xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/doc/invoke.texi (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1@c Copyright (C) 1988-2015 Free Software Foundation, Inc.
2@c This is part of the GCC manual.
3@c For copying conditions, see the file gcc.texi.
4
5@ignore
6@c man begin INCLUDE
7@include gcc-vers.texi
8@c man end
9
10@c man begin COPYRIGHT
11Copyright @copyright{} 1988-2015 Free Software Foundation, Inc.
12
13Permission is granted to copy, distribute and/or modify this document
14under the terms of the GNU Free Documentation License, Version 1.3 or
15any later version published by the Free Software Foundation; with the
16Invariant Sections being ``GNU General Public License'' and ``Funding
17Free Software'', the Front-Cover texts being (a) (see below), and with
18the Back-Cover Texts being (b) (see below).  A copy of the license is
19included in the gfdl(7) man page.
20
21(a) The FSF's Front-Cover Text is:
22
23     A GNU Manual
24
25(b) The FSF's Back-Cover Text is:
26
27     You have freedom to copy and modify this GNU Manual, like GNU
28     software.  Copies published by the Free Software Foundation raise
29     funds for GNU development.
30@c man end
31@c Set file name and title for the man page.
32@setfilename gcc
33@settitle GNU project C and C++ compiler
34@c man begin SYNOPSIS
35gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36    [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37    [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38    [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39    [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40    [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41    [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
42
43Only the most useful options are listed here; see below for the
44remainder.  @command{g++} accepts mostly the same options as @command{gcc}.
45@c man end
46@c man begin SEEALSO
47gpl(7), gfdl(7), fsf-funding(7),
48cpp(1), gcov(1), as(1), ld(1), gdb(1), adb(1), dbx(1), sdb(1)
49and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50@file{ld}, @file{binutils} and @file{gdb}.
51@c man end
52@c man begin BUGS
53For instructions on reporting bugs, see
54@w{@value{BUGURL}}.
55@c man end
56@c man begin AUTHOR
57See the Info entry for @command{gcc}, or
58@w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59for contributors to GCC@.
60@c man end
61@end ignore
62
63@node Invoking GCC
64@chapter GCC Command Options
65@cindex GCC command options
66@cindex command options
67@cindex options, GCC command
68
69@c man begin DESCRIPTION
70When you invoke GCC, it normally does preprocessing, compilation,
71assembly and linking.  The ``overall options'' allow you to stop this
72process at an intermediate stage.  For example, the @option{-c} option
73says not to run the linker.  Then the output consists of object files
74output by the assembler.
75
76Other options are passed on to one stage of processing.  Some options
77control the preprocessor and others the compiler itself.  Yet other
78options control the assembler and linker; most of these are not
79documented here, since you rarely need to use any of them.
80
81@cindex C compilation options
82Most of the command-line options that you can use with GCC are useful
83for C programs; when an option is only useful with another language
84(usually C++), the explanation says so explicitly.  If the description
85for a particular option does not mention a source language, you can use
86that option with all supported languages.
87
88@cindex C++ compilation options
89@xref{Invoking G++,,Compiling C++ Programs}, for a summary of special
90options for compiling C++ programs.
91
92@cindex grouping options
93@cindex options, grouping
94The @command{gcc} program accepts options and file names as operands.  Many
95options have multi-letter names; therefore multiple single-letter options
96may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
97-v}}.
98
99@cindex order of options
100@cindex options, order
101You can mix options and other arguments.  For the most part, the order
102you use doesn't matter.  Order does matter when you use several
103options of the same kind; for example, if you specify @option{-L} more
104than once, the directories are searched in the order specified.  Also,
105the placement of the @option{-l} option is significant.
106
107Many options have long names starting with @samp{-f} or with
108@samp{-W}---for example,
109@option{-fmove-loop-invariants}, @option{-Wformat} and so on.  Most of
110these have both positive and negative forms; the negative form of
111@option{-ffoo} is @option{-fno-foo}.  This manual documents
112only one of these two forms, whichever one is not the default.
113
114@c man end
115
116@xref{Option Index}, for an index to GCC's options.
117
118@menu
119* Option Summary::      Brief list of all options, without explanations.
120* Overall Options::     Controlling the kind of output:
121                        an executable, object files, assembler files,
122                        or preprocessed source.
123* Invoking G++::        Compiling C++ programs.
124* C Dialect Options::   Controlling the variant of C language compiled.
125* C++ Dialect Options:: Variations on C++.
126* Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
127                        and Objective-C++.
128* Language Independent Options:: Controlling how diagnostics should be
129                        formatted.
130* Warning Options::     How picky should the compiler be?
131* Debugging Options::   Symbol tables, measurements, and debugging dumps.
132* Optimize Options::    How much optimization?
133* Preprocessor Options:: Controlling header files and macro definitions.
134                         Also, getting dependency information for Make.
135* Assembler Options::   Passing options to the assembler.
136* Link Options::        Specifying libraries and so on.
137* Directory Options::   Where to find header files and libraries.
138                        Where to find the compiler executable files.
139* Spec Files::          How to pass switches to sub-processes.
140* Target Options::      Running a cross-compiler, or an old version of GCC.
141* Submodel Options::    Specifying minor hardware or convention variations,
142                        such as 68010 vs 68020.
143* Code Gen Options::    Specifying conventions for function calls, data layout
144                        and register usage.
145* Environment Variables:: Env vars that affect GCC.
146* Precompiled Headers:: Compiling a header once, and using it many times.
147@end menu
148
149@c man begin OPTIONS
150
151@node Option Summary
152@section Option Summary
153
154Here is a summary of all the options, grouped by type.  Explanations are
155in the following sections.
156
157@table @emph
158@item Overall Options
159@xref{Overall Options,,Options Controlling the Kind of Output}.
160@gccoptlist{-c  -S  -E  -o @var{file}  -no-canonical-prefixes  @gol
161-pipe  -pass-exit-codes  @gol
162-x @var{language}  -v  -###  --help@r{[}=@var{class}@r{[},@dots{}@r{]]}  --target-help  @gol
163--version -wrapper @@@var{file} -fplugin=@var{file} -fplugin-arg-@var{name}=@var{arg}  @gol
164-fdump-ada-spec@r{[}-slim@r{]} -fada-spec-parent=@var{unit} -fdump-go-spec=@var{file}}
165
166@item C Language Options
167@xref{C Dialect Options,,Options Controlling C Dialect}.
168@gccoptlist{-ansi  -std=@var{standard}  -fgnu89-inline @gol
169-aux-info @var{filename} -fallow-parameterless-variadic-functions @gol
170-fno-asm  -fno-builtin  -fno-builtin-@var{function} @gol
171-fhosted  -ffreestanding -fopenacc -fopenmp -fopenmp-simd @gol
172-fms-extensions -fplan9-extensions -trigraphs -traditional -traditional-cpp @gol
173-fallow-single-precision  -fcond-mismatch -flax-vector-conversions @gol
174-fsigned-bitfields  -fsigned-char @gol
175-funsigned-bitfields  -funsigned-char}
176
177@item C++ Language Options
178@xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
179@gccoptlist{-fabi-version=@var{n}  -fno-access-control  -fcheck-new @gol
180-fconstexpr-depth=@var{n}  -ffriend-injection @gol
181-fno-elide-constructors @gol
182-fno-enforce-eh-specs @gol
183-ffor-scope  -fno-for-scope  -fno-gnu-keywords @gol
184-fno-implicit-templates @gol
185-fno-implicit-inline-templates @gol
186-fno-implement-inlines  -fms-extensions @gol
187-fno-nonansi-builtins  -fnothrow-opt  -fno-operator-names @gol
188-fno-optional-diags  -fpermissive @gol
189-fno-pretty-templates @gol
190-frepo  -fno-rtti -fsized-deallocation @gol
191-fstats  -ftemplate-backtrace-limit=@var{n} @gol
192-ftemplate-depth=@var{n} @gol
193-fno-threadsafe-statics  -fuse-cxa-atexit @gol
194-fno-weak  -nostdinc++ @gol
195-fvisibility-inlines-hidden @gol
196-fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
197-fvtv-counts -fvtv-debug @gol
198-fvisibility-ms-compat @gol
199-fext-numeric-literals @gol
200-Wabi=@var{n}  -Wabi-tag  -Wconversion-null  -Wctor-dtor-privacy @gol
201-Wdelete-non-virtual-dtor -Wliteral-suffix -Wnarrowing @gol
202-Wnoexcept -Wnon-virtual-dtor  -Wreorder @gol
203-Weffc++  -Wstrict-null-sentinel @gol
204-Wno-non-template-friend  -Wold-style-cast @gol
205-Woverloaded-virtual  -Wno-pmf-conversions @gol
206-Wsign-promo}
207
208@item Objective-C and Objective-C++ Language Options
209@xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
210Objective-C and Objective-C++ Dialects}.
211@gccoptlist{-fconstant-string-class=@var{class-name} @gol
212-fgnu-runtime  -fnext-runtime @gol
213-fno-nil-receivers @gol
214-fobjc-abi-version=@var{n} @gol
215-fobjc-call-cxx-cdtors @gol
216-fobjc-direct-dispatch @gol
217-fobjc-exceptions @gol
218-fobjc-gc @gol
219-fobjc-nilcheck @gol
220-fobjc-std=objc1 @gol
221-fno-local-ivars @gol
222-fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
223-freplace-objc-classes @gol
224-fzero-link @gol
225-gen-decls @gol
226-Wassign-intercept @gol
227-Wno-protocol  -Wselector @gol
228-Wstrict-selector-match @gol
229-Wundeclared-selector}
230
231@item Language Independent Options
232@xref{Language Independent Options,,Options to Control Diagnostic Messages Formatting}.
233@gccoptlist{-fmessage-length=@var{n}  @gol
234-fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]}  @gol
235-fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]}  @gol
236-fno-diagnostics-show-option -fno-diagnostics-show-caret}
237
238@item Warning Options
239@xref{Warning Options,,Options to Request or Suppress Warnings}.
240@gccoptlist{-fsyntax-only  -fmax-errors=@var{n}  -Wpedantic @gol
241-pedantic-errors @gol
242-w  -Wextra  -Wall  -Waddress  -Waggregate-return  @gol
243-Waggressive-loop-optimizations -Warray-bounds -Warray-bounds=@var{n} @gol
244-Wbool-compare @gol
245-Wno-attributes -Wno-builtin-macro-redefined @gol
246-Wc90-c99-compat -Wc99-c11-compat @gol
247-Wc++-compat -Wc++11-compat -Wc++14-compat -Wcast-align  -Wcast-qual  @gol
248-Wchar-subscripts -Wchkp -Wclobbered  -Wcomment -Wconditionally-supported  @gol
249-Wconversion -Wcoverage-mismatch -Wdate-time -Wdelete-incomplete -Wno-cpp  @gol
250-Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init @gol
251-Wdisabled-optimization @gol
252-Wno-discarded-qualifiers -Wno-discarded-array-qualifiers @gol
253-Wno-div-by-zero -Wdouble-promotion -Wempty-body  -Wenum-compare @gol
254-Wno-endif-labels -Werror  -Werror=* @gol
255-Wfatal-errors  -Wfloat-equal  -Wformat  -Wformat=2 @gol
256-Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral @gol
257-Wformat-security  -Wformat-signedness  -Wformat-y2k @gol
258-Wframe-larger-than=@var{len} -Wno-free-nonheap-object -Wjump-misses-init @gol
259-Wignored-qualifiers  -Wincompatible-pointer-types @gol
260-Wimplicit  -Wimplicit-function-declaration  -Wimplicit-int @gol
261-Winit-self  -Winline  -Wno-int-conversion @gol
262-Wno-int-to-pointer-cast -Wno-invalid-offsetof @gol
263-Winvalid-pch -Wlarger-than=@var{len}  -Wunsafe-loop-optimizations @gol
264-Wlogical-op -Wlogical-not-parentheses -Wlong-long @gol
265-Wmain -Wmaybe-uninitialized -Wmemset-transposed-args -Wmissing-braces @gol
266-Wmissing-field-initializers -Wmissing-include-dirs @gol
267-Wno-multichar  -Wnonnull  -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
268 -Wodr  -Wno-overflow  -Wopenmp-simd @gol
269-Woverlength-strings  -Wpacked  -Wpacked-bitfield-compat  -Wpadded @gol
270-Wparentheses  -Wpedantic-ms-format -Wno-pedantic-ms-format @gol
271-Wpointer-arith  -Wno-pointer-to-int-cast @gol
272-Wredundant-decls  -Wno-return-local-addr @gol
273-Wreturn-type  -Wsequence-point  -Wshadow  -Wno-shadow-ivar @gol
274-Wshift-count-negative -Wshift-count-overflow @gol
275-Wsign-compare  -Wsign-conversion -Wfloat-conversion @gol
276-Wsizeof-pointer-memaccess  -Wsizeof-array-argument @gol
277-Wstack-protector -Wstack-usage=@var{len} -Wstrict-aliasing @gol
278-Wstrict-aliasing=n @gol -Wstrict-overflow -Wstrict-overflow=@var{n} @gol
279-Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]} @gol
280-Wsuggest-final-types @gol -Wsuggest-final-methods @gol -Wsuggest-override @gol
281-Wmissing-format-attribute @gol
282-Wswitch  -Wswitch-default  -Wswitch-enum -Wswitch-bool -Wsync-nand @gol
283-Wsystem-headers  -Wtrampolines  -Wtrigraphs  -Wtype-limits  -Wundef @gol
284-Wuninitialized  -Wunknown-pragmas  -Wno-pragmas @gol
285-Wunsuffixed-float-constants  -Wunused  -Wunused-function @gol
286-Wunused-label  -Wunused-local-typedefs -Wunused-parameter @gol
287-Wno-unused-result -Wunused-value @gol -Wunused-variable @gol
288-Wunused-but-set-parameter -Wunused-but-set-variable @gol
289-Wuseless-cast -Wvariadic-macros -Wvector-operation-performance @gol
290-Wvla -Wvolatile-register-var  -Wwrite-strings @gol
291-Wzero-as-null-pointer-constant}
292
293@item C and Objective-C-only Warning Options
294@gccoptlist{-Wbad-function-cast  -Wmissing-declarations @gol
295-Wmissing-parameter-type  -Wmissing-prototypes  -Wnested-externs @gol
296-Wold-style-declaration  -Wold-style-definition @gol
297-Wstrict-prototypes  -Wtraditional  -Wtraditional-conversion @gol
298-Wdeclaration-after-statement -Wpointer-sign}
299
300@item Debugging Options
301@xref{Debugging Options,,Options for Debugging Your Program or GCC}.
302@gccoptlist{-d@var{letters}  -dumpspecs  -dumpmachine  -dumpversion @gol
303-fsanitize=@var{style} -fsanitize-recover -fsanitize-recover=@var{style} @gol
304-fasan-shadow-offset=@var{number} -fsanitize-undefined-trap-on-error @gol
305-fcheck-pointer-bounds -fchkp-check-incomplete-type @gol
306-fchkp-first-field-has-own-bounds -fchkp-narrow-bounds @gol
307-fchkp-narrow-to-innermost-array -fchkp-optimize @gol
308-fchkp-use-fast-string-functions -fchkp-use-nochk-string-functions @gol
309-fchkp-use-static-bounds -fchkp-use-static-const-bounds @gol
310-fchkp-treat-zero-dynamic-size-as-infinite -fchkp-check-read @gol
311-fchkp-check-read -fchkp-check-write -fchkp-store-bounds @gol
312-fchkp-instrument-calls -fchkp-instrument-marked-only @gol
313-fchkp-use-wrappers @gol
314-fdbg-cnt-list -fdbg-cnt=@var{counter-value-list} @gol
315-fdisable-ipa-@var{pass_name} @gol
316-fdisable-rtl-@var{pass_name} @gol
317-fdisable-rtl-@var{pass-name}=@var{range-list} @gol
318-fdisable-tree-@var{pass_name} @gol
319-fdisable-tree-@var{pass-name}=@var{range-list} @gol
320-fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links @gol
321-fdump-translation-unit@r{[}-@var{n}@r{]} @gol
322-fdump-class-hierarchy@r{[}-@var{n}@r{]} @gol
323-fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline @gol
324-fdump-passes @gol
325-fdump-statistics @gol
326-fdump-tree-all @gol
327-fdump-tree-original@r{[}-@var{n}@r{]}  @gol
328-fdump-tree-optimized@r{[}-@var{n}@r{]} @gol
329-fdump-tree-cfg -fdump-tree-alias @gol
330-fdump-tree-ch @gol
331-fdump-tree-ssa@r{[}-@var{n}@r{]} -fdump-tree-pre@r{[}-@var{n}@r{]} @gol
332-fdump-tree-ccp@r{[}-@var{n}@r{]} -fdump-tree-dce@r{[}-@var{n}@r{]} @gol
333-fdump-tree-gimple@r{[}-raw@r{]} @gol
334-fdump-tree-dom@r{[}-@var{n}@r{]} @gol
335-fdump-tree-dse@r{[}-@var{n}@r{]} @gol
336-fdump-tree-phiprop@r{[}-@var{n}@r{]} @gol
337-fdump-tree-phiopt@r{[}-@var{n}@r{]} @gol
338-fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
339-fdump-tree-copyrename@r{[}-@var{n}@r{]} @gol
340-fdump-tree-nrv -fdump-tree-vect @gol
341-fdump-tree-sink @gol
342-fdump-tree-sra@r{[}-@var{n}@r{]} @gol
343-fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
344-fdump-tree-fre@r{[}-@var{n}@r{]} @gol
345-fdump-tree-vtable-verify @gol
346-fdump-tree-vrp@r{[}-@var{n}@r{]} @gol
347-fdump-tree-storeccp@r{[}-@var{n}@r{]} @gol
348-fdump-final-insns=@var{file} @gol
349-fcompare-debug@r{[}=@var{opts}@r{]}  -fcompare-debug-second @gol
350-feliminate-dwarf2-dups -fno-eliminate-unused-debug-types @gol
351-feliminate-unused-debug-symbols -femit-class-debug-always @gol
352-fenable-@var{kind}-@var{pass} @gol
353-fenable-@var{kind}-@var{pass}=@var{range-list} @gol
354-fdebug-types-section -fmem-report-wpa @gol
355-fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report -fprofile-arcs @gol
356-fopt-info @gol
357-fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
358-frandom-seed=@var{string} -fsched-verbose=@var{n} @gol
359-fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol
360-fstack-usage  -ftest-coverage  -ftime-report -fvar-tracking @gol
361-fvar-tracking-assignments  -fvar-tracking-assignments-toggle @gol
362-g  -g@var{level}  -gtoggle  -gcoff  -gdwarf-@var{version} @gol
363-ggdb  -grecord-gcc-switches  -gno-record-gcc-switches @gol
364-gstabs  -gstabs+  -gstrict-dwarf  -gno-strict-dwarf @gol
365-gvms  -gxcoff  -gxcoff+ -gz@r{[}=@var{type}@r{]} @gol
366-fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol
367-fdebug-prefix-map=@var{old}=@var{new} @gol
368-femit-struct-debug-baseonly -femit-struct-debug-reduced @gol
369-femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
370-p  -pg  -print-file-name=@var{library}  -print-libgcc-file-name @gol
371-print-multi-directory  -print-multi-lib  -print-multi-os-directory @gol
372-print-prog-name=@var{program}  -print-search-dirs  -Q @gol
373-print-sysroot -print-sysroot-headers-suffix @gol
374-save-temps -save-temps=cwd -save-temps=obj -time@r{[}=@var{file}@r{]}}
375
376@item Optimization Options
377@xref{Optimize Options,,Options that Control Optimization}.
378@gccoptlist{-faggressive-loop-optimizations -falign-functions[=@var{n}] @gol
379-falign-jumps[=@var{n}] @gol
380-falign-labels[=@var{n}] -falign-loops[=@var{n}] @gol
381-fassociative-math -fauto-profile -fauto-profile[=@var{path}] @gol
382-fauto-inc-dec -fbranch-probabilities @gol
383-fbranch-target-load-optimize -fbranch-target-load-optimize2 @gol
384-fbtr-bb-exclusive -fcaller-saves @gol
385-fcheck-data-deps -fcombine-stack-adjustments -fconserve-stack @gol
386-fcompare-elim -fcprop-registers -fcrossjumping @gol
387-fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules @gol
388-fcx-limited-range @gol
389-fdata-sections -fdce -fdelayed-branch @gol
390-fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively @gol
391-fdevirtualize-at-ltrans -fdse @gol
392-fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects @gol
393-ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=@var{style} @gol
394-fforward-propagate -ffp-contract=@var{style} -ffunction-sections @gol
395-fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity @gol
396-fgcse-sm -fhoist-adjacent-loads -fif-conversion @gol
397-fif-conversion2 -findirect-inlining @gol
398-finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol
399-finline-small-functions -fipa-cp -fipa-cp-clone -fipa-cp-alignment @gol
400-fipa-pta -fipa-profile -fipa-pure-const -fipa-reference -fipa-icf @gol
401-fira-algorithm=@var{algorithm} @gol
402-fira-region=@var{region} -fira-hoist-pressure @gol
403-fira-loop-pressure -fno-ira-share-save-slots @gol
404-fno-ira-share-spill-slots -fira-verbose=@var{n} @gol
405-fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute @gol
406-fivopts -fkeep-inline-functions -fkeep-static-consts @gol
407-flive-range-shrinkage @gol
408-floop-block -floop-interchange -floop-strip-mine @gol
409-floop-unroll-and-jam -floop-nest-optimize @gol
410-floop-parallelize-all -flra-remat -flto -flto-compression-level @gol
411-flto-partition=@var{alg} -flto-report -flto-report-wpa -fmerge-all-constants @gol
412-fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves @gol
413-fmove-loop-invariants -fno-branch-count-reg @gol
414-fno-defer-pop -fno-function-cse -fno-guess-branch-probability @gol
415-fno-inline -fno-math-errno -fno-peephole -fno-peephole2 @gol
416-fno-sched-interblock -fno-sched-spec -fno-signed-zeros @gol
417-fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss @gol
418-fomit-frame-pointer -foptimize-sibling-calls @gol
419-fpartial-inlining -fpeel-loops -fpredictive-commoning @gol
420-fprefetch-loop-arrays -fprofile-report @gol
421-fprofile-correction -fprofile-dir=@var{path} -fprofile-generate @gol
422-fprofile-generate=@var{path} @gol
423-fprofile-use -fprofile-use=@var{path} -fprofile-values @gol
424-fprofile-reorder-functions @gol
425-freciprocal-math -free -frename-registers -freorder-blocks @gol
426-freorder-blocks-and-partition -freorder-functions @gol
427-frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol
428-frounding-math -fsched2-use-superblocks -fsched-pressure @gol
429-fsched-spec-load -fsched-spec-load-dangerous @gol
430-fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol
431-fsched-group-heuristic -fsched-critical-path-heuristic @gol
432-fsched-spec-insn-heuristic -fsched-rank-heuristic @gol
433-fsched-last-insn-heuristic -fsched-dep-count-heuristic @gol
434-fschedule-fusion @gol
435-fschedule-insns -fschedule-insns2 -fsection-anchors @gol
436-fselective-scheduling -fselective-scheduling2 @gol
437-fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
438-fsemantic-interposition @gol
439-fshrink-wrap -fsignaling-nans -fsingle-precision-constant @gol
440-fsplit-ivs-in-unroller -fsplit-wide-types -fssa-phiopt @gol
441-fstack-protector -fstack-protector-all -fstack-protector-strong @gol
442-fstack-protector-explicit -fstdarg-opt -fstrict-aliasing @gol
443-fstrict-overflow -fthread-jumps -ftracer -ftree-bit-ccp @gol
444-ftree-builtin-call-dce -ftree-ccp -ftree-ch @gol
445-ftree-coalesce-inline-vars -ftree-coalesce-vars -ftree-copy-prop @gol
446-ftree-copyrename -ftree-dce -ftree-dominator-opts -ftree-dse @gol
447-ftree-forwprop -ftree-fre -ftree-loop-if-convert @gol
448-ftree-loop-if-convert-stores -ftree-loop-im @gol
449-ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns @gol
450-ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize @gol
451-ftree-loop-vectorize @gol
452-ftree-parallelize-loops=@var{n} -ftree-pre -ftree-partial-pre -ftree-pta @gol
453-ftree-reassoc -ftree-sink -ftree-slsr -ftree-sra @gol
454-ftree-switch-conversion -ftree-tail-merge -ftree-ter @gol
455-ftree-vectorize -ftree-vrp @gol
456-funit-at-a-time -funroll-all-loops -funroll-loops @gol
457-funsafe-loop-optimizations -funsafe-math-optimizations -funswitch-loops @gol
458-fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt @gol
459-fweb -fwhole-program -fwpa -fuse-linker-plugin @gol
460--param @var{name}=@var{value}
461-O  -O0  -O1  -O2  -O3  -Os -Ofast -Og}
462
463@item Preprocessor Options
464@xref{Preprocessor Options,,Options Controlling the Preprocessor}.
465@gccoptlist{-A@var{question}=@var{answer} @gol
466-A-@var{question}@r{[}=@var{answer}@r{]} @gol
467-C  -dD  -dI  -dM  -dN @gol
468-D@var{macro}@r{[}=@var{defn}@r{]}  -E  -H @gol
469-idirafter @var{dir} @gol
470-include @var{file}  -imacros @var{file} @gol
471-iprefix @var{file}  -iwithprefix @var{dir} @gol
472-iwithprefixbefore @var{dir}  -isystem @var{dir} @gol
473-cxx-isystem @var{dir} @gol
474-imultilib @var{dir} -isysroot @var{dir} @gol
475-M  -MM  -MF  -MG  -MP  -MQ  -MT  -nostdinc  @gol
476-P  -fdebug-cpp -ftrack-macro-expansion -fworking-directory @gol
477-remap -trigraphs  -undef  -U@var{macro}  @gol
478-Wp,@var{option} -Xpreprocessor @var{option} -no-integrated-cpp}
479
480@item Assembler Option
481@xref{Assembler Options,,Passing Options to the Assembler}.
482@gccoptlist{-Wa,@var{option}  -Xassembler @var{option}}
483
484@item Linker Options
485@xref{Link Options,,Options for Linking}.
486@gccoptlist{@var{object-file-name}  -fuse-ld=@var{linker} -l@var{library} @gol
487-nostartfiles  -nodefaultlibs  -nostdlib -pie -rdynamic @gol
488-s  -static -static-libgcc -static-libstdc++ @gol
489-static-libasan -static-libtsan -static-liblsan -static-libubsan @gol
490-static-libmpx -static-libmpxwrappers @gol
491-shared -shared-libgcc  -symbolic @gol
492-T @var{script}  -Wl,@var{option}  -Xlinker @var{option} @gol
493-u @var{symbol} -z @var{keyword}}
494
495@item Directory Options
496@xref{Directory Options,,Options for Directory Search}.
497@gccoptlist{-B@var{prefix}  -I@var{dir}  -iquote@var{dir}
498-iremap@var{src}:@var{dst}  -L@var{dir}
499-specs=@var{file}  -I- --sysroot=@var{dir}}
500
501@item Target Options
502@c I wrote this xref this way to avoid overfull hbox. -- rms
503@xref{Target Options}.
504@gccoptlist{-V @var{version}  -b @var{machine}}
505@gccoptlist{-B@var{prefix} -I@var{dir} -iplugindir=@var{dir} @gol
506-iquote@var{dir} -L@var{dir} -specs=@var{file} -I- @gol
507--sysroot=@var{dir} --no-sysroot-suffix}
508
509@item Machine Dependent Options
510@xref{Submodel Options,,Hardware Models and Configurations}.
511@c This list is ordered alphanumerically by subsection name.
512@c Try and put the significant identifier (CPU or system) first,
513@c so users have a clue at guessing where the ones they want will be.
514
515@emph{AArch64 Options}
516@gccoptlist{-mabi=@var{name}  -mbig-endian  -mlittle-endian @gol
517-mgeneral-regs-only @gol
518-mcmodel=tiny  -mcmodel=small  -mcmodel=large @gol
519-mstrict-align @gol
520-momit-leaf-frame-pointer  -mno-omit-leaf-frame-pointer @gol
521-mtls-dialect=desc  -mtls-dialect=traditional @gol
522-mfix-cortex-a53-835769  -mno-fix-cortex-a53-835769 @gol
523-mfix-cortex-a53-843419  -mno-fix-cortex-a53-843419 @gol
524-march=@var{name}  -mcpu=@var{name}  -mtune=@var{name}}
525
526@emph{Adapteva Epiphany Options}
527@gccoptlist{-mhalf-reg-file -mprefer-short-insn-regs @gol
528-mbranch-cost=@var{num} -mcmove -mnops=@var{num} -msoft-cmpsf @gol
529-msplit-lohi -mpost-inc -mpost-modify -mstack-offset=@var{num} @gol
530-mround-nearest -mlong-calls -mshort-calls -msmall16 @gol
531-mfp-mode=@var{mode} -mvect-double -max-vect-align=@var{num} @gol
532-msplit-vecmove-early -m1reg-@var{reg}}
533
534@emph{ARC Options}
535@gccoptlist{-mbarrel-shifter @gol
536-mcpu=@var{cpu} -mA6 -mARC600 -mA7 -mARC700 @gol
537-mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr @gol
538-mea -mno-mpy -mmul32x16 -mmul64 @gol
539-mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap @gol
540-mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape @gol
541-mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof @gol
542-mepilogue-cfi -mlong-calls -mmedium-calls -msdata @gol
543-mucb-mcount -mvolatile-cache @gol
544-malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc @gol
545-mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi @gol
546-mexpand-adddi -mindexed-loads -mlra -mlra-priority-none @gol
547-mlra-priority-compact mlra-priority-noncompact -mno-millicode @gol
548-mmixed-code -mq-class -mRcq -mRcw -msize-level=@var{level} @gol
549-mtune=@var{cpu} -mmultcost=@var{num} -munalign-prob-threshold=@var{probability}}
550
551@emph{ARM Options}
552@gccoptlist{-mapcs-frame  -mno-apcs-frame @gol
553-mabi=@var{name} @gol
554-mapcs-stack-check  -mno-apcs-stack-check @gol
555-mapcs-float  -mno-apcs-float @gol
556-mapcs-reentrant  -mno-apcs-reentrant @gol
557-msched-prolog  -mno-sched-prolog @gol
558-mlittle-endian  -mbig-endian @gol
559-mfloat-abi=@var{name} @gol
560-mfp16-format=@var{name}
561-mthumb-interwork  -mno-thumb-interwork @gol
562-mcpu=@var{name}  -march=@var{name}  -mfpu=@var{name}  @gol
563-mtune=@var{name} -mprint-tune-info @gol
564-mstructure-size-boundary=@var{n} @gol
565-mabort-on-noreturn @gol
566-mlong-calls  -mno-long-calls @gol
567-msingle-pic-base  -mno-single-pic-base @gol
568-mpic-register=@var{reg} @gol
569-mnop-fun-dllimport @gol
570-mpoke-function-name @gol
571-mthumb  -marm @gol
572-mtpcs-frame  -mtpcs-leaf-frame @gol
573-mcaller-super-interworking  -mcallee-super-interworking @gol
574-mtp=@var{name} -mtls-dialect=@var{dialect} @gol
575-mword-relocations @gol
576-mfix-cortex-m3-ldrd @gol
577-munaligned-access @gol
578-mneon-for-64bits @gol
579-mslow-flash-data @gol
580-masm-syntax-unified @gol
581-mrestrict-it}
582
583@emph{AVR Options}
584@gccoptlist{-mmcu=@var{mcu} -maccumulate-args -mbranch-cost=@var{cost} @gol
585-mcall-prologues -mint8 -mn_flash=@var{size} -mno-interrupts @gol
586-mrelax -mrmw -mstrict-X -mtiny-stack -nodevicelib -Waddr-space-convert @gol
587-Wmisspelled-isr}
588
589@emph{Blackfin Options}
590@gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
591-msim -momit-leaf-frame-pointer  -mno-omit-leaf-frame-pointer @gol
592-mspecld-anomaly  -mno-specld-anomaly  -mcsync-anomaly  -mno-csync-anomaly @gol
593-mlow-64k -mno-low64k  -mstack-check-l1  -mid-shared-library @gol
594-mno-id-shared-library  -mshared-library-id=@var{n} @gol
595-mleaf-id-shared-library  -mno-leaf-id-shared-library @gol
596-msep-data  -mno-sep-data  -mlong-calls  -mno-long-calls @gol
597-mfast-fp -minline-plt -mmulticore  -mcorea  -mcoreb  -msdram @gol
598-micplb}
599
600@emph{C6X Options}
601@gccoptlist{-mbig-endian  -mlittle-endian -march=@var{cpu} @gol
602-msim -msdata=@var{sdata-type}}
603
604@emph{CRIS Options}
605@gccoptlist{-mcpu=@var{cpu}  -march=@var{cpu}  -mtune=@var{cpu} @gol
606-mmax-stack-frame=@var{n}  -melinux-stacksize=@var{n} @gol
607-metrax4  -metrax100  -mpdebug  -mcc-init  -mno-side-effects @gol
608-mstack-align  -mdata-align  -mconst-align @gol
609-m32-bit  -m16-bit  -m8-bit  -mno-prologue-epilogue  -mno-gotplt @gol
610-melf  -maout  -melinux  -mlinux  -sim  -sim2 @gol
611-mmul-bug-workaround  -mno-mul-bug-workaround}
612
613@emph{CR16 Options}
614@gccoptlist{-mmac @gol
615-mcr16cplus -mcr16c @gol
616-msim -mint32 -mbit-ops
617-mdata-model=@var{model}}
618
619@emph{Darwin Options}
620@gccoptlist{-all_load  -allowable_client  -arch  -arch_errors_fatal @gol
621-arch_only  -bind_at_load  -bundle  -bundle_loader @gol
622-client_name  -compatibility_version  -current_version @gol
623-dead_strip @gol
624-dependency-file  -dylib_file  -dylinker_install_name @gol
625-dynamic  -dynamiclib  -exported_symbols_list @gol
626-filelist  -flat_namespace  -force_cpusubtype_ALL @gol
627-force_flat_namespace  -headerpad_max_install_names @gol
628-iframework @gol
629-image_base  -init  -install_name  -keep_private_externs @gol
630-multi_module  -multiply_defined  -multiply_defined_unused @gol
631-noall_load   -no_dead_strip_inits_and_terms @gol
632-nofixprebinding -nomultidefs  -noprebind  -noseglinkedit @gol
633-pagezero_size  -prebind  -prebind_all_twolevel_modules @gol
634-private_bundle  -read_only_relocs  -sectalign @gol
635-sectobjectsymbols  -whyload  -seg1addr @gol
636-sectcreate  -sectobjectsymbols  -sectorder @gol
637-segaddr -segs_read_only_addr -segs_read_write_addr @gol
638-seg_addr_table  -seg_addr_table_filename  -seglinkedit @gol
639-segprot  -segs_read_only_addr  -segs_read_write_addr @gol
640-single_module  -static  -sub_library  -sub_umbrella @gol
641-twolevel_namespace  -umbrella  -undefined @gol
642-unexported_symbols_list  -weak_reference_mismatches @gol
643-whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol
644-mkernel -mone-byte-bool}
645
646@emph{DEC Alpha Options}
647@gccoptlist{-mno-fp-regs  -msoft-float @gol
648-mieee  -mieee-with-inexact  -mieee-conformant @gol
649-mfp-trap-mode=@var{mode}  -mfp-rounding-mode=@var{mode} @gol
650-mtrap-precision=@var{mode}  -mbuild-constants @gol
651-mcpu=@var{cpu-type}  -mtune=@var{cpu-type} @gol
652-mbwx  -mmax  -mfix  -mcix @gol
653-mfloat-vax  -mfloat-ieee @gol
654-mexplicit-relocs  -msmall-data  -mlarge-data @gol
655-msmall-text  -mlarge-text @gol
656-mmemory-latency=@var{time}}
657
658@emph{FR30 Options}
659@gccoptlist{-msmall-model -mno-lsim}
660
661@emph{FRV Options}
662@gccoptlist{-mgpr-32  -mgpr-64  -mfpr-32  -mfpr-64 @gol
663-mhard-float  -msoft-float @gol
664-malloc-cc  -mfixed-cc  -mdword  -mno-dword @gol
665-mdouble  -mno-double @gol
666-mmedia  -mno-media  -mmuladd  -mno-muladd @gol
667-mfdpic  -minline-plt -mgprel-ro  -multilib-library-pic @gol
668-mlinked-fp  -mlong-calls  -malign-labels @gol
669-mlibrary-pic  -macc-4  -macc-8 @gol
670-mpack  -mno-pack  -mno-eflags  -mcond-move  -mno-cond-move @gol
671-moptimize-membar -mno-optimize-membar @gol
672-mscc  -mno-scc  -mcond-exec  -mno-cond-exec @gol
673-mvliw-branch  -mno-vliw-branch @gol
674-mmulti-cond-exec  -mno-multi-cond-exec  -mnested-cond-exec @gol
675-mno-nested-cond-exec  -mtomcat-stats @gol
676-mTLS -mtls @gol
677-mcpu=@var{cpu}}
678
679@emph{GNU/Linux Options}
680@gccoptlist{-mglibc -muclibc -mbionic -mandroid @gol
681-tno-android-cc -tno-android-ld}
682
683@emph{H8/300 Options}
684@gccoptlist{-mrelax  -mh  -ms  -mn  -mexr -mno-exr  -mint32  -malign-300}
685
686@emph{HPPA Options}
687@gccoptlist{-march=@var{architecture-type} @gol
688-mdisable-fpregs  -mdisable-indexing @gol
689-mfast-indirect-calls  -mgas  -mgnu-ld   -mhp-ld @gol
690-mfixed-range=@var{register-range} @gol
691-mjump-in-delay -mlinker-opt -mlong-calls @gol
692-mlong-load-store  -mno-disable-fpregs @gol
693-mno-disable-indexing  -mno-fast-indirect-calls  -mno-gas @gol
694-mno-jump-in-delay  -mno-long-load-store @gol
695-mno-portable-runtime  -mno-soft-float @gol
696-mno-space-regs  -msoft-float  -mpa-risc-1-0 @gol
697-mpa-risc-1-1  -mpa-risc-2-0  -mportable-runtime @gol
698-mschedule=@var{cpu-type}  -mspace-regs  -msio  -mwsio @gol
699-munix=@var{unix-std}  -nolibdld  -static  -threads}
700
701@emph{IA-64 Options}
702@gccoptlist{-mbig-endian  -mlittle-endian  -mgnu-as  -mgnu-ld  -mno-pic @gol
703-mvolatile-asm-stop  -mregister-names  -msdata -mno-sdata @gol
704-mconstant-gp  -mauto-pic  -mfused-madd @gol
705-minline-float-divide-min-latency @gol
706-minline-float-divide-max-throughput @gol
707-mno-inline-float-divide @gol
708-minline-int-divide-min-latency @gol
709-minline-int-divide-max-throughput  @gol
710-mno-inline-int-divide @gol
711-minline-sqrt-min-latency -minline-sqrt-max-throughput @gol
712-mno-inline-sqrt @gol
713-mdwarf2-asm -mearly-stop-bits @gol
714-mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol
715-mtune=@var{cpu-type} -milp32 -mlp64 @gol
716-msched-br-data-spec -msched-ar-data-spec -msched-control-spec @gol
717-msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol
718-msched-spec-ldc -msched-spec-control-ldc @gol
719-msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns @gol
720-msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path @gol
721-msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost @gol
722-msched-max-memory-insns-hard-limit -msched-max-memory-insns=@var{max-insns}}
723
724@emph{LM32 Options}
725@gccoptlist{-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled @gol
726-msign-extend-enabled -muser-enabled}
727
728@emph{M32R/D Options}
729@gccoptlist{-m32r2 -m32rx -m32r @gol
730-mdebug @gol
731-malign-loops -mno-align-loops @gol
732-missue-rate=@var{number} @gol
733-mbranch-cost=@var{number} @gol
734-mmodel=@var{code-size-model-type} @gol
735-msdata=@var{sdata-type} @gol
736-mno-flush-func -mflush-func=@var{name} @gol
737-mno-flush-trap -mflush-trap=@var{number} @gol
738-G @var{num}}
739
740@emph{M32C Options}
741@gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}
742
743@emph{M680x0 Options}
744@gccoptlist{-march=@var{arch}  -mcpu=@var{cpu}  -mtune=@var{tune} @gol
745-m68000  -m68020  -m68020-40  -m68020-60  -m68030  -m68040 @gol
746-m68060  -mcpu32  -m5200  -m5206e  -m528x  -m5307  -m5407 @gol
747-mcfv4e  -mbitfield  -mno-bitfield  -mc68000  -mc68020 @gol
748-mnobitfield  -mrtd  -mno-rtd  -mdiv  -mno-div  -mshort @gol
749-mno-short  -mhard-float  -m68881  -msoft-float  -mpcrel @gol
750-malign-int  -mstrict-align  -msep-data  -mno-sep-data @gol
751-mshared-library-id=n  -mid-shared-library  -mno-id-shared-library @gol
752-mxgot -mno-xgot}
753
754@emph{MCore Options}
755@gccoptlist{-mhardlit  -mno-hardlit  -mdiv  -mno-div  -mrelax-immediates @gol
756-mno-relax-immediates  -mwide-bitfields  -mno-wide-bitfields @gol
757-m4byte-functions  -mno-4byte-functions  -mcallgraph-data @gol
758-mno-callgraph-data  -mslow-bytes  -mno-slow-bytes  -mno-lsim @gol
759-mlittle-endian  -mbig-endian  -m210  -m340  -mstack-increment}
760
761@emph{MeP Options}
762@gccoptlist{-mabsdiff -mall-opts -maverage -mbased=@var{n} -mbitops @gol
763-mc=@var{n} -mclip -mconfig=@var{name} -mcop -mcop32 -mcop64 -mivc2 @gol
764-mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax @gol
765-mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf @gol
766-mtiny=@var{n}}
767
768@emph{MicroBlaze Options}
769@gccoptlist{-msoft-float -mhard-float -msmall-divides -mcpu=@var{cpu} @gol
770-mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift @gol
771-mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss @gol
772-mxl-multiply-high -mxl-float-convert -mxl-float-sqrt @gol
773-mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-@var{app-model}}
774
775@emph{MIPS Options}
776@gccoptlist{-EL  -EB  -march=@var{arch}  -mtune=@var{arch} @gol
777-mips1  -mips2  -mips3  -mips4  -mips32  -mips32r2  -mips32r3  -mips32r5 @gol
778-mips32r6  -mips64  -mips64r2  -mips64r3  -mips64r5  -mips64r6 @gol
779-mips16  -mno-mips16  -mflip-mips16 @gol
780-minterlink-compressed -mno-interlink-compressed @gol
781-minterlink-mips16  -mno-interlink-mips16 @gol
782-mabi=@var{abi}  -mabicalls  -mno-abicalls @gol
783-mshared  -mno-shared  -mplt  -mno-plt  -mxgot  -mno-xgot @gol
784-mgp32  -mgp64  -mfp32  -mfpxx  -mfp64  -mhard-float  -msoft-float @gol
785-mno-float  -msingle-float  -mdouble-float @gol
786-modd-spreg -mno-odd-spreg @gol
787-mabs=@var{mode}  -mnan=@var{encoding} @gol
788-mdsp  -mno-dsp  -mdspr2  -mno-dspr2 @gol
789-mmcu -mmno-mcu @gol
790-meva -mno-eva @gol
791-mvirt -mno-virt @gol
792-mxpa -mno-xpa @gol
793-mmicromips -mno-micromips @gol
794-mfpu=@var{fpu-type} @gol
795-msmartmips  -mno-smartmips @gol
796-mpaired-single  -mno-paired-single  -mdmx  -mno-mdmx @gol
797-mips3d  -mno-mips3d  -mmt  -mno-mt  -mllsc  -mno-llsc @gol
798-mlong64  -mlong32  -msym32  -mno-sym32 @gol
799-G@var{num}  -mlocal-sdata  -mno-local-sdata @gol
800-mextern-sdata  -mno-extern-sdata  -mgpopt  -mno-gopt @gol
801-membedded-data  -mno-embedded-data @gol
802-muninit-const-in-rodata  -mno-uninit-const-in-rodata @gol
803-mcode-readable=@var{setting} @gol
804-msplit-addresses  -mno-split-addresses @gol
805-mexplicit-relocs  -mno-explicit-relocs @gol
806-mcheck-zero-division  -mno-check-zero-division @gol
807-mdivide-traps  -mdivide-breaks @gol
808-mmemcpy  -mno-memcpy  -mlong-calls  -mno-long-calls @gol
809-mmad -mno-mad -mimadd -mno-imadd -mfused-madd  -mno-fused-madd  -nocpp @gol
810-mfix-24k -mno-fix-24k @gol
811-mfix-r4000  -mno-fix-r4000  -mfix-r4400  -mno-fix-r4400 @gol
812-mfix-r10000 -mno-fix-r10000  -mfix-rm7000 -mno-fix-rm7000 @gol
813-mfix-vr4120  -mno-fix-vr4120 @gol
814-mfix-vr4130  -mno-fix-vr4130  -mfix-sb1  -mno-fix-sb1 @gol
815-mflush-func=@var{func}  -mno-flush-func @gol
816-mbranch-cost=@var{num}  -mbranch-likely  -mno-branch-likely @gol
817-mfp-exceptions -mno-fp-exceptions @gol
818-mvr4130-align -mno-vr4130-align -msynci -mno-synci @gol
819-mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address}
820
821@emph{MMIX Options}
822@gccoptlist{-mlibfuncs  -mno-libfuncs  -mepsilon  -mno-epsilon  -mabi=gnu @gol
823-mabi=mmixware  -mzero-extend  -mknuthdiv  -mtoplevel-symbols @gol
824-melf  -mbranch-predict  -mno-branch-predict  -mbase-addresses @gol
825-mno-base-addresses  -msingle-exit  -mno-single-exit}
826
827@emph{MN10300 Options}
828@gccoptlist{-mmult-bug  -mno-mult-bug @gol
829-mno-am33 -mam33 -mam33-2 -mam34 @gol
830-mtune=@var{cpu-type} @gol
831-mreturn-pointer-on-d0 @gol
832-mno-crt0  -mrelax -mliw -msetlb}
833
834@emph{Moxie Options}
835@gccoptlist{-meb -mel -mmul.x -mno-crt0}
836
837@emph{MSP430 Options}
838@gccoptlist{-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax @gol
839-mhwmult= -minrt}
840
841@emph{NDS32 Options}
842@gccoptlist{-mbig-endian -mlittle-endian @gol
843-mreduced-regs -mfull-regs @gol
844-mcmov -mno-cmov @gol
845-mperf-ext -mno-perf-ext @gol
846-mv3push -mno-v3push @gol
847-m16bit -mno-16bit @gol
848-misr-vector-size=@var{num} @gol
849-mcache-block-size=@var{num} @gol
850-march=@var{arch} @gol
851-mcmodel=@var{code-model} @gol
852-mctor-dtor -mrelax}
853
854@emph{Nios II Options}
855@gccoptlist{-G @var{num} -mgpopt=@var{option} -mgpopt -mno-gpopt @gol
856-mel -meb @gol
857-mno-bypass-cache -mbypass-cache @gol
858-mno-cache-volatile -mcache-volatile @gol
859-mno-fast-sw-div -mfast-sw-div @gol
860-mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div @gol
861-mcustom-@var{insn}=@var{N} -mno-custom-@var{insn} @gol
862-mcustom-fpu-cfg=@var{name} @gol
863-mhal -msmallc -msys-crt0=@var{name} -msys-lib=@var{name}}
864
865@emph{Nvidia PTX Options}
866@gccoptlist{-m32 -m64 -mmainkernel}
867
868@emph{PDP-11 Options}
869@gccoptlist{-mfpu  -msoft-float  -mac0  -mno-ac0  -m40  -m45  -m10 @gol
870-mbcopy  -mbcopy-builtin  -mint32  -mno-int16 @gol
871-mint16  -mno-int32  -mfloat32  -mno-float64 @gol
872-mfloat64  -mno-float32  -mabshi  -mno-abshi @gol
873-mbranch-expensive  -mbranch-cheap @gol
874-munix-asm  -mdec-asm}
875
876@emph{picoChip Options}
877@gccoptlist{-mae=@var{ae_type} -mvliw-lookahead=@var{N} @gol
878-msymbol-as-address -mno-inefficient-warnings}
879
880@emph{PowerPC Options}
881See RS/6000 and PowerPC Options.
