xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/dwarf2cfi.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Dwarf2 Call Frame Information helper routines.
2    Copyright (C) 1992-2015 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "version.h"
25 #include "flags.h"
26 #include "rtl.h"
27 #include "hash-set.h"
28 #include "machmode.h"
29 #include "vec.h"
30 #include "double-int.h"
31 #include "input.h"
32 #include "alias.h"
33 #include "symtab.h"
34 #include "wide-int.h"
35 #include "inchash.h"
36 #include "real.h"
37 #include "tree.h"
38 #include "stor-layout.h"
39 #include "hard-reg-set.h"
40 #include "function.h"
41 #include "cfgbuild.h"
42 #include "dwarf2.h"
43 #include "dwarf2out.h"
44 #include "dwarf2asm.h"
45 #include "ggc.h"
46 #include "hash-table.h"
47 #include "tm_p.h"
48 #include "target.h"
49 #include "common/common-target.h"
50 #include "tree-pass.h"
51 
52 #include "except.h"		/* expand_builtin_dwarf_sp_column */
53 #include "hashtab.h"
54 #include "statistics.h"
55 #include "fixed-value.h"
56 #include "insn-config.h"
57 #include "expmed.h"
58 #include "dojump.h"
59 #include "explow.h"
60 #include "calls.h"
61 #include "emit-rtl.h"
62 #include "varasm.h"
63 #include "stmt.h"
64 #include "expr.h"		/* init_return_column_size */
65 #include "regs.h"		/* expand_builtin_init_dwarf_reg_sizes */
66 #include "output.h"		/* asm_out_file */
67 #include "debug.h"		/* dwarf2out_do_frame, dwarf2out_do_cfi_asm */
68 
69 
70 /* ??? Poison these here until it can be done generically.  They've been
71    totally replaced in this file; make sure it stays that way.  */
72 #undef DWARF2_UNWIND_INFO
73 #undef DWARF2_FRAME_INFO
74 #if (GCC_VERSION >= 3000)
75  #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
76 #endif
77 
78 #ifndef INCOMING_RETURN_ADDR_RTX
79 #define INCOMING_RETURN_ADDR_RTX  (gcc_unreachable (), NULL_RTX)
80 #endif
81 
82 /* Maximum size (in bytes) of an artificially generated label.  */
83 #define MAX_ARTIFICIAL_LABEL_BYTES	30
84 
85 /* A collected description of an entire row of the abstract CFI table.  */
86 typedef struct GTY(()) dw_cfi_row_struct
87 {
88   /* The expression that computes the CFA, expressed in two different ways.
89      The CFA member for the simple cases, and the full CFI expression for
90      the complex cases.  The later will be a DW_CFA_cfa_expression.  */
91   dw_cfa_location cfa;
92   dw_cfi_ref cfa_cfi;
93 
94   /* The expressions for any register column that is saved.  */
95   cfi_vec reg_save;
96 } dw_cfi_row;
97 
98 /* The caller's ORIG_REG is saved in SAVED_IN_REG.  */
99 typedef struct GTY(()) reg_saved_in_data_struct {
100   rtx orig_reg;
101   rtx saved_in_reg;
102 } reg_saved_in_data;
103 
104 
105 /* Since we no longer have a proper CFG, we're going to create a facsimile
106    of one on the fly while processing the frame-related insns.
107 
108    We create dw_trace_info structures for each extended basic block beginning
109    and ending at a "save point".  Save points are labels, barriers, certain
110    notes, and of course the beginning and end of the function.
111 
112    As we encounter control transfer insns, we propagate the "current"
113    row state across the edges to the starts of traces.  When checking is
114    enabled, we validate that we propagate the same data from all sources.
115 
116    All traces are members of the TRACE_INFO array, in the order in which
117    they appear in the instruction stream.
118 
119    All save points are present in the TRACE_INDEX hash, mapping the insn
120    starting a trace to the dw_trace_info describing the trace.  */
121 
122 typedef struct
123 {
124   /* The insn that begins the trace.  */
125   rtx_insn *head;
126 
127   /* The row state at the beginning and end of the trace.  */
128   dw_cfi_row *beg_row, *end_row;
129 
130   /* Tracking for DW_CFA_GNU_args_size.  The "true" sizes are those we find
131      while scanning insns.  However, the args_size value is irrelevant at
132      any point except can_throw_internal_p insns.  Therefore the "delay"
133      sizes the values that must actually be emitted for this trace.  */
134   HOST_WIDE_INT beg_true_args_size, end_true_args_size;
135   HOST_WIDE_INT beg_delay_args_size, end_delay_args_size;
136 
137   /* The first EH insn in the trace, where beg_delay_args_size must be set.  */
138   rtx_insn *eh_head;
139 
140   /* The following variables contain data used in interpreting frame related
141      expressions.  These are not part of the "real" row state as defined by
142      Dwarf, but it seems like they need to be propagated into a trace in case
143      frame related expressions have been sunk.  */
144   /* ??? This seems fragile.  These variables are fragments of a larger
145      expression.  If we do not keep the entire expression together, we risk
146      not being able to put it together properly.  Consider forcing targets
147      to generate self-contained expressions and dropping all of the magic
148      interpretation code in this file.  Or at least refusing to shrink wrap
149      any frame related insn that doesn't contain a complete expression.  */
150 
151   /* The register used for saving registers to the stack, and its offset
152      from the CFA.  */
153   dw_cfa_location cfa_store;
154 
155   /* A temporary register holding an integral value used in adjusting SP
156      or setting up the store_reg.  The "offset" field holds the integer
157      value, not an offset.  */
158   dw_cfa_location cfa_temp;
159 
160   /* A set of registers saved in other registers.  This is the inverse of
161      the row->reg_save info, if the entry is a DW_CFA_register.  This is
162      implemented as a flat array because it normally contains zero or 1
163      entry, depending on the target.  IA-64 is the big spender here, using
164      a maximum of 5 entries.  */
165   vec<reg_saved_in_data> regs_saved_in_regs;
166 
167   /* An identifier for this trace.  Used only for debugging dumps.  */
168   unsigned id;
169 
170   /* True if this trace immediately follows NOTE_INSN_SWITCH_TEXT_SECTIONS.  */
171   bool switch_sections;
172 
173   /* True if we've seen different values incoming to beg_true_args_size.  */
174   bool args_size_undefined;
175 } dw_trace_info;
176 
177 
178 typedef dw_trace_info *dw_trace_info_ref;
179 
180 
181 /* Hashtable helpers.  */
182 
183 struct trace_info_hasher : typed_noop_remove <dw_trace_info>
184 {
185   typedef dw_trace_info value_type;
186   typedef dw_trace_info compare_type;
187   static inline hashval_t hash (const value_type *);
188   static inline bool equal (const value_type *, const compare_type *);
189 };
190 
191 inline hashval_t
192 trace_info_hasher::hash (const value_type *ti)
193 {
194   return INSN_UID (ti->head);
195 }
196 
197 inline bool
198 trace_info_hasher::equal (const value_type *a, const compare_type *b)
199 {
200   return a->head == b->head;
201 }
202 
203 
204 /* The variables making up the pseudo-cfg, as described above.  */
205 static vec<dw_trace_info> trace_info;
206 static vec<dw_trace_info_ref> trace_work_list;
207 static hash_table<trace_info_hasher> *trace_index;
208 
209 /* A vector of call frame insns for the CIE.  */
210 cfi_vec cie_cfi_vec;
211 
212 /* The state of the first row of the FDE table, which includes the
213    state provided by the CIE.  */
214 static GTY(()) dw_cfi_row *cie_cfi_row;
215 
216 static GTY(()) reg_saved_in_data *cie_return_save;
217 
218 static GTY(()) unsigned long dwarf2out_cfi_label_num;
219 
220 /* The insn after which a new CFI note should be emitted.  */
221 static rtx add_cfi_insn;
222 
223 /* When non-null, add_cfi will add the CFI to this vector.  */
224 static cfi_vec *add_cfi_vec;
225 
226 /* The current instruction trace.  */
227 static dw_trace_info *cur_trace;
228 
229 /* The current, i.e. most recently generated, row of the CFI table.  */
230 static dw_cfi_row *cur_row;
231 
232 /* A copy of the current CFA, for use during the processing of a
233    single insn.  */
234 static dw_cfa_location *cur_cfa;
235 
236 /* We delay emitting a register save until either (a) we reach the end
237    of the prologue or (b) the register is clobbered.  This clusters
238    register saves so that there are fewer pc advances.  */
239 
240 typedef struct {
241   rtx reg;
242   rtx saved_reg;
243   HOST_WIDE_INT cfa_offset;
244 } queued_reg_save;
245 
246 
247 static vec<queued_reg_save> queued_reg_saves;
248 
249 /* True if any CFI directives were emitted at the current insn.  */
250 static bool any_cfis_emitted;
251 
252 /* Short-hand for commonly used register numbers.  */
253 static unsigned dw_stack_pointer_regnum;
254 static unsigned dw_frame_pointer_regnum;
255 
256 /* Hook used by __throw.  */
257 
258 rtx
259 expand_builtin_dwarf_sp_column (void)
260 {
261   unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
262   return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
263 }
264 
265 /* MEM is a memory reference for the register size table, each element of
266    which has mode MODE.  Initialize column C as a return address column.  */
267 
268 static void
269 init_return_column_size (machine_mode mode, rtx mem, unsigned int c)
270 {
271   HOST_WIDE_INT offset = c * GET_MODE_SIZE (mode);
272   HOST_WIDE_INT size = GET_MODE_SIZE (Pmode);
273   emit_move_insn (adjust_address (mem, mode, offset),
274 		  gen_int_mode (size, mode));
275 }
276 
277 /* Datastructure used by expand_builtin_init_dwarf_reg_sizes and
278    init_one_dwarf_reg_size to communicate on what has been done by the
279    latter.  */
280 
281 typedef struct
282 {
283   /* Whether the dwarf return column was initialized.  */
284   bool wrote_return_column;
285 
286   /* For each hard register REGNO, whether init_one_dwarf_reg_size
287      was given REGNO to process already.  */
288   bool processed_regno [FIRST_PSEUDO_REGISTER];
289 
290 } init_one_dwarf_reg_state;
291 
292 /* Helper for expand_builtin_init_dwarf_reg_sizes.  Generate code to
293    initialize the dwarf register size table entry corresponding to register
294    REGNO in REGMODE.  TABLE is the table base address, SLOTMODE is the mode to
295    use for the size entry to initialize, and INIT_STATE is the communication
296    datastructure conveying what we're doing to our caller.  */
297 
298 static
299 void init_one_dwarf_reg_size (int regno, machine_mode regmode,
300 			      rtx table, machine_mode slotmode,
301 			      init_one_dwarf_reg_state *init_state)
302 {
303   const unsigned int dnum = DWARF_FRAME_REGNUM (regno);
304   const unsigned int rnum = DWARF2_FRAME_REG_OUT (dnum, 1);
305   const unsigned int dcol = DWARF_REG_TO_UNWIND_COLUMN (rnum);
306 
307   const HOST_WIDE_INT slotoffset = dcol * GET_MODE_SIZE (slotmode);
308   const HOST_WIDE_INT regsize = GET_MODE_SIZE (regmode);
309 
310   init_state->processed_regno[regno] = true;
311 
312   if (rnum >= DWARF_FRAME_REGISTERS)
313     return;
314 
315   if (dnum == DWARF_FRAME_RETURN_COLUMN)
316     {
317       if (regmode == VOIDmode)
318 	return;
319       init_state->wrote_return_column = true;
320     }
321 
322   if (slotoffset < 0)
323     return;
324 
325   emit_move_insn (adjust_address (table, slotmode, slotoffset),
326 		  gen_int_mode (regsize, slotmode));
327 }
328 
329 /* Generate code to initialize the dwarf register size table located
330    at the provided ADDRESS.  */
331 
332 void
333 expand_builtin_init_dwarf_reg_sizes (tree address)
334 {
335   unsigned int i;
336   machine_mode mode = TYPE_MODE (char_type_node);
337   rtx addr = expand_normal (address);
338   rtx mem = gen_rtx_MEM (BLKmode, addr);
339 
340   init_one_dwarf_reg_state init_state;
341 
342   memset ((char *)&init_state, 0, sizeof (init_state));
343 
344   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
345     {
346       machine_mode save_mode;
347       rtx span;
348 
349       /* No point in processing a register multiple times.  This could happen
350 	 with register spans, e.g. when a reg is first processed as a piece of
351 	 a span, then as a register on its own later on.  */
352 
353       if (init_state.processed_regno[i])
354 	continue;
355 
356       save_mode = targetm.dwarf_frame_reg_mode (i);
357       span = targetm.dwarf_register_span (gen_rtx_REG (save_mode, i));
358 
359       if (!span)
360 	init_one_dwarf_reg_size (i, save_mode, mem, mode, &init_state);
361       else
362 	{
363 	  for (int si = 0; si < XVECLEN (span, 0); si++)
364 	    {
365 	      rtx reg = XVECEXP (span, 0, si);
366 
367 	      init_one_dwarf_reg_size
368 		(REGNO (reg), GET_MODE (reg), mem, mode, &init_state);
369 	    }
370 	}
371     }
372 
373   if (!init_state.wrote_return_column)
374     init_return_column_size (mode, mem, DWARF_FRAME_RETURN_COLUMN);
375 
376 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
377   init_return_column_size (mode, mem, DWARF_ALT_FRAME_RETURN_COLUMN);
378 #endif
379 
380   targetm.init_dwarf_reg_sizes_extra (address);
381 }
382 
383 
384 static dw_trace_info *
385 get_trace_info (rtx_insn *insn)
386 {
387   dw_trace_info dummy;
388   dummy.head = insn;
389   return trace_index->find_with_hash (&dummy, INSN_UID (insn));
390 }
391 
392 static bool
393 save_point_p (rtx_insn *insn)
394 {
395   /* Labels, except those that are really jump tables.  */
396   if (LABEL_P (insn))
397     return inside_basic_block_p (insn);
398 
399   /* We split traces at the prologue/epilogue notes because those
400      are points at which the unwind info is usually stable.  This
401      makes it easier to find spots with identical unwind info so
