shared. */ 2793 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl)) 2794 set_used_flags (DECL_RTL (decl)); 2795 2796 rtx temp; 2797 unsigned int i; 2798 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp) 2799 reset_used_flags (temp); 2800 2801 unshare_all_rtl_1 (insn); 2802 } 2803 2804 unsigned int 2805 unshare_all_rtl (void) 2806 { 2807 unshare_all_rtl_1 (get_insns ()); 2808 2809 for (tree decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl)) 2810 { 2811 if (DECL_RTL_SET_P (decl)) 2812 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl))); 2813 DECL_INCOMING_RTL (decl) = copy_rtx_if_shared (DECL_INCOMING_RTL (decl)); 2814 } 2815 2816 return 0; 2817 } 2818 2819 2820 /* Check that ORIG is not marked when it should not be and mark ORIG as in use, 2821 Recursively does the same for subexpressions. */ 2822 2823 static void 2824 verify_rtx_sharing (rtx orig, rtx insn) 2825 { 2826 rtx x = orig; 2827 int i; 2828 enum rtx_code code; 2829 const char *format_ptr; 2830 2831 if (x == 0) 2832 return; 2833 2834 code = GET_CODE (x); 2835 2836 /* These types may be freely shared. */ 2837 2838 switch (code) 2839 { 2840 case REG: 2841 case DEBUG_EXPR: 2842 case VALUE: 2843 CASE_CONST_ANY: 2844 case SYMBOL_REF: 2845 case LABEL_REF: 2846 case CODE_LABEL: 2847 case PC: 2848 case CC0: 2849 case RETURN: 2850 case SIMPLE_RETURN: 2851 case SCRATCH: 2852 /* SCRATCH must be shared because they represent distinct values. */ 2853 return; 2854 case CLOBBER: 2855 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg 2856 clobbers or clobbers of hard registers that originated as pseudos. 2857 This is needed to allow safe register renaming. */ 2858 if (REG_P (XEXP (x, 0)) 2859 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0))) 2860 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0)))) 2861 return; 2862 break; 2863 2864 case CONST: 2865 if (shared_const_p (orig)) 2866 return; 2867 break; 2868 2869 case MEM: 2870 /* A MEM is allowed to be shared if its address is constant. */ 2871 if (CONSTANT_ADDRESS_P (XEXP (x, 0)) 2872 || reload_completed || reload_in_progress) 2873 return; 2874 2875 break; 2876 2877 default: 2878 break; 2879 } 2880 2881 /* This rtx may not be shared. If it has already been seen, 2882 replace it with a copy of itself. */ 2883 if (flag_checking && RTX_FLAG (x, used)) 2884 { 2885 error ("invalid rtl sharing found in the insn"); 2886 debug_rtx (insn); 2887 error ("shared rtx"); 2888 debug_rtx (x); 2889 internal_error ("internal consistency failure"); 2890 } 2891 gcc_assert (!RTX_FLAG (x, used)); 2892 2893 RTX_FLAG (x, used) = 1; 2894 2895 /* Now scan the subexpressions recursively. */ 2896 2897 format_ptr = GET_RTX_FORMAT (code); 2898 2899 for (i = 0; i < GET_RTX_LENGTH (code); i++) 2900 { 2901 switch (*format_ptr++) 2902 { 2903 case 'e': 2904 verify_rtx_sharing (XEXP (x, i), insn); 2905 break; 2906 2907 case 'E': 2908 if (XVEC (x, i) != NULL) 2909 { 2910 int j; 2911 int len = XVECLEN (x, i); 2912 2913 for (j = 0; j < len; j++) 2914 { 2915 /* We allow sharing of ASM_OPERANDS inside single 2916 instruction. */ 2917 if (j && GET_CODE (XVECEXP (x, i, j)) == SET 2918 && (GET_CODE (SET_SRC (XVECEXP (x, i, j))) 2919 == ASM_OPERANDS)) 2920 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn); 2921 else 2922 verify_rtx_sharing (XVECEXP (x, i, j), insn); 2923 } 2924 } 2925 break; 2926 } 2927 } 2928 return; 2929 } 2930 2931 /* Reset used-flags for INSN. */ 2932 2933 static void 2934 reset_insn_used_flags (rtx insn) 2935 { 2936 gcc_assert (INSN_P (insn)); 2937 reset_used_flags (PATTERN (insn)); 2938 reset_used_flags (REG_NOTES (insn)); 2939 if (CALL_P (insn)) 2940 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn)); 2941 } 2942 2943 /* Go through all the RTL insn bodies and clear all the USED bits. */ 2944 2945 static void 2946 reset_all_used_flags (void) 2947 { 2948 rtx_insn *p; 2949 2950 for (p = get_insns (); p; p = NEXT_INSN (p)) 2951 if (INSN_P (p)) 2952 { 2953 rtx pat = PATTERN (p); 2954 if (GET_CODE (pat) != SEQUENCE) 2955 reset_insn_used_flags (p); 2956 else 2957 { 2958 gcc_assert (REG_NOTES (p) == NULL); 2959 for (int i = 0; i < XVECLEN (pat, 0); i++) 2960 { 2961 rtx insn = XVECEXP (pat, 0, i); 2962 if (INSN_P (insn)) 2963 reset_insn_used_flags (insn); 2964 } 2965 } 2966 } 2967 } 2968 2969 /* Verify sharing in INSN. */ 2970 2971 static void 2972 verify_insn_sharing (rtx insn) 2973 { 2974 gcc_assert (INSN_P (insn)); 2975 verify_rtx_sharing (PATTERN (insn), insn); 2976 verify_rtx_sharing (REG_NOTES (insn), insn); 2977 if (CALL_P (insn)) 2978 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (insn), insn); 2979 } 2980 2981 /* Go through all the RTL insn bodies and check that there is no unexpected 2982 sharing in between the subexpressions. */ 2983 2984 DEBUG_FUNCTION void 2985 verify_rtl_sharing (void) 2986 { 2987 rtx_insn *p; 2988 2989 timevar_push (TV_VERIFY_RTL_SHARING); 2990 2991 reset_all_used_flags (); 2992 2993 for (p = get_insns (); p; p = NEXT_INSN (p)) 2994 if (INSN_P (p)) 2995 { 2996 rtx pat = PATTERN (p); 2997 if (GET_CODE (pat) != SEQUENCE) 2998 verify_insn_sharing (p); 2999 else 3000 for (int i = 0; i < XVECLEN (pat, 0); i++) 3001 { 3002 rtx insn = XVECEXP (pat, 0, i); 3003 if (INSN_P (insn)) 3004 verify_insn_sharing (insn); 3005 } 3006 } 3007 3008 reset_all_used_flags (); 3009 3010 timevar_pop (TV_VERIFY_RTL_SHARING); 3011 } 3012 3013 /* Go through all the RTL insn bodies and copy any invalid shared structure. 3014 Assumes the mark bits are cleared at entry. */ 3015 3016 void 3017 unshare_all_rtl_in_chain (rtx_insn *insn) 3018 { 3019 for (; insn; insn = NEXT_INSN (insn)) 3020 if (INSN_P (insn)) 3021 { 3022 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn)); 3023 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn)); 3024 if (CALL_P (insn)) 3025 CALL_INSN_FUNCTION_USAGE (insn) 3026 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn)); 3027 } 3028 } 3029 3030 /* Go through all virtual stack slots of a function and mark them as 3031 shared. We never replace the DECL_RTLs themselves with a copy, 3032 but expressions mentioned into a DECL_RTL cannot be shared with 3033 expressions in the instruction stream. 3034 3035 Note that reload may convert pseudo registers into memories in-place. 3036 Pseudo registers are always shared, but MEMs never are. Thus if we 3037 reset the used flags on MEMs in the instruction stream, we must set 3038 them again on MEMs that appear in DECL_RTLs. */ 3039 3040 static void 3041 set_used_decls (tree blk) 3042 { 3043 tree t; 3044 3045 /* Mark decls. */ 3046 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t)) 3047 if (DECL_RTL_SET_P (t)) 3048 set_used_flags (DECL_RTL (t)); 3049 3050 /* Now process sub-blocks. */ 3051 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t)) 3052 set_used_decls (t); 3053 } 3054 3055 /* Mark ORIG as in use, and return a copy of it if it was already in use. 3056 Recursively does the same for subexpressions. Uses 3057 copy_rtx_if_shared_1 to reduce stack space. */ 3058 3059 rtx 3060 copy_rtx_if_shared (rtx orig) 3061 { 3062 copy_rtx_if_shared_1 (&orig); 3063 return orig; 3064 } 3065 3066 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in 3067 use. Recursively does the same for subexpressions. */ 3068 3069 static void 3070 copy_rtx_if_shared_1 (rtx *orig1) 3071 { 3072 rtx x; 3073 int i; 3074 enum rtx_code code; 3075 rtx *last_ptr; 3076 const char *format_ptr; 3077 int copied = 0; 3078 int length; 3079 3080 /* Repeat is used to turn tail-recursion into iteration. */ 3081 repeat: 3082 x = *orig1; 3083 3084 if (x == 0) 3085 return; 3086 3087 code = GET_CODE (x); 3088 3089 /* These types may be freely shared. */ 3090 3091 switch (code) 3092 { 3093 case REG: 3094 case DEBUG_EXPR: 3095 case VALUE: 3096 CASE_CONST_ANY: 3097 case SYMBOL_REF: 3098 case LABEL_REF: 3099 case CODE_LABEL: 3100 case PC: 3101 case CC0: 3102 case RETURN: 3103 case SIMPLE_RETURN: 3104 case SCRATCH: 3105 /* SCRATCH must be shared because they represent distinct values. */ 3106 return; 3107 case CLOBBER: 3108 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg 3109 clobbers or clobbers of hard registers that originated as pseudos. 3110 This is needed to allow safe register renaming. */ 3111 if (REG_P (XEXP (x, 0)) 3112 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0))) 3113 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0)))) 3114 return; 3115 break; 3116 3117 case CONST: 3118 if (shared_const_p (x)) 3119 return; 3120 break; 3121 3122 case DEBUG_INSN: 3123 case INSN: 3124 case JUMP_INSN: 3125 case CALL_INSN: 3126 case NOTE: 3127 case BARRIER: 3128 /* The chain of insns is not being copied. */ 3129 return; 3130 3131 default: 3132 break; 3133 } 3134 3135 /* This rtx may not be shared. If it has already been seen, 3136 replace it with a copy of itself. */ 3137 3138 if (RTX_FLAG (x, used)) 3139 { 3140 x = shallow_copy_rtx (x); 3141 copied = 1; 3142 } 3143 RTX_FLAG (x, used) = 1; 3144 3145 /* Now scan the subexpressions recursively. 3146 We can store any replaced subexpressions directly into X 3147 since we know X is not shared! Any vectors in X 3148 must be copied if X was copied. */ 3149 3150 format_ptr = GET_RTX_FORMAT (code); 3151 length = GET_RTX_LENGTH (code); 3152 last_ptr = NULL; 3153 3154 for (i = 0; i < length; i++) 3155 { 3156 switch (*format_ptr++) 3157 { 3158 case 'e': 3159 if (last_ptr) 3160 copy_rtx_if_shared_1 (last_ptr); 3161 last_ptr = &XEXP (x, i); 3162 break; 3163 3164 case 'E': 3165 if (XVEC (x, i) != NULL) 3166 { 3167 int j; 3168 int len = XVECLEN (x, i); 3169 3170 /* Copy the vector iff I copied the rtx and the length 3171 is nonzero. */ 3172 if (copied && len > 0) 3173 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem); 3174 3175 /* Call recursively on all inside the vector. */ 3176 for (j = 0; j < len; j++) 3177 { 3178 if (last_ptr) 3179 copy_rtx_if_shared_1 (last_ptr); 3180 last_ptr = &XVECEXP (x, i, j); 3181 } 3182 } 3183 break; 3184 } 3185 } 3186 *orig1 = x; 3187 if (last_ptr) 3188 { 3189 orig1 = last_ptr; 3190 goto repeat; 3191 } 3192 return; 3193 } 3194 3195 /* Set the USED bit in X and its non-shareable subparts to FLAG. */ 3196 3197 static void 3198 mark_used_flags (rtx x, int flag) 3199 { 3200 int i, j; 3201 enum rtx_code code; 3202 const char *format_ptr; 3203 int length; 3204 3205 /* Repeat is used to turn tail-recursion into iteration. */ 3206 repeat: 3207 if (x == 0) 3208 return; 3209 3210 code = GET_CODE (x); 3211 3212 /* These types may be freely shared so we needn't do any resetting 3213 for them. */ 3214 3215 switch (code) 3216 { 3217 case REG: 3218 case DEBUG_EXPR: 3219 case VALUE: 3220 CASE_CONST_ANY: 3221 case SYMBOL_REF: 3222 case CODE_LABEL: 3223 case PC: 3224 case CC0: 3225 case RETURN: 3226 case SIMPLE_RETURN: 3227 return; 3228 3229 case DEBUG_INSN: 3230 case INSN: 3231 case JUMP_INSN: 3232 case CALL_INSN: 3233 case NOTE: 3234 case LABEL_REF: 3235 case BARRIER: 3236 /* The chain of insns is not being copied. */ 3237 return; 3238 3239 default: 3240 break; 3241 } 3242 3243 RTX_FLAG (x, used) = flag; 3244 3245 format_ptr = GET_RTX_FORMAT (code); 3246 length = GET_RTX_LENGTH (code); 3247 3248 for (i = 0; i < length; i++) 3249 { 3250 switch (*format_ptr++) 3251 { 3252 case 'e': 3253 if (i == length-1) 3254 { 3255 x = XEXP (x, i); 3256 goto repeat; 3257 } 3258 mark_used_flags (XEXP (x, i), flag); 3259 break; 3260 3261 case 'E': 3262 for (j = 0; j < XVECLEN (x, i); j++) 3263 mark_used_flags (XVECEXP (x, i, j), flag); 3264 break; 3265 } 3266 } 3267 } 3268 3269 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used 3270 to look for shared sub-parts. */ 3271 3272 void 3273 reset_used_flags (rtx x) 3274 { 3275 mark_used_flags (x, 0); 3276 } 3277 3278 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used 3279 to look for shared sub-parts. */ 3280 3281 void 3282 set_used_flags (rtx x) 3283 { 3284 mark_used_flags (x, 1); 3285 } 3286 3287 /* Copy X if necessary so that it won't be altered by changes in OTHER. 