xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/dse.c (revision d16b7486a53dcb8072b60ec6fcb4373a2d0c27b7)
1 /* RTL dead store elimination.
2    Copyright (C) 2005-2020 Free Software Foundation, Inc.
3 
4    Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5    and Kenneth Zadeck <zadeck@naturalbridge.com>
6 
7 This file is part of GCC.
8 
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13 
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17 for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3.  If not see
21 <http://www.gnu.org/licenses/>.  */
22 
23 #undef BASELINE
24 
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "backend.h"
29 #include "target.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "gimple.h"
33 #include "predict.h"
34 #include "df.h"
35 #include "memmodel.h"
36 #include "tm_p.h"
37 #include "gimple-ssa.h"
38 #include "expmed.h"
39 #include "optabs.h"
40 #include "emit-rtl.h"
41 #include "recog.h"
42 #include "alias.h"
43 #include "stor-layout.h"
44 #include "cfgrtl.h"
45 #include "cselib.h"
46 #include "tree-pass.h"
47 #include "explow.h"
48 #include "expr.h"
49 #include "dbgcnt.h"
50 #include "rtl-iter.h"
51 #include "cfgcleanup.h"
52 #include "calls.h"
53 
54 /* This file contains three techniques for performing Dead Store
55    Elimination (dse).
56 
57    * The first technique performs dse locally on any base address.  It
58    is based on the cselib which is a local value numbering technique.
59    This technique is local to a basic block but deals with a fairly
60    general addresses.
61 
62    * The second technique performs dse globally but is restricted to
63    base addresses that are either constant or are relative to the
64    frame_pointer.
65 
66    * The third technique, (which is only done after register allocation)
67    processes the spill slots.  This differs from the second
68    technique because it takes advantage of the fact that spilling is
69    completely free from the effects of aliasing.
70 
71    Logically, dse is a backwards dataflow problem.  A store can be
72    deleted if it if cannot be reached in the backward direction by any
73    use of the value being stored.  However, the local technique uses a
74    forwards scan of the basic block because cselib requires that the
75    block be processed in that order.
76 
77    The pass is logically broken into 7 steps:
78 
79    0) Initialization.
80 
81    1) The local algorithm, as well as scanning the insns for the two
82    global algorithms.
83 
84    2) Analysis to see if the global algs are necessary.  In the case
85    of stores base on a constant address, there must be at least two
86    stores to that address, to make it possible to delete some of the
87    stores.  In the case of stores off of the frame or spill related
88    stores, only one store to an address is necessary because those
89    stores die at the end of the function.
90 
91    3) Set up the global dataflow equations based on processing the
92    info parsed in the first step.
93 
94    4) Solve the dataflow equations.
95 
96    5) Delete the insns that the global analysis has indicated are
97    unnecessary.
98 
99    6) Delete insns that store the same value as preceding store
100    where the earlier store couldn't be eliminated.
101 
102    7) Cleanup.
103 
104    This step uses cselib and canon_rtx to build the largest expression
105    possible for each address.  This pass is a forwards pass through
106    each basic block.  From the point of view of the global technique,
107    the first pass could examine a block in either direction.  The
108    forwards ordering is to accommodate cselib.
109 
110    We make a simplifying assumption: addresses fall into four broad
111    categories:
112 
113    1) base has rtx_varies_p == false, offset is constant.
114    2) base has rtx_varies_p == false, offset variable.
115    3) base has rtx_varies_p == true, offset constant.
116    4) base has rtx_varies_p == true, offset variable.
117 
118    The local passes are able to process all 4 kinds of addresses.  The
119    global pass only handles 1).
120 
121    The global problem is formulated as follows:
122 
123      A store, S1, to address A, where A is not relative to the stack
124      frame, can be eliminated if all paths from S1 to the end of the
125      function contain another store to A before a read to A.
126 
127      If the address A is relative to the stack frame, a store S2 to A
128      can be eliminated if there are no paths from S2 that reach the
129      end of the function that read A before another store to A.  In
130      this case S2 can be deleted if there are paths from S2 to the
131      end of the function that have no reads or writes to A.  This
132      second case allows stores to the stack frame to be deleted that
133      would otherwise die when the function returns.  This cannot be
134      done if stores_off_frame_dead_at_return is not true.  See the doc
135      for that variable for when this variable is false.
136 
137      The global problem is formulated as a backwards set union
138      dataflow problem where the stores are the gens and reads are the
139      kills.  Set union problems are rare and require some special
140      handling given our representation of bitmaps.  A straightforward
141      implementation requires a lot of bitmaps filled with 1s.
142      These are expensive and cumbersome in our bitmap formulation so
143      care has been taken to avoid large vectors filled with 1s.  See
144      the comments in bb_info and in the dataflow confluence functions
145      for details.
146 
147    There are two places for further enhancements to this algorithm:
148 
149    1) The original dse which was embedded in a pass called flow also
150    did local address forwarding.  For example in
151 
152    A <- r100
153    ... <- A
154 
155    flow would replace the right hand side of the second insn with a
156    reference to r100.  Most of the information is available to add this
157    to this pass.  It has not done it because it is a lot of work in
158    the case that either r100 is assigned to between the first and
159    second insn and/or the second insn is a load of part of the value
160    stored by the first insn.
161 
162    insn 5 in gcc.c-torture/compile/990203-1.c simple case.
163    insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
164    insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
165    insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
166 
167    2) The cleaning up of spill code is quite profitable.  It currently
168    depends on reading tea leaves and chicken entrails left by reload.
169    This pass depends on reload creating a singleton alias set for each
170    spill slot and telling the next dse pass which of these alias sets
171    are the singletons.  Rather than analyze the addresses of the
172    spills, dse's spill processing just does analysis of the loads and
173    stores that use those alias sets.  There are three cases where this
174    falls short:
175 
176      a) Reload sometimes creates the slot for one mode of access, and
177      then inserts loads and/or stores for a smaller mode.  In this
178      case, the current code just punts on the slot.  The proper thing
179      to do is to back out and use one bit vector position for each
180      byte of the entity associated with the slot.  This depends on
181      KNOWING that reload always generates the accesses for each of the
182      bytes in some canonical (read that easy to understand several
183      passes after reload happens) way.
184 
185      b) Reload sometimes decides that spill slot it allocated was not
186      large enough for the mode and goes back and allocates more slots
187      with the same mode and alias set.  The backout in this case is a
188      little more graceful than (a).  In this case the slot is unmarked
189      as being a spill slot and if final address comes out to be based
190      off the frame pointer, the global algorithm handles this slot.
191 
192      c) For any pass that may prespill, there is currently no
193      mechanism to tell the dse pass that the slot being used has the
194      special properties that reload uses.  It may be that all that is
195      required is to have those passes make the same calls that reload
196      does, assuming that the alias sets can be manipulated in the same
197      way.  */
198 
199 /* There are limits to the size of constant offsets we model for the
200    global problem.  There are certainly test cases, that exceed this
201    limit, however, it is unlikely that there are important programs
202    that really have constant offsets this size.  */
203 #define MAX_OFFSET (64 * 1024)
204 
205 /* Obstack for the DSE dataflow bitmaps.  We don't want to put these
206    on the default obstack because these bitmaps can grow quite large
207    (~2GB for the small (!) test case of PR54146) and we'll hold on to
208    all that memory until the end of the compiler run.
209    As a bonus, delete_tree_live_info can destroy all the bitmaps by just
210    releasing the whole obstack.  */
211 static bitmap_obstack dse_bitmap_obstack;
212 
213 /* Obstack for other data.  As for above: Kinda nice to be able to
214    throw it all away at the end in one big sweep.  */
215 static struct obstack dse_obstack;
216 
217 /* Scratch bitmap for cselib's cselib_expand_value_rtx.  */
218 static bitmap scratch = NULL;
219 
220 struct insn_info_type;
221 
222 /* This structure holds information about a candidate store.  */
223 class store_info
224 {
225 public:
226 
227   /* False means this is a clobber.  */
228   bool is_set;
229 
230   /* False if a single HOST_WIDE_INT bitmap is used for positions_needed.  */
231   bool is_large;
232 
233   /* The id of the mem group of the base address.  If rtx_varies_p is
234      true, this is -1.  Otherwise, it is the index into the group
235      table.  */
236   int group_id;
237 
238   /* This is the cselib value.  */
239   cselib_val *cse_base;
240 
241   /* This canonized mem.  */
242   rtx mem;
243 
244   /* Canonized MEM address for use by canon_true_dependence.  */
245   rtx mem_addr;
246 
247   /* The offset of the first byte associated with the operation.  */
248   poly_int64 offset;
249 
250   /* The number of bytes covered by the operation.  This is always exact
251      and known (rather than -1).  */
252   poly_int64 width;
253 
254   union
255     {
256       /* A bitmask as wide as the number of bytes in the word that
257 	 contains a 1 if the byte may be needed.  The store is unused if
258 	 all of the bits are 0.  This is used if IS_LARGE is false.  */
259       unsigned HOST_WIDE_INT small_bitmask;
260 
261       struct
262 	{
263 	  /* A bitmap with one bit per byte, or null if the number of
264 	     bytes isn't known at compile time.  A cleared bit means
265 	     the position is needed.  Used if IS_LARGE is true.  */
266 	  bitmap bmap;
267 
268 	  /* When BITMAP is nonnull, this counts the number of set bits
269 	     (i.e. unneeded bytes) in the bitmap.  If it is equal to
270 	     WIDTH, the whole store is unused.
271 
272 	     When BITMAP is null:
273 	     - the store is definitely not needed when COUNT == 1
274 	     - all the store is needed when COUNT == 0 and RHS is nonnull
275 	     - otherwise we don't know which parts of the store are needed.  */
276 	  int count;
277 	} large;
278     } positions_needed;
279 
280   /* The next store info for this insn.  */
281   class store_info *next;
282 
283   /* The right hand side of the store.  This is used if there is a
284      subsequent reload of the mems address somewhere later in the
285      basic block.  */
286   rtx rhs;
287 
288   /* If rhs is or holds a constant, this contains that constant,
289      otherwise NULL.  */
290   rtx const_rhs;
291 
292   /* Set if this store stores the same constant value as REDUNDANT_REASON
293      insn stored.  These aren't eliminated early, because doing that
294      might prevent the earlier larger store to be eliminated.  */
295   struct insn_info_type *redundant_reason;
296 };
297 
298 /* Return a bitmask with the first N low bits set.  */
299 
300 static unsigned HOST_WIDE_INT
301 lowpart_bitmask (int n)
302 {
303   unsigned HOST_WIDE_INT mask = HOST_WIDE_INT_M1U;
304 #if 1 // XXXMRG
305   gcc_assert(n >= 0 && n <= HOST_BITS_PER_WIDE_INT);
306   if (n == 0)
307     return 0;
308 #endif
309   return mask >> (HOST_BITS_PER_WIDE_INT - n);
310 }
311 
312 static object_allocator<store_info> cse_store_info_pool ("cse_store_info_pool");
313 
314 static object_allocator<store_info> rtx_store_info_pool ("rtx_store_info_pool");
315 
316 /* This structure holds information about a load.  These are only
317    built for rtx bases.  */
318 class read_info_type
319 {
320 public:
321   /* The id of the mem group of the base address.  */
322   int group_id;
323 
324   /* The offset of the first byte associated with the operation.  */
325   poly_int64 offset;
326 
327   /* The number of bytes covered by the operation, or -1 if not known.  */
328   poly_int64 width;
329 
330   /* The mem being read.  */
331   rtx mem;
332 
333   /* The next read_info for this insn.  */
334   class read_info_type *next;
335 };
336 typedef class read_info_type *read_info_t;
337 
338 static object_allocator<read_info_type> read_info_type_pool ("read_info_pool");
339 
340 /* One of these records is created for each insn.  */
341 
342 struct insn_info_type
343 {
344   /* Set true if the insn contains a store but the insn itself cannot
345      be deleted.  This is set if the insn is a parallel and there is
346      more than one non dead output or if the insn is in some way
347      volatile.  */
348   bool cannot_delete;
349 
350   /* This field is only used by the global algorithm.  It is set true
351      if the insn contains any read of mem except for a (1).  This is
352      also set if the insn is a call or has a clobber mem.  If the insn
353      contains a wild read, the use_rec will be null.  */
354   bool wild_read;
355 
356   /* This is true only for CALL instructions which could potentially read
357      any non-frame memory location. This field is used by the global
358      algorithm.  */
359   bool non_frame_wild_read;
360 
361   /* This field is only used for the processing of const functions.
362      These functions cannot read memory, but they can read the stack
363      because that is where they may get their parms.  We need to be
364      this conservative because, like the store motion pass, we don't
365      consider CALL_INSN_FUNCTION_USAGE when processing call insns.
366      Moreover, we need to distinguish two cases:
367      1. Before reload (register elimination), the stores related to
368 	outgoing arguments are stack pointer based and thus deemed
369 	of non-constant base in this pass.  This requires special
370 	handling but also means that the frame pointer based stores
371 	need not be killed upon encountering a const function call.
372      2. After reload, the stores related to outgoing arguments can be
373 	either stack pointer or hard frame pointer based.  This means
374 	that we have no other choice than also killing all the frame
375 	pointer based stores upon encountering a const function call.
376      This field is set after reload for const function calls and before
377      reload for const tail function calls on targets where arg pointer
378      is the frame pointer.  Having this set is less severe than a wild
379      read, it just means that all the frame related stores are killed
380      rather than all the stores.  */
381   bool frame_read;
382 
383   /* This field is only used for the processing of const functions.
384      It is set if the insn may contain a stack pointer based store.  */
385   bool stack_pointer_based;
386 
387   /* This is true if any of the sets within the store contains a
388      cselib base.  Such stores can only be deleted by the local
389      algorithm.  */
390   bool contains_cselib_groups;
391 
392   /* The insn. */
393   rtx_insn *insn;
394 
395   /* The list of mem sets or mem clobbers that are contained in this
396      insn.  If the insn is deletable, it contains only one mem set.
397      But it could also contain clobbers.  Insns that contain more than
398      one mem set are not deletable, but each of those mems are here in
399      order to provide info to delete other insns.  */
400   store_info *store_rec;
401 
402   /* The linked list of mem uses in this insn.  Only the reads from
403      rtx bases are listed here.  The reads to cselib bases are
404      completely processed during the first scan and so are never
405      created.  */
406   read_info_t read_rec;
407 
408   /* The live fixed registers.  We assume only fixed registers can
409      cause trouble by being clobbered from an expanded pattern;
410      storing only the live fixed registers (rather than all registers)
411      means less memory needs to be allocated / copied for the individual
412      stores.  */
413   regset fixed_regs_live;
414 
415   /* The prev insn in the basic block.  */
416   struct insn_info_type * prev_insn;
417 
418   /* The linked list of insns that are in consideration for removal in
419      the forwards pass through the basic block.  This pointer may be
420      trash as it is not cleared when a wild read occurs.  The only
421      time it is guaranteed to be correct is when the traversal starts
422      at active_local_stores.  */
423   struct insn_info_type * next_local_store;
424 };
425 typedef struct insn_info_type *insn_info_t;
426 
427 static object_allocator<insn_info_type> insn_info_type_pool ("insn_info_pool");
428 
429 /* The linked list of stores that are under consideration in this
430    basic block.  */
431 static insn_info_t active_local_stores;
432 static int active_local_stores_len;
433 
434 struct dse_bb_info_type
435 {
436   /* Pointer to the insn info for the last insn in the block.  These
437      are linked so this is how all of the insns are reached.  During
438      scanning this is the current insn being scanned.  */
439   insn_info_t last_insn;
440 
441   /* The info for the global dataflow problem.  */
442 
443 
444   /* This is set if the transfer function should and in the wild_read
445      bitmap before applying the kill and gen sets.  That vector knocks
446      out most of the bits in the bitmap and thus speeds up the
447      operations.  */
448   bool apply_wild_read;
449 
450   /* The following 4 bitvectors hold information about which positions
451      of which stores are live or dead.  They are indexed by
452      get_bitmap_index.  */
453 
454   /* The set of store positions that exist in this block before a wild read.  */
455   bitmap gen;
456 
457   /* The set of load positions that exist in this block above the
458      same position of a store.  */
459   bitmap kill;
460 
461   /* The set of stores that reach the top of the block without being
462      killed by a read.
463 
464      Do not represent the in if it is all ones.  Note that this is
465      what the bitvector should logically be initialized to for a set
466      intersection problem.  However, like the kill set, this is too
467      expensive.  So initially, the in set will only be created for the
468      exit block and any block that contains a wild read.  */
469   bitmap in;
470 
471   /* The set of stores that reach the bottom of the block from it's
472      successors.