402      that we can use remember/restore_state opcodes.  */
403   if (NOTE_P (insn))
404     switch (NOTE_KIND (insn))
405       {
406       case NOTE_INSN_PROLOGUE_END:
407       case NOTE_INSN_EPILOGUE_BEG:
408 	return true;
409       }
410 
411   return false;
412 }
413 
414 /* Divide OFF by DWARF_CIE_DATA_ALIGNMENT, asserting no remainder.  */
415 
416 static inline HOST_WIDE_INT
417 div_data_align (HOST_WIDE_INT off)
418 {
419   HOST_WIDE_INT r = off / DWARF_CIE_DATA_ALIGNMENT;
420   gcc_assert (r * DWARF_CIE_DATA_ALIGNMENT == off);
421   return r;
422 }
423 
424 /* Return true if we need a signed version of a given opcode
425    (e.g. DW_CFA_offset_extended_sf vs DW_CFA_offset_extended).  */
426 
427 static inline bool
428 need_data_align_sf_opcode (HOST_WIDE_INT off)
429 {
430   return DWARF_CIE_DATA_ALIGNMENT < 0 ? off > 0 : off < 0;
431 }
432 
433 /* Return a pointer to a newly allocated Call Frame Instruction.  */
434 
435 static inline dw_cfi_ref
436 new_cfi (void)
437 {
438   dw_cfi_ref cfi = ggc_alloc<dw_cfi_node> ();
439 
440   cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
441   cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
442 
443   return cfi;
444 }
445 
446 /* Return a newly allocated CFI row, with no defined data.  */
447 
448 static dw_cfi_row *
449 new_cfi_row (void)
450 {
451   dw_cfi_row *row = ggc_cleared_alloc<dw_cfi_row> ();
452 
453   row->cfa.reg = INVALID_REGNUM;
454 
455   return row;
456 }
457 
458 /* Return a copy of an existing CFI row.  */
459 
460 static dw_cfi_row *
461 copy_cfi_row (dw_cfi_row *src)
462 {
463   dw_cfi_row *dst = ggc_alloc<dw_cfi_row> ();
464 
465   *dst = *src;
466   dst->reg_save = vec_safe_copy (src->reg_save);
467 
468   return dst;
469 }
470 
471 /* Generate a new label for the CFI info to refer to.  */
472 
473 static char *
474 dwarf2out_cfi_label (void)
475 {
476   int num = dwarf2out_cfi_label_num++;
477   char label[20];
478 
479   ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", num);
480 
481   return xstrdup (label);
482 }
483 
484 /* Add CFI either to the current insn stream or to a vector, or both.  */
485 
486 static void
487 add_cfi (dw_cfi_ref cfi)
488 {
489   any_cfis_emitted = true;
490 
491   if (add_cfi_insn != NULL)
492     {
493       add_cfi_insn = emit_note_after (NOTE_INSN_CFI, add_cfi_insn);
494       NOTE_CFI (add_cfi_insn) = cfi;
495     }
496 
497   if (add_cfi_vec != NULL)
498     vec_safe_push (*add_cfi_vec, cfi);
499 }
500 
501 static void
502 add_cfi_args_size (HOST_WIDE_INT size)
503 {
504   dw_cfi_ref cfi = new_cfi ();
505 
506   /* While we can occasionally have args_size < 0 internally, this state
507      should not persist at a point we actually need an opcode.  */
508   gcc_assert (size >= 0);
509 
510   cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
511   cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
512 
513   add_cfi (cfi);
514 }
515 
516 static void
517 add_cfi_restore (unsigned reg)
518 {
519   dw_cfi_ref cfi = new_cfi ();
520 
521   cfi->dw_cfi_opc = (reg & ~0x3f ? DW_CFA_restore_extended : DW_CFA_restore);
522   cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
523 
524   add_cfi (cfi);
525 }
526 
527 /* Perform ROW->REG_SAVE[COLUMN] = CFI.  CFI may be null, indicating
528    that the register column is no longer saved.  */
529 
530 static void
531 update_row_reg_save (dw_cfi_row *row, unsigned column, dw_cfi_ref cfi)
532 {
533   if (vec_safe_length (row->reg_save) <= column)
534     vec_safe_grow_cleared (row->reg_save, column + 1);
535   (*row->reg_save)[column] = cfi;
536 }
537 
538 /* This function fills in aa dw_cfa_location structure from a dwarf location
539    descriptor sequence.  */
540 
541 static void
542 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_node *loc)
543 {
544   struct dw_loc_descr_node *ptr;
545   cfa->offset = 0;
546   cfa->base_offset = 0;
547   cfa->indirect = 0;
548   cfa->reg = -1;
549 
550   for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
551     {
552       enum dwarf_location_atom op = ptr->dw_loc_opc;
553 
554       switch (op)
555 	{
556 	case DW_OP_reg0:
557 	case DW_OP_reg1:
558 	case DW_OP_reg2:
559 	case DW_OP_reg3:
560 	case DW_OP_reg4:
561 	case DW_OP_reg5:
562 	case DW_OP_reg6:
563 	case DW_OP_reg7:
564 	case DW_OP_reg8:
565 	case DW_OP_reg9:
566 	case DW_OP_reg10:
567 	case DW_OP_reg11:
568 	case DW_OP_reg12:
569 	case DW_OP_reg13:
570 	case DW_OP_reg14:
571 	case DW_OP_reg15:
572 	case DW_OP_reg16:
573 	case DW_OP_reg17:
574 	case DW_OP_reg18:
575 	case DW_OP_reg19:
576 	case DW_OP_reg20:
577 	case DW_OP_reg21:
578 	case DW_OP_reg22:
579 	case DW_OP_reg23:
580 	case DW_OP_reg24:
581 	case DW_OP_reg25:
582 	case DW_OP_reg26:
583 	case DW_OP_reg27:
584 	case DW_OP_reg28:
585 	case DW_OP_reg29:
586 	case DW_OP_reg30:
587 	case DW_OP_reg31:
588 	  cfa->reg = op - DW_OP_reg0;
589 	  break;
590 	case DW_OP_regx:
591 	  cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
592 	  break;
593 	case DW_OP_breg0:
594 	case DW_OP_breg1:
595 	case DW_OP_breg2:
596 	case DW_OP_breg3:
597 	case DW_OP_breg4:
598 	case DW_OP_breg5:
599 	case DW_OP_breg6:
600 	case DW_OP_breg7:
601 	case DW_OP_breg8:
602 	case DW_OP_breg9:
603 	case DW_OP_breg10:
604 	case DW_OP_breg11:
605 	case DW_OP_breg12:
606 	case DW_OP_breg13:
607 	case DW_OP_breg14:
608 	case DW_OP_breg15:
609 	case DW_OP_breg16:
610 	case DW_OP_breg17:
611 	case DW_OP_breg18:
612 	case DW_OP_breg19:
613 	case DW_OP_breg20:
614 	case DW_OP_breg21:
615 	case DW_OP_breg22:
616 	case DW_OP_breg23:
617 	case DW_OP_breg24:
618 	case DW_OP_breg25:
619 	case DW_OP_breg26:
620 	case DW_OP_breg27:
621 	case DW_OP_breg28:
622 	case DW_OP_breg29:
623 	case DW_OP_breg30:
624 	case DW_OP_breg31:
625 	  cfa->reg = op - DW_OP_breg0;
626 	  cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
627 	  break;
628 	case DW_OP_bregx:
629 	  cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
630 	  cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
631 	  break;
632 	case DW_OP_deref:
633 	  cfa->indirect = 1;
634 	  break;
635 	case DW_OP_plus_uconst:
636 	  cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
637 	  break;
638 	default:
639 	  gcc_unreachable ();
640 	}
641     }
642 }
643 
644 /* Find the previous value for the CFA, iteratively.  CFI is the opcode
645    to interpret, *LOC will be updated as necessary, *REMEMBER is used for
646    one level of remember/restore state processing.  */
647 
648 void
649 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc, dw_cfa_location *remember)
650 {
651   switch (cfi->dw_cfi_opc)
652     {
653     case DW_CFA_def_cfa_offset:
654     case DW_CFA_def_cfa_offset_sf:
655       loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
656       break;
657     case DW_CFA_def_cfa_register:
658       loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
659       break;
660     case DW_CFA_def_cfa:
661     case DW_CFA_def_cfa_sf:
662       loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
663       loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
664       break;
665     case DW_CFA_def_cfa_expression:
666       get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
667       break;
668 
669     case DW_CFA_remember_state:
670       gcc_assert (!remember->in_use);
671       *remember = *loc;
672       remember->in_use = 1;
673       break;
674     case DW_CFA_restore_state:
675       gcc_assert (remember->in_use);
676       *loc = *remember;
677       remember->in_use = 0;
678       break;
679 
680     default:
681       break;
682     }
683 }
684 
685 /* Determine if two dw_cfa_location structures define the same data.  */
686 
687 bool
688 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
689 {
690   return (loc1->reg == loc2->reg
691 	  && loc1->offset == loc2->offset
692 	  && loc1->indirect == loc2->indirect
693 	  && (loc1->indirect == 0
694 	      || loc1->base_offset == loc2->base_offset));
695 }
696 
697 /* Determine if two CFI operands are identical.  */
698 
699 static bool
700 cfi_oprnd_equal_p (enum dw_cfi_oprnd_type t, dw_cfi_oprnd *a, dw_cfi_oprnd *b)
701 {
702   switch (t)
703     {
704     case dw_cfi_oprnd_unused:
705       return true;
706     case dw_cfi_oprnd_reg_num:
707       return a->dw_cfi_reg_num == b->dw_cfi_reg_num;
708     case dw_cfi_oprnd_offset:
709       return a->dw_cfi_offset == b->dw_cfi_offset;
710     case dw_cfi_oprnd_addr:
711       return (a->dw_cfi_addr == b->dw_cfi_addr
712 	      || strcmp (a->dw_cfi_addr, b->dw_cfi_addr) == 0);
713     case dw_cfi_oprnd_loc:
714       return loc_descr_equal_p (a->dw_cfi_loc, b->dw_cfi_loc);
715     }
716   gcc_unreachable ();
717 }
718 
719 /* Determine if two CFI entries are identical.  */
720 
721 static bool
722 cfi_equal_p (dw_cfi_ref a, dw_cfi_ref b)
723 {
724   enum dwarf_call_frame_info opc;
725 
726   /* Make things easier for our callers, including missing operands.  */
727   if (a == b)
728     return true;
729   if (a == NULL || b == NULL)
730     return false;
731 
732   /* Obviously, the opcodes must match.  */
733   opc = a->dw_cfi_opc;
734   if (opc != b->dw_cfi_opc)
735     return false;
736 
737   /* Compare the two operands, re-using the type of the operands as
738      already exposed elsewhere.  */
739   return (cfi_oprnd_equal_p (dw_cfi_oprnd1_desc (opc),
740 			     &a->dw_cfi_oprnd1, &b->dw_cfi_oprnd1)
741 	  && cfi_oprnd_equal_p (dw_cfi_oprnd2_desc (opc),
742 				&a->dw_cfi_oprnd2, &b->dw_cfi_oprnd2));
743 }
744 
745 /* Determine if two CFI_ROW structures are identical.  */
746 
747 static bool
748 cfi_row_equal_p (dw_cfi_row *a, dw_cfi_row *b)
749 {
750   size_t i, n_a, n_b, n_max;
751 
752   if (a->cfa_cfi)
753     {
754       if (!cfi_equal_p (a->cfa_cfi, b->cfa_cfi))
755 	return false;
756     }
757   else if (!cfa_equal_p (&a->cfa, &b->cfa))
758     return false;
759 
760   n_a = vec_safe_length (a->reg_save);
761   n_b = vec_safe_length (b->reg_save);
762   n_max = MAX (n_a, n_b);
763 
764   for (i = 0; i < n_max; ++i)
765     {
766       dw_cfi_ref r_a = NULL, r_b = NULL;
767 
768       if (i < n_a)
769 	r_a = (*a->reg_save)[i];
770       if (i < n_b)
771 	r_b = (*b->reg_save)[i];
772 
773       if (!cfi_equal_p (r_a, r_b))
774         return false;
775     }
776 
777   return true;
778 }
779 
780 /* The CFA is now calculated from NEW_CFA.  Consider OLD_CFA in determining
781    what opcode to emit.  Returns the CFI opcode to effect the change, or
782    NULL if NEW_CFA == OLD_CFA.  */
783 
784 static dw_cfi_ref
785 def_cfa_0 (dw_cfa_location *old_cfa, dw_cfa_location *new_cfa)
786 {
787   dw_cfi_ref cfi;
788 
789   /* If nothing changed, no need to issue any call frame instructions.  */
790   if (cfa_equal_p (old_cfa, new_cfa))
791     return NULL;
792 
793   cfi = new_cfi ();
794 
795   if (new_cfa->reg == old_cfa->reg && !new_cfa->indirect && !old_cfa->indirect)
796     {
797       /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
798 	 the CFA register did not change but the offset did.  The data
799 	 factoring for DW_CFA_def_cfa_offset_sf happens in output_cfi, or
800 	 in the assembler via the .cfi_def_cfa_offset directive.  */
801       if (new_cfa->offset < 0)
802 	cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
803       else
804 	cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
805       cfi->dw_cfi_oprnd1.dw_cfi_offset = new_cfa->offset;
806     }
807   else if (new_cfa->offset == old_cfa->offset
808 	   && old_cfa->reg != INVALID_REGNUM
809 	   && !new_cfa->indirect
810 	   && !old_cfa->indirect)
811     {
812       /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
813 	 indicating the CFA register has changed to <register> but the
814 	 offset has not changed.  */
815       cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
816       cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg;
817     }
818   else if (new_cfa->indirect == 0)
819     {
820       /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
821 	 indicating the CFA register has changed to <register> with
822 	 the specified offset.  The data factoring for DW_CFA_def_cfa_sf
823 	 happens in output_cfi, or in the assembler via the .cfi_def_cfa
824 	 directive.  */
825       if (new_cfa->offset < 0)
826 	cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
827       else
828 	cfi->dw_cfi_opc = DW_CFA_def_cfa;
829       cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg;
830       cfi->dw_cfi_oprnd2.dw_cfi_offset = new_cfa->offset;
831     }
832   else
833     {
834       /* Construct a DW_CFA_def_cfa_expression instruction to
835 	 calculate the CFA using a full location expression since no
836 	 register-offset pair is available.  */
837       struct dw_loc_descr_node *loc_list;
838 
839       cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
840       loc_list = build_cfa_loc (new_cfa, 0);
841       cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
842     }
843 
844   return cfi;
845 }
846 
847 /* Similarly, but take OLD_CFA from CUR_ROW, and update it after the fact.  */
848 
849 static void
850 def_cfa_1 (dw_cfa_location *new_cfa)
851 {
852   dw_cfi_ref cfi;
853 
854   if (cur_trace->cfa_store.reg == new_cfa->reg && new_cfa->indirect == 0)
855     cur_trace->cfa_store.offset = new_cfa->offset;
856 
857   cfi = def_cfa_0 (&cur_row->cfa, new_cfa);
858   if (cfi)
859     {
860       cur_row->cfa = *new_cfa;
861       cur_row->cfa_cfi = (cfi->dw_cfi_opc == DW_CFA_def_cfa_expression
862 			  ? cfi : NULL);
863 
864       add_cfi (cfi);
865     }
866 }
867 
868 /* Add the CFI for saving a register.  REG is the CFA column number.
