xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/domwalk.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Generic dominator tree walker
2    Copyright (C) 2003-2015 Free Software Foundation, Inc.
3    Contributed by Diego Novillo <dnovillo@redhat.com>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "predict.h"
26 #include "vec.h"
27 #include "hashtab.h"
28 #include "hash-set.h"
29 #include "machmode.h"
30 #include "hard-reg-set.h"
31 #include "input.h"
32 #include "function.h"
33 #include "dominance.h"
34 #include "cfg.h"
35 #include "cfganal.h"
36 #include "basic-block.h"
37 #include "domwalk.h"
38 #include "sbitmap.h"
39 
40 /* This file implements a generic walker for dominator trees.
41 
42   To understand the dominator walker one must first have a grasp of dominators,
43   immediate dominators and the dominator tree.
44 
45   Dominators
46     A block B1 is said to dominate B2 if every path from the entry to B2 must
47     pass through B1.  Given the dominance relationship, we can proceed to
48     compute immediate dominators.  Note it is not important whether or not
49     our definition allows a block to dominate itself.
50 
51   Immediate Dominators:
52     Every block in the CFG has no more than one immediate dominator.  The
53     immediate dominator of block BB must dominate BB and must not dominate
54     any other dominator of BB and must not be BB itself.
55 
56   Dominator tree:
57     If we then construct a tree where each node is a basic block and there
58     is an edge from each block's immediate dominator to the block itself, then
59     we have a dominator tree.
60 
61 
62   [ Note this walker can also walk the post-dominator tree, which is
63     defined in a similar manner.  i.e., block B1 is said to post-dominate
64     block B2 if all paths from B2 to the exit block must pass through
65     B1.  ]
66 
67   For example, given the CFG
68 
69                    1
70                    |
71                    2
72                   / \
73                  3   4
74                     / \
75        +---------->5   6
76        |          / \ /
77        |    +--->8   7
78        |    |   /    |
79        |    +--9    11
80        |      /      |
81        +--- 10 ---> 12
82 
83 
84   We have a dominator tree which looks like
85 
86                    1
87                    |
88                    2
89                   / \
90                  /   \
91                 3     4
92                    / / \ \
93                    | | | |
94                    5 6 7 12
95                    |   |
96                    8   11
97                    |
98                    9
99                    |
100                   10
101 
102 
103 
104   The dominator tree is the basis for a number of analysis, transformation
105   and optimization algorithms that operate on a semi-global basis.
106 
107   The dominator walker is a generic routine which visits blocks in the CFG
108   via a depth first search of the dominator tree.  In the example above
109   the dominator walker might visit blocks in the following order
110   1, 2, 3, 4, 5, 8, 9, 10, 6, 7, 11, 12.
111 
112   The dominator walker has a number of callbacks to perform actions
113   during the walk of the dominator tree.  There are two callbacks
114   which walk statements, one before visiting the dominator children,
115   one after visiting the dominator children.  There is a callback
116   before and after each statement walk callback.  In addition, the
117   dominator walker manages allocation/deallocation of data structures
118   which are local to each block visited.
119 
120   The dominator walker is meant to provide a generic means to build a pass
121   which can analyze or transform/optimize a function based on walking
122   the dominator tree.  One simply fills in the dominator walker data
123   structure with the appropriate callbacks and calls the walker.
124 
125   We currently use the dominator walker to prune the set of variables
126   which might need PHI nodes (which can greatly improve compile-time
127   performance in some cases).
128 
129   We also use the dominator walker to rewrite the function into SSA form
130   which reduces code duplication since the rewriting phase is inherently
131   a walk of the dominator tree.
132 
133   And (of course), we use the dominator walker to drive our dominator
134   optimizer, which is a semi-global optimizer.
135 
136   TODO:
137 
138     Walking statements is based on the block statement iterator abstraction,
139     which is currently an abstraction over walking tree statements.  Thus
140     the dominator walker is currently only useful for trees.  */
141 
142 static int *bb_postorder;
143 
144 static int
145 cmp_bb_postorder (const void *a, const void *b)
146 {
147   basic_block bb1 = *(basic_block *)const_cast<void *>(a);
148   basic_block bb2 = *(basic_block *)const_cast<void *>(b);
149   if (bb1->index == bb2->index)
150     return 0;
151   /* Place higher completion number first (pop off lower number first).  */
152   if (bb_postorder[bb1->index] > bb_postorder[bb2->index])
153     return -1;
154   return 1;
155 }
156 
157 /* Recursively walk the dominator tree.
158    BB is the basic block we are currently visiting.  */
159 
160 void
161 dom_walker::walk (basic_block bb)
162 {
163   basic_block dest;
164   basic_block *worklist = XNEWVEC (basic_block,
165 				   n_basic_blocks_for_fn (cfun) * 2);
166   int sp = 0;
167   int *postorder, postorder_num;
168 
169   if (m_dom_direction == CDI_DOMINATORS)
170     {
171       postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
172       postorder_num = inverted_post_order_compute (postorder);
173       bb_postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
174       for (int i = 0; i < postorder_num; ++i)
175 	bb_postorder[postorder[i]] = i;
176       free (postorder);
177     }
178 
179   while (true)
180     {
181       /* Don't worry about unreachable blocks.  */
182       if (EDGE_COUNT (bb->preds) > 0
183 	  || bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
184 	  || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
185 	{
186 	  /* Callback for subclasses to do custom things before we have walked
187 	     the dominator children, but before we walk statements.  */
188 	  before_dom_children (bb);
189 
190 	  /* Mark the current BB to be popped out of the recursion stack
191 	     once children are processed.  */
192 	  worklist[sp++] = bb;
193 	  worklist[sp++] = NULL;
194 
195 	  int saved_sp = sp;
196 	  for (dest = first_dom_son (m_dom_direction, bb);
197 	       dest; dest = next_dom_son (m_dom_direction, dest))
198 	    worklist[sp++] = dest;
199 	  if (m_dom_direction == CDI_DOMINATORS)
200 	    switch (sp - saved_sp)
201 	      {
202 	      case 0:
203 	      case 1:
204 		break;
205 	      default:
206 		qsort (&worklist[saved_sp], sp - saved_sp,
207 		       sizeof (basic_block), cmp_bb_postorder);
208 	      }
209 	}
210       /* NULL is used to mark pop operations in the recursion stack.  */
211       while (sp > 0 && !worklist[sp - 1])
212 	{
213 	  --sp;
214 	  bb = worklist[--sp];
215 
216 	  /* Callback allowing subclasses to do custom things after we have
217 	     walked dominator children, but before we walk statements.  */
218 	  after_dom_children (bb);
219 	}
220       if (sp)
221 	bb = worklist[--sp];
222       else
223 	break;
224     }
225   if (m_dom_direction == CDI_DOMINATORS)
226     {
227       free (bb_postorder);
228       bb_postorder = NULL;
229     }
230   free (worklist);
231 }
232