3288 Return X or the rtx for the pseudo reg the value of X was copied into. 3289 OTHER must be valid as a SET_DEST. */ 3290 3291 rtx 3292 make_safe_from (rtx x, rtx other) 3293 { 3294 while (1) 3295 switch (GET_CODE (other)) 3296 { 3297 case SUBREG: 3298 other = SUBREG_REG (other); 3299 break; 3300 case STRICT_LOW_PART: 3301 case SIGN_EXTEND: 3302 case ZERO_EXTEND: 3303 other = XEXP (other, 0); 3304 break; 3305 default: 3306 goto done; 3307 } 3308 done: 3309 if ((MEM_P (other) 3310 && ! CONSTANT_P (x) 3311 && !REG_P (x) 3312 && GET_CODE (x) != SUBREG) 3313 || (REG_P (other) 3314 && (REGNO (other) < FIRST_PSEUDO_REGISTER 3315 || reg_mentioned_p (other, x)))) 3316 { 3317 rtx temp = gen_reg_rtx (GET_MODE (x)); 3318 emit_move_insn (temp, x); 3319 return temp; 3320 } 3321 return x; 3322 } 3323 3324 /* Emission of insns (adding them to the doubly-linked list). */ 3325 3326 /* Return the last insn emitted, even if it is in a sequence now pushed. */ 3327 3328 rtx_insn * 3329 get_last_insn_anywhere (void) 3330 { 3331 struct sequence_stack *seq; 3332 for (seq = get_current_sequence (); seq; seq = seq->next) 3333 if (seq->last != 0) 3334 return seq->last; 3335 return 0; 3336 } 3337 3338 /* Return the first nonnote insn emitted in current sequence or current 3339 function. This routine looks inside SEQUENCEs. */ 3340 3341 rtx_insn * 3342 get_first_nonnote_insn (void) 3343 { 3344 rtx_insn *insn = get_insns (); 3345 3346 if (insn) 3347 { 3348 if (NOTE_P (insn)) 3349 for (insn = next_insn (insn); 3350 insn && NOTE_P (insn); 3351 insn = next_insn (insn)) 3352 continue; 3353 else 3354 { 3355 if (NONJUMP_INSN_P (insn) 3356 && GET_CODE (PATTERN (insn)) == SEQUENCE) 3357 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0); 3358 } 3359 } 3360 3361 return insn; 3362 } 3363 3364 /* Return the last nonnote insn emitted in current sequence or current 3365 function. This routine looks inside SEQUENCEs. */ 3366 3367 rtx_insn * 3368 get_last_nonnote_insn (void) 3369 { 3370 rtx_insn *insn = get_last_insn (); 3371 3372 if (insn) 3373 { 3374 if (NOTE_P (insn)) 3375 for (insn = previous_insn (insn); 3376 insn && NOTE_P (insn); 3377 insn = previous_insn (insn)) 3378 continue; 3379 else 3380 { 3381 if (NONJUMP_INSN_P (insn)) 3382 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn))) 3383 insn = seq->insn (seq->len () - 1); 3384 } 3385 } 3386 3387 return insn; 3388 } 3389 3390 /* Return the number of actual (non-debug) insns emitted in this 3391 function. */ 3392 3393 int 3394 get_max_insn_count (void) 3395 { 3396 int n = cur_insn_uid; 3397 3398 /* The table size must be stable across -g, to avoid codegen 3399 differences due to debug insns, and not be affected by 3400 -fmin-insn-uid, to avoid excessive table size and to simplify 3401 debugging of -fcompare-debug failures. */ 3402 if (cur_debug_insn_uid > param_min_nondebug_insn_uid) 3403 n -= cur_debug_insn_uid; 3404 else 3405 n -= param_min_nondebug_insn_uid; 3406 3407 return n; 3408 } 3409 3410 3411 /* Return the next insn. If it is a SEQUENCE, return the first insn 3412 of the sequence. */ 3413 3414 rtx_insn * 3415 next_insn (rtx_insn *insn) 3416 { 3417 if (insn) 3418 { 3419 insn = NEXT_INSN (insn); 3420 if (insn && NONJUMP_INSN_P (insn) 3421 && GET_CODE (PATTERN (insn)) == SEQUENCE) 3422 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0); 3423 } 3424 3425 return insn; 3426 } 3427 3428 /* Return the previous insn. If it is a SEQUENCE, return the last insn 3429 of the sequence. */ 3430 3431 rtx_insn * 3432 previous_insn (rtx_insn *insn) 3433 { 3434 if (insn) 3435 { 3436 insn = PREV_INSN (insn); 3437 if (insn && NONJUMP_INSN_P (insn)) 3438 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn))) 3439 insn = seq->insn (seq->len () - 1); 3440 } 3441 3442 return insn; 3443 } 3444 3445 /* Return the next insn after INSN that is not a NOTE. This routine does not 3446 look inside SEQUENCEs. */ 3447 3448 rtx_insn * 3449 next_nonnote_insn (rtx_insn *insn) 3450 { 3451 while (insn) 3452 { 3453 insn = NEXT_INSN (insn); 3454 if (insn == 0 || !NOTE_P (insn)) 3455 break; 3456 } 3457 3458 return insn; 3459 } 3460 3461 /* Return the next insn after INSN that is not a DEBUG_INSN. This 3462 routine does not look inside SEQUENCEs. */ 3463 3464 rtx_insn * 3465 next_nondebug_insn (rtx_insn *insn) 3466 { 3467 while (insn) 3468 { 3469 insn = NEXT_INSN (insn); 3470 if (insn == 0 || !DEBUG_INSN_P (insn)) 3471 break; 3472 } 3473 3474 return insn; 3475 } 3476 3477 /* Return the previous insn before INSN that is not a NOTE. This routine does 3478 not look inside SEQUENCEs. */ 3479 3480 rtx_insn * 3481 prev_nonnote_insn (rtx_insn *insn) 3482 { 3483 while (insn) 3484 { 3485 insn = PREV_INSN (insn); 3486 if (insn == 0 || !NOTE_P (insn)) 3487 break; 3488 } 3489 3490 return insn; 3491 } 3492 3493 /* Return the previous insn before INSN that is not a DEBUG_INSN. 3494 This routine does not look inside SEQUENCEs. */ 3495 3496 rtx_insn * 3497 prev_nondebug_insn (rtx_insn *insn) 3498 { 3499 while (insn) 3500 { 3501 insn = PREV_INSN (insn); 3502 if (insn == 0 || !DEBUG_INSN_P (insn)) 3503 break; 3504 } 3505 3506 return insn; 3507 } 3508 3509 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN. 3510 This routine does not look inside SEQUENCEs. */ 3511 3512 rtx_insn * 3513 next_nonnote_nondebug_insn (rtx_insn *insn) 3514 { 3515 while (insn) 3516 { 3517 insn = NEXT_INSN (insn); 3518 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn))) 3519 break; 3520 } 3521 3522 return insn; 3523 } 3524 3525 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN, 3526 but stop the search before we enter another basic block. This 3527 routine does not look inside SEQUENCEs. */ 3528 3529 rtx_insn * 3530 next_nonnote_nondebug_insn_bb (rtx_insn *insn) 3531 { 3532 while (insn) 3533 { 3534 insn = NEXT_INSN (insn); 3535 if (insn == 0) 3536 break; 3537 if (DEBUG_INSN_P (insn)) 3538 continue; 3539 if (!NOTE_P (insn)) 3540 break; 3541 if (NOTE_INSN_BASIC_BLOCK_P (insn)) 3542 return NULL; 3543 } 3544 3545 return insn; 3546 } 3547 3548 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN. 3549 This routine does not look inside SEQUENCEs. */ 3550 3551 rtx_insn * 3552 prev_nonnote_nondebug_insn (rtx_insn *insn) 3553 { 3554 while (insn) 3555 { 3556 insn = PREV_INSN (insn); 3557 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn))) 3558 break; 3559 } 3560 3561 return insn; 3562 } 3563 3564 /* Return the previous insn before INSN that is not a NOTE nor 3565 DEBUG_INSN, but stop the search before we enter another basic 3566 block. This routine does not look inside SEQUENCEs. */ 3567 3568 rtx_insn * 3569 prev_nonnote_nondebug_insn_bb (rtx_insn *insn) 3570 { 3571 while (insn) 3572 { 3573 insn = PREV_INSN (insn); 3574 if (insn == 0) 3575 break; 3576 if (DEBUG_INSN_P (insn)) 3577 continue; 3578 if (!NOTE_P (insn)) 3579 break; 3580 if (NOTE_INSN_BASIC_BLOCK_P (insn)) 3581 return NULL; 3582 } 3583 3584 return insn; 3585 } 3586 3587 /* Return the next INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN after INSN; 3588 or 0, if there is none. This routine does not look inside 3589 SEQUENCEs. */ 3590 3591 rtx_insn * 3592 next_real_insn (rtx_insn *insn) 3593 { 3594 while (insn) 3595 { 3596 insn = NEXT_INSN (insn); 3597 if (insn == 0 || INSN_P (insn)) 3598 break; 3599 } 3600 3601 return insn; 3602 } 3603 3604 /* Return the last INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN before INSN; 3605 or 0, if there is none. This routine does not look inside 3606 SEQUENCEs. */ 3607 3608 rtx_insn * 3609 prev_real_insn (rtx_insn *insn) 3610 { 3611 while (insn) 3612 { 3613 insn = PREV_INSN (insn); 3614 if (insn == 0 || INSN_P (insn)) 3615 break; 3616 } 3617 3618 return insn; 3619 } 3620 3621 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN; 3622 or 0, if there is none. This routine does not look inside 3623 SEQUENCEs. */ 3624 3625 rtx_insn * 3626 next_real_nondebug_insn (rtx uncast_insn) 3627 { 3628 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn); 3629 3630 while (insn) 3631 { 3632 insn = NEXT_INSN (insn); 3633 if (insn == 0 || NONDEBUG_INSN_P (insn)) 3634 break; 3635 } 3636 3637 return insn; 3638 } 3639 3640 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN; 3641 or 0, if there is none. This routine does not look inside 3642 SEQUENCEs. */ 3643 3644 rtx_insn * 3645 prev_real_nondebug_insn (rtx_insn *insn) 3646 { 3647 while (insn) 3648 { 3649 insn = PREV_INSN (insn); 3650 if (insn == 0 || NONDEBUG_INSN_P (insn)) 3651 break; 3652 } 3653 3654 return insn; 3655 } 3656 3657 /* Return the last CALL_INSN in the current list, or 0 if there is none. 3658 This routine does not look inside SEQUENCEs. */ 3659 3660 rtx_call_insn * 3661 last_call_insn (void) 3662 { 3663 rtx_insn *insn; 3664 3665 for (insn = get_last_insn (); 3666 insn && !CALL_P (insn); 3667 insn = PREV_INSN (insn)) 3668 ; 3669 3670 return safe_as_a <rtx_call_insn *> (insn); 3671 } 3672 3673 /* Find the next insn after INSN that really does something. This routine 3674 does not look inside SEQUENCEs. After reload this also skips over 3675 standalone USE and CLOBBER insn. */ 3676 3677 int 3678 active_insn_p (const rtx_insn *insn) 3679 { 3680 return (CALL_P (insn) || JUMP_P (insn) 3681 || JUMP_TABLE_DATA_P (insn) /* FIXME */ 3682 || (NONJUMP_INSN_P (insn) 3683 && (! reload_completed 3684 || (GET_CODE (PATTERN (insn)) != USE 3685 && GET_CODE (PATTERN (insn)) != CLOBBER)))); 3686 } 3687 3688 rtx_insn * 3689 next_active_insn (rtx_insn *insn) 3690 { 3691 while (insn) 3692 { 3693 insn = NEXT_INSN (insn); 3694 if (insn == 0 || active_insn_p (insn)) 3695 break; 3696 } 3697 3698 return insn; 3699 } 3700 3701 /* Find the last insn before INSN that really does something. This routine 3702 does not look inside SEQUENCEs. After reload this also skips over 3703 standalone USE and CLOBBER insn. */ 3704 3705 rtx_insn * 3706 prev_active_insn (rtx_insn *insn) 3707 { 3708 while (insn) 3709 { 3710 insn = PREV_INSN (insn); 3711 if (insn == 0 || active_insn_p (insn)) 3712 break; 3713 } 3714 3715 return insn; 3716 } 3717 3718 /* Return the next insn that uses CC0 after INSN, which is assumed to 3719 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter 3720 applied to the result of this function should yield INSN). 3721 3722 Normally, this is simply the next insn. However, if a REG_CC_USER note 3723 is present, it contains the insn that uses CC0. 3724 3725 Return 0 if we can't find the insn. */ 3726 3727 rtx_insn * 3728 next_cc0_user (rtx_insn *insn) 3729 { 3730 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX); 3731 3732 if (note) 3733 return safe_as_a <rtx_insn *> (XEXP (note, 0)); 3734 3735 insn = next_nonnote_insn (insn); 3736 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE) 3737 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0); 3738 3739 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn))) 3740 return insn; 3741 3742 return 0; 3743 } 3744 3745 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER 3746 note, it is the previous insn. */ 3747 3748 rtx_insn * 3749 prev_cc0_setter (rtx_insn *insn) 3750 { 3751 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX); 3752 3753 if (note) 3754 return safe_as_a <rtx_insn *> (XEXP (note, 0)); 3755 3756 insn = prev_nonnote_insn (insn); 3757 gcc_assert (sets_cc0_p (PATTERN (insn))); 3758 3759 return insn; 3760 } 3761 3762 /* Find a RTX_AUTOINC class rtx which matches DATA. */ 3763 3764 static int 3765 find_auto_inc (const_rtx x, const_rtx reg) 3766 { 3767 subrtx_iterator::array_type array; 3768 FOR_EACH_SUBRTX (iter, array, x, NONCONST) 3769 { 3770 const_rtx x = *iter; 3771 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC 3772 && rtx_equal_p (reg, XEXP (x, 0))) 3773 return true; 3774 } 3775 return false; 3776 } 3777 3778 /* Increment the label uses for all labels present in rtx. */ 3779 3780 static void 3781 mark_label_nuses (rtx x) 3782 { 3783 enum rtx_code code; 3784 int i, j; 3785 const char *fmt; 3786 3787 code = GET_CODE (x); 3788 if (code == LABEL_REF && LABEL_P (label_ref_label (x))) 3789 LABEL_NUSES (label_ref_label (x))++; 3790 3791 fmt = GET_RTX_FORMAT (code); 3792 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 3793 { 3794 if (fmt[i] == 'e') 3795 mark_label_nuses (XEXP (x, i)); 3796 else if (fmt[i] == 'E') 3797 for (j = XVECLEN (x, i) - 1; j >= 0; j--) 3798 mark_label_nuses (XVECEXP (x, i, j)); 3799 } 3800 } 3801 3802 3803 /* Try splitting insns that can be split for better scheduling. 3804 PAT is the pattern which might split. 3805 TRIAL is the insn providing PAT. 3806 LAST is nonzero if we should return the last insn of the sequence produced. 3807 3808 If this routine succeeds in splitting, it returns the first or last 3809 replacement insn depending on the value of LAST. Otherwise, it 3810 returns TRIAL. If the insn to be returned can be split, it will be. */ 3811 3812 rtx_insn * 3813 try_split (rtx pat, rtx_insn *trial, int last) 3814 { 3815 rtx_insn *before, *after; 3816 rtx note; 3817 rtx_insn *seq, *tem; 3818 profile_probability probability; 3819 rtx_insn *insn_last, *insn; 3820 int njumps = 0; 3821 rtx_insn *call_insn = NULL; 3822 3823 /* We're not good at redistributing frame information. */ 3824 if (RTX_FRAME_RELATED_P (trial)) 3825 return trial; 3826 3827 if (any_condjump_p (trial) 3828 && (note = find_reg_note (trial, REG_BR_PROB, 0))) 3829 split_branch_probability 3830 = profile_probability::from_reg_br_prob_note (XINT (note, 0)); 3831 else 3832 split_branch_probability = profile_probability::uninitialized (); 3833 3834 probability = split_branch_probability; 3835 3836 seq = split_insns (pat, trial); 3837 3838 split_branch_probability = profile_probability::uninitialized (); 3839 3840 if (!seq) 3841 return trial; 3842 3843 /* Avoid infinite loop if any insn of the result matches 3844 the original pattern. */ 3845 insn_last = seq; 3846 while (1) 3847 { 3848 if (INSN_P (insn_last) 3849 && rtx_equal_p (PATTERN (insn_last), pat)) 3850 return trial; 3851 if (!NEXT_INSN (insn_last)) 3852 break; 3853 insn_last = NEXT_INSN (insn_last); 3854 } 3855 3856 /* We will be adding the new sequence to the function. The splitters 3857 may have introduced invalid RTL sharing, so unshare the sequence now. */ 3858 unshare_all_rtl_in_chain (seq); 3859 3860 /* Mark labels and copy flags. */ 3861 for (insn = insn_last; insn ; insn = PREV_INSN (insn)) 3862 { 3863 if (JUMP_P (insn)) 3864 { 3865 if (JUMP_P (trial)) 3866 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial); 3867 mark_jump_label (PATTERN (insn), insn, 0); 3868 njumps++; 3869 if (probability.initialized_p () 3870 && any_condjump_p (insn) 3871 && !find_reg_note (insn, REG_BR_PROB, 0)) 3872 { 3873 /* We can preserve the REG_BR_PROB notes only if exactly 3874 one jump is created, otherwise the machine description 3875 is responsible for this step using 3876 split_branch_probability variable. */ 3877 gcc_assert (njumps == 1); 3878 