869    If SREG is -1, the register is saved at OFFSET from the CFA;
870    otherwise it is saved in SREG.  */
871 
872 static void
873 reg_save (unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
874 {
875   dw_fde_ref fde = cfun ? cfun->fde : NULL;
876   dw_cfi_ref cfi = new_cfi ();
877 
878   cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
879 
880   /* When stack is aligned, store REG using DW_CFA_expression with FP.  */
881   if (fde
882       && fde->stack_realign
883       && sreg == INVALID_REGNUM)
884     {
885       cfi->dw_cfi_opc = DW_CFA_expression;
886       cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
887       cfi->dw_cfi_oprnd2.dw_cfi_loc
888 	= build_cfa_aligned_loc (&cur_row->cfa, offset,
889 				 fde->stack_realignment);
890     }
891   else if (sreg == INVALID_REGNUM)
892     {
893       if (need_data_align_sf_opcode (offset))
894 	cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
895       else if (reg & ~0x3f)
896 	cfi->dw_cfi_opc = DW_CFA_offset_extended;
897       else
898 	cfi->dw_cfi_opc = DW_CFA_offset;
899       cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
900     }
901   else if (sreg == reg)
902     {
903       /* While we could emit something like DW_CFA_same_value or
904 	 DW_CFA_restore, we never expect to see something like that
905 	 in a prologue.  This is more likely to be a bug.  A backend
906 	 can always bypass this by using REG_CFA_RESTORE directly.  */
907       gcc_unreachable ();
908     }
909   else
910     {
911       cfi->dw_cfi_opc = DW_CFA_register;
912       cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
913     }
914 
915   add_cfi (cfi);
916   update_row_reg_save (cur_row, reg, cfi);
917 }
918 
919 /* A subroutine of scan_trace.  Check INSN for a REG_ARGS_SIZE note
920    and adjust data structures to match.  */
921 
922 static void
923 notice_args_size (rtx insn)
924 {
925   HOST_WIDE_INT args_size, delta;
926   rtx note;
927 
928   note = find_reg_note (insn, REG_ARGS_SIZE, NULL);
929   if (note == NULL)
930     return;
931 
932   args_size = INTVAL (XEXP (note, 0));
933   delta = args_size - cur_trace->end_true_args_size;
934   if (delta == 0)
935     return;
936 
937   cur_trace->end_true_args_size = args_size;
938 
939   /* If the CFA is computed off the stack pointer, then we must adjust
940      the computation of the CFA as well.  */
941   if (cur_cfa->reg == dw_stack_pointer_regnum)
942     {
943       gcc_assert (!cur_cfa->indirect);
944 
945       /* Convert a change in args_size (always a positive in the
946 	 direction of stack growth) to a change in stack pointer.  */
947 #ifndef STACK_GROWS_DOWNWARD
948       delta = -delta;
949 #endif
950       cur_cfa->offset += delta;
951     }
952 }
953 
954 /* A subroutine of scan_trace.  INSN is can_throw_internal.  Update the
955    data within the trace related to EH insns and args_size.  */
956 
957 static void
958 notice_eh_throw (rtx_insn *insn)
959 {
960   HOST_WIDE_INT args_size;
961 
962   args_size = cur_trace->end_true_args_size;
963   if (cur_trace->eh_head == NULL)
964     {
965       cur_trace->eh_head = insn;
966       cur_trace->beg_delay_args_size = args_size;
967       cur_trace->end_delay_args_size = args_size;
968     }
969   else if (cur_trace->end_delay_args_size != args_size)
970     {
971       cur_trace->end_delay_args_size = args_size;
972 
973       /* ??? If the CFA is the stack pointer, search backward for the last
974 	 CFI note and insert there.  Given that the stack changed for the
975 	 args_size change, there *must* be such a note in between here and
976 	 the last eh insn.  */
977       add_cfi_args_size (args_size);
978     }
979 }
980 
981 /* Short-hand inline for the very common D_F_R (REGNO (x)) operation.  */
982 /* ??? This ought to go into dwarf2out.h, except that dwarf2out.h is
983    used in places where rtl is prohibited.  */
984 
985 static inline unsigned
986 dwf_regno (const_rtx reg)
987 {
988   gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
989   return DWARF_FRAME_REGNUM (REGNO (reg));
990 }
991 
992 /* Compare X and Y for equivalence.  The inputs may be REGs or PC_RTX.  */
993 
994 static bool
995 compare_reg_or_pc (rtx x, rtx y)
996 {
997   if (REG_P (x) && REG_P (y))
998     return REGNO (x) == REGNO (y);
999   return x == y;
1000 }
1001 
1002 /* Record SRC as being saved in DEST.  DEST may be null to delete an
1003    existing entry.  SRC may be a register or PC_RTX.  */
1004 
1005 static void
1006 record_reg_saved_in_reg (rtx dest, rtx src)
1007 {
1008   reg_saved_in_data *elt;
1009   size_t i;
1010 
1011   FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, i, elt)
1012     if (compare_reg_or_pc (elt->orig_reg, src))
1013       {
1014 	if (dest == NULL)
1015 	  cur_trace->regs_saved_in_regs.unordered_remove (i);
1016 	else
1017 	  elt->saved_in_reg = dest;
1018 	return;
1019       }
1020 
1021   if (dest == NULL)
1022     return;
1023 
1024   reg_saved_in_data e = {src, dest};
1025   cur_trace->regs_saved_in_regs.safe_push (e);
1026 }
1027 
1028 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1029    SREG, or if SREG is NULL then it is saved at OFFSET to the CFA.  */
1030 
1031 static void
1032 queue_reg_save (rtx reg, rtx sreg, HOST_WIDE_INT offset)
1033 {
1034   queued_reg_save *q;
1035   queued_reg_save e = {reg, sreg, offset};
1036   size_t i;
1037 
1038   /* Duplicates waste space, but it's also necessary to remove them
1039      for correctness, since the queue gets output in reverse order.  */
1040   FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
1041     if (compare_reg_or_pc (q->reg, reg))
1042       {
1043 	*q = e;
1044 	return;
1045       }
1046 
1047   queued_reg_saves.safe_push (e);
1048 }
1049 
1050 /* Output all the entries in QUEUED_REG_SAVES.  */
1051 
1052 static void
1053 dwarf2out_flush_queued_reg_saves (void)
1054 {
1055   queued_reg_save *q;
1056   size_t i;
1057 
1058   FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
1059     {
1060       unsigned int reg, sreg;
1061 
1062       record_reg_saved_in_reg (q->saved_reg, q->reg);
1063 
1064       if (q->reg == pc_rtx)
1065 	reg = DWARF_FRAME_RETURN_COLUMN;
1066       else
1067         reg = dwf_regno (q->reg);
1068       if (q->saved_reg)
1069 	sreg = dwf_regno (q->saved_reg);
1070       else
1071 	sreg = INVALID_REGNUM;
1072       reg_save (reg, sreg, q->cfa_offset);
1073     }
1074 
1075   queued_reg_saves.truncate (0);
1076 }
1077 
1078 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1079    location for?  Or, does it clobber a register which we've previously
1080    said that some other register is saved in, and for which we now
1081    have a new location for?  */
1082 
1083 static bool
1084 clobbers_queued_reg_save (const_rtx insn)
1085 {
1086   queued_reg_save *q;
1087   size_t iq;
1088 
1089   FOR_EACH_VEC_ELT (queued_reg_saves, iq, q)
1090     {
1091       size_t ir;
1092       reg_saved_in_data *rir;
1093 
1094       if (modified_in_p (q->reg, insn))
1095 	return true;
1096 
1097       FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, ir, rir)
1098 	if (compare_reg_or_pc (q->reg, rir->orig_reg)
1099 	    && modified_in_p (rir->saved_in_reg, insn))
1100 	  return true;
1101     }
1102 
1103   return false;
1104 }
1105 
1106 /* What register, if any, is currently saved in REG?  */
1107 
1108 static rtx
1109 reg_saved_in (rtx reg)
1110 {
1111   unsigned int regn = REGNO (reg);
1112   queued_reg_save *q;
1113   reg_saved_in_data *rir;
1114   size_t i;
1115 
1116   FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
1117     if (q->saved_reg && regn == REGNO (q->saved_reg))
1118       return q->reg;
1119 
1120   FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, i, rir)
1121     if (regn == REGNO (rir->saved_in_reg))
1122       return rir->orig_reg;
1123 
1124   return NULL_RTX;
1125 }
1126 
1127 /* A subroutine of dwarf2out_frame_debug, process a REG_DEF_CFA note.  */
1128 
1129 static void
1130 dwarf2out_frame_debug_def_cfa (rtx pat)
1131 {
1132   memset (cur_cfa, 0, sizeof (*cur_cfa));
1133 
1134   if (GET_CODE (pat) == PLUS)
1135     {
1136       cur_cfa->offset = INTVAL (XEXP (pat, 1));
1137       pat = XEXP (pat, 0);
1138     }
1139   if (MEM_P (pat))
1140     {
1141       cur_cfa->indirect = 1;
1142       pat = XEXP (pat, 0);
1143       if (GET_CODE (pat) == PLUS)
1144 	{
1145 	  cur_cfa->base_offset = INTVAL (XEXP (pat, 1));
1146 	  pat = XEXP (pat, 0);
1147 	}
1148     }
1149   /* ??? If this fails, we could be calling into the _loc functions to
1150      define a full expression.  So far no port does that.  */
1151   gcc_assert (REG_P (pat));
1152   cur_cfa->reg = dwf_regno (pat);
1153 }
1154 
1155 /* A subroutine of dwarf2out_frame_debug, process a REG_ADJUST_CFA note.  */
1156 
1157 static void
1158 dwarf2out_frame_debug_adjust_cfa (rtx pat)
1159 {
1160   rtx src, dest;
1161 
1162   gcc_assert (GET_CODE (pat) == SET);
1163   dest = XEXP (pat, 0);
1164   src = XEXP (pat, 1);
1165 
1166   switch (GET_CODE (src))
1167     {
1168     case PLUS:
1169       gcc_assert (dwf_regno (XEXP (src, 0)) == cur_cfa->reg);
1170       cur_cfa->offset -= INTVAL (XEXP (src, 1));
1171       break;
1172 
1173     case REG:
1174       break;
1175 
1176     default:
1177       gcc_unreachable ();
1178     }
1179 
1180   cur_cfa->reg = dwf_regno (dest);
1181   gcc_assert (cur_cfa->indirect == 0);
1182 }
1183 
1184 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_OFFSET note.  */
1185 
1186 static void
1187 dwarf2out_frame_debug_cfa_offset (rtx set)
1188 {
1189   HOST_WIDE_INT offset;
1190   rtx src, addr, span;
1191   unsigned int sregno;
1192 
1193   src = XEXP (set, 1);
1194   addr = XEXP (set, 0);
1195   gcc_assert (MEM_P (addr));
1196   addr = XEXP (addr, 0);
1197 
1198   /* As documented, only consider extremely simple addresses.  */
1199   switch (GET_CODE (addr))
1200     {
1201     case REG:
1202       gcc_assert (dwf_regno (addr) == cur_cfa->reg);
1203       offset = -cur_cfa->offset;
1204       break;
1205     case PLUS:
1206       gcc_assert (dwf_regno (XEXP (addr, 0)) == cur_cfa->reg);
1207       offset = INTVAL (XEXP (addr, 1)) - cur_cfa->offset;
1208       break;
1209     default:
1210       gcc_unreachable ();
1211     }
1212 
1213   if (src == pc_rtx)
1214     {
1215       span = NULL;
1216       sregno = DWARF_FRAME_RETURN_COLUMN;
1217     }
1218   else
1219     {
1220       span = targetm.dwarf_register_span (src);
1221       sregno = dwf_regno (src);
1222     }
1223 
1224   /* ??? We'd like to use queue_reg_save, but we need to come up with
1225      a different flushing heuristic for epilogues.  */
1226   if (!span)
1227     reg_save (sregno, INVALID_REGNUM, offset);
1228   else
1229     {
1230       /* We have a PARALLEL describing where the contents of SRC live.
1231    	 Adjust the offset for each piece of the PARALLEL.  */
1232       HOST_WIDE_INT span_offset = offset;
1233 
1234       gcc_assert (GET_CODE (span) == PARALLEL);
1235 
1236       const int par_len = XVECLEN (span, 0);
1237       for (int par_index = 0; par_index < par_len; par_index++)
1238 	{
1239 	  rtx elem = XVECEXP (span, 0, par_index);
1240 	  sregno = dwf_regno (src);
1241 	  reg_save (sregno, INVALID_REGNUM, span_offset);
1242 	  span_offset += GET_MODE_SIZE (GET_MODE (elem));
1243 	}
1244     }
1245 }
1246 
1247 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_REGISTER note.  */
1248 
1249 static void
1250 dwarf2out_frame_debug_cfa_register (rtx set)
1251 {
1252   rtx src, dest;
1253   unsigned sregno, dregno;
1254 
1255   src = XEXP (set, 1);
1256   dest = XEXP (set, 0);
1257 
1258   record_reg_saved_in_reg (dest, src);
1259   if (src == pc_rtx)
1260     sregno = DWARF_FRAME_RETURN_COLUMN;
1261   else
1262     sregno = dwf_regno (src);
1263 
1264   dregno = dwf_regno (dest);
1265 
1266   /* ??? We'd like to use queue_reg_save, but we need to come up with
1267      a different flushing heuristic for epilogues.  */
1268   reg_save (sregno, dregno, 0);
1269 }
1270 
1271 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_EXPRESSION note. */
1272 
1273 static void
1274 dwarf2out_frame_debug_cfa_expression (rtx set)
1275 {
1276   rtx src, dest, span;
1277   dw_cfi_ref cfi = new_cfi ();
1278   unsigned regno;
1279 
1280   dest = SET_DEST (set);
1281   src = SET_SRC (set);
1282 
1283   gcc_assert (REG_P (src));
1284   gcc_assert (MEM_P (dest));
1285 
1286   span = targetm.dwarf_register_span (src);
1287   gcc_assert (!span);
1288 
1289   regno = dwf_regno (src);
1290 
1291   cfi->dw_cfi_opc = DW_CFA_expression;
1292   cfi->dw_cfi_oprnd1.dw_cfi_reg_num = regno;
1293   cfi->dw_cfi_oprnd2.dw_cfi_loc
1294     = mem_loc_descriptor (XEXP (dest, 0), get_address_mode (dest),
1295 			  GET_MODE (dest), VAR_INIT_STATUS_INITIALIZED);
1296 
1297   /* ??? We'd like to use queue_reg_save, were the interface different,
1298      and, as above, we could manage flushing for epilogues.  */
1299   add_cfi (cfi);
1300   update_row_reg_save (cur_row, regno, cfi);
1301 }
1302 
1303 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_RESTORE note.  */
1304 
1305 static void
1306 dwarf2out_frame_debug_cfa_restore (rtx reg)
1307 {
1308   gcc_assert (REG_P (reg));
1309 
1310   rtx span = targetm.dwarf_register_span (reg);
1311   if (!span)
1312     {
1313       unsigned int regno = dwf_regno (reg);
1314       add_cfi_restore (regno);
1315       update_row_reg_save (cur_row, regno, NULL);
1316     }
1317   else
1318     {
1319       /* We have a PARALLEL describing where the contents of REG live.
1320 	 Restore the register for each piece of the PARALLEL.  */
1321       gcc_assert (GET_CODE (span) == PARALLEL);
1322 
1323       const int par_len = XVECLEN (span, 0);
1324       for (int par_index = 0; par_index < par_len; par_index++)
1325 	{
1326 	  reg = XVECEXP (span, 0, par_index);
1327 	  gcc_assert (REG_P (reg));
1328 	  unsigned int regno = dwf_regno (reg);
1329 	  add_cfi_restore (regno);
1330 	  update_row_reg_save (cur_row, regno, NULL);
1331 	}
1332     }
1333 }
1334 
1335 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_WINDOW_SAVE.
1336    ??? Perhaps we should note in the CIE where windows are saved (instead of
1337    assuming 0(cfa)) and what registers are in the window.  */
1338 
1339 static void
1340 dwarf2out_frame_debug_cfa_window_save (void)
1341 {
1342   dw_cfi_ref cfi = new_cfi ();
1343 
1344   cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
1345   add_cfi (cfi);
1346 }
1347 
1348 /* Record call frame debugging information for an expression EXPR,
1349    which either sets SP or FP (adjusting how we calculate the frame
1350    address) or saves a register to the stack or another register.
1351    LABEL indicates the address of EXPR.
1352 
1353    This function encodes a state machine mapping rtxes to actions on
1354    cfa, cfa_store, and cfa_temp.reg.  We describe these rules so
1355    users need not read the source code.
1356 
1357   The High-Level Picture
1358 
1359   Changes in the register we use to calculate the CFA: Currently we
1360   assume that if you copy the CFA register into another register, we
1361   should take the other one as the new CFA register; this seems to
1362   work pretty well.  If it's wrong for some target, it's simple
1363   enough not to set RTX_FRAME_RELATED_P on the insn in question.
1364 
1365   Changes in the register we use for saving registers to the stack:
1366   This is usually SP, but not always.  Again, we deduce that if you
1367   copy SP into another register (and SP is not the CFA register),
1368   then the new register is the one we will be using for register
1369   saves.  This also seems to work.
1370 
1371   Register saves: There's not much guesswork about this one; if
1372   RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1373   register save, and the register used to calculate the destination
1374   had better be the one we think we're using for this purpose.
1375   It's also assumed that a copy from a call-saved register to another
1376   register is saving that register if RTX_FRAME_RELATED_P is set on
1377   that instruction.  If the copy is from a call-saved register to
1378   the *same* register, that means that the register is now the same
1379   value as in the caller.
1380 
1381   Except: If the register being saved is the CFA register, and the
1382   offset is nonzero, we are saving the CFA, so we assume we have to
1383   use DW_CFA_def_cfa_expression.  If the offset is 0, we assume that
1384   the intent is to save the value of SP from the previous frame.