473 
474      Do not represent the in if it is all ones.  Note that this is
475      what the bitvector should logically be initialized to for a set
476      intersection problem.  However, like the kill and in set, this is
477      too expensive.  So what is done is that the confluence operator
478      just initializes the vector from one of the out sets of the
479      successors of the block.  */
480   bitmap out;
481 
482   /* The following bitvector is indexed by the reg number.  It
483      contains the set of regs that are live at the current instruction
484      being processed.  While it contains info for all of the
485      registers, only the hard registers are actually examined.  It is used
486      to assure that shift and/or add sequences that are inserted do not
487      accidentally clobber live hard regs.  */
488   bitmap regs_live;
489 };
490 
491 typedef struct dse_bb_info_type *bb_info_t;
492 
493 static object_allocator<dse_bb_info_type> dse_bb_info_type_pool
494   ("bb_info_pool");
495 
496 /* Table to hold all bb_infos.  */
497 static bb_info_t *bb_table;
498 
499 /* There is a group_info for each rtx base that is used to reference
500    memory.  There are also not many of the rtx bases because they are
501    very limited in scope.  */
502 
503 struct group_info
504 {
505   /* The actual base of the address.  */
506   rtx rtx_base;
507 
508   /* The sequential id of the base.  This allows us to have a
509      canonical ordering of these that is not based on addresses.  */
510   int id;
511 
512   /* True if there are any positions that are to be processed
513      globally.  */
514   bool process_globally;
515 
516   /* True if the base of this group is either the frame_pointer or
517      hard_frame_pointer.  */
518   bool frame_related;
519 
520   /* A mem wrapped around the base pointer for the group in order to do
521      read dependency.  It must be given BLKmode in order to encompass all
522      the possible offsets from the base.  */
523   rtx base_mem;
524 
525   /* Canonized version of base_mem's address.  */
526   rtx canon_base_addr;
527 
528   /* These two sets of two bitmaps are used to keep track of how many
529      stores are actually referencing that position from this base.  We
530      only do this for rtx bases as this will be used to assign
531      positions in the bitmaps for the global problem.  Bit N is set in
532      store1 on the first store for offset N.  Bit N is set in store2
533      for the second store to offset N.  This is all we need since we
534      only care about offsets that have two or more stores for them.
535 
536      The "_n" suffix is for offsets less than 0 and the "_p" suffix is
537      for 0 and greater offsets.
538 
539      There is one special case here, for stores into the stack frame,
540      we will or store1 into store2 before deciding which stores look
541      at globally.  This is because stores to the stack frame that have
542      no other reads before the end of the function can also be
543      deleted.  */
544   bitmap store1_n, store1_p, store2_n, store2_p;
545 
546   /* These bitmaps keep track of offsets in this group escape this function.
547      An offset escapes if it corresponds to a named variable whose
548      addressable flag is set.  */
549   bitmap escaped_n, escaped_p;
550 
551   /* The positions in this bitmap have the same assignments as the in,
552      out, gen and kill bitmaps.  This bitmap is all zeros except for
553      the positions that are occupied by stores for this group.  */
554   bitmap group_kill;
555 
556   /* The offset_map is used to map the offsets from this base into
557      positions in the global bitmaps.  It is only created after all of
558      the all of stores have been scanned and we know which ones we
559      care about.  */
560   int *offset_map_n, *offset_map_p;
561   int offset_map_size_n, offset_map_size_p;
562 };
563 
564 static object_allocator<group_info> group_info_pool ("rtx_group_info_pool");
565 
566 /* Index into the rtx_group_vec.  */
567 static int rtx_group_next_id;
568 
569 
570 static vec<group_info *> rtx_group_vec;
571 
572 
573 /* This structure holds the set of changes that are being deferred
574    when removing read operation.  See replace_read.  */
575 struct deferred_change
576 {
577 
578   /* The mem that is being replaced.  */
579   rtx *loc;
580 
581   /* The reg it is being replaced with.  */
582   rtx reg;
583 
584   struct deferred_change *next;
585 };
586 
587 static object_allocator<deferred_change> deferred_change_pool
588   ("deferred_change_pool");
589 
590 static deferred_change *deferred_change_list = NULL;
591 
592 /* This is true except if cfun->stdarg -- i.e. we cannot do
593    this for vararg functions because they play games with the frame.  */
594 static bool stores_off_frame_dead_at_return;
595 
596 /* Counter for stats.  */
597 static int globally_deleted;
598 static int locally_deleted;
599 
600 static bitmap all_blocks;
601 
602 /* Locations that are killed by calls in the global phase.  */
603 static bitmap kill_on_calls;
604 
605 /* The number of bits used in the global bitmaps.  */
606 static unsigned int current_position;
607 
608 /* Print offset range [OFFSET, OFFSET + WIDTH) to FILE.  */
609 
610 static void
611 print_range (FILE *file, poly_int64 offset, poly_int64 width)
612 {
613   fprintf (file, "[");
614   print_dec (offset, file, SIGNED);
615   fprintf (file, "..");
616   print_dec (offset + width, file, SIGNED);
617   fprintf (file, ")");
618 }
619 
620 /*----------------------------------------------------------------------------
621    Zeroth step.
622 
623    Initialization.
624 ----------------------------------------------------------------------------*/
625 
626 
627 /* Hashtable callbacks for maintaining the "bases" field of
628    store_group_info, given that the addresses are function invariants.  */
629 
630 struct invariant_group_base_hasher : nofree_ptr_hash <group_info>
631 {
632   static inline hashval_t hash (const group_info *);
633   static inline bool equal (const group_info *, const group_info *);
634 };
635 
636 inline bool
637 invariant_group_base_hasher::equal (const group_info *gi1,
638 				    const group_info *gi2)
639 {
640   return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
641 }
642 
643 inline hashval_t
644 invariant_group_base_hasher::hash (const group_info *gi)
645 {
646   int do_not_record;
647   return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
648 }
649 
650 /* Tables of group_info structures, hashed by base value.  */
651 static hash_table<invariant_group_base_hasher> *rtx_group_table;
652 
653 
654 /* Get the GROUP for BASE.  Add a new group if it is not there.  */
655 
656 static group_info *
657 get_group_info (rtx base)
658 {
659   struct group_info tmp_gi;
660   group_info *gi;
661   group_info **slot;
662 
663   gcc_assert (base != NULL_RTX);
664 
665   /* Find the store_base_info structure for BASE, creating a new one
666      if necessary.  */
667   tmp_gi.rtx_base = base;
668   slot = rtx_group_table->find_slot (&tmp_gi, INSERT);
669   gi = *slot;
670 
671   if (gi == NULL)
672     {
673       *slot = gi = group_info_pool.allocate ();
674       gi->rtx_base = base;
675       gi->id = rtx_group_next_id++;
676       gi->base_mem = gen_rtx_MEM (BLKmode, base);
677       gi->canon_base_addr = canon_rtx (base);
678       gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
679       gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
680       gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
681       gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
682       gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
683       gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
684       gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
685       gi->process_globally = false;
686       gi->frame_related =
687 	(base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
688       gi->offset_map_size_n = 0;
689       gi->offset_map_size_p = 0;
690       gi->offset_map_n = NULL;
691       gi->offset_map_p = NULL;
692       rtx_group_vec.safe_push (gi);
693     }
694 
695   return gi;
696 }
697 
698 
699 /* Initialization of data structures.  */
700 
701 static void
702 dse_step0 (void)
703 {
704   locally_deleted = 0;
705   globally_deleted = 0;
706 
707   bitmap_obstack_initialize (&dse_bitmap_obstack);
708   gcc_obstack_init (&dse_obstack);
709 
710   scratch = BITMAP_ALLOC (&reg_obstack);
711   kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
712 
713 
714   rtx_group_table = new hash_table<invariant_group_base_hasher> (11);
715 
716   bb_table = XNEWVEC (bb_info_t, last_basic_block_for_fn (cfun));
717   rtx_group_next_id = 0;
718 
719   stores_off_frame_dead_at_return = !cfun->stdarg;
720 
721   init_alias_analysis ();
722 }
723 
724 
725 
726 /*----------------------------------------------------------------------------
727    First step.
728 
729    Scan all of the insns.  Any random ordering of the blocks is fine.
730    Each block is scanned in forward order to accommodate cselib which
731    is used to remove stores with non-constant bases.
732 ----------------------------------------------------------------------------*/
733 
734 /* Delete all of the store_info recs from INSN_INFO.  */
735 
736 static void
737 free_store_info (insn_info_t insn_info)
738 {
739   store_info *cur = insn_info->store_rec;
740   while (cur)
741     {
742       store_info *next = cur->next;
743       if (cur->is_large)
744 	BITMAP_FREE (cur->positions_needed.large.bmap);
745       if (cur->cse_base)
746 	cse_store_info_pool.remove (cur);
747       else
748 	rtx_store_info_pool.remove (cur);
749       cur = next;
750     }
751 
752   insn_info->cannot_delete = true;
753   insn_info->contains_cselib_groups = false;
754   insn_info->store_rec = NULL;
755 }
756 
757 struct note_add_store_info
758 {
759   rtx_insn *first, *current;
760   regset fixed_regs_live;
761   bool failure;
762 };
763 
764 /* Callback for emit_inc_dec_insn_before via note_stores.
765    Check if a register is clobbered which is live afterwards.  */
766 
767 static void
768 note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
769 {
770   rtx_insn *insn;
771   note_add_store_info *info = (note_add_store_info *) data;
772 
773   if (!REG_P (loc))
774     return;
775 
776   /* If this register is referenced by the current or an earlier insn,
777      that's OK.  E.g. this applies to the register that is being incremented
778      with this addition.  */
779   for (insn = info->first;
780        insn != NEXT_INSN (info->current);
781        insn = NEXT_INSN (insn))
782     if (reg_referenced_p (loc, PATTERN (insn)))
783       return;
784 
785   /* If we come here, we have a clobber of a register that's only OK
786      if that register is not live.  If we don't have liveness information
787      available, fail now.  */
788   if (!info->fixed_regs_live)
789     {
790       info->failure = true;
791       return;
792     }
793   /* Now check if this is a live fixed register.  */
794   unsigned int end_regno = END_REGNO (loc);
795   for (unsigned int regno = REGNO (loc); regno < end_regno; ++regno)
796     if (REGNO_REG_SET_P (info->fixed_regs_live, regno))
797       info->failure = true;
798 }
799 
800 /* Callback for for_each_inc_dec that emits an INSN that sets DEST to
801    SRC + SRCOFF before insn ARG.  */
802 
803 static int
804 emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
805 			  rtx op ATTRIBUTE_UNUSED,
806 			  rtx dest, rtx src, rtx srcoff, void *arg)
807 {
808   insn_info_t insn_info = (insn_info_t) arg;
809   rtx_insn *insn = insn_info->insn, *new_insn, *cur;
810   note_add_store_info info;
811 
812   /* We can reuse all operands without copying, because we are about
813      to delete the insn that contained it.  */
814   if (srcoff)
815     {
816       start_sequence ();
817       emit_insn (gen_add3_insn (dest, src, srcoff));
818       new_insn = get_insns ();
819       end_sequence ();
820     }
821   else
822     new_insn = gen_move_insn (dest, src);
823   info.first = new_insn;
824   info.fixed_regs_live = insn_info->fixed_regs_live;
825   info.failure = false;
826   for (cur = new_insn; cur; cur = NEXT_INSN (cur))
827     {
828       info.current = cur;
829       note_stores (cur, note_add_store, &info);
830     }
831 
832   /* If a failure was flagged above, return 1 so that for_each_inc_dec will
833      return it immediately, communicating the failure to its caller.  */
834   if (info.failure)
835     return 1;
836 
837   emit_insn_before (new_insn, insn);
838 
839   return 0;
840 }
841 
842 /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
843    is there, is split into a separate insn.
844    Return true on success (or if there was nothing to do), false on failure.  */
845 
846 static bool
847 check_for_inc_dec_1 (insn_info_t insn_info)
848 {
849   rtx_insn *insn = insn_info->insn;
850   rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
851   if (note)
852     return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
853 			     insn_info) == 0;
854 
855   /* Punt on stack pushes, those don't have REG_INC notes and we are
856      unprepared to deal with distribution of REG_ARGS_SIZE notes etc.  */
857   subrtx_iterator::array_type array;
858   FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
859     {
860       const_rtx x = *iter;
861       if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
862 	return false;
863     }
864 
865   return true;
866 }
867 
868 
869 /* Entry point for postreload.  If you work on reload_cse, or you need this
870    anywhere else, consider if you can provide register liveness information
871    and add a parameter to this function so that it can be passed down in
872    insn_info.fixed_regs_live.  */
873 bool
874 check_for_inc_dec (rtx_insn *insn)
875 {
876   insn_info_type insn_info;
877   rtx note;
878 
879   insn_info.insn = insn;
880   insn_info.fixed_regs_live = NULL;
881   note = find_reg_note (insn, REG_INC, NULL_RTX);
882   if (note)
883     return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
884 			     &insn_info) == 0;
885 
886   /* Punt on stack pushes, those don't have REG_INC notes and we are
887      unprepared to deal with distribution of REG_ARGS_SIZE notes etc.  */
888   subrtx_iterator::array_type array;
889   FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
890     {
891       const_rtx x = *iter;
892       if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
893 	return false;
894     }
895 
896   return true;
897 }
898 
899 /* Delete the insn and free all of the fields inside INSN_INFO.  */
900 
901 static void
902 delete_dead_store_insn (insn_info_t insn_info)
903 {
904   read_info_t read_info;
905 
906   if (!dbg_cnt (dse))
907     return;
908 
909   if (!check_for_inc_dec_1 (insn_info))
910     return;
911   if (dump_file && (dump_flags & TDF_DETAILS))
912     fprintf (dump_file, "Locally deleting insn %d\n",
913 	     INSN_UID (insn_info->insn));
914 
915   free_store_info (insn_info);
916   read_info = insn_info->read_rec;
917 
918   while (read_info)
919     {
920       read_info_t next = read_info->next;
921       read_info_type_pool.remove (read_info);
922       read_info = next;
923     }
924   insn_info->read_rec = NULL;
925 
926   delete_insn (insn_info->insn);
927   locally_deleted++;
928   insn_info->insn = NULL;
929 
930   insn_info->wild_read = false;
931 }
932 
933 /* Return whether DECL, a local variable, can possibly escape the current
934    function scope.  */
935 
936 static bool
937 local_variable_can_escape (tree decl)
938 {
939   if (TREE_ADDRESSABLE (decl))
940     return true;
941 
942   /* If this is a partitioned variable, we need to consider all the variables
943      in the partition.  This is necessary because a store into one of them can
944      be replaced with a store into another and this may not change the outcome
945      of the escape analysis.  */
946   if (cfun->gimple_df->decls_to_pointers != NULL)
947     {
948       tree *namep = cfun->gimple_df->decls_to_pointers->get (decl);
949       if (namep)
950 	return TREE_ADDRESSABLE (*namep);
951     }
952 
953   return false;
954 }
955 
956 /* Return whether EXPR can possibly escape the current function scope.  */
957 
958 static bool
959 can_escape (tree expr)
960 {
961   tree base;
962   if (!expr)
963     return true;
964   base = get_base_address (expr);
965   if (DECL_P (base)
966       && !may_be_aliased (base)
967       && !(VAR_P (base)
968 	   && !DECL_EXTERNAL (base)
969 	   && !TREE_STATIC (base)
970 	   && local_variable_can_escape (base)))
971     return false;
972   return true;
973 }
974 
975 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
976    OFFSET and WIDTH.  */
977 
978 static void
979 set_usage_bits (group_info *group, poly_int64 offset, poly_int64 width,
980                 tree expr)
981 {
982   /* Non-constant offsets and widths act as global kills, so there's no point
983      trying to use them to derive global DSE candidates.  */
984   HOST_WIDE_INT i, const_offset, const_width;
985   bool expr_escapes = can_escape (expr);
986   if (offset.is_constant (&const_offset)
987       && width.is_constant (&const_width)
988       && const_offset > -MAX_OFFSET
989       && const_offset + const_width < MAX_OFFSET)
990     for (i = const_offset; i < const_offset + const_width; ++i)
991       {
992 	bitmap store1;
993 	bitmap store2;
994         bitmap escaped;
995 	int ai;
996 	if (i < 0)
997 	  {
998 	    store1 = group->store1_n;
999 	    store2 = group->store2_n;
1000 	    escaped = group->escaped_n;
1001 	    ai = -i;
1002 	  }
1003 	else
1004 	  {
1005 	    store1 = group->store1_p;
1006 	    store2 = group->store2_p;
1007 	    escaped = group->escaped_p;
1008 	    ai = i;
1009 	  }
1010 
1011 	if (!bitmap_set_bit (store1, ai))
1012 	  bitmap_set_bit (store2, ai);
1013 	else
1014 	  {
1015 	    if (i < 0)
1016 	      {
1017 		if (group->offset_map_size_n < ai)
1018 		  group->offset_map_size_n = ai;
1019 	      }
1020 	    else
1021 	      {
1022 		if (group->offset_map_size_p < ai)
1023 		  group->offset_map_size_p = ai;
1024 	      }
1025 	  }
1026         if (expr_escapes)
1027           bitmap_set_bit (escaped, ai);
1028       }
1029 }
1030 
1031 static void
1032 reset_active_stores (void)
1033 {
1034   active_local_stores = NULL;
1035   active_local_stores_len = 0;
1036 }
1037 
1038 /* Free all READ_REC of the LAST_INSN of BB_INFO.  */
1039 
1040 static void
1041 free_read_records (bb_info_t bb_info)
1042 {
1043   insn_info_t insn_info = bb_info->last_insn;
1044   read_info_t *ptr = &insn_info->read_rec;
1045   while (*ptr)
1046     {
1047       read_info_t next = (*ptr)->next;
1048       read_info_type_pool.remove (*ptr);
1049       *ptr = next;
1050     }
1051 }
1052 
1053 /* Set the BB_INFO so that the last insn is marked as a wild read.  */
1054 
1055 static void
1056 add_wild_read (bb_info_t bb_info)
1057 {
1058   insn_info_t insn_info = bb_info->last_insn;
1059   insn_info->wild_read = true;
1060   free_read_records (bb_info);
1061   reset_active_stores ();
1062 }
1063 
1064 /* Set the BB_INFO so that the last insn is marked as a wild read of
1065    non-frame locations.  */
1066 
1067 static void
1068 add_non_frame_wild_read (bb_info_t bb_info)
1069 {
1070   insn_info_t insn_info = bb_info->last_insn;
1071   insn_info->non_frame_wild_read = true;
1072   free_read_records (bb_info);
1073   reset_active_stores ();
1074 }
1075 
1076 /* Return true if X is a constant or one of the registers that behave
1077    as a constant over the life of a function.  This is equivalent to
1078    !rtx_varies_p for memory addresses.  */
1079 
1080 static bool
1081 const_or_frame_p (rtx x)
1082 {
1083   if (CONSTANT_P (x))
1084     return true;
1085 
1086   if (GET_CODE (x) == REG)
1087     {
1088       /* Note that we have to test for the actual rtx used for the frame
1089 	 and arg pointers and not just the register number in case we have
1090 	 eliminated the frame and/or arg pointer and are using it
1091 	 for pseudos.  */
1092       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1093 	  /* The arg pointer varies if it is not a fixed register.  */
1094 	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1095 	  || x == pic_offset_table_rtx)
1096 	return true;
1097       return false;
1098     }
1099 
1100   return false;
1101 }
1102 
1103 /* Take all reasonable action to put the address of MEM into the form
1104    that we can do analysis on.
