1 /* RTL dead store elimination. 2 Copyright (C) 2005-2015 Free Software Foundation, Inc. 3 4 Contributed by Richard Sandiford <rsandifor@codesourcery.com> 5 and Kenneth Zadeck <zadeck@naturalbridge.com> 6 7 This file is part of GCC. 8 9 GCC is free software; you can redistribute it and/or modify it under 10 the terms of the GNU General Public License as published by the Free 11 Software Foundation; either version 3, or (at your option) any later 12 version. 13 14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 15 WARRANTY; without even the implied warranty of MERCHANTABILITY or 16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 17 for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with GCC; see the file COPYING3. If not see 21 <http://www.gnu.org/licenses/>. */ 22 23 #undef BASELINE 24 25 #include "config.h" 26 #include "system.h" 27 #include "coretypes.h" 28 #include "hash-table.h" 29 #include "tm.h" 30 #include "rtl.h" 31 #include "hash-set.h" 32 #include "machmode.h" 33 #include "vec.h" 34 #include "double-int.h" 35 #include "input.h" 36 #include "alias.h" 37 #include "symtab.h" 38 #include "wide-int.h" 39 #include "inchash.h" 40 #include "real.h" 41 #include "tree.h" 42 #include "fold-const.h" 43 #include "stor-layout.h" 44 #include "tm_p.h" 45 #include "regs.h" 46 #include "hard-reg-set.h" 47 #include "regset.h" 48 #include "flags.h" 49 #include "dominance.h" 50 #include "cfg.h" 51 #include "cfgrtl.h" 52 #include "predict.h" 53 #include "basic-block.h" 54 #include "df.h" 55 #include "cselib.h" 56 #include "tree-pass.h" 57 #include "alloc-pool.h" 58 #include "insn-config.h" 59 #include "hashtab.h" 60 #include "function.h" 61 #include "statistics.h" 62 #include "fixed-value.h" 63 #include "expmed.h" 64 #include "dojump.h" 65 #include "explow.h" 66 #include "calls.h" 67 #include "emit-rtl.h" 68 #include "varasm.h" 69 #include "stmt.h" 70 #include "expr.h" 71 #include "recog.h" 72 #include "insn-codes.h" 73 #include "optabs.h" 74 #include "dbgcnt.h" 75 #include "target.h" 76 #include "params.h" 77 #include "tree-ssa-alias.h" 78 #include "internal-fn.h" 79 #include "gimple-expr.h" 80 #include "is-a.h" 81 #include "gimple.h" 82 #include "gimple-ssa.h" 83 #include "rtl-iter.h" 84 #include "cfgcleanup.h" 85 86 /* This file contains three techniques for performing Dead Store 87 Elimination (dse). 88 89 * The first technique performs dse locally on any base address. It 90 is based on the cselib which is a local value numbering technique. 91 This technique is local to a basic block but deals with a fairly 92 general addresses. 93 94 * The second technique performs dse globally but is restricted to 95 base addresses that are either constant or are relative to the 96 frame_pointer. 97 98 * The third technique, (which is only done after register allocation) 99 processes the spill spill slots. This differs from the second 100 technique because it takes advantage of the fact that spilling is 101 completely free from the effects of aliasing. 102 103 Logically, dse is a backwards dataflow problem. A store can be 104 deleted if it if cannot be reached in the backward direction by any 105 use of the value being stored. However, the local technique uses a 106 forwards scan of the basic block because cselib requires that the 107 block be processed in that order. 108 109 The pass is logically broken into 7 steps: 110 111 0) Initialization. 112 113 1) The local algorithm, as well as scanning the insns for the two 114 global algorithms. 115 116 2) Analysis to see if the global algs are necessary. In the case 117 of stores base on a constant address, there must be at least two 118 stores to that address, to make it possible to delete some of the 119 stores. In the case of stores off of the frame or spill related 120 stores, only one store to an address is necessary because those 121 stores die at the end of the function. 122 123 3) Set up the global dataflow equations based on processing the 124 info parsed in the first step. 125 126 4) Solve the dataflow equations. 127 128 5) Delete the insns that the global analysis has indicated are 129 unnecessary. 130 131 6) Delete insns that store the same value as preceding store 132 where the earlier store couldn't be eliminated. 133 134 7) Cleanup. 135 136 This step uses cselib and canon_rtx to build the largest expression 137 possible for each address. This pass is a forwards pass through 138 each basic block. From the point of view of the global technique, 139 the first pass could examine a block in either direction. The 140 forwards ordering is to accommodate cselib. 141 142 We make a simplifying assumption: addresses fall into four broad 143 categories: 144 145 1) base has rtx_varies_p == false, offset is constant. 146 2) base has rtx_varies_p == false, offset variable. 147 3) base has rtx_varies_p == true, offset constant. 148 4) base has rtx_varies_p == true, offset variable. 149 150 The local passes are able to process all 4 kinds of addresses. The 151 global pass only handles 1). 152 153 The global problem is formulated as follows: 154 155 A store, S1, to address A, where A is not relative to the stack 156 frame, can be eliminated if all paths from S1 to the end of the 157 function contain another store to A before a read to A. 158 159 If the address A is relative to the stack frame, a store S2 to A 160 can be eliminated if there are no paths from S2 that reach the 161 end of the function that read A before another store to A. In 162 this case S2 can be deleted if there are paths from S2 to the 163 end of the function that have no reads or writes to A. This 164 second case allows stores to the stack frame to be deleted that 165 would otherwise die when the function returns. This cannot be 166 done if stores_off_frame_dead_at_return is not true. See the doc 167 for that variable for when this variable is false. 168 169 The global problem is formulated as a backwards set union 170 dataflow problem where the stores are the gens and reads are the 171 kills. Set union problems are rare and require some special 172 handling given our representation of bitmaps. A straightforward 173 implementation requires a lot of bitmaps filled with 1s. 174 These are expensive and cumbersome in our bitmap formulation so 175 care has been taken to avoid large vectors filled with 1s. See 176 the comments in bb_info and in the dataflow confluence functions 177 for details. 178 179 There are two places for further enhancements to this algorithm: 180 181 1) The original dse which was embedded in a pass called flow also 182 did local address forwarding. For example in 183 184 A <- r100 185 ... <- A 186 187 flow would replace the right hand side of the second insn with a 188 reference to r100. Most of the information is available to add this 189 to this pass. It has not done it because it is a lot of work in 190 the case that either r100 is assigned to between the first and 191 second insn and/or the second insn is a load of part of the value 192 stored by the first insn. 193 194 insn 5 in gcc.c-torture/compile/990203-1.c simple case. 195 insn 15 in gcc.c-torture/execute/20001017-2.c simple case. 196 insn 25 in gcc.c-torture/execute/20001026-1.c simple case. 197 insn 44 in gcc.c-torture/execute/20010910-1.c simple case. 198 199 2) The cleaning up of spill code is quite profitable. It currently 200 depends on reading tea leaves and chicken entrails left by reload. 201 This pass depends on reload creating a singleton alias set for each 202 spill slot and telling the next dse pass which of these alias sets 203 are the singletons. Rather than analyze the addresses of the 204 spills, dse's spill processing just does analysis of the loads and 205 stores that use those alias sets. There are three cases where this 206 falls short: 207 208 a) Reload sometimes creates the slot for one mode of access, and 209 then inserts loads and/or stores for a smaller mode. In this 210 case, the current code just punts on the slot. The proper thing 211 to do is to back out and use one bit vector position for each 212 byte of the entity associated with the slot. This depends on 213 KNOWING that reload always generates the accesses for each of the 214 bytes in some canonical (read that easy to understand several 215 passes after reload happens) way. 216 217 b) Reload sometimes decides that spill slot it allocated was not 218 large enough for the mode and goes back and allocates more slots 219 with the same mode and alias set. The backout in this case is a 220 little more graceful than (a). In this case the slot is unmarked 221 as being a spill slot and if final address comes out to be based 222 off the frame pointer, the global algorithm handles this slot. 223 224 c) For any pass that may prespill, there is currently no 225 mechanism to tell the dse pass that the slot being used has the 226 special properties that reload uses. It may be that all that is 227 required is to have those passes make the same calls that reload 228 does, assuming that the alias sets can be manipulated in the same 229 way. */ 230 231 /* There are limits to the size of constant offsets we model for the 232 global problem. There are certainly test cases, that exceed this 233 limit, however, it is unlikely that there are important programs 234 that really have constant offsets this size. */ 235 #define MAX_OFFSET (64 * 1024) 236 237 /* Obstack for the DSE dataflow bitmaps. We don't want to put these 238 on the default obstack because these bitmaps can grow quite large 239 (~2GB for the small (!) test case of PR54146) and we'll hold on to 240 all that memory until the end of the compiler run. 241 As a bonus, delete_tree_live_info can destroy all the bitmaps by just 242 releasing the whole obstack. */ 243 static bitmap_obstack dse_bitmap_obstack; 244 245 /* Obstack for other data. As for above: Kinda nice to be able to 246 throw it all away at the end in one big sweep. */ 247 static struct obstack dse_obstack; 248 249 /* Scratch bitmap for cselib's cselib_expand_value_rtx. */ 250 static bitmap scratch = NULL; 251 252 struct insn_info; 253 254 /* This structure holds information about a candidate store. */ 255 struct store_info 256 { 257 258 /* False means this is a clobber. */ 259 bool is_set; 260 261 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */ 262 bool is_large; 263 264 /* The id of the mem group of the base address. If rtx_varies_p is 265 true, this is -1. Otherwise, it is the index into the group 266 table. */ 267 int group_id; 268 269 /* This is the cselib value. */ 270 cselib_val *cse_base; 271 272 /* This canonized mem. */ 273 rtx mem; 274 275 /* Canonized MEM address for use by canon_true_dependence. */ 276 rtx mem_addr; 277 278 /* If this is non-zero, it is the alias set of a spill location. */ 279 alias_set_type alias_set; 280 281 /* The offset of the first and byte before the last byte associated 282 with the operation. */ 283 HOST_WIDE_INT begin, end; 284 285 union 286 { 287 /* A bitmask as wide as the number of bytes in the word that 288 contains a 1 if the byte may be needed. The store is unused if 289 all of the bits are 0. This is used if IS_LARGE is false. */ 290 unsigned HOST_WIDE_INT small_bitmask; 291 292 struct 293 { 294 /* A bitmap with one bit per byte. Cleared bit means the position 295 is needed. Used if IS_LARGE is false. */ 296 bitmap bmap; 297 298 /* Number of set bits (i.e. unneeded bytes) in BITMAP. If it is 299 equal to END - BEGIN, the whole store is unused. */ 300 int count; 301 } large; 302 } positions_needed; 303 304 /* The next store info for this insn. */ 305 struct store_info *next; 306 307 /* The right hand side of the store. This is used if there is a 308 subsequent reload of the mems address somewhere later in the 309 basic block. */ 310 rtx rhs; 311 312 /* If rhs is or holds a constant, this contains that constant, 313 otherwise NULL. */ 314 rtx const_rhs; 315 316 /* Set if this store stores the same constant value as REDUNDANT_REASON 317 insn stored. These aren't eliminated early, because doing that 318 might prevent the earlier larger store to be eliminated. */ 319 struct insn_info *redundant_reason; 320 }; 321 322 /* Return a bitmask with the first N low bits set. */ 323 324 static unsigned HOST_WIDE_INT 325 lowpart_bitmask (int n) 326 { 327 unsigned HOST_WIDE_INT mask = ~(unsigned HOST_WIDE_INT) 0; 328 gcc_assert(n >= 0 && n <= HOST_BITS_PER_WIDE_INT); 329 if (n == 0) 330 return 0; 331 return mask >> (HOST_BITS_PER_WIDE_INT - n); 332 } 333 334 typedef struct store_info *store_info_t; 335 static alloc_pool cse_store_info_pool; 336 static alloc_pool rtx_store_info_pool; 337 338 /* This structure holds information about a load. These are only 339 built for rtx bases. */ 340 struct read_info 341 { 342 /* The id of the mem group of the base address. */ 343 int group_id; 344 345 /* If this is non-zero, it is the alias set of a spill location. */ 346 alias_set_type alias_set; 347 348 /* The offset of the first and byte after the last byte associated 349 with the operation. If begin == end == 0, the read did not have 350 a constant offset. */ 351 int begin, end; 352 353 /* The mem being read. */ 354 rtx mem; 355 356 /* The next read_info for this insn. */ 357 struct read_info *next; 358 }; 359 typedef struct read_info *read_info_t; 360 static alloc_pool read_info_pool; 361 362 363 /* One of these records is created for each insn. */ 364 365 struct insn_info 366 { 367 /* Set true if the insn contains a store but the insn itself cannot 368 be deleted. This is set if the insn is a parallel and there is 369 more than one non dead output or if the insn is in some way 370 volatile. */ 371 bool cannot_delete; 372 373 /* This field is only used by the global algorithm. It is set true 374 if the insn contains any read of mem except for a (1). This is 375 also set if the insn is a call or has a clobber mem. If the insn 376 contains a wild read, the use_rec will be null. */ 377 bool wild_read; 378 379 /* This is true only for CALL instructions which could potentially read 380 any non-frame memory location. This field is used by the global 381 algorithm. */ 382 bool non_frame_wild_read; 383 384 /* This field is only used for the processing of const functions. 385 These functions cannot read memory, but they can read the stack 386 because that is where they may get their parms. We need to be 387 this conservative because, like the store motion pass, we don't 388 consider CALL_INSN_FUNCTION_USAGE when processing call insns. 