882
883@emph{RL78 Options}
884@gccoptlist{-msim -mmul=none -mmul=g13 -mmul=rl78 @gol
885-m64bit-doubles -m32bit-doubles}
886
887@emph{RS/6000 and PowerPC Options}
888@gccoptlist{-mcpu=@var{cpu-type} @gol
889-mtune=@var{cpu-type} @gol
890-mcmodel=@var{code-model} @gol
891-mpowerpc64 @gol
892-maltivec  -mno-altivec @gol
893-mpowerpc-gpopt  -mno-powerpc-gpopt @gol
894-mpowerpc-gfxopt  -mno-powerpc-gfxopt @gol
895-mmfcrf  -mno-mfcrf  -mpopcntb  -mno-popcntb -mpopcntd -mno-popcntd @gol
896-mfprnd  -mno-fprnd @gol
897-mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp @gol
898-mfull-toc   -mminimal-toc  -mno-fp-in-toc  -mno-sum-in-toc @gol
899-m64  -m32  -mxl-compat  -mno-xl-compat  -mpe @gol
900-malign-power  -malign-natural @gol
901-msoft-float  -mhard-float  -mmultiple  -mno-multiple @gol
902-msingle-float -mdouble-float -msimple-fpu @gol
903-mstring  -mno-string  -mupdate  -mno-update @gol
904-mavoid-indexed-addresses  -mno-avoid-indexed-addresses @gol
905-mfused-madd  -mno-fused-madd  -mbit-align  -mno-bit-align @gol
906-mstrict-align  -mno-strict-align  -mrelocatable @gol
907-mno-relocatable  -mrelocatable-lib  -mno-relocatable-lib @gol
908-mtoc  -mno-toc  -mlittle  -mlittle-endian  -mbig  -mbig-endian @gol
909-mdynamic-no-pic  -maltivec -mswdiv  -msingle-pic-base @gol
910-mprioritize-restricted-insns=@var{priority} @gol
911-msched-costly-dep=@var{dependence_type} @gol
912-minsert-sched-nops=@var{scheme} @gol
913-mcall-sysv  -mcall-netbsd @gol
914-maix-struct-return  -msvr4-struct-return @gol
915-mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
916-mblock-move-inline-limit=@var{num} @gol
917-misel -mno-isel @gol
918-misel=yes  -misel=no @gol
919-mspe -mno-spe @gol
920-mspe=yes  -mspe=no @gol
921-mpaired @gol
922-mgen-cell-microcode -mwarn-cell-microcode @gol
923-mvrsave -mno-vrsave @gol
924-mmulhw -mno-mulhw @gol
925-mdlmzb -mno-dlmzb @gol
926-mfloat-gprs=yes  -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double @gol
927-mprototype  -mno-prototype @gol
928-msim  -mmvme  -mads  -myellowknife  -memb  -msdata @gol
929-msdata=@var{opt}  -mvxworks  -G @var{num}  -pthread @gol
930-mrecip -mrecip=@var{opt} -mno-recip -mrecip-precision @gol
931-mno-recip-precision @gol
932-mveclibabi=@var{type} -mfriz -mno-friz @gol
933-mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol
934-msave-toc-indirect -mno-save-toc-indirect @gol
935-mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector @gol
936-mcrypto -mno-crypto -mhtm -mno-htm -mdirect-move -mno-direct-move @gol
937-mquad-memory -mno-quad-memory @gol
938-mquad-memory-atomic -mno-quad-memory-atomic @gol
939-mcompat-align-parm -mno-compat-align-parm @gol
940-mupper-regs-df -mno-upper-regs-df -mupper-regs-sf -mno-upper-regs-sf @gol
941-mupper-regs -mno-upper-regs}
942
943@emph{RX Options}
944@gccoptlist{-m64bit-doubles  -m32bit-doubles  -fpu  -nofpu@gol
945-mcpu=@gol
946-mbig-endian-data -mlittle-endian-data @gol
947-msmall-data @gol
948-msim  -mno-sim@gol
949-mas100-syntax -mno-as100-syntax@gol
950-mrelax@gol
951-mmax-constant-size=@gol
952-mint-register=@gol
953-mpid@gol
954-mno-warn-multiple-fast-interrupts@gol
955-msave-acc-in-interrupts}
956
957@emph{S/390 and zSeries Options}
958@gccoptlist{-mtune=@var{cpu-type}  -march=@var{cpu-type} @gol
959-mhard-float  -msoft-float  -mhard-dfp -mno-hard-dfp @gol
960-mlong-double-64 -mlong-double-128 @gol
961-mbackchain  -mno-backchain -mpacked-stack  -mno-packed-stack @gol
962-msmall-exec  -mno-small-exec  -mmvcle -mno-mvcle @gol
963-m64  -m31  -mdebug  -mno-debug  -mesa  -mzarch @gol
964-mtpf-trace -mno-tpf-trace  -mfused-madd  -mno-fused-madd @gol
965-mwarn-framesize  -mwarn-dynamicstack  -mstack-size -mstack-guard @gol
966-mhotpatch=@var{halfwords},@var{halfwords}}
967
968@emph{Score Options}
969@gccoptlist{-meb -mel @gol
970-mnhwloop @gol
971-muls @gol
972-mmac @gol
973-mscore5 -mscore5u -mscore7 -mscore7d}
974
975@emph{SH Options}
976@gccoptlist{-m1  -m2  -m2e @gol
977-m2a-nofpu -m2a-single-only -m2a-single -m2a @gol
978-m3  -m3e @gol
979-m4-nofpu  -m4-single-only  -m4-single  -m4 @gol
980-m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
981-m5-64media  -m5-64media-nofpu @gol
982-m5-32media  -m5-32media-nofpu @gol
983-m5-compact  -m5-compact-nofpu @gol
984-mb  -ml  -mdalign  -mrelax @gol
985-mbigtable -mfmovd -mhitachi -mrenesas -mno-renesas -mnomacsave @gol
986-mieee -mno-ieee -mbitops  -misize  -minline-ic_invalidate -mpadstruct @gol
987-mspace -mprefergot  -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol
988-mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range} @gol
989-mindexed-addressing -mgettrcost=@var{number} -mpt-fixed @gol
990-maccumulate-outgoing-args -minvalid-symbols @gol
991-matomic-model=@var{atomic-model} @gol
992-mbranch-cost=@var{num} -mzdcbranch -mno-zdcbranch @gol
993-mcbranch-force-delay-slot @gol
994-mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra @gol
995-mpretend-cmove -mtas}
996
997@emph{Solaris 2 Options}
998@gccoptlist{-mclear-hwcap -mno-clear-hwcap -mimpure-text  -mno-impure-text @gol
999-pthreads -pthread}
1000
1001@emph{SPARC Options}
1002@gccoptlist{-mcpu=@var{cpu-type} @gol
1003-mtune=@var{cpu-type} @gol
1004-mcmodel=@var{code-model} @gol
1005-mmemory-model=@var{mem-model} @gol
1006-m32  -m64  -mapp-regs  -mno-app-regs @gol
1007-mfaster-structs  -mno-faster-structs  -mflat  -mno-flat @gol
1008-mfpu  -mno-fpu  -mhard-float  -msoft-float @gol
1009-mhard-quad-float  -msoft-quad-float @gol
1010-mstack-bias  -mno-stack-bias @gol
1011-munaligned-doubles  -mno-unaligned-doubles @gol
1012-muser-mode  -mno-user-mode @gol
1013-mv8plus  -mno-v8plus  -mvis  -mno-vis @gol
1014-mvis2  -mno-vis2  -mvis3  -mno-vis3 @gol
1015-mcbcond -mno-cbcond @gol
1016-mfmaf  -mno-fmaf  -mpopc  -mno-popc @gol
1017-mfix-at697f -mfix-ut699}
1018
1019@emph{SPU Options}
1020@gccoptlist{-mwarn-reloc -merror-reloc @gol
1021-msafe-dma -munsafe-dma @gol
1022-mbranch-hints @gol
1023-msmall-mem -mlarge-mem -mstdmain @gol
1024-mfixed-range=@var{register-range} @gol
1025-mea32 -mea64 @gol
1026-maddress-space-conversion -mno-address-space-conversion @gol
1027-mcache-size=@var{cache-size} @gol
1028-matomic-updates -mno-atomic-updates}
1029
1030@emph{System V Options}
1031@gccoptlist{-Qy  -Qn  -YP,@var{paths}  -Ym,@var{dir}}
1032
1033@emph{TILE-Gx Options}
1034@gccoptlist{-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian @gol
1035-mcmodel=@var{code-model}}
1036
1037@emph{TILEPro Options}
1038@gccoptlist{-mcpu=@var{cpu} -m32}
1039
1040@emph{V850 Options}
1041@gccoptlist{-mlong-calls  -mno-long-calls  -mep  -mno-ep @gol
1042-mprolog-function  -mno-prolog-function  -mspace @gol
1043-mtda=@var{n}  -msda=@var{n}  -mzda=@var{n} @gol
1044-mapp-regs  -mno-app-regs @gol
1045-mdisable-callt  -mno-disable-callt @gol
1046-mv850e2v3 -mv850e2 -mv850e1 -mv850es @gol
1047-mv850e -mv850 -mv850e3v5 @gol
1048-mloop @gol
1049-mrelax @gol
1050-mlong-jumps @gol
1051-msoft-float @gol
1052-mhard-float @gol
1053-mgcc-abi @gol
1054-mrh850-abi @gol
1055-mbig-switch}
1056
1057@emph{VAX Options}
1058@gccoptlist{-mg  -mgnu  -munix}
1059
1060@emph{Visium Options}
1061@gccoptlist{-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float @gol
1062-mcpu=@var{cpu-type} -mtune=@var{cpu-type} -msv-mode -muser-mode}
1063
1064@emph{VMS Options}
1065@gccoptlist{-mvms-return-codes -mdebug-main=@var{prefix} -mmalloc64 @gol
1066-mpointer-size=@var{size}}
1067
1068@emph{VxWorks Options}
1069@gccoptlist{-mrtp  -non-static  -Bstatic  -Bdynamic @gol
1070-Xbind-lazy  -Xbind-now}
1071
1072@emph{x86 Options}
1073@gccoptlist{-mtune=@var{cpu-type}  -march=@var{cpu-type} @gol
1074-mtune-ctrl=@var{feature-list} -mdump-tune-features -mno-default @gol
1075-mfpmath=@var{unit} @gol
1076-masm=@var{dialect}  -mno-fancy-math-387 @gol
1077-mno-fp-ret-in-387  -msoft-float @gol
1078-mno-wide-multiply  -mrtd  -malign-double @gol
1079-mpreferred-stack-boundary=@var{num} @gol
1080-mincoming-stack-boundary=@var{num} @gol
1081-mcld -mcx16 -msahf -mmovbe -mcrc32 @gol
1082-mrecip -mrecip=@var{opt} @gol
1083-mvzeroupper -mprefer-avx128 @gol
1084-mmmx  -msse  -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx @gol
1085-mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -msha @gol
1086-maes -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma -mprefetchwt1 @gol
1087-mclflushopt -mxsavec -mxsaves @gol
1088-msse4a -m3dnow -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop -mlzcnt @gol
1089-mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mlwp -mmpx -mmwaitx -mthreads @gol
1090-mno-align-stringops  -minline-all-stringops @gol
1091-minline-stringops-dynamically -mstringop-strategy=@var{alg} @gol
1092-mmemcpy-strategy=@var{strategy} -mmemset-strategy=@var{strategy} @gol
1093-mpush-args  -maccumulate-outgoing-args  -m128bit-long-double @gol
1094-m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128 @gol
1095-mregparm=@var{num}  -msseregparm @gol
1096-mveclibabi=@var{type} -mvect8-ret-in-mem @gol
1097-mpc32 -mpc64 -mpc80 -mstackrealign @gol
1098-momit-leaf-frame-pointer  -mno-red-zone -mno-tls-direct-seg-refs @gol
1099-mcmodel=@var{code-model} -mabi=@var{name} -maddress-mode=@var{mode} @gol
1100-m32 -m64 -mx32 -m16 -mlarge-data-threshold=@var{num} @gol
1101-msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv @gol
1102-mavx256-split-unaligned-load -mavx256-split-unaligned-store @gol
1103-malign-data=@var{type} -mstack-protector-guard=@var{guard}}
1104
1105@emph{x86 Windows Options}
1106@gccoptlist{-mconsole -mcygwin -mno-cygwin -mdll @gol
1107-mnop-fun-dllimport -mthread @gol
1108-municode -mwin32 -mwindows -fno-set-stack-executable}
1109
1110@emph{Xstormy16 Options}
1111@gccoptlist{-msim}
1112
1113@emph{Xtensa Options}
1114@gccoptlist{-mconst16 -mno-const16 @gol
1115-mfused-madd  -mno-fused-madd @gol
1116-mforce-no-pic @gol
1117-mserialize-volatile  -mno-serialize-volatile @gol
1118-mtext-section-literals  -mno-text-section-literals @gol
1119-mtarget-align  -mno-target-align @gol
1120-mlongcalls  -mno-longcalls}
1121
1122@emph{zSeries Options}
1123See S/390 and zSeries Options.
1124
1125@item Code Generation Options
1126@xref{Code Gen Options,,Options for Code Generation Conventions}.
1127@gccoptlist{-fcall-saved-@var{reg}  -fcall-used-@var{reg} @gol
1128-ffixed-@var{reg}  -fexceptions @gol
1129-fnon-call-exceptions  -fdelete-dead-exceptions  -funwind-tables @gol
1130-fasynchronous-unwind-tables @gol
1131-fno-gnu-unique @gol
1132-finhibit-size-directive  -finstrument-functions @gol
1133-finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
1134-finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{} @gol
1135-fno-common  -fno-ident @gol
1136-fpcc-struct-return  -fpic  -fPIC -fpie -fPIE @gol
1137-fno-jump-tables @gol
1138-frecord-gcc-switches @gol
1139-freg-struct-return  -fshort-enums @gol
1140-fshort-double  -fshort-wchar @gol
1141-fverbose-asm  -fpack-struct[=@var{n}]  -fstack-check @gol
1142-fstack-limit-register=@var{reg}  -fstack-limit-symbol=@var{sym} @gol
1143-fno-stack-limit -fsplit-stack @gol
1144-fleading-underscore  -ftls-model=@var{model} @gol
1145-fstack-reuse=@var{reuse_level} @gol
1146-ftrapv  -fwrapv  -fbounds-check @gol
1147-fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
1148-fstrict-volatile-bitfields -fsync-libcalls}
1149@end table
1150
1151
1152@node Overall Options
1153@section Options Controlling the Kind of Output
1154
1155Compilation can involve up to four stages: preprocessing, compilation
1156proper, assembly and linking, always in that order.  GCC is capable of
1157preprocessing and compiling several files either into several
1158assembler input files, or into one assembler input file; then each
1159assembler input file produces an object file, and linking combines all
1160the object files (those newly compiled, and those specified as input)
1161into an executable file.
1162
1163@cindex file name suffix
1164For any given input file, the file name suffix determines what kind of
1165compilation is done:
1166
1167@table @gcctabopt
1168@item @var{file}.c
1169C source code that must be preprocessed.
1170
1171@item @var{file}.i
1172C source code that should not be preprocessed.
1173
1174@item @var{file}.ii
1175C++ source code that should not be preprocessed.
1176
1177@item @var{file}.m
1178Objective-C source code.  Note that you must link with the @file{libobjc}
1179library to make an Objective-C program work.
1180
1181@item @var{file}.mi
1182Objective-C source code that should not be preprocessed.
1183
1184@item @var{file}.mm
1185@itemx @var{file}.M
1186Objective-C++ source code.  Note that you must link with the @file{libobjc}
1187library to make an Objective-C++ program work.  Note that @samp{.M} refers
1188to a literal capital M@.
1189
1190@item @var{file}.mii
1191Objective-C++ source code that should not be preprocessed.
1192
1193@item @var{file}.h
1194C, C++, Objective-C or Objective-C++ header file to be turned into a
1195precompiled header (default), or C, C++ header file to be turned into an
1196Ada spec (via the @option{-fdump-ada-spec} switch).
1197
1198@item @var{file}.cc
1199@itemx @var{file}.cp
1200@itemx @var{file}.cxx
1201@itemx @var{file}.cpp
1202@itemx @var{file}.CPP
1203@itemx @var{file}.c++
1204@itemx @var{file}.C
1205C++ source code that must be preprocessed.  Note that in @samp{.cxx},
1206the last two letters must both be literally @samp{x}.  Likewise,
1207@samp{.C} refers to a literal capital C@.
1208
1209@item @var{file}.mm
1210@itemx @var{file}.M
1211Objective-C++ source code that must be preprocessed.
1212
1213@item @var{file}.mii
1214Objective-C++ source code that should not be preprocessed.
1215
1216@item @var{file}.hh
1217@itemx @var{file}.H
1218@itemx @var{file}.hp
1219@itemx @var{file}.hxx
1220@itemx @var{file}.hpp
1221@itemx @var{file}.HPP
1222@itemx @var{file}.h++
1223@itemx @var{file}.tcc
1224C++ header file to be turned into a precompiled header or Ada spec.
1225
1226@item @var{file}.f
1227@itemx @var{file}.for
1228@itemx @var{file}.ftn
1229Fixed form Fortran source code that should not be preprocessed.
1230
1231@item @var{file}.F
1232@itemx @var{file}.FOR
1233@itemx @var{file}.fpp
1234@itemx @var{file}.FPP
1235@itemx @var{file}.FTN
1236Fixed form Fortran source code that must be preprocessed (with the traditional
1237preprocessor).
1238
1239@item @var{file}.f90
1240@itemx @var{file}.f95
1241@itemx @var{file}.f03
1242@itemx @var{file}.f08
1243Free form Fortran source code that should not be preprocessed.
1244
1245@item @var{file}.F90
1246@itemx @var{file}.F95
1247@itemx @var{file}.F03
1248@itemx @var{file}.F08
1249Free form Fortran source code that must be preprocessed (with the
1250traditional preprocessor).
1251
1252@item @var{file}.go
1253Go source code.
1254
1255@c FIXME: Descriptions of Java file types.
1256@c @var{file}.java
1257@c @var{file}.class
1258@c @var{file}.zip
1259@c @var{file}.jar
1260
1261@item @var{file}.ads
1262Ada source code file that contains a library unit declaration (a
1263declaration of a package, subprogram, or generic, or a generic
1264instantiation), or a library unit renaming declaration (a package,
1265generic, or subprogram renaming declaration).  Such files are also
1266called @dfn{specs}.
1267
1268@item @var{file}.adb
1269Ada source code file containing a library unit body (a subprogram or
1270package body).  Such files are also called @dfn{bodies}.
1271
1272@c GCC also knows about some suffixes for languages not yet included:
1273@c Pascal:
1274@c @var{file}.p
1275@c @var{file}.pas
1276@c Ratfor:
1277@c @var{file}.r
1278
1279@item @var{file}.s
1280Assembler code.
1281
1282@item @var{file}.S
1283@itemx @var{file}.sx
1284Assembler code that must be preprocessed.
1285
1286@item @var{other}
1287An object file to be fed straight into linking.
1288Any file name with no recognized suffix is treated this way.
1289@end table
1290
1291@opindex x
1292You can specify the input language explicitly with the @option{-x} option:
1293
1294@table @gcctabopt
1295@item -x @var{language}
1296Specify explicitly the @var{language} for the following input files
1297(rather than letting the compiler choose a default based on the file
1298name suffix).  This option applies to all following input files until
1299the next @option{-x} option.  Possible values for @var{language} are:
1300@smallexample
1301c  c-header  cpp-output
1302c++  c++-header  c++-cpp-output
1303objective-c  objective-c-header  objective-c-cpp-output
1304objective-c++ objective-c++-header objective-c++-cpp-output
1305assembler  assembler-with-cpp
1306ada
1307f77  f77-cpp-input f95  f95-cpp-input
1308go
1309java
1310@end smallexample
1311
1312@item -x none
1313Turn off any specification of a language, so that subsequent files are
1314handled according to their file name suffixes (as they are if @option{-x}
1315has not been used at all).
1316
1317@item -pass-exit-codes
1318@opindex pass-exit-codes
1319Normally the @command{gcc} program exits with the code of 1 if any
1320phase of the compiler returns a non-success return code.  If you specify
1321@option{-pass-exit-codes}, the @command{gcc} program instead returns with
1322the numerically highest error produced by any phase returning an error
1323indication.  The C, C++, and Fortran front ends return 4 if an internal
1324compiler error is encountered.
1325@end table
1326
1327If you only want some of the stages of compilation, you can use
1328@option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1329one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1330@command{gcc} is to stop.  Note that some combinations (for example,
1331@samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1332
1333@table @gcctabopt
1334@item -c
1335@opindex c
1336Compile or assemble the source files, but do not link.  The linking
1337stage simply is not done.  The ultimate output is in the form of an
1338object file for each source file.
1339
1340By default, the object file name for a source file is made by replacing
1341the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1342
1343Unrecognized input files, not requiring compilation or assembly, are
1344ignored.
1345
1346@item -S
1347@opindex S
1348Stop after the stage of compilation proper; do not assemble.  The output
1349is in the form of an assembler code file for each non-assembler input
1350file specified.
1351
1352By default, the assembler file name for a source file is made by
1353replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1354
1355Input files that don't require compilation are ignored.
1356
1357@item -E
1358@opindex E
1359Stop after the preprocessing stage; do not run the compiler proper.  The
1360output is in the form of preprocessed source code, which is sent to the
1361standard output.
1362
1363Input files that don't require preprocessing are ignored.
1364
1365@cindex output file option
1366@item -o @var{file}
1367@opindex o
1368Place output in file @var{file}.  This applies to whatever
1369sort of output is being produced, whether it be an executable file,
1370an object file, an assembler file or preprocessed C code.
1371
1372If @option{-o} is not specified, the default is to put an executable
1373file in @file{a.out}, the object file for
1374@file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1375assembler file in @file{@var{source}.s}, a precompiled header file in
1376@file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1377standard output.
1378
1379@item -v
1380@opindex v
1381Print (on standard error output) the commands executed to run the stages
1382of compilation.  Also print the version number of the compiler driver
1383program and of the preprocessor and the compiler proper.
1384
1385@item -###
1386@opindex ###
1387Like @option{-v} except the commands are not executed and arguments
1388are quoted unless they contain only alphanumeric characters or @code{./-_}.
1389This is useful for shell scripts to capture the driver-generated command lines.
1390
1391@item -pipe
1392@opindex pipe
1393Use pipes rather than temporary files for communication between the
1394various stages of compilation.  This fails to work on some systems where
1395the assembler is unable to read from a pipe; but the GNU assembler has
1396no trouble.
1397
1398@item --help
1399@opindex help
1400Print (on the standard output) a description of the command-line options
1401understood by @command{gcc}.  If the @option{-v} option is also specified
1402then @option{--help} is also passed on to the various processes
1403invoked by @command{gcc}, so that they can display the command-line options
1404they accept.  If the @option{-Wextra} option has also been specified
1405(prior to the @option{--help} option), then command-line options that
1406have no documentation associated with them are also displayed.
1407
1408@item --target-help
1409@opindex target-help
1410Print (on the standard output) a description of target-specific command-line
1411options for each tool.  For some targets extra target-specific
1412information may also be printed.
1413
1414@item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1415Print (on the standard output) a description of the command-line
1416options understood by the compiler that fit into all specified classes
1417and qualifiers.  These are the supported classes:
1418
1419@table @asis
1420@item @samp{optimizers}
1421Display all of the optimization options supported by the
1422compiler.
1423
1424@item @samp{warnings}
1425Display all of the options controlling warning messages
1426produced by the compiler.
1427
1428@item @samp{target}
1429Display target-specific options.  Unlike the
1430@option{--target-help} option however, target-specific options of the
1431linker and assembler are not displayed.  This is because those
1432tools do not currently support the extended @option{--help=} syntax.
1433
1434@item @samp{params}
1435Display the values recognized by the @option{--param}
1436option.
1437
1438@item @var{language}
1439Display the options supported for @var{language}, where
1440@var{language} is the name of one of the languages supported in this
1441version of GCC@.
1442
1443@item @samp{common}
1444Display the options that are common to all languages.
1445@end table
1446
1447These are the supported qualifiers:
1448
1449@table @asis
1450@item @samp{undocumented}
1451Display only those options that are undocumented.
1452
1453@item @samp{joined}
1454Display options taking an argument that appears after an equal
1455sign in the same continuous piece of text, such as:
1456@samp{--help=target}.
1457
1458@item @samp{separate}
1459Display options taking an argument that appears as a separate word
1460following the original option, such as: @samp{-o output-file}.
1461@end table
1462
1463Thus for example to display all the undocumented target-specific
1464switches supported by the compiler, use:
1465
1466@smallexample
1467--help=target,undocumented
1468@end smallexample
1469
1470The sense of a qualifier can be inverted by prefixing it with the
1471@samp{^} character, so for example to display all binary warning
1472options (i.e., ones that are either on or off and that do not take an
1473argument) that have a description, use:
1474
1475@smallexample
1476--help=warnings,^joined,^undocumented
1477@end smallexample
1478
1479The argument to @option{--help=} should not consist solely of inverted
1480qualifiers.
1481
1482Combining several classes is possible, although this usually
1483restricts the output so much that there is nothing to display.  One
1484case where it does work, however, is when one of the classes is
1485@var{target}.  For example, to display all the target-specific
1486optimization options, use:
1487
1488@smallexample
1489--help=target,optimizers
1490@end smallexample
1491
1492The @option{--help=} option can be repeated on the command line.  Each
1493successive use displays its requested class of options, skipping
1494those that have already been displayed.
1495
1496If the @option{-Q} option appears on the command line before the
1497@option{--help=} option, then the descriptive text displayed by
1498@option{--help=} is changed.  Instead of describing the displayed
1499options, an indication is given as to whether the option is enabled,
1500disabled or set to a specific value (assuming that the compiler
1501knows this at the point where the @option{--help=} option is used).
1502
1503Here is a truncated example from the ARM port of @command{gcc}:
1504
1505@smallexample
1506  % gcc -Q -mabi=2 --help=target -c
1507  The following options are target specific:
1508  -mabi=                                2
1509  -mabort-on-noreturn                   [disabled]
1510  -mapcs                                [disabled]
1511@end smallexample
1512
1513The output is sensitive to the effects of previous command-line
1514options, so for example it is possible to find out which optimizations
1515are enabled at @option{-O2} by using:
1516
1517@smallexample
1518-Q -O2 --help=optimizers
1519@end smallexample
1520
1521Alternatively you can discover which binary optimizations are enabled
1522by @option{-O3} by using:
1523
1524@smallexample
1525gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
1526gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
1527diff /tmp/O2-opts /tmp/O3-opts | grep enabled
1528@end smallexample
1529
1530@item -no-canonical-prefixes
1531@opindex no-canonical-prefixes
1532Do not expand any symbolic links, resolve references to @samp{/../}
1533or @samp{/./}, or make the path absolute when generating a relative
1534prefix.
1535
1536@item --version
1537@opindex version
1538Display the version number and copyrights of the invoked GCC@.
1539
1540@item -wrapper
1541@opindex wrapper
1542Invoke all subcommands under a wrapper program.  The name of the
1543wrapper program and its parameters are passed as a comma separated
1544list.
1545
1546@smallexample
1547gcc -c t.c -wrapper gdb,--args
1548@end smallexample
1549
1550@noindent
1551This invokes all subprograms of @command{gcc} under
1552@samp{gdb --args}, thus the invocation of @command{cc1} is
1553@samp{gdb --args cc1 @dots{}}.
1554
1555@item -fplugin=@var{name}.so
1556@opindex fplugin
1557Load the plugin code in file @var{name}.so, assumed to be a
1558shared object to be dlopen'd by the compiler.  The base name of
1559the shared object file is used to identify the plugin for the
1560purposes of argument parsing (See
1561@option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
1562Each plugin should define the callback functions specified in the
1563Plugins API.
1564
1565@item -fplugin-arg-@var{name}-@var{key}=@var{value}
1566@opindex fplugin-arg
1567Define an argument called @var{key} with a value of @var{value}
1568for the plugin called @var{name}.
1569
1570@item -fdump-ada-spec@r{[}-slim@r{]}
1571@opindex fdump-ada-spec
1572For C and C++ source and include files, generate corresponding Ada specs.
1573@xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
1574GNAT User's Guide}, which provides detailed documentation on this feature.
1575
1576@item -fada-spec-parent=@var{unit}
1577@opindex fada-spec-parent
1578In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
1579Ada specs as child units of parent @var{unit}.
1580
1581@item -fdump-go-spec=@var{file}
1582@opindex fdump-go-spec
1583For input files in any language, generate corresponding Go
1584declarations in @var{file}.  This generates Go @code{const},
1585@code{type}, @code{var}, and @code{func} declarations which may be a
1586useful way to start writing a Go interface to code written in some
1587other language.