1385 
1386   In addition, if a register has previously been saved to a different
1387   register,
1388 
1389   Invariants / Summaries of Rules
1390 
1391   cfa	       current rule for calculating the CFA.  It usually
1392 	       consists of a register and an offset.  This is
1393 	       actually stored in *cur_cfa, but abbreviated
1394 	       for the purposes of this documentation.
1395   cfa_store    register used by prologue code to save things to the stack
1396 	       cfa_store.offset is the offset from the value of
1397 	       cfa_store.reg to the actual CFA
1398   cfa_temp     register holding an integral value.  cfa_temp.offset
1399 	       stores the value, which will be used to adjust the
1400 	       stack pointer.  cfa_temp is also used like cfa_store,
1401 	       to track stores to the stack via fp or a temp reg.
1402 
1403   Rules  1- 4: Setting a register's value to cfa.reg or an expression
1404 	       with cfa.reg as the first operand changes the cfa.reg and its
1405 	       cfa.offset.  Rule 1 and 4 also set cfa_temp.reg and
1406 	       cfa_temp.offset.
1407 
1408   Rules  6- 9: Set a non-cfa.reg register value to a constant or an
1409 	       expression yielding a constant.  This sets cfa_temp.reg
1410 	       and cfa_temp.offset.
1411 
1412   Rule 5:      Create a new register cfa_store used to save items to the
1413 	       stack.
1414 
1415   Rules 10-14: Save a register to the stack.  Define offset as the
1416 	       difference of the original location and cfa_store's
1417 	       location (or cfa_temp's location if cfa_temp is used).
1418 
1419   Rules 16-20: If AND operation happens on sp in prologue, we assume
1420 	       stack is realigned.  We will use a group of DW_OP_XXX
1421 	       expressions to represent the location of the stored
1422 	       register instead of CFA+offset.
1423 
1424   The Rules
1425 
1426   "{a,b}" indicates a choice of a xor b.
1427   "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1428 
1429   Rule 1:
1430   (set <reg1> <reg2>:cfa.reg)
1431   effects: cfa.reg = <reg1>
1432 	   cfa.offset unchanged
1433 	   cfa_temp.reg = <reg1>
1434 	   cfa_temp.offset = cfa.offset
1435 
1436   Rule 2:
1437   (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1438 			      {<const_int>,<reg>:cfa_temp.reg}))
1439   effects: cfa.reg = sp if fp used
1440 	   cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1441 	   cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1442 	     if cfa_store.reg==sp
1443 
1444   Rule 3:
1445   (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1446   effects: cfa.reg = fp
1447 	   cfa_offset += +/- <const_int>
1448 
1449   Rule 4:
1450   (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1451   constraints: <reg1> != fp
1452 	       <reg1> != sp
1453   effects: cfa.reg = <reg1>
1454 	   cfa_temp.reg = <reg1>
1455 	   cfa_temp.offset = cfa.offset
1456 
1457   Rule 5:
1458   (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1459   constraints: <reg1> != fp
1460 	       <reg1> != sp
1461   effects: cfa_store.reg = <reg1>
1462 	   cfa_store.offset = cfa.offset - cfa_temp.offset
1463 
1464   Rule 6:
1465   (set <reg> <const_int>)
1466   effects: cfa_temp.reg = <reg>
1467 	   cfa_temp.offset = <const_int>
1468 
1469   Rule 7:
1470   (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1471   effects: cfa_temp.reg = <reg1>
1472 	   cfa_temp.offset |= <const_int>
1473 
1474   Rule 8:
1475   (set <reg> (high <exp>))
1476   effects: none
1477 
1478   Rule 9:
1479   (set <reg> (lo_sum <exp> <const_int>))
1480   effects: cfa_temp.reg = <reg>
1481 	   cfa_temp.offset = <const_int>
1482 
1483   Rule 10:
1484   (set (mem ({pre,post}_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1485   effects: cfa_store.offset -= <const_int>
1486 	   cfa.offset = cfa_store.offset if cfa.reg == sp
1487 	   cfa.reg = sp
1488 	   cfa.base_offset = -cfa_store.offset
1489 
1490   Rule 11:
1491   (set (mem ({pre_inc,pre_dec,post_dec} sp:cfa_store.reg)) <reg>)
1492   effects: cfa_store.offset += -/+ mode_size(mem)
1493 	   cfa.offset = cfa_store.offset if cfa.reg == sp
1494 	   cfa.reg = sp
1495 	   cfa.base_offset = -cfa_store.offset
1496 
1497   Rule 12:
1498   (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1499 
1500        <reg2>)
1501   effects: cfa.reg = <reg1>
1502 	   cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1503 
1504   Rule 13:
1505   (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1506   effects: cfa.reg = <reg1>
1507 	   cfa.base_offset = -{cfa_store,cfa_temp}.offset
1508 
1509   Rule 14:
1510   (set (mem (post_inc <reg1>:cfa_temp <const_int>)) <reg2>)
1511   effects: cfa.reg = <reg1>
1512 	   cfa.base_offset = -cfa_temp.offset
1513 	   cfa_temp.offset -= mode_size(mem)
1514 
1515   Rule 15:
1516   (set <reg> {unspec, unspec_volatile})
1517   effects: target-dependent
1518 
1519   Rule 16:
1520   (set sp (and: sp <const_int>))
1521   constraints: cfa_store.reg == sp
1522   effects: cfun->fde.stack_realign = 1
1523            cfa_store.offset = 0
1524 	   fde->drap_reg = cfa.reg if cfa.reg != sp and cfa.reg != fp
1525 
1526   Rule 17:
1527   (set (mem ({pre_inc, pre_dec} sp)) (mem (plus (cfa.reg) (const_int))))
1528   effects: cfa_store.offset += -/+ mode_size(mem)
1529 
1530   Rule 18:
1531   (set (mem ({pre_inc, pre_dec} sp)) fp)
1532   constraints: fde->stack_realign == 1
1533   effects: cfa_store.offset = 0
1534 	   cfa.reg != HARD_FRAME_POINTER_REGNUM
1535 
1536   Rule 19:
1537   (set (mem ({pre_inc, pre_dec} sp)) cfa.reg)
1538   constraints: fde->stack_realign == 1
1539                && cfa.offset == 0
1540                && cfa.indirect == 0
1541                && cfa.reg != HARD_FRAME_POINTER_REGNUM
1542   effects: Use DW_CFA_def_cfa_expression to define cfa
1543   	   cfa.reg == fde->drap_reg  */
1544 
1545 static void
1546 dwarf2out_frame_debug_expr (rtx expr)
1547 {
1548   rtx src, dest, span;
1549   HOST_WIDE_INT offset;
1550   dw_fde_ref fde;
1551 
1552   /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1553      the PARALLEL independently. The first element is always processed if
1554      it is a SET. This is for backward compatibility.   Other elements
1555      are processed only if they are SETs and the RTX_FRAME_RELATED_P
1556      flag is set in them.  */
1557   if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1558     {
1559       int par_index;
1560       int limit = XVECLEN (expr, 0);
1561       rtx elem;
1562 
1563       /* PARALLELs have strict read-modify-write semantics, so we
1564 	 ought to evaluate every rvalue before changing any lvalue.
1565 	 It's cumbersome to do that in general, but there's an
1566 	 easy approximation that is enough for all current users:
1567 	 handle register saves before register assignments.  */
1568       if (GET_CODE (expr) == PARALLEL)
1569 	for (par_index = 0; par_index < limit; par_index++)
1570 	  {
1571 	    elem = XVECEXP (expr, 0, par_index);
1572 	    if (GET_CODE (elem) == SET
1573 		&& MEM_P (SET_DEST (elem))
1574 		&& (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1575 	      dwarf2out_frame_debug_expr (elem);
1576 	  }
1577 
1578       for (par_index = 0; par_index < limit; par_index++)
1579 	{
1580 	  elem = XVECEXP (expr, 0, par_index);
1581 	  if (GET_CODE (elem) == SET
1582 	      && (!MEM_P (SET_DEST (elem)) || GET_CODE (expr) == SEQUENCE)
1583 	      && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1584 	    dwarf2out_frame_debug_expr (elem);
1585 	}
1586       return;
1587     }
1588 
1589   gcc_assert (GET_CODE (expr) == SET);
1590 
1591   src = SET_SRC (expr);
1592   dest = SET_DEST (expr);
1593 
1594   if (REG_P (src))
1595     {
1596       rtx rsi = reg_saved_in (src);
1597       if (rsi)
1598 	src = rsi;
1599     }
1600 
1601   fde = cfun->fde;
1602 
1603   switch (GET_CODE (dest))
1604     {
1605     case REG:
1606       switch (GET_CODE (src))
1607 	{
1608 	  /* Setting FP from SP.  */
1609 	case REG:
1610 	  if (cur_cfa->reg == dwf_regno (src))
1611 	    {
1612 	      /* Rule 1 */
1613 	      /* Update the CFA rule wrt SP or FP.  Make sure src is
1614 		 relative to the current CFA register.
1615 
1616 		 We used to require that dest be either SP or FP, but the
1617 		 ARM copies SP to a temporary register, and from there to
1618 		 FP.  So we just rely on the backends to only set
1619 		 RTX_FRAME_RELATED_P on appropriate insns.  */
1620 	      cur_cfa->reg = dwf_regno (dest);
1621 	      cur_trace->cfa_temp.reg = cur_cfa->reg;
1622 	      cur_trace->cfa_temp.offset = cur_cfa->offset;
1623 	    }
1624 	  else
1625 	    {
1626 	      /* Saving a register in a register.  */
1627 	      gcc_assert (!fixed_regs [REGNO (dest)]
1628 			  /* For the SPARC and its register window.  */
1629 			  || (dwf_regno (src) == DWARF_FRAME_RETURN_COLUMN));
1630 
1631               /* After stack is aligned, we can only save SP in FP
1632 		 if drap register is used.  In this case, we have
1633 		 to restore stack pointer with the CFA value and we
1634 		 don't generate this DWARF information.  */
1635 	      if (fde
1636 		  && fde->stack_realign
1637 		  && REGNO (src) == STACK_POINTER_REGNUM)
1638 		gcc_assert (REGNO (dest) == HARD_FRAME_POINTER_REGNUM
1639 			    && fde->drap_reg != INVALID_REGNUM
1640 			    && cur_cfa->reg != dwf_regno (src));
1641 	      else
1642 		queue_reg_save (src, dest, 0);
1643 	    }
1644 	  break;
1645 
1646 	case PLUS:
1647 	case MINUS:
1648 	case LO_SUM:
1649 	  if (dest == stack_pointer_rtx)
1650 	    {
1651 	      /* Rule 2 */
1652 	      /* Adjusting SP.  */
1653 	      switch (GET_CODE (XEXP (src, 1)))
1654 		{
1655 		case CONST_INT:
1656 		  offset = INTVAL (XEXP (src, 1));
1657 		  break;
1658 		case REG:
1659 		  gcc_assert (dwf_regno (XEXP (src, 1))
1660 			      == cur_trace->cfa_temp.reg);
1661 		  offset = cur_trace->cfa_temp.offset;
1662 		  break;
1663 		default:
1664 		  gcc_unreachable ();
1665 		}
1666 
1667 	      if (XEXP (src, 0) == hard_frame_pointer_rtx)
1668 		{
1669 		  /* Restoring SP from FP in the epilogue.  */
1670 		  gcc_assert (cur_cfa->reg == dw_frame_pointer_regnum);
1671 		  cur_cfa->reg = dw_stack_pointer_regnum;
1672 		}
1673 	      else if (GET_CODE (src) == LO_SUM)
1674 		/* Assume we've set the source reg of the LO_SUM from sp.  */
1675 		;
1676 	      else
1677 		gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1678 
1679 	      if (GET_CODE (src) != MINUS)
1680 		offset = -offset;
1681 	      if (cur_cfa->reg == dw_stack_pointer_regnum)
1682 		cur_cfa->offset += offset;
1683 	      if (cur_trace->cfa_store.reg == dw_stack_pointer_regnum)
1684 		cur_trace->cfa_store.offset += offset;
1685 	    }
1686 	  else if (dest == hard_frame_pointer_rtx)
1687 	    {
1688 	      /* Rule 3 */
1689 	      /* Either setting the FP from an offset of the SP,
1690 		 or adjusting the FP */
1691 	      gcc_assert (frame_pointer_needed);
1692 
1693 	      gcc_assert (REG_P (XEXP (src, 0))
1694 			  && dwf_regno (XEXP (src, 0)) == cur_cfa->reg
1695 			  && CONST_INT_P (XEXP (src, 1)));
1696 	      offset = INTVAL (XEXP (src, 1));
1697 	      if (GET_CODE (src) != MINUS)
1698 		offset = -offset;
1699 	      cur_cfa->offset += offset;
1700 	      cur_cfa->reg = dw_frame_pointer_regnum;
1701 	    }
1702 	  else
1703 	    {
1704 	      gcc_assert (GET_CODE (src) != MINUS);
1705 
1706 	      /* Rule 4 */
1707 	      if (REG_P (XEXP (src, 0))
1708 		  && dwf_regno (XEXP (src, 0)) == cur_cfa->reg
1709 		  && CONST_INT_P (XEXP (src, 1)))
1710 		{
1711 		  /* Setting a temporary CFA register that will be copied
1712 		     into the FP later on.  */
1713 		  offset = - INTVAL (XEXP (src, 1));
1714 		  cur_cfa->offset += offset;
1715 		  cur_cfa->reg = dwf_regno (dest);
1716 		  /* Or used to save regs to the stack.  */
1717 		  cur_trace->cfa_temp.reg = cur_cfa->reg;
1718 		  cur_trace->cfa_temp.offset = cur_cfa->offset;
1719 		}
1720 
1721 	      /* Rule 5 */
1722 	      else if (REG_P (XEXP (src, 0))
1723 		       && dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg
1724 		       && XEXP (src, 1) == stack_pointer_rtx)
1725 		{
1726 		  /* Setting a scratch register that we will use instead
1727 		     of SP for saving registers to the stack.  */
1728 		  gcc_assert (cur_cfa->reg == dw_stack_pointer_regnum);
1729 		  cur_trace->cfa_store.reg = dwf_regno (dest);
1730 		  cur_trace->cfa_store.offset
1731 		    = cur_cfa->offset - cur_trace->cfa_temp.offset;
1732 		}
1733 
1734 	      /* Rule 9 */
1735 	      else if (GET_CODE (src) == LO_SUM
1736 		       && CONST_INT_P (XEXP (src, 1)))
1737 		{
1738 		  cur_trace->cfa_temp.reg = dwf_regno (dest);
1739 		  cur_trace->cfa_temp.offset = INTVAL (XEXP (src, 1));
1740 		}
1741 	      else
1742 		gcc_unreachable ();
1743 	    }
1744 	  break;
1745 
1746 	  /* Rule 6 */
1747 	case CONST_INT:
1748 	  cur_trace->cfa_temp.reg = dwf_regno (dest);
1749 	  cur_trace->cfa_temp.offset = INTVAL (src);
1750 	  break;
1751 
1752 	  /* Rule 7 */
1753 	case IOR:
1754 	  gcc_assert (REG_P (XEXP (src, 0))
1755 		      && dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg
1756 		      && CONST_INT_P (XEXP (src, 1)));
1757 
1758 	  cur_trace->cfa_temp.reg = dwf_regno (dest);
1759 	  cur_trace->cfa_temp.offset |= INTVAL (XEXP (src, 1));
1760 	  break;
1761 
1762 	  /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1763 	     which will fill in all of the bits.  */
1764 	  /* Rule 8 */
1765 	case HIGH:
1766 	  break;
1767 
1768 	  /* Rule 15 */
1769 	case UNSPEC:
1770 	case UNSPEC_VOLATILE:
1771 	  /* All unspecs should be represented by REG_CFA_* notes.  */
1772 	  gcc_unreachable ();
1773 	  return;
1774 
1775 	  /* Rule 16 */
1776 	case AND:
1777           /* If this AND operation happens on stack pointer in prologue,
1778 	     we assume the stack is realigned and we extract the
1779 	     alignment.  */
1780           if (fde && XEXP (src, 0) == stack_pointer_rtx)
1781             {
1782 	      /* We interpret reg_save differently with stack_realign set.
