xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/domwalk.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* Generic dominator tree walker
2    Copyright (C) 2003, 2004, 2005, 2007, 2008 Free Software Foundation,
3    Inc.
4    Contributed by Diego Novillo <dnovillo@redhat.com>
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12 
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "basic-block.h"
27 #include "domwalk.h"
28 #include "ggc.h"
29 
30 /* This file implements a generic walker for dominator trees.
31 
32   To understand the dominator walker one must first have a grasp of dominators,
33   immediate dominators and the dominator tree.
34 
35   Dominators
36     A block B1 is said to dominate B2 if every path from the entry to B2 must
37     pass through B1.  Given the dominance relationship, we can proceed to
38     compute immediate dominators.  Note it is not important whether or not
39     our definition allows a block to dominate itself.
40 
41   Immediate Dominators:
42     Every block in the CFG has no more than one immediate dominator.  The
43     immediate dominator of block BB must dominate BB and must not dominate
44     any other dominator of BB and must not be BB itself.
45 
46   Dominator tree:
47     If we then construct a tree where each node is a basic block and there
48     is an edge from each block's immediate dominator to the block itself, then
49     we have a dominator tree.
50 
51 
52   [ Note this walker can also walk the post-dominator tree, which is
53     defined in a similar manner.  i.e., block B1 is said to post-dominate
54     block B2 if all paths from B2 to the exit block must pass through
55     B1.  ]
56 
57   For example, given the CFG
58 
59                    1
60                    |
61                    2
62                   / \
63                  3   4
64                     / \
65        +---------->5   6
66        |          / \ /
67        |    +--->8   7
68        |    |   /    |
69        |    +--9    11
70        |      /      |
71        +--- 10 ---> 12
72 
73 
74   We have a dominator tree which looks like
75 
76                    1
77                    |
78                    2
79                   / \
80                  /   \
81                 3     4
82                    / / \ \
83                    | | | |
84                    5 6 7 12
85                    |   |
86                    8   11
87                    |
88                    9
89                    |
90                   10
91 
92 
93 
94   The dominator tree is the basis for a number of analysis, transformation
95   and optimization algorithms that operate on a semi-global basis.
96 
97   The dominator walker is a generic routine which visits blocks in the CFG
98   via a depth first search of the dominator tree.  In the example above
99   the dominator walker might visit blocks in the following order
100   1, 2, 3, 4, 5, 8, 9, 10, 6, 7, 11, 12.
101 
102   The dominator walker has a number of callbacks to perform actions
103   during the walk of the dominator tree.  There are two callbacks
104   which walk statements, one before visiting the dominator children,
105   one after visiting the dominator children.  There is a callback
106   before and after each statement walk callback.  In addition, the
107   dominator walker manages allocation/deallocation of data structures
108   which are local to each block visited.
109 
110   The dominator walker is meant to provide a generic means to build a pass
111   which can analyze or transform/optimize a function based on walking
112   the dominator tree.  One simply fills in the dominator walker data
113   structure with the appropriate callbacks and calls the walker.
114 
115   We currently use the dominator walker to prune the set of variables
116   which might need PHI nodes (which can greatly improve compile-time
117   performance in some cases).
118 
119   We also use the dominator walker to rewrite the function into SSA form
120   which reduces code duplication since the rewriting phase is inherently
121   a walk of the dominator tree.
122 
123   And (of course), we use the dominator walker to drive our dominator
124   optimizer, which is a semi-global optimizer.
125 
126   TODO:
127 
128     Walking statements is based on the block statement iterator abstraction,
129     which is currently an abstraction over walking tree statements.  Thus
130     the dominator walker is currently only useful for trees.  */
131 
132 /* Recursively walk the dominator tree.
133 
134    WALK_DATA contains a set of callbacks to perform pass-specific
135    actions during the dominator walk as well as a stack of block local
136    data maintained during the dominator walk.
137 
138    BB is the basic block we are currently visiting.  */
139 
140 void
141 walk_dominator_tree (struct dom_walk_data *walk_data, basic_block bb)
142 {
143   void *bd = NULL;
144   basic_block dest;
145   basic_block *worklist = XNEWVEC (basic_block, n_basic_blocks * 2);
146   int sp = 0;
147 
148   while (true)
149     {
150       /* Don't worry about unreachable blocks.  */
151       if (EDGE_COUNT (bb->preds) > 0
152 	  || bb == ENTRY_BLOCK_PTR
153 	  || bb == EXIT_BLOCK_PTR)
154 	{
155 	  /* Callback to initialize the local data structure.  */
156 	  if (walk_data->initialize_block_local_data)
157 	    {
158 	      bool recycled;
159 
160 	      /* First get some local data, reusing any local data
161 		 pointer we may have saved.  */
162 	      if (VEC_length (void_p, walk_data->free_block_data) > 0)
163 		{
164 		  bd = VEC_pop (void_p, walk_data->free_block_data);
165 		  recycled = 1;
166 		}
167 	      else
168 		{
169 		  bd = xcalloc (1, walk_data->block_local_data_size);
170 		  recycled = 0;
171 		}
172 
173 	      /* Push the local data into the local data stack.  */
174 	      VEC_safe_push (void_p, heap, walk_data->block_data_stack, bd);
175 
176 	      /* Call the initializer.  */
177 	      walk_data->initialize_block_local_data (walk_data, bb,
178 						      recycled);
179 
180 	    }
181 
182 	  /* Callback for operations to execute before we have walked the
183 	     dominator children, but before we walk statements.  */
184 	  if (walk_data->before_dom_children)
185 	    (*walk_data->before_dom_children) (walk_data, bb);
186 
187 	  /* Mark the current BB to be popped out of the recursion stack
188 	     once children are processed.  */
189 	  worklist[sp++] = bb;
190 	  worklist[sp++] = NULL;
191 
192 	  for (dest = first_dom_son (walk_data->dom_direction, bb);
193 	       dest; dest = next_dom_son (walk_data->dom_direction, dest))
194 	    worklist[sp++] = dest;
195 	}
196       /* NULL is used to mark pop operations in the recursion stack.  */
197       while (sp > 0 && !worklist[sp - 1])
198 	{
199 	  --sp;
200 	  bb = worklist[--sp];
201 
202 	  /* Callback for operations to execute after we have walked the
203 	     dominator children, but before we walk statements.  */
204 	  if (walk_data->after_dom_children)
205 	    (*walk_data->after_dom_children) (walk_data, bb);
206 
207 	  if (walk_data->initialize_block_local_data)
208 	    {
209 	      /* And finally pop the record off the block local data stack.  */
210 	      bd = VEC_pop (void_p, walk_data->block_data_stack);
211 	      /* And save the block data so that we can re-use it.  */
212 	      VEC_safe_push (void_p, heap, walk_data->free_block_data, bd);
213 	    }
214 	}
215       if (sp)
216 	bb = worklist[--sp];
217       else
218 	break;
219     }
220   free (worklist);
221 }
222 
223 void
224 init_walk_dominator_tree (struct dom_walk_data *walk_data)
225 {
226   walk_data->free_block_data = NULL;
227   walk_data->block_data_stack = NULL;
228 }
229 
230 void
231 fini_walk_dominator_tree (struct dom_walk_data *walk_data)
232 {
233   if (walk_data->initialize_block_local_data)
234     {
235       while (VEC_length (void_p, walk_data->free_block_data) > 0)
236 	free (VEC_pop (void_p, walk_data->free_block_data));
237     }
238 
239   VEC_free (void_p, heap, walk_data->free_block_data);
240   VEC_free (void_p, heap, walk_data->block_data_stack);
241 }
242