389 Moreover, we need to distinguish two cases: 390 1. Before reload (register elimination), the stores related to 391 outgoing arguments are stack pointer based and thus deemed 392 of non-constant base in this pass. This requires special 393 handling but also means that the frame pointer based stores 394 need not be killed upon encountering a const function call. 395 2. After reload, the stores related to outgoing arguments can be 396 either stack pointer or hard frame pointer based. This means 397 that we have no other choice than also killing all the frame 398 pointer based stores upon encountering a const function call. 399 This field is set after reload for const function calls and before 400 reload for const tail function calls on targets where arg pointer 401 is the frame pointer. Having this set is less severe than a wild 402 read, it just means that all the frame related stores are killed 403 rather than all the stores. */ 404 bool frame_read; 405 406 /* This field is only used for the processing of const functions. 407 It is set if the insn may contain a stack pointer based store. */ 408 bool stack_pointer_based; 409 410 /* This is true if any of the sets within the store contains a 411 cselib base. Such stores can only be deleted by the local 412 algorithm. */ 413 bool contains_cselib_groups; 414 415 /* The insn. */ 416 rtx_insn *insn; 417 418 /* The list of mem sets or mem clobbers that are contained in this 419 insn. If the insn is deletable, it contains only one mem set. 420 But it could also contain clobbers. Insns that contain more than 421 one mem set are not deletable, but each of those mems are here in 422 order to provide info to delete other insns. */ 423 store_info_t store_rec; 424 425 /* The linked list of mem uses in this insn. Only the reads from 426 rtx bases are listed here. The reads to cselib bases are 427 completely processed during the first scan and so are never 428 created. */ 429 read_info_t read_rec; 430 431 /* The live fixed registers. We assume only fixed registers can 432 cause trouble by being clobbered from an expanded pattern; 433 storing only the live fixed registers (rather than all registers) 434 means less memory needs to be allocated / copied for the individual 435 stores. */ 436 regset fixed_regs_live; 437 438 /* The prev insn in the basic block. */ 439 struct insn_info * prev_insn; 440 441 /* The linked list of insns that are in consideration for removal in 442 the forwards pass through the basic block. This pointer may be 443 trash as it is not cleared when a wild read occurs. The only 444 time it is guaranteed to be correct is when the traversal starts 445 at active_local_stores. */ 446 struct insn_info * next_local_store; 447 }; 448 449 typedef struct insn_info *insn_info_t; 450 static alloc_pool insn_info_pool; 451 452 /* The linked list of stores that are under consideration in this 453 basic block. */ 454 static insn_info_t active_local_stores; 455 static int active_local_stores_len; 456 457 struct dse_bb_info 458 { 459 460 /* Pointer to the insn info for the last insn in the block. These 461 are linked so this is how all of the insns are reached. During 462 scanning this is the current insn being scanned. */ 463 insn_info_t last_insn; 464 465 /* The info for the global dataflow problem. */ 466 467 468 /* This is set if the transfer function should and in the wild_read 469 bitmap before applying the kill and gen sets. That vector knocks 470 out most of the bits in the bitmap and thus speeds up the 471 operations. */ 472 bool apply_wild_read; 473 474 /* The following 4 bitvectors hold information about which positions 475 of which stores are live or dead. They are indexed by 476 get_bitmap_index. */ 477 478 /* The set of store positions that exist in this block before a wild read. */ 479 bitmap gen; 480 481 /* The set of load positions that exist in this block above the 482 same position of a store. */ 483 bitmap kill; 484 485 /* The set of stores that reach the top of the block without being 486 killed by a read. 487 488 Do not represent the in if it is all ones. Note that this is 489 what the bitvector should logically be initialized to for a set 490 intersection problem. However, like the kill set, this is too 491 expensive. So initially, the in set will only be created for the 492 exit block and any block that contains a wild read. */ 493 bitmap in; 494 495 /* The set of stores that reach the bottom of the block from it's 496 successors. 497 498 Do not represent the in if it is all ones. Note that this is 499 what the bitvector should logically be initialized to for a set 500 intersection problem. However, like the kill and in set, this is 501 too expensive. So what is done is that the confluence operator 502 just initializes the vector from one of the out sets of the 503 successors of the block. */ 504 bitmap out; 505 506 /* The following bitvector is indexed by the reg number. It 507 contains the set of regs that are live at the current instruction 508 being processed. While it contains info for all of the 509 registers, only the hard registers are actually examined. It is used 510 to assure that shift and/or add sequences that are inserted do not 511 accidentally clobber live hard regs. */ 512 bitmap regs_live; 513 }; 514 515 typedef struct dse_bb_info *bb_info_t; 516 static alloc_pool bb_info_pool; 517 518 /* Table to hold all bb_infos. */ 519 static bb_info_t *bb_table; 520 521 /* There is a group_info for each rtx base that is used to reference 522 memory. There are also not many of the rtx bases because they are 523 very limited in scope. */ 524 525 struct group_info 526 { 527 /* The actual base of the address. */ 528 rtx rtx_base; 529 530 /* The sequential id of the base. This allows us to have a 531 canonical ordering of these that is not based on addresses. */ 532 int id; 533 534 /* True if there are any positions that are to be processed 535 globally. */ 536 bool process_globally; 537 538 /* True if the base of this group is either the frame_pointer or 539 hard_frame_pointer. */ 540 bool frame_related; 541 542 /* A mem wrapped around the base pointer for the group in order to do 543 read dependency. It must be given BLKmode in order to encompass all 544 the possible offsets from the base. */ 545 rtx base_mem; 546 547 /* Canonized version of base_mem's address. */ 548 rtx canon_base_addr; 549 550 /* These two sets of two bitmaps are used to keep track of how many 551 stores are actually referencing that position from this base. We 552 only do this for rtx bases as this will be used to assign 553 positions in the bitmaps for the global problem. Bit N is set in 554 store1 on the first store for offset N. Bit N is set in store2 555 for the second store to offset N. This is all we need since we 556 only care about offsets that have two or more stores for them. 557 558 The "_n" suffix is for offsets less than 0 and the "_p" suffix is 559 for 0 and greater offsets. 560 561 There is one special case here, for stores into the stack frame, 562 we will or store1 into store2 before deciding which stores look 563 at globally. This is because stores to the stack frame that have 564 no other reads before the end of the function can also be 565 deleted. */ 566 bitmap store1_n, store1_p, store2_n, store2_p; 567 568 /* These bitmaps keep track of offsets in this group escape this function. 569 An offset escapes if it corresponds to a named variable whose 570 addressable flag is set. */ 571 bitmap escaped_n, escaped_p; 572 573 /* The positions in this bitmap have the same assignments as the in, 574 out, gen and kill bitmaps. This bitmap is all zeros except for 575 the positions that are occupied by stores for this group. */ 576 bitmap group_kill; 577 578 /* The offset_map is used to map the offsets from this base into 579 positions in the global bitmaps. It is only created after all of 580 the all of stores have been scanned and we know which ones we 581 care about. */ 582 int *offset_map_n, *offset_map_p; 583 int offset_map_size_n, offset_map_size_p; 584 }; 585 typedef struct group_info *group_info_t; 586 typedef const struct group_info *const_group_info_t; 587 static alloc_pool rtx_group_info_pool; 588 589 /* Index into the rtx_group_vec. */ 590 static int rtx_group_next_id; 591 592 593 static vec<group_info_t> rtx_group_vec; 594 595 596 /* This structure holds the set of changes that are being deferred 597 when removing read operation. See replace_read. */ 598 struct deferred_change 599 { 600 601 /* The mem that is being replaced. */ 602 rtx *loc; 603 604 /* The reg it is being replaced with. */ 605 rtx reg; 606 607 struct deferred_change *next; 608 }; 609 610 typedef struct deferred_change *deferred_change_t; 611 static alloc_pool deferred_change_pool; 612 613 static deferred_change_t deferred_change_list = NULL; 614 615 /* The group that holds all of the clear_alias_sets. */ 616 static group_info_t clear_alias_group; 617 618 /* The modes of the clear_alias_sets. */ 619 static htab_t clear_alias_mode_table; 620 621 /* Hash table element to look up the mode for an alias set. */ 622 struct clear_alias_mode_holder 623 { 624 alias_set_type alias_set; 625 machine_mode mode; 626 }; 627 628 /* This is true except if cfun->stdarg -- i.e. we cannot do 629 this for vararg functions because they play games with the frame. */ 630 static bool stores_off_frame_dead_at_return; 631 632 /* Counter for stats. */ 633 static int globally_deleted; 634 static int locally_deleted; 635 static int spill_deleted; 636 637 static bitmap all_blocks; 638 639 /* Locations that are killed by calls in the global phase. */ 640 static bitmap kill_on_calls; 641 642 /* The number of bits used in the global bitmaps. */ 643 static unsigned int current_position; 644 645 /*---------------------------------------------------------------------------- 646 Zeroth step. 647 648 Initialization. 649 ----------------------------------------------------------------------------*/ 650 651 652 /* Find the entry associated with ALIAS_SET. */ 653 654 static struct clear_alias_mode_holder * 655 clear_alias_set_lookup (alias_set_type alias_set) 656 { 657 struct clear_alias_mode_holder tmp_holder; 658 void **slot; 659 660 tmp_holder.alias_set = alias_set; 661 slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, NO_INSERT); 662 gcc_assert (*slot); 663 664 return (struct clear_alias_mode_holder *) *slot; 665 } 666 667 668 /* Hashtable callbacks for maintaining the "bases" field of 669 store_group_info, given that the addresses are function invariants. */ 670 671 struct invariant_group_base_hasher : typed_noop_remove <group_info> 672 { 673 typedef group_info value_type; 674 typedef group_info compare_type; 675 static inline hashval_t hash (const value_type *); 676 static inline bool equal (const value_type *, const compare_type *); 677 }; 678 679 inline bool 680 invariant_group_base_hasher::equal (const value_type *gi1, 681 const compare_type *gi2) 682 { 683 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base); 684 } 685 686 inline hashval_t 687 invariant_group_base_hasher::hash (const value_type *gi) 688 { 689 int do_not_record; 690 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false); 691 } 692 693 /* Tables of group_info structures, hashed by base value. */ 694 static hash_table<invariant_group_base_hasher> *rtx_group_table; 695 696 697 /* Get the GROUP for BASE. Add a new group if it is not there. */ 698 699 static group_info_t 700 get_group_info (rtx base) 701 { 702 struct group_info tmp_gi; 703 group_info_t gi; 704 group_info **slot; 705 706 if (base) 707 { 708 /* Find the store_base_info structure for BASE, creating a new one 709 if necessary. */ 710 tmp_gi.rtx_base = base; 711 slot = rtx_group_table->find_slot (&tmp_gi, INSERT); 712 gi = (group_info_t) *slot; 713 } 714 else 715 { 716 if (!clear_alias_group) 717 { 718 clear_alias_group = gi = 719 (group_info_t) pool_alloc (rtx_group_info_pool); 720 memset (gi, 0, sizeof (struct group_info)); 721 gi->id = rtx_group_next_id++; 722 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack); 723 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack); 724 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack); 725 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack); 726 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack); 727 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack); 728 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack); 729 gi->process_globally = false; 730 gi->offset_map_size_n = 0; 731 gi->offset_map_size_p = 0; 732 gi->offset_map_n = NULL; 733 gi->offset_map_p = NULL; 734 rtx_group_vec.safe_push (gi); 735 } 736 return clear_alias_group; 737 } 738 739 if (gi == NULL) 740 { 741 *slot = gi = (group_info_t) pool_alloc (rtx_group_info_pool); 742 gi->rtx_base = base; 743 gi->id = rtx_group_next_id++; 744 gi->base_mem = gen_rtx_MEM (BLKmode, base); 745 gi->canon_base_addr = canon_rtx (base); 746 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack); 747 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack); 748 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack); 749 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack); 750 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack); 751 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack); 752 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack); 753 gi->process_globally = false; 754 gi->frame_related = 755 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx); 756 gi->offset_map_size_n = 0; 757 gi->offset_map_size_p = 0; 758 gi->offset_map_n = NULL; 759 gi->offset_map_p = NULL; 760 rtx_group_vec.safe_push (gi); 761 } 762 763 return gi; 764 } 765 766 767 /* Initialization of data structures. */ 768 769 static void 770 dse_step0 (void) 771 { 772 locally_deleted = 0; 773 globally_deleted = 0; 774 spill_deleted = 0; 775 776 bitmap_obstack_initialize (&dse_bitmap_obstack); 777 gcc_obstack_init (&dse_obstack); 778 779 scratch = BITMAP_ALLOC (®_obstack); 780 kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack); 781 782 rtx_store_info_pool 783 = create_alloc_pool ("rtx_store_info_pool", 784 sizeof (struct store_info), 100); 785 read_info_pool 786 = create_alloc_pool ("read_info_pool", 787 sizeof (struct read_info), 100); 788 insn_info_pool 789 = create_alloc_pool ("insn_info_pool", 790 sizeof (struct insn_info), 100); 791 bb_info_pool 792 = create_alloc_pool ("bb_info_pool", 793 sizeof (struct dse_bb_info), 100); 794 rtx_group_info_pool 795 = create_alloc_pool ("rtx_group_info_pool", 796 sizeof (struct group_info), 100); 797 deferred_change_pool 798 = create_alloc_pool ("deferred_change_pool", 799 sizeof (struct deferred_change), 10); 800 801 rtx_group_table = new hash_table<invariant_group_base_hasher> (11); 802 803 bb_table = XNEWVEC (bb_info_t, last_basic_block_for_fn (cfun)); 804 rtx_group_next_id = 0; 805 806 stores_off_frame_dead_at_return = !cfun->stdarg; 807 808 init_alias_analysis (); 809 810 clear_alias_group = NULL; 811 } 812 813 814 815 /*---------------------------------------------------------------------------- 816 First step. 817 818 Scan all of the insns. Any random ordering of the blocks is fine. 819 Each block is scanned in forward order to accommodate cselib which 820 is used to remove stores with non-constant bases. 