1 /* Calculate (post)dominators in slightly super-linear time. 2 Copyright (C) 2000-2013 Free Software Foundation, Inc. 3 Contributed by Michael Matz (matz@ifh.de). 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it 8 under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3, or (at your option) 10 any later version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT 13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public 15 License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 /* This file implements the well known algorithm from Lengauer and Tarjan 22 to compute the dominators in a control flow graph. A basic block D is said 23 to dominate another block X, when all paths from the entry node of the CFG 24 to X go also over D. The dominance relation is a transitive reflexive 25 relation and its minimal transitive reduction is a tree, called the 26 dominator tree. So for each block X besides the entry block exists a 27 block I(X), called the immediate dominator of X, which is the parent of X 28 in the dominator tree. 29 30 The algorithm computes this dominator tree implicitly by computing for 31 each block its immediate dominator. We use tree balancing and path 32 compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very 33 slowly growing functional inverse of the Ackerman function. */ 34 35 #include "config.h" 36 #include "system.h" 37 #include "coretypes.h" 38 #include "tm.h" 39 #include "rtl.h" 40 #include "hard-reg-set.h" 41 #include "obstack.h" 42 #include "basic-block.h" 43 #include "diagnostic-core.h" 44 #include "et-forest.h" 45 #include "timevar.h" 46 #include "pointer-set.h" 47 #include "graphds.h" 48 #include "bitmap.h" 49 50 /* We name our nodes with integers, beginning with 1. Zero is reserved for 51 'undefined' or 'end of list'. The name of each node is given by the dfs 52 number of the corresponding basic block. Please note, that we include the 53 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to 54 support multiple entry points. Its dfs number is of course 1. */ 55 56 /* Type of Basic Block aka. TBB */ 57 typedef unsigned int TBB; 58 59 /* We work in a poor-mans object oriented fashion, and carry an instance of 60 this structure through all our 'methods'. It holds various arrays 61 reflecting the (sub)structure of the flowgraph. Most of them are of type 62 TBB and are also indexed by TBB. */ 63 64 struct dom_info 65 { 66 /* The parent of a node in the DFS tree. */ 67 TBB *dfs_parent; 68 /* For a node x key[x] is roughly the node nearest to the root from which 69 exists a way to x only over nodes behind x. Such a node is also called 70 semidominator. */ 71 TBB *key; 72 /* The value in path_min[x] is the node y on the path from x to the root of 73 the tree x is in with the smallest key[y]. */ 74 TBB *path_min; 75 /* bucket[x] points to the first node of the set of nodes having x as key. */ 76 TBB *bucket; 77 /* And next_bucket[x] points to the next node. */ 78 TBB *next_bucket; 79 /* After the algorithm is done, dom[x] contains the immediate dominator 80 of x. */ 81 TBB *dom; 82 83 /* The following few fields implement the structures needed for disjoint 84 sets. */ 85 /* set_chain[x] is the next node on the path from x to the representative 86 of the set containing x. If set_chain[x]==0 then x is a root. */ 87 TBB *set_chain; 88 /* set_size[x] is the number of elements in the set named by x. */ 89 unsigned int *set_size; 90 /* set_child[x] is used for balancing the tree representing a set. It can 91 be understood as the next sibling of x. */ 92 TBB *set_child; 93 94 /* If b is the number of a basic block (BB->index), dfs_order[b] is the 95 number of that node in DFS order counted from 1. This is an index 96 into most of the other arrays in this structure. */ 97 TBB *dfs_order; 98 /* If x is the DFS-index of a node which corresponds with a basic block, 99 dfs_to_bb[x] is that basic block. Note, that in our structure there are 100 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb 101 is true for every basic block bb, but not the opposite. */ 102 basic_block *dfs_to_bb; 103 104 /* This is the next free DFS number when creating the DFS tree. */ 105 unsigned int dfsnum; 106 /* The number of nodes in the DFS tree (==dfsnum-1). */ 107 unsigned int nodes; 108 109 /* Blocks with bits set here have a fake edge to EXIT. These are used 110 to turn a DFS forest into a proper tree. */ 111 bitmap fake_exit_edge; 112 }; 113 114 static void init_dom_info (struct dom_info *, enum cdi_direction); 115 static void free_dom_info (struct dom_info *); 116 static void calc_dfs_tree_nonrec (struct dom_info *, basic_block, bool); 117 static void calc_dfs_tree (struct dom_info *, bool); 118 static void compress (struct dom_info *, TBB); 119 static TBB eval (struct dom_info *, TBB); 120 static void link_roots (struct dom_info *, TBB, TBB); 121 static void calc_idoms (struct dom_info *, bool); 122 void debug_dominance_info (enum cdi_direction); 123 void debug_dominance_tree (enum cdi_direction, basic_block); 124 125 /* Helper macro for allocating and initializing an array, 126 for aesthetic reasons. */ 127 #define init_ar(var, type, num, content) \ 128 do \ 129 { \ 130 unsigned int i = 1; /* Catch content == i. */ \ 131 if (! (content)) \ 132 (var) = XCNEWVEC (type, num); \ 133 else \ 134 { \ 135 (var) = XNEWVEC (type, (num)); \ 136 for (i = 0; i < num; i++) \ 137 (var)[i] = (content); \ 138 } \ 139 } \ 140 while (0) 141 142 /* Allocate all needed memory in a pessimistic fashion (so we round up). 