xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/emit-rtl.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* Emit RTL for the GCC expander.
2    Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3    1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4    Free Software Foundation, Inc.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 
23 /* Middle-to-low level generation of rtx code and insns.
24 
25    This file contains support functions for creating rtl expressions
26    and manipulating them in the doubly-linked chain of insns.
27 
28    The patterns of the insns are created by machine-dependent
29    routines in insn-emit.c, which is generated automatically from
30    the machine description.  These routines make the individual rtx's
31    of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32    which are automatically generated from rtl.def; what is machine
33    dependent is the kind of rtx's they make and what arguments they
34    use.  */
35 
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "fixed-value.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
60 #include "df.h"
61 #include "params.h"
62 #include "target.h"
63 
64 /* Commonly used modes.  */
65 
66 enum machine_mode byte_mode;	/* Mode whose width is BITS_PER_UNIT.  */
67 enum machine_mode word_mode;	/* Mode whose width is BITS_PER_WORD.  */
68 enum machine_mode double_mode;	/* Mode whose width is DOUBLE_TYPE_SIZE.  */
69 enum machine_mode ptr_mode;	/* Mode whose width is POINTER_SIZE.  */
70 
71 /* Datastructures maintained for currently processed function in RTL form.  */
72 
73 struct rtl_data x_rtl;
74 
75 /* Indexed by pseudo register number, gives the rtx for that pseudo.
76    Allocated in parallel with regno_pointer_align.
77    FIXME: We could put it into emit_status struct, but gengtype is not able to deal
78    with length attribute nested in top level structures.  */
79 
80 rtx * regno_reg_rtx;
81 
82 /* This is *not* reset after each function.  It gives each CODE_LABEL
83    in the entire compilation a unique label number.  */
84 
85 static GTY(()) int label_num = 1;
86 
87 /* Commonly used rtx's, so that we only need space for one copy.
88    These are initialized once for the entire compilation.
89    All of these are unique; no other rtx-object will be equal to any
90    of these.  */
91 
92 rtx global_rtl[GR_MAX];
93 
94 /* Commonly used RTL for hard registers.  These objects are not necessarily
95    unique, so we allocate them separately from global_rtl.  They are
96    initialized once per compilation unit, then copied into regno_reg_rtx
97    at the beginning of each function.  */
98 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
99 
100 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
101    the values of 0, 1, and 2.  For the integer entries and VOIDmode, we
102    record a copy of const[012]_rtx.  */
103 
104 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
105 
106 rtx const_true_rtx;
107 
108 REAL_VALUE_TYPE dconst0;
109 REAL_VALUE_TYPE dconst1;
110 REAL_VALUE_TYPE dconst2;
111 REAL_VALUE_TYPE dconstm1;
112 REAL_VALUE_TYPE dconsthalf;
113 
114 /* Record fixed-point constant 0 and 1.  */
115 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
116 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
117 
118 /* All references to the following fixed hard registers go through
119    these unique rtl objects.  On machines where the frame-pointer and
120    arg-pointer are the same register, they use the same unique object.
121 
122    After register allocation, other rtl objects which used to be pseudo-regs
123    may be clobbered to refer to the frame-pointer register.
124    But references that were originally to the frame-pointer can be
125    distinguished from the others because they contain frame_pointer_rtx.
126 
127    When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
128    tricky: until register elimination has taken place hard_frame_pointer_rtx
129    should be used if it is being set, and frame_pointer_rtx otherwise.  After
130    register elimination hard_frame_pointer_rtx should always be used.
131    On machines where the two registers are same (most) then these are the
132    same.
133 
134    In an inline procedure, the stack and frame pointer rtxs may not be
135    used for anything else.  */
136 rtx pic_offset_table_rtx;	/* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
137 
138 /* This is used to implement __builtin_return_address for some machines.
139    See for instance the MIPS port.  */
140 rtx return_address_pointer_rtx;	/* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
141 
142 /* We make one copy of (const_int C) where C is in
143    [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
144    to save space during the compilation and simplify comparisons of
145    integers.  */
146 
147 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
148 
149 /* A hash table storing CONST_INTs whose absolute value is greater
150    than MAX_SAVED_CONST_INT.  */
151 
152 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
153      htab_t const_int_htab;
154 
155 /* A hash table storing memory attribute structures.  */
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
157      htab_t mem_attrs_htab;
158 
159 /* A hash table storing register attribute structures.  */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
161      htab_t reg_attrs_htab;
162 
163 /* A hash table storing all CONST_DOUBLEs.  */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
165      htab_t const_double_htab;
166 
167 /* A hash table storing all CONST_FIXEDs.  */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169      htab_t const_fixed_htab;
170 
171 #define first_insn (crtl->emit.x_first_insn)
172 #define last_insn (crtl->emit.x_last_insn)
173 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
174 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
175 #define last_location (crtl->emit.x_last_location)
176 #define first_label_num (crtl->emit.x_first_label_num)
177 
178 static rtx make_call_insn_raw (rtx);
179 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
180 static void set_used_decls (tree);
181 static void mark_label_nuses (rtx);
182 static hashval_t const_int_htab_hash (const void *);
183 static int const_int_htab_eq (const void *, const void *);
184 static hashval_t const_double_htab_hash (const void *);
185 static int const_double_htab_eq (const void *, const void *);
186 static rtx lookup_const_double (rtx);
187 static hashval_t const_fixed_htab_hash (const void *);
188 static int const_fixed_htab_eq (const void *, const void *);
189 static rtx lookup_const_fixed (rtx);
190 static hashval_t mem_attrs_htab_hash (const void *);
191 static int mem_attrs_htab_eq (const void *, const void *);
192 static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
193 				 addr_space_t, enum machine_mode);
194 static hashval_t reg_attrs_htab_hash (const void *);
195 static int reg_attrs_htab_eq (const void *, const void *);
196 static reg_attrs *get_reg_attrs (tree, int);
197 static rtx gen_const_vector (enum machine_mode, int);
198 static void copy_rtx_if_shared_1 (rtx *orig);
199 
200 /* Probability of the conditional branch currently proceeded by try_split.
201    Set to -1 otherwise.  */
202 int split_branch_probability = -1;
203 
204 /* Returns a hash code for X (which is a really a CONST_INT).  */
205 
206 static hashval_t
207 const_int_htab_hash (const void *x)
208 {
209   return (hashval_t) INTVAL ((const_rtx) x);
210 }
211 
212 /* Returns nonzero if the value represented by X (which is really a
213    CONST_INT) is the same as that given by Y (which is really a
214    HOST_WIDE_INT *).  */
215 
216 static int
217 const_int_htab_eq (const void *x, const void *y)
218 {
219   return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
220 }
221 
222 /* Returns a hash code for X (which is really a CONST_DOUBLE).  */
223 static hashval_t
224 const_double_htab_hash (const void *x)
225 {
226   const_rtx const value = (const_rtx) x;
227   hashval_t h;
228 
229   if (GET_MODE (value) == VOIDmode)
230     h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
231   else
232     {
233       h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
234       /* MODE is used in the comparison, so it should be in the hash.  */
235       h ^= GET_MODE (value);
236     }
237   return h;
238 }
239 
240 /* Returns nonzero if the value represented by X (really a ...)
241    is the same as that represented by Y (really a ...) */
242 static int
243 const_double_htab_eq (const void *x, const void *y)
244 {
245   const_rtx const a = (const_rtx)x, b = (const_rtx)y;
246 
247   if (GET_MODE (a) != GET_MODE (b))
248     return 0;
249   if (GET_MODE (a) == VOIDmode)
250     return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
251 	    && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
252   else
253     return real_identical (CONST_DOUBLE_REAL_VALUE (a),
254 			   CONST_DOUBLE_REAL_VALUE (b));
255 }
256 
257 /* Returns a hash code for X (which is really a CONST_FIXED).  */
258 
259 static hashval_t
260 const_fixed_htab_hash (const void *x)
261 {
262   const_rtx const value = (const_rtx) x;
263   hashval_t h;
264 
265   h = fixed_hash (CONST_FIXED_VALUE (value));
266   /* MODE is used in the comparison, so it should be in the hash.  */
267   h ^= GET_MODE (value);
268   return h;
269 }
270 
271 /* Returns nonzero if the value represented by X (really a ...)
272    is the same as that represented by Y (really a ...).  */
273 
274 static int
275 const_fixed_htab_eq (const void *x, const void *y)
276 {
277   const_rtx const a = (const_rtx) x, b = (const_rtx) y;
278 
279   if (GET_MODE (a) != GET_MODE (b))
280     return 0;
281   return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
282 }
283 
284 /* Returns a hash code for X (which is a really a mem_attrs *).  */
285 
286 static hashval_t
287 mem_attrs_htab_hash (const void *x)
288 {
289   const mem_attrs *const p = (const mem_attrs *) x;
290 
291   return (p->alias ^ (p->align * 1000)
292 	  ^ (p->addrspace * 4000)
293 	  ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
294 	  ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
295 	  ^ (size_t) iterative_hash_expr (p->expr, 0));
296 }
297 
298 /* Returns nonzero if the value represented by X (which is really a
299    mem_attrs *) is the same as that given by Y (which is also really a
300    mem_attrs *).  */
301 
302 static int
303 mem_attrs_htab_eq (const void *x, const void *y)
304 {
305   const mem_attrs *const p = (const mem_attrs *) x;
306   const mem_attrs *const q = (const mem_attrs *) y;
307 
308   return (p->alias == q->alias && p->offset == q->offset
309 	  && p->size == q->size && p->align == q->align
310 	  && p->addrspace == q->addrspace
311 	  && (p->expr == q->expr
312 	      || (p->expr != NULL_TREE && q->expr != NULL_TREE
313 		  && operand_equal_p (p->expr, q->expr, 0))));
314 }
315 
316 /* Allocate a new mem_attrs structure and insert it into the hash table if
317    one identical to it is not already in the table.  We are doing this for
318    MEM of mode MODE.  */
319 
320 static mem_attrs *
321 get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
322 	       unsigned int align, addr_space_t addrspace, enum machine_mode mode)
323 {
324   mem_attrs attrs;
325   void **slot;
326 
327   /* If everything is the default, we can just return zero.
328      This must match what the corresponding MEM_* macros return when the
329      field is not present.  */
330   if (alias == 0 && expr == 0 && offset == 0 && addrspace == 0
331       && (size == 0
332 	  || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
333       && (STRICT_ALIGNMENT && mode != BLKmode
334 	  ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
335     return 0;
336 
337   attrs.alias = alias;
338   attrs.expr = expr;
339   attrs.offset = offset;
340   attrs.size = size;
341   attrs.align = align;
342   attrs.addrspace = addrspace;
343 
344   slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
345   if (*slot == 0)
346     {
347       *slot = ggc_alloc (sizeof (mem_attrs));
348       memcpy (*slot, &attrs, sizeof (mem_attrs));
349     }
350 
351   return (mem_attrs *) *slot;
352 }
353 
354 /* Returns a hash code for X (which is a really a reg_attrs *).  */
355 
356 static hashval_t
357 reg_attrs_htab_hash (const void *x)
358 {
359   const reg_attrs *const p = (const reg_attrs *) x;
360 
361   return ((p->offset * 1000) ^ (long) p->decl);
362 }
363 
364 /* Returns nonzero if the value represented by X (which is really a
365    reg_attrs *) is the same as that given by Y (which is also really a
366    reg_attrs *).  */
367 
368 static int
369 reg_attrs_htab_eq (const void *x, const void *y)
370 {
371   const reg_attrs *const p = (const reg_attrs *) x;
372   const reg_attrs *const q = (const reg_attrs *) y;
373 
374   return (p->decl == q->decl && p->offset == q->offset);
375 }
376 /* Allocate a new reg_attrs structure and insert it into the hash table if
377    one identical to it is not already in the table.  We are doing this for
378    MEM of mode MODE.  */
379 
380 static reg_attrs *
381 get_reg_attrs (tree decl, int offset)
382 {
383   reg_attrs attrs;
384   void **slot;
385 
386   /* If everything is the default, we can just return zero.  */
387   if (decl == 0 && offset == 0)
388     return 0;
389 
390   attrs.decl = decl;
391   attrs.offset = offset;
392 
393   slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
394   if (*slot == 0)
395     {
396       *slot = ggc_alloc (sizeof (reg_attrs));
397       memcpy (*slot, &attrs, sizeof (reg_attrs));
398     }
399 
400   return (reg_attrs *) *slot;
401 }
402 
403 
404 #if !HAVE_blockage
405 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
406    across this insn. */
407 
408 rtx
409 gen_blockage (void)
410 {
411   rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
412   MEM_VOLATILE_P (x) = true;
413   return x;
414 }
415 #endif
416 
417 
418 /* Generate a new REG rtx.  Make sure ORIGINAL_REGNO is set properly, and
419    don't attempt to share with the various global pieces of rtl (such as
420    frame_pointer_rtx).  */
421 
422 rtx
423 gen_raw_REG (enum machine_mode mode, int regno)
424 {
425   rtx x = gen_rtx_raw_REG (mode, regno);
426   ORIGINAL_REGNO (x) = regno;
427   return x;
428 }
429 
430 /* There are some RTL codes that require special attention; the generation
431    functions do the raw handling.  If you add to this list, modify
432    special_rtx in gengenrtl.c as well.  */
433 
434 rtx
435 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
436 {
437   void **slot;
438 
439   if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
440     return const_int_rtx[arg + MAX_SAVED_CONST_INT];
441 
442 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
443   if (const_true_rtx && arg == STORE_FLAG_VALUE)
444     return const_true_rtx;
445 #endif
446 
447   /* Look up the CONST_INT in the hash table.  */
448   slot = htab_find_slot_with_hash (const_int_htab, &arg,
449 				   (hashval_t) arg, INSERT);
450   if (*slot == 0)
451     *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
452 
453   return (rtx) *slot;
454 }
455 
456 rtx
457 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
458 {
459   return GEN_INT (trunc_int_for_mode (c, mode));
460 }
461 
462 /* CONST_DOUBLEs might be created from pairs of integers, or from
463    REAL_VALUE_TYPEs.  Also, their length is known only at run time,
464    so we cannot use gen_rtx_raw_CONST_DOUBLE.  */
465 
466 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
467    hash table.  If so, return its counterpart; otherwise add it
468    to the hash table and return it.  */
469 static rtx
470 lookup_const_double (rtx real)
471 {
472   void **slot = htab_find_slot (const_double_htab, real, INSERT);
473   if (*slot == 0)
474     *slot = real;
475 
476   return (rtx) *slot;
477 }
478 
479 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
480    VALUE in mode MODE.  */
481 rtx
482 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
483 {
484   rtx real = rtx_alloc (CONST_DOUBLE);
485   PUT_MODE (real, mode);
486 
487   real->u.rv = value;
488 
489   return lookup_const_double (real);
490 }
491 
492 /* Determine whether FIXED, a CONST_FIXED, already exists in the
493    hash table.  If so, return its counterpart; otherwise add it
494    to the hash table and return it.  */
495 
496 static rtx
497 lookup_const_fixed (rtx fixed)
498 {
499   void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
500   if (*slot == 0)
501     *slot = fixed;
502 
503   return (rtx) *slot;
504 }
505 
506 /* Return a CONST_FIXED rtx for a fixed-point value specified by
507    VALUE in mode MODE.  */
508 
509 rtx
510 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
511 {
512   rtx fixed = rtx_alloc (CONST_FIXED);
513   PUT_MODE (fixed, mode);
514 
515   fixed->u.fv = value;
516 
517   return lookup_const_fixed (fixed);
518 }
519 
520 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
521    of ints: I0 is the low-order word and I1 is the high-order word.
522    Do not use this routine for non-integer modes; convert to
523    REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE.  */
524 
525 rtx
526 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
527 {
528   rtx value;
529   unsigned int i;
530 
531   /* There are the following cases (note that there are no modes with
532      HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
533 
534      1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
535 	gen_int_mode.
536      2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
537 	the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
538 	from copies of the sign bit, and sign of i0 and i1 are the same),  then
539 	we return a CONST_INT for i0.
540      3) Otherwise, we create a CONST_DOUBLE for i0 and i1.  */
541   if (mode != VOIDmode)
542     {
543       gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
544 		  || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
545 		  /* We can get a 0 for an error mark.  */
546 		  || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
547 		  || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
548 
549       if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
550 	return gen_int_mode (i0, mode);
551 
552       gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
553     }
554 
555   /* If this integer fits in one word, return a CONST_INT.  */
556   if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
557     return GEN_INT (i0);
558 
559   /* We use VOIDmode for integers.  */
560   value = rtx_alloc (CONST_DOUBLE);
561   PUT_MODE (value, VOIDmode);
562 
563   CONST_DOUBLE_LOW (value) = i0;
564   CONST_DOUBLE_HIGH (value) = i1;
565 
566   for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
567     XWINT (value, i) = 0;
568 
569   return lookup_const_double (value);
570 }
571 
572 rtx
573 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
574 {
575   /* In case the MD file explicitly references the frame pointer, have
576      all such references point to the same frame pointer.  This is
577      used during frame pointer elimination to distinguish the explicit
578      references to these registers from pseudos that happened to be
579      assigned to them.
580 
581      If we have eliminated the frame pointer or arg pointer, we will
582      be using it as a normal register, for example as a spill
583      register.  In such cases, we might be accessing it in a mode that
584      is not Pmode and therefore cannot use the pre-allocated rtx.
585 
586      Also don't do this when we are making new REGs in reload, since
587      we don't want to get confused with the real pointers.  */
588 
589   if (mode == Pmode && !reload_in_progress)
590     {
591       if (regno == FRAME_POINTER_REGNUM
592 	  && (!reload_completed || frame_pointer_needed))
593 	return frame_pointer_rtx;
594 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
595       if (regno == HARD_FRAME_POINTER_REGNUM
596 	  && (!reload_completed || frame_pointer_needed))
597 	return hard_frame_pointer_rtx;
598 #endif
599 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
600       if (regno == ARG_POINTER_REGNUM)
601 	return arg_pointer_rtx;
602 #endif
603 #ifdef RETURN_ADDRESS_POINTER_REGNUM
604       if (regno == RETURN_ADDRESS_POINTER_REGNUM)
605 	return return_address_pointer_rtx;
606 #endif
607       if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
608 	  && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
609 	return pic_offset_table_rtx;
610       if (regno == STACK_POINTER_REGNUM)
611 	return stack_pointer_rtx;
612     }
613 
614 #if 0
615   /* If the per-function register table has been set up, try to re-use
616      an existing entry in that table to avoid useless generation of RTL.
617 
618      This code is disabled for now until we can fix the various backends
619      which depend on having non-shared hard registers in some cases.   Long
620      term we want to re-enable this code as it can significantly cut down
621      on the amount of useless RTL that gets generated.
622 
623      We'll also need to fix some code that runs after reload that wants to
624      set ORIGINAL_REGNO.  */
625 
626   if (cfun
627       && cfun->emit
628       && regno_reg_rtx
629       && regno < FIRST_PSEUDO_REGISTER
630       && reg_raw_mode[regno] == mode)
631     return regno_reg_rtx[regno];
632 #endif
633 
634   return gen_raw_REG (mode, regno);
635 }
636 
637 rtx
638 gen_rtx_MEM (enum machine_mode mode, rtx addr)
639 {
640   rtx rt = gen_rtx_raw_MEM (mode, addr);
641 
642   /* This field is not cleared by the mere allocation of the rtx, so
643      we clear it here.  */
644   MEM_ATTRS (rt) = 0;
645 
646   return rt;
647 }
648 
649 /* Generate a memory referring to non-trapping constant memory.  */
650 
651 rtx
652 gen_const_mem (enum machine_mode mode, rtx addr)
653 {
654   rtx mem = gen_rtx_MEM (mode, addr);
655   MEM_READONLY_P (mem) = 1;
656   MEM_NOTRAP_P (mem) = 1;
657   return mem;
658 }
659 
660 /* Generate a MEM referring to fixed portions of the frame, e.g., register
661    save areas.  */
662 
663 rtx
664 gen_frame_mem (enum machine_mode mode, rtx addr)
665 {
666   rtx mem = gen_rtx_MEM (mode, addr);
667   MEM_NOTRAP_P (mem) = 1;
668   set_mem_alias_set (mem, get_frame_alias_set ());
669   return mem;
670 }
671 
672 /* Generate a MEM referring to a temporary use of the stack, not part
673     of the fixed stack frame.  For example, something which is pushed
674     by a target splitter.  */
675 rtx
676 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
677 {
678   rtx mem = gen_rtx_MEM (mode, addr);
679   MEM_NOTRAP_P (mem) = 1;
680   if (!cfun->calls_alloca)
681     set_mem_alias_set (mem, get_frame_alias_set ());
682   return mem;
683 }
684 
685 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET).  Return true if
686    this construct would be valid, and false otherwise.  */
687 
688 bool
689 validate_subreg (enum machine_mode omode, enum machine_mode imode,
690 		 const_rtx reg, unsigned int offset)
691 {
692   unsigned int isize = GET_MODE_SIZE (imode);
693   unsigned int osize = GET_MODE_SIZE (omode);
694 
695   /* All subregs must be aligned.  */
696   if (offset % osize != 0)
697     return false;
698 
699   /* The subreg offset cannot be outside the inner object.  */
700   if (offset >= isize)
701     return false;
702 
703   /* ??? This should not be here.  Temporarily continue to allow word_mode
704      subregs of anything.  The most common offender is (subreg:SI (reg:DF)).
705      Generally, backends are doing something sketchy but it'll take time to
706      fix them all.  */
707   if (omode == word_mode)
708     ;
709   /* ??? Similarly, e.g. with (subreg:DF (reg:TI)).  Though store_bit_field
710      is the culprit here, and not the backends.  */
711   else if (osize >= UNITS_PER_WORD && isize >= osize)
712     ;
713   /* Allow component subregs of complex and vector.  Though given the below
714      extraction rules, it's not always clear what that means.  */
715   else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
716 	   && GET_MODE_INNER (imode) == omode)
717     ;
718   /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
719      i.e. (subreg:V4SF (reg:SF) 0).  This surely isn't the cleanest way to
720      represent this.  It's questionable if this ought to be represented at
721      all -- why can't this all be hidden in post-reload splitters that make
722      arbitrarily mode changes to the registers themselves.  */
723   else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
724     ;
725   /* Subregs involving floating point modes are not allowed to
726      change size.  Therefore (subreg:DI (reg:DF) 0) is fine, but
727      (subreg:SI (reg:DF) 0) isn't.  */
728   else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
729     {
730       if (isize != osize)
731 	return false;
732     }
733 
734   /* Paradoxical subregs must have offset zero.  */
735   if (osize > isize)
736     return offset == 0;
737 
738   /* This is a normal subreg.  Verify that the offset is representable.  */
739 
740   /* For hard registers, we already have most of these rules collected in
741      subreg_offset_representable_p.  */
742   if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
743     {
744       unsigned int regno = REGNO (reg);
745 
746 #ifdef CANNOT_CHANGE_MODE_CLASS
747       if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
748 	  && GET_MODE_INNER (imode) == omode)
749 	;
750       else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
751 	return false;
752 #endif
753 
754       return subreg_offset_representable_p (regno, imode, offset, omode);
755     }
756 
757   /* For pseudo registers, we want most of the same checks.  Namely:
758      If the register no larger than a word, the subreg must be lowpart.
759      If the register is larger than a word, the subreg must be the lowpart
760      of a subword.  A subreg does *not* perform arbitrary bit extraction.