821 ----------------------------------------------------------------------------*/ 822 823 /* Delete all of the store_info recs from INSN_INFO. */ 824 825 static void 826 free_store_info (insn_info_t insn_info) 827 { 828 store_info_t store_info = insn_info->store_rec; 829 while (store_info) 830 { 831 store_info_t next = store_info->next; 832 if (store_info->is_large) 833 BITMAP_FREE (store_info->positions_needed.large.bmap); 834 if (store_info->cse_base) 835 pool_free (cse_store_info_pool, store_info); 836 else 837 pool_free (rtx_store_info_pool, store_info); 838 store_info = next; 839 } 840 841 insn_info->cannot_delete = true; 842 insn_info->contains_cselib_groups = false; 843 insn_info->store_rec = NULL; 844 } 845 846 typedef struct 847 { 848 rtx_insn *first, *current; 849 regset fixed_regs_live; 850 bool failure; 851 } note_add_store_info; 852 853 /* Callback for emit_inc_dec_insn_before via note_stores. 854 Check if a register is clobbered which is live afterwards. */ 855 856 static void 857 note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data) 858 { 859 rtx_insn *insn; 860 note_add_store_info *info = (note_add_store_info *) data; 861 int r, n; 862 863 if (!REG_P (loc)) 864 return; 865 866 /* If this register is referenced by the current or an earlier insn, 867 that's OK. E.g. this applies to the register that is being incremented 868 with this addition. */ 869 for (insn = info->first; 870 insn != NEXT_INSN (info->current); 871 insn = NEXT_INSN (insn)) 872 if (reg_referenced_p (loc, PATTERN (insn))) 873 return; 874 875 /* If we come here, we have a clobber of a register that's only OK 876 if that register is not live. If we don't have liveness information 877 available, fail now. */ 878 if (!info->fixed_regs_live) 879 { 880 info->failure = true; 881 return; 882 } 883 /* Now check if this is a live fixed register. */ 884 r = REGNO (loc); 885 n = hard_regno_nregs[r][GET_MODE (loc)]; 886 while (--n >= 0) 887 if (REGNO_REG_SET_P (info->fixed_regs_live, r+n)) 888 info->failure = true; 889 } 890 891 /* Callback for for_each_inc_dec that emits an INSN that sets DEST to 892 SRC + SRCOFF before insn ARG. */ 893 894 static int 895 emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED, 896 rtx op ATTRIBUTE_UNUSED, 897 rtx dest, rtx src, rtx srcoff, void *arg) 898 { 899 insn_info_t insn_info = (insn_info_t) arg; 900 rtx_insn *insn = insn_info->insn, *new_insn, *cur; 901 note_add_store_info info; 902 903 /* We can reuse all operands without copying, because we are about 904 to delete the insn that contained it. */ 905 if (srcoff) 906 { 907 start_sequence (); 908 emit_insn (gen_add3_insn (dest, src, srcoff)); 909 new_insn = get_insns (); 910 end_sequence (); 911 } 912 else 913 new_insn = as_a <rtx_insn *> (gen_move_insn (dest, src)); 914 info.first = new_insn; 915 info.fixed_regs_live = insn_info->fixed_regs_live; 916 info.failure = false; 917 for (cur = new_insn; cur; cur = NEXT_INSN (cur)) 918 { 919 info.current = cur; 920 note_stores (PATTERN (cur), note_add_store, &info); 921 } 922 923 /* If a failure was flagged above, return 1 so that for_each_inc_dec will 924 return it immediately, communicating the failure to its caller. */ 925 if (info.failure) 926 return 1; 927 928 emit_insn_before (new_insn, insn); 929 930 return 0; 931 } 932 933 /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it 934 is there, is split into a separate insn. 935 Return true on success (or if there was nothing to do), false on failure. */ 936 937 static bool 938 check_for_inc_dec_1 (insn_info_t insn_info) 939 { 940 rtx_insn *insn = insn_info->insn; 941 rtx note = find_reg_note (insn, REG_INC, NULL_RTX); 942 if (note) 943 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before, 944 insn_info) == 0; 945 return true; 946 } 947 948 949 /* Entry point for postreload. If you work on reload_cse, or you need this 950 anywhere else, consider if you can provide register liveness information 951 and add a parameter to this function so that it can be passed down in 952 insn_info.fixed_regs_live. */ 953 bool 954 check_for_inc_dec (rtx_insn *insn) 955 { 956 struct insn_info insn_info; 957 rtx note; 958 959 insn_info.insn = insn; 960 insn_info.fixed_regs_live = NULL; 961 note = find_reg_note (insn, REG_INC, NULL_RTX); 962 if (note) 963 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before, 964 &insn_info) == 0; 965 return true; 966 } 967 968 /* Delete the insn and free all of the fields inside INSN_INFO. */ 969 970 static void 971 delete_dead_store_insn (insn_info_t insn_info) 972 { 973 read_info_t read_info; 974 975 if (!dbg_cnt (dse)) 976 return; 977 978 if (!check_for_inc_dec_1 (insn_info)) 979 return; 980 if (dump_file && (dump_flags & TDF_DETAILS)) 981 { 982 fprintf (dump_file, "Locally deleting insn %d ", 983 INSN_UID (insn_info->insn)); 984 if (insn_info->store_rec->alias_set) 985 fprintf (dump_file, "alias set %d\n", 986 (int) insn_info->store_rec->alias_set); 987 else 988 fprintf (dump_file, "\n"); 989 } 990 991 free_store_info (insn_info); 992 read_info = insn_info->read_rec; 993 994 while (read_info) 995 { 996 read_info_t next = read_info->next; 997 pool_free (read_info_pool, read_info); 998 read_info = next; 999 } 1000 insn_info->read_rec = NULL; 1001 1002 delete_insn (insn_info->insn); 1003 locally_deleted++; 1004 insn_info->insn = NULL; 1005 1006 insn_info->wild_read = false; 1007 } 1008 1009 /* Return whether DECL, a local variable, can possibly escape the current 1010 function scope. */ 1011 1012 static bool 1013 local_variable_can_escape (tree decl) 1014 { 1015 if (TREE_ADDRESSABLE (decl)) 1016 return true; 1017 1018 /* If this is a partitioned variable, we need to consider all the variables 1019 in the partition. This is necessary because a store into one of them can 1020 be replaced with a store into another and this may not change the outcome 1021 of the escape analysis. */ 1022 if (cfun->gimple_df->decls_to_pointers != NULL) 1023 { 1024 tree *namep = cfun->gimple_df->decls_to_pointers->get (decl); 1025 if (namep) 1026 return TREE_ADDRESSABLE (*namep); 1027 } 1028 1029 return false; 1030 } 1031 1032 /* Return whether EXPR can possibly escape the current function scope. */ 1033 1034 static bool 1035 can_escape (tree expr) 1036 { 1037 tree base; 1038 if (!expr) 1039 return true; 1040 base = get_base_address (expr); 1041 if (DECL_P (base) 1042 && !may_be_aliased (base) 1043 && !(TREE_CODE (base) == VAR_DECL 1044 && !DECL_EXTERNAL (base) 1045 && !TREE_STATIC (base) 1046 && local_variable_can_escape (base))) 1047 return false; 1048 return true; 1049 } 1050 1051 /* Set the store* bitmaps offset_map_size* fields in GROUP based on 1052 OFFSET and WIDTH. */ 1053 1054 static void 1055 set_usage_bits (group_info_t group, HOST_WIDE_INT offset, HOST_WIDE_INT width, 1056 tree expr) 1057 { 1058 HOST_WIDE_INT i; 1059 bool expr_escapes = can_escape (expr); 1060 if (offset > -MAX_OFFSET && offset + width < MAX_OFFSET) 1061 for (i=offset; i<offset+width; i++) 1062 { 1063 bitmap store1; 1064 bitmap store2; 1065 bitmap escaped; 1066 int ai; 1067 if (i < 0) 1068 { 1069 store1 = group->store1_n; 1070 store2 = group->store2_n; 1071 escaped = group->escaped_n; 1072 ai = -i; 1073 } 1074 else 1075 { 1076 store1 = group->store1_p; 1077 store2 = group->store2_p; 1078 escaped = group->escaped_p; 1079 ai = i; 1080 } 1081 1082 if (!bitmap_set_bit (store1, ai)) 1083 bitmap_set_bit (store2, ai); 1084 else 1085 { 1086 if (i < 0) 1087 { 1088 if (group->offset_map_size_n < ai) 1089 group->offset_map_size_n = ai; 1090 } 1091 else 1092 { 1093 if (group->offset_map_size_p < ai) 1094 group->offset_map_size_p = ai; 1095 } 1096 } 1097 if (expr_escapes) 1098 bitmap_set_bit (escaped, ai); 1099 } 1100 } 1101 1102 static void 1103 reset_active_stores (void) 1104 { 1105 active_local_stores = NULL; 1106 active_local_stores_len = 0; 1107 } 1108 1109 /* Free all READ_REC of the LAST_INSN of BB_INFO. */ 1110 1111 static void 1112 free_read_records (bb_info_t bb_info) 1113 { 1114 insn_info_t insn_info = bb_info->last_insn; 1115 read_info_t *ptr = &insn_info->read_rec; 1116 while (*ptr) 1117 { 1118 read_info_t next = (*ptr)->next; 1119 if ((*ptr)->alias_set == 0) 1120 { 1121 pool_free (read_info_pool, *ptr); 1122 *ptr = next; 1123 } 1124 else 1125 ptr = &(*ptr)->next; 1126 } 1127 } 1128 1129 /* Set the BB_INFO so that the last insn is marked as a wild read. */ 1130 1131 static void 1132 add_wild_read (bb_info_t bb_info) 1133 { 1134 insn_info_t insn_info = bb_info->last_insn; 1135 insn_info->wild_read = true; 1136 free_read_records (bb_info); 1137 reset_active_stores (); 1138 } 1139 1140 /* Set the BB_INFO so that the last insn is marked as a wild read of 1141 non-frame locations. */ 1142 1143 static void 1144 add_non_frame_wild_read (bb_info_t bb_info) 1145 { 1146 insn_info_t insn_info = bb_info->last_insn; 1147 insn_info->non_frame_wild_read = true; 1148 free_read_records (bb_info); 1149 reset_active_stores (); 1150 } 1151 1152 /* Return true if X is a constant or one of the registers that behave 1153 as a constant over the life of a function. This is equivalent to 1154 !rtx_varies_p for memory addresses. */ 1155 1156 static bool 1157 const_or_frame_p (rtx x) 1158 { 1159 if (CONSTANT_P (x)) 1160 return true; 1161 1162 if (GET_CODE (x) == REG) 1163 { 1164 /* Note that we have to test for the actual rtx used for the frame 1165 and arg pointers and not just the register number in case we have 1166 eliminated the frame and/or arg pointer and are using it 1167 for pseudos. */ 1168 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx 1169 /* The arg pointer varies if it is not a fixed register. */ 1170 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]) 1171 || x == pic_offset_table_rtx) 1172 return true; 1173 return false; 1174 } 1175 1176 return false; 1177 } 1178 1179 /* Take all reasonable action to put the address of MEM into the form 1180 that we can do analysis on. 1181 1182 The gold standard is to get the address into the form: address + 1183 OFFSET where address is something that rtx_varies_p considers a 1184 constant. When we can get the address in this form, we can do 1185 global analysis on it. Note that for constant bases, address is 1186 not actually returned, only the group_id. The address can be 1187 obtained from that. 1188 1189 If that fails, we try cselib to get a value we can at least use 1190 locally. If that fails we return false. 1191 1192 The GROUP_ID is set to -1 for cselib bases and the index of the 1193 group for non_varying bases. 1194 1195 FOR_READ is true if this is a mem read and false if not. */ 1196 1197 static bool 1198 canon_address (rtx mem, 1199 alias_set_type *alias_set_out, 1200 int *group_id, 1201 HOST_WIDE_INT *offset, 1202 cselib_val **base) 1203 { 1204 machine_mode address_mode = get_address_mode (mem); 1205 rtx mem_address = XEXP (mem, 0); 1206 rtx expanded_address, address; 1207 int expanded; 1208 1209 *alias_set_out = 0; 1210 1211 cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem)); 1212 1213 if (dump_file && (dump_flags & TDF_DETAILS)) 1214 { 1215 fprintf (dump_file, " mem: "); 1216 print_inline_rtx (dump_file, mem_address, 0); 1217 fprintf (dump_file, "\n"); 1218 } 1219 1220 /* First see if just canon_rtx (mem_address) is const or frame, 1221 if not, try cselib_expand_value_rtx and call canon_rtx on that. */ 1222 address = NULL_RTX; 1223 for (expanded = 0; expanded < 2; expanded++) 1224 { 1225 if (expanded) 1226 { 1227 /* Use cselib to replace all of the reg references with the full 1228 expression. This will take care of the case where we have 1229 1230 r_x = base + offset; 1231 val = *r_x; 1232 1233 by making it into 1234 1235 val = *(base + offset); */ 1236 1237 expanded_address = cselib_expand_value_rtx (mem_address, 1238 scratch, 5); 1239 1240 /* If this fails, just go with the address from first 1241 iteration. */ 1242 if (!expanded_address) 1243 break; 1244 } 1245 else 1246 expanded_address = mem_address; 1247 1248 /* Split the address into canonical BASE + OFFSET terms. */ 1249 address = canon_rtx (expanded_address); 1250 1251 *offset = 0; 1252 1253 if (dump_file && (dump_flags & TDF_DETAILS)) 1254 { 1255 if (expanded) 1256 { 1257 fprintf (dump_file, "\n after cselib_expand address: "); 1258 print_inline_rtx (dump_file, expanded_address, 0); 1259 fprintf (dump_file, "\n"); 1260 } 1261 1262 fprintf (dump_file, "\n after canon_rtx address: "); 1263 print_inline_rtx (dump_file, address, 0); 1264 fprintf (dump_file, "\n"); 1265 } 1266 1267 if (GET_CODE (address) == CONST) 1268 address = XEXP (address, 0); 1269 1270 if (GET_CODE (address) == PLUS 1271 && CONST_INT_P (XEXP (address, 1))) 1272 { 1273 *offset = INTVAL (XEXP (address, 1)); 1274 address = XEXP (address, 0); 1275 } 1276 1277 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem)) 1278 && const_or_frame_p (address)) 1279 { 1280 group_info_t group = get_group_info (address); 1281 1282 if (dump_file && (dump_flags & TDF_DETAILS)) 1283 fprintf (dump_file, " gid=%d offset=%d \n", 1284 group->id, (int)*offset); 1285 *base = NULL; 1286 *group_id = group->id; 1287 return true; 1288 } 1289 } 1290 1291 *base = cselib_lookup (address, address_mode, true, GET_MODE (mem)); 1292 *group_id = -1; 1293 1294 if (*base == NULL) 1295 { 1296 if (dump_file && (dump_flags & TDF_DETAILS)) 1297 fprintf (dump_file, " no cselib val - should be a wild read.