add_reg_br_prob_note (insn, probability); 3879 } 3880 } 3881 } 3882 3883 /* If we are splitting a CALL_INSN, look for the CALL_INSN 3884 in SEQ and copy any additional information across. */ 3885 if (CALL_P (trial)) 3886 { 3887 for (insn = insn_last; insn ; insn = PREV_INSN (insn)) 3888 if (CALL_P (insn)) 3889 { 3890 gcc_assert (call_insn == NULL_RTX); 3891 call_insn = insn; 3892 3893 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the 3894 target may have explicitly specified. */ 3895 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn); 3896 while (*p) 3897 p = &XEXP (*p, 1); 3898 *p = CALL_INSN_FUNCTION_USAGE (trial); 3899 3900 /* If the old call was a sibling call, the new one must 3901 be too. */ 3902 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial); 3903 } 3904 } 3905 3906 /* Copy notes, particularly those related to the CFG. */ 3907 for (note = REG_NOTES (trial); note; note = XEXP (note, 1)) 3908 { 3909 switch (REG_NOTE_KIND (note)) 3910 { 3911 case REG_EH_REGION: 3912 copy_reg_eh_region_note_backward (note, insn_last, NULL); 3913 break; 3914 3915 case REG_NORETURN: 3916 case REG_SETJMP: 3917 case REG_TM: 3918 case REG_CALL_NOCF_CHECK: 3919 case REG_CALL_ARG_LOCATION: 3920 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn)) 3921 { 3922 if (CALL_P (insn)) 3923 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0)); 3924 } 3925 break; 3926 3927 case REG_NON_LOCAL_GOTO: 3928 case REG_LABEL_TARGET: 3929 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn)) 3930 { 3931 if (JUMP_P (insn)) 3932 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0)); 3933 } 3934 break; 3935 3936 case REG_INC: 3937 if (!AUTO_INC_DEC) 3938 break; 3939 3940 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn)) 3941 { 3942 rtx reg = XEXP (note, 0); 3943 if (!FIND_REG_INC_NOTE (insn, reg) 3944 && find_auto_inc (PATTERN (insn), reg)) 3945 add_reg_note (insn, REG_INC, reg); 3946 } 3947 break; 3948 3949 case REG_ARGS_SIZE: 3950 fixup_args_size_notes (NULL, insn_last, get_args_size (note)); 3951 break; 3952 3953 case REG_CALL_DECL: 3954 gcc_assert (call_insn != NULL_RTX); 3955 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0)); 3956 break; 3957 3958 default: 3959 break; 3960 } 3961 } 3962 3963 /* If there are LABELS inside the split insns increment the 3964 usage count so we don't delete the label. */ 3965 if (INSN_P (trial)) 3966 { 3967 insn = insn_last; 3968 while (insn != NULL_RTX) 3969 { 3970 /* JUMP_P insns have already been "marked" above. */ 3971 if (NONJUMP_INSN_P (insn)) 3972 mark_label_nuses (PATTERN (insn)); 3973 3974 insn = PREV_INSN (insn); 3975 } 3976 } 3977 3978 before = PREV_INSN (trial); 3979 after = NEXT_INSN (trial); 3980 3981 emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial)); 3982 3983 delete_insn (trial); 3984 3985 /* Recursively call try_split for each new insn created; by the 3986 time control returns here that insn will be fully split, so 3987 set LAST and continue from the insn after the one returned. 3988 We can't use next_active_insn here since AFTER may be a note. 3989 Ignore deleted insns, which can be occur if not optimizing. */ 3990 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem)) 3991 if (! tem->deleted () && INSN_P (tem)) 3992 tem = try_split (PATTERN (tem), tem, 1); 3993 3994 /* Return either the first or the last insn, depending on which was 3995 requested. */ 3996 return last 3997 ? (after ? PREV_INSN (after) : get_last_insn ()) 3998 : NEXT_INSN (before); 3999 } 4000 4001 /* Make and return an INSN rtx, initializing all its slots. 4002 Store PATTERN in the pattern slots. */ 4003 4004 rtx_insn * 4005 make_insn_raw (rtx pattern) 4006 { 4007 rtx_insn *insn; 4008 4009 insn = as_a <rtx_insn *> (rtx_alloc (INSN)); 4010 4011 INSN_UID (insn) = cur_insn_uid++; 4012 PATTERN (insn) = pattern; 4013 INSN_CODE (insn) = -1; 4014 REG_NOTES (insn) = NULL; 4015 INSN_LOCATION (insn) = curr_insn_location (); 4016 BLOCK_FOR_INSN (insn) = NULL; 4017 4018 #ifdef ENABLE_RTL_CHECKING 4019 if (insn 4020 && INSN_P (insn) 4021 && (returnjump_p (insn) 4022 || (GET_CODE (insn) == SET 4023 && SET_DEST (insn) == pc_rtx))) 4024 { 4025 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n"); 4026 debug_rtx (insn); 4027 } 4028 #endif 4029 4030 return insn; 4031 } 4032 4033 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */ 4034 4035 static rtx_insn * 4036 make_debug_insn_raw (rtx pattern) 4037 { 4038 rtx_debug_insn *insn; 4039 4040 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN)); 4041 INSN_UID (insn) = cur_debug_insn_uid++; 4042 if (cur_debug_insn_uid > param_min_nondebug_insn_uid) 4043 INSN_UID (insn) = cur_insn_uid++; 4044 4045 PATTERN (insn) = pattern; 4046 INSN_CODE (insn) = -1; 4047 REG_NOTES (insn) = NULL; 4048 INSN_LOCATION (insn) = curr_insn_location (); 4049 BLOCK_FOR_INSN (insn) = NULL; 4050 4051 return insn; 4052 } 4053 4054 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */ 4055 4056 static rtx_insn * 4057 make_jump_insn_raw (rtx pattern) 4058 { 4059 rtx_jump_insn *insn; 4060 4061 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN)); 4062 INSN_UID (insn) = cur_insn_uid++; 4063 4064 PATTERN (insn) = pattern; 4065 INSN_CODE (insn) = -1; 4066 REG_NOTES (insn) = NULL; 4067 JUMP_LABEL (insn) = NULL; 4068 INSN_LOCATION (insn) = curr_insn_location (); 4069 BLOCK_FOR_INSN (insn) = NULL; 4070 4071 return insn; 4072 } 4073 4074 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */ 4075 4076 static rtx_insn * 4077 make_call_insn_raw (rtx pattern) 4078 { 4079 rtx_call_insn *insn; 4080 4081 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN)); 4082 INSN_UID (insn) = cur_insn_uid++; 4083 4084 PATTERN (insn) = pattern; 4085 INSN_CODE (insn) = -1; 4086 REG_NOTES (insn) = NULL; 4087 CALL_INSN_FUNCTION_USAGE (insn) = NULL; 4088 INSN_LOCATION (insn) = curr_insn_location (); 4089 BLOCK_FOR_INSN (insn) = NULL; 4090 4091 return insn; 4092 } 4093 4094 /* Like `make_insn_raw' but make a NOTE instead of an insn. */ 4095 4096 static rtx_note * 4097 make_note_raw (enum insn_note subtype) 4098 { 4099 /* Some notes are never created this way at all. These notes are 4100 only created by patching out insns. */ 4101 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL 4102 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL); 4103 4104 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE)); 4105 INSN_UID (note) = cur_insn_uid++; 4106 NOTE_KIND (note) = subtype; 4107 BLOCK_FOR_INSN (note) = NULL; 4108 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note))); 4109 return note; 4110 } 4111 4112 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT. 4113 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects, 4114 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */ 4115 4116 static inline void 4117 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next) 4118 { 4119 SET_PREV_INSN (insn) = prev; 4120 SET_NEXT_INSN (insn) = next; 4121 if (prev != NULL) 4122 { 4123 SET_NEXT_INSN (prev) = insn; 4124 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE) 4125 { 4126 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev)); 4127 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn; 4128 } 4129 } 4130 if (next != NULL) 4131 { 4132 SET_PREV_INSN (next) = insn; 4133 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE) 4134 { 4135 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next)); 4136 SET_PREV_INSN (sequence->insn (0)) = insn; 4137 } 4138 } 4139 4140 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE) 4141 { 4142 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn)); 4143 SET_PREV_INSN (sequence->insn (0)) = prev; 4144 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next; 4145 } 4146 } 4147 4148 /* Add INSN to the end of the doubly-linked list. 4149 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */ 4150 4151 void 4152 add_insn (rtx_insn *insn) 4153 { 4154 rtx_insn *prev = get_last_insn (); 4155 link_insn_into_chain (insn, prev, NULL); 4156 if (get_insns () == NULL) 4157 set_first_insn (insn); 4158 set_last_insn (insn); 4159 } 4160 4161 /* Add INSN into the doubly-linked list after insn AFTER. */ 4162 4163 static void 4164 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after) 4165 { 4166 rtx_insn *next = NEXT_INSN (after); 4167 4168 gcc_assert (!optimize || !after->deleted ()); 4169 4170 link_insn_into_chain (insn, after, next); 4171 4172 if (next == NULL) 4173 { 4174 struct sequence_stack *seq; 4175 4176 for (seq = get_current_sequence (); seq; seq = seq->next) 4177 if (after == seq->last) 4178 { 4179 seq->last = insn; 4180 break; 4181 } 4182 } 4183 } 4184 4185 /* Add INSN into the doubly-linked list before insn BEFORE. */ 4186 4187 static void 4188 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before) 4189 { 4190 rtx_insn *prev = PREV_INSN (before); 4191 4192 gcc_assert (!optimize || !before->deleted ()); 4193 4194 link_insn_into_chain (insn, prev, before); 4195 4196 if (prev == NULL) 4197 { 4198 struct sequence_stack *seq; 4199 4200 for (seq = get_current_sequence (); seq; seq = seq->next) 4201 if (before == seq->first) 4202 { 4203 seq->first = insn; 4204 break; 4205 } 4206 4207 gcc_assert (seq); 4208 } 4209 } 4210 4211 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN. 4212 If BB is NULL, an attempt is made to infer the bb from before. 4213 4214 This and the next function should be the only functions called 4215 to insert an insn once delay slots have been filled since only 4216 they know how to update a SEQUENCE. */ 4217 4218 void 4219 add_insn_after (rtx_insn *insn, rtx_insn *after, basic_block bb) 4220 { 4221 add_insn_after_nobb (insn, after); 4222 if (!BARRIER_P (after) 4223 && !BARRIER_P (insn) 4224 && (bb = BLOCK_FOR_INSN (after))) 4225 { 4226 set_block_for_insn (insn, bb); 4227 if (INSN_P (insn)) 4228 df_insn_rescan (insn); 4229 /* Should not happen as first in the BB is always 4230 either NOTE or LABEL. */ 4231 if (BB_END (bb) == after 4232 /* Avoid clobbering of structure when creating new BB. */ 4233 && !BARRIER_P (insn) 4234 && !NOTE_INSN_BASIC_BLOCK_P (insn)) 4235 BB_END (bb) = insn; 4236 } 4237 } 4238 4239 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN. 4240 If BB is NULL, an attempt is made to infer the bb from before. 4241 4242 This and the previous function should be the only functions called 4243 to insert an insn once delay slots have been filled since only 4244 they know how to update a SEQUENCE. */ 4245 4246 void 4247 add_insn_before (rtx_insn *insn, rtx_insn *before, basic_block bb) 4248 { 4249 add_insn_before_nobb (insn, before); 4250 4251 if (!bb 4252 && !BARRIER_P (before) 4253 && !BARRIER_P (insn)) 4254 bb = BLOCK_FOR_INSN (before); 4255 4256 if (bb) 4257 { 4258 set_block_for_insn (insn, bb); 4259 if (INSN_P (insn)) 4260 df_insn_rescan (insn); 4261 /* Should not happen as first in the BB is always either NOTE or 4262 LABEL. */ 4263 gcc_assert (BB_HEAD (bb) != insn 4264 /* Avoid clobbering of structure when creating new BB. */ 4265 || BARRIER_P (insn) 4266 || NOTE_INSN_BASIC_BLOCK_P (insn)); 4267 } 4268 } 4269 4270 /* Replace insn with an deleted instruction note. */ 4271 4272 void 4273 set_insn_deleted (rtx_insn *insn) 4274 { 4275 if (INSN_P (insn)) 4276 df_insn_delete (insn); 4277 PUT_CODE (insn, NOTE); 4278 NOTE_KIND (insn) = NOTE_INSN_DELETED; 4279 } 4280 4281 4282 /* Unlink INSN from the insn chain. 4283 4284 This function knows how to handle sequences. 4285 4286 This function does not invalidate data flow information associated with 4287 INSN (i.e. does not call df_insn_delete). That makes this function 4288 usable for only disconnecting an insn from the chain, and re-emit it 4289 elsewhere later. 4290 4291 To later insert INSN elsewhere in the insn chain via add_insn and 4292 similar functions, PREV_INSN and NEXT_INSN must be nullified by 4293 the caller. Nullifying them here breaks many insn chain walks. 4294 4295 To really delete an insn and related DF information, use delete_insn. */ 4296 4297 void 4298 remove_insn (rtx_insn *insn) 4299 { 4300 rtx_insn *next = NEXT_INSN (insn); 4301 rtx_insn *prev = PREV_INSN (insn); 4302 basic_block bb; 4303 4304 if (prev) 4305 { 4306 SET_NEXT_INSN (prev) = next; 4307 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE) 4308 { 4309 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev)); 4310 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next; 4311 } 4312 } 4313 else 4314 { 4315 struct sequence_stack *seq; 4316 4317 for (seq = get_current_sequence (); seq; seq = seq->next) 4318 if (insn == seq->first) 4319 { 4320 seq->first = next; 4321 break; 4322 } 4323 4324 gcc_assert (seq); 4325 } 4326 4327 if (next) 4328 { 4329 SET_PREV_INSN (next) = prev; 4330 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE) 4331 { 4332 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next)); 4333 SET_PREV_INSN (sequence->insn (0)) = prev; 4334 } 4335 } 4336 else 4337 { 4338 struct sequence_stack *seq; 4339 4340 for (seq = get_current_sequence (); seq; seq = seq->next) 4341 if (insn == seq->last) 4342 { 4343 seq->last = prev; 4344 break; 4345 } 4346 4347 gcc_assert (seq); 4348 } 4349 4350 /* Fix up basic block boundaries, if necessary. */ 4351 if (!BARRIER_P (insn) 4352 && (bb = BLOCK_FOR_INSN (insn))) 4353 { 4354 if (BB_HEAD (bb) == insn) 4355 { 4356 /* Never ever delete the basic block note without deleting whole 4357 basic block. */ 4358 gcc_assert (!NOTE_P (insn)); 4359 BB_HEAD (bb) = next; 4360 } 4361 if (BB_END (bb) == insn) 4362 BB_END (bb) = prev; 4363 } 4364 } 4365 4366 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */ 4367 4368 void 4369 add_function_usage_to (rtx call_insn, rtx call_fusage) 4370 { 4371 gcc_assert (call_insn && CALL_P (call_insn)); 4372 4373 /* Put the register usage information on the CALL. If there is already 4374 some usage information, put ours at the end. */ 4375 if (CALL_INSN_FUNCTION_USAGE (call_insn)) 4376 { 4377 rtx link; 4378 4379 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0; 4380 link = XEXP (link, 1)) 4381 ; 4382 4383 XEXP (link, 1) = call_fusage; 4384 } 4385 else 4386 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage; 4387 } 4388 4389 /* Delete all insns made since FROM. 4390 FROM becomes the new last instruction. */ 4391 4392 void 4393 delete_insns_since (rtx_insn *from) 4394 { 4395 if (from == 0) 4396 set_first_insn (0); 4397 else 4398 SET_NEXT_INSN (from) = 0; 4399 set_last_insn (from); 4400 } 4401 4402 /* This function is deprecated, please use sequences instead. 