761      Given that we've already checked mode/offset alignment, we only have
762      to check subword subregs here.  */
763   if (osize < UNITS_PER_WORD)
764     {
765       enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
766       unsigned int low_off = subreg_lowpart_offset (omode, wmode);
767       if (offset % UNITS_PER_WORD != low_off)
768 	return false;
769     }
770   return true;
771 }
772 
773 rtx
774 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
775 {
776   gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
777   return gen_rtx_raw_SUBREG (mode, reg, offset);
778 }
779 
780 /* Generate a SUBREG representing the least-significant part of REG if MODE
781    is smaller than mode of REG, otherwise paradoxical SUBREG.  */
782 
783 rtx
784 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
785 {
786   enum machine_mode inmode;
787 
788   inmode = GET_MODE (reg);
789   if (inmode == VOIDmode)
790     inmode = mode;
791   return gen_rtx_SUBREG (mode, reg,
792 			 subreg_lowpart_offset (mode, inmode));
793 }
794 
795 
796 /* Create an rtvec and stores within it the RTXen passed in the arguments.  */
797 
798 rtvec
799 gen_rtvec (int n, ...)
800 {
801   int i;
802   rtvec rt_val;
803   va_list p;
804 
805   va_start (p, n);
806 
807   /* Don't allocate an empty rtvec...  */
808   if (n == 0)
809     return NULL_RTVEC;
810 
811   rt_val = rtvec_alloc (n);
812 
813   for (i = 0; i < n; i++)
814     rt_val->elem[i] = va_arg (p, rtx);
815 
816   va_end (p);
817   return rt_val;
818 }
819 
820 rtvec
821 gen_rtvec_v (int n, rtx *argp)
822 {
823   int i;
824   rtvec rt_val;
825 
826   /* Don't allocate an empty rtvec...  */
827   if (n == 0)
828     return NULL_RTVEC;
829 
830   rt_val = rtvec_alloc (n);
831 
832   for (i = 0; i < n; i++)
833     rt_val->elem[i] = *argp++;
834 
835   return rt_val;
836 }
837 
838 /* Return the number of bytes between the start of an OUTER_MODE
839    in-memory value and the start of an INNER_MODE in-memory value,
840    given that the former is a lowpart of the latter.  It may be a
841    paradoxical lowpart, in which case the offset will be negative
842    on big-endian targets.  */
843 
844 int
845 byte_lowpart_offset (enum machine_mode outer_mode,
846 		     enum machine_mode inner_mode)
847 {
848   if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
849     return subreg_lowpart_offset (outer_mode, inner_mode);
850   else
851     return -subreg_lowpart_offset (inner_mode, outer_mode);
852 }
853 
854 /* Generate a REG rtx for a new pseudo register of mode MODE.
855    This pseudo is assigned the next sequential register number.  */
856 
857 rtx
858 gen_reg_rtx (enum machine_mode mode)
859 {
860   rtx val;
861   unsigned int align = GET_MODE_ALIGNMENT (mode);
862 
863   gcc_assert (can_create_pseudo_p ());
864 
865   /* If a virtual register with bigger mode alignment is generated,
866      increase stack alignment estimation because it might be spilled
867      to stack later.  */
868   if (SUPPORTS_STACK_ALIGNMENT
869       && crtl->stack_alignment_estimated < align
870       && !crtl->stack_realign_processed)
871     {
872       unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
873       if (crtl->stack_alignment_estimated < min_align)
874 	crtl->stack_alignment_estimated = min_align;
875     }
876 
877   if (generating_concat_p
878       && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
879 	  || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
880     {
881       /* For complex modes, don't make a single pseudo.
882 	 Instead, make a CONCAT of two pseudos.
883 	 This allows noncontiguous allocation of the real and imaginary parts,
884 	 which makes much better code.  Besides, allocating DCmode
885 	 pseudos overstrains reload on some machines like the 386.  */
886       rtx realpart, imagpart;
887       enum machine_mode partmode = GET_MODE_INNER (mode);
888 
889       realpart = gen_reg_rtx (partmode);
890       imagpart = gen_reg_rtx (partmode);
891       return gen_rtx_CONCAT (mode, realpart, imagpart);
892     }
893 
894   /* Make sure regno_pointer_align, and regno_reg_rtx are large
895      enough to have an element for this pseudo reg number.  */
896 
897   if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
898     {
899       int old_size = crtl->emit.regno_pointer_align_length;
900       char *tmp;
901       rtx *new1;
902 
903       tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
904       memset (tmp + old_size, 0, old_size);
905       crtl->emit.regno_pointer_align = (unsigned char *) tmp;
906 
907       new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
908       memset (new1 + old_size, 0, old_size * sizeof (rtx));
909       regno_reg_rtx = new1;
910 
911       crtl->emit.regno_pointer_align_length = old_size * 2;
912     }
913 
914   val = gen_raw_REG (mode, reg_rtx_no);
915   regno_reg_rtx[reg_rtx_no++] = val;
916   return val;
917 }
918 
919 /* Update NEW with the same attributes as REG, but with OFFSET added
920    to the REG_OFFSET.  */
921 
922 static void
923 update_reg_offset (rtx new_rtx, rtx reg, int offset)
924 {
925   REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
926 				   REG_OFFSET (reg) + offset);
927 }
928 
929 /* Generate a register with same attributes as REG, but with OFFSET
930    added to the REG_OFFSET.  */
931 
932 rtx
933 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
934 		    int offset)
935 {
936   rtx new_rtx = gen_rtx_REG (mode, regno);
937 
938   update_reg_offset (new_rtx, reg, offset);
939   return new_rtx;
940 }
941 
942 /* Generate a new pseudo-register with the same attributes as REG, but
943    with OFFSET added to the REG_OFFSET.  */
944 
945 rtx
946 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
947 {
948   rtx new_rtx = gen_reg_rtx (mode);
949 
950   update_reg_offset (new_rtx, reg, offset);
951   return new_rtx;
952 }
953 
954 /* Adjust REG in-place so that it has mode MODE.  It is assumed that the
955    new register is a (possibly paradoxical) lowpart of the old one.  */
956 
957 void
958 adjust_reg_mode (rtx reg, enum machine_mode mode)
959 {
960   update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
961   PUT_MODE (reg, mode);
962 }
963 
964 /* Copy REG's attributes from X, if X has any attributes.  If REG and X
965    have different modes, REG is a (possibly paradoxical) lowpart of X.  */
966 
967 void
968 set_reg_attrs_from_value (rtx reg, rtx x)
969 {
970   int offset;
971 
972   /* Hard registers can be reused for multiple purposes within the same
973      function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
974      on them is wrong.  */
975   if (HARD_REGISTER_P (reg))
976     return;
977 
978   offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
979   if (MEM_P (x))
980     {
981       if (MEM_OFFSET (x) && CONST_INT_P (MEM_OFFSET (x)))
982 	REG_ATTRS (reg)
983 	  = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
984       if (MEM_POINTER (x))
985 	mark_reg_pointer (reg, 0);
986     }
987   else if (REG_P (x))
988     {
989       if (REG_ATTRS (x))
990 	update_reg_offset (reg, x, offset);
991       if (REG_POINTER (x))
992 	mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
993     }
994 }
995 
996 /* Generate a REG rtx for a new pseudo register, copying the mode
997    and attributes from X.  */
998 
999 rtx
1000 gen_reg_rtx_and_attrs (rtx x)
1001 {
1002   rtx reg = gen_reg_rtx (GET_MODE (x));
1003   set_reg_attrs_from_value (reg, x);
1004   return reg;
1005 }
1006 
1007 /* Set the register attributes for registers contained in PARM_RTX.
1008    Use needed values from memory attributes of MEM.  */
1009 
1010 void
1011 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1012 {
1013   if (REG_P (parm_rtx))
1014     set_reg_attrs_from_value (parm_rtx, mem);
1015   else if (GET_CODE (parm_rtx) == PARALLEL)
1016     {
1017       /* Check for a NULL entry in the first slot, used to indicate that the
1018 	 parameter goes both on the stack and in registers.  */
1019       int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1020       for (; i < XVECLEN (parm_rtx, 0); i++)
1021 	{
1022 	  rtx x = XVECEXP (parm_rtx, 0, i);
1023 	  if (REG_P (XEXP (x, 0)))
1024 	    REG_ATTRS (XEXP (x, 0))
1025 	      = get_reg_attrs (MEM_EXPR (mem),
1026 			       INTVAL (XEXP (x, 1)));
1027 	}
1028     }
1029 }
1030 
1031 /* Set the REG_ATTRS for registers in value X, given that X represents
1032    decl T.  */
1033 
1034 void
1035 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1036 {
1037   if (GET_CODE (x) == SUBREG)
1038     {
1039       gcc_assert (subreg_lowpart_p (x));
1040       x = SUBREG_REG (x);
1041     }
1042   if (REG_P (x))
1043     REG_ATTRS (x)
1044       = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1045 					       DECL_MODE (t)));
1046   if (GET_CODE (x) == CONCAT)
1047     {
1048       if (REG_P (XEXP (x, 0)))
1049         REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1050       if (REG_P (XEXP (x, 1)))
1051 	REG_ATTRS (XEXP (x, 1))
1052 	  = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1053     }
1054   if (GET_CODE (x) == PARALLEL)
1055     {
1056       int i, start;
1057 
1058       /* Check for a NULL entry, used to indicate that the parameter goes
1059 	 both on the stack and in registers.  */
1060       if (XEXP (XVECEXP (x, 0, 0), 0))
1061 	start = 0;
1062       else
1063 	start = 1;
1064 
1065       for (i = start; i < XVECLEN (x, 0); i++)
1066 	{
1067 	  rtx y = XVECEXP (x, 0, i);
1068 	  if (REG_P (XEXP (y, 0)))
1069 	    REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1070 	}
1071     }
1072 }
1073 
1074 /* Assign the RTX X to declaration T.  */
1075 
1076 void
1077 set_decl_rtl (tree t, rtx x)
1078 {
1079   DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1080   if (x)
1081     set_reg_attrs_for_decl_rtl (t, x);
1082 }
1083 
1084 /* Assign the RTX X to parameter declaration T.  BY_REFERENCE_P is true
1085    if the ABI requires the parameter to be passed by reference.  */
1086 
1087 void
1088 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1089 {
1090   DECL_INCOMING_RTL (t) = x;
1091   if (x && !by_reference_p)
1092     set_reg_attrs_for_decl_rtl (t, x);
1093 }
1094 
1095 /* Identify REG (which may be a CONCAT) as a user register.  */
1096 
1097 void
1098 mark_user_reg (rtx reg)
1099 {
1100   if (GET_CODE (reg) == CONCAT)
1101     {
1102       REG_USERVAR_P (XEXP (reg, 0)) = 1;
1103       REG_USERVAR_P (XEXP (reg, 1)) = 1;
1104     }
1105   else
1106     {
1107       gcc_assert (REG_P (reg));
1108       REG_USERVAR_P (reg) = 1;
1109     }
1110 }
1111 
1112 /* Identify REG as a probable pointer register and show its alignment
1113    as ALIGN, if nonzero.  */
1114 
1115 void
1116 mark_reg_pointer (rtx reg, int align)
1117 {
1118   if (! REG_POINTER (reg))
1119     {
1120       REG_POINTER (reg) = 1;
1121 
1122       if (align)
1123 	REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1124     }
1125   else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1126     /* We can no-longer be sure just how aligned this pointer is.  */
1127     REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1128 }
1129 
1130 /* Return 1 plus largest pseudo reg number used in the current function.  */
1131 
1132 int
1133 max_reg_num (void)
1134 {
1135   return reg_rtx_no;
1136 }
1137 
1138 /* Return 1 + the largest label number used so far in the current function.  */
1139 
1140 int
1141 max_label_num (void)
1142 {
1143   return label_num;
1144 }
1145 
1146 /* Return first label number used in this function (if any were used).  */
1147 
1148 int
1149 get_first_label_num (void)
1150 {
1151   return first_label_num;
1152 }
1153 
1154 /* If the rtx for label was created during the expansion of a nested
1155    function, then first_label_num won't include this label number.
1156    Fix this now so that array indices work later.  */
1157 
1158 void
1159 maybe_set_first_label_num (rtx x)
1160 {
1161   if (CODE_LABEL_NUMBER (x) < first_label_num)
1162     first_label_num = CODE_LABEL_NUMBER (x);
1163 }
1164 
1165 /* Return a value representing some low-order bits of X, where the number
1166    of low-order bits is given by MODE.  Note that no conversion is done
1167    between floating-point and fixed-point values, rather, the bit
1168    representation is returned.
1169 
1170    This function handles the cases in common between gen_lowpart, below,
1171    and two variants in cse.c and combine.c.  These are the cases that can
1172    be safely handled at all points in the compilation.
1173 
1174    If this is not a case we can handle, return 0.  */
1175 
1176 rtx
1177 gen_lowpart_common (enum machine_mode mode, rtx x)
1178 {
1179   int msize = GET_MODE_SIZE (mode);
1180   int xsize;
1181   int offset = 0;
1182   enum machine_mode innermode;
1183 
1184   /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1185      so we have to make one up.  Yuk.  */
1186   innermode = GET_MODE (x);
1187   if (CONST_INT_P (x)
1188       && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1189     innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1190   else if (innermode == VOIDmode)
1191     innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1192 
1193   xsize = GET_MODE_SIZE (innermode);
1194 
1195   gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1196 
1197   if (innermode == mode)
1198     return x;
1199 
1200   /* MODE must occupy no more words than the mode of X.  */
1201   if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1202       > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1203     return 0;
1204 
1205   /* Don't allow generating paradoxical FLOAT_MODE subregs.  */
1206   if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1207     return 0;
1208 
1209   offset = subreg_lowpart_offset (mode, innermode);
1210 
1211   if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1212       && (GET_MODE_CLASS (mode) == MODE_INT
1213 	  || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1214     {
1215       /* If we are getting the low-order part of something that has been
1216 	 sign- or zero-extended, we can either just use the object being
1217 	 extended or make a narrower extension.  If we want an even smaller
1218 	 piece than the size of the object being extended, call ourselves
1219 	 recursively.
1220 
1221 	 This case is used mostly by combine and cse.  */
1222 
1223       if (GET_MODE (XEXP (x, 0)) == mode)
1224 	return XEXP (x, 0);
1225       else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1226 	return gen_lowpart_common (mode, XEXP (x, 0));
1227       else if (msize < xsize)
1228 	return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1229     }
1230   else if (GET_CODE (x) == SUBREG || REG_P (x)
1231 	   || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1232 	   || GET_CODE (x) == CONST_DOUBLE || CONST_INT_P (x))
1233     return simplify_gen_subreg (mode, x, innermode, offset);
1234 
1235   /* Otherwise, we can't do this.  */
1236   return 0;
1237 }
1238 
1239 rtx
1240 gen_highpart (enum machine_mode mode, rtx x)
1241 {
1242   unsigned int msize = GET_MODE_SIZE (mode);
1243   rtx result;
1244 
1245   /* This case loses if X is a subreg.  To catch bugs early,
1246      complain if an invalid MODE is used even in other cases.  */
1247   gcc_assert (msize <= UNITS_PER_WORD
1248 	      || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1249 
1250   result = simplify_gen_subreg (mode, x, GET_MODE (x),
1251 				subreg_highpart_offset (mode, GET_MODE (x)));
1252   gcc_assert (result);
1253 
1254   /* simplify_gen_subreg is not guaranteed to return a valid operand for
1255      the target if we have a MEM.  gen_highpart must return a valid operand,
1256      emitting code if necessary to do so.  */
1257   if (MEM_P (result))
1258     {
1259       result = validize_mem (result);
1260       gcc_assert (result);
1261     }
1262 
1263   return result;
1264 }
1265 
1266 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1267    be VOIDmode constant.  */
1268 rtx
1269 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1270 {
1271   if (GET_MODE (exp) != VOIDmode)
1272     {
1273       gcc_assert (GET_MODE (exp) == innermode);
1274       return gen_highpart (outermode, exp);
1275     }
1276   return simplify_gen_subreg (outermode, exp, innermode,
1277 			      subreg_highpart_offset (outermode, innermode));
1278 }
1279 
1280 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value.  */
1281 
1282 unsigned int
1283 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1284 {
1285   unsigned int offset = 0;
1286   int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1287 
1288   if (difference > 0)
1289     {
1290       if (WORDS_BIG_ENDIAN)
1291 	offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1292       if (BYTES_BIG_ENDIAN)
1293 	offset += difference % UNITS_PER_WORD;
1294     }
1295 
1296   return offset;
1297 }
1298 
1299 /* Return offset in bytes to get OUTERMODE high part
1300    of the value in mode INNERMODE stored in memory in target format.  */
1301 unsigned int
1302 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1303 {
1304   unsigned int offset = 0;
1305   int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1306 
1307   gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1308 
1309   if (difference > 0)
1310     {
1311       if (! WORDS_BIG_ENDIAN)
1312 	offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1313       if (! BYTES_BIG_ENDIAN)
1314 	offset += difference % UNITS_PER_WORD;
1315     }
1316 
1317   return offset;
1318 }
1319 
1320 /* Return 1 iff X, assumed to be a SUBREG,
1321    refers to the least significant part of its containing reg.
1322    If X is not a SUBREG, always return 1 (it is its own low part!).  */
1323 
1324 int
1325 subreg_lowpart_p (const_rtx x)
1326 {
1327   if (GET_CODE (x) != SUBREG)
1328     return 1;
1329   else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1330     return 0;
1331 
1332   return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1333 	  == SUBREG_BYTE (x));
1334 }
1335 
1336 /* Return subword OFFSET of operand OP.
1337    The word number, OFFSET, is interpreted as the word number starting
1338    at the low-order address.  OFFSET 0 is the low-order word if not
1339    WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1340 
1341    If we cannot extract the required word, we return zero.  Otherwise,
1342    an rtx corresponding to the requested word will be returned.
1343 
1344    VALIDATE_ADDRESS is nonzero if the address should be validated.  Before
1345    reload has completed, a valid address will always be returned.  After
1346    reload, if a valid address cannot be returned, we return zero.
1347 
1348    If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1349    it is the responsibility of the caller.
1350 
1351    MODE is the mode of OP in case it is a CONST_INT.
1352 
1353    ??? This is still rather broken for some cases.  The problem for the
1354    moment is that all callers of this thing provide no 'goal mode' to
1355    tell us to work with.  This exists because all callers were written
1356    in a word based SUBREG world.
1357    Now use of this function can be deprecated by simplify_subreg in most
1358    cases.
1359  */
1360 
1361 rtx
1362 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1363 {
1364   if (mode == VOIDmode)
1365     mode = GET_MODE (op);
1366 
1367   gcc_assert (mode != VOIDmode);
1368 
1369   /* If OP is narrower than a word, fail.  */
1370   if (mode != BLKmode
1371       && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1372     return 0;
1373 
1374   /* If we want a word outside OP, return zero.  */
1375   if (mode != BLKmode
1376       && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1377     return const0_rtx;
1378 
1379   /* Form a new MEM at the requested address.  */
1380   if (MEM_P (op))
1381     {
1382       rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1383 
1384       if (! validate_address)
1385 	return new_rtx;
1386 
1387       else if (reload_completed)
1388 	{
1389 	  if (! strict_memory_address_addr_space_p (word_mode,
1390 						    XEXP (new_rtx, 0),
1391 						    MEM_ADDR_SPACE (op)))
1392 	    return 0;
1393 	}
1394       else
1395 	return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1396     }
1397 
1398   /* Rest can be handled by simplify_subreg.  */
1399   return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1400 }
1401 
1402 /* Similar to `operand_subword', but never return 0.  If we can't
1403    extract the required subword, put OP into a register and try again.
1404    The second attempt must succeed.  We always validate the address in
1405    this case.