1588
1589@include @value{srcdir}/../libiberty/at-file.texi
1590@end table
1591
1592@node Invoking G++
1593@section Compiling C++ Programs
1594
1595@cindex suffixes for C++ source
1596@cindex C++ source file suffixes
1597C++ source files conventionally use one of the suffixes @samp{.C},
1598@samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1599@samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
1600@samp{.H}, or (for shared template code) @samp{.tcc}; and
1601preprocessed C++ files use the suffix @samp{.ii}.  GCC recognizes
1602files with these names and compiles them as C++ programs even if you
1603call the compiler the same way as for compiling C programs (usually
1604with the name @command{gcc}).
1605
1606@findex g++
1607@findex c++
1608However, the use of @command{gcc} does not add the C++ library.
1609@command{g++} is a program that calls GCC and automatically specifies linking
1610against the C++ library.  It treats @samp{.c},
1611@samp{.h} and @samp{.i} files as C++ source files instead of C source
1612files unless @option{-x} is used.  This program is also useful when
1613precompiling a C header file with a @samp{.h} extension for use in C++
1614compilations.  On many systems, @command{g++} is also installed with
1615the name @command{c++}.
1616
1617@cindex invoking @command{g++}
1618When you compile C++ programs, you may specify many of the same
1619command-line options that you use for compiling programs in any
1620language; or command-line options meaningful for C and related
1621languages; or options that are meaningful only for C++ programs.
1622@xref{C Dialect Options,,Options Controlling C Dialect}, for
1623explanations of options for languages related to C@.
1624@xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1625explanations of options that are meaningful only for C++ programs.
1626
1627@node C Dialect Options
1628@section Options Controlling C Dialect
1629@cindex dialect options
1630@cindex language dialect options
1631@cindex options, dialect
1632
1633The following options control the dialect of C (or languages derived
1634from C, such as C++, Objective-C and Objective-C++) that the compiler
1635accepts:
1636
1637@table @gcctabopt
1638@cindex ANSI support
1639@cindex ISO support
1640@item -ansi
1641@opindex ansi
1642In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
1643equivalent to @option{-std=c++98}.
1644
1645This turns off certain features of GCC that are incompatible with ISO
1646C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1647such as the @code{asm} and @code{typeof} keywords, and
1648predefined macros such as @code{unix} and @code{vax} that identify the
1649type of system you are using.  It also enables the undesirable and
1650rarely used ISO trigraph feature.  For the C compiler,
1651it disables recognition of C++ style @samp{//} comments as well as
1652the @code{inline} keyword.
1653
1654The alternate keywords @code{__asm__}, @code{__extension__},
1655@code{__inline__} and @code{__typeof__} continue to work despite
1656@option{-ansi}.  You would not want to use them in an ISO C program, of
1657course, but it is useful to put them in header files that might be included
1658in compilations done with @option{-ansi}.  Alternate predefined macros
1659such as @code{__unix__} and @code{__vax__} are also available, with or
1660without @option{-ansi}.
1661
1662The @option{-ansi} option does not cause non-ISO programs to be
1663rejected gratuitously.  For that, @option{-Wpedantic} is required in
1664addition to @option{-ansi}.  @xref{Warning Options}.
1665
1666The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1667option is used.  Some header files may notice this macro and refrain
1668from declaring certain functions or defining certain macros that the
1669ISO standard doesn't call for; this is to avoid interfering with any
1670programs that might use these names for other things.
1671
1672Functions that are normally built in but do not have semantics
1673defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1674functions when @option{-ansi} is used.  @xref{Other Builtins,,Other
1675built-in functions provided by GCC}, for details of the functions
1676affected.
1677
1678@item -std=
1679@opindex std
1680Determine the language standard. @xref{Standards,,Language Standards
1681Supported by GCC}, for details of these standard versions.  This option
1682is currently only supported when compiling C or C++.
1683
1684The compiler can accept several base standards, such as @samp{c90} or
1685@samp{c++98}, and GNU dialects of those standards, such as
1686@samp{gnu90} or @samp{gnu++98}.  When a base standard is specified, the
1687compiler accepts all programs following that standard plus those
1688using GNU extensions that do not contradict it.  For example,
1689@option{-std=c90} turns off certain features of GCC that are
1690incompatible with ISO C90, such as the @code{asm} and @code{typeof}
1691keywords, but not other GNU extensions that do not have a meaning in
1692ISO C90, such as omitting the middle term of a @code{?:}
1693expression. On the other hand, when a GNU dialect of a standard is
1694specified, all features supported by the compiler are enabled, even when
1695those features change the meaning of the base standard.  As a result, some
1696strict-conforming programs may be rejected.  The particular standard
1697is used by @option{-Wpedantic} to identify which features are GNU
1698extensions given that version of the standard. For example
1699@option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
1700comments, while @option{-std=gnu99 -Wpedantic} does not.
1701
1702A value for this option must be provided; possible values are
1703
1704@table @samp
1705@item c90
1706@itemx c89
1707@itemx iso9899:1990
1708Support all ISO C90 programs (certain GNU extensions that conflict
1709with ISO C90 are disabled). Same as @option{-ansi} for C code.
1710
1711@item iso9899:199409
1712ISO C90 as modified in amendment 1.
1713
1714@item c99
1715@itemx c9x
1716@itemx iso9899:1999
1717@itemx iso9899:199x
1718ISO C99.  This standard is substantially completely supported, modulo
1719bugs and floating-point issues
1720(mainly but not entirely relating to optional C99 features from
1721Annexes F and G).  See
1722@w{@uref{http://gcc.gnu.org/c99status.html}} for more information.  The
1723names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1724
1725@item c11
1726@itemx c1x
1727@itemx iso9899:2011
1728ISO C11, the 2011 revision of the ISO C standard.  This standard is
1729substantially completely supported, modulo bugs, floating-point issues
1730(mainly but not entirely relating to optional C11 features from
1731Annexes F and G) and the optional Annexes K (Bounds-checking
1732interfaces) and L (Analyzability).  The name @samp{c1x} is deprecated.
1733
1734@item gnu90
1735@itemx gnu89
1736GNU dialect of ISO C90 (including some C99 features).
1737
1738@item gnu99
1739@itemx gnu9x
1740GNU dialect of ISO C99.  The name @samp{gnu9x} is deprecated.
1741
1742@item gnu11
1743@itemx gnu1x
1744GNU dialect of ISO C11.  This is the default for C code.
1745The name @samp{gnu1x} is deprecated.
1746
1747@item c++98
1748@itemx c++03
1749The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
1750additional defect reports. Same as @option{-ansi} for C++ code.
1751
1752@item gnu++98
1753@itemx gnu++03
1754GNU dialect of @option{-std=c++98}.  This is the default for
1755C++ code.
1756
1757@item c++11
1758@itemx c++0x
1759The 2011 ISO C++ standard plus amendments.
1760The name @samp{c++0x} is deprecated.
1761
1762@item gnu++11
1763@itemx gnu++0x
1764GNU dialect of @option{-std=c++11}.
1765The name @samp{gnu++0x} is deprecated.
1766
1767@item c++14
1768@itemx c++1y
1769The 2014 ISO C++ standard plus amendments.
1770The name @samp{c++1y} is deprecated.
1771
1772@item gnu++14
1773@itemx gnu++1y
1774GNU dialect of @option{-std=c++14}.
1775The name @samp{gnu++1y} is deprecated.
1776
1777@item c++1z
1778The next revision of the ISO C++ standard, tentatively planned for
17792017.  Support is highly experimental, and will almost certainly
1780change in incompatible ways in future releases.
1781
1782@item gnu++1z
1783GNU dialect of @option{-std=c++1z}.  Support is highly experimental,
1784and will almost certainly change in incompatible ways in future
1785releases.
1786@end table
1787
1788@item -fgnu89-inline
1789@opindex fgnu89-inline
1790The option @option{-fgnu89-inline} tells GCC to use the traditional
1791GNU semantics for @code{inline} functions when in C99 mode.
1792@xref{Inline,,An Inline Function is As Fast As a Macro}.
1793Using this option is roughly equivalent to adding the
1794@code{gnu_inline} function attribute to all inline functions
1795(@pxref{Function Attributes}).
1796
1797The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
1798C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
1799specifies the default behavior).
1800This option is not supported in @option{-std=c90} or
1801@option{-std=gnu90} mode.
1802
1803The preprocessor macros @code{__GNUC_GNU_INLINE__} and
1804@code{__GNUC_STDC_INLINE__} may be used to check which semantics are
1805in effect for @code{inline} functions.  @xref{Common Predefined
1806Macros,,,cpp,The C Preprocessor}.
1807
1808@item -aux-info @var{filename}
1809@opindex aux-info
1810Output to the given filename prototyped declarations for all functions
1811declared and/or defined in a translation unit, including those in header
1812files.  This option is silently ignored in any language other than C@.
1813
1814Besides declarations, the file indicates, in comments, the origin of
1815each declaration (source file and line), whether the declaration was
1816implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
1817@samp{O} for old, respectively, in the first character after the line
1818number and the colon), and whether it came from a declaration or a
1819definition (@samp{C} or @samp{F}, respectively, in the following
1820character).  In the case of function definitions, a K&R-style list of
1821arguments followed by their declarations is also provided, inside
1822comments, after the declaration.
1823
1824@item -fallow-parameterless-variadic-functions
1825@opindex fallow-parameterless-variadic-functions
1826Accept variadic functions without named parameters.
1827
1828Although it is possible to define such a function, this is not very
1829useful as it is not possible to read the arguments.  This is only
1830supported for C as this construct is allowed by C++.
1831
1832@item -fno-asm
1833@opindex fno-asm
1834Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
1835keyword, so that code can use these words as identifiers.  You can use
1836the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
1837instead.  @option{-ansi} implies @option{-fno-asm}.
1838
1839In C++, this switch only affects the @code{typeof} keyword, since
1840@code{asm} and @code{inline} are standard keywords.  You may want to
1841use the @option{-fno-gnu-keywords} flag instead, which has the same
1842effect.  In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
1843switch only affects the @code{asm} and @code{typeof} keywords, since
1844@code{inline} is a standard keyword in ISO C99.
1845
1846@item -fno-builtin
1847@itemx -fno-builtin-@var{function}
1848@opindex fno-builtin
1849@cindex built-in functions
1850Don't recognize built-in functions that do not begin with
1851@samp{__builtin_} as prefix.  @xref{Other Builtins,,Other built-in
1852functions provided by GCC}, for details of the functions affected,
1853including those which are not built-in functions when @option{-ansi} or
1854@option{-std} options for strict ISO C conformance are used because they
1855do not have an ISO standard meaning.
1856
1857GCC normally generates special code to handle certain built-in functions
1858more efficiently; for instance, calls to @code{alloca} may become single
1859instructions which adjust the stack directly, and calls to @code{memcpy}
1860may become inline copy loops.  The resulting code is often both smaller
1861and faster, but since the function calls no longer appear as such, you
1862cannot set a breakpoint on those calls, nor can you change the behavior
1863of the functions by linking with a different library.  In addition,
1864when a function is recognized as a built-in function, GCC may use
1865information about that function to warn about problems with calls to
1866that function, or to generate more efficient code, even if the
1867resulting code still contains calls to that function.  For example,
1868warnings are given with @option{-Wformat} for bad calls to
1869@code{printf} when @code{printf} is built in and @code{strlen} is
1870known not to modify global memory.
1871
1872With the @option{-fno-builtin-@var{function}} option
1873only the built-in function @var{function} is
1874disabled.  @var{function} must not begin with @samp{__builtin_}.  If a
1875function is named that is not built-in in this version of GCC, this
1876option is ignored.  There is no corresponding
1877@option{-fbuiltin-@var{function}} option; if you wish to enable
1878built-in functions selectively when using @option{-fno-builtin} or
1879@option{-ffreestanding}, you may define macros such as:
1880
1881@smallexample
1882#define abs(n)          __builtin_abs ((n))
1883#define strcpy(d, s)    __builtin_strcpy ((d), (s))
1884@end smallexample
1885
1886@item -fhosted
1887@opindex fhosted
1888@cindex hosted environment
1889
1890Assert that compilation targets a hosted environment.  This implies
1891@option{-fbuiltin}.  A hosted environment is one in which the
1892entire standard library is available, and in which @code{main} has a return
1893type of @code{int}.  Examples are nearly everything except a kernel.
1894This is equivalent to @option{-fno-freestanding}.
1895
1896@item -ffreestanding
1897@opindex ffreestanding
1898@cindex hosted environment
1899
1900Assert that compilation targets a freestanding environment.  This
1901implies @option{-fno-builtin}.  A freestanding environment
1902is one in which the standard library may not exist, and program startup may
1903not necessarily be at @code{main}.  The most obvious example is an OS kernel.
1904This is equivalent to @option{-fno-hosted}.
1905
1906@xref{Standards,,Language Standards Supported by GCC}, for details of
1907freestanding and hosted environments.
1908
1909@item -fopenacc
1910@opindex fopenacc
1911@cindex OpenACC accelerator programming
1912Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
1913@code{!$acc} in Fortran.  When @option{-fopenacc} is specified, the
1914compiler generates accelerated code according to the OpenACC Application
1915Programming Interface v2.0 @w{@uref{http://www.openacc.org/}}.  This option
1916implies @option{-pthread}, and thus is only supported on targets that
1917have support for @option{-pthread}.
1918
1919Note that this is an experimental feature, incomplete, and subject to
1920change in future versions of GCC.  See
1921@w{@uref{https://gcc.gnu.org/wiki/OpenACC}} for more information.
1922
1923@item -fopenmp
1924@opindex fopenmp
1925@cindex OpenMP parallel
1926Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
1927@code{!$omp} in Fortran.  When @option{-fopenmp} is specified, the
1928compiler generates parallel code according to the OpenMP Application
1929Program Interface v4.0 @w{@uref{http://www.openmp.org/}}.  This option
1930implies @option{-pthread}, and thus is only supported on targets that
1931have support for @option{-pthread}. @option{-fopenmp} implies
1932@option{-fopenmp-simd}.
1933
1934@item -fopenmp-simd
1935@opindex fopenmp-simd
1936@cindex OpenMP SIMD
1937@cindex SIMD
1938Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
1939in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
1940are ignored.
1941
1942@item -fcilkplus
1943@opindex fcilkplus
1944@cindex Enable Cilk Plus
1945Enable the usage of Cilk Plus language extension features for C/C++.
1946When the option @option{-fcilkplus} is specified, enable the usage of
1947the Cilk Plus Language extension features for C/C++.  The present
1948implementation follows ABI version 1.2.  This is an experimental
1949feature that is only partially complete, and whose interface may
1950change in future versions of GCC as the official specification
1951changes.  Currently, all features but @code{_Cilk_for} have been
1952implemented.
1953
1954@item -fgnu-tm
1955@opindex fgnu-tm
1956When the option @option{-fgnu-tm} is specified, the compiler
1957generates code for the Linux variant of Intel's current Transactional
1958Memory ABI specification document (Revision 1.1, May 6 2009).  This is
1959an experimental feature whose interface may change in future versions
1960of GCC, as the official specification changes.  Please note that not
1961all architectures are supported for this feature.
1962
1963For more information on GCC's support for transactional memory,
1964@xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
1965Transactional Memory Library}.
1966
1967Note that the transactional memory feature is not supported with
1968non-call exceptions (@option{-fnon-call-exceptions}).
1969
1970@item -fms-extensions
1971@opindex fms-extensions
1972Accept some non-standard constructs used in Microsoft header files.
1973
1974In C++ code, this allows member names in structures to be similar
1975to previous types declarations.
1976
1977@smallexample
1978typedef int UOW;
1979struct ABC @{
1980  UOW UOW;
1981@};
1982@end smallexample
1983
1984Some cases of unnamed fields in structures and unions are only
1985accepted with this option.  @xref{Unnamed Fields,,Unnamed struct/union
1986fields within structs/unions}, for details.
1987
1988Note that this option is off for all targets but x86
1989targets using ms-abi.
1990
1991@item -fplan9-extensions
1992@opindex fplan9-extensions
1993Accept some non-standard constructs used in Plan 9 code.
1994
1995This enables @option{-fms-extensions}, permits passing pointers to
1996structures with anonymous fields to functions that expect pointers to
1997elements of the type of the field, and permits referring to anonymous
1998fields declared using a typedef.  @xref{Unnamed Fields,,Unnamed
1999struct/union fields within structs/unions}, for details.  This is only
2000supported for C, not C++.
2001
2002@item -trigraphs
2003@opindex trigraphs
2004Support ISO C trigraphs.  The @option{-ansi} option (and @option{-std}
2005options for strict ISO C conformance) implies @option{-trigraphs}.
2006
2007@cindex traditional C language
2008@cindex C language, traditional
2009@item -traditional
2010@itemx -traditional-cpp
2011@opindex traditional-cpp
2012@opindex traditional
2013Formerly, these options caused GCC to attempt to emulate a pre-standard
2014C compiler.  They are now only supported with the @option{-E} switch.
2015The preprocessor continues to support a pre-standard mode.  See the GNU
2016CPP manual for details.
2017
2018@item -fcond-mismatch
2019@opindex fcond-mismatch
2020Allow conditional expressions with mismatched types in the second and
2021third arguments.  The value of such an expression is void.  This option
2022is not supported for C++.
2023
2024@item -flax-vector-conversions
2025@opindex flax-vector-conversions
2026Allow implicit conversions between vectors with differing numbers of
2027elements and/or incompatible element types.  This option should not be
2028used for new code.
2029
2030@item -funsigned-char
2031@opindex funsigned-char
2032Let the type @code{char} be unsigned, like @code{unsigned char}.
2033
2034Each kind of machine has a default for what @code{char} should
2035be.  It is either like @code{unsigned char} by default or like
2036@code{signed char} by default.
2037
2038Ideally, a portable program should always use @code{signed char} or
2039@code{unsigned char} when it depends on the signedness of an object.
2040But many programs have been written to use plain @code{char} and
2041expect it to be signed, or expect it to be unsigned, depending on the
2042machines they were written for.  This option, and its inverse, let you
2043make such a program work with the opposite default.
2044
2045The type @code{char} is always a distinct type from each of
2046@code{signed char} or @code{unsigned char}, even though its behavior
2047is always just like one of those two.
2048
2049@item -fsigned-char
2050@opindex fsigned-char
2051Let the type @code{char} be signed, like @code{signed char}.
2052
2053Note that this is equivalent to @option{-fno-unsigned-char}, which is
2054the negative form of @option{-funsigned-char}.  Likewise, the option
2055@option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2056
2057@item -fsigned-bitfields
2058@itemx -funsigned-bitfields
2059@itemx -fno-signed-bitfields
2060@itemx -fno-unsigned-bitfields
2061@opindex fsigned-bitfields
2062@opindex funsigned-bitfields
2063@opindex fno-signed-bitfields
2064@opindex fno-unsigned-bitfields
2065These options control whether a bit-field is signed or unsigned, when the
2066declaration does not use either @code{signed} or @code{unsigned}.  By
2067default, such a bit-field is signed, because this is consistent: the
2068basic integer types such as @code{int} are signed types.
2069@end table
2070
2071@node C++ Dialect Options
2072@section Options Controlling C++ Dialect
2073
2074@cindex compiler options, C++
2075@cindex C++ options, command-line
2076@cindex options, C++
2077This section describes the command-line options that are only meaningful
2078for C++ programs.  You can also use most of the GNU compiler options
2079regardless of what language your program is in.  For example, you
2080might compile a file @file{firstClass.C} like this:
2081
2082@smallexample
2083g++ -g -frepo -O -c firstClass.C
2084@end smallexample
2085
2086@noindent
2087In this example, only @option{-frepo} is an option meant
2088only for C++ programs; you can use the other options with any
2089language supported by GCC@.
2090
2091Here is a list of options that are @emph{only} for compiling C++ programs:
2092
2093@table @gcctabopt
2094
2095@item -fabi-version=@var{n}
2096@opindex fabi-version
2097Use version @var{n} of the C++ ABI@.  The default is version 0.
2098
2099Version 0 refers to the version conforming most closely to
2100the C++ ABI specification.  Therefore, the ABI obtained using version 0
2101will change in different versions of G++ as ABI bugs are fixed.
2102
2103Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2104
2105Version 2 is the version of the C++ ABI that first appeared in G++
21063.4, and was the default through G++ 4.9.
2107
2108Version 3 corrects an error in mangling a constant address as a
2109template argument.
2110
2111Version 4, which first appeared in G++ 4.5, implements a standard
2112mangling for vector types.
2113
2114Version 5, which first appeared in G++ 4.6, corrects the mangling of
2115attribute const/volatile on function pointer types, decltype of a
2116plain decl, and use of a function parameter in the declaration of
2117another parameter.
2118
2119Version 6, which first appeared in G++ 4.7, corrects the promotion
2120behavior of C++11 scoped enums and the mangling of template argument
2121packs, const/static_cast, prefix ++ and --, and a class scope function
2122used as a template argument.
2123
2124Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2125builtin type and corrects the mangling of lambdas in default argument
2126scope.
2127
2128Version 8, which first appeared in G++ 4.9, corrects the substitution
2129behavior of function types with function-cv-qualifiers.
2130
2131Version 9, which first appeared in G++ 5.2, corrects the alignment of
2132@code{nullptr_t}.
2133
2134See also @option{-Wabi}.
2135
2136@item -fabi-compat-version=@var{n}
2137@opindex fabi-compat-version
2138On targets that support strong aliases, G++
2139works around mangling changes by creating an alias with the correct
2140mangled name when defining a symbol with an incorrect mangled name.
2141This switch specifies which ABI version to use for the alias.
2142
2143With @option{-fabi-version=0} (the default), this defaults to 2.  If
2144another ABI version is explicitly selected, this defaults to 0.
2145
2146The compatibility version is also set by @option{-Wabi=@var{n}}.
2147
2148@item -fno-access-control
2149@opindex fno-access-control
2150Turn off all access checking.  This switch is mainly useful for working
2151around bugs in the access control code.
2152
2153@item -fcheck-new
2154@opindex fcheck-new
2155Check that the pointer returned by @code{operator new} is non-null
2156before attempting to modify the storage allocated.  This check is
2157normally unnecessary because the C++ standard specifies that
2158@code{operator new} only returns @code{0} if it is declared
2159@code{throw()}, in which case the compiler always checks the
2160return value even without this option.  In all other cases, when
2161@code{operator new} has a non-empty exception specification, memory
2162exhaustion is signalled by throwing @code{std::bad_alloc}.  See also
2163@samp{new (nothrow)}.
2164
2165@item -fconstexpr-depth=@var{n}
2166@opindex fconstexpr-depth
2167Set the maximum nested evaluation depth for C++11 constexpr functions
2168to @var{n}.  A limit is needed to detect endless recursion during
2169constant expression evaluation.  The minimum specified by the standard
2170is 512.
2171
2172@item -fdeduce-init-list
2173@opindex fdeduce-init-list
2174Enable deduction of a template type parameter as
2175@code{std::initializer_list} from a brace-enclosed initializer list, i.e.@:
2176
2177@smallexample
2178template <class T> auto forward(T t) -> decltype (realfn (t))
2179@{
2180  return realfn (t);
2181@}
2182
2183void f()
2184@{
2185  forward(@{1,2@}); // call forward<std::initializer_list<int>>
2186@}
2187@end smallexample
2188
2189This deduction was implemented as a possible extension to the
2190originally proposed semantics for the C++11 standard, but was not part
2191of the final standard, so it is disabled by default.  This option is
2192deprecated, and may be removed in a future version of G++.
2193
2194@item -ffriend-injection
2195@opindex ffriend-injection
2196Inject friend functions into the enclosing namespace, so that they are
2197visible outside the scope of the class in which they are declared.
2198Friend functions were documented to work this way in the old Annotated
2199C++ Reference Manual.
2200However, in ISO C++ a friend function that is not declared
2201in an enclosing scope can only be found using argument dependent
2202lookup.  GCC defaults to the standard behavior.
2203
2204This option is for compatibility, and may be removed in a future
2205release of G++.
2206
2207@item -fno-elide-constructors
2208@opindex fno-elide-constructors
2209The C++ standard allows an implementation to omit creating a temporary
2210that is only used to initialize another object of the same type.
2211Specifying this option disables that optimization, and forces G++ to
2212call the copy constructor in all cases.
2213
2214@item -fno-enforce-eh-specs
2215@opindex fno-enforce-eh-specs
2216Don't generate code to check for violation of exception specifications
2217at run time.  This option violates the C++ standard, but may be useful
2218for reducing code size in production builds, much like defining
2219@code{NDEBUG}.  This does not give user code permission to throw
2220exceptions in violation of the exception specifications; the compiler
2221still optimizes based on the specifications, so throwing an
2222unexpected exception results in undefined behavior at run time.
2223
2224@item -fextern-tls-init
2225@itemx -fno-extern-tls-init
2226@opindex fextern-tls-init
2227@opindex fno-extern-tls-init
2228The C++11 and OpenMP standards allow @code{thread_local} and
2229@code{threadprivate} variables to have dynamic (runtime)
2230initialization.  To support this, any use of such a variable goes
2231through a wrapper function that performs any necessary initialization.
2232When the use and definition of the variable are in the same
2233translation unit, this overhead can be optimized away, but when the
2234use is in a different translation unit there is significant overhead
2235even if the variable doesn't actually need dynamic initialization.  If
2236the programmer can be sure that no use of the variable in a
2237non-defining TU needs to trigger dynamic initialization (either
2238because the variable is statically initialized, or a use of the
2239variable in the defining TU will be executed before any uses in
2240another TU), they can avoid this overhead with the
2241@option{-fno-extern-tls-init} option.
2242
2243On targets that support symbol aliases, the default is
2244@option{-fextern-tls-init}.  On targets that do not support symbol
2245aliases, the default is @option{-fno-extern-tls-init}.
2246
2247@item -ffor-scope
2248@itemx -fno-for-scope
2249@opindex ffor-scope
2250@opindex fno-for-scope
2251If @option{-ffor-scope} is specified, the scope of variables declared in
2252a @i{for-init-statement} is limited to the @code{for} loop itself,
2253as specified by the C++ standard.
2254If @option{-fno-for-scope} is specified, the scope of variables declared in
2255a @i{for-init-statement} extends to the end of the enclosing scope,
2256as was the case in old versions of G++, and other (traditional)
2257implementations of C++.
2258
2259If neither flag is given, the default is to follow the standard,
2260but to allow and give a warning for old-style code that would
2261otherwise be invalid, or have different behavior.
2262
2263@item -fno-gnu-keywords
2264@opindex fno-gnu-keywords
2265Do not recognize @code{typeof} as a keyword, so that code can use this
2266word as an identifier.  You can use the keyword @code{__typeof__} instead.
2267@option{-ansi} implies @option{-fno-gnu-keywords}.
2268
2269@item -fno-implicit-templates
2270@opindex fno-implicit-templates
2271Never emit code for non-inline templates that are instantiated
2272implicitly (i.e.@: by use); only emit code for explicit instantiations.
2273@xref{Template Instantiation}, for more information.
2274
2275@item -fno-implicit-inline-templates
2276@opindex fno-implicit-inline-templates
2277Don't emit code for implicit instantiations of inline templates, either.
2278The default is to handle inlines differently so that compiles with and
2279without optimization need the same set of explicit instantiations.
2280
2281@item -fno-implement-inlines
2282@opindex fno-implement-inlines
2283To save space, do not emit out-of-line copies of inline functions
2284controlled by @code{#pragma implementation}.  This causes linker
2285errors if these functions are not inlined everywhere they are called.
2286
2287@item -fms-extensions
2288@opindex fms-extensions
2289Disable Wpedantic warnings about constructs used in MFC, such as implicit
2290int and getting a pointer to member function via non-standard syntax.
2291
2292@item -fno-nonansi-builtins
2293@opindex fno-nonansi-builtins
2294Disable built-in declarations of functions that are not mandated by
2295ANSI/ISO C@.  These include @code{ffs}, @code{alloca}, @code{_exit},
2296@code{index}, @code{bzero}, @code{conjf}, and other related functions.
2297
2298@item -fnothrow-opt
2299@opindex fnothrow-opt
2300Treat a @code{throw()} exception specification as if it were a
2301@code{noexcept} specification to reduce or eliminate the text size
2302overhead relative to a function with no exception specification.  If
2303the function has local variables of types with non-trivial
2304destructors, the exception specification actually makes the
2305function smaller because the EH cleanups for those variables can be
2306optimized away.  The semantic effect is that an exception thrown out of
2307a function with such an exception specification results in a call
2308to @code{terminate} rather than @code{unexpected}.
2309
2310@item -fno-operator-names
2311@opindex fno-operator-names
2312Do not treat the operator name keywords @code{and}, @code{bitand},
2313@code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
2314synonyms as keywords.
2315
2316@item -fno-optional-diags
2317@opindex fno-optional-diags
2318Disable diagnostics that the standard says a compiler does not need to
2319issue.  Currently, the only such diagnostic issued by G++ is the one for
2320a name having multiple meanings within a class.
2321
2322@item -fpermissive
2323@opindex fpermissive
2324Downgrade some diagnostics about nonconformant code from errors to
2325warnings.  Thus, using @option{-fpermissive} allows some
2326nonconforming code to compile.
2327
2328@item -fno-pretty-templates
2329@opindex fno-pretty-templates
2330When an error message refers to a specialization of a function
2331template, the compiler normally prints the signature of the
2332template followed by the template arguments and any typedefs or
2333typenames in the signature (e.g. @code{void f(T) [with T = int]}
2334rather than @code{void f(int)}) so that it's clear which template is
2335involved.  When an error message refers to a specialization of a class
2336template, the compiler omits any template arguments that match
2337the default template arguments for that template.  If either of these
2338behaviors make it harder to understand the error message rather than
2339easier, you can use @option{-fno-pretty-templates} to disable them.
2340
2341@item -frepo
2342@opindex frepo
2343Enable automatic template instantiation at link time.  This option also
2344implies @option{-fno-implicit-templates}.  @xref{Template
2345Instantiation}, for more information.
2346
2347@item -fno-rtti
2348@opindex fno-rtti
2349Disable generation of information about every class with virtual
2350functions for use by the C++ run-time type identification features
2351(@code{dynamic_cast} and @code{typeid}).  If you don't use those parts
2352of the language, you can save some space by using this flag.  Note that
2353exception handling uses the same information, but G++ generates it as
2354needed. The @code{dynamic_cast} operator can still be used for casts that
2355do not require run-time type information, i.e.@: casts to @code{void *} or to
2356unambiguous base classes.
2357
2358@item -fsized-deallocation
2359@opindex fsized-deallocation
2360Enable the built-in global declarations
2361@smallexample
2362void operator delete (void *, std::size_t) noexcept;
2363void operator delete[] (void *, std::size_t) noexcept;
2364@end smallexample
2365as introduced in C++14.  This is useful for user-defined replacement
2366deallocation functions that, for example, use the size of the object
2367to make deallocation faster.  Enabled by default under
2368@option{-std=c++14} and above.  The flag @option{-Wsized-deallocation}
2369warns about places that might want to add a definition.
2370
2371@item -fstats
2372@opindex fstats
2373Emit statistics about front-end processing at the end of the compilation.
2374This information is generally only useful to the G++ development team.
2375
2376@item -fstrict-enums
2377@opindex fstrict-enums
2378Allow the compiler to optimize using the assumption that a value of
2379enumerated type can only be one of the values of the enumeration (as
2380defined in the C++ standard; basically, a value that can be
2381represented in the minimum number of bits needed to represent all the
2382enumerators).  This assumption may not be valid if the program uses a
2383cast to convert an arbitrary integer value to the enumerated type.
2384
2385@item -ftemplate-backtrace-limit=@var{n}
2386@opindex ftemplate-backtrace-limit
2387Set the maximum number of template instantiation notes for a single
2388warning or error to @var{n}.  The default value is 10.
2389
2390@item -ftemplate-depth=@var{n}
2391@opindex ftemplate-depth
2392Set the maximum instantiation depth for template classes to @var{n}.
2393A limit on the template instantiation depth is needed to detect
2394endless recursions during template class instantiation.  ANSI/ISO C++
2395conforming programs must not rely on a maximum depth greater than 17
2396(changed to 1024 in C++11).  The default value is 900, as the compiler
2397can run out of stack space before hitting 1024 in some situations.
2398
2399@item -fno-threadsafe-statics
2400@opindex fno-threadsafe-statics
2401Do not emit the extra code to use the routines specified in the C++
2402ABI for thread-safe initialization of local statics.  You can use this
2403option to reduce code size slightly in code that doesn't need to be
2404thread-safe.
2405
2406@item -fuse-cxa-atexit
2407@opindex fuse-cxa-atexit
2408Register destructors for objects with static storage duration with the
2409@code{__cxa_atexit} function rather than the @code{atexit} function.
2410This option is required for fully standards-compliant handling of static
2411destructors, but only works if your C library supports
2412@code{__cxa_atexit}.
2413
2414@item -fno-use-cxa-get-exception-ptr
2415@opindex fno-use-cxa-get-exception-ptr
2416Don't use the @code{__cxa_get_exception_ptr} runtime routine.  This
2417causes @code{std::uncaught_exception} to be incorrect, but is necessary
2418if the runtime routine is not available.
2419
2420@item -fvisibility-inlines-hidden
2421@opindex fvisibility-inlines-hidden
2422This switch declares that the user does not attempt to compare
2423pointers to inline functions or methods where the addresses of the two functions
2424are taken in different shared objects.
2425
2426The effect of this is that GCC may, effectively, mark inline methods with
2427@code{__attribute__ ((visibility ("hidden")))} so that they do not
2428appear in the export table of a DSO and do not require a PLT indirection
2429when used within the DSO@.  Enabling this option can have a dramatic effect
2430on load and link times of a DSO as it massively reduces the size of the
2431dynamic export table when the library makes heavy use of templates.
2432
2433The behavior of this switch is not quite the same as marking the
2434methods as hidden directly, because it does not affect static variables
2435local to the function or cause the compiler to deduce that
2436the function is defined in only one shared object.
2437
2438You may mark a method as having a visibility explicitly to negate the
2439effect of the switch for that method.  For example, if you do want to
2440compare pointers to a particular inline method, you might mark it as
2441having default visibility.  Marking the enclosing class with explicit
2442visibility has no effect.
2443
2444Explicitly instantiated inline methods are unaffected by this option
2445as their linkage might otherwise cross a shared library boundary.
2446@xref{Template Instantiation}.
2447
2448@item -fvisibility-ms-compat
2449@opindex fvisibility-ms-compat
2450This flag attempts to use visibility settings to make GCC's C++
2451linkage model compatible with that of Microsoft Visual Studio.
2452
2453The flag makes these changes to GCC's linkage model:
2454
2455@enumerate
2456@item
2457It sets the default visibility to @code{hidden}, like
2458@option{-fvisibility=hidden}.
2459
2460@item
2461Types, but not their members, are not hidden by default.
2462
2463@item
2464The One Definition Rule is relaxed for types without explicit
2465visibility specifications that are defined in more than one
2466shared object: those declarations are permitted if they are
2467permitted when this option is not used.
2468@end enumerate
2469
2470In new code it is better to use @option{-fvisibility=hidden} and
2471export those classes that are intended to be externally visible.
2472Unfortunately it is possible for code to rely, perhaps accidentally,
2473on the Visual Studio behavior.
2474
2475Among the consequences of these changes are that static data members
2476of the same type with the same name but defined in different shared
2477objects are different, so changing one does not change the other;
2478and that pointers to function members defined in different shared
2479objects may not compare equal.  When this flag is given, it is a
2480violation of the ODR to define types with the same name differently.
2481
2482@item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
2483@opindex fvtable-verify
2484Turn on (or off, if using @option{-fvtable-verify=none}) the security
2485feature that verifies at run time, for every virtual call, that
2486the vtable pointer through which the call is made is valid for the type of
2487the object, and has not been corrupted or overwritten.  If an invalid vtable
2488pointer is detected at run time, an error is reported and execution of the
2489program is immediately halted.
2490
2491This option causes run-time data structures to be built at program startup,
2492which are used for verifying the vtable pointers.
2493The options @samp{std} and @samp{preinit}
2494control the timing of when these data structures are built.  In both cases the
2495data structures are built before execution reaches @code{main}.  Using
2496@option{-fvtable-verify=std} causes the data structures to be built after
2497shared libraries have been loaded and initialized.
2498@option{-fvtable-verify=preinit} causes them to be built before shared
2499libraries have been loaded and initialized.
2500
2501If this option appears multiple times in the command line with different
2502values specified, @samp{none} takes highest priority over both @samp{std} and
2503@samp{preinit}; @samp{preinit} takes priority over @samp{std}.
2504
2505@item -fvtv-debug
2506@opindex fvtv-debug
2507When used in conjunction with @option{-fvtable-verify=std} or
2508@option{-fvtable-verify=preinit}, causes debug versions of the
2509runtime functions for the vtable verification feature to be called.
2510This flag also causes the compiler to log information about which
2511vtable pointers it finds for each class.
2512This information is written to a file named @file{vtv_set_ptr_data.log}
2513in the directory named by the environment variable @env{VTV_LOGS_DIR}
2514if that is defined or the current working directory otherwise.
2515
2516Note:  This feature @emph{appends} data to the log file. If you want a fresh log
2517file, be sure to delete any existing one.
2518
2519@item -fvtv-counts
2520@opindex fvtv-counts
2521This is a debugging flag.  When used in conjunction with
2522@option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
2523causes the compiler to keep track of the total number of virtual calls
2524it encounters and the number of verifications it inserts.  It also
2525counts the number of calls to certain run-time library functions
2526that it inserts and logs this information for each compilation unit.
2527The compiler writes this information to a file named
2528@file{vtv_count_data.log} in the directory named by the environment
2529variable @env{VTV_LOGS_DIR} if that is defined or the current working
2530directory otherwise.  It also counts the size of the vtable pointer sets
2531for each class, and writes this information to @file{vtv_class_set_sizes.log}
2532in the same directory.
2533
2534Note:  This feature @emph{appends} data to the log files.  To get fresh log
2535files, be sure to delete any existing ones.
2536
2537@item -fno-weak
2538@opindex fno-weak
2539Do not use weak symbol support, even if it is provided by the linker.
2540By default, G++ uses weak symbols if they are available.  This
2541option exists only for testing, and should not be used by end-users;
2542it results in inferior code and has no benefits.  This option may
2543be removed in a future release of G++.
2544
2545@item -nostdinc++
2546@opindex nostdinc++
2547Do not search for header files in the standard directories specific to
2548C++, but do still search the other standard directories.  (This option
2549is used when building the C++ library.)
2550@end table
2551
2552In addition, these optimization, warning, and code generation options
2553have meanings only for C++ programs:
2554
2555@table @gcctabopt
2556@item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
2557@opindex Wabi
2558@opindex Wno-abi
2559When an explicit @option{-fabi-version=@var{n}} option is used, causes
2560G++ to warn when it generates code that is probably not compatible with the
2561vendor-neutral C++ ABI@.  Since G++ now defaults to
2562@option{-fabi-version=0}, @option{-Wabi} has no effect unless either
2563an older ABI version is selected (with @option{-fabi-version=@var{n}})
2564or an older compatibility version is selected (with
2565@option{-Wabi=@var{n}} or @option{-fabi-compat-version=@var{n}}).