1105 
1106    The gold standard is to get the address into the form: address +
1107    OFFSET where address is something that rtx_varies_p considers a
1108    constant.  When we can get the address in this form, we can do
1109    global analysis on it.  Note that for constant bases, address is
1110    not actually returned, only the group_id.  The address can be
1111    obtained from that.
1112 
1113    If that fails, we try cselib to get a value we can at least use
1114    locally.  If that fails we return false.
1115 
1116    The GROUP_ID is set to -1 for cselib bases and the index of the
1117    group for non_varying bases.
1118 
1119    FOR_READ is true if this is a mem read and false if not.  */
1120 
1121 static bool
1122 canon_address (rtx mem,
1123 	       int *group_id,
1124 	       poly_int64 *offset,
1125 	       cselib_val **base)
1126 {
1127   machine_mode address_mode = get_address_mode (mem);
1128   rtx mem_address = XEXP (mem, 0);
1129   rtx expanded_address, address;
1130   int expanded;
1131 
1132   cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
1133 
1134   if (dump_file && (dump_flags & TDF_DETAILS))
1135     {
1136       fprintf (dump_file, "  mem: ");
1137       print_inline_rtx (dump_file, mem_address, 0);
1138       fprintf (dump_file, "\n");
1139     }
1140 
1141   /* First see if just canon_rtx (mem_address) is const or frame,
1142      if not, try cselib_expand_value_rtx and call canon_rtx on that.  */
1143   address = NULL_RTX;
1144   for (expanded = 0; expanded < 2; expanded++)
1145     {
1146       if (expanded)
1147 	{
1148 	  /* Use cselib to replace all of the reg references with the full
1149 	     expression.  This will take care of the case where we have
1150 
1151 	     r_x = base + offset;
1152 	     val = *r_x;
1153 
1154 	     by making it into
1155 
1156 	     val = *(base + offset);  */
1157 
1158 	  expanded_address = cselib_expand_value_rtx (mem_address,
1159 						      scratch, 5);
1160 
1161 	  /* If this fails, just go with the address from first
1162 	     iteration.  */
1163 	  if (!expanded_address)
1164 	    break;
1165 	}
1166       else
1167 	expanded_address = mem_address;
1168 
1169       /* Split the address into canonical BASE + OFFSET terms.  */
1170       address = canon_rtx (expanded_address);
1171 
1172       *offset = 0;
1173 
1174       if (dump_file && (dump_flags & TDF_DETAILS))
1175 	{
1176 	  if (expanded)
1177 	    {
1178 	      fprintf (dump_file, "\n   after cselib_expand address: ");
1179 	      print_inline_rtx (dump_file, expanded_address, 0);
1180 	      fprintf (dump_file, "\n");
1181 	    }
1182 
1183 	  fprintf (dump_file, "\n   after canon_rtx address: ");
1184 	  print_inline_rtx (dump_file, address, 0);
1185 	  fprintf (dump_file, "\n");
1186 	}
1187 
1188       if (GET_CODE (address) == CONST)
1189 	address = XEXP (address, 0);
1190 
1191       address = strip_offset_and_add (address, offset);
1192 
1193       if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1194 	  && const_or_frame_p (address))
1195 	{
1196 	  group_info *group = get_group_info (address);
1197 
1198 	  if (dump_file && (dump_flags & TDF_DETAILS))
1199 	    {
1200 	      fprintf (dump_file, "  gid=%d offset=", group->id);
1201 	      print_dec (*offset, dump_file);
1202 	      fprintf (dump_file, "\n");
1203 	    }
1204 	  *base = NULL;
1205 	  *group_id = group->id;
1206 	  return true;
1207 	}
1208     }
1209 
1210   *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
1211   *group_id = -1;
1212 
1213   if (*base == NULL)
1214     {
1215       if (dump_file && (dump_flags & TDF_DETAILS))
1216 	fprintf (dump_file, " no cselib val - should be a wild read.\n");
1217       return false;
1218     }
1219   if (dump_file && (dump_flags & TDF_DETAILS))
1220     {
1221       fprintf (dump_file, "  varying cselib base=%u:%u offset = ",
1222 	       (*base)->uid, (*base)->hash);
1223       print_dec (*offset, dump_file);
1224       fprintf (dump_file, "\n");
1225     }
1226   return true;
1227 }
1228 
1229 
1230 /* Clear the rhs field from the active_local_stores array.  */
1231 
1232 static void
1233 clear_rhs_from_active_local_stores (void)
1234 {
1235   insn_info_t ptr = active_local_stores;
1236 
1237   while (ptr)
1238     {
1239       store_info *store_info = ptr->store_rec;
1240       /* Skip the clobbers.  */
1241       while (!store_info->is_set)
1242 	store_info = store_info->next;
1243 
1244       store_info->rhs = NULL;
1245       store_info->const_rhs = NULL;
1246 
1247       ptr = ptr->next_local_store;
1248     }
1249 }
1250 
1251 
1252 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded.  */
1253 
1254 static inline void
1255 set_position_unneeded (store_info *s_info, int pos)
1256 {
1257   if (__builtin_expect (s_info->is_large, false))
1258     {
1259       if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1260 	s_info->positions_needed.large.count++;
1261     }
1262   else
1263     s_info->positions_needed.small_bitmask
1264       &= ~(HOST_WIDE_INT_1U << pos);
1265 }
1266 
1267 /* Mark the whole store S_INFO as unneeded.  */
1268 
1269 static inline void
1270 set_all_positions_unneeded (store_info *s_info)
1271 {
1272   if (__builtin_expect (s_info->is_large, false))
1273     {
1274       HOST_WIDE_INT width;
1275       if (s_info->width.is_constant (&width))
1276 	{
1277 	  bitmap_set_range (s_info->positions_needed.large.bmap, 0, width);
1278 	  s_info->positions_needed.large.count = width;
1279 	}
1280       else
1281 	{
1282 	  gcc_checking_assert (!s_info->positions_needed.large.bmap);
1283 	  s_info->positions_needed.large.count = 1;
1284 	}
1285     }
1286   else
1287     s_info->positions_needed.small_bitmask = HOST_WIDE_INT_0U;
1288 }
1289 
1290 /* Return TRUE if any bytes from S_INFO store are needed.  */
1291 
1292 static inline bool
1293 any_positions_needed_p (store_info *s_info)
1294 {
1295   if (__builtin_expect (s_info->is_large, false))
1296     {
1297       HOST_WIDE_INT width;
1298       if (s_info->width.is_constant (&width))
1299 	{
1300 	  gcc_checking_assert (s_info->positions_needed.large.bmap);
1301 	  return s_info->positions_needed.large.count < width;
1302 	}
1303       else
1304 	{
1305 	  gcc_checking_assert (!s_info->positions_needed.large.bmap);
1306 	  return s_info->positions_needed.large.count == 0;
1307 	}
1308     }
1309   else
1310     return (s_info->positions_needed.small_bitmask != HOST_WIDE_INT_0U);
1311 }
1312 
1313 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1314    store are known to be needed.  */
1315 
1316 static inline bool
1317 all_positions_needed_p (store_info *s_info, poly_int64 start,
1318 			poly_int64 width)
1319 {
1320   gcc_assert (s_info->rhs);
1321   if (!s_info->width.is_constant ())
1322     {
1323       gcc_assert (s_info->is_large
1324 		  && !s_info->positions_needed.large.bmap);
1325       return s_info->positions_needed.large.count == 0;
1326     }
1327 
1328   /* Otherwise, if START and WIDTH are non-constant, we're asking about
1329      a non-constant region of a constant-sized store.  We can't say for
1330      sure that all positions are needed.  */
1331   HOST_WIDE_INT const_start, const_width;
1332   if (!start.is_constant (&const_start)
1333       || !width.is_constant (&const_width))
1334     return false;
1335 
1336   if (__builtin_expect (s_info->is_large, false))
1337     {
1338       for (HOST_WIDE_INT i = const_start; i < const_start + const_width; ++i)
1339 	if (bitmap_bit_p (s_info->positions_needed.large.bmap, i))
1340 	  return false;
1341       return true;
1342     }
1343   else
1344     {
1345       unsigned HOST_WIDE_INT mask
1346 	= lowpart_bitmask (const_width) << const_start;
1347       return (s_info->positions_needed.small_bitmask & mask) == mask;
1348     }
1349 }
1350 
1351 
1352 static rtx get_stored_val (store_info *, machine_mode, poly_int64,
1353 			   poly_int64, basic_block, bool);
1354 
1355 
1356 /* BODY is an instruction pattern that belongs to INSN.  Return 1 if
1357    there is a candidate store, after adding it to the appropriate
1358    local store group if so.  */
1359 
1360 static int
1361 record_store (rtx body, bb_info_t bb_info)
1362 {
1363   rtx mem, rhs, const_rhs, mem_addr;
1364   poly_int64 offset = 0;
1365   poly_int64 width = 0;
1366   insn_info_t insn_info = bb_info->last_insn;
1367   store_info *store_info = NULL;
1368   int group_id;
1369   cselib_val *base = NULL;
1370   insn_info_t ptr, last, redundant_reason;
1371   bool store_is_unused;
1372 
1373   if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1374     return 0;
1375 
1376   mem = SET_DEST (body);
1377 
1378   /* If this is not used, then this cannot be used to keep the insn
1379      from being deleted.  On the other hand, it does provide something
1380      that can be used to prove that another store is dead.  */
1381   store_is_unused
1382     = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1383 
1384   /* Check whether that value is a suitable memory location.  */
1385   if (!MEM_P (mem))
1386     {
1387       /* If the set or clobber is unused, then it does not effect our
1388 	 ability to get rid of the entire insn.  */
1389       if (!store_is_unused)
1390 	insn_info->cannot_delete = true;
1391       return 0;
1392     }
1393 
1394   /* At this point we know mem is a mem. */
1395   if (GET_MODE (mem) == BLKmode)
1396     {
1397       HOST_WIDE_INT const_size;
1398       if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1399 	{
1400 	  if (dump_file && (dump_flags & TDF_DETAILS))
1401 	    fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1402 	  add_wild_read (bb_info);
1403 	  insn_info->cannot_delete = true;
1404 	  return 0;
1405 	}
1406       /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1407 	 as memset (addr, 0, 36);  */
1408       else if (!MEM_SIZE_KNOWN_P (mem)
1409 	       || maybe_le (MEM_SIZE (mem), 0)
1410 	       /* This is a limit on the bitmap size, which is only relevant
1411 		  for constant-sized MEMs.  */
1412 	       || (MEM_SIZE (mem).is_constant (&const_size)
1413 		   && const_size > MAX_OFFSET)
1414 	       || GET_CODE (body) != SET
1415 	       || !CONST_INT_P (SET_SRC (body)))
1416 	{
1417 	  if (!store_is_unused)
1418 	    {
1419 	      /* If the set or clobber is unused, then it does not effect our
1420 		 ability to get rid of the entire insn.  */
1421 	      insn_info->cannot_delete = true;
1422 	      clear_rhs_from_active_local_stores ();
1423 	    }
1424 	  return 0;
1425 	}
1426     }
1427 
1428   /* We can still process a volatile mem, we just cannot delete it.  */
1429   if (MEM_VOLATILE_P (mem))
1430     insn_info->cannot_delete = true;
1431 
1432   if (!canon_address (mem, &group_id, &offset, &base))
1433     {
1434       clear_rhs_from_active_local_stores ();
1435       return 0;
1436     }
1437 
1438   if (GET_MODE (mem) == BLKmode)
1439     width = MEM_SIZE (mem);
1440   else
1441     width = GET_MODE_SIZE (GET_MODE (mem));
1442 
1443   if (!endpoint_representable_p (offset, width))
1444     {
1445       clear_rhs_from_active_local_stores ();
1446       return 0;
1447     }
1448 
1449   if (known_eq (width, 0))
1450     return 0;
1451 
1452   if (group_id >= 0)
1453     {
1454       /* In the restrictive case where the base is a constant or the
1455 	 frame pointer we can do global analysis.  */
1456 
1457       group_info *group
1458 	= rtx_group_vec[group_id];
1459       tree expr = MEM_EXPR (mem);
1460 
1461       store_info = rtx_store_info_pool.allocate ();
1462       set_usage_bits (group, offset, width, expr);
1463 
1464       if (dump_file && (dump_flags & TDF_DETAILS))
1465 	{
1466 	  fprintf (dump_file, " processing const base store gid=%d",
1467 		   group_id);
1468 	  print_range (dump_file, offset, width);
1469 	  fprintf (dump_file, "\n");
1470 	}
1471     }
1472   else
1473     {
1474       if (may_be_sp_based_p (XEXP (mem, 0)))
1475 	insn_info->stack_pointer_based = true;
1476       insn_info->contains_cselib_groups = true;
1477 
1478       store_info = cse_store_info_pool.allocate ();
1479       group_id = -1;
1480 
1481       if (dump_file && (dump_flags & TDF_DETAILS))
1482 	{
1483 	  fprintf (dump_file, " processing cselib store ");
1484 	  print_range (dump_file, offset, width);
1485 	  fprintf (dump_file, "\n");
1486 	}
1487     }
1488 
1489   const_rhs = rhs = NULL_RTX;
1490   if (GET_CODE (body) == SET
1491       /* No place to keep the value after ra.  */
1492       && !reload_completed
1493       && (REG_P (SET_SRC (body))
1494 	  || GET_CODE (SET_SRC (body)) == SUBREG
1495 	  || CONSTANT_P (SET_SRC (body)))
1496       && !MEM_VOLATILE_P (mem)
1497       /* Sometimes the store and reload is used for truncation and
1498 	 rounding.  */
1499       && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1500     {
1501       rhs = SET_SRC (body);
1502       if (CONSTANT_P (rhs))
1503 	const_rhs = rhs;
1504       else if (body == PATTERN (insn_info->insn))
1505 	{
1506 	  rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1507 	  if (tem && CONSTANT_P (XEXP (tem, 0)))
1508 	    const_rhs = XEXP (tem, 0);
1509 	}
1510       if (const_rhs == NULL_RTX && REG_P (rhs))
1511 	{
1512 	  rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1513 
1514 	  if (tem && CONSTANT_P (tem))
1515 	    const_rhs = tem;
1516 	}
1517     }
1518 
1519   /* Check to see if this stores causes some other stores to be
1520      dead.  */
1521   ptr = active_local_stores;
1522   last = NULL;
1523   redundant_reason = NULL;
1524   mem = canon_rtx (mem);
1525 
1526   if (group_id < 0)
1527     mem_addr = base->val_rtx;
1528   else
1529     {
1530       group_info *group = rtx_group_vec[group_id];
1531       mem_addr = group->canon_base_addr;
1532     }
1533   if (maybe_ne (offset, 0))
1534     mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
1535 
1536   while (ptr)
1537     {
1538       insn_info_t next = ptr->next_local_store;
1539       class store_info *s_info = ptr->store_rec;
1540       bool del = true;
1541 
1542       /* Skip the clobbers. We delete the active insn if this insn
1543 	 shadows the set.  To have been put on the active list, it
1544 	 has exactly on set. */
1545       while (!s_info->is_set)