1783 		 Thus we must flush whatever we have queued first.  */
1784 	      dwarf2out_flush_queued_reg_saves ();
1785 
1786               gcc_assert (cur_trace->cfa_store.reg
1787 			  == dwf_regno (XEXP (src, 0)));
1788               fde->stack_realign = 1;
1789               fde->stack_realignment = INTVAL (XEXP (src, 1));
1790               cur_trace->cfa_store.offset = 0;
1791 
1792 	      if (cur_cfa->reg != dw_stack_pointer_regnum
1793 		  && cur_cfa->reg != dw_frame_pointer_regnum)
1794 		fde->drap_reg = cur_cfa->reg;
1795             }
1796           return;
1797 
1798 	default:
1799 	  gcc_unreachable ();
1800 	}
1801       break;
1802 
1803     case MEM:
1804 
1805       /* Saving a register to the stack.  Make sure dest is relative to the
1806 	 CFA register.  */
1807       switch (GET_CODE (XEXP (dest, 0)))
1808 	{
1809 	  /* Rule 10 */
1810 	  /* With a push.  */
1811 	case PRE_MODIFY:
1812 	case POST_MODIFY:
1813 	  /* We can't handle variable size modifications.  */
1814 	  gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1815 		      == CONST_INT);
1816 	  offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1817 
1818 	  gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1819 		      && cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
1820 
1821 	  cur_trace->cfa_store.offset += offset;
1822 	  if (cur_cfa->reg == dw_stack_pointer_regnum)
1823 	    cur_cfa->offset = cur_trace->cfa_store.offset;
1824 
1825 	  if (GET_CODE (XEXP (dest, 0)) == POST_MODIFY)
1826 	    offset -= cur_trace->cfa_store.offset;
1827 	  else
1828 	    offset = -cur_trace->cfa_store.offset;
1829 	  break;
1830 
1831 	  /* Rule 11 */
1832 	case PRE_INC:
1833 	case PRE_DEC:
1834 	case POST_DEC:
1835 	  offset = GET_MODE_SIZE (GET_MODE (dest));
1836 	  if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1837 	    offset = -offset;
1838 
1839 	  gcc_assert ((REGNO (XEXP (XEXP (dest, 0), 0))
1840 		       == STACK_POINTER_REGNUM)
1841 		      && cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
1842 
1843 	  cur_trace->cfa_store.offset += offset;
1844 
1845           /* Rule 18: If stack is aligned, we will use FP as a
1846 	     reference to represent the address of the stored
1847 	     regiser.  */
1848           if (fde
1849               && fde->stack_realign
1850 	      && REG_P (src)
1851 	      && REGNO (src) == HARD_FRAME_POINTER_REGNUM)
1852 	    {
1853 	      gcc_assert (cur_cfa->reg != dw_frame_pointer_regnum);
1854 	      cur_trace->cfa_store.offset = 0;
1855 	    }
1856 
1857 	  if (cur_cfa->reg == dw_stack_pointer_regnum)
1858 	    cur_cfa->offset = cur_trace->cfa_store.offset;
1859 
1860 	  if (GET_CODE (XEXP (dest, 0)) == POST_DEC)
1861 	    offset += -cur_trace->cfa_store.offset;
1862 	  else
1863 	    offset = -cur_trace->cfa_store.offset;
1864 	  break;
1865 
1866 	  /* Rule 12 */
1867 	  /* With an offset.  */
1868 	case PLUS:
1869 	case MINUS:
1870 	case LO_SUM:
1871 	  {
1872 	    unsigned int regno;
1873 
1874 	    gcc_assert (CONST_INT_P (XEXP (XEXP (dest, 0), 1))
1875 			&& REG_P (XEXP (XEXP (dest, 0), 0)));
1876 	    offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1877 	    if (GET_CODE (XEXP (dest, 0)) == MINUS)
1878 	      offset = -offset;
1879 
1880 	    regno = dwf_regno (XEXP (XEXP (dest, 0), 0));
1881 
1882 	    if (cur_cfa->reg == regno)
1883 	      offset -= cur_cfa->offset;
1884 	    else if (cur_trace->cfa_store.reg == regno)
1885 	      offset -= cur_trace->cfa_store.offset;
1886 	    else
1887 	      {
1888 		gcc_assert (cur_trace->cfa_temp.reg == regno);
1889 		offset -= cur_trace->cfa_temp.offset;
1890 	      }
1891 	  }
1892 	  break;
1893 
1894 	  /* Rule 13 */
1895 	  /* Without an offset.  */
1896 	case REG:
1897 	  {
1898 	    unsigned int regno = dwf_regno (XEXP (dest, 0));
1899 
1900 	    if (cur_cfa->reg == regno)
1901 	      offset = -cur_cfa->offset;
1902 	    else if (cur_trace->cfa_store.reg == regno)
1903 	      offset = -cur_trace->cfa_store.offset;
1904 	    else
1905 	      {
1906 		gcc_assert (cur_trace->cfa_temp.reg == regno);
1907 		offset = -cur_trace->cfa_temp.offset;
1908 	      }
1909 	  }
1910 	  break;
1911 
1912 	  /* Rule 14 */
1913 	case POST_INC:
1914 	  gcc_assert (cur_trace->cfa_temp.reg
1915 		      == dwf_regno (XEXP (XEXP (dest, 0), 0)));
1916 	  offset = -cur_trace->cfa_temp.offset;
1917 	  cur_trace->cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1918 	  break;
1919 
1920 	default:
1921 	  gcc_unreachable ();
1922 	}
1923 
1924       /* Rule 17 */
1925       /* If the source operand of this MEM operation is a memory,
1926 	 we only care how much stack grew.  */
1927       if (MEM_P (src))
1928         break;
1929 
1930       if (REG_P (src)
1931 	  && REGNO (src) != STACK_POINTER_REGNUM
1932 	  && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1933 	  && dwf_regno (src) == cur_cfa->reg)
1934 	{
1935 	  /* We're storing the current CFA reg into the stack.  */
1936 
1937 	  if (cur_cfa->offset == 0)
1938 	    {
1939               /* Rule 19 */
1940               /* If stack is aligned, putting CFA reg into stack means
1941 		 we can no longer use reg + offset to represent CFA.
1942 		 Here we use DW_CFA_def_cfa_expression instead.  The
1943 		 result of this expression equals to the original CFA
1944 		 value.  */
1945               if (fde
1946                   && fde->stack_realign
1947                   && cur_cfa->indirect == 0
1948                   && cur_cfa->reg != dw_frame_pointer_regnum)
1949                 {
1950 		  gcc_assert (fde->drap_reg == cur_cfa->reg);
1951 
1952 		  cur_cfa->indirect = 1;
1953 		  cur_cfa->reg = dw_frame_pointer_regnum;
1954 		  cur_cfa->base_offset = offset;
1955 		  cur_cfa->offset = 0;
1956 
1957 		  fde->drap_reg_saved = 1;
1958 		  break;
1959                 }
1960 
1961 	      /* If the source register is exactly the CFA, assume
1962 		 we're saving SP like any other register; this happens
1963 		 on the ARM.  */
1964 	      queue_reg_save (stack_pointer_rtx, NULL_RTX, offset);
1965 	      break;
1966 	    }
1967 	  else
1968 	    {
1969 	      /* Otherwise, we'll need to look in the stack to
1970 		 calculate the CFA.  */
1971 	      rtx x = XEXP (dest, 0);
1972 
1973 	      if (!REG_P (x))
1974 		x = XEXP (x, 0);
1975 	      gcc_assert (REG_P (x));
1976 
1977 	      cur_cfa->reg = dwf_regno (x);
1978 	      cur_cfa->base_offset = offset;
1979 	      cur_cfa->indirect = 1;
1980 	      break;
1981 	    }
1982 	}
1983 
1984       if (REG_P (src))
1985 	span = targetm.dwarf_register_span (src);
1986       else
1987 	span = NULL;
1988 
1989       if (!span)
1990 	queue_reg_save (src, NULL_RTX, offset);
1991       else
1992 	{
1993 	  /* We have a PARALLEL describing where the contents of SRC live.
1994 	     Queue register saves for each piece of the PARALLEL.  */
1995 	  HOST_WIDE_INT span_offset = offset;
1996 
1997 	  gcc_assert (GET_CODE (span) == PARALLEL);
1998 
1999 	  const int par_len = XVECLEN (span, 0);
2000 	  for (int par_index = 0; par_index < par_len; par_index++)
2001 	    {
2002 	      rtx elem = XVECEXP (span, 0, par_index);
2003 	      queue_reg_save (elem, NULL_RTX, span_offset);
2004 	      span_offset += GET_MODE_SIZE (GET_MODE (elem));
2005 	    }
2006 	}
2007       break;
2008 
2009     default:
2010       gcc_unreachable ();
2011     }
2012 }
2013 
2014 /* Record call frame debugging information for INSN, which either sets
2015    SP or FP (adjusting how we calculate the frame address) or saves a
2016    register to the stack.  */
2017 
2018 static void
2019 dwarf2out_frame_debug (rtx_insn *insn)
2020 {
2021   rtx note, n, pat;
2022   bool handled_one = false;
2023 
2024   for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2025     switch (REG_NOTE_KIND (note))
2026       {
2027       case REG_FRAME_RELATED_EXPR:
2028 	pat = XEXP (note, 0);
2029 	goto do_frame_expr;
2030 
2031       case REG_CFA_DEF_CFA:
2032 	dwarf2out_frame_debug_def_cfa (XEXP (note, 0));
2033 	handled_one = true;
2034 	break;
2035 
2036       case REG_CFA_ADJUST_CFA:
2037 	n = XEXP (note, 0);
2038 	if (n == NULL)
2039 	  {
2040 	    n = PATTERN (insn);
2041 	    if (GET_CODE (n) == PARALLEL)
2042 	      n = XVECEXP (n, 0, 0);
2043 	  }
2044 	dwarf2out_frame_debug_adjust_cfa (n);
2045 	handled_one = true;
2046 	break;
2047 
2048       case REG_CFA_OFFSET:
2049 	n = XEXP (note, 0);
2050 	if (n == NULL)
2051 	  n = single_set (insn);
2052 	dwarf2out_frame_debug_cfa_offset (n);
2053 	handled_one = true;
2054 	break;
2055 
2056       case REG_CFA_REGISTER:
2057 	n = XEXP (note, 0);
2058 	if (n == NULL)
2059 	  {
2060 	    n = PATTERN (insn);
2061 	    if (GET_CODE (n) == PARALLEL)
2062 	      n = XVECEXP (n, 0, 0);
2063 	  }
2064 	dwarf2out_frame_debug_cfa_register (n);
2065 	handled_one = true;
2066 	break;
2067 
2068       case REG_CFA_EXPRESSION:
2069 	n = XEXP (note, 0);
2070 	if (n == NULL)
2071 	  n = single_set (insn);
2072 	dwarf2out_frame_debug_cfa_expression (n);
2073 	handled_one = true;
2074 	break;
2075 
2076       case REG_CFA_RESTORE:
2077 	n = XEXP (note, 0);
2078 	if (n == NULL)
2079 	  {
2080 	    n = PATTERN (insn);
2081 	    if (GET_CODE (n) == PARALLEL)
2082 	      n = XVECEXP (n, 0, 0);
2083 	    n = XEXP (n, 0);
2084 	  }
2085 	dwarf2out_frame_debug_cfa_restore (n);
2086 	handled_one = true;
2087 	break;
2088 
2089       case REG_CFA_SET_VDRAP:
2090 	n = XEXP (note, 0);
2091 	if (REG_P (n))
2092 	  {
2093 	    dw_fde_ref fde = cfun->fde;
2094 	    if (fde)
2095 	      {
2096 		gcc_assert (fde->vdrap_reg == INVALID_REGNUM);
2097 		if (REG_P (n))
2098 		  fde->vdrap_reg = dwf_regno (n);
2099 	      }
2100 	  }
2101 	handled_one = true;
2102 	break;
2103 
2104       case REG_CFA_WINDOW_SAVE:
2105 	dwarf2out_frame_debug_cfa_window_save ();
2106 	handled_one = true;
2107 	break;
2108 
2109       case REG_CFA_FLUSH_QUEUE:
2110 	/* The actual flush happens elsewhere.  */
2111 	handled_one = true;
2112 	break;
2113 
2114       default:
2115 	break;
2116       }
2117 
2118   if (!handled_one)
2119     {
2120       pat = PATTERN (insn);
2121     do_frame_expr:
2122       dwarf2out_frame_debug_expr (pat);
2123 
2124       /* Check again.  A parallel can save and update the same register.