2566
2567Although an effort has been made to warn about
2568all such cases, there are probably some cases that are not warned about,
2569even though G++ is generating incompatible code.  There may also be
2570cases where warnings are emitted even though the code that is generated
2571is compatible.
2572
2573You should rewrite your code to avoid these warnings if you are
2574concerned about the fact that code generated by G++ may not be binary
2575compatible with code generated by other compilers.
2576
2577@option{-Wabi} can also be used with an explicit version number to
2578warn about compatibility with a particular @option{-fabi-version}
2579level, e.g. @option{-Wabi=2} to warn about changes relative to
2580@option{-fabi-version=2}.  Specifying a version number also sets
2581@option{-fabi-compat-version=@var{n}}.
2582
2583The known incompatibilities in @option{-fabi-version=2} (which was the
2584default from GCC 3.4 to 4.9) include:
2585
2586@itemize @bullet
2587
2588@item
2589A template with a non-type template parameter of reference type was
2590mangled incorrectly:
2591@smallexample
2592extern int N;
2593template <int &> struct S @{@};
2594void n (S<N>) @{2@}
2595@end smallexample
2596
2597This was fixed in @option{-fabi-version=3}.
2598
2599@item
2600SIMD vector types declared using @code{__attribute ((vector_size))} were
2601mangled in a non-standard way that does not allow for overloading of
2602functions taking vectors of different sizes.
2603
2604The mangling was changed in @option{-fabi-version=4}.
2605
2606@item
2607@code{__attribute ((const))} and @code{noreturn} were mangled as type
2608qualifiers, and @code{decltype} of a plain declaration was folded away.
2609
2610These mangling issues were fixed in @option{-fabi-version=5}.
2611
2612@item
2613Scoped enumerators passed as arguments to a variadic function are
2614promoted like unscoped enumerators, causing @code{va_arg} to complain.
2615On most targets this does not actually affect the parameter passing
2616ABI, as there is no way to pass an argument smaller than @code{int}.
2617
2618Also, the ABI changed the mangling of template argument packs,
2619@code{const_cast}, @code{static_cast}, prefix increment/decrement, and
2620a class scope function used as a template argument.
2621
2622These issues were corrected in @option{-fabi-version=6}.
2623
2624@item
2625Lambdas in default argument scope were mangled incorrectly, and the
2626ABI changed the mangling of @code{nullptr_t}.
2627
2628These issues were corrected in @option{-fabi-version=7}.
2629
2630@item
2631When mangling a function type with function-cv-qualifiers, the
2632un-qualified function type was incorrectly treated as a substitution
2633candidate.
2634
2635This was fixed in @option{-fabi-version=8}, the default for GCC 5.1.
2636
2637@item
2638@code{decltype(nullptr)} incorrectly had an alignment of 1, leading to
2639unaligned accesses.  Note that this did not affect the ABI of a
2640function with a @code{nullptr_t} parameter, as parameters have a
2641minimum alignment.
2642
2643This was fixed in @option{-fabi-version=9}, the default for GCC 5.2.
2644@end itemize
2645
2646It also warns about psABI-related changes.  The known psABI changes at this
2647point include:
2648
2649@itemize @bullet
2650
2651@item
2652For SysV/x86-64, unions with @code{long double} members are
2653passed in memory as specified in psABI.  For example:
2654
2655@smallexample
2656union U @{
2657  long double ld;
2658  int i;
2659@};
2660@end smallexample
2661
2662@noindent
2663@code{union U} is always passed in memory.
2664
2665@end itemize
2666
2667@item -Wabi-tag @r{(C++ and Objective-C++ only)}
2668@opindex Wabi-tag
2669@opindex -Wabi-tag
2670Warn when a type with an ABI tag is used in a context that does not
2671have that ABI tag.  See @ref{C++ Attributes} for more information
2672about ABI tags.
2673
2674@item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
2675@opindex Wctor-dtor-privacy
2676@opindex Wno-ctor-dtor-privacy
2677Warn when a class seems unusable because all the constructors or
2678destructors in that class are private, and it has neither friends nor
2679public static member functions.  Also warn if there are no non-private
2680methods, and there's at least one private member function that isn't
2681a constructor or destructor.
2682
2683@item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
2684@opindex Wdelete-non-virtual-dtor
2685@opindex Wno-delete-non-virtual-dtor
2686Warn when @code{delete} is used to destroy an instance of a class that
2687has virtual functions and non-virtual destructor. It is unsafe to delete
2688an instance of a derived class through a pointer to a base class if the
2689base class does not have a virtual destructor.  This warning is enabled
2690by @option{-Wall}.
2691
2692@item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
2693@opindex Wliteral-suffix
2694@opindex Wno-literal-suffix
2695Warn when a string or character literal is followed by a ud-suffix which does
2696not begin with an underscore.  As a conforming extension, GCC treats such
2697suffixes as separate preprocessing tokens in order to maintain backwards
2698compatibility with code that uses formatting macros from @code{<inttypes.h>}.
2699For example:
2700
2701@smallexample
2702#define __STDC_FORMAT_MACROS
2703#include <inttypes.h>
2704#include <stdio.h>
2705
2706int main() @{
2707  int64_t i64 = 123;
2708  printf("My int64: %"PRId64"\n", i64);
2709@}
2710@end smallexample
2711
2712In this case, @code{PRId64} is treated as a separate preprocessing token.
2713
2714This warning is enabled by default.
2715
2716@item -Wnarrowing @r{(C++ and Objective-C++ only)}
2717@opindex Wnarrowing
2718@opindex Wno-narrowing
2719Warn when a narrowing conversion prohibited by C++11 occurs within
2720@samp{@{ @}}, e.g.
2721
2722@smallexample
2723int i = @{ 2.2 @}; // error: narrowing from double to int
2724@end smallexample
2725
2726This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
2727
2728With @option{-std=c++11}, @option{-Wno-narrowing} suppresses the diagnostic
2729required by the standard.  Note that this does not affect the meaning
2730of well-formed code; narrowing conversions are still considered
2731ill-formed in SFINAE context.
2732
2733@item -Wnoexcept @r{(C++ and Objective-C++ only)}
2734@opindex Wnoexcept
2735@opindex Wno-noexcept
2736Warn when a noexcept-expression evaluates to false because of a call
2737to a function that does not have a non-throwing exception
2738specification (i.e. @code{throw()} or @code{noexcept}) but is known by
2739the compiler to never throw an exception.
2740
2741@item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
2742@opindex Wnon-virtual-dtor
2743@opindex Wno-non-virtual-dtor
2744Warn when a class has virtual functions and an accessible non-virtual
2745destructor itself or in an accessible polymorphic base class, in which
2746case it is possible but unsafe to delete an instance of a derived
2747class through a pointer to the class itself or base class.  This
2748warning is automatically enabled if @option{-Weffc++} is specified.
2749
2750@item -Wreorder @r{(C++ and Objective-C++ only)}
2751@opindex Wreorder
2752@opindex Wno-reorder
2753@cindex reordering, warning
2754@cindex warning for reordering of member initializers
2755Warn when the order of member initializers given in the code does not
2756match the order in which they must be executed.  For instance:
2757
2758@smallexample
2759struct A @{
2760  int i;
2761  int j;
2762  A(): j (0), i (1) @{ @}
2763@};
2764@end smallexample
2765
2766@noindent
2767The compiler rearranges the member initializers for @code{i}
2768and @code{j} to match the declaration order of the members, emitting
2769a warning to that effect.  This warning is enabled by @option{-Wall}.
2770
2771@item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
2772@opindex fext-numeric-literals
2773@opindex fno-ext-numeric-literals
2774Accept imaginary, fixed-point, or machine-defined
2775literal number suffixes as GNU extensions.
2776When this option is turned off these suffixes are treated
2777as C++11 user-defined literal numeric suffixes.
2778This is on by default for all pre-C++11 dialects and all GNU dialects:
2779@option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
2780@option{-std=gnu++14}.
2781This option is off by default
2782for ISO C++11 onwards (@option{-std=c++11}, ...).
2783@end table
2784
2785The following @option{-W@dots{}} options are not affected by @option{-Wall}.
2786
2787@table @gcctabopt
2788@item -Weffc++ @r{(C++ and Objective-C++ only)}
2789@opindex Weffc++
2790@opindex Wno-effc++
2791Warn about violations of the following style guidelines from Scott Meyers'
2792@cite{Effective C++} series of books:
2793
2794@itemize @bullet
2795@item
2796Define a copy constructor and an assignment operator for classes
2797with dynamically-allocated memory.
2798
2799@item
2800Prefer initialization to assignment in constructors.
2801
2802@item
2803Have @code{operator=} return a reference to @code{*this}.
2804
2805@item
2806Don't try to return a reference when you must return an object.
2807
2808@item
2809Distinguish between prefix and postfix forms of increment and
2810decrement operators.
2811
2812@item
2813Never overload @code{&&}, @code{||}, or @code{,}.
2814
2815@end itemize
2816
2817This option also enables @option{-Wnon-virtual-dtor}, which is also
2818one of the effective C++ recommendations.  However, the check is
2819extended to warn about the lack of virtual destructor in accessible
2820non-polymorphic bases classes too.
2821
2822When selecting this option, be aware that the standard library
2823headers do not obey all of these guidelines; use @samp{grep -v}
2824to filter out those warnings.
2825
2826@item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
2827@opindex Wstrict-null-sentinel
2828@opindex Wno-strict-null-sentinel
2829Warn about the use of an uncasted @code{NULL} as sentinel.  When
2830compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
2831to @code{__null}.  Although it is a null pointer constant rather than a
2832null pointer, it is guaranteed to be of the same size as a pointer.
2833But this use is not portable across different compilers.
2834
2835@item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
2836@opindex Wno-non-template-friend
2837@opindex Wnon-template-friend
2838Disable warnings when non-templatized friend functions are declared
2839within a template.  Since the advent of explicit template specification
2840support in G++, if the name of the friend is an unqualified-id (i.e.,
2841@samp{friend foo(int)}), the C++ language specification demands that the
2842friend declare or define an ordinary, nontemplate function.  (Section
284314.5.3).  Before G++ implemented explicit specification, unqualified-ids
2844could be interpreted as a particular specialization of a templatized
2845function.  Because this non-conforming behavior is no longer the default
2846behavior for G++, @option{-Wnon-template-friend} allows the compiler to
2847check existing code for potential trouble spots and is on by default.
2848This new compiler behavior can be turned off with
2849@option{-Wno-non-template-friend}, which keeps the conformant compiler code
2850but disables the helpful warning.
2851
2852@item -Wold-style-cast @r{(C++ and Objective-C++ only)}
2853@opindex Wold-style-cast
2854@opindex Wno-old-style-cast
2855Warn if an old-style (C-style) cast to a non-void type is used within
2856a C++ program.  The new-style casts (@code{dynamic_cast},
2857@code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
2858less vulnerable to unintended effects and much easier to search for.
2859
2860@item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
2861@opindex Woverloaded-virtual
2862@opindex Wno-overloaded-virtual
2863@cindex overloaded virtual function, warning
2864@cindex warning for overloaded virtual function
2865Warn when a function declaration hides virtual functions from a
2866base class.  For example, in:
2867
2868@smallexample
2869struct A @{
2870  virtual void f();
2871@};
2872
2873struct B: public A @{
2874  void f(int);
2875@};
2876@end smallexample
2877
2878the @code{A} class version of @code{f} is hidden in @code{B}, and code
2879like:
2880
2881@smallexample
2882B* b;
2883b->f();
2884@end smallexample
2885
2886@noindent
2887fails to compile.
2888
2889@item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
2890@opindex Wno-pmf-conversions
2891@opindex Wpmf-conversions
2892Disable the diagnostic for converting a bound pointer to member function
2893to a plain pointer.
2894
2895@item -Wsign-promo @r{(C++ and Objective-C++ only)}
2896@opindex Wsign-promo
2897@opindex Wno-sign-promo
2898Warn when overload resolution chooses a promotion from unsigned or
2899enumerated type to a signed type, over a conversion to an unsigned type of
2900the same size.  Previous versions of G++ tried to preserve
2901unsignedness, but the standard mandates the current behavior.
2902@end table
2903
2904@node Objective-C and Objective-C++ Dialect Options
2905@section Options Controlling Objective-C and Objective-C++ Dialects
2906
2907@cindex compiler options, Objective-C and Objective-C++
2908@cindex Objective-C and Objective-C++ options, command-line
2909@cindex options, Objective-C and Objective-C++
2910(NOTE: This manual does not describe the Objective-C and Objective-C++
2911languages themselves.  @xref{Standards,,Language Standards
2912Supported by GCC}, for references.)
2913
2914This section describes the command-line options that are only meaningful
2915for Objective-C and Objective-C++ programs.  You can also use most of
2916the language-independent GNU compiler options.
2917For example, you might compile a file @file{some_class.m} like this:
2918
2919@smallexample
2920gcc -g -fgnu-runtime -O -c some_class.m
2921@end smallexample
2922
2923@noindent
2924In this example, @option{-fgnu-runtime} is an option meant only for
2925Objective-C and Objective-C++ programs; you can use the other options with
2926any language supported by GCC@.
2927
2928Note that since Objective-C is an extension of the C language, Objective-C
2929compilations may also use options specific to the C front-end (e.g.,
2930@option{-Wtraditional}).  Similarly, Objective-C++ compilations may use
2931C++-specific options (e.g., @option{-Wabi}).
2932
2933Here is a list of options that are @emph{only} for compiling Objective-C
2934and Objective-C++ programs:
2935
2936@table @gcctabopt
2937@item -fconstant-string-class=@var{class-name}
2938@opindex fconstant-string-class
2939Use @var{class-name} as the name of the class to instantiate for each
2940literal string specified with the syntax @code{@@"@dots{}"}.  The default
2941class name is @code{NXConstantString} if the GNU runtime is being used, and
2942@code{NSConstantString} if the NeXT runtime is being used (see below).  The
2943@option{-fconstant-cfstrings} option, if also present, overrides the
2944@option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
2945to be laid out as constant CoreFoundation strings.
2946
2947@item -fgnu-runtime
2948@opindex fgnu-runtime
2949Generate object code compatible with the standard GNU Objective-C
2950runtime.  This is the default for most types of systems.
2951
2952@item -fnext-runtime
2953@opindex fnext-runtime
2954Generate output compatible with the NeXT runtime.  This is the default
2955for NeXT-based systems, including Darwin and Mac OS X@.  The macro
2956@code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
2957used.
2958
2959@item -fno-nil-receivers
2960@opindex fno-nil-receivers
2961Assume that all Objective-C message dispatches (@code{[receiver
2962message:arg]}) in this translation unit ensure that the receiver is
2963not @code{nil}.  This allows for more efficient entry points in the
2964runtime to be used.  This option is only available in conjunction with
2965the NeXT runtime and ABI version 0 or 1.
2966
2967@item -fobjc-abi-version=@var{n}
2968@opindex fobjc-abi-version
2969Use version @var{n} of the Objective-C ABI for the selected runtime.
2970This option is currently supported only for the NeXT runtime.  In that
2971case, Version 0 is the traditional (32-bit) ABI without support for
2972properties and other Objective-C 2.0 additions.  Version 1 is the
2973traditional (32-bit) ABI with support for properties and other
2974Objective-C 2.0 additions.  Version 2 is the modern (64-bit) ABI.  If
2975nothing is specified, the default is Version 0 on 32-bit target
2976machines, and Version 2 on 64-bit target machines.
2977
2978@item -fobjc-call-cxx-cdtors
2979@opindex fobjc-call-cxx-cdtors
2980For each Objective-C class, check if any of its instance variables is a
2981C++ object with a non-trivial default constructor.  If so, synthesize a
2982special @code{- (id) .cxx_construct} instance method which runs
2983non-trivial default constructors on any such instance variables, in order,
2984and then return @code{self}.  Similarly, check if any instance variable
2985is a C++ object with a non-trivial destructor, and if so, synthesize a
2986special @code{- (void) .cxx_destruct} method which runs
2987all such default destructors, in reverse order.
2988
2989The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
2990methods thusly generated only operate on instance variables
2991declared in the current Objective-C class, and not those inherited
2992from superclasses.  It is the responsibility of the Objective-C
2993runtime to invoke all such methods in an object's inheritance
2994hierarchy.  The @code{- (id) .cxx_construct} methods are invoked
2995by the runtime immediately after a new object instance is allocated;
2996the @code{- (void) .cxx_destruct} methods are invoked immediately
2997before the runtime deallocates an object instance.
2998
2999As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
3000support for invoking the @code{- (id) .cxx_construct} and
3001@code{- (void) .cxx_destruct} methods.
3002
3003@item -fobjc-direct-dispatch
3004@opindex fobjc-direct-dispatch
3005Allow fast jumps to the message dispatcher.  On Darwin this is
3006accomplished via the comm page.
3007
3008@item -fobjc-exceptions
3009@opindex fobjc-exceptions
3010Enable syntactic support for structured exception handling in
3011Objective-C, similar to what is offered by C++ and Java.  This option
3012is required to use the Objective-C keywords @code{@@try},
3013@code{@@throw}, @code{@@catch}, @code{@@finally} and
3014@code{@@synchronized}.  This option is available with both the GNU
3015runtime and the NeXT runtime (but not available in conjunction with
3016the NeXT runtime on Mac OS X 10.2 and earlier).
3017
3018@item -fobjc-gc
3019@opindex fobjc-gc
3020Enable garbage collection (GC) in Objective-C and Objective-C++
3021programs.  This option is only available with the NeXT runtime; the
3022GNU runtime has a different garbage collection implementation that
3023does not require special compiler flags.
3024
3025@item -fobjc-nilcheck
3026@opindex fobjc-nilcheck
3027For the NeXT runtime with version 2 of the ABI, check for a nil
3028receiver in method invocations before doing the actual method call.
3029This is the default and can be disabled using
3030@option{-fno-objc-nilcheck}.  Class methods and super calls are never
3031checked for nil in this way no matter what this flag is set to.
3032Currently this flag does nothing when the GNU runtime, or an older
3033version of the NeXT runtime ABI, is used.
3034
3035@item -fobjc-std=objc1
3036@opindex fobjc-std
3037Conform to the language syntax of Objective-C 1.0, the language
3038recognized by GCC 4.0.  This only affects the Objective-C additions to
3039the C/C++ language; it does not affect conformance to C/C++ standards,
3040which is controlled by the separate C/C++ dialect option flags.  When
3041this option is used with the Objective-C or Objective-C++ compiler,
3042any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
3043This is useful if you need to make sure that your Objective-C code can
3044be compiled with older versions of GCC@.
3045
3046@item -freplace-objc-classes
3047@opindex freplace-objc-classes
3048Emit a special marker instructing @command{ld(1)} not to statically link in
3049the resulting object file, and allow @command{dyld(1)} to load it in at
3050run time instead.  This is used in conjunction with the Fix-and-Continue
3051debugging mode, where the object file in question may be recompiled and
3052dynamically reloaded in the course of program execution, without the need
3053to restart the program itself.  Currently, Fix-and-Continue functionality
3054is only available in conjunction with the NeXT runtime on Mac OS X 10.3
3055and later.
3056
3057@item -fzero-link
3058@opindex fzero-link
3059When compiling for the NeXT runtime, the compiler ordinarily replaces calls
3060to @code{objc_getClass("@dots{}")} (when the name of the class is known at
3061compile time) with static class references that get initialized at load time,
3062which improves run-time performance.  Specifying the @option{-fzero-link} flag
3063suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
3064to be retained.  This is useful in Zero-Link debugging mode, since it allows
3065for individual class implementations to be modified during program execution.
3066The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
3067regardless of command-line options.
3068
3069@item -fno-local-ivars
3070@opindex fno-local-ivars
3071@opindex flocal-ivars
3072By default instance variables in Objective-C can be accessed as if
3073they were local variables from within the methods of the class they're
3074declared in.  This can lead to shadowing between instance variables
3075and other variables declared either locally inside a class method or
3076globally with the same name.  Specifying the @option{-fno-local-ivars}
3077flag disables this behavior thus avoiding variable shadowing issues.
3078
3079@item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
3080@opindex fivar-visibility
3081Set the default instance variable visibility to the specified option
3082so that instance variables declared outside the scope of any access
3083modifier directives default to the specified visibility.
3084
3085@item -gen-decls
3086@opindex gen-decls
3087Dump interface declarations for all classes seen in the source file to a
3088file named @file{@var{sourcename}.decl}.
3089
3090@item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
3091@opindex Wassign-intercept
3092@opindex Wno-assign-intercept
3093Warn whenever an Objective-C assignment is being intercepted by the
3094garbage collector.
3095
3096@item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
3097@opindex Wno-protocol
3098@opindex Wprotocol
3099If a class is declared to implement a protocol, a warning is issued for
3100every method in the protocol that is not implemented by the class.  The
3101default behavior is to issue a warning for every method not explicitly
3102implemented in the class, even if a method implementation is inherited
3103from the superclass.  If you use the @option{-Wno-protocol} option, then
3104methods inherited from the superclass are considered to be implemented,
3105and no warning is issued for them.
3106
3107@item -Wselector @r{(Objective-C and Objective-C++ only)}
3108@opindex Wselector
3109@opindex Wno-selector
3110Warn if multiple methods of different types for the same selector are
3111found during compilation.  The check is performed on the list of methods
3112in the final stage of compilation.  Additionally, a check is performed
3113for each selector appearing in a @code{@@selector(@dots{})}
3114expression, and a corresponding method for that selector has been found
3115during compilation.  Because these checks scan the method table only at
3116the end of compilation, these warnings are not produced if the final
3117stage of compilation is not reached, for example because an error is
3118found during compilation, or because the @option{-fsyntax-only} option is
3119being used.
3120
3121@item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
3122@opindex Wstrict-selector-match
3123@opindex Wno-strict-selector-match
3124Warn if multiple methods with differing argument and/or return types are
3125found for a given selector when attempting to send a message using this
3126selector to a receiver of type @code{id} or @code{Class}.  When this flag
3127is off (which is the default behavior), the compiler omits such warnings
3128if any differences found are confined to types that share the same size
3129and alignment.
3130
3131@item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
3132@opindex Wundeclared-selector
3133@opindex Wno-undeclared-selector
3134Warn if a @code{@@selector(@dots{})} expression referring to an
3135undeclared selector is found.  A selector is considered undeclared if no
3136method with that name has been declared before the
3137@code{@@selector(@dots{})} expression, either explicitly in an
3138@code{@@interface} or @code{@@protocol} declaration, or implicitly in
3139an @code{@@implementation} section.  This option always performs its
3140checks as soon as a @code{@@selector(@dots{})} expression is found,
3141while @option{-Wselector} only performs its checks in the final stage of
3142compilation.  This also enforces the coding style convention
3143that methods and selectors must be declared before being used.
3144
3145@item -print-objc-runtime-info
3146@opindex print-objc-runtime-info
3147Generate C header describing the largest structure that is passed by
3148value, if any.
3149
3150@end table
3151
3152@node Language Independent Options
3153@section Options to Control Diagnostic Messages Formatting
3154@cindex options to control diagnostics formatting
3155@cindex diagnostic messages
3156@cindex message formatting
3157
3158Traditionally, diagnostic messages have been formatted irrespective of
3159the output device's aspect (e.g.@: its width, @dots{}).  You can use the
3160options described below
3161to control the formatting algorithm for diagnostic messages,
3162e.g.@: how many characters per line, how often source location
3163information should be reported.  Note that some language front ends may not
3164honor these options.
3165
3166@table @gcctabopt
3167@item -fmessage-length=@var{n}
3168@opindex fmessage-length
3169Try to format error messages so that they fit on lines of about
3170@var{n} characters.  If @var{n} is zero, then no line-wrapping is
3171done; each error message appears on a single line.  This is the
3172default for all front ends.
3173
3174@item -fdiagnostics-show-location=once
3175@opindex fdiagnostics-show-location
3176Only meaningful in line-wrapping mode.  Instructs the diagnostic messages
3177reporter to emit source location information @emph{once}; that is, in
3178case the message is too long to fit on a single physical line and has to
3179be wrapped, the source location won't be emitted (as prefix) again,
3180over and over, in subsequent continuation lines.  This is the default
3181behavior.
3182
3183@item -fdiagnostics-show-location=every-line
3184Only meaningful in line-wrapping mode.  Instructs the diagnostic
3185messages reporter to emit the same source location information (as
3186prefix) for physical lines that result from the process of breaking
3187a message which is too long to fit on a single line.
3188
3189@item -fdiagnostics-color[=@var{WHEN}]
3190@itemx -fno-diagnostics-color
3191@opindex fdiagnostics-color
3192@cindex highlight, color, colour
3193@vindex GCC_COLORS @r{environment variable}
3194Use color in diagnostics.  @var{WHEN} is @samp{never}, @samp{always},
3195or @samp{auto}.  The default depends on how the compiler has been configured,
3196it can be any of the above @var{WHEN} options or also @samp{never}
3197if @env{GCC_COLORS} environment variable isn't present in the environment,
3198and @samp{auto} otherwise.
3199@samp{auto} means to use color only when the standard error is a terminal.
3200The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
3201aliases for @option{-fdiagnostics-color=always} and
3202@option{-fdiagnostics-color=never}, respectively.
3203
3204The colors are defined by the environment variable @env{GCC_COLORS}.
3205Its value is a colon-separated list of capabilities and Select Graphic
3206Rendition (SGR) substrings. SGR commands are interpreted by the
3207terminal or terminal emulator.  (See the section in the documentation
3208of your text terminal for permitted values and their meanings as
3209character attributes.)  These substring values are integers in decimal
3210representation and can be concatenated with semicolons.
3211Common values to concatenate include
3212@samp{1} for bold,
3213@samp{4} for underline,
3214@samp{5} for blink,
3215@samp{7} for inverse,
3216@samp{39} for default foreground color,
3217@samp{30} to @samp{37} for foreground colors,
3218@samp{90} to @samp{97} for 16-color mode foreground colors,
3219@samp{38;5;0} to @samp{38;5;255}
3220for 88-color and 256-color modes foreground colors,
3221@samp{49} for default background color,
3222@samp{40} to @samp{47} for background colors,
3223@samp{100} to @samp{107} for 16-color mode background colors,
3224and @samp{48;5;0} to @samp{48;5;255}
3225for 88-color and 256-color modes background colors.
3226
3227The default @env{GCC_COLORS} is
3228@smallexample
3229error=01;31:warning=01;35:note=01;36:caret=01;32:locus=01:quote=01
3230@end smallexample
3231@noindent
3232where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
3233@samp{01;36} is bold cyan, @samp{01;32} is bold green and
3234@samp{01} is bold. Setting @env{GCC_COLORS} to the empty
3235string disables colors.
3236Supported capabilities are as follows.
3237
3238@table @code
3239@item error=
3240@vindex error GCC_COLORS @r{capability}
3241SGR substring for error: markers.
3242
3243@item warning=
3244@vindex warning GCC_COLORS @r{capability}
3245SGR substring for warning: markers.
3246
3247@item note=
3248@vindex note GCC_COLORS @r{capability}
3249SGR substring for note: markers.
3250
3251@item caret=
3252@vindex caret GCC_COLORS @r{capability}
3253SGR substring for caret line.
3254
3255@item locus=
3256@vindex locus GCC_COLORS @r{capability}
3257SGR substring for location information, @samp{file:line} or
3258@samp{file:line:column} etc.
3259
3260@item quote=
3261@vindex quote GCC_COLORS @r{capability}
3262SGR substring for information printed within quotes.
3263@end table
3264
3265@item -fno-diagnostics-show-option
3266@opindex fno-diagnostics-show-option
3267@opindex fdiagnostics-show-option
3268By default, each diagnostic emitted includes text indicating the
3269command-line option that directly controls the diagnostic (if such an
3270option is known to the diagnostic machinery).  Specifying the
3271@option{-fno-diagnostics-show-option} flag suppresses that behavior.
3272
3273@item -fno-diagnostics-show-caret
3274@opindex fno-diagnostics-show-caret
3275@opindex fdiagnostics-show-caret
3276By default, each diagnostic emitted includes the original source line
3277and a caret '^' indicating the column.  This option suppresses this
3278information.  The source line is truncated to @var{n} characters, if
3279the @option{-fmessage-length=n} option is given.  When the output is done
3280to the terminal, the width is limited to the width given by the
3281@env{COLUMNS} environment variable or, if not set, to the terminal width.
3282
3283@end table
3284
3285@node Warning Options
3286@section Options to Request or Suppress Warnings
3287@cindex options to control warnings
3288@cindex warning messages
3289@cindex messages, warning
3290@cindex suppressing warnings
3291
3292Warnings are diagnostic messages that report constructions that
3293are not inherently erroneous but that are risky or suggest there
3294may have been an error.
3295
3296The following language-independent options do not enable specific
3297warnings but control the kinds of diagnostics produced by GCC@.
3298
3299@table @gcctabopt
3300@cindex syntax checking
3301@item -fsyntax-only
3302@opindex fsyntax-only
3303Check the code for syntax errors, but don't do anything beyond that.
3304
3305@item -fmax-errors=@var{n}
3306@opindex fmax-errors
3307Limits the maximum number of error messages to @var{n}, at which point
3308GCC bails out rather than attempting to continue processing the source
3309code.  If @var{n} is 0 (the default), there is no limit on the number
3310of error messages produced.  If @option{-Wfatal-errors} is also
3311specified, then @option{-Wfatal-errors} takes precedence over this
3312option.
3313
3314@item -w
3315@opindex w
3316Inhibit all warning messages.
3317
3318@item -Werror
3319@opindex Werror
3320@opindex Wno-error
3321Make all warnings into errors.
3322
3323@item -Werror=
3324@opindex Werror=
3325@opindex Wno-error=
3326Make the specified warning into an error.  The specifier for a warning
3327is appended; for example @option{-Werror=switch} turns the warnings
3328controlled by @option{-Wswitch} into errors.  This switch takes a
3329negative form, to be used to negate @option{-Werror} for specific
3330warnings; for example @option{-Wno-error=switch} makes
3331@option{-Wswitch} warnings not be errors, even when @option{-Werror}
3332is in effect.
3333
3334The warning message for each controllable warning includes the
3335option that controls the warning.  That option can then be used with
3336@option{-Werror=} and @option{-Wno-error=} as described above.
3337(Printing of the option in the warning message can be disabled using the
3338@option{-fno-diagnostics-show-option} flag.)
3339
3340Note that specifying @option{-Werror=}@var{foo} automatically implies
3341@option{-W}@var{foo}.  However, @option{-Wno-error=}@var{foo} does not
3342imply anything.
3343
3344@item -Wfatal-errors
3345@opindex Wfatal-errors
3346@opindex Wno-fatal-errors
3347This option causes the compiler to abort compilation on the first error
3348occurred rather than trying to keep going and printing further error
3349messages.
3350
3351@end table
3352
3353You can request many specific warnings with options beginning with
3354@samp{-W}, for example @option{-Wimplicit} to request warnings on
3355implicit declarations.  Each of these specific warning options also
3356has a negative form beginning @samp{-Wno-} to turn off warnings; for
3357example, @option{-Wno-implicit}.  This manual lists only one of the
3358two forms, whichever is not the default.  For further
3359language-specific options also refer to @ref{C++ Dialect Options} and
3360@ref{Objective-C and Objective-C++ Dialect Options}.
3361
3362Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
3363options, such as @option{-Wunused}, which may turn on further options,
3364such as @option{-Wunused-value}. The combined effect of positive and
3365negative forms is that more specific options have priority over less
3366specific ones, independently of their position in the command-line. For
3367options of the same specificity, the last one takes effect. Options
3368enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
3369as if they appeared at the end of the command-line.
3370
3371When an unrecognized warning option is requested (e.g.,
3372@option{-Wunknown-warning}), GCC emits a diagnostic stating
3373that the option is not recognized.  However, if the @option{-Wno-} form
3374is used, the behavior is slightly different: no diagnostic is
3375produced for @option{-Wno-unknown-warning} unless other diagnostics
3376are being produced.  This allows the use of new @option{-Wno-} options
3377with old compilers, but if something goes wrong, the compiler
3378warns that an unrecognized option is present.
3379
3380@table @gcctabopt
3381@item -Wpedantic
3382@itemx -pedantic
3383@opindex pedantic
3384@opindex Wpedantic
3385Issue all the warnings demanded by strict ISO C and ISO C++;
3386reject all programs that use forbidden extensions, and some other
3387programs that do not follow ISO C and ISO C++.  For ISO C, follows the
3388version of the ISO C standard specified by any @option{-std} option used.
3389
3390Valid ISO C and ISO C++ programs should compile properly with or without
3391this option (though a rare few require @option{-ansi} or a
3392@option{-std} option specifying the required version of ISO C)@.  However,
3393without this option, certain GNU extensions and traditional C and C++
3394features are supported as well.  With this option, they are rejected.
3395
3396@option{-Wpedantic} does not cause warning messages for use of the
3397alternate keywords whose names begin and end with @samp{__}.  Pedantic
3398warnings are also disabled in the expression that follows
3399@code{__extension__}.  However, only system header files should use
3400these escape routes; application programs should avoid them.
3401@xref{Alternate Keywords}.
3402
3403Some users try to use @option{-Wpedantic} to check programs for strict ISO
3404C conformance.  They soon find that it does not do quite what they want:
3405it finds some non-ISO practices, but not all---only those for which
3406ISO C @emph{requires} a diagnostic, and some others for which
3407diagnostics have been added.
3408
3409A feature to report any failure to conform to ISO C might be useful in
3410some instances, but would require considerable additional work and would
3411be quite different from @option{-Wpedantic}.  We don't have plans to
3412support such a feature in the near future.
3413
3414Where the standard specified with @option{-std} represents a GNU
3415extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
3416corresponding @dfn{base standard}, the version of ISO C on which the GNU
3417extended dialect is based.  Warnings from @option{-Wpedantic} are given
3418where they are required by the base standard.  (It does not make sense
3419for such warnings to be given only for features not in the specified GNU
3420C dialect, since by definition the GNU dialects of C include all
3421features the compiler supports with the given option, and there would be
3422nothing to warn about.)
3423
3424@item -pedantic-errors
3425@opindex pedantic-errors
3426Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
3427requires a diagnostic, in some cases where there is undefined behavior
3428at compile-time and in some other cases that do not prevent compilation
3429of programs that are valid according to the standard. This is not
3430equivalent to @option{-Werror=pedantic}, since there are errors enabled
3431by this option and not enabled by the latter and vice versa.
3432
3433@item -Wall
3434@opindex Wall
3435@opindex Wno-all
3436This enables all the warnings about constructions that some users
3437consider questionable, and that are easy to avoid (or modify to
3438prevent the warning), even in conjunction with macros.  This also
3439enables some language-specific warnings described in @ref{C++ Dialect
3440Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
3441
3442@option{-Wall} turns on the following warning flags:
3443
3444@gccoptlist{-Waddress   @gol
3445-Warray-bounds=1 @r{(only with} @option{-O2}@r{)}  @gol
3446-Wc++11-compat  -Wc++14-compat@gol
3447-Wchar-subscripts  @gol
3448-Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
3449-Wimplicit-int @r{(C and Objective-C only)} @gol
3450-Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
3451-Wcomment  @gol
3452-Wformat   @gol
3453-Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)}  @gol
3454-Wmaybe-uninitialized @gol
3455-Wmissing-braces @r{(only for C/ObjC)} @gol
3456-Wnonnull  @gol
3457-Wopenmp-simd @gol
3458-Wparentheses  @gol
3459-Wpointer-sign  @gol
3460-Wreorder   @gol
3461-Wreturn-type  @gol
3462-Wsequence-point  @gol
3463-Wsign-compare @r{(only in C++)}  @gol
3464-Wstrict-aliasing  @gol
3465-Wstrict-overflow=1  @gol
3466-Wswitch  @gol
3467-Wtrigraphs  @gol
3468-Wuninitialized  @gol
3469-Wunknown-pragmas  @gol
3470-Wunused-function  @gol
3471-Wunused-label     @gol
3472-Wunused-value     @gol
3473-Wunused-variable  @gol
3474-Wvolatile-register-var @gol
3475}
3476
3477Note that some warning flags are not implied by @option{-Wall}.  Some of
3478them warn about constructions that users generally do not consider
3479questionable, but which occasionally you might wish to check for;
3480others warn about constructions that are necessary or hard to avoid in
3481some cases, and there is no simple way to modify the code to suppress
3482the warning. Some of them are enabled by @option{-Wextra} but many of
3483them must be enabled individually.
3484
3485@item -Wextra
3486@opindex W
3487@opindex Wextra
3488@opindex Wno-extra
3489This enables some extra warning flags that are not enabled by
3490@option{-Wall}. (This option used to be called @option{-W}.  The older
3491name is still supported, but the newer name is more descriptive.)
3492
3493@gccoptlist{-Wclobbered  @gol
3494-Wempty-body  @gol
3495-Wignored-qualifiers @gol
3496-Wmissing-field-initializers  @gol
3497-Wmissing-parameter-type @r{(C only)}  @gol
3498-Wold-style-declaration @r{(C only)}  @gol
3499-Woverride-init  @gol
3500-Wsign-compare  @gol
3501-Wtype-limits  @gol
3502-Wuninitialized  @gol
3503-Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3504-Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)}  @gol
3505}
3506
3507The option @option{-Wextra} also prints warning messages for the
3508following cases:
3509
3510@itemize @bullet
3511
3512@item
3513A pointer is compared against integer zero with @code{<}, @code{<=},
3514@code{>}, or @code{>=}.
3515
3516@item
3517(C++ only) An enumerator and a non-enumerator both appear in a
3518conditional expression.
3519
3520@item
3521(C++ only) Ambiguous virtual bases.
3522
3523@item
3524(C++ only) Subscripting an array that has been declared @code{register}.
3525
3526@item
3527(C++ only) Taking the address of a variable that has been declared
3528@code{register}.
3529
3530@item
3531(C++ only) A base class is not initialized in a derived class's copy
3532constructor.
3533
3534@end itemize
3535
3536@item -Wchar-subscripts
3537@opindex Wchar-subscripts
3538@opindex Wno-char-subscripts
3539Warn if an array subscript has type @code{char}.  This is a common cause
3540of error, as programmers often forget that this type is signed on some
3541machines.
3542This warning is enabled by @option{-Wall}.
3543
3544@item -Wcomment
3545@opindex Wcomment
3546@opindex Wno-comment
3547Warn whenever a comment-start sequence @samp{/*} appears in a @samp{/*}
3548comment, or whenever a Backslash-Newline appears in a @samp{//} comment.
