1 /* Emit RTL for the GCC expander. 2 Copyright (C) 1987-2019 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 21 /* Middle-to-low level generation of rtx code and insns. 22 23 This file contains support functions for creating rtl expressions 24 and manipulating them in the doubly-linked chain of insns. 25 26 The patterns of the insns are created by machine-dependent 27 routines in insn-emit.c, which is generated automatically from 28 the machine description. These routines make the individual rtx's 29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch], 30 which are automatically generated from rtl.def; what is machine 31 dependent is the kind of rtx's they make and what arguments they 32 use. */ 33 34 #include "config.h" 35 #include "system.h" 36 #include "coretypes.h" 37 #include "memmodel.h" 38 #include "backend.h" 39 #include "target.h" 40 #include "rtl.h" 41 #include "tree.h" 42 #include "df.h" 43 #include "tm_p.h" 44 #include "stringpool.h" 45 #include "insn-config.h" 46 #include "regs.h" 47 #include "emit-rtl.h" 48 #include "recog.h" 49 #include "diagnostic-core.h" 50 #include "alias.h" 51 #include "fold-const.h" 52 #include "varasm.h" 53 #include "cfgrtl.h" 54 #include "tree-eh.h" 55 #include "explow.h" 56 #include "expr.h" 57 #include "params.h" 58 #include "builtins.h" 59 #include "rtl-iter.h" 60 #include "stor-layout.h" 61 #include "opts.h" 62 #include "predict.h" 63 #include "rtx-vector-builder.h" 64 65 struct target_rtl default_target_rtl; 66 #if SWITCHABLE_TARGET 67 struct target_rtl *this_target_rtl = &default_target_rtl; 68 #endif 69 70 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx) 71 72 /* Commonly used modes. */ 73 74 scalar_int_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */ 75 scalar_int_mode word_mode; /* Mode whose width is BITS_PER_WORD. */ 76 scalar_int_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */ 77 78 /* Datastructures maintained for currently processed function in RTL form. */ 79 80 struct rtl_data x_rtl; 81 82 /* Indexed by pseudo register number, gives the rtx for that pseudo. 83 Allocated in parallel with regno_pointer_align. 84 FIXME: We could put it into emit_status struct, but gengtype is not able to deal 85 with length attribute nested in top level structures. */ 86 87 rtx * regno_reg_rtx; 88 89 /* This is *not* reset after each function. It gives each CODE_LABEL 90 in the entire compilation a unique label number. */ 91 92 static GTY(()) int label_num = 1; 93 94 /* We record floating-point CONST_DOUBLEs in each floating-point mode for 95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we 96 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX 97 is set only for MODE_INT and MODE_VECTOR_INT modes. */ 98 99 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE]; 100 101 rtx const_true_rtx; 102 103 REAL_VALUE_TYPE dconst0; 104 REAL_VALUE_TYPE dconst1; 105 REAL_VALUE_TYPE dconst2; 106 REAL_VALUE_TYPE dconstm1; 107 REAL_VALUE_TYPE dconsthalf; 108 109 /* Record fixed-point constant 0 and 1. */ 110 FIXED_VALUE_TYPE fconst0[MAX_FCONST0]; 111 FIXED_VALUE_TYPE fconst1[MAX_FCONST1]; 112 113 /* We make one copy of (const_int C) where C is in 114 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT] 115 to save space during the compilation and simplify comparisons of 116 integers. */ 117 118 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1]; 119 120 /* Standard pieces of rtx, to be substituted directly into things. */ 121 rtx pc_rtx; 122 rtx ret_rtx; 123 rtx simple_return_rtx; 124 rtx cc0_rtx; 125 126 /* Marker used for denoting an INSN, which should never be accessed (i.e., 127 this pointer should normally never be dereferenced), but is required to be 128 distinct from NULL_RTX. Currently used by peephole2 pass. */ 129 rtx_insn *invalid_insn_rtx; 130 131 /* A hash table storing CONST_INTs whose absolute value is greater 132 than MAX_SAVED_CONST_INT. */ 133 134 struct const_int_hasher : ggc_cache_ptr_hash<rtx_def> 135 { 136 typedef HOST_WIDE_INT compare_type; 137 138 static hashval_t hash (rtx i); 139 static bool equal (rtx i, HOST_WIDE_INT h); 140 }; 141 142 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab; 143 144 struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def> 145 { 146 static hashval_t hash (rtx x); 147 static bool equal (rtx x, rtx y); 148 }; 149 150 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab; 151 152 struct const_poly_int_hasher : ggc_cache_ptr_hash<rtx_def> 153 { 154 typedef std::pair<machine_mode, poly_wide_int_ref> compare_type; 155 156 static hashval_t hash (rtx x); 157 static bool equal (rtx x, const compare_type &y); 158 }; 159 160 static GTY ((cache)) hash_table<const_poly_int_hasher> *const_poly_int_htab; 161 162 /* A hash table storing register attribute structures. */ 163 struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs> 164 { 165 static hashval_t hash (reg_attrs *x); 166 static bool equal (reg_attrs *a, reg_attrs *b); 167 }; 168 169 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab; 170 171 /* A hash table storing all CONST_DOUBLEs. */ 172 struct const_double_hasher : ggc_cache_ptr_hash<rtx_def> 173 { 174 static hashval_t hash (rtx x); 175 static bool equal (rtx x, rtx y); 176 }; 177 178 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab; 179 180 /* A hash table storing all CONST_FIXEDs. */ 181 struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def> 182 { 183 static hashval_t hash (rtx x); 184 static bool equal (rtx x, rtx y); 185 }; 186 187 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab; 188 189 #define cur_insn_uid (crtl->emit.x_cur_insn_uid) 190 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid) 191 #define first_label_num (crtl->emit.x_first_label_num) 192 193 static void set_used_decls (tree); 194 static void mark_label_nuses (rtx); 195 #if TARGET_SUPPORTS_WIDE_INT 196 static rtx lookup_const_wide_int (rtx); 197 #endif 198 static rtx lookup_const_double (rtx); 199 static rtx lookup_const_fixed (rtx); 200 static rtx gen_const_vector (machine_mode, int); 201 static void copy_rtx_if_shared_1 (rtx *orig); 202 203 /* Probability of the conditional branch currently proceeded by try_split. */ 204 profile_probability split_branch_probability; 205 206 /* Returns a hash code for X (which is a really a CONST_INT). */ 207 208 hashval_t 209 const_int_hasher::hash (rtx x) 210 { 211 return (hashval_t) INTVAL (x); 212 } 213 214 /* Returns nonzero if the value represented by X (which is really a 215 CONST_INT) is the same as that given by Y (which is really a 216 HOST_WIDE_INT *). */ 217 218 bool 219 const_int_hasher::equal (rtx x, HOST_WIDE_INT y) 220 { 221 return (INTVAL (x) == y); 222 } 223 224 #if TARGET_SUPPORTS_WIDE_INT 225 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */ 226 227 hashval_t 228 const_wide_int_hasher::hash (rtx x) 229 { 230 int i; 231 unsigned HOST_WIDE_INT hash = 0; 232 const_rtx xr = x; 233 234 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++) 235 hash += CONST_WIDE_INT_ELT (xr, i); 236 237 return (hashval_t) hash; 238 } 239 240 /* Returns nonzero if the value represented by X (which is really a 241 CONST_WIDE_INT) is the same as that given by Y (which is really a 242 CONST_WIDE_INT). */ 243 244 bool 245 const_wide_int_hasher::equal (rtx x, rtx y) 246 { 247 int i; 248 const_rtx xr = x; 249 const_rtx yr = y; 250 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr)) 251 return false; 252 253 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++) 254 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i)) 255 return false; 256 257 return true; 258 } 259 #endif 260 261 /* Returns a hash code for CONST_POLY_INT X. */ 262 263 hashval_t 264 const_poly_int_hasher::hash (rtx x) 265 { 266 inchash::hash h; 267 h.add_int (GET_MODE (x)); 268 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) 269 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]); 270 return h.end (); 271 } 272 273 /* Returns nonzero if CONST_POLY_INT X is an rtx representation of Y. */ 274 275 bool 276 const_poly_int_hasher::equal (rtx x, const compare_type &y) 277 { 278 if (GET_MODE (x) != y.first) 279 return false; 280 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) 281 if (CONST_POLY_INT_COEFFS (x)[i] != y.second.coeffs[i]) 282 return false; 283 return true; 284 } 285 286 /* Returns a hash code for X (which is really a CONST_DOUBLE). */ 287 hashval_t 288 const_double_hasher::hash (rtx x) 289 { 290 const_rtx const value = x; 291 hashval_t h; 292 293 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode) 294 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value); 295 else 296 { 297 h = real_hash (CONST_DOUBLE_REAL_VALUE (value)); 298 /* MODE is used in the comparison, so it should be in the hash. */ 299 h ^= GET_MODE (value); 300 } 301 return h; 302 } 303 304 /* Returns nonzero if the value represented by X (really a ...) 305 is the same as that represented by Y (really a ...) */ 306 bool 307 const_double_hasher::equal (rtx x, rtx y) 308 { 309 const_rtx const a = x, b = y; 310 311 if (GET_MODE (a) != GET_MODE (b)) 312 return 0; 313 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode) 314 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b) 315 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b)); 316 else 317 return real_identical (CONST_DOUBLE_REAL_VALUE (a), 318 CONST_DOUBLE_REAL_VALUE (b)); 319 } 320 321 /* Returns a hash code for X (which is really a CONST_FIXED). */ 322 323 hashval_t 324 const_fixed_hasher::hash (rtx x) 325 { 326 const_rtx const value = x; 327 hashval_t h; 328 329 h = fixed_hash (CONST_FIXED_VALUE (value)); 330 /* MODE is used in the comparison, so it should be in the hash. */ 331 h ^= GET_MODE (value); 332 return h; 333 } 334 335 /* Returns nonzero if the value represented by X is the same as that 336 represented by Y. */ 337 338 bool 339 const_fixed_hasher::equal (rtx x, rtx y) 340 { 341 const_rtx const a = x, b = y; 342 343 if (GET_MODE (a) != GET_MODE (b)) 344 return 0; 345 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b)); 346 } 347 348 /* Return true if the given memory attributes are equal. */ 349 350 bool 351 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q) 352 { 353 if (p == q) 354 return true; 355 if (!p || !q) 356 return false; 357 return (p->alias == q->alias 358 && p->offset_known_p == q->offset_known_p 359 && (!p->offset_known_p || known_eq (p->offset, q->offset)) 360 && p->size_known_p == q->size_known_p 361 && (!p->size_known_p || known_eq (p->size, q->size)) 362 && p->align == q->align 363 && p->addrspace == q->addrspace 364 && (p->expr == q->expr 365 || (p->expr != NULL_TREE && q->expr != NULL_TREE 366 && operand_equal_p (p->expr, q->expr, 0)))); 367 } 368 369 /* Set MEM's memory attributes so that they are the same as ATTRS. */ 370 371 static void 372 set_mem_attrs (rtx mem, mem_attrs *attrs) 373 { 374 /* If everything is the default, we can just clear the attributes. */ 375 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)])) 376 { 377 MEM_ATTRS (mem) = 0; 378 return; 379 } 380 381 if (!MEM_ATTRS (mem) 382 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem))) 383 { 384 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> (); 385 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs)); 386 } 387 } 388 389 /* Returns a hash code for X (which is a really a reg_attrs *). */ 390 391 hashval_t 392 reg_attr_hasher::hash (reg_attrs *x) 393 { 394 const reg_attrs *const p = x; 395 396 inchash::hash h; 397 h.add_ptr (p->decl); 398 h.add_poly_hwi (p->offset); 399 return h.end (); 400 } 401 402 /* Returns nonzero if the value represented by X is the same as that given by 403 Y. */ 404 405 bool 406 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y) 407 { 408 const reg_attrs *const p = x; 409 const reg_attrs *const q = y; 410 411 return (p->decl == q->decl && known_eq (p->offset, q->offset)); 412 } 413 /* Allocate a new reg_attrs structure and insert it into the hash table if 414 one identical to it is not already in the table. We are doing this for 415 MEM of mode MODE. */ 416 417 static reg_attrs * 418 get_reg_attrs (tree decl, poly_int64 offset) 419 { 420 reg_attrs attrs; 421 422 /* If everything is the default, we can just return zero. */ 423 if (decl == 0 && known_eq (offset, 0)) 424 return 0; 425 426 attrs.decl = decl; 427 attrs.offset = offset; 428 429 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT); 430 if (*slot == 0) 431 { 432 *slot = ggc_alloc<reg_attrs> (); 433 memcpy (*slot, &attrs, sizeof (reg_attrs)); 434 } 435 436 return *slot; 437 } 438 439 440 #if !HAVE_blockage 441 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule, 442 and to block register equivalences to be seen across this insn. */ 443 444 rtx 445 gen_blockage (void) 446 { 447 rtx x = gen_rtx_ASM_INPUT (VOIDmode, ""); 448 MEM_VOLATILE_P (x) = true; 449 return x; 450 } 451 #endif 452 453 454 /* Set the mode and register number of X to MODE and REGNO. */ 455 456 void 457 set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno) 458 { 459 unsigned int nregs = (HARD_REGISTER_NUM_P (regno) 460 ? hard_regno_nregs (regno, mode) 461 : 1); 462 PUT_MODE_RAW (x, mode); 463 set_regno_raw (x, regno, nregs); 464 } 465 466 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and 467 don't attempt to share with the various global pieces of rtl (such as 468 frame_pointer_rtx). */ 469 470 rtx 471 gen_raw_REG (machine_mode mode, unsigned int regno) 472 { 473 rtx x = rtx_alloc (REG MEM_STAT_INFO); 474 set_mode_and_regno (x, mode, regno); 475 REG_ATTRS (x) = NULL; 476 ORIGINAL_REGNO (x) = regno; 477 return x; 478 } 479 480 /* There are some RTL codes that require special attention; the generation 481 functions do the raw handling. If you add to this list, modify 482 special_rtx in gengenrtl.c as well. */ 483 484 rtx_expr_list * 485 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list) 486 { 487 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr, 488 expr_list)); 489 } 490 491 rtx_insn_list * 492 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list) 493 { 494 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn, 495 insn_list)); 496 } 497 498 rtx_insn * 499 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn, 500 basic_block bb, rtx pattern, int location, int code, 501 rtx reg_notes) 502 { 503 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode, 504 prev_insn, next_insn, 505 bb, pattern, location, code, 506 reg_notes)); 507 } 508 509 rtx 510 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg) 511 { 512 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT) 513 return const_int_rtx[arg + MAX_SAVED_CONST_INT]; 514 515 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1 516 if (const_true_rtx && arg == STORE_FLAG_VALUE) 517 return const_true_rtx; 518 #endif 519 520 /* Look up the CONST_INT in the hash table. */ 521 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg, 522 INSERT); 523 if (*slot == 0) 524 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg); 525 526 return *slot; 527 } 528 529 rtx 530 gen_int_mode (poly_int64 c, machine_mode mode) 531 { 532 c = trunc_int_for_mode (c, mode); 533 if (c.is_constant ()) 534 return GEN_INT (c.coeffs[0]); 535 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode)); 536 return immed_wide_int_const (poly_wide_int::from (c, prec, SIGNED), mode); 537 } 538 539 /* CONST_DOUBLEs might be created from pairs of integers, or from 540 REAL_VALUE_TYPEs. Also, their length is known only at run time, 541 so we cannot use gen_rtx_raw_CONST_DOUBLE. */ 542 543 /* Determine whether REAL, a CONST_DOUBLE, already exists in the 544 hash table. If so, return its counterpart; otherwise add it 545 to the hash table and return it. */ 546 static rtx 547 lookup_const_double (rtx real) 548 { 549 rtx *slot = const_double_htab->find_slot (real, INSERT); 550 if (*slot == 0) 551 *slot = real; 552 553 return *slot; 554 } 555 556 /* Return a CONST_DOUBLE rtx for a floating-point value specified by 557 VALUE in mode MODE. */ 558 rtx 559 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode) 560 { 561 rtx real = rtx_alloc (CONST_DOUBLE); 562 PUT_MODE (real, mode); 563 564 real->u.rv = value; 565 566 return lookup_const_double (real); 567 } 568 569 /* Determine whether FIXED, a CONST_FIXED, already exists in the 570 hash table. If so, return its counterpart; otherwise add it 571 to the hash table and return it. */ 572 573 static rtx 574 lookup_const_fixed (rtx fixed) 575 { 576 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT); 577 if (*slot == 0) 578 *slot = fixed; 579 580 return *slot; 581 } 582 583 /* Return a CONST_FIXED rtx for a fixed-point value specified by 584 VALUE in mode MODE. */ 585 586 rtx 587 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode) 588 { 589 rtx fixed = rtx_alloc (CONST_FIXED); 590 PUT_MODE (fixed, mode); 591 592 fixed->u.fv = value; 593 594 return lookup_const_fixed (fixed); 595 } 596 597 #if TARGET_SUPPORTS_WIDE_INT == 0 598 /* Constructs double_int from rtx CST. */ 599 600 double_int 601 rtx_to_double_int (const_rtx cst) 602 { 603 double_int r; 604 605 if (CONST_INT_P (cst)) 606 r = double_int::from_shwi (INTVAL (cst)); 607 else if (CONST_DOUBLE_AS_INT_P (cst)) 608 { 609 r.low = CONST_DOUBLE_LOW (cst); 610 r.high = CONST_DOUBLE_HIGH (cst); 611 } 612 else 613 gcc_unreachable (); 614 615 return r; 616 } 617 #endif 618 619 #if TARGET_SUPPORTS_WIDE_INT 620 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table. 621 If so, return its counterpart; otherwise add it to the hash table and 622 return it. */ 623 624 static rtx 625 lookup_const_wide_int (rtx wint) 626 { 627 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT); 628 if (*slot == 0) 629 *slot = wint; 630 631 return *slot; 632 } 633 #endif 634 635 /* Return an rtx constant for V, given that the constant has mode MODE. 636 The returned rtx will be a CONST_INT if V fits, otherwise it will be 637 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT 638 (if TARGET_SUPPORTS_WIDE_INT). */ 639 640 static rtx 641 immed_wide_int_const_1 (const wide_int_ref &v, machine_mode mode) 642 { 643 unsigned int len = v.get_len (); 644 /* Not scalar_int_mode because we also allow pointer bound modes. */ 645 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode)); 646 647 /* Allow truncation but not extension since we do not know if the 648 number is signed or unsigned. */ 649 gcc_assert (prec <= v.get_precision ()); 650 651 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT) 652 return gen_int_mode (v.elt (0), mode); 653 654 #if TARGET_SUPPORTS_WIDE_INT 655 { 656 unsigned int i; 657 rtx value; 658 unsigned int blocks_needed 659 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT; 660 661 if (len > blocks_needed) 662 len = blocks_needed; 663 664 value = const_wide_int_alloc (len); 665 666 /* It is so tempting to just put the mode in here. Must control 667 myself ... */ 668 PUT_MODE (value, VOIDmode); 669 CWI_PUT_NUM_ELEM (value, len); 670 671 for (i = 0; i < len; i++) 672 CONST_WIDE_INT_ELT (value, i) = v.elt (i); 673 674 return lookup_const_wide_int (value); 675 } 676 #else 677 return immed_double_const (v.elt (0), v.elt (1), mode); 678 #endif 679 } 680 681 #if TARGET_SUPPORTS_WIDE_INT == 0 682 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair 683 of ints: I0 is the low-order word and I1 is the high-order word. 684 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the 685 implied upper bits are copies of the high bit of i1. The value 686 itself is neither signed nor unsigned. Do not use this routine for 687 non-integer modes; convert to REAL_VALUE_TYPE and use 688 const_double_from_real_value. */ 689 690 rtx 691 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode) 692 { 693 rtx value; 694 unsigned int i; 695 696 /* There are the following cases (note that there are no modes with 697 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT): 698 699 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use 700 gen_int_mode. 701 2) If the value of the integer fits into HOST_WIDE_INT anyway 702 (i.e., i1 consists only from copies of the sign bit, and sign 703 of i0 and i1 are the same), then we return a CONST_INT for i0. 704 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */ 705 scalar_mode smode; 706 if (is_a <scalar_mode> (mode, &smode) 707 && GET_MODE_BITSIZE (smode) <= HOST_BITS_PER_WIDE_INT) 708 return gen_int_mode (i0, mode); 709 710 /* If this integer fits in one word, return a CONST_INT. */ 711 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0)) 712 return GEN_INT (i0); 713 714 /* We use VOIDmode for integers. */ 715 value = rtx_alloc (CONST_DOUBLE); 716 PUT_MODE (value, VOIDmode); 717 718 CONST_DOUBLE_LOW (value) = i0; 719 CONST_DOUBLE_HIGH (value) = i1; 720 721 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++) 722 XWINT (value, i) = 0; 723 724 return lookup_const_double (value); 725 } 726 #endif 727 728 /* Return an rtx representation of C in mode MODE. */ 729 730 rtx 731 immed_wide_int_const (const poly_wide_int_ref &c, machine_mode mode) 732 { 733 if (c.is_constant ()) 734 return immed_wide_int_const_1 (c.coeffs[0], mode); 735 736 /* Not scalar_int_mode because we also allow pointer bound modes. */ 737 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode)); 738 739 /* Allow truncation but not extension since we do not know if the 740 number is signed or unsigned. */ 741 gcc_assert (prec <= c.coeffs[0].get_precision ()); 742 poly_wide_int newc = poly_wide_int::from (c, prec, SIGNED); 743 744 /* See whether we already have an rtx for this constant. */ 745 inchash::hash h; 746 h.add_int (mode); 747 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) 748 h.add_wide_int (newc.coeffs[i]); 749 const_poly_int_hasher::compare_type typed_value (mode, newc); 750 rtx *slot = const_poly_int_htab->find_slot_with_hash (typed_value, 751 h.end (), INSERT); 752 rtx x = *slot; 753 if (x) 754 return x; 755 756 /* Create a new rtx. There's a choice to be made here between installing 757 the actual mode of the rtx or leaving it as VOIDmode (for consistency 758 with CONST_INT). In practice the handling of the codes is different 759 enough that we get no benefit from using VOIDmode, and various places 760 assume that VOIDmode implies CONST_INT. Using the real mode seems like 761 the right long-term direction anyway. */ 762 typedef trailing_wide_ints<NUM_POLY_INT_COEFFS> twi; 763 size_t extra_size = twi::extra_size (prec); 764 x = rtx_alloc_v (CONST_POLY_INT, 765 sizeof (struct const_poly_int_def) + extra_size); 766 PUT_MODE (x, mode); 767 CONST_POLY_INT_COEFFS (x).set_precision (prec); 768 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) 769 CONST_POLY_INT_COEFFS (x)[i] = newc.coeffs[i]; 770 771 *slot = x; 772 return x; 773 } 774 775 rtx 776 gen_rtx_REG (machine_mode mode, unsigned int regno) 777 { 778 /* In case the MD file explicitly references the frame pointer, have 779 all such references point to the same frame pointer. This is 780 used during frame pointer elimination to distinguish the explicit 781 references to these registers from pseudos that happened to be 782 assigned to them. 783 784 If we have eliminated the frame pointer or arg pointer, we will 785 be using it as a normal register, for example as a spill 786 register. In such cases, we might be accessing it in a mode that 787 is not Pmode and therefore cannot use the pre-allocated rtx. 788 789 Also don't do this when we are making new REGs in reload, since 790 we don't want to get confused with the real pointers. */ 791 792 if (mode == Pmode && !reload_in_progress && !lra_in_progress) 793 { 794 if (regno == FRAME_POINTER_REGNUM 795 && (!reload_completed || frame_pointer_needed)) 796 return frame_pointer_rtx; 797 798 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER 799 && regno == HARD_FRAME_POINTER_REGNUM 800 && (!reload_completed || frame_pointer_needed)) 801 return hard_frame_pointer_rtx; 802 #if !HARD_FRAME_POINTER_IS_ARG_POINTER 803 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM 804 && regno == ARG_POINTER_REGNUM) 805 return arg_pointer_rtx; 806 #endif 807 #ifdef RETURN_ADDRESS_POINTER_REGNUM 808 if (regno == RETURN_ADDRESS_POINTER_REGNUM) 809 return return_address_pointer_rtx; 810 #endif 811 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM 812 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM 813 && fixed_regs[PIC_OFFSET_TABLE_REGNUM]) 814 return pic_offset_table_rtx; 815 if (regno == STACK_POINTER_REGNUM) 816 return stack_pointer_rtx; 817 } 818 819 #if 0 820 /* If the per-function register table has been set up, try to re-use 821 an existing entry in that table to avoid useless generation of RTL. 822 823 This code is disabled for now until we can fix the various backends 824 which depend on having non-shared hard registers in some cases. Long 825 term we want to re-enable this code as it can significantly cut down 826 on the amount of useless RTL that gets generated. 