\n"); 1298 return false; 1299 } 1300 if (dump_file && (dump_flags & TDF_DETAILS)) 1301 fprintf (dump_file, " varying cselib base=%u:%u offset = %d\n", 1302 (*base)->uid, (*base)->hash, (int)*offset); 1303 return true; 1304 } 1305 1306 1307 /* Clear the rhs field from the active_local_stores array. */ 1308 1309 static void 1310 clear_rhs_from_active_local_stores (void) 1311 { 1312 insn_info_t ptr = active_local_stores; 1313 1314 while (ptr) 1315 { 1316 store_info_t store_info = ptr->store_rec; 1317 /* Skip the clobbers. */ 1318 while (!store_info->is_set) 1319 store_info = store_info->next; 1320 1321 store_info->rhs = NULL; 1322 store_info->const_rhs = NULL; 1323 1324 ptr = ptr->next_local_store; 1325 } 1326 } 1327 1328 1329 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */ 1330 1331 static inline void 1332 set_position_unneeded (store_info_t s_info, int pos) 1333 { 1334 if (__builtin_expect (s_info->is_large, false)) 1335 { 1336 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos)) 1337 s_info->positions_needed.large.count++; 1338 } 1339 else 1340 s_info->positions_needed.small_bitmask 1341 &= ~(((unsigned HOST_WIDE_INT) 1) << pos); 1342 } 1343 1344 /* Mark the whole store S_INFO as unneeded. */ 1345 1346 static inline void 1347 set_all_positions_unneeded (store_info_t s_info) 1348 { 1349 if (__builtin_expect (s_info->is_large, false)) 1350 { 1351 int pos, end = s_info->end - s_info->begin; 1352 for (pos = 0; pos < end; pos++) 1353 bitmap_set_bit (s_info->positions_needed.large.bmap, pos); 1354 s_info->positions_needed.large.count = end; 1355 } 1356 else 1357 s_info->positions_needed.small_bitmask = (unsigned HOST_WIDE_INT) 0; 1358 } 1359 1360 /* Return TRUE if any bytes from S_INFO store are needed. */ 1361 1362 static inline bool 1363 any_positions_needed_p (store_info_t s_info) 1364 { 1365 if (__builtin_expect (s_info->is_large, false)) 1366 return (s_info->positions_needed.large.count 1367 < s_info->end - s_info->begin); 1368 else 1369 return (s_info->positions_needed.small_bitmask 1370 != (unsigned HOST_WIDE_INT) 0); 1371 } 1372 1373 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO 1374 store are needed. */ 1375 1376 static inline bool 1377 all_positions_needed_p (store_info_t s_info, int start, int width) 1378 { 1379 if (__builtin_expect (s_info->is_large, false)) 1380 { 1381 int end = start + width; 1382 while (start < end) 1383 if (bitmap_bit_p (s_info->positions_needed.large.bmap, start++)) 1384 return false; 1385 return true; 1386 } 1387 else 1388 { 1389 unsigned HOST_WIDE_INT mask = lowpart_bitmask (width) << start; 1390 return (s_info->positions_needed.small_bitmask & mask) == mask; 1391 } 1392 } 1393 1394 1395 static rtx get_stored_val (store_info_t, machine_mode, HOST_WIDE_INT, 1396 HOST_WIDE_INT, basic_block, bool); 1397 1398 1399 /* BODY is an instruction pattern that belongs to INSN. Return 1 if 1400 there is a candidate store, after adding it to the appropriate 1401 local store group if so. */ 1402 1403 static int 1404 record_store (rtx body, bb_info_t bb_info) 1405 { 1406 rtx mem, rhs, const_rhs, mem_addr; 1407 HOST_WIDE_INT offset = 0; 1408 HOST_WIDE_INT width = 0; 1409 alias_set_type spill_alias_set; 1410 insn_info_t insn_info = bb_info->last_insn; 1411 store_info_t store_info = NULL; 1412 int group_id; 1413 cselib_val *base = NULL; 1414 insn_info_t ptr, last, redundant_reason; 1415 bool store_is_unused; 1416 1417 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER) 1418 return 0; 1419 1420 mem = SET_DEST (body); 1421 1422 /* If this is not used, then this cannot be used to keep the insn 1423 from being deleted. On the other hand, it does provide something 1424 that can be used to prove that another store is dead. */ 1425 store_is_unused 1426 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL); 1427 1428 /* Check whether that value is a suitable memory location. */ 1429 if (!MEM_P (mem)) 1430 { 1431 /* If the set or clobber is unused, then it does not effect our 1432 ability to get rid of the entire insn. */ 1433 if (!store_is_unused) 1434 insn_info->cannot_delete = true; 1435 return 0; 1436 } 1437 1438 /* At this point we know mem is a mem. */ 1439 if (GET_MODE (mem) == BLKmode) 1440 { 1441 if (GET_CODE (XEXP (mem, 0)) == SCRATCH) 1442 { 1443 if (dump_file && (dump_flags & TDF_DETAILS)) 1444 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n"); 1445 add_wild_read (bb_info); 1446 insn_info->cannot_delete = true; 1447 return 0; 1448 } 1449 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0)) 1450 as memset (addr, 0, 36); */ 1451 else if (!MEM_SIZE_KNOWN_P (mem) 1452 || MEM_SIZE (mem) <= 0 1453 || MEM_SIZE (mem) > MAX_OFFSET 1454 || GET_CODE (body) != SET 1455 || !CONST_INT_P (SET_SRC (body))) 1456 { 1457 if (!store_is_unused) 1458 { 1459 /* If the set or clobber is unused, then it does not effect our 1460 ability to get rid of the entire insn. */ 1461 insn_info->cannot_delete = true; 1462 clear_rhs_from_active_local_stores (); 1463 } 1464 return 0; 1465 } 1466 } 1467 1468 /* We can still process a volatile mem, we just cannot delete it. */ 1469 if (MEM_VOLATILE_P (mem)) 1470 insn_info->cannot_delete = true; 1471 1472 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base)) 1473 { 1474 clear_rhs_from_active_local_stores (); 1475 return 0; 1476 } 1477 1478 if (GET_MODE (mem) == BLKmode) 1479 width = MEM_SIZE (mem); 1480 else 1481 width = GET_MODE_SIZE (GET_MODE (mem)); 1482 1483 if (spill_alias_set) 1484 { 1485 bitmap store1 = clear_alias_group->store1_p; 1486 bitmap store2 = clear_alias_group->store2_p; 1487 1488 gcc_assert (GET_MODE (mem) != BLKmode); 1489 1490 if (!bitmap_set_bit (store1, spill_alias_set)) 1491 bitmap_set_bit (store2, spill_alias_set); 1492 1493 if (clear_alias_group->offset_map_size_p < spill_alias_set) 1494 clear_alias_group->offset_map_size_p = spill_alias_set; 1495 1496 store_info = (store_info_t) pool_alloc (rtx_store_info_pool); 1497 1498 if (dump_file && (dump_flags & TDF_DETAILS)) 1499 fprintf (dump_file, " processing spill store %d(%s)\n", 1500 (int) spill_alias_set, GET_MODE_NAME (GET_MODE (mem))); 1501 } 1502 else if (group_id >= 0) 1503 { 1504 /* In the restrictive case where the base is a constant or the 1505 frame pointer we can do global analysis. */ 1506 1507 group_info_t group 1508 = rtx_group_vec[group_id]; 1509 tree expr = MEM_EXPR (mem); 1510 1511 store_info = (store_info_t) pool_alloc (rtx_store_info_pool); 1512 set_usage_bits (group, offset, width, expr); 1513 1514 if (dump_file && (dump_flags & TDF_DETAILS)) 1515 fprintf (dump_file, " processing const base store gid=%d[%d..%d)\n", 1516 group_id, (int)offset, (int)(offset+width)); 1517 } 1518 else 1519 { 1520 if (may_be_sp_based_p (XEXP (mem, 0))) 1521 insn_info->stack_pointer_based = true; 1522 insn_info->contains_cselib_groups = true; 1523 1524 store_info = (store_info_t) pool_alloc (cse_store_info_pool); 1525 group_id = -1; 1526 1527 if (dump_file && (dump_flags & TDF_DETAILS)) 1528 fprintf (dump_file, " processing cselib store [%d..%d)\n", 1529 (int)offset, (int)(offset+width)); 1530 } 1531 1532 const_rhs = rhs = NULL_RTX; 1533 if (GET_CODE (body) == SET 1534 /* No place to keep the value after ra. */ 1535 && !reload_completed 1536 && (REG_P (SET_SRC (body)) 1537 || GET_CODE (SET_SRC (body)) == SUBREG 1538 || CONSTANT_P (SET_SRC (body))) 1539 && !MEM_VOLATILE_P (mem) 1540 /* Sometimes the store and reload is used for truncation and 1541 rounding. */ 1542 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store))) 1543 { 1544 rhs = SET_SRC (body); 1545 if (CONSTANT_P (rhs)) 1546 const_rhs = rhs; 1547 else if (body == PATTERN (insn_info->insn)) 1548 { 1549 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX); 1550 if (tem && CONSTANT_P (XEXP (tem, 0))) 1551 const_rhs = XEXP (tem, 0); 1552 } 1553 if (const_rhs == NULL_RTX && REG_P (rhs)) 1554 { 1555 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5); 1556 1557 if (tem && CONSTANT_P (tem)) 1558 const_rhs = tem; 1559 } 1560 } 1561 1562 /* Check to see if this stores causes some other stores to be 1563 dead. */ 1564 ptr = active_local_stores; 1565 last = NULL; 1566 redundant_reason = NULL; 1567 mem = canon_rtx (mem); 1568 /* For alias_set != 0 canon_true_dependence should be never called. */ 1569 if (spill_alias_set) 1570 mem_addr = NULL_RTX; 1571 else 1572 { 1573 if (group_id < 0) 1574 mem_addr = base->val_rtx; 1575 else 1576 { 1577 group_info_t group = rtx_group_vec[group_id]; 1578 mem_addr = group->canon_base_addr; 1579 } 1580 if (offset) 1581 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset); 1582 } 1583 1584 while (ptr) 1585 { 1586 insn_info_t next = ptr->next_local_store; 1587 store_info_t s_info = ptr->store_rec; 1588 bool del = true; 1589 1590 /* Skip the clobbers. We delete the active insn if this insn 1591 shadows the set. To have been put on the active list, it 1592 has exactly on set. */ 1593 while (!s_info->is_set) 1594 s_info = s_info->next; 1595 1596 if (s_info->alias_set != spill_alias_set) 1597 del = false; 1598 else if (s_info->alias_set) 1599 { 1600 struct clear_alias_mode_holder *entry 1601 = clear_alias_set_lookup (s_info->alias_set); 1602 /* Generally, spills cannot be processed if and of the 1603 references to the slot have a different mode. But if 1604 we are in the same block and mode is exactly the same 1605 between this store and one before in the same block, 1606 we can still delete it. */ 1607 if ((GET_MODE (mem) == GET_MODE (s_info->mem)) 1608 && (GET_MODE (mem) == entry->mode)) 1609 { 1610 del = true; 1611 set_all_positions_unneeded (s_info); 1612 } 1613 if (dump_file && (dump_flags & TDF_DETAILS)) 1614 fprintf (dump_file, " trying spill store in insn=%d alias_set=%d\n", 1615 INSN_UID (ptr->insn), (int) s_info->alias_set); 1616 } 1617 else if ((s_info->group_id == group_id) 1618 && (s_info->cse_base == base)) 1619 { 1620 HOST_WIDE_INT i; 1621 if (dump_file && (dump_flags & TDF_DETAILS)) 1622 fprintf (dump_file, " trying store in insn=%d gid=%d[%d..%d)\n", 1623 INSN_UID (ptr->insn), s_info->group_id, 1624 (int)s_info->begin, (int)s_info->end); 1625 1626 /* Even if PTR won't be eliminated as unneeded, if both 1627 PTR and this insn store the same constant value, we might 1628 eliminate this insn instead. */ 1629 if (s_info->const_rhs 1630 && const_rhs 1631 && offset >= s_info->begin 1632 && offset + width <= s_info->end 1633 && all_positions_needed_p (s_info, offset - s_info->begin, 1634 width)) 1635 { 1636 if (GET_MODE (mem) == BLKmode) 1637 { 1638 if (GET_MODE (s_info->mem) == BLKmode 1639 && s_info->const_rhs == const_rhs) 1640 redundant_reason = ptr; 1641 } 1642 else if (s_info->const_rhs == const0_rtx 1643 && const_rhs == const0_rtx) 1644 redundant_reason = ptr; 1645 else 1646 { 1647 rtx val; 1648 start_sequence (); 1649 val = get_stored_val (s_info, GET_MODE (mem), 1650 offset, offset + width, 1651 BLOCK_FOR_INSN (insn_info->insn), 1652 true); 1653 if (get_insns () != NULL) 1654 val = NULL_RTX; 1655 end_sequence (); 1656 if (val && rtx_equal_p (val, const_rhs)) 1657 redundant_reason = ptr; 1658 } 1659 } 1660 1661 for (i = MAX (offset, s_info->begin); 1662 i < offset + width && i < s_info->end; 1663 i++) 1664 set_position_unneeded (s_info, i - s_info->begin); 1665 } 1666 else if (s_info->rhs) 1667 /* Need to see if it is possible for this store to overwrite 1668 the value of store_info. If it is, set the rhs to NULL to 1669 keep it from being used to remove a load. */ 1670 { 1671 if (canon_output_dependence (s_info->mem, true, 1672 mem, GET_MODE (mem), 1673 mem_addr)) 1674 { 1675 s_info->rhs = NULL; 1676 s_info->const_rhs = NULL; 1677 } 1678 } 1679 1680 /* An insn can be deleted if every position of every one of 1681 its s_infos is zero. */ 1682 if (any_positions_needed_p (s_info)) 1683 del = false; 1684 1685 if (del) 1686 { 1687 insn_info_t insn_to_delete = ptr; 1688 1689 active_local_stores_len--; 1690 if (last) 1691 last->next_local_store = ptr->next_local_store; 1692 else 1693 active_local_stores = ptr->next_local_store; 1694 1695 if (!insn_to_delete->cannot_delete) 1696 delete_dead_store_insn (insn_to_delete); 1697 } 1698 else 1699 last = ptr; 1700 1701 ptr = next; 1702 } 1703 1704 /* Finish filling in the store_info. */ 1705 store_info->next = insn_info->store_rec; 1706 insn_info->store_rec = store_info; 1707 store_info->mem = mem; 1708 store_info->alias_set = spill_alias_set; 1709 store_info->mem_addr = mem_addr; 1710 store_info->cse_base = base; 1711 if (width > HOST_BITS_PER_WIDE_INT) 1712 { 1713 store_info->is_large = true; 1714 store_info->positions_needed.large.count = 0; 1715 store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack); 1716 } 1717 else 1718 { 1719 store_info->is_large = false; 1720 store_info->positions_needed.small_bitmask = lowpart_bitmask (width); 1721 } 1722 store_info->group_id = group_id; 1723 store_info->begin = offset; 1724 store_info->end = offset + width; 1725 store_info->is_set = GET_CODE (body) == SET; 1726 store_info->rhs = rhs; 1727 store_info->const_rhs = const_rhs; 1728 store_info->redundant_reason = redundant_reason; 1729 1730 /* If this is a clobber, we return 0. We will only be able to 1731 delete this insn if there is only one store USED store, but we 1732 can use the clobber to delete other stores earlier. */ 1733 return store_info->is_set ? 1 : 0; 1734 } 1735 1736 1737 static void 1738 dump_insn_info (const char * start, insn_info_t insn_info) 1739 { 1740 fprintf (dump_file, "%s insn=%d %s\n", start, 1741 INSN_UID (insn_info->insn), 1742 insn_info->store_rec ? "has store" : "naked"); 1743 } 1744 1745 1746 /* If the modes are different and the value's source and target do not 1747 line up, we need to extract the value from lower part of the rhs of 1748 the store, shift it, and then put it into a form that can be shoved 1749 into the read_insn. This function generates a right SHIFT of a 1750 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The 1751 shift sequence is returned or NULL if we failed to find a 1752 shift. */ 1753 1754 static rtx 1755 find_shift_sequence (int access_size, 1756 store_info_t store_info, 1757 machine_mode read_mode, 1758 int shift, bool speed, bool require_cst) 1759 { 1760 machine_mode store_mode = GET_MODE (store_info->mem); 1761 machine_mode new_mode; 1762 rtx read_reg = NULL; 1763 1764 /* Some machines like the x86 have shift insns for each size of 1765 operand. Other machines like the ppc or the ia-64 may only have 1766 shift insns that shift values within 32 or 64 bit registers. 