3549This warning is enabled by @option{-Wall}.
3550
3551@item -Wchkp
3552@opindex Wchkp
3553Warn about an invalid memory access that is found by Pointer Bounds Checker
3554(@option{-fcheck-pointer-bounds}).
3555
3556@item -Wno-coverage-mismatch
3557@opindex Wno-coverage-mismatch
3558Warn if feedback profiles do not match when using the
3559@option{-fprofile-use} option.
3560If a source file is changed between compiling with @option{-fprofile-gen} and
3561with @option{-fprofile-use}, the files with the profile feedback can fail
3562to match the source file and GCC cannot use the profile feedback
3563information.  By default, this warning is enabled and is treated as an
3564error.  @option{-Wno-coverage-mismatch} can be used to disable the
3565warning or @option{-Wno-error=coverage-mismatch} can be used to
3566disable the error.  Disabling the error for this warning can result in
3567poorly optimized code and is useful only in the
3568case of very minor changes such as bug fixes to an existing code-base.
3569Completely disabling the warning is not recommended.
3570
3571@item -Wno-cpp
3572@r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
3573
3574Suppress warning messages emitted by @code{#warning} directives.
3575
3576@item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
3577@opindex Wdouble-promotion
3578@opindex Wno-double-promotion
3579Give a warning when a value of type @code{float} is implicitly
3580promoted to @code{double}.  CPUs with a 32-bit ``single-precision''
3581floating-point unit implement @code{float} in hardware, but emulate
3582@code{double} in software.  On such a machine, doing computations
3583using @code{double} values is much more expensive because of the
3584overhead required for software emulation.
3585
3586It is easy to accidentally do computations with @code{double} because
3587floating-point literals are implicitly of type @code{double}.  For
3588example, in:
3589@smallexample
3590@group
3591float area(float radius)
3592@{
3593   return 3.14159 * radius * radius;
3594@}
3595@end group
3596@end smallexample
3597the compiler performs the entire computation with @code{double}
3598because the floating-point literal is a @code{double}.
3599
3600@item -Wformat
3601@itemx -Wformat=@var{n}
3602@opindex Wformat
3603@opindex Wno-format
3604@opindex ffreestanding
3605@opindex fno-builtin
3606@opindex Wformat=
3607Check calls to @code{printf} and @code{scanf}, etc., to make sure that
3608the arguments supplied have types appropriate to the format string
3609specified, and that the conversions specified in the format string make
3610sense.  This includes standard functions, and others specified by format
3611attributes (@pxref{Function Attributes}), in the @code{printf},
3612@code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
3613not in the C standard) families (or other target-specific families).
3614Which functions are checked without format attributes having been
3615specified depends on the standard version selected, and such checks of
3616functions without the attribute specified are disabled by
3617@option{-ffreestanding} or @option{-fno-builtin}.
3618
3619The formats are checked against the format features supported by GNU
3620libc version 2.2.  These include all ISO C90 and C99 features, as well
3621as features from the Single Unix Specification and some BSD and GNU
3622extensions.  Other library implementations may not support all these
3623features; GCC does not support warning about features that go beyond a
3624particular library's limitations.  However, if @option{-Wpedantic} is used
3625with @option{-Wformat}, warnings are given about format features not
3626in the selected standard version (but not for @code{strfmon} formats,
3627since those are not in any version of the C standard).  @xref{C Dialect
3628Options,,Options Controlling C Dialect}.
3629
3630@table @gcctabopt
3631@item -Wformat=1
3632@itemx -Wformat
3633@opindex Wformat
3634@opindex Wformat=1
3635Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
3636@option{-Wno-format} is equivalent to @option{-Wformat=0}.  Since
3637@option{-Wformat} also checks for null format arguments for several
3638functions, @option{-Wformat} also implies @option{-Wnonnull}.  Some
3639aspects of this level of format checking can be disabled by the
3640options: @option{-Wno-format-contains-nul},
3641@option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
3642@option{-Wformat} is enabled by @option{-Wall}.
3643
3644@item -Wno-format-contains-nul
3645@opindex Wno-format-contains-nul
3646@opindex Wformat-contains-nul
3647If @option{-Wformat} is specified, do not warn about format strings that
3648contain NUL bytes.
3649
3650@item -Wno-format-extra-args
3651@opindex Wno-format-extra-args
3652@opindex Wformat-extra-args
3653If @option{-Wformat} is specified, do not warn about excess arguments to a
3654@code{printf} or @code{scanf} format function.  The C standard specifies
3655that such arguments are ignored.
3656
3657Where the unused arguments lie between used arguments that are
3658specified with @samp{$} operand number specifications, normally
3659warnings are still given, since the implementation could not know what
3660type to pass to @code{va_arg} to skip the unused arguments.  However,
3661in the case of @code{scanf} formats, this option suppresses the
3662warning if the unused arguments are all pointers, since the Single
3663Unix Specification says that such unused arguments are allowed.
3664
3665@item -Wno-format-zero-length
3666@opindex Wno-format-zero-length
3667@opindex Wformat-zero-length
3668If @option{-Wformat} is specified, do not warn about zero-length formats.
3669The C standard specifies that zero-length formats are allowed.
3670
3671
3672@item -Wformat=2
3673@opindex Wformat=2
3674Enable @option{-Wformat} plus additional format checks.  Currently
3675equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
3676-Wformat-y2k}.
3677
3678@item -Wformat-nonliteral
3679@opindex Wformat-nonliteral
3680@opindex Wno-format-nonliteral
3681If @option{-Wformat} is specified, also warn if the format string is not a
3682string literal and so cannot be checked, unless the format function
3683takes its format arguments as a @code{va_list}.
3684
3685@item -Wformat-security
3686@opindex Wformat-security
3687@opindex Wno-format-security
3688If @option{-Wformat} is specified, also warn about uses of format
3689functions that represent possible security problems.  At present, this
3690warns about calls to @code{printf} and @code{scanf} functions where the
3691format string is not a string literal and there are no format arguments,
3692as in @code{printf (foo);}.  This may be a security hole if the format
3693string came from untrusted input and contains @samp{%n}.  (This is
3694currently a subset of what @option{-Wformat-nonliteral} warns about, but
3695in future warnings may be added to @option{-Wformat-security} that are not
3696included in @option{-Wformat-nonliteral}.)
3697
3698@item -Wformat-signedness
3699@opindex Wformat-signedness
3700@opindex Wno-format-signedness
3701If @option{-Wformat} is specified, also warn if the format string
3702requires an unsigned argument and the argument is signed and vice versa.
3703
3704@item -Wformat-y2k
3705@opindex Wformat-y2k
3706@opindex Wno-format-y2k
3707If @option{-Wformat} is specified, also warn about @code{strftime}
3708formats that may yield only a two-digit year.
3709@end table
3710
3711@item -Wnonnull
3712@opindex Wnonnull
3713@opindex Wno-nonnull
3714Warn about passing a null pointer for arguments marked as
3715requiring a non-null value by the @code{nonnull} function attribute.
3716
3717@option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}.  It
3718can be disabled with the @option{-Wno-nonnull} option.
3719
3720@item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
3721@opindex Winit-self
3722@opindex Wno-init-self
3723Warn about uninitialized variables that are initialized with themselves.
3724Note this option can only be used with the @option{-Wuninitialized} option.
3725
3726For example, GCC warns about @code{i} being uninitialized in the
3727following snippet only when @option{-Winit-self} has been specified:
3728@smallexample
3729@group
3730int f()
3731@{
3732  int i = i;
3733  return i;
3734@}
3735@end group
3736@end smallexample
3737
3738This warning is enabled by @option{-Wall} in C++.
3739
3740@item -Wimplicit-int @r{(C and Objective-C only)}
3741@opindex Wimplicit-int
3742@opindex Wno-implicit-int
3743Warn when a declaration does not specify a type.
3744This warning is enabled by @option{-Wall}.
3745
3746@item -Wimplicit-function-declaration @r{(C and Objective-C only)}
3747@opindex Wimplicit-function-declaration
3748@opindex Wno-implicit-function-declaration
3749Give a warning whenever a function is used before being declared. In
3750C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
3751enabled by default and it is made into an error by
3752@option{-pedantic-errors}. This warning is also enabled by
3753@option{-Wall}.
3754
3755@item -Wimplicit @r{(C and Objective-C only)}
3756@opindex Wimplicit
3757@opindex Wno-implicit
3758Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
3759This warning is enabled by @option{-Wall}.
3760
3761@item -Wignored-qualifiers @r{(C and C++ only)}
3762@opindex Wignored-qualifiers
3763@opindex Wno-ignored-qualifiers
3764Warn if the return type of a function has a type qualifier
3765such as @code{const}.  For ISO C such a type qualifier has no effect,
3766since the value returned by a function is not an lvalue.
3767For C++, the warning is only emitted for scalar types or @code{void}.
3768ISO C prohibits qualified @code{void} return types on function
3769definitions, so such return types always receive a warning
3770even without this option.
3771
3772This warning is also enabled by @option{-Wextra}.
3773
3774@item -Wmain
3775@opindex Wmain
3776@opindex Wno-main
3777Warn if the type of @code{main} is suspicious.  @code{main} should be
3778a function with external linkage, returning int, taking either zero
3779arguments, two, or three arguments of appropriate types.  This warning
3780is enabled by default in C++ and is enabled by either @option{-Wall}
3781or @option{-Wpedantic}.
3782
3783@item -Wmissing-braces
3784@opindex Wmissing-braces
3785@opindex Wno-missing-braces
3786Warn if an aggregate or union initializer is not fully bracketed.  In
3787the following example, the initializer for @code{a} is not fully
3788bracketed, but that for @code{b} is fully bracketed.  This warning is
3789enabled by @option{-Wall} in C.
3790
3791@smallexample
3792int a[2][2] = @{ 0, 1, 2, 3 @};
3793int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
3794@end smallexample
3795
3796This warning is enabled by @option{-Wall}.
3797
3798@item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
3799@opindex Wmissing-include-dirs
3800@opindex Wno-missing-include-dirs
3801Warn if a user-supplied include directory does not exist.
3802
3803@item -Wparentheses
3804@opindex Wparentheses
3805@opindex Wno-parentheses
3806Warn if parentheses are omitted in certain contexts, such
3807as when there is an assignment in a context where a truth value
3808is expected, or when operators are nested whose precedence people
3809often get confused about.
3810
3811Also warn if a comparison like @code{x<=y<=z} appears; this is
3812equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
3813interpretation from that of ordinary mathematical notation.
3814
3815Also warn about constructions where there may be confusion to which
3816@code{if} statement an @code{else} branch belongs.  Here is an example of
3817such a case:
3818
3819@smallexample
3820@group
3821@{
3822  if (a)
3823    if (b)
3824      foo ();
3825  else
3826    bar ();
3827@}
3828@end group
3829@end smallexample
3830
3831In C/C++, every @code{else} branch belongs to the innermost possible
3832@code{if} statement, which in this example is @code{if (b)}.  This is
3833often not what the programmer expected, as illustrated in the above
3834example by indentation the programmer chose.  When there is the
3835potential for this confusion, GCC issues a warning when this flag
3836is specified.  To eliminate the warning, add explicit braces around
3837the innermost @code{if} statement so there is no way the @code{else}
3838can belong to the enclosing @code{if}.  The resulting code
3839looks like this:
3840
3841@smallexample
3842@group
3843@{
3844  if (a)
3845    @{
3846      if (b)
3847        foo ();
3848      else
3849        bar ();
3850    @}
3851@}
3852@end group
3853@end smallexample
3854
3855Also warn for dangerous uses of the GNU extension to
3856@code{?:} with omitted middle operand. When the condition
3857in the @code{?}: operator is a boolean expression, the omitted value is
3858always 1.  Often programmers expect it to be a value computed
3859inside the conditional expression instead.
3860
3861This warning is enabled by @option{-Wall}.
3862
3863@item -Wsequence-point
3864@opindex Wsequence-point
3865@opindex Wno-sequence-point
3866Warn about code that may have undefined semantics because of violations
3867of sequence point rules in the C and C++ standards.
3868
3869The C and C++ standards define the order in which expressions in a C/C++
3870program are evaluated in terms of @dfn{sequence points}, which represent
3871a partial ordering between the execution of parts of the program: those
3872executed before the sequence point, and those executed after it.  These
3873occur after the evaluation of a full expression (one which is not part
3874of a larger expression), after the evaluation of the first operand of a
3875@code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
3876function is called (but after the evaluation of its arguments and the
3877expression denoting the called function), and in certain other places.
3878Other than as expressed by the sequence point rules, the order of
3879evaluation of subexpressions of an expression is not specified.  All
3880these rules describe only a partial order rather than a total order,
3881since, for example, if two functions are called within one expression
3882with no sequence point between them, the order in which the functions
3883are called is not specified.  However, the standards committee have
3884ruled that function calls do not overlap.
3885
3886It is not specified when between sequence points modifications to the
3887values of objects take effect.  Programs whose behavior depends on this
3888have undefined behavior; the C and C++ standards specify that ``Between
3889the previous and next sequence point an object shall have its stored
3890value modified at most once by the evaluation of an expression.
3891Furthermore, the prior value shall be read only to determine the value
3892to be stored.''.  If a program breaks these rules, the results on any
3893particular implementation are entirely unpredictable.
3894
3895Examples of code with undefined behavior are @code{a = a++;},
3896@code{a[n] = b[n++]} and @code{a[i++] = i;}.  Some more complicated cases
3897are not diagnosed by this option, and it may give an occasional false
3898positive result, but in general it has been found fairly effective at
3899detecting this sort of problem in programs.
3900
3901The standard is worded confusingly, therefore there is some debate
3902over the precise meaning of the sequence point rules in subtle cases.
3903Links to discussions of the problem, including proposed formal
3904definitions, may be found on the GCC readings page, at
3905@uref{http://gcc.gnu.org/@/readings.html}.
3906
3907This warning is enabled by @option{-Wall} for C and C++.
3908
3909@item -Wno-return-local-addr
3910@opindex Wno-return-local-addr
3911@opindex Wreturn-local-addr
3912Do not warn about returning a pointer (or in C++, a reference) to a
3913variable that goes out of scope after the function returns.
3914
3915@item -Wreturn-type
3916@opindex Wreturn-type
3917@opindex Wno-return-type
3918Warn whenever a function is defined with a return type that defaults
3919to @code{int}.  Also warn about any @code{return} statement with no
3920return value in a function whose return type is not @code{void}
3921(falling off the end of the function body is considered returning
3922without a value), and about a @code{return} statement with an
3923expression in a function whose return type is @code{void}.
3924
3925For C++, a function without return type always produces a diagnostic
3926message, even when @option{-Wno-return-type} is specified.  The only
3927exceptions are @code{main} and functions defined in system headers.
3928
3929This warning is enabled by @option{-Wall}.
3930
3931@item -Wshift-count-negative
3932@opindex Wshift-count-negative
3933@opindex Wno-shift-count-negative
3934Warn if shift count is negative. This warning is enabled by default.
3935
3936@item -Wshift-count-overflow
3937@opindex Wshift-count-overflow
3938@opindex Wno-shift-count-overflow
3939Warn if shift count >= width of type. This warning is enabled by default.
3940
3941@item -Wswitch
3942@opindex Wswitch
3943@opindex Wno-switch
3944Warn whenever a @code{switch} statement has an index of enumerated type
3945and lacks a @code{case} for one or more of the named codes of that
3946enumeration.  (The presence of a @code{default} label prevents this
3947warning.)  @code{case} labels outside the enumeration range also
3948provoke warnings when this option is used (even if there is a
3949@code{default} label).
3950This warning is enabled by @option{-Wall}.
3951
3952@item -Wswitch-default
3953@opindex Wswitch-default
3954@opindex Wno-switch-default
3955Warn whenever a @code{switch} statement does not have a @code{default}
3956case.
3957
3958@item -Wswitch-enum
3959@opindex Wswitch-enum
3960@opindex Wno-switch-enum
3961Warn whenever a @code{switch} statement has an index of enumerated type
3962and lacks a @code{case} for one or more of the named codes of that
3963enumeration.  @code{case} labels outside the enumeration range also
3964provoke warnings when this option is used.  The only difference
3965between @option{-Wswitch} and this option is that this option gives a
3966warning about an omitted enumeration code even if there is a
3967@code{default} label.
3968
3969@item -Wswitch-bool
3970@opindex Wswitch-bool
3971@opindex Wno-switch-bool
3972Warn whenever a @code{switch} statement has an index of boolean type.
3973It is possible to suppress this warning by casting the controlling
3974expression to a type other than @code{bool}.  For example:
3975@smallexample
3976@group
3977switch ((int) (a == 4))
3978  @{
3979  @dots{}
3980  @}
3981@end group
3982@end smallexample
3983This warning is enabled by default for C and C++ programs.
3984
3985@item -Wsync-nand @r{(C and C++ only)}
3986@opindex Wsync-nand
3987@opindex Wno-sync-nand
3988Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
3989built-in functions are used.  These functions changed semantics in GCC 4.4.
3990
3991@item -Wtrigraphs
3992@opindex Wtrigraphs
3993@opindex Wno-trigraphs
3994Warn if any trigraphs are encountered that might change the meaning of
3995the program (trigraphs within comments are not warned about).
3996This warning is enabled by @option{-Wall}.
3997
3998@item -Wunused-but-set-parameter
3999@opindex Wunused-but-set-parameter
4000@opindex Wno-unused-but-set-parameter
4001Warn whenever a function parameter is assigned to, but otherwise unused
4002(aside from its declaration).
4003
4004To suppress this warning use the @code{unused} attribute
4005(@pxref{Variable Attributes}).
4006
4007This warning is also enabled by @option{-Wunused} together with
4008@option{-Wextra}.
4009
4010@item -Wunused-but-set-variable
4011@opindex Wunused-but-set-variable
4012@opindex Wno-unused-but-set-variable
4013Warn whenever a local variable is assigned to, but otherwise unused
4014(aside from its declaration).
4015This warning is enabled by @option{-Wall}.
4016
4017To suppress this warning use the @code{unused} attribute
4018(@pxref{Variable Attributes}).
4019
4020This warning is also enabled by @option{-Wunused}, which is enabled
4021by @option{-Wall}.
4022
4023@item -Wunused-function
4024@opindex Wunused-function
4025@opindex Wno-unused-function
4026Warn whenever a static function is declared but not defined or a
4027non-inline static function is unused.
4028This warning is enabled by @option{-Wall}.
4029
4030@item -Wunused-label
4031@opindex Wunused-label
4032@opindex Wno-unused-label
4033Warn whenever a label is declared but not used.
4034This warning is enabled by @option{-Wall}.
4035
4036To suppress this warning use the @code{unused} attribute
4037(@pxref{Variable Attributes}).
4038
4039@item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
4040@opindex Wunused-local-typedefs
4041Warn when a typedef locally defined in a function is not used.
4042This warning is enabled by @option{-Wall}.
4043
4044@item -Wunused-parameter
4045@opindex Wunused-parameter
4046@opindex Wno-unused-parameter
4047Warn whenever a function parameter is unused aside from its declaration.
4048
4049To suppress this warning use the @code{unused} attribute
4050(@pxref{Variable Attributes}).
4051
4052@item -Wno-unused-result
4053@opindex Wunused-result
4054@opindex Wno-unused-result
4055Do not warn if a caller of a function marked with attribute
4056@code{warn_unused_result} (@pxref{Function Attributes}) does not use
4057its return value. The default is @option{-Wunused-result}.
4058
4059@item -Wunused-variable
4060@opindex Wunused-variable
4061@opindex Wno-unused-variable
4062Warn whenever a local variable or non-constant static variable is unused
4063aside from its declaration.
4064This warning is enabled by @option{-Wall}.
4065
4066To suppress this warning use the @code{unused} attribute
4067(@pxref{Variable Attributes}).
4068
4069@item -Wunused-value
4070@opindex Wunused-value
4071@opindex Wno-unused-value
4072Warn whenever a statement computes a result that is explicitly not
4073used. To suppress this warning cast the unused expression to
4074@code{void}. This includes an expression-statement or the left-hand
4075side of a comma expression that contains no side effects. For example,
4076an expression such as @code{x[i,j]} causes a warning, while
4077@code{x[(void)i,j]} does not.
4078
4079This warning is enabled by @option{-Wall}.
4080
4081@item -Wunused
4082@opindex Wunused
4083@opindex Wno-unused
4084All the above @option{-Wunused} options combined.
4085
4086In order to get a warning about an unused function parameter, you must
4087either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
4088@option{-Wunused}), or separately specify @option{-Wunused-parameter}.
4089
4090@item -Wuninitialized
4091@opindex Wuninitialized
4092@opindex Wno-uninitialized
4093Warn if an automatic variable is used without first being initialized
4094or if a variable may be clobbered by a @code{setjmp} call. In C++,
4095warn if a non-static reference or non-static @code{const} member
4096appears in a class without constructors.
4097
4098If you want to warn about code that uses the uninitialized value of the
4099variable in its own initializer, use the @option{-Winit-self} option.
4100
4101These warnings occur for individual uninitialized or clobbered
4102elements of structure, union or array variables as well as for
4103variables that are uninitialized or clobbered as a whole.  They do
4104not occur for variables or elements declared @code{volatile}.  Because
4105these warnings depend on optimization, the exact variables or elements
4106for which there are warnings depends on the precise optimization
4107options and version of GCC used.
4108
4109Note that there may be no warning about a variable that is used only
4110to compute a value that itself is never used, because such
4111computations may be deleted by data flow analysis before the warnings
4112are printed.
4113
4114@item -Wmaybe-uninitialized
4115@opindex Wmaybe-uninitialized
4116@opindex Wno-maybe-uninitialized
4117For an automatic variable, if there exists a path from the function
4118entry to a use of the variable that is initialized, but there exist
4119some other paths for which the variable is not initialized, the compiler
4120emits a warning if it cannot prove the uninitialized paths are not
4121executed at run time. These warnings are made optional because GCC is
4122not smart enough to see all the reasons why the code might be correct
4123in spite of appearing to have an error.  Here is one example of how
4124this can happen:
4125
4126@smallexample
4127@group
4128@{
4129  int x;
4130  switch (y)
4131    @{
4132    case 1: x = 1;
4133      break;
4134    case 2: x = 4;
4135      break;
4136    case 3: x = 5;
4137    @}
4138  foo (x);
4139@}
4140@end group
4141@end smallexample
4142
4143@noindent
4144If the value of @code{y} is always 1, 2 or 3, then @code{x} is
4145always initialized, but GCC doesn't know this. To suppress the
4146warning, you need to provide a default case with assert(0) or
4147similar code.
4148
4149@cindex @code{longjmp} warnings
4150This option also warns when a non-volatile automatic variable might be
4151changed by a call to @code{longjmp}.  These warnings as well are possible
4152only in optimizing compilation.
4153
4154The compiler sees only the calls to @code{setjmp}.  It cannot know
4155where @code{longjmp} will be called; in fact, a signal handler could
4156call it at any point in the code.  As a result, you may get a warning
4157even when there is in fact no problem because @code{longjmp} cannot
4158in fact be called at the place that would cause a problem.
4159
4160Some spurious warnings can be avoided if you declare all the functions
4161you use that never return as @code{noreturn}.  @xref{Function
4162Attributes}.
4163
4164This warning is enabled by @option{-Wall} or @option{-Wextra}.
4165
4166@item -Wunknown-pragmas
4167@opindex Wunknown-pragmas
4168@opindex Wno-unknown-pragmas
4169@cindex warning for unknown pragmas
4170@cindex unknown pragmas, warning
4171@cindex pragmas, warning of unknown
4172Warn when a @code{#pragma} directive is encountered that is not understood by
4173GCC@.  If this command-line option is used, warnings are even issued
4174for unknown pragmas in system header files.  This is not the case if
4175the warnings are only enabled by the @option{-Wall} command-line option.
4176
4177@item -Wno-pragmas
4178@opindex Wno-pragmas
4179@opindex Wpragmas
4180Do not warn about misuses of pragmas, such as incorrect parameters,
4181invalid syntax, or conflicts between pragmas.  See also
4182@option{-Wunknown-pragmas}.
4183
4184@item -Wstrict-aliasing
4185@opindex Wstrict-aliasing
4186@opindex Wno-strict-aliasing
4187This option is only active when @option{-fstrict-aliasing} is active.
4188It warns about code that might break the strict aliasing rules that the
4189compiler is using for optimization.  The warning does not catch all
4190cases, but does attempt to catch the more common pitfalls.  It is
4191included in @option{-Wall}.
4192It is equivalent to @option{-Wstrict-aliasing=3}
4193
4194@item -Wstrict-aliasing=n
4195@opindex Wstrict-aliasing=n
4196This option is only active when @option{-fstrict-aliasing} is active.
4197It warns about code that might break the strict aliasing rules that the
4198compiler is using for optimization.
4199Higher levels correspond to higher accuracy (fewer false positives).
4200Higher levels also correspond to more effort, similar to the way @option{-O}
4201works.
4202@option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
4203
4204Level 1: Most aggressive, quick, least accurate.
4205Possibly useful when higher levels
4206do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
4207false negatives.  However, it has many false positives.
4208Warns for all pointer conversions between possibly incompatible types,
4209even if never dereferenced.  Runs in the front end only.
4210
4211Level 2: Aggressive, quick, not too precise.
4212May still have many false positives (not as many as level 1 though),
4213and few false negatives (but possibly more than level 1).
4214Unlike level 1, it only warns when an address is taken.  Warns about
4215incomplete types.  Runs in the front end only.
4216
4217Level 3 (default for @option{-Wstrict-aliasing}):
4218Should have very few false positives and few false
4219negatives.  Slightly slower than levels 1 or 2 when optimization is enabled.
4220Takes care of the common pun+dereference pattern in the front end:
4221@code{*(int*)&some_float}.
4222If optimization is enabled, it also runs in the back end, where it deals
4223with multiple statement cases using flow-sensitive points-to information.
4224Only warns when the converted pointer is dereferenced.
4225Does not warn about incomplete types.
4226
4227@item -Wstrict-overflow
4228@itemx -Wstrict-overflow=@var{n}
4229@opindex Wstrict-overflow
4230@opindex Wno-strict-overflow
4231This option is only active when @option{-fstrict-overflow} is active.
4232It warns about cases where the compiler optimizes based on the
4233assumption that signed overflow does not occur.  Note that it does not
4234warn about all cases where the code might overflow: it only warns
4235about cases where the compiler implements some optimization.  Thus
4236this warning depends on the optimization level.
4237
4238An optimization that assumes that signed overflow does not occur is
4239perfectly safe if the values of the variables involved are such that
4240overflow never does, in fact, occur.  Therefore this warning can
4241easily give a false positive: a warning about code that is not
4242actually a problem.  To help focus on important issues, several
4243warning levels are defined.  No warnings are issued for the use of
4244undefined signed overflow when estimating how many iterations a loop
4245requires, in particular when determining whether a loop will be
4246executed at all.
4247
4248@table @gcctabopt
4249@item -Wstrict-overflow=1
4250Warn about cases that are both questionable and easy to avoid.  For
4251example,  with @option{-fstrict-overflow}, the compiler simplifies
4252@code{x + 1 > x} to @code{1}.  This level of
4253@option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
4254are not, and must be explicitly requested.
4255
4256@item -Wstrict-overflow=2
4257Also warn about other cases where a comparison is simplified to a
4258constant.  For example: @code{abs (x) >= 0}.  This can only be
4259simplified when @option{-fstrict-overflow} is in effect, because
4260@code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
4261zero.  @option{-Wstrict-overflow} (with no level) is the same as
4262@option{-Wstrict-overflow=2}.
4263
4264@item -Wstrict-overflow=3
4265Also warn about other cases where a comparison is simplified.  For
4266example: @code{x + 1 > 1} is simplified to @code{x > 0}.
4267
4268@item -Wstrict-overflow=4
4269Also warn about other simplifications not covered by the above cases.
4270For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
4271
4272@item -Wstrict-overflow=5
4273Also warn about cases where the compiler reduces the magnitude of a
4274constant involved in a comparison.  For example: @code{x + 2 > y} is
4275simplified to @code{x + 1 >= y}.  This is reported only at the
4276highest warning level because this simplification applies to many
4277comparisons, so this warning level gives a very large number of
4278false positives.
4279@end table
4280
4281@item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]}
4282@opindex Wsuggest-attribute=
4283@opindex Wno-suggest-attribute=
4284Warn for cases where adding an attribute may be beneficial. The
4285attributes currently supported are listed below.
4286
4287@table @gcctabopt
4288@item -Wsuggest-attribute=pure
4289@itemx -Wsuggest-attribute=const
4290@itemx -Wsuggest-attribute=noreturn
4291@opindex Wsuggest-attribute=pure
4292@opindex Wno-suggest-attribute=pure
4293@opindex Wsuggest-attribute=const
4294@opindex Wno-suggest-attribute=const
4295@opindex Wsuggest-attribute=noreturn
4296@opindex Wno-suggest-attribute=noreturn
4297
4298Warn about functions that might be candidates for attributes
4299@code{pure}, @code{const} or @code{noreturn}.  The compiler only warns for
4300functions visible in other compilation units or (in the case of @code{pure} and
4301@code{const}) if it cannot prove that the function returns normally. A function
4302returns normally if it doesn't contain an infinite loop or return abnormally
4303by throwing, calling @code{abort} or trapping.  This analysis requires option
4304@option{-fipa-pure-const}, which is enabled by default at @option{-O} and
4305higher.  Higher optimization levels improve the accuracy of the analysis.
4306
4307@item -Wsuggest-attribute=format
4308@itemx -Wmissing-format-attribute
4309@opindex Wsuggest-attribute=format
4310@opindex Wmissing-format-attribute
4311@opindex Wno-suggest-attribute=format
4312@opindex Wno-missing-format-attribute
4313@opindex Wformat
4314@opindex Wno-format
4315
4316Warn about function pointers that might be candidates for @code{format}
4317attributes.  Note these are only possible candidates, not absolute ones.
4318GCC guesses that function pointers with @code{format} attributes that
4319are used in assignment, initialization, parameter passing or return
4320statements should have a corresponding @code{format} attribute in the
4321resulting type.  I.e.@: the left-hand side of the assignment or
4322initialization, the type of the parameter variable, or the return type
4323of the containing function respectively should also have a @code{format}
4324attribute to avoid the warning.
4325
4326GCC also warns about function definitions that might be
4327candidates for @code{format} attributes.  Again, these are only
4328possible candidates.  GCC guesses that @code{format} attributes
4329might be appropriate for any function that calls a function like
4330@code{vprintf} or @code{vscanf}, but this might not always be the
4331case, and some functions for which @code{format} attributes are
4332appropriate may not be detected.
4333@end table
4334
4335@item -Wsuggest-final-types
4336@opindex Wno-suggest-final-types
4337@opindex Wsuggest-final-types
4338Warn about types with virtual methods where code quality would be improved
4339if the type were declared with the C++11 @code{final} specifier,
4340or, if possible,
4341declared in an anonymous namespace. This allows GCC to more aggressively
4342devirtualize the polymorphic calls. This warning is more effective with link
4343time optimization, where the information about the class hierarchy graph is
4344more complete.
4345
4346@item -Wsuggest-final-methods
4347@opindex Wno-suggest-final-methods
4348@opindex Wsuggest-final-methods
4349Warn about virtual methods where code quality would be improved if the method
4350were declared with the C++11 @code{final} specifier,
4351or, if possible, its type were
4352declared in an anonymous namespace or with the @code{final} specifier.
4353This warning is
4354more effective with link time optimization, where the information about the
4355class hierarchy graph is more complete. It is recommended to first consider
4356suggestions of @option{-Wsuggest-final-types} and then rebuild with new
4357annotations.
4358
4359@item -Wsuggest-override
4360Warn about overriding virtual functions that are not marked with the override
4361keyword.
4362
4363@item -Warray-bounds
4364@itemx -Warray-bounds=@var{n}
4365@opindex Wno-array-bounds
4366@opindex Warray-bounds
4367This option is only active when @option{-ftree-vrp} is active
4368(default for @option{-O2} and above). It warns about subscripts to arrays
4369that are always out of bounds. This warning is enabled by @option{-Wall}.
4370
4371@table @gcctabopt
4372@item -Warray-bounds=1
4373This is the warning level of @option{-Warray-bounds} and is enabled
4374by @option{-Wall}; higher levels are not, and must be explicitly requested.
4375
4376@item -Warray-bounds=2
4377This warning level also warns about out of bounds access for
4378arrays at the end of a struct and for arrays accessed through
4379pointers. This warning level may give a larger number of
4380false positives and is deactivated by default.
4381@end table
4382
4383
4384@item -Wbool-compare
4385@opindex Wno-bool-compare
4386@opindex Wbool-compare
4387Warn about boolean expression compared with an integer value different from
4388@code{true}/@code{false}.  For instance, the following comparison is
4389always false:
4390@smallexample
4391int n = 5;
4392@dots{}
4393if ((n > 1) == 2) @{ @dots{} @}
4394@end smallexample
4395This warning is enabled by @option{-Wall}.
4396
4397@item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
4398@opindex Wno-discarded-qualifiers
4399@opindex Wdiscarded-qualifiers
4400Do not warn if type qualifiers on pointers are being discarded.
4401Typically, the compiler warns if a @code{const char *} variable is
4402passed to a function that takes a @code{char *} parameter.  This option
4403can be used to suppress such a warning.
4404
4405@item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
4406@opindex Wno-discarded-array-qualifiers
4407@opindex Wdiscarded-array-qualifiers
4408Do not warn if type qualifiers on arrays which are pointer targets
4409are being discarded. Typically, the compiler warns if a
4410@code{const int (*)[]} variable is passed to a function that
4411takes a @code{int (*)[]} parameter.  This option can be used to
4412suppress such a warning.
4413
4414@item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
4415@opindex Wno-incompatible-pointer-types
4416@opindex Wincompatible-pointer-types
4417Do not warn when there is a conversion between pointers that have incompatible
4418types.  This warning is for cases not covered by @option{-Wno-pointer-sign},
4419which warns for pointer argument passing or assignment with different
4420signedness.
4421
4422@item -Wno-int-conversion @r{(C and Objective-C only)}
4423@opindex Wno-int-conversion
4424@opindex Wint-conversion
4425Do not warn about incompatible integer to pointer and pointer to integer
4426conversions.  This warning is about implicit conversions; for explicit
4427conversions the warnings @option{-Wno-int-to-pointer-cast} and
4428@option{-Wno-pointer-to-int-cast} may be used.
4429
4430@item -Wno-div-by-zero
4431@opindex Wno-div-by-zero
4432@opindex Wdiv-by-zero
4433Do not warn about compile-time integer division by zero.  Floating-point
4434division by zero is not warned about, as it can be a legitimate way of
4435obtaining infinities and NaNs.
4436
4437@item -Wsystem-headers
4438@opindex Wsystem-headers
4439@opindex Wno-system-headers
4440@cindex warnings from system headers
4441@cindex system headers, warnings from
4442Print warning messages for constructs found in system header files.
4443Warnings from system headers are normally suppressed, on the assumption
4444that they usually do not indicate real problems and would only make the
4445compiler output harder to read.  Using this command-line option tells
4446GCC to emit warnings from system headers as if they occurred in user
4447code.  However, note that using @option{-Wall} in conjunction with this
4448option does @emph{not} warn about unknown pragmas in system
4449headers---for that, @option{-Wunknown-pragmas} must also be used.
4450
4451@item -Wtrampolines
4452@opindex Wtrampolines
4453@opindex Wno-trampolines
4454Warn about trampolines generated for pointers to nested functions.
4455A trampoline is a small piece of data or code that is created at run
4456time on the stack when the address of a nested function is taken, and is
4457used to call the nested function indirectly.  For some targets, it is
4458made up of data only and thus requires no special treatment.  But, for
4459most targets, it is made up of code and thus requires the stack to be
4460made executable in order for the program to work properly.
4461
4462@item -Wfloat-equal
4463@opindex Wfloat-equal
4464@opindex Wno-float-equal
4465Warn if floating-point values are used in equality comparisons.
4466
4467The idea behind this is that sometimes it is convenient (for the
4468programmer) to consider floating-point values as approximations to
4469infinitely precise real numbers.  If you are doing this, then you need
4470to compute (by analyzing the code, or in some other way) the maximum or
4471likely maximum error that the computation introduces, and allow for it
4472when performing comparisons (and when producing output, but that's a
4473different problem).  In particular, instead of testing for equality, you
4474should check to see whether the two values have ranges that overlap; and
4475this is done with the relational operators, so equality comparisons are
4476probably mistaken.
4477
4478@item -Wtraditional @r{(C and Objective-C only)}
4479@opindex Wtraditional
4480@opindex Wno-traditional
4481Warn about certain constructs that behave differently in traditional and
4482ISO C@.  Also warn about ISO C constructs that have no traditional C
4483equivalent, and/or problematic constructs that should be avoided.
4484
4485@itemize @bullet
4486@item
4487Macro parameters that appear within string literals in the macro body.
4488In traditional C macro replacement takes place within string literals,
4489but in ISO C it does not.
4490
4491@item
4492In traditional C, some preprocessor directives did not exist.
4493Traditional preprocessors only considered a line to be a directive
4494if the @samp{#} appeared in column 1 on the line.  Therefore
4495@option{-Wtraditional} warns about directives that traditional C
4496understands but ignores because the @samp{#} does not appear as the
4497first character on the line.  It also suggests you hide directives like
4498@code{#pragma} not understood by traditional C by indenting them.  Some
4499traditional implementations do not recognize @code{#elif}, so this option
4500suggests avoiding it altogether.
4501
4502@item
4503A function-like macro that appears without arguments.
4504
4505@item
4506The unary plus operator.
4507
4508@item
4509The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
4510constant suffixes.  (Traditional C does support the @samp{L} suffix on integer
4511constants.)  Note, these suffixes appear in macros defined in the system
4512headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
4513Use of these macros in user code might normally lead to spurious
4514warnings, however GCC's integrated preprocessor has enough context to
4515avoid warning in these cases.
4516
4517@item
4518A function declared external in one block and then used after the end of
4519the block.
4520
4521@item
4522A @code{switch} statement has an operand of type @code{long}.
4523
4524@item
4525A non-@code{static} function declaration follows a @code{static} one.
4526This construct is not accepted by some traditional C compilers.
4527
4528@item
4529The ISO type of an integer constant has a different width or
4530signedness from its traditional type.  This warning is only issued if
4531the base of the constant is ten.  I.e.@: hexadecimal or octal values, which
4532typically represent bit patterns, are not warned about.
4533
4534@item
4535Usage of ISO string concatenation is detected.
4536
4537@item
4538Initialization of automatic aggregates.
4539
4540@item
4541Identifier conflicts with labels.  Traditional C lacks a separate
4542namespace for labels.