143 This initializes the contents of DI, which already must be allocated. */ 144 145 static void 146 init_dom_info (struct dom_info *di, enum cdi_direction dir) 147 { 148 /* We need memory for n_basic_blocks nodes. */ 149 unsigned int num = n_basic_blocks; 150 init_ar (di->dfs_parent, TBB, num, 0); 151 init_ar (di->path_min, TBB, num, i); 152 init_ar (di->key, TBB, num, i); 153 init_ar (di->dom, TBB, num, 0); 154 155 init_ar (di->bucket, TBB, num, 0); 156 init_ar (di->next_bucket, TBB, num, 0); 157 158 init_ar (di->set_chain, TBB, num, 0); 159 init_ar (di->set_size, unsigned int, num, 1); 160 init_ar (di->set_child, TBB, num, 0); 161 162 init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0); 163 init_ar (di->dfs_to_bb, basic_block, num, 0); 164 165 di->dfsnum = 1; 166 di->nodes = 0; 167 168 switch (dir) 169 { 170 case CDI_DOMINATORS: 171 di->fake_exit_edge = NULL; 172 break; 173 case CDI_POST_DOMINATORS: 174 di->fake_exit_edge = BITMAP_ALLOC (NULL); 175 break; 176 default: 177 gcc_unreachable (); 178 break; 179 } 180 } 181 182 #undef init_ar 183 184 /* Map dominance calculation type to array index used for various 185 dominance information arrays. This version is simple -- it will need 186 to be modified, obviously, if additional values are added to 187 cdi_direction. */ 188 189 static unsigned int 190 dom_convert_dir_to_idx (enum cdi_direction dir) 191 { 192 gcc_checking_assert (dir == CDI_DOMINATORS || dir == CDI_POST_DOMINATORS); 193 return dir - 1; 194 } 195 196 /* Free all allocated memory in DI, but not DI itself. */ 197 198 static void 199 free_dom_info (struct dom_info *di) 200 { 201 free (di->dfs_parent); 202 free (di->path_min); 203 free (di->key); 204 free (di->dom); 205 free (di->bucket); 206 free (di->next_bucket); 207 free (di->set_chain); 208 free (di->set_size); 209 free (di->set_child); 210 free (di->dfs_order); 211 free (di->dfs_to_bb); 212 BITMAP_FREE (di->fake_exit_edge); 213 } 214 215 /* The nonrecursive variant of creating a DFS tree. DI is our working 216 structure, BB the starting basic block for this tree and REVERSE 217 is true, if predecessors should be visited instead of successors of a 218 node. After this is done all nodes reachable from BB were visited, have 219 assigned their dfs number and are linked together to form a tree. */ 220 221 static void 222 calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb, bool reverse) 223 { 224 /* We call this _only_ if bb is not already visited. */ 225 edge e; 226 TBB child_i, my_i = 0; 227 edge_iterator *stack; 228 edge_iterator ei, einext; 229 int sp; 230 /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward 231 problem). */ 232 basic_block en_block; 233 /* Ending block. */ 234 basic_block ex_block; 235 236 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1); 237 sp = 0; 238 239 /* Initialize our border blocks, and the first edge. */ 240 if (reverse) 241 { 242 ei = ei_start (bb->preds); 243 en_block = EXIT_BLOCK_PTR; 244 ex_block = ENTRY_BLOCK_PTR; 245 } 246 else 247 { 248 ei = ei_start (bb->succs); 249 en_block = ENTRY_BLOCK_PTR; 250 ex_block = EXIT_BLOCK_PTR; 251 } 252 253 /* When the stack is empty we break out of this loop. */ 254 while (1) 255 { 256 basic_block bn; 257 258 /* This loop traverses edges e in depth first manner, and fills the 259 stack. */ 260 while (!ei_end_p (ei)) 261 { 262 e = ei_edge (ei); 263 264 /* Deduce from E the current and the next block (BB and BN), and the 265 next edge. */ 266 if (reverse) 267 { 268 bn = e->src; 269 270 /* If the next node BN is either already visited or a border 271 block the current edge is useless, and simply overwritten 272 with the next edge out of the current node. */ 273 if (bn == ex_block || di->dfs_order[bn->index]) 274 { 275 ei_next (&ei); 276 continue; 277 } 278 bb = e->dest; 279 einext = ei_start (bn->preds); 280 } 281 else 282 { 283 bn = e->dest; 284 if (bn == ex_block || di->dfs_order[bn->index]) 285 { 286 ei_next (&ei); 287 continue; 288 } 289 bb = e->src; 290 einext = ei_start (bn->succs); 291 } 292 293 gcc_assert (bn != en_block); 294 295 /* Fill the DFS tree info calculatable _before_ recursing. */ 296 if (bb != en_block) 297 my_i = di->dfs_order[bb->index]; 298 else 299 my_i = di->dfs_order[last_basic_block]; 300 child_i = di->dfs_order[bn->index] = di->dfsnum++; 301 di->dfs_to_bb[child_i] = bn; 302 di->dfs_parent[child_i] = my_i; 303 304 /* Save the current point in the CFG on the stack, and recurse. */ 305 stack[sp++] = ei; 306 ei = einext; 307 } 308 309 if (!sp) 310 break; 311 ei = stack[--sp]; 312 313 /* OK. The edge-list was exhausted, meaning normally we would 314 end the recursion. After returning from the recursive call, 315 there were (may be) other statements which were run after a 316 child node was completely considered by DFS. Here is the 317 point to do it in the non-recursive variant. 318 E.g. The block just completed is in e->dest for forward DFS, 319 the block not yet completed (the parent of the one above) 320 in e->src. This could be used e.g. for computing the number of 321 descendants or the tree depth. */ 322 ei_next (&ei); 323 } 324 free (stack); 325 } 326 327 /* The main entry for calculating the DFS tree or forest. DI is our working 328 structure and REVERSE is true, if we are interested in the reverse flow 329 graph. In that case the result is not necessarily a tree but a forest, 330 because there may be nodes from which the EXIT_BLOCK is unreachable. */ 331 332 static void 333 calc_dfs_tree (struct dom_info *di, bool reverse) 334 { 335 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */ 336 basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR; 337 di->dfs_order[last_basic_block] = di->dfsnum; 338 di->dfs_to_bb[di->dfsnum] = begin; 339 di->dfsnum++; 340 341 calc_dfs_tree_nonrec (di, begin, reverse); 342 343 if (reverse) 344 { 345 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK. 346 They are reverse-unreachable. In the dom-case we disallow such 347 nodes, but in post-dom