827 828 We'll also need to fix some code that runs after reload that wants to 829 set ORIGINAL_REGNO. */ 830 831 if (cfun 832 && cfun->emit 833 && regno_reg_rtx 834 && regno < FIRST_PSEUDO_REGISTER 835 && reg_raw_mode[regno] == mode) 836 return regno_reg_rtx[regno]; 837 #endif 838 839 return gen_raw_REG (mode, regno); 840 } 841 842 rtx 843 gen_rtx_MEM (machine_mode mode, rtx addr) 844 { 845 rtx rt = gen_rtx_raw_MEM (mode, addr); 846 847 /* This field is not cleared by the mere allocation of the rtx, so 848 we clear it here. */ 849 MEM_ATTRS (rt) = 0; 850 851 return rt; 852 } 853 854 /* Generate a memory referring to non-trapping constant memory. */ 855 856 rtx 857 gen_const_mem (machine_mode mode, rtx addr) 858 { 859 rtx mem = gen_rtx_MEM (mode, addr); 860 MEM_READONLY_P (mem) = 1; 861 MEM_NOTRAP_P (mem) = 1; 862 return mem; 863 } 864 865 /* Generate a MEM referring to fixed portions of the frame, e.g., register 866 save areas. */ 867 868 rtx 869 gen_frame_mem (machine_mode mode, rtx addr) 870 { 871 rtx mem = gen_rtx_MEM (mode, addr); 872 MEM_NOTRAP_P (mem) = 1; 873 set_mem_alias_set (mem, get_frame_alias_set ()); 874 return mem; 875 } 876 877 /* Generate a MEM referring to a temporary use of the stack, not part 878 of the fixed stack frame. For example, something which is pushed 879 by a target splitter. */ 880 rtx 881 gen_tmp_stack_mem (machine_mode mode, rtx addr) 882 { 883 rtx mem = gen_rtx_MEM (mode, addr); 884 MEM_NOTRAP_P (mem) = 1; 885 if (!cfun->calls_alloca) 886 set_mem_alias_set (mem, get_frame_alias_set ()); 887 return mem; 888 } 889 890 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if 891 this construct would be valid, and false otherwise. */ 892 893 bool 894 validate_subreg (machine_mode omode, machine_mode imode, 895 const_rtx reg, poly_uint64 offset) 896 { 897 poly_uint64 isize = GET_MODE_SIZE (imode); 898 poly_uint64 osize = GET_MODE_SIZE (omode); 899 900 /* The sizes must be ordered, so that we know whether the subreg 901 is partial, paradoxical or complete. */ 902 if (!ordered_p (isize, osize)) 903 return false; 904 905 /* All subregs must be aligned. */ 906 if (!multiple_p (offset, osize)) 907 return false; 908 909 /* The subreg offset cannot be outside the inner object. */ 910 if (maybe_ge (offset, isize)) 911 return false; 912 913 poly_uint64 regsize = REGMODE_NATURAL_SIZE (imode); 914 915 /* ??? This should not be here. Temporarily continue to allow word_mode 916 subregs of anything. The most common offender is (subreg:SI (reg:DF)). 917 Generally, backends are doing something sketchy but it'll take time to 918 fix them all. */ 919 if (omode == word_mode) 920 ; 921 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field 922 is the culprit here, and not the backends. */ 923 else if (known_ge (osize, regsize) && known_ge (isize, osize)) 924 ; 925 /* Allow component subregs of complex and vector. Though given the below 926 extraction rules, it's not always clear what that means. */ 927 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode)) 928 && GET_MODE_INNER (imode) == omode) 929 ; 930 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs, 931 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to 932 represent this. It's questionable if this ought to be represented at 933 all -- why can't this all be hidden in post-reload splitters that make 934 arbitrarily mode changes to the registers themselves. */ 935 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode) 936 ; 937 /* Subregs involving floating point modes are not allowed to 938 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but 939 (subreg:SI (reg:DF) 0) isn't. */ 940 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode)) 941 { 942 if (! (known_eq (isize, osize) 943 /* LRA can use subreg to store a floating point value in 944 an integer mode. Although the floating point and the 945 integer modes need the same number of hard registers, 946 the size of floating point mode can be less than the 947 integer mode. LRA also uses subregs for a register 948 should be used in different mode in on insn. */ 949 || lra_in_progress)) 950 return false; 951 } 952 953 /* Paradoxical subregs must have offset zero. */ 954 if (maybe_gt (osize, isize)) 955 return known_eq (offset, 0U); 956 957 /* This is a normal subreg. Verify that the offset is representable. */ 958 959 /* For hard registers, we already have most of these rules collected in 960 subreg_offset_representable_p. */ 961 if (reg && REG_P (reg) && HARD_REGISTER_P (reg)) 962 { 963 unsigned int regno = REGNO (reg); 964 965 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode)) 966 && GET_MODE_INNER (imode) == omode) 967 ; 968 else if (!REG_CAN_CHANGE_MODE_P (regno, imode, omode)) 969 return false; 970 971 return subreg_offset_representable_p (regno, imode, offset, omode); 972 } 973 974 /* The outer size must be ordered wrt the register size, otherwise 975 we wouldn't know at compile time how many registers the outer 976 mode occupies. */ 977 if (!ordered_p (osize, regsize)) 978 return false; 979 980 /* For pseudo registers, we want most of the same checks. Namely: 981 982 Assume that the pseudo register will be allocated to hard registers 983 that can hold REGSIZE bytes each. If OSIZE is not a multiple of REGSIZE, 984 the remainder must correspond to the lowpart of the containing hard 985 register. If BYTES_BIG_ENDIAN, the lowpart is at the highest offset, 986 otherwise it is at the lowest offset. 987 988 Given that we've already checked the mode and offset alignment, 989 we only have to check subblock subregs here. */ 990 if (maybe_lt (osize, regsize) 991 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode)))) 992 { 993 /* It is invalid for the target to pick a register size for a mode 994 that isn't ordered wrt to the size of that mode. */ 995 poly_uint64 block_size = ordered_min (isize, regsize); 996 unsigned int start_reg; 997 poly_uint64 offset_within_reg; 998 if (!can_div_trunc_p (offset, block_size, &start_reg, &offset_within_reg) 999 || (BYTES_BIG_ENDIAN 1000 ? maybe_ne (offset_within_reg, block_size - osize) 1001 : maybe_ne (offset_within_reg, 0U))) 1002 return false; 1003 } 1004 return true; 1005 } 1006 1007 rtx 1008 gen_rtx_SUBREG (machine_mode mode, rtx reg, poly_uint64 offset) 1009 { 1010 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset)); 1011 return gen_rtx_raw_SUBREG (mode, reg, offset); 1012 } 1013 1014 /* Generate a SUBREG representing the least-significant part of REG if MODE 1015 is smaller than mode of REG, otherwise paradoxical SUBREG. */ 1016 1017 rtx 1018 gen_lowpart_SUBREG (machine_mode mode, rtx reg) 1019 { 1020 machine_mode inmode; 1021 1022 inmode = GET_MODE (reg); 1023 if (inmode == VOIDmode) 1024 inmode = mode; 1025 return gen_rtx_SUBREG (mode, reg, 1026 subreg_lowpart_offset (mode, inmode)); 1027 } 1028 1029 rtx 1030 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc, 1031 enum var_init_status status) 1032 { 1033 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc); 1034 PAT_VAR_LOCATION_STATUS (x) = status; 1035 return x; 1036 } 1037 1038 1039 /* Create an rtvec and stores within it the RTXen passed in the arguments. */ 1040 1041 rtvec 1042 gen_rtvec (int n, ...) 1043 { 1044 int i; 1045 rtvec rt_val; 1046 va_list p; 1047 1048 va_start (p, n); 1049 1050 /* Don't allocate an empty rtvec... */ 1051 if (n == 0) 1052 { 1053 va_end (p); 1054 return NULL_RTVEC; 1055 } 1056 1057 rt_val = rtvec_alloc (n); 1058 1059 for (i = 0; i < n; i++) 1060 rt_val->elem[i] = va_arg (p, rtx); 1061 1062 va_end (p); 1063 return rt_val; 1064 } 1065 1066 rtvec 1067 gen_rtvec_v (int n, rtx *argp) 1068 { 1069 int i; 1070 rtvec rt_val; 1071 1072 /* Don't allocate an empty rtvec... */ 1073 if (n == 0) 1074 return NULL_RTVEC; 1075 1076 rt_val = rtvec_alloc (n); 1077 1078 for (i = 0; i < n; i++) 1079 rt_val->elem[i] = *argp++; 1080 1081 return rt_val; 1082 } 1083 1084 rtvec 1085 gen_rtvec_v (int n, rtx_insn **argp) 1086 { 1087 int i; 1088 rtvec rt_val; 1089 1090 /* Don't allocate an empty rtvec... */ 1091 if (n == 0) 1092 return NULL_RTVEC; 1093 1094 rt_val = rtvec_alloc (n); 1095 1096 for (i = 0; i < n; i++) 1097 rt_val->elem[i] = *argp++; 1098 1099 return rt_val; 1100 } 1101 1102 1103 /* Return the number of bytes between the start of an OUTER_MODE 1104 in-memory value and the start of an INNER_MODE in-memory value, 1105 given that the former is a lowpart of the latter. It may be a 1106 paradoxical lowpart, in which case the offset will be negative 1107 on big-endian targets. */ 1108 1109 poly_int64 1110 byte_lowpart_offset (machine_mode outer_mode, 1111 machine_mode inner_mode) 1112 { 1113 if (paradoxical_subreg_p (outer_mode, inner_mode)) 1114 return -subreg_lowpart_offset (inner_mode, outer_mode); 1115 else 1116 return subreg_lowpart_offset (outer_mode, inner_mode); 1117 } 1118 1119 /* Return the offset of (subreg:OUTER_MODE (mem:INNER_MODE X) OFFSET) 1120 from address X. For paradoxical big-endian subregs this is a 1121 negative value, otherwise it's the same as OFFSET. */ 1122 1123 poly_int64 1124 subreg_memory_offset (machine_mode outer_mode, machine_mode inner_mode, 1125 poly_uint64 offset) 1126 { 1127 if (paradoxical_subreg_p (outer_mode, inner_mode)) 1128 { 1129 gcc_assert (known_eq (offset, 0U)); 1130 return -subreg_lowpart_offset (inner_mode, outer_mode); 1131 } 1132 return offset; 1133 } 1134 1135 /* As above, but return the offset that existing subreg X would have 1136 if SUBREG_REG (X) were stored in memory. The only significant thing 1137 about the current SUBREG_REG is its mode. */ 1138 1139 poly_int64 1140 subreg_memory_offset (const_rtx x) 1141 { 1142 return subreg_memory_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)), 1143 SUBREG_BYTE (x)); 1144 } 1145 1146 /* Generate a REG rtx for a new pseudo register of mode MODE. 1147 This pseudo is assigned the next sequential register number. */ 1148 1149 rtx 1150 gen_reg_rtx (machine_mode mode) 1151 { 1152 rtx val; 1153 unsigned int align = GET_MODE_ALIGNMENT (mode); 1154 1155 gcc_assert (can_create_pseudo_p ()); 1156 1157 /* If a virtual register with bigger mode alignment is generated, 1158 increase stack alignment estimation because it might be spilled 1159 to stack later. */ 1160 if (SUPPORTS_STACK_ALIGNMENT 1161 && crtl->stack_alignment_estimated < align 1162 && !crtl->stack_realign_processed) 1163 { 1164 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align); 1165 if (crtl->stack_alignment_estimated < min_align) 1166 crtl->stack_alignment_estimated = min_align; 1167 } 1168 1169 if (generating_concat_p 1170 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT 1171 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT)) 1172 { 1173 /* For complex modes, don't make a single pseudo. 1174 Instead, make a CONCAT of two pseudos. 1175 This allows noncontiguous allocation of the real and imaginary parts, 1176 which makes much better code. Besides, allocating DCmode 1177 pseudos overstrains reload on some machines like the 386. */ 1178 rtx realpart, imagpart; 1179 machine_mode partmode = GET_MODE_INNER (mode); 1180 1181 realpart = gen_reg_rtx (partmode); 1182 imagpart = gen_reg_rtx (partmode); 1183 return gen_rtx_CONCAT (mode, realpart, imagpart); 1184 } 1185 1186 /* Do not call gen_reg_rtx with uninitialized crtl. */ 1187 gcc_assert (crtl->emit.regno_pointer_align_length); 1188 1189 crtl->emit.ensure_regno_capacity (); 1190 gcc_assert (reg_rtx_no < crtl->emit.regno_pointer_align_length); 1191 1192 val = gen_raw_REG (mode, reg_rtx_no); 1193 regno_reg_rtx[reg_rtx_no++] = val; 1194 return val; 1195 } 1196 1197 /* Make sure m_regno_pointer_align, and regno_reg_rtx are large 1198 enough to have elements in the range 0 <= idx <= reg_rtx_no. */ 1199 1200 void 1201 emit_status::ensure_regno_capacity () 1202 { 1203 int old_size = regno_pointer_align_length; 1204 1205 if (reg_rtx_no < old_size) 1206 return; 1207 1208 int new_size = old_size * 2; 1209 while (reg_rtx_no >= new_size) 1210 new_size *= 2; 1211 1212 char *tmp = XRESIZEVEC (char, regno_pointer_align, new_size); 1213 memset (tmp + old_size, 0, new_size - old_size); 1214 regno_pointer_align = (unsigned char *) tmp; 1215 1216 rtx *new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, new_size); 1217 memset (new1 + old_size, 0, (new_size - old_size) * sizeof (rtx)); 1218 regno_reg_rtx = new1; 1219 1220 crtl->emit.regno_pointer_align_length = new_size; 1221 } 1222 1223 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */ 1224 1225 bool 1226 reg_is_parm_p (rtx reg) 1227 { 1228 tree decl; 1229 1230 gcc_assert (REG_P (reg)); 1231 decl = REG_EXPR (reg); 1232 return (decl && TREE_CODE (decl) == PARM_DECL); 1233 } 1234 1235 /* Update NEW with the same attributes as REG, but with OFFSET added 1236 to the REG_OFFSET. */ 1237 1238 static void 1239 update_reg_offset (rtx new_rtx, rtx reg, poly_int64 offset) 1240 { 1241 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg), 1242 REG_OFFSET (reg) + offset); 1243 } 1244 1245 /* Generate a register with same attributes as REG, but with OFFSET 1246 added to the REG_OFFSET. */ 1247 1248 rtx 1249 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno, 1250 poly_int64 offset) 1251 { 1252 rtx new_rtx = gen_rtx_REG (mode, regno); 1253 1254 update_reg_offset (new_rtx, reg, offset); 1255 return new_rtx; 1256 } 1257 1258 /* Generate a new pseudo-register with the same attributes as REG, but 1259 with OFFSET added to the REG_OFFSET. */ 1260 1261 rtx 1262 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset) 1263 { 1264 rtx new_rtx = gen_reg_rtx (mode); 1265 1266 update_reg_offset (new_rtx, reg, offset); 1267 return new_rtx; 1268 } 1269 1270 /* Adjust REG in-place so that it has mode MODE. It is assumed that the 1271 new register is a (possibly paradoxical) lowpart of the old one. */ 1272 1273 void 1274 adjust_reg_mode (rtx reg, machine_mode mode) 1275 { 1276 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg))); 1277 PUT_MODE (reg, mode); 1278 } 1279 1280 /* Copy REG's attributes from X, if X has any attributes. If REG and X 1281 have different modes, REG is a (possibly paradoxical) lowpart of X. */ 1282 1283 void 1284 set_reg_attrs_from_value (rtx reg, rtx x) 1285 { 1286 poly_int64 offset; 1287 bool can_be_reg_pointer = true; 1288 1289 /* Don't call mark_reg_pointer for incompatible pointer sign 1290 extension. */ 1291 while (GET_CODE (x) == SIGN_EXTEND 1292 || GET_CODE (x) == ZERO_EXTEND 1293 || GET_CODE (x) == TRUNCATE 1294 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x))) 1295 { 1296 #if defined(POINTERS_EXTEND_UNSIGNED) 1297 if (((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED) 1298 || (GET_CODE (x) == ZERO_EXTEND && ! POINTERS_EXTEND_UNSIGNED) 1299 || (paradoxical_subreg_p (x) 1300 && ! (SUBREG_PROMOTED_VAR_P (x) 1301 && SUBREG_CHECK_PROMOTED_SIGN (x, 1302 POINTERS_EXTEND_UNSIGNED)))) 1303 && !targetm.have_ptr_extend ()) 1304 can_be_reg_pointer = false; 1305 #endif 1306 x = XEXP (x, 0); 1307 } 1308 1309 /* Hard registers can be reused for multiple purposes within the same 1310 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN 1311 on them is wrong. */ 1312 if (HARD_REGISTER_P (reg)) 1313 return; 1314 1315 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x)); 1316 if (MEM_P (x)) 1317 { 1318 if (MEM_OFFSET_KNOWN_P (x)) 1319 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x), 1320 MEM_OFFSET (x) + offset); 1321 if (can_be_reg_pointer && MEM_POINTER (x)) 1322 mark_reg_pointer (reg, 0); 1323 } 1324 else if (REG_P (x)) 1325 { 1326 if (REG_ATTRS (x)) 1327 update_reg_offset (reg, x, offset); 1328 if (can_be_reg_pointer && REG_POINTER (x)) 1329 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x))); 1330 } 1331 } 1332 1333 /* Generate a REG rtx for a new pseudo register, copying the mode 1334 and attributes from X. */ 1335 1336 rtx 1337 gen_reg_rtx_and_attrs (rtx x) 1338 { 1339 rtx reg = gen_reg_rtx (GET_MODE (x)); 1340 set_reg_attrs_from_value (reg, x); 1341 return reg; 1342 } 1343 1344 /* Set the register attributes for registers contained in PARM_RTX. 1345 Use needed values from memory attributes of MEM. */ 1346 1347 void 1348 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem) 1349 { 1350 if (REG_P (parm_rtx)) 1351 set_reg_attrs_from_value (parm_rtx, mem); 1352 else if (GET_CODE (parm_rtx) == PARALLEL) 1353 { 1354 /* Check for a NULL entry in the first slot, used to indicate that the 1355 parameter goes both on the stack and in registers. */ 1356 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1; 1357 for (; i < XVECLEN (parm_rtx, 0); i++) 1358 { 1359 rtx x = XVECEXP (parm_rtx, 0, i); 1360 if (REG_P (XEXP (x, 0))) 1361 REG_ATTRS (XEXP (x, 0)) 1362 = get_reg_attrs (MEM_EXPR (mem), 1363 INTVAL (XEXP (x, 1))); 1364 } 1365 } 1366 } 1367 1368 /* Set the REG_ATTRS for registers in value X, given that X represents 1369 decl T. */ 1370 1371 void 1372 set_reg_attrs_for_decl_rtl (tree t, rtx x) 1373 { 1374 if (!t) 1375 return; 1376 tree tdecl = t; 1377 if (GET_CODE (x) == SUBREG) 1378 { 1379 gcc_assert (subreg_lowpart_p (x)); 1380 x = SUBREG_REG (x); 1381 } 1382 if (REG_P (x)) 1383 REG_ATTRS (x) 1384 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x), 1385 DECL_P (tdecl) 1386 ? DECL_MODE (tdecl) 1387 : TYPE_MODE (TREE_TYPE (tdecl)))); 1388 if (GET_CODE (x) == CONCAT) 1389 { 1390 if (REG_P (XEXP (x, 0))) 1391 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0); 1392 if (REG_P (XEXP (x, 1))) 1393 REG_ATTRS (XEXP (x, 1)) 1394 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0)))); 1395 } 1396 if (GET_CODE (x) == PARALLEL) 1397 { 1398 int i, start; 1399 1400 /* Check for a NULL entry, used to indicate that the parameter goes 1401 both on the stack and in registers. */ 1402 if (XEXP (XVECEXP (x, 0, 0), 0)) 1403 start = 0; 1404 else 1405 start = 1; 1406 1407 for (i = start; i < XVECLEN (x, 0); i++) 1408 { 1409 rtx y = XVECEXP (x, 0, i); 1410 if (REG_P (XEXP (y, 0))) 1411 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1))); 1412 } 1413 } 1414 } 1415 1416 /* Assign the RTX X to declaration T. */ 1417 1418 void 1419 set_decl_rtl (tree t, rtx x) 1420 { 1421 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x; 1422 if (x) 1423 set_reg_attrs_for_decl_rtl (t, x); 1424 } 1425 1426 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true 1427 if the ABI requires the parameter to be passed by reference. */ 1428 1429 void 1430 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p) 1431 { 1432 DECL_INCOMING_RTL (t) = x; 1433 if (x && !by_reference_p) 1434 set_reg_attrs_for_decl_rtl (t, x); 1435 } 1436 1437 /* Identify REG (which may be a CONCAT) as a user register. */ 1438 1439 void 1440 mark_user_reg (rtx reg) 1441 { 1442 if (GET_CODE (reg) == CONCAT) 1443 { 1444 REG_USERVAR_P (XEXP (reg, 0)) = 1; 1445 REG_USERVAR_P (XEXP (reg, 1)) = 1; 1446 } 1447 else 1448 { 1449 gcc_assert (REG_P (reg)); 1450 REG_USERVAR_P (reg) = 1; 1451 } 1452 } 1453 1454 /* Identify REG as a probable pointer register and show its alignment 1455 as ALIGN, if nonzero. */ 1456 1457 void 1458 mark_reg_pointer (rtx reg, int align) 1459 { 1460 if (! REG_POINTER (reg)) 1461 { 1462 REG_POINTER (reg) = 1; 1463 1464 if (align) 1465 REGNO_POINTER_ALIGN (REGNO (reg)) = align; 1466 } 1467 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg))) 1468 /* We can no-longer be sure just how aligned this pointer is. */ 1469 REGNO_POINTER_ALIGN (REGNO (reg)) = align; 1470 } 1471 1472 /* Return 1 plus largest pseudo reg number used in the current function. */ 1473 1474 int 1475 max_reg_num (void) 1476 { 1477 return reg_rtx_no; 1478 } 1479 1480 /* Return 1 + the largest label number used so far in the current function. */ 1481 1482 int 1483 max_label_num (void) 1484 { 1485 return label_num; 1486 } 1487 1488 /* Return first label number used in this function (if any were used). */ 1489 1490 int 1491 get_first_label_num (void) 1492 { 1493 return first_label_num; 1494 } 1495 1496 /* If the rtx for label was created during the expansion of a nested 1497 function, then first_label_num won't include this label number. 1498 Fix this now so that array indices work later. */ 1499 1500 void 1501 maybe_set_first_label_num (rtx_code_label *x) 1502 { 1503 if (CODE_LABEL_NUMBER (x) < first_label_num) 1504 first_label_num = CODE_LABEL_NUMBER (x); 1505 } 1506 1507 /* For use by the RTL function loader, when mingling with normal 1508 functions. 1509 Ensure that label_num is greater than the label num of X, to avoid 1510 duplicate labels in the generated assembler. */ 1511 1512 void 1513 maybe_set_max_label_num (rtx_code_label *x) 1514 { 1515 if (CODE_LABEL_NUMBER (x) >= label_num) 1516 label_num = CODE_LABEL_NUMBER (x) + 1; 1517 } 1518 1519 1520 /* Return a value representing some low-order bits of X, where the number 1521 of low-order bits is given by MODE. Note that no conversion is done 1522 between floating-point and fixed-point values, rather, the bit 1523 representation is returned. 1524 1525 This function handles the cases in common between gen_lowpart, below, 1526 and two variants in cse.c and combine.c. These are the cases that can 1527 be safely handled at all points in the compilation. 1528 1529 If this is not a case we can handle, return 0. */ 1530 1531 rtx 1532 gen_lowpart_common (machine_mode mode, rtx x) 1533 { 1534 poly_uint64 msize = GET_MODE_SIZE (mode); 1535 machine_mode innermode; 1536 1537 /* Unfortunately, this routine doesn't take a parameter for the mode of X, 1538 so we have to make one up. Yuk. */ 1539 innermode = GET_MODE (x); 1540 if (CONST_INT_P (x) 1541 && known_le (msize * BITS_PER_UNIT, 1542 (unsigned HOST_WIDE_INT) HOST_BITS_PER_WIDE_INT)) 1543 innermode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require (); 1544 else if (innermode == VOIDmode) 1545 innermode = int_mode_for_size (HOST_BITS_PER_DOUBLE_INT, 0).require (); 1546 1547 gcc_assert (innermode != VOIDmode && innermode != BLKmode); 1548 1549 if (innermode == mode) 1550 return x; 1551 1552 /* The size of the outer and inner modes must be ordered. */ 1553 poly_uint64 xsize = GET_MODE_SIZE (innermode); 1554 if (!ordered_p (msize, xsize)) 1555 return 0; 1556 1557 if (SCALAR_FLOAT_MODE_P (mode)) 1558 { 1559 /* Don't allow paradoxical FLOAT_MODE subregs. */ 1560 if (maybe_gt (msize, xsize)) 1561 return 0; 1562 } 1563 else 1564 { 1565 /* MODE must occupy no more of the underlying registers than X. */ 1566 poly_uint64 regsize = REGMODE_NATURAL_SIZE (innermode); 1567 unsigned int mregs, xregs; 1568 if (!can_div_away_from_zero_p (msize, regsize, &mregs) 1569 || !can_div_away_from_zero_p (xsize, regsize, &xregs) 1570 || mregs > xregs) 1571 return 0; 1572 } 1573 1574 scalar_int_mode int_mode, int_innermode, from_mode; 1575 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND) 1576 && is_a <scalar_int_mode> (mode, &int_mode) 1577 && is_a <scalar_int_mode> (innermode, &int_innermode) 1578 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &from_mode)) 1579 { 1580 /* If we are getting the low-order part of something that has been 1581 sign- or zero-extended, we can either just use the object being 1582 extended or make a narrower extension. If we want an even smaller 1583 piece than the size of the object being extended, call ourselves 1584 recursively. 