4543
4544@item
4545Initialization of unions.  If the initializer is zero, the warning is
4546omitted.  This is done under the assumption that the zero initializer in
4547user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
4548initializer warnings and relies on default initialization to zero in the
4549traditional C case.
4550
4551@item
4552Conversions by prototypes between fixed/floating-point values and vice
4553versa.  The absence of these prototypes when compiling with traditional
4554C causes serious problems.  This is a subset of the possible
4555conversion warnings; for the full set use @option{-Wtraditional-conversion}.
4556
4557@item
4558Use of ISO C style function definitions.  This warning intentionally is
4559@emph{not} issued for prototype declarations or variadic functions
4560because these ISO C features appear in your code when using
4561libiberty's traditional C compatibility macros, @code{PARAMS} and
4562@code{VPARAMS}.  This warning is also bypassed for nested functions
4563because that feature is already a GCC extension and thus not relevant to
4564traditional C compatibility.
4565@end itemize
4566
4567@item -Wtraditional-conversion @r{(C and Objective-C only)}
4568@opindex Wtraditional-conversion
4569@opindex Wno-traditional-conversion
4570Warn if a prototype causes a type conversion that is different from what
4571would happen to the same argument in the absence of a prototype.  This
4572includes conversions of fixed point to floating and vice versa, and
4573conversions changing the width or signedness of a fixed-point argument
4574except when the same as the default promotion.
4575
4576@item -Wdeclaration-after-statement @r{(C and Objective-C only)}
4577@opindex Wdeclaration-after-statement
4578@opindex Wno-declaration-after-statement
4579Warn when a declaration is found after a statement in a block.  This
4580construct, known from C++, was introduced with ISO C99 and is by default
4581allowed in GCC@.  It is not supported by ISO C90.  @xref{Mixed Declarations}.
4582
4583@item -Wundef
4584@opindex Wundef
4585@opindex Wno-undef
4586Warn if an undefined identifier is evaluated in an @code{#if} directive.
4587
4588@item -Wno-endif-labels
4589@opindex Wno-endif-labels
4590@opindex Wendif-labels
4591Do not warn whenever an @code{#else} or an @code{#endif} are followed by text.
4592
4593@item -Wshadow
4594@opindex Wshadow
4595@opindex Wno-shadow
4596Warn whenever a local variable or type declaration shadows another
4597variable, parameter, type, class member (in C++), or instance variable
4598(in Objective-C) or whenever a built-in function is shadowed. Note
4599that in C++, the compiler warns if a local variable shadows an
4600explicit typedef, but not if it shadows a struct/class/enum.
4601
4602@item -Wno-shadow-ivar @r{(Objective-C only)}
4603@opindex Wno-shadow-ivar
4604@opindex Wshadow-ivar
4605Do not warn whenever a local variable shadows an instance variable in an
4606Objective-C method.
4607
4608@item -Wlarger-than=@var{len}
4609@opindex Wlarger-than=@var{len}
4610@opindex Wlarger-than-@var{len}
4611Warn whenever an object of larger than @var{len} bytes is defined.
4612
4613@item -Wframe-larger-than=@var{len}
4614@opindex Wframe-larger-than
4615Warn if the size of a function frame is larger than @var{len} bytes.
4616The computation done to determine the stack frame size is approximate
4617and not conservative.
4618The actual requirements may be somewhat greater than @var{len}
4619even if you do not get a warning.  In addition, any space allocated
4620via @code{alloca}, variable-length arrays, or related constructs
4621is not included by the compiler when determining
4622whether or not to issue a warning.
4623
4624@item -Wno-free-nonheap-object
4625@opindex Wno-free-nonheap-object
4626@opindex Wfree-nonheap-object
4627Do not warn when attempting to free an object that was not allocated
4628on the heap.
4629
4630@item -Wstack-usage=@var{len}
4631@opindex Wstack-usage
4632Warn if the stack usage of a function might be larger than @var{len} bytes.
4633The computation done to determine the stack usage is conservative.
4634Any space allocated via @code{alloca}, variable-length arrays, or related
4635constructs is included by the compiler when determining whether or not to
4636issue a warning.
4637
4638The message is in keeping with the output of @option{-fstack-usage}.
4639
4640@itemize
4641@item
4642If the stack usage is fully static but exceeds the specified amount, it's:
4643
4644@smallexample
4645  warning: stack usage is 1120 bytes
4646@end smallexample
4647@item
4648If the stack usage is (partly) dynamic but bounded, it's:
4649
4650@smallexample
4651  warning: stack usage might be 1648 bytes
4652@end smallexample
4653@item
4654If the stack usage is (partly) dynamic and not bounded, it's:
4655
4656@smallexample
4657  warning: stack usage might be unbounded
4658@end smallexample
4659@end itemize
4660
4661@item -Wunsafe-loop-optimizations
4662@opindex Wunsafe-loop-optimizations
4663@opindex Wno-unsafe-loop-optimizations
4664Warn if the loop cannot be optimized because the compiler cannot
4665assume anything on the bounds of the loop indices.  With
4666@option{-funsafe-loop-optimizations} warn if the compiler makes
4667such assumptions.
4668
4669@item -Wno-pedantic-ms-format @r{(MinGW targets only)}
4670@opindex Wno-pedantic-ms-format
4671@opindex Wpedantic-ms-format
4672When used in combination with @option{-Wformat}
4673and @option{-pedantic} without GNU extensions, this option
4674disables the warnings about non-ISO @code{printf} / @code{scanf} format
4675width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
4676which depend on the MS runtime.
4677
4678@item -Wpointer-arith
4679@opindex Wpointer-arith
4680@opindex Wno-pointer-arith
4681Warn about anything that depends on the ``size of'' a function type or
4682of @code{void}.  GNU C assigns these types a size of 1, for
4683convenience in calculations with @code{void *} pointers and pointers
4684to functions.  In C++, warn also when an arithmetic operation involves
4685@code{NULL}.  This warning is also enabled by @option{-Wpedantic}.
4686
4687@item -Wtype-limits
4688@opindex Wtype-limits
4689@opindex Wno-type-limits
4690Warn if a comparison is always true or always false due to the limited
4691range of the data type, but do not warn for constant expressions.  For
4692example, warn if an unsigned variable is compared against zero with
4693@code{<} or @code{>=}.  This warning is also enabled by
4694@option{-Wextra}.
4695
4696@item -Wbad-function-cast @r{(C and Objective-C only)}
4697@opindex Wbad-function-cast
4698@opindex Wno-bad-function-cast
4699Warn when a function call is cast to a non-matching type.
4700For example, warn if a call to a function returning an integer type
4701is cast to a pointer type.
4702
4703@item -Wc90-c99-compat @r{(C and Objective-C only)}
4704@opindex Wc90-c99-compat
4705@opindex Wno-c90-c99-compat
4706Warn about features not present in ISO C90, but present in ISO C99.
4707For instance, warn about use of variable length arrays, @code{long long}
4708type, @code{bool} type, compound literals, designated initializers, and so
4709on.  This option is independent of the standards mode.  Warnings are disabled
4710in the expression that follows @code{__extension__}.
4711
4712@item -Wc99-c11-compat @r{(C and Objective-C only)}
4713@opindex Wc99-c11-compat
4714@opindex Wno-c99-c11-compat
4715Warn about features not present in ISO C99, but present in ISO C11.
4716For instance, warn about use of anonymous structures and unions,
4717@code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
4718@code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
4719and so on.  This option is independent of the standards mode.  Warnings are
4720disabled in the expression that follows @code{__extension__}.
4721
4722@item -Wc++-compat @r{(C and Objective-C only)}
4723@opindex Wc++-compat
4724Warn about ISO C constructs that are outside of the common subset of
4725ISO C and ISO C++, e.g.@: request for implicit conversion from
4726@code{void *} to a pointer to non-@code{void} type.
4727
4728@item -Wc++11-compat @r{(C++ and Objective-C++ only)}
4729@opindex Wc++11-compat
4730Warn about C++ constructs whose meaning differs between ISO C++ 1998
4731and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
4732in ISO C++ 2011.  This warning turns on @option{-Wnarrowing} and is
4733enabled by @option{-Wall}.
4734
4735@item -Wc++14-compat @r{(C++ and Objective-C++ only)}
4736@opindex Wc++14-compat
4737Warn about C++ constructs whose meaning differs between ISO C++ 2011
4738and ISO C++ 2014.  This warning is enabled by @option{-Wall}.
4739
4740@item -Wcast-qual
4741@opindex Wcast-qual
4742@opindex Wno-cast-qual
4743Warn whenever a pointer is cast so as to remove a type qualifier from
4744the target type.  For example, warn if a @code{const char *} is cast
4745to an ordinary @code{char *}.
4746
4747Also warn when making a cast that introduces a type qualifier in an
4748unsafe way.  For example, casting @code{char **} to @code{const char **}
4749is unsafe, as in this example:
4750
4751@smallexample
4752  /* p is char ** value.  */
4753  const char **q = (const char **) p;
4754  /* Assignment of readonly string to const char * is OK.  */
4755  *q = "string";
4756  /* Now char** pointer points to read-only memory.  */
4757  **p = 'b';
4758@end smallexample
4759
4760@item -Wcast-align
4761@opindex Wcast-align
4762@opindex Wno-cast-align
4763Warn whenever a pointer is cast such that the required alignment of the
4764target is increased.  For example, warn if a @code{char *} is cast to
4765an @code{int *} on machines where integers can only be accessed at
4766two- or four-byte boundaries.
4767
4768@item -Wwrite-strings
4769@opindex Wwrite-strings
4770@opindex Wno-write-strings
4771When compiling C, give string constants the type @code{const
4772char[@var{length}]} so that copying the address of one into a
4773non-@code{const} @code{char *} pointer produces a warning.  These
4774warnings help you find at compile time code that can try to write
4775into a string constant, but only if you have been very careful about
4776using @code{const} in declarations and prototypes.  Otherwise, it is
4777just a nuisance. This is why we did not make @option{-Wall} request
4778these warnings.
4779
4780When compiling C++, warn about the deprecated conversion from string
4781literals to @code{char *}.  This warning is enabled by default for C++
4782programs.
4783
4784@item -Wclobbered
4785@opindex Wclobbered
4786@opindex Wno-clobbered
4787Warn for variables that might be changed by @code{longjmp} or
4788@code{vfork}.  This warning is also enabled by @option{-Wextra}.
4789
4790@item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
4791@opindex Wconditionally-supported
4792@opindex Wno-conditionally-supported
4793Warn for conditionally-supported (C++11 [intro.defs]) constructs.
4794
4795@item -Wconversion
4796@opindex Wconversion
4797@opindex Wno-conversion
4798Warn for implicit conversions that may alter a value. This includes
4799conversions between real and integer, like @code{abs (x)} when
4800@code{x} is @code{double}; conversions between signed and unsigned,
4801like @code{unsigned ui = -1}; and conversions to smaller types, like
4802@code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
4803((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
4804changed by the conversion like in @code{abs (2.0)}.  Warnings about
4805conversions between signed and unsigned integers can be disabled by
4806using @option{-Wno-sign-conversion}.
4807
4808For C++, also warn for confusing overload resolution for user-defined
4809conversions; and conversions that never use a type conversion
4810operator: conversions to @code{void}, the same type, a base class or a
4811reference to them. Warnings about conversions between signed and
4812unsigned integers are disabled by default in C++ unless
4813@option{-Wsign-conversion} is explicitly enabled.
4814
4815@item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
4816@opindex Wconversion-null
4817@opindex Wno-conversion-null
4818Do not warn for conversions between @code{NULL} and non-pointer
4819types. @option{-Wconversion-null} is enabled by default.
4820
4821@item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
4822@opindex Wzero-as-null-pointer-constant
4823@opindex Wno-zero-as-null-pointer-constant
4824Warn when a literal '0' is used as null pointer constant.  This can
4825be useful to facilitate the conversion to @code{nullptr} in C++11.
4826
4827@item -Wdate-time
4828@opindex Wdate-time
4829@opindex Wno-date-time
4830Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
4831are encountered as they might prevent bit-wise-identical reproducible
4832compilations.
4833
4834@item -Wdelete-incomplete @r{(C++ and Objective-C++ only)}
4835@opindex Wdelete-incomplete
4836@opindex Wno-delete-incomplete
4837Warn when deleting a pointer to incomplete type, which may cause
4838undefined behavior at runtime.  This warning is enabled by default.
4839
4840@item -Wuseless-cast @r{(C++ and Objective-C++ only)}
4841@opindex Wuseless-cast
4842@opindex Wno-useless-cast
4843Warn when an expression is casted to its own type.
4844
4845@item -Wempty-body
4846@opindex Wempty-body
4847@opindex Wno-empty-body
4848Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
4849while} statement.  This warning is also enabled by @option{-Wextra}.
4850
4851@item -Wenum-compare
4852@opindex Wenum-compare
4853@opindex Wno-enum-compare
4854Warn about a comparison between values of different enumerated types.
4855In C++ enumeral mismatches in conditional expressions are also
4856diagnosed and the warning is enabled by default.  In C this warning is
4857enabled by @option{-Wall}.
4858
4859@item -Wjump-misses-init @r{(C, Objective-C only)}
4860@opindex Wjump-misses-init
4861@opindex Wno-jump-misses-init
4862Warn if a @code{goto} statement or a @code{switch} statement jumps
4863forward across the initialization of a variable, or jumps backward to a
4864label after the variable has been initialized.  This only warns about
4865variables that are initialized when they are declared.  This warning is
4866only supported for C and Objective-C; in C++ this sort of branch is an
4867error in any case.
4868
4869@option{-Wjump-misses-init} is included in @option{-Wc++-compat}.  It
4870can be disabled with the @option{-Wno-jump-misses-init} option.
4871
4872@item -Wsign-compare
4873@opindex Wsign-compare
4874@opindex Wno-sign-compare
4875@cindex warning for comparison of signed and unsigned values
4876@cindex comparison of signed and unsigned values, warning
4877@cindex signed and unsigned values, comparison warning
4878Warn when a comparison between signed and unsigned values could produce
4879an incorrect result when the signed value is converted to unsigned.
4880This warning is also enabled by @option{-Wextra}; to get the other warnings
4881of @option{-Wextra} without this warning, use @option{-Wextra -Wno-sign-compare}.
4882
4883@item -Wsign-conversion
4884@opindex Wsign-conversion
4885@opindex Wno-sign-conversion
4886Warn for implicit conversions that may change the sign of an integer
4887value, like assigning a signed integer expression to an unsigned
4888integer variable. An explicit cast silences the warning. In C, this
4889option is enabled also by @option{-Wconversion}.
4890
4891@item -Wfloat-conversion
4892@opindex Wfloat-conversion
4893@opindex Wno-float-conversion
4894Warn for implicit conversions that reduce the precision of a real value.
4895This includes conversions from real to integer, and from higher precision
4896real to lower precision real values.  This option is also enabled by
4897@option{-Wconversion}.
4898
4899@item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
4900@opindex Wsized-deallocation
4901@opindex Wno-sized-deallocation
4902Warn about a definition of an unsized deallocation function
4903@smallexample
4904void operator delete (void *) noexcept;
4905void operator delete[] (void *) noexcept;
4906@end smallexample
4907without a definition of the corresponding sized deallocation function
4908@smallexample
4909void operator delete (void *, std::size_t) noexcept;
4910void operator delete[] (void *, std::size_t) noexcept;
4911@end smallexample
4912or vice versa.  Enabled by @option{-Wextra} along with
4913@option{-fsized-deallocation}.
4914
4915@item -Wsizeof-pointer-memaccess
4916@opindex Wsizeof-pointer-memaccess
4917@opindex Wno-sizeof-pointer-memaccess
4918Warn for suspicious length parameters to certain string and memory built-in
4919functions if the argument uses @code{sizeof}.  This warning warns e.g.@:
4920about @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not an array,
4921but a pointer, and suggests a possible fix, or about
4922@code{memcpy (&foo, ptr, sizeof (&foo));}.  This warning is enabled by
4923@option{-Wall}.
4924
4925@item -Wsizeof-array-argument
4926@opindex Wsizeof-array-argument
4927@opindex Wno-sizeof-array-argument
4928Warn when the @code{sizeof} operator is applied to a parameter that is
4929declared as an array in a function definition.  This warning is enabled by
4930default for C and C++ programs.
4931
4932@item -Wmemset-transposed-args
4933@opindex Wmemset-transposed-args
4934@opindex Wno-memset-transposed-args
4935Warn for suspicious calls to the @code{memset} built-in function, if the
4936second argument is not zero and the third argument is zero.  This warns e.g.@
4937about @code{memset (buf, sizeof buf, 0)} where most probably
4938@code{memset (buf, 0, sizeof buf)} was meant instead.  The diagnostics
4939is only emitted if the third argument is literal zero.  If it is some
4940expression that is folded to zero, a cast of zero to some type, etc.,
4941it is far less likely that the user has mistakenly exchanged the arguments
4942and no warning is emitted.  This warning is enabled by @option{-Wall}.
4943
4944@item -Waddress
4945@opindex Waddress
4946@opindex Wno-address
4947Warn about suspicious uses of memory addresses. These include using
4948the address of a function in a conditional expression, such as
4949@code{void func(void); if (func)}, and comparisons against the memory
4950address of a string literal, such as @code{if (x == "abc")}.  Such
4951uses typically indicate a programmer error: the address of a function
4952always evaluates to true, so their use in a conditional usually
4953indicate that the programmer forgot the parentheses in a function
4954call; and comparisons against string literals result in unspecified
4955behavior and are not portable in C, so they usually indicate that the
4956programmer intended to use @code{strcmp}.  This warning is enabled by
4957@option{-Wall}.
4958
4959@item -Wlogical-op
4960@opindex Wlogical-op
4961@opindex Wno-logical-op
4962Warn about suspicious uses of logical operators in expressions.
4963This includes using logical operators in contexts where a
4964bit-wise operator is likely to be expected.
4965
4966@item -Wlogical-not-parentheses
4967@opindex Wlogical-not-parentheses
4968@opindex Wno-logical-not-parentheses
4969Warn about logical not used on the left hand side operand of a comparison.
4970This option does not warn if the RHS operand is of a boolean type.  Its
4971purpose is to detect suspicious code like the following:
4972@smallexample
4973int a;
4974@dots{}
4975if (!a > 1) @{ @dots{} @}
4976@end smallexample
4977
4978It is possible to suppress the warning by wrapping the LHS into
4979parentheses:
4980@smallexample
4981if ((!a) > 1) @{ @dots{} @}
4982@end smallexample
4983
4984This warning is enabled by @option{-Wall}.
4985
4986@item -Waggregate-return
4987@opindex Waggregate-return
4988@opindex Wno-aggregate-return
4989Warn if any functions that return structures or unions are defined or
4990called.  (In languages where you can return an array, this also elicits
4991a warning.)
4992
4993@item -Wno-aggressive-loop-optimizations
4994@opindex Wno-aggressive-loop-optimizations
4995@opindex Waggressive-loop-optimizations
4996Warn if in a loop with constant number of iterations the compiler detects
4997undefined behavior in some statement during one or more of the iterations.
4998
4999@item -Wno-attributes
5000@opindex Wno-attributes
5001@opindex Wattributes
5002Do not warn if an unexpected @code{__attribute__} is used, such as
5003unrecognized attributes, function attributes applied to variables,
5004etc.  This does not stop errors for incorrect use of supported
5005attributes.
5006
5007@item -Wno-builtin-macro-redefined
5008@opindex Wno-builtin-macro-redefined
5009@opindex Wbuiltin-macro-redefined
5010Do not warn if certain built-in macros are redefined.  This suppresses
5011warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
5012@code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
5013
5014@item -Wstrict-prototypes @r{(C and Objective-C only)}
5015@opindex Wstrict-prototypes
5016@opindex Wno-strict-prototypes
5017Warn if a function is declared or defined without specifying the
5018argument types.  (An old-style function definition is permitted without
5019a warning if preceded by a declaration that specifies the argument
5020types.)
5021
5022@item -Wold-style-declaration @r{(C and Objective-C only)}
5023@opindex Wold-style-declaration
5024@opindex Wno-old-style-declaration
5025Warn for obsolescent usages, according to the C Standard, in a
5026declaration. For example, warn if storage-class specifiers like
5027@code{static} are not the first things in a declaration.  This warning
5028is also enabled by @option{-Wextra}.
5029
5030@item -Wold-style-definition @r{(C and Objective-C only)}
5031@opindex Wold-style-definition
5032@opindex Wno-old-style-definition
5033Warn if an old-style function definition is used.  A warning is given
5034even if there is a previous prototype.
5035
5036@item -Wmissing-parameter-type @r{(C and Objective-C only)}
5037@opindex Wmissing-parameter-type
5038@opindex Wno-missing-parameter-type
5039A function parameter is declared without a type specifier in K&R-style
5040functions:
5041
5042@smallexample
5043void foo(bar) @{ @}
5044@end smallexample
5045
5046This warning is also enabled by @option{-Wextra}.
5047
5048@item -Wmissing-prototypes @r{(C and Objective-C only)}
5049@opindex Wmissing-prototypes
5050@opindex Wno-missing-prototypes
5051Warn if a global function is defined without a previous prototype
5052declaration.  This warning is issued even if the definition itself
5053provides a prototype.  Use this option to detect global functions
5054that do not have a matching prototype declaration in a header file.
5055This option is not valid for C++ because all function declarations
5056provide prototypes and a non-matching declaration declares an
5057overload rather than conflict with an earlier declaration.
5058Use @option{-Wmissing-declarations} to detect missing declarations in C++.
5059
5060@item -Wmissing-declarations
5061@opindex Wmissing-declarations
5062@opindex Wno-missing-declarations
5063Warn if a global function is defined without a previous declaration.
5064Do so even if the definition itself provides a prototype.
5065Use this option to detect global functions that are not declared in
5066header files.  In C, no warnings are issued for functions with previous
5067non-prototype declarations; use @option{-Wmissing-prototypes} to detect
5068missing prototypes.  In C++, no warnings are issued for function templates,
5069or for inline functions, or for functions in anonymous namespaces.
5070
5071@item -Wmissing-field-initializers
5072@opindex Wmissing-field-initializers
5073@opindex Wno-missing-field-initializers
5074@opindex W
5075@opindex Wextra
5076@opindex Wno-extra
5077Warn if a structure's initializer has some fields missing.  For
5078example, the following code causes such a warning, because
5079@code{x.h} is implicitly zero:
5080
5081@smallexample
5082struct s @{ int f, g, h; @};
5083struct s x = @{ 3, 4 @};
5084@end smallexample
5085
5086This option does not warn about designated initializers, so the following
5087modification does not trigger a warning:
5088
5089@smallexample
5090struct s @{ int f, g, h; @};
5091struct s x = @{ .f = 3, .g = 4 @};
5092@end smallexample
5093
5094In C++ this option does not warn either about the empty @{ @}
5095initializer, for example:
5096
5097@smallexample
5098struct s @{ int f, g, h; @};
5099s x = @{ @};
5100@end smallexample
5101
5102This warning is included in @option{-Wextra}.  To get other @option{-Wextra}
5103warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
5104
5105@item -Wno-multichar
5106@opindex Wno-multichar
5107@opindex Wmultichar
5108Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
5109Usually they indicate a typo in the user's code, as they have
5110implementation-defined values, and should not be used in portable code.
5111
5112@item -Wnormalized@r{[}=@r{<}none@r{|}id@r{|}nfc@r{|}nfkc@r{>]}
5113@opindex Wnormalized=
5114@opindex Wnormalized
5115@opindex Wno-normalized
5116@cindex NFC
5117@cindex NFKC
5118@cindex character set, input normalization
5119In ISO C and ISO C++, two identifiers are different if they are
5120different sequences of characters.  However, sometimes when characters
5121outside the basic ASCII character set are used, you can have two
5122different character sequences that look the same.  To avoid confusion,
5123the ISO 10646 standard sets out some @dfn{normalization rules} which
5124when applied ensure that two sequences that look the same are turned into
5125the same sequence.  GCC can warn you if you are using identifiers that
5126have not been normalized; this option controls that warning.
5127
5128There are four levels of warning supported by GCC@.  The default is
5129@option{-Wnormalized=nfc}, which warns about any identifier that is
5130not in the ISO 10646 ``C'' normalized form, @dfn{NFC}.  NFC is the
5131recommended form for most uses.  It is equivalent to
5132@option{-Wnormalized}.
5133
5134Unfortunately, there are some characters allowed in identifiers by
5135ISO C and ISO C++ that, when turned into NFC, are not allowed in
5136identifiers.  That is, there's no way to use these symbols in portable
5137ISO C or C++ and have all your identifiers in NFC@.
5138@option{-Wnormalized=id} suppresses the warning for these characters.
5139It is hoped that future versions of the standards involved will correct
5140this, which is why this option is not the default.
5141
5142You can switch the warning off for all characters by writing
5143@option{-Wnormalized=none} or @option{-Wno-normalized}.  You should
5144only do this if you are using some other normalization scheme (like
5145``D''), because otherwise you can easily create bugs that are
5146literally impossible to see.
5147
5148Some characters in ISO 10646 have distinct meanings but look identical
5149in some fonts or display methodologies, especially once formatting has
5150been applied.  For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
5151LETTER N'', displays just like a regular @code{n} that has been
5152placed in a superscript.  ISO 10646 defines the @dfn{NFKC}
5153normalization scheme to convert all these into a standard form as
5154well, and GCC warns if your code is not in NFKC if you use
5155@option{-Wnormalized=nfkc}.  This warning is comparable to warning
5156about every identifier that contains the letter O because it might be
5157confused with the digit 0, and so is not the default, but may be
5158useful as a local coding convention if the programming environment
5159cannot be fixed to display these characters distinctly.
5160
5161@item -Wno-deprecated
5162@opindex Wno-deprecated
5163@opindex Wdeprecated
5164Do not warn about usage of deprecated features.  @xref{Deprecated Features}.
5165
5166@item -Wno-deprecated-declarations
5167@opindex Wno-deprecated-declarations
5168@opindex Wdeprecated-declarations
5169Do not warn about uses of functions (@pxref{Function Attributes}),
5170variables (@pxref{Variable Attributes}), and types (@pxref{Type
5171Attributes}) marked as deprecated by using the @code{deprecated}
5172attribute.
5173
5174@item -Wno-overflow
5175@opindex Wno-overflow
5176@opindex Woverflow
5177Do not warn about compile-time overflow in constant expressions.
5178
5179@item -Wno-odr
5180@opindex Wno-odr
5181@opindex Wodr
5182Warn about One Definition Rule violations during link-time optimization.
5183Requires @option{-flto-odr-type-merging} to be enabled.  Enabled by default.
5184
5185@item -Wopenmp-simd
5186@opindex Wopenm-simd
5187Warn if the vectorizer cost model overrides the OpenMP or the Cilk Plus
5188simd directive set by user.  The @option{-fsimd-cost-model=unlimited}
5189option can be used to relax the cost model.
5190
5191@item -Woverride-init @r{(C and Objective-C only)}
5192@opindex Woverride-init
5193@opindex Wno-override-init
5194@opindex W
5195@opindex Wextra
5196@opindex Wno-extra
5197Warn if an initialized field without side effects is overridden when
5198using designated initializers (@pxref{Designated Inits, , Designated
5199Initializers}).
5200
5201This warning is included in @option{-Wextra}.  To get other
5202@option{-Wextra} warnings without this one, use @option{-Wextra
5203-Wno-override-init}.
5204
5205@item -Wpacked
5206@opindex Wpacked
5207@opindex Wno-packed
5208Warn if a structure is given the packed attribute, but the packed
5209attribute has no effect on the layout or size of the structure.
5210Such structures may be mis-aligned for little benefit.  For
5211instance, in this code, the variable @code{f.x} in @code{struct bar}
5212is misaligned even though @code{struct bar} does not itself
5213have the packed attribute:
5214
5215@smallexample
5216@group
5217struct foo @{
5218  int x;
5219  char a, b, c, d;
5220@} __attribute__((packed));
5221struct bar @{
5222  char z;
5223  struct foo f;
5224@};
5225@end group
5226@end smallexample
5227
5228@item -Wpacked-bitfield-compat
5229@opindex Wpacked-bitfield-compat
5230@opindex Wno-packed-bitfield-compat
5231The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
5232on bit-fields of type @code{char}.  This has been fixed in GCC 4.4 but
5233the change can lead to differences in the structure layout.  GCC
5234informs you when the offset of such a field has changed in GCC 4.4.
5235For example there is no longer a 4-bit padding between field @code{a}
5236and @code{b} in this structure:
5237
5238@smallexample
5239struct foo
5240@{
5241  char a:4;
5242  char b:8;
5243@} __attribute__ ((packed));
5244@end smallexample
5245
5246This warning is enabled by default.  Use
5247@option{-Wno-packed-bitfield-compat} to disable this warning.
5248
5249@item -Wpadded
5250@opindex Wpadded
5251@opindex Wno-padded
5252Warn if padding is included in a structure, either to align an element
5253of the structure or to align the whole structure.  Sometimes when this
5254happens it is possible to rearrange the fields of the structure to
5255reduce the padding and so make the structure smaller.
5256
5257@item -Wredundant-decls
5258@opindex Wredundant-decls
5259@opindex Wno-redundant-decls
5260Warn if anything is declared more than once in the same scope, even in
5261cases where multiple declaration is valid and changes nothing.
5262
5263@item -Wnested-externs @r{(C and Objective-C only)}
5264@opindex Wnested-externs
5265@opindex Wno-nested-externs
5266Warn if an @code{extern} declaration is encountered within a function.
5267
5268@item -Wno-inherited-variadic-ctor
5269@opindex Winherited-variadic-ctor
5270@opindex Wno-inherited-variadic-ctor
5271Suppress warnings about use of C++11 inheriting constructors when the
5272base class inherited from has a C variadic constructor; the warning is
5273on by default because the ellipsis is not inherited.
5274
5275@item -Winline
5276@opindex Winline
5277@opindex Wno-inline
5278Warn if a function that is declared as inline cannot be inlined.
5279Even with this option, the compiler does not warn about failures to
5280inline functions declared in system headers.
5281
5282The compiler uses a variety of heuristics to determine whether or not
5283to inline a function.  For example, the compiler takes into account
5284the size of the function being inlined and the amount of inlining
5285that has already been done in the current function.  Therefore,
5286seemingly insignificant changes in the source program can cause the
5287warnings produced by @option{-Winline} to appear or disappear.
5288
5289@item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
5290@opindex Wno-invalid-offsetof
5291@opindex Winvalid-offsetof
5292Suppress warnings from applying the @code{offsetof} macro to a non-POD
5293type.  According to the 2014 ISO C++ standard, applying @code{offsetof}
5294to a non-standard-layout type is undefined.  In existing C++ implementations,
5295however, @code{offsetof} typically gives meaningful results.
5296This flag is for users who are aware that they are
5297writing nonportable code and who have deliberately chosen to ignore the
5298warning about it.
5299
5300The restrictions on @code{offsetof} may be relaxed in a future version
5301of the C++ standard.
5302
5303@item -Wno-int-to-pointer-cast
5304@opindex Wno-int-to-pointer-cast
5305@opindex Wint-to-pointer-cast
5306Suppress warnings from casts to pointer type of an integer of a
5307different size. In C++, casting to a pointer type of smaller size is
5308an error. @option{Wint-to-pointer-cast} is enabled by default.
5309
5310
5311@item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
5312@opindex Wno-pointer-to-int-cast
5313@opindex Wpointer-to-int-cast
5314Suppress warnings from casts from a pointer to an integer type of a
5315different size.
5316
5317@item -Winvalid-pch
5318@opindex Winvalid-pch
5319@opindex Wno-invalid-pch
5320Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
5321the search path but can't be used.
5322
5323@item -Wlong-long
5324@opindex Wlong-long
5325@opindex Wno-long-long
5326Warn if @code{long long} type is used.  This is enabled by either
5327@option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
5328modes.  To inhibit the warning messages, use @option{-Wno-long-long}.
5329
5330@item -Wvariadic-macros
5331@opindex Wvariadic-macros
5332@opindex Wno-variadic-macros
5333Warn if variadic macros are used in ISO C90 mode, or if the GNU
5334alternate syntax is used in ISO C99 mode.  This is enabled by either
5335@option{-Wpedantic} or @option{-Wtraditional}.  To inhibit the warning
5336messages, use @option{-Wno-variadic-macros}.
5337
5338@item -Wvarargs
5339@opindex Wvarargs
5340@opindex Wno-varargs
5341Warn upon questionable usage of the macros used to handle variable
5342arguments like @code{va_start}.  This is default.  To inhibit the
5343warning messages, use @option{-Wno-varargs}.
5344
5345@item -Wvector-operation-performance
5346@opindex Wvector-operation-performance
5347@opindex Wno-vector-operation-performance
5348Warn if vector operation is not implemented via SIMD capabilities of the
5349architecture.  Mainly useful for the performance tuning.
5350Vector operation can be implemented @code{piecewise}, which means that the
5351scalar operation is performed on every vector element;
5352@code{in parallel}, which means that the vector operation is implemented
5353using scalars of wider type, which normally is more performance efficient;
5354and @code{as a single scalar}, which means that vector fits into a
5355scalar type.
5356
5357@item -Wno-virtual-move-assign
5358@opindex Wvirtual-move-assign
5359@opindex Wno-virtual-move-assign
5360Suppress warnings about inheriting from a virtual base with a
5361non-trivial C++11 move assignment operator.  This is dangerous because
5362if the virtual base is reachable along more than one path, it is
5363moved multiple times, which can mean both objects end up in the
5364moved-from state.  If the move assignment operator is written to avoid
5365moving from a moved-from object, this warning can be disabled.
5366
5367@item -Wvla
5368@opindex Wvla
5369@opindex Wno-vla
5370Warn if variable length array is used in the code.
5371@option{-Wno-vla} prevents the @option{-Wpedantic} warning of
5372the variable length array.
5373
5374@item -Wvolatile-register-var
5375@opindex Wvolatile-register-var
5376@opindex Wno-volatile-register-var
5377Warn if a register variable is declared volatile.  The volatile
5378modifier does not inhibit all optimizations that may eliminate reads
5379and/or writes to register variables.  This warning is enabled by
5380@option{-Wall}.
5381
5382@item -Wdisabled-optimization
5383@opindex Wdisabled-optimization
5384@opindex Wno-disabled-optimization
5385Warn if a requested optimization pass is disabled.  This warning does
5386not generally indicate that there is anything wrong with your code; it
5387merely indicates that GCC's optimizers are unable to handle the code
5388effectively.  Often, the problem is that your code is too big or too
5389complex; GCC refuses to optimize programs when the optimization
5390itself is likely to take inordinate amounts of time.
5391
5392@item -Wpointer-sign @r{(C and Objective-C only)}
5393@opindex Wpointer-sign
5394@opindex Wno-pointer-sign
5395Warn for pointer argument passing or assignment with different signedness.
5396This option is only supported for C and Objective-C@.  It is implied by
5397@option{-Wall} and by @option{-Wpedantic}, which can be disabled with
5398@option{-Wno-pointer-sign}.
5399
5400@item -Wstack-protector
5401@opindex Wstack-protector
5402@opindex Wno-stack-protector
5403This option is only active when @option{-fstack-protector} is active.  It
5404warns about functions that are not protected against stack smashing.
5405
5406@item -Woverlength-strings
5407@opindex Woverlength-strings
5408@opindex Wno-overlength-strings
5409Warn about string constants that are longer than the ``minimum
5410maximum'' length specified in the C standard.  Modern compilers
5411generally allow string constants that are much longer than the
5412standard's minimum limit, but very portable programs should avoid
5413using longer strings.
5414
5415The limit applies @emph{after} string constant concatenation, and does
5416not count the trailing NUL@.  In C90, the limit was 509 characters; in
5417C99, it was raised to 4095.  C++98 does not specify a normative
5418minimum maximum, so we do not diagnose overlength strings in C++@.
5419
5420This option is implied by @option{-Wpedantic}, and can be disabled with
5421@option{-Wno-overlength-strings}.
5422
5423@item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
5424@opindex Wunsuffixed-float-constants
5425
5426Issue a warning for any floating constant that does not have
5427a suffix.  When used together with @option{-Wsystem-headers} it
5428warns about such constants in system header files.  This can be useful
5429when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
5430from the decimal floating-point extension to C99.
5431
5432@item -Wno-designated-init @r{(C and Objective-C only)}
5433Suppress warnings when a positional initializer is used to initialize
5434a structure that has been marked with the @code{designated_init}
5435attribute.
5436
5437@end table
5438
5439@node Debugging Options
5440@section Options for Debugging Your Program or GCC
5441@cindex options, debugging
5442@cindex debugging information options
5443
5444GCC has various special options that are used for debugging
5445either your program or GCC:
5446
5447@table @gcctabopt
5448@item -g
5449@opindex g
5450Produce debugging information in the operating system's native format
5451(stabs, COFF, XCOFF, or DWARF 2)@.  GDB can work with this debugging
5452information.
5453
5454On most systems that use stabs format, @option{-g} enables use of extra
5455debugging information that only GDB can use; this extra information
5456makes debugging work better in GDB but probably makes other debuggers
5457crash or
5458refuse to read the program.  If you want to control for certain whether
5459to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
5460@option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
5461
5462GCC allows you to use @option{-g} with
5463@option{-O}.  The shortcuts taken by optimized code may occasionally
5464produce surprising results: some variables you declared may not exist
5465at all; flow of control may briefly move where you did not expect it;
5466some statements may not be executed because they compute constant
5467results or their values are already at hand; some statements may
5468execute in different places because they have been moved out of loops.
5469
5470Nevertheless it proves possible to debug optimized output.  This makes
5471it reasonable to use the optimizer for programs that might have bugs.
5472
5473The following options are useful when GCC is generated with the
5474capability for more than one debugging format.
5475
5476@item -gsplit-dwarf
5477@opindex gsplit-dwarf
5478Separate as much dwarf debugging information as possible into a
5479separate output file with the extension .dwo.  This option allows
5480the build system to avoid linking files with debug information.  To
5481be useful, this option requires a debugger capable of reading .dwo
5482files.
5483
5484@item -ggdb
5485@opindex ggdb
5486Produce debugging information for use by GDB@.  This means to use the
5487most expressive format available (DWARF 2, stabs, or the native format
5488if neither of those are supported), including GDB extensions if at all
5489possible.
5490
5491@item -gpubnames
5492@opindex gpubnames
5493Generate dwarf .debug_pubnames and .debug_pubtypes sections.
5494
5495@item -ggnu-pubnames
5496@opindex ggnu-pubnames
5497Generate .debug_pubnames and .debug_pubtypes sections in a format
5498suitable for conversion into a GDB@ index.  This option is only useful
5499with a linker that can produce GDB@ index version 7.
5500
5501@item -gstabs
5502@opindex gstabs
5503Produce debugging information in stabs format (if that is supported),
5504without GDB extensions.  This is the format used by DBX on most BSD
5505systems.  On MIPS, Alpha and System V Release 4 systems this option
5506produces stabs debugging output that is not understood by DBX or SDB@.