1406 
1407    MODE is the mode of OP, in case it is CONST_INT.  */
1408 
1409 rtx
1410 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1411 {
1412   rtx result = operand_subword (op, offset, 1, mode);
1413 
1414   if (result)
1415     return result;
1416 
1417   if (mode != BLKmode && mode != VOIDmode)
1418     {
1419       /* If this is a register which can not be accessed by words, copy it
1420 	 to a pseudo register.  */
1421       if (REG_P (op))
1422 	op = copy_to_reg (op);
1423       else
1424 	op = force_reg (mode, op);
1425     }
1426 
1427   result = operand_subword (op, offset, 1, mode);
1428   gcc_assert (result);
1429 
1430   return result;
1431 }
1432 
1433 /* Returns 1 if both MEM_EXPR can be considered equal
1434    and 0 otherwise.  */
1435 
1436 int
1437 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1438 {
1439   if (expr1 == expr2)
1440     return 1;
1441 
1442   if (! expr1 || ! expr2)
1443     return 0;
1444 
1445   if (TREE_CODE (expr1) != TREE_CODE (expr2))
1446     return 0;
1447 
1448   return operand_equal_p (expr1, expr2, 0);
1449 }
1450 
1451 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1452    bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1453    -1 if not known.  */
1454 
1455 int
1456 get_mem_align_offset (rtx mem, unsigned int align)
1457 {
1458   tree expr;
1459   unsigned HOST_WIDE_INT offset;
1460 
1461   /* This function can't use
1462      if (!MEM_EXPR (mem) || !MEM_OFFSET (mem)
1463 	 || !CONST_INT_P (MEM_OFFSET (mem))
1464 	 || (get_object_alignment (MEM_EXPR (mem), MEM_ALIGN (mem), align)
1465 	     < align))
1466        return -1;
1467      else
1468        return (- INTVAL (MEM_OFFSET (mem))) & (align / BITS_PER_UNIT - 1);
1469      for two reasons:
1470      - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1471        for <variable>.  get_inner_reference doesn't handle it and
1472        even if it did, the alignment in that case needs to be determined
1473        from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1474      - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1475        isn't sufficiently aligned, the object it is in might be.  */
1476   gcc_assert (MEM_P (mem));
1477   expr = MEM_EXPR (mem);
1478   if (expr == NULL_TREE
1479       || MEM_OFFSET (mem) == NULL_RTX
1480       || !CONST_INT_P (MEM_OFFSET (mem)))
1481     return -1;
1482 
1483   offset = INTVAL (MEM_OFFSET (mem));
1484   if (DECL_P (expr))
1485     {
1486       if (DECL_ALIGN (expr) < align)
1487 	return -1;
1488     }
1489   else if (INDIRECT_REF_P (expr))
1490     {
1491       if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1492 	return -1;
1493     }
1494   else if (TREE_CODE (expr) == COMPONENT_REF)
1495     {
1496       while (1)
1497 	{
1498 	  tree inner = TREE_OPERAND (expr, 0);
1499 	  tree field = TREE_OPERAND (expr, 1);
1500 	  tree byte_offset = component_ref_field_offset (expr);
1501 	  tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1502 
1503 	  if (!byte_offset
1504 	      || !host_integerp (byte_offset, 1)
1505 	      || !host_integerp (bit_offset, 1))
1506 	    return -1;
1507 
1508 	  offset += tree_low_cst (byte_offset, 1);
1509 	  offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1510 
1511 	  if (inner == NULL_TREE)
1512 	    {
1513 	      if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1514 		  < (unsigned int) align)
1515 		return -1;
1516 	      break;
1517 	    }
1518 	  else if (DECL_P (inner))
1519 	    {
1520 	      if (DECL_ALIGN (inner) < align)
1521 		return -1;
1522 	      break;
1523 	    }
1524 	  else if (TREE_CODE (inner) != COMPONENT_REF)
1525 	    return -1;
1526 	  expr = inner;
1527 	}
1528     }
1529   else
1530     return -1;
1531 
1532   return offset & ((align / BITS_PER_UNIT) - 1);
1533 }
1534 
1535 /* Given REF (a MEM) and T, either the type of X or the expression
1536    corresponding to REF, set the memory attributes.  OBJECTP is nonzero
1537    if we are making a new object of this type.  BITPOS is nonzero if
1538    there is an offset outstanding on T that will be applied later.  */
1539 
1540 void
1541 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1542 				 HOST_WIDE_INT bitpos)
1543 {
1544   alias_set_type alias = MEM_ALIAS_SET (ref);
1545   tree expr = MEM_EXPR (ref);
1546   rtx offset = MEM_OFFSET (ref);
1547   rtx size = MEM_SIZE (ref);
1548   unsigned int align = MEM_ALIGN (ref);
1549   HOST_WIDE_INT apply_bitpos = 0;
1550   tree type;
1551 
1552   /* It can happen that type_for_mode was given a mode for which there
1553      is no language-level type.  In which case it returns NULL, which
1554      we can see here.  */
1555   if (t == NULL_TREE)
1556     return;
1557 
1558   type = TYPE_P (t) ? t : TREE_TYPE (t);
1559   if (type == error_mark_node)
1560     return;
1561 
1562   /* If we have already set DECL_RTL = ref, get_alias_set will get the
1563      wrong answer, as it assumes that DECL_RTL already has the right alias
1564      info.  Callers should not set DECL_RTL until after the call to
1565      set_mem_attributes.  */
1566   gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1567 
1568   /* Get the alias set from the expression or type (perhaps using a
1569      front-end routine) and use it.  */
1570   alias = get_alias_set (t);
1571 
1572   MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1573   MEM_IN_STRUCT_P (ref)
1574     = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1575   MEM_POINTER (ref) = POINTER_TYPE_P (type);
1576 
1577   /* If we are making an object of this type, or if this is a DECL, we know
1578      that it is a scalar if the type is not an aggregate.  */
1579   if ((objectp || DECL_P (t))
1580       && ! AGGREGATE_TYPE_P (type)
1581       && TREE_CODE (type) != COMPLEX_TYPE)
1582     MEM_SCALAR_P (ref) = 1;
1583 
1584   /* We can set the alignment from the type if we are making an object,
1585      this is an INDIRECT_REF, or if TYPE_ALIGN_OK.  */
1586   if (objectp || TREE_CODE (t) == INDIRECT_REF
1587       || TREE_CODE (t) == ALIGN_INDIRECT_REF
1588       || TYPE_ALIGN_OK (type))
1589     align = MAX (align, TYPE_ALIGN (type));
1590   else
1591     if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1592       {
1593 	if (integer_zerop (TREE_OPERAND (t, 1)))
1594 	  /* We don't know anything about the alignment.  */
1595 	  align = BITS_PER_UNIT;
1596 	else
1597 	  align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1598       }
1599 
1600   /* If the size is known, we can set that.  */
1601   if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1602     size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1603 
1604   /* If T is not a type, we may be able to deduce some more information about
1605      the expression.  */
1606   if (! TYPE_P (t))
1607     {
1608       tree base;
1609       bool align_computed = false;
1610 
1611       if (TREE_THIS_VOLATILE (t))
1612 	MEM_VOLATILE_P (ref) = 1;
1613 
1614       /* Now remove any conversions: they don't change what the underlying
1615 	 object is.  Likewise for SAVE_EXPR.  */
1616       while (CONVERT_EXPR_P (t)
1617 	     || TREE_CODE (t) == VIEW_CONVERT_EXPR
1618 	     || TREE_CODE (t) == SAVE_EXPR)
1619 	t = TREE_OPERAND (t, 0);
1620 
1621       /* We may look through structure-like accesses for the purposes of
1622 	 examining TREE_THIS_NOTRAP, but not array-like accesses.  */
1623       base = t;
1624       while (TREE_CODE (base) == COMPONENT_REF
1625 	     || TREE_CODE (base) == REALPART_EXPR
1626 	     || TREE_CODE (base) == IMAGPART_EXPR
1627 	     || TREE_CODE (base) == BIT_FIELD_REF)
1628 	base = TREE_OPERAND (base, 0);
1629 
1630       if (DECL_P (base))
1631 	{
1632 	  if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1633 	    MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1634 	  else
1635 	    MEM_NOTRAP_P (ref) = 1;
1636 	}
1637       else
1638 	MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1639 
1640       base = get_base_address (base);
1641       if (base && DECL_P (base)
1642 	  && TREE_READONLY (base)
1643 	  && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1644 	{
1645 	  tree base_type = TREE_TYPE (base);
1646 	  gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1647 		      || DECL_ARTIFICIAL (base));
1648 	  MEM_READONLY_P (ref) = 1;
1649 	}
1650 
1651       /* If this expression uses it's parent's alias set, mark it such
1652 	 that we won't change it.  */
1653       if (component_uses_parent_alias_set (t))
1654 	MEM_KEEP_ALIAS_SET_P (ref) = 1;
1655 
1656       /* If this is a decl, set the attributes of the MEM from it.  */
1657       if (DECL_P (t))
1658 	{
1659 	  expr = t;
1660 	  offset = const0_rtx;
1661 	  apply_bitpos = bitpos;
1662 	  size = (DECL_SIZE_UNIT (t)
1663 		  && host_integerp (DECL_SIZE_UNIT (t), 1)
1664 		  ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1665 	  align = DECL_ALIGN (t);
1666 	  align_computed = true;
1667 	}
1668 
1669       /* If this is a constant, we know the alignment.  */
1670       else if (CONSTANT_CLASS_P (t))
1671 	{
1672 	  align = TYPE_ALIGN (type);
1673 #ifdef CONSTANT_ALIGNMENT
1674 	  align = CONSTANT_ALIGNMENT (t, align);
1675 #endif
1676 	  align_computed = true;
1677 	}
1678 
1679       /* If this is a field reference and not a bit-field, record it.  */
1680       /* ??? There is some information that can be gleaned from bit-fields,
1681 	 such as the word offset in the structure that might be modified.
1682 	 But skip it for now.  */
1683       else if (TREE_CODE (t) == COMPONENT_REF
1684 	       && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1685 	{
1686 	  expr = t;
1687 	  offset = const0_rtx;
1688 	  apply_bitpos = bitpos;
1689 	  /* ??? Any reason the field size would be different than
1690 	     the size we got from the type?  */
1691 	}
1692 
1693       /* If this is an array reference, look for an outer field reference.  */
1694       else if (TREE_CODE (t) == ARRAY_REF)
1695 	{
1696 	  tree off_tree = size_zero_node;
1697 	  /* We can't modify t, because we use it at the end of the
1698 	     function.  */
1699 	  tree t2 = t;
1700 
1701 	  do
1702 	    {
1703 	      tree index = TREE_OPERAND (t2, 1);
1704 	      tree low_bound = array_ref_low_bound (t2);
1705 	      tree unit_size = array_ref_element_size (t2);
1706 
1707 	      /* We assume all arrays have sizes that are a multiple of a byte.
1708 		 First subtract the lower bound, if any, in the type of the
1709 		 index, then convert to sizetype and multiply by the size of
1710 		 the array element.  */
1711 	      if (! integer_zerop (low_bound))
1712 		index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1713 				     index, low_bound);
1714 
1715 	      off_tree = size_binop (PLUS_EXPR,
1716 				     size_binop (MULT_EXPR,
1717 						 fold_convert (sizetype,
1718 							       index),
1719 						 unit_size),
1720 				     off_tree);
1721 	      t2 = TREE_OPERAND (t2, 0);
1722 	    }
1723 	  while (TREE_CODE (t2) == ARRAY_REF);
1724 
1725 	  if (DECL_P (t2))
1726 	    {
1727 	      expr = t2;
1728 	      offset = NULL;
1729 	      if (host_integerp (off_tree, 1))
1730 		{
1731 		  HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1732 		  HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1733 		  align = DECL_ALIGN (t2);
1734 		  if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1735 	            align = aoff;
1736 		  align_computed = true;
1737 		  offset = GEN_INT (ioff);
1738 		  apply_bitpos = bitpos;
1739 		}
1740 	    }
1741 	  else if (TREE_CODE (t2) == COMPONENT_REF)
1742 	    {
1743 	      expr = t2;
1744 	      offset = NULL;
1745 	      if (host_integerp (off_tree, 1))
1746 		{
1747 		  offset = GEN_INT (tree_low_cst (off_tree, 1));
1748 		  apply_bitpos = bitpos;
1749 		}
1750 	      /* ??? Any reason the field size would be different than
1751 		 the size we got from the type?  */
1752 	    }
1753 	  else if (flag_argument_noalias > 1
1754 		   && (INDIRECT_REF_P (t2))
1755 		   && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1756 	    {
1757 	      expr = t2;
1758 	      offset = NULL;
1759 	    }
1760 	}
1761 
1762       /* If this is a Fortran indirect argument reference, record the
1763 	 parameter decl.  */
1764       else if (flag_argument_noalias > 1
1765 	       && (INDIRECT_REF_P (t))
1766 	       && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1767 	{
1768 	  expr = t;
1769 	  offset = NULL;
1770 	}
1771 
1772       if (!align_computed && !INDIRECT_REF_P (t))
1773 	{
1774 	  unsigned int obj_align
1775 	    = get_object_alignment (t, align, BIGGEST_ALIGNMENT);
1776 	  align = MAX (align, obj_align);
1777 	}
1778     }
1779 
1780   /* If we modified OFFSET based on T, then subtract the outstanding
1781      bit position offset.  Similarly, increase the size of the accessed
1782      object to contain the negative offset.  */
1783   if (apply_bitpos)
1784     {
1785       offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1786       if (size)
1787 	size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1788     }
1789 
1790   if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1791     {
1792       /* Force EXPR and OFFSET to NULL, since we don't know exactly what
1793 	 we're overlapping.  */
1794       offset = NULL;
1795       expr = NULL;
1796     }
1797 
1798   /* Now set the attributes we computed above.  */
1799   MEM_ATTRS (ref)
1800     = get_mem_attrs (alias, expr, offset, size, align,
1801 		     TYPE_ADDR_SPACE (type), GET_MODE (ref));
1802 
1803   /* If this is already known to be a scalar or aggregate, we are done.  */
1804   if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1805     return;
1806 
1807   /* If it is a reference into an aggregate, this is part of an aggregate.
1808      Otherwise we don't know.  */
1809   else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1810 	   || TREE_CODE (t) == ARRAY_RANGE_REF
1811 	   || TREE_CODE (t) == BIT_FIELD_REF)
1812     MEM_IN_STRUCT_P (ref) = 1;
1813 }
1814 
1815 void
1816 set_mem_attributes (rtx ref, tree t, int objectp)
1817 {
1818   set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1819 }
1820 
1821 /* Set the alias set of MEM to SET.  */
1822 
1823 void
1824 set_mem_alias_set (rtx mem, alias_set_type set)
1825 {
1826 #ifdef ENABLE_CHECKING
1827   /* If the new and old alias sets don't conflict, something is wrong.  */
1828   gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1829 #endif
1830 
1831   MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1832 				   MEM_SIZE (mem), MEM_ALIGN (mem),
1833 				   MEM_ADDR_SPACE (mem), GET_MODE (mem));
1834 }
1835 
1836 /* Set the address space of MEM to ADDRSPACE (target-defined).  */
1837 
1838 void
1839 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1840 {
1841   MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1842 				   MEM_OFFSET (mem), MEM_SIZE (mem),
1843 				   MEM_ALIGN (mem), addrspace, GET_MODE (mem));
1844 }
1845 
1846 /* Set the alignment of MEM to ALIGN bits.  */
1847 
1848 void
1849 set_mem_align (rtx mem, unsigned int align)
1850 {
1851   MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1852 				   MEM_OFFSET (mem), MEM_SIZE (mem), align,
1853 				   MEM_ADDR_SPACE (mem), GET_MODE (mem));
1854 }
1855 
1856 /* Set the expr for MEM to EXPR.  */
1857 
1858 void
1859 set_mem_expr (rtx mem, tree expr)
1860 {
1861   MEM_ATTRS (mem)
1862     = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1863 		     MEM_SIZE (mem), MEM_ALIGN (mem),
1864 		     MEM_ADDR_SPACE (mem), GET_MODE (mem));
1865 }
1866 
1867 /* Set the offset of MEM to OFFSET.  */
1868 
1869 void
1870 set_mem_offset (rtx mem, rtx offset)
1871 {
1872   MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1873 				   offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1874 				   MEM_ADDR_SPACE (mem), GET_MODE (mem));
1875 }
1876 
1877 /* Set the size of MEM to SIZE.  */
1878 
1879 void
1880 set_mem_size (rtx mem, rtx size)
1881 {
1882   MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1883 				   MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1884 				   MEM_ADDR_SPACE (mem), GET_MODE (mem));
1885 }
1886 
1887 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1888    and its address changed to ADDR.  (VOIDmode means don't change the mode.
1889    NULL for ADDR means don't change the address.)  VALIDATE is nonzero if the
1890    returned memory location is required to be valid.  The memory
1891    attributes are not changed.  */
1892 
1893 static rtx
1894 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1895 {
1896   addr_space_t as;
1897   rtx new_rtx;
1898 
1899   gcc_assert (MEM_P (memref));
1900   as = MEM_ADDR_SPACE (memref);
1901   if (mode == VOIDmode)
1902     mode = GET_MODE (memref);
1903   if (addr == 0)
1904     addr = XEXP (memref, 0);
1905   if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1906       && (!validate || memory_address_addr_space_p (mode, addr, as)))
1907     return memref;
1908 
1909   if (validate)
1910     {
1911       if (reload_in_progress || reload_completed)
1912 	gcc_assert (memory_address_addr_space_p (mode, addr, as));
1913       else
1914 	addr = memory_address_addr_space (mode, addr, as);
1915     }
1916 
1917   if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1918     return memref;
1919 
1920   new_rtx = gen_rtx_MEM (mode, addr);
1921   MEM_COPY_ATTRIBUTES (new_rtx, memref);
1922   return new_rtx;
1923 }
1924 
1925 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1926    way we are changing MEMREF, so we only preserve the alias set.  */
1927 
1928 rtx
1929 change_address (rtx memref, enum machine_mode mode, rtx addr)
1930 {
1931   rtx new_rtx = change_address_1 (memref, mode, addr, 1), size;
1932   enum machine_mode mmode = GET_MODE (new_rtx);
1933   unsigned int align;
1934 
1935   size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1936   align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1937 
1938   /* If there are no changes, just return the original memory reference.  */
1939   if (new_rtx == memref)
1940     {
1941       if (MEM_ATTRS (memref) == 0
1942 	  || (MEM_EXPR (memref) == NULL
1943 	      && MEM_OFFSET (memref) == NULL
1944 	      && MEM_SIZE (memref) == size
1945 	      && MEM_ALIGN (memref) == align))
1946 	return new_rtx;
1947 
1948       new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
1949       MEM_COPY_ATTRIBUTES (new_rtx, memref);
1950     }
1951 
1952   MEM_ATTRS (new_rtx)
1953     = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align,
1954 		     MEM_ADDR_SPACE (memref), mmode);
1955 
1956   return new_rtx;
1957 }
1958 
1959 /* Return a memory reference like MEMREF, but with its mode changed
1960    to MODE and its address offset by OFFSET bytes.  If VALIDATE is
1961    nonzero, the memory address is forced to be valid.
1962    If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1963    and caller is responsible for adjusting MEMREF base register.  */
1964 
1965 rtx
1966 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1967 		  int validate, int adjust)
1968 {
1969   rtx addr = XEXP (memref, 0);
1970   rtx new_rtx;
1971   rtx memoffset = MEM_OFFSET (memref);
1972   rtx size = 0;
1973   unsigned int memalign = MEM_ALIGN (memref);
1974   addr_space_t as = MEM_ADDR_SPACE (memref);
1975   enum machine_mode address_mode = targetm.addr_space.address_mode (as);
1976   int pbits;
1977 
1978   /* If there are no changes, just return the original memory reference.  */
1979   if (mode == GET_MODE (memref) && !offset
1980       && (!validate || memory_address_addr_space_p (mode, addr, as)))
1981     return memref;
1982 
1983   /* ??? Prefer to create garbage instead of creating shared rtl.
1984      This may happen even if offset is nonzero -- consider
1985      (plus (plus reg reg) const_int) -- so do this always.  */
1986   addr = copy_rtx (addr);
1987 
1988   /* Convert a possibly large offset to a signed value within the
1989      range of the target address space.  */
1990   pbits = GET_MODE_BITSIZE (address_mode);
1991   if (HOST_BITS_PER_WIDE_INT > pbits)
1992     {
1993       int shift = HOST_BITS_PER_WIDE_INT - pbits;
1994       offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
1995 		>> shift);
1996     }
1997 
1998   if (adjust)
1999     {
2000       /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2001 	 object, we can merge it into the LO_SUM.  */
2002       if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2003 	  && offset >= 0
2004 	  && (unsigned HOST_WIDE_INT) offset
2005 	      < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2006 	addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2007 			       plus_constant (XEXP (addr, 1), offset));
2008       else
2009 	addr = plus_constant (addr, offset);
2010     }
2011 
2012   new_rtx = change_address_1 (memref, mode, addr, validate);
2013 
2014   /* If the address is a REG, change_address_1 rightfully returns memref,
2015      but this would destroy memref's MEM_ATTRS.  */
2016   if (new_rtx == memref && offset != 0)
2017     new_rtx = copy_rtx (new_rtx);
2018 
2019   /* Compute the new values of the memory attributes due to this adjustment.
2020      We add the offsets and update the alignment.  */
2021   if (memoffset)
2022     memoffset = GEN_INT (offset + INTVAL (memoffset));
2023 
2024   /* Compute the new alignment by taking the MIN of the alignment and the
2025      lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2026      if zero.  */
2027   if (offset != 0)
2028     memalign
2029       = MIN (memalign,
2030 	     (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2031 
2032   /* We can compute the size in a number of ways.  */
2033   if (GET_MODE (new_rtx) != BLKmode)
2034     size = GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx)));
2035   else if (MEM_SIZE (memref))
2036     size = plus_constant (MEM_SIZE (memref), -offset);
2037 
2038   MEM_ATTRS (new_rtx) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2039 				       memoffset, size, memalign, as,
2040 				       GET_MODE (new_rtx));
2041 
2042   /* At some point, we should validate that this offset is within the object,
2043      if all the appropriate values are known.  */
2044   return new_rtx;
2045 }
2046 
2047 /* Return a memory reference like MEMREF, but with its mode changed
2048    to MODE and its address changed to ADDR, which is assumed to be
2049    MEMREF offset by OFFSET bytes.  If VALIDATE is
2050    nonzero, the memory address is forced to be valid.  */
2051 
2052 rtx
2053 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2054 			     HOST_WIDE_INT offset, int validate)
2055 {
2056   memref = change_address_1 (memref, VOIDmode, addr, validate);
2057   return adjust_address_1 (memref, mode, offset, validate, 0);
2058 }
2059 
2060 /* Return a memory reference like MEMREF, but whose address is changed by
2061    adding OFFSET, an RTX, to it.  POW2 is the highest power of two factor
2062    known to be in OFFSET (possibly 1).  */
2063 
2064 rtx
2065 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2066 {
2067   rtx new_rtx, addr = XEXP (memref, 0);
2068   addr_space_t as = MEM_ADDR_SPACE (memref);
2069   enum machine_mode address_mode = targetm.addr_space.address_mode (as);
2070 
2071   new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2072 
2073   /* At this point we don't know _why_ the address is invalid.  It
2074      could have secondary memory references, multiplies or anything.
2075 
2076      However, if we did go and rearrange things, we can wind up not
2077      being able to recognize the magic around pic_offset_table_rtx.