2125          We could probably check just once, here, but this is safer than
2126          removing the check at the start of the function.  */
2127       if (clobbers_queued_reg_save (pat))
2128 	dwarf2out_flush_queued_reg_saves ();
2129     }
2130 }
2131 
2132 /* Emit CFI info to change the state from OLD_ROW to NEW_ROW.  */
2133 
2134 static void
2135 change_cfi_row (dw_cfi_row *old_row, dw_cfi_row *new_row)
2136 {
2137   size_t i, n_old, n_new, n_max;
2138   dw_cfi_ref cfi;
2139 
2140   if (new_row->cfa_cfi && !cfi_equal_p (old_row->cfa_cfi, new_row->cfa_cfi))
2141     add_cfi (new_row->cfa_cfi);
2142   else
2143     {
2144       cfi = def_cfa_0 (&old_row->cfa, &new_row->cfa);
2145       if (cfi)
2146 	add_cfi (cfi);
2147     }
2148 
2149   n_old = vec_safe_length (old_row->reg_save);
2150   n_new = vec_safe_length (new_row->reg_save);
2151   n_max = MAX (n_old, n_new);
2152 
2153   for (i = 0; i < n_max; ++i)
2154     {
2155       dw_cfi_ref r_old = NULL, r_new = NULL;
2156 
2157       if (i < n_old)
2158 	r_old = (*old_row->reg_save)[i];
2159       if (i < n_new)
2160 	r_new = (*new_row->reg_save)[i];
2161 
2162       if (r_old == r_new)
2163 	;
2164       else if (r_new == NULL)
2165 	add_cfi_restore (i);
2166       else if (!cfi_equal_p (r_old, r_new))
2167         add_cfi (r_new);
2168     }
2169 }
2170 
2171 /* Examine CFI and return true if a cfi label and set_loc is needed
2172    beforehand.  Even when generating CFI assembler instructions, we
2173    still have to add the cfi to the list so that lookup_cfa_1 works
2174    later on.  When -g2 and above we even need to force emitting of
2175    CFI labels and add to list a DW_CFA_set_loc for convert_cfa_to_fb_loc_list
2176    purposes.  If we're generating DWARF3 output we use DW_OP_call_frame_cfa
2177    and so don't use convert_cfa_to_fb_loc_list.  */
2178 
2179 static bool
2180 cfi_label_required_p (dw_cfi_ref cfi)
2181 {
2182   if (!dwarf2out_do_cfi_asm ())
2183     return true;
2184 
2185   if (dwarf_version == 2
2186       && debug_info_level > DINFO_LEVEL_TERSE
2187       && (write_symbols == DWARF2_DEBUG
2188 	  || write_symbols == VMS_AND_DWARF2_DEBUG))
2189     {
2190       switch (cfi->dw_cfi_opc)
2191 	{
2192 	case DW_CFA_def_cfa_offset:
2193 	case DW_CFA_def_cfa_offset_sf:
2194 	case DW_CFA_def_cfa_register:
2195 	case DW_CFA_def_cfa:
2196 	case DW_CFA_def_cfa_sf:
2197 	case DW_CFA_def_cfa_expression:
2198 	case DW_CFA_restore_state:
2199 	  return true;
2200 	default:
2201 	  return false;
2202 	}
2203     }
2204   return false;
2205 }
2206 
2207 /* Walk the function, looking for NOTE_INSN_CFI notes.  Add the CFIs to the
2208    function's FDE, adding CFI labels and set_loc/advance_loc opcodes as
2209    necessary.  */
2210 static void
2211 add_cfis_to_fde (void)
2212 {
2213   dw_fde_ref fde = cfun->fde;
2214   rtx_insn *insn, *next;
2215   /* We always start with a function_begin label.  */
2216   bool first = false;
2217 
2218   for (insn = get_insns (); insn; insn = next)
2219     {
2220       next = NEXT_INSN (insn);
2221 
2222       if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
2223 	{
2224 	  fde->dw_fde_switch_cfi_index = vec_safe_length (fde->dw_fde_cfi);
2225 	  /* Don't attempt to advance_loc4 between labels
2226 	     in different sections.  */
2227 	  first = true;
2228 	}
2229 
2230       if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI)
2231 	{
2232 	  bool required = cfi_label_required_p (NOTE_CFI (insn));
2233 	  while (next)
2234 	    if (NOTE_P (next) && NOTE_KIND (next) == NOTE_INSN_CFI)
2235 	      {
2236 		required |= cfi_label_required_p (NOTE_CFI (next));
2237 		next = NEXT_INSN (next);
2238 	      }
2239 	    else if (active_insn_p (next)
2240 		     || (NOTE_P (next) && (NOTE_KIND (next)
2241 					   == NOTE_INSN_SWITCH_TEXT_SECTIONS)))
2242 	      break;
2243 	    else
2244 	      next = NEXT_INSN (next);
2245 	  if (required)
2246 	    {
2247 	      int num = dwarf2out_cfi_label_num;
2248 	      const char *label = dwarf2out_cfi_label ();
2249 	      dw_cfi_ref xcfi;
2250 	      rtx tmp;
2251 
2252 	      /* Set the location counter to the new label.  */
2253 	      xcfi = new_cfi ();
2254 	      xcfi->dw_cfi_opc = (first ? DW_CFA_set_loc
2255 				  : DW_CFA_advance_loc4);
2256 	      xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
2257 	      vec_safe_push (fde->dw_fde_cfi, xcfi);
2258 
2259 	      tmp = emit_note_before (NOTE_INSN_CFI_LABEL, insn);
2260 	      NOTE_LABEL_NUMBER (tmp) = num;
2261 	    }
2262 
2263 	  do
2264 	    {
2265 	      if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI)
2266 		vec_safe_push (fde->dw_fde_cfi, NOTE_CFI (insn));
2267 	      insn = NEXT_INSN (insn);
2268 	    }
2269 	  while (insn != next);
2270 	  first = false;
2271 	}
2272     }
2273 }
2274 
2275 /* If LABEL is the start of a trace, then initialize the state of that
2276    trace from CUR_TRACE and CUR_ROW.  */
2277 
2278 static void
2279 maybe_record_trace_start (rtx_insn *start, rtx_insn *origin)
2280 {
2281   dw_trace_info *ti;
2282   HOST_WIDE_INT args_size;
2283 
2284   ti = get_trace_info (start);
2285   gcc_assert (ti != NULL);
2286 
2287   if (dump_file)
2288     {
2289       fprintf (dump_file, "   saw edge from trace %u to %u (via %s %d)\n",
2290 	       cur_trace->id, ti->id,
2291 	       (origin ? rtx_name[(int) GET_CODE (origin)] : "fallthru"),
2292 	       (origin ? INSN_UID (origin) : 0));
2293     }
2294 
2295   args_size = cur_trace->end_true_args_size;
2296   if (ti->beg_row == NULL)
2297     {
2298       /* This is the first time we've encountered this trace.  Propagate
2299 	 state across the edge and push the trace onto the work list.  */
2300       ti->beg_row = copy_cfi_row (cur_row);
2301       ti->beg_true_args_size = args_size;
2302 
2303       ti->cfa_store = cur_trace->cfa_store;
2304       ti->cfa_temp = cur_trace->cfa_temp;
2305       ti->regs_saved_in_regs = cur_trace->regs_saved_in_regs.copy ();
2306 
2307       trace_work_list.safe_push (ti);
2308 
2309       if (dump_file)
2310 	fprintf (dump_file, "\tpush trace %u to worklist\n", ti->id);
2311     }
2312   else
2313     {
2314 
2315       /* We ought to have the same state incoming to a given trace no
2316 	 matter how we arrive at the trace.  Anything else means we've
2317 	 got some kind of optimization error.  */
2318       gcc_checking_assert (cfi_row_equal_p (cur_row, ti->beg_row));
2319 
2320       /* The args_size is allowed to conflict if it isn't actually used.  */
2321       if (ti->beg_true_args_size != args_size)
2322 	ti->args_size_undefined = true;
2323     }
2324 }
2325 
2326 /* Similarly, but handle the args_size and CFA reset across EH
2327    and non-local goto edges.  */
2328 
2329 static void
2330 maybe_record_trace_start_abnormal (rtx_insn *start, rtx_insn *origin)
2331 {
2332   HOST_WIDE_INT save_args_size, delta;
2333   dw_cfa_location save_cfa;
2334 
2335   save_args_size = cur_trace->end_true_args_size;
2336   if (save_args_size == 0)
2337     {
2338       maybe_record_trace_start (start, origin);
2339       return;
2340     }
2341 
2342   delta = -save_args_size;
2343   cur_trace->end_true_args_size = 0;
2344 
2345   save_cfa = cur_row->cfa;
2346   if (cur_row->cfa.reg == dw_stack_pointer_regnum)
2347     {
2348       /* Convert a change in args_size (always a positive in the
2349 	 direction of stack growth) to a change in stack pointer.  */
2350 #ifndef STACK_GROWS_DOWNWARD
2351       delta = -delta;
2352 #endif
2353       cur_row->cfa.offset += delta;
2354     }
2355 
2356   maybe_record_trace_start (start, origin);
2357 
2358   cur_trace->end_true_args_size = save_args_size;
2359   cur_row->cfa = save_cfa;
2360 }
2361 
2362 /* Propagate CUR_TRACE state to the destinations implied by INSN.  */
2363 /* ??? Sadly, this is in large part a duplicate of make_edges.  */
2364 
2365 static void
2366 create_trace_edges (rtx_insn *insn)
2367 {
2368   rtx tmp;
2369   int i, n;
2370 
2371   if (JUMP_P (insn))
2372     {
2373       rtx_jump_table_data *table;
2374 
2375       if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
2376 	return;
2377 
2378       if (tablejump_p (insn, NULL, &table))
2379 	{
2380 	  rtvec vec = table->get_labels ();
2381 
2382 	  n = GET_NUM_ELEM (vec);
2383 	  for (i = 0; i < n; ++i)
2384 	    {
2385 	      rtx_insn *lab = as_a <rtx_insn *> (XEXP (RTVEC_ELT (vec, i), 0));
2386 	      maybe_record_trace_start (lab, insn);
2387 	    }
2388 	}
2389       else if (computed_jump_p (insn))
2390 	{
2391 	  for (rtx_insn_list *lab = forced_labels; lab; lab = lab->next ())
2392 	    maybe_record_trace_start (lab->insn (), insn);
2393 	}
2394       else if (returnjump_p (insn))
2395 	;
2396       else if ((tmp = extract_asm_operands (PATTERN (insn))) != NULL)
2397 	{
2398 	  n = ASM_OPERANDS_LABEL_LENGTH (tmp);
2399 	  for (i = 0; i < n; ++i)
2400 	    {
2401 	      rtx_insn *lab =
2402 		as_a <rtx_insn *> (XEXP (ASM_OPERANDS_LABEL (tmp, i), 0));
2403 	      maybe_record_trace_start (lab, insn);
2404 	    }
2405 	}
2406       else
2407 	{
2408 	  rtx_insn *lab = JUMP_LABEL_AS_INSN (insn);
2409 	  gcc_assert (lab != NULL);
2410 	  maybe_record_trace_start (lab, insn);
2411 	}
2412     }
2413   else if (CALL_P (insn))
2414     {
2415       /* Sibling calls don't have edges inside this function.  */
2416       if (SIBLING_CALL_P (insn))
2417 	return;
2418 
2419       /* Process non-local goto edges.  */
2420       if (can_nonlocal_goto (insn))
2421 	for (rtx_insn_list *lab = nonlocal_goto_handler_labels;
2422 	     lab;
2423 	     lab = lab->next ())
2424 	  maybe_record_trace_start_abnormal (lab->insn (), insn);
2425     }
2426   else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
2427     {
2428       int i, n = seq->len ();
2429       for (i = 0; i < n; ++i)
2430 	create_trace_edges (seq->insn (i));
2431       return;
2432     }
2433 
2434   /* Process EH edges.  */
2435   if (CALL_P (insn) || cfun->can_throw_non_call_exceptions)
2436     {
2437       eh_landing_pad lp = get_eh_landing_pad_from_rtx (insn);
2438       if (lp)
2439 	maybe_record_trace_start_abnormal (lp->landing_pad, insn);
2440     }
2441 }
2442 
2443 /* A subroutine of scan_trace.  Do what needs to be done "after" INSN.  */
2444 
2445 static void
2446 scan_insn_after (rtx_insn *insn)
2447 {
2448   if (RTX_FRAME_RELATED_P (insn))
2449     dwarf2out_frame_debug (insn);
2450   notice_args_size (insn);
2451 }
2452 
2453 /* Scan the trace beginning at INSN and create the CFI notes for the
2454    instructions therein.  */
2455 
2456 static void
2457 scan_trace (dw_trace_info *trace)
2458 {
2459   rtx_insn *prev, *insn = trace->head;
2460   dw_cfa_location this_cfa;
2461 
2462   if (dump_file)
2463     fprintf (dump_file, "Processing trace %u : start at %s %d\n",
2464 	     trace->id, rtx_name[(int) GET_CODE (insn)],
2465 	     INSN_UID (insn));
2466 
2467   trace->end_row = copy_cfi_row (trace->beg_row);
2468   trace->end_true_args_size = trace->beg_true_args_size;
2469 
2470   cur_trace = trace;
2471   cur_row = trace->end_row;
2472 
2473   this_cfa = cur_row->cfa;
2474   cur_cfa = &this_cfa;
2475 
2476   for (prev = insn, insn = NEXT_INSN (insn);
2477        insn;
2478        prev = insn, insn = NEXT_INSN (insn))
2479     {
2480       rtx_insn *control;
2481 
2482       /* Do everything that happens "before" the insn.  */
2483       add_cfi_insn = prev;
2484 
2485       /* Notice the end of a trace.  */
2486       if (BARRIER_P (insn))
2487 	{
2488 	  /* Don't bother saving the unneeded queued registers at all.  */
2489 	  queued_reg_saves.truncate (0);
2490 	  break;
2491 	}
2492       if (save_point_p (insn))
2493 	{
2494 	  /* Propagate across fallthru edges.  */
2495 	  dwarf2out_flush_queued_reg_saves ();
2496 	  maybe_record_trace_start (insn, NULL);
2497 	  break;
2498 	}
2499 
2500       if (DEBUG_INSN_P (insn) || !inside_basic_block_p (insn))
2501 	continue;
2502 
2503       /* Handle all changes to the row state.  Sequences require special
2504 	 handling for the positioning of the notes.  */
2505       if (rtx_sequence *pat = dyn_cast <rtx_sequence *> (PATTERN (insn)))
2506 	{
2507 	  rtx_insn *elt;
2508 	  int i, n = pat->len ();
2509 
2510 	  control = pat->insn (0);
2511 	  if (can_throw_internal (control))
2512 	    notice_eh_throw (control);
2513 	  dwarf2out_flush_queued_reg_saves ();
2514 
2515 	  if (JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control))
2516 	    {
2517 	      /* ??? Hopefully multiple delay slots are not annulled.  */
2518 	      gcc_assert (n == 2);
2519 	      gcc_assert (!RTX_FRAME_RELATED_P (control));
2520 	      gcc_assert (!find_reg_note (control, REG_ARGS_SIZE, NULL));
2521 
2522 	      elt = pat->insn (1);
2523 
2524 	      if (INSN_FROM_TARGET_P (elt))
2525 		{
2526 		  HOST_WIDE_INT restore_args_size;
2527 		  cfi_vec save_row_reg_save;
2528 
2529 		  /* If ELT is an instruction from target of an annulled
2530 		     branch, the effects are for the target only and so
2531 		     the args_size and CFA along the current path
2532 		     shouldn't change.  */
2533 		  add_cfi_insn = NULL;
2534 		  restore_args_size = cur_trace->end_true_args_size;
2535 		  cur_cfa = &cur_row->cfa;
2536 		  save_row_reg_save = vec_safe_copy (cur_row->reg_save);
2537 
2538 		  scan_insn_after (elt);
2539 
2540 		  /* ??? Should we instead save the entire row state?  */
2541 		  gcc_assert (!queued_reg_saves.length ());
2542 
2543 		  create_trace_edges (control);
2544 
2545 		  cur_trace->end_true_args_size = restore_args_size;
2546 		  cur_row->cfa = this_cfa;
2547 		  cur_row->reg_save = save_row_reg_save;
2548 		  cur_cfa = &this_cfa;
2549 		}
2550 	      else
2551 		{
2552 		  /* If ELT is a annulled branch-taken instruction (i.e.
2553 		     executed only when branch is not taken), the args_size
2554 		     and CFA should not change through the jump.  */
2555 		  create_trace_edges (control);
2556 
2557 		  /* Update and continue with the trace.  */
2558 		  add_cfi_insn = insn;
2559 		  scan_insn_after (elt);
2560 		  def_cfa_1 (&this_cfa);
2561 		}
2562 	      continue;
2563 	    }
2564 
2565 	  /* The insns in the delay slot should all be considered to happen
2566 	     "before" a call insn.  Consider a call with a stack pointer
2567 	     adjustment in the delay slot.  The backtrace from the callee
2568 	     should include the sp adjustment.  Unfortunately, that leaves
2569 	     us with an unavoidable unwinding error exactly at the call insn
2570 	     itself.  For jump insns we'd prefer to avoid this error by
2571 	     placing the notes after the sequence.  */
2572 	  if (JUMP_P (control))
2573 	    add_cfi_insn = insn;
2574 
2575 	  for (i = 1; i < n; ++i)
2576 	    {
2577 	      elt = pat->insn (i);
2578 	      scan_insn_after (elt);
2579 	    }
2580 
2581 	  /* Make sure any register saves are visible at the jump target.  */
2582 	  dwarf2out_flush_queued_reg_saves ();
2583 	  any_cfis_emitted = false;
2584 
2585           /* However, if there is some adjustment on the call itself, e.g.