5507On System V Release 4 systems this option requires the GNU assembler.
5508
5509@item -feliminate-unused-debug-symbols
5510@opindex feliminate-unused-debug-symbols
5511Produce debugging information in stabs format (if that is supported),
5512for only symbols that are actually used.
5513
5514@item -femit-class-debug-always
5515@opindex femit-class-debug-always
5516Instead of emitting debugging information for a C++ class in only one
5517object file, emit it in all object files using the class.  This option
5518should be used only with debuggers that are unable to handle the way GCC
5519normally emits debugging information for classes because using this
5520option increases the size of debugging information by as much as a
5521factor of two.
5522
5523@item -fdebug-types-section
5524@opindex fdebug-types-section
5525@opindex fno-debug-types-section
5526When using DWARF Version 4 or higher, type DIEs can be put into
5527their own @code{.debug_types} section instead of making them part of the
5528@code{.debug_info} section.  It is more efficient to put them in a separate
5529comdat sections since the linker can then remove duplicates.
5530But not all DWARF consumers support @code{.debug_types} sections yet
5531and on some objects @code{.debug_types} produces larger instead of smaller
5532debugging information.
5533
5534@item -gstabs+
5535@opindex gstabs+
5536Produce debugging information in stabs format (if that is supported),
5537using GNU extensions understood only by the GNU debugger (GDB)@.  The
5538use of these extensions is likely to make other debuggers crash or
5539refuse to read the program.
5540
5541@item -gcoff
5542@opindex gcoff
5543Produce debugging information in COFF format (if that is supported).
5544This is the format used by SDB on most System V systems prior to
5545System V Release 4.
5546
5547@item -gxcoff
5548@opindex gxcoff
5549Produce debugging information in XCOFF format (if that is supported).
5550This is the format used by the DBX debugger on IBM RS/6000 systems.
5551
5552@item -gxcoff+
5553@opindex gxcoff+
5554Produce debugging information in XCOFF format (if that is supported),
5555using GNU extensions understood only by the GNU debugger (GDB)@.  The
5556use of these extensions is likely to make other debuggers crash or
5557refuse to read the program, and may cause assemblers other than the GNU
5558assembler (GAS) to fail with an error.
5559
5560@item -gdwarf-@var{version}
5561@opindex gdwarf-@var{version}
5562Produce debugging information in DWARF format (if that is supported).
5563The value of @var{version} may be either 2, 3, 4 or 5; the default version
5564for most targets is 4.  DWARF Version 5 is only experimental.
5565
5566Note that with DWARF Version 2, some ports require and always
5567use some non-conflicting DWARF 3 extensions in the unwind tables.
5568
5569Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
5570for maximum benefit.
5571
5572@item -grecord-gcc-switches
5573@opindex grecord-gcc-switches
5574This switch causes the command-line options used to invoke the
5575compiler that may affect code generation to be appended to the
5576DW_AT_producer attribute in DWARF debugging information.  The options
5577are concatenated with spaces separating them from each other and from
5578the compiler version.  See also @option{-frecord-gcc-switches} for another
5579way of storing compiler options into the object file.  This is the default.
5580
5581@item -gno-record-gcc-switches
5582@opindex gno-record-gcc-switches
5583Disallow appending command-line options to the DW_AT_producer attribute
5584in DWARF debugging information.
5585
5586@item -gstrict-dwarf
5587@opindex gstrict-dwarf
5588Disallow using extensions of later DWARF standard version than selected
5589with @option{-gdwarf-@var{version}}.  On most targets using non-conflicting
5590DWARF extensions from later standard versions is allowed.
5591
5592@item -gno-strict-dwarf
5593@opindex gno-strict-dwarf
5594Allow using extensions of later DWARF standard version than selected with
5595@option{-gdwarf-@var{version}}.
5596
5597@item -gz@r{[}=@var{type}@r{]}
5598@opindex gz
5599Produce compressed debug sections in DWARF format, if that is supported.
5600If @var{type} is not given, the default type depends on the capabilities
5601of the assembler and linker used.  @var{type} may be one of
5602@samp{none} (don't compress debug sections), @samp{zlib} (use zlib
5603compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
5604compression in traditional GNU format).  If the linker doesn't support
5605writing compressed debug sections, the option is rejected.  Otherwise,
5606if the assembler does not support them, @option{-gz} is silently ignored
5607when producing object files.
5608
5609@item -gvms
5610@opindex gvms
5611Produce debugging information in Alpha/VMS debug format (if that is
5612supported).  This is the format used by DEBUG on Alpha/VMS systems.
5613
5614@item -g@var{level}
5615@itemx -ggdb@var{level}
5616@itemx -gstabs@var{level}
5617@itemx -gcoff@var{level}
5618@itemx -gxcoff@var{level}
5619@itemx -gvms@var{level}
5620Request debugging information and also use @var{level} to specify how
5621much information.  The default level is 2.
5622
5623Level 0 produces no debug information at all.  Thus, @option{-g0} negates
5624@option{-g}.
5625
5626Level 1 produces minimal information, enough for making backtraces in
5627parts of the program that you don't plan to debug.  This includes
5628descriptions of functions and external variables, and line number
5629tables, but no information about local variables.
5630
5631Level 3 includes extra information, such as all the macro definitions
5632present in the program.  Some debuggers support macro expansion when
5633you use @option{-g3}.
5634
5635@option{-gdwarf-2} does not accept a concatenated debug level, because
5636GCC used to support an option @option{-gdwarf} that meant to generate
5637debug information in version 1 of the DWARF format (which is very
5638different from version 2), and it would have been too confusing.  That
5639debug format is long obsolete, but the option cannot be changed now.
5640Instead use an additional @option{-g@var{level}} option to change the
5641debug level for DWARF.
5642
5643@item -gtoggle
5644@opindex gtoggle
5645Turn off generation of debug info, if leaving out this option
5646generates it, or turn it on at level 2 otherwise.  The position of this
5647argument in the command line does not matter; it takes effect after all
5648other options are processed, and it does so only once, no matter how
5649many times it is given.  This is mainly intended to be used with
5650@option{-fcompare-debug}.
5651
5652@item -fsanitize=address
5653@opindex fsanitize=address
5654Enable AddressSanitizer, a fast memory error detector.
5655Memory access instructions are instrumented to detect
5656out-of-bounds and use-after-free bugs.
5657See @uref{https://github.com/google/sanitizers/wiki/AddressSanitizer} for
5658more details.  The run-time behavior can be influenced using the
5659@env{ASAN_OPTIONS} environment variable.  When set to @code{help=1},
5660the available options are shown at startup of the instrumended program.  See
5661@url{https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags}
5662for a list of supported options.
5663
5664@item -fsanitize=kernel-address
5665@opindex fsanitize=kernel-address
5666Enable AddressSanitizer for Linux kernel.
5667See @uref{https://github.com/google/kasan/wiki} for more details.
5668
5669@item -fsanitize=thread
5670@opindex fsanitize=thread
5671Enable ThreadSanitizer, a fast data race detector.
5672Memory access instructions are instrumented to detect
5673data race bugs.  See @uref{https://github.com/google/sanitizers/wiki#threadsanitizer} for more
5674details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
5675environment variable; see
5676@url{https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags} for a list of
5677supported options.
5678
5679@item -fsanitize=leak
5680@opindex fsanitize=leak
5681Enable LeakSanitizer, a memory leak detector.
5682This option only matters for linking of executables and if neither
5683@option{-fsanitize=address} nor @option{-fsanitize=thread} is used.  In that
5684case the executable is linked against a library that overrides @code{malloc}
5685and other allocator functions.  See
5686@uref{https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer} for more
5687details.  The run-time behavior can be influenced using the
5688@env{LSAN_OPTIONS} environment variable.
5689
5690@item -fsanitize=undefined
5691@opindex fsanitize=undefined
5692Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
5693Various computations are instrumented to detect undefined behavior
5694at runtime.  Current suboptions are:
5695
5696@table @gcctabopt
5697
5698@item -fsanitize=shift
5699@opindex fsanitize=shift
5700This option enables checking that the result of a shift operation is
5701not undefined.  Note that what exactly is considered undefined differs
5702slightly between C and C++, as well as between ISO C90 and C99, etc.
5703
5704@item -fsanitize=integer-divide-by-zero
5705@opindex fsanitize=integer-divide-by-zero
5706Detect integer division by zero as well as @code{INT_MIN / -1} division.
5707
5708@item -fsanitize=unreachable
5709@opindex fsanitize=unreachable
5710With this option, the compiler turns the @code{__builtin_unreachable}
5711call into a diagnostics message call instead.  When reaching the
5712@code{__builtin_unreachable} call, the behavior is undefined.
5713
5714@item -fsanitize=vla-bound
5715@opindex fsanitize=vla-bound
5716This option instructs the compiler to check that the size of a variable
5717length array is positive.
5718
5719@item -fsanitize=null
5720@opindex fsanitize=null
5721This option enables pointer checking.  Particularly, the application
5722built with this option turned on will issue an error message when it
5723tries to dereference a NULL pointer, or if a reference (possibly an
5724rvalue reference) is bound to a NULL pointer, or if a method is invoked
5725on an object pointed by a NULL pointer.
5726
5727@item -fsanitize=return
5728@opindex fsanitize=return
5729This option enables return statement checking.  Programs
5730built with this option turned on will issue an error message
5731when the end of a non-void function is reached without actually
5732returning a value.  This option works in C++ only.
5733
5734@item -fsanitize=signed-integer-overflow
5735@opindex fsanitize=signed-integer-overflow
5736This option enables signed integer overflow checking.  We check that
5737the result of @code{+}, @code{*}, and both unary and binary @code{-}
5738does not overflow in the signed arithmetics.  Note, integer promotion
5739rules must be taken into account.  That is, the following is not an
5740overflow:
5741@smallexample
5742signed char a = SCHAR_MAX;
5743a++;
5744@end smallexample
5745
5746@item -fsanitize=bounds
5747@opindex fsanitize=bounds
5748This option enables instrumentation of array bounds.  Various out of bounds
5749accesses are detected.  Flexible array members, flexible array member-like
5750arrays, and initializers of variables with static storage are not instrumented.
5751
5752@item -fsanitize=alignment
5753@opindex fsanitize=alignment
5754
5755This option enables checking of alignment of pointers when they are
5756dereferenced, or when a reference is bound to insufficiently aligned target,
5757or when a method or constructor is invoked on insufficiently aligned object.
5758
5759@item -fsanitize=object-size
5760@opindex fsanitize=object-size
5761This option enables instrumentation of memory references using the
5762@code{__builtin_object_size} function.  Various out of bounds pointer
5763accesses are detected.
5764
5765@item -fsanitize=float-divide-by-zero
5766@opindex fsanitize=float-divide-by-zero
5767Detect floating-point division by zero.  Unlike other similar options,
5768@option{-fsanitize=float-divide-by-zero} is not enabled by
5769@option{-fsanitize=undefined}, since floating-point division by zero can
5770be a legitimate way of obtaining infinities and NaNs.
5771
5772@item -fsanitize=float-cast-overflow
5773@opindex fsanitize=float-cast-overflow
5774This option enables floating-point type to integer conversion checking.
5775We check that the result of the conversion does not overflow.
5776Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
5777not enabled by @option{-fsanitize=undefined}.
5778This option does not work well with @code{FE_INVALID} exceptions enabled.
5779
5780@item -fsanitize=nonnull-attribute
5781@opindex fsanitize=nonnull-attribute
5782
5783This option enables instrumentation of calls, checking whether null values
5784are not passed to arguments marked as requiring a non-null value by the
5785@code{nonnull} function attribute.
5786
5787@item -fsanitize=returns-nonnull-attribute
5788@opindex fsanitize=returns-nonnull-attribute
5789
5790This option enables instrumentation of return statements in functions
5791marked with @code{returns_nonnull} function attribute, to detect returning
5792of null values from such functions.
5793
5794@item -fsanitize=bool
5795@opindex fsanitize=bool
5796
5797This option enables instrumentation of loads from bool.  If a value other
5798than 0/1 is loaded, a run-time error is issued.
5799
5800@item -fsanitize=enum
5801@opindex fsanitize=enum
5802
5803This option enables instrumentation of loads from an enum type.  If
5804a value outside the range of values for the enum type is loaded,
5805a run-time error is issued.
5806
5807@item -fsanitize=vptr
5808@opindex fsanitize=vptr
5809
5810This option enables instrumentation of C++ member function calls, member
5811accesses and some conversions between pointers to base and derived classes,
5812to verify the referenced object has the correct dynamic type.
5813
5814@end table
5815
5816While @option{-ftrapv} causes traps for signed overflows to be emitted,
5817@option{-fsanitize=undefined} gives a diagnostic message.
5818This currently works only for the C family of languages.
5819
5820@item -fno-sanitize=all
5821@opindex fno-sanitize=all
5822
5823This option disables all previously enabled sanitizers.
5824@option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
5825together.
5826
5827@item -fasan-shadow-offset=@var{number}
5828@opindex fasan-shadow-offset
5829This option forces GCC to use custom shadow offset in AddressSanitizer checks.
5830It is useful for experimenting with different shadow memory layouts in
5831Kernel AddressSanitizer.
5832
5833@item -fsanitize-recover@r{[}=@var{opts}@r{]}
5834@opindex fsanitize-recover
5835@opindex fno-sanitize-recover
5836@option{-fsanitize-recover=} controls error recovery mode for sanitizers
5837mentioned in comma-separated list of @var{opts}.  Enabling this option
5838for a sanitizer component causes it to attempt to continue
5839running the program as if no error happened.  This means multiple
5840runtime errors can be reported in a single program run, and the exit
5841code of the program may indicate success even when errors
5842have been reported.  The @option{-fno-sanitize-recover=} option
5843can be used to alter
5844this behavior: only the first detected error is reported
5845and program then exits with a non-zero exit code.
5846
5847Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
5848except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
5849@option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero} and
5850@option{-fsanitize=kernel-address}.  For these sanitizers error recovery is turned on by default.
5851@option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
5852accepted, the former enables recovery for all sanitizers that support it,
5853the latter disables recovery for all sanitizers that support it.
5854
5855Syntax without explicit @var{opts} parameter is deprecated.  It is equivalent to
5856@smallexample
5857-fsanitize-recover=undefined,float-cast-overflow,float-divide-by-zero
5858@end smallexample
5859@noindent
5860Similarly @option{-fno-sanitize-recover} is equivalent to
5861@smallexample
5862-fno-sanitize-recover=undefined,float-cast-overflow,float-divide-by-zero
5863@end smallexample
5864
5865@item -fsanitize-undefined-trap-on-error
5866@opindex fsanitize-undefined-trap-on-error
5867The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
5868report undefined behavior using @code{__builtin_trap} rather than
5869a @code{libubsan} library routine.  The advantage of this is that the
5870@code{libubsan} library is not needed and is not linked in, so this
5871is usable even in freestanding environments.
5872
5873@item -fcheck-pointer-bounds
5874@opindex fcheck-pointer-bounds
5875@opindex fno-check-pointer-bounds
5876@cindex Pointer Bounds Checker options
5877Enable Pointer Bounds Checker instrumentation.  Each memory reference
5878is instrumented with checks of the pointer used for memory access against
5879bounds associated with that pointer.
5880
5881Currently there
5882is only an implementation for Intel MPX available, thus x86 target
5883and @option{-mmpx} are required to enable this feature.
5884MPX-based instrumentation requires
5885a runtime library to enable MPX in hardware and handle bounds
5886violation signals.  By default when @option{-fcheck-pointer-bounds}
5887and @option{-mmpx} options are used to link a program, the GCC driver
5888links against the @file{libmpx} runtime library and @file{libmpxwrappers}
5889library.  It also passes '-z bndplt' to a linker in case it supports this
5890option (which is checked on libmpx configuration).  Note that old versions
5891of linker may ignore option.  Gold linker doesn't support '-z bndplt'
5892option.  With no '-z bndplt' support in linker all calls to dynamic libraries
5893lose passed bounds reducing overall protection level.  It's highly
5894recommended to use linker with '-z bndplt' support.  In case such linker
5895is not available it is adviced to always use @option{-static-libmpxwrappers}
5896for better protection level or use @option{-static} to completely avoid
5897external calls to dynamic libraries.  MPX-based instrumentation
5898may be used for debugging and also may be included in production code
5899to increase program security.  Depending on usage, you may
5900have different requirements for the runtime library.  The current version
5901of the MPX runtime library is more oriented for use as a debugging
5902tool.  MPX runtime library usage implies @option{-lpthread}.  See
5903also @option{-static-libmpx}.  The runtime library  behavior can be
5904influenced using various @env{CHKP_RT_*} environment variables.  See
5905@uref{https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler}
5906for more details.
5907
5908Generated instrumentation may be controlled by various
5909@option{-fchkp-*} options and by the @code{bnd_variable_size}
5910structure field attribute (@pxref{Type Attributes}) and
5911@code{bnd_legacy}, and @code{bnd_instrument} function attributes
5912(@pxref{Function Attributes}).  GCC also provides a number of built-in
5913functions for controlling the Pointer Bounds Checker.  @xref{Pointer
5914Bounds Checker builtins}, for more information.
5915
5916@item -fchkp-check-incomplete-type
5917@opindex fchkp-check-incomplete-type
5918@opindex fno-chkp-check-incomplete-type
5919Generate pointer bounds checks for variables with incomplete type.
5920Enabled by default.
5921
5922@item -fchkp-narrow-bounds
5923@opindex fchkp-narrow-bounds
5924@opindex fno-chkp-narrow-bounds
5925Controls bounds used by Pointer Bounds Checker for pointers to object
5926fields.  If narrowing is enabled then field bounds are used.  Otherwise
5927object bounds are used.  See also @option{-fchkp-narrow-to-innermost-array}
5928and @option{-fchkp-first-field-has-own-bounds}.  Enabled by default.
5929
5930@item -fchkp-first-field-has-own-bounds
5931@opindex fchkp-first-field-has-own-bounds
5932@opindex fno-chkp-first-field-has-own-bounds
5933Forces Pointer Bounds Checker to use narrowed bounds for the address of the
5934first field in the structure.  By default a pointer to the first field has
5935the same bounds as a pointer to the whole structure.
5936
5937@item -fchkp-narrow-to-innermost-array
5938@opindex fchkp-narrow-to-innermost-array
5939@opindex fno-chkp-narrow-to-innermost-array
5940Forces Pointer Bounds Checker to use bounds of the innermost arrays in
5941case of nested static array access.  By default this option is disabled and
5942bounds of the outermost array are used.
5943
5944@item -fchkp-optimize
5945@opindex fchkp-optimize
5946@opindex fno-chkp-optimize
5947Enables Pointer Bounds Checker optimizations.  Enabled by default at
5948optimization levels @option{-O}, @option{-O2}, @option{-O3}.
5949
5950@item -fchkp-use-fast-string-functions
5951@opindex fchkp-use-fast-string-functions
5952@opindex fno-chkp-use-fast-string-functions
5953Enables use of @code{*_nobnd} versions of string functions (not copying bounds)
5954by Pointer Bounds Checker.  Disabled by default.
5955
5956@item -fchkp-use-nochk-string-functions
5957@opindex fchkp-use-nochk-string-functions
5958@opindex fno-chkp-use-nochk-string-functions
5959Enables use of @code{*_nochk} versions of string functions (not checking bounds)
5960by Pointer Bounds Checker.  Disabled by default.
5961
5962@item -fchkp-use-static-bounds
5963@opindex fchkp-use-static-bounds
5964@opindex fno-chkp-use-static-bounds
5965Allow Pointer Bounds Checker to generate static bounds holding
5966bounds of static variables.  Enabled by default.
5967
5968@item -fchkp-use-static-const-bounds
5969@opindex fchkp-use-static-const-bounds
5970@opindex fno-chkp-use-static-const-bounds
5971Use statically-initialized bounds for constant bounds instead of
5972generating them each time they are required.  By default enabled when
5973@option{-fchkp-use-static-bounds} is enabled.
5974
5975@item -fchkp-treat-zero-dynamic-size-as-infinite
5976@opindex fchkp-treat-zero-dynamic-size-as-infinite
5977@opindex fno-chkp-treat-zero-dynamic-size-as-infinite
5978With this option, objects with incomplete type whose
5979dynamically-obtained size is zero are treated as having infinite size
5980instead by Pointer Bounds
5981Checker.  This option may be helpful if a program is linked with a library
5982missing size information for some symbols.  Disabled by default.
5983
5984@item -fchkp-check-read
5985@opindex fchkp-check-read
5986@opindex fno-chkp-check-read
5987Instructs Pointer Bounds Checker to generate checks for all read
5988accesses to memory.  Enabled by default.
5989
5990@item -fchkp-check-write
5991@opindex fchkp-check-write
5992@opindex fno-chkp-check-write
5993Instructs Pointer Bounds Checker to generate checks for all write
5994accesses to memory.  Enabled by default.
5995
5996@item -fchkp-store-bounds
5997@opindex fchkp-store-bounds
5998@opindex fno-chkp-store-bounds
5999Instructs Pointer Bounds Checker to generate bounds stores for
6000pointer writes.  Enabled by default.
6001
6002@item -fchkp-instrument-calls
6003@opindex fchkp-instrument-calls
6004@opindex fno-chkp-instrument-calls
6005Instructs Pointer Bounds Checker to pass pointer bounds to calls.
6006Enabled by default.
6007
6008@item -fchkp-instrument-marked-only
6009@opindex fchkp-instrument-marked-only
6010@opindex fno-chkp-instrument-marked-only
6011Instructs Pointer Bounds Checker to instrument only functions
6012marked with the @code{bnd_instrument} attribute
6013(@pxref{Function Attributes}).  Disabled by default.
6014
6015@item -fchkp-use-wrappers
6016@opindex fchkp-use-wrappers
6017@opindex fno-chkp-use-wrappers
6018Allows Pointer Bounds Checker to replace calls to built-in functions
6019with calls to wrapper functions.  When @option{-fchkp-use-wrappers}
6020is used to link a program, the GCC driver automatically links
6021against @file{libmpxwrappers}.  See also @option{-static-libmpxwrappers}.
6022Enabled by default.
6023
6024@item -fdump-final-insns@r{[}=@var{file}@r{]}
6025@opindex fdump-final-insns
6026Dump the final internal representation (RTL) to @var{file}.  If the
6027optional argument is omitted (or if @var{file} is @code{.}), the name
6028of the dump file is determined by appending @code{.gkd} to the
6029compilation output file name.
6030
6031@item -fcompare-debug@r{[}=@var{opts}@r{]}
6032@opindex fcompare-debug
6033@opindex fno-compare-debug
6034If no error occurs during compilation, run the compiler a second time,
6035adding @var{opts} and @option{-fcompare-debug-second} to the arguments
6036passed to the second compilation.  Dump the final internal
6037representation in both compilations, and print an error if they differ.
6038
6039If the equal sign is omitted, the default @option{-gtoggle} is used.
6040
6041The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
6042and nonzero, implicitly enables @option{-fcompare-debug}.  If
6043@env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
6044then it is used for @var{opts}, otherwise the default @option{-gtoggle}
6045is used.
6046
6047@option{-fcompare-debug=}, with the equal sign but without @var{opts},
6048is equivalent to @option{-fno-compare-debug}, which disables the dumping
6049of the final representation and the second compilation, preventing even
6050@env{GCC_COMPARE_DEBUG} from taking effect.
6051
6052To verify full coverage during @option{-fcompare-debug} testing, set
6053@env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
6054which GCC rejects as an invalid option in any actual compilation
6055(rather than preprocessing, assembly or linking).  To get just a
6056warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
6057not overridden} will do.
6058
6059@item -fcompare-debug-second
6060@opindex fcompare-debug-second
6061This option is implicitly passed to the compiler for the second
6062compilation requested by @option{-fcompare-debug}, along with options to
6063silence warnings, and omitting other options that would cause
6064side-effect compiler outputs to files or to the standard output.  Dump
6065files and preserved temporary files are renamed so as to contain the
6066@code{.gk} additional extension during the second compilation, to avoid
6067overwriting those generated by the first.
6068
6069When this option is passed to the compiler driver, it causes the
6070@emph{first} compilation to be skipped, which makes it useful for little
6071other than debugging the compiler proper.
6072
6073@item -feliminate-dwarf2-dups
6074@opindex feliminate-dwarf2-dups
6075Compress DWARF 2 debugging information by eliminating duplicated
6076information about each symbol.  This option only makes sense when
6077generating DWARF 2 debugging information with @option{-gdwarf-2}.
6078
6079@item -femit-struct-debug-baseonly
6080@opindex femit-struct-debug-baseonly
6081Emit debug information for struct-like types
6082only when the base name of the compilation source file
6083matches the base name of file in which the struct is defined.
6084
6085This option substantially reduces the size of debugging information,
6086but at significant potential loss in type information to the debugger.
6087See @option{-femit-struct-debug-reduced} for a less aggressive option.
6088See @option{-femit-struct-debug-detailed} for more detailed control.
6089
6090This option works only with DWARF 2.
6091
6092@item -femit-struct-debug-reduced
6093@opindex femit-struct-debug-reduced
6094Emit debug information for struct-like types
6095only when the base name of the compilation source file
6096matches the base name of file in which the type is defined,
6097unless the struct is a template or defined in a system header.
6098
6099This option significantly reduces the size of debugging information,
6100with some potential loss in type information to the debugger.
6101See @option{-femit-struct-debug-baseonly} for a more aggressive option.
6102See @option{-femit-struct-debug-detailed} for more detailed control.
6103
6104This option works only with DWARF 2.
6105
6106@item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
6107@opindex femit-struct-debug-detailed
6108Specify the struct-like types
6109for which the compiler generates debug information.
6110The intent is to reduce duplicate struct debug information
6111between different object files within the same program.
6112
6113This option is a detailed version of
6114@option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
6115which serves for most needs.
6116
6117A specification has the syntax@*
6118[@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
6119
6120The optional first word limits the specification to
6121structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
6122A struct type is used directly when it is the type of a variable, member.
6123Indirect uses arise through pointers to structs.
6124That is, when use of an incomplete struct is valid, the use is indirect.
6125An example is
6126@samp{struct one direct; struct two * indirect;}.
6127
6128The optional second word limits the specification to
6129ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
6130Generic structs are a bit complicated to explain.
6131For C++, these are non-explicit specializations of template classes,
6132or non-template classes within the above.
6133Other programming languages have generics,
6134but @option{-femit-struct-debug-detailed} does not yet implement them.
6135
6136The third word specifies the source files for those
6137structs for which the compiler should emit debug information.
6138The values @samp{none} and @samp{any} have the normal meaning.
6139The value @samp{base} means that
6140the base of name of the file in which the type declaration appears
6141must match the base of the name of the main compilation file.
6142In practice, this means that when compiling @file{foo.c}, debug information
6143is generated for types declared in that file and @file{foo.h},
6144but not other header files.
6145The value @samp{sys} means those types satisfying @samp{base}
6146or declared in system or compiler headers.
6147
6148You may need to experiment to determine the best settings for your application.
6149
6150The default is @option{-femit-struct-debug-detailed=all}.
6151
6152This option works only with DWARF 2.
6153
6154@item -fno-merge-debug-strings
6155@opindex fmerge-debug-strings
6156@opindex fno-merge-debug-strings
6157Direct the linker to not merge together strings in the debugging
6158information that are identical in different object files.  Merging is
6159not supported by all assemblers or linkers.  Merging decreases the size
6160of the debug information in the output file at the cost of increasing
6161link processing time.  Merging is enabled by default.
6162
6163@item -fdebug-prefix-map=@var{old}=@var{new}
6164@opindex fdebug-prefix-map
6165When compiling files in directory @file{@var{old}}, record debugging
6166information describing them as in @file{@var{new}} instead.
6167
6168@item -fno-dwarf2-cfi-asm
6169@opindex fdwarf2-cfi-asm
6170@opindex fno-dwarf2-cfi-asm
6171Emit DWARF 2 unwind info as compiler generated @code{.eh_frame} section
6172instead of using GAS @code{.cfi_*} directives.
6173
6174@cindex @command{prof}
6175@item -p
6176@opindex p
6177Generate extra code to write profile information suitable for the
6178analysis program @command{prof}.  You must use this option when compiling
6179the source files you want data about, and you must also use it when
6180linking.
6181
6182@cindex @command{gprof}
6183@item -pg
6184@opindex pg
6185Generate extra code to write profile information suitable for the
6186analysis program @command{gprof}.  You must use this option when compiling
6187the source files you want data about, and you must also use it when
6188linking.
6189
6190@item -Q
6191@opindex Q
6192Makes the compiler print out each function name as it is compiled, and
6193print some statistics about each pass when it finishes.
6194
6195@item -ftime-report
6196@opindex ftime-report
6197Makes the compiler print some statistics about the time consumed by each
6198pass when it finishes.
6199
6200@item -fmem-report
6201@opindex fmem-report
6202Makes the compiler print some statistics about permanent memory
6203allocation when it finishes.
6204
6205@item -fmem-report-wpa
6206@opindex fmem-report-wpa
6207Makes the compiler print some statistics about permanent memory
6208allocation for the WPA phase only.
6209
6210@item -fpre-ipa-mem-report
6211@opindex fpre-ipa-mem-report
6212@item -fpost-ipa-mem-report
6213@opindex fpost-ipa-mem-report
6214Makes the compiler print some statistics about permanent memory
6215allocation before or after interprocedural optimization.
6216
6217@item -fprofile-report
6218@opindex fprofile-report
6219Makes the compiler print some statistics about consistency of the
6220(estimated) profile and effect of individual passes.
6221
6222@item -fstack-usage
6223@opindex fstack-usage
6224Makes the compiler output stack usage information for the program, on a
6225per-function basis.  The filename for the dump is made by appending
6226@file{.su} to the @var{auxname}.  @var{auxname} is generated from the name of
6227the output file, if explicitly specified and it is not an executable,
6228otherwise it is the basename of the source file.  An entry is made up
6229of three fields:
6230
6231@itemize
6232@item
6233The name of the function.
6234@item
6235A number of bytes.
6236@item
6237One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
6238@end itemize
6239
6240The qualifier @code{static} means that the function manipulates the stack
6241statically: a fixed number of bytes are allocated for the frame on function
6242entry and released on function exit; no stack adjustments are otherwise made
6243in the function.  The second field is this fixed number of bytes.
6244
6245The qualifier @code{dynamic} means that the function manipulates the stack
6246dynamically: in addition to the static allocation described above, stack
6247adjustments are made in the body of the function, for example to push/pop
6248arguments around function calls.  If the qualifier @code{bounded} is also
6249present, the amount of these adjustments is bounded at compile time and
6250the second field is an upper bound of the total amount of stack used by
6251the function.  If it is not present, the amount of these adjustments is
6252not bounded at compile time and the second field only represents the
6253bounded part.
6254
6255@item -fprofile-arcs
6256@opindex fprofile-arcs
6257Add code so that program flow @dfn{arcs} are instrumented.  During
6258execution the program records how many times each branch and call is
6259executed and how many times it is taken or returns.  When the compiled
6260program exits it saves this data to a file called
6261@file{@var{auxname}.gcda} for each source file.  The data may be used for
6262profile-directed optimizations (@option{-fbranch-probabilities}), or for
6263test coverage analysis (@option{-ftest-coverage}).  Each object file's
6264@var{auxname} is generated from the name of the output file, if
6265explicitly specified and it is not the final executable, otherwise it is
6266the basename of the source file.  In both cases any suffix is removed
6267(e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
6268@file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
6269@xref{Cross-profiling}.
6270
6271@cindex @command{gcov}
6272@item --coverage
6273@opindex coverage
6274
6275This option is used to compile and link code instrumented for coverage
6276analysis.  The option is a synonym for @option{-fprofile-arcs}
6277@option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
6278linking).  See the documentation for those options for more details.
6279
6280@itemize
6281
6282@item
6283Compile the source files with @option{-fprofile-arcs} plus optimization
6284and code generation options.  For test coverage analysis, use the
6285additional @option{-ftest-coverage} option.  You do not need to profile
6286every source file in a program.
6287
6288@item
6289Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
6290(the latter implies the former).
6291
6292@item
6293Run the program on a representative workload to generate the arc profile
6294information.  This may be repeated any number of times.  You can run
6295concurrent instances of your program, and provided that the file system
6296supports locking, the data files will be correctly updated.  Also
6297@code{fork} calls are detected and correctly handled (double counting
6298will not happen).
6299
6300@item
6301For profile-directed optimizations, compile the source files again with
6302the same optimization and code generation options plus
6303@option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
6304Control Optimization}).
6305
6306@item
6307For test coverage analysis, use @command{gcov} to produce human readable
6308information from the @file{.gcno} and @file{.gcda} files.  Refer to the
6309@command{gcov} documentation for further information.
6310
6311@end itemize
6312
6313With @option{-fprofile-arcs}, for each function of your program GCC
6314creates a program flow graph, then finds a spanning tree for the graph.
6315Only arcs that are not on the spanning tree have to be instrumented: the
6316compiler adds code to count the number of times that these arcs are
6317executed.  When an arc is the only exit or only entrance to a block, the
6318instrumentation code can be added to the block; otherwise, a new basic
6319block must be created to hold the instrumentation code.
6320
6321@need 2000
6322@item -ftest-coverage
6323@opindex ftest-coverage
6324Produce a notes file that the @command{gcov} code-coverage utility
6325(@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
6326show program coverage.  Each source file's note file is called
6327@file{@var{auxname}.gcno}.  Refer to the @option{-fprofile-arcs} option
6328above for a description of @var{auxname} and instructions on how to
6329generate test coverage data.  Coverage data matches the source files
6330more closely if you do not optimize.
6331
6332@item -fdbg-cnt-list
6333@opindex fdbg-cnt-list
6334Print the name and the counter upper bound for all debug counters.
6335
6336
6337@item -fdbg-cnt=@var{counter-value-list}
6338@opindex fdbg-cnt
6339Set the internal debug counter upper bound.  @var{counter-value-list}
6340is a comma-separated list of @var{name}:@var{value} pairs
6341which sets the upper bound of each debug counter @var{name} to @var{value}.
6342All debug counters have the initial upper bound of @code{UINT_MAX};
6343thus @code{dbg_cnt} returns true always unless the upper bound
6344is set by this option.
6345For example, with @option{-fdbg-cnt=dce:10,tail_call:0},
6346@code{dbg_cnt(dce)} returns true only for first 10 invocations.
6347
6348@item -fenable-@var{kind}-@var{pass}
6349@itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
6350@opindex fdisable-
6351@opindex fenable-
6352
6353This is a set of options that are used to explicitly disable/enable
6354optimization passes.  These options are intended for use for debugging GCC.
6355Compiler users should use regular options for enabling/disabling
6356passes instead.
6357
6358@table @gcctabopt
6359
6360@item -fdisable-ipa-@var{pass}
6361Disable IPA pass @var{pass}. @var{pass} is the pass name.  If the same pass is
6362statically invoked in the compiler multiple times, the pass name should be
6363appended with a sequential number starting from 1.
6364
6365@item -fdisable-rtl-@var{pass}
6366@itemx -fdisable-rtl-@var{pass}=@var{range-list}
6367Disable RTL pass @var{pass}.  @var{pass} is the pass name.  If the same pass is
6368statically invoked in the compiler multiple times, the pass name should be
6369appended with a sequential number starting from 1.  @var{range-list} is a
6370comma-separated list of function ranges or assembler names.  Each range is a number
6371pair separated by a colon.  The range is inclusive in both ends.  If the range
6372is trivial, the number pair can be simplified as a single number.  If the
6373function's call graph node's @var{uid} falls within one of the specified ranges,
6374the @var{pass} is disabled for that function.  The @var{uid} is shown in the
6375function header of a dump file, and the pass names can be dumped by using
6376option @option{-fdump-passes}.
6377
6378@item -fdisable-tree-@var{pass}
6379@itemx -fdisable-tree-@var{pass}=@var{range-list}
6380Disable tree pass @var{pass}.  See @option{-fdisable-rtl} for the description of
6381option arguments.
6382
6383@item -fenable-ipa-@var{pass}
6384Enable IPA pass @var{pass}.  @var{pass} is the pass name.  If the same pass is
6385statically invoked in the compiler multiple times, the pass name should be
6386appended with a sequential number starting from 1.
6387
6388@item -fenable-rtl-@var{pass}
6389@itemx -fenable-rtl-@var{pass}=@var{range-list}
6390Enable RTL pass @var{pass}.  See @option{-fdisable-rtl} for option argument
6391description and examples.
6392
6393@item -fenable-tree-@var{pass}
6394@itemx -fenable-tree-@var{pass}=@var{range-list}
6395Enable tree pass @var{pass}.  See @option{-fdisable-rtl} for the description
6396of option arguments.
6397
6398@end table
6399
6400Here are some examples showing uses of these options.
6401
6402@smallexample
6403
6404# disable ccp1 for all functions
6405   -fdisable-tree-ccp1
6406# disable complete unroll for function whose cgraph node uid is 1
6407   -fenable-tree-cunroll=1
6408# disable gcse2 for functions at the following ranges [1,1],
6409# [300,400], and [400,1000]
6410# disable gcse2 for functions foo and foo2
6411   -fdisable-rtl-gcse2=foo,foo2
6412# disable early inlining
6413   -fdisable-tree-einline
6414# disable ipa inlining
6415   -fdisable-ipa-inline
6416# enable tree full unroll
6417   -fenable-tree-unroll
6418
6419@end smallexample
6420
6421@item -d@var{letters}
6422@itemx -fdump-rtl-@var{pass}
6423@itemx -fdump-rtl-@var{pass}=@var{filename}
6424@opindex d
6425@opindex fdump-rtl-@var{pass}
6426Says to make debugging dumps during compilation at times specified by
6427@var{letters}.  This is used for debugging the RTL-based passes of the
6428compiler.  The file names for most of the dumps are made by appending
6429a pass number and a word to the @var{dumpname}, and the files are
6430created in the directory of the output file. In case of
6431@option{=@var{filename}} option, the dump is output on the given file
6432instead of the pass numbered dump files. Note that the pass number is
6433computed statically as passes get registered into the pass manager.
6434Thus the numbering is not related to the dynamic order of execution of
6435passes.  In particular, a pass installed by a plugin could have a
6436number over 200 even if it executed quite early.  @var{dumpname} is
6437generated from the name of the output file, if explicitly specified
6438and it is not an executable, otherwise it is the basename of the
6439source file. These switches may have different effects when
6440@option{-E} is used for preprocessing.
6441
6442Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
6443@option{-d} option @var{letters}.  Here are the possible
6444letters for use in @var{pass} and @var{letters}, and their meanings:
6445
6446@table @gcctabopt
6447
6448@item -fdump-rtl-alignments
6449@opindex fdump-rtl-alignments
6450Dump after branch alignments have been computed.