1546 	s_info = s_info->next;
1547 
1548       if (s_info->group_id == group_id && s_info->cse_base == base)
1549 	{
1550 	  HOST_WIDE_INT i;
1551 	  if (dump_file && (dump_flags & TDF_DETAILS))
1552 	    {
1553 	      fprintf (dump_file, "    trying store in insn=%d gid=%d",
1554 		       INSN_UID (ptr->insn), s_info->group_id);
1555 	      print_range (dump_file, s_info->offset, s_info->width);
1556 	      fprintf (dump_file, "\n");
1557 	    }
1558 
1559 	  /* Even if PTR won't be eliminated as unneeded, if both
1560 	     PTR and this insn store the same constant value, we might
1561 	     eliminate this insn instead.  */
1562 	  if (s_info->const_rhs
1563 	      && const_rhs
1564 	      && known_subrange_p (offset, width,
1565 				   s_info->offset, s_info->width)
1566 	      && all_positions_needed_p (s_info, offset - s_info->offset,
1567 					 width)
1568 	      /* We can only remove the later store if the earlier aliases
1569 		 at least all accesses the later one.  */
1570 	      && ((MEM_ALIAS_SET (mem) == MEM_ALIAS_SET (s_info->mem)
1571 		   || alias_set_subset_of (MEM_ALIAS_SET (mem),
1572 					   MEM_ALIAS_SET (s_info->mem)))
1573 		  && (!MEM_EXPR (s_info->mem)
1574 		      || refs_same_for_tbaa_p (MEM_EXPR (s_info->mem),
1575 					       MEM_EXPR (mem)))))
1576 	    {
1577 	      if (GET_MODE (mem) == BLKmode)
1578 		{
1579 		  if (GET_MODE (s_info->mem) == BLKmode
1580 		      && s_info->const_rhs == const_rhs)
1581 		    redundant_reason = ptr;
1582 		}
1583 	      else if (s_info->const_rhs == const0_rtx
1584 		       && const_rhs == const0_rtx)
1585 		redundant_reason = ptr;
1586 	      else
1587 		{
1588 		  rtx val;
1589 		  start_sequence ();
1590 		  val = get_stored_val (s_info, GET_MODE (mem), offset, width,
1591 					BLOCK_FOR_INSN (insn_info->insn),
1592 					true);
1593 		  if (get_insns () != NULL)
1594 		    val = NULL_RTX;
1595 		  end_sequence ();
1596 		  if (val && rtx_equal_p (val, const_rhs))
1597 		    redundant_reason = ptr;
1598 		}
1599 	    }
1600 
1601 	  HOST_WIDE_INT begin_unneeded, const_s_width, const_width;
1602 	  if (known_subrange_p (s_info->offset, s_info->width, offset, width))
1603 	    /* The new store touches every byte that S_INFO does.  */
1604 	    set_all_positions_unneeded (s_info);
1605 	  else if ((offset - s_info->offset).is_constant (&begin_unneeded)
1606 		   && s_info->width.is_constant (&const_s_width)
1607 		   && width.is_constant (&const_width))
1608 	    {
1609 	      HOST_WIDE_INT end_unneeded = begin_unneeded + const_width;
1610 	      begin_unneeded = MAX (begin_unneeded, 0);
1611 	      end_unneeded = MIN (end_unneeded, const_s_width);
1612 	      for (i = begin_unneeded; i < end_unneeded; ++i)
1613 		set_position_unneeded (s_info, i);
1614 	    }
1615 	  else
1616 	    {
1617 	      /* We don't know which parts of S_INFO are needed and
1618 		 which aren't, so invalidate the RHS.  */
1619 	      s_info->rhs = NULL;
1620 	      s_info->const_rhs = NULL;
1621 	    }
1622 	}
1623       else if (s_info->rhs)
1624 	/* Need to see if it is possible for this store to overwrite
1625 	   the value of store_info.  If it is, set the rhs to NULL to
1626 	   keep it from being used to remove a load.  */
1627 	{
1628 	  if (canon_output_dependence (s_info->mem, true,
1629 				       mem, GET_MODE (mem),
1630 				       mem_addr))
1631 	    {
1632 	      s_info->rhs = NULL;
1633 	      s_info->const_rhs = NULL;
1634 	    }
1635 	}
1636 
1637       /* An insn can be deleted if every position of every one of
1638 	 its s_infos is zero.  */
1639       if (any_positions_needed_p (s_info))
1640 	del = false;
1641 
1642       if (del)
1643 	{
1644 	  insn_info_t insn_to_delete = ptr;
1645 
1646 	  active_local_stores_len--;
1647 	  if (last)
1648 	    last->next_local_store = ptr->next_local_store;
1649 	  else
1650 	    active_local_stores = ptr->next_local_store;
1651 
1652 	  if (!insn_to_delete->cannot_delete)
1653 	    delete_dead_store_insn (insn_to_delete);
1654 	}
1655       else
1656 	last = ptr;
1657 
1658       ptr = next;
1659     }
1660 
1661   /* Finish filling in the store_info.  */
1662   store_info->next = insn_info->store_rec;
1663   insn_info->store_rec = store_info;
1664   store_info->mem = mem;
1665   store_info->mem_addr = mem_addr;
1666   store_info->cse_base = base;
1667   HOST_WIDE_INT const_width;
1668   if (!width.is_constant (&const_width))
1669     {
1670       store_info->is_large = true;
1671       store_info->positions_needed.large.count = 0;
1672       store_info->positions_needed.large.bmap = NULL;
1673     }
1674   else if (const_width > HOST_BITS_PER_WIDE_INT)
1675     {
1676       store_info->is_large = true;
1677       store_info->positions_needed.large.count = 0;
1678       store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
1679     }
1680   else
1681     {
1682       store_info->is_large = false;
1683       store_info->positions_needed.small_bitmask
1684 	= lowpart_bitmask (const_width);
1685     }
1686   store_info->group_id = group_id;
1687   store_info->offset = offset;
1688   store_info->width = width;
1689   store_info->is_set = GET_CODE (body) == SET;
1690   store_info->rhs = rhs;
1691   store_info->const_rhs = const_rhs;
1692   store_info->redundant_reason = redundant_reason;
1693 
1694   /* If this is a clobber, we return 0.  We will only be able to
1695      delete this insn if there is only one store USED store, but we
1696      can use the clobber to delete other stores earlier.  */
1697   return store_info->is_set ? 1 : 0;
1698 }
1699 
1700 
1701 static void
1702 dump_insn_info (const char * start, insn_info_t insn_info)
1703 {
1704   fprintf (dump_file, "%s insn=%d %s\n", start,
1705 	   INSN_UID (insn_info->insn),
1706 	   insn_info->store_rec ? "has store" : "naked");
1707 }
1708 
1709 
1710 /* If the modes are different and the value's source and target do not
1711    line up, we need to extract the value from lower part of the rhs of
1712    the store, shift it, and then put it into a form that can be shoved
1713    into the read_insn.  This function generates a right SHIFT of a
1714    value that is at least ACCESS_SIZE bytes wide of READ_MODE.  The
1715    shift sequence is returned or NULL if we failed to find a
1716    shift.  */
1717 
1718 static rtx
1719 find_shift_sequence (poly_int64 access_size,
1720 		     store_info *store_info,
1721 		     machine_mode read_mode,
1722 		     poly_int64 shift, bool speed, bool require_cst)
1723 {
1724   machine_mode store_mode = GET_MODE (store_info->mem);
1725   scalar_int_mode new_mode;
1726   rtx read_reg = NULL;
1727 
1728   /* Some machines like the x86 have shift insns for each size of
1729      operand.  Other machines like the ppc or the ia-64 may only have
1730      shift insns that shift values within 32 or 64 bit registers.
1731      This loop tries to find the smallest shift insn that will right
1732      justify the value we want to read but is available in one insn on
1733      the machine.  */
1734 
1735   opt_scalar_int_mode new_mode_iter;
1736   FOR_EACH_MODE_IN_CLASS (new_mode_iter, MODE_INT)
1737     {
1738       rtx target, new_reg, new_lhs;
1739       rtx_insn *shift_seq, *insn;
1740       int cost;
1741 
1742       new_mode = new_mode_iter.require ();
1743       if (GET_MODE_BITSIZE (new_mode) > BITS_PER_WORD)
1744 	break;
1745       if (maybe_lt (GET_MODE_SIZE (new_mode), access_size))
1746 	continue;
1747 
1748       /* If a constant was stored into memory, try to simplify it here,
1749 	 otherwise the cost of the shift might preclude this optimization
1750 	 e.g. at -Os, even when no actual shift will be needed.  */
1751       if (store_info->const_rhs)
1752 	{
1753 	  poly_uint64 byte = subreg_lowpart_offset (new_mode, store_mode);
1754 	  rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
1755 				     store_mode, byte);
1756 	  if (ret && CONSTANT_P (ret))
1757 	    {
1758 	      rtx shift_rtx = gen_int_shift_amount (new_mode, shift);
1759 	      ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
1760 						     ret, shift_rtx);
1761 	      if (ret && CONSTANT_P (ret))
1762 		{
1763 		  byte = subreg_lowpart_offset (read_mode, new_mode);
1764 		  ret = simplify_subreg (read_mode, ret, new_mode, byte);
1765 		  if (ret && CONSTANT_P (ret)
1766 		      && (set_src_cost (ret, read_mode, speed)
1767 			  <= COSTS_N_INSNS (1)))
1768 		    return ret;
1769 		}
1770 	    }
1771 	}
1772 
1773       if (require_cst)
1774 	return NULL_RTX;
1775 
1776       /* Try a wider mode if truncating the store mode to NEW_MODE
1777 	 requires a real instruction.  */
1778       if (maybe_lt (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (store_mode))
1779 	  && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
1780 	continue;
1781 
1782       /* Also try a wider mode if the necessary punning is either not
1783 	 desirable or not possible.  */
1784       if (!CONSTANT_P (store_info->rhs)
1785 	  && !targetm.modes_tieable_p (new_mode, store_mode))
1786 	continue;
1787 
1788       new_reg = gen_reg_rtx (new_mode);
1789 
1790       start_sequence ();
1791 
1792       /* In theory we could also check for an ashr.  Ian Taylor knows
1793 	 of one dsp where the cost of these two was not the same.  But
1794 	 this really is a rare case anyway.  */
1795       target = expand_binop (new_mode, lshr_optab, new_reg,
1796 			     gen_int_shift_amount (new_mode, shift),
1797 			     new_reg, 1, OPTAB_DIRECT);
1798 
1799       shift_seq = get_insns ();
1800       end_sequence ();
1801 
1802       if (target != new_reg || shift_seq == NULL)
1803 	continue;
1804 
1805       cost = 0;
1806       for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1807 	if (INSN_P (insn))
1808 	  cost += insn_cost (insn, speed);
1809 
1810       /* The computation up to here is essentially independent
1811 	 of the arguments and could be precomputed.  It may
1812 	 not be worth doing so.  We could precompute if
1813 	 worthwhile or at least cache the results.  The result
1814 	 technically depends on both SHIFT and ACCESS_SIZE,
1815 	 but in practice the answer will depend only on ACCESS_SIZE.  */
1816 
1817       if (cost > COSTS_N_INSNS (1))
1818 	continue;
1819 
1820       new_lhs = extract_low_bits (new_mode, store_mode,
1821 				  copy_rtx (store_info->rhs));
1822       if (new_lhs == NULL_RTX)
1823 	continue;
1824 
1825       /* We found an acceptable shift.  Generate a move to
1826 	 take the value from the store and put it into the
1827 	 shift pseudo, then shift it, then generate another
1828 	 move to put in into the target of the read.  */
1829       emit_move_insn (new_reg, new_lhs);
1830       emit_insn (shift_seq);
1831       read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1832       break;
1833     }
1834 
1835   return read_reg;
1836 }
1837 
1838 
1839 /* Call back for note_stores to find the hard regs set or clobbered by
1840    insn.  Data is a bitmap of the hardregs set so far.  */
1841 
1842 static void
1843 look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1844 {
1845   bitmap regs_set = (bitmap) data;
1846 
1847   if (REG_P (x)
1848       && HARD_REGISTER_P (x))
1849     bitmap_set_range (regs_set, REGNO (x), REG_NREGS (x));
1850 }
1851 
1852 /* Helper function for replace_read and record_store.
1853    Attempt to return a value of mode READ_MODE stored in STORE_INFO,
1854    consisting of READ_WIDTH bytes starting from READ_OFFSET.  Return NULL
1855    if not successful.  If REQUIRE_CST is true, return always constant.  */
1856 
1857 static rtx
1858 get_stored_val (store_info *store_info, machine_mode read_mode,
1859 		poly_int64 read_offset, poly_int64 read_width,
1860 		basic_block bb, bool require_cst)
1861 {
1862   machine_mode store_mode = GET_MODE (store_info->mem);
1863   poly_int64 gap;
1864   rtx read_reg;
1865 
1866   /* To get here the read is within the boundaries of the write so
1867      shift will never be negative.  Start out with the shift being in
1868      bytes.  */
1869   if (store_mode == BLKmode)
1870     gap = 0;
1871   else if (BYTES_BIG_ENDIAN)
1872     gap = ((store_info->offset + store_info->width)
1873 	   - (read_offset + read_width));
1874   else
1875     gap = read_offset - store_info->offset;
1876 
1877   if (gap.is_constant () && maybe_ne (gap, 0))
1878     {
1879       poly_int64 shift = gap * BITS_PER_UNIT;
1880       poly_int64 access_size = GET_MODE_SIZE (read_mode) + gap;
1881       read_reg = find_shift_sequence (access_size, store_info, read_mode,
1882 				      shift, optimize_bb_for_speed_p (bb),
1883 				      require_cst);
1884     }
1885   else if (store_mode == BLKmode)
1886     {
1887       /* The store is a memset (addr, const_val, const_size).  */
1888       gcc_assert (CONST_INT_P (store_info->rhs));
1889       scalar_int_mode int_store_mode;
1890       if (!int_mode_for_mode (read_mode).exists (&int_store_mode))
1891 	read_reg = NULL_RTX;
1892       else if (store_info->rhs == const0_rtx)
1893 	read_reg = extract_low_bits (read_mode, int_store_mode, const0_rtx);
1894       else if (GET_MODE_BITSIZE (int_store_mode) > HOST_BITS_PER_WIDE_INT
1895 	       || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1896 	read_reg = NULL_RTX;
1897       else
1898 	{
1899 	  unsigned HOST_WIDE_INT c
1900 	    = INTVAL (store_info->rhs)
1901 	      & ((HOST_WIDE_INT_1 << BITS_PER_UNIT) - 1);
1902 	  int shift = BITS_PER_UNIT;
1903 	  while (shift < HOST_BITS_PER_WIDE_INT)
1904 	    {
1905 	      c |= (c << shift);
1906 	      shift <<= 1;
1907 	    }
1908 	  read_reg = gen_int_mode (c, int_store_mode);
1909 	  read_reg = extract_low_bits (read_mode, int_store_mode, read_reg);
1910 	}
1911     }
1912   else if (store_info->const_rhs
1913 	   && (require_cst
1914 	       || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1915     read_reg = extract_low_bits (read_mode, store_mode,
1916 				 copy_rtx (store_info->const_rhs));
1917   else
1918     read_reg = extract_low_bits (read_mode, store_mode,
1919 				 copy_rtx (store_info->rhs));
1920   if (require_cst && read_reg && !CONSTANT_P (read_reg))
1921     read_reg = NULL_RTX;
1922   return read_reg;
1923 }
1924 
1925 /* Take a sequence of:
1926      A <- r1
1927      ...