2078      This stuff is fragile, and is yet another example of why it is
2079      bad to expose PIC machinery too early.  */
2080   if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx, as)
2081       && GET_CODE (addr) == PLUS
2082       && XEXP (addr, 0) == pic_offset_table_rtx)
2083     {
2084       addr = force_reg (GET_MODE (addr), addr);
2085       new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2086     }
2087 
2088   update_temp_slot_address (XEXP (memref, 0), new_rtx);
2089   new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2090 
2091   /* If there are no changes, just return the original memory reference.  */
2092   if (new_rtx == memref)
2093     return new_rtx;
2094 
2095   /* Update the alignment to reflect the offset.  Reset the offset, which
2096      we don't know.  */
2097   MEM_ATTRS (new_rtx)
2098     = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2099 		     MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2100 		     as, GET_MODE (new_rtx));
2101   return new_rtx;
2102 }
2103 
2104 /* Return a memory reference like MEMREF, but with its address changed to
2105    ADDR.  The caller is asserting that the actual piece of memory pointed
2106    to is the same, just the form of the address is being changed, such as
2107    by putting something into a register.  */
2108 
2109 rtx
2110 replace_equiv_address (rtx memref, rtx addr)
2111 {
2112   /* change_address_1 copies the memory attribute structure without change
2113      and that's exactly what we want here.  */
2114   update_temp_slot_address (XEXP (memref, 0), addr);
2115   return change_address_1 (memref, VOIDmode, addr, 1);
2116 }
2117 
2118 /* Likewise, but the reference is not required to be valid.  */
2119 
2120 rtx
2121 replace_equiv_address_nv (rtx memref, rtx addr)
2122 {
2123   return change_address_1 (memref, VOIDmode, addr, 0);
2124 }
2125 
2126 /* Return a memory reference like MEMREF, but with its mode widened to
2127    MODE and offset by OFFSET.  This would be used by targets that e.g.
2128    cannot issue QImode memory operations and have to use SImode memory
2129    operations plus masking logic.  */
2130 
2131 rtx
2132 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2133 {
2134   rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2135   tree expr = MEM_EXPR (new_rtx);
2136   rtx memoffset = MEM_OFFSET (new_rtx);
2137   unsigned int size = GET_MODE_SIZE (mode);
2138 
2139   /* If there are no changes, just return the original memory reference.  */
2140   if (new_rtx == memref)
2141     return new_rtx;
2142 
2143   /* If we don't know what offset we were at within the expression, then
2144      we can't know if we've overstepped the bounds.  */
2145   if (! memoffset)
2146     expr = NULL_TREE;
2147 
2148   while (expr)
2149     {
2150       if (TREE_CODE (expr) == COMPONENT_REF)
2151 	{
2152 	  tree field = TREE_OPERAND (expr, 1);
2153 	  tree offset = component_ref_field_offset (expr);
2154 
2155 	  if (! DECL_SIZE_UNIT (field))
2156 	    {
2157 	      expr = NULL_TREE;
2158 	      break;
2159 	    }
2160 
2161 	  /* Is the field at least as large as the access?  If so, ok,
2162 	     otherwise strip back to the containing structure.  */
2163 	  if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2164 	      && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2165 	      && INTVAL (memoffset) >= 0)
2166 	    break;
2167 
2168 	  if (! host_integerp (offset, 1))
2169 	    {
2170 	      expr = NULL_TREE;
2171 	      break;
2172 	    }
2173 
2174 	  expr = TREE_OPERAND (expr, 0);
2175 	  memoffset
2176 	    = (GEN_INT (INTVAL (memoffset)
2177 			+ tree_low_cst (offset, 1)
2178 			+ (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2179 			   / BITS_PER_UNIT)));
2180 	}
2181       /* Similarly for the decl.  */
2182       else if (DECL_P (expr)
2183 	       && DECL_SIZE_UNIT (expr)
2184 	       && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2185 	       && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2186 	       && (! memoffset || INTVAL (memoffset) >= 0))
2187 	break;
2188       else
2189 	{
2190 	  /* The widened memory access overflows the expression, which means
2191 	     that it could alias another expression.  Zap it.  */
2192 	  expr = NULL_TREE;
2193 	  break;
2194 	}
2195     }
2196 
2197   if (! expr)
2198     memoffset = NULL_RTX;
2199 
2200   /* The widened memory may alias other stuff, so zap the alias set.  */
2201   /* ??? Maybe use get_alias_set on any remaining expression.  */
2202 
2203   MEM_ATTRS (new_rtx) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2204 				       MEM_ALIGN (new_rtx),
2205 				       MEM_ADDR_SPACE (new_rtx), mode);
2206 
2207   return new_rtx;
2208 }
2209 
2210 /* A fake decl that is used as the MEM_EXPR of spill slots.  */
2211 static GTY(()) tree spill_slot_decl;
2212 
2213 tree
2214 get_spill_slot_decl (bool force_build_p)
2215 {
2216   tree d = spill_slot_decl;
2217   rtx rd;
2218 
2219   if (d || !force_build_p)
2220     return d;
2221 
2222   d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2223 		  VAR_DECL, get_identifier ("%sfp"), void_type_node);
2224   DECL_ARTIFICIAL (d) = 1;
2225   DECL_IGNORED_P (d) = 1;
2226   TREE_USED (d) = 1;
2227   TREE_THIS_NOTRAP (d) = 1;
2228   spill_slot_decl = d;
2229 
2230   rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2231   MEM_NOTRAP_P (rd) = 1;
2232   MEM_ATTRS (rd) = get_mem_attrs (new_alias_set (), d, const0_rtx,
2233 				  NULL_RTX, 0, ADDR_SPACE_GENERIC, BLKmode);
2234   SET_DECL_RTL (d, rd);
2235 
2236   return d;
2237 }
2238 
2239 /* Given MEM, a result from assign_stack_local, fill in the memory
2240    attributes as appropriate for a register allocator spill slot.
2241    These slots are not aliasable by other memory.  We arrange for
2242    them all to use a single MEM_EXPR, so that the aliasing code can
2243    work properly in the case of shared spill slots.  */
2244 
2245 void
2246 set_mem_attrs_for_spill (rtx mem)
2247 {
2248   alias_set_type alias;
2249   rtx addr, offset;
2250   tree expr;
2251 
2252   expr = get_spill_slot_decl (true);
2253   alias = MEM_ALIAS_SET (DECL_RTL (expr));
2254 
2255   /* We expect the incoming memory to be of the form:
2256 	(mem:MODE (plus (reg sfp) (const_int offset)))
2257      with perhaps the plus missing for offset = 0.  */
2258   addr = XEXP (mem, 0);
2259   offset = const0_rtx;
2260   if (GET_CODE (addr) == PLUS
2261       && CONST_INT_P (XEXP (addr, 1)))
2262     offset = XEXP (addr, 1);
2263 
2264   MEM_ATTRS (mem) = get_mem_attrs (alias, expr, offset,
2265 				   MEM_SIZE (mem), MEM_ALIGN (mem),
2266 				   ADDR_SPACE_GENERIC, GET_MODE (mem));
2267   MEM_NOTRAP_P (mem) = 1;
2268 }
2269 
2270 /* Return a newly created CODE_LABEL rtx with a unique label number.  */
2271 
2272 rtx
2273 gen_label_rtx (void)
2274 {
2275   return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2276 			     NULL, label_num++, NULL);
2277 }
2278 
2279 /* For procedure integration.  */
2280 
2281 /* Install new pointers to the first and last insns in the chain.
2282    Also, set cur_insn_uid to one higher than the last in use.
2283    Used for an inline-procedure after copying the insn chain.  */
2284 
2285 void
2286 set_new_first_and_last_insn (rtx first, rtx last)
2287 {
2288   rtx insn;
2289 
2290   first_insn = first;
2291   last_insn = last;
2292   cur_insn_uid = 0;
2293 
2294   if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2295     {
2296       int debug_count = 0;
2297 
2298       cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2299       cur_debug_insn_uid = 0;
2300 
2301       for (insn = first; insn; insn = NEXT_INSN (insn))
2302 	if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2303 	  cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2304 	else
2305 	  {
2306 	    cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2307 	    if (DEBUG_INSN_P (insn))
2308 	      debug_count++;
2309 	  }
2310 
2311       if (debug_count)
2312 	cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2313       else
2314 	cur_debug_insn_uid++;
2315     }
2316   else
2317     for (insn = first; insn; insn = NEXT_INSN (insn))
2318       cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2319 
2320   cur_insn_uid++;
2321 }
2322 
2323 /* Go through all the RTL insn bodies and copy any invalid shared
2324    structure.  This routine should only be called once.  */
2325 
2326 static void
2327 unshare_all_rtl_1 (rtx insn)
2328 {
2329   /* Unshare just about everything else.  */
2330   unshare_all_rtl_in_chain (insn);
2331 
2332   /* Make sure the addresses of stack slots found outside the insn chain
2333      (such as, in DECL_RTL of a variable) are not shared
2334      with the insn chain.
2335 
2336      This special care is necessary when the stack slot MEM does not
2337      actually appear in the insn chain.  If it does appear, its address
2338      is unshared from all else at that point.  */
2339   stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2340 }
2341 
2342 /* Go through all the RTL insn bodies and copy any invalid shared
2343    structure, again.  This is a fairly expensive thing to do so it
2344    should be done sparingly.  */
2345 
2346 void
2347 unshare_all_rtl_again (rtx insn)
2348 {
2349   rtx p;
2350   tree decl;
2351 
2352   for (p = insn; p; p = NEXT_INSN (p))
2353     if (INSN_P (p))
2354       {
2355 	reset_used_flags (PATTERN (p));
2356 	reset_used_flags (REG_NOTES (p));
2357       }
2358 
2359   /* Make sure that virtual stack slots are not shared.  */
2360   set_used_decls (DECL_INITIAL (cfun->decl));
2361 
2362   /* Make sure that virtual parameters are not shared.  */
2363   for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2364     set_used_flags (DECL_RTL (decl));
2365 
2366   reset_used_flags (stack_slot_list);
2367 
2368   unshare_all_rtl_1 (insn);
2369 }
2370 
2371 unsigned int
2372 unshare_all_rtl (void)
2373 {
2374   unshare_all_rtl_1 (get_insns ());
2375   return 0;
2376 }
2377 
2378 struct rtl_opt_pass pass_unshare_all_rtl =
2379 {
2380  {
2381   RTL_PASS,
2382   "unshare",                            /* name */
2383   NULL,                                 /* gate */
2384   unshare_all_rtl,                      /* execute */
2385   NULL,                                 /* sub */
2386   NULL,                                 /* next */
2387   0,                                    /* static_pass_number */
2388   TV_NONE,                              /* tv_id */
2389   0,                                    /* properties_required */
2390   0,                                    /* properties_provided */
2391   0,                                    /* properties_destroyed */
2392   0,                                    /* todo_flags_start */
2393   TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2394  }
2395 };
2396 
2397 
2398 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2399    Recursively does the same for subexpressions.  */
2400 
2401 static void
2402 verify_rtx_sharing (rtx orig, rtx insn)
2403 {
2404   rtx x = orig;
2405   int i;
2406   enum rtx_code code;
2407   const char *format_ptr;
2408 
2409   if (x == 0)
2410     return;
2411 
2412   code = GET_CODE (x);
2413 
2414   /* These types may be freely shared.  */
2415 
2416   switch (code)
2417     {
2418     case REG:
2419     case DEBUG_EXPR:
2420     case VALUE:
2421     case CONST_INT:
2422     case CONST_DOUBLE:
2423     case CONST_FIXED:
2424     case CONST_VECTOR:
2425     case SYMBOL_REF:
2426     case LABEL_REF:
2427     case CODE_LABEL:
2428     case PC:
2429     case CC0:
2430     case SCRATCH:
2431       return;
2432       /* SCRATCH must be shared because they represent distinct values.  */
2433     case CLOBBER:
2434       if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2435 	return;
2436       break;
2437 
2438     case CONST:
2439       if (shared_const_p (orig))
2440 	return;
2441       break;
2442 
2443     case MEM:
2444       /* A MEM is allowed to be shared if its address is constant.  */
2445       if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2446 	  || reload_completed || reload_in_progress)
2447 	return;
2448 
2449       break;
2450 
2451     default:
2452       break;
2453     }
2454 
2455   /* This rtx may not be shared.  If it has already been seen,
2456      replace it with a copy of itself.  */
2457 #ifdef ENABLE_CHECKING
2458   if (RTX_FLAG (x, used))
2459     {
2460       error ("invalid rtl sharing found in the insn");
2461       debug_rtx (insn);
2462       error ("shared rtx");
2463       debug_rtx (x);
2464       internal_error ("internal consistency failure");
2465     }
2466 #endif
2467   gcc_assert (!RTX_FLAG (x, used));
2468 
2469   RTX_FLAG (x, used) = 1;
2470 
2471   /* Now scan the subexpressions recursively.  */
2472 
2473   format_ptr = GET_RTX_FORMAT (code);
2474 
2475   for (i = 0; i < GET_RTX_LENGTH (code); i++)
2476     {
2477       switch (*format_ptr++)
2478 	{
2479 	case 'e':
2480 	  verify_rtx_sharing (XEXP (x, i), insn);
2481 	  break;
2482 
2483 	case 'E':
2484 	  if (XVEC (x, i) != NULL)
2485 	    {
2486 	      int j;
2487 	      int len = XVECLEN (x, i);
2488 
2489 	      for (j = 0; j < len; j++)
2490 		{
2491 		  /* We allow sharing of ASM_OPERANDS inside single
2492 		     instruction.  */
2493 		  if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2494 		      && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2495 			  == ASM_OPERANDS))
2496 		    verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2497 		  else
2498 		    verify_rtx_sharing (XVECEXP (x, i, j), insn);
2499 		}
2500 	    }
2501 	  break;
2502 	}
2503     }
2504   return;
2505 }
2506 
2507 /* Go through all the RTL insn bodies and check that there is no unexpected
2508    sharing in between the subexpressions.  */
2509 
2510 void
2511 verify_rtl_sharing (void)
2512 {
2513   rtx p;
2514 
2515   for (p = get_insns (); p; p = NEXT_INSN (p))
2516     if (INSN_P (p))
2517       {
2518 	reset_used_flags (PATTERN (p));
2519 	reset_used_flags (REG_NOTES (p));
2520 	if (GET_CODE (PATTERN (p)) == SEQUENCE)
2521 	  {
2522 	    int i;
2523 	    rtx q, sequence = PATTERN (p);
2524 
2525 	    for (i = 0; i < XVECLEN (sequence, 0); i++)
2526 	      {
2527 		q = XVECEXP (sequence, 0, i);
2528 		gcc_assert (INSN_P (q));
2529 		reset_used_flags (PATTERN (q));
2530 		reset_used_flags (REG_NOTES (q));
2531 	      }
2532 	  }
2533       }
2534 
2535   for (p = get_insns (); p; p = NEXT_INSN (p))
2536     if (INSN_P (p))
2537       {
2538 	verify_rtx_sharing (PATTERN (p), p);
2539 	verify_rtx_sharing (REG_NOTES (p), p);
2540       }
2541 }
2542 
2543 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2544    Assumes the mark bits are cleared at entry.  */
2545 
2546 void
2547 unshare_all_rtl_in_chain (rtx insn)
2548 {
2549   for (; insn; insn = NEXT_INSN (insn))
2550     if (INSN_P (insn))
2551       {
2552 	PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2553 	REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2554       }
2555 }
2556 
2557 /* Go through all virtual stack slots of a function and mark them as
2558    shared.  We never replace the DECL_RTLs themselves with a copy,
2559    but expressions mentioned into a DECL_RTL cannot be shared with
2560    expressions in the instruction stream.
2561 
2562    Note that reload may convert pseudo registers into memories in-place.
2563    Pseudo registers are always shared, but MEMs never are.  Thus if we
2564    reset the used flags on MEMs in the instruction stream, we must set
2565    them again on MEMs that appear in DECL_RTLs.  */
2566 
2567 static void
2568 set_used_decls (tree blk)
2569 {
2570   tree t;
2571 
2572   /* Mark decls.  */
2573   for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2574     if (DECL_RTL_SET_P (t))
2575       set_used_flags (DECL_RTL (t));
2576 
2577   /* Now process sub-blocks.  */
2578   for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2579     set_used_decls (t);
2580 }
2581 
2582 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2583    Recursively does the same for subexpressions.  Uses
2584    copy_rtx_if_shared_1 to reduce stack space.  */
2585 
2586 rtx
2587 copy_rtx_if_shared (rtx orig)
2588 {
2589   copy_rtx_if_shared_1 (&orig);
2590   return orig;
2591 }
2592 
2593 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2594    use.  Recursively does the same for subexpressions.  */
2595 
2596 static void
2597 copy_rtx_if_shared_1 (rtx *orig1)
2598 {
2599   rtx x;
2600   int i;
2601   enum rtx_code code;
2602   rtx *last_ptr;
2603   const char *format_ptr;
2604   int copied = 0;
2605   int length;
2606 
2607   /* Repeat is used to turn tail-recursion into iteration.  */
2608 repeat:
2609   x = *orig1;
2610 
2611   if (x == 0)
2612     return;
2613 
2614   code = GET_CODE (x);
2615 
2616   /* These types may be freely shared.  */
2617 
2618   switch (code)
2619     {
2620     case REG:
2621     case DEBUG_EXPR:
2622     case VALUE:
2623     case CONST_INT:
2624     case CONST_DOUBLE:
2625     case CONST_FIXED:
2626     case CONST_VECTOR:
2627     case SYMBOL_REF:
2628     case LABEL_REF:
2629     case CODE_LABEL:
2630     case PC:
2631     case CC0:
2632     case SCRATCH:
2633       /* SCRATCH must be shared because they represent distinct values.  */
2634       return;
2635     case CLOBBER:
2636       if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2637 	return;
2638       break;
2639 
2640     case CONST:
2641       if (shared_const_p (x))
2642 	return;
2643       break;
2644 
2645     case DEBUG_INSN:
2646     case INSN:
2647     case JUMP_INSN:
2648     case CALL_INSN:
2649     case NOTE:
2650     case BARRIER:
2651       /* The chain of insns is not being copied.  */
2652       return;
2653 
2654     default:
2655       break;
2656     }
2657 
2658   /* This rtx may not be shared.  If it has already been seen,
2659      replace it with a copy of itself.  */
2660 
2661   if (RTX_FLAG (x, used))
2662     {
2663       x = shallow_copy_rtx (x);
2664       copied = 1;
2665     }
2666   RTX_FLAG (x, used) = 1;
2667 
2668   /* Now scan the subexpressions recursively.
2669      We can store any replaced subexpressions directly into X
2670      since we know X is not shared!  Any vectors in X
2671      must be copied if X was copied.  */
2672 
2673   format_ptr = GET_RTX_FORMAT (code);
2674   length = GET_RTX_LENGTH (code);
2675   last_ptr = NULL;
2676 
2677   for (i = 0; i < length; i++)
2678     {
2679       switch (*format_ptr++)
2680 	{
2681 	case 'e':
2682           if (last_ptr)
2683             copy_rtx_if_shared_1 (last_ptr);
2684 	  last_ptr = &XEXP (x, i);
2685 	  break;
2686 
2687 	case 'E':
2688 	  if (XVEC (x, i) != NULL)
2689 	    {
2690 	      int j;
2691 	      int len = XVECLEN (x, i);
2692 
2693               /* Copy the vector iff I copied the rtx and the length
2694 		 is nonzero.  */
2695 	      if (copied && len > 0)
2696 		XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2697 
2698               /* Call recursively on all inside the vector.  */
2699 	      for (j = 0; j < len; j++)
2700                 {
2701 		  if (last_ptr)
2702 		    copy_rtx_if_shared_1 (last_ptr);
2703                   last_ptr = &XVECEXP (x, i, j);
2704                 }
2705 	    }
2706 	  break;
2707 	}
2708     }
2709   *orig1 = x;
2710   if (last_ptr)
2711     {
2712       orig1 = last_ptr;
2713       goto repeat;
2714     }
2715   return;
2716 }
2717 
2718 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2719    to look for shared sub-parts.  */
2720 
2721 void
2722 reset_used_flags (rtx x)
2723 {
2724   int i, j;
2725   enum rtx_code code;
2726   const char *format_ptr;
2727   int length;
2728 
2729   /* Repeat is used to turn tail-recursion into iteration.  */
2730 repeat:
2731   if (x == 0)
2732     return;
2733 
2734   code = GET_CODE (x);
2735 
2736   /* These types may be freely shared so we needn't do any resetting
2737      for them.  */
2738 
2739   switch (code)
2740     {
2741     case REG:
2742     case DEBUG_EXPR:
2743     case VALUE:
2744     case CONST_INT:
2745     case CONST_DOUBLE:
2746     case CONST_FIXED:
2747     case CONST_VECTOR:
2748     case SYMBOL_REF:
2749     case CODE_LABEL:
2750     case PC:
2751     case CC0:
2752       return;
2753 
2754     case DEBUG_INSN:
2755     case INSN:
2756     case JUMP_INSN:
2757     case CALL_INSN:
2758     case NOTE:
2759     case LABEL_REF:
2760     case BARRIER:
2761       /* The chain of insns is not being copied.  */
2762       return;
2763 
2764     default:
2765       break;
2766     }
2767 
2768   RTX_FLAG (x, used) = 0;
2769 
2770   format_ptr = GET_RTX_FORMAT (code);
2771   length = GET_RTX_LENGTH (code);
2772 
2773   for (i = 0; i < length; i++)
2774     {
2775       switch (*format_ptr++)
2776 	{
2777 	case 'e':
2778           if (i == length-1)
2779             {
2780               x = XEXP (x, i);
2781 	      goto repeat;
2782             }
2783 	  reset_used_flags (XEXP (x, i));
2784 	  break;
2785 
2786 	case 'E':
2787 	  for (j = 0; j < XVECLEN (x, i); j++)
2788 	    reset_used_flags (XVECEXP (x, i, j));
2789 	  break;
2790 	}
2791     }
2792 }
2793 
2794 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2795    to look for shared sub-parts.  */
2796 
2797 void
2798 set_used_flags (rtx x)
2799 {
2800   int i, j;
2801   enum rtx_code code;
2802   const char *format_ptr;
2803 
2804   if (x == 0)
2805     return;
2806 
2807   code = GET_CODE (x);
2808 
2809   /* These types may be freely shared so we needn't do any resetting
2810      for them.  */
2811 
2812   switch (code)
2813     {
2814     case REG:
2815     case DEBUG_EXPR:
2816     case VALUE:
2817     case CONST_INT:
2818     case CONST_DOUBLE:
2819     case CONST_FIXED:
2820     case CONST_VECTOR:
2821     case SYMBOL_REF:
2822     case CODE_LABEL:
2823     case PC:
2824     case CC0:
2825       return;
2826 
2827     case DEBUG_INSN:
2828     case INSN:
2829     case JUMP_INSN:
2830     case CALL_INSN:
2831     case NOTE:
2832     case LABEL_REF:
2833     case BARRIER:
2834       /* The chain of insns is not being copied.  */
2835       return;
2836 
2837     default:
2838       break;
2839     }
2840 
2841   RTX_FLAG (x, used) = 1;
2842 
2843   format_ptr = GET_RTX_FORMAT (code);
2844   for (i = 0; i < GET_RTX_LENGTH (code); i++)
2845     {
2846       switch (*format_ptr++)
2847 	{
2848 	case 'e':
2849 	  set_used_flags (XEXP (x, i));
2850 	  break;
2851 
2852 	case 'E':
2853 	  for (j = 0; j < XVECLEN (x, i); j++)
2854 	    set_used_flags (XVECEXP (x, i, j));
2855 	  break;
2856 	}
2857     }
2858 }
2859 
2860 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2861    Return X or the rtx for the pseudo reg the value of X was copied into.