we have to deal with them. 348 349 There are two situations in which this occurs. First, noreturn 350 functions. Second, infinite loops. In the first case we need to 351 pretend that there is an edge to the exit block. In the second 352 case, we wind up with a forest. We need to process all noreturn 353 blocks before we know if we've got any infinite loops. */ 354 355 basic_block b; 356 bool saw_unconnected = false; 357 358 FOR_EACH_BB_REVERSE (b) 359 { 360 if (EDGE_COUNT (b->succs) > 0) 361 { 362 if (di->dfs_order[b->index] == 0) 363 saw_unconnected = true; 364 continue; 365 } 366 bitmap_set_bit (di->fake_exit_edge, b->index); 367 di->dfs_order[b->index] = di->dfsnum; 368 di->dfs_to_bb[di->dfsnum] = b; 369 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block]; 370 di->dfsnum++; 371 calc_dfs_tree_nonrec (di, b, reverse); 372 } 373 374 if (saw_unconnected) 375 { 376 FOR_EACH_BB_REVERSE (b) 377 { 378 basic_block b2; 379 if (di->dfs_order[b->index]) 380 continue; 381 b2 = dfs_find_deadend (b); 382 gcc_checking_assert (di->dfs_order[b2->index] == 0); 383 bitmap_set_bit (di->fake_exit_edge, b2->index); 384 di->dfs_order[b2->index] = di->dfsnum; 385 di->dfs_to_bb[di->dfsnum] = b2; 386 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block]; 387 di->dfsnum++; 388 calc_dfs_tree_nonrec (di, b2, reverse); 389 gcc_checking_assert (di->dfs_order[b->index]); 390 } 391 } 392 } 393 394 di->nodes = di->dfsnum - 1; 395 396 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */ 397 gcc_assert (di->nodes == (unsigned int) n_basic_blocks - 1); 398 } 399 400 /* Compress the path from V to the root of its set and update path_min at the 401 same time. After compress(di, V) set_chain[V] is the root of the set V is 402 in and path_min[V] is the node with the smallest key[] value on the path 403 from V to that root. */ 404 405 static void 406 compress (struct dom_info *di, TBB v) 407 { 408 /* Btw. It's not worth to unrecurse compress() as the depth is usually not 409 greater than 5 even for huge graphs (I've not seen call depth > 4). 410 Also performance wise compress() ranges _far_ behind eval(). */ 411 TBB parent = di->set_chain[v]; 412 if (di->set_chain[parent]) 413 { 414 compress (di, parent); 415 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]]) 416 di->path_min[v] = di->path_min[parent]; 417 di->set_chain[v] = di->set_chain[parent]; 418 } 419 } 420 421 /* Compress the path from V to the set root of V if needed (when the root has 422 changed since the last call). Returns the node with the smallest key[] 423 value on the path from V to the root. */ 424 425 static inline TBB 426 eval (struct dom_info *di, TBB v) 427 { 428 /* The representative of the set V is in, also called root (as the set 429 representation is a tree). */ 430 TBB rep = di->set_chain[v]; 431 432 /* V itself is the root. */ 433 if (!rep) 434 return di->path_min[v]; 435 436 /* Compress only if necessary. */ 437 if (di->set_chain[rep]) 438 { 439 compress (di, v); 440 rep = di->set_chain[v]; 441 } 442 443 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]]) 444 return di->path_min[v]; 445 else 446 return di->path_min[rep]; 447 } 448 449 /* This essentially merges the two sets of V and W, giving a single set with 450 the new root V. The internal representation of these disjoint sets is a 451 balanced tree. Currently link(V,W) is only used with V being the parent 452 of W. */ 453 454 static void 455 link_roots (struct dom_info *di, TBB v, TBB w) 456 { 457 TBB s = w; 458 459 /* Rebalance the tree. */ 460 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]]) 461 { 462 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]] 463 >= 2 * di->set_size[di->set_child[s]]) 464 { 465 di->set_chain[di->set_child[s]] = s; 466 di->set_child[s] = di->set_child[di->set_child[s]]; 467 } 468 else 469 { 470 di->set_size[di->set_child[s]] = di->set_size[s]; 471 s = di->set_chain[s] = di->set_child[s]; 472 } 473 } 474 475 di->path_min[s] = di->path_min[w]; 476 di->set_size[v] += di->set_size[w]; 477 if (di->set_size[v] < 2 * di->set_size[w]) 478 { 479 TBB tmp = s; 480 s = di->set_child[v]; 481 di->set_child[v] = tmp; 482 } 483 484 /* Merge all subtrees. */ 485 while (s) 486 { 487 di->set_chain[s] = v; 488 s = di->set_child[s]; 489 } 490 } 491 492 /* This calculates the immediate dominators (or post-dominators if REVERSE is 493 true). DI is our working structure and should hold the DFS forest. 494 On return the immediate dominator to node V is in di->dom[V]. */ 495 496 static void 497 calc_idoms (struct dom_info *di, bool reverse) 498 { 499 TBB v, w, k, par; 500 basic_block en_block; 501 edge_iterator ei, einext; 502 503 if (reverse) 504 en_block = EXIT_BLOCK_PTR; 505 else 506 en_block = ENTRY_BLOCK_PTR; 507 508 /* Go backwards in DFS order, to first look at the leafs. */ 509 v = di->nodes; 510 while (v > 1) 511 { 512 basic_block bb = di->dfs_to_bb[v]; 513 edge e; 514 515 par = di->dfs_parent[v]; 516 k = v; 517 518 ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds); 519 520 if (reverse) 521 { 522 /* If this block has a fake edge to exit, process that first. */ 523 if (bitmap_bit_p (di->fake_exit_edge, bb->index)) 524 { 525 einext = ei; 526 einext.index = 0; 527 goto do_fake_exit_edge; 528 } 529 } 530 531 /* Search all direct predecessors for the smallest node with a path 532 to them. That way we have the smallest node with also a path to 533 us only over nodes behind us. In effect we search for our 534 semidominator. */ 535 while (!ei_end_p (ei)) 536 { 537 TBB k1; 538 basic_block b; 539 540 e = ei_edge (ei); 541 b = (reverse) ? e->dest : e->src; 542 einext = ei; 543 ei_next (&einext); 544 545 if (b == en_block) 546 { 547 do_fake_exit_edge: 548 k1 = di->dfs_order[last_basic_block]; 549 } 550 