1767 This loop tries to find the smallest shift insn that will right 1768 justify the value we want to read but is available in one insn on 1769 the machine. */ 1770 1771 for (new_mode = smallest_mode_for_size (access_size * BITS_PER_UNIT, 1772 MODE_INT); 1773 GET_MODE_BITSIZE (new_mode) <= BITS_PER_WORD; 1774 new_mode = GET_MODE_WIDER_MODE (new_mode)) 1775 { 1776 rtx target, new_reg, new_lhs; 1777 rtx_insn *shift_seq, *insn; 1778 int cost; 1779 1780 /* If a constant was stored into memory, try to simplify it here, 1781 otherwise the cost of the shift might preclude this optimization 1782 e.g. at -Os, even when no actual shift will be needed. */ 1783 if (store_info->const_rhs) 1784 { 1785 unsigned int byte = subreg_lowpart_offset (new_mode, store_mode); 1786 rtx ret = simplify_subreg (new_mode, store_info->const_rhs, 1787 store_mode, byte); 1788 if (ret && CONSTANT_P (ret)) 1789 { 1790 ret = simplify_const_binary_operation (LSHIFTRT, new_mode, 1791 ret, GEN_INT (shift)); 1792 if (ret && CONSTANT_P (ret)) 1793 { 1794 byte = subreg_lowpart_offset (read_mode, new_mode); 1795 ret = simplify_subreg (read_mode, ret, new_mode, byte); 1796 if (ret && CONSTANT_P (ret) 1797 && set_src_cost (ret, speed) <= COSTS_N_INSNS (1)) 1798 return ret; 1799 } 1800 } 1801 } 1802 1803 if (require_cst) 1804 return NULL_RTX; 1805 1806 /* Try a wider mode if truncating the store mode to NEW_MODE 1807 requires a real instruction. */ 1808 if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode) 1809 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode)) 1810 continue; 1811 1812 /* Also try a wider mode if the necessary punning is either not 1813 desirable or not possible. */ 1814 if (!CONSTANT_P (store_info->rhs) 1815 && !MODES_TIEABLE_P (new_mode, store_mode)) 1816 continue; 1817 1818 new_reg = gen_reg_rtx (new_mode); 1819 1820 start_sequence (); 1821 1822 /* In theory we could also check for an ashr. Ian Taylor knows 1823 of one dsp where the cost of these two was not the same. But 1824 this really is a rare case anyway. */ 1825 target = expand_binop (new_mode, lshr_optab, new_reg, 1826 GEN_INT (shift), new_reg, 1, OPTAB_DIRECT); 1827 1828 shift_seq = get_insns (); 1829 end_sequence (); 1830 1831 if (target != new_reg || shift_seq == NULL) 1832 continue; 1833 1834 cost = 0; 1835 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn)) 1836 if (INSN_P (insn)) 1837 cost += insn_rtx_cost (PATTERN (insn), speed); 1838 1839 /* The computation up to here is essentially independent 1840 of the arguments and could be precomputed. It may 1841 not be worth doing so. We could precompute if 1842 worthwhile or at least cache the results. The result 1843 technically depends on both SHIFT and ACCESS_SIZE, 1844 but in practice the answer will depend only on ACCESS_SIZE. */ 1845 1846 if (cost > COSTS_N_INSNS (1)) 1847 continue; 1848 1849 new_lhs = extract_low_bits (new_mode, store_mode, 1850 copy_rtx (store_info->rhs)); 1851 if (new_lhs == NULL_RTX) 1852 continue; 1853 1854 /* We found an acceptable shift. Generate a move to 1855 take the value from the store and put it into the 1856 shift pseudo, then shift it, then generate another 1857 move to put in into the target of the read. */ 1858 emit_move_insn (new_reg, new_lhs); 1859 emit_insn (shift_seq); 1860 read_reg = extract_low_bits (read_mode, new_mode, new_reg); 1861 break; 1862 } 1863 1864 return read_reg; 1865 } 1866 1867 1868 /* Call back for note_stores to find the hard regs set or clobbered by 1869 insn. Data is a bitmap of the hardregs set so far. */ 1870 1871 static void 1872 look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data) 1873 { 1874 bitmap regs_set = (bitmap) data; 1875 1876 if (REG_P (x) 1877 && HARD_REGISTER_P (x)) 1878 { 1879 unsigned int regno = REGNO (x); 1880 bitmap_set_range (regs_set, regno, 1881 hard_regno_nregs[regno][GET_MODE (x)]); 1882 } 1883 } 1884 1885 /* Helper function for replace_read and record_store. 1886 Attempt to return a value stored in STORE_INFO, from READ_BEGIN 1887 to one before READ_END bytes read in READ_MODE. Return NULL 1888 if not successful. If REQUIRE_CST is true, return always constant. */ 1889 1890 static rtx 1891 get_stored_val (store_info_t store_info, machine_mode read_mode, 1892 HOST_WIDE_INT read_begin, HOST_WIDE_INT read_end, 1893 basic_block bb, bool require_cst) 1894 { 1895 machine_mode store_mode = GET_MODE (store_info->mem); 1896 int shift; 1897 int access_size; /* In bytes. */ 1898 rtx read_reg; 1899 1900 /* To get here the read is within the boundaries of the write so 1901 shift will never be negative. Start out with the shift being in 1902 bytes. */ 1903 if (store_mode == BLKmode) 1904 shift = 0; 1905 else if (BYTES_BIG_ENDIAN) 1906 shift = store_info->end - read_end; 1907 else 1908 shift = read_begin - store_info->begin; 1909 1910 access_size = shift + GET_MODE_SIZE (read_mode); 1911 1912 /* From now on it is bits. */ 1913 shift *= BITS_PER_UNIT; 1914 1915 if (shift) 1916 read_reg = find_shift_sequence (access_size, store_info, read_mode, shift, 1917 optimize_bb_for_speed_p (bb), 1918 require_cst); 1919 else if (store_mode == BLKmode) 1920 { 1921 /* The store is a memset (addr, const_val, const_size). */ 1922 gcc_assert (CONST_INT_P (store_info->rhs)); 1923 store_mode = int_mode_for_mode (read_mode); 1924 if (store_mode == BLKmode) 1925 read_reg = NULL_RTX; 1926 else if (store_info->rhs == const0_rtx) 1927 read_reg = extract_low_bits (read_mode, store_mode, const0_rtx); 1928 else if (GET_MODE_BITSIZE (store_mode) > HOST_BITS_PER_WIDE_INT 1929 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT) 1930 read_reg = NULL_RTX; 1931 else 1932 { 1933 unsigned HOST_WIDE_INT c 1934 = INTVAL (store_info->rhs) 1935 & (((HOST_WIDE_INT) 1 << BITS_PER_UNIT) - 1); 1936 int shift = BITS_PER_UNIT; 1937 while (shift < HOST_BITS_PER_WIDE_INT) 1938 { 1939 c |= (c << shift); 1940 shift <<= 1; 1941 } 1942 read_reg = gen_int_mode (c, store_mode); 1943 read_reg = extract_low_bits (read_mode, store_mode, read_reg); 1944 } 1945 } 1946 else if (store_info->const_rhs 1947 && (require_cst 1948 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode))) 1949 read_reg = extract_low_bits (read_mode, store_mode, 1950 copy_rtx (store_info->const_rhs)); 1951 else 1952 read_reg = extract_low_bits (read_mode, store_mode, 1953 copy_rtx (store_info->rhs)); 1954 if (require_cst && read_reg && !CONSTANT_P (read_reg)) 1955 read_reg = NULL_RTX; 1956 return read_reg; 1957 } 1958 1959 /* Take a sequence of: 1960 A <- r1 1961 ... 1962 ... <- A 1963 1964 and change it into 1965 r2 <- r1 1966 A <- r1 1967 ... 1968 ... <- r2 1969 1970 or 1971 1972 r3 <- extract (r1) 1973 r3 <- r3 >> shift 1974 r2 <- extract (r3) 1975 ... <- r2 1976 1977 or 1978 1979 r2 <- extract (r1) 1980 ... <- r2 1981 1982 Depending on the alignment and the mode of the store and 1983 subsequent load. 1984 1985 1986 The STORE_INFO and STORE_INSN are for the store and READ_INFO 1987 and READ_INSN are for the read. Return true if the replacement 1988 went ok. */ 1989 1990 static bool 1991 replace_read (store_info_t store_info, insn_info_t store_insn, 1992 read_info_t read_info, insn_info_t read_insn, rtx *loc, 1993 bitmap regs_live) 1994 { 1995 machine_mode store_mode = GET_MODE (store_info->mem); 1996 machine_mode read_mode = GET_MODE (read_info->mem); 1997 rtx_insn *insns, *this_insn; 1998 rtx read_reg; 1999 basic_block bb; 2000 2001 if (!dbg_cnt (dse)) 2002 return false; 2003 2004 /* Create a sequence of instructions to set up the read register. 2005 This sequence goes immediately before the store and its result 2006 is read by the load. 2007 2008 We need to keep this in perspective. We are replacing a read 2009 with a sequence of insns, but the read will almost certainly be 2010 in cache, so it is not going to be an expensive one. Thus, we 2011 are not willing to do a multi insn shift or worse a subroutine 2012 call to get rid of the read. */ 2013 if (dump_file && (dump_flags & TDF_DETAILS)) 2014 fprintf (dump_file, "trying to replace %smode load in insn %d" 2015 " from %smode store in insn %d\n", 2016 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn), 2017 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn)); 2018 start_sequence (); 2019 bb = BLOCK_FOR_INSN (read_insn->insn); 2020 read_reg = get_stored_val (store_info, 2021 read_mode, read_info->begin, read_info->end, 2022 bb, false); 2023 if (read_reg == NULL_RTX) 2024 { 2025 end_sequence (); 2026 if (dump_file && (dump_flags & TDF_DETAILS)) 2027 fprintf (dump_file, " -- could not extract bits of stored value\n"); 2028 return false; 2029 } 2030 /* Force the value into a new register so that it won't be clobbered 2031 between the store and the load. */ 2032 read_reg = copy_to_mode_reg (read_mode, read_reg); 2033 insns = get_insns (); 2034 end_sequence (); 2035 2036 if (insns != NULL_RTX) 2037 { 2038 /* Now we have to scan the set of new instructions to see if the 2039 sequence contains and sets of hardregs that happened to be 2040 live at this point. For instance, this can happen if one of 2041 the insns sets the CC and the CC happened to be live at that 2042 point. This does occasionally happen, see PR 37922. */ 2043 bitmap regs_set = BITMAP_ALLOC (®_obstack); 2044 2045 for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn)) 2046 note_stores (PATTERN (this_insn), look_for_hardregs, regs_set); 2047 2048 bitmap_and_into (regs_set, regs_live); 2049 if (!bitmap_empty_p (regs_set)) 2050 { 2051 if (dump_file && (dump_flags & TDF_DETAILS)) 2052 { 2053 fprintf (dump_file, 2054 "abandoning replacement because sequence clobbers live hardregs:"); 2055 df_print_regset (dump_file, regs_set); 2056 } 2057 2058 BITMAP_FREE (regs_set); 2059 return false; 2060 } 2061 BITMAP_FREE (regs_set); 2062 } 2063 2064 if (validate_change (read_insn->insn, loc, read_reg, 0)) 2065 { 2066 deferred_change_t deferred_change = 2067 (deferred_change_t) pool_alloc (deferred_change_pool); 2068 2069 /* Insert this right before the store insn where it will be safe 2070 from later insns that might change it before the read. */ 2071 emit_insn_before (insns, store_insn->insn); 2072 2073 /* And now for the kludge part: cselib croaks if you just 2074 return at this point. There are two reasons for this: 2075 2076 1) Cselib has an idea of how many pseudos there are and 2077 that does not include the new ones we just added. 2078 2079 2) Cselib does not know about the move insn we added 2080 above the store_info, and there is no way to tell it 2081 about it, because it has "moved on". 2082 2083 Problem (1) is fixable with a certain amount of engineering. 2084 Problem (2) is requires starting the bb from scratch. This 2085 could be expensive. 2086 2087 So we are just going to have to lie. The move/extraction 2088 insns are not really an issue, cselib did not see them. But 2089 the use of the new pseudo read_insn is a real problem because 2090 cselib has not scanned this insn. The way that we solve this 2091 problem is that we are just going to put the mem back for now 2092 and when we are finished with the block, we undo this. We 2093 keep a table of mems to get rid of. At the end of the basic 2094 block we can put them back. */ 2095 2096 *loc = read_info->mem; 2097 deferred_change->next = deferred_change_list; 2098 deferred_change_list = deferred_change; 2099 deferred_change->loc = loc; 2100 deferred_change->reg = read_reg; 2101 2102 /* Get rid of the read_info, from the point of view of the 2103 rest of dse, play like this read never happened. */ 2104 read_insn->read_rec = read_info->next; 2105 pool_free (read_info_pool, read_info); 2106 if (dump_file && (dump_flags & TDF_DETAILS)) 2107 { 2108 fprintf (dump_file, " -- replaced the loaded MEM with "); 2109 print_simple_rtl (dump_file, read_reg); 2110 fprintf (dump_file, "\n"); 2111 } 2112 return true; 2113 } 2114 else 2115 { 2116 if (dump_file && (dump_flags & TDF_DETAILS)) 2117 { 2118 fprintf (dump_file, " -- replacing the loaded MEM with "); 2119 print_simple_rtl (dump_file, read_reg); 2120 fprintf (dump_file, " led to an invalid instruction\n"); 2121 } 2122 return false; 2123 } 2124 } 2125 2126 /* Check the address of MEM *LOC and kill any appropriate stores that may 2127 be active. */ 2128 2129 static void 2130 check_mem_read_rtx (rtx *loc, bb_info_t bb_info) 2131 { 2132 rtx mem = *loc, mem_addr; 2133 insn_info_t insn_info; 2134 HOST_WIDE_INT offset = 0; 2135 HOST_WIDE_INT width = 0; 2136 alias_set_type spill_alias_set = 0; 2137 cselib_val *base = NULL; 2138 int group_id; 2139 read_info_t read_info; 2140 2141 insn_info = bb_info->last_insn; 2142 2143 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER) 2144 || (MEM_VOLATILE_P (mem))) 2145 { 2146 if (dump_file && (dump_flags & TDF_DETAILS)) 2147 fprintf (dump_file, " adding wild read, volatile or barrier.\n"); 2148 add_wild_read (bb_info); 2149 insn_info->cannot_delete = true; 2150 return; 2151 } 2152 2153 /* If it is reading readonly mem, then there can be no conflict with 2154 another write. */ 2155 if (MEM_READONLY_P (mem)) 2156 return; 2157 2158 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base)) 2159 { 2160 if (dump_file && (dump_flags & TDF_DETAILS)) 2161 fprintf (dump_file, " adding wild read, canon_address failure.\n"); 2162 add_wild_read (bb_info); 2163 return; 2164 } 2165 2166 if (GET_MODE (mem) == BLKmode) 2167 width = -1; 2168 else 2169 width = GET_MODE_SIZE (GET_MODE (mem)); 2170 2171 read_info = (read_info_t) pool_alloc (read_info_pool); 2172 read_info->group_id = group_id; 2173 read_info->mem = mem; 2174 read_info->alias_set = spill_alias_set; 2175 read_info->begin = offset; 2176 read_info->end = offset + width; 2177 read_info->next = insn_info->read_rec; 2178 insn_info->read_rec = read_info; 2179 /* For alias_set != 0 canon_true_dependence should be never called. */ 2180 if (spill_alias_set) 2181 mem_addr = NULL_RTX; 2182 else 2183 { 2184 if (group_id < 0) 2185 mem_addr = base->val_rtx; 2186 else 2187 { 2188 group_info_t group = rtx_group_vec[group_id]; 2189 mem_addr = group->canon_base_addr; 2190 } 2191 if (offset) 2192 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset); 2193 } 2194 2195 /* We ignore the clobbers in store_info. The is mildly aggressive, 2196 but there really should not be a clobber followed by a read. */ 2197 2198 if (spill_alias_set) 2199 { 2200 insn_info_t i_ptr = active_local_stores; 2201 insn_info_t last = NULL; 2202 2203 if (dump_file && (dump_flags & TDF_DETAILS)) 2204 fprintf (dump_file, " processing spill load %d\n", 2205 (int) spill_alias_set); 2206 2207 while (i_ptr) 2208 { 2209 store_info_t store_info = i_ptr->store_rec; 2210 2211 /* Skip the clobbers. */ 2212 while (!store_info->is_set) 2213 store_info = store_info->next; 2214 2215 if (store_info->alias_set == spill_alias_set) 2216 { 2217 if (dump_file && (dump_flags & TDF_DETAILS)) 2218 dump_insn_info ("removing from active", i_ptr); 2219 2220 active_local_stores_len--; 2221 if (last) 2222 last->next_local_store = i_ptr->next_local_store; 2223 else 2224 active_local_stores = i_ptr->next_local_store; 2225 } 2226 else 2227 last = i_ptr; 2228 i_ptr = i_ptr->next_local_store; 2229 } 2230 } 2231 else if (group_id >= 0) 2232 { 2233 /* This is the restricted case where the base is a constant or 2234 the frame pointer and offset is a constant. */ 2235 insn_info_t i_ptr = active_local_stores; 2236 insn_info_t last = NULL; 2237 2238 if (dump_file && (dump_flags & TDF_DETAILS)) 2239 { 2240 if (width == -1) 2241 fprintf (dump_file, " processing const load gid=%d[BLK]\n", 2242 group_id); 2243 else 2244 fprintf (dump_file, " processing const load gid=%d[%d..