1585 1586 This case is used mostly by combine and cse. */ 1587 1588 if (from_mode == int_mode) 1589 return XEXP (x, 0); 1590 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (from_mode)) 1591 return gen_lowpart_common (int_mode, XEXP (x, 0)); 1592 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (int_innermode)) 1593 return gen_rtx_fmt_e (GET_CODE (x), int_mode, XEXP (x, 0)); 1594 } 1595 else if (GET_CODE (x) == SUBREG || REG_P (x) 1596 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR 1597 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x) 1598 || CONST_POLY_INT_P (x)) 1599 return lowpart_subreg (mode, x, innermode); 1600 1601 /* Otherwise, we can't do this. */ 1602 return 0; 1603 } 1604 1605 rtx 1606 gen_highpart (machine_mode mode, rtx x) 1607 { 1608 poly_uint64 msize = GET_MODE_SIZE (mode); 1609 rtx result; 1610 1611 /* This case loses if X is a subreg. To catch bugs early, 1612 complain if an invalid MODE is used even in other cases. */ 1613 gcc_assert (known_le (msize, (unsigned int) UNITS_PER_WORD) 1614 || known_eq (msize, GET_MODE_UNIT_SIZE (GET_MODE (x)))); 1615 1616 result = simplify_gen_subreg (mode, x, GET_MODE (x), 1617 subreg_highpart_offset (mode, GET_MODE (x))); 1618 gcc_assert (result); 1619 1620 /* simplify_gen_subreg is not guaranteed to return a valid operand for 1621 the target if we have a MEM. gen_highpart must return a valid operand, 1622 emitting code if necessary to do so. */ 1623 if (MEM_P (result)) 1624 { 1625 result = validize_mem (result); 1626 gcc_assert (result); 1627 } 1628 1629 return result; 1630 } 1631 1632 /* Like gen_highpart, but accept mode of EXP operand in case EXP can 1633 be VOIDmode constant. */ 1634 rtx 1635 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp) 1636 { 1637 if (GET_MODE (exp) != VOIDmode) 1638 { 1639 gcc_assert (GET_MODE (exp) == innermode); 1640 return gen_highpart (outermode, exp); 1641 } 1642 return simplify_gen_subreg (outermode, exp, innermode, 1643 subreg_highpart_offset (outermode, innermode)); 1644 } 1645 1646 /* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has 1647 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */ 1648 1649 poly_uint64 1650 subreg_size_lowpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes) 1651 { 1652 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes)); 1653 if (maybe_gt (outer_bytes, inner_bytes)) 1654 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */ 1655 return 0; 1656 1657 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN) 1658 return inner_bytes - outer_bytes; 1659 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN) 1660 return 0; 1661 else 1662 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes, 0); 1663 } 1664 1665 /* Return the SUBREG_BYTE for a highpart subreg whose outer mode has 1666 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */ 1667 1668 poly_uint64 1669 subreg_size_highpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes) 1670 { 1671 gcc_assert (known_ge (inner_bytes, outer_bytes)); 1672 1673 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN) 1674 return 0; 1675 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN) 1676 return inner_bytes - outer_bytes; 1677 else 1678 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes, 1679 (inner_bytes - outer_bytes) 1680 * BITS_PER_UNIT); 1681 } 1682 1683 /* Return 1 iff X, assumed to be a SUBREG, 1684 refers to the least significant part of its containing reg. 1685 If X is not a SUBREG, always return 1 (it is its own low part!). */ 1686 1687 int 1688 subreg_lowpart_p (const_rtx x) 1689 { 1690 if (GET_CODE (x) != SUBREG) 1691 return 1; 1692 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode) 1693 return 0; 1694 1695 return known_eq (subreg_lowpart_offset (GET_MODE (x), 1696 GET_MODE (SUBREG_REG (x))), 1697 SUBREG_BYTE (x)); 1698 } 1699 1700 /* Return subword OFFSET of operand OP. 1701 The word number, OFFSET, is interpreted as the word number starting 1702 at the low-order address. OFFSET 0 is the low-order word if not 1703 WORDS_BIG_ENDIAN, otherwise it is the high-order word. 1704 1705 If we cannot extract the required word, we return zero. Otherwise, 1706 an rtx corresponding to the requested word will be returned. 1707 1708 VALIDATE_ADDRESS is nonzero if the address should be validated. Before 1709 reload has completed, a valid address will always be returned. After 1710 reload, if a valid address cannot be returned, we return zero. 1711 1712 If VALIDATE_ADDRESS is zero, we simply form the required address; validating 1713 it is the responsibility of the caller. 1714 1715 MODE is the mode of OP in case it is a CONST_INT. 1716 1717 ??? This is still rather broken for some cases. The problem for the 1718 moment is that all callers of this thing provide no 'goal mode' to 1719 tell us to work with. This exists because all callers were written 1720 in a word based SUBREG world. 1721 Now use of this function can be deprecated by simplify_subreg in most 1722 cases. 1723 */ 1724 1725 rtx 1726 operand_subword (rtx op, poly_uint64 offset, int validate_address, 1727 machine_mode mode) 1728 { 1729 if (mode == VOIDmode) 1730 mode = GET_MODE (op); 1731 1732 gcc_assert (mode != VOIDmode); 1733 1734 /* If OP is narrower than a word, fail. */ 1735 if (mode != BLKmode 1736 && maybe_lt (GET_MODE_SIZE (mode), UNITS_PER_WORD)) 1737 return 0; 1738 1739 /* If we want a word outside OP, return zero. */ 1740 if (mode != BLKmode 1741 && maybe_gt ((offset + 1) * UNITS_PER_WORD, GET_MODE_SIZE (mode))) 1742 return const0_rtx; 1743 1744 /* Form a new MEM at the requested address. */ 1745 if (MEM_P (op)) 1746 { 1747 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD); 1748 1749 if (! validate_address) 1750 return new_rtx; 1751 1752 else if (reload_completed) 1753 { 1754 if (! strict_memory_address_addr_space_p (word_mode, 1755 XEXP (new_rtx, 0), 1756 MEM_ADDR_SPACE (op))) 1757 return 0; 1758 } 1759 else 1760 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0)); 1761 } 1762 1763 /* Rest can be handled by simplify_subreg. */ 1764 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD)); 1765 } 1766 1767 /* Similar to `operand_subword', but never return 0. If we can't 1768 extract the required subword, put OP into a register and try again. 1769 The second attempt must succeed. We always validate the address in 1770 this case. 1771 1772 MODE is the mode of OP, in case it is CONST_INT. */ 1773 1774 rtx 1775 operand_subword_force (rtx op, poly_uint64 offset, machine_mode mode) 1776 { 1777 rtx result = operand_subword (op, offset, 1, mode); 1778 1779 if (result) 1780 return result; 1781 1782 if (mode != BLKmode && mode != VOIDmode) 1783 { 1784 /* If this is a register which cannot be accessed by words, copy it 1785 to a pseudo register. */ 1786 if (REG_P (op)) 1787 op = copy_to_reg (op); 1788 else 1789 op = force_reg (mode, op); 1790 } 1791 1792 result = operand_subword (op, offset, 1, mode); 1793 gcc_assert (result); 1794 1795 return result; 1796 } 1797 1798 mem_attrs::mem_attrs () 1799 : expr (NULL_TREE), 1800 offset (0), 1801 size (0), 1802 alias (0), 1803 align (0), 1804 addrspace (ADDR_SPACE_GENERIC), 1805 offset_known_p (false), 1806 size_known_p (false) 1807 {} 1808 1809 /* Returns 1 if both MEM_EXPR can be considered equal 1810 and 0 otherwise. */ 1811 1812 int 1813 mem_expr_equal_p (const_tree expr1, const_tree expr2) 1814 { 1815 if (expr1 == expr2) 1816 return 1; 1817 1818 if (! expr1 || ! expr2) 1819 return 0; 1820 1821 if (TREE_CODE (expr1) != TREE_CODE (expr2)) 1822 return 0; 1823 1824 return operand_equal_p (expr1, expr2, 0); 1825 } 1826 1827 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN 1828 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or 1829 -1 if not known. */ 1830 1831 int 1832 get_mem_align_offset (rtx mem, unsigned int align) 1833 { 1834 tree expr; 1835 poly_uint64 offset; 1836 1837 /* This function can't use 1838 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem) 1839 || (MAX (MEM_ALIGN (mem), 1840 MAX (align, get_object_alignment (MEM_EXPR (mem)))) 1841 < align)) 1842 return -1; 1843 else 1844 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1); 1845 for two reasons: 1846 - COMPONENT_REFs in MEM_EXPR can have NULL first operand, 1847 for <variable>. get_inner_reference doesn't handle it and 1848 even if it did, the alignment in that case needs to be determined 1849 from DECL_FIELD_CONTEXT's TYPE_ALIGN. 1850 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR 1851 isn't sufficiently aligned, the object it is in might be. */ 1852 gcc_assert (MEM_P (mem)); 1853 expr = MEM_EXPR (mem); 1854 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem)) 1855 return -1; 1856 1857 offset = MEM_OFFSET (mem); 1858 if (DECL_P (expr)) 1859 { 1860 if (DECL_ALIGN (expr) < align) 1861 return -1; 1862 } 1863 else if (INDIRECT_REF_P (expr)) 1864 { 1865 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align) 1866 return -1; 1867 } 1868 else if (TREE_CODE (expr) == COMPONENT_REF) 1869 { 1870 while (1) 1871 { 1872 tree inner = TREE_OPERAND (expr, 0); 1873 tree field = TREE_OPERAND (expr, 1); 1874 tree byte_offset = component_ref_field_offset (expr); 1875 tree bit_offset = DECL_FIELD_BIT_OFFSET (field); 1876 1877 poly_uint64 suboffset; 1878 if (!byte_offset 1879 || !poly_int_tree_p (byte_offset, &suboffset) 1880 || !tree_fits_uhwi_p (bit_offset)) 1881 return -1; 1882 1883 offset += suboffset; 1884 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT; 1885 1886 if (inner == NULL_TREE) 1887 { 1888 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field)) 1889 < (unsigned int) align) 1890 return -1; 1891 break; 1892 } 1893 else if (DECL_P (inner)) 1894 { 1895 if (DECL_ALIGN (inner) < align) 1896 return -1; 1897 break; 1898 } 1899 else if (TREE_CODE (inner) != COMPONENT_REF) 1900 return -1; 1901 expr = inner; 1902 } 1903 } 1904 else 1905 return -1; 1906 1907 HOST_WIDE_INT misalign; 1908 if (!known_misalignment (offset, align / BITS_PER_UNIT, &misalign)) 1909 return -1; 1910 return misalign; 1911 } 1912 1913 /* Given REF (a MEM) and T, either the type of X or the expression 1914 corresponding to REF, set the memory attributes. OBJECTP is nonzero 1915 if we are making a new object of this type. BITPOS is nonzero if 1916 there is an offset outstanding on T that will be applied later. */ 1917 1918 void 1919 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp, 1920 poly_int64 bitpos) 1921 { 1922 poly_int64 apply_bitpos = 0; 1923 tree type; 1924 struct mem_attrs attrs, *defattrs, *refattrs; 1925 addr_space_t as; 1926 1927 /* It can happen that type_for_mode was given a mode for which there 1928 is no language-level type. In which case it returns NULL, which 1929 we can see here. */ 1930 if (t == NULL_TREE) 1931 return; 1932 1933 type = TYPE_P (t) ? t : TREE_TYPE (t); 1934 if (type == error_mark_node) 1935 return; 1936 1937 /* If we have already set DECL_RTL = ref, get_alias_set will get the 1938 wrong answer, as it assumes that DECL_RTL already has the right alias 1939 info. Callers should not set DECL_RTL until after the call to 1940 set_mem_attributes. */ 1941 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t)); 1942 1943 /* Get the alias set from the expression or type (perhaps using a 1944 front-end routine) and use it. */ 1945 attrs.alias = get_alias_set (t); 1946 1947 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type); 1948 MEM_POINTER (ref) = POINTER_TYPE_P (type); 1949 1950 /* Default values from pre-existing memory attributes if present. */ 1951 refattrs = MEM_ATTRS (ref); 1952 if (refattrs) 1953 { 1954 /* ??? Can this ever happen? Calling this routine on a MEM that 1955 already carries memory attributes should probably be invalid. */ 1956 attrs.expr = refattrs->expr; 1957 attrs.offset_known_p = refattrs->offset_known_p; 1958 attrs.offset = refattrs->offset; 1959 attrs.size_known_p = refattrs->size_known_p; 1960 attrs.size = refattrs->size; 1961 attrs.align = refattrs->align; 1962 } 1963 1964 /* Otherwise, default values from the mode of the MEM reference. */ 1965 else 1966 { 1967 defattrs = mode_mem_attrs[(int) GET_MODE (ref)]; 1968 gcc_assert (!defattrs->expr); 1969 gcc_assert (!defattrs->offset_known_p); 1970 1971 /* Respect mode size. */ 1972 attrs.size_known_p = defattrs->size_known_p; 1973 attrs.size = defattrs->size; 1974 /* ??? Is this really necessary? We probably should always get 1975 the size from the type below. */ 1976 1977 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type; 1978 if T is an object, always compute the object alignment below. */ 1979 if (TYPE_P (t)) 1980 attrs.align = defattrs->align; 1981 else 1982 attrs.align = BITS_PER_UNIT; 1983 /* ??? If T is a type, respecting mode alignment may *also* be wrong 1984 e.g. if the type carries an alignment attribute. Should we be 1985 able to simply always use TYPE_ALIGN? */ 1986 } 1987 1988 /* We can set the alignment from the type if we are making an object or if 1989 this is an INDIRECT_REF. */ 1990 if (objectp || TREE_CODE (t) == INDIRECT_REF) 1991 attrs.align = MAX (attrs.align, TYPE_ALIGN (type)); 1992 1993 /* If the size is known, we can set that. */ 1994 tree new_size = TYPE_SIZE_UNIT (type); 1995 1996 /* The address-space is that of the type. */ 1997 as = TYPE_ADDR_SPACE (type); 1998 1999 /* If T is not a type, we may be able to deduce some more information about 2000 the expression. */ 2001 if (! TYPE_P (t)) 2002 { 2003 tree base; 2004 2005 if (TREE_THIS_VOLATILE (t)) 2006 MEM_VOLATILE_P (ref) = 1; 2007 2008 /* Now remove any conversions: they don't change what the underlying 2009 object is. Likewise for SAVE_EXPR. */ 2010 while (CONVERT_EXPR_P (t) 2011 || TREE_CODE (t) == VIEW_CONVERT_EXPR 2012 || TREE_CODE (t) == SAVE_EXPR) 2013 t = TREE_OPERAND (t, 0); 2014 2015 /* Note whether this expression can trap. */ 2016 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t); 2017 2018 base = get_base_address (t); 2019 if (base) 2020 { 2021 if (DECL_P (base) 2022 && TREE_READONLY (base) 2023 && (TREE_STATIC (base) || DECL_EXTERNAL (base)) 2024 && !TREE_THIS_VOLATILE (base)) 2025 MEM_READONLY_P (ref) = 1; 2026 2027 /* Mark static const strings readonly as well. */ 2028 if (TREE_CODE (base) == STRING_CST 2029 && TREE_READONLY (base) 2030 && TREE_STATIC (base)) 2031 MEM_READONLY_P (ref) = 1; 2032 2033 /* Address-space information is on the base object. */ 2034 if (TREE_CODE (base) == MEM_REF 2035 || TREE_CODE (base) == TARGET_MEM_REF) 2036 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base, 2037 0)))); 2038 else 2039 as = TYPE_ADDR_SPACE (TREE_TYPE (base)); 2040 } 2041 2042 /* If this expression uses it's parent's alias set, mark it such 2043 that we won't change it. */ 2044 if (component_uses_parent_alias_set_from (t) != NULL_TREE) 2045 MEM_KEEP_ALIAS_SET_P (ref) = 1; 2046 2047 /* If this is a decl, set the attributes of the MEM from it. */ 2048 if (DECL_P (t)) 2049 { 2050 attrs.expr = t; 2051 attrs.offset_known_p = true; 2052 attrs.offset = 0; 2053 apply_bitpos = bitpos; 2054 new_size = DECL_SIZE_UNIT (t); 2055 } 2056 2057 /* ??? If we end up with a constant here do record a MEM_EXPR. */ 2058 else if (CONSTANT_CLASS_P (t)) 2059 ; 2060 2061 /* If this is a field reference, record it. */ 2062 else if (TREE_CODE (t) == COMPONENT_REF) 2063 { 2064 attrs.expr = t; 2065 attrs.offset_known_p = true; 2066 attrs.offset = 0; 2067 apply_bitpos = bitpos; 2068 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1))) 2069 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1)); 2070 } 2071 2072 /* If this is an array reference, look for an outer field reference. */ 2073 else if (TREE_CODE (t) == ARRAY_REF) 2074 { 2075 tree off_tree = size_zero_node; 2076 /* We can't modify t, because we use it at the end of the 2077 function. */ 2078 tree t2 = t; 2079 2080 do 2081 { 2082 tree index = TREE_OPERAND (t2, 1); 2083 tree low_bound = array_ref_low_bound (t2); 2084 tree unit_size = array_ref_element_size (t2); 2085 2086 /* We assume all arrays have sizes that are a multiple of a byte. 2087 First subtract the lower bound, if any, in the type of the 2088 index, then convert to sizetype and multiply by the size of 2089 the array element. */ 2090 if (! integer_zerop (low_bound)) 2091 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index), 2092 index, low_bound); 2093 2094 off_tree = size_binop (PLUS_EXPR, 2095 size_binop (MULT_EXPR, 2096 fold_convert (sizetype, 2097 index), 2098 unit_size), 2099 off_tree); 2100 t2 = TREE_OPERAND (t2, 0); 2101 } 2102 while (TREE_CODE (t2) == ARRAY_REF); 2103 2104 if (DECL_P (t2) 2105 || (TREE_CODE (t2) == COMPONENT_REF 2106 /* For trailing arrays t2 doesn't have a size that 2107 covers all valid accesses. */ 2108 && ! array_at_struct_end_p (t))) 2109 { 2110 attrs.expr = t2; 2111 attrs.offset_known_p = false; 2112 if (poly_int_tree_p (off_tree, &attrs.offset)) 2113 { 2114 attrs.offset_known_p = true; 2115 apply_bitpos = bitpos; 2116 } 2117 } 2118 /* Else do not record a MEM_EXPR. */ 2119 } 2120 2121 /* If this is an indirect reference, record it. */ 2122 else if (TREE_CODE (t) == MEM_REF 2123 || TREE_CODE (t) == TARGET_MEM_REF) 2124 { 2125 attrs.expr = t; 2126 attrs.offset_known_p = true; 2127 attrs.offset = 0; 2128 apply_bitpos = bitpos; 2129 } 2130 2131 /* Compute the alignment. */ 2132 unsigned int obj_align; 2133 unsigned HOST_WIDE_INT obj_bitpos; 2134 get_object_alignment_1 (t, &obj_align, &obj_bitpos); 2135 unsigned int diff_align = known_alignment (obj_bitpos - bitpos); 2136 if (diff_align != 0) 2137 obj_align = MIN (obj_align, diff_align); 2138 attrs.align = MAX (attrs.align, obj_align); 2139 } 2140 2141 poly_uint64 const_size; 2142 if (poly_int_tree_p (new_size, &const_size)) 2143 { 2144 attrs.size_known_p = true; 2145 attrs.size = const_size; 2146 } 2147 2148 /* If we modified OFFSET based on T, then subtract the outstanding 2149 bit position offset. Similarly, increase the size of the accessed 2150 object to contain the negative offset. */ 2151 if (maybe_ne (apply_bitpos, 0)) 2152 { 2153 gcc_assert (attrs.offset_known_p); 2154 poly_int64 bytepos = bits_to_bytes_round_down (apply_bitpos); 2155 attrs.offset -= bytepos; 2156 if (attrs.size_known_p) 2157 attrs.size += bytepos; 2158 } 2159 2160 /* Now set the attributes we computed above. */ 2161 attrs.addrspace = as; 2162 set_mem_attrs (ref, &attrs); 2163 } 2164 2165 void 2166 set_mem_attributes (rtx ref, tree t, int objectp) 2167 { 2168 set_mem_attributes_minus_bitpos (ref, t, objectp, 0); 2169 } 2170 2171 /* Set the alias set of MEM to SET. */ 2172 2173 void 2174 set_mem_alias_set (rtx mem, alias_set_type set) 2175 { 2176 /* If the new and old alias sets don't conflict, something is wrong. */ 2177 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem))); 2178 mem_attrs attrs (*get_mem_attrs (mem)); 2179 attrs.alias = set; 2180 set_mem_attrs (mem, &attrs); 2181 } 2182 2183 /* Set the address space of MEM to ADDRSPACE (target-defined). */ 2184 2185 void 2186 set_mem_addr_space (rtx mem, addr_space_t addrspace) 2187 { 2188 mem_attrs attrs (*get_mem_attrs (mem)); 2189 attrs.addrspace = addrspace; 2190 set_mem_attrs (mem, &attrs); 2191 } 2192 2193 /* Set the alignment of MEM to ALIGN bits. */ 2194 2195 void 2196 set_mem_align (rtx mem, unsigned int align) 2197 { 2198 mem_attrs attrs (*get_mem_attrs (mem)); 2199 attrs.align = align; 2200 set_mem_attrs (mem, &attrs); 2201 } 2202 2203 /* Set the expr for MEM to EXPR. */ 2204 2205 void 2206 set_mem_expr (rtx mem, tree expr) 2207 { 2208 mem_attrs attrs (*get_mem_attrs (mem)); 2209 attrs.expr = expr; 2210 set_mem_attrs (mem, &attrs); 2211 } 2212 2213 /* Set the offset of MEM to OFFSET. */ 2214 2215 void 2216 set_mem_offset (rtx mem, poly_int64 offset) 2217 { 2218 mem_attrs attrs (*get_mem_attrs (mem)); 2219 attrs.offset_known_p = true; 2220 attrs.offset = offset; 2221 set_mem_attrs (mem, &attrs); 2222 } 2223 2224 /* Clear the offset of MEM. */ 2225 2226 void 2227 clear_mem_offset (rtx mem) 2228 { 2229 mem_attrs attrs (*get_mem_attrs (mem)); 2230 attrs.offset_known_p = false; 2231 set_mem_attrs (mem, &attrs); 2232 } 2233 2234 /* Set the size of MEM to SIZE. */ 2235 2236 void 2237 set_mem_size (rtx mem, poly_int64 size) 2238 { 2239 mem_attrs attrs (*get_mem_attrs (mem)); 2240 attrs.size_known_p = true; 2241 attrs.size = size; 2242 set_mem_attrs (mem, &attrs); 2243 } 2244 2245 /* Clear the size of MEM. */ 2246 2247 void 2248 clear_mem_size (rtx mem) 2249 { 2250 mem_attrs attrs (*get_mem_attrs (mem)); 2251 attrs.size_known_p = false; 2252 set_mem_attrs (mem, &attrs); 2253 } 2254 2255 /* Return a memory reference like MEMREF, but with its mode changed to MODE 2256 and its address changed to ADDR. (VOIDmode means don't change the mode. 2257 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the 2258 returned memory location is required to be valid. INPLACE is true if any 2259 changes can be made directly to MEMREF or false if MEMREF must be treated 2260 as immutable. 2261 2262 The memory attributes are not changed. */ 2263 2264 static rtx 2265 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate, 2266 bool inplace) 2267 { 2268 addr_space_t as; 2269 rtx new_rtx; 2270 2271 gcc_assert (MEM_P (memref)); 2272 as = MEM_ADDR_SPACE (memref); 2273 if (mode == VOIDmode) 2274 mode = GET_MODE (memref); 2275 if (addr == 0) 2276 addr = XEXP (memref, 0); 2277 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0) 2278 && (!validate || memory_address_addr_space_p (mode, addr, as))) 2279 return memref; 2280 2281 /* Don't validate address for LRA. LRA can make the address valid 2282 by itself in most efficient way. */ 2283 if (validate && !lra_in_progress) 2284 { 2285 if (reload_in_progress || reload_completed) 2286 gcc_assert (memory_address_addr_space_p (mode, addr, as)); 2287 else 2288 addr = memory_address_addr_space (mode, addr, as); 2289 } 2290 2291 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref)) 2292 return memref; 2293 2294 if (inplace) 2295 { 2296 XEXP (memref, 0) = addr; 2297 return memref; 2298 } 2299 2300 new_rtx = gen_rtx_MEM (mode, addr); 2301 MEM_COPY_ATTRIBUTES (new_rtx, memref); 2302 return new_rtx; 2303 } 2304 2305 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what 2306 way we are changing MEMREF, so we only preserve the alias set. */ 2307 2308 rtx 2309 change_address (rtx memref, machine_mode mode, rtx addr) 2310 { 2311 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false); 2312 machine_mode mmode = GET_MODE (new_rtx); 2313 struct mem_attrs *defattrs; 2314 2315 mem_attrs attrs (*get_mem_attrs (memref)); 2316 defattrs = mode_mem_attrs[(int) mmode]; 2317 attrs.expr = NULL_TREE; 2318 attrs.offset_known_p = false; 2319 attrs.size_known_p = defattrs->size_known_p; 2320 attrs.size = defattrs->size; 2321 attrs.align = defattrs->align; 2322 2323 /* If there are no changes, just return the original memory reference. */ 2324 if (new_rtx == memref) 2325 { 2326 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs)) 2327 return new_rtx; 2328 2329 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0)); 2330 MEM_COPY_ATTRIBUTES (new_rtx, memref); 2331 } 2332 2333 set_mem_attrs (new_rtx, &attrs); 2334 return new_rtx; 2335 } 2336 2337 /* Return a memory reference like MEMREF, but with its mode changed 2338 to MODE and its address offset by OFFSET bytes. If VALIDATE is 2339 nonzero, the memory address is forced to be valid. 2340 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS 2341 and the caller is responsible for adjusting MEMREF base register. 2342 If ADJUST_OBJECT is zero, the underlying object associated with the 2343 memory reference is left unchanged and the caller is responsible for 2344 dealing with it. Otherwise, if the new memory reference is outside 2345 the underlying object, even partially, then the object is dropped. 