4403 4404 Move a consecutive bunch of insns to a different place in the chain. 4405 The insns to be moved are those between FROM and TO. 4406 They are moved to a new position after the insn AFTER. 4407 AFTER must not be FROM or TO or any insn in between. 4408 4409 This function does not know about SEQUENCEs and hence should not be 4410 called after delay-slot filling has been done. */ 4411 4412 void 4413 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after) 4414 { 4415 if (flag_checking) 4416 { 4417 for (rtx_insn *x = from; x != to; x = NEXT_INSN (x)) 4418 gcc_assert (after != x); 4419 gcc_assert (after != to); 4420 } 4421 4422 /* Splice this bunch out of where it is now. */ 4423 if (PREV_INSN (from)) 4424 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to); 4425 if (NEXT_INSN (to)) 4426 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from); 4427 if (get_last_insn () == to) 4428 set_last_insn (PREV_INSN (from)); 4429 if (get_insns () == from) 4430 set_first_insn (NEXT_INSN (to)); 4431 4432 /* Make the new neighbors point to it and it to them. */ 4433 if (NEXT_INSN (after)) 4434 SET_PREV_INSN (NEXT_INSN (after)) = to; 4435 4436 SET_NEXT_INSN (to) = NEXT_INSN (after); 4437 SET_PREV_INSN (from) = after; 4438 SET_NEXT_INSN (after) = from; 4439 if (after == get_last_insn ()) 4440 set_last_insn (to); 4441 } 4442 4443 /* Same as function above, but take care to update BB boundaries. */ 4444 void 4445 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after) 4446 { 4447 rtx_insn *prev = PREV_INSN (from); 4448 basic_block bb, bb2; 4449 4450 reorder_insns_nobb (from, to, after); 4451 4452 if (!BARRIER_P (after) 4453 && (bb = BLOCK_FOR_INSN (after))) 4454 { 4455 rtx_insn *x; 4456 df_set_bb_dirty (bb); 4457 4458 if (!BARRIER_P (from) 4459 && (bb2 = BLOCK_FOR_INSN (from))) 4460 { 4461 if (BB_END (bb2) == to) 4462 BB_END (bb2) = prev; 4463 df_set_bb_dirty (bb2); 4464 } 4465 4466 if (BB_END (bb) == after) 4467 BB_END (bb) = to; 4468 4469 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x)) 4470 if (!BARRIER_P (x)) 4471 df_insn_change_bb (x, bb); 4472 } 4473 } 4474 4475 4476 /* Emit insn(s) of given code and pattern 4477 at a specified place within the doubly-linked list. 4478 4479 All of the emit_foo global entry points accept an object 4480 X which is either an insn list or a PATTERN of a single 4481 instruction. 4482 4483 There are thus a few canonical ways to generate code and 4484 emit it at a specific place in the instruction stream. For 4485 example, consider the instruction named SPOT and the fact that 4486 we would like to emit some instructions before SPOT. We might 4487 do it like this: 4488 4489 start_sequence (); 4490 ... emit the new instructions ... 4491 insns_head = get_insns (); 4492 end_sequence (); 4493 4494 emit_insn_before (insns_head, SPOT); 4495 4496 It used to be common to generate SEQUENCE rtl instead, but that 4497 is a relic of the past which no longer occurs. The reason is that 4498 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE 4499 generated would almost certainly die right after it was created. */ 4500 4501 static rtx_insn * 4502 emit_pattern_before_noloc (rtx x, rtx_insn *before, rtx_insn *last, 4503 basic_block bb, 4504 rtx_insn *(*make_raw) (rtx)) 4505 { 4506 rtx_insn *insn; 4507 4508 gcc_assert (before); 4509 4510 if (x == NULL_RTX) 4511 return last; 4512 4513 switch (GET_CODE (x)) 4514 { 4515 case DEBUG_INSN: 4516 case INSN: 4517 case JUMP_INSN: 4518 case CALL_INSN: 4519 case CODE_LABEL: 4520 case BARRIER: 4521 case NOTE: 4522 insn = as_a <rtx_insn *> (x); 4523 while (insn) 4524 { 4525 rtx_insn *next = NEXT_INSN (insn); 4526 add_insn_before (insn, before, bb); 4527 last = insn; 4528 insn = next; 4529 } 4530 break; 4531 4532 #ifdef ENABLE_RTL_CHECKING 4533 case SEQUENCE: 4534 gcc_unreachable (); 4535 break; 4536 #endif 4537 4538 default: 4539 last = (*make_raw) (x); 4540 add_insn_before (last, before, bb); 4541 break; 4542 } 4543 4544 return last; 4545 } 4546 4547 /* Make X be output before the instruction BEFORE. */ 4548 4549 rtx_insn * 4550 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb) 4551 { 4552 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw); 4553 } 4554 4555 /* Make an instruction with body X and code JUMP_INSN 4556 and output it before the instruction BEFORE. */ 4557 4558 rtx_jump_insn * 4559 emit_jump_insn_before_noloc (rtx x, rtx_insn *before) 4560 { 4561 return as_a <rtx_jump_insn *> ( 4562 emit_pattern_before_noloc (x, before, NULL, NULL, 4563 make_jump_insn_raw)); 4564 } 4565 4566 /* Make an instruction with body X and code CALL_INSN 4567 and output it before the instruction BEFORE. */ 4568 4569 rtx_insn * 4570 emit_call_insn_before_noloc (rtx x, rtx_insn *before) 4571 { 4572 return emit_pattern_before_noloc (x, before, NULL, NULL, 4573 make_call_insn_raw); 4574 } 4575 4576 /* Make an instruction with body X and code DEBUG_INSN 4577 and output it before the instruction BEFORE. */ 4578 4579 rtx_insn * 4580 emit_debug_insn_before_noloc (rtx x, rtx_insn *before) 4581 { 4582 return emit_pattern_before_noloc (x, before, NULL, NULL, 4583 make_debug_insn_raw); 4584 } 4585 4586 /* Make an insn of code BARRIER 4587 and output it before the insn BEFORE. */ 4588 4589 rtx_barrier * 4590 emit_barrier_before (rtx_insn *before) 4591 { 4592 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER)); 4593 4594 INSN_UID (insn) = cur_insn_uid++; 4595 4596 add_insn_before (insn, before, NULL); 4597 return insn; 4598 } 4599 4600 /* Emit the label LABEL before the insn BEFORE. */ 4601 4602 rtx_code_label * 4603 emit_label_before (rtx_code_label *label, rtx_insn *before) 4604 { 4605 gcc_checking_assert (INSN_UID (label) == 0); 4606 INSN_UID (label) = cur_insn_uid++; 4607 add_insn_before (label, before, NULL); 4608 return label; 4609 } 4610 4611 /* Helper for emit_insn_after, handles lists of instructions 4612 efficiently. */ 4613 4614 static rtx_insn * 4615 emit_insn_after_1 (rtx_insn *first, rtx_insn *after, basic_block bb) 4616 { 4617 rtx_insn *last; 4618 rtx_insn *after_after; 4619 if (!bb && !BARRIER_P (after)) 4620 bb = BLOCK_FOR_INSN (after); 4621 4622 if (bb) 4623 { 4624 df_set_bb_dirty (bb); 4625 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last)) 4626 if (!BARRIER_P (last)) 4627 { 4628 set_block_for_insn (last, bb); 4629 df_insn_rescan (last); 4630 } 4631 if (!BARRIER_P (last)) 4632 { 4633 set_block_for_insn (last, bb); 4634 df_insn_rescan (last); 4635 } 4636 if (BB_END (bb) == after) 4637 BB_END (bb) = last; 4638 } 4639 else 4640 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last)) 4641 continue; 4642 4643 after_after = NEXT_INSN (after); 4644 4645 SET_NEXT_INSN (after) = first; 4646 SET_PREV_INSN (first) = after; 4647 SET_NEXT_INSN (last) = after_after; 4648 if (after_after) 4649 SET_PREV_INSN (after_after) = last; 4650 4651 if (after == get_last_insn ()) 4652 set_last_insn (last); 4653 4654 return last; 4655 } 4656 4657 static rtx_insn * 4658 emit_pattern_after_noloc (rtx x, rtx_insn *after, basic_block bb, 4659 rtx_insn *(*make_raw)(rtx)) 4660 { 4661 rtx_insn *last = after; 4662 4663 gcc_assert (after); 4664 4665 if (x == NULL_RTX) 4666 return last; 4667 4668 switch (GET_CODE (x)) 4669 { 4670 case DEBUG_INSN: 4671 case INSN: 4672 case JUMP_INSN: 4673 case CALL_INSN: 4674 case CODE_LABEL: 4675 case BARRIER: 4676 case NOTE: 4677 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb); 4678 break; 4679 4680 #ifdef ENABLE_RTL_CHECKING 4681 case SEQUENCE: 4682 gcc_unreachable (); 4683 break; 4684 #endif 4685 4686 default: 4687 last = (*make_raw) (x); 4688 add_insn_after (last, after, bb); 4689 break; 4690 } 4691 4692 return last; 4693 } 4694 4695 /* Make X be output after the insn AFTER and set the BB of insn. If 4696 BB is NULL, an attempt is made to infer the BB from AFTER. */ 4697 4698 rtx_insn * 4699 emit_insn_after_noloc (rtx x, rtx_insn *after, basic_block bb) 4700 { 4701 return emit_pattern_after_noloc (x, after, bb, make_insn_raw); 4702 } 4703 4704 4705 /* Make an insn of code JUMP_INSN with body X 4706 and output it after the insn AFTER. */ 4707 4708 rtx_jump_insn * 4709 emit_jump_insn_after_noloc (rtx x, rtx_insn *after) 4710 { 4711 return as_a <rtx_jump_insn *> ( 4712 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw)); 4713 } 4714 4715 /* Make an instruction with body X and code CALL_INSN 4716 and output it after the instruction AFTER. */ 4717 4718 rtx_insn * 4719 emit_call_insn_after_noloc (rtx x, rtx_insn *after) 4720 { 4721 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw); 4722 } 4723 4724 /* Make an instruction with body X and code CALL_INSN 4725 and output it after the instruction AFTER. */ 4726 4727 rtx_insn * 4728 emit_debug_insn_after_noloc (rtx x, rtx_insn *after) 4729 { 4730 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw); 4731 } 4732 4733 /* Make an insn of code BARRIER 4734 and output it after the insn AFTER. */ 4735 4736 rtx_barrier * 4737 emit_barrier_after (rtx_insn *after) 4738 { 4739 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER)); 4740 4741 INSN_UID (insn) = cur_insn_uid++; 4742 4743 add_insn_after (insn, after, NULL); 4744 return insn; 4745 } 4746 4747 /* Emit the label LABEL after the insn AFTER. */ 4748 4749 rtx_insn * 4750 emit_label_after (rtx_insn *label, rtx_insn *after) 4751 { 4752 gcc_checking_assert (INSN_UID (label) == 0); 4753 INSN_UID (label) = cur_insn_uid++; 4754 add_insn_after (label, after, NULL); 4755 return label; 4756 } 4757 4758 /* Notes require a bit of special handling: Some notes need to have their 4759 BLOCK_FOR_INSN set, others should never have it set, and some should 4760 have it set or clear depending on the context. */ 4761 4762 /* Return true iff a note of kind SUBTYPE should be emitted with routines 4763 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the 4764 caller is asked to emit a note before BB_HEAD, or after BB_END. */ 4765 4766 static bool 4767 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p) 4768 { 4769 switch (subtype) 4770 { 4771 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */ 4772 case NOTE_INSN_SWITCH_TEXT_SECTIONS: 4773 return true; 4774 4775 /* Notes for var tracking and EH region markers can appear between or 4776 inside basic blocks. If the caller is emitting on the basic block 4777 boundary, do not set BLOCK_FOR_INSN on the new note. */ 4778 case NOTE_INSN_VAR_LOCATION: 4779 case NOTE_INSN_EH_REGION_BEG: 4780 case NOTE_INSN_EH_REGION_END: 4781 return on_bb_boundary_p; 4782 4783 /* Otherwise, BLOCK_FOR_INSN must be set. */ 4784 default: 4785 return false; 4786 } 4787 } 4788 4789 /* Emit a note of subtype SUBTYPE after the insn AFTER. */ 4790 4791 rtx_note * 4792 emit_note_after (enum insn_note subtype, rtx_insn *after) 4793 { 4794 rtx_note *note = make_note_raw (subtype); 4795 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after); 4796 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after); 4797 4798 if (note_outside_basic_block_p (subtype, on_bb_boundary_p)) 4799 add_insn_after_nobb (note, after); 4800 else 4801 add_insn_after (note, after, bb); 4802 return note; 4803 } 4804 4805 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */ 4806 4807 rtx_note * 4808 emit_note_before (enum insn_note subtype, rtx_insn *before) 4809 { 4810 rtx_note *note = make_note_raw (subtype); 4811 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before); 4812 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before); 4813 4814 if (note_outside_basic_block_p (subtype, on_bb_boundary_p)) 4815 add_insn_before_nobb (note, before); 4816 else 4817 add_insn_before (note, before, bb); 4818 return note; 4819 } 4820 4821 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC. 4822 MAKE_RAW indicates how to turn PATTERN into a real insn. */ 4823 4824 static rtx_insn * 4825 emit_pattern_after_setloc (rtx pattern, rtx_insn *after, location_t loc, 4826 rtx_insn *(*make_raw) (rtx)) 4827 { 4828 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw); 4829 4830 if (pattern == NULL_RTX || !loc) 4831 return last; 4832 4833 after = NEXT_INSN (after); 4834 while (1) 4835 { 4836 if (active_insn_p (after) 4837 && !JUMP_TABLE_DATA_P (after) /* FIXME */ 4838 && !INSN_LOCATION (after)) 4839 INSN_LOCATION (after) = loc; 4840 if (after == last) 4841 break; 4842 after = NEXT_INSN (after); 4843 } 4844 return last; 4845 } 4846 4847 