1928      ... <- A
1929 
1930    and change it into
1931    r2 <- r1
1932    A <- r1
1933    ...
1934    ... <- r2
1935 
1936    or
1937 
1938    r3 <- extract (r1)
1939    r3 <- r3 >> shift
1940    r2 <- extract (r3)
1941    ... <- r2
1942 
1943    or
1944 
1945    r2 <- extract (r1)
1946    ... <- r2
1947 
1948    Depending on the alignment and the mode of the store and
1949    subsequent load.
1950 
1951 
1952    The STORE_INFO and STORE_INSN are for the store and READ_INFO
1953    and READ_INSN are for the read.  Return true if the replacement
1954    went ok.  */
1955 
1956 static bool
1957 replace_read (store_info *store_info, insn_info_t store_insn,
1958 	      read_info_t read_info, insn_info_t read_insn, rtx *loc)
1959 {
1960   machine_mode store_mode = GET_MODE (store_info->mem);
1961   machine_mode read_mode = GET_MODE (read_info->mem);
1962   rtx_insn *insns, *this_insn;
1963   rtx read_reg;
1964   basic_block bb;
1965 
1966   if (!dbg_cnt (dse))
1967     return false;
1968 
1969   /* Create a sequence of instructions to set up the read register.
1970      This sequence goes immediately before the store and its result
1971      is read by the load.
1972 
1973      We need to keep this in perspective.  We are replacing a read
1974      with a sequence of insns, but the read will almost certainly be
1975      in cache, so it is not going to be an expensive one.  Thus, we
1976      are not willing to do a multi insn shift or worse a subroutine
1977      call to get rid of the read.  */
1978   if (dump_file && (dump_flags & TDF_DETAILS))
1979     fprintf (dump_file, "trying to replace %smode load in insn %d"
1980 	     " from %smode store in insn %d\n",
1981 	     GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
1982 	     GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
1983   start_sequence ();
1984   bb = BLOCK_FOR_INSN (read_insn->insn);
1985   read_reg = get_stored_val (store_info,
1986 			     read_mode, read_info->offset, read_info->width,
1987 			     bb, false);
1988   if (read_reg == NULL_RTX)
1989     {
1990       end_sequence ();
1991       if (dump_file && (dump_flags & TDF_DETAILS))
1992 	fprintf (dump_file, " -- could not extract bits of stored value\n");
1993       return false;
1994     }
1995   /* Force the value into a new register so that it won't be clobbered
1996      between the store and the load.  */
1997   read_reg = copy_to_mode_reg (read_mode, read_reg);
1998   insns = get_insns ();
1999   end_sequence ();
2000 
2001   if (insns != NULL_RTX)
2002     {
2003       /* Now we have to scan the set of new instructions to see if the
2004 	 sequence contains and sets of hardregs that happened to be
2005 	 live at this point.  For instance, this can happen if one of
2006 	 the insns sets the CC and the CC happened to be live at that
2007 	 point.  This does occasionally happen, see PR 37922.  */
2008       bitmap regs_set = BITMAP_ALLOC (&reg_obstack);
2009 
2010       for (this_insn = insns;
2011 	   this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
2012 	{
2013 	  if (insn_invalid_p (this_insn, false))
2014 	    {
2015 	      if (dump_file && (dump_flags & TDF_DETAILS))
2016 		{
2017 		  fprintf (dump_file, " -- replacing the loaded MEM with ");
2018 		  print_simple_rtl (dump_file, read_reg);
2019 		  fprintf (dump_file, " led to an invalid instruction\n");
2020 		}
2021 	      BITMAP_FREE (regs_set);
2022 	      return false;
2023 	    }
2024 	  note_stores (this_insn, look_for_hardregs, regs_set);
2025 	}
2026 
2027       if (store_insn->fixed_regs_live)
2028 	bitmap_and_into (regs_set, store_insn->fixed_regs_live);
2029       if (!bitmap_empty_p (regs_set))
2030 	{
2031 	  if (dump_file && (dump_flags & TDF_DETAILS))
2032 	    {
2033 	      fprintf (dump_file, "abandoning replacement because sequence "
2034 				  "clobbers live hardregs:");
2035 	      df_print_regset (dump_file, regs_set);
2036 	    }
2037 
2038 	  BITMAP_FREE (regs_set);
2039 	  return false;
2040 	}
2041       BITMAP_FREE (regs_set);
2042     }
2043 
2044   subrtx_iterator::array_type array;
2045   FOR_EACH_SUBRTX (iter, array, *loc, NONCONST)
2046     {
2047       const_rtx x = *iter;
2048       if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
2049 	{
2050 	  if (dump_file && (dump_flags & TDF_DETAILS))
2051 	    fprintf (dump_file, " -- replacing the MEM failed due to address "
2052 				"side-effects\n");
2053 	  return false;
2054 	}
2055     }
2056 
2057   if (validate_change (read_insn->insn, loc, read_reg, 0))
2058     {
2059       deferred_change *change = deferred_change_pool.allocate ();
2060 
2061       /* Insert this right before the store insn where it will be safe
2062 	 from later insns that might change it before the read.  */
2063       emit_insn_before (insns, store_insn->insn);
2064 
2065       /* And now for the kludge part: cselib croaks if you just
2066 	 return at this point.  There are two reasons for this:
2067 
2068 	 1) Cselib has an idea of how many pseudos there are and
2069 	 that does not include the new ones we just added.
2070 
2071 	 2) Cselib does not know about the move insn we added
2072 	 above the store_info, and there is no way to tell it
2073 	 about it, because it has "moved on".
2074 
2075 	 Problem (1) is fixable with a certain amount of engineering.
2076 	 Problem (2) is requires starting the bb from scratch.  This
2077 	 could be expensive.
2078 
2079 	 So we are just going to have to lie.  The move/extraction
2080 	 insns are not really an issue, cselib did not see them.  But
2081 	 the use of the new pseudo read_insn is a real problem because
2082 	 cselib has not scanned this insn.  The way that we solve this
2083 	 problem is that we are just going to put the mem back for now
2084 	 and when we are finished with the block, we undo this.  We
2085 	 keep a table of mems to get rid of.  At the end of the basic
2086 	 block we can put them back.  */
2087 
2088       *loc = read_info->mem;
2089       change->next = deferred_change_list;
2090       deferred_change_list = change;
2091       change->loc = loc;
2092       change->reg = read_reg;
2093 
2094       /* Get rid of the read_info, from the point of view of the
2095 	 rest of dse, play like this read never happened.  */
2096       read_insn->read_rec = read_info->next;
2097       read_info_type_pool.remove (read_info);
2098       if (dump_file && (dump_flags & TDF_DETAILS))
2099 	{
2100 	  fprintf (dump_file, " -- replaced the loaded MEM with ");
2101 	  print_simple_rtl (dump_file, read_reg);
2102 	  fprintf (dump_file, "\n");
2103 	}
2104       return true;
2105     }
2106   else
2107     {
2108       if (dump_file && (dump_flags & TDF_DETAILS))
2109 	{
2110 	  fprintf (dump_file, " -- replacing the loaded MEM with ");
2111 	  print_simple_rtl (dump_file, read_reg);
2112 	  fprintf (dump_file, " led to an invalid instruction\n");
2113 	}
2114       return false;
2115     }
2116 }
2117 
2118 /* Check the address of MEM *LOC and kill any appropriate stores that may
2119    be active.  */
2120 
2121 static void
2122 check_mem_read_rtx (rtx *loc, bb_info_t bb_info)
2123 {
2124   rtx mem = *loc, mem_addr;
2125   insn_info_t insn_info;
2126   poly_int64 offset = 0;
2127   poly_int64 width = 0;
2128   cselib_val *base = NULL;
2129   int group_id;
2130   read_info_t read_info;
2131 
2132   insn_info = bb_info->last_insn;
2133 
2134   if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2135       || MEM_VOLATILE_P (mem))
2136     {
2137       if (crtl->stack_protect_guard
2138 	  && (MEM_EXPR (mem) == crtl->stack_protect_guard
2139 	      || (crtl->stack_protect_guard_decl
2140 		  && MEM_EXPR (mem) == crtl->stack_protect_guard_decl))
2141 	  && MEM_VOLATILE_P (mem))
2142 	{
2143 	  /* This is either the stack protector canary on the stack,
2144 	     which ought to be written by a MEM_VOLATILE_P store and
2145 	     thus shouldn't be deleted and is read at the very end of
2146 	     function, but shouldn't conflict with any other store.
2147 	     Or it is __stack_chk_guard variable or TLS or whatever else
2148 	     MEM holding the canary value, which really shouldn't be
2149 	     ever modified in -fstack-protector* protected functions,
2150 	     otherwise the prologue store wouldn't match the epilogue
2151 	     check.  */
2152 	  if (dump_file && (dump_flags & TDF_DETAILS))
2153 	    fprintf (dump_file, " stack protector canary read ignored.\n");
2154 	  insn_info->cannot_delete = true;
2155 	  return;
2156 	}
2157 
2158       if (dump_file && (dump_flags & TDF_DETAILS))
2159 	fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2160       add_wild_read (bb_info);
2161       insn_info->cannot_delete = true;
2162       return;
2163     }
2164 
2165   /* If it is reading readonly mem, then there can be no conflict with
2166      another write. */
2167   if (MEM_READONLY_P (mem))
2168     return;
2169 
2170   if (!canon_address (mem, &group_id, &offset, &base))
2171     {
2172       if (dump_file && (dump_flags & TDF_DETAILS))
2173 	fprintf (dump_file, " adding wild read, canon_address failure.\n");
2174       add_wild_read (bb_info);
2175       return;
2176     }
2177 
2178   if (GET_MODE (mem) == BLKmode)
2179     width = -1;
2180   else
2181     width = GET_MODE_SIZE (GET_MODE (mem));
2182 
2183   if (!endpoint_representable_p (offset, known_eq (width, -1) ? 1 : width))
2184     {
2185       if (dump_file && (dump_flags & TDF_DETAILS))
2186 	fprintf (dump_file, " adding wild read, due to overflow.\n");
2187       add_wild_read (bb_info);
2188       return;
2189     }
2190 
2191   read_info = read_info_type_pool.allocate ();
2192   read_info->group_id = group_id;
2193   read_info->mem = mem;
2194   read_info->offset = offset;
2195   read_info->width = width;
2196   read_info->next = insn_info->read_rec;
2197   insn_info->read_rec = read_info;
2198   if (group_id < 0)
2199     mem_addr = base->val_rtx;
2200   else
2201     {
2202       group_info *group = rtx_group_vec[group_id];
2203       mem_addr = group->canon_base_addr;
2204     }
2205   if (maybe_ne (offset, 0))
2206     mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
2207   /* Avoid passing VALUE RTXen as mem_addr to canon_true_dependence
2208      which will over and over re-create proper RTL and re-apply the
2209      offset above.  See PR80960 where we almost allocate 1.6GB of PLUS
2210      RTXen that way.  */
2211   mem_addr = get_addr (mem_addr);
2212 
2213   if (group_id >= 0)
2214     {
2215       /* This is the restricted case where the base is a constant or
2216 	 the frame pointer and offset is a constant.  */
2217       insn_info_t i_ptr = active_local_stores;
2218       insn_info_t last = NULL;
2219 
2220       if (dump_file && (dump_flags & TDF_DETAILS))
2221 	{
2222 	  if (!known_size_p (width))
2223 	    fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2224 		     group_id);
2225 	  else
2226 	    {
2227 	      fprintf (dump_file, " processing const load gid=%d", group_id);
2228 	      print_range (dump_file, offset, width);
2229 	      fprintf (dump_file, "\n");
2230 	    }
2231 	}
2232 
2233       while (i_ptr)
2234 	{
2235 	  bool remove = false;
2236 	  store_info *store_info = i_ptr->store_rec;
2237 
2238 	  /* Skip the clobbers.  */
2239 	  while (!store_info->is_set)
2240 	    store_info = store_info->next;
2241 
2242 	  /* There are three cases here.  */
2243 	  if (store_info->group_id < 0)
2244 	    /* We have a cselib store followed by a read from a
2245 	       const base. */
2246 	    remove
2247 	      = canon_true_dependence (store_info->mem,
2248 				       GET_MODE (store_info->mem),
2249 				       store_info->mem_addr,
2250 				       mem, mem_addr);
2251 
2252 	  else if (group_id == store_info->group_id)
2253 	    {
2254 	      /* This is a block mode load.  We may get lucky and
2255 		 canon_true_dependence may save the day.  */
2256 	      if (!known_size_p (width))
2257 		remove
2258 		  = canon_true_dependence (store_info->mem,
2259 					   GET_MODE (store_info->mem),
2260 					   store_info->mem_addr,
2261 					   mem, mem_addr);
2262 
2263 	      /* If this read is just reading back something that we just
2264 		 stored, rewrite the read.  */
2265 	      else
2266 		{
2267 		  if (store_info->rhs
2268 		      && known_subrange_p (offset, width, store_info->offset,
2269 					   store_info->width)
2270 		      && all_positions_needed_p (store_info,
2271 						 offset - store_info->offset,
2272 						 width)
2273 		      && replace_read (store_info, i_ptr, read_info,
2274 				       insn_info, loc))
2275 		    return;
2276 
2277 		  /* The bases are the same, just see if the offsets
2278 		     could overlap.  */
2279 		  if (ranges_maybe_overlap_p (offset, width,
2280 					      store_info->offset,
2281 					      store_info->width))
2282 		    remove = true;
2283 		}
2284 	    }
2285 
2286 	  /* else
2287 	     The else case that is missing here is that the
2288 	     bases are constant but different.  There is nothing
2289 	     to do here because there is no overlap.  */
2290 
2291 	  if (remove)
2292 	    {
2293 	      if (dump_file && (dump_flags & TDF_DETAILS))
2294 		dump_insn_info ("removing from active", i_ptr);
2295 
2296 	      active_local_stores_len--;
2297 	      if (last)
2298 		last->next_local_store = i_ptr->next_local_store;
2299 	      else
2300 		active_local_stores = i_ptr->next_local_store;
2301 	    }
2302 	  else
2303 	    last = i_ptr;
2304 	  i_ptr = i_ptr->next_local_store;
2305 	}
2306     }
2307   else
2308     {
2309       insn_info_t i_ptr = active_local_stores;
2310       insn_info_t last = NULL;
2311       if (dump_file && (dump_flags & TDF_DETAILS))
2312 	{
2313 	  fprintf (dump_file, " processing cselib load mem:");
2314 	  print_inline_rtx (dump_file, mem, 0);
2315 	  fprintf (dump_file, "\n");
2316 	}
2317 
2318       while (i_ptr)
2319 	{
2320 	  bool remove = false;
2321 	  store_info *store_info = i_ptr->store_rec;
2322 
2323 	  if (dump_file && (dump_flags & TDF_DETAILS))
2324 	    fprintf (dump_file, " processing cselib load against insn %d\n",
2325 		     INSN_UID (i_ptr->insn));
2326 
2327 	  /* Skip the clobbers.  */
2328 	  while (!store_info->is_set)
2329 	    store_info = store_info->next;
2330 
2331 	  /* If this read is just reading back something that we just
2332 	     stored, rewrite the read.  */
2333 	  if (store_info->rhs
2334 	      && store_info->group_id == -1
2335 	      && store_info->cse_base == base
2336 	      && known_subrange_p (offset, width, store_info->offset,
2337 				   store_info->width)
2338 	      && all_positions_needed_p (store_info,
2339 					 offset - store_info->offset, width)
2340 	      && replace_read (store_info, i_ptr,  read_info, insn_info, loc))
2341 	    return;
2342 
2343 	  remove = canon_true_dependence (store_info->mem,
2344 					  GET_MODE (store_info->mem),
2345 					  store_info->mem_addr,
2346 					  mem, mem_addr);
2347 
2348 	  if (remove)
2349 	    {
2350 	      if (dump_file && (dump_flags & TDF_DETAILS))
2351 		dump_insn_info ("removing from active", i_ptr);
2352 
2353 	      active_local_stores_len--;
2354 	      if (last)
2355 		last->next_local_store = i_ptr->next_local_store;
2356 	      else
2357 		active_local_stores = i_ptr->next_local_store;
2358 	    }
2359 	  else
2360 	    last = i_ptr;
2361 	  i_ptr = i_ptr->next_local_store;
2362 	}
2363     }
2364 }
2365 
2366 /* A note_uses callback in which DATA points the INSN_INFO for
2367    as check_mem_read_rtx.  Nullify the pointer if i_m_r_m_r returns
2368    true for any part of *LOC.  */
2369 
2370 static void
2371 check_mem_read_use (rtx *loc, void *data)
2372 {
2373   subrtx_ptr_iterator::array_type array;
2374   FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
2375     {
2376       rtx *loc = *iter;
2377       if (MEM_P (*loc))
2378 	check_mem_read_rtx (loc, (bb_info_t) data);
2379     }
2380 }
2381 
2382 
2383 /* Get arguments passed to CALL_INSN.  Return TRUE if successful.