2346 SIZE, if nonzero, is the size of an access in cases where MODE 2347 has no inherent size. */ 2348 2349 rtx 2350 adjust_address_1 (rtx memref, machine_mode mode, poly_int64 offset, 2351 int validate, int adjust_address, int adjust_object, 2352 poly_int64 size) 2353 { 2354 rtx addr = XEXP (memref, 0); 2355 rtx new_rtx; 2356 scalar_int_mode address_mode; 2357 struct mem_attrs attrs (*get_mem_attrs (memref)), *defattrs; 2358 unsigned HOST_WIDE_INT max_align; 2359 #ifdef POINTERS_EXTEND_UNSIGNED 2360 scalar_int_mode pointer_mode 2361 = targetm.addr_space.pointer_mode (attrs.addrspace); 2362 #endif 2363 2364 /* VOIDmode means no mode change for change_address_1. */ 2365 if (mode == VOIDmode) 2366 mode = GET_MODE (memref); 2367 2368 /* Take the size of non-BLKmode accesses from the mode. */ 2369 defattrs = mode_mem_attrs[(int) mode]; 2370 if (defattrs->size_known_p) 2371 size = defattrs->size; 2372 2373 /* If there are no changes, just return the original memory reference. */ 2374 if (mode == GET_MODE (memref) 2375 && known_eq (offset, 0) 2376 && (known_eq (size, 0) 2377 || (attrs.size_known_p && known_eq (attrs.size, size))) 2378 && (!validate || memory_address_addr_space_p (mode, addr, 2379 attrs.addrspace))) 2380 return memref; 2381 2382 /* ??? Prefer to create garbage instead of creating shared rtl. 2383 This may happen even if offset is nonzero -- consider 2384 (plus (plus reg reg) const_int) -- so do this always. */ 2385 addr = copy_rtx (addr); 2386 2387 /* Convert a possibly large offset to a signed value within the 2388 range of the target address space. */ 2389 address_mode = get_address_mode (memref); 2390 offset = trunc_int_for_mode (offset, address_mode); 2391 2392 if (adjust_address) 2393 { 2394 /* If MEMREF is a LO_SUM and the offset is within the alignment of the 2395 object, we can merge it into the LO_SUM. */ 2396 if (GET_MODE (memref) != BLKmode 2397 && GET_CODE (addr) == LO_SUM 2398 && known_in_range_p (offset, 2399 0, (GET_MODE_ALIGNMENT (GET_MODE (memref)) 2400 / BITS_PER_UNIT))) 2401 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0), 2402 plus_constant (address_mode, 2403 XEXP (addr, 1), offset)); 2404 #ifdef POINTERS_EXTEND_UNSIGNED 2405 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid 2406 in that mode, we merge it into the ZERO_EXTEND. We take advantage of 2407 the fact that pointers are not allowed to overflow. */ 2408 else if (POINTERS_EXTEND_UNSIGNED > 0 2409 && GET_CODE (addr) == ZERO_EXTEND 2410 && GET_MODE (XEXP (addr, 0)) == pointer_mode 2411 && known_eq (trunc_int_for_mode (offset, pointer_mode), offset)) 2412 addr = gen_rtx_ZERO_EXTEND (address_mode, 2413 plus_constant (pointer_mode, 2414 XEXP (addr, 0), offset)); 2415 #endif 2416 else 2417 addr = plus_constant (address_mode, addr, offset); 2418 } 2419 2420 new_rtx = change_address_1 (memref, mode, addr, validate, false); 2421 2422 /* If the address is a REG, change_address_1 rightfully returns memref, 2423 but this would destroy memref's MEM_ATTRS. */ 2424 if (new_rtx == memref && maybe_ne (offset, 0)) 2425 new_rtx = copy_rtx (new_rtx); 2426 2427 /* Conservatively drop the object if we don't know where we start from. */ 2428 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p)) 2429 { 2430 attrs.expr = NULL_TREE; 2431 attrs.alias = 0; 2432 } 2433 2434 /* Compute the new values of the memory attributes due to this adjustment. 2435 We add the offsets and update the alignment. */ 2436 if (attrs.offset_known_p) 2437 { 2438 attrs.offset += offset; 2439 2440 /* Drop the object if the new left end is not within its bounds. */ 2441 if (adjust_object && maybe_lt (attrs.offset, 0)) 2442 { 2443 attrs.expr = NULL_TREE; 2444 attrs.alias = 0; 2445 } 2446 } 2447 2448 /* Compute the new alignment by taking the MIN of the alignment and the 2449 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET 2450 if zero. */ 2451 if (maybe_ne (offset, 0)) 2452 { 2453 max_align = known_alignment (offset) * BITS_PER_UNIT; 2454 attrs.align = MIN (attrs.align, max_align); 2455 } 2456 2457 if (maybe_ne (size, 0)) 2458 { 2459 /* Drop the object if the new right end is not within its bounds. */ 2460 if (adjust_object && maybe_gt (offset + size, attrs.size)) 2461 { 2462 attrs.expr = NULL_TREE; 2463 attrs.alias = 0; 2464 } 2465 attrs.size_known_p = true; 2466 attrs.size = size; 2467 } 2468 else if (attrs.size_known_p) 2469 { 2470 gcc_assert (!adjust_object); 2471 attrs.size -= offset; 2472 /* ??? The store_by_pieces machinery generates negative sizes, 2473 so don't assert for that here. */ 2474 } 2475 2476 set_mem_attrs (new_rtx, &attrs); 2477 2478 return new_rtx; 2479 } 2480 2481 /* Return a memory reference like MEMREF, but with its mode changed 2482 to MODE and its address changed to ADDR, which is assumed to be 2483 MEMREF offset by OFFSET bytes. If VALIDATE is 2484 nonzero, the memory address is forced to be valid. */ 2485 2486 rtx 2487 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr, 2488 poly_int64 offset, int validate) 2489 { 2490 memref = change_address_1 (memref, VOIDmode, addr, validate, false); 2491 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0); 2492 } 2493 2494 /* Return a memory reference like MEMREF, but whose address is changed by 2495 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor 2496 known to be in OFFSET (possibly 1). */ 2497 2498 rtx 2499 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2) 2500 { 2501 rtx new_rtx, addr = XEXP (memref, 0); 2502 machine_mode address_mode; 2503 struct mem_attrs *defattrs; 2504 2505 mem_attrs attrs (*get_mem_attrs (memref)); 2506 address_mode = get_address_mode (memref); 2507 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset); 2508 2509 /* At this point we don't know _why_ the address is invalid. It 2510 could have secondary memory references, multiplies or anything. 2511 2512 However, if we did go and rearrange things, we can wind up not 2513 being able to recognize the magic around pic_offset_table_rtx. 2514 This stuff is fragile, and is yet another example of why it is 2515 bad to expose PIC machinery too early. */ 2516 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx, 2517 attrs.addrspace) 2518 && GET_CODE (addr) == PLUS 2519 && XEXP (addr, 0) == pic_offset_table_rtx) 2520 { 2521 addr = force_reg (GET_MODE (addr), addr); 2522 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset); 2523 } 2524 2525 update_temp_slot_address (XEXP (memref, 0), new_rtx); 2526 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false); 2527 2528 /* If there are no changes, just return the original memory reference. */ 2529 if (new_rtx == memref) 2530 return new_rtx; 2531 2532 /* Update the alignment to reflect the offset. Reset the offset, which 2533 we don't know. */ 2534 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)]; 2535 attrs.offset_known_p = false; 2536 attrs.size_known_p = defattrs->size_known_p; 2537 attrs.size = defattrs->size; 2538 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT); 2539 set_mem_attrs (new_rtx, &attrs); 2540 return new_rtx; 2541 } 2542 2543 /* Return a memory reference like MEMREF, but with its address changed to 2544 ADDR. The caller is asserting that the actual piece of memory pointed 2545 to is the same, just the form of the address is being changed, such as 2546 by putting something into a register. INPLACE is true if any changes 2547 can be made directly to MEMREF or false if MEMREF must be treated as 2548 immutable. */ 2549 2550 rtx 2551 replace_equiv_address (rtx memref, rtx addr, bool inplace) 2552 { 2553 /* change_address_1 copies the memory attribute structure without change 2554 and that's exactly what we want here. */ 2555 update_temp_slot_address (XEXP (memref, 0), addr); 2556 return change_address_1 (memref, VOIDmode, addr, 1, inplace); 2557 } 2558 2559 /* Likewise, but the reference is not required to be valid. */ 2560 2561 rtx 2562 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace) 2563 { 2564 return change_address_1 (memref, VOIDmode, addr, 0, inplace); 2565 } 2566 2567 /* Return a memory reference like MEMREF, but with its mode widened to 2568 MODE and offset by OFFSET. This would be used by targets that e.g. 2569 cannot issue QImode memory operations and have to use SImode memory 2570 operations plus masking logic. */ 2571 2572 rtx 2573 widen_memory_access (rtx memref, machine_mode mode, poly_int64 offset) 2574 { 2575 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0); 2576 poly_uint64 size = GET_MODE_SIZE (mode); 2577 2578 /* If there are no changes, just return the original memory reference. */ 2579 if (new_rtx == memref) 2580 return new_rtx; 2581 2582 mem_attrs attrs (*get_mem_attrs (new_rtx)); 2583 2584 /* If we don't know what offset we were at within the expression, then 2585 we can't know if we've overstepped the bounds. */ 2586 if (! attrs.offset_known_p) 2587 attrs.expr = NULL_TREE; 2588 2589 while (attrs.expr) 2590 { 2591 if (TREE_CODE (attrs.expr) == COMPONENT_REF) 2592 { 2593 tree field = TREE_OPERAND (attrs.expr, 1); 2594 tree offset = component_ref_field_offset (attrs.expr); 2595 2596 if (! DECL_SIZE_UNIT (field)) 2597 { 2598 attrs.expr = NULL_TREE; 2599 break; 2600 } 2601 2602 /* Is the field at least as large as the access? If so, ok, 2603 otherwise strip back to the containing structure. */ 2604 if (poly_int_tree_p (DECL_SIZE_UNIT (field)) 2605 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (field)), size) 2606 && known_ge (attrs.offset, 0)) 2607 break; 2608 2609 poly_uint64 suboffset; 2610 if (!poly_int_tree_p (offset, &suboffset)) 2611 { 2612 attrs.expr = NULL_TREE; 2613 break; 2614 } 2615 2616 attrs.expr = TREE_OPERAND (attrs.expr, 0); 2617 attrs.offset += suboffset; 2618 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)) 2619 / BITS_PER_UNIT); 2620 } 2621 /* Similarly for the decl. */ 2622 else if (DECL_P (attrs.expr) 2623 && DECL_SIZE_UNIT (attrs.expr) 2624 && poly_int_tree_p (DECL_SIZE_UNIT (attrs.expr)) 2625 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (attrs.expr)), 2626 size) 2627 && known_ge (attrs.offset, 0)) 2628 break; 2629 else 2630 { 2631 /* The widened memory access overflows the expression, which means 2632 that it could alias another expression. Zap it. */ 2633 attrs.expr = NULL_TREE; 2634 break; 2635 } 2636 } 2637 2638 if (! attrs.expr) 2639 attrs.offset_known_p = false; 2640 2641 /* The widened memory may alias other stuff, so zap the alias set. */ 2642 /* ??? Maybe use get_alias_set on any remaining expression. */ 2643 attrs.alias = 0; 2644 attrs.size_known_p = true; 2645 attrs.size = size; 2646 set_mem_attrs (new_rtx, &attrs); 2647 return new_rtx; 2648 } 2649 2650 /* A fake decl that is used as the MEM_EXPR of spill slots. */ 2651 static GTY(()) tree spill_slot_decl; 2652 2653 tree 2654 get_spill_slot_decl (bool force_build_p) 2655 { 2656 tree d = spill_slot_decl; 2657 rtx rd; 2658 2659 if (d || !force_build_p) 2660 return d; 2661 2662 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl), 2663 VAR_DECL, get_identifier ("%sfp"), void_type_node); 2664 DECL_ARTIFICIAL (d) = 1; 2665 DECL_IGNORED_P (d) = 1; 2666 TREE_USED (d) = 1; 2667 spill_slot_decl = d; 2668 2669 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx); 2670 MEM_NOTRAP_P (rd) = 1; 2671 mem_attrs attrs (*mode_mem_attrs[(int) BLKmode]); 2672 attrs.alias = new_alias_set (); 2673 attrs.expr = d; 2674 set_mem_attrs (rd, &attrs); 2675 SET_DECL_RTL (d, rd); 2676 2677 return d; 2678 } 2679 2680 /* Given MEM, a result from assign_stack_local, fill in the memory 2681 attributes as appropriate for a register allocator spill slot. 2682 These slots are not aliasable by other memory. We arrange for 2683 them all to use a single MEM_EXPR, so that the aliasing code can 2684 work properly in the case of shared spill slots. */ 2685 2686 void 2687 set_mem_attrs_for_spill (rtx mem) 2688 { 2689 rtx addr; 2690 2691 mem_attrs attrs (*get_mem_attrs (mem)); 2692 attrs.expr = get_spill_slot_decl (true); 2693 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr)); 2694 attrs.addrspace = ADDR_SPACE_GENERIC; 2695 2696 /* We expect the incoming memory to be of the form: 2697 (mem:MODE (plus (reg sfp) (const_int offset))) 2698 with perhaps the plus missing for offset = 0. */ 2699 addr = XEXP (mem, 0); 2700 attrs.offset_known_p = true; 2701 strip_offset (addr, &attrs.offset); 2702 2703 set_mem_attrs (mem, &attrs); 2704 MEM_NOTRAP_P (mem) = 1; 2705 } 2706 2707 /* Return a newly created CODE_LABEL rtx with a unique label number. */ 2708 2709 rtx_code_label * 2710 gen_label_rtx (void) 2711 { 2712 return as_a <rtx_code_label *> ( 2713 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX, 2714 NULL, label_num++, NULL)); 2715 } 2716 2717 /* For procedure integration. */ 2718 2719 /* Install new pointers to the first and last insns in the chain. 2720 Also, set cur_insn_uid to one higher than the last in use. 2721 Used for an inline-procedure after copying the insn chain. */ 2722 2723 void 2724 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last) 2725 { 2726 rtx_insn *insn; 2727 2728 set_first_insn (first); 2729 set_last_insn (last); 2730 cur_insn_uid = 0; 2731 2732 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS) 2733 { 2734 int debug_count = 0; 2735 2736 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1; 2737 cur_debug_insn_uid = 0; 2738 2739 for (insn = first; insn; insn = NEXT_INSN (insn)) 2740 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID) 2741 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn)); 2742 else 2743 { 2744 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn)); 2745 if (DEBUG_INSN_P (insn)) 2746 debug_count++; 2747 } 2748 2749 if (debug_count) 2750 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count; 2751 else 2752 cur_debug_insn_uid++; 2753 } 2754 else 2755 for (insn = first; insn; insn = NEXT_INSN (insn)) 2756 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn)); 2757 2758 cur_insn_uid++; 2759 } 2760 2761 /* Go through all the RTL insn bodies and copy any invalid shared 2762 structure. This routine should only be called once. */ 2763 2764 static void 2765 unshare_all_rtl_1 (rtx_insn *insn) 2766 { 2767 /* Unshare just about everything else. */ 2768 unshare_all_rtl_in_chain (insn); 2769 2770 /* Make sure the addresses of stack slots found outside the insn chain 2771 (such as, in DECL_RTL of a variable) are not shared 2772 with the insn chain. 2773 2774 This special care is necessary when the stack slot MEM does not 2775 actually appear in the insn chain. If it does appear, its address 2776 is unshared from all else at that point. */ 2777 unsigned int i; 2778 rtx temp; 2779 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp) 2780 (*stack_slot_list)[i] = copy_rtx_if_shared (temp); 2781 } 2782 2783 /* Go through all the RTL insn bodies and copy any invalid shared 2784 structure, again. This is a fairly expensive thing to do so it 2785 should be done sparingly. */ 2786 2787 void 2788 unshare_all_rtl_again (rtx_insn *insn) 2789 { 2790 rtx_insn *p; 2791 tree decl; 2792 2793 for (p = insn; p; p = NEXT_INSN (p)) 2794 if (INSN_P (p)) 2795 { 2796 reset_used_flags (PATTERN (p)); 2797 reset_used_flags (REG_NOTES (p)); 2798 if (CALL_P (p)) 2799 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p)); 2800 } 2801 2802 /* Make sure that virtual stack slots are not shared. */ 2803 set_used_decls (DECL_INITIAL (cfun->decl)); 2804 2805 /* Make sure that virtual parameters are not shared. */ 2806 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl)) 2807 set_used_flags (DECL_RTL (decl)); 2808 2809 rtx temp; 2810 unsigned int i; 2811 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp) 2812 reset_used_flags (temp); 2813 2814 unshare_all_rtl_1 (insn); 2815 } 2816 2817 unsigned int 2818 unshare_all_rtl (void) 2819 { 2820 unshare_all_rtl_1 (get_insns ()); 2821 2822 for (tree decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl)) 2823 { 2824 if (DECL_RTL_SET_P (decl)) 2825 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl))); 2826 DECL_INCOMING_RTL (decl) = copy_rtx_if_shared (DECL_INCOMING_RTL (decl)); 2827 } 2828 2829 return 0; 2830 } 2831 2832 2833 /* Check that ORIG is not marked when it should not be and mark ORIG as in use, 2834 Recursively does the same for subexpressions. */ 2835 2836 static void 2837 verify_rtx_sharing (rtx orig, rtx insn) 2838 { 2839 rtx x = orig; 2840 int i; 2841 enum rtx_code code; 2842 const char *format_ptr; 2843 2844 if (x == 0) 2845 return; 2846 2847 code = GET_CODE (x); 2848 2849 /* These types may be freely shared. */ 2850 2851 switch (code) 2852 { 2853 case REG: 2854 case DEBUG_EXPR: 2855 case VALUE: 2856 CASE_CONST_ANY: 2857 case SYMBOL_REF: 2858 case LABEL_REF: 2859 case CODE_LABEL: 2860 case PC: 2861 case CC0: 2862 case RETURN: 2863 case SIMPLE_RETURN: 2864 case SCRATCH: 2865 /* SCRATCH must be shared because they represent distinct values. */ 2866 return; 2867 case CLOBBER: 2868 case CLOBBER_HIGH: 2869 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg 2870 clobbers or clobbers of hard registers that originated as pseudos. 2871 This is needed to allow safe register renaming. */ 2872 if (REG_P (XEXP (x, 0)) 2873 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0))) 2874 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0)))) 2875 return; 2876 break; 2877 2878 case CONST: 2879 if (shared_const_p (orig)) 2880 return; 2881 break; 2882 2883 case MEM: 2884 /* A MEM is allowed to be shared if its address is constant. */ 2885 if (CONSTANT_ADDRESS_P (XEXP (x, 0)) 2886 || reload_completed || reload_in_progress) 2887 return; 2888 2889 break; 2890 2891 default: 2892 break; 2893 } 2894 2895 /* This rtx may not be shared. If it has already been seen, 2896 replace it with a copy of itself. */ 2897 if (flag_checking && RTX_FLAG (x, used)) 2898 { 2899 error ("invalid rtl sharing found in the insn"); 2900 debug_rtx (insn); 2901 error ("shared rtx"); 2902 debug_rtx (x); 2903 internal_error ("internal consistency failure"); 2904 } 2905 gcc_assert (!RTX_FLAG (x, used)); 2906 2907 RTX_FLAG (x, used) = 1; 2908 2909 /* Now scan the subexpressions recursively. */ 2910 2911 format_ptr = GET_RTX_FORMAT (code); 2912 2913 for (i = 0; i < GET_RTX_LENGTH (code); i++) 2914 { 2915 switch (*format_ptr++) 2916 { 2917 case 'e': 2918 verify_rtx_sharing (XEXP (x, i), insn); 2919 break; 2920 2921 case 'E': 2922 if (XVEC (x, i) != NULL) 2923 { 2924 int j; 2925 int len = XVECLEN (x, i); 2926 2927 for (j = 0; j < len; j++) 2928 { 2929 /* We allow sharing of ASM_OPERANDS inside single 2930 instruction. */ 2931 if (j && GET_CODE (XVECEXP (x, i, j)) == SET 2932 && (GET_CODE (SET_SRC (XVECEXP (x, i, j))) 2933 == ASM_OPERANDS)) 2934 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn); 2935 else 2936 verify_rtx_sharing (XVECEXP (x, i, j), insn); 2937 } 2938 } 2939 break; 2940 } 2941 } 2942 return; 2943 } 2944 2945 /* Reset used-flags for INSN. */ 2946 2947 static void 2948 reset_insn_used_flags (rtx insn) 2949 { 2950 gcc_assert (INSN_P (insn)); 2951 reset_used_flags (PATTERN (insn)); 2952 reset_used_flags (REG_NOTES (insn)); 2953 if (CALL_P (insn)) 2954 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn)); 2955 } 2956 2957 /* Go through all the RTL insn bodies and clear all the USED bits. */ 2958 2959 static void 2960 reset_all_used_flags (void) 2961 { 2962 rtx_insn *p; 2963 2964 for (p = get_insns (); p; p = NEXT_INSN (p)) 2965 if (INSN_P (p)) 2966 { 2967 rtx pat = PATTERN (p); 2968 if (GET_CODE (pat) != SEQUENCE) 2969 reset_insn_used_flags (p); 2970 else 2971 { 2972 gcc_assert (REG_NOTES (p) == NULL); 2973 for (int i = 0; i < XVECLEN (pat, 0); i++) 2974 { 2975 rtx insn = XVECEXP (pat, 0, i); 2976 if (INSN_P (insn)) 2977 reset_insn_used_flags (insn); 2978 } 2979 } 2980 } 2981 } 2982 2983 /* Verify sharing in INSN. */ 2984 2985 static void 2986 verify_insn_sharing (rtx insn) 2987 { 2988 gcc_assert (INSN_P (insn)); 2989 verify_rtx_sharing (PATTERN (insn), insn); 2990 verify_rtx_sharing (REG_NOTES (insn), insn); 2991 if (CALL_P (insn)) 2992 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (insn), insn); 2993 } 2994 2995 /* Go through all the RTL insn bodies and check that there is no unexpected 2996 sharing in between the subexpressions. */ 2997 2998 DEBUG_FUNCTION void 2999 verify_rtl_sharing (void) 3000 { 3001 rtx_insn *p; 3002 3003 timevar_push (TV_VERIFY_RTL_SHARING); 3004 3005 reset_all_used_flags (); 3006 3007 for (p = get_insns (); p; p = NEXT_INSN (p)) 3008 if (INSN_P (p)) 3009 { 3010 rtx pat = PATTERN (p); 3011 if (GET_CODE (pat) != SEQUENCE) 3012 verify_insn_sharing (p); 3013 else 3014 for (int i = 0; i < XVECLEN (pat, 0); i++) 3015 { 3016 rtx insn = XVECEXP (pat, 0, i); 3017 if (INSN_P (insn)) 3018 verify_insn_sharing (insn); 3019 } 3020 } 3021 3022 reset_all_used_flags (); 3023 3024 timevar_pop (TV_VERIFY_RTL_SHARING); 3025 } 3026 3027 /* Go through all the RTL insn bodies and copy any invalid shared structure. 3028 Assumes the mark bits are cleared at entry. */ 3029 3030 void 3031 unshare_all_rtl_in_chain (rtx_insn *insn) 3032 { 3033 for (; insn; insn = NEXT_INSN (insn)) 3034 if (INSN_P (insn)) 3035 { 3036 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn)); 3037 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn)); 3038 if (CALL_P (insn)) 3039 CALL_INSN_FUNCTION_USAGE (insn) 3040 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn)); 3041 } 3042 } 3043 3044 /* Go through all virtual stack slots of a function and mark them as 3045 shared. We never replace the DECL_RTLs themselves with a copy, 3046 but expressions mentioned into a DECL_RTL cannot be shared with 3047 expressions in the instruction stream. 3048 3049 Note that reload may convert pseudo registers into memories in-place. 3050 Pseudo registers are always shared, but MEMs never are. Thus if we 3051 reset the used flags on MEMs in the instruction stream, we must set 3052 them again on MEMs that appear in DECL_RTLs. */ 3053 3054 static void 3055 set_used_decls (tree blk) 3056 { 3057 tree t; 3058 3059 /* Mark decls. */ 3060 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t)) 3061 if (DECL_RTL_SET_P (t)) 3062 set_used_flags (DECL_RTL (t)); 3063 3064 /* Now process sub-blocks. */ 3065 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t)) 3066 set_used_decls (t); 3067 } 3068 3069 /* Mark ORIG as in use, and return a copy of it if it was already in use. 3070 Recursively does the same for subexpressions. Uses 3071 copy_rtx_if_shared_1 to reduce stack space. */ 3072 3073 rtx 3074 copy_rtx_if_shared (rtx orig) 3075 { 3076 copy_rtx_if_shared_1 (&orig); 3077 return orig; 3078 } 3079 3080 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in 3081 use. Recursively does the same for subexpressions. */ 3082 3083 static void 3084 copy_rtx_if_shared_1 (rtx *orig1) 3085 { 3086 rtx x; 3087 int i; 3088 enum rtx_code code; 3089 rtx *last_ptr; 3090 const char *format_ptr; 3091 int copied = 0; 3092 int length; 3093 3094 /* Repeat is used to turn tail-recursion into iteration. */ 3095 repeat: 3096 x = *orig1; 3097 3098 if (x == 0) 3099 return; 3100 3101 code = GET_CODE (x); 3102 3103 /* These types may be freely shared. */ 3104 3105 switch (code) 3106 { 3107 case REG: 3108 case DEBUG_EXPR: 3109 case VALUE: 3110 CASE_CONST_ANY: 3111 case SYMBOL_REF: 3112 case LABEL_REF: 3113 case CODE_LABEL: 3114 case PC: 3115 case CC0: 3116 case RETURN: 3117 case SIMPLE_RETURN: 3118 case SCRATCH: 3119 /* SCRATCH must be shared because they represent distinct values. */ 3120 return; 3121 case CLOBBER: 3122 case CLOBBER_HIGH: 3123 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg 3124 clobbers or clobbers of hard registers that originated as pseudos. 3125 This is needed to allow safe register renaming. */ 3126 if (REG_P (XEXP (x, 0)) 3127 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0))) 3128 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0)))) 3129 return; 3130 break; 3131 3132 case CONST: 3133 if (shared_const_p (x)) 3134 return; 3135 break; 3136 3137 case DEBUG_INSN: 3138 case INSN: 3139 case JUMP_INSN: 3140 case CALL_INSN: 3141 case NOTE: 3142 case BARRIER: 3143 /* The chain of insns is not being copied. */ 3144 return; 3145 3146 default: 3147 break; 3148 } 3149 3150 /* This rtx may not be shared. If it has already been seen, 3151 replace it with a copy of itself. */ 3152 3153 if (RTX_FLAG (x, used)) 3154 { 3155 x = shallow_copy_rtx (x); 3156 copied = 1; 3157 } 3158 RTX_FLAG (x, used) = 1; 3159 3160 /* Now scan the subexpressions recursively. 