else 551 k1 = di->dfs_order[b->index]; 552 553 /* Call eval() only if really needed. If k1 is above V in DFS tree, 554 then we know, that eval(k1) == k1 and key[k1] == k1. */ 555 if (k1 > v) 556 k1 = di->key[eval (di, k1)]; 557 if (k1 < k) 558 k = k1; 559 560 ei = einext; 561 } 562 563 di->key[v] = k; 564 link_roots (di, par, v); 565 di->next_bucket[v] = di->bucket[k]; 566 di->bucket[k] = v; 567 568 /* Transform semidominators into dominators. */ 569 for (w = di->bucket[par]; w; w = di->next_bucket[w]) 570 { 571 k = eval (di, w); 572 if (di->key[k] < di->key[w]) 573 di->dom[w] = k; 574 else 575 di->dom[w] = par; 576 } 577 /* We don't need to cleanup next_bucket[]. */ 578 di->bucket[par] = 0; 579 v--; 580 } 581 582 /* Explicitly define the dominators. */ 583 di->dom[1] = 0; 584 for (v = 2; v <= di->nodes; v++) 585 if (di->dom[v] != di->key[v]) 586 di->dom[v] = di->dom[di->dom[v]]; 587 } 588 589 /* Assign dfs numbers starting from NUM to NODE and its sons. */ 590 591 static void 592 assign_dfs_numbers (struct et_node *node, int *num) 593 { 594 struct et_node *son; 595 596 node->dfs_num_in = (*num)++; 597 598 if (node->son) 599 { 600 assign_dfs_numbers (node->son, num); 601 for (son = node->son->right; son != node->son; son = son->right) 602 assign_dfs_numbers (son, num); 603 } 604 605 node->dfs_num_out = (*num)++; 606 } 607 608 /* Compute the data necessary for fast resolving of dominator queries in a 609 static dominator tree. */ 610 611 static void 612 compute_dom_fast_query (enum cdi_direction dir) 613 { 614 int num = 0; 615 basic_block bb; 616 unsigned int dir_index = dom_convert_dir_to_idx (dir); 617 618 gcc_checking_assert (dom_info_available_p (dir)); 619 620 if (dom_computed[dir_index] == DOM_OK) 621 return; 622 623 FOR_ALL_BB (bb) 624 { 625 if (!bb->dom[dir_index]->father) 626 assign_dfs_numbers (bb->dom[dir_index], &num); 627 } 628 629 dom_computed[dir_index] = DOM_OK; 630 } 631 632 /* The main entry point into this module. DIR is set depending on whether 633 we want to compute dominators or postdominators. */ 634 635 void 636 calculate_dominance_info (enum cdi_direction dir) 637 { 638 struct dom_info di; 639 basic_block b; 640 unsigned int dir_index = dom_convert_dir_to_idx (dir); 641 bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false; 642 643 if (dom_computed[dir_index] == DOM_OK) 644 return; 645 646 timevar_push (TV_DOMINANCE); 647 if (!dom_info_available_p (dir)) 648 { 649 gcc_assert (!n_bbs_in_dom_tree[dir_index]); 650 651 FOR_ALL_BB (b) 652 { 653 b->dom[dir_index] = et_new_tree (b); 654 } 655 n_bbs_in_dom_tree[dir_index] = n_basic_blocks; 656 657 init_dom_info (&di, dir); 658 calc_dfs_tree (&di, reverse); 659 calc_idoms (&di, reverse); 660 661 FOR_EACH_BB (b) 662 { 663 TBB d = di.dom[di.dfs_order[b->index]]; 664 665 if (di.dfs_to_bb[d]) 666 et_set_father (b->dom[dir_index], di.dfs_to_bb[d]->dom[dir_index]); 667 } 668 669 free_dom_info (&di); 670 dom_computed[dir_index] = DOM_NO_FAST_QUERY; 671 } 672 673 compute_dom_fast_query (dir); 674 675 timevar_pop (TV_DOMINANCE); 676 } 677 678 /* Free dominance information for direction DIR. */ 679 void 680 free_dominance_info (enum cdi_direction dir) 681 { 682 basic_block bb; 683 unsigned int dir_index = dom_convert_dir_to_idx (dir); 684 685 if (!dom_info_available_p (dir)) 686 return; 687 688 FOR_ALL_BB (bb) 689 { 690 et_free_tree_force (bb->dom[dir_index]); 691 bb->dom[dir_index] = NULL; 692 } 693 et_free_pools (); 694 695 n_bbs_in_dom_tree[dir_index] = 0; 696 697 dom_computed[dir_index] = DOM_NONE; 698 } 699 700 /* Return the immediate dominator of basic block BB. */ 701 basic_block 702 get_immediate_dominator (enum cdi_direction dir, basic_block bb) 703 { 704 unsigned int dir_index = dom_convert_dir_to_idx (dir); 705 struct et_node *node = bb->dom[dir_index]; 706 707 gcc_checking_assert (dom_computed[dir_index]); 708 709 if (!node->father) 710 return NULL; 711 712 return (basic_block) node->father->data; 713 } 714 715 /* Set the immediate dominator of the block possibly removing 716 existing edge. NULL can be used to remove any edge. */ 717 void 718 set_immediate_dominator (enum cdi_direction dir, basic_block bb, 719 basic_block dominated_by) 720 { 721 unsigned int dir_index = dom_convert_dir_to_idx (dir); 722 struct et_node *node = bb->dom[dir_index]; 723 724 gcc_checking_assert (dom_computed[dir_index]); 725 726 if (node->father) 727 { 728 if (node->father->data == dominated_by) 729 return; 730 et_split (node); 731 } 732 733 if (dominated_by) 734 et_set_father (node, dominated_by->dom[dir_index]); 735 736 if (dom_computed[dir_index] == DOM_OK) 737 dom_computed[dir_index] = DOM_NO_FAST_QUERY; 738 } 739 740 /* Returns the list of basic blocks immediately dominated by BB, in the 741 direction DIR. */ 742 vec<basic_block> 743 get_dominated_by (enum cdi_direction dir, basic_block bb) 744 { 745 unsigned int dir_index = dom_convert_dir_to_idx (dir); 746 struct et_node *node = bb->dom[dir_index], *son = node->son, *ason; 747 vec<basic_block> bbs = vNULL; 748 749 gcc_checking_assert (dom_computed[dir_index]); 750 751 if (!son) 752 return vNULL; 753 754 bbs.safe_push ((basic_block) son->data); 755 for (ason = son->right; ason != son; ason = ason->right) 756 bbs.safe_push ((basic_block) ason->data); 757 758 return bbs; 759 } 760 761 /* Returns the list of basic blocks that are immediately dominated (in 762 direction DIR) by some block between N_REGION ones stored in REGION, 763 except for blocks in the REGION itself. */ 764 765 vec<basic_block> 766 get_dominated_by_region (enum cdi_direction dir, basic_block *region, 767 unsigned n_region) 768 { 769 unsigned i; 770 basic_block dom; 771 vec<basic_block> doms = vNULL; 772 773 for (i = 0; i < n_region; i++) 774 region[i]->flags |= BB_DUPLICATED; 775 for (i = 0; i < n_region; i++) 776 for (dom = first_dom_son (dir, region[i]); 777 dom; 778 dom = next_dom_son (dir, dom)) 779 if (!