2862    OTHER must be valid as a SET_DEST.  */
2863 
2864 rtx
2865 make_safe_from (rtx x, rtx other)
2866 {
2867   while (1)
2868     switch (GET_CODE (other))
2869       {
2870       case SUBREG:
2871 	other = SUBREG_REG (other);
2872 	break;
2873       case STRICT_LOW_PART:
2874       case SIGN_EXTEND:
2875       case ZERO_EXTEND:
2876 	other = XEXP (other, 0);
2877 	break;
2878       default:
2879 	goto done;
2880       }
2881  done:
2882   if ((MEM_P (other)
2883        && ! CONSTANT_P (x)
2884        && !REG_P (x)
2885        && GET_CODE (x) != SUBREG)
2886       || (REG_P (other)
2887 	  && (REGNO (other) < FIRST_PSEUDO_REGISTER
2888 	      || reg_mentioned_p (other, x))))
2889     {
2890       rtx temp = gen_reg_rtx (GET_MODE (x));
2891       emit_move_insn (temp, x);
2892       return temp;
2893     }
2894   return x;
2895 }
2896 
2897 /* Emission of insns (adding them to the doubly-linked list).  */
2898 
2899 /* Return the first insn of the current sequence or current function.  */
2900 
2901 rtx
2902 get_insns (void)
2903 {
2904   return first_insn;
2905 }
2906 
2907 /* Specify a new insn as the first in the chain.  */
2908 
2909 void
2910 set_first_insn (rtx insn)
2911 {
2912   gcc_assert (!PREV_INSN (insn));
2913   first_insn = insn;
2914 }
2915 
2916 /* Return the last insn emitted in current sequence or current function.  */
2917 
2918 rtx
2919 get_last_insn (void)
2920 {
2921   return last_insn;
2922 }
2923 
2924 /* Specify a new insn as the last in the chain.  */
2925 
2926 void
2927 set_last_insn (rtx insn)
2928 {
2929   gcc_assert (!NEXT_INSN (insn));
2930   last_insn = insn;
2931 }
2932 
2933 /* Return the last insn emitted, even if it is in a sequence now pushed.  */
2934 
2935 rtx
2936 get_last_insn_anywhere (void)
2937 {
2938   struct sequence_stack *stack;
2939   if (last_insn)
2940     return last_insn;
2941   for (stack = seq_stack; stack; stack = stack->next)
2942     if (stack->last != 0)
2943       return stack->last;
2944   return 0;
2945 }
2946 
2947 /* Return the first nonnote insn emitted in current sequence or current
2948    function.  This routine looks inside SEQUENCEs.  */
2949 
2950 rtx
2951 get_first_nonnote_insn (void)
2952 {
2953   rtx insn = first_insn;
2954 
2955   if (insn)
2956     {
2957       if (NOTE_P (insn))
2958 	for (insn = next_insn (insn);
2959 	     insn && NOTE_P (insn);
2960 	     insn = next_insn (insn))
2961 	  continue;
2962       else
2963 	{
2964 	  if (NONJUMP_INSN_P (insn)
2965 	      && GET_CODE (PATTERN (insn)) == SEQUENCE)
2966 	    insn = XVECEXP (PATTERN (insn), 0, 0);
2967 	}
2968     }
2969 
2970   return insn;
2971 }
2972 
2973 /* Return the last nonnote insn emitted in current sequence or current
2974    function.  This routine looks inside SEQUENCEs.  */
2975 
2976 rtx
2977 get_last_nonnote_insn (void)
2978 {
2979   rtx insn = last_insn;
2980 
2981   if (insn)
2982     {
2983       if (NOTE_P (insn))
2984 	for (insn = previous_insn (insn);
2985 	     insn && NOTE_P (insn);
2986 	     insn = previous_insn (insn))
2987 	  continue;
2988       else
2989 	{
2990 	  if (NONJUMP_INSN_P (insn)
2991 	      && GET_CODE (PATTERN (insn)) == SEQUENCE)
2992 	    insn = XVECEXP (PATTERN (insn), 0,
2993 			    XVECLEN (PATTERN (insn), 0) - 1);
2994 	}
2995     }
2996 
2997   return insn;
2998 }
2999 
3000 /* Return a number larger than any instruction's uid in this function.  */
3001 
3002 int
3003 get_max_uid (void)
3004 {
3005   return cur_insn_uid;
3006 }
3007 
3008 /* Return the number of actual (non-debug) insns emitted in this
3009    function.  */
3010 
3011 int
3012 get_max_insn_count (void)
3013 {
3014   int n = cur_insn_uid;
3015 
3016   /* The table size must be stable across -g, to avoid codegen
3017      differences due to debug insns, and not be affected by
3018      -fmin-insn-uid, to avoid excessive table size and to simplify
3019      debugging of -fcompare-debug failures.  */
3020   if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3021     n -= cur_debug_insn_uid;
3022   else
3023     n -= MIN_NONDEBUG_INSN_UID;
3024 
3025   return n;
3026 }
3027 
3028 
3029 /* Return the next insn.  If it is a SEQUENCE, return the first insn
3030    of the sequence.  */
3031 
3032 rtx
3033 next_insn (rtx insn)
3034 {
3035   if (insn)
3036     {
3037       insn = NEXT_INSN (insn);
3038       if (insn && NONJUMP_INSN_P (insn)
3039 	  && GET_CODE (PATTERN (insn)) == SEQUENCE)
3040 	insn = XVECEXP (PATTERN (insn), 0, 0);
3041     }
3042 
3043   return insn;
3044 }
3045 
3046 /* Return the previous insn.  If it is a SEQUENCE, return the last insn
3047    of the sequence.  */
3048 
3049 rtx
3050 previous_insn (rtx insn)
3051 {
3052   if (insn)
3053     {
3054       insn = PREV_INSN (insn);
3055       if (insn && NONJUMP_INSN_P (insn)
3056 	  && GET_CODE (PATTERN (insn)) == SEQUENCE)
3057 	insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3058     }
3059 
3060   return insn;
3061 }
3062 
3063 /* Return the next insn after INSN that is not a NOTE.  This routine does not
3064    look inside SEQUENCEs.  */
3065 
3066 rtx
3067 next_nonnote_insn (rtx insn)
3068 {
3069   while (insn)
3070     {
3071       insn = NEXT_INSN (insn);
3072       if (insn == 0 || !NOTE_P (insn))
3073 	break;
3074     }
3075 
3076   return insn;
3077 }
3078 
3079 /* Return the next insn after INSN that is not a NOTE, but stop the
3080    search before we enter another basic block.  This routine does not
3081    look inside SEQUENCEs.  */
3082 
3083 rtx
3084 next_nonnote_insn_bb (rtx insn)
3085 {
3086   while (insn)
3087     {
3088       insn = NEXT_INSN (insn);
3089       if (insn == 0 || !NOTE_P (insn))
3090 	break;
3091       if (NOTE_INSN_BASIC_BLOCK_P (insn))
3092 	return NULL_RTX;
3093     }
3094 
3095   return insn;
3096 }
3097 
3098 /* Return the previous insn before INSN that is not a NOTE.  This routine does
3099    not look inside SEQUENCEs.  */
3100 
3101 rtx
3102 prev_nonnote_insn (rtx insn)
3103 {
3104   while (insn)
3105     {
3106       insn = PREV_INSN (insn);
3107       if (insn == 0 || !NOTE_P (insn))
3108 	break;
3109     }
3110 
3111   return insn;
3112 }
3113 
3114 /* Return the previous insn before INSN that is not a NOTE, but stop
3115    the search before we enter another basic block.  This routine does
3116    not look inside SEQUENCEs.  */
3117 
3118 rtx
3119 prev_nonnote_insn_bb (rtx insn)
3120 {
3121   while (insn)
3122     {
3123       insn = PREV_INSN (insn);
3124       if (insn == 0 || !NOTE_P (insn))
3125 	break;
3126       if (NOTE_INSN_BASIC_BLOCK_P (insn))
3127 	return NULL_RTX;
3128     }
3129 
3130   return insn;
3131 }
3132 
3133 /* Return the next insn after INSN that is not a DEBUG_INSN.  This
3134    routine does not look inside SEQUENCEs.  */
3135 
3136 rtx
3137 next_nondebug_insn (rtx insn)
3138 {
3139   while (insn)
3140     {
3141       insn = NEXT_INSN (insn);
3142       if (insn == 0 || !DEBUG_INSN_P (insn))
3143 	break;
3144     }
3145 
3146   return insn;
3147 }
3148 
3149 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3150    This routine does not look inside SEQUENCEs.  */
3151 
3152 rtx
3153 prev_nondebug_insn (rtx insn)
3154 {
3155   while (insn)
3156     {
3157       insn = PREV_INSN (insn);
3158       if (insn == 0 || !DEBUG_INSN_P (insn))
3159 	break;
3160     }
3161 
3162   return insn;
3163 }
3164 
3165 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3166    This routine does not look inside SEQUENCEs.  */
3167 
3168 rtx
3169 next_nonnote_nondebug_insn (rtx insn)
3170 {
3171   while (insn)
3172     {
3173       insn = NEXT_INSN (insn);
3174       if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3175 	break;
3176     }
3177 
3178   return insn;
3179 }
3180 
3181 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3182    This routine does not look inside SEQUENCEs.  */
3183 
3184 rtx
3185 prev_nonnote_nondebug_insn (rtx insn)
3186 {
3187   while (insn)
3188     {
3189       insn = PREV_INSN (insn);
3190       if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3191 	break;
3192     }
3193 
3194   return insn;
3195 }
3196 
3197 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3198    or 0, if there is none.  This routine does not look inside
3199    SEQUENCEs.  */
3200 
3201 rtx
3202 next_real_insn (rtx insn)
3203 {
3204   while (insn)
3205     {
3206       insn = NEXT_INSN (insn);
3207       if (insn == 0 || INSN_P (insn))
3208 	break;
3209     }
3210 
3211   return insn;
3212 }
3213 
3214 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3215    or 0, if there is none.  This routine does not look inside
3216    SEQUENCEs.  */
3217 
3218 rtx
3219 prev_real_insn (rtx insn)
3220 {
3221   while (insn)
3222     {
3223       insn = PREV_INSN (insn);
3224       if (insn == 0 || INSN_P (insn))
3225 	break;
3226     }
3227 
3228   return insn;
3229 }
3230 
3231 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3232    This routine does not look inside SEQUENCEs.  */
3233 
3234 rtx
3235 last_call_insn (void)
3236 {
3237   rtx insn;
3238 
3239   for (insn = get_last_insn ();
3240        insn && !CALL_P (insn);
3241        insn = PREV_INSN (insn))
3242     ;
3243 
3244   return insn;
3245 }
3246 
3247 /* Find the next insn after INSN that really does something.  This routine
3248    does not look inside SEQUENCEs.  After reload this also skips over
3249    standalone USE and CLOBBER insn.  */
3250 
3251 int
3252 active_insn_p (const_rtx insn)
3253 {
3254   return (CALL_P (insn) || JUMP_P (insn)
3255 	  || (NONJUMP_INSN_P (insn)
3256 	      && (! reload_completed
3257 		  || (GET_CODE (PATTERN (insn)) != USE
3258 		      && GET_CODE (PATTERN (insn)) != CLOBBER))));
3259 }
3260 
3261 rtx
3262 next_active_insn (rtx insn)
3263 {
3264   while (insn)
3265     {
3266       insn = NEXT_INSN (insn);
3267       if (insn == 0 || active_insn_p (insn))
3268 	break;
3269     }
3270 
3271   return insn;
3272 }
3273 
3274 /* Find the last insn before INSN that really does something.  This routine
3275    does not look inside SEQUENCEs.  After reload this also skips over
3276    standalone USE and CLOBBER insn.  */
3277 
3278 rtx
3279 prev_active_insn (rtx insn)
3280 {
3281   while (insn)
3282     {
3283       insn = PREV_INSN (insn);
3284       if (insn == 0 || active_insn_p (insn))
3285 	break;
3286     }
3287 
3288   return insn;
3289 }
3290 
3291 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none.  */
3292 
3293 rtx
3294 next_label (rtx insn)
3295 {
3296   while (insn)
3297     {
3298       insn = NEXT_INSN (insn);
3299       if (insn == 0 || LABEL_P (insn))
3300 	break;
3301     }
3302 
3303   return insn;
3304 }
3305 
3306 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none.  */
3307 
3308 rtx
3309 prev_label (rtx insn)
3310 {
3311   while (insn)
3312     {
3313       insn = PREV_INSN (insn);
3314       if (insn == 0 || LABEL_P (insn))
3315 	break;
3316     }
3317 
3318   return insn;
3319 }
3320 
3321 /* Return the last label to mark the same position as LABEL.  Return null
3322    if LABEL itself is null.  */
3323 
3324 rtx
3325 skip_consecutive_labels (rtx label)
3326 {
3327   rtx insn;
3328 
3329   for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3330     if (LABEL_P (insn))
3331       label = insn;
3332 
3333   return label;
3334 }
3335 
3336 #ifdef HAVE_cc0
3337 /* INSN uses CC0 and is being moved into a delay slot.  Set up REG_CC_SETTER
3338    and REG_CC_USER notes so we can find it.  */
3339 
3340 void
3341 link_cc0_insns (rtx insn)
3342 {
3343   rtx user = next_nonnote_insn (insn);
3344 
3345   if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3346     user = XVECEXP (PATTERN (user), 0, 0);
3347 
3348   add_reg_note (user, REG_CC_SETTER, insn);
3349   add_reg_note (insn, REG_CC_USER, user);
3350 }
3351 
3352 /* Return the next insn that uses CC0 after INSN, which is assumed to
3353    set it.  This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3354    applied to the result of this function should yield INSN).
3355 
3356    Normally, this is simply the next insn.  However, if a REG_CC_USER note
3357    is present, it contains the insn that uses CC0.
3358 
3359    Return 0 if we can't find the insn.  */
3360 
3361 rtx
3362 next_cc0_user (rtx insn)
3363 {
3364   rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3365 
3366   if (note)
3367     return XEXP (note, 0);
3368 
3369   insn = next_nonnote_insn (insn);
3370   if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3371     insn = XVECEXP (PATTERN (insn), 0, 0);
3372 
3373   if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3374     return insn;
3375 
3376   return 0;
3377 }
3378 
3379 /* Find the insn that set CC0 for INSN.  Unless INSN has a REG_CC_SETTER
3380    note, it is the previous insn.  */
3381 
3382 rtx
3383 prev_cc0_setter (rtx insn)
3384 {
3385   rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3386 
3387   if (note)
3388     return XEXP (note, 0);
3389 
3390   insn = prev_nonnote_insn (insn);
3391   gcc_assert (sets_cc0_p (PATTERN (insn)));
3392 
3393   return insn;
3394 }
3395 #endif
3396 
3397 #ifdef AUTO_INC_DEC
3398 /* Find a RTX_AUTOINC class rtx which matches DATA.  */
3399 
3400 static int
3401 find_auto_inc (rtx *xp, void *data)
3402 {
3403   rtx x = *xp;
3404   rtx reg = (rtx) data;
3405 
3406   if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3407     return 0;
3408 
3409   switch (GET_CODE (x))
3410     {
3411       case PRE_DEC:
3412       case PRE_INC:
3413       case POST_DEC:
3414       case POST_INC:
3415       case PRE_MODIFY:
3416       case POST_MODIFY:
3417 	if (rtx_equal_p (reg, XEXP (x, 0)))
3418 	  return 1;
3419 	break;
3420 
3421       default:
3422 	gcc_unreachable ();
3423     }
3424   return -1;
3425 }
3426 #endif
3427 
3428 /* Increment the label uses for all labels present in rtx.  */
3429 
3430 static void
3431 mark_label_nuses (rtx x)
3432 {
3433   enum rtx_code code;
3434   int i, j;
3435   const char *fmt;
3436 
3437   code = GET_CODE (x);
3438   if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3439     LABEL_NUSES (XEXP (x, 0))++;
3440 
3441   fmt = GET_RTX_FORMAT (code);
3442   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3443     {
3444       if (fmt[i] == 'e')
3445 	mark_label_nuses (XEXP (x, i));
3446       else if (fmt[i] == 'E')
3447 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3448 	  mark_label_nuses (XVECEXP (x, i, j));
3449     }
3450 }
3451 
3452 
3453 /* Try splitting insns that can be split for better scheduling.
3454    PAT is the pattern which might split.
3455    TRIAL is the insn providing PAT.
3456    LAST is nonzero if we should return the last insn of the sequence produced.
3457 
3458    If this routine succeeds in splitting, it returns the first or last
3459    replacement insn depending on the value of LAST.  Otherwise, it
3460    returns TRIAL.  If the insn to be returned can be split, it will be.  */
3461 
3462 rtx
3463 try_split (rtx pat, rtx trial, int last)
3464 {
3465   rtx before = PREV_INSN (trial);
3466   rtx after = NEXT_INSN (trial);
3467   int has_barrier = 0;
3468   rtx note, seq, tem;
3469   int probability;
3470   rtx insn_last, insn;
3471   int njumps = 0;
3472 
3473   /* We're not good at redistributing frame information.  */
3474   if (RTX_FRAME_RELATED_P (trial))
3475     return trial;
3476 
3477   if (any_condjump_p (trial)
3478       && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3479     split_branch_probability = INTVAL (XEXP (note, 0));
3480   probability = split_branch_probability;
3481 
3482   seq = split_insns (pat, trial);
3483 
3484   split_branch_probability = -1;
3485 
3486   /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3487      We may need to handle this specially.  */
3488   if (after && BARRIER_P (after))
3489     {
3490       has_barrier = 1;
3491       after = NEXT_INSN (after);
3492     }
3493 
3494   if (!seq)
3495     return trial;
3496 
3497   /* Avoid infinite loop if any insn of the result matches
3498      the original pattern.  */
3499   insn_last = seq;
3500   while (1)
3501     {
3502       if (INSN_P (insn_last)
3503 	  && rtx_equal_p (PATTERN (insn_last), pat))
3504 	return trial;
3505       if (!NEXT_INSN (insn_last))
3506 	break;
3507       insn_last = NEXT_INSN (insn_last);
3508     }
3509 
3510   /* We will be adding the new sequence to the function.  The splitters
3511      may have introduced invalid RTL sharing, so unshare the sequence now.  */
3512   unshare_all_rtl_in_chain (seq);
3513 
3514   /* Mark labels.  */
3515   for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3516     {
3517       if (JUMP_P (insn))
3518 	{
3519 	  mark_jump_label (PATTERN (insn), insn, 0);
3520 	  njumps++;
3521 	  if (probability != -1
3522 	      && any_condjump_p (insn)
3523 	      && !find_reg_note (insn, REG_BR_PROB, 0))
3524 	    {
3525 	      /* We can preserve the REG_BR_PROB notes only if exactly
3526 		 one jump is created, otherwise the machine description
3527 		 is responsible for this step using
3528 		 split_branch_probability variable.  */
3529 	      gcc_assert (njumps == 1);
3530 	      add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3531 	    }
3532 	}
3533     }
3534 
3535   /* If we are splitting a CALL_INSN, look for the CALL_INSN
3536      in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it.  */
3537   if (CALL_P (trial))
3538     {
3539       for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3540 	if (CALL_P (insn))
3541 	  {
3542 	    rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3543 	    while (*p)
3544 	      p = &XEXP (*p, 1);
3545 	    *p = CALL_INSN_FUNCTION_USAGE (trial);
3546 	    SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3547 
3548 	    /* Update the debug information for the CALL_INSN.  */
3549 	    if (flag_enable_icf_debug)
3550 	      (*debug_hooks->copy_call_info) (trial, insn);
3551 	  }
3552     }
3553 
3554   /* Copy notes, particularly those related to the CFG.  */
3555   for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3556     {
3557       switch (REG_NOTE_KIND (note))
3558 	{
3559 	case REG_EH_REGION:
3560 	  copy_reg_eh_region_note_backward (note, insn_last, NULL);
3561 	  break;
3562 
3563 	case REG_NORETURN:
3564 	case REG_SETJMP:
3565 	  for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3566 	    {
3567 	      if (CALL_P (insn))
3568 		add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3569 	    }
3570 	  break;
3571 
3572 	case REG_NON_LOCAL_GOTO:
3573 	  for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3574 	    {
3575 	      if (JUMP_P (insn))
3576 		add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3577 	    }
3578 	  break;
3579 
3580 #ifdef AUTO_INC_DEC
3581 	case REG_INC:
3582 	  for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3583 	    {
3584 	      rtx reg = XEXP (note, 0);
3585 	      if (!FIND_REG_INC_NOTE (insn, reg)
3586 		  && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3587 		add_reg_note (insn, REG_INC, reg);
3588 	    }
3589 	  break;
3590 #endif
3591 
3592 	default:
3593 	  break;
3594 	}
3595     }
3596 
3597   /* If there are LABELS inside the split insns increment the
3598      usage count so we don't delete the label.  */
3599   if (INSN_P (trial))
3600     {
3601       insn = insn_last;
3602       while (insn != NULL_RTX)
3603 	{
3604 	  /* JUMP_P insns have already been "marked" above.  */
3605 	  if (NONJUMP_INSN_P (insn))
3606 	    mark_label_nuses (PATTERN (insn));
3607 
3608 	  insn = PREV_INSN (insn);
3609 	}
3610     }
3611 
3612   tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3613 
3614   delete_insn (trial);
3615   if (has_barrier)
3616     emit_barrier_after (tem);
3617 
3618   /* Recursively call try_split for each new insn created; by the
3619      time control returns here that insn will be fully split, so
3620      set LAST and continue from the insn after the one returned.
3621      We can't use next_active_insn here since AFTER may be a note.
3622      Ignore deleted insns, which can be occur if not optimizing.  */
3623   for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3624     if (! INSN_DELETED_P (tem) && INSN_P (tem))
3625       tem = try_split (PATTERN (tem), tem, 1);
3626 
3627   /* Return either the first or the last insn, depending on which was
3628      requested.  */
3629   return last
3630     ? (after ? PREV_INSN (after) : last_insn)
3631     : NEXT_INSN (before);
3632 }
3633 
3634 /* Make and return an INSN rtx, initializing all its slots.