%d)\n", 2245 group_id, (int)offset, (int)(offset+width)); 2246 } 2247 2248 while (i_ptr) 2249 { 2250 bool remove = false; 2251 store_info_t store_info = i_ptr->store_rec; 2252 2253 /* Skip the clobbers. */ 2254 while (!store_info->is_set) 2255 store_info = store_info->next; 2256 2257 /* There are three cases here. */ 2258 if (store_info->group_id < 0) 2259 /* We have a cselib store followed by a read from a 2260 const base. */ 2261 remove 2262 = canon_true_dependence (store_info->mem, 2263 GET_MODE (store_info->mem), 2264 store_info->mem_addr, 2265 mem, mem_addr); 2266 2267 else if (group_id == store_info->group_id) 2268 { 2269 /* This is a block mode load. We may get lucky and 2270 canon_true_dependence may save the day. */ 2271 if (width == -1) 2272 remove 2273 = canon_true_dependence (store_info->mem, 2274 GET_MODE (store_info->mem), 2275 store_info->mem_addr, 2276 mem, mem_addr); 2277 2278 /* If this read is just reading back something that we just 2279 stored, rewrite the read. */ 2280 else 2281 { 2282 if (store_info->rhs 2283 && offset >= store_info->begin 2284 && offset + width <= store_info->end 2285 && all_positions_needed_p (store_info, 2286 offset - store_info->begin, 2287 width) 2288 && replace_read (store_info, i_ptr, read_info, 2289 insn_info, loc, bb_info->regs_live)) 2290 return; 2291 2292 /* The bases are the same, just see if the offsets 2293 overlap. */ 2294 if ((offset < store_info->end) 2295 && (offset + width > store_info->begin)) 2296 remove = true; 2297 } 2298 } 2299 2300 /* else 2301 The else case that is missing here is that the 2302 bases are constant but different. There is nothing 2303 to do here because there is no overlap. */ 2304 2305 if (remove) 2306 { 2307 if (dump_file && (dump_flags & TDF_DETAILS)) 2308 dump_insn_info ("removing from active", i_ptr); 2309 2310 active_local_stores_len--; 2311 if (last) 2312 last->next_local_store = i_ptr->next_local_store; 2313 else 2314 active_local_stores = i_ptr->next_local_store; 2315 } 2316 else 2317 last = i_ptr; 2318 i_ptr = i_ptr->next_local_store; 2319 } 2320 } 2321 else 2322 { 2323 insn_info_t i_ptr = active_local_stores; 2324 insn_info_t last = NULL; 2325 if (dump_file && (dump_flags & TDF_DETAILS)) 2326 { 2327 fprintf (dump_file, " processing cselib load mem:"); 2328 print_inline_rtx (dump_file, mem, 0); 2329 fprintf (dump_file, "\n"); 2330 } 2331 2332 while (i_ptr) 2333 { 2334 bool remove = false; 2335 store_info_t store_info = i_ptr->store_rec; 2336 2337 if (dump_file && (dump_flags & TDF_DETAILS)) 2338 fprintf (dump_file, " processing cselib load against insn %d\n", 2339 INSN_UID (i_ptr->insn)); 2340 2341 /* Skip the clobbers. */ 2342 while (!store_info->is_set) 2343 store_info = store_info->next; 2344 2345 /* If this read is just reading back something that we just 2346 stored, rewrite the read. */ 2347 if (store_info->rhs 2348 && store_info->group_id == -1 2349 && store_info->cse_base == base 2350 && width != -1 2351 && offset >= store_info->begin 2352 && offset + width <= store_info->end 2353 && all_positions_needed_p (store_info, 2354 offset - store_info->begin, width) 2355 && replace_read (store_info, i_ptr, read_info, insn_info, loc, 2356 bb_info->regs_live)) 2357 return; 2358 2359 if (!store_info->alias_set) 2360 remove = canon_true_dependence (store_info->mem, 2361 GET_MODE (store_info->mem), 2362 store_info->mem_addr, 2363 mem, mem_addr); 2364 2365 if (remove) 2366 { 2367 if (dump_file && (dump_flags & TDF_DETAILS)) 2368 dump_insn_info ("removing from active", i_ptr); 2369 2370 active_local_stores_len--; 2371 if (last) 2372 last->next_local_store = i_ptr->next_local_store; 2373 else 2374 active_local_stores = i_ptr->next_local_store; 2375 } 2376 else 2377 last = i_ptr; 2378 i_ptr = i_ptr->next_local_store; 2379 } 2380 } 2381 } 2382 2383 /* A note_uses callback in which DATA points the INSN_INFO for 2384 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns 2385 true for any part of *LOC. */ 2386 2387 static void 2388 check_mem_read_use (rtx *loc, void *data) 2389 { 2390 subrtx_ptr_iterator::array_type array; 2391 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST) 2392 { 2393 rtx *loc = *iter; 2394 if (MEM_P (*loc)) 2395 check_mem_read_rtx (loc, (bb_info_t) data); 2396 } 2397 } 2398 2399 2400 /* Get arguments passed to CALL_INSN. Return TRUE if successful. 2401 So far it only handles arguments passed in registers. */ 2402 2403 static bool 2404 get_call_args (rtx call_insn, tree fn, rtx *args, int nargs) 2405 { 2406 CUMULATIVE_ARGS args_so_far_v; 2407 cumulative_args_t args_so_far; 2408 tree arg; 2409 int idx; 2410 2411 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3); 2412 args_so_far = pack_cumulative_args (&args_so_far_v); 2413 2414 arg = TYPE_ARG_TYPES (TREE_TYPE (fn)); 2415 for (idx = 0; 2416 arg != void_list_node && idx < nargs; 2417 arg = TREE_CHAIN (arg), idx++) 2418 { 2419 machine_mode mode = TYPE_MODE (TREE_VALUE (arg)); 2420 rtx reg, link, tmp; 2421 reg = targetm.calls.function_arg (args_so_far, mode, NULL_TREE, true); 2422 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode 2423 || GET_MODE_CLASS (mode) != MODE_INT) 2424 return false; 2425 2426 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); 2427 link; 2428 link = XEXP (link, 1)) 2429 if (GET_CODE (XEXP (link, 0)) == USE) 2430 { 2431 args[idx] = XEXP (XEXP (link, 0), 0); 2432 if (REG_P (args[idx]) 2433 && REGNO (args[idx]) == REGNO (reg) 2434 && (GET_MODE (args[idx]) == mode 2435 || (GET_MODE_CLASS (GET_MODE (args[idx])) == MODE_INT 2436 && (GET_MODE_SIZE (GET_MODE (args[idx])) 2437 <= UNITS_PER_WORD) 2438 && (GET_MODE_SIZE (GET_MODE (args[idx])) 2439 > GET_MODE_SIZE (mode))))) 2440 break; 2441 } 2442 if (!link) 2443 return false; 2444 2445 tmp = cselib_expand_value_rtx (args[idx], scratch, 5); 2446 if (GET_MODE (args[idx]) != mode) 2447 { 2448 if (!tmp || !CONST_INT_P (tmp)) 2449 return false; 2450 tmp = gen_int_mode (INTVAL (tmp), mode); 2451 } 2452 if (tmp) 2453 args[idx] = tmp; 2454 2455 targetm.calls.function_arg_advance (args_so_far, mode, NULL_TREE, true); 2456 } 2457 if (arg != void_list_node || idx != nargs) 2458 return false; 2459 return true; 2460 } 2461 2462 /* Return a bitmap of the fixed registers contained in IN. */ 2463 2464 static bitmap 2465 copy_fixed_regs (const_bitmap in) 2466 { 2467 bitmap ret; 2468 2469 ret = ALLOC_REG_SET (NULL); 2470 bitmap_and (ret, in, fixed_reg_set_regset); 2471 return ret; 2472 } 2473 2474 /* Apply record_store to all candidate stores in INSN. Mark INSN 2475 if some part of it is not a candidate store and assigns to a 2476 non-register target. */ 2477 2478 static void 2479 scan_insn (bb_info_t bb_info, rtx_insn *insn) 2480 { 2481 rtx body; 2482 insn_info_t insn_info = (insn_info_t) pool_alloc (insn_info_pool); 2483 int mems_found = 0; 2484 memset (insn_info, 0, sizeof (struct insn_info)); 2485 2486 if (dump_file && (dump_flags & TDF_DETAILS)) 2487 fprintf (dump_file, "\n**scanning insn=%d\n", 2488 INSN_UID (insn)); 2489 2490 insn_info->prev_insn = bb_info->last_insn; 2491 insn_info->insn = insn; 2492 bb_info->last_insn = insn_info; 2493 2494 if (DEBUG_INSN_P (insn)) 2495 { 2496 insn_info->cannot_delete = true; 2497 return; 2498 } 2499 2500 /* Look at all of the uses in the insn. */ 2501 note_uses (&PATTERN (insn), check_mem_read_use, bb_info); 2502 2503 if (CALL_P (insn)) 2504 { 2505 bool const_call; 2506 tree memset_call = NULL_TREE; 2507 2508 insn_info->cannot_delete = true; 2509 2510 /* Const functions cannot do anything bad i.e. read memory, 2511 however, they can read their parameters which may have 2512 been pushed onto the stack. 2513 memset and bzero don't read memory either. */ 2514 const_call = RTL_CONST_CALL_P (insn); 2515 if (!const_call) 2516 { 2517 rtx call = get_call_rtx_from (insn); 2518 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF) 2519 { 2520 rtx symbol = XEXP (XEXP (call, 0), 0); 2521 if (SYMBOL_REF_DECL (symbol) 2522 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL) 2523 { 2524 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol)) 2525 == BUILT_IN_NORMAL 2526 && (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol)) 2527 == BUILT_IN_MEMSET)) 2528 || SYMBOL_REF_DECL (symbol) == block_clear_fn) 2529 memset_call = SYMBOL_REF_DECL (symbol); 2530 } 2531 } 2532 } 2533 if (const_call || memset_call) 2534 { 2535 insn_info_t i_ptr = active_local_stores; 2536 insn_info_t last = NULL; 2537 2538 if (dump_file && (dump_flags & TDF_DETAILS)) 2539 fprintf (dump_file, "%s call %d\n", 2540 const_call ? "const" : "memset", INSN_UID (insn)); 2541 2542 /* See the head comment of the frame_read field. */ 2543 if (reload_completed 2544 /* Tail calls are storing their arguments using 2545 arg pointer. If it is a frame pointer on the target, 2546 even before reload we need to kill frame pointer based 2547 stores. */ 2548 || (SIBLING_CALL_P (insn) 2549 && HARD_FRAME_POINTER_IS_ARG_POINTER)) 2550 insn_info->frame_read = true; 2551 2552 /* Loop over the active stores and remove those which are 2553 killed by the const function call. */ 2554 while (i_ptr) 2555 { 2556 bool remove_store = false; 2557 2558 /* The stack pointer based stores are always killed. */ 2559 if (i_ptr->stack_pointer_based) 2560 remove_store = true; 2561 2562 /* If the frame is read, the frame related stores are killed. */ 2563 else if (insn_info->frame_read) 2564 { 2565 store_info_t store_info = i_ptr->store_rec; 2566 2567 /* Skip the clobbers. */ 2568 while (!store_info->is_set) 2569 store_info = store_info->next; 2570 2571 if (store_info->group_id >= 0 2572 && rtx_group_vec[store_info->group_id]->frame_related) 2573 remove_store = true; 2574 } 2575 2576 if (remove_store) 2577 { 2578 if (dump_file && (dump_flags & TDF_DETAILS)) 2579 dump_insn_info ("removing from active", i_ptr); 2580 2581 active_local_stores_len--; 2582 if (last) 2583 last->next_local_store = i_ptr->next_local_store; 2584 else 2585 active_local_stores = i_ptr->next_local_store; 2586 } 2587 else 2588 last = i_ptr; 2589 2590 i_ptr = i_ptr->next_local_store; 2591 } 2592 2593 if (memset_call) 2594 { 2595 rtx args[3]; 2596 if (get_call_args (insn, memset_call, args, 3) 2597 && CONST_INT_P (args[1]) 2598 && CONST_INT_P (args[2]) 2599 && INTVAL (args[2]) > 0) 2600 { 2601 rtx mem = gen_rtx_MEM (BLKmode, args[0]); 2602 set_mem_size (mem, INTVAL (args[2])); 2603 body = gen_rtx_SET (VOIDmode, mem, args[1]); 2604 mems_found += record_store (body, bb_info); 2605 if (dump_file && (dump_flags & TDF_DETAILS)) 2606 fprintf (dump_file, "handling memset as BLKmode store\n"); 2607 if (mems_found == 1) 2608 { 2609 if (active_local_stores_len++ 2610 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES)) 2611 { 2612 active_local_stores_len = 1; 2613 active_local_stores = NULL; 2614 } 2615 insn_info->fixed_regs_live 2616 = copy_fixed_regs (bb_info->regs_live); 2617 insn_info->next_local_store = active_local_stores; 2618 active_local_stores = insn_info; 2619 } 2620 } 2621 else 2622 clear_rhs_from_active_local_stores (); 2623 } 2624 } 2625 else if (SIBLING_CALL_P (insn) && reload_completed) 2626 /* Arguments for a sibling call that are pushed to memory are passed 2627 using the incoming argument pointer of the current function. After 2628 reload that might be (and likely is) frame pointer based. */ 2629 add_wild_read (bb_info); 2630 else 2631 /* Every other call, including pure functions, may read any memory 2632 that is not relative to the frame. */ 2633 add_non_frame_wild_read (bb_info); 2634 2635 return; 2636 } 2637 2638 /* Assuming that there are sets in these insns, we cannot delete 2639 them. */ 2640 if ((GET_CODE (PATTERN (insn)) == CLOBBER) 2641 || volatile_refs_p (PATTERN (insn)) 2642 || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn)) 2643 || (RTX_FRAME_RELATED_P (insn)) 2644 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX)) 2645 insn_info->cannot_delete = true; 2646 2647 body = PATTERN (insn); 2648 if (GET_CODE (body) == PARALLEL) 2649 { 2650 int i; 2651 for (i = 0; i < XVECLEN (body, 0); i++) 2652 mems_found += record_store (XVECEXP (body, 0, i), bb_info); 2653 } 2654 else 2655 mems_found += record_store (body, bb_info); 2656 2657 if (dump_file && (dump_flags & TDF_DETAILS)) 2658 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n", 2659 mems_found, insn_info->cannot_delete ? "true" : "false"); 2660 2661 /* If we found some sets of mems, add it into the active_local_stores so 2662 that it can be locally deleted if found dead or used for 2663 replace_read and redundant constant store elimination. Otherwise mark 2664 it as cannot delete. This simplifies the processing later. */ 2665 if (mems_found == 1) 2666 { 2667 if (active_local_stores_len++ 2668 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES)) 2669 { 2670 active_local_stores_len = 1; 2671 active_local_stores = NULL; 2672 } 2673 insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live); 2674 insn_info->next_local_store = active_local_stores; 2675 active_local_stores = insn_info; 2676 } 2677 else 2678 insn_info->cannot_delete = true; 2679 } 2680 2681 2682 /* Remove BASE from the set of active_local_stores. This is a 2683 callback from cselib that is used to get rid of the stores in 2684 active_local_stores. */ 2685 2686 static void 2687 remove_useless_values (cselib_val *base) 2688 { 2689 insn_info_t insn_info = active_local_stores; 2690 insn_info_t last = NULL; 2691 2692 while (insn_info) 2693 { 2694 store_info_t store_info = insn_info->store_rec; 2695 bool del = false; 2696 2697 /* If ANY of the store_infos match the cselib group that is 2698 being deleted, then the insn can not be deleted. */ 2699 while (store_info) 2700 { 2701 if ((store_info->group_id == -1) 2702 && (store_info->cse_base == base)) 2703 { 2704 del = true; 2705 break; 2706 } 2707 store_info = store_info->next; 2708 } 2709 2710 if (del) 2711 { 2712 active_local_stores_len--; 2713 if (last) 2714 last->next_local_store = insn_info->next_local_store; 2715 else 2716 active_local_stores = insn_info->next_local_store; 2717 free_store_info (insn_info); 2718 } 2719 else 2720 last = insn_info; 2721 2722 insn_info = insn_info->next_local_store; 2723 } 2724 } 2725 2726 2727 /* Do all of step 1. */ 2728 2729 static void 2730 dse_step1 (void) 2731 { 2732 basic_block bb; 2733 bitmap regs_live = BITMAP_ALLOC (®_obstack); 2734 2735 cselib_init (0); 2736 all_blocks = BITMAP_ALLOC (NULL); 2737 bitmap_set_bit (all_blocks, ENTRY_BLOCK); 2738 bitmap_set_bit (all_blocks, EXIT_BLOCK); 2739 2740 FOR_ALL_BB_FN (bb, cfun) 2741 { 2742 insn_info_t ptr; 2743 bb_info_t bb_info = (bb_info_t) pool_alloc (bb_info_pool); 2744 2745 memset (bb_info, 0, sizeof (struct dse_bb_info)); 2746 bitmap_set_bit (all_blocks, bb->index); 2747 bb_info->regs_live = regs_live; 2748 2749 bitmap_copy (regs_live, DF_LR_IN (bb)); 2750 df_simulate_initialize_forwards (bb, regs_live); 2751 2752 bb_table[bb->index] = bb_info; 2753 cselib_discard_hook = remove_useless_values; 2754 2755 if (bb->index >= NUM_FIXED_BLOCKS) 2756 { 2757 rtx_insn *insn; 2758 2759 cse_store_info_pool 2760 = create_alloc_pool ("cse_store_info_pool", 2761 sizeof (struct store_info), 100); 2762 active_local_stores = NULL; 2763 active_local_stores_len = 0; 2764 cselib_clear_table (); 2765 2766 /* Scan the insns. */ 2767 FOR_BB_INSNS (bb, insn) 2768 { 2769 if (INSN_P (insn)) 2770 scan_insn (bb_info, insn); 2771 cselib_process_insn (insn); 2772 if (INSN_P (insn)) 2773 df_simulate_one_insn_forwards (bb, insn, regs_live); 2774 } 2775 2776 /* This is something of a hack, because the global algorithm 2777 is supposed to take care of the case where stores go dead 2778 at the end of the function. However, the global 2779 algorithm must take a more conservative view of block 2780 mode reads