3161 We can store any replaced subexpressions directly into X 3162 since we know X is not shared! Any vectors in X 3163 must be copied if X was copied. */ 3164 3165 format_ptr = GET_RTX_FORMAT (code); 3166 length = GET_RTX_LENGTH (code); 3167 last_ptr = NULL; 3168 3169 for (i = 0; i < length; i++) 3170 { 3171 switch (*format_ptr++) 3172 { 3173 case 'e': 3174 if (last_ptr) 3175 copy_rtx_if_shared_1 (last_ptr); 3176 last_ptr = &XEXP (x, i); 3177 break; 3178 3179 case 'E': 3180 if (XVEC (x, i) != NULL) 3181 { 3182 int j; 3183 int len = XVECLEN (x, i); 3184 3185 /* Copy the vector iff I copied the rtx and the length 3186 is nonzero. */ 3187 if (copied && len > 0) 3188 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem); 3189 3190 /* Call recursively on all inside the vector. */ 3191 for (j = 0; j < len; j++) 3192 { 3193 if (last_ptr) 3194 copy_rtx_if_shared_1 (last_ptr); 3195 last_ptr = &XVECEXP (x, i, j); 3196 } 3197 } 3198 break; 3199 } 3200 } 3201 *orig1 = x; 3202 if (last_ptr) 3203 { 3204 orig1 = last_ptr; 3205 goto repeat; 3206 } 3207 return; 3208 } 3209 3210 /* Set the USED bit in X and its non-shareable subparts to FLAG. */ 3211 3212 static void 3213 mark_used_flags (rtx x, int flag) 3214 { 3215 int i, j; 3216 enum rtx_code code; 3217 const char *format_ptr; 3218 int length; 3219 3220 /* Repeat is used to turn tail-recursion into iteration. */ 3221 repeat: 3222 if (x == 0) 3223 return; 3224 3225 code = GET_CODE (x); 3226 3227 /* These types may be freely shared so we needn't do any resetting 3228 for them. */ 3229 3230 switch (code) 3231 { 3232 case REG: 3233 case DEBUG_EXPR: 3234 case VALUE: 3235 CASE_CONST_ANY: 3236 case SYMBOL_REF: 3237 case CODE_LABEL: 3238 case PC: 3239 case CC0: 3240 case RETURN: 3241 case SIMPLE_RETURN: 3242 return; 3243 3244 case DEBUG_INSN: 3245 case INSN: 3246 case JUMP_INSN: 3247 case CALL_INSN: 3248 case NOTE: 3249 case LABEL_REF: 3250 case BARRIER: 3251 /* The chain of insns is not being copied. */ 3252 return; 3253 3254 default: 3255 break; 3256 } 3257 3258 RTX_FLAG (x, used) = flag; 3259 3260 format_ptr = GET_RTX_FORMAT (code); 3261 length = GET_RTX_LENGTH (code); 3262 3263 for (i = 0; i < length; i++) 3264 { 3265 switch (*format_ptr++) 3266 { 3267 case 'e': 3268 if (i == length-1) 3269 { 3270 x = XEXP (x, i); 3271 goto repeat; 3272 } 3273 mark_used_flags (XEXP (x, i), flag); 3274 break; 3275 3276 case 'E': 3277 for (j = 0; j < XVECLEN (x, i); j++) 3278 mark_used_flags (XVECEXP (x, i, j), flag); 3279 break; 3280 } 3281 } 3282 } 3283 3284 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used 3285 to look for shared sub-parts. */ 3286 3287 void 3288 reset_used_flags (rtx x) 3289 { 3290 mark_used_flags (x, 0); 3291 } 3292 3293 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used 3294 to look for shared sub-parts. */ 3295 3296 void 3297 set_used_flags (rtx x) 3298 { 3299 mark_used_flags (x, 1); 3300 } 3301 3302 /* Copy X if necessary so that it won't be altered by changes in OTHER. 3303 Return X or the rtx for the pseudo reg the value of X was copied into. 3304 OTHER must be valid as a SET_DEST. */ 3305 3306 rtx 3307 make_safe_from (rtx x, rtx other) 3308 { 3309 while (1) 3310 switch (GET_CODE (other)) 3311 { 3312 case SUBREG: 3313 other = SUBREG_REG (other); 3314 break; 3315 case STRICT_LOW_PART: 3316 case SIGN_EXTEND: 3317 case ZERO_EXTEND: 3318 other = XEXP (other, 0); 3319 break; 3320 default: 3321 goto done; 3322 } 3323 done: 3324 if ((MEM_P (other) 3325 && ! CONSTANT_P (x) 3326 && !REG_P (x) 3327 && GET_CODE (x) != SUBREG) 3328 || (REG_P (other) 3329 && (REGNO (other) < FIRST_PSEUDO_REGISTER 3330 || reg_mentioned_p (other, x)))) 3331 { 3332 rtx temp = gen_reg_rtx (GET_MODE (x)); 3333 emit_move_insn (temp, x); 3334 return temp; 3335 } 3336 return x; 3337 } 3338 3339 /* Emission of insns (adding them to the doubly-linked list). */ 3340 3341 /* Return the last insn emitted, even if it is in a sequence now pushed. */ 3342 3343 rtx_insn * 3344 get_last_insn_anywhere (void) 3345 { 3346 struct sequence_stack *seq; 3347 for (seq = get_current_sequence (); seq; seq = seq->next) 3348 if (seq->last != 0) 3349 return seq->last; 3350 return 0; 3351 } 3352 3353 /* Return the first nonnote insn emitted in current sequence or current 3354 function. This routine looks inside SEQUENCEs. */ 3355 3356 rtx_insn * 3357 get_first_nonnote_insn (void) 3358 { 3359 rtx_insn *insn = get_insns (); 3360 3361 if (insn) 3362 { 3363 if (NOTE_P (insn)) 3364 for (insn = next_insn (insn); 3365 insn && NOTE_P (insn); 3366 insn = next_insn (insn)) 3367 continue; 3368 else 3369 { 3370 if (NONJUMP_INSN_P (insn) 3371 && GET_CODE (PATTERN (insn)) == SEQUENCE) 3372 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0); 3373 } 3374 } 3375 3376 return insn; 3377 } 3378 3379 /* Return the last nonnote insn emitted in current sequence or current 3380 function. This routine looks inside SEQUENCEs. */ 3381 3382 rtx_insn * 3383 get_last_nonnote_insn (void) 3384 { 3385 rtx_insn *insn = get_last_insn (); 3386 3387 if (insn) 3388 { 3389 if (NOTE_P (insn)) 3390 for (insn = previous_insn (insn); 3391 insn && NOTE_P (insn); 3392 insn = previous_insn (insn)) 3393 continue; 3394 else 3395 { 3396 if (NONJUMP_INSN_P (insn)) 3397 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn))) 3398 insn = seq->insn (seq->len () - 1); 3399 } 3400 } 3401 3402 return insn; 3403 } 3404 3405 /* Return the number of actual (non-debug) insns emitted in this 3406 function. */ 3407 3408 int 3409 get_max_insn_count (void) 3410 { 3411 int n = cur_insn_uid; 3412 3413 /* The table size must be stable across -g, to avoid codegen 3414 differences due to debug insns, and not be affected by 3415 -fmin-insn-uid, to avoid excessive table size and to simplify 3416 debugging of -fcompare-debug failures. */ 3417 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID) 3418 n -= cur_debug_insn_uid; 3419 else 3420 n -= MIN_NONDEBUG_INSN_UID; 3421 3422 return n; 3423 } 3424 3425 3426 /* Return the next insn. If it is a SEQUENCE, return the first insn 3427 of the sequence. */ 3428 3429 rtx_insn * 3430 next_insn (rtx_insn *insn) 3431 { 3432 if (insn) 3433 { 3434 insn = NEXT_INSN (insn); 3435 if (insn && NONJUMP_INSN_P (insn) 3436 && GET_CODE (PATTERN (insn)) == SEQUENCE) 3437 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0); 3438 } 3439 3440 return insn; 3441 } 3442 3443 /* Return the previous insn. If it is a SEQUENCE, return the last insn 3444 of the sequence. */ 3445 3446 rtx_insn * 3447 previous_insn (rtx_insn *insn) 3448 { 3449 if (insn) 3450 { 3451 insn = PREV_INSN (insn); 3452 if (insn && NONJUMP_INSN_P (insn)) 3453 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn))) 3454 insn = seq->insn (seq->len () - 1); 3455 } 3456 3457 return insn; 3458 } 3459 3460 /* Return the next insn after INSN that is not a NOTE. This routine does not 3461 look inside SEQUENCEs. */ 3462 3463 rtx_insn * 3464 next_nonnote_insn (rtx_insn *insn) 3465 { 3466 while (insn) 3467 { 3468 insn = NEXT_INSN (insn); 3469 if (insn == 0 || !NOTE_P (insn)) 3470 break; 3471 } 3472 3473 return insn; 3474 } 3475 3476 /* Return the next insn after INSN that is not a DEBUG_INSN. This 3477 routine does not look inside SEQUENCEs. */ 3478 3479 rtx_insn * 3480 next_nondebug_insn (rtx_insn *insn) 3481 { 3482 while (insn) 3483 { 3484 insn = NEXT_INSN (insn); 3485 if (insn == 0 || !DEBUG_INSN_P (insn)) 3486 break; 3487 } 3488 3489 return insn; 3490 } 3491 3492 /* Return the previous insn before INSN that is not a NOTE. This routine does 3493 not look inside SEQUENCEs. */ 3494 3495 rtx_insn * 3496 prev_nonnote_insn (rtx_insn *insn) 3497 { 3498 while (insn) 3499 { 3500 insn = PREV_INSN (insn); 3501 if (insn == 0 || !NOTE_P (insn)) 3502 break; 3503 } 3504 3505 return insn; 3506 } 3507 3508 /* Return the previous insn before INSN that is not a DEBUG_INSN. 3509 This routine does not look inside SEQUENCEs. */ 3510 3511 rtx_insn * 3512 prev_nondebug_insn (rtx_insn *insn) 3513 { 3514 while (insn) 3515 { 3516 insn = PREV_INSN (insn); 3517 if (insn == 0 || !DEBUG_INSN_P (insn)) 3518 break; 3519 } 3520 3521 return insn; 3522 } 3523 3524 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN. 3525 This routine does not look inside SEQUENCEs. */ 3526 3527 rtx_insn * 3528 next_nonnote_nondebug_insn (rtx_insn *insn) 3529 { 3530 while (insn) 3531 { 3532 insn = NEXT_INSN (insn); 3533 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn))) 3534 break; 3535 } 3536 3537 return insn; 3538 } 3539 3540 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN, 3541 but stop the search before we enter another basic block. This 3542 routine does not look inside SEQUENCEs. */ 3543 3544 rtx_insn * 3545 next_nonnote_nondebug_insn_bb (rtx_insn *insn) 3546 { 3547 while (insn) 3548 { 3549 insn = NEXT_INSN (insn); 3550 if (insn == 0) 3551 break; 3552 if (DEBUG_INSN_P (insn)) 3553 continue; 3554 if (!NOTE_P (insn)) 3555 break; 3556 if (NOTE_INSN_BASIC_BLOCK_P (insn)) 3557 return NULL; 3558 } 3559 3560 return insn; 3561 } 3562 3563 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN. 3564 This routine does not look inside SEQUENCEs. */ 3565 3566 rtx_insn * 3567 prev_nonnote_nondebug_insn (rtx_insn *insn) 3568 { 3569 while (insn) 3570 { 3571 insn = PREV_INSN (insn); 3572 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn))) 3573 break; 3574 } 3575 3576 return insn; 3577 } 3578 3579 /* Return the previous insn before INSN that is not a NOTE nor 3580 DEBUG_INSN, but stop the search before we enter another basic 3581 block. This routine does not look inside SEQUENCEs. */ 3582 3583 rtx_insn * 3584 prev_nonnote_nondebug_insn_bb (rtx_insn *insn) 3585 { 3586 while (insn) 3587 { 3588 insn = PREV_INSN (insn); 3589 if (insn == 0) 3590 break; 3591 if (DEBUG_INSN_P (insn)) 3592 continue; 3593 if (!NOTE_P (insn)) 3594 break; 3595 if (NOTE_INSN_BASIC_BLOCK_P (insn)) 3596 return NULL; 3597 } 3598 3599 return insn; 3600 } 3601 3602 /* Return the next INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN after INSN; 3603 or 0, if there is none. This routine does not look inside 3604 SEQUENCEs. */ 3605 3606 rtx_insn * 3607 next_real_insn (rtx_insn *insn) 3608 { 3609 while (insn) 3610 { 3611 insn = NEXT_INSN (insn); 3612 if (insn == 0 || INSN_P (insn)) 3613 break; 3614 } 3615 3616 return insn; 3617 } 3618 3619 /* Return the last INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN before INSN; 3620 or 0, if there is none. This routine does not look inside 3621 SEQUENCEs. */ 3622 3623 rtx_insn * 3624 prev_real_insn (rtx_insn *insn) 3625 { 3626 while (insn) 3627 { 3628 insn = PREV_INSN (insn); 3629 if (insn == 0 || INSN_P (insn)) 3630 break; 3631 } 3632 3633 return insn; 3634 } 3635 3636 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN; 3637 or 0, if there is none. This routine does not look inside 3638 SEQUENCEs. */ 3639 3640 rtx_insn * 3641 next_real_nondebug_insn (rtx uncast_insn) 3642 { 3643 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn); 3644 3645 while (insn) 3646 { 3647 insn = NEXT_INSN (insn); 3648 if (insn == 0 || NONDEBUG_INSN_P (insn)) 3649 break; 3650 } 3651 3652 return insn; 3653 } 3654 3655 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN; 3656 or 0, if there is none. This routine does not look inside 3657 SEQUENCEs. */ 3658 3659 rtx_insn * 3660 prev_real_nondebug_insn (rtx_insn *insn) 3661 { 3662 while (insn) 3663 { 3664 insn = PREV_INSN (insn); 3665 if (insn == 0 || NONDEBUG_INSN_P (insn)) 3666 break; 3667 } 3668 3669 return insn; 3670 } 3671 3672 /* Return the last CALL_INSN in the current list, or 0 if there is none. 3673 This routine does not look inside SEQUENCEs. */ 3674 3675 rtx_call_insn * 3676 last_call_insn (void) 3677 { 3678 rtx_insn *insn; 3679 3680 for (insn = get_last_insn (); 3681 insn && !CALL_P (insn); 3682 insn = PREV_INSN (insn)) 3683 ; 3684 3685 return safe_as_a <rtx_call_insn *> (insn); 3686 } 3687 3688 /* Find the next insn after INSN that really does something. This routine 3689 does not look inside SEQUENCEs. After reload this also skips over 3690 standalone USE and CLOBBER insn. */ 3691 3692 int 3693 active_insn_p (const rtx_insn *insn) 3694 { 3695 return (CALL_P (insn) || JUMP_P (insn) 3696 || JUMP_TABLE_DATA_P (insn) /* FIXME */ 3697 || (NONJUMP_INSN_P (insn) 3698 && (! reload_completed 3699 || (GET_CODE (PATTERN (insn)) != USE 3700 && GET_CODE (PATTERN (insn)) != CLOBBER)))); 3701 } 3702 3703 rtx_insn * 3704 next_active_insn (rtx_insn *insn) 3705 { 3706 while (insn) 3707 { 3708 insn = NEXT_INSN (insn); 3709 if (insn == 0 || active_insn_p (insn)) 3710 break; 3711 } 3712 3713 return insn; 3714 } 3715 3716 /* Find the last insn before INSN that really does something. This routine 3717 does not look inside SEQUENCEs. After reload this also skips over 3718 standalone USE and CLOBBER insn. */ 3719 3720 rtx_insn * 3721 prev_active_insn (rtx_insn *insn) 3722 { 3723 while (insn) 3724 { 3725 insn = PREV_INSN (insn); 3726 if (insn == 0 || active_insn_p (insn)) 3727 break; 3728 } 3729 3730 return insn; 3731 } 3732 3733 /* Return the next insn that uses CC0 after INSN, which is assumed to 3734 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter 3735 applied to the result of this function should yield INSN). 3736 3737 Normally, this is simply the next insn. However, if a REG_CC_USER note 3738 is present, it contains the insn that uses CC0. 3739 3740 Return 0 if we can't find the insn. */ 3741 3742 rtx_insn * 3743 next_cc0_user (rtx_insn *insn) 3744 { 3745 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX); 3746 3747 if (note) 3748 return safe_as_a <rtx_insn *> (XEXP (note, 0)); 3749 3750 insn = next_nonnote_insn (insn); 3751 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE) 3752 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0); 3753 3754 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn))) 3755 return insn; 3756 3757 return 0; 3758 } 3759 3760 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER 3761 note, it is the previous insn. */ 3762 3763 rtx_insn * 3764 prev_cc0_setter (rtx_insn *insn) 3765 { 3766 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX); 3767 3768 if (note) 3769 return safe_as_a <rtx_insn *> (XEXP (note, 0)); 3770 3771 insn = prev_nonnote_insn (insn); 3772 gcc_assert (sets_cc0_p (PATTERN (insn))); 3773 3774 return insn; 3775 } 3776 3777 /* Find a RTX_AUTOINC class rtx which matches DATA. */ 3778 3779 static int 3780 find_auto_inc (const_rtx x, const_rtx reg) 3781 { 3782 subrtx_iterator::array_type array; 3783 FOR_EACH_SUBRTX (iter, array, x, NONCONST) 3784 { 3785 const_rtx x = *iter; 3786 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC 3787 && rtx_equal_p (reg, XEXP (x, 0))) 3788 return true; 3789 } 3790 return false; 3791 } 3792 3793 /* Increment the label uses for all labels present in rtx. */ 3794 3795 static void 3796 mark_label_nuses (rtx x) 3797 { 3798 enum rtx_code code; 3799 int i, j; 3800 const char *fmt; 3801 3802 code = GET_CODE (x); 3803 if (code == LABEL_REF && LABEL_P (label_ref_label (x))) 3804 LABEL_NUSES (label_ref_label (x))++; 3805 3806 fmt = GET_RTX_FORMAT (code); 3807 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 3808 { 3809 if (fmt[i] == 'e') 3810 mark_label_nuses (XEXP (x, i)); 3811 else if (fmt[i] == 'E') 3812 for (j = XVECLEN (x, i) - 1; j >= 0; j--) 3813 mark_label_nuses (XVECEXP (x, i, j)); 3814 } 3815 } 3816 3817 3818 /* Try splitting insns that can be split for better scheduling. 3819 PAT is the pattern which might split. 3820 TRIAL is the insn providing PAT. 3821 LAST is nonzero if we should return the last insn of the sequence produced. 3822 3823 If this routine succeeds in splitting, it returns the first or last 3824 replacement insn depending on the value of LAST. Otherwise, it 3825 returns TRIAL. If the insn to be returned can be split, it will be. */ 3826 3827 rtx_insn * 3828 try_split (rtx pat, rtx_insn *trial, int last) 3829 { 3830 rtx_insn *before, *after; 3831 rtx note; 3832 rtx_insn *seq, *tem; 3833 profile_probability probability; 3834 rtx_insn *insn_last, *insn; 3835 int njumps = 0; 3836 rtx_insn *call_insn = NULL; 3837 3838 /* We're not good at redistributing frame information. */ 3839 if (RTX_FRAME_RELATED_P (trial)) 3840 return trial; 3841 3842 if (any_condjump_p (trial) 3843 && (note = find_reg_note (trial, REG_BR_PROB, 0))) 3844 split_branch_probability 3845 = profile_probability::from_reg_br_prob_note (XINT (note, 0)); 3846 else 3847 split_branch_probability = profile_probability::uninitialized (); 3848 3849 probability = split_branch_probability; 3850 3851 seq = split_insns (pat, trial); 3852 3853 split_branch_probability = profile_probability::uninitialized (); 3854 3855 if (!seq) 3856 return trial; 3857 3858 /* Avoid infinite loop if any insn of the result matches 3859 the original pattern. */ 3860 insn_last = seq; 3861 while (1) 3862 { 3863 if (INSN_P (insn_last) 3864 && rtx_equal_p (PATTERN (insn_last), pat)) 3865 return trial; 3866 if (!NEXT_INSN (insn_last)) 3867 break; 3868 insn_last = NEXT_INSN (insn_last); 3869 } 3870 3871 /* We will be adding the new sequence to the function. The splitters 3872 may have introduced invalid RTL sharing, so unshare the sequence now. */ 3873 unshare_all_rtl_in_chain (seq); 3874 3875 /* Mark labels and copy flags. */ 3876 for (insn = insn_last; insn ; insn = PREV_INSN (insn)) 3877 { 3878 if (JUMP_P (insn)) 3879 { 3880 if (JUMP_P (trial)) 3881 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial); 3882 mark_jump_label (PATTERN (insn), insn, 0); 3883 njumps++; 3884 if (probability.initialized_p () 3885 && any_condjump_p (insn) 3886 && !find_reg_note (insn, REG_BR_PROB, 0)) 3887 { 3888 /* We can preserve the REG_BR_PROB notes only if exactly 3889 one jump is created, otherwise the machine description 3890 is responsible for this step using 3891 split_branch_probability variable. */ 3892 gcc_assert (njumps == 1); 3893 add_reg_br_prob_note (insn, probability); 3894 } 3895 } 3896 } 3897 3898 /* If we are splitting a CALL_INSN, look for the CALL_INSN 3899 in SEQ and copy any additional information across. */ 3900 if (CALL_P (trial)) 3901 { 3902 for (insn = insn_last; insn ; insn = PREV_INSN (insn)) 3903 if (CALL_P (insn)) 3904 { 3905 gcc_assert (call_insn == NULL_RTX); 3906 call_insn = insn; 3907 3908 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the 3909 target may have explicitly specified. */ 3910 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn); 3911 while (*p) 3912 p = &XEXP (*p, 1); 3913 *p = CALL_INSN_FUNCTION_USAGE (trial); 3914 3915 /* If the old call was a sibling call, the new one must 3916 be too. */ 3917 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial); 3918 } 3919 } 3920 3921 /* Copy notes, particularly those related to the CFG. */ 3922 for (note = REG_NOTES (trial); note; note = XEXP (note, 1)) 3923 { 3924 switch (REG_NOTE_KIND (note)) 3925 { 3926 case REG_EH_REGION: 3927 copy_reg_eh_region_note_backward (note, insn_last, NULL); 3928 break; 3929 3930 case REG_NORETURN: 3931 case REG_SETJMP: 3932 case REG_TM: 3933 case REG_CALL_NOCF_CHECK: 3934 case REG_CALL_ARG_LOCATION: 3935 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn)) 3936 { 3937 if (CALL_P (insn)) 3938 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0)); 3939 } 3940 break; 3941 3942 case REG_NON_LOCAL_GOTO: 3943 case REG_LABEL_TARGET: 3944 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn)) 3945 { 3946 if (JUMP_P (insn)) 3947 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0)); 3948 } 3949 break; 3950 3951 case REG_INC: 3952 if (!AUTO_INC_DEC) 3953 break; 3954 3955 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn)) 3956 { 3957 rtx reg = XEXP (note, 0); 3958 if (!FIND_REG_INC_NOTE (insn, reg) 3959 && find_auto_inc (PATTERN (insn), reg)) 3960 add_reg_note (insn, REG_INC, reg); 3961 } 3962 break; 3963 3964 case REG_ARGS_SIZE: 3965 fixup_args_size_notes (NULL, insn_last, get_args_size (note)); 3966 break; 3967 3968 case REG_CALL_DECL: 3969 gcc_assert (call_insn != NULL_RTX); 3970 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0)); 3971 break; 3972 3973 default: 3974 break; 3975 } 3976 } 3977 3978 /* If there are LABELS inside the split insns increment the 3979 usage count so we don't delete the label. */ 3980 if (INSN_P (trial)) 3981 { 3982 insn = insn_last; 3983 while (insn != NULL_RTX) 3984 { 3985 /* JUMP_P insns have already been "marked" above. */ 3986 if (NONJUMP_INSN_P (insn)) 3987 mark_label_nuses (PATTERN (insn)); 3988 3989 insn = PREV_INSN (insn); 3990 } 3991 } 3992 3993 before = PREV_INSN (trial); 3994 after = NEXT_INSN (trial); 3995 3996 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial)); 3997 3998 delete_insn (trial); 3999 4000 /* Recursively call try_split for each new insn created; by the 4001 time control returns here that insn will be fully split, so 4002 set LAST and continue from the insn after the one returned. 4003 We can't use next_active_insn here since AFTER may be a note. 4004 Ignore deleted insns, which can be occur if not optimizing. */ 4005 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem)) 4006 if (! tem->deleted () && INSN_P (tem)) 4007 tem = try_split (PATTERN (tem), tem, 1); 4008 4009 /* Return either the first or the last insn, depending on which was 4010 requested. */ 4011 return last 4012 ? (after ? PREV_INSN (after) : get_last_insn ()) 4013 : NEXT_INSN (before); 4014 } 4015 4016 /* Make and return an INSN rtx, initializing all its slots. 4017 Store PATTERN in the pattern slots. */ 4018 4019 rtx_insn * 4020 make_insn_raw (rtx pattern) 4021 { 4022 rtx_insn *insn; 4023 4024 insn = as_a <rtx_insn *> (rtx_alloc (INSN)); 4025 4026 INSN_UID (insn) = cur_insn_uid++; 4027 PATTERN (insn) = pattern; 4028 INSN_CODE (insn) = -1; 4029 REG_NOTES (insn) = NULL; 4030 INSN_LOCATION (insn) = curr_insn_location (); 4031 BLOCK_FOR_INSN (insn) = NULL; 4032 4033 #ifdef ENABLE_RTL_CHECKING 4034 if (insn 4035 && INSN_P (insn) 4036 && (returnjump_p (insn) 4037 || (GET_CODE (insn) == SET 4038 && SET_DEST (insn) == pc_rtx))) 4039 { 4040 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n"); 4041 debug_rtx (insn); 4042 } 4043 #endif 4044 4045 return insn; 4046 } 4047 4048 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */ 4049 4050 static rtx_insn * 4051 make_debug_insn_raw (rtx pattern) 4052 { 4053 rtx_debug_insn *insn; 4054 4055 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN)); 4056 INSN_UID (insn) = cur_debug_insn_uid++; 4057 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID) 4058 INSN_UID (insn) = cur_insn_uid++; 4059 4060 PATTERN (insn) = pattern; 4061 INSN_CODE (insn) = -1; 4062 REG_NOTES (insn) = NULL; 4063 INSN_LOCATION (insn) = curr_insn_location (); 4064 BLOCK_FOR_INSN (insn) = NULL; 4065 4066 return insn; 4067 } 4068 4069 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */ 4070 4071 static rtx_insn * 4072 make_jump_insn_raw (rtx pattern) 4073 { 4074 rtx_jump_insn *insn; 4075 4076 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN)); 4077 INSN_UID (insn) = cur_insn_uid++; 4078 4079 PATTERN (insn) = pattern; 4080 INSN_CODE (insn) = -1; 4081 REG_NOTES (insn) = NULL; 4082 JUMP_LABEL (insn) = NULL; 4083 INSN_LOCATION (insn) = curr_insn_location (); 4084 BLOCK_FOR_INSN (insn) = NULL; 4085 4086 return insn; 4087 } 4088 4089 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */ 4090 4091 static rtx_insn * 4092 make_call_insn_raw (rtx pattern) 4093 { 4094 rtx_call_insn *insn; 4095 4096 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN)); 4097 INSN_UID (insn) = cur_insn_uid++; 4098 4099 PATTERN (insn) = pattern; 4100 INSN_CODE (insn) = -1; 4101 REG_NOTES (insn) = NULL; 4102 CALL_INSN_FUNCTION_USAGE (insn) = NULL; 4103 INSN_LOCATION (insn) = curr_insn_location (); 4104 BLOCK_FOR_INSN (insn) = NULL; 4105 4106 return insn; 4107 } 4108 4109 /* Like `make_insn_raw' but make a NOTE instead of an insn. */ 4110 4111 static rtx_note * 4112 make_note_raw (enum insn_note subtype) 4113 { 4114 /* Some notes are never created this way at all. These notes are 4115 only created by patching out insns. */ 4116 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL 4117 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL); 4118 4119 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE)); 4120 INSN_UID (note) = cur_insn_uid++; 4121 NOTE_KIND (note) = subtype; 4122 BLOCK_FOR_INSN (note) = NULL; 4123 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note))); 4124 return note; 4125 } 4126 4127 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT. 4128 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects, 4129 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */ 4130 4131 static inline void 4132 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next) 4133 { 4134 SET_PREV_INSN (insn) = prev; 4135 SET_NEXT_INSN (insn) = next; 4136 if (prev != NULL) 4137 { 4138 SET_NEXT_INSN (prev) = insn; 4139 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE) 4140 { 4141 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev)); 4142 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn; 4143 } 4144 } 4145 if (next != NULL) 4146 { 4147 SET_PREV_INSN (next) = insn; 4148 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE) 4149 { 4150 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next)); 4151 SET_PREV_INSN (sequence->insn (0)) = insn; 4152 } 4153 } 4154 4155 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE) 4156 { 4157 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn)); 4158 SET_PREV_INSN (sequence->insn (0)) = prev; 4159 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next; 4160 } 4161 } 4162 4163 /* Add INSN to the end of the doubly-linked list. 4164 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */ 4165 4166 void 4167 add_insn (rtx_insn *insn) 4168 { 4169 rtx_insn *prev = get_last_insn (); 4170 link_insn_into_chain (insn, prev, NULL); 4171 if (get_insns () == NULL) 4172 set_first_insn (insn); 4173 set_last_insn (insn); 4174 } 4175 4176 /* Add INSN into the doubly-linked list after insn AFTER. */ 4177 4178 static void 4179 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after) 4180 { 4181 rtx_insn *next = NEXT_INSN (after); 4182 4183 gcc_assert (!optimize || !after->deleted ()); 4184 4185 link_insn_into_chain (insn, after, next); 4186 4187 if (next == NULL) 4188 { 4189 struct sequence_stack *seq; 4190 4191 for (seq = get_current_sequence (); seq; seq = seq->next) 4192 if (after == seq->last) 4193 { 4194 seq->last = insn; 4195 break; 4196 } 4197 } 4198 } 4199 4200 /* Add INSN into the doubly-linked list before insn BEFORE. */ 4201 4202 static void 4203 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before) 4204 { 4205 rtx_insn *prev = PREV_INSN (before); 4206 4207 gcc_assert (!optimize || !before->deleted ()); 4208 4209 link_insn_into_chain (insn, prev, before); 4210 4211 if (prev == NULL) 4212 { 4213 struct sequence_stack *seq; 4214 4215 for (seq = get_current_sequence (); seq; seq = seq->next) 4216 if (before == seq->first) 4217 { 4218 seq->first = insn; 4219 break; 4220 } 4221 4222 gcc_assert (seq); 4223 } 4224 } 4225 4226 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN. 4227 If BB is NULL, an attempt is made to infer the bb from before. 