3635    Store PATTERN in the pattern slots.  */
3636 
3637 rtx
3638 make_insn_raw (rtx pattern)
3639 {
3640   rtx insn;
3641 
3642   insn = rtx_alloc (INSN);
3643 
3644   INSN_UID (insn) = cur_insn_uid++;
3645   PATTERN (insn) = pattern;
3646   INSN_CODE (insn) = -1;
3647   REG_NOTES (insn) = NULL;
3648   INSN_LOCATOR (insn) = curr_insn_locator ();
3649   BLOCK_FOR_INSN (insn) = NULL;
3650 
3651 #ifdef ENABLE_RTL_CHECKING
3652   if (insn
3653       && INSN_P (insn)
3654       && (returnjump_p (insn)
3655 	  || (GET_CODE (insn) == SET
3656 	      && SET_DEST (insn) == pc_rtx)))
3657     {
3658       warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3659       debug_rtx (insn);
3660     }
3661 #endif
3662 
3663   return insn;
3664 }
3665 
3666 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn.  */
3667 
3668 rtx
3669 make_debug_insn_raw (rtx pattern)
3670 {
3671   rtx insn;
3672 
3673   insn = rtx_alloc (DEBUG_INSN);
3674   INSN_UID (insn) = cur_debug_insn_uid++;
3675   if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3676     INSN_UID (insn) = cur_insn_uid++;
3677 
3678   PATTERN (insn) = pattern;
3679   INSN_CODE (insn) = -1;
3680   REG_NOTES (insn) = NULL;
3681   INSN_LOCATOR (insn) = curr_insn_locator ();
3682   BLOCK_FOR_INSN (insn) = NULL;
3683 
3684   return insn;
3685 }
3686 
3687 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn.  */
3688 
3689 rtx
3690 make_jump_insn_raw (rtx pattern)
3691 {
3692   rtx insn;
3693 
3694   insn = rtx_alloc (JUMP_INSN);
3695   INSN_UID (insn) = cur_insn_uid++;
3696 
3697   PATTERN (insn) = pattern;
3698   INSN_CODE (insn) = -1;
3699   REG_NOTES (insn) = NULL;
3700   JUMP_LABEL (insn) = NULL;
3701   INSN_LOCATOR (insn) = curr_insn_locator ();
3702   BLOCK_FOR_INSN (insn) = NULL;
3703 
3704   return insn;
3705 }
3706 
3707 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn.  */
3708 
3709 static rtx
3710 make_call_insn_raw (rtx pattern)
3711 {
3712   rtx insn;
3713 
3714   insn = rtx_alloc (CALL_INSN);
3715   INSN_UID (insn) = cur_insn_uid++;
3716 
3717   PATTERN (insn) = pattern;
3718   INSN_CODE (insn) = -1;
3719   REG_NOTES (insn) = NULL;
3720   CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3721   INSN_LOCATOR (insn) = curr_insn_locator ();
3722   BLOCK_FOR_INSN (insn) = NULL;
3723 
3724   return insn;
3725 }
3726 
3727 /* Add INSN to the end of the doubly-linked list.
3728    INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE.  */
3729 
3730 void
3731 add_insn (rtx insn)
3732 {
3733   PREV_INSN (insn) = last_insn;
3734   NEXT_INSN (insn) = 0;
3735 
3736   if (NULL != last_insn)
3737     NEXT_INSN (last_insn) = insn;
3738 
3739   if (NULL == first_insn)
3740     first_insn = insn;
3741 
3742   last_insn = insn;
3743 }
3744 
3745 /* Add INSN into the doubly-linked list after insn AFTER.  This and
3746    the next should be the only functions called to insert an insn once
3747    delay slots have been filled since only they know how to update a
3748    SEQUENCE.  */
3749 
3750 void
3751 add_insn_after (rtx insn, rtx after, basic_block bb)
3752 {
3753   rtx next = NEXT_INSN (after);
3754 
3755   gcc_assert (!optimize || !INSN_DELETED_P (after));
3756 
3757   NEXT_INSN (insn) = next;
3758   PREV_INSN (insn) = after;
3759 
3760   if (next)
3761     {
3762       PREV_INSN (next) = insn;
3763       if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3764 	PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3765     }
3766   else if (last_insn == after)
3767     last_insn = insn;
3768   else
3769     {
3770       struct sequence_stack *stack = seq_stack;
3771       /* Scan all pending sequences too.  */
3772       for (; stack; stack = stack->next)
3773 	if (after == stack->last)
3774 	  {
3775 	    stack->last = insn;
3776 	    break;
3777 	  }
3778 
3779       gcc_assert (stack);
3780     }
3781 
3782   if (!BARRIER_P (after)
3783       && !BARRIER_P (insn)
3784       && (bb = BLOCK_FOR_INSN (after)))
3785     {
3786       set_block_for_insn (insn, bb);
3787       if (INSN_P (insn))
3788 	df_insn_rescan (insn);
3789       /* Should not happen as first in the BB is always
3790 	 either NOTE or LABEL.  */
3791       if (BB_END (bb) == after
3792 	  /* Avoid clobbering of structure when creating new BB.  */
3793 	  && !BARRIER_P (insn)
3794 	  && !NOTE_INSN_BASIC_BLOCK_P (insn))
3795 	BB_END (bb) = insn;
3796     }
3797 
3798   NEXT_INSN (after) = insn;
3799   if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3800     {
3801       rtx sequence = PATTERN (after);
3802       NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3803     }
3804 }
3805 
3806 /* Add INSN into the doubly-linked list before insn BEFORE.  This and
3807    the previous should be the only functions called to insert an insn
3808    once delay slots have been filled since only they know how to
3809    update a SEQUENCE.  If BB is NULL, an attempt is made to infer the
3810    bb from before.  */
3811 
3812 void
3813 add_insn_before (rtx insn, rtx before, basic_block bb)
3814 {
3815   rtx prev = PREV_INSN (before);
3816 
3817   gcc_assert (!optimize || !INSN_DELETED_P (before));
3818 
3819   PREV_INSN (insn) = prev;
3820   NEXT_INSN (insn) = before;
3821 
3822   if (prev)
3823     {
3824       NEXT_INSN (prev) = insn;
3825       if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3826 	{
3827 	  rtx sequence = PATTERN (prev);
3828 	  NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3829 	}
3830     }
3831   else if (first_insn == before)
3832     first_insn = insn;
3833   else
3834     {
3835       struct sequence_stack *stack = seq_stack;
3836       /* Scan all pending sequences too.  */
3837       for (; stack; stack = stack->next)
3838 	if (before == stack->first)
3839 	  {
3840 	    stack->first = insn;
3841 	    break;
3842 	  }
3843 
3844       gcc_assert (stack);
3845     }
3846 
3847   if (!bb
3848       && !BARRIER_P (before)
3849       && !BARRIER_P (insn))
3850     bb = BLOCK_FOR_INSN (before);
3851 
3852   if (bb)
3853     {
3854       set_block_for_insn (insn, bb);
3855       if (INSN_P (insn))
3856 	df_insn_rescan (insn);
3857       /* Should not happen as first in the BB is always either NOTE or
3858 	 LABEL.  */
3859       gcc_assert (BB_HEAD (bb) != insn
3860 		  /* Avoid clobbering of structure when creating new BB.  */
3861 		  || BARRIER_P (insn)
3862 		  || NOTE_INSN_BASIC_BLOCK_P (insn));
3863     }
3864 
3865   PREV_INSN (before) = insn;
3866   if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3867     PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3868 }
3869 
3870 
3871 /* Replace insn with an deleted instruction note.  */
3872 
3873 void
3874 set_insn_deleted (rtx insn)
3875 {
3876   df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3877   PUT_CODE (insn, NOTE);
3878   NOTE_KIND (insn) = NOTE_INSN_DELETED;
3879 }
3880 
3881 
3882 /* Remove an insn from its doubly-linked list.  This function knows how
3883    to handle sequences.  */
3884 void
3885 remove_insn (rtx insn)
3886 {
3887   rtx next = NEXT_INSN (insn);
3888   rtx prev = PREV_INSN (insn);
3889   basic_block bb;
3890 
3891   /* Later in the code, the block will be marked dirty.  */
3892   df_insn_delete (NULL, INSN_UID (insn));
3893 
3894   if (prev)
3895     {
3896       NEXT_INSN (prev) = next;
3897       if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3898 	{
3899 	  rtx sequence = PATTERN (prev);
3900 	  NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3901 	}
3902     }
3903   else if (first_insn == insn)
3904     first_insn = next;
3905   else
3906     {
3907       struct sequence_stack *stack = seq_stack;
3908       /* Scan all pending sequences too.  */
3909       for (; stack; stack = stack->next)
3910 	if (insn == stack->first)
3911 	  {
3912 	    stack->first = next;
3913 	    break;
3914 	  }
3915 
3916       gcc_assert (stack);
3917     }
3918 
3919   if (next)
3920     {
3921       PREV_INSN (next) = prev;
3922       if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3923 	PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3924     }
3925   else if (last_insn == insn)
3926     last_insn = prev;
3927   else
3928     {
3929       struct sequence_stack *stack = seq_stack;
3930       /* Scan all pending sequences too.  */
3931       for (; stack; stack = stack->next)
3932 	if (insn == stack->last)
3933 	  {
3934 	    stack->last = prev;
3935 	    break;
3936 	  }
3937 
3938       gcc_assert (stack);
3939     }
3940   if (!BARRIER_P (insn)
3941       && (bb = BLOCK_FOR_INSN (insn)))
3942     {
3943       if (INSN_P (insn))
3944 	df_set_bb_dirty (bb);
3945       if (BB_HEAD (bb) == insn)
3946 	{
3947 	  /* Never ever delete the basic block note without deleting whole
3948 	     basic block.  */
3949 	  gcc_assert (!NOTE_P (insn));
3950 	  BB_HEAD (bb) = next;
3951 	}
3952       if (BB_END (bb) == insn)
3953 	BB_END (bb) = prev;
3954     }
3955 }
3956 
3957 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN.  */
3958 
3959 void
3960 add_function_usage_to (rtx call_insn, rtx call_fusage)
3961 {
3962   gcc_assert (call_insn && CALL_P (call_insn));
3963 
3964   /* Put the register usage information on the CALL.  If there is already
3965      some usage information, put ours at the end.  */
3966   if (CALL_INSN_FUNCTION_USAGE (call_insn))
3967     {
3968       rtx link;
3969 
3970       for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3971 	   link = XEXP (link, 1))
3972 	;
3973 
3974       XEXP (link, 1) = call_fusage;
3975     }
3976   else
3977     CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3978 }
3979 
3980 /* Delete all insns made since FROM.
3981    FROM becomes the new last instruction.  */
3982 
3983 void
3984 delete_insns_since (rtx from)
3985 {
3986   if (from == 0)
3987     first_insn = 0;
3988   else
3989     NEXT_INSN (from) = 0;
3990   last_insn = from;
3991 }
3992 
3993 /* This function is deprecated, please use sequences instead.
3994 
3995    Move a consecutive bunch of insns to a different place in the chain.
3996    The insns to be moved are those between FROM and TO.
3997    They are moved to a new position after the insn AFTER.
3998    AFTER must not be FROM or TO or any insn in between.
3999 
4000    This function does not know about SEQUENCEs and hence should not be
4001    called after delay-slot filling has been done.  */
4002 
4003 void
4004 reorder_insns_nobb (rtx from, rtx to, rtx after)
4005 {
4006   /* Splice this bunch out of where it is now.  */
4007   if (PREV_INSN (from))
4008     NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4009   if (NEXT_INSN (to))
4010     PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4011   if (last_insn == to)
4012     last_insn = PREV_INSN (from);
4013   if (first_insn == from)
4014     first_insn = NEXT_INSN (to);
4015 
4016   /* Make the new neighbors point to it and it to them.  */
4017   if (NEXT_INSN (after))
4018     PREV_INSN (NEXT_INSN (after)) = to;
4019 
4020   NEXT_INSN (to) = NEXT_INSN (after);
4021   PREV_INSN (from) = after;
4022   NEXT_INSN (after) = from;
4023   if (after == last_insn)
4024     last_insn = to;
4025 }
4026 
4027 /* Same as function above, but take care to update BB boundaries.  */
4028 void
4029 reorder_insns (rtx from, rtx to, rtx after)
4030 {
4031   rtx prev = PREV_INSN (from);
4032   basic_block bb, bb2;
4033 
4034   reorder_insns_nobb (from, to, after);
4035 
4036   if (!BARRIER_P (after)
4037       && (bb = BLOCK_FOR_INSN (after)))
4038     {
4039       rtx x;
4040       df_set_bb_dirty (bb);
4041 
4042       if (!BARRIER_P (from)
4043 	  && (bb2 = BLOCK_FOR_INSN (from)))
4044 	{
4045 	  if (BB_END (bb2) == to)
4046 	    BB_END (bb2) = prev;
4047 	  df_set_bb_dirty (bb2);
4048 	}
4049 
4050       if (BB_END (bb) == after)
4051 	BB_END (bb) = to;
4052 
4053       for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4054 	if (!BARRIER_P (x))
4055 	  df_insn_change_bb (x, bb);
4056     }
4057 }
4058 
4059 
4060 /* Emit insn(s) of given code and pattern
4061    at a specified place within the doubly-linked list.
4062 
4063    All of the emit_foo global entry points accept an object
4064    X which is either an insn list or a PATTERN of a single
4065    instruction.
4066 
4067    There are thus a few canonical ways to generate code and
4068    emit it at a specific place in the instruction stream.  For
4069    example, consider the instruction named SPOT and the fact that
4070    we would like to emit some instructions before SPOT.  We might
4071    do it like this:
4072 
4073 	start_sequence ();
4074 	... emit the new instructions ...
4075 	insns_head = get_insns ();
4076 	end_sequence ();
4077 
4078 	emit_insn_before (insns_head, SPOT);
4079 
4080    It used to be common to generate SEQUENCE rtl instead, but that
4081    is a relic of the past which no longer occurs.  The reason is that
4082    SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4083    generated would almost certainly die right after it was created.  */
4084 
4085 /* Make X be output before the instruction BEFORE.  */
4086 
4087 rtx
4088 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4089 {
4090   rtx last = before;
4091   rtx insn;
4092 
4093   gcc_assert (before);
4094 
4095   if (x == NULL_RTX)
4096     return last;
4097 
4098   switch (GET_CODE (x))
4099     {
4100     case DEBUG_INSN:
4101     case INSN:
4102     case JUMP_INSN:
4103     case CALL_INSN:
4104     case CODE_LABEL:
4105     case BARRIER:
4106     case NOTE:
4107       insn = x;
4108       while (insn)
4109 	{
4110 	  rtx next = NEXT_INSN (insn);
4111 	  add_insn_before (insn, before, bb);
4112 	  last = insn;
4113 	  insn = next;
4114 	}
4115       break;
4116 
4117 #ifdef ENABLE_RTL_CHECKING
4118     case SEQUENCE:
4119       gcc_unreachable ();
4120       break;
4121 #endif
4122 
4123     default:
4124       last = make_insn_raw (x);
4125       add_insn_before (last, before, bb);
4126       break;
4127     }
4128 
4129   return last;
4130 }
4131 
4132 /* Make an instruction with body X and code JUMP_INSN
4133    and output it before the instruction BEFORE.  */
4134 
4135 rtx
4136 emit_jump_insn_before_noloc (rtx x, rtx before)
4137 {
4138   rtx insn, last = NULL_RTX;
4139 
4140   gcc_assert (before);
4141 
4142   switch (GET_CODE (x))
4143     {
4144     case DEBUG_INSN:
4145     case INSN:
4146     case JUMP_INSN:
4147     case CALL_INSN:
4148     case CODE_LABEL:
4149     case BARRIER:
4150     case NOTE:
4151       insn = x;
4152       while (insn)
4153 	{
4154 	  rtx next = NEXT_INSN (insn);
4155 	  add_insn_before (insn, before, NULL);
4156 	  last = insn;
4157 	  insn = next;
4158 	}
4159       break;
4160 
4161 #ifdef ENABLE_RTL_CHECKING
4162     case SEQUENCE:
4163       gcc_unreachable ();
4164       break;
4165 #endif
4166 
4167     default:
4168       last = make_jump_insn_raw (x);
4169       add_insn_before (last, before, NULL);
4170       break;
4171     }
4172 
4173   return last;
4174 }
4175 
4176 /* Make an instruction with body X and code CALL_INSN
4177    and output it before the instruction BEFORE.  */
4178 
4179 rtx
4180 emit_call_insn_before_noloc (rtx x, rtx before)
4181 {
4182   rtx last = NULL_RTX, insn;
4183 
4184   gcc_assert (before);
4185 
4186   switch (GET_CODE (x))
4187     {
4188     case DEBUG_INSN:
4189     case INSN:
4190     case JUMP_INSN:
4191     case CALL_INSN:
4192     case CODE_LABEL:
4193     case BARRIER:
4194     case NOTE:
4195       insn = x;
4196       while (insn)
4197 	{
4198 	  rtx next = NEXT_INSN (insn);
4199 	  add_insn_before (insn, before, NULL);
4200 	  last = insn;
4201 	  insn = next;
4202 	}
4203       break;
4204 
4205 #ifdef ENABLE_RTL_CHECKING
4206     case SEQUENCE:
4207       gcc_unreachable ();
4208       break;
4209 #endif
4210 
4211     default:
4212       last = make_call_insn_raw (x);
4213       add_insn_before (last, before, NULL);
4214       break;
4215     }
4216 
4217   return last;
4218 }
4219 
4220 /* Make an instruction with body X and code DEBUG_INSN
4221    and output it before the instruction BEFORE.  */
4222 
4223 rtx
4224 emit_debug_insn_before_noloc (rtx x, rtx before)
4225 {
4226   rtx last = NULL_RTX, insn;
4227 
4228   gcc_assert (before);
4229 
4230   switch (GET_CODE (x))
4231     {
4232     case DEBUG_INSN:
4233     case INSN:
4234     case JUMP_INSN:
4235     case CALL_INSN:
4236     case CODE_LABEL:
4237     case BARRIER:
4238     case NOTE:
4239       insn = x;
4240       while (insn)
4241 	{
4242 	  rtx next = NEXT_INSN (insn);
4243 	  add_insn_before (insn, before, NULL);
4244 	  last = insn;
4245 	  insn = next;
4246 	}
4247       break;
4248 
4249 #ifdef ENABLE_RTL_CHECKING
4250     case SEQUENCE:
4251       gcc_unreachable ();
4252       break;
4253 #endif
4254 
4255     default:
4256       last = make_debug_insn_raw (x);
4257       add_insn_before (last, before, NULL);
4258       break;
4259     }
4260 
4261   return last;
4262 }
4263 
4264 /* Make an insn of code BARRIER
4265    and output it before the insn BEFORE.  */
4266 
4267 rtx
4268 emit_barrier_before (rtx before)
4269 {
4270   rtx insn = rtx_alloc (BARRIER);
4271 
4272   INSN_UID (insn) = cur_insn_uid++;
4273 
4274   add_insn_before (insn, before, NULL);
4275   return insn;
4276 }
4277 
4278 /* Emit the label LABEL before the insn BEFORE.  */
4279 
4280 rtx
4281 emit_label_before (rtx label, rtx before)
4282 {
4283   /* This can be called twice for the same label as a result of the
4284      confusion that follows a syntax error!  So make it harmless.  */
4285   if (INSN_UID (label) == 0)
4286     {
4287       INSN_UID (label) = cur_insn_uid++;
4288       add_insn_before (label, before, NULL);
4289     }
4290 
4291   return label;
4292 }
4293 
4294 /* Emit a note of subtype SUBTYPE before the insn BEFORE.  */
4295 
4296 rtx
4297 emit_note_before (enum insn_note subtype, rtx before)
4298 {
4299   rtx note = rtx_alloc (NOTE);
4300   INSN_UID (note) = cur_insn_uid++;
4301   NOTE_KIND (note) = subtype;
4302   BLOCK_FOR_INSN (note) = NULL;
4303   memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4304 
4305   add_insn_before (note, before, NULL);
4306   return note;
4307 }
4308 
4309 /* Helper for emit_insn_after, handles lists of instructions
4310    efficiently.  */
4311 
4312 static rtx
4313 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4314 {
4315   rtx last;
4316   rtx after_after;
4317   if (!bb && !BARRIER_P (after))
4318     bb = BLOCK_FOR_INSN (after);
4319 
4320   if (bb)
4321     {
4322       df_set_bb_dirty (bb);
4323       for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4324 	if (!BARRIER_P (last))
4325 	  {
4326 	    set_block_for_insn (last, bb);
4327 	    df_insn_rescan (last);
4328 	  }
4329       if (!BARRIER_P (last))
4330 	{
4331 	  set_block_for_insn (last, bb);
4332 	  df_insn_rescan (last);
4333 	}
4334       if (BB_END (bb) == after)
4335 	BB_END (bb) = last;
4336     }
4337   else
4338     for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4339       continue;
4340 
4341   after_after = NEXT_INSN (after);
4342 
4343   NEXT_INSN (after) = first;
4344   PREV_INSN (first) = after;
4345   NEXT_INSN (last) = after_after;
4346   if (after_after)
4347     PREV_INSN (after_after) = last;
4348 
4349   if (after == last_insn)
4350     last_insn = last;
4351 
4352   return last;
4353 }
4354 
4355 /* Make X be output after the insn AFTER and set the BB of insn.  If
4356    BB is NULL, an attempt is made to infer the BB from AFTER.  */
4357 
4358 rtx
4359 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4360 {
4361   rtx last = after;
4362 
4363   gcc_assert (after);
4364 
4365   if (x == NULL_RTX)
4366     return last;
4367 
4368   switch (GET_CODE (x))
4369     {
4370     case DEBUG_INSN:
4371     case INSN:
4372     case JUMP_INSN:
4373     case CALL_INSN:
4374     case CODE_LABEL:
4375     case BARRIER:
4376     case NOTE:
4377       last = emit_insn_after_1 (x, after, bb);
4378       break;
4379 
4380 #ifdef ENABLE_RTL_CHECKING
4381     case SEQUENCE:
4382       gcc_unreachable ();
4383       break;
4384 #endif
4385 
4386     default:
4387       last = make_insn_raw (x);
4388       add_insn_after (last, after, bb);
4389       break;
4390     }
4391 
4392   return last;
4393 }
4394 
4395 
4396 /* Make an insn of code JUMP_INSN with body X
4397    and output it after the insn AFTER.  */
4398 
4399 rtx
4400 emit_jump_insn_after_noloc (rtx x, rtx after)
4401 {
4402   rtx last;
4403 
4404   gcc_assert (after);
4405 
4406   switch (GET_CODE (x))
4407     {
4408     case DEBUG_INSN:
4409     case INSN:
4410     case JUMP_INSN:
4411     case CALL_INSN:
4412     case CODE_LABEL:
4413     case BARRIER:
4414     case NOTE:
4415       last = emit_insn_after_1 (x, after, NULL);
4416       break;
4417 
4418 #ifdef ENABLE_RTL_CHECKING
4419     case SEQUENCE:
4420       gcc_unreachable ();
4421       break;
4422 #endif
4423 
4424     default:
4425       last = make_jump_insn_raw (x);
4426       add_insn_after (last, after, NULL);
4427       break;
4428     }
4429 
4430   return last;
4431 }
4432 
4433 /* Make an instruction with body X and code CALL_INSN
4434    and output it after the instruction AFTER.  */
4435 
4436 rtx
4437 emit_call_insn_after_noloc (rtx x, rtx after)
4438 {
4439   rtx last;
4440 
4441   gcc_assert (after);
4442 
4443   switch (GET_CODE (x))
4444     {
4445     case DEBUG_INSN:
4446     case INSN:
4447     case JUMP_INSN:
4448     case CALL_INSN:
4449     case CODE_LABEL:
4450     case BARRIER:
4451     case NOTE:
4452       last = emit_insn_after_1 (x, after, NULL);
4453       break;
4454 
4455 #ifdef ENABLE_RTL_CHECKING
4456     case SEQUENCE:
4457       gcc_unreachable ();
4458       break;
4459 #endif
4460 
4461     default:
4462       last = make_call_insn_raw (x);
4463       add_insn_after (last, after, NULL);
4464       break;
4465     }
4466 
4467   return last;
4468 }
4469 
4470 /* Make an instruction with body X and code CALL_INSN
4471    and output it after the instruction AFTER.  */
4472 
4473 rtx
4474 emit_debug_insn_after_noloc (rtx x, rtx after)
4475 {
4476   rtx last;
4477 
4478   gcc_assert (after);
4479 
4480   switch (GET_CODE (x))
4481     {
4482     case DEBUG_INSN:
4483     case INSN:
4484     case JUMP_INSN:
4485     case CALL_INSN:
4486     case CODE_LABEL:
4487     case BARRIER:
4488     case NOTE:
4489       last = emit_insn_after_1 (x, after, NULL);
4490       break;
4491 
4492 #ifdef ENABLE_RTL_CHECKING
4493     case SEQUENCE:
4494       gcc_unreachable ();
4495       break;
4496 #endif
4497 
4498     default:
4499       last = make_debug_insn_raw (x);
4500       add_insn_after (last, after, NULL);
4501       break;
4502     }
4503 
4504   return last;
4505 }
4506 
4507 /* Make an insn of code BARRIER
4508    and output it after the insn AFTER.  */
4509 
4510 rtx
4511 emit_barrier_after (rtx after)
4512 {
4513   rtx insn = rtx_alloc (BARRIER);
4514 
4515   INSN_UID (insn) = cur_insn_uid++;
4516 
4517   add_insn_after (insn, after, NULL);
4518   return insn;
4519 }
4520 
4521 /* Emit the label LABEL after the insn AFTER.  */
4522 
4523 rtx
4524 emit_label_after (rtx label, rtx after)
4525 {
4526   /* This can be called twice for the same label
4527      as a result of the confusion that follows a syntax error!