(dom->flags & BB_DUPLICATED)) 780 doms.safe_push (dom); 781 for (i = 0; i < n_region; i++) 782 region[i]->flags &= ~BB_DUPLICATED; 783 784 return doms; 785 } 786 787 /* Returns the list of basic blocks including BB dominated by BB, in the 788 direction DIR up to DEPTH in the dominator tree. The DEPTH of zero will 789 produce a vector containing all dominated blocks. The vector will be sorted 790 in preorder. */ 791 792 vec<basic_block> 793 get_dominated_to_depth (enum cdi_direction dir, basic_block bb, int depth) 794 { 795 vec<basic_block> bbs = vNULL; 796 unsigned i; 797 unsigned next_level_start; 798 799 i = 0; 800 bbs.safe_push (bb); 801 next_level_start = 1; /* = bbs.length (); */ 802 803 do 804 { 805 basic_block son; 806 807 bb = bbs[i++]; 808 for (son = first_dom_son (dir, bb); 809 son; 810 son = next_dom_son (dir, son)) 811 bbs.safe_push (son); 812 813 if (i == next_level_start && --depth) 814 next_level_start = bbs.length (); 815 } 816 while (i < next_level_start); 817 818 return bbs; 819 } 820 821 /* Returns the list of basic blocks including BB dominated by BB, in the 822 direction DIR. The vector will be sorted in preorder. */ 823 824 vec<basic_block> 825 get_all_dominated_blocks (enum cdi_direction dir, basic_block bb) 826 { 827 return get_dominated_to_depth (dir, bb, 0); 828 } 829 830 /* Redirect all edges pointing to BB to TO. */ 831 void 832 redirect_immediate_dominators (enum cdi_direction dir, basic_block bb, 833 basic_block to) 834 { 835 unsigned int dir_index = dom_convert_dir_to_idx (dir); 836 struct et_node *bb_node, *to_node, *son; 837 838 bb_node = bb->dom[dir_index]; 839 to_node = to->dom[dir_index]; 840 841 gcc_checking_assert (dom_computed[dir_index]); 842 843 if (!bb_node->son) 844 return; 845 846 while (bb_node->son) 847 { 848 son = bb_node->son; 849 850 et_split (son); 851 et_set_father (son, to_node); 852 } 853 854 if (dom_computed[dir_index] == DOM_OK) 855 dom_computed[dir_index] = DOM_NO_FAST_QUERY; 856 } 857 858 /* Find first basic block in the tree dominating both BB1 and BB2. */ 859 basic_block 860 nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2) 861 { 862 unsigned int dir_index = dom_convert_dir_to_idx (dir); 863 864 gcc_checking_assert (dom_computed[dir_index]); 865 866 if (!bb1) 867 return bb2; 868 if (!bb2) 869 return bb1; 870 871 return (basic_block) et_nca (bb1->dom[dir_index], bb2->dom[dir_index])->data; 872 } 873 874 875 /* Find the nearest common dominator for the basic blocks in BLOCKS, 876 using dominance direction DIR. */ 877 878 basic_block 879 nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks) 880 { 881 unsigned i, first; 882 bitmap_iterator bi; 883 basic_block dom; 884 885 first = bitmap_first_set_bit (blocks); 886 dom = BASIC_BLOCK (first); 887 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi) 888 if (dom != BASIC_BLOCK (i)) 889 dom = nearest_common_dominator (dir, dom, BASIC_BLOCK (i)); 890 891 return dom; 892 } 893 894 /* Given a dominator tree, we can determine whether one thing 895 dominates another in constant time by using two DFS numbers: 896 897 1. The number for when we visit a node on the way down the tree 898 2. The number for when we visit a node on the way back up the tree 899 900 You can view these as bounds for the range of dfs numbers the 901 nodes in the subtree of the dominator tree rooted at that node 902 will contain. 903 904 The dominator tree is always a simple acyclic tree, so there are 905 only three possible relations two nodes in the dominator tree have 906 to each other: 907 908 1. Node A is above Node B (and thus, Node A dominates node B) 909 910 A 911 | 912 C 913 / \ 914 B D 915 916 917 In the above case, DFS_Number_In of A will be <= DFS_Number_In of 918 B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is 919 because we must hit A in the dominator tree *before* B on the walk 920 down, and we will hit A *after* B on the walk back up 921 922 2. Node A is below node B (and thus, node B dominates node A) 923 924 925 B 926 | 927 A 928 / \ 929 C D 930 931 In the above case, DFS_Number_In of A will be >= DFS_Number_In of 932 B, and DFS_Number_Out of A will be <= DFS_Number_Out of B. 933 934 This is because we must hit A in the dominator tree *after* B on 935 the walk down, and we will hit A *before* B on the walk back up 936 937 3. Node A and B are siblings (and thus, neither dominates the other) 938 939 C 940 | 941 D 942 / \ 943 A B 944 945 In the above case, DFS_Number_In of A will *always* be <= 946 DFS_Number_In of B, and DFS_Number_Out of A will *always* be <= 947 DFS_Number_Out of B. This is because we will always finish the dfs 948 walk of one of the subtrees before the other, and thus, the dfs 949 numbers for one subtree can't intersect with the range of dfs 950 numbers for the other subtree. If you swap A and B's position in 951 the dominator tree, the comparison changes direction, but the point 952 is that both comparisons will always go the same way if there is no 953 dominance relationship. 