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN 4848 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after 4849 any DEBUG_INSNs. */ 4850 4851 static rtx_insn * 4852 emit_pattern_after (rtx pattern, rtx_insn *after, bool skip_debug_insns, 4853 rtx_insn *(*make_raw) (rtx)) 4854 { 4855 rtx_insn *prev = after; 4856 4857 if (skip_debug_insns) 4858 while (DEBUG_INSN_P (prev)) 4859 prev = PREV_INSN (prev); 4860 4861 if (INSN_P (prev)) 4862 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev), 4863 make_raw); 4864 else 4865 return emit_pattern_after_noloc (pattern, after, NULL, make_raw); 4866 } 4867 4868 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */ 4869 rtx_insn * 4870 emit_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc) 4871 { 4872 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw); 4873 } 4874 4875 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */ 4876 rtx_insn * 4877 emit_insn_after (rtx pattern, rtx_insn *after) 4878 { 4879 return emit_pattern_after (pattern, after, true, make_insn_raw); 4880 } 4881 4882 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */ 4883 rtx_jump_insn * 4884 emit_jump_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc) 4885 { 4886 return as_a <rtx_jump_insn *> ( 4887 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw)); 4888 } 4889 4890 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */ 4891 rtx_jump_insn * 4892 emit_jump_insn_after (rtx pattern, rtx_insn *after) 4893 { 4894 return as_a <rtx_jump_insn *> ( 4895 emit_pattern_after (pattern, after, true, make_jump_insn_raw)); 4896 } 4897 4898 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */ 4899 rtx_insn * 4900 emit_call_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc) 4901 { 4902 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw); 4903 } 4904 4905 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */ 4906 rtx_insn * 4907 emit_call_insn_after (rtx pattern, rtx_insn *after) 4908 { 4909 return emit_pattern_after (pattern, after, true, make_call_insn_raw); 4910 } 4911 4912 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */ 4913 rtx_insn * 4914 emit_debug_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc) 4915 { 4916 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw); 4917 } 4918 4919 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */ 4920 rtx_insn * 4921 emit_debug_insn_after (rtx pattern, rtx_insn *after) 4922 { 4923 return emit_pattern_after (pattern, after, false, make_debug_insn_raw); 4924 } 4925 4926 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC. 4927 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP 4928 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN, 4929 CALL_INSN, etc. */ 4930 4931 static rtx_insn * 4932 emit_pattern_before_setloc (rtx pattern, rtx_insn *before, location_t loc, 4933 bool insnp, rtx_insn *(*make_raw) (rtx)) 4934 { 4935 rtx_insn *first = PREV_INSN (before); 4936 rtx_insn *last = emit_pattern_before_noloc (pattern, before, 4937 insnp ? before : NULL, 4938 NULL, make_raw); 4939 4940 if (pattern == NULL_RTX || !loc) 4941 return last; 4942 4943 if (!first) 4944 first = get_insns (); 4945 else 4946 first = NEXT_INSN (first); 4947 while (1) 4948 { 4949 if (active_insn_p (first) 4950 && !JUMP_TABLE_DATA_P (first) /* FIXME */ 4951 && !INSN_LOCATION (first)) 4952 INSN_LOCATION (first) = loc; 4953 if (first == last) 4954 break; 4955 first = NEXT_INSN (first); 4956 } 4957 return last; 4958 } 4959 4960 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN 4961 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert 4962 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an 4963 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */ 4964 4965 static rtx_insn * 4966 emit_pattern_before (rtx pattern, rtx_insn *before, bool skip_debug_insns, 4967 bool insnp, rtx_insn *(*make_raw) (rtx)) 4968 { 4969 rtx_insn *next = before; 4970 4971 if (skip_debug_insns) 4972 while (DEBUG_INSN_P (next)) 4973 next = PREV_INSN (next); 4974 4975 if (INSN_P (next)) 4976 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next), 4977 insnp, make_raw); 4978 else 4979 return emit_pattern_before_noloc (pattern, before, 4980 insnp ? before : NULL, 4981 NULL, make_raw); 4982 } 4983 4984 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */ 4985 rtx_insn * 4986 emit_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc) 4987 { 4988 return emit_pattern_before_setloc (pattern, before, loc, true, 4989 make_insn_raw); 4990 } 4991 4992 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */ 4993 rtx_insn * 4994 emit_insn_before (rtx pattern, rtx_insn *before) 4995 { 4996 return emit_pattern_before (pattern, before, true, true, make_insn_raw); 4997 } 4998 4999 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */ 5000 rtx_jump_insn * 5001 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc) 5002 { 5003 return as_a <rtx_jump_insn *> ( 5004 emit_pattern_before_setloc (pattern, before, loc, false, 5005 make_jump_insn_raw)); 5006 } 5007 5008 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */ 5009 rtx_jump_insn * 5010 emit_jump_insn_before (rtx pattern, rtx_insn *before) 5011 { 5012 return as_a <rtx_jump_insn *> ( 5013 emit_pattern_before (pattern, before, true, false, 5014 make_jump_insn_raw)); 5015 } 5016 5017 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */ 5018 rtx_insn * 5019 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc) 5020 { 5021 return emit_pattern_before_setloc (pattern, before, loc, false, 5022 make_call_insn_raw); 5023 } 5024 5025 /* Like emit_call_insn_before_noloc, 5026 but set insn_location according to BEFORE. */ 5027 rtx_insn * 5028 emit_call_insn_before (rtx pattern, rtx_insn *before) 5029 { 5030 return emit_pattern_before (pattern, before, true, false, 5031 make_call_insn_raw); 5032 } 5033 5034 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */ 5035 rtx_insn * 5036 emit_debug_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc) 5037 { 5038 return emit_pattern_before_setloc (pattern, before, loc, false, 5039 make_debug_insn_raw); 5040 } 5041 5042 /* Like emit_debug_insn_before_noloc, 5043 but set insn_location according to BEFORE. */ 5044 rtx_insn * 5045 emit_debug_insn_before (rtx pattern, rtx_insn *before) 5046 { 5047 return emit_pattern_before (pattern, before, false, false, 5048 make_debug_insn_raw); 5049 } 5050 5051 /* Take X and emit it at the end of the doubly-linked 5052 INSN list. 5053 5054 Returns the last insn emitted. */ 5055 5056 rtx_insn * 5057 emit_insn (rtx x) 5058 { 5059 rtx_insn *last = get_last_insn (); 5060 rtx_insn *insn; 5061 5062 if (x == NULL_RTX) 5063 return last; 5064 5065 switch (GET_CODE (x)) 5066 { 5067 case DEBUG_INSN: 5068 case INSN: 5069 case JUMP_INSN: 5070 case CALL_INSN: 5071 case CODE_LABEL: 5072 case BARRIER: 5073 case NOTE: 5074 insn = as_a <rtx_insn *> (x); 5075 while (insn) 5076 { 5077 rtx_insn *next = NEXT_INSN (insn); 5078 add_insn (insn); 5079 last = insn; 5080 insn = next; 5081 } 5082 break; 5083 5084 #ifdef ENABLE_RTL_CHECKING 5085 case JUMP_TABLE_DATA: 5086 case SEQUENCE: 5087 gcc_unreachable (); 5088 break; 5089 #endif 5090 5091 default: 5092 last = make_insn_raw (x); 5093 add_insn (last); 5094 break; 5095 } 5096 5097 return last; 5098 } 5099 5100 /* Make an insn of code DEBUG_INSN with pattern X 5101 and add it to the end of the doubly-linked list. */ 5102 5103 rtx_insn * 5104 emit_debug_insn (rtx x) 5105 { 5106 rtx_insn *last = get_last_insn (); 5107 rtx_insn *insn; 5108 5109 if (x == NULL_RTX) 5110 return last; 5111 5112 switch (GET_CODE (x)) 5113 { 5114 case DEBUG_INSN: 5115 case INSN: 5116 case JUMP_INSN: 5117 case CALL_INSN: 5118 case CODE_LABEL: 5119 case BARRIER: 5120 case NOTE: 5121 insn = as_a <rtx_insn *> (x); 5122 while (insn) 5123 { 5124 rtx_insn *next = NEXT_INSN (insn); 5125 add_insn (insn); 5126 last = insn; 5127 insn = next; 5128 } 5129 break; 5130 5131 #ifdef ENABLE_RTL_CHECKING 5132 case JUMP_TABLE_DATA: 5133 case SEQUENCE: 5134 gcc_unreachable (); 5135 break; 5136 #endif 5137 5138 default: 5139 last = make_debug_insn_raw (x); 5140 add_insn (last); 5141 break; 5142 } 5143 5144 return last; 5145 } 5146 5147 /* Make an insn of code JUMP_INSN with pattern X 5148 and add it to the end of the doubly-linked list. */ 5149 5150 rtx_insn * 5151 emit_jump_insn (rtx x) 5152 { 5153 rtx_insn *last = NULL; 5154 rtx_insn *insn; 5155 5156 switch (GET_CODE (x)) 5157 { 5158 case DEBUG_INSN: 5159 case INSN: 5160 case JUMP_INSN: 5161 case CALL_INSN: 5162 case CODE_LABEL: 5163 case BARRIER: 5164 case NOTE: 5165 insn = as_a <rtx_insn *> (x); 5166 while (insn) 5167 { 5168 rtx_insn *next = NEXT_INSN (insn); 5169 add_insn (insn); 5170 last = insn; 5171 insn = next; 5172 } 5173 break; 5174 5175 #ifdef ENABLE_RTL_CHECKING 5176 case JUMP_TABLE_DATA: 5177 case SEQUENCE: 5178 gcc_unreachable (); 5179 break; 5180 #endif 5181 5182 default: 5183 last = make_jump_insn_raw (x); 5184 add_insn (last); 5185 break; 5186 } 5187 5188 return last; 5189 } 5190 5191 /* Make an insn of code CALL_INSN with pattern X 5192 and add it to the end of the doubly-linked list. */ 5193 5194 rtx_insn * 5195 emit_call_insn (rtx x) 5196 { 5197 rtx_insn *insn; 5198 5199 switch (GET_CODE (x)) 5200 { 5201 case DEBUG_INSN: 5202 case INSN: 5203 case JUMP_INSN: 5204 case CALL_INSN: 5205 case CODE_LABEL: 5206 case BARRIER: 5207 case NOTE: 5208 insn = emit_insn (x); 5209 break; 5210 5211 #ifdef ENABLE_RTL_CHECKING 5212 case SEQUENCE: 5213 case JUMP_TABLE_DATA: 5214 gcc_unreachable (); 5215 break; 5216 #endif 5217 5218 default: 5219 insn = make_call_insn_raw (x); 5220 add_insn (insn); 5221 break; 5222 } 5223 5224 return insn; 5225 } 5226 5227 /* Add the label LABEL to the end of the doubly-linked list. */ 5228 5229 rtx_code_label * 5230 emit_label (rtx uncast_label) 5231 { 5232 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label); 5233 5234 gcc_checking_assert (INSN_UID (label) == 0); 5235 INSN_UID (label) = cur_insn_uid++; 5236 add_insn (label); 5237 return label; 5238 } 5239 5240 /* Make an insn of code JUMP_TABLE_DATA 5241 and add it to the end of the doubly-linked list. */ 5242 5243 rtx_jump_table_data * 5244 emit_jump_table_data (rtx table) 5245 { 5246 rtx_jump_table_data *jump_table_data = 5247 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA)); 5248 INSN_UID (jump_table_data) = cur_insn_uid++; 5249 PATTERN (jump_table_data) = table; 5250 BLOCK_FOR_INSN (jump_table_data) = NULL; 5251 add_insn (jump_table_data); 5252 return jump_table_data; 5253 } 5254 5255 /* Make an insn of code BARRIER 5256 and add it to the end of the doubly-linked list. */ 5257 5258 rtx_barrier * 5259 emit_barrier (void) 5260 { 5261 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER)); 5262 INSN_UID (barrier) = cur_insn_uid++; 5263 add_insn (barrier); 5264 return barrier; 5265 } 5266 5267 /* Emit a copy of note ORIG. */ 5268 5269 rtx_note * 5270 emit_note_copy (rtx_note *orig) 5271 { 5272 enum insn_note kind = (enum insn_note) NOTE_KIND (orig); 5273 rtx_note *note = make_note_raw (kind); 5274 NOTE_DATA (note) = NOTE_DATA (orig); 5275 add_insn (note); 5276 return note; 5277 } 5278 5279 /* Make an insn of code NOTE or type NOTE_NO 5280 and add it to the end of the doubly-linked list. */ 5281 5282 rtx_note * 5283 emit_note (enum insn_note kind) 5284 { 5285 rtx_note *note = make_note_raw (kind); 5286 add_insn (note); 5287 return note; 5288 } 5289 5290 /* Emit a clobber of lvalue X. */ 5291 5292 rtx_insn * 5293 emit_clobber (rtx x) 5294 { 5295 /* CONCATs should not appear in the insn stream. */ 5296 if (GET_CODE (x) == CONCAT) 5297 { 5298 emit_clobber (XEXP (x, 0)); 5299 return emit_clobber (XEXP (x, 1)); 5300 } 5301 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x)); 5302 } 5303 5304 /* Return a sequence of insns to clobber lvalue X. */ 5305 5306 rtx_insn * 5307 gen_clobber (rtx x) 5308 { 5309 rtx_insn *seq; 5310 5311 start_sequence (); 5312 emit_clobber (x); 5313 seq = get_insns (); 5314 end_sequence (); 5315 return seq; 5316 } 5317 5318 /* Emit a use of rvalue X. */ 5319 5320 rtx_insn * 5321 emit_use (rtx x) 5322 { 5323 /* CONCATs should not appear in the insn stream. */ 5324 if (GET_CODE (x) == CONCAT) 5325 { 5326 emit_use (XEXP (x, 0)); 5327 return emit_use (XEXP (x, 1)); 5328 } 5329 return emit_insn (gen_rtx_USE (VOIDmode, x)); 5330 } 5331 5332 /* Return a sequence of insns to use rvalue X. */ 5333 5334 rtx_insn * 5335 gen_use (rtx x) 5336 { 5337 rtx_insn *seq; 5338 5339 start_sequence (); 5340 emit_use (x); 5341 seq = get_insns (); 5342 end_sequence (); 5343 return seq; 5344 } 5345 5346 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction. 