4228 4229 This and the next function should be the only functions called 4230 to insert an insn once delay slots have been filled since only 4231 they know how to update a SEQUENCE. */ 4232 4233 void 4234 add_insn_after (rtx_insn *insn, rtx_insn *after, basic_block bb) 4235 { 4236 add_insn_after_nobb (insn, after); 4237 if (!BARRIER_P (after) 4238 && !BARRIER_P (insn) 4239 && (bb = BLOCK_FOR_INSN (after))) 4240 { 4241 set_block_for_insn (insn, bb); 4242 if (INSN_P (insn)) 4243 df_insn_rescan (insn); 4244 /* Should not happen as first in the BB is always 4245 either NOTE or LABEL. */ 4246 if (BB_END (bb) == after 4247 /* Avoid clobbering of structure when creating new BB. */ 4248 && !BARRIER_P (insn) 4249 && !NOTE_INSN_BASIC_BLOCK_P (insn)) 4250 BB_END (bb) = insn; 4251 } 4252 } 4253 4254 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN. 4255 If BB is NULL, an attempt is made to infer the bb from before. 4256 4257 This and the previous function should be the only functions called 4258 to insert an insn once delay slots have been filled since only 4259 they know how to update a SEQUENCE. */ 4260 4261 void 4262 add_insn_before (rtx_insn *insn, rtx_insn *before, basic_block bb) 4263 { 4264 add_insn_before_nobb (insn, before); 4265 4266 if (!bb 4267 && !BARRIER_P (before) 4268 && !BARRIER_P (insn)) 4269 bb = BLOCK_FOR_INSN (before); 4270 4271 if (bb) 4272 { 4273 set_block_for_insn (insn, bb); 4274 if (INSN_P (insn)) 4275 df_insn_rescan (insn); 4276 /* Should not happen as first in the BB is always either NOTE or 4277 LABEL. */ 4278 gcc_assert (BB_HEAD (bb) != insn 4279 /* Avoid clobbering of structure when creating new BB. */ 4280 || BARRIER_P (insn) 4281 || NOTE_INSN_BASIC_BLOCK_P (insn)); 4282 } 4283 } 4284 4285 /* Replace insn with an deleted instruction note. */ 4286 4287 void 4288 set_insn_deleted (rtx_insn *insn) 4289 { 4290 if (INSN_P (insn)) 4291 df_insn_delete (insn); 4292 PUT_CODE (insn, NOTE); 4293 NOTE_KIND (insn) = NOTE_INSN_DELETED; 4294 } 4295 4296 4297 /* Unlink INSN from the insn chain. 4298 4299 This function knows how to handle sequences. 4300 4301 This function does not invalidate data flow information associated with 4302 INSN (i.e. does not call df_insn_delete). That makes this function 4303 usable for only disconnecting an insn from the chain, and re-emit it 4304 elsewhere later. 4305 4306 To later insert INSN elsewhere in the insn chain via add_insn and 4307 similar functions, PREV_INSN and NEXT_INSN must be nullified by 4308 the caller. Nullifying them here breaks many insn chain walks. 4309 4310 To really delete an insn and related DF information, use delete_insn. */ 4311 4312 void 4313 remove_insn (rtx_insn *insn) 4314 { 4315 rtx_insn *next = NEXT_INSN (insn); 4316 rtx_insn *prev = PREV_INSN (insn); 4317 basic_block bb; 4318 4319 if (prev) 4320 { 4321 SET_NEXT_INSN (prev) = next; 4322 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE) 4323 { 4324 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev)); 4325 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next; 4326 } 4327 } 4328 else 4329 { 4330 struct sequence_stack *seq; 4331 4332 for (seq = get_current_sequence (); seq; seq = seq->next) 4333 if (insn == seq->first) 4334 { 4335 seq->first = next; 4336 break; 4337 } 4338 4339 gcc_assert (seq); 4340 } 4341 4342 if (next) 4343 { 4344 SET_PREV_INSN (next) = prev; 4345 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE) 4346 { 4347 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next)); 4348 SET_PREV_INSN (sequence->insn (0)) = prev; 4349 } 4350 } 4351 else 4352 { 4353 struct sequence_stack *seq; 4354 4355 for (seq = get_current_sequence (); seq; seq = seq->next) 4356 if (insn == seq->last) 4357 { 4358 seq->last = prev; 4359 break; 4360 } 4361 4362 gcc_assert (seq); 4363 } 4364 4365 /* Fix up basic block boundaries, if necessary. */ 4366 if (!BARRIER_P (insn) 4367 && (bb = BLOCK_FOR_INSN (insn))) 4368 { 4369 if (BB_HEAD (bb) == insn) 4370 { 4371 /* Never ever delete the basic block note without deleting whole 4372 basic block. */ 4373 gcc_assert (!NOTE_P (insn)); 4374 BB_HEAD (bb) = next; 4375 } 4376 if (BB_END (bb) == insn) 4377 BB_END (bb) = prev; 4378 } 4379 } 4380 4381 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */ 4382 4383 void 4384 add_function_usage_to (rtx call_insn, rtx call_fusage) 4385 { 4386 gcc_assert (call_insn && CALL_P (call_insn)); 4387 4388 /* Put the register usage information on the CALL. If there is already 4389 some usage information, put ours at the end. */ 4390 if (CALL_INSN_FUNCTION_USAGE (call_insn)) 4391 { 4392 rtx link; 4393 4394 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0; 4395 link = XEXP (link, 1)) 4396 ; 4397 4398 XEXP (link, 1) = call_fusage; 4399 } 4400 else 4401 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage; 4402 } 4403 4404 /* Delete all insns made since FROM. 4405 FROM becomes the new last instruction. */ 4406 4407 void 4408 delete_insns_since (rtx_insn *from) 4409 { 4410 if (from == 0) 4411 set_first_insn (0); 4412 else 4413 SET_NEXT_INSN (from) = 0; 4414 set_last_insn (from); 4415 } 4416 4417 /* This function is deprecated, please use sequences instead. 4418 4419 Move a consecutive bunch of insns to a different place in the chain. 4420 The insns to be moved are those between FROM and TO. 4421 They are moved to a new position after the insn AFTER. 4422 AFTER must not be FROM or TO or any insn in between. 4423 4424 This function does not know about SEQUENCEs and hence should not be 4425 called after delay-slot filling has been done. */ 4426 4427 void 4428 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after) 4429 { 4430 if (flag_checking) 4431 { 4432 for (rtx_insn *x = from; x != to; x = NEXT_INSN (x)) 4433 gcc_assert (after != x); 4434 gcc_assert (after != to); 4435 } 4436 4437 /* Splice this bunch out of where it is now. */ 4438 if (PREV_INSN (from)) 4439 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to); 4440 if (NEXT_INSN (to)) 4441 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from); 4442 if (get_last_insn () == to) 4443 set_last_insn (PREV_INSN (from)); 4444 if (get_insns () == from) 4445 set_first_insn (NEXT_INSN (to)); 4446 4447 /* Make the new neighbors point to it and it to them. */ 4448 if (NEXT_INSN (after)) 4449 SET_PREV_INSN (NEXT_INSN (after)) = to; 4450 4451 SET_NEXT_INSN (to) = NEXT_INSN (after); 4452 SET_PREV_INSN (from) = after; 4453 SET_NEXT_INSN (after) = from; 4454 if (after == get_last_insn ()) 4455 set_last_insn (to); 4456 } 4457 4458 /* Same as function above, but take care to update BB boundaries. */ 4459 void 4460 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after) 4461 { 4462 rtx_insn *prev = PREV_INSN (from); 4463 basic_block bb, bb2; 4464 4465 reorder_insns_nobb (from, to, after); 4466 4467 if (!BARRIER_P (after) 4468 && (bb = BLOCK_FOR_INSN (after))) 4469 { 4470 rtx_insn *x; 4471 df_set_bb_dirty (bb); 4472 4473 if (!BARRIER_P (from) 4474 && (bb2 = BLOCK_FOR_INSN (from))) 4475 { 4476 if (BB_END (bb2) == to) 4477 BB_END (bb2) = prev; 4478 df_set_bb_dirty (bb2); 4479 } 4480 4481 if (BB_END (bb) == after) 4482 BB_END (bb) = to; 4483 4484 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x)) 4485 if (!BARRIER_P (x)) 4486 df_insn_change_bb (x, bb); 4487 } 4488 } 4489 4490 4491 /* Emit insn(s) of given code and pattern 4492 at a specified place within the doubly-linked list. 4493 4494 All of the emit_foo global entry points accept an object 4495 X which is either an insn list or a PATTERN of a single 4496 instruction. 4497 4498 There are thus a few canonical ways to generate code and 4499 emit it at a specific place in the instruction stream. For 4500 example, consider the instruction named SPOT and the fact that 4501 we would like to emit some instructions before SPOT. We might 4502 do it like this: 4503 4504 start_sequence (); 4505 ... emit the new instructions ... 4506 insns_head = get_insns (); 4507 end_sequence (); 4508 4509 emit_insn_before (insns_head, SPOT); 4510 4511 It used to be common to generate SEQUENCE rtl instead, but that 4512 is a relic of the past which no longer occurs. The reason is that 4513 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE 4514 generated would almost certainly die right after it was created. */ 4515 4516 static rtx_insn * 4517 emit_pattern_before_noloc (rtx x, rtx_insn *before, rtx_insn *last, 4518 basic_block bb, 4519 rtx_insn *(*make_raw) (rtx)) 4520 { 4521 rtx_insn *insn; 4522 4523 gcc_assert (before); 4524 4525 if (x == NULL_RTX) 4526 return last; 4527 4528 switch (GET_CODE (x)) 4529 { 4530 case DEBUG_INSN: 4531 case INSN: 4532 case JUMP_INSN: 4533 case CALL_INSN: 4534 case CODE_LABEL: 4535 case BARRIER: 4536 case NOTE: 4537 insn = as_a <rtx_insn *> (x); 4538 while (insn) 4539 { 4540 rtx_insn *next = NEXT_INSN (insn); 4541 add_insn_before (insn, before, bb); 4542 last = insn; 4543 insn = next; 4544 } 4545 break; 4546 4547 #ifdef ENABLE_RTL_CHECKING 4548 case SEQUENCE: 4549 gcc_unreachable (); 4550 break; 4551 #endif 4552 4553 default: 4554 last = (*make_raw) (x); 4555 add_insn_before (last, before, bb); 4556 break; 4557 } 4558 4559 return last; 4560 } 4561 4562 /* Make X be output before the instruction BEFORE. */ 4563 4564 rtx_insn * 4565 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb) 4566 { 4567 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw); 4568 } 4569 4570 /* Make an instruction with body X and code JUMP_INSN 4571 and output it before the instruction BEFORE. */ 4572 4573 rtx_jump_insn * 4574 emit_jump_insn_before_noloc (rtx x, rtx_insn *before) 4575 { 4576 return as_a <rtx_jump_insn *> ( 4577 emit_pattern_before_noloc (x, before, NULL, NULL, 4578 make_jump_insn_raw)); 4579 } 4580 4581 /* Make an instruction with body X and code CALL_INSN 4582 and output it before the instruction BEFORE. */ 4583 4584 rtx_insn * 4585 emit_call_insn_before_noloc (rtx x, rtx_insn *before) 4586 { 4587 return emit_pattern_before_noloc (x, before, NULL, NULL, 4588 make_call_insn_raw); 4589 } 4590 4591 /* Make an instruction with body X and code DEBUG_INSN 4592 and output it before the instruction BEFORE. */ 4593 4594 rtx_insn * 4595 emit_debug_insn_before_noloc (rtx x, rtx_insn *before) 4596 { 4597 return emit_pattern_before_noloc (x, before, NULL, NULL, 4598 make_debug_insn_raw); 4599 } 4600 4601 /* Make an insn of code BARRIER 4602 and output it before the insn BEFORE. */ 4603 4604 rtx_barrier * 4605 emit_barrier_before (rtx_insn *before) 4606 { 4607 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER)); 4608 4609 INSN_UID (insn) = cur_insn_uid++; 4610 4611 add_insn_before (insn, before, NULL); 4612 return insn; 4613 } 4614 4615 /* Emit the label LABEL before the insn BEFORE. */ 4616 4617 rtx_code_label * 4618 emit_label_before (rtx_code_label *label, rtx_insn *before) 4619 { 4620 gcc_checking_assert (INSN_UID (label) == 0); 4621 INSN_UID (label) = cur_insn_uid++; 4622 add_insn_before (label, before, NULL); 4623 return label; 4624 } 4625 4626 /* Helper for emit_insn_after, handles lists of instructions 4627 efficiently. */ 4628 4629 static rtx_insn * 4630 emit_insn_after_1 (rtx_insn *first, rtx_insn *after, basic_block bb) 4631 { 4632 rtx_insn *last; 4633 rtx_insn *after_after; 4634 if (!bb && !BARRIER_P (after)) 4635 bb = BLOCK_FOR_INSN (after); 4636 4637 if (bb) 4638 { 4639 df_set_bb_dirty (bb); 4640 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last)) 4641 if (!BARRIER_P (last)) 4642 { 4643 set_block_for_insn (last, bb); 4644 df_insn_rescan (last); 4645 } 4646 if (!BARRIER_P (last)) 4647 { 4648 set_block_for_insn (last, bb); 4649 df_insn_rescan (last); 4650 } 4651 if (BB_END (bb) == after) 4652 BB_END (bb) = last; 4653 } 4654 else 4655 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last)) 4656 continue; 4657 4658 after_after = NEXT_INSN (after); 4659 4660 SET_NEXT_INSN (after) = first; 4661 SET_PREV_INSN (first) = after; 4662 SET_NEXT_INSN (last) = after_after; 4663 if (after_after) 4664 SET_PREV_INSN (after_after) = last; 4665 4666 if (after == get_last_insn ()) 4667 set_last_insn (last); 4668 4669 return last; 4670 } 4671 4672 static rtx_insn * 4673 emit_pattern_after_noloc (rtx x, rtx_insn *after, basic_block bb, 4674 rtx_insn *(*make_raw)(rtx)) 4675 { 4676 rtx_insn *last = after; 4677 4678 gcc_assert (after); 4679 4680 if (x == NULL_RTX) 4681 return last; 4682 4683 switch (GET_CODE (x)) 4684 { 4685 case DEBUG_INSN: 4686 case INSN: 4687 case JUMP_INSN: 4688 case CALL_INSN: 4689 case CODE_LABEL: 4690 case BARRIER: 4691 case NOTE: 4692 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb); 4693 break; 4694 4695 #ifdef ENABLE_RTL_CHECKING 4696 case SEQUENCE: 4697 gcc_unreachable (); 4698 break; 4699 #endif 4700 4701 default: 4702 last = (*make_raw) (x); 4703 add_insn_after (last, after, bb); 4704 break; 4705 } 4706 4707 return last; 4708 } 4709 4710 /* Make X be output after the insn AFTER and set the BB of insn. If 4711 BB is NULL, an attempt is made to infer the BB from AFTER. */ 4712 4713 rtx_insn * 4714 emit_insn_after_noloc (rtx x, rtx_insn *after, basic_block bb) 4715 { 4716 return emit_pattern_after_noloc (x, after, bb, make_insn_raw); 4717 } 4718 4719 4720 /* Make an insn of code JUMP_INSN with body X 4721 and output it after the insn AFTER. */ 4722 4723 rtx_jump_insn * 4724 emit_jump_insn_after_noloc (rtx x, rtx_insn *after) 4725 { 4726 return as_a <rtx_jump_insn *> ( 4727 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw)); 4728 } 4729 4730 /* Make an instruction with body X and code CALL_INSN 4731 and output it after the instruction AFTER. */ 4732 4733 rtx_insn * 4734 emit_call_insn_after_noloc (rtx x, rtx_insn *after) 4735 { 4736 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw); 4737 } 4738 4739 /* Make an instruction with body X and code CALL_INSN 4740 and output it after the instruction AFTER. */ 4741 4742 rtx_insn * 4743 emit_debug_insn_after_noloc (rtx x, rtx_insn *after) 4744 { 4745 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw); 4746 } 4747 4748 /* Make an insn of code BARRIER 4749 and output it after the insn AFTER. */ 4750 4751 rtx_barrier * 4752 emit_barrier_after (rtx_insn *after) 4753 { 4754 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER)); 4755 4756 INSN_UID (insn) = cur_insn_uid++; 4757 4758 add_insn_after (insn, after, NULL); 4759 return insn; 4760 } 4761 4762 /* Emit the label LABEL after the insn AFTER. */ 4763 4764 rtx_insn * 4765 emit_label_after (rtx_insn *label, rtx_insn *after) 4766 { 4767 gcc_checking_assert (INSN_UID (label) == 0); 4768 INSN_UID (label) = cur_insn_uid++; 4769 add_insn_after (label, after, NULL); 4770 return label; 4771 } 4772 4773 /* Notes require a bit of special handling: Some notes need to have their 4774 BLOCK_FOR_INSN set, others should never have it set, and some should 4775 have it set or clear depending on the context. */ 4776 4777 /* Return true iff a note of kind SUBTYPE should be emitted with routines 4778 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the 4779 caller is asked to emit a note before BB_HEAD, or after BB_END. */ 4780 4781 static bool 4782 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p) 4783 { 4784 switch (subtype) 4785 { 4786 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */ 4787 case NOTE_INSN_SWITCH_TEXT_SECTIONS: 4788 return true; 4789 4790 /* Notes for var tracking and EH region markers can appear between or 4791 inside basic blocks. If the caller is emitting on the basic block 4792 boundary, do not set BLOCK_FOR_INSN on the new note. */ 4793 case NOTE_INSN_VAR_LOCATION: 4794 case NOTE_INSN_EH_REGION_BEG: 4795 case NOTE_INSN_EH_REGION_END: 4796 return on_bb_boundary_p; 4797 4798 /* Otherwise, BLOCK_FOR_INSN must be set. */ 4799 default: 4800 return false; 4801 } 4802 } 4803 4804 /* Emit a note of subtype SUBTYPE after the insn AFTER. */ 4805 4806 rtx_note * 4807 emit_note_after (enum insn_note subtype, rtx_insn *after) 4808 { 4809 rtx_note *note = make_note_raw (subtype); 4810 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after); 4811 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after); 4812 4813 if (note_outside_basic_block_p (subtype, on_bb_boundary_p)) 4814 add_insn_after_nobb (note, after); 4815 else 4816 add_insn_after (note, after, bb); 4817 return note; 4818 } 4819 4820 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */ 4821 4822 rtx_note * 4823 emit_note_before (enum insn_note subtype, rtx_insn *before) 4824 { 4825 rtx_note *note = make_note_raw (subtype); 4826 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before); 4827 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before); 4828 4829 if (note_outside_basic_block_p (subtype, on_bb_boundary_p)) 4830 add_insn_before_nobb (note, before); 4831 else 4832 add_insn_before (note, before, bb); 4833 return note; 4834 } 4835 4836 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC. 4837 MAKE_RAW indicates how to turn PATTERN into a real insn. */ 4838 4839 static rtx_insn * 4840 emit_pattern_after_setloc (rtx pattern, rtx_insn *after, location_t loc, 4841 rtx_insn *(*make_raw) (rtx)) 4842 { 4843 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw); 4844 4845 if (pattern == NULL_RTX || !loc) 4846 return last; 4847 4848 after = NEXT_INSN (after); 4849 while (1) 4850 { 4851 if (active_insn_p (after) 4852 && !JUMP_TABLE_DATA_P (after) /* FIXME */ 4853 && !INSN_LOCATION (after)) 4854 INSN_LOCATION (after) = loc; 4855 if (after == last) 4856 break; 4857 after = NEXT_INSN (after); 4858 } 4859 return last; 4860 } 4861 4862 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN 4863 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after 4864 any DEBUG_INSNs. */ 4865 4866 static rtx_insn * 4867 emit_pattern_after (rtx pattern, rtx_insn *after, bool skip_debug_insns, 4868 rtx_insn *(*make_raw) (rtx)) 4869 { 4870 rtx_insn *prev = after; 4871 4872 if (skip_debug_insns) 4873 while (DEBUG_INSN_P (prev)) 4874 prev = PREV_INSN (prev); 4875 4876 if (INSN_P (prev)) 4877 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev), 4878 make_raw); 4879 else 4880 return emit_pattern_after_noloc (pattern, after, NULL, make_raw); 4881 } 4882 4883 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */ 4884 rtx_insn * 4885 emit_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc) 4886 { 4887 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw); 4888 } 4889 4890 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */ 4891 rtx_insn * 4892 emit_insn_after (rtx pattern, rtx_insn *after) 4893 { 4894 return emit_pattern_after (pattern, after, true, make_insn_raw); 4895 } 4896 4897 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */ 4898 rtx_jump_insn * 4899 emit_jump_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc) 4900 { 4901 return as_a <rtx_jump_insn *> ( 4902 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw)); 4903 } 4904 4905 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */ 4906 rtx_jump_insn * 4907 emit_jump_insn_after (rtx pattern, rtx_insn *after) 4908 { 4909 return as_a <rtx_jump_insn *> ( 4910 emit_pattern_after (pattern, after, true, make_jump_insn_raw)); 4911 } 4912 4913 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */ 4914 rtx_insn * 4915 emit_call_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc) 4916 { 4917 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw); 4918 } 4919 4920 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */ 4921 rtx_insn * 4922 emit_call_insn_after (rtx pattern, rtx_insn *after) 4923 { 4924 return emit_pattern_after (pattern, after, true, make_call_insn_raw); 4925 } 4926 4927 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */ 4928 rtx_insn * 4929 emit_debug_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc) 4930 { 4931 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw); 4932 } 4933 4934 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */ 4935 rtx_insn * 4936 emit_debug_insn_after (rtx pattern, rtx_insn *after) 4937 { 4938 return emit_pattern_after (pattern, after, false, make_debug_insn_raw); 4939 } 4940 4941 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC. 4942 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP 4943 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN, 4944 CALL_INSN, etc. */ 4945 4946 static rtx_insn * 4947 emit_pattern_before_setloc (rtx pattern, rtx_insn *before, location_t loc, 4948 bool insnp, rtx_insn *(*make_raw) (rtx)) 4949 { 4950 rtx_insn *first = PREV_INSN (before); 4951 rtx_insn *last = emit_pattern_before_noloc (pattern, before, 4952 insnp ? before : NULL, 4953 NULL, make_raw); 4954 4955 if (pattern == NULL_RTX || !loc) 4956 return last; 4957 4958 if (!first) 4959 first = get_insns (); 4960 else 4961 first = NEXT_INSN (first); 4962 while (1) 4963 { 4964 if (active_insn_p (first) 4965 && !JUMP_TABLE_DATA_P (first) /* FIXME */ 4966 && !INSN_LOCATION (first)) 4967 INSN_LOCATION (first) = loc; 4968 if (first == last) 4969 break; 4970 first = NEXT_INSN (first); 4971 } 4972 return last; 4973 } 4974 4975 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN 4976 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert 4977 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an 4978 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */ 4979 4980 static rtx_insn * 4981 emit_pattern_before (rtx pattern, rtx_insn *before, bool skip_debug_insns, 4982 bool insnp, rtx_insn *(*make_raw) (rtx)) 4983 { 4984 rtx_insn *next = before; 4985 4986 if (skip_debug_insns) 4987 while (DEBUG_INSN_P (next)) 4988 next = PREV_INSN (next); 4989 4990 if (INSN_P (next)) 4991 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next), 4992 insnp, make_raw); 4993 else 4994 return emit_pattern_before_noloc (pattern, before, 4995 insnp ? before : NULL, 4996 NULL, make_raw); 4997 } 4998 4999 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */ 5000 rtx_insn * 5001 emit_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc) 5002 { 5003 return emit_pattern_before_setloc (pattern, before, loc, true, 5004 make_insn_raw); 5005 } 5006 5007 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */ 5008 rtx_insn * 5009 emit_insn_before (rtx pattern, rtx_insn *before) 5010 { 5011 return emit_pattern_before (pattern, before, true, true, make_insn_raw); 5012 } 5013 5014 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */ 5015 rtx_jump_insn * 5016 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc) 5017 { 5018 return as_a <rtx_jump_insn *> ( 5019 emit_pattern_before_setloc (pattern, before, loc, false, 5020 make_jump_insn_raw)); 5021 } 5022 5023 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */ 5024 rtx_jump_insn * 5025 emit_jump_insn_before (rtx pattern, rtx_insn *before) 5026 { 5027 return as_a <rtx_jump_insn *> ( 5028 emit_pattern_before (pattern, before, true, false, 