2586 	     a call_pop, that action should be considered to happen after
2587 	     the call returns.  */
2588 	  add_cfi_insn = insn;
2589 	  scan_insn_after (control);
2590 	}
2591       else
2592 	{
2593 	  /* Flush data before calls and jumps, and of course if necessary.  */
2594 	  if (can_throw_internal (insn))
2595 	    {
2596 	      notice_eh_throw (insn);
2597 	      dwarf2out_flush_queued_reg_saves ();
2598 	    }
2599 	  else if (!NONJUMP_INSN_P (insn)
2600 		   || clobbers_queued_reg_save (insn)
2601 		   || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL))
2602 	    dwarf2out_flush_queued_reg_saves ();
2603 	  any_cfis_emitted = false;
2604 
2605 	  add_cfi_insn = insn;
2606 	  scan_insn_after (insn);
2607 	  control = insn;
2608 	}
2609 
2610       /* Between frame-related-p and args_size we might have otherwise
2611 	 emitted two cfa adjustments.  Do it now.  */
2612       def_cfa_1 (&this_cfa);
2613 
2614       /* Minimize the number of advances by emitting the entire queue
2615 	 once anything is emitted.  */
2616       if (any_cfis_emitted
2617 	  || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL))
2618 	dwarf2out_flush_queued_reg_saves ();
2619 
2620       /* Note that a test for control_flow_insn_p does exactly the
2621 	 same tests as are done to actually create the edges.  So
2622 	 always call the routine and let it not create edges for
2623 	 non-control-flow insns.  */
2624       create_trace_edges (control);
2625     }
2626 
2627   add_cfi_insn = NULL;
2628   cur_row = NULL;
2629   cur_trace = NULL;
2630   cur_cfa = NULL;
2631 }
2632 
2633 /* Scan the function and create the initial set of CFI notes.  */
2634 
2635 static void
2636 create_cfi_notes (void)
2637 {
2638   dw_trace_info *ti;
2639 
2640   gcc_checking_assert (!queued_reg_saves.exists ());
2641   gcc_checking_assert (!trace_work_list.exists ());
2642 
2643   /* Always begin at the entry trace.  */
2644   ti = &trace_info[0];
2645   scan_trace (ti);
2646 
2647   while (!trace_work_list.is_empty ())
2648     {
2649       ti = trace_work_list.pop ();
2650       scan_trace (ti);
2651     }
2652 
2653   queued_reg_saves.release ();
2654   trace_work_list.release ();
2655 }
2656 
2657 /* Return the insn before the first NOTE_INSN_CFI after START.  */
2658 
2659 static rtx_insn *
2660 before_next_cfi_note (rtx_insn *start)
2661 {
2662   rtx_insn *prev = start;
2663   while (start)
2664     {
2665       if (NOTE_P (start) && NOTE_KIND (start) == NOTE_INSN_CFI)
2666 	return prev;
2667       prev = start;
2668       start = NEXT_INSN (start);
2669     }
2670   gcc_unreachable ();
2671 }
2672 
2673 /* Insert CFI notes between traces to properly change state between them.  */
2674 
2675 static void
2676 connect_traces (void)
2677 {
2678   unsigned i, n = trace_info.length ();
2679   dw_trace_info *prev_ti, *ti;
2680 
2681   /* ??? Ideally, we should have both queued and processed every trace.
2682      However the current representation of constant pools on various targets
2683      is indistinguishable from unreachable code.  Assume for the moment that
2684      we can simply skip over such traces.  */
2685   /* ??? Consider creating a DATA_INSN rtx code to indicate that
2686      these are not "real" instructions, and should not be considered.
2687      This could be generically useful for tablejump data as well.  */
2688   /* Remove all unprocessed traces from the list.  */
2689   for (i = n - 1; i > 0; --i)
2690     {
2691       ti = &trace_info[i];
2692       if (ti->beg_row == NULL)
2693 	{
2694 	  trace_info.ordered_remove (i);
2695 	  n -= 1;
2696 	}
2697       else
2698 	gcc_assert (ti->end_row != NULL);
2699     }
2700 
2701   /* Work from the end back to the beginning.  This lets us easily insert
2702      remember/restore_state notes in the correct order wrt other notes.  */
2703   prev_ti = &trace_info[n - 1];
2704   for (i = n - 1; i > 0; --i)
2705     {
2706       dw_cfi_row *old_row;
2707 
2708       ti = prev_ti;
2709       prev_ti = &trace_info[i - 1];
2710 
2711       add_cfi_insn = ti->head;
2712 
2713       /* In dwarf2out_switch_text_section, we'll begin a new FDE
2714 	 for the portion of the function in the alternate text
2715 	 section.  The row state at the very beginning of that
2716 	 new FDE will be exactly the row state from the CIE.  */
2717       if (ti->switch_sections)
2718 	old_row = cie_cfi_row;
2719       else
2720 	{
2721 	  old_row = prev_ti->end_row;
2722 	  /* If there's no change from the previous end state, fine.  */
2723 	  if (cfi_row_equal_p (old_row, ti->beg_row))
2724 	    ;
2725 	  /* Otherwise check for the common case of sharing state with
2726 	     the beginning of an epilogue, but not the end.  Insert
2727 	     remember/restore opcodes in that case.  */
2728 	  else if (cfi_row_equal_p (prev_ti->beg_row, ti->beg_row))
2729 	    {
2730 	      dw_cfi_ref cfi;
2731 
2732 	      /* Note that if we blindly insert the remember at the
2733 		 start of the trace, we can wind up increasing the
2734 		 size of the unwind info due to extra advance opcodes.
2735 		 Instead, put the remember immediately before the next
2736 		 state change.  We know there must be one, because the
2737 		 state at the beginning and head of the trace differ.  */
2738 	      add_cfi_insn = before_next_cfi_note (prev_ti->head);
2739 	      cfi = new_cfi ();
2740 	      cfi->dw_cfi_opc = DW_CFA_remember_state;
2741 	      add_cfi (cfi);
2742 
2743 	      add_cfi_insn = ti->head;
2744 	      cfi = new_cfi ();
2745 	      cfi->dw_cfi_opc = DW_CFA_restore_state;
2746 	      add_cfi (cfi);
2747 
2748 	      old_row = prev_ti->beg_row;
2749 	    }
2750 	  /* Otherwise, we'll simply change state from the previous end.  */
2751 	}
2752 
2753       change_cfi_row (old_row, ti->beg_row);
2754 
2755       if (dump_file && add_cfi_insn != ti->head)
2756 	{
2757 	  rtx_insn *note;
2758 
2759 	  fprintf (dump_file, "Fixup between trace %u and %u:\n",
2760 		   prev_ti->id, ti->id);
2761 
2762 	  note = ti->head;
2763 	  do
2764 	    {
2765 	      note = NEXT_INSN (note);
2766 	      gcc_assert (NOTE_P (note) && NOTE_KIND (note) == NOTE_INSN_CFI);
2767 	      output_cfi_directive (dump_file, NOTE_CFI (note));
2768 	    }
2769 	  while (note != add_cfi_insn);
2770 	}
2771     }
2772 
2773   /* Connect args_size between traces that have can_throw_internal insns.  */
2774   if (cfun->eh->lp_array)
2775     {
2776       HOST_WIDE_INT prev_args_size = 0;
2777 
2778       for (i = 0; i < n; ++i)
2779 	{
2780 	  ti = &trace_info[i];
2781 
2782 	  if (ti->switch_sections)
2783 	    prev_args_size = 0;
2784 	  if (ti->eh_head == NULL)
2785 	    continue;
2786 	  gcc_assert (!ti->args_size_undefined);
2787 
2788 	  if (ti->beg_delay_args_size != prev_args_size)
2789 	    {
2790 	      /* ??? Search back to previous CFI note.  */
2791 	      add_cfi_insn = PREV_INSN (ti->eh_head);
2792 	      add_cfi_args_size (ti->beg_delay_args_size);
2793 	    }
2794 
2795 	  prev_args_size = ti->end_delay_args_size;
2796 	}
2797     }
2798 }
2799 
2800 /* Set up the pseudo-cfg of instruction traces, as described at the
2801    block comment at the top of the file.  */
2802 
2803 static void
2804 create_pseudo_cfg (void)
2805 {
2806   bool saw_barrier, switch_sections;
2807   dw_trace_info ti;
2808   rtx_insn *insn;
2809   unsigned i;
2810 
2811   /* The first trace begins at the start of the function,
2812      and begins with the CIE row state.  */
2813   trace_info.create (16);
2814   memset (&ti, 0, sizeof (ti));
2815   ti.head = get_insns ();
2816   ti.beg_row = cie_cfi_row;
2817   ti.cfa_store = cie_cfi_row->cfa;
2818   ti.cfa_temp.reg = INVALID_REGNUM;
2819   trace_info.quick_push (ti);
2820 
2821   if (cie_return_save)
2822     ti.regs_saved_in_regs.safe_push (*cie_return_save);
2823 
2824   /* Walk all the insns, collecting start of trace locations.  */
2825   saw_barrier = false;
2826   switch_sections = false;
2827   for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2828     {
2829       if (BARRIER_P (insn))
2830 	saw_barrier = true;
2831       else if (NOTE_P (insn)
2832 	       && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
2833 	{
2834 	  /* We should have just seen a barrier.  */
2835 	  gcc_assert (saw_barrier);
2836 	  switch_sections = true;
2837 	}
2838       /* Watch out for save_point notes between basic blocks.
2839 	 In particular, a note after a barrier.  Do not record these,
2840 	 delaying trace creation until the label.  */
2841       else if (save_point_p (insn)
2842 	       && (LABEL_P (insn) || !saw_barrier))
2843 	{
2844 	  memset (&ti, 0, sizeof (ti));
2845 	  ti.head = insn;
2846 	  ti.switch_sections = switch_sections;
2847 	  ti.id = trace_info.length ();
2848 	  trace_info.safe_push (ti);
2849 
2850 	  saw_barrier = false;
2851 	  switch_sections = false;
2852 	}
2853     }
2854 
2855   /* Create the trace index after we've finished building trace_info,
2856      avoiding stale pointer problems due to reallocation.  */
2857   trace_index
2858     = new hash_table<trace_info_hasher> (trace_info.length ());
2859   dw_trace_info *tp;
2860   FOR_EACH_VEC_ELT (trace_info, i, tp)
2861     {
2862       dw_trace_info **slot;
2863 
2864       if (dump_file)
2865 	fprintf (dump_file, "Creating trace %u : start at %s %d%s\n", tp->id,
2866 		 rtx_name[(int) GET_CODE (tp->head)], INSN_UID (tp->head),
2867 		 tp->switch_sections ? " (section switch)" : "");
2868 
2869       slot = trace_index->find_slot_with_hash (tp, INSN_UID (tp->head), INSERT);
2870       gcc_assert (*slot == NULL);
2871       *slot = tp;
2872     }
2873 }
2874 
2875 /* Record the initial position of the return address.  RTL is
2876    INCOMING_RETURN_ADDR_RTX.  */
2877 
2878 static void
2879 initial_return_save (rtx rtl)
2880 {
2881   unsigned int reg = INVALID_REGNUM;
2882   HOST_WIDE_INT offset = 0;
2883 
2884   switch (GET_CODE (rtl))
2885     {
2886     case REG:
2887       /* RA is in a register.  */
2888       reg = dwf_regno (rtl);
2889       break;
2890 
2891     case MEM:
2892       /* RA is on the stack.  */
2893       rtl = XEXP (rtl, 0);
2894       switch (GET_CODE (rtl))
2895 	{
2896 	case REG:
2897 	  gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
2898 	  offset = 0;
2899 	  break;
2900 
2901 	case PLUS:
2902 	  gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
2903 	  offset = INTVAL (XEXP (rtl, 1));
2904 	  break;
2905 
2906 	case MINUS:
2907 	  gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
2908 	  offset = -INTVAL (XEXP (rtl, 1));
2909 	  break;
2910 
2911 	default:
2912 	  gcc_unreachable ();
2913 	}
2914 
2915       break;
2916 
2917     case PLUS:
2918       /* The return address is at some offset from any value we can
2919 	 actually load.  For instance, on the SPARC it is in %i7+8. Just
2920 	 ignore the offset for now; it doesn't matter for unwinding frames.  */
2921       gcc_assert (CONST_INT_P (XEXP (rtl, 1)));
2922       initial_return_save (XEXP (rtl, 0));
2923       return;
2924 
2925     default:
2926       gcc_unreachable ();
2927     }
2928 
2929   if (reg != DWARF_FRAME_RETURN_COLUMN)
2930     {
2931       if (reg != INVALID_REGNUM)
2932         record_reg_saved_in_reg (rtl, pc_rtx);
2933       reg_save (DWARF_FRAME_RETURN_COLUMN, reg, offset - cur_row->cfa.offset);
2934     }
2935 }
2936 
2937 static void
2938 create_cie_data (void)
2939 {
2940   dw_cfa_location loc;
2941   dw_trace_info cie_trace;
2942 
2943   dw_stack_pointer_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
2944   dw_frame_pointer_regnum = DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM);
2945 
2946   memset (&cie_trace, 0, sizeof (cie_trace));
2947   cur_trace = &cie_trace;
2948 
2949   add_cfi_vec = &cie_cfi_vec;
2950   cie_cfi_row = cur_row = new_cfi_row ();
2951 
2952   /* On entry, the Canonical Frame Address is at SP.  */
2953   memset (&loc, 0, sizeof (loc));
2954   loc.reg = dw_stack_pointer_regnum;
2955   loc.offset = INCOMING_FRAME_SP_OFFSET;
2956   def_cfa_1 (&loc);
2957 
2958   if (targetm.debug_unwind_info () == UI_DWARF2
2959       || targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
2960     {
2961       initial_return_save (INCOMING_RETURN_ADDR_RTX);
2962 
2963       /* For a few targets, we have the return address incoming into a
2964 	 register, but choose a different return column.  This will result
2965 	 in a DW_CFA_register for the return, and an entry in
2966 	 regs_saved_in_regs to match.  If the target later stores that
2967 	 return address register to the stack, we want to be able to emit
2968 	 the DW_CFA_offset against the return column, not the intermediate
2969 	 save register.  Save the contents of regs_saved_in_regs so that
2970 	 we can re-initialize it at the start of each function.  */
2971       switch (cie_trace.regs_saved_in_regs.length ())
2972 	{
2973 	case 0:
2974 	  break;
2975 	case 1:
2976 	  cie_return_save = ggc_alloc<reg_saved_in_data> ();
2977 	  *cie_return_save = cie_trace.regs_saved_in_regs[0];
2978 	  cie_trace.regs_saved_in_regs.release ();
2979 	  break;
2980 	default:
2981 	  gcc_unreachable ();
2982 	}
2983     }
2984 
2985   add_cfi_vec = NULL;
2986   cur_row = NULL;
2987   cur_trace = NULL;
2988 }
2989 
2990 /* Annotate the function with NOTE_INSN_CFI notes to record the CFI
2991    state at each location within the function.  These notes will be
2992    emitted during pass_final.  */
2993 
2994 static unsigned int
2995 execute_dwarf2_frame (void)
2996 {
2997   /* The first time we're called, compute the incoming frame state.  */
2998   if (cie_cfi_vec == NULL)
2999     create_cie_data ();
3000 
3001   dwarf2out_alloc_current_fde ();
3002 
3003   create_pseudo_cfg ();
3004 
3005   /* Do the work.  */
3006   create_cfi_notes ();
3007   connect_traces ();
3008   add_cfis_to_fde ();
3009 
3010   /* Free all the data we allocated.  */
3011   {
3012     size_t i;
3013     dw_trace_info *ti;
3014 
3015     FOR_EACH_VEC_ELT (trace_info, i, ti)
3016       ti->regs_saved_in_regs.release ();
3017   }
3018   trace_info.release ();
3019 
3020   delete trace_index;
3021   trace_index = NULL;
3022 
3023   return 0;
3024 }
3025 
3026 /* Convert a DWARF call frame info. operation to its string name */
3027 
3028 static const char *
3029 dwarf_cfi_name (unsigned int cfi_opc)
3030 {
3031   const char *name = get_DW_CFA_name (cfi_opc);
3032 
3033   if (name != NULL)
3034     return name;
3035 
3036   return "DW_CFA_<unknown>";
3037 }
3038 
3039 /* This routine will generate the correct assembly data for a location
3040    description based on a cfi entry with a complex address.  */
3041 
3042 static void
3043 output_cfa_loc (dw_cfi_ref cfi, int for_eh)
3044 {
3045   dw_loc_descr_ref loc;
3046   unsigned long size;
3047 
3048   if (cfi->dw_cfi_opc == DW_CFA_expression)
3049     {
3050       unsigned r =
3051 	DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3052       dw2_asm_output_data (1, r, NULL);