5347 Return the set in INSN that such notes describe, or NULL if the notes 5348 have no meaning for INSN. */ 5349 5350 rtx 5351 set_for_reg_notes (rtx insn) 5352 { 5353 rtx pat, reg; 5354 5355 if (!INSN_P (insn)) 5356 return NULL_RTX; 5357 5358 pat = PATTERN (insn); 5359 if (GET_CODE (pat) == PARALLEL) 5360 { 5361 /* We do not use single_set because that ignores SETs of unused 5362 registers. REG_EQUAL and REG_EQUIV notes really do require the 5363 PARALLEL to have a single SET. */ 5364 if (multiple_sets (insn)) 5365 return NULL_RTX; 5366 pat = XVECEXP (pat, 0, 0); 5367 } 5368 5369 if (GET_CODE (pat) != SET) 5370 return NULL_RTX; 5371 5372 reg = SET_DEST (pat); 5373 5374 /* Notes apply to the contents of a STRICT_LOW_PART. */ 5375 if (GET_CODE (reg) == STRICT_LOW_PART 5376 || GET_CODE (reg) == ZERO_EXTRACT) 5377 reg = XEXP (reg, 0); 5378 5379 /* Check that we have a register. */ 5380 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG)) 5381 return NULL_RTX; 5382 5383 return pat; 5384 } 5385 5386 /* Place a note of KIND on insn INSN with DATUM as the datum. If a 5387 note of this type already exists, remove it first. */ 5388 5389 rtx 5390 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum) 5391 { 5392 rtx note = find_reg_note (insn, kind, NULL_RTX); 5393 5394 switch (kind) 5395 { 5396 case REG_EQUAL: 5397 case REG_EQUIV: 5398 /* We need to support the REG_EQUAL on USE trick of find_reloads. */ 5399 if (!set_for_reg_notes (insn) && GET_CODE (PATTERN (insn)) != USE) 5400 return NULL_RTX; 5401 5402 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes. 5403 It serves no useful purpose and breaks eliminate_regs. */ 5404 if (GET_CODE (datum) == ASM_OPERANDS) 5405 return NULL_RTX; 5406 5407 /* Notes with side effects are dangerous. Even if the side-effect 5408 initially mirrors one in PATTERN (INSN), later optimizations 5409 might alter the way that the final register value is calculated 5410 and so move or alter the side-effect in some way. The note would 5411 then no longer be a valid substitution for SET_SRC. */ 5412 if (side_effects_p (datum)) 5413 return NULL_RTX; 5414 break; 5415 5416 default: 5417 break; 5418 } 5419 5420 if (note) 5421 XEXP (note, 0) = datum; 5422 else 5423 { 5424 add_reg_note (insn, kind, datum); 5425 note = REG_NOTES (insn); 5426 } 5427 5428 switch (kind) 5429 { 5430 case REG_EQUAL: 5431 case REG_EQUIV: 5432 df_notes_rescan (as_a <rtx_insn *> (insn)); 5433 break; 5434 default: 5435 break; 5436 } 5437 5438 return note; 5439 } 5440 5441 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */ 5442 rtx 5443 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst) 5444 { 5445 rtx set = set_for_reg_notes (insn); 5446 5447 if (set && SET_DEST (set) == dst) 5448 return set_unique_reg_note (insn, kind, datum); 5449 return NULL_RTX; 5450 } 5451 5452 /* Emit the rtl pattern X as an appropriate kind of insn. Also emit a 5453 following barrier if the instruction needs one and if ALLOW_BARRIER_P 5454 is true. 5455 5456 If X is a label, it is simply added into the insn chain. */ 5457 5458 rtx_insn * 5459 emit (rtx x, bool allow_barrier_p) 5460 { 5461 enum rtx_code code = classify_insn (x); 5462 5463 switch (code) 5464 { 5465 case CODE_LABEL: 5466 return emit_label (x); 5467 case INSN: 5468 return emit_insn (x); 5469 case JUMP_INSN: 5470 { 5471 rtx_insn *insn = emit_jump_insn (x); 5472 if (allow_barrier_p 5473 && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)) 5474 return emit_barrier (); 5475 return insn; 5476 } 5477 case CALL_INSN: 5478 return emit_call_insn (x); 5479 case DEBUG_INSN: 5480 return emit_debug_insn (x); 5481 default: 5482 gcc_unreachable (); 5483 } 5484 } 5485 5486 /* Space for free sequence stack entries. */ 5487 static GTY ((deletable)) struct sequence_stack *free_sequence_stack; 5488 5489 /* Begin emitting insns to a sequence. If this sequence will contain 5490 something that might cause the compiler to pop arguments to function 5491 calls (because those pops have previously been deferred; see 5492 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust 5493 before calling this function. That will ensure that the deferred 5494 pops are not accidentally emitted in the middle of this sequence. */ 5495 5496 void 5497 start_sequence (void) 5498 { 5499 struct sequence_stack *tem; 5500 5501 if (free_sequence_stack != NULL) 5502 { 5503 tem = free_sequence_stack; 5504 free_sequence_stack = tem->next; 5505 } 5506 else 5507 tem = ggc_alloc<sequence_stack> (); 5508 5509 tem->next = get_current_sequence ()->next; 5510 tem->first = get_insns (); 5511 tem->last = get_last_insn (); 5512 get_current_sequence ()->next = tem; 5513 5514 set_first_insn (0); 5515 set_last_insn (0); 5516 } 5517 5518 /* Set up the insn chain starting with FIRST as the current sequence, 5519 saving the previously current one. See the documentation for 5520 start_sequence for more information about how to use this function. */ 5521 5522 void 5523 push_to_sequence (rtx_insn *first) 5524 { 5525 rtx_insn *last; 5526 5527 start_sequence (); 5528 5529 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last)) 5530 ; 5531 5532 set_first_insn (first); 5533 set_last_insn (last); 5534 } 5535 5536 /* Like push_to_sequence, but take the last insn as an argument to avoid 5537 looping through the list. */ 5538 5539 void 5540 push_to_sequence2 (rtx_insn *first, rtx_insn *last) 5541 { 5542 start_sequence (); 5543 5544 set_first_insn (first); 5545 set_last_insn (last); 5546 } 5547 5548 /* Set up the outer-level insn chain 5549 as the current sequence, saving the previously current one. */ 5550 5551 void 5552 push_topmost_sequence (void) 5553 { 5554 struct sequence_stack *top; 5555 5556 start_sequence (); 5557 5558 top = get_topmost_sequence (); 5559 set_first_insn (top->first); 5560 set_last_insn (top->last); 5561 } 5562 5563 /* After emitting to the outer-level insn chain, update the outer-level 5564 insn chain, and restore the previous saved state. */ 5565 5566 void 5567 pop_topmost_sequence (void) 5568 { 5569 struct sequence_stack *top; 5570 5571 top = get_topmost_sequence (); 5572 top->first = get_insns (); 5573 top->last = get_last_insn (); 5574 5575 end_sequence (); 5576 } 5577 5578 /* After emitting to a sequence, restore previous saved state. 5579 5580 To get the contents of the sequence just made, you must call 5581 `get_insns' *before* calling here. 5582 5583 If the compiler might have deferred popping arguments while 5584 generating this sequence, and this sequence will not be immediately 5585 inserted into the instruction stream, use do_pending_stack_adjust 5586 before calling get_insns. That will ensure that the deferred 5587 pops are inserted into this sequence, and not into some random 5588 location in the instruction stream. See INHIBIT_DEFER_POP for more 5589 information about deferred popping of arguments. */ 5590 5591 void 5592 end_sequence (void) 5593 { 5594 struct sequence_stack *tem = get_current_sequence ()->next; 5595 5596 set_first_insn (tem->first); 5597 set_last_insn (tem->last); 5598 get_current_sequence ()->next = tem->next; 5599 5600 memset (tem, 0, sizeof (*tem)); 5601 tem->next = free_sequence_stack; 5602 free_sequence_stack = tem; 5603 } 5604 5605 /* Return 1 if currently emitting into a sequence. */ 5606 5607 int 5608 in_sequence_p (void) 5609 { 5610 return get_current_sequence ()->next != 0; 5611 } 5612 5613 /* Put the various virtual registers into REGNO_REG_RTX. */ 5614 5615 static void 5616 init_virtual_regs (void) 5617 { 5618 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx; 5619 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx; 5620 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx; 5621 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx; 5622 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx; 5623 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM] 5624 = virtual_preferred_stack_boundary_rtx; 5625 } 5626 5627 5628 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */ 5629 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS]; 5630 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS]; 5631 static int copy_insn_n_scratches; 5632 5633 /* When an insn is being copied by copy_insn_1, this is nonzero if we have 5634 copied an ASM_OPERANDS. 5635 In that case, it is the original input-operand vector. */ 5636 static rtvec orig_asm_operands_vector; 5637 5638 /* When an insn is being copied by copy_insn_1, this is nonzero if we have 5639 copied an ASM_OPERANDS. 5640 In that case, it is the copied input-operand vector. */ 5641 static rtvec copy_asm_operands_vector; 5642 5643 /* Likewise for the constraints vector. */ 5644 static rtvec orig_asm_constraints_vector; 5645 static rtvec copy_asm_constraints_vector; 5646 5647 /* Recursively create a new copy of an rtx for copy_insn. 5648 This function differs from copy_rtx in that it handles SCRATCHes and 5649 ASM_OPERANDs properly. 5650 Normally, this function is not used directly; use copy_insn as front end. 5651 However, you could first copy an insn pattern with copy_insn and then use 5652 this function afterwards to properly copy any REG_NOTEs containing 5653 SCRATCHes. */ 5654 5655 rtx 5656 copy_insn_1 (rtx orig) 5657 { 5658 rtx copy; 5659 int i, j; 5660 RTX_CODE code; 5661 const char *format_ptr; 5662 5663 if (orig == NULL) 5664 return NULL; 5665 5666 code = GET_CODE (orig); 5667 5668 switch (code) 5669 { 5670 case REG: 5671 case DEBUG_EXPR: 5672 CASE_CONST_ANY: 5673 case SYMBOL_REF: 5674 case CODE_LABEL: 5675 case PC: 5676 case CC0: 5677 case RETURN: 5678 case SIMPLE_RETURN: 5679 return orig; 5680 case CLOBBER: 5681 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg 5682 clobbers or clobbers of hard registers that originated as pseudos. 5683 This is needed to allow safe register renaming. */ 5684 if (REG_P (XEXP (orig, 0)) 5685 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0))) 5686 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (orig, 0)))) 5687 return orig; 5688 break; 5689 5690 case SCRATCH: 5691 for (i = 0; i < copy_insn_n_scratches; i++) 5692 if (copy_insn_scratch_in[i] == orig) 5693 return copy_insn_scratch_out[i]; 5694 break; 5695 5696 case CONST: 5697 if (shared_const_p (orig)) 5698 return orig; 5699 break; 5700 5701 /* A MEM with a constant address is not sharable. The problem is that 5702 the constant address may need to be reloaded. If the mem is shared, 5703 then reloading one copy of this mem will cause all copies to appear 5704 to have been reloaded. */ 5705 5706 default: 5707 break; 5708 } 5709 5710 /* Copy the various flags, fields, and other information. We assume 5711 that all fields need copying, and then clear the fields that should 5712 not be copied. That is the sensible default behavior, and forces 5713 us to explicitly document why we are *not* copying a flag. */ 5714 copy = shallow_copy_rtx (orig); 5715 5716 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */ 5717 if (INSN_P (orig)) 5718 { 5719 RTX_FLAG (copy, jump) = 0; 5720 RTX_FLAG (copy, call) = 0; 5721 RTX_FLAG (copy, frame_related) = 0; 5722 } 5723 5724 format_ptr = GET_RTX_FORMAT (GET_CODE (copy)); 5725 5726 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++) 5727 switch (*format_ptr++) 5728 { 5729 case 'e': 5730 if (XEXP (orig, i) != NULL) 5731 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i)); 5732 break; 5733 5734 case 'E': 5735 case 'V': 5736 if (XVEC (orig, i) == orig_asm_constraints_vector) 5737 XVEC (copy, i) = copy_asm_constraints_vector; 5738 else if (XVEC (orig, i) == orig_asm_operands_vector) 5739 XVEC (copy, i) = copy_asm_operands_vector; 5740 else if (XVEC (orig, i) != NULL) 5741 { 5742 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i)); 5743 for (j = 0; j < XVECLEN (copy, i); j++) 5744 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j)); 5745 } 5746 break; 5747 5748 case 't': 5749 case 'w': 5750 case 'i': 5751 case 'p': 5752 case 's': 5753 case 'S': 5754 case 'u': 5755 case '0': 5756 /* These are left unchanged. */ 5757 break; 5758 5759 default: 5760 gcc_unreachable (); 5761 } 5762 5763 if (code == SCRATCH) 5764 { 5765 i = copy_insn_n_scratches++; 5766 gcc_assert (i < MAX_RECOG_OPERANDS); 5767 copy_insn_scratch_in[i] = orig; 5768 copy_insn_scratch_out[i] = copy; 5769 } 5770 else if (code == ASM_OPERANDS) 5771 { 5772 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig); 5773 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy); 5774 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig); 5775 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy); 5776 } 5777 5778 return copy; 5779 } 5780 5781 /* Create a new copy of an rtx. 5782 This function differs from copy_rtx in that it handles SCRATCHes and 5783 ASM_OPERANDs properly. 