954 955 Thus, it is sufficient to write 956 957 A_Dominates_B (node A, node B) 958 { 959 return DFS_Number_In(A) <= DFS_Number_In(B) 960 && DFS_Number_Out (A) >= DFS_Number_Out(B); 961 } 962 963 A_Dominated_by_B (node A, node B) 964 { 965 return DFS_Number_In(A) >= DFS_Number_In(A) 966 && DFS_Number_Out (A) <= DFS_Number_Out(B); 967 } */ 968 969 /* Return TRUE in case BB1 is dominated by BB2. */ 970 bool 971 dominated_by_p (enum cdi_direction dir, const_basic_block bb1, const_basic_block bb2) 972 { 973 unsigned int dir_index = dom_convert_dir_to_idx (dir); 974 struct et_node *n1 = bb1->dom[dir_index], *n2 = bb2->dom[dir_index]; 975 976 gcc_checking_assert (dom_computed[dir_index]); 977 978 if (dom_computed[dir_index] == DOM_OK) 979 return (n1->dfs_num_in >= n2->dfs_num_in 980 && n1->dfs_num_out <= n2->dfs_num_out); 981 982 return et_below (n1, n2); 983 } 984 985 /* Returns the entry dfs number for basic block BB, in the direction DIR. */ 986 987 unsigned 988 bb_dom_dfs_in (enum cdi_direction dir, basic_block bb) 989 { 990 unsigned int dir_index = dom_convert_dir_to_idx (dir); 991 struct et_node *n = bb->dom[dir_index]; 992 993 gcc_checking_assert (dom_computed[dir_index] == DOM_OK); 994 return n->dfs_num_in; 995 } 996 997 /* Returns the exit dfs number for basic block BB, in the direction DIR. */ 998 999 unsigned 1000 bb_dom_dfs_out (enum cdi_direction dir, basic_block bb) 1001 { 1002 unsigned int dir_index = dom_convert_dir_to_idx (dir); 1003 struct et_node *n = bb->dom[dir_index]; 1004 1005 gcc_checking_assert (dom_computed[dir_index] == DOM_OK); 1006 return n->dfs_num_out; 1007 } 1008 1009 /* Verify invariants of dominator structure. */ 1010 DEBUG_FUNCTION void 1011 verify_dominators (enum cdi_direction dir) 1012 { 1013 int err = 0; 1014 basic_block bb, imm_bb, imm_bb_correct; 1015 struct dom_info di; 1016 bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false; 1017 1018 gcc_assert (dom_info_available_p (dir)); 1019 1020 init_dom_info (&di, dir); 1021 calc_dfs_tree (&di, reverse); 1022 calc_idoms (&di, reverse); 1023 1024 FOR_EACH_BB (bb) 1025 { 1026 imm_bb = get_immediate_dominator (dir, bb); 1027 if (!imm_bb) 1028 { 1029 error ("dominator of %d status unknown", bb->index); 1030 err = 1; 1031 } 1032 1033 imm_bb_correct = di.dfs_to_bb[di.dom[di.dfs_order[bb->index]]]; 1034 if (imm_bb != imm_bb_correct) 1035 { 1036 error ("dominator of %d should be %d, not %d", 1037 bb->index, imm_bb_correct->index, imm_bb->index); 1038 err = 1; 1039 } 1040 } 1041 1042 free_dom_info (&di); 1043 gcc_assert (!err); 1044 } 1045 1046 /* Determine immediate dominator (or postdominator, according to DIR) of BB, 1047 assuming that dominators of other blocks are correct. We also use it to 1048 recompute the dominators in a restricted area, by iterating it until it 1049 reaches a fixed point. */ 1050 1051 basic_block 1052 recompute_dominator (enum cdi_direction dir, basic_block bb) 1053 { 1054 unsigned int dir_index = dom_convert_dir_to_idx (dir); 1055 basic_block dom_bb = NULL; 1056 edge e; 1057 edge_iterator ei; 1058 1059 gcc_checking_assert (dom_computed[dir_index]); 1060 1061 if (dir == CDI_DOMINATORS) 1062 { 1063 FOR_EACH_EDGE (e, ei, bb->preds) 1064 { 1065 if (!dominated_by_p (dir, e->src, bb)) 1066 dom_bb = nearest_common_dominator (dir, dom_bb, e->src); 1067 } 1068 } 1069 else 1070 { 1071 FOR_EACH_EDGE (e, ei, bb->succs) 1072 { 1073 if (!dominated_by_p (dir, e->dest, bb)) 1074 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest); 1075 } 1076 } 1077 1078 return dom_bb; 1079 } 1080 1081 /* Use simple heuristics (see iterate_fix_dominators) to determine dominators 1082 of BBS. We assume that all the immediate dominators except for those of the 1083 blocks in BBS are correct. If CONSERVATIVE is true, we also assume that the 1084 currently recorded immediate dominators of blocks in BBS really dominate the 1085 blocks. The basic blocks for that we determine the dominator are removed 1086 from BBS. */ 1087 1088 static void 1089 prune_bbs_to_update_dominators (vec<basic_block> bbs, 1090 bool conservative) 1091 { 1092 unsigned i; 1093 bool single; 1094 basic_block bb, dom = NULL; 1095 edge_iterator ei; 1096 edge e; 1097 1098 for (i = 0; bbs.iterate (i, &bb);) 1099 { 1100 if (bb == ENTRY_BLOCK_PTR) 1101 goto succeed; 1102 1103 if (single_pred_p (bb)) 1104 { 1105 set_immediate_dominator (CDI_DOMINATORS, bb, single_pred (bb)); 1106 goto succeed; 1107 } 1108 1109 if (!conservative) 1110 goto fail; 1111 1112 single = true; 1113 dom = NULL; 1114 FOR_EACH_EDGE (e, ei, bb->preds) 1115 { 1116 if (dominated_by_p (CDI_DOMINATORS, e->src, bb)) 1117 continue; 1118 1119 if (!dom) 1120 dom = e->src; 1121 else 1122 { 1123 single = false; 1124 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src); 1125 } 1126 } 1127 1128 gcc_assert (dom != NULL); 1129 if (single 1130 || find_edge (dom, bb)) 1131 { 1132 set_immediate_dominator (CDI_DOMINATORS, bb, dom); 1133 goto succeed; 1134 } 1135 1136 fail: 1137 i++; 1138 continue; 1139 1140 succeed: 1141 bbs.unordered_remove (i); 1142 } 1143 } 1144 1145 /* Returns root of the dominance tree in the direction DIR that contains 1146 BB. */ 1147 1148 static basic_block 1149 root_of_dom_tree (enum cdi_direction dir, basic_block bb) 1150 { 1151 return (basic_block) et_root (bb->dom[dom_convert_dir_to_idx (dir)])->data; 1152 } 1153 1154 /* See the comment in iterate_fix_dominators. Finds the immediate dominators 1155 for the sons of Y, found using the SON and BROTHER arrays representing 1156 the dominance tree of graph G. BBS maps the vertices of G to the basic 1157 blocks. */ 1158 1159 static void 1160 determine_dominators_for_sons (struct graph *g, vec<basic_block> bbs, 1161 int y, int *son, int *brother) 1162 { 1163 bitmap gprime; 1164 int i, a, nc; 1165 vec<int> *sccs; 1166 basic_block bb, dom, ybb; 1167 unsigned si; 1168 edge e; 1169 edge_iterator ei; 1170 1171 if (son[y] == -1) 1172 return; 1173 if (y == (int) bbs.length ()) 1174 ybb = ENTRY_BLOCK_PTR; 1175 else 1176 ybb = bbs[y]; 1177 1178 if (brother[son[y]] == -1) 1179 { 1180 /* Handle the common case Y has just one son specially. */ 1181 bb = bbs[son[y]]; 1182 set_immediate_dominator (CDI_DOMINATORS, bb, 1183 recompute_dominator (CDI_DOMINATORS, bb)); 1184 identify_vertices (g, y, son[y]); 1185 return; 1186 } 1187 1188 gprime = BITMAP_ALLOC (NULL); 1189 for (a = son[y]; a != -1; a = brother[a]) 1190 bitmap_set_bit (gprime, a); 1191 1192 nc = graphds_scc (g, gprime); 1193 BITMAP_FREE (gprime); 1194 1195 /* ??? Needed to work around the pre-processor confusion with 1196 using a multi-argument template type as macro argument. */ 1197 typedef vec<int> vec_int_heap; 1198 sccs = XCNEWVEC (vec_int_heap, nc); 1199 for (a = son[y]; a != -1; a = brother[a]) 1200 sccs[g->vertices[a].component].safe_push (a); 1201 1202 for (i = nc - 1; i >= 0; i--) 1203 { 1204 dom = NULL; 1205 FOR_EACH_VEC_ELT (sccs[i], si, a) 1206 { 1207 bb = bbs[a]; 1208 FOR_EACH_EDGE (e, ei, bb->preds) 1209 { 1210 if (root_of_dom_tree (CDI_DOMINATORS, e->src) != ybb) 1211 continue; 1212 1213 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src); 1214 } 1215 } 1216 1217 gcc_assert (dom != NULL); 1218 FOR_EACH_VEC_ELT (sccs[i], si, a) 1219 { 1220 bb = bbs[a]; 1221 set_immediate_dominator (CDI_DOMINATORS, bb, dom); 1222 } 1223 } 1224 1225 for (i = 0; i < nc; i++) 1226 sccs[i].release (); 1227 free (sccs); 1228 1229 for (a = son[y]; a != -1; a = brother[a]) 1230 identify_vertices (g, y, a); 1231 } 1232 1233 /* Recompute dominance information for basic blocks in the set BBS. The 1234 function assumes that the immediate dominators of all the other blocks 1235 in CFG are correct, and that there are no unreachable blocks. 1236 1237 If CONSERVATIVE is true, we additionally assume that all the ancestors of 1238 a block of BBS in the current dominance tree dominate it. */ 1239 1240 void 1241 iterate_fix_dominators (enum cdi_direction dir, vec<basic_block> bbs, 1242 bool conservative) 1243 { 1244 unsigned i; 1245 basic_block bb, dom; 1246 struct graph *g; 1247 int n, y; 1248 size_t dom_i; 1249 edge e; 1250 edge_iterator ei; 1251 struct pointer_map_t *map; 1252 int *parent, *son, *brother; 1253 unsigned int dir_index = dom_convert_dir_to_idx (dir); 1254 1255 /* We only support updating dominators. There are some problems with 1256 updating postdominators (need to add fake edges from infinite loops 1257 and noreturn functions), and since we do not currently use 1258 iterate_fix_dominators for postdominators, any attempt to handle these 1259 problems would be unused, untested, and almost surely buggy. We keep 1260 the DIR argument for consistency with the rest of the dominator analysis 1261 interface. */ 1262 gcc_checking_assert (dir == CDI_DOMINATORS && dom_computed[dir_index]); 1263 1264 /* The algorithm we use takes inspiration from the following papers, although 1265 the details are quite different from any of them: 1266 1267 [1] G. Ramalingam, T. Reps, An Incremental Algorithm for Maintaining the 1268 Dominator Tree of a Reducible Flowgraph 1269 [2] V. C. Sreedhar, G. R. Gao, Y.-F. Lee: Incremental computation of 1270 dominator trees 1271 [3] K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance 1272 Algorithm 1273 1274 First, we use the following heuristics to decrease the size of the BBS 1275 set: 1276 a) if BB has a single predecessor, then its immediate dominator is this 1277 predecessor 1278 additionally, if CONSERVATIVE is true: 1279 b) if all the predecessors of BB except for one (X) are dominated by BB, 1280 then X is the immediate dominator of BB 1281 c) if the nearest common ancestor of the predecessors of BB is X and 1282 X -> BB is an edge in CFG, then X is the immediate dominator of BB 1283 1284 Then, we need to establish the dominance relation among the basic blocks 1285 in BBS. We split the dominance tree by removing the immediate dominator 1286 edges from BBS, creating a forest F. We form a graph G whose vertices 1287 are BBS and ENTRY and X -> Y is an edge of G if there exists an edge 1288 X' -> Y in CFG such that X' belongs to the tree of the dominance forest 1289 whose root is X. We then determine dominance tree of G. Note that 1290 for X, Y in BBS, X dominates Y in CFG if and only if X dominates Y in G. 1291 In this step, we can use arbitrary algorithm to determine dominators. 1292 We decided to prefer the algorithm [3] to the algorithm of 1293 Lengauer and Tarjan, since the set BBS is usually small (rarely exceeding 1294 10 during gcc bootstrap), and [3] should perform better in this case. 1295 1296 Finally, we need to determine the immediate dominators for the basic 1297 blocks of BBS. If the immediate dominator of X in G is Y, then 1298 the immediate dominator of X in CFG belongs to the tree of F rooted in 1299 Y. We process the dominator tree T of G recursively, starting from leaves. 1300 Suppose that X_1, X_2, ..., X_k are the sons of Y in T, and that the 1301 subtrees of the dominance tree of CFG rooted in X_i are already correct. 1302 Let G' be the subgraph of G induced by {X_1, X_2, ..., X_k}. We make 1303 the following observations: 1304 (i) the immediate dominator of all blocks in a strongly connected 1305 component of G' is the same 1306 (ii) if X has no predecessors in G', then the immediate dominator of X 1307 is the nearest common ancestor of the predecessors of X in the 1308 subtree of F rooted in Y 1309 Therefore, it suffices to find the topological ordering of G', and 1310 process the nodes X_i in this order using the rules (i) and (ii). 