than the local alg does. So to get the case 2781 where you have a store to the frame followed by a non 2782 overlapping block more read, we look at the active local 2783 stores at the end of the function and delete all of the 2784 frame and spill based ones. */ 2785 if (stores_off_frame_dead_at_return 2786 && (EDGE_COUNT (bb->succs) == 0 2787 || (single_succ_p (bb) 2788 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun) 2789 && ! crtl->calls_eh_return))) 2790 { 2791 insn_info_t i_ptr = active_local_stores; 2792 while (i_ptr) 2793 { 2794 store_info_t store_info = i_ptr->store_rec; 2795 2796 /* Skip the clobbers. */ 2797 while (!store_info->is_set) 2798 store_info = store_info->next; 2799 if (store_info->alias_set && !i_ptr->cannot_delete) 2800 delete_dead_store_insn (i_ptr); 2801 else 2802 if (store_info->group_id >= 0) 2803 { 2804 group_info_t group 2805 = rtx_group_vec[store_info->group_id]; 2806 if (group->frame_related && !i_ptr->cannot_delete) 2807 delete_dead_store_insn (i_ptr); 2808 } 2809 2810 i_ptr = i_ptr->next_local_store; 2811 } 2812 } 2813 2814 /* Get rid of the loads that were discovered in 2815 replace_read. Cselib is finished with this block. */ 2816 while (deferred_change_list) 2817 { 2818 deferred_change_t next = deferred_change_list->next; 2819 2820 /* There is no reason to validate this change. That was 2821 done earlier. */ 2822 *deferred_change_list->loc = deferred_change_list->reg; 2823 pool_free (deferred_change_pool, deferred_change_list); 2824 deferred_change_list = next; 2825 } 2826 2827 /* Get rid of all of the cselib based store_infos in this 2828 block and mark the containing insns as not being 2829 deletable. */ 2830 ptr = bb_info->last_insn; 2831 while (ptr) 2832 { 2833 if (ptr->contains_cselib_groups) 2834 { 2835 store_info_t s_info = ptr->store_rec; 2836 while (s_info && !s_info->is_set) 2837 s_info = s_info->next; 2838 if (s_info 2839 && s_info->redundant_reason 2840 && s_info->redundant_reason->insn 2841 && !ptr->cannot_delete) 2842 { 2843 if (dump_file && (dump_flags & TDF_DETAILS)) 2844 fprintf (dump_file, "Locally deleting insn %d " 2845 "because insn %d stores the " 2846 "same value and couldn't be " 2847 "eliminated\n", 2848 INSN_UID (ptr->insn), 2849 INSN_UID (s_info->redundant_reason->insn)); 2850 delete_dead_store_insn (ptr); 2851 } 2852 free_store_info (ptr); 2853 } 2854 else 2855 { 2856 store_info_t s_info; 2857 2858 /* Free at least positions_needed bitmaps. */ 2859 for (s_info = ptr->store_rec; s_info; s_info = s_info->next) 2860 if (s_info->is_large) 2861 { 2862 BITMAP_FREE (s_info->positions_needed.large.bmap); 2863 s_info->is_large = false; 2864 } 2865 } 2866 ptr = ptr->prev_insn; 2867 } 2868 2869 free_alloc_pool (cse_store_info_pool); 2870 } 2871 bb_info->regs_live = NULL; 2872 } 2873 2874 BITMAP_FREE (regs_live); 2875 cselib_finish (); 2876 rtx_group_table->empty (); 2877 } 2878 2879 2880 /*---------------------------------------------------------------------------- 2881 Second step. 2882 2883 Assign each byte position in the stores that we are going to 2884 analyze globally to a position in the bitmaps. Returns true if 2885 there are any bit positions assigned. 2886 ----------------------------------------------------------------------------*/ 2887 2888 static void 2889 dse_step2_init (void) 2890 { 2891 unsigned int i; 2892 group_info_t group; 2893 2894 FOR_EACH_VEC_ELT (rtx_group_vec, i, group) 2895 { 2896 /* For all non stack related bases, we only consider a store to 2897 be deletable if there are two or more stores for that 2898 position. This is because it takes one store to make the 2899 other store redundant. However, for the stores that are 2900 stack related, we consider them if there is only one store 2901 for the position. We do this because the stack related 2902 stores can be deleted if their is no read between them and 2903 the end of the function. 2904 2905 To make this work in the current framework, we take the stack 2906 related bases add all of the bits from store1 into store2. 2907 This has the effect of making the eligible even if there is 2908 only one store. */ 2909 2910 if (stores_off_frame_dead_at_return && group->frame_related) 2911 { 2912 bitmap_ior_into (group->store2_n, group->store1_n); 2913 bitmap_ior_into (group->store2_p, group->store1_p); 2914 if (dump_file && (dump_flags & TDF_DETAILS)) 2915 fprintf (dump_file, "group %d is frame related ", i); 2916 } 2917 2918 group->offset_map_size_n++; 2919 group->offset_map_n = XOBNEWVEC (&dse_obstack, int, 2920 group->offset_map_size_n); 2921 group->offset_map_size_p++; 2922 group->offset_map_p = XOBNEWVEC (&dse_obstack, int, 2923 group->offset_map_size_p); 2924 group->process_globally = false; 2925 if (dump_file && (dump_flags & TDF_DETAILS)) 2926 { 2927 fprintf (dump_file, "group %d(%d+%d): ", i, 2928 (int)bitmap_count_bits (group->store2_n), 2929 (int)bitmap_count_bits (group->store2_p)); 2930 bitmap_print (dump_file, group->store2_n, "n ", " "); 2931 bitmap_print (dump_file, group->store2_p, "p ", "\n"); 2932 } 2933 } 2934 } 2935 2936 2937 /* Init the offset tables for the normal case. */ 2938 2939 static bool 2940 dse_step2_nospill (void) 2941 { 2942 unsigned int i; 2943 group_info_t group; 2944 /* Position 0 is unused because 0 is used in the maps to mean 2945 unused. */ 2946 current_position = 1; 2947 FOR_EACH_VEC_ELT (rtx_group_vec, i, group) 2948 { 2949 bitmap_iterator bi; 2950 unsigned int j; 2951 2952 if (group == clear_alias_group) 2953 continue; 2954 2955 memset (group->offset_map_n, 0, sizeof (int) * group->offset_map_size_n); 2956 memset (group->offset_map_p, 0, sizeof (int) * group->offset_map_size_p); 2957 bitmap_clear (group->group_kill); 2958 2959 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi) 2960 { 2961 bitmap_set_bit (group->group_kill, current_position); 2962 if (bitmap_bit_p (group->escaped_n, j)) 2963 bitmap_set_bit (kill_on_calls, current_position); 2964 group->offset_map_n[j] = current_position++; 2965 group->process_globally = true; 2966 } 2967 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi) 2968 { 2969 bitmap_set_bit (group->group_kill, current_position); 2970 if (bitmap_bit_p (group->escaped_p, j)) 2971 bitmap_set_bit (kill_on_calls, current_position); 2972 group->offset_map_p[j] = current_position++; 2973 group->process_globally = true; 2974 } 2975 } 2976 return current_position != 1; 2977 } 2978 2979 2980 2981 /*---------------------------------------------------------------------------- 2982 Third step. 2983 2984 Build the bit vectors for the transfer functions. 2985 ----------------------------------------------------------------------------*/ 2986 2987 2988 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not 2989 there, return 0. */ 2990 2991 static int 2992 get_bitmap_index (group_info_t group_info, HOST_WIDE_INT offset) 2993 { 2994 if (offset < 0) 2995 { 2996 HOST_WIDE_INT offset_p = -offset; 2997 if (offset_p >= group_info->offset_map_size_n) 2998 return 0; 2999 return group_info->offset_map_n[offset_p]; 3000 } 3001 else 3002 { 3003 if (offset >= group_info->offset_map_size_p) 3004 return 0; 3005 return group_info->offset_map_p[offset]; 3006 } 3007 } 3008 3009 3010 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL 3011 may be NULL. */ 3012 3013 static void 3014 scan_stores_nospill (store_info_t store_info, bitmap gen, bitmap kill) 3015 { 3016 while (store_info) 3017 { 3018 HOST_WIDE_INT i; 3019 group_info_t group_info 3020 = rtx_group_vec[store_info->group_id]; 3021 if (group_info->process_globally) 3022 for (i = store_info->begin; i < store_info->end; i++) 3023 { 3024 int index = get_bitmap_index (group_info, i); 3025 if (index != 0) 3026 { 3027 bitmap_set_bit (gen, index); 3028 if (kill) 3029 bitmap_clear_bit (kill, index); 3030 } 3031 } 3032 store_info = store_info->next; 3033 } 3034 } 3035 3036 3037 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL 3038 may be NULL. */ 3039 3040 static void 3041 scan_stores_spill (store_info_t store_info, bitmap gen, bitmap kill) 3042 { 3043 while (store_info) 3044 { 3045 if (store_info->alias_set) 3046 { 3047 int index = get_bitmap_index (clear_alias_group, 3048 store_info->alias_set); 3049 if (index != 0) 3050 { 3051 bitmap_set_bit (gen, index); 3052 if (kill) 3053 bitmap_clear_bit (kill, index); 3054 } 3055 } 3056 store_info = store_info->next; 3057 } 3058 } 3059 3060 3061 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL 3062 may be NULL. */ 3063 3064 static void 3065 scan_reads_nospill (insn_info_t insn_info, bitmap gen, bitmap kill) 3066 { 3067 read_info_t read_info = insn_info->read_rec; 3068 int i; 3069 group_info_t group; 3070 3071 /* If this insn reads the frame, kill all the frame related stores. */ 3072 if (insn_info->frame_read) 3073 { 3074 FOR_EACH_VEC_ELT (rtx_group_vec, i, group) 3075 if (group->process_globally && group->frame_related) 3076 { 3077 if (kill) 3078 bitmap_ior_into (kill, group->group_kill); 3079 bitmap_and_compl_into (gen, group->group_kill); 3080 } 3081 } 3082 if (insn_info->non_frame_wild_read) 3083 { 3084 /* Kill all non-frame related stores. Kill all stores of variables that 3085 escape. */ 3086 if (kill) 3087 bitmap_ior_into (kill, kill_on_calls); 3088 bitmap_and_compl_into (gen, kill_on_calls); 3089 FOR_EACH_VEC_ELT (rtx_group_vec, i, group) 3090 if (group->process_globally && !group->frame_related) 3091 { 3092 if (kill) 3093 bitmap_ior_into (kill, group->group_kill); 3094 bitmap_and_compl_into (gen, group->group_kill); 3095 } 3096 } 3097 while (read_info) 3098 { 3099 FOR_EACH_VEC_ELT (rtx_group_vec, i, group) 3100 { 3101 if (group->process_globally) 3102 { 3103 if (i == read_info->group_id) 3104 { 3105 if (read_info->begin > read_info->end) 3106 { 3107 /* Begin > end for block mode reads. */ 3108 if (kill) 3109 bitmap_ior_into (kill, group->group_kill); 3110 bitmap_and_compl_into (gen, group->group_kill); 3111 } 3112 else 3113 { 3114 /* The groups are the same, just process the 3115 offsets. */ 3116 HOST_WIDE_INT j; 3117 for (j = read_info->begin; j < read_info->end; j++) 3118 { 3119 int index = get_bitmap_index (group, j); 3120 if (index != 0) 3121 { 3122 if (kill) 3123 bitmap_set_bit (kill, index); 3124 bitmap_clear_bit (gen, index); 3125 } 3126 } 3127 } 3128 } 3129 else 3130 { 3131 /* The groups are different, if the alias sets 3132 conflict, clear the entire group. We only need 3133 to apply this test if the read_info is a cselib 3134 read. Anything with a constant base cannot alias 3135 something else with a different constant 3136 base. */ 3137 if ((read_info->group_id < 0) 3138 && canon_true_dependence (group->base_mem, 3139 GET_MODE (group->base_mem), 3140 group->canon_base_addr, 3141 read_info->mem, NULL_RTX)) 3142 { 3143 if (kill) 3144 bitmap_ior_into (kill, group->group_kill); 3145 bitmap_and_compl_into (gen, group->group_kill); 3146 } 3147 } 3148 } 3149 } 3150 3151 read_info = read_info->next; 3152 } 3153 } 3154 3155 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL 3156 may be NULL. */ 3157 3158 static void 3159 scan_reads_spill (read_info_t read_info, bitmap gen, bitmap kill) 3160 { 3161 while (read_info) 3162 { 3163 if (read_info->alias_set) 3164 { 3165 int index = get_bitmap_index (clear_alias_group, 3166 read_info->alias_set); 3167 if (index != 0) 3168 { 3169 if (kill) 3170 bitmap_set_bit (kill, index); 3171 bitmap_clear_bit (gen, index); 3172 } 3173 } 3174 3175 read_info = read_info->next; 3176 } 3177 } 3178 3179 3180 /* Return the insn in BB_INFO before the first wild read or if there 3181 are no wild reads in the block, return the last insn. */ 3182 3183 static insn_info_t 3184 find_insn_before_first_wild_read (bb_info_t bb_info) 3185 { 3186 insn_info_t insn_info = bb_info->last_insn; 3187 insn_info_t last_wild_read = NULL; 3188 3189 while (insn_info) 3190 { 3191 if (insn_info->wild_read) 3192 { 3193 last_wild_read = insn_info->prev_insn; 3194 /* Block starts with wild read. */ 3195 if (!last_wild_read) 3196 return NULL; 3197 } 3198 3199 insn_info = insn_info->prev_insn; 3200 } 3201 3202 if (last_wild_read) 3203 return last_wild_read; 3204 else 3205 return bb_info->last_insn; 3206 } 3207 3208 3209 /* Scan the insns in BB_INFO starting at PTR and going to the top of 3210 the block in order to build the gen and kill sets for the block. 3211 We start at ptr which may be the last insn in the block or may be 3212 the first insn with a wild read. In the latter case we are able to 3213 skip the rest of the block because it just does not matter: 3214 anything that happens is hidden by the wild read. */ 3215 3216 static void 3217 dse_step3_scan (bool for_spills, basic_block bb) 3218 { 3219 bb_info_t bb_info = bb_table[bb->index]; 3220 insn_info_t insn_info; 3221 3222 if (for_spills) 3223 /* There are no wild reads in the spill case. */ 3224 insn_info = bb_info->last_insn; 3225 else 3226 insn_info = find_insn_before_first_wild_read (bb_info); 3227 3228 /* In the spill case or in the no_spill case if there is no wild 3229 read in the block, we will need a kill set. */ 3230 if (insn_info == bb_info->last_insn) 3231 { 3232 if (bb_info->kill) 3233 bitmap_clear (bb_info->kill); 3234 else 3235 bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack); 3236 } 3237 else 3238 if (bb_info->kill) 3239 BITMAP_FREE (bb_info->kill); 3240 3241 while (insn_info) 3242 { 3243 /* There may have been code deleted by the dce pass run before 3244 this phase. */ 3245 if (insn_info->insn && INSN_P (insn_info->insn)) 3246 { 3247 /* Process the read(s) last. */ 3248 if (for_spills) 3249 { 3250 scan_stores_spill (insn_info->store_rec, bb_info->gen, bb_info->kill); 3251 scan_reads_spill (insn_info->read_rec, bb_info->gen, bb_info->kill); 3252 } 3253 else 3254 { 3255 scan_stores_nospill (insn_info->store_rec, bb_info->gen, bb_info->kill); 3256 scan_reads_nospill (insn_info, bb_info->gen, bb_info->kill); 3257 } 3258 } 3259 3260 insn_info = insn_info->prev_insn; 3261 } 3262 } 3263 3264 3265 /* Set the gen set of the exit block, and also any block with no 3266 successors that does not have a wild read. */ 3267 3268 static void 3269 dse_step3_exit_block_scan (bb_info_t bb_info) 3270 { 3271 /* The gen set is all 0's for the exit block except for the 3272 frame_pointer_group. */ 3273 3274 if (stores_off_frame_dead_at_return) 3275 { 3276 unsigned int i; 3277 group_info_t group; 3278 3279 FOR_EACH_VEC_ELT (rtx_group_vec, i, group) 3280 { 3281 if (group->process_globally && group->frame_related) 3282 bitmap_ior_into (bb_info->gen, group->group_kill); 3283 } 3284 } 3285 } 3286 3287 3288 /* Find all of the blocks that are not backwards reachable from the 3289 exit block or any block with no successors (BB). These are the 3290 infinite loops or infinite self loops. These blocks will still 3291 have their bits set in UNREACHABLE_BLOCKS. */ 3292 3293 static void 3294 