5784 INSN doesn't really have to be a full INSN; it could be just the 5785 pattern. */ 5786 rtx 5787 copy_insn (rtx insn) 5788 { 5789 copy_insn_n_scratches = 0; 5790 orig_asm_operands_vector = 0; 5791 orig_asm_constraints_vector = 0; 5792 copy_asm_operands_vector = 0; 5793 copy_asm_constraints_vector = 0; 5794 return copy_insn_1 (insn); 5795 } 5796 5797 /* Return a copy of INSN that can be used in a SEQUENCE delay slot, 5798 on that assumption that INSN itself remains in its original place. */ 5799 5800 rtx_insn * 5801 copy_delay_slot_insn (rtx_insn *insn) 5802 { 5803 /* Copy INSN with its rtx_code, all its notes, location etc. */ 5804 insn = as_a <rtx_insn *> (copy_rtx (insn)); 5805 INSN_UID (insn) = cur_insn_uid++; 5806 return insn; 5807 } 5808 5809 /* Initialize data structures and variables in this file 5810 before generating rtl for each function. */ 5811 5812 void 5813 init_emit (void) 5814 { 5815 set_first_insn (NULL); 5816 set_last_insn (NULL); 5817 if (param_min_nondebug_insn_uid) 5818 cur_insn_uid = param_min_nondebug_insn_uid; 5819 else 5820 cur_insn_uid = 1; 5821 cur_debug_insn_uid = 1; 5822 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1; 5823 first_label_num = label_num; 5824 get_current_sequence ()->next = NULL; 5825 5826 /* Init the tables that describe all the pseudo regs. */ 5827 5828 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101; 5829 5830 crtl->emit.regno_pointer_align 5831 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length); 5832 5833 regno_reg_rtx 5834 = ggc_cleared_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length); 5835 5836 /* Put copies of all the hard registers into regno_reg_rtx. */ 5837 memcpy (regno_reg_rtx, 5838 initial_regno_reg_rtx, 5839 FIRST_PSEUDO_REGISTER * sizeof (rtx)); 5840 5841 /* Put copies of all the virtual register rtx into regno_reg_rtx. */ 5842 init_virtual_regs (); 5843 5844 /* Indicate that the virtual registers and stack locations are 5845 all pointers. */ 5846 REG_POINTER (stack_pointer_rtx) = 1; 5847 REG_POINTER (frame_pointer_rtx) = 1; 5848 REG_POINTER (hard_frame_pointer_rtx) = 1; 5849 REG_POINTER (arg_pointer_rtx) = 1; 5850 5851 REG_POINTER (virtual_incoming_args_rtx) = 1; 5852 REG_POINTER (virtual_stack_vars_rtx) = 1; 5853 REG_POINTER (virtual_stack_dynamic_rtx) = 1; 5854 REG_POINTER (virtual_outgoing_args_rtx) = 1; 5855 REG_POINTER (virtual_cfa_rtx) = 1; 5856 5857 #ifdef STACK_BOUNDARY 5858 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY; 5859 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY; 5860 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY; 5861 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY; 5862 5863 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY; 5864 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY; 5865 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY; 5866 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY; 5867 5868 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD; 5869 #endif 5870 5871 #ifdef INIT_EXPANDERS 5872 INIT_EXPANDERS; 5873 #endif 5874 } 5875 5876 /* Return the value of element I of CONST_VECTOR X as a wide_int. */ 5877 5878 wide_int 5879 const_vector_int_elt (const_rtx x, unsigned int i) 5880 { 5881 /* First handle elements that are directly encoded. */ 5882 machine_mode elt_mode = GET_MODE_INNER (GET_MODE (x)); 5883 if (i < (unsigned int) XVECLEN (x, 0)) 5884 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, i), elt_mode); 5885 5886 /* Identify the pattern that contains element I and work out the index of 5887 the last encoded element for that pattern. */ 5888 unsigned int encoded_nelts = const_vector_encoded_nelts (x); 5889 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x); 5890 unsigned int count = i / npatterns; 5891 unsigned int pattern = i % npatterns; 5892 unsigned int final_i = encoded_nelts - npatterns + pattern; 5893 5894 /* If there are no steps, the final encoded value is the right one. */ 5895 if (!CONST_VECTOR_STEPPED_P (x)) 5896 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, final_i), elt_mode); 5897 5898 /* Otherwise work out the value from the last two encoded elements. */ 5899 rtx v1 = CONST_VECTOR_ENCODED_ELT (x, final_i - npatterns); 5900 rtx v2 = CONST_VECTOR_ENCODED_ELT (x, final_i); 5901 wide_int diff = wi::sub (rtx_mode_t (v2, elt_mode), 5902 rtx_mode_t (v1, elt_mode)); 5903 return wi::add (rtx_mode_t (v2, elt_mode), (count - 2) * diff); 5904 } 5905 5906 /* Return the value of element I of CONST_VECTOR X. */ 5907 5908 rtx 5909 const_vector_elt (const_rtx x, unsigned int i) 5910 { 5911 /* First handle elements that are directly encoded. */ 5912 if (i < (unsigned int) XVECLEN (x, 0)) 5913 return CONST_VECTOR_ENCODED_ELT (x, i); 5914 5915 /* If there are no steps, the final encoded value is the right one. */ 5916 if (!CONST_VECTOR_STEPPED_P (x)) 5917 { 5918 /* Identify the pattern that contains element I and work out the index of 5919 the last encoded element for that pattern. */ 5920 unsigned int encoded_nelts = const_vector_encoded_nelts (x); 5921 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x); 5922 unsigned int pattern = i % npatterns; 5923 unsigned int final_i = encoded_nelts - npatterns + pattern; 5924 return CONST_VECTOR_ENCODED_ELT (x, final_i); 5925 } 5926 5927 /* Otherwise work out the value from the last two encoded elements. */ 5928 return immed_wide_int_const (const_vector_int_elt (x, i), 5929 GET_MODE_INNER (GET_MODE (x))); 5930 } 5931 5932 /* Return true if X is a valid element for a CONST_VECTOR of the given 5933 mode. */ 5934 5935 bool 5936 valid_for_const_vector_p (machine_mode, rtx x) 5937 { 5938 return (CONST_SCALAR_INT_P (x) 5939 || CONST_POLY_INT_P (x) 5940 || CONST_DOUBLE_AS_FLOAT_P (x) 5941 || CONST_FIXED_P (x)); 5942 } 5943 5944 /* Generate a vector constant of mode MODE in which every element has 5945 value ELT. */ 5946 5947 rtx 5948 gen_const_vec_duplicate (machine_mode mode, rtx elt) 5949 { 5950 rtx_vector_builder builder (mode, 1, 1); 5951 builder.quick_push (elt); 5952 return builder.build (); 5953 } 5954 5955 /* Return a vector rtx of mode MODE in which every element has value X. 5956 The result will be a constant if X is constant. */ 5957 5958 rtx 5959 gen_vec_duplicate (machine_mode mode, rtx x) 5960 { 5961 if (valid_for_const_vector_p (mode, x)) 5962 return gen_const_vec_duplicate (mode, x); 5963 return gen_rtx_VEC_DUPLICATE (mode, x); 5964 } 5965 5966 /* A subroutine of const_vec_series_p that handles the case in which: 5967 5968 (GET_CODE (X) == CONST_VECTOR 5969 && CONST_VECTOR_NPATTERNS (X) == 1 5970 && !CONST_VECTOR_DUPLICATE_P (X)) 5971 5972 is known to hold. */ 5973 5974 bool 5975 const_vec_series_p_1 (const_rtx x, rtx *base_out, rtx *step_out) 5976 { 5977 /* Stepped sequences are only defined for integers, to avoid specifying 5978 rounding behavior. */ 5979 if (GET_MODE_CLASS (GET_MODE (x)) != MODE_VECTOR_INT) 5980 return false; 5981 5982 /* A non-duplicated vector with two elements can always be seen as a 5983 series with a nonzero step. Longer vectors must have a stepped 5984 encoding. */ 5985 if (maybe_ne (CONST_VECTOR_NUNITS (x), 2) 5986 && !CONST_VECTOR_STEPPED_P (x)) 5987 return false; 5988 5989 /* Calculate the step between the first and second elements. */ 5990 scalar_mode inner = GET_MODE_INNER (GET_MODE (x)); 5991 rtx base = CONST_VECTOR_ELT (x, 0); 5992 rtx step = simplify_binary_operation (MINUS, inner, 5993 CONST_VECTOR_ENCODED_ELT (x, 1), base); 5994 if (rtx_equal_p (step, CONST0_RTX (inner))) 5995 return false; 5996 5997 /* If we have a stepped encoding, check that the step between the 5998 second and third elements is the same as STEP. */ 5999 if (CONST_VECTOR_STEPPED_P (x)) 6000 { 6001 rtx diff = simplify_binary_operation (MINUS, inner, 6002 CONST_VECTOR_ENCODED_ELT (x, 2), 6003 CONST_VECTOR_ENCODED_ELT (x, 1)); 6004 if (!rtx_equal_p (step, diff)) 6005 return false; 6006 } 6007 6008 *base_out = base; 6009 *step_out = step; 6010 return true; 6011 } 6012 6013 /* Generate a vector constant of mode MODE in which element I has 6014 the value BASE + I * STEP. */ 6015 6016 rtx 6017 gen_const_vec_series (machine_mode mode, rtx base, rtx step) 6018 { 6019 gcc_assert (valid_for_const_vector_p (mode, base) 6020 && valid_for_const_vector_p (mode, step)); 6021 6022 rtx_vector_builder builder (mode, 1, 3); 6023 builder.quick_push (base); 6024 for (int i = 1; i < 3; ++i) 6025 builder.quick_push (simplify_gen_binary (PLUS, GET_MODE_INNER (mode), 6026 builder[i - 1], step)); 6027 return builder.build (); 6028 } 6029 6030 /* Generate a vector of mode MODE in which element I has the value 6031 BASE + I * STEP. The result will be a constant if BASE and STEP 6032 are both constants. */ 6033 6034 rtx 6035 gen_vec_series (machine_mode mode, rtx base, rtx step) 6036 { 6037 if (step == const0_rtx) 6038 return gen_vec_duplicate (mode, base); 6039 if (valid_for_const_vector_p (mode, base) 6040 && valid_for_const_vector_p (mode, step)) 6041 return gen_const_vec_series (mode, base, step); 6042 return gen_rtx_VEC_SERIES (mode, base, step); 6043 } 6044 6045 /* Generate a new vector constant for mode MODE and constant value 6046 CONSTANT. */ 6047 6048 static rtx 6049 gen_const_vector (machine_mode mode, int constant) 6050 { 6051 machine_mode inner = GET_MODE_INNER (mode); 6052 6053 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner)); 6054 6055 rtx el = const_tiny_rtx[constant][(int) inner]; 6056 gcc_assert (el); 6057 6058 return gen_const_vec_duplicate (mode, el); 6059 } 6060 6061 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when 6062 all elements are zero, and the one vector when all elements are one. */ 6063 rtx 6064 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v) 6065 { 6066 gcc_assert (known_eq (GET_MODE_NUNITS (mode), GET_NUM_ELEM (v))); 6067 6068 /* If the values are all the same, check to see if we can use one of the 6069 standard constant vectors. */ 6070 if (rtvec_all_equal_p (v)) 6071 return gen_const_vec_duplicate (mode, RTVEC_ELT (v, 0)); 6072 6073 unsigned int nunits = GET_NUM_ELEM (v); 6074 rtx_vector_builder builder (mode, nunits, 1); 6075 for (unsigned int i = 0; i < nunits; ++i) 6076 builder.quick_push (RTVEC_ELT (v, i)); 6077 return builder.build (v); 6078 } 6079 6080 /* Initialise global register information required by all functions. */ 6081 6082 void 6083 init_emit_regs (void) 6084 { 6085 int i; 6086 machine_mode mode; 6087 mem_attrs *attrs; 6088 6089 /* Reset register attributes */ 6090 reg_attrs_htab->empty (); 6091 6092 /* We need reg_raw_mode, so initialize the modes now. */ 6093 init_reg_modes_target (); 6094 6095 /* Assign register numbers to the globally defined register rtx. */ 6096 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM); 6097 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM); 6098 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM); 6099 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM); 6100 virtual_incoming_args_rtx = 6101 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM); 6102 virtual_stack_vars_rtx = 6103 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM); 6104 virtual_stack_dynamic_rtx = 6105 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM); 6106 virtual_outgoing_args_rtx = 6107 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM); 6108 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM); 6109 virtual_preferred_stack_boundary_rtx = 6110 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM); 6111 6112 /* Initialize RTL for commonly used hard registers. These are 6113 copied into regno_reg_rtx as we begin to compile each function. */ 6114 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) 6115 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i); 6116 6117 #ifdef RETURN_ADDRESS_POINTER_REGNUM 6118 return_address_pointer_rtx 6119 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM); 6120 #endif 6121 6122 pic_offset_table_rtx = NULL_RTX; 6123 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) 6124 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM); 6125 6126 for (i = 0; i < (int) MAX_MACHINE_MODE; i++) 6127 { 6128 mode = (machine_mode) i; 6129 attrs = ggc_cleared_alloc<mem_attrs> (); 6130 attrs->align = BITS_PER_UNIT; 6131 attrs->addrspace = ADDR_SPACE_GENERIC; 6132 if (mode != BLKmode && mode != VOIDmode) 6133 { 6134 attrs->size_known_p = true; 6135 attrs->size = GET_MODE_SIZE (mode); 6136 if (STRICT_ALIGNMENT) 6137 attrs->align = GET_MODE_ALIGNMENT (mode); 6138 } 6139 mode_mem_attrs[i] = attrs; 6140 } 6141 6142 split_branch_probability = profile_probability::uninitialized (); 6143 } 6144 6145 /* Initialize global machine_mode variables. */ 6146 6147 void 6148 init_derived_machine_modes (void) 6149 { 6150 opt_scalar_int_mode mode_iter, opt_byte_mode, opt_word_mode; 6151 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT) 6152 { 6153 scalar_int_mode mode = mode_iter.require (); 6154 6155 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT 6156 && !opt_byte_mode.exists ()) 6157 opt_byte_mode = mode; 6158 6159 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD 6160 && !opt_word_mode.exists ()) 6161 opt_word_mode = mode; 6162 } 6163 6164 byte_mode = opt_byte_mode.require (); 6165 word_mode = opt_word_mode.require (); 6166 ptr_mode = as_a <scalar_int_mode> 6167 (mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0).require ()); 6168 } 6169 6170 /* Create some permanent unique rtl objects shared between all functions. */ 6171 6172 void 6173 init_emit_once (void) 6174 { 6175 int i; 6176 machine_mode mode; 6177 scalar_float_mode double_mode; 6178 opt_scalar_mode smode_iter; 6179 6180 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE, 6181 CONST_FIXED, and memory attribute hash tables. */ 6182 const_int_htab = hash_table<const_int_hasher>::create_ggc (37); 6183 6184 #if TARGET_SUPPORTS_WIDE_INT 6185 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37); 6186 #endif 6187 const_double_htab = hash_table<const_double_hasher>::create_ggc (37); 6188 6189 if (NUM_POLY_INT_COEFFS > 1) 6190 const_poly_int_htab = hash_table<const_poly_int_hasher>::create_ggc (37); 6191 6192 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37); 6193 6194 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37); 6195 6196 #ifdef INIT_EXPANDERS 6197 /* This is to initialize {init|mark|free}_machine_status before the first 6198 call to push_function_context_to. This is needed by the Chill front 6199 end which calls push_function_context_to before the first call to 6200 init_function_start. */ 6201 INIT_EXPANDERS; 6202 #endif 6203 6204 /* Create the unique rtx's for certain rtx codes and operand values. */ 6205 6206 /* Process stack-limiting command-line options. */ 6207 if (opt_fstack_limit_symbol_arg != NULL) 6208 stack_limit_rtx 6209 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (opt_fstack_limit_symbol_arg)); 6210 if (opt_fstack_limit_register_no >= 0) 6211 stack_limit_rtx = gen_rtx_REG (Pmode, opt_fstack_limit_register_no); 