2384    So far it only handles arguments passed in registers.  */
2385 
2386 static bool
2387 get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2388 {
2389   CUMULATIVE_ARGS args_so_far_v;
2390   cumulative_args_t args_so_far;
2391   tree arg;
2392   int idx;
2393 
2394   INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2395   args_so_far = pack_cumulative_args (&args_so_far_v);
2396 
2397   arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2398   for (idx = 0;
2399        arg != void_list_node && idx < nargs;
2400        arg = TREE_CHAIN (arg), idx++)
2401     {
2402       scalar_int_mode mode;
2403       rtx reg, link, tmp;
2404 
2405       if (!is_int_mode (TYPE_MODE (TREE_VALUE (arg)), &mode))
2406 	return false;
2407 
2408       function_arg_info arg (mode, /*named=*/true);
2409       reg = targetm.calls.function_arg (args_so_far, arg);
2410       if (!reg || !REG_P (reg) || GET_MODE (reg) != mode)
2411 	return false;
2412 
2413       for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2414 	   link;
2415 	   link = XEXP (link, 1))
2416 	if (GET_CODE (XEXP (link, 0)) == USE)
2417 	  {
2418 	    scalar_int_mode arg_mode;
2419 	    args[idx] = XEXP (XEXP (link, 0), 0);
2420 	    if (REG_P (args[idx])
2421 		&& REGNO (args[idx]) == REGNO (reg)
2422 		&& (GET_MODE (args[idx]) == mode
2423 		    || (is_int_mode (GET_MODE (args[idx]), &arg_mode)
2424 			&& (GET_MODE_SIZE (arg_mode) <= UNITS_PER_WORD)
2425 			&& (GET_MODE_SIZE (arg_mode) > GET_MODE_SIZE (mode)))))
2426 	      break;
2427 	  }
2428       if (!link)
2429 	return false;
2430 
2431       tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2432       if (GET_MODE (args[idx]) != mode)
2433 	{
2434 	  if (!tmp || !CONST_INT_P (tmp))
2435 	    return false;
2436 	  tmp = gen_int_mode (INTVAL (tmp), mode);
2437 	}
2438       if (tmp)
2439 	args[idx] = tmp;
2440 
2441       targetm.calls.function_arg_advance (args_so_far, arg);
2442     }
2443   if (arg != void_list_node || idx != nargs)
2444     return false;
2445   return true;
2446 }
2447 
2448 /* Return a bitmap of the fixed registers contained in IN.  */
2449 
2450 static bitmap
2451 copy_fixed_regs (const_bitmap in)
2452 {
2453   bitmap ret;
2454 
2455   ret = ALLOC_REG_SET (NULL);
2456   bitmap_and (ret, in, bitmap_view<HARD_REG_SET> (fixed_reg_set));
2457   return ret;
2458 }
2459 
2460 /* Apply record_store to all candidate stores in INSN.  Mark INSN
2461    if some part of it is not a candidate store and assigns to a
2462    non-register target.  */
2463 
2464 static void
2465 scan_insn (bb_info_t bb_info, rtx_insn *insn, int max_active_local_stores)
2466 {
2467   rtx body;
2468   insn_info_type *insn_info = insn_info_type_pool.allocate ();
2469   int mems_found = 0;
2470   memset (insn_info, 0, sizeof (struct insn_info_type));
2471 
2472   if (dump_file && (dump_flags & TDF_DETAILS))
2473     fprintf (dump_file, "\n**scanning insn=%d\n",
2474 	     INSN_UID (insn));
2475 
2476   insn_info->prev_insn = bb_info->last_insn;
2477   insn_info->insn = insn;
2478   bb_info->last_insn = insn_info;
2479 
2480   if (DEBUG_INSN_P (insn))
2481     {
2482       insn_info->cannot_delete = true;
2483       return;
2484     }
2485 
2486   /* Look at all of the uses in the insn.  */
2487   note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2488 
2489   if (CALL_P (insn))
2490     {
2491       bool const_call;
2492       rtx call, sym;
2493       tree memset_call = NULL_TREE;
2494 
2495       insn_info->cannot_delete = true;
2496 
2497       /* Const functions cannot do anything bad i.e. read memory,
2498 	 however, they can read their parameters which may have
2499 	 been pushed onto the stack.
2500 	 memset and bzero don't read memory either.  */
2501       const_call = RTL_CONST_CALL_P (insn);
2502       if (!const_call
2503 	  && (call = get_call_rtx_from (insn))
2504 	  && (sym = XEXP (XEXP (call, 0), 0))
2505 	  && GET_CODE (sym) == SYMBOL_REF
2506 	  && SYMBOL_REF_DECL (sym)
2507 	  && TREE_CODE (SYMBOL_REF_DECL (sym)) == FUNCTION_DECL
2508 	  && fndecl_built_in_p (SYMBOL_REF_DECL (sym), BUILT_IN_MEMSET))
2509 	memset_call = SYMBOL_REF_DECL (sym);
2510 
2511       if (const_call || memset_call)
2512 	{
2513 	  insn_info_t i_ptr = active_local_stores;
2514 	  insn_info_t last = NULL;
2515 
2516 	  if (dump_file && (dump_flags & TDF_DETAILS))
2517 	    fprintf (dump_file, "%s call %d\n",
2518 		     const_call ? "const" : "memset", INSN_UID (insn));
2519 
2520 	  /* See the head comment of the frame_read field.  */
2521 	  if (reload_completed
2522 	      /* Tail calls are storing their arguments using
2523 		 arg pointer.  If it is a frame pointer on the target,
2524 		 even before reload we need to kill frame pointer based
2525 		 stores.  */
2526 	      || (SIBLING_CALL_P (insn)
2527 		  && HARD_FRAME_POINTER_IS_ARG_POINTER))
2528 	    insn_info->frame_read = true;
2529 
2530 	  /* Loop over the active stores and remove those which are
2531 	     killed by the const function call.  */
2532 	  while (i_ptr)
2533 	    {
2534 	      bool remove_store = false;
2535 
2536 	      /* The stack pointer based stores are always killed.  */
2537 	      if (i_ptr->stack_pointer_based)
2538 	        remove_store = true;
2539 
2540 	      /* If the frame is read, the frame related stores are killed.  */
2541 	      else if (insn_info->frame_read)
2542 		{
2543 		  store_info *store_info = i_ptr->store_rec;
2544 
2545 		  /* Skip the clobbers.  */
2546 		  while (!store_info->is_set)
2547 		    store_info = store_info->next;
2548 
2549 		  if (store_info->group_id >= 0
2550 		      && rtx_group_vec[store_info->group_id]->frame_related)
2551 		    remove_store = true;
2552 		}
2553 
2554 	      if (remove_store)
2555 		{
2556 		  if (dump_file && (dump_flags & TDF_DETAILS))
2557 		    dump_insn_info ("removing from active", i_ptr);
2558 
2559 		  active_local_stores_len--;
2560 		  if (last)
2561 		    last->next_local_store = i_ptr->next_local_store;
2562 		  else
2563 		    active_local_stores = i_ptr->next_local_store;
2564 		}
2565 	      else
2566 		last = i_ptr;
2567 
2568 	      i_ptr = i_ptr->next_local_store;
2569 	    }
2570 
2571 	  if (memset_call)
2572 	    {
2573 	      rtx args[3];
2574 	      if (get_call_args (insn, memset_call, args, 3)
2575 		  && CONST_INT_P (args[1])
2576 		  && CONST_INT_P (args[2])
2577 		  && INTVAL (args[2]) > 0)
2578 		{
2579 		  rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2580 		  set_mem_size (mem, INTVAL (args[2]));
2581 		  body = gen_rtx_SET (mem, args[1]);
2582 		  mems_found += record_store (body, bb_info);
2583 		  if (dump_file && (dump_flags & TDF_DETAILS))
2584 		    fprintf (dump_file, "handling memset as BLKmode store\n");
2585 		  if (mems_found == 1)
2586 		    {
2587 		      if (active_local_stores_len++ >= max_active_local_stores)
2588 			{
2589 			  active_local_stores_len = 1;
2590 			  active_local_stores = NULL;
2591 			}
2592 		      insn_info->fixed_regs_live
2593 			= copy_fixed_regs (bb_info->regs_live);
2594 		      insn_info->next_local_store = active_local_stores;
2595 		      active_local_stores = insn_info;
2596 		    }
2597 		}
2598 	      else
2599 		clear_rhs_from_active_local_stores ();
2600 	    }
2601 	}
2602       else if (SIBLING_CALL_P (insn)
2603 	       && (reload_completed || HARD_FRAME_POINTER_IS_ARG_POINTER))
2604 	/* Arguments for a sibling call that are pushed to memory are passed
2605 	   using the incoming argument pointer of the current function.  After
2606 	   reload that might be (and likely is) frame pointer based.  And, if
2607 	   it is a frame pointer on the target, even before reload we need to
2608 	   kill frame pointer based stores.  */
2609 	add_wild_read (bb_info);
2610       else
2611 	/* Every other call, including pure functions, may read any memory
2612            that is not relative to the frame.  */
2613         add_non_frame_wild_read (bb_info);
2614 
2615       return;
2616     }
2617 
2618   /* Assuming that there are sets in these insns, we cannot delete
2619      them.  */
2620   if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2621       || volatile_refs_p (PATTERN (insn))
2622       || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
2623       || (RTX_FRAME_RELATED_P (insn))
2624       || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2625     insn_info->cannot_delete = true;
2626 
2627   body = PATTERN (insn);
2628   if (GET_CODE (body) == PARALLEL)
2629     {
2630       int i;
2631       for (i = 0; i < XVECLEN (body, 0); i++)
2632 	mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2633     }
2634   else
2635     mems_found += record_store (body, bb_info);
2636 
2637   if (dump_file && (dump_flags & TDF_DETAILS))
2638     fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2639 	     mems_found, insn_info->cannot_delete ? "true" : "false");
2640 
2641   /* If we found some sets of mems, add it into the active_local_stores so
2642      that it can be locally deleted if found dead or used for
2643      replace_read and redundant constant store elimination.  Otherwise mark
2644      it as cannot delete.  This simplifies the processing later.  */
2645   if (mems_found == 1)
2646     {
2647       if (active_local_stores_len++ >= max_active_local_stores)
2648 	{
2649 	  active_local_stores_len = 1;
2650 	  active_local_stores = NULL;
2651 	}
2652       insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
2653       insn_info->next_local_store = active_local_stores;
2654       active_local_stores = insn_info;
2655     }
2656   else
2657     insn_info->cannot_delete = true;
2658 }
2659 
2660 
2661 /* Remove BASE from the set of active_local_stores.  This is a
2662    callback from cselib that is used to get rid of the stores in
2663    active_local_stores.  */
2664 
2665 static void
2666 remove_useless_values (cselib_val *base)
2667 {
2668   insn_info_t insn_info = active_local_stores;
2669   insn_info_t last = NULL;
2670 
2671   while (insn_info)
2672     {
2673       store_info *store_info = insn_info->store_rec;
2674       bool del = false;
2675 
2676       /* If ANY of the store_infos match the cselib group that is
2677 	 being deleted, then the insn cannot be deleted.  */
2678       while (store_info)
2679 	{
2680 	  if ((store_info->group_id == -1)
2681 	      && (store_info->cse_base == base))
2682 	    {
2683 	      del = true;
2684 	      break;
2685 	    }
2686 	  store_info = store_info->next;
2687 	}
2688 
2689       if (del)
2690 	{
2691 	  active_local_stores_len--;
2692 	  if (last)
2693 	    last->next_local_store = insn_info->next_local_store;
2694 	  else
2695 	    active_local_stores = insn_info->next_local_store;
2696 	  free_store_info (insn_info);
2697 	}
2698       else
2699 	last = insn_info;
2700 
2701       insn_info = insn_info->next_local_store;
2702     }
2703 }
2704 
2705 
2706 /* Do all of step 1.  */
2707 
2708 static void
2709 dse_step1 (void)
2710 {
2711   basic_block bb;
2712   bitmap regs_live = BITMAP_ALLOC (&reg_obstack);
2713 
2714   cselib_init (0);
2715   all_blocks = BITMAP_ALLOC (NULL);
2716   bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2717   bitmap_set_bit (all_blocks, EXIT_BLOCK);
2718 
2719   /* For -O1 reduce the maximum number of active local stores for RTL DSE
2720      since this can consume huge amounts of memory (PR89115).  */
2721   int max_active_local_stores = param_max_dse_active_local_stores;
2722   if (optimize < 2)
2723     max_active_local_stores /= 10;
2724 
2725   FOR_ALL_BB_FN (bb, cfun)
2726     {
2727       insn_info_t ptr;
2728       bb_info_t bb_info = dse_bb_info_type_pool.allocate ();
2729 
2730       memset (bb_info, 0, sizeof (dse_bb_info_type));
2731       bitmap_set_bit (all_blocks, bb->index);
2732       bb_info->regs_live = regs_live;
2733 
2734       bitmap_copy (regs_live, DF_LR_IN (bb));
2735       df_simulate_initialize_forwards (bb, regs_live);
2736 
2737       bb_table[bb->index] = bb_info;
2738       cselib_discard_hook = remove_useless_values;
2739 
2740       if (bb->index >= NUM_FIXED_BLOCKS)
2741 	{
2742 	  rtx_insn *insn;
2743 
2744 	  active_local_stores = NULL;
2745 	  active_local_stores_len = 0;
2746 	  cselib_clear_table ();
2747 
2748 	  /* Scan the insns.  */
2749 	  FOR_BB_INSNS (bb, insn)
2750 	    {
2751 	      if (INSN_P (insn))
2752 		scan_insn (bb_info, insn, max_active_local_stores);
2753 	      cselib_process_insn (insn);
2754 	      if (INSN_P (insn))
2755 		df_simulate_one_insn_forwards (bb, insn, regs_live);
2756 	    }
2757 
2758 	  /* This is something of a hack, because the global algorithm
2759 	     is supposed to take care of the case where stores go dead
2760 	     at the end of the function.  However, the global
2761 	     algorithm must take a more conservative view of block
2762 	     mode reads than the local alg does.  So to get the case
2763 	     where you have a store to the frame followed by a non
2764 	     overlapping block more read, we look at the active local
2765 	     stores at the end of the function and delete all of the
2766 	     frame and spill based ones.  */
2767 	  if (stores_off_frame_dead_at_return
2768 	      && (EDGE_COUNT (bb->succs) == 0
2769 		  || (single_succ_p (bb)
2770 		      && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
2771 		      && ! crtl->calls_eh_return)))
2772 	    {
2773 	      insn_info_t i_ptr = active_local_stores;
2774 	      while (i_ptr)
2775 		{
2776 		  store_info *store_info = i_ptr->store_rec;
2777 
2778 		  /* Skip the clobbers.  */
2779 		  while (!store_info->is_set)
2780 		    store_info = store_info->next;
2781 		  if (store_info->group_id >= 0)
2782 		    {
2783 		      group_info *group = rtx_group_vec[store_info->group_id];
2784 		      if (group->frame_related && !i_ptr->cannot_delete)
2785 			delete_dead_store_insn (i_ptr);
2786 		    }
2787 
2788 		  i_ptr = i_ptr->next_local_store;
2789 		}
2790 	    }
2791 
2792 	  /* Get rid of the loads that were discovered in
2793 	     replace_read.  Cselib is finished with this block.  */
2794 	  while (deferred_change_list)
2795 	    {
2796 	      deferred_change *next = deferred_change_list->next;
2797 
2798 	      /* There is no reason to validate this change.  That was
2799 		 done earlier.  */
2800 	      *deferred_change_list->loc = deferred_change_list->reg;
2801 	      deferred_change_pool.remove (deferred_change_list);
2802 	      deferred_change_list = next;
2803 	    }
2804 
2805 	  /* Get rid of all of the cselib based store_infos in this
2806 	     block and mark the containing insns as not being
2807 	     deletable.  */
2808 	  ptr = bb_info->last_insn;
2809 	  while (ptr)
2810 	    {
2811 	      if (ptr->contains_cselib_groups)
2812 		{
2813 		  store_info *s_info = ptr->store_rec;
2814 		  while (s_info && !s_info->is_set)
2815 		    s_info = s_info->next;
2816 		  if (s_info
2817 		      && s_info->redundant_reason
2818 		      && s_info->redundant_reason->insn
2819 		      && !ptr->cannot_delete)
2820 		    {
2821 		      if (dump_file && (dump_flags & TDF_DETAILS))
2822 			fprintf (dump_file, "Locally deleting insn %d "
2823 					    "because insn %d stores the "
2824 					    "same value and couldn't be "
2825 					    "eliminated\n",
2826 				 INSN_UID (ptr->insn),
2827 				 INSN_UID (s_info->redundant_reason->insn));
2828 		      delete_dead_store_insn (ptr);
2829 		    }
2830 		  free_store_info (ptr);
2831 		}
2832 	      else
2833 		{
2834 		  store_info *s_info;
2835 
2836 		  /* Free at least positions_needed bitmaps.  */
2837 		  for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2838 		    if (s_info->is_large)
2839 		      {
2840 			BITMAP_FREE (s_info->positions_needed.large.bmap);
2841 			s_info->is_large = false;
2842 		      }
2843 		}
2844 	      ptr = ptr->prev_insn;
2845 	    }
2846 
2847 	  cse_store_info_pool.release ();
2848 	}
2849       bb_info->regs_live = NULL;
2850     }
2851 
2852   BITMAP_FREE (regs_live);
2853   cselib_finish ();
2854   rtx_group_table->empty ();
2855 }
2856 
2857 
2858 /*----------------------------------------------------------------------------