4528      So make it harmless.  */
4529   if (INSN_UID (label) == 0)
4530     {
4531       INSN_UID (label) = cur_insn_uid++;
4532       add_insn_after (label, after, NULL);
4533     }
4534 
4535   return label;
4536 }
4537 
4538 /* Emit a note of subtype SUBTYPE after the insn AFTER.  */
4539 
4540 rtx
4541 emit_note_after (enum insn_note subtype, rtx after)
4542 {
4543   rtx note = rtx_alloc (NOTE);
4544   INSN_UID (note) = cur_insn_uid++;
4545   NOTE_KIND (note) = subtype;
4546   BLOCK_FOR_INSN (note) = NULL;
4547   memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4548   add_insn_after (note, after, NULL);
4549   return note;
4550 }
4551 
4552 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE.  */
4553 rtx
4554 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4555 {
4556   rtx last = emit_insn_after_noloc (pattern, after, NULL);
4557 
4558   if (pattern == NULL_RTX || !loc)
4559     return last;
4560 
4561   after = NEXT_INSN (after);
4562   while (1)
4563     {
4564       if (active_insn_p (after) && !INSN_LOCATOR (after))
4565 	INSN_LOCATOR (after) = loc;
4566       if (after == last)
4567 	break;
4568       after = NEXT_INSN (after);
4569     }
4570   return last;
4571 }
4572 
4573 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER.  */
4574 rtx
4575 emit_insn_after (rtx pattern, rtx after)
4576 {
4577   rtx prev = after;
4578 
4579   while (DEBUG_INSN_P (prev))
4580     prev = PREV_INSN (prev);
4581 
4582   if (INSN_P (prev))
4583     return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4584   else
4585     return emit_insn_after_noloc (pattern, after, NULL);
4586 }
4587 
4588 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE.  */
4589 rtx
4590 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4591 {
4592   rtx last = emit_jump_insn_after_noloc (pattern, after);
4593 
4594   if (pattern == NULL_RTX || !loc)
4595     return last;
4596 
4597   after = NEXT_INSN (after);
4598   while (1)
4599     {
4600       if (active_insn_p (after) && !INSN_LOCATOR (after))
4601 	INSN_LOCATOR (after) = loc;
4602       if (after == last)
4603 	break;
4604       after = NEXT_INSN (after);
4605     }
4606   return last;
4607 }
4608 
4609 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER.  */
4610 rtx
4611 emit_jump_insn_after (rtx pattern, rtx after)
4612 {
4613   rtx prev = after;
4614 
4615   while (DEBUG_INSN_P (prev))
4616     prev = PREV_INSN (prev);
4617 
4618   if (INSN_P (prev))
4619     return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4620   else
4621     return emit_jump_insn_after_noloc (pattern, after);
4622 }
4623 
4624 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE.  */
4625 rtx
4626 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4627 {
4628   rtx last = emit_call_insn_after_noloc (pattern, after);
4629 
4630   if (pattern == NULL_RTX || !loc)
4631     return last;
4632 
4633   after = NEXT_INSN (after);
4634   while (1)
4635     {
4636       if (active_insn_p (after) && !INSN_LOCATOR (after))
4637 	INSN_LOCATOR (after) = loc;
4638       if (after == last)
4639 	break;
4640       after = NEXT_INSN (after);
4641     }
4642   return last;
4643 }
4644 
4645 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER.  */
4646 rtx
4647 emit_call_insn_after (rtx pattern, rtx after)
4648 {
4649   rtx prev = after;
4650 
4651   while (DEBUG_INSN_P (prev))
4652     prev = PREV_INSN (prev);
4653 
4654   if (INSN_P (prev))
4655     return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4656   else
4657     return emit_call_insn_after_noloc (pattern, after);
4658 }
4659 
4660 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to SCOPE.  */
4661 rtx
4662 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4663 {
4664   rtx last = emit_debug_insn_after_noloc (pattern, after);
4665 
4666   if (pattern == NULL_RTX || !loc)
4667     return last;
4668 
4669   after = NEXT_INSN (after);
4670   while (1)
4671     {
4672       if (active_insn_p (after) && !INSN_LOCATOR (after))
4673 	INSN_LOCATOR (after) = loc;
4674       if (after == last)
4675 	break;
4676       after = NEXT_INSN (after);
4677     }
4678   return last;
4679 }
4680 
4681 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to AFTER.  */
4682 rtx
4683 emit_debug_insn_after (rtx pattern, rtx after)
4684 {
4685   if (INSN_P (after))
4686     return emit_debug_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4687   else
4688     return emit_debug_insn_after_noloc (pattern, after);
4689 }
4690 
4691 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE.  */
4692 rtx
4693 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4694 {
4695   rtx first = PREV_INSN (before);
4696   rtx last = emit_insn_before_noloc (pattern, before, NULL);
4697 
4698   if (pattern == NULL_RTX || !loc)
4699     return last;
4700 
4701   if (!first)
4702     first = get_insns ();
4703   else
4704     first = NEXT_INSN (first);
4705   while (1)
4706     {
4707       if (active_insn_p (first) && !INSN_LOCATOR (first))
4708 	INSN_LOCATOR (first) = loc;
4709       if (first == last)
4710 	break;
4711       first = NEXT_INSN (first);
4712     }
4713   return last;
4714 }
4715 
4716 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE.  */
4717 rtx
4718 emit_insn_before (rtx pattern, rtx before)
4719 {
4720   rtx next = before;
4721 
4722   while (DEBUG_INSN_P (next))
4723     next = PREV_INSN (next);
4724 
4725   if (INSN_P (next))
4726     return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4727   else
4728     return emit_insn_before_noloc (pattern, before, NULL);
4729 }
4730 
4731 /* like emit_insn_before_noloc, but set insn_locator according to scope.  */
4732 rtx
4733 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4734 {
4735   rtx first = PREV_INSN (before);
4736   rtx last = emit_jump_insn_before_noloc (pattern, before);
4737 
4738   if (pattern == NULL_RTX)
4739     return last;
4740 
4741   first = NEXT_INSN (first);
4742   while (1)
4743     {
4744       if (active_insn_p (first) && !INSN_LOCATOR (first))
4745 	INSN_LOCATOR (first) = loc;
4746       if (first == last)
4747 	break;
4748       first = NEXT_INSN (first);
4749     }
4750   return last;
4751 }
4752 
4753 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE.  */
4754 rtx
4755 emit_jump_insn_before (rtx pattern, rtx before)
4756 {
4757   rtx next = before;
4758 
4759   while (DEBUG_INSN_P (next))
4760     next = PREV_INSN (next);
4761 
4762   if (INSN_P (next))
4763     return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4764   else
4765     return emit_jump_insn_before_noloc (pattern, before);
4766 }
4767 
4768 /* like emit_insn_before_noloc, but set insn_locator according to scope.  */
4769 rtx
4770 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4771 {
4772   rtx first = PREV_INSN (before);
4773   rtx last = emit_call_insn_before_noloc (pattern, before);
4774 
4775   if (pattern == NULL_RTX)
4776     return last;
4777 
4778   first = NEXT_INSN (first);
4779   while (1)
4780     {
4781       if (active_insn_p (first) && !INSN_LOCATOR (first))
4782 	INSN_LOCATOR (first) = loc;
4783       if (first == last)
4784 	break;
4785       first = NEXT_INSN (first);
4786     }
4787   return last;
4788 }
4789 
4790 /* like emit_call_insn_before_noloc,
4791    but set insn_locator according to before.  */
4792 rtx
4793 emit_call_insn_before (rtx pattern, rtx before)
4794 {
4795   rtx next = before;
4796 
4797   while (DEBUG_INSN_P (next))
4798     next = PREV_INSN (next);
4799 
4800   if (INSN_P (next))
4801     return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4802   else
4803     return emit_call_insn_before_noloc (pattern, before);
4804 }
4805 
4806 /* like emit_insn_before_noloc, but set insn_locator according to scope.  */
4807 rtx
4808 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4809 {
4810   rtx first = PREV_INSN (before);
4811   rtx last = emit_debug_insn_before_noloc (pattern, before);
4812 
4813   if (pattern == NULL_RTX)
4814     return last;
4815 
4816   first = NEXT_INSN (first);
4817   while (1)
4818     {
4819       if (active_insn_p (first) && !INSN_LOCATOR (first))
4820 	INSN_LOCATOR (first) = loc;
4821       if (first == last)
4822 	break;
4823       first = NEXT_INSN (first);
4824     }
4825   return last;
4826 }
4827 
4828 /* like emit_debug_insn_before_noloc,
4829    but set insn_locator according to before.  */
4830 rtx
4831 emit_debug_insn_before (rtx pattern, rtx before)
4832 {
4833   if (INSN_P (before))
4834     return emit_debug_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4835   else
4836     return emit_debug_insn_before_noloc (pattern, before);
4837 }
4838 
4839 /* Take X and emit it at the end of the doubly-linked
4840    INSN list.
4841 
4842    Returns the last insn emitted.  */
4843 
4844 rtx
4845 emit_insn (rtx x)
4846 {
4847   rtx last = last_insn;
4848   rtx insn;
4849 
4850   if (x == NULL_RTX)
4851     return last;
4852 
4853   switch (GET_CODE (x))
4854     {
4855     case DEBUG_INSN:
4856     case INSN:
4857     case JUMP_INSN:
4858     case CALL_INSN:
4859     case CODE_LABEL:
4860     case BARRIER:
4861     case NOTE:
4862       insn = x;
4863       while (insn)
4864 	{
4865 	  rtx next = NEXT_INSN (insn);
4866 	  add_insn (insn);
4867 	  last = insn;
4868 	  insn = next;
4869 	}
4870       break;
4871 
4872 #ifdef ENABLE_RTL_CHECKING
4873     case SEQUENCE:
4874       gcc_unreachable ();
4875       break;
4876 #endif
4877 
4878     default:
4879       last = make_insn_raw (x);
4880       add_insn (last);
4881       break;
4882     }
4883 
4884   return last;
4885 }
4886 
4887 /* Make an insn of code DEBUG_INSN with pattern X
4888    and add it to the end of the doubly-linked list.  */
4889 
4890 rtx
4891 emit_debug_insn (rtx x)
4892 {
4893   rtx last = last_insn;
4894   rtx insn;
4895 
4896   if (x == NULL_RTX)
4897     return last;
4898 
4899   switch (GET_CODE (x))
4900     {
4901     case DEBUG_INSN:
4902     case INSN:
4903     case JUMP_INSN:
4904     case CALL_INSN:
4905     case CODE_LABEL:
4906     case BARRIER:
4907     case NOTE:
4908       insn = x;
4909       while (insn)
4910 	{
4911 	  rtx next = NEXT_INSN (insn);
4912 	  add_insn (insn);
4913 	  last = insn;
4914 	  insn = next;
4915 	}
4916       break;
4917 
4918 #ifdef ENABLE_RTL_CHECKING
4919     case SEQUENCE:
4920       gcc_unreachable ();
4921       break;
4922 #endif
4923 
4924     default:
4925       last = make_debug_insn_raw (x);
4926       add_insn (last);
4927       break;
4928     }
4929 
4930   return last;
4931 }
4932 
4933 /* Make an insn of code JUMP_INSN with pattern X
4934    and add it to the end of the doubly-linked list.  */
4935 
4936 rtx
4937 emit_jump_insn (rtx x)
4938 {
4939   rtx last = NULL_RTX, insn;
4940 
4941   switch (GET_CODE (x))
4942     {
4943     case DEBUG_INSN:
4944     case INSN:
4945     case JUMP_INSN:
4946     case CALL_INSN:
4947     case CODE_LABEL:
4948     case BARRIER:
4949     case NOTE:
4950       insn = x;
4951       while (insn)
4952 	{
4953 	  rtx next = NEXT_INSN (insn);
4954 	  add_insn (insn);
4955 	  last = insn;
4956 	  insn = next;
4957 	}
4958       break;
4959 
4960 #ifdef ENABLE_RTL_CHECKING
4961     case SEQUENCE:
4962       gcc_unreachable ();
4963       break;
4964 #endif
4965 
4966     default:
4967       last = make_jump_insn_raw (x);
4968       add_insn (last);
4969       break;
4970     }
4971 
4972   return last;
4973 }
4974 
4975 /* Make an insn of code CALL_INSN with pattern X
4976    and add it to the end of the doubly-linked list.  */
4977 
4978 rtx
4979 emit_call_insn (rtx x)
4980 {
4981   rtx insn;
4982 
4983   switch (GET_CODE (x))
4984     {
4985     case DEBUG_INSN:
4986     case INSN:
4987     case JUMP_INSN:
4988     case CALL_INSN:
4989     case CODE_LABEL:
4990     case BARRIER:
4991     case NOTE:
4992       insn = emit_insn (x);
4993       break;
4994 
4995 #ifdef ENABLE_RTL_CHECKING
4996     case SEQUENCE:
4997       gcc_unreachable ();
4998       break;
4999 #endif
5000 
5001     default:
5002       insn = make_call_insn_raw (x);
5003       add_insn (insn);
5004       break;
5005     }
5006 
5007   return insn;
5008 }
5009 
5010 /* Add the label LABEL to the end of the doubly-linked list.  */
5011 
5012 rtx
5013 emit_label (rtx label)
5014 {
5015   /* This can be called twice for the same label
5016      as a result of the confusion that follows a syntax error!
5017      So make it harmless.  */
5018   if (INSN_UID (label) == 0)
5019     {
5020       INSN_UID (label) = cur_insn_uid++;
5021       add_insn (label);
5022     }
5023   return label;
5024 }
5025 
5026 /* Make an insn of code BARRIER
5027    and add it to the end of the doubly-linked list.  */
5028 
5029 rtx
5030 emit_barrier (void)
5031 {
5032   rtx barrier = rtx_alloc (BARRIER);
5033   INSN_UID (barrier) = cur_insn_uid++;
5034   add_insn (barrier);
5035   return barrier;
5036 }
5037 
5038 /* Emit a copy of note ORIG.  */
5039 
5040 rtx
5041 emit_note_copy (rtx orig)
5042 {
5043   rtx note;
5044 
5045   note = rtx_alloc (NOTE);
5046 
5047   INSN_UID (note) = cur_insn_uid++;
5048   NOTE_DATA (note) = NOTE_DATA (orig);
5049   NOTE_KIND (note) = NOTE_KIND (orig);
5050   BLOCK_FOR_INSN (note) = NULL;
5051   add_insn (note);
5052 
5053   return note;
5054 }
5055 
5056 /* Make an insn of code NOTE or type NOTE_NO
5057    and add it to the end of the doubly-linked list.  */
5058 
5059 rtx
5060 emit_note (enum insn_note kind)
5061 {
5062   rtx note;
5063 
5064   note = rtx_alloc (NOTE);
5065   INSN_UID (note) = cur_insn_uid++;
5066   NOTE_KIND (note) = kind;
5067   memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
5068   BLOCK_FOR_INSN (note) = NULL;
5069   add_insn (note);
5070   return note;
5071 }
5072 
5073 /* Emit a clobber of lvalue X.  */
5074 
5075 rtx
5076 emit_clobber (rtx x)
5077 {
5078   /* CONCATs should not appear in the insn stream.  */
5079   if (GET_CODE (x) == CONCAT)
5080     {
5081       emit_clobber (XEXP (x, 0));
5082       return emit_clobber (XEXP (x, 1));
5083     }
5084   return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5085 }
5086 
5087 /* Return a sequence of insns to clobber lvalue X.  */
5088 
5089 rtx
5090 gen_clobber (rtx x)
5091 {
5092   rtx seq;
5093 
5094   start_sequence ();
5095   emit_clobber (x);
5096   seq = get_insns ();
5097   end_sequence ();
5098   return seq;
5099 }
5100 
5101 /* Emit a use of rvalue X.  */
5102 
5103 rtx
5104 emit_use (rtx x)
5105 {
5106   /* CONCATs should not appear in the insn stream.  */
5107   if (GET_CODE (x) == CONCAT)
5108     {
5109       emit_use (XEXP (x, 0));
5110       return emit_use (XEXP (x, 1));
5111     }
5112   return emit_insn (gen_rtx_USE (VOIDmode, x));
5113 }
5114 
5115 /* Return a sequence of insns to use rvalue X.  */
5116 
5117 rtx
5118 gen_use (rtx x)
5119 {
5120   rtx seq;
5121 
5122   start_sequence ();
5123   emit_use (x);
5124   seq = get_insns ();
5125   end_sequence ();
5126   return seq;
5127 }
5128 
5129 /* Cause next statement to emit a line note even if the line number
5130    has not changed.  */
5131 
5132 void
5133 force_next_line_note (void)
5134 {
5135   last_location = -1;
5136 }
5137 
5138 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5139    note of this type already exists, remove it first.  */
5140 
5141 rtx
5142 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5143 {
5144   rtx note = find_reg_note (insn, kind, NULL_RTX);
5145 
5146   switch (kind)
5147     {
5148     case REG_EQUAL:
5149     case REG_EQUIV:
5150       /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
5151 	 has multiple sets (some callers assume single_set
5152 	 means the insn only has one set, when in fact it
5153 	 means the insn only has one * useful * set).  */
5154       if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
5155 	{
5156 	  gcc_assert (!note);
5157 	  return NULL_RTX;
5158 	}
5159 
5160       /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5161 	 It serves no useful purpose and breaks eliminate_regs.  */
5162       if (GET_CODE (datum) == ASM_OPERANDS)
5163 	return NULL_RTX;
5164 
5165       if (note)
5166 	{
5167 	  XEXP (note, 0) = datum;
5168 	  df_notes_rescan (insn);
5169 	  return note;
5170 	}
5171       break;
5172 
5173     default:
5174       if (note)
5175 	{
5176 	  XEXP (note, 0) = datum;
5177 	  return note;
5178 	}
5179       break;
5180     }
5181 
5182   add_reg_note (insn, kind, datum);
5183 
5184   switch (kind)
5185     {
5186     case REG_EQUAL:
5187     case REG_EQUIV:
5188       df_notes_rescan (insn);
5189       break;
5190     default:
5191       break;
5192     }
5193 
5194   return REG_NOTES (insn);
5195 }
5196 
5197 /* Return an indication of which type of insn should have X as a body.
5198    The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN.  */
5199 
5200 static enum rtx_code
5201 classify_insn (rtx x)
5202 {
5203   if (LABEL_P (x))
5204     return CODE_LABEL;
5205   if (GET_CODE (x) == CALL)
5206     return CALL_INSN;
5207   if (GET_CODE (x) == RETURN)
5208     return JUMP_INSN;
5209   if (GET_CODE (x) == SET)
5210     {
5211       if (SET_DEST (x) == pc_rtx)
5212 	return JUMP_INSN;
5213       else if (GET_CODE (SET_SRC (x)) == CALL)
5214 	return CALL_INSN;
5215       else
5216 	return INSN;
5217     }
5218   if (GET_CODE (x) == PARALLEL)
5219     {
5220       int j;
5221       for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5222 	if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5223 	  return CALL_INSN;
5224 	else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5225 		 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5226 	  return JUMP_INSN;
5227 	else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5228 		 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5229 	  return CALL_INSN;
5230     }
5231   return INSN;
5232 }
5233 
5234 /* Emit the rtl pattern X as an appropriate kind of insn.
5235    If X is a label, it is simply added into the insn chain.  */
5236 
5237 rtx
5238 emit (rtx x)
5239 {
5240   enum rtx_code code = classify_insn (x);
5241 
5242   switch (code)
5243     {
5244     case CODE_LABEL:
5245       return emit_label (x);
5246     case INSN:
5247       return emit_insn (x);
5248     case  JUMP_INSN:
5249       {
5250 	rtx insn = emit_jump_insn (x);
5251 	if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5252 	  return emit_barrier ();
5253 	return insn;
5254       }
5255     case CALL_INSN:
5256       return emit_call_insn (x);
5257     case DEBUG_INSN:
5258       return emit_debug_insn (x);
5259     default:
5260       gcc_unreachable ();
5261     }
5262 }
5263 
5264 /* Space for free sequence stack entries.  */
5265 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5266 
5267 /* Begin emitting insns to a sequence.  If this sequence will contain
5268    something that might cause the compiler to pop arguments to function
5269    calls (because those pops have previously been deferred; see
5270    INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5271    before calling this function.  That will ensure that the deferred
5272    pops are not accidentally emitted in the middle of this sequence.  */
5273 
5274 void
5275 start_sequence (void)
5276 {
5277   struct sequence_stack *tem;
5278 
5279   if (free_sequence_stack != NULL)
5280     {
5281       tem = free_sequence_stack;
5282       free_sequence_stack = tem->next;
5283     }
5284   else
5285     tem = GGC_NEW (struct sequence_stack);
5286 
5287   tem->next = seq_stack;
5288   tem->first = first_insn;
5289   tem->last = last_insn;
5290 
5291   seq_stack = tem;
5292 
5293   first_insn = 0;
5294   last_insn = 0;
5295 }
5296 
5297 /* Set up the insn chain starting with FIRST as the current sequence,
5298    saving the previously current one.  See the documentation for
5299    start_sequence for more information about how to use this function.  */
5300 
5301 void
5302 push_to_sequence (rtx first)
5303 {
5304   rtx last;
5305 
5306   start_sequence ();
5307 
5308   for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
5309 
5310   first_insn = first;
5311   last_insn = last;
5312 }
5313 
5314 /* Like push_to_sequence, but take the last insn as an argument to avoid
5315    looping through the list.  */
5316 
5317 void
5318 push_to_sequence2 (rtx first, rtx last)
5319 {
5320   start_sequence ();
5321 
5322   first_insn = first;
5323   last_insn = last;
5324 }
5325 
5326 /* Set up the outer-level insn chain
5327    as the current sequence, saving the previously current one.  */
5328 
5329 void
5330 push_topmost_sequence (void)
5331 {
5332   struct sequence_stack *stack, *top = NULL;
5333 
5334   start_sequence ();
5335 
5336   for (stack = seq_stack; stack; stack = stack->next)
5337     top = stack;
5338 
5339   first_insn = top->first;
5340   last_insn = top->last;
5341 }
5342 
5343 /* After emitting to the outer-level insn chain, update the outer-level
5344    insn chain, and restore the previous saved state.  */
5345 
5346 void
5347 pop_topmost_sequence (void)
5348 {
5349   struct sequence_stack *stack, *top = NULL;
5350 
5351   for (stack = seq_stack; stack; stack = stack->next)
5352     top = stack;
5353 
5354   top->first = first_insn;
5355   top->last = last_insn;
5356 
5357   end_sequence ();
5358 }
5359 
5360 /* After emitting to a sequence, restore previous saved state.