5029 make_jump_insn_raw)); 5030 } 5031 5032 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */ 5033 rtx_insn * 5034 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc) 5035 { 5036 return emit_pattern_before_setloc (pattern, before, loc, false, 5037 make_call_insn_raw); 5038 } 5039 5040 /* Like emit_call_insn_before_noloc, 5041 but set insn_location according to BEFORE. */ 5042 rtx_insn * 5043 emit_call_insn_before (rtx pattern, rtx_insn *before) 5044 { 5045 return emit_pattern_before (pattern, before, true, false, 5046 make_call_insn_raw); 5047 } 5048 5049 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */ 5050 rtx_insn * 5051 emit_debug_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc) 5052 { 5053 return emit_pattern_before_setloc (pattern, before, loc, false, 5054 make_debug_insn_raw); 5055 } 5056 5057 /* Like emit_debug_insn_before_noloc, 5058 but set insn_location according to BEFORE. */ 5059 rtx_insn * 5060 emit_debug_insn_before (rtx pattern, rtx_insn *before) 5061 { 5062 return emit_pattern_before (pattern, before, false, false, 5063 make_debug_insn_raw); 5064 } 5065 5066 /* Take X and emit it at the end of the doubly-linked 5067 INSN list. 5068 5069 Returns the last insn emitted. */ 5070 5071 rtx_insn * 5072 emit_insn (rtx x) 5073 { 5074 rtx_insn *last = get_last_insn (); 5075 rtx_insn *insn; 5076 5077 if (x == NULL_RTX) 5078 return last; 5079 5080 switch (GET_CODE (x)) 5081 { 5082 case DEBUG_INSN: 5083 case INSN: 5084 case JUMP_INSN: 5085 case CALL_INSN: 5086 case CODE_LABEL: 5087 case BARRIER: 5088 case NOTE: 5089 insn = as_a <rtx_insn *> (x); 5090 while (insn) 5091 { 5092 rtx_insn *next = NEXT_INSN (insn); 5093 add_insn (insn); 5094 last = insn; 5095 insn = next; 5096 } 5097 break; 5098 5099 #ifdef ENABLE_RTL_CHECKING 5100 case JUMP_TABLE_DATA: 5101 case SEQUENCE: 5102 gcc_unreachable (); 5103 break; 5104 #endif 5105 5106 default: 5107 last = make_insn_raw (x); 5108 add_insn (last); 5109 break; 5110 } 5111 5112 return last; 5113 } 5114 5115 /* Make an insn of code DEBUG_INSN with pattern X 5116 and add it to the end of the doubly-linked list. */ 5117 5118 rtx_insn * 5119 emit_debug_insn (rtx x) 5120 { 5121 rtx_insn *last = get_last_insn (); 5122 rtx_insn *insn; 5123 5124 if (x == NULL_RTX) 5125 return last; 5126 5127 switch (GET_CODE (x)) 5128 { 5129 case DEBUG_INSN: 5130 case INSN: 5131 case JUMP_INSN: 5132 case CALL_INSN: 5133 case CODE_LABEL: 5134 case BARRIER: 5135 case NOTE: 5136 insn = as_a <rtx_insn *> (x); 5137 while (insn) 5138 { 5139 rtx_insn *next = NEXT_INSN (insn); 5140 add_insn (insn); 5141 last = insn; 5142 insn = next; 5143 } 5144 break; 5145 5146 #ifdef ENABLE_RTL_CHECKING 5147 case JUMP_TABLE_DATA: 5148 case SEQUENCE: 5149 gcc_unreachable (); 5150 break; 5151 #endif 5152 5153 default: 5154 last = make_debug_insn_raw (x); 5155 add_insn (last); 5156 break; 5157 } 5158 5159 return last; 5160 } 5161 5162 /* Make an insn of code JUMP_INSN with pattern X 5163 and add it to the end of the doubly-linked list. */ 5164 5165 rtx_insn * 5166 emit_jump_insn (rtx x) 5167 { 5168 rtx_insn *last = NULL; 5169 rtx_insn *insn; 5170 5171 switch (GET_CODE (x)) 5172 { 5173 case DEBUG_INSN: 5174 case INSN: 5175 case JUMP_INSN: 5176 case CALL_INSN: 5177 case CODE_LABEL: 5178 case BARRIER: 5179 case NOTE: 5180 insn = as_a <rtx_insn *> (x); 5181 while (insn) 5182 { 5183 rtx_insn *next = NEXT_INSN (insn); 5184 add_insn (insn); 5185 last = insn; 5186 insn = next; 5187 } 5188 break; 5189 5190 #ifdef ENABLE_RTL_CHECKING 5191 case JUMP_TABLE_DATA: 5192 case SEQUENCE: 5193 gcc_unreachable (); 5194 break; 5195 #endif 5196 5197 default: 5198 last = make_jump_insn_raw (x); 5199 add_insn (last); 5200 break; 5201 } 5202 5203 return last; 5204 } 5205 5206 /* Make an insn of code CALL_INSN with pattern X 5207 and add it to the end of the doubly-linked list. */ 5208 5209 rtx_insn * 5210 emit_call_insn (rtx x) 5211 { 5212 rtx_insn *insn; 5213 5214 switch (GET_CODE (x)) 5215 { 5216 case DEBUG_INSN: 5217 case INSN: 5218 case JUMP_INSN: 5219 case CALL_INSN: 5220 case CODE_LABEL: 5221 case BARRIER: 5222 case NOTE: 5223 insn = emit_insn (x); 5224 break; 5225 5226 #ifdef ENABLE_RTL_CHECKING 5227 case SEQUENCE: 5228 case JUMP_TABLE_DATA: 5229 gcc_unreachable (); 5230 break; 5231 #endif 5232 5233 default: 5234 insn = make_call_insn_raw (x); 5235 add_insn (insn); 5236 break; 5237 } 5238 5239 return insn; 5240 } 5241 5242 /* Add the label LABEL to the end of the doubly-linked list. */ 5243 5244 rtx_code_label * 5245 emit_label (rtx uncast_label) 5246 { 5247 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label); 5248 5249 gcc_checking_assert (INSN_UID (label) == 0); 5250 INSN_UID (label) = cur_insn_uid++; 5251 add_insn (label); 5252 return label; 5253 } 5254 5255 /* Make an insn of code JUMP_TABLE_DATA 5256 and add it to the end of the doubly-linked list. */ 5257 5258 rtx_jump_table_data * 5259 emit_jump_table_data (rtx table) 5260 { 5261 rtx_jump_table_data *jump_table_data = 5262 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA)); 5263 INSN_UID (jump_table_data) = cur_insn_uid++; 5264 PATTERN (jump_table_data) = table; 5265 BLOCK_FOR_INSN (jump_table_data) = NULL; 5266 add_insn (jump_table_data); 5267 return jump_table_data; 5268 } 5269 5270 /* Make an insn of code BARRIER 5271 and add it to the end of the doubly-linked list. */ 5272 5273 rtx_barrier * 5274 emit_barrier (void) 5275 { 5276 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER)); 5277 INSN_UID (barrier) = cur_insn_uid++; 5278 add_insn (barrier); 5279 return barrier; 5280 } 5281 5282 /* Emit a copy of note ORIG. */ 5283 5284 rtx_note * 5285 emit_note_copy (rtx_note *orig) 5286 { 5287 enum insn_note kind = (enum insn_note) NOTE_KIND (orig); 5288 rtx_note *note = make_note_raw (kind); 5289 NOTE_DATA (note) = NOTE_DATA (orig); 5290 add_insn (note); 5291 return note; 5292 } 5293 5294 /* Make an insn of code NOTE or type NOTE_NO 5295 and add it to the end of the doubly-linked list. */ 5296 5297 rtx_note * 5298 emit_note (enum insn_note kind) 5299 { 5300 rtx_note *note = make_note_raw (kind); 5301 add_insn (note); 5302 return note; 5303 } 5304 5305 /* Emit a clobber of lvalue X. */ 5306 5307 rtx_insn * 5308 emit_clobber (rtx x) 5309 { 5310 /* CONCATs should not appear in the insn stream. */ 5311 if (GET_CODE (x) == CONCAT) 5312 { 5313 emit_clobber (XEXP (x, 0)); 5314 return emit_clobber (XEXP (x, 1)); 5315 } 5316 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x)); 5317 } 5318 5319 /* Return a sequence of insns to clobber lvalue X. */ 5320 5321 rtx_insn * 5322 gen_clobber (rtx x) 5323 { 5324 rtx_insn *seq; 5325 5326 start_sequence (); 5327 emit_clobber (x); 5328 seq = get_insns (); 5329 end_sequence (); 5330 return seq; 5331 } 5332 5333 /* Emit a use of rvalue X. */ 5334 5335 rtx_insn * 5336 emit_use (rtx x) 5337 { 5338 /* CONCATs should not appear in the insn stream. */ 5339 if (GET_CODE (x) == CONCAT) 5340 { 5341 emit_use (XEXP (x, 0)); 5342 return emit_use (XEXP (x, 1)); 5343 } 5344 return emit_insn (gen_rtx_USE (VOIDmode, x)); 5345 } 5346 5347 /* Return a sequence of insns to use rvalue X. */ 5348 5349 rtx_insn * 5350 gen_use (rtx x) 5351 { 5352 rtx_insn *seq; 5353 5354 start_sequence (); 5355 emit_use (x); 5356 seq = get_insns (); 5357 end_sequence (); 5358 return seq; 5359 } 5360 5361 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction. 5362 Return the set in INSN that such notes describe, or NULL if the notes 5363 have no meaning for INSN. */ 5364 5365 rtx 5366 set_for_reg_notes (rtx insn) 5367 { 5368 rtx pat, reg; 5369 5370 if (!INSN_P (insn)) 5371 return NULL_RTX; 5372 5373 pat = PATTERN (insn); 5374 if (GET_CODE (pat) == PARALLEL) 5375 { 5376 /* We do not use single_set because that ignores SETs of unused 5377 registers. REG_EQUAL and REG_EQUIV notes really do require the 5378 PARALLEL to have a single SET. */ 5379 if (multiple_sets (insn)) 5380 return NULL_RTX; 5381 pat = XVECEXP (pat, 0, 0); 5382 } 5383 5384 if (GET_CODE (pat) != SET) 5385 return NULL_RTX; 5386 5387 reg = SET_DEST (pat); 5388 5389 /* Notes apply to the contents of a STRICT_LOW_PART. */ 5390 if (GET_CODE (reg) == STRICT_LOW_PART 5391 || GET_CODE (reg) == ZERO_EXTRACT) 5392 reg = XEXP (reg, 0); 5393 5394 /* Check that we have a register. */ 5395 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG)) 5396 return NULL_RTX; 5397 5398 return pat; 5399 } 5400 5401 /* Place a note of KIND on insn INSN with DATUM as the datum. If a 5402 note of this type already exists, remove it first. */ 5403 5404 rtx 5405 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum) 5406 { 5407 rtx note = find_reg_note (insn, kind, NULL_RTX); 5408 5409 switch (kind) 5410 { 5411 case REG_EQUAL: 5412 case REG_EQUIV: 5413 /* We need to support the REG_EQUAL on USE trick of find_reloads. */ 5414 if (!set_for_reg_notes (insn) && GET_CODE (PATTERN (insn)) != USE) 5415 return NULL_RTX; 5416 5417 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes. 5418 It serves no useful purpose and breaks eliminate_regs. */ 5419 if (GET_CODE (datum) == ASM_OPERANDS) 5420 return NULL_RTX; 5421 5422 /* Notes with side effects are dangerous. Even if the side-effect 5423 initially mirrors one in PATTERN (INSN), later optimizations 5424 might alter the way that the final register value is calculated 5425 and so move or alter the side-effect in some way. The note would 5426 then no longer be a valid substitution for SET_SRC. */ 5427 if (side_effects_p (datum)) 5428 return NULL_RTX; 5429 break; 5430 5431 default: 5432 break; 5433 } 5434 5435 if (note) 5436 XEXP (note, 0) = datum; 5437 else 5438 { 5439 add_reg_note (insn, kind, datum); 5440 note = REG_NOTES (insn); 5441 } 5442 5443 switch (kind) 5444 { 5445 case REG_EQUAL: 5446 case REG_EQUIV: 5447 df_notes_rescan (as_a <rtx_insn *> (insn)); 5448 break; 5449 default: 5450 break; 5451 } 5452 5453 return note; 5454 } 5455 5456 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */ 5457 rtx 5458 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst) 5459 { 5460 rtx set = set_for_reg_notes (insn); 5461 5462 if (set && SET_DEST (set) == dst) 5463 return set_unique_reg_note (insn, kind, datum); 5464 return NULL_RTX; 5465 } 5466 5467 /* Emit the rtl pattern X as an appropriate kind of insn. Also emit a 5468 following barrier if the instruction needs one and if ALLOW_BARRIER_P 5469 is true. 5470 5471 If X is a label, it is simply added into the insn chain. */ 5472 5473 rtx_insn * 5474 emit (rtx x, bool allow_barrier_p) 5475 { 5476 enum rtx_code code = classify_insn (x); 5477 5478 switch (code) 5479 { 5480 case CODE_LABEL: 5481 return emit_label (x); 5482 case INSN: 5483 return emit_insn (x); 5484 case JUMP_INSN: 5485 { 5486 rtx_insn *insn = emit_jump_insn (x); 5487 if (allow_barrier_p 5488 && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)) 5489 return emit_barrier (); 5490 return insn; 5491 } 5492 case CALL_INSN: 5493 return emit_call_insn (x); 5494 case DEBUG_INSN: 5495 return emit_debug_insn (x); 5496 default: 5497 gcc_unreachable (); 5498 } 5499 } 5500 5501 /* Space for free sequence stack entries. */ 5502 static GTY ((deletable)) struct sequence_stack *free_sequence_stack; 5503 5504 /* Begin emitting insns to a sequence. If this sequence will contain 5505 something that might cause the compiler to pop arguments to function 5506 calls (because those pops have previously been deferred; see 5507 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust 5508 before calling this function. That will ensure that the deferred 5509 pops are not accidentally emitted in the middle of this sequence. */ 5510 5511 void 5512 start_sequence (void) 5513 { 5514 struct sequence_stack *tem; 5515 5516 if (free_sequence_stack != NULL) 5517 { 5518 tem = free_sequence_stack; 5519 free_sequence_stack = tem->next; 5520 } 5521 else 5522 tem = ggc_alloc<sequence_stack> (); 5523 5524 tem->next = get_current_sequence ()->next; 5525 tem->first = get_insns (); 5526 tem->last = get_last_insn (); 5527 get_current_sequence ()->next = tem; 5528 5529 set_first_insn (0); 5530 set_last_insn (0); 5531 } 5532 5533 /* Set up the insn chain starting with FIRST as the current sequence, 5534 saving the previously current one. See the documentation for 5535 start_sequence for more information about how to use this function. */ 5536 5537 void 5538 push_to_sequence (rtx_insn *first) 5539 { 5540 rtx_insn *last; 5541 5542 start_sequence (); 5543 5544 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last)) 5545 ; 5546 5547 set_first_insn (first); 5548 set_last_insn (last); 5549 } 5550 5551 /* Like push_to_sequence, but take the last insn as an argument to avoid 5552 looping through the list. */ 5553 5554 void 5555 push_to_sequence2 (rtx_insn *first, rtx_insn *last) 5556 { 5557 start_sequence (); 5558 5559 set_first_insn (first); 5560 set_last_insn (last); 5561 } 5562 5563 /* Set up the outer-level insn chain 5564 as the current sequence, saving the previously current one. */ 5565 5566 void 5567 push_topmost_sequence (void) 5568 { 5569 struct sequence_stack *top; 5570 5571 start_sequence (); 5572 5573 top = get_topmost_sequence (); 5574 set_first_insn (top->first); 5575 set_last_insn (top->last); 5576 } 5577 5578 /* After emitting to the outer-level insn chain, update the outer-level 5579 insn chain, and restore the previous saved state. */ 5580 5581 void 5582 pop_topmost_sequence (void) 5583 { 5584 struct sequence_stack *top; 5585 5586 top = get_topmost_sequence (); 5587 top->first = get_insns (); 5588 top->last = get_last_insn (); 5589 5590 end_sequence (); 5591 } 5592 5593 /* After emitting to a sequence, restore previous saved state. 5594 5595 To get the contents of the sequence just made, you must call 5596 `get_insns' *before* calling here. 5597 5598 If the compiler might have deferred popping arguments while 5599 generating this sequence, and this sequence will not be immediately 5600 inserted into the instruction stream, use do_pending_stack_adjust 5601 before calling get_insns. That will ensure that the deferred 5602 pops are inserted into this sequence, and not into some random 5603 location in the instruction stream. See INHIBIT_DEFER_POP for more 5604 information about deferred popping of arguments. */ 5605 5606 void 5607 end_sequence (void) 5608 { 5609 struct sequence_stack *tem = get_current_sequence ()->next; 5610 5611 set_first_insn (tem->first); 5612 set_last_insn (tem->last); 5613 get_current_sequence ()->next = tem->next; 5614 5615 memset (tem, 0, sizeof (*tem)); 5616 tem->next = free_sequence_stack; 5617 free_sequence_stack = tem; 5618 } 5619 5620 /* Return 1 if currently emitting into a sequence. */ 5621 5622 int 5623 in_sequence_p (void) 5624 { 5625 return get_current_sequence ()->next != 0; 5626 } 5627 5628 /* Put the various virtual registers into REGNO_REG_RTX. */ 5629 5630 static void 5631 init_virtual_regs (void) 5632 { 5633 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx; 5634 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx; 5635 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx; 5636 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx; 5637 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx; 5638 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM] 5639 = virtual_preferred_stack_boundary_rtx; 5640 } 5641 5642 5643 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */ 5644 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS]; 5645 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS]; 5646 static int copy_insn_n_scratches; 5647 5648 /* When an insn is being copied by copy_insn_1, this is nonzero if we have 5649 copied an ASM_OPERANDS. 5650 In that case, it is the original input-operand vector. */ 5651 static rtvec orig_asm_operands_vector; 5652 5653 /* When an insn is being copied by copy_insn_1, this is nonzero if we have 5654 copied an ASM_OPERANDS. 5655 In that case, it is the copied input-operand vector. */ 5656 static rtvec copy_asm_operands_vector; 5657 5658 /* Likewise for the constraints vector. */ 5659 static rtvec orig_asm_constraints_vector; 5660 static rtvec copy_asm_constraints_vector; 5661 5662 /* Recursively create a new copy of an rtx for copy_insn. 5663 This function differs from copy_rtx in that it handles SCRATCHes and 5664 ASM_OPERANDs properly. 5665 Normally, this function is not used directly; use copy_insn as front end. 5666 However, you could first copy an insn pattern with copy_insn and then use 5667 this function afterwards to properly copy any REG_NOTEs containing 5668 SCRATCHes. */ 5669 5670 rtx 5671 copy_insn_1 (rtx orig) 5672 { 5673 rtx copy; 5674 int i, j; 5675 RTX_CODE code; 5676 const char *format_ptr; 5677 5678 if (orig == NULL) 5679 return NULL; 5680 5681 code = GET_CODE (orig); 5682 5683 switch (code) 5684 { 5685 case REG: 5686 case DEBUG_EXPR: 5687 CASE_CONST_ANY: 5688 case SYMBOL_REF: 5689 case CODE_LABEL: 5690 case PC: 5691 case CC0: 5692 case RETURN: 5693 case SIMPLE_RETURN: 5694 return orig; 5695 case CLOBBER: 5696 case CLOBBER_HIGH: 5697 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg 5698 clobbers or clobbers of hard registers that originated as pseudos. 5699 This is needed to allow safe register renaming. */ 5700 if (REG_P (XEXP (orig, 0)) 5701 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0))) 5702 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (orig, 0)))) 5703 return orig; 5704 break; 5705 5706 case SCRATCH: 5707 for (i = 0; i < copy_insn_n_scratches; i++) 5708 if (copy_insn_scratch_in[i] == orig) 5709 return copy_insn_scratch_out[i]; 5710 break; 5711 5712 case CONST: 5713 if (shared_const_p (orig)) 5714 return orig; 5715 break; 5716 5717 /* A MEM with a constant address is not sharable. The problem is that 5718 the constant address may need to be reloaded. If the mem is shared, 5719 then reloading one copy of this mem will cause all copies to appear 5720 to have been reloaded. */ 5721 5722 default: 5723 break; 5724 } 5725 5726 /* Copy the various flags, fields, and other information. We assume 5727 that all fields need copying, and then clear the fields that should 5728 not be copied. That is the sensible default behavior, and forces 5729 us to explicitly document why we are *not* copying a flag. */ 5730 copy = shallow_copy_rtx (orig); 5731 5732 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */ 5733 if (INSN_P (orig)) 5734 { 5735 RTX_FLAG (copy, jump) = 0; 5736 RTX_FLAG (copy, call) = 0; 5737 RTX_FLAG (copy, frame_related) = 0; 5738 } 5739 5740 format_ptr = GET_RTX_FORMAT (GET_CODE (copy)); 5741 5742 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++) 5743 switch (*format_ptr++) 5744 { 5745 case 'e': 5746 if (XEXP (orig, i) != NULL) 5747 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i)); 5748 break; 5749 5750 case 'E': 5751 case 'V': 5752 if (XVEC (orig, i) == orig_asm_constraints_vector) 5753 XVEC (copy, i) = copy_asm_constraints_vector; 5754 else if (XVEC (orig, i) == orig_asm_operands_vector) 5755 XVEC (copy, i) = copy_asm_operands_vector; 5756 else if (XVEC (orig, i) != NULL) 5757 { 5758 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i)); 5759 for (j = 0; j < XVECLEN (copy, i); j++) 5760 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j)); 5761 } 5762 break; 5763 5764 case 't': 5765 case 'w': 5766 case 'i': 5767 case 'p': 5768 case 's': 5769 case 'S': 5770 case 'u': 5771 case '0': 5772 /* These are left unchanged. */ 5773 break; 5774 5775 default: 5776 gcc_unreachable (); 5777 } 5778 5779 if (code == SCRATCH) 5780 { 5781 i = copy_insn_n_scratches++; 5782 gcc_assert (i < MAX_RECOG_OPERANDS); 5783 copy_insn_scratch_in[i] = orig; 5784 copy_insn_scratch_out[i] = copy; 5785 } 5786 else if (code == ASM_OPERANDS) 5787 { 5788 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig); 5789 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy); 5790 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig); 5791 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy); 5792 } 5793 5794 return copy; 5795 } 5796 5797 /* Create a new copy of an rtx. 5798 This function differs from copy_rtx in that it handles SCRATCHes and 5799 ASM_OPERANDs properly. 5800 INSN doesn't really have to be a full INSN; it could be just the 5801 pattern. */ 5802 rtx 5803 copy_insn (rtx insn) 5804 { 5805 copy_insn_n_scratches = 0; 5806 orig_asm_operands_vector = 0; 5807 orig_asm_constraints_vector = 0; 5808 copy_asm_operands_vector = 0; 5809 copy_asm_constraints_vector = 0; 5810 return copy_insn_1 (insn); 5811 } 5812 5813 /* Return a copy of INSN that can be used in a SEQUENCE delay slot, 5814 on that assumption that INSN itself remains in its original place. */ 5815 5816 rtx_insn * 5817 copy_delay_slot_insn (rtx_insn *insn) 5818 { 5819 /* Copy INSN with its rtx_code, all its notes, location etc. */ 5820 insn = as_a <rtx_insn *> (copy_rtx (insn)); 5821 INSN_UID (insn) = cur_insn_uid++; 5822 return insn; 5823 } 5824 5825 /* Initialize data structures and variables in this file 5826 before generating rtl for each function. */ 5827 5828 void 5829 init_emit (void) 5830 { 5831 set_first_insn (NULL); 5832 set_last_insn (NULL); 5833 if (MIN_NONDEBUG_INSN_UID) 5834 cur_insn_uid = MIN_NONDEBUG_INSN_UID; 5835 else 5836 cur_insn_uid = 1; 5837 cur_debug_insn_uid = 1; 5838 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1; 5839 first_label_num = label_num; 5840 get_current_sequence ()->next = NULL; 5841 5842 /* Init the tables that describe all the pseudo regs. */ 5843 5844 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101; 5845 5846 crtl->emit.regno_pointer_align 5847 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length); 5848 5849 regno_reg_rtx 5850 = ggc_cleared_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length); 5851 5852 /* Put copies of all the hard registers into regno_reg_rtx. */ 5853 memcpy (regno_reg_rtx, 5854 initial_regno_reg_rtx, 5855 FIRST_PSEUDO_REGISTER * sizeof (rtx)); 5856 5857 /* Put copies of all the virtual register rtx into regno_reg_rtx. */ 5858 init_virtual_regs (); 5859 5860 /* Indicate that the virtual registers and stack locations are 5861 all pointers. */ 5862 REG_POINTER (stack_pointer_rtx) = 1; 5863 REG_POINTER (frame_pointer_rtx) = 1; 5864 REG_POINTER (hard_frame_pointer_rtx) = 1; 5865 REG_POINTER (arg_pointer_rtx) = 1; 5866 5867 REG_POINTER (virtual_incoming_args_rtx) = 1; 5868 REG_POINTER (virtual_stack_vars_rtx) = 1; 5869 REG_POINTER (virtual_stack_dynamic_rtx) = 1; 5870 REG_POINTER (virtual_outgoing_args_rtx) = 1; 5871 REG_POINTER (virtual_cfa_rtx) = 1; 5872 5873 #ifdef STACK_BOUNDARY 5874 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY; 5875 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY; 5876 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY; 5877 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY; 5878 5879 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY; 5880 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY; 5881 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY; 5882 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY; 5883 5884 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD; 5885 #endif 5886 5887 #ifdef INIT_EXPANDERS 5888 INIT_EXPANDERS; 5889 #endif 5890 } 5891 5892 /* Return the value of element I of CONST_VECTOR X as a wide_int. */ 5893 5894 wide_int 5895 const_vector_int_elt (const_rtx x, unsigned int i) 5896 { 5897 /* First handle elements that are directly encoded. */ 5898 machine_mode elt_mode = GET_MODE_INNER (GET_MODE (x)); 5899 if (i < (unsigned int) XVECLEN (x, 0)) 5900 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, i), elt_mode); 5901 5902 /* Identify the pattern that contains element I and work out the index of 5903 the last encoded element for that pattern. */ 5904 unsigned int encoded_nelts = const_vector_encoded_nelts (x); 5905 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x); 5906 unsigned int count = i / npatterns; 5907 unsigned int pattern = i % npatterns; 5908 unsigned int final_i = encoded_nelts - npatterns + pattern; 5909 5910 /* If there are no steps, the final encoded value is the right one. */ 5911 if (!CONST_VECTOR_STEPPED_P (x)) 5912 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, final_i), elt_mode); 5913 5914 /* Otherwise work out the value from the last two encoded elements. */ 5915 rtx v1 = CONST_VECTOR_ENCODED_ELT (x, final_i - npatterns); 5916 rtx v2 = CONST_VECTOR_ENCODED_ELT (x, final_i); 5917 