2859    Second step.
2860 
2861    Assign each byte position in the stores that we are going to
2862    analyze globally to a position in the bitmaps.  Returns true if
2863    there are any bit positions assigned.
2864 ----------------------------------------------------------------------------*/
2865 
2866 static void
2867 dse_step2_init (void)
2868 {
2869   unsigned int i;
2870   group_info *group;
2871 
2872   FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2873     {
2874       /* For all non stack related bases, we only consider a store to
2875 	 be deletable if there are two or more stores for that
2876 	 position.  This is because it takes one store to make the
2877 	 other store redundant.  However, for the stores that are
2878 	 stack related, we consider them if there is only one store
2879 	 for the position.  We do this because the stack related
2880 	 stores can be deleted if their is no read between them and
2881 	 the end of the function.
2882 
2883 	 To make this work in the current framework, we take the stack
2884 	 related bases add all of the bits from store1 into store2.
2885 	 This has the effect of making the eligible even if there is
2886 	 only one store.   */
2887 
2888       if (stores_off_frame_dead_at_return && group->frame_related)
2889 	{
2890 	  bitmap_ior_into (group->store2_n, group->store1_n);
2891 	  bitmap_ior_into (group->store2_p, group->store1_p);
2892 	  if (dump_file && (dump_flags & TDF_DETAILS))
2893 	    fprintf (dump_file, "group %d is frame related ", i);
2894 	}
2895 
2896       group->offset_map_size_n++;
2897       group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
2898 				       group->offset_map_size_n);
2899       group->offset_map_size_p++;
2900       group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
2901 				       group->offset_map_size_p);
2902       group->process_globally = false;
2903       if (dump_file && (dump_flags & TDF_DETAILS))
2904 	{
2905 	  fprintf (dump_file, "group %d(%d+%d): ", i,
2906 		   (int)bitmap_count_bits (group->store2_n),
2907 		   (int)bitmap_count_bits (group->store2_p));
2908 	  bitmap_print (dump_file, group->store2_n, "n ", " ");
2909 	  bitmap_print (dump_file, group->store2_p, "p ", "\n");
2910 	}
2911     }
2912 }
2913 
2914 
2915 /* Init the offset tables.  */
2916 
2917 static bool
2918 dse_step2 (void)
2919 {
2920   unsigned int i;
2921   group_info *group;
2922   /* Position 0 is unused because 0 is used in the maps to mean
2923      unused.  */
2924   current_position = 1;
2925   FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2926     {
2927       bitmap_iterator bi;
2928       unsigned int j;
2929 
2930       memset (group->offset_map_n, 0, sizeof (int) * group->offset_map_size_n);
2931       memset (group->offset_map_p, 0, sizeof (int) * group->offset_map_size_p);
2932       bitmap_clear (group->group_kill);
2933 
2934       EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2935 	{
2936 	  bitmap_set_bit (group->group_kill, current_position);
2937           if (bitmap_bit_p (group->escaped_n, j))
2938 	    bitmap_set_bit (kill_on_calls, current_position);
2939 	  group->offset_map_n[j] = current_position++;
2940 	  group->process_globally = true;
2941 	}
2942       EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2943 	{
2944 	  bitmap_set_bit (group->group_kill, current_position);
2945           if (bitmap_bit_p (group->escaped_p, j))
2946 	    bitmap_set_bit (kill_on_calls, current_position);
2947 	  group->offset_map_p[j] = current_position++;
2948 	  group->process_globally = true;
2949 	}
2950     }
2951   return current_position != 1;
2952 }
2953 
2954 
2955 
2956 /*----------------------------------------------------------------------------
2957   Third step.
2958 
2959   Build the bit vectors for the transfer functions.
2960 ----------------------------------------------------------------------------*/
2961 
2962 
2963 /* Look up the bitmap index for OFFSET in GROUP_INFO.  If it is not
2964    there, return 0.  */
2965 
2966 static int
2967 get_bitmap_index (group_info *group_info, HOST_WIDE_INT offset)
2968 {
2969   if (offset < 0)
2970     {
2971       HOST_WIDE_INT offset_p = -offset;
2972       if (offset_p >= group_info->offset_map_size_n)
2973 	return 0;
2974       return group_info->offset_map_n[offset_p];
2975     }
2976   else
2977     {
2978       if (offset >= group_info->offset_map_size_p)
2979 	return 0;
2980       return group_info->offset_map_p[offset];
2981     }
2982 }
2983 
2984 
2985 /* Process the STORE_INFOs into the bitmaps into GEN and KILL.  KILL
2986    may be NULL. */
2987 
2988 static void
2989 scan_stores (store_info *store_info, bitmap gen, bitmap kill)
2990 {
2991   while (store_info)
2992     {
2993       HOST_WIDE_INT i, offset, width;
2994       group_info *group_info
2995 	= rtx_group_vec[store_info->group_id];
2996       /* We can (conservatively) ignore stores whose bounds aren't known;
2997 	 they simply don't generate new global dse opportunities.  */
2998       if (group_info->process_globally
2999 	  && store_info->offset.is_constant (&offset)
3000 	  && store_info->width.is_constant (&width))
3001 	{
3002 	  HOST_WIDE_INT end = offset + width;
3003 	  for (i = offset; i < end; i++)
3004 	    {
3005 	      int index = get_bitmap_index (group_info, i);
3006 	      if (index != 0)
3007 		{
3008 		  bitmap_set_bit (gen, index);
3009 		  if (kill)
3010 		    bitmap_clear_bit (kill, index);
3011 		}
3012 	    }
3013 	}
3014       store_info = store_info->next;
3015     }
3016 }
3017 
3018 
3019 /* Process the READ_INFOs into the bitmaps into GEN and KILL.  KILL
3020    may be NULL.  */
3021 
3022 static void
3023 scan_reads (insn_info_t insn_info, bitmap gen, bitmap kill)
3024 {
3025   read_info_t read_info = insn_info->read_rec;
3026   int i;
3027   group_info *group;
3028 
3029   /* If this insn reads the frame, kill all the frame related stores.  */
3030   if (insn_info->frame_read)
3031     {
3032       FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3033 	if (group->process_globally && group->frame_related)
3034 	  {
3035 	    if (kill)
3036 	      bitmap_ior_into (kill, group->group_kill);
3037 	    bitmap_and_compl_into (gen, group->group_kill);
3038 	  }
3039     }
3040   if (insn_info->non_frame_wild_read)
3041     {
3042       /* Kill all non-frame related stores.  Kill all stores of variables that
3043          escape.  */
3044       if (kill)
3045         bitmap_ior_into (kill, kill_on_calls);
3046       bitmap_and_compl_into (gen, kill_on_calls);
3047       FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3048 	if (group->process_globally && !group->frame_related)
3049 	  {
3050 	    if (kill)
3051 	      bitmap_ior_into (kill, group->group_kill);
3052 	    bitmap_and_compl_into (gen, group->group_kill);
3053 	  }
3054     }
3055   while (read_info)
3056     {
3057       FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3058 	{
3059 	  if (group->process_globally)
3060 	    {
3061 	      if (i == read_info->group_id)
3062 		{
3063 		  HOST_WIDE_INT offset, width;
3064 		  /* Reads with non-constant size kill all DSE opportunities
3065 		     in the group.  */
3066 		  if (!read_info->offset.is_constant (&offset)
3067 		      || !read_info->width.is_constant (&width)
3068 		      || !known_size_p (width))
3069 		    {
3070 		      /* Handle block mode reads.  */
3071 		      if (kill)
3072 			bitmap_ior_into (kill, group->group_kill);
3073 		      bitmap_and_compl_into (gen, group->group_kill);
3074 		    }
3075 		  else
3076 		    {
3077 		      /* The groups are the same, just process the
3078 			 offsets.  */
3079 		      HOST_WIDE_INT j;
3080 		      HOST_WIDE_INT end = offset + width;
3081 		      for (j = offset; j < end; j++)
3082 			{
3083 			  int index = get_bitmap_index (group, j);
3084 			  if (index != 0)
3085 			    {
3086 			      if (kill)
3087 				bitmap_set_bit (kill, index);
3088 			      bitmap_clear_bit (gen, index);
3089 			    }
3090 			}
3091 		    }
3092 		}
3093 	      else
3094 		{
3095 		  /* The groups are different, if the alias sets
3096 		     conflict, clear the entire group.  We only need
3097 		     to apply this test if the read_info is a cselib
3098 		     read.  Anything with a constant base cannot alias
3099 		     something else with a different constant
3100 		     base.  */
3101 		  if ((read_info->group_id < 0)
3102 		      && canon_true_dependence (group->base_mem,
3103 						GET_MODE (group->base_mem),
3104 						group->canon_base_addr,
3105 						read_info->mem, NULL_RTX))
3106 		    {
3107 		      if (kill)
3108 			bitmap_ior_into (kill, group->group_kill);
3109 		      bitmap_and_compl_into (gen, group->group_kill);
3110 		    }
3111 		}
3112 	    }
3113 	}
3114 
3115       read_info = read_info->next;
3116     }
3117 }
3118 
3119 
3120 /* Return the insn in BB_INFO before the first wild read or if there
3121    are no wild reads in the block, return the last insn.  */
3122 
3123 static insn_info_t
3124 find_insn_before_first_wild_read (bb_info_t bb_info)
3125 {
3126   insn_info_t insn_info = bb_info->last_insn;
3127   insn_info_t last_wild_read = NULL;
3128 
3129   while (insn_info)
3130     {
3131       if (insn_info->wild_read)
3132 	{
3133 	  last_wild_read = insn_info->prev_insn;
3134 	  /* Block starts with wild read.  */
3135 	  if (!last_wild_read)
3136 	    return NULL;
3137 	}
3138 
3139       insn_info = insn_info->prev_insn;
3140     }
3141 
3142   if (last_wild_read)
3143     return last_wild_read;
3144   else
3145     return bb_info->last_insn;
3146 }
3147 
3148 
3149 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3150    the block in order to build the gen and kill sets for the block.
3151    We start at ptr which may be the last insn in the block or may be
3152    the first insn with a wild read.  In the latter case we are able to
3153    skip the rest of the block because it just does not matter:
3154    anything that happens is hidden by the wild read.  */
3155 
3156 static void
3157 dse_step3_scan (basic_block bb)
3158 {
3159   bb_info_t bb_info = bb_table[bb->index];
3160   insn_info_t insn_info;
3161 
3162   insn_info = find_insn_before_first_wild_read (bb_info);
3163 
3164   /* In the spill case or in the no_spill case if there is no wild
3165      read in the block, we will need a kill set.  */
3166   if (insn_info == bb_info->last_insn)
3167     {
3168       if (bb_info->kill)
3169 	bitmap_clear (bb_info->kill);
3170       else
3171 	bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
3172     }
3173   else
3174     if (bb_info->kill)
3175       BITMAP_FREE (bb_info->kill);
3176 
3177   while (insn_info)
3178     {
3179       /* There may have been code deleted by the dce pass run before
3180 	 this phase.  */
3181       if (insn_info->insn && INSN_P (insn_info->insn))
3182 	{
3183 	  scan_stores (insn_info->store_rec, bb_info->gen, bb_info->kill);
3184 	  scan_reads (insn_info, bb_info->gen, bb_info->kill);
3185 	}
3186 
3187       insn_info = insn_info->prev_insn;
3188     }
3189 }
3190 
3191 
3192 /* Set the gen set of the exit block, and also any block with no
3193    successors that does not have a wild read.  */
3194 
3195 static void
3196 dse_step3_exit_block_scan (bb_info_t bb_info)
3197 {
3198   /* The gen set is all 0's for the exit block except for the
3199      frame_pointer_group.  */
3200 
3201   if (stores_off_frame_dead_at_return)
3202     {
3203       unsigned int i;
3204       group_info *group;
3205 
3206       FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3207 	{
3208 	  if (group->process_globally && group->frame_related)
3209 	    bitmap_ior_into (bb_info->gen, group->group_kill);
3210 	}
3211     }
3212 }
3213 
3214 
3215 /* Find all of the blocks that are not backwards reachable from the
3216    exit block or any block with no successors (BB).  These are the
3217    infinite loops or infinite self loops.  These blocks will still
3218    have their bits set in UNREACHABLE_BLOCKS.  */
3219 
3220 static void
3221 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3222 {
3223   edge e;
3224   edge_iterator ei;
3225 
3226   if (bitmap_bit_p (unreachable_blocks, bb->index))
3227     {
3228       bitmap_clear_bit (unreachable_blocks, bb->index);
3229       FOR_EACH_EDGE (e, ei, bb->preds)
3230 	{
3231 	  mark_reachable_blocks (unreachable_blocks, e->src);
3232 	}
3233     }
3234 }
3235 
3236 /* Build the transfer functions for the function.  */
3237 
3238 static void
3239 dse_step3 ()
3240 {
3241   basic_block bb;
3242   sbitmap_iterator sbi;
3243   bitmap all_ones = NULL;
3244   unsigned int i;
3245 
3246   auto_sbitmap unreachable_blocks (last_basic_block_for_fn (cfun));
3247   bitmap_ones (unreachable_blocks);
3248 
3249   FOR_ALL_BB_FN (bb, cfun)
3250     {
3251       bb_info_t bb_info = bb_table[bb->index];
3252       if (bb_info->gen)
3253 	bitmap_clear (bb_info->gen);
3254       else
3255 	bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
3256 
3257       if (bb->index == ENTRY_BLOCK)
3258 	;
3259       else if (bb->index == EXIT_BLOCK)
3260 	dse_step3_exit_block_scan (bb_info);
3261       else
3262 	dse_step3_scan (bb);
3263       if (EDGE_COUNT (bb->succs) == 0)
3264 	mark_reachable_blocks (unreachable_blocks, bb);
3265 
3266       /* If this is the second time dataflow is run, delete the old
3267 	 sets.  */
3268       if (bb_info->in)
3269 	BITMAP_FREE (bb_info->in);
3270       if (bb_info->out)
3271 	BITMAP_FREE (bb_info->out);
3272     }
3273 
3274   /* For any block in an infinite loop, we must initialize the out set
3275      to all ones.  This could be expensive, but almost never occurs in
3276      practice. However, it is common in regression tests.  */
3277   EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
3278     {
3279       if (bitmap_bit_p (all_blocks, i))
3280 	{
3281 	  bb_info_t bb_info = bb_table[i];
3282 	  if (!all_ones)
3283 	    {
3284 	      unsigned int j;
3285 	      group_info *group;
3286 
3287 	      all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
3288 	      FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
3289 		bitmap_ior_into (all_ones, group->group_kill);
3290 	    }
3291 	  if (!bb_info->out)
3292 	    {
3293 	      bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3294 	      bitmap_copy (bb_info->out, all_ones);
3295 	    }
3296 	}
3297     }
3298 
3299   if (all_ones)
3300     BITMAP_FREE (all_ones);
3301 }
3302 
3303 
3304 
3305 /*----------------------------------------------------------------------------
3306    Fourth step.
3307 
3308    Solve the bitvector equations.
3309 ----------------------------------------------------------------------------*/
3310 
3311 
3312 /* Confluence function for blocks with no successors.  Create an out
3313    set from the gen set of the exit block.  This block logically has
3314    the exit block as a successor.  */
3315 
3316 
3317 
3318 static void
3319 dse_confluence_0 (basic_block bb)
3320 {
3321   bb_info_t bb_info = bb_table[bb->index];
3322 
3323   if (bb->index == EXIT_BLOCK)
3324     return;
3325 
3326   if (!bb_info->out)
3327     {
3328       bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3329       bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3330     }
3331 }
3332 
3333 /* Propagate the information from the in set of the dest of E to the
3334    out set of the src of E.  If the various in or out sets are not
3335    there, that means they are all ones.  */
3336 
3337 static bool
3338 dse_confluence_n (edge e)
3339 {
3340   bb_info_t src_info = bb_table[e->src->index];
3341   bb_info_t dest_info = bb_table[e->dest->index];
3342 
3343   if (dest_info->in)
3344     {
3345       if (src_info->out)
3346 	bitmap_and_into (src_info->out, dest_info->in);
3347       else
3348 	{
3349 	  src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3350 	  bitmap_copy (src_info->out, dest_info->in);
3351 	}
3352     }
3353   return true;
3354 }
3355 
3356 
3357 /* Propagate the info from the out to the in set of BB_INDEX's basic
3358    block.  There are three cases:
3359 
3360    1) The block has no kill set.  In this case the kill set is all
3361    ones.  It does not matter what the out set of the block is, none of
3362    the info can reach the top.  The only thing that reaches the top is
3363    the gen set and we just copy the set.