5361 
5362    To get the contents of the sequence just made, you must call
5363    `get_insns' *before* calling here.
5364 
5365    If the compiler might have deferred popping arguments while
5366    generating this sequence, and this sequence will not be immediately
5367    inserted into the instruction stream, use do_pending_stack_adjust
5368    before calling get_insns.  That will ensure that the deferred
5369    pops are inserted into this sequence, and not into some random
5370    location in the instruction stream.  See INHIBIT_DEFER_POP for more
5371    information about deferred popping of arguments.  */
5372 
5373 void
5374 end_sequence (void)
5375 {
5376   struct sequence_stack *tem = seq_stack;
5377 
5378   first_insn = tem->first;
5379   last_insn = tem->last;
5380   seq_stack = tem->next;
5381 
5382   memset (tem, 0, sizeof (*tem));
5383   tem->next = free_sequence_stack;
5384   free_sequence_stack = tem;
5385 }
5386 
5387 /* Return 1 if currently emitting into a sequence.  */
5388 
5389 int
5390 in_sequence_p (void)
5391 {
5392   return seq_stack != 0;
5393 }
5394 
5395 /* Put the various virtual registers into REGNO_REG_RTX.  */
5396 
5397 static void
5398 init_virtual_regs (void)
5399 {
5400   regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5401   regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5402   regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5403   regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5404   regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5405 }
5406 
5407 
5408 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once.  */
5409 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5410 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5411 static int copy_insn_n_scratches;
5412 
5413 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5414    copied an ASM_OPERANDS.
5415    In that case, it is the original input-operand vector.  */
5416 static rtvec orig_asm_operands_vector;
5417 
5418 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5419    copied an ASM_OPERANDS.
5420    In that case, it is the copied input-operand vector.  */
5421 static rtvec copy_asm_operands_vector;
5422 
5423 /* Likewise for the constraints vector.  */
5424 static rtvec orig_asm_constraints_vector;
5425 static rtvec copy_asm_constraints_vector;
5426 
5427 /* Recursively create a new copy of an rtx for copy_insn.
5428    This function differs from copy_rtx in that it handles SCRATCHes and
5429    ASM_OPERANDs properly.
5430    Normally, this function is not used directly; use copy_insn as front end.
5431    However, you could first copy an insn pattern with copy_insn and then use
5432    this function afterwards to properly copy any REG_NOTEs containing
5433    SCRATCHes.  */
5434 
5435 rtx
5436 copy_insn_1 (rtx orig)
5437 {
5438   rtx copy;
5439   int i, j;
5440   RTX_CODE code;
5441   const char *format_ptr;
5442 
5443   if (orig == NULL)
5444     return NULL;
5445 
5446   code = GET_CODE (orig);
5447 
5448   switch (code)
5449     {
5450     case REG:
5451     case CONST_INT:
5452     case CONST_DOUBLE:
5453     case CONST_FIXED:
5454     case CONST_VECTOR:
5455     case SYMBOL_REF:
5456     case CODE_LABEL:
5457     case PC:
5458     case CC0:
5459       return orig;
5460     case CLOBBER:
5461       if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5462 	return orig;
5463       break;
5464 
5465     case SCRATCH:
5466       for (i = 0; i < copy_insn_n_scratches; i++)
5467 	if (copy_insn_scratch_in[i] == orig)
5468 	  return copy_insn_scratch_out[i];
5469       break;
5470 
5471     case CONST:
5472       if (shared_const_p (orig))
5473 	return orig;
5474       break;
5475 
5476       /* A MEM with a constant address is not sharable.  The problem is that
5477 	 the constant address may need to be reloaded.  If the mem is shared,
5478 	 then reloading one copy of this mem will cause all copies to appear
5479 	 to have been reloaded.  */
5480 
5481     default:
5482       break;
5483     }
5484 
5485   /* Copy the various flags, fields, and other information.  We assume
5486      that all fields need copying, and then clear the fields that should
5487      not be copied.  That is the sensible default behavior, and forces
5488      us to explicitly document why we are *not* copying a flag.  */
5489   copy = shallow_copy_rtx (orig);
5490 
5491   /* We do not copy the USED flag, which is used as a mark bit during
5492      walks over the RTL.  */
5493   RTX_FLAG (copy, used) = 0;
5494 
5495   /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs.  */
5496   if (INSN_P (orig))
5497     {
5498       RTX_FLAG (copy, jump) = 0;
5499       RTX_FLAG (copy, call) = 0;
5500       RTX_FLAG (copy, frame_related) = 0;
5501     }
5502 
5503   format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5504 
5505   for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5506     switch (*format_ptr++)
5507       {
5508       case 'e':
5509 	if (XEXP (orig, i) != NULL)
5510 	  XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5511 	break;
5512 
5513       case 'E':
5514       case 'V':
5515 	if (XVEC (orig, i) == orig_asm_constraints_vector)
5516 	  XVEC (copy, i) = copy_asm_constraints_vector;
5517 	else if (XVEC (orig, i) == orig_asm_operands_vector)
5518 	  XVEC (copy, i) = copy_asm_operands_vector;
5519 	else if (XVEC (orig, i) != NULL)
5520 	  {
5521 	    XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5522 	    for (j = 0; j < XVECLEN (copy, i); j++)
5523 	      XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5524 	  }
5525 	break;
5526 
5527       case 't':
5528       case 'w':
5529       case 'i':
5530       case 's':
5531       case 'S':
5532       case 'u':
5533       case '0':
5534 	/* These are left unchanged.  */
5535 	break;
5536 
5537       default:
5538 	gcc_unreachable ();
5539       }
5540 
5541   if (code == SCRATCH)
5542     {
5543       i = copy_insn_n_scratches++;
5544       gcc_assert (i < MAX_RECOG_OPERANDS);
5545       copy_insn_scratch_in[i] = orig;
5546       copy_insn_scratch_out[i] = copy;
5547     }
5548   else if (code == ASM_OPERANDS)
5549     {
5550       orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5551       copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5552       orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5553       copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5554     }
5555 
5556   return copy;
5557 }
5558 
5559 /* Create a new copy of an rtx.
5560    This function differs from copy_rtx in that it handles SCRATCHes and
5561    ASM_OPERANDs properly.
5562    INSN doesn't really have to be a full INSN; it could be just the
5563    pattern.  */
5564 rtx
5565 copy_insn (rtx insn)
5566 {
5567   copy_insn_n_scratches = 0;
5568   orig_asm_operands_vector = 0;
5569   orig_asm_constraints_vector = 0;
5570   copy_asm_operands_vector = 0;
5571   copy_asm_constraints_vector = 0;
5572   return copy_insn_1 (insn);
5573 }
5574 
5575 /* Initialize data structures and variables in this file
5576    before generating rtl for each function.  */
5577 
5578 void
5579 init_emit (void)
5580 {
5581   first_insn = NULL;
5582   last_insn = NULL;
5583   if (MIN_NONDEBUG_INSN_UID)
5584     cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5585   else
5586     cur_insn_uid = 1;
5587   cur_debug_insn_uid = 1;
5588   reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5589   last_location = UNKNOWN_LOCATION;
5590   first_label_num = label_num;
5591   seq_stack = NULL;
5592 
5593   /* Init the tables that describe all the pseudo regs.  */
5594 
5595   crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5596 
5597   crtl->emit.regno_pointer_align
5598     = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5599 
5600   regno_reg_rtx
5601     = GGC_NEWVEC (rtx, crtl->emit.regno_pointer_align_length);
5602 
5603   /* Put copies of all the hard registers into regno_reg_rtx.  */
5604   memcpy (regno_reg_rtx,
5605 	  static_regno_reg_rtx,
5606 	  FIRST_PSEUDO_REGISTER * sizeof (rtx));
5607 
5608   /* Put copies of all the virtual register rtx into regno_reg_rtx.  */
5609   init_virtual_regs ();
5610 
5611   /* Indicate that the virtual registers and stack locations are
5612      all pointers.  */
5613   REG_POINTER (stack_pointer_rtx) = 1;
5614   REG_POINTER (frame_pointer_rtx) = 1;
5615   REG_POINTER (hard_frame_pointer_rtx) = 1;
5616   REG_POINTER (arg_pointer_rtx) = 1;
5617 
5618   REG_POINTER (virtual_incoming_args_rtx) = 1;
5619   REG_POINTER (virtual_stack_vars_rtx) = 1;
5620   REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5621   REG_POINTER (virtual_outgoing_args_rtx) = 1;
5622   REG_POINTER (virtual_cfa_rtx) = 1;
5623 
5624 #ifdef STACK_BOUNDARY
5625   REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5626   REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5627   REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5628   REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5629 
5630   REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5631   REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5632   REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5633   REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5634   REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5635 #endif
5636 
5637 #ifdef INIT_EXPANDERS
5638   INIT_EXPANDERS;
5639 #endif
5640 }
5641 
5642 /* Generate a vector constant for mode MODE and constant value CONSTANT.  */
5643 
5644 static rtx
5645 gen_const_vector (enum machine_mode mode, int constant)
5646 {
5647   rtx tem;
5648   rtvec v;
5649   int units, i;
5650   enum machine_mode inner;
5651 
5652   units = GET_MODE_NUNITS (mode);
5653   inner = GET_MODE_INNER (mode);
5654 
5655   gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5656 
5657   v = rtvec_alloc (units);
5658 
5659   /* We need to call this function after we set the scalar const_tiny_rtx
5660      entries.  */
5661   gcc_assert (const_tiny_rtx[constant][(int) inner]);
5662 
5663   for (i = 0; i < units; ++i)
5664     RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5665 
5666   tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5667   return tem;
5668 }
5669 
5670 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5671    all elements are zero, and the one vector when all elements are one.  */
5672 rtx
5673 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5674 {
5675   enum machine_mode inner = GET_MODE_INNER (mode);
5676   int nunits = GET_MODE_NUNITS (mode);
5677   rtx x;
5678   int i;
5679 
5680   /* Check to see if all of the elements have the same value.  */
5681   x = RTVEC_ELT (v, nunits - 1);
5682   for (i = nunits - 2; i >= 0; i--)
5683     if (RTVEC_ELT (v, i) != x)
5684       break;
5685 
5686   /* If the values are all the same, check to see if we can use one of the
5687      standard constant vectors.  */
5688   if (i == -1)
5689     {
5690       if (x == CONST0_RTX (inner))
5691 	return CONST0_RTX (mode);
5692       else if (x == CONST1_RTX (inner))
5693 	return CONST1_RTX (mode);
5694     }
5695 
5696   return gen_rtx_raw_CONST_VECTOR (mode, v);
5697 }
5698 
5699 /* Initialise global register information required by all functions.  */
5700 
5701 void
5702 init_emit_regs (void)
5703 {
5704   int i;
5705 
5706   /* Reset register attributes */
5707   htab_empty (reg_attrs_htab);
5708 
5709   /* We need reg_raw_mode, so initialize the modes now.  */
5710   init_reg_modes_target ();
5711 
5712   /* Assign register numbers to the globally defined register rtx.  */
5713   pc_rtx = gen_rtx_PC (VOIDmode);
5714   cc0_rtx = gen_rtx_CC0 (VOIDmode);
5715   stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5716   frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5717   hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5718   arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5719   virtual_incoming_args_rtx =
5720     gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5721   virtual_stack_vars_rtx =
5722     gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5723   virtual_stack_dynamic_rtx =
5724     gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5725   virtual_outgoing_args_rtx =
5726     gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5727   virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5728 
5729   /* Initialize RTL for commonly used hard registers.  These are
5730      copied into regno_reg_rtx as we begin to compile each function.  */
5731   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5732     static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5733 
5734 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5735   return_address_pointer_rtx
5736     = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5737 #endif
5738 
5739   if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5740     pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5741   else
5742     pic_offset_table_rtx = NULL_RTX;
5743 }
5744 
5745 /* Create some permanent unique rtl objects shared between all functions.  */
5746 
5747 void
5748 init_emit_once (void)
5749 {
5750   int i;
5751   enum machine_mode mode;
5752   enum machine_mode double_mode;
5753 
5754   /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5755      hash tables.  */
5756   const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5757 				    const_int_htab_eq, NULL);
5758 
5759   const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5760 				       const_double_htab_eq, NULL);
5761 
5762   const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5763 				      const_fixed_htab_eq, NULL);
5764 
5765   mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5766 				    mem_attrs_htab_eq, NULL);
5767   reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5768 				    reg_attrs_htab_eq, NULL);
5769 
5770   /* Compute the word and byte modes.  */
5771 
5772   byte_mode = VOIDmode;
5773   word_mode = VOIDmode;
5774   double_mode = VOIDmode;
5775 
5776   for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5777        mode != VOIDmode;
5778        mode = GET_MODE_WIDER_MODE (mode))
5779     {
5780       if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5781 	  && byte_mode == VOIDmode)
5782 	byte_mode = mode;
5783 
5784       if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5785 	  && word_mode == VOIDmode)
5786 	word_mode = mode;
5787     }
5788 
5789   for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5790        mode != VOIDmode;
5791        mode = GET_MODE_WIDER_MODE (mode))
5792     {
5793       if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5794 	  && double_mode == VOIDmode)
5795 	double_mode = mode;
5796     }
5797 
5798   ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5799 
5800 #ifdef INIT_EXPANDERS
5801   /* This is to initialize {init|mark|free}_machine_status before the first
5802      call to push_function_context_to.  This is needed by the Chill front
5803      end which calls push_function_context_to before the first call to
5804      init_function_start.  */
5805   INIT_EXPANDERS;
5806 #endif
5807 
5808   /* Create the unique rtx's for certain rtx codes and operand values.  */
5809 
5810   /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5811      tries to use these variables.  */
5812   for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5813     const_int_rtx[i + MAX_SAVED_CONST_INT] =
5814       gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5815 
5816   if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5817       && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5818     const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5819   else
5820     const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5821 
5822   REAL_VALUE_FROM_INT (dconst0,   0,  0, double_mode);
5823   REAL_VALUE_FROM_INT (dconst1,   1,  0, double_mode);
5824   REAL_VALUE_FROM_INT (dconst2,   2,  0, double_mode);
5825 
5826   dconstm1 = dconst1;
5827   dconstm1.sign = 1;
5828 
5829   dconsthalf = dconst1;
5830   SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5831 
5832   for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5833     {
5834       const REAL_VALUE_TYPE *const r =
5835 	(i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5836 
5837       for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5838 	   mode != VOIDmode;
5839 	   mode = GET_MODE_WIDER_MODE (mode))
5840 	const_tiny_rtx[i][(int) mode] =
5841 	  CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5842 
5843       for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5844 	   mode != VOIDmode;
5845 	   mode = GET_MODE_WIDER_MODE (mode))
5846 	const_tiny_rtx[i][(int) mode] =
5847 	  CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5848 
5849       const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5850 
5851       for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5852 	   mode != VOIDmode;
5853 	   mode = GET_MODE_WIDER_MODE (mode))
5854 	const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5855 
5856       for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5857 	   mode != VOIDmode;
5858 	   mode = GET_MODE_WIDER_MODE (mode))
5859 	const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5860     }
5861 
5862   for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5863        mode != VOIDmode;
5864        mode = GET_MODE_WIDER_MODE (mode))
5865     {
5866       rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5867       const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5868     }
5869 
5870   for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5871        mode != VOIDmode;
5872        mode = GET_MODE_WIDER_MODE (mode))
5873     {
5874       rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5875       const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5876     }
5877 
5878   for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5879        mode != VOIDmode;
5880        mode = GET_MODE_WIDER_MODE (mode))
5881     {
5882       const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5883       const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5884     }
5885 
5886   for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5887        mode != VOIDmode;
5888        mode = GET_MODE_WIDER_MODE (mode))
5889     {
5890       const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5891       const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5892     }
5893 
5894   for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5895        mode != VOIDmode;
5896        mode = GET_MODE_WIDER_MODE (mode))
5897     {
5898       FCONST0(mode).data.high = 0;
5899       FCONST0(mode).data.low = 0;
5900       FCONST0(mode).mode = mode;
5901       const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5902 				      FCONST0 (mode), mode);
5903     }
5904 
5905   for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5906        mode != VOIDmode;
5907        mode = GET_MODE_WIDER_MODE (mode))
5908     {
5909       FCONST0(mode).data.high = 0;
5910       FCONST0(mode).data.low = 0;
5911       FCONST0(mode).mode = mode;
5912       const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5913 				      FCONST0 (mode), mode);
5914     }
5915 
5916   for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5917        mode != VOIDmode;
5918        mode = GET_MODE_WIDER_MODE (mode))
5919     {
5920       FCONST0(mode).data.high = 0;
5921       FCONST0(mode).data.low = 0;
5922       FCONST0(mode).mode = mode;
5923       const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5924 				      FCONST0 (mode), mode);
5925 
5926       /* We store the value 1.  */
5927       FCONST1(mode).data.high = 0;
5928       FCONST1(mode).data.low = 0;
5929       FCONST1(mode).mode = mode;
5930       lshift_double (1, 0, GET_MODE_FBIT (mode),
5931                      2 * HOST_BITS_PER_WIDE_INT,
5932                      &FCONST1(mode).data.low,
5933 		     &FCONST1(mode).data.high,
5934                      SIGNED_FIXED_POINT_MODE_P (mode));
5935       const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5936 				      FCONST1 (mode), mode);
5937     }
5938 
5939   for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5940        mode != VOIDmode;
5941        mode = GET_MODE_WIDER_MODE (mode))
5942     {
5943       FCONST0(mode).data.high = 0;
5944       FCONST0(mode).data.low = 0;
5945       FCONST0(mode).mode = mode;
5946       const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5947 				      FCONST0 (mode), mode);
5948 
5949       /* We store the value 1.  */
5950       FCONST1(mode).data.high = 0;
5951       FCONST1(mode).data.low = 0;
5952       FCONST1(mode).mode = mode;
5953       lshift_double (1, 0, GET_MODE_FBIT (mode),
5954                      2 * HOST_BITS_PER_WIDE_INT,
5955                      &FCONST1(mode).data.low,
5956 		     &FCONST1(mode).data.high,
5957                      SIGNED_FIXED_POINT_MODE_P (mode));
5958       const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5959 				      FCONST1 (mode), mode);
5960     }
5961 
5962   for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5963        mode != VOIDmode;
5964        mode = GET_MODE_WIDER_MODE (mode))
5965     {
5966       const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5967     }
5968 
5969   for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5970        mode != VOIDmode;
5971        mode = GET_MODE_WIDER_MODE (mode))
5972     {
5973       const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5974     }
5975 
5976   for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5977        mode != VOIDmode;
5978        mode = GET_MODE_WIDER_MODE (mode))
5979     {
5980       const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5981       const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5982     }
5983 
5984   for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5985        mode != VOIDmode;
5986        mode = GET_MODE_WIDER_MODE (mode))
5987     {
5988       const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5989       const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5990     }
5991 
5992   for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5993     if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5994       const_tiny_rtx[0][i] = const0_rtx;
5995 
5996   const_tiny_rtx[0][(int) BImode] = const0_rtx;
5997   if (STORE_FLAG_VALUE == 1)
5998     const_tiny_rtx[1][(int) BImode] = const1_rtx;
5999 }
6000 
6001 /* Produce exact duplicate of insn INSN after AFTER.
6002    Care updating of libcall regions if present.  */
6003 
6004 rtx
6005 emit_copy_of_insn_after (rtx insn, rtx after)
6006 {
6007   rtx new_rtx, link;
6008 
6009   switch (GET_CODE (insn))
6010     {
6011     case INSN:
6012       new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6013       break;
6014 
6015     case JUMP_INSN:
6016       new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6017       break;
6018 
6019     case DEBUG_INSN:
6020       new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6021       break;
6022 
6023     case CALL_INSN:
6024       new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6025       if (CALL_INSN_FUNCTION_USAGE (insn))
6026 	CALL_INSN_FUNCTION_USAGE (new_rtx)
6027 	  = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6028       SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6029       RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6030       RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6031       RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6032 	= RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6033       break;
6034 
6035     default:
6036       gcc_unreachable ();
6037     }
6038 
6039   /* Update LABEL_NUSES.  */
6040   mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6041 
6042   INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
6043 
6044   /* If the old insn is frame related, then so is the new one.  This is
6045      primarily needed for IA-64 unwind info which marks epilogue insns,
6046      which may be duplicated by the basic block reordering code.  */
6047   RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6048 
6049   /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6050      will make them.  REG_LABEL_TARGETs are created there too, but are
6051      supposed to be sticky, so we copy them.  */
6052   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6053     if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6054       {
6055 	if (GET_CODE (link) == EXPR_LIST)
6056 	  add_reg_note (new_rtx, REG_NOTE_KIND (link),
6057 			copy_insn_1 (XEXP (link, 0)));
6058 	else
6059 	  add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
6060       }
6061 
6062   INSN_CODE (new_rtx) = INSN_CODE (insn);
6063   return new_rtx;
6064 }
6065 
6066 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6067 rtx
6068 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
6069 {
6070   if (hard_reg_clobbers[mode][regno])
6071     return hard_reg_clobbers[mode][regno];
6072   else
6073     return (hard_reg_clobbers[mode][regno] =
6074 	    gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6075 }
6076 
6077 #include "gt-emit-rtl.h"
6078