3053       loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
3054     }
3055   else
3056     loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3057 
3058   /* Output the size of the block.  */
3059   size = size_of_locs (loc);
3060   dw2_asm_output_data_uleb128 (size, NULL);
3061 
3062   /* Now output the operations themselves.  */
3063   output_loc_sequence (loc, for_eh);
3064 }
3065 
3066 /* Similar, but used for .cfi_escape.  */
3067 
3068 static void
3069 output_cfa_loc_raw (dw_cfi_ref cfi)
3070 {
3071   dw_loc_descr_ref loc;
3072   unsigned long size;
3073 
3074   if (cfi->dw_cfi_opc == DW_CFA_expression)
3075     {
3076       unsigned r =
3077 	DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3078       fprintf (asm_out_file, "%#x,", r);
3079       loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
3080     }
3081   else
3082     loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3083 
3084   /* Output the size of the block.  */
3085   size = size_of_locs (loc);
3086   dw2_asm_output_data_uleb128_raw (size);
3087   fputc (',', asm_out_file);
3088 
3089   /* Now output the operations themselves.  */
3090   output_loc_sequence_raw (loc);
3091 }
3092 
3093 /* Output a Call Frame Information opcode and its operand(s).  */
3094 
3095 void
3096 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
3097 {
3098   unsigned long r;
3099   HOST_WIDE_INT off;
3100 
3101   if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
3102     dw2_asm_output_data (1, (cfi->dw_cfi_opc
3103 			     | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
3104 			 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
3105 			 ((unsigned HOST_WIDE_INT)
3106 			  cfi->dw_cfi_oprnd1.dw_cfi_offset));
3107   else if (cfi->dw_cfi_opc == DW_CFA_offset)
3108     {
3109       r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3110       dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3111 			   "DW_CFA_offset, column %#lx", r);
3112       off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3113       dw2_asm_output_data_uleb128 (off, NULL);
3114     }
3115   else if (cfi->dw_cfi_opc == DW_CFA_restore)
3116     {
3117       r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3118       dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3119 			   "DW_CFA_restore, column %#lx", r);
3120     }
3121   else
3122     {
3123       dw2_asm_output_data (1, cfi->dw_cfi_opc,
3124 			   "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
3125 
3126       switch (cfi->dw_cfi_opc)
3127 	{
3128 	case DW_CFA_set_loc:
3129 	  if (for_eh)
3130 	    dw2_asm_output_encoded_addr_rtx (
3131 		ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
3132 		gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
3133 		false, NULL);
3134 	  else
3135 	    dw2_asm_output_addr (DWARF2_ADDR_SIZE,
3136 				 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
3137 	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3138 	  break;
3139 
3140 	case DW_CFA_advance_loc1:
3141 	  dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3142 				fde->dw_fde_current_label, NULL);
3143 	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3144 	  break;
3145 
3146 	case DW_CFA_advance_loc2:
3147 	  dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3148 				fde->dw_fde_current_label, NULL);
3149 	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3150 	  break;
3151 
3152 	case DW_CFA_advance_loc4:
3153 	  dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3154 				fde->dw_fde_current_label, NULL);
3155 	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3156 	  break;
3157 
3158 	case DW_CFA_MIPS_advance_loc8:
3159 	  dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3160 				fde->dw_fde_current_label, NULL);
3161 	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3162 	  break;
3163 
3164 	case DW_CFA_offset_extended:
3165 	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3166 	  dw2_asm_output_data_uleb128 (r, NULL);
3167 	  off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3168 	  dw2_asm_output_data_uleb128 (off, NULL);
3169 	  break;
3170 
3171 	case DW_CFA_def_cfa:
3172 	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3173 	  dw2_asm_output_data_uleb128 (r, NULL);
3174 	  dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
3175 	  break;
3176 
3177 	case DW_CFA_offset_extended_sf:
3178 	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3179 	  dw2_asm_output_data_uleb128 (r, NULL);
3180 	  off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3181 	  dw2_asm_output_data_sleb128 (off, NULL);
3182 	  break;
3183 
3184 	case DW_CFA_def_cfa_sf:
3185 	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3186 	  dw2_asm_output_data_uleb128 (r, NULL);
3187 	  off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3188 	  dw2_asm_output_data_sleb128 (off, NULL);
3189 	  break;
3190 
3191 	case DW_CFA_restore_extended:
3192 	case DW_CFA_undefined:
3193 	case DW_CFA_same_value:
3194 	case DW_CFA_def_cfa_register:
3195 	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3196 	  dw2_asm_output_data_uleb128 (r, NULL);
3197 	  break;
3198 
3199 	case DW_CFA_register:
3200 	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3201 	  dw2_asm_output_data_uleb128 (r, NULL);
3202 	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
3203 	  dw2_asm_output_data_uleb128 (r, NULL);
3204 	  break;
3205 
3206 	case DW_CFA_def_cfa_offset:
3207 	case DW_CFA_GNU_args_size:
3208 	  dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
3209 	  break;
3210 
3211 	case DW_CFA_def_cfa_offset_sf:
3212 	  off = div_data_align (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3213 	  dw2_asm_output_data_sleb128 (off, NULL);
3214 	  break;
3215 
3216 	case DW_CFA_GNU_window_save:
3217 	  break;
3218 
3219 	case DW_CFA_def_cfa_expression:
3220 	case DW_CFA_expression:
3221 	  output_cfa_loc (cfi, for_eh);
3222 	  break;
3223 
3224 	case DW_CFA_GNU_negative_offset_extended:
3225 	  /* Obsoleted by DW_CFA_offset_extended_sf.  */
3226 	  gcc_unreachable ();
3227 
3228 	default:
3229 	  break;
3230 	}
3231     }
3232 }
3233 
3234 /* Similar, but do it via assembler directives instead.  */
3235 
3236 void
3237 output_cfi_directive (FILE *f, dw_cfi_ref cfi)
3238 {
3239   unsigned long r, r2;
3240 
3241   switch (cfi->dw_cfi_opc)
3242     {
3243     case DW_CFA_advance_loc:
3244     case DW_CFA_advance_loc1:
3245     case DW_CFA_advance_loc2:
3246     case DW_CFA_advance_loc4:
3247     case DW_CFA_MIPS_advance_loc8:
3248     case DW_CFA_set_loc:
3249       /* Should only be created in a code path not followed when emitting
3250 	 via directives.  The assembler is going to take care of this for
3251 	 us.  But this routines is also used for debugging dumps, so
3252 	 print something.  */
3253       gcc_assert (f != asm_out_file);
3254       fprintf (f, "\t.cfi_advance_loc\n");
3255       break;
3256 
3257     case DW_CFA_offset:
3258     case DW_CFA_offset_extended:
3259     case DW_CFA_offset_extended_sf:
3260       r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3261       fprintf (f, "\t.cfi_offset %lu, "HOST_WIDE_INT_PRINT_DEC"\n",
3262 	       r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3263       break;
3264 
3265     case DW_CFA_restore:
3266     case DW_CFA_restore_extended:
3267       r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3268       fprintf (f, "\t.cfi_restore %lu\n", r);
3269       break;
3270 
3271     case DW_CFA_undefined:
3272       r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3273       fprintf (f, "\t.cfi_undefined %lu\n", r);
3274       break;
3275 
3276     case DW_CFA_same_value:
3277       r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3278       fprintf (f, "\t.cfi_same_value %lu\n", r);
3279       break;
3280 
3281     case DW_CFA_def_cfa:
3282     case DW_CFA_def_cfa_sf:
3283       r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3284       fprintf (f, "\t.cfi_def_cfa %lu, "HOST_WIDE_INT_PRINT_DEC"\n",
3285 	       r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3286       break;
3287 
3288     case DW_CFA_def_cfa_register:
3289       r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3290       fprintf (f, "\t.cfi_def_cfa_register %lu\n", r);
3291       break;
3292 
3293     case DW_CFA_register:
3294       r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3295       r2 = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, 1);
3296       fprintf (f, "\t.cfi_register %lu, %lu\n", r, r2);
3297       break;
3298 
3299     case DW_CFA_def_cfa_offset:
3300     case DW_CFA_def_cfa_offset_sf:
3301       fprintf (f, "\t.cfi_def_cfa_offset "
3302 	       HOST_WIDE_INT_PRINT_DEC"\n",
3303 	       cfi->dw_cfi_oprnd1.dw_cfi_offset);
3304       break;
3305 
3306     case DW_CFA_remember_state:
3307       fprintf (f, "\t.cfi_remember_state\n");
3308       break;
3309     case DW_CFA_restore_state:
3310       fprintf (f, "\t.cfi_restore_state\n");
3311       break;
3312 
3313     case DW_CFA_GNU_args_size:
3314       if (f == asm_out_file)
3315 	{
3316 	  fprintf (f, "\t.cfi_escape %#x,", DW_CFA_GNU_args_size);
3317 	  dw2_asm_output_data_uleb128_raw (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3318 	  if (flag_debug_asm)
3319 	    fprintf (f, "\t%s args_size "HOST_WIDE_INT_PRINT_DEC,
3320 		     ASM_COMMENT_START, cfi->dw_cfi_oprnd1.dw_cfi_offset);
3321 	  fputc ('\n', f);
3322 	}
3323       else
3324 	{
3325 	  fprintf (f, "\t.cfi_GNU_args_size "HOST_WIDE_INT_PRINT_DEC "\n",
3326 		   cfi->dw_cfi_oprnd1.dw_cfi_offset);
3327 	}
3328       break;
3329 
3330     case DW_CFA_GNU_window_save:
3331       fprintf (f, "\t.cfi_window_save\n");
3332       break;
3333 
3334     case DW_CFA_def_cfa_expression:
3335       if (f != asm_out_file)
3336 	{
3337 	  fprintf (f, "\t.cfi_def_cfa_expression ...\n");
3338 	  break;
3339 	}
3340       /* FALLTHRU */
3341     case DW_CFA_expression:
3342       if (f != asm_out_file)
3343 	{
3344 	  fprintf (f, "\t.cfi_cfa_expression ...\n");
3345 	  break;
3346 	}
3347       fprintf (f, "\t.cfi_escape %#x,", cfi->dw_cfi_opc);
3348       output_cfa_loc_raw (cfi);
3349       fputc ('\n', f);
3350       break;
3351 
3352     default:
3353       gcc_unreachable ();
3354     }
3355 }
3356 
3357 void
3358 dwarf2out_emit_cfi (dw_cfi_ref cfi)
3359 {
3360   if (dwarf2out_do_cfi_asm ())
3361     output_cfi_directive (asm_out_file, cfi);
3362 }
3363 
3364 static void
3365 dump_cfi_row (FILE *f, dw_cfi_row *row)
3366 {
3367   dw_cfi_ref cfi;
3368   unsigned i;
3369 
3370   cfi = row->cfa_cfi;
3371   if (!cfi)
3372     {
3373       dw_cfa_location dummy;
3374       memset (&dummy, 0, sizeof (dummy));
3375       dummy.reg = INVALID_REGNUM;
3376       cfi = def_cfa_0 (&dummy, &row->cfa);
3377     }
3378   output_cfi_directive (f, cfi);
3379 
3380   FOR_EACH_VEC_SAFE_ELT (row->reg_save, i, cfi)
3381     if (cfi)
3382       output_cfi_directive (f, cfi);
3383 }
3384 
3385 void debug_cfi_row (dw_cfi_row *row);
3386 
3387 void
3388 debug_cfi_row (dw_cfi_row *row)
3389 {
3390   dump_cfi_row (stderr, row);
3391 }
3392 
3393 
3394 /* Save the result of dwarf2out_do_frame across PCH.
3395    This variable is tri-state, with 0 unset, >0 true, <0 false.  */
3396 static GTY(()) signed char saved_do_cfi_asm = 0;
3397 
3398 /* Decide whether we want to emit frame unwind information for the current
3399    translation unit.  */
3400 
3401 bool
3402 dwarf2out_do_frame (void)
3403 {
3404   /* We want to emit correct CFA location expressions or lists, so we
3405      have to return true if we're going to output debug info, even if
3406      we're not going to output frame or unwind info.  */
3407   if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3408     return true;
3409 
3410   if (saved_do_cfi_asm > 0)
3411     return true;
3412 
3413   if (targetm.debug_unwind_info () == UI_DWARF2)
3414     return true;
3415 
3416   if ((flag_unwind_tables || flag_exceptions)
3417       && targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
3418     return true;
3419 
3420   return false;
3421 }
3422 
3423 /* Decide whether to emit frame unwind via assembler directives.  */
3424 
3425 bool
3426 dwarf2out_do_cfi_asm (void)
3427 {
3428   int enc;
3429 
3430   if (saved_do_cfi_asm != 0)
3431     return saved_do_cfi_asm > 0;
3432 
3433   /* Assume failure for a moment.  */
3434   saved_do_cfi_asm = -1;
3435 
3436   if (!flag_dwarf2_cfi_asm || !dwarf2out_do_frame ())
3437     return false;
3438   if (!HAVE_GAS_CFI_PERSONALITY_DIRECTIVE)
3439     return false;
3440 
3441   /* Make sure the personality encoding is one the assembler can support.
3442      In particular, aligned addresses can't be handled.  */
3443   enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,/*global=*/1);
3444   if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
3445     return false;
3446   enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,/*global=*/0);
3447   if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
3448     return false;
3449 
3450   /* If we can't get the assembler to emit only .debug_frame, and we don't need
3451      dwarf2 unwind info for exceptions, then emit .debug_frame by hand.  */
3452   if (!HAVE_GAS_CFI_SECTIONS_DIRECTIVE
3453       && !flag_unwind_tables && !flag_exceptions
3454       && targetm_common.except_unwind_info (&global_options) != UI_DWARF2)
3455     return false;
3456 
3457   /* Success!  */
3458   saved_do_cfi_asm = 1;
3459   return true;
3460 }
3461 
3462 namespace {
3463 
3464 const pass_data pass_data_dwarf2_frame =
3465 {
3466   RTL_PASS, /* type */
3467   "dwarf2", /* name */
3468   OPTGROUP_NONE, /* optinfo_flags */
3469   TV_FINAL, /* tv_id */
3470   0, /* properties_required */
3471   0, /* properties_provided */
3472   0, /* properties_destroyed */
3473   0, /* todo_flags_start */
3474   0, /* todo_flags_finish */
3475 };
3476 
3477 class pass_dwarf2_frame : public rtl_opt_pass
3478 {
3479 public:
3480   pass_dwarf2_frame (gcc::context *ctxt)
3481     : rtl_opt_pass (pass_data_dwarf2_frame, ctxt)
3482   {}
3483 
3484   /* opt_pass methods: */
3485   virtual bool gate (function *);
3486   virtual unsigned int execute (function *) { return execute_dwarf2_frame (); }
3487 
3488 }; // class pass_dwarf2_frame
3489 
3490 bool
3491 pass_dwarf2_frame::gate (function *)
3492 {
3493 #ifndef HAVE_prologue
3494   /* Targets which still implement the prologue in assembler text
3495      cannot use the generic dwarf2 unwinding.  */
3496   return false;
3497 #endif
3498 
3499   /* ??? What to do for UI_TARGET unwinding?  They might be able to benefit
3500      from the optimized shrink-wrapping annotations that we will compute.
3501      For now, only produce the CFI notes for dwarf2.  */
3502   return dwarf2out_do_frame ();
3503 }
3504 
3505 } // anon namespace
3506 
3507 rtl_opt_pass *
3508 make_pass_dwarf2_frame (gcc::context *ctxt)
3509 {
3510   return new pass_dwarf2_frame (ctxt);
3511 }
3512 
3513 #include "gt-dwarf2cfi.h"
3514