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb) 3295 { 3296 edge e; 3297 edge_iterator ei; 3298 3299 if (bitmap_bit_p (unreachable_blocks, bb->index)) 3300 { 3301 bitmap_clear_bit (unreachable_blocks, bb->index); 3302 FOR_EACH_EDGE (e, ei, bb->preds) 3303 { 3304 mark_reachable_blocks (unreachable_blocks, e->src); 3305 } 3306 } 3307 } 3308 3309 /* Build the transfer functions for the function. */ 3310 3311 static void 3312 dse_step3 (bool for_spills) 3313 { 3314 basic_block bb; 3315 sbitmap unreachable_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun)); 3316 sbitmap_iterator sbi; 3317 bitmap all_ones = NULL; 3318 unsigned int i; 3319 3320 bitmap_ones (unreachable_blocks); 3321 3322 FOR_ALL_BB_FN (bb, cfun) 3323 { 3324 bb_info_t bb_info = bb_table[bb->index]; 3325 if (bb_info->gen) 3326 bitmap_clear (bb_info->gen); 3327 else 3328 bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack); 3329 3330 if (bb->index == ENTRY_BLOCK) 3331 ; 3332 else if (bb->index == EXIT_BLOCK) 3333 dse_step3_exit_block_scan (bb_info); 3334 else 3335 dse_step3_scan (for_spills, bb); 3336 if (EDGE_COUNT (bb->succs) == 0) 3337 mark_reachable_blocks (unreachable_blocks, bb); 3338 3339 /* If this is the second time dataflow is run, delete the old 3340 sets. */ 3341 if (bb_info->in) 3342 BITMAP_FREE (bb_info->in); 3343 if (bb_info->out) 3344 BITMAP_FREE (bb_info->out); 3345 } 3346 3347 /* For any block in an infinite loop, we must initialize the out set 3348 to all ones. This could be expensive, but almost never occurs in 3349 practice. However, it is common in regression tests. */ 3350 EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi) 3351 { 3352 if (bitmap_bit_p (all_blocks, i)) 3353 { 3354 bb_info_t bb_info = bb_table[i]; 3355 if (!all_ones) 3356 { 3357 unsigned int j; 3358 group_info_t group; 3359 3360 all_ones = BITMAP_ALLOC (&dse_bitmap_obstack); 3361 FOR_EACH_VEC_ELT (rtx_group_vec, j, group) 3362 bitmap_ior_into (all_ones, group->group_kill); 3363 } 3364 if (!bb_info->out) 3365 { 3366 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack); 3367 bitmap_copy (bb_info->out, all_ones); 3368 } 3369 } 3370 } 3371 3372 if (all_ones) 3373 BITMAP_FREE (all_ones); 3374 sbitmap_free (unreachable_blocks); 3375 } 3376 3377 3378 3379 /*---------------------------------------------------------------------------- 3380 Fourth step. 3381 3382 Solve the bitvector equations. 3383 ----------------------------------------------------------------------------*/ 3384 3385 3386 /* Confluence function for blocks with no successors. Create an out 3387 set from the gen set of the exit block. This block logically has 3388 the exit block as a successor. */ 3389 3390 3391 3392 static void 3393 dse_confluence_0 (basic_block bb) 3394 { 3395 bb_info_t bb_info = bb_table[bb->index]; 3396 3397 if (bb->index == EXIT_BLOCK) 3398 return; 3399 3400 if (!bb_info->out) 3401 { 3402 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack); 3403 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen); 3404 } 3405 } 3406 3407 /* Propagate the information from the in set of the dest of E to the 3408 out set of the src of E. If the various in or out sets are not 3409 there, that means they are all ones. */ 3410 3411 static bool 3412 dse_confluence_n (edge e) 3413 { 3414 bb_info_t src_info = bb_table[e->src->index]; 3415 bb_info_t dest_info = bb_table[e->dest->index]; 3416 3417 if (dest_info->in) 3418 { 3419 if (src_info->out) 3420 bitmap_and_into (src_info->out, dest_info->in); 3421 else 3422 { 3423 src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack); 3424 bitmap_copy (src_info->out, dest_info->in); 3425 } 3426 } 3427 return true; 3428 } 3429 3430 3431 /* Propagate the info from the out to the in set of BB_INDEX's basic 3432 block. There are three cases: 3433 3434 1) The block has no kill set. In this case the kill set is all 3435 ones. It does not matter what the out set of the block is, none of 3436 the info can reach the top. The only thing that reaches the top is 3437 the gen set and we just copy the set. 3438 3439 2) There is a kill set but no out set and bb has successors. In 3440 this case we just return. Eventually an out set will be created and 3441 it is better to wait than to create a set of ones. 3442 3443 3) There is both a kill and out set. We apply the obvious transfer 3444 function. 3445 */ 3446 3447 static bool 3448 dse_transfer_function (int bb_index) 3449 { 3450 bb_info_t bb_info = bb_table[bb_index]; 3451 3452 if (bb_info->kill) 3453 { 3454 if (bb_info->out) 3455 { 3456 /* Case 3 above. */ 3457 if (bb_info->in) 3458 return bitmap_ior_and_compl (bb_info->in, bb_info->gen, 3459 bb_info->out, bb_info->kill); 3460 else 3461 { 3462 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack); 3463 bitmap_ior_and_compl (bb_info->in, bb_info->gen, 3464 bb_info->out, bb_info->kill); 3465 return true; 3466 } 3467 } 3468 else 3469 /* Case 2 above. */ 3470 return false; 3471 } 3472 else 3473 { 3474 /* Case 1 above. If there is already an in set, nothing 3475 happens. */ 3476 if (bb_info->in) 3477 return false; 3478 else 3479 { 3480 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack); 3481 bitmap_copy (bb_info->in, bb_info->gen); 3482 return true; 3483 } 3484 } 3485 } 3486 3487 /* Solve the dataflow equations. */ 3488 3489 static void 3490 dse_step4 (void) 3491 { 3492 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0, 3493 dse_confluence_n, dse_transfer_function, 3494 all_blocks, df_get_postorder (DF_BACKWARD), 3495 df_get_n_blocks (DF_BACKWARD)); 3496 if (dump_file && (dump_flags & TDF_DETAILS)) 3497 { 3498 basic_block bb; 3499 3500 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n"); 3501 FOR_ALL_BB_FN (bb, cfun) 3502 { 3503 bb_info_t bb_info = bb_table[bb->index]; 3504 3505 df_print_bb_index (bb, dump_file); 3506 if (bb_info->in) 3507 bitmap_print (dump_file, bb_info->in, " in: ", "\n"); 3508 else 3509 fprintf (dump_file, " in: *MISSING*\n"); 3510 if (bb_info->gen) 3511 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n"); 3512 else 3513 fprintf (dump_file, " gen: *MISSING*\n"); 3514 if (bb_info->kill) 3515 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n"); 3516 else 3517 fprintf (dump_file, " kill: *MISSING*\n"); 3518 if (bb_info->out) 3519 bitmap_print (dump_file, bb_info->out, " out: ", "\n"); 3520 else 3521 fprintf (dump_file, " out: *MISSING*\n\n"); 3522 } 3523 } 3524 } 3525 3526 3527 3528 /*---------------------------------------------------------------------------- 3529 Fifth step. 3530 3531 Delete the stores that can only be deleted using the global information. 3532 ----------------------------------------------------------------------------*/ 3533 3534 3535 static void 3536 dse_step5_nospill (void) 3537 { 3538 basic_block bb; 3539 FOR_EACH_BB_FN (bb, cfun) 3540 { 3541 bb_info_t bb_info = bb_table[bb->index]; 3542 insn_info_t insn_info = bb_info->last_insn; 3543 bitmap v = bb_info->out; 3544 3545 while (insn_info) 3546 { 3547 bool deleted = false; 3548 if (dump_file && insn_info->insn) 3549 { 3550 fprintf (dump_file, "starting to process insn %d\n", 3551 INSN_UID (insn_info->insn)); 3552 bitmap_print (dump_file, v, " v: ", "\n"); 3553 } 3554 3555 /* There may have been code deleted by the dce pass run before 3556 this phase. */ 3557 if (insn_info->insn 3558 && INSN_P (insn_info->insn) 3559 && (!insn_info->cannot_delete) 3560 && (!bitmap_empty_p (v))) 3561 { 3562 store_info_t store_info = insn_info->store_rec; 3563 3564 /* Try to delete the current insn. */ 3565 deleted = true; 3566 3567 /* Skip the clobbers. */ 3568 while (!store_info->is_set) 3569 store_info = store_info->next; 3570 3571 if (store_info->alias_set) 3572 deleted = false; 3573 else 3574 { 3575 HOST_WIDE_INT i; 3576 group_info_t group_info 3577 = rtx_group_vec[store_info->group_id]; 3578 3579 for (i = store_info->begin; i < store_info->end; i++) 3580 { 3581 int index = get_bitmap_index (group_info, i); 3582 3583 if (dump_file && (dump_flags & TDF_DETAILS)) 3584 fprintf (dump_file, "i = %d, index = %d\n", (int)i, index); 3585 if (index == 0 || !bitmap_bit_p (v, index)) 3586 { 3587 if (dump_file && (dump_flags & TDF_DETAILS)) 3588 fprintf (dump_file, "failing at i = %d\n", (int)i); 3589 deleted = false; 3590 break; 3591 } 3592 } 3593 } 3594 if (deleted) 3595 { 3596 if (dbg_cnt (dse) 3597 && check_for_inc_dec_1 (insn_info)) 3598 { 3599 delete_insn (insn_info->insn); 3600 insn_info->insn = NULL; 3601 globally_deleted++; 3602 } 3603 } 3604 } 3605 /* We do want to process the local info if the insn was 3606 deleted. For instance, if the insn did a wild read, we 3607 no longer need to trash the info. */ 3608 if (insn_info->insn 3609 && INSN_P (insn_info->insn) 3610 && (!deleted)) 3611 { 3612 scan_stores_nospill (insn_info->store_rec, v, NULL); 3613 if (insn_info->wild_read) 3614 { 3615 if (dump_file && (dump_flags & TDF_DETAILS)) 3616 fprintf (dump_file, "wild read\n"); 3617 bitmap_clear (v); 3618 } 3619 else if (insn_info->read_rec 3620 || insn_info->non_frame_wild_read) 3621 { 3622 if (dump_file && !insn_info->non_frame_wild_read) 3623 fprintf (dump_file, "regular read\n"); 3624 else if (dump_file && (dump_flags & TDF_DETAILS)) 3625 fprintf (dump_file, "non-frame wild read\n"); 3626 scan_reads_nospill (insn_info, v, NULL); 3627 } 3628 } 3629 3630 insn_info = insn_info->prev_insn; 3631 } 3632 } 3633 } 3634 3635 3636 3637 /*---------------------------------------------------------------------------- 3638 Sixth step. 3639 3640 Delete stores made redundant by earlier stores (which store the same 3641 value) that couldn't be eliminated. 3642 ----------------------------------------------------------------------------*/ 3643 3644 static void 3645 dse_step6 (void) 3646 { 3647 basic_block bb; 3648 3649 FOR_ALL_BB_FN (bb, cfun) 3650 { 3651 bb_info_t bb_info = bb_table[bb->index]; 3652 insn_info_t insn_info = bb_info->last_insn; 3653 3654 while (insn_info) 3655 { 3656 /* There may have been code deleted by the dce pass run before 3657 this phase. */ 3658 if (insn_info->insn 3659 && INSN_P (insn_info->insn) 3660 && !insn_info->cannot_delete) 3661 { 3662 store_info_t s_info = insn_info->store_rec; 3663 3664 while (s_info && !s_info->is_set) 3665 s_info = s_info->next; 3666 if (s_info 3667 && s_info->redundant_reason 3668 && s_info->redundant_reason->insn 3669 && INSN_P (s_info->redundant_reason->insn)) 3670 { 3671 rtx_insn *rinsn = s_info->redundant_reason->insn; 3672 if (dump_file && (dump_flags & TDF_DETAILS)) 3673 fprintf (dump_file, "Locally deleting insn %d " 3674 "because insn %d stores the " 3675 "same value and couldn't be " 3676 "eliminated\n", 3677 INSN_UID (insn_info->insn), 3678 INSN_UID (rinsn)); 3679 delete_dead_store_insn (insn_info); 3680 } 3681 } 3682 insn_info = insn_info->prev_insn; 3683 } 3684 } 3685 } 3686 3687 /*---------------------------------------------------------------------------- 3688 Seventh step. 3689 3690 Destroy everything left standing. 3691 ----------------------------------------------------------------------------*/ 3692 3693 static void 3694 dse_step7 (void) 3695 { 3696 bitmap_obstack_release (&dse_bitmap_obstack); 3697 obstack_free (&dse_obstack, NULL); 3698 3699 end_alias_analysis (); 3700 free (bb_table); 3701 delete rtx_group_table; 3702 rtx_group_table = NULL; 3703 rtx_group_vec.release (); 3704 BITMAP_FREE (all_blocks); 3705 BITMAP_FREE (scratch); 3706 3707 free_alloc_pool (rtx_store_info_pool); 3708 free_alloc_pool (read_info_pool); 3709 free_alloc_pool (insn_info_pool); 3710 free_alloc_pool (bb_info_pool); 3711 free_alloc_pool (rtx_group_info_pool); 3712 free_alloc_pool (deferred_change_pool); 3713 } 3714 3715 3716 /* ------------------------------------------------------------------------- 3717 DSE 3718 ------------------------------------------------------------------------- */ 3719 3720 /* Callback for running pass_rtl_dse. */ 3721 3722 static unsigned int 3723 rest_of_handle_dse (void) 3724 { 3725 df_set_flags (DF_DEFER_INSN_RESCAN); 3726 3727 /* Need the notes since we must track live hardregs in the forwards 3728 direction. */ 3729 df_note_add_problem (); 3730 df_analyze (); 3731 3732 dse_step0 (); 3733 dse_step1 (); 3734 dse_step2_init (); 3735 if (dse_step2_nospill ()) 3736 { 3737 df_set_flags (DF_LR_RUN_DCE); 3738 df_analyze (); 3739 if (dump_file && (dump_flags & TDF_DETAILS)) 3740 fprintf (dump_file, "doing global processing\n"); 3741 dse_step3 (false); 3742 dse_step4 (); 3743 dse_step5_nospill (); 3744 } 3745 3746 dse_step6 (); 3747 dse_step7 (); 3748 3749 if (dump_file) 3750 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n", 3751 locally_deleted, globally_deleted, spill_deleted); 3752 3753 /* DSE can eliminate potentially-trapping MEMs. 3754 Remove any EH edges associated with them. */ 3755 if ((locally_deleted || globally_deleted) 3756 && cfun->can_throw_non_call_exceptions 3757 && purge_all_dead_edges ()) 3758 cleanup_cfg (0); 3759 3760 return 0; 3761 } 3762 3763 namespace { 3764 3765 const pass_data pass_data_rtl_dse1 = 3766 { 3767 RTL_PASS, /* type */ 3768 "dse1", /* name */ 3769 OPTGROUP_NONE, /* optinfo_flags */ 3770 TV_DSE1, /* tv_id */ 3771 0, /* properties_required */ 3772 0, /* properties_provided */ 3773 0, /* properties_destroyed */ 3774 0, /* todo_flags_start */ 3775 TODO_df_finish, /* todo_flags_finish */ 3776 }; 3777 3778 class pass_rtl_dse1 : public rtl_opt_pass 3779 { 3780 public: 3781 pass_rtl_dse1 (gcc::context *ctxt) 3782 : rtl_opt_pass (pass_data_rtl_dse1, ctxt) 3783 {} 3784 3785 /* opt_pass methods: */ 3786 virtual bool gate (function *) 3787 { 3788 return optimize > 0 && flag_dse && dbg_cnt (dse1); 3789 } 3790 3791 virtual unsigned int execute (function *) { return rest_of_handle_dse (); } 3792 3793 }; // class pass_rtl_dse1 3794 3795 } // anon namespace 3796 3797 rtl_opt_pass * 3798 make_pass_rtl_dse1 (gcc::context *ctxt) 3799 { 3800 return new pass_rtl_dse1 (ctxt); 3801 } 3802 3803 namespace { 3804 3805 const pass_data pass_data_rtl_dse2 = 3806 { 3807 RTL_PASS, /* type */ 3808 "dse2", /* name */ 3809 OPTGROUP_NONE, /* optinfo_flags */ 3810 TV_DSE2, /* tv_id */ 3811 0, /* properties_required */ 3812 0, /* properties_provided */ 3813 0, /* properties_destroyed */ 3814 0, /* todo_flags_start */ 3815 TODO_df_finish, /* todo_flags_finish */ 3816 }; 3817 3818 class pass_rtl_dse2 : public rtl_opt_pass 3819 { 3820 public: 3821 pass_rtl_dse2 (gcc::context *ctxt) 3822 : rtl_opt_pass (pass_data_rtl_dse2, ctxt) 3823 {} 3824 3825 /* opt_pass methods: */ 3826 virtual bool gate (function *) 3827 { 3828 return optimize > 0 && flag_dse && dbg_cnt (dse2); 3829 } 3830 3831 virtual unsigned int execute (function *) { return rest_of_handle_dse (); } 3832 3833 }; // class pass_rtl_dse2 3834 3835 } // anon namespace 3836 3837 rtl_opt_pass * 3838 make_pass_rtl_dse2 (gcc::context *ctxt) 3839 { 3840 return new pass_rtl_dse2 (ctxt); 3841 } 3842