wide_int diff = wi::sub (rtx_mode_t (v2, elt_mode), 5918 rtx_mode_t (v1, elt_mode)); 5919 return wi::add (rtx_mode_t (v2, elt_mode), (count - 2) * diff); 5920 } 5921 5922 /* Return the value of element I of CONST_VECTOR X. */ 5923 5924 rtx 5925 const_vector_elt (const_rtx x, unsigned int i) 5926 { 5927 /* First handle elements that are directly encoded. */ 5928 if (i < (unsigned int) XVECLEN (x, 0)) 5929 return CONST_VECTOR_ENCODED_ELT (x, i); 5930 5931 /* If there are no steps, the final encoded value is the right one. */ 5932 if (!CONST_VECTOR_STEPPED_P (x)) 5933 { 5934 /* Identify the pattern that contains element I and work out the index of 5935 the last encoded element for that pattern. */ 5936 unsigned int encoded_nelts = const_vector_encoded_nelts (x); 5937 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x); 5938 unsigned int pattern = i % npatterns; 5939 unsigned int final_i = encoded_nelts - npatterns + pattern; 5940 return CONST_VECTOR_ENCODED_ELT (x, final_i); 5941 } 5942 5943 /* Otherwise work out the value from the last two encoded elements. */ 5944 return immed_wide_int_const (const_vector_int_elt (x, i), 5945 GET_MODE_INNER (GET_MODE (x))); 5946 } 5947 5948 /* Return true if X is a valid element for a CONST_VECTOR of the given 5949 mode. */ 5950 5951 bool 5952 valid_for_const_vector_p (machine_mode, rtx x) 5953 { 5954 return (CONST_SCALAR_INT_P (x) 5955 || CONST_DOUBLE_AS_FLOAT_P (x) 5956 || CONST_FIXED_P (x)); 5957 } 5958 5959 /* Generate a vector constant of mode MODE in which every element has 5960 value ELT. */ 5961 5962 rtx 5963 gen_const_vec_duplicate (machine_mode mode, rtx elt) 5964 { 5965 rtx_vector_builder builder (mode, 1, 1); 5966 builder.quick_push (elt); 5967 return builder.build (); 5968 } 5969 5970 /* Return a vector rtx of mode MODE in which every element has value X. 5971 The result will be a constant if X is constant. */ 5972 5973 rtx 5974 gen_vec_duplicate (machine_mode mode, rtx x) 5975 { 5976 if (valid_for_const_vector_p (mode, x)) 5977 return gen_const_vec_duplicate (mode, x); 5978 return gen_rtx_VEC_DUPLICATE (mode, x); 5979 } 5980 5981 /* A subroutine of const_vec_series_p that handles the case in which: 5982 5983 (GET_CODE (X) == CONST_VECTOR 5984 && CONST_VECTOR_NPATTERNS (X) == 1 5985 && !CONST_VECTOR_DUPLICATE_P (X)) 5986 5987 is known to hold. */ 5988 5989 bool 5990 const_vec_series_p_1 (const_rtx x, rtx *base_out, rtx *step_out) 5991 { 5992 /* Stepped sequences are only defined for integers, to avoid specifying 5993 rounding behavior. */ 5994 if (GET_MODE_CLASS (GET_MODE (x)) != MODE_VECTOR_INT) 5995 return false; 5996 5997 /* A non-duplicated vector with two elements can always be seen as a 5998 series with a nonzero step. Longer vectors must have a stepped 5999 encoding. */ 6000 if (maybe_ne (CONST_VECTOR_NUNITS (x), 2) 6001 && !CONST_VECTOR_STEPPED_P (x)) 6002 return false; 6003 6004 /* Calculate the step between the first and second elements. */ 6005 scalar_mode inner = GET_MODE_INNER (GET_MODE (x)); 6006 rtx base = CONST_VECTOR_ELT (x, 0); 6007 rtx step = simplify_binary_operation (MINUS, inner, 6008 CONST_VECTOR_ENCODED_ELT (x, 1), base); 6009 if (rtx_equal_p (step, CONST0_RTX (inner))) 6010 return false; 6011 6012 /* If we have a stepped encoding, check that the step between the 6013 second and third elements is the same as STEP. */ 6014 if (CONST_VECTOR_STEPPED_P (x)) 6015 { 6016 rtx diff = simplify_binary_operation (MINUS, inner, 6017 CONST_VECTOR_ENCODED_ELT (x, 2), 6018 CONST_VECTOR_ENCODED_ELT (x, 1)); 6019 if (!rtx_equal_p (step, diff)) 6020 return false; 6021 } 6022 6023 *base_out = base; 6024 *step_out = step; 6025 return true; 6026 } 6027 6028 /* Generate a vector constant of mode MODE in which element I has 6029 the value BASE + I * STEP. */ 6030 6031 rtx 6032 gen_const_vec_series (machine_mode mode, rtx base, rtx step) 6033 { 6034 gcc_assert (valid_for_const_vector_p (mode, base) 6035 && valid_for_const_vector_p (mode, step)); 6036 6037 rtx_vector_builder builder (mode, 1, 3); 6038 builder.quick_push (base); 6039 for (int i = 1; i < 3; ++i) 6040 builder.quick_push (simplify_gen_binary (PLUS, GET_MODE_INNER (mode), 6041 builder[i - 1], step)); 6042 return builder.build (); 6043 } 6044 6045 /* Generate a vector of mode MODE in which element I has the value 6046 BASE + I * STEP. The result will be a constant if BASE and STEP 6047 are both constants. */ 6048 6049 rtx 6050 gen_vec_series (machine_mode mode, rtx base, rtx step) 6051 { 6052 if (step == const0_rtx) 6053 return gen_vec_duplicate (mode, base); 6054 if (valid_for_const_vector_p (mode, base) 6055 && valid_for_const_vector_p (mode, step)) 6056 return gen_const_vec_series (mode, base, step); 6057 return gen_rtx_VEC_SERIES (mode, base, step); 6058 } 6059 6060 /* Generate a new vector constant for mode MODE and constant value 6061 CONSTANT. */ 6062 6063 static rtx 6064 gen_const_vector (machine_mode mode, int constant) 6065 { 6066 machine_mode inner = GET_MODE_INNER (mode); 6067 6068 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner)); 6069 6070 rtx el = const_tiny_rtx[constant][(int) inner]; 6071 gcc_assert (el); 6072 6073 return gen_const_vec_duplicate (mode, el); 6074 } 6075 6076 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when 6077 all elements are zero, and the one vector when all elements are one. */ 6078 rtx 6079 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v) 6080 { 6081 gcc_assert (known_eq (GET_MODE_NUNITS (mode), GET_NUM_ELEM (v))); 6082 6083 /* If the values are all the same, check to see if we can use one of the 6084 standard constant vectors. */ 6085 if (rtvec_all_equal_p (v)) 6086 return gen_const_vec_duplicate (mode, RTVEC_ELT (v, 0)); 6087 6088 unsigned int nunits = GET_NUM_ELEM (v); 6089 rtx_vector_builder builder (mode, nunits, 1); 6090 for (unsigned int i = 0; i < nunits; ++i) 6091 builder.quick_push (RTVEC_ELT (v, i)); 6092 return builder.build (v); 6093 } 6094 6095 /* Initialise global register information required by all functions. */ 6096 6097 void 6098 init_emit_regs (void) 6099 { 6100 int i; 6101 machine_mode mode; 6102 mem_attrs *attrs; 6103 6104 /* Reset register attributes */ 6105 reg_attrs_htab->empty (); 6106 6107 /* We need reg_raw_mode, so initialize the modes now. */ 6108 init_reg_modes_target (); 6109 6110 /* Assign register numbers to the globally defined register rtx. */ 6111 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM); 6112 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM); 6113 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM); 6114 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM); 6115 virtual_incoming_args_rtx = 6116 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM); 6117 virtual_stack_vars_rtx = 6118 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM); 6119 virtual_stack_dynamic_rtx = 6120 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM); 6121 virtual_outgoing_args_rtx = 6122 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM); 6123 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM); 6124 virtual_preferred_stack_boundary_rtx = 6125 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM); 6126 6127 /* Initialize RTL for commonly used hard registers. These are 6128 copied into regno_reg_rtx as we begin to compile each function. */ 6129 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) 6130 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i); 6131 6132 #ifdef RETURN_ADDRESS_POINTER_REGNUM 6133 return_address_pointer_rtx 6134 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM); 6135 #endif 6136 6137 pic_offset_table_rtx = NULL_RTX; 6138 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) 6139 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM); 6140 6141 for (i = 0; i < (int) MAX_MACHINE_MODE; i++) 6142 { 6143 mode = (machine_mode) i; 6144 attrs = ggc_cleared_alloc<mem_attrs> (); 6145 attrs->align = BITS_PER_UNIT; 6146 attrs->addrspace = ADDR_SPACE_GENERIC; 6147 if (mode != BLKmode && mode != VOIDmode) 6148 { 6149 attrs->size_known_p = true; 6150 attrs->size = GET_MODE_SIZE (mode); 6151 if (STRICT_ALIGNMENT) 6152 attrs->align = GET_MODE_ALIGNMENT (mode); 6153 } 6154 mode_mem_attrs[i] = attrs; 6155 } 6156 6157 split_branch_probability = profile_probability::uninitialized (); 6158 } 6159 6160 /* Initialize global machine_mode variables. */ 6161 6162 void 6163 init_derived_machine_modes (void) 6164 { 6165 opt_scalar_int_mode mode_iter, opt_byte_mode, opt_word_mode; 6166 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT) 6167 { 6168 scalar_int_mode mode = mode_iter.require (); 6169 6170 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT 6171 && !opt_byte_mode.exists ()) 6172 opt_byte_mode = mode; 6173 6174 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD 6175 && !opt_word_mode.exists ()) 6176 opt_word_mode = mode; 6177 } 6178 6179 byte_mode = opt_byte_mode.require (); 6180 word_mode = opt_word_mode.require (); 6181 ptr_mode = as_a <scalar_int_mode> 6182 (mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0).require ()); 6183 } 6184 6185 /* Create some permanent unique rtl objects shared between all functions. */ 6186 6187 void 6188 init_emit_once (void) 6189 { 6190 int i; 6191 machine_mode mode; 6192 scalar_float_mode double_mode; 6193 opt_scalar_mode smode_iter; 6194 6195 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE, 6196 CONST_FIXED, and memory attribute hash tables. */ 6197 const_int_htab = hash_table<const_int_hasher>::create_ggc (37); 6198 6199 #if TARGET_SUPPORTS_WIDE_INT 6200 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37); 6201 #endif 6202 const_double_htab = hash_table<const_double_hasher>::create_ggc (37); 6203 6204 if (NUM_POLY_INT_COEFFS > 1) 6205 const_poly_int_htab = hash_table<const_poly_int_hasher>::create_ggc (37); 6206 6207 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37); 6208 6209 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37); 6210 6211 #ifdef INIT_EXPANDERS 6212 /* This is to initialize {init|mark|free}_machine_status before the first 6213 call to push_function_context_to. This is needed by the Chill front 6214 end which calls push_function_context_to before the first call to 6215 init_function_start. */ 6216 INIT_EXPANDERS; 6217 #endif 6218 6219 /* Create the unique rtx's for certain rtx codes and operand values. */ 6220 6221 /* Process stack-limiting command-line options. */ 6222 if (opt_fstack_limit_symbol_arg != NULL) 6223 stack_limit_rtx 6224 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (opt_fstack_limit_symbol_arg)); 6225 if (opt_fstack_limit_register_no >= 0) 6226 stack_limit_rtx = gen_rtx_REG (Pmode, opt_fstack_limit_register_no); 6227 6228 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case 6229 tries to use these variables. */ 6230 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++) 6231 const_int_rtx[i + MAX_SAVED_CONST_INT] = 6232 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i); 6233 6234 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT 6235 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT) 6236 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT]; 6237 else 6238 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE); 6239 6240 double_mode = float_mode_for_size (DOUBLE_TYPE_SIZE).require (); 6241 6242 real_from_integer (&dconst0, double_mode, 0, SIGNED); 6243 real_from_integer (&dconst1, double_mode, 1, SIGNED); 6244 real_from_integer (&dconst2, double_mode, 2, SIGNED); 6245 6246 dconstm1 = dconst1; 6247 dconstm1.sign = 1; 6248 6249 dconsthalf = dconst1; 6250 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1); 6251 6252 for (i = 0; i < 3; i++) 6253 { 6254 const REAL_VALUE_TYPE *const r = 6255 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2); 6256 6257 FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT) 6258 const_tiny_rtx[i][(int) mode] = 6259 const_double_from_real_value (*r, mode); 6260 6261 FOR_EACH_MODE_IN_CLASS (mode, MODE_DECIMAL_FLOAT) 6262 const_tiny_rtx[i][(int) mode] = 6263 const_double_from_real_value (*r, mode); 6264 6265 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i); 6266 6267 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT) 6268 const_tiny_rtx[i][(int) mode] = GEN_INT (i); 6269 6270 for (mode = MIN_MODE_PARTIAL_INT; 6271 mode <= MAX_MODE_PARTIAL_INT; 6272 mode = (machine_mode)((int)(mode) + 1)) 6273 const_tiny_rtx[i][(int) mode] = GEN_INT (i); 6274 } 6275 6276 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx; 6277 6278 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT) 6279 const_tiny_rtx[3][(int) mode] = constm1_rtx; 6280 6281 /* For BImode, 1 and -1 are unsigned and signed interpretations 6282 of the same value. */ 6283 const_tiny_rtx[0][(int) BImode] = const0_rtx; 6284 const_tiny_rtx[1][(int) BImode] = const_true_rtx; 6285 const_tiny_rtx[3][(int) BImode] = const_true_rtx; 6286 6287 for (mode = MIN_MODE_PARTIAL_INT; 6288 mode <= MAX_MODE_PARTIAL_INT; 6289 mode = (machine_mode)((int)(mode) + 1)) 6290 const_tiny_rtx[3][(int) mode] = constm1_rtx; 6291 6292 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_INT) 6293 { 6294 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)]; 6295 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner); 6296 } 6297 6298 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT) 6299 { 6300 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)]; 6301 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner); 6302 } 6303 6304 /* As for BImode, "all 1" and "all -1" are unsigned and signed 6305 interpretations of the same value. */ 6306 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_BOOL) 6307 { 6308 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0); 6309 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3); 6310 const_tiny_rtx[1][(int) mode] = const_tiny_rtx[3][(int) mode]; 6311 } 6312 6313 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT) 6314 { 6315 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0); 6316 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1); 6317 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3); 6318 } 6319 6320 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT) 6321 { 6322 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0); 6323 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1); 6324 } 6325 6326 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_FRACT) 6327 { 6328 scalar_mode smode = smode_iter.require (); 6329 FCONST0 (smode).data.high = 0; 6330 FCONST0 (smode).data.low = 0; 6331 FCONST0 (smode).mode = smode; 6332 const_tiny_rtx[0][(int) smode] 6333 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode); 6334 } 6335 6336 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UFRACT) 6337 { 6338 scalar_mode smode = smode_iter.require (); 6339 FCONST0 (smode).data.high = 0; 6340 FCONST0 (smode).data.low = 0; 6341 FCONST0 (smode).mode = smode; 6342 const_tiny_rtx[0][(int) smode] 6343 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode); 6344 } 6345 6346 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_ACCUM) 6347 { 6348 scalar_mode smode = smode_iter.require (); 6349 FCONST0 (smode).data.high = 0; 6350 FCONST0 (smode).data.low = 0; 6351 FCONST0 (smode).mode = smode; 6352 const_tiny_rtx[0][(int) smode] 6353 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode); 6354 6355 /* We store the value 1. */ 6356 FCONST1 (smode).data.high = 0; 6357 FCONST1 (smode).data.low = 0; 6358 FCONST1 (smode).mode = smode; 6359 FCONST1 (smode).data 6360 = double_int_one.lshift (GET_MODE_FBIT (smode), 6361 HOST_BITS_PER_DOUBLE_INT, 6362 SIGNED_FIXED_POINT_MODE_P (smode)); 6363 const_tiny_rtx[1][(int) smode] 6364 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode); 6365 } 6366 6367 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UACCUM) 6368 { 6369 scalar_mode smode = smode_iter.require (); 6370 FCONST0 (smode).data.high = 0; 6371 FCONST0 (smode).data.low = 0; 6372 FCONST0 (smode).mode = smode; 6373 const_tiny_rtx[0][(int) smode] 6374 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode); 6375 6376 /* We store the value 1. */ 6377 FCONST1 (smode).data.high = 0; 6378 FCONST1 (smode).data.low = 0; 6379 FCONST1 (smode).mode = smode; 6380 FCONST1 (smode).data 6381 = double_int_one.lshift (GET_MODE_FBIT (smode), 6382 HOST_BITS_PER_DOUBLE_INT, 6383 SIGNED_FIXED_POINT_MODE_P (smode)); 6384 const_tiny_rtx[1][(int) smode] 6385 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode); 6386 } 6387 6388 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FRACT) 6389 { 6390 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0); 6391 } 6392 6393 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UFRACT) 6394 { 6395 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0); 6396 } 6397 6398 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_ACCUM) 6399 { 6400 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0); 6401 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1); 6402 } 6403 6404 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UACCUM) 6405 { 6406 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0); 6407 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1); 6408 } 6409 6410 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i) 6411 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC) 6412 const_tiny_rtx[0][i] = const0_rtx; 6413 6414 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode); 6415 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode); 6416 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode); 6417 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode); 6418 invalid_insn_rtx = gen_rtx_INSN (VOIDmode, 6419 /*prev_insn=*/NULL, 6420 /*next_insn=*/NULL, 6421 /*bb=*/NULL, 6422 /*pattern=*/NULL_RTX, 6423 /*location=*/-1, 6424 CODE_FOR_nothing, 6425 /*reg_notes=*/NULL_RTX); 6426 } 6427 6428 /* Produce exact duplicate of insn INSN after AFTER. 6429 Care updating of libcall regions if present. */ 6430 6431 rtx_insn * 6432 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after) 6433 { 6434 rtx_insn *new_rtx; 6435 rtx link; 6436 6437 switch (GET_CODE (insn)) 6438 { 6439 case INSN: 6440 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after); 6441 break; 6442 6443 case JUMP_INSN: 6444 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after); 6445 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn); 6446 break; 6447 6448 case DEBUG_INSN: 6449 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after); 6450 break; 6451 6452 case CALL_INSN: 6453 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after); 6454 if (CALL_INSN_FUNCTION_USAGE (insn)) 6455 CALL_INSN_FUNCTION_USAGE (new_rtx) 6456 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn)); 6457 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn); 6458 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn); 6459 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn); 6460 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx) 6461 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn); 6462 break; 6463 6464 default: 6465 gcc_unreachable (); 6466 } 6467 6468 /* Update LABEL_NUSES. */ 6469 mark_jump_label (PATTERN (new_rtx), new_rtx, 0); 6470 6471 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn); 6472 6473 /* If the old insn is frame related, then so is the new one. This is 6474 primarily needed for IA-64 unwind info which marks epilogue insns, 6475 which may be duplicated by the basic block reordering code. */ 6476 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn); 6477 6478 /* Locate the end of existing REG_NOTES in NEW_RTX. */ 6479 rtx *ptail = ®_NOTES (new_rtx); 6480 while (*ptail != NULL_RTX) 6481 ptail = &XEXP (*ptail, 1); 6482 6483 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label 6484 will make them. REG_LABEL_TARGETs are created there too, but are 6485 supposed to be sticky, so we copy them. */ 6486 for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) 6487 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND) 6488 { 6489 *ptail = duplicate_reg_note (link); 6490 ptail = &XEXP (*ptail, 1); 6491 } 6492 6493 INSN_CODE (new_rtx) = INSN_CODE (insn); 6494 return new_rtx; 6495 } 6496 6497 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER]; 6498 rtx 6499 gen_hard_reg_clobber (machine_mode mode, unsigned int regno) 6500 { 6501 if (hard_reg_clobbers[mode][regno]) 6502 return hard_reg_clobbers[mode][regno]; 6503 else 6504 return (hard_reg_clobbers[mode][regno] = 6505 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno))); 6506 } 6507 6508 static GTY((deletable)) rtx 6509 hard_reg_clobbers_high[NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER]; 6510 6511 /* Return a CLOBBER_HIGH expression for register REGNO that clobbers MODE, 6512 caching into HARD_REG_CLOBBERS_HIGH. */ 6513 rtx 6514 gen_hard_reg_clobber_high (machine_mode mode, unsigned int regno) 6515 { 6516 if (hard_reg_clobbers_high[mode][regno]) 6517 return hard_reg_clobbers_high[mode][regno]; 6518 else 6519 return (hard_reg_clobbers_high[mode][regno] 6520 = gen_rtx_CLOBBER_HIGH (VOIDmode, gen_rtx_REG (mode, regno))); 6521 } 6522 6523 location_t prologue_location; 6524 location_t epilogue_location; 6525 6526 /* Hold current location information and last location information, so the 6527 datastructures are built lazily only when some instructions in given 6528 place are needed. */ 6529 static location_t curr_location; 6530 6531 /* Allocate insn location datastructure. */ 6532 void 6533 insn_locations_init (void) 6534 { 6535 prologue_location = epilogue_location = 0; 6536 curr_location = UNKNOWN_LOCATION; 6537 } 6538 6539 /* At the end of emit stage, clear current location. */ 6540 void 6541 insn_locations_finalize (void) 6542 { 6543 epilogue_location = curr_location; 6544 curr_location = UNKNOWN_LOCATION; 6545 } 6546 6547 /* Set current location. */ 6548 void 6549 set_curr_insn_location (location_t location) 6550 { 6551 curr_location = location; 6552 } 6553 6554 /* Get current location. */ 6555 location_t 6556 curr_insn_location (void) 6557 { 6558 return curr_location; 6559 } 6560 6561 /* Return lexical scope block insn belongs to. */ 6562 tree 6563 insn_scope (const rtx_insn *insn) 6564 { 6565 return LOCATION_BLOCK (INSN_LOCATION (insn)); 6566 } 6567 6568 /* Return line number of the statement that produced this insn. */ 6569 int 6570 insn_line (const rtx_insn *insn) 6571 { 6572 return LOCATION_LINE (INSN_LOCATION (insn)); 6573 } 6574 6575 /* Return source file of the statement that produced this insn. */ 6576 const char * 6577 insn_file (const rtx_insn *insn) 6578 { 6579 return LOCATION_FILE (INSN_LOCATION (insn)); 6580 } 6581 6582 /* Return expanded location of the statement that produced this insn. */ 6583 expanded_location 6584 insn_location (const rtx_insn *insn) 6585 { 6586 return expand_location (INSN_LOCATION (insn)); 6587 } 6588 6589 /* Return true if memory model MODEL requires a pre-operation (release-style) 6590 barrier or a post-operation (acquire-style) barrier. While not universal, 6591 this function matches behavior of several targets. */ 6592 6593 bool 6594 need_atomic_barrier_p (enum memmodel model, bool pre) 6595 { 6596 switch (model & MEMMODEL_BASE_MASK) 6597 { 6598 case MEMMODEL_RELAXED: 6599 case MEMMODEL_CONSUME: 6600 return false; 6601 case MEMMODEL_RELEASE: 6602 return pre; 6603 case MEMMODEL_ACQUIRE: 6604 return !pre; 6605 case MEMMODEL_ACQ_REL: 6606 case MEMMODEL_SEQ_CST: 6607 return true; 6608 default: 6609 gcc_unreachable (); 6610 } 6611 } 6612 6613 /* Return a constant shift amount for shifting a value of mode MODE 6614 by VALUE bits. */ 6615 6616 rtx 6617 gen_int_shift_amount (machine_mode, poly_int64 value) 6618 { 6619 /* Use a 64-bit mode, to avoid any truncation. 6620 6621 ??? Perhaps this should be automatically derived from the .md files 6622 instead, or perhaps have a target hook. */ 6623 scalar_int_mode shift_mode = (BITS_PER_UNIT == 8 6624 ? DImode 6625 : int_mode_for_size (64, 0).require ()); 6626 return gen_int_mode (value, shift_mode); 6627 } 6628 6629 /* Initialize fields of rtl_data related to stack alignment. */ 6630 6631 void 6632 rtl_data::init_stack_alignment () 6633 { 6634 stack_alignment_needed = STACK_BOUNDARY; 6635 max_used_stack_slot_alignment = STACK_BOUNDARY; 6636 stack_alignment_estimated = 0; 6637 preferred_stack_boundary = STACK_BOUNDARY; 6638 } 6639 6640 6641 #include "gt-emit-rtl.h" 6642