3364 
3365    2) There is a kill set but no out set and bb has successors.  In
3366    this case we just return. Eventually an out set will be created and
3367    it is better to wait than to create a set of ones.
3368 
3369    3) There is both a kill and out set.  We apply the obvious transfer
3370    function.
3371 */
3372 
3373 static bool
3374 dse_transfer_function (int bb_index)
3375 {
3376   bb_info_t bb_info = bb_table[bb_index];
3377 
3378   if (bb_info->kill)
3379     {
3380       if (bb_info->out)
3381 	{
3382 	  /* Case 3 above.  */
3383 	  if (bb_info->in)
3384 	    return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3385 					 bb_info->out, bb_info->kill);
3386 	  else
3387 	    {
3388 	      bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3389 	      bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3390 				    bb_info->out, bb_info->kill);
3391 	      return true;
3392 	    }
3393 	}
3394       else
3395 	/* Case 2 above.  */
3396 	return false;
3397     }
3398   else
3399     {
3400       /* Case 1 above.  If there is already an in set, nothing
3401 	 happens.  */
3402       if (bb_info->in)
3403 	return false;
3404       else
3405 	{
3406 	  bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3407 	  bitmap_copy (bb_info->in, bb_info->gen);
3408 	  return true;
3409 	}
3410     }
3411 }
3412 
3413 /* Solve the dataflow equations.  */
3414 
3415 static void
3416 dse_step4 (void)
3417 {
3418   df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3419 		      dse_confluence_n, dse_transfer_function,
3420 	   	      all_blocks, df_get_postorder (DF_BACKWARD),
3421 		      df_get_n_blocks (DF_BACKWARD));
3422   if (dump_file && (dump_flags & TDF_DETAILS))
3423     {
3424       basic_block bb;
3425 
3426       fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3427       FOR_ALL_BB_FN (bb, cfun)
3428 	{
3429 	  bb_info_t bb_info = bb_table[bb->index];
3430 
3431 	  df_print_bb_index (bb, dump_file);
3432 	  if (bb_info->in)
3433 	    bitmap_print (dump_file, bb_info->in, "  in:   ", "\n");
3434 	  else
3435 	    fprintf (dump_file, "  in:   *MISSING*\n");
3436 	  if (bb_info->gen)
3437 	    bitmap_print (dump_file, bb_info->gen, "  gen:  ", "\n");
3438 	  else
3439 	    fprintf (dump_file, "  gen:  *MISSING*\n");
3440 	  if (bb_info->kill)
3441 	    bitmap_print (dump_file, bb_info->kill, "  kill: ", "\n");
3442 	  else
3443 	    fprintf (dump_file, "  kill: *MISSING*\n");
3444 	  if (bb_info->out)
3445 	    bitmap_print (dump_file, bb_info->out, "  out:  ", "\n");
3446 	  else
3447 	    fprintf (dump_file, "  out:  *MISSING*\n\n");
3448 	}
3449     }
3450 }
3451 
3452 
3453 
3454 /*----------------------------------------------------------------------------
3455    Fifth step.
3456 
3457    Delete the stores that can only be deleted using the global information.
3458 ----------------------------------------------------------------------------*/
3459 
3460 
3461 static void
3462 dse_step5 (void)
3463 {
3464   basic_block bb;
3465   FOR_EACH_BB_FN (bb, cfun)
3466     {
3467       bb_info_t bb_info = bb_table[bb->index];
3468       insn_info_t insn_info = bb_info->last_insn;
3469       bitmap v = bb_info->out;
3470 
3471       while (insn_info)
3472 	{
3473 	  bool deleted = false;
3474 	  if (dump_file && insn_info->insn)
3475 	    {
3476 	      fprintf (dump_file, "starting to process insn %d\n",
3477 		       INSN_UID (insn_info->insn));
3478 	      bitmap_print (dump_file, v, "  v:  ", "\n");
3479 	    }
3480 
3481 	  /* There may have been code deleted by the dce pass run before
3482 	     this phase.  */
3483 	  if (insn_info->insn
3484 	      && INSN_P (insn_info->insn)
3485 	      && (!insn_info->cannot_delete)
3486 	      && (!bitmap_empty_p (v)))
3487 	    {
3488 	      store_info *store_info = insn_info->store_rec;
3489 
3490 	      /* Try to delete the current insn.  */
3491 	      deleted = true;
3492 
3493 	      /* Skip the clobbers.  */
3494 	      while (!store_info->is_set)
3495 		store_info = store_info->next;
3496 
3497 	      HOST_WIDE_INT i, offset, width;
3498 	      group_info *group_info = rtx_group_vec[store_info->group_id];
3499 
3500 	      if (!store_info->offset.is_constant (&offset)
3501 		  || !store_info->width.is_constant (&width))
3502 		deleted = false;
3503 	      else
3504 		{
3505 		  HOST_WIDE_INT end = offset + width;
3506 		  for (i = offset; i < end; i++)
3507 		    {
3508 		      int index = get_bitmap_index (group_info, i);
3509 
3510 		      if (dump_file && (dump_flags & TDF_DETAILS))
3511 			fprintf (dump_file, "i = %d, index = %d\n",
3512 				 (int) i, index);
3513 		      if (index == 0 || !bitmap_bit_p (v, index))
3514 			{
3515 			  if (dump_file && (dump_flags & TDF_DETAILS))
3516 			    fprintf (dump_file, "failing at i = %d\n",
3517 				     (int) i);
3518 			  deleted = false;
3519 			  break;
3520 			}
3521 		    }
3522 		}
3523 	      if (deleted)
3524 		{
3525 		  if (dbg_cnt (dse)
3526 		      && check_for_inc_dec_1 (insn_info))
3527 		    {
3528 		      delete_insn (insn_info->insn);
3529 		      insn_info->insn = NULL;
3530 		      globally_deleted++;
3531 		    }
3532 		}
3533 	    }
3534 	  /* We do want to process the local info if the insn was
3535 	     deleted.  For instance, if the insn did a wild read, we
3536 	     no longer need to trash the info.  */
3537 	  if (insn_info->insn
3538 	      && INSN_P (insn_info->insn)
3539 	      && (!deleted))
3540 	    {
3541 	      scan_stores (insn_info->store_rec, v, NULL);
3542 	      if (insn_info->wild_read)
3543 		{
3544 		  if (dump_file && (dump_flags & TDF_DETAILS))
3545 		    fprintf (dump_file, "wild read\n");
3546 		  bitmap_clear (v);
3547 		}
3548 	      else if (insn_info->read_rec
3549 		       || insn_info->non_frame_wild_read
3550 		       || insn_info->frame_read)
3551 		{
3552 		  if (dump_file && (dump_flags & TDF_DETAILS))
3553 		    {
3554 		      if (!insn_info->non_frame_wild_read
3555 			  && !insn_info->frame_read)
3556 			fprintf (dump_file, "regular read\n");
3557 		      if (insn_info->non_frame_wild_read)
3558 			fprintf (dump_file, "non-frame wild read\n");
3559 		      if (insn_info->frame_read)
3560 			fprintf (dump_file, "frame read\n");
3561 		    }
3562 		  scan_reads (insn_info, v, NULL);
3563 		}
3564 	    }
3565 
3566 	  insn_info = insn_info->prev_insn;
3567 	}
3568     }
3569 }
3570 
3571 
3572 
3573 /*----------------------------------------------------------------------------
3574    Sixth step.
3575 
3576    Delete stores made redundant by earlier stores (which store the same
3577    value) that couldn't be eliminated.
3578 ----------------------------------------------------------------------------*/
3579 
3580 static void
3581 dse_step6 (void)
3582 {
3583   basic_block bb;
3584 
3585   FOR_ALL_BB_FN (bb, cfun)
3586     {
3587       bb_info_t bb_info = bb_table[bb->index];
3588       insn_info_t insn_info = bb_info->last_insn;
3589 
3590       while (insn_info)
3591 	{
3592 	  /* There may have been code deleted by the dce pass run before
3593 	     this phase.  */
3594 	  if (insn_info->insn
3595 	      && INSN_P (insn_info->insn)
3596 	      && !insn_info->cannot_delete)
3597 	    {
3598 	      store_info *s_info = insn_info->store_rec;
3599 
3600 	      while (s_info && !s_info->is_set)
3601 		s_info = s_info->next;
3602 	      if (s_info
3603 		  && s_info->redundant_reason
3604 		  && s_info->redundant_reason->insn
3605 		  && INSN_P (s_info->redundant_reason->insn))
3606 		{
3607 		  rtx_insn *rinsn = s_info->redundant_reason->insn;
3608 		  if (dump_file && (dump_flags & TDF_DETAILS))
3609 		    fprintf (dump_file, "Locally deleting insn %d "
3610 					"because insn %d stores the "
3611 					"same value and couldn't be "
3612 					"eliminated\n",
3613 					INSN_UID (insn_info->insn),
3614 					INSN_UID (rinsn));
3615 		  delete_dead_store_insn (insn_info);
3616 		}
3617 	    }
3618 	  insn_info = insn_info->prev_insn;
3619 	}
3620     }
3621 }
3622 
3623 /*----------------------------------------------------------------------------
3624    Seventh step.
3625 
3626    Destroy everything left standing.
3627 ----------------------------------------------------------------------------*/
3628 
3629 static void
3630 dse_step7 (void)
3631 {
3632   bitmap_obstack_release (&dse_bitmap_obstack);
3633   obstack_free (&dse_obstack, NULL);
3634 
3635   end_alias_analysis ();
3636   free (bb_table);
3637   delete rtx_group_table;
3638   rtx_group_table = NULL;
3639   rtx_group_vec.release ();
3640   BITMAP_FREE (all_blocks);
3641   BITMAP_FREE (scratch);
3642 
3643   rtx_store_info_pool.release ();
3644   read_info_type_pool.release ();
3645   insn_info_type_pool.release ();
3646   dse_bb_info_type_pool.release ();
3647   group_info_pool.release ();
3648   deferred_change_pool.release ();
3649 }
3650 
3651 
3652 /* -------------------------------------------------------------------------
3653    DSE
3654    ------------------------------------------------------------------------- */
3655 
3656 /* Callback for running pass_rtl_dse.  */
3657 
3658 static unsigned int
3659 rest_of_handle_dse (void)
3660 {
3661   df_set_flags (DF_DEFER_INSN_RESCAN);
3662 
3663   /* Need the notes since we must track live hardregs in the forwards
3664      direction.  */
3665   df_note_add_problem ();
3666   df_analyze ();
3667 
3668   dse_step0 ();
3669   dse_step1 ();
3670   dse_step2_init ();
3671   if (dse_step2 ())
3672     {
3673       df_set_flags (DF_LR_RUN_DCE);
3674       df_analyze ();
3675       if (dump_file && (dump_flags & TDF_DETAILS))
3676 	fprintf (dump_file, "doing global processing\n");
3677       dse_step3 ();
3678       dse_step4 ();
3679       dse_step5 ();
3680     }
3681 
3682   dse_step6 ();
3683   dse_step7 ();
3684 
3685   if (dump_file)
3686     fprintf (dump_file, "dse: local deletions = %d, global deletions = %d\n",
3687 	     locally_deleted, globally_deleted);
3688 
3689   /* DSE can eliminate potentially-trapping MEMs.
3690      Remove any EH edges associated with them.  */
3691   if ((locally_deleted || globally_deleted)
3692       && cfun->can_throw_non_call_exceptions
3693       && purge_all_dead_edges ())
3694     {
3695       free_dominance_info (CDI_DOMINATORS);
3696       cleanup_cfg (0);
3697     }
3698 
3699   return 0;
3700 }
3701 
3702 namespace {
3703 
3704 const pass_data pass_data_rtl_dse1 =
3705 {
3706   RTL_PASS, /* type */
3707   "dse1", /* name */
3708   OPTGROUP_NONE, /* optinfo_flags */
3709   TV_DSE1, /* tv_id */
3710   0, /* properties_required */
3711   0, /* properties_provided */
3712   0, /* properties_destroyed */
3713   0, /* todo_flags_start */
3714   TODO_df_finish, /* todo_flags_finish */
3715 };
3716 
3717 class pass_rtl_dse1 : public rtl_opt_pass
3718 {
3719 public:
3720   pass_rtl_dse1 (gcc::context *ctxt)
3721     : rtl_opt_pass (pass_data_rtl_dse1, ctxt)
3722   {}
3723 
3724   /* opt_pass methods: */
3725   virtual bool gate (function *)
3726     {
3727       return optimize > 0 && flag_dse && dbg_cnt (dse1);
3728     }
3729 
3730   virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3731 
3732 }; // class pass_rtl_dse1
3733 
3734 } // anon namespace
3735 
3736 rtl_opt_pass *
3737 make_pass_rtl_dse1 (gcc::context *ctxt)
3738 {
3739   return new pass_rtl_dse1 (ctxt);
3740 }
3741 
3742 namespace {
3743 
3744 const pass_data pass_data_rtl_dse2 =
3745 {
3746   RTL_PASS, /* type */
3747   "dse2", /* name */
3748   OPTGROUP_NONE, /* optinfo_flags */
3749   TV_DSE2, /* tv_id */
3750   0, /* properties_required */
3751   0, /* properties_provided */
3752   0, /* properties_destroyed */
3753   0, /* todo_flags_start */
3754   TODO_df_finish, /* todo_flags_finish */
3755 };
3756 
3757 class pass_rtl_dse2 : public rtl_opt_pass
3758 {
3759 public:
3760   pass_rtl_dse2 (gcc::context *ctxt)
3761     : rtl_opt_pass (pass_data_rtl_dse2, ctxt)
3762   {}
3763 
3764   /* opt_pass methods: */
3765   virtual bool gate (function *)
3766     {
3767       return optimize > 0 && flag_dse && dbg_cnt (dse2);
3768     }
3769 
3770   virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3771 
3772 }; // class pass_rtl_dse2
3773 
3774 } // anon namespace
3775 
3776 rtl_opt_pass *
3777 make_pass_rtl_dse2 (gcc::context *ctxt)
3778 {
3779   return new pass_rtl_dse2 (ctxt);
3780 }
3781