6212 6213 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case 6214 tries to use these variables. */ 6215 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++) 6216 const_int_rtx[i + MAX_SAVED_CONST_INT] = 6217 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i); 6218 6219 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT 6220 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT) 6221 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT]; 6222 else 6223 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE); 6224 6225 double_mode = float_mode_for_size (DOUBLE_TYPE_SIZE).require (); 6226 6227 real_from_integer (&dconst0, double_mode, 0, SIGNED); 6228 real_from_integer (&dconst1, double_mode, 1, SIGNED); 6229 real_from_integer (&dconst2, double_mode, 2, SIGNED); 6230 6231 dconstm1 = dconst1; 6232 dconstm1.sign = 1; 6233 6234 dconsthalf = dconst1; 6235 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1); 6236 6237 for (i = 0; i < 3; i++) 6238 { 6239 const REAL_VALUE_TYPE *const r = 6240 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2); 6241 6242 FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT) 6243 const_tiny_rtx[i][(int) mode] = 6244 const_double_from_real_value (*r, mode); 6245 6246 FOR_EACH_MODE_IN_CLASS (mode, MODE_DECIMAL_FLOAT) 6247 const_tiny_rtx[i][(int) mode] = 6248 const_double_from_real_value (*r, mode); 6249 6250 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i); 6251 6252 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT) 6253 const_tiny_rtx[i][(int) mode] = GEN_INT (i); 6254 6255 for (mode = MIN_MODE_PARTIAL_INT; 6256 mode <= MAX_MODE_PARTIAL_INT; 6257 mode = (machine_mode)((int)(mode) + 1)) 6258 const_tiny_rtx[i][(int) mode] = GEN_INT (i); 6259 } 6260 6261 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx; 6262 6263 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT) 6264 const_tiny_rtx[3][(int) mode] = constm1_rtx; 6265 6266 /* For BImode, 1 and -1 are unsigned and signed interpretations 6267 of the same value. */ 6268 const_tiny_rtx[0][(int) BImode] = const0_rtx; 6269 const_tiny_rtx[1][(int) BImode] = const_true_rtx; 6270 const_tiny_rtx[3][(int) BImode] = const_true_rtx; 6271 6272 for (mode = MIN_MODE_PARTIAL_INT; 6273 mode <= MAX_MODE_PARTIAL_INT; 6274 mode = (machine_mode)((int)(mode) + 1)) 6275 const_tiny_rtx[3][(int) mode] = constm1_rtx; 6276 6277 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_INT) 6278 { 6279 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)]; 6280 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner); 6281 } 6282 6283 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT) 6284 { 6285 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)]; 6286 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner); 6287 } 6288 6289 /* As for BImode, "all 1" and "all -1" are unsigned and signed 6290 interpretations of the same value. */ 6291 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_BOOL) 6292 { 6293 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0); 6294 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3); 6295 const_tiny_rtx[1][(int) mode] = const_tiny_rtx[3][(int) mode]; 6296 } 6297 6298 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT) 6299 { 6300 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0); 6301 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1); 6302 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3); 6303 } 6304 6305 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT) 6306 { 6307 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0); 6308 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1); 6309 } 6310 6311 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_FRACT) 6312 { 6313 scalar_mode smode = smode_iter.require (); 6314 FCONST0 (smode).data.high = 0; 6315 FCONST0 (smode).data.low = 0; 6316 FCONST0 (smode).mode = smode; 6317 const_tiny_rtx[0][(int) smode] 6318 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode); 6319 } 6320 6321 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UFRACT) 6322 { 6323 scalar_mode smode = smode_iter.require (); 6324 FCONST0 (smode).data.high = 0; 6325 FCONST0 (smode).data.low = 0; 6326 FCONST0 (smode).mode = smode; 6327 const_tiny_rtx[0][(int) smode] 6328 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode); 6329 } 6330 6331 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_ACCUM) 6332 { 6333 scalar_mode smode = smode_iter.require (); 6334 FCONST0 (smode).data.high = 0; 6335 FCONST0 (smode).data.low = 0; 6336 FCONST0 (smode).mode = smode; 6337 const_tiny_rtx[0][(int) smode] 6338 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode); 6339 6340 /* We store the value 1. */ 6341 FCONST1 (smode).data.high = 0; 6342 FCONST1 (smode).data.low = 0; 6343 FCONST1 (smode).mode = smode; 6344 FCONST1 (smode).data 6345 = double_int_one.lshift (GET_MODE_FBIT (smode), 6346 HOST_BITS_PER_DOUBLE_INT, 6347 SIGNED_FIXED_POINT_MODE_P (smode)); 6348 const_tiny_rtx[1][(int) smode] 6349 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode); 6350 } 6351 6352 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UACCUM) 6353 { 6354 scalar_mode smode = smode_iter.require (); 6355 FCONST0 (smode).data.high = 0; 6356 FCONST0 (smode).data.low = 0; 6357 FCONST0 (smode).mode = smode; 6358 const_tiny_rtx[0][(int) smode] 6359 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode); 6360 6361 /* We store the value 1. */ 6362 FCONST1 (smode).data.high = 0; 6363 FCONST1 (smode).data.low = 0; 6364 FCONST1 (smode).mode = smode; 6365 FCONST1 (smode).data 6366 = double_int_one.lshift (GET_MODE_FBIT (smode), 6367 HOST_BITS_PER_DOUBLE_INT, 6368 SIGNED_FIXED_POINT_MODE_P (smode)); 6369 const_tiny_rtx[1][(int) smode] 6370 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode); 6371 } 6372 6373 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FRACT) 6374 { 6375 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0); 6376 } 6377 6378 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UFRACT) 6379 { 6380 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0); 6381 } 6382 6383 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_ACCUM) 6384 { 6385 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0); 6386 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1); 6387 } 6388 6389 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UACCUM) 6390 { 6391 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0); 6392 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1); 6393 } 6394 6395 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i) 6396 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC) 6397 const_tiny_rtx[0][i] = const0_rtx; 6398 6399 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode); 6400 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode); 6401 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode); 6402 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode); 6403 invalid_insn_rtx = gen_rtx_INSN (VOIDmode, 6404 /*prev_insn=*/NULL, 6405 /*next_insn=*/NULL, 6406 /*bb=*/NULL, 6407 /*pattern=*/NULL_RTX, 6408 /*location=*/-1, 6409 CODE_FOR_nothing, 6410 /*reg_notes=*/NULL_RTX); 6411 } 6412 6413 /* Produce exact duplicate of insn INSN after AFTER. 6414 Care updating of libcall regions if present. */ 6415 6416 rtx_insn * 6417 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after) 6418 { 6419 rtx_insn *new_rtx; 6420 rtx link; 6421 6422 switch (GET_CODE (insn)) 6423 { 6424 case INSN: 6425 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after); 6426 break; 6427 6428 case JUMP_INSN: 6429 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after); 6430 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn); 6431 break; 6432 6433 case DEBUG_INSN: 6434 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after); 6435 break; 6436 6437 case CALL_INSN: 6438 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after); 6439 if (CALL_INSN_FUNCTION_USAGE (insn)) 6440 CALL_INSN_FUNCTION_USAGE (new_rtx) 6441 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn)); 6442 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn); 6443 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn); 6444 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn); 6445 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx) 6446 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn); 6447 break; 6448 6449 default: 6450 gcc_unreachable (); 6451 } 6452 6453 /* Update LABEL_NUSES. */ 6454 mark_jump_label (PATTERN (new_rtx), new_rtx, 0); 6455 6456 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn); 6457 6458 /* If the old insn is frame related, then so is the new one. This is 6459 primarily needed for IA-64 unwind info which marks epilogue insns, 6460 which may be duplicated by the basic block reordering code. */ 6461 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn); 6462 6463 /* Locate the end of existing REG_NOTES in NEW_RTX. */ 6464 rtx *ptail = ®_NOTES (new_rtx); 6465 while (*ptail != NULL_RTX) 6466 ptail = &XEXP (*ptail, 1); 6467 6468 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label 6469 will make them. REG_LABEL_TARGETs are created there too, but are 6470 supposed to be sticky, so we copy them. */ 6471 for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) 6472 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND) 6473 { 6474 *ptail = duplicate_reg_note (link); 6475 ptail = &XEXP (*ptail, 1); 6476 } 6477 6478 INSN_CODE (new_rtx) = INSN_CODE (insn); 6479 return new_rtx; 6480 } 6481 6482 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER]; 6483 rtx 6484 gen_hard_reg_clobber (machine_mode mode, unsigned int regno) 6485 { 6486 if (hard_reg_clobbers[mode][regno]) 6487 return hard_reg_clobbers[mode][regno]; 6488 else 6489 return (hard_reg_clobbers[mode][regno] = 6490 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno))); 6491 } 6492 6493 location_t prologue_location; 6494 location_t epilogue_location; 6495 6496 /* Hold current location information and last location information, so the 6497 datastructures are built lazily only when some instructions in given 6498 place are needed. */ 6499 static location_t curr_location; 6500 6501 /* Allocate insn location datastructure. */ 6502 void 6503 insn_locations_init (void) 6504 { 6505 prologue_location = epilogue_location = 0; 6506 curr_location = UNKNOWN_LOCATION; 6507 } 6508 6509 /* At the end of emit stage, clear current location. */ 6510 void 6511 insn_locations_finalize (void) 6512 { 6513 epilogue_location = curr_location; 6514 curr_location = UNKNOWN_LOCATION; 6515 } 6516 6517 /* Set current location. */ 6518 void 6519 set_curr_insn_location (location_t location) 6520 { 6521 curr_location = location; 6522 } 6523 6524 /* Get current location. */ 6525 location_t 6526 curr_insn_location (void) 6527 { 6528 return curr_location; 6529 } 6530 6531 /* Set the location of the insn chain starting at INSN to LOC. */ 6532 void 6533 set_insn_locations (rtx_insn *insn, location_t loc) 6534 { 6535 while (insn) 6536 { 6537 if (INSN_P (insn)) 6538 INSN_LOCATION (insn) = loc; 6539 insn = NEXT_INSN (insn); 6540 } 6541 } 6542 6543 /* Return lexical scope block insn belongs to. */ 6544 tree 6545 insn_scope (const rtx_insn *insn) 6546 { 6547 return LOCATION_BLOCK (INSN_LOCATION (insn)); 6548 } 6549 6550 /* Return line number of the statement that produced this insn. */ 6551 int 6552 insn_line (const rtx_insn *insn) 6553 { 6554 return LOCATION_LINE (INSN_LOCATION (insn)); 6555 } 6556 6557 /* Return source file of the statement that produced this insn. */ 6558 const char * 6559 insn_file (const rtx_insn *insn) 6560 { 6561 return LOCATION_FILE (INSN_LOCATION (insn)); 6562 } 6563 6564 /* Return expanded location of the statement that produced this insn. */ 6565 expanded_location 6566 insn_location (const rtx_insn *insn) 6567 { 6568 return expand_location (INSN_LOCATION (insn)); 6569 } 6570 6571 /* Return true if memory model MODEL requires a pre-operation (release-style) 6572 barrier or a post-operation (acquire-style) barrier. While not universal, 6573 this function matches behavior of several targets. */ 6574 6575 bool 6576 need_atomic_barrier_p (enum memmodel model, bool pre) 6577 { 6578 switch (model & MEMMODEL_BASE_MASK) 6579 { 6580 case MEMMODEL_RELAXED: 6581 case MEMMODEL_CONSUME: 6582 return false; 6583 case MEMMODEL_RELEASE: 6584 return pre; 6585 case MEMMODEL_ACQUIRE: 6586 return !pre; 6587 case MEMMODEL_ACQ_REL: 6588 case MEMMODEL_SEQ_CST: 6589 return true; 6590 default: 6591 gcc_unreachable (); 6592 } 6593 } 6594 6595 /* Return a constant shift amount for shifting a value of mode MODE 6596 by VALUE bits. */ 6597 6598 rtx 6599 gen_int_shift_amount (machine_mode, poly_int64 value) 6600 { 6601 /* Use a 64-bit mode, to avoid any truncation. 6602 6603 ??? Perhaps this should be automatically derived from the .md files 6604 instead, or perhaps have a target hook. */ 6605 scalar_int_mode shift_mode = (BITS_PER_UNIT == 8 6606 ? DImode 6607 : int_mode_for_size (64, 0).require ()); 6608 return gen_int_mode (value, shift_mode); 6609 } 6610 6611 /* Initialize fields of rtl_data related to stack alignment. */ 6612 6613 void 6614 rtl_data::init_stack_alignment () 6615 { 6616 stack_alignment_needed = STACK_BOUNDARY; 6617 max_used_stack_slot_alignment = STACK_BOUNDARY; 6618 stack_alignment_estimated = 0; 6619 preferred_stack_boundary = STACK_BOUNDARY; 6620 } 6621 6622 6623 #include "gt-emit-rtl.h" 6624