1311 Then, we contract all the nodes X_i with Y in G, so that the further 1312 steps work correctly. */ 1313 1314 if (!conservative) 1315 { 1316 /* Split the tree now. If the idoms of blocks in BBS are not 1317 conservatively correct, setting the dominators using the 1318 heuristics in prune_bbs_to_update_dominators could 1319 create cycles in the dominance "tree", and cause ICE. */ 1320 FOR_EACH_VEC_ELT (bbs, i, bb) 1321 set_immediate_dominator (CDI_DOMINATORS, bb, NULL); 1322 } 1323 1324 prune_bbs_to_update_dominators (bbs, conservative); 1325 n = bbs.length (); 1326 1327 if (n == 0) 1328 return; 1329 1330 if (n == 1) 1331 { 1332 bb = bbs[0]; 1333 set_immediate_dominator (CDI_DOMINATORS, bb, 1334 recompute_dominator (CDI_DOMINATORS, bb)); 1335 return; 1336 } 1337 1338 /* Construct the graph G. */ 1339 map = pointer_map_create (); 1340 FOR_EACH_VEC_ELT (bbs, i, bb) 1341 { 1342 /* If the dominance tree is conservatively correct, split it now. */ 1343 if (conservative) 1344 set_immediate_dominator (CDI_DOMINATORS, bb, NULL); 1345 *pointer_map_insert (map, bb) = (void *) (size_t) i; 1346 } 1347 *pointer_map_insert (map, ENTRY_BLOCK_PTR) = (void *) (size_t) n; 1348 1349 g = new_graph (n + 1); 1350 for (y = 0; y < g->n_vertices; y++) 1351 g->vertices[y].data = BITMAP_ALLOC (NULL); 1352 FOR_EACH_VEC_ELT (bbs, i, bb) 1353 { 1354 FOR_EACH_EDGE (e, ei, bb->preds) 1355 { 1356 dom = root_of_dom_tree (CDI_DOMINATORS, e->src); 1357 if (dom == bb) 1358 continue; 1359 1360 dom_i = (size_t) *pointer_map_contains (map, dom); 1361 1362 /* Do not include parallel edges to G. */ 1363 if (!bitmap_set_bit ((bitmap) g->vertices[dom_i].data, i)) 1364 continue; 1365 1366 add_edge (g, dom_i, i); 1367 } 1368 } 1369 for (y = 0; y < g->n_vertices; y++) 1370 BITMAP_FREE (g->vertices[y].data); 1371 pointer_map_destroy (map); 1372 1373 /* Find the dominator tree of G. */ 1374 son = XNEWVEC (int, n + 1); 1375 brother = XNEWVEC (int, n + 1); 1376 parent = XNEWVEC (int, n + 1); 1377 graphds_domtree (g, n, parent, son, brother); 1378 1379 /* Finally, traverse the tree and find the immediate dominators. */ 1380 for (y = n; son[y] != -1; y = son[y]) 1381 continue; 1382 while (y != -1) 1383 { 1384 determine_dominators_for_sons (g, bbs, y, son, brother); 1385 1386 if (brother[y] != -1) 1387 { 1388 y = brother[y]; 1389 while (son[y] != -1) 1390 y = son[y]; 1391 } 1392 else 1393 y = parent[y]; 1394 } 1395 1396 free (son); 1397 free (brother); 1398 free (parent); 1399 1400 free_graph (g); 1401 } 1402 1403 void 1404 add_to_dominance_info (enum cdi_direction dir, basic_block bb) 1405 { 1406 unsigned int dir_index = dom_convert_dir_to_idx (dir); 1407 1408 gcc_checking_assert (dom_computed[dir_index] && !bb->dom[dir_index]); 1409 1410 n_bbs_in_dom_tree[dir_index]++; 1411 1412 bb->dom[dir_index] = et_new_tree (bb); 1413 1414 if (dom_computed[dir_index] == DOM_OK) 1415 dom_computed[dir_index] = DOM_NO_FAST_QUERY; 1416 } 1417 1418 void 1419 delete_from_dominance_info (enum cdi_direction dir, basic_block bb) 1420 { 1421 unsigned int dir_index = dom_convert_dir_to_idx (dir); 1422 1423 gcc_checking_assert (dom_computed[dir_index]); 1424 1425 et_free_tree (bb->dom[dir_index]); 1426 bb->dom[dir_index] = NULL; 1427 n_bbs_in_dom_tree[dir_index]--; 1428 1429 if (dom_computed[dir_index] == DOM_OK) 1430 dom_computed[dir_index] = DOM_NO_FAST_QUERY; 1431 } 1432 1433 /* Returns the first son of BB in the dominator or postdominator tree 1434 as determined by DIR. */ 1435 1436 basic_block 1437 first_dom_son (enum cdi_direction dir, basic_block bb) 1438 { 1439 unsigned int dir_index = dom_convert_dir_to_idx (dir); 1440 struct et_node *son = bb->dom[dir_index]->son; 1441 1442 return (basic_block) (son ? son->data : NULL); 1443 } 1444 1445 /* Returns the next dominance son after BB in the dominator or postdominator 1446 tree as determined by DIR, or NULL if it was the last one. */ 1447 1448 basic_block 1449 next_dom_son (enum cdi_direction dir, basic_block bb) 1450 { 1451 unsigned int dir_index = dom_convert_dir_to_idx (dir); 1452 struct et_node *next = bb->dom[dir_index]->right; 1453 1454 return (basic_block) (next->father->son == next ? NULL : next->data); 1455 } 1456 1457 /* Return dominance availability for dominance info DIR. */ 1458 1459 enum dom_state 1460 dom_info_state (enum cdi_direction dir) 1461 { 1462 unsigned int dir_index = dom_convert_dir_to_idx (dir); 1463 1464 return dom_computed[dir_index]; 1465 } 1466 1467 /* Set the dominance availability for dominance info DIR to NEW_STATE. */ 1468 1469 void 1470 set_dom_info_availability (enum cdi_direction dir, enum dom_state new_state) 1471 { 1472 unsigned int dir_index = dom_convert_dir_to_idx (dir); 1473 1474 dom_computed[dir_index] = new_state; 1475 } 1476 1477 /* Returns true if dominance information for direction DIR is available. */ 1478 1479 bool 1480 dom_info_available_p (enum cdi_direction dir) 1481 { 1482 unsigned int dir_index = dom_convert_dir_to_idx (dir); 1483 1484 return dom_computed[dir_index] != DOM_NONE; 1485 } 1486 1487 DEBUG_FUNCTION void 1488 debug_dominance_info (enum cdi_direction dir) 1489 { 1490 basic_block bb, bb2; 1491 FOR_EACH_BB (bb) 1492 if ((bb2 = get_immediate_dominator (dir, bb))) 1493 fprintf (stderr, "%i %i\n", bb->index, bb2->index); 1494 } 1495 1496 /* Prints to stderr representation of the dominance tree (for direction DIR) 1497 rooted in ROOT, indented by INDENT tabulators. If INDENT_FIRST is false, 1498 the first line of the output is not indented. */ 1499 1500 static void 1501 debug_dominance_tree_1 (enum cdi_direction dir, basic_block root, 1502 unsigned indent, bool indent_first) 1503 { 1504 basic_block son; 1505 unsigned i; 1506 bool first = true; 1507 1508 if (indent_first) 1509 for (i = 0; i < indent; i++) 1510 fprintf (stderr, "\t"); 1511 fprintf (stderr, "%d\t", root->index); 1512 1513 for (son = first_dom_son (dir, root); 1514 son; 1515 son = next_dom_son (dir, son)) 1516 { 1517 debug_dominance_tree_1 (dir, son, indent + 1, !first); 1518 first = false; 1519 } 1520 1521 if (first) 1522 fprintf (stderr, "\n"); 1523 } 1524 1525 /* Prints to stderr representation of the dominance tree (for direction DIR) 1526 rooted in ROOT. */ 1527 1528 DEBUG_FUNCTION void 1529 debug_dominance_tree (enum cdi_direction dir, basic_block root) 1530 { 1531 debug_dominance_tree_1 (dir, root, 0, false); 1532 } 1533