6451
6452@item -fdump-rtl-asmcons
6453@opindex fdump-rtl-asmcons
6454Dump after fixing rtl statements that have unsatisfied in/out constraints.
6455
6456@item -fdump-rtl-auto_inc_dec
6457@opindex fdump-rtl-auto_inc_dec
6458Dump after auto-inc-dec discovery.  This pass is only run on
6459architectures that have auto inc or auto dec instructions.
6460
6461@item -fdump-rtl-barriers
6462@opindex fdump-rtl-barriers
6463Dump after cleaning up the barrier instructions.
6464
6465@item -fdump-rtl-bbpart
6466@opindex fdump-rtl-bbpart
6467Dump after partitioning hot and cold basic blocks.
6468
6469@item -fdump-rtl-bbro
6470@opindex fdump-rtl-bbro
6471Dump after block reordering.
6472
6473@item -fdump-rtl-btl1
6474@itemx -fdump-rtl-btl2
6475@opindex fdump-rtl-btl2
6476@opindex fdump-rtl-btl2
6477@option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
6478after the two branch
6479target load optimization passes.
6480
6481@item -fdump-rtl-bypass
6482@opindex fdump-rtl-bypass
6483Dump after jump bypassing and control flow optimizations.
6484
6485@item -fdump-rtl-combine
6486@opindex fdump-rtl-combine
6487Dump after the RTL instruction combination pass.
6488
6489@item -fdump-rtl-compgotos
6490@opindex fdump-rtl-compgotos
6491Dump after duplicating the computed gotos.
6492
6493@item -fdump-rtl-ce1
6494@itemx -fdump-rtl-ce2
6495@itemx -fdump-rtl-ce3
6496@opindex fdump-rtl-ce1
6497@opindex fdump-rtl-ce2
6498@opindex fdump-rtl-ce3
6499@option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
6500@option{-fdump-rtl-ce3} enable dumping after the three
6501if conversion passes.
6502
6503@item -fdump-rtl-cprop_hardreg
6504@opindex fdump-rtl-cprop_hardreg
6505Dump after hard register copy propagation.
6506
6507@item -fdump-rtl-csa
6508@opindex fdump-rtl-csa
6509Dump after combining stack adjustments.
6510
6511@item -fdump-rtl-cse1
6512@itemx -fdump-rtl-cse2
6513@opindex fdump-rtl-cse1
6514@opindex fdump-rtl-cse2
6515@option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
6516the two common subexpression elimination passes.
6517
6518@item -fdump-rtl-dce
6519@opindex fdump-rtl-dce
6520Dump after the standalone dead code elimination passes.
6521
6522@item -fdump-rtl-dbr
6523@opindex fdump-rtl-dbr
6524Dump after delayed branch scheduling.
6525
6526@item -fdump-rtl-dce1
6527@itemx -fdump-rtl-dce2
6528@opindex fdump-rtl-dce1
6529@opindex fdump-rtl-dce2
6530@option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
6531the two dead store elimination passes.
6532
6533@item -fdump-rtl-eh
6534@opindex fdump-rtl-eh
6535Dump after finalization of EH handling code.
6536
6537@item -fdump-rtl-eh_ranges
6538@opindex fdump-rtl-eh_ranges
6539Dump after conversion of EH handling range regions.
6540
6541@item -fdump-rtl-expand
6542@opindex fdump-rtl-expand
6543Dump after RTL generation.
6544
6545@item -fdump-rtl-fwprop1
6546@itemx -fdump-rtl-fwprop2
6547@opindex fdump-rtl-fwprop1
6548@opindex fdump-rtl-fwprop2
6549@option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
6550dumping after the two forward propagation passes.
6551
6552@item -fdump-rtl-gcse1
6553@itemx -fdump-rtl-gcse2
6554@opindex fdump-rtl-gcse1
6555@opindex fdump-rtl-gcse2
6556@option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
6557after global common subexpression elimination.
6558
6559@item -fdump-rtl-init-regs
6560@opindex fdump-rtl-init-regs
6561Dump after the initialization of the registers.
6562
6563@item -fdump-rtl-initvals
6564@opindex fdump-rtl-initvals
6565Dump after the computation of the initial value sets.
6566
6567@item -fdump-rtl-into_cfglayout
6568@opindex fdump-rtl-into_cfglayout
6569Dump after converting to cfglayout mode.
6570
6571@item -fdump-rtl-ira
6572@opindex fdump-rtl-ira
6573Dump after iterated register allocation.
6574
6575@item -fdump-rtl-jump
6576@opindex fdump-rtl-jump
6577Dump after the second jump optimization.
6578
6579@item -fdump-rtl-loop2
6580@opindex fdump-rtl-loop2
6581@option{-fdump-rtl-loop2} enables dumping after the rtl
6582loop optimization passes.
6583
6584@item -fdump-rtl-mach
6585@opindex fdump-rtl-mach
6586Dump after performing the machine dependent reorganization pass, if that
6587pass exists.
6588
6589@item -fdump-rtl-mode_sw
6590@opindex fdump-rtl-mode_sw
6591Dump after removing redundant mode switches.
6592
6593@item -fdump-rtl-rnreg
6594@opindex fdump-rtl-rnreg
6595Dump after register renumbering.
6596
6597@item -fdump-rtl-outof_cfglayout
6598@opindex fdump-rtl-outof_cfglayout
6599Dump after converting from cfglayout mode.
6600
6601@item -fdump-rtl-peephole2
6602@opindex fdump-rtl-peephole2
6603Dump after the peephole pass.
6604
6605@item -fdump-rtl-postreload
6606@opindex fdump-rtl-postreload
6607Dump after post-reload optimizations.
6608
6609@item -fdump-rtl-pro_and_epilogue
6610@opindex fdump-rtl-pro_and_epilogue
6611Dump after generating the function prologues and epilogues.
6612
6613@item -fdump-rtl-sched1
6614@itemx -fdump-rtl-sched2
6615@opindex fdump-rtl-sched1
6616@opindex fdump-rtl-sched2
6617@option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
6618after the basic block scheduling passes.
6619
6620@item -fdump-rtl-ree
6621@opindex fdump-rtl-ree
6622Dump after sign/zero extension elimination.
6623
6624@item -fdump-rtl-seqabstr
6625@opindex fdump-rtl-seqabstr
6626Dump after common sequence discovery.
6627
6628@item -fdump-rtl-shorten
6629@opindex fdump-rtl-shorten
6630Dump after shortening branches.
6631
6632@item -fdump-rtl-sibling
6633@opindex fdump-rtl-sibling
6634Dump after sibling call optimizations.
6635
6636@item -fdump-rtl-split1
6637@itemx -fdump-rtl-split2
6638@itemx -fdump-rtl-split3
6639@itemx -fdump-rtl-split4
6640@itemx -fdump-rtl-split5
6641@opindex fdump-rtl-split1
6642@opindex fdump-rtl-split2
6643@opindex fdump-rtl-split3
6644@opindex fdump-rtl-split4
6645@opindex fdump-rtl-split5
6646These options enable dumping after five rounds of
6647instruction splitting.
6648
6649@item -fdump-rtl-sms
6650@opindex fdump-rtl-sms
6651Dump after modulo scheduling.  This pass is only run on some
6652architectures.
6653
6654@item -fdump-rtl-stack
6655@opindex fdump-rtl-stack
6656Dump after conversion from GCC's ``flat register file'' registers to the
6657x87's stack-like registers.  This pass is only run on x86 variants.
6658
6659@item -fdump-rtl-subreg1
6660@itemx -fdump-rtl-subreg2
6661@opindex fdump-rtl-subreg1
6662@opindex fdump-rtl-subreg2
6663@option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
6664the two subreg expansion passes.
6665
6666@item -fdump-rtl-unshare
6667@opindex fdump-rtl-unshare
6668Dump after all rtl has been unshared.
6669
6670@item -fdump-rtl-vartrack
6671@opindex fdump-rtl-vartrack
6672Dump after variable tracking.
6673
6674@item -fdump-rtl-vregs
6675@opindex fdump-rtl-vregs
6676Dump after converting virtual registers to hard registers.
6677
6678@item -fdump-rtl-web
6679@opindex fdump-rtl-web
6680Dump after live range splitting.
6681
6682@item -fdump-rtl-regclass
6683@itemx -fdump-rtl-subregs_of_mode_init
6684@itemx -fdump-rtl-subregs_of_mode_finish
6685@itemx -fdump-rtl-dfinit
6686@itemx -fdump-rtl-dfinish
6687@opindex fdump-rtl-regclass
6688@opindex fdump-rtl-subregs_of_mode_init
6689@opindex fdump-rtl-subregs_of_mode_finish
6690@opindex fdump-rtl-dfinit
6691@opindex fdump-rtl-dfinish
6692These dumps are defined but always produce empty files.
6693
6694@item -da
6695@itemx -fdump-rtl-all
6696@opindex da
6697@opindex fdump-rtl-all
6698Produce all the dumps listed above.
6699
6700@item -dA
6701@opindex dA
6702Annotate the assembler output with miscellaneous debugging information.
6703
6704@item -dD
6705@opindex dD
6706Dump all macro definitions, at the end of preprocessing, in addition to
6707normal output.
6708
6709@item -dH
6710@opindex dH
6711Produce a core dump whenever an error occurs.
6712
6713@item -dp
6714@opindex dp
6715Annotate the assembler output with a comment indicating which
6716pattern and alternative is used.  The length of each instruction is
6717also printed.
6718
6719@item -dP
6720@opindex dP
6721Dump the RTL in the assembler output as a comment before each instruction.
6722Also turns on @option{-dp} annotation.
6723
6724@item -dx
6725@opindex dx
6726Just generate RTL for a function instead of compiling it.  Usually used
6727with @option{-fdump-rtl-expand}.
6728@end table
6729
6730@item -fdump-noaddr
6731@opindex fdump-noaddr
6732When doing debugging dumps, suppress address output.  This makes it more
6733feasible to use diff on debugging dumps for compiler invocations with
6734different compiler binaries and/or different
6735text / bss / data / heap / stack / dso start locations.
6736
6737@item -freport-bug
6738@opindex freport-bug
6739Collect and dump debug information into temporary file if ICE in C/C++
6740compiler occured.
6741
6742@item -fdump-unnumbered
6743@opindex fdump-unnumbered
6744When doing debugging dumps, suppress instruction numbers and address output.
6745This makes it more feasible to use diff on debugging dumps for compiler
6746invocations with different options, in particular with and without
6747@option{-g}.
6748
6749@item -fdump-unnumbered-links
6750@opindex fdump-unnumbered-links
6751When doing debugging dumps (see @option{-d} option above), suppress
6752instruction numbers for the links to the previous and next instructions
6753in a sequence.
6754
6755@item -fdump-translation-unit @r{(C++ only)}
6756@itemx -fdump-translation-unit-@var{options} @r{(C++ only)}
6757@opindex fdump-translation-unit
6758Dump a representation of the tree structure for the entire translation
6759unit to a file.  The file name is made by appending @file{.tu} to the
6760source file name, and the file is created in the same directory as the
6761output file.  If the @samp{-@var{options}} form is used, @var{options}
6762controls the details of the dump as described for the
6763@option{-fdump-tree} options.
6764
6765@item -fdump-class-hierarchy @r{(C++ only)}
6766@itemx -fdump-class-hierarchy-@var{options} @r{(C++ only)}
6767@opindex fdump-class-hierarchy
6768Dump a representation of each class's hierarchy and virtual function
6769table layout to a file.  The file name is made by appending
6770@file{.class} to the source file name, and the file is created in the
6771same directory as the output file.  If the @samp{-@var{options}} form
6772is used, @var{options} controls the details of the dump as described
6773for the @option{-fdump-tree} options.
6774
6775@item -fdump-ipa-@var{switch}
6776@opindex fdump-ipa
6777Control the dumping at various stages of inter-procedural analysis
6778language tree to a file.  The file name is generated by appending a
6779switch specific suffix to the source file name, and the file is created
6780in the same directory as the output file.  The following dumps are
6781possible:
6782
6783@table @samp
6784@item all
6785Enables all inter-procedural analysis dumps.
6786
6787@item cgraph
6788Dumps information about call-graph optimization, unused function removal,
6789and inlining decisions.
6790
6791@item inline
6792Dump after function inlining.
6793
6794@end table
6795
6796@item -fdump-passes
6797@opindex fdump-passes
6798Dump the list of optimization passes that are turned on and off by
6799the current command-line options.
6800
6801@item -fdump-statistics-@var{option}
6802@opindex fdump-statistics
6803Enable and control dumping of pass statistics in a separate file.  The
6804file name is generated by appending a suffix ending in
6805@samp{.statistics} to the source file name, and the file is created in
6806the same directory as the output file.  If the @samp{-@var{option}}
6807form is used, @samp{-stats} causes counters to be summed over the
6808whole compilation unit while @samp{-details} dumps every event as
6809the passes generate them.  The default with no option is to sum
6810counters for each function compiled.
6811
6812@item -fdump-tree-@var{switch}
6813@itemx -fdump-tree-@var{switch}-@var{options}
6814@itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
6815@opindex fdump-tree
6816Control the dumping at various stages of processing the intermediate
6817language tree to a file.  The file name is generated by appending a
6818switch-specific suffix to the source file name, and the file is
6819created in the same directory as the output file. In case of
6820@option{=@var{filename}} option, the dump is output on the given file
6821instead of the auto named dump files.  If the @samp{-@var{options}}
6822form is used, @var{options} is a list of @samp{-} separated options
6823which control the details of the dump.  Not all options are applicable
6824to all dumps; those that are not meaningful are ignored.  The
6825following options are available
6826
6827@table @samp
6828@item address
6829Print the address of each node.  Usually this is not meaningful as it
6830changes according to the environment and source file.  Its primary use
6831is for tying up a dump file with a debug environment.
6832@item asmname
6833If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
6834in the dump instead of @code{DECL_NAME}.  Its primary use is ease of
6835use working backward from mangled names in the assembly file.
6836@item slim
6837When dumping front-end intermediate representations, inhibit dumping
6838of members of a scope or body of a function merely because that scope
6839has been reached.  Only dump such items when they are directly reachable
6840by some other path.
6841
6842When dumping pretty-printed trees, this option inhibits dumping the
6843bodies of control structures.
6844
6845When dumping RTL, print the RTL in slim (condensed) form instead of
6846the default LISP-like representation.
6847@item raw
6848Print a raw representation of the tree.  By default, trees are
6849pretty-printed into a C-like representation.
6850@item details
6851Enable more detailed dumps (not honored by every dump option). Also
6852include information from the optimization passes.
6853@item stats
6854Enable dumping various statistics about the pass (not honored by every dump
6855option).
6856@item blocks
6857Enable showing basic block boundaries (disabled in raw dumps).
6858@item graph
6859For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
6860dump a representation of the control flow graph suitable for viewing with
6861GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}.  Each function in
6862the file is pretty-printed as a subgraph, so that GraphViz can render them
6863all in a single plot.
6864
6865This option currently only works for RTL dumps, and the RTL is always
6866dumped in slim form.
6867@item vops
6868Enable showing virtual operands for every statement.
6869@item lineno
6870Enable showing line numbers for statements.
6871@item uid
6872Enable showing the unique ID (@code{DECL_UID}) for each variable.
6873@item verbose
6874Enable showing the tree dump for each statement.
6875@item eh
6876Enable showing the EH region number holding each statement.
6877@item scev
6878Enable showing scalar evolution analysis details.
6879@item optimized
6880Enable showing optimization information (only available in certain
6881passes).
6882@item missed
6883Enable showing missed optimization information (only available in certain
6884passes).
6885@item note
6886Enable other detailed optimization information (only available in
6887certain passes).
6888@item =@var{filename}
6889Instead of an auto named dump file, output into the given file
6890name. The file names @file{stdout} and @file{stderr} are treated
6891specially and are considered already open standard streams. For
6892example,
6893
6894@smallexample
6895gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump
6896     -fdump-tree-pre=stderr file.c
6897@end smallexample
6898
6899outputs vectorizer dump into @file{foo.dump}, while the PRE dump is
6900output on to @file{stderr}. If two conflicting dump filenames are
6901given for the same pass, then the latter option overrides the earlier
6902one.
6903
6904@item all
6905Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
6906and @option{lineno}.
6907
6908@item optall
6909Turn on all optimization options, i.e., @option{optimized},
6910@option{missed}, and @option{note}.
6911@end table
6912
6913The following tree dumps are possible:
6914@table @samp
6915
6916@item original
6917@opindex fdump-tree-original
6918Dump before any tree based optimization, to @file{@var{file}.original}.
6919
6920@item optimized
6921@opindex fdump-tree-optimized
6922Dump after all tree based optimization, to @file{@var{file}.optimized}.
6923
6924@item gimple
6925@opindex fdump-tree-gimple
6926Dump each function before and after the gimplification pass to a file.  The
6927file name is made by appending @file{.gimple} to the source file name.
6928
6929@item cfg
6930@opindex fdump-tree-cfg
6931Dump the control flow graph of each function to a file.  The file name is
6932made by appending @file{.cfg} to the source file name.
6933
6934@item ch
6935@opindex fdump-tree-ch
6936Dump each function after copying loop headers.  The file name is made by
6937appending @file{.ch} to the source file name.
6938
6939@item ssa
6940@opindex fdump-tree-ssa
6941Dump SSA related information to a file.  The file name is made by appending
6942@file{.ssa} to the source file name.
6943
6944@item alias
6945@opindex fdump-tree-alias
6946Dump aliasing information for each function.  The file name is made by
6947appending @file{.alias} to the source file name.
6948
6949@item ccp
6950@opindex fdump-tree-ccp
6951Dump each function after CCP@.  The file name is made by appending
6952@file{.ccp} to the source file name.
6953
6954@item storeccp
6955@opindex fdump-tree-storeccp
6956Dump each function after STORE-CCP@.  The file name is made by appending
6957@file{.storeccp} to the source file name.
6958
6959@item pre
6960@opindex fdump-tree-pre
6961Dump trees after partial redundancy elimination.  The file name is made
6962by appending @file{.pre} to the source file name.
6963
6964@item fre
6965@opindex fdump-tree-fre
6966Dump trees after full redundancy elimination.  The file name is made
6967by appending @file{.fre} to the source file name.
6968
6969@item copyprop
6970@opindex fdump-tree-copyprop
6971Dump trees after copy propagation.  The file name is made
6972by appending @file{.copyprop} to the source file name.
6973
6974@item store_copyprop
6975@opindex fdump-tree-store_copyprop
6976Dump trees after store copy-propagation.  The file name is made
6977by appending @file{.store_copyprop} to the source file name.
6978
6979@item dce
6980@opindex fdump-tree-dce
6981Dump each function after dead code elimination.  The file name is made by
6982appending @file{.dce} to the source file name.
6983
6984@item sra
6985@opindex fdump-tree-sra
6986Dump each function after performing scalar replacement of aggregates.  The
6987file name is made by appending @file{.sra} to the source file name.
6988
6989@item sink
6990@opindex fdump-tree-sink
6991Dump each function after performing code sinking.  The file name is made
6992by appending @file{.sink} to the source file name.
6993
6994@item dom
6995@opindex fdump-tree-dom
6996Dump each function after applying dominator tree optimizations.  The file
6997name is made by appending @file{.dom} to the source file name.
6998
6999@item dse
7000@opindex fdump-tree-dse
7001Dump each function after applying dead store elimination.  The file
7002name is made by appending @file{.dse} to the source file name.
7003
7004@item phiopt
7005@opindex fdump-tree-phiopt
7006Dump each function after optimizing PHI nodes into straightline code.  The file
7007name is made by appending @file{.phiopt} to the source file name.
7008
7009@item forwprop
7010@opindex fdump-tree-forwprop
7011Dump each function after forward propagating single use variables.  The file
7012name is made by appending @file{.forwprop} to the source file name.
7013
7014@item copyrename
7015@opindex fdump-tree-copyrename
7016Dump each function after applying the copy rename optimization.  The file
7017name is made by appending @file{.copyrename} to the source file name.
7018
7019@item nrv
7020@opindex fdump-tree-nrv
7021Dump each function after applying the named return value optimization on
7022generic trees.  The file name is made by appending @file{.nrv} to the source
7023file name.
7024
7025@item vect
7026@opindex fdump-tree-vect
7027Dump each function after applying vectorization of loops.  The file name is
7028made by appending @file{.vect} to the source file name.
7029
7030@item slp
7031@opindex fdump-tree-slp
7032Dump each function after applying vectorization of basic blocks.  The file name
7033is made by appending @file{.slp} to the source file name.
7034
7035@item vrp
7036@opindex fdump-tree-vrp
7037Dump each function after Value Range Propagation (VRP).  The file name
7038is made by appending @file{.vrp} to the source file name.
7039
7040@item all
7041@opindex fdump-tree-all
7042Enable all the available tree dumps with the flags provided in this option.
7043@end table
7044
7045@item -fopt-info
7046@itemx -fopt-info-@var{options}
7047@itemx -fopt-info-@var{options}=@var{filename}
7048@opindex fopt-info
7049Controls optimization dumps from various optimization passes. If the
7050@samp{-@var{options}} form is used, @var{options} is a list of
7051@samp{-} separated option keywords to select the dump details and
7052optimizations.
7053
7054The @var{options} can be divided into two groups: options describing the
7055verbosity of the dump, and options describing which optimizations
7056should be included. The options from both the groups can be freely
7057mixed as they are non-overlapping. However, in case of any conflicts,
7058the later options override the earlier options on the command
7059line.
7060
7061The following options control the dump verbosity:
7062
7063@table @samp
7064@item optimized
7065Print information when an optimization is successfully applied. It is
7066up to a pass to decide which information is relevant. For example, the
7067vectorizer passes print the source location of loops which are
7068successfully vectorized.
7069@item missed
7070Print information about missed optimizations. Individual passes
7071control which information to include in the output.
7072@item note
7073Print verbose information about optimizations, such as certain
7074transformations, more detailed messages about decisions etc.
7075@item all
7076Print detailed optimization information. This includes
7077@samp{optimized}, @samp{missed}, and @samp{note}.
7078@end table
7079
7080One or more of the following option keywords can be used to describe a
7081group of optimizations:
7082
7083@table @samp
7084@item ipa
7085Enable dumps from all interprocedural optimizations.
7086@item loop
7087Enable dumps from all loop optimizations.
7088@item inline
7089Enable dumps from all inlining optimizations.
7090@item vec
7091Enable dumps from all vectorization optimizations.
7092@item optall
7093Enable dumps from all optimizations. This is a superset of
7094the optimization groups listed above.
7095@end table
7096
7097If @var{options} is
7098omitted, it defaults to @samp{optimized-optall}, which means to dump all
7099info about successful optimizations from all the passes.
7100
7101If the @var{filename} is provided, then the dumps from all the
7102applicable optimizations are concatenated into the @var{filename}.
7103Otherwise the dump is output onto @file{stderr}. Though multiple
7104@option{-fopt-info} options are accepted, only one of them can include
7105a @var{filename}. If other filenames are provided then all but the
7106first such option are ignored.
7107
7108Note that the output @var{filename} is overwritten
7109in case of multiple translation units. If a combined output from
7110multiple translation units is desired, @file{stderr} should be used
7111instead.
7112
7113In the following example, the optimization info is output to
7114@file{stderr}:
7115
7116@smallexample
7117gcc -O3 -fopt-info
7118@end smallexample
7119
7120This example:
7121@smallexample
7122gcc -O3 -fopt-info-missed=missed.all
7123@end smallexample
7124
7125@noindent
7126outputs missed optimization report from all the passes into
7127@file{missed.all}, and this one:
7128
7129@smallexample
7130gcc -O2 -ftree-vectorize -fopt-info-vec-missed
7131@end smallexample
7132
7133@noindent
7134prints information about missed optimization opportunities from
7135vectorization passes on @file{stderr}.
7136Note that @option{-fopt-info-vec-missed} is equivalent to
7137@option{-fopt-info-missed-vec}.
7138
7139As another example,
7140@smallexample
7141gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
7142@end smallexample
7143
7144@noindent
7145outputs information about missed optimizations as well as
7146optimized locations from all the inlining passes into
7147@file{inline.txt}.
7148
7149Finally, consider:
7150
7151@smallexample
7152gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
7153@end smallexample
7154
7155@noindent
7156Here the two output filenames @file{vec.miss} and @file{loop.opt} are
7157in conflict since only one output file is allowed. In this case, only
7158the first option takes effect and the subsequent options are
7159ignored. Thus only @file{vec.miss} is produced which contains
7160dumps from the vectorizer about missed opportunities.
7161
7162@item -frandom-seed=@var{string}
7163@opindex frandom-seed
7164This option provides a seed that GCC uses in place of
7165random numbers in generating certain symbol names
7166that have to be different in every compiled file.  It is also used to
7167place unique stamps in coverage data files and the object files that
7168produce them.  You can use the @option{-frandom-seed} option to produce
7169reproducibly identical object files.
7170
7171The @var{string} can either be a number (decimal, octal or hex) or an
7172arbitrary string (in which case it's converted to a number by
7173computing CRC32).
7174
7175The @var{string} should be different for every file you compile.
7176
7177@item -fsched-verbose=@var{n}
7178@opindex fsched-verbose
7179On targets that use instruction scheduling, this option controls the
7180amount of debugging output the scheduler prints.  This information is
7181written to standard error, unless @option{-fdump-rtl-sched1} or
7182@option{-fdump-rtl-sched2} is specified, in which case it is output
7183to the usual dump listing file, @file{.sched1} or @file{.sched2}
7184respectively.  However for @var{n} greater than nine, the output is
7185always printed to standard error.
7186
7187For @var{n} greater than zero, @option{-fsched-verbose} outputs the
7188same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
7189For @var{n} greater than one, it also output basic block probabilities,
7190detailed ready list information and unit/insn info.  For @var{n} greater
7191than two, it includes RTL at abort point, control-flow and regions info.
7192And for @var{n} over four, @option{-fsched-verbose} also includes
7193dependence info.
7194
7195@item -save-temps
7196@itemx -save-temps=cwd
7197@opindex save-temps
7198Store the usual ``temporary'' intermediate files permanently; place them
7199in the current directory and name them based on the source file.  Thus,
7200compiling @file{foo.c} with @option{-c -save-temps} produces files
7201@file{foo.i} and @file{foo.s}, as well as @file{foo.o}.  This creates a
7202preprocessed @file{foo.i} output file even though the compiler now
7203normally uses an integrated preprocessor.
7204
7205When used in combination with the @option{-x} command-line option,
7206@option{-save-temps} is sensible enough to avoid over writing an
7207input source file with the same extension as an intermediate file.
7208The corresponding intermediate file may be obtained by renaming the
7209source file before using @option{-save-temps}.
7210
7211If you invoke GCC in parallel, compiling several different source
7212files that share a common base name in different subdirectories or the
7213same source file compiled for multiple output destinations, it is
7214likely that the different parallel compilers will interfere with each
7215other, and overwrite the temporary files.  For instance:
7216
7217@smallexample
7218gcc -save-temps -o outdir1/foo.o indir1/foo.c&
7219gcc -save-temps -o outdir2/foo.o indir2/foo.c&
7220@end smallexample
7221
7222may result in @file{foo.i} and @file{foo.o} being written to
7223simultaneously by both compilers.
7224
7225@item -save-temps=obj
7226@opindex save-temps=obj
7227Store the usual ``temporary'' intermediate files permanently.  If the
7228@option{-o} option is used, the temporary files are based on the
7229object file.  If the @option{-o} option is not used, the
7230@option{-save-temps=obj} switch behaves like @option{-save-temps}.
7231
7232For example:
7233
7234@smallexample
7235gcc -save-temps=obj -c foo.c
7236gcc -save-temps=obj -c bar.c -o dir/xbar.o
7237gcc -save-temps=obj foobar.c -o dir2/yfoobar
7238@end smallexample
7239
7240@noindent
7241creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
7242@file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
7243@file{dir2/yfoobar.o}.
7244
7245@item -time@r{[}=@var{file}@r{]}
7246@opindex time
7247Report the CPU time taken by each subprocess in the compilation
7248sequence.  For C source files, this is the compiler proper and assembler
7249(plus the linker if linking is done).
7250
7251Without the specification of an output file, the output looks like this:
7252
7253@smallexample
7254# cc1 0.12 0.01
7255# as 0.00 0.01
7256@end smallexample
7257
7258The first number on each line is the ``user time'', that is time spent
7259executing the program itself.  The second number is ``system time'',
7260time spent executing operating system routines on behalf of the program.
7261Both numbers are in seconds.
7262
7263With the specification of an output file, the output is appended to the
7264named file, and it looks like this:
7265
7266@smallexample
72670.12 0.01 cc1 @var{options}
72680.00 0.01 as @var{options}
7269@end smallexample
7270
7271The ``user time'' and the ``system time'' are moved before the program
7272name, and the options passed to the program are displayed, so that one
7273can later tell what file was being compiled, and with which options.
7274
7275@item -fvar-tracking
7276@opindex fvar-tracking
7277Run variable tracking pass.  It computes where variables are stored at each
7278position in code.  Better debugging information is then generated
7279(if the debugging information format supports this information).
7280
7281It is enabled by default when compiling with optimization (@option{-Os},
7282@option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
7283the debug info format supports it.
7284
7285@item -fvar-tracking-assignments
7286@opindex fvar-tracking-assignments
7287@opindex fno-var-tracking-assignments
7288Annotate assignments to user variables early in the compilation and
7289attempt to carry the annotations over throughout the compilation all the
7290way to the end, in an attempt to improve debug information while
7291optimizing.  Use of @option{-gdwarf-4} is recommended along with it.
7292
7293It can be enabled even if var-tracking is disabled, in which case
7294annotations are created and maintained, but discarded at the end.
7295By default, this flag is enabled together with @option{-fvar-tracking},
7296except when selective scheduling is enabled.
7297
7298@item -fvar-tracking-assignments-toggle
7299@opindex fvar-tracking-assignments-toggle
7300@opindex fno-var-tracking-assignments-toggle
7301Toggle @option{-fvar-tracking-assignments}, in the same way that
7302@option{-gtoggle} toggles @option{-g}.
7303
7304@item -print-file-name=@var{library}
7305@opindex print-file-name
7306Print the full absolute name of the library file @var{library} that
7307would be used when linking---and don't do anything else.  With this
7308option, GCC does not compile or link anything; it just prints the
7309file name.
7310
7311@item -print-multi-directory
7312@opindex print-multi-directory
7313Print the directory name corresponding to the multilib selected by any
7314other switches present in the command line.  This directory is supposed
7315to exist in @env{GCC_EXEC_PREFIX}.
7316
7317@item -print-multi-lib
7318@opindex print-multi-lib
7319Print the mapping from multilib directory names to compiler switches
7320that enable them.  The directory name is separated from the switches by
7321@samp{;}, and each switch starts with an @samp{@@} instead of the
7322@samp{-}, without spaces between multiple switches.  This is supposed to
7323ease shell processing.
7324
7325@item -print-multi-os-directory
7326@opindex print-multi-os-directory
7327Print the path to OS libraries for the selected
7328multilib, relative to some @file{lib} subdirectory.  If OS libraries are
7329present in the @file{lib} subdirectory and no multilibs are used, this is
7330usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
7331sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
7332@file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
7333subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
7334
7335@item -print-multiarch
7336@opindex print-multiarch
7337Print the path to OS libraries for the selected multiarch,
7338relative to some @file{lib} subdirectory.
7339
7340@item -print-prog-name=@var{program}
7341@opindex print-prog-name
7342Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
7343
7344@item -print-libgcc-file-name
7345@opindex print-libgcc-file-name
7346Same as @option{-print-file-name=libgcc.a}.
7347
7348This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
7349but you do want to link with @file{libgcc.a}.  You can do:
7350
7351@smallexample
7352gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
7353@end smallexample
7354
7355@item -print-search-dirs
7356@opindex print-search-dirs
7357Print the name of the configured installation directory and a list of
7358program and library directories @command{gcc} searches---and don't do anything else.
7359
7360This is useful when @command{gcc} prints the error message
7361@samp{installation problem, cannot exec cpp0: No such file or directory}.
7362To resolve this you either need to put @file{cpp0} and the other compiler
7363components where @command{gcc} expects to find them, or you can set the environment
7364variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
7365Don't forget the trailing @samp{/}.
7366@xref{Environment Variables}.
7367
7368@item -print-sysroot
7369@opindex print-sysroot
7370Print the target sysroot directory that is used during
7371compilation.  This is the target sysroot specified either at configure
7372time or using the @option{--sysroot} option, possibly with an extra
7373suffix that depends on compilation options.  If no target sysroot is
7374specified, the option prints nothing.
7375
7376@item -print-sysroot-headers-suffix
7377@opindex print-sysroot-headers-suffix
7378Print the suffix added to the target sysroot when searching for
7379headers, or give an error if the compiler is not configured with such
7380a suffix---and don't do anything else.
7381
7382@item -dumpmachine
7383@opindex dumpmachine
7384Print the compiler's target machine (for example,
7385@samp{i686-pc-linux-gnu})---and don't do anything else.
7386
7387@item -dumpversion
7388@opindex dumpversion
7389Print the compiler version (for example, @code{3.0})---and don't do
7390anything else.
7391
7392@item -dumpspecs
7393@opindex dumpspecs
7394Print the compiler's built-in specs---and don't do anything else.  (This
7395is used when GCC itself is being built.)  @xref{Spec Files}.
7396
7397@item -fno-eliminate-unused-debug-types
7398@opindex feliminate-unused-debug-types
7399@opindex fno-eliminate-unused-debug-types
7400Normally, when producing DWARF 2 output, GCC avoids producing debug symbol
7401output for types that are nowhere used in the source file being compiled.
7402Sometimes it is useful to have GCC emit debugging
7403information for all types declared in a compilation
7404unit, regardless of whether or not they are actually used
7405in that compilation unit, for example
7406if, in the debugger, you want to cast a value to a type that is
7407not actually used in your program (but is declared).  More often,
7408however, this results in a significant amount of wasted space.
7409@end table
7410
7411@node Optimize Options
7412@section Options That Control Optimization
7413@cindex optimize options
7414@cindex options, optimization
7415
7416These options control various sorts of optimizations.
7417
7418Without any optimization option, the compiler's goal is to reduce the
7419cost of compilation and to make debugging produce the expected
7420results.  Statements are independent: if you stop the program with a
7421breakpoint between statements, you can then assign a new value to any
7422variable or change the program counter to any other statement in the
7423function and get exactly the results you expect from the source
7424code.
7425
7426Turning on optimization flags makes the compiler attempt to improve
7427the performance and/or code size at the expense of compilation time
7428and possibly the ability to debug the program.
7429
7430The compiler performs optimization based on the knowledge it has of the
7431program.  Compiling multiple files at once to a single output file mode allows
7432the compiler to use information gained from all of the files when compiling
7433each of them.
7434
7435Not all optimizations are controlled directly by a flag.  Only
7436optimizations that have a flag are listed in this section.
7437
7438Most optimizations are only enabled if an @option{-O} level is set on
7439the command line.  Otherwise they are disabled, even if individual
7440optimization flags are specified.
7441
7442Depending on the target and how GCC was configured, a slightly different
7443set of optimizations may be enabled at each @option{-O} level than
7444those listed here.  You can invoke GCC with @option{-Q --help=optimizers}
7445to find out the exact set of optimizations that are enabled at each level.
7446@xref{Overall Options}, for examples.
7447
7448@table @gcctabopt
7449@item -O
7450@itemx -O1
7451@opindex O
7452@opindex O1
7453Optimize.  Optimizing compilation takes somewhat more time, and a lot
7454more memory for a large function.
7455
7456With @option{-O}, the compiler tries to reduce code size and execution
7457time, without performing any optimizations that take a great deal of
7458compilation time.
7459
7460@option{-O} turns on the following optimization flags:
7461@gccoptlist{
7462-fauto-inc-dec @gol
7463-fbranch-count-reg @gol
7464-fcombine-stack-adjustments @gol
7465-fcompare-elim @gol
7466-fcprop-registers @gol
7467-fdce @gol
7468-fdefer-pop @gol
7469-fdelayed-branch @gol
7470-fdse @gol
7471-fforward-propagate @gol
7472-fguess-branch-probability @gol
7473-fif-conversion2 @gol
7474-fif-conversion @gol
7475-finline-functions-called-once @gol
7476-fipa-pure-const @gol
7477-fipa-profile @gol
7478-fipa-reference @gol
7479-fmerge-constants @gol
7480-fmove-loop-invariants @gol
7481-fshrink-wrap @gol
7482-fsplit-wide-types @gol
7483-ftree-bit-ccp @gol
7484-ftree-ccp @gol
7485-fssa-phiopt @gol
7486-ftree-ch @gol
7487-ftree-copy-prop @gol
7488-ftree-copyrename @gol
7489-ftree-dce @gol
7490-ftree-dominator-opts @gol
7491-ftree-dse @gol
7492-ftree-forwprop @gol
7493-ftree-fre @gol
7494-ftree-phiprop @gol
7495-ftree-sink @gol
7496-ftree-slsr @gol
7497-ftree-sra @gol
7498-ftree-pta @gol
7499-ftree-ter @gol
7500-funit-at-a-time}
7501
7502@option{-O} also turns on @option{-fomit-frame-pointer} on machines
7503where doing so does not interfere with debugging.
7504
7505@item -O2
7506@opindex O2
7507Optimize even more.  GCC performs nearly all supported optimizations
7508that do not involve a space-speed tradeoff.
7509As compared to @option{-O}, this option increases both compilation time
7510and the performance of the generated code.
7511
7512@option{-O2} turns on all optimization flags specified by @option{-O}.  It
7513also turns on the following optimization flags:
7514@gccoptlist{-fthread-jumps @gol
7515-falign-functions  -falign-jumps @gol
7516-falign-loops  -falign-labels @gol
7517-fcaller-saves @gol
7518-fcrossjumping @gol
7519-fcse-follow-jumps  -fcse-skip-blocks @gol
7520-fdelete-null-pointer-checks @gol
7521-fdevirtualize -fdevirtualize-speculatively @gol
7522-fexpensive-optimizations @gol
7523-fgcse  -fgcse-lm  @gol
7524-fhoist-adjacent-loads @gol
7525-finline-small-functions @gol
7526-findirect-inlining @gol
7527-fipa-cp @gol
7528-fipa-cp-alignment @gol
7529-fipa-sra @gol
7530-fipa-icf @gol
7531-fisolate-erroneous-paths-dereference @gol
7532-flra-remat @gol
7533-foptimize-sibling-calls @gol
7534-foptimize-strlen @gol
7535-fpartial-inlining @gol
7536-fpeephole2 @gol
7537-freorder-blocks -freorder-blocks-and-partition -freorder-functions @gol
7538-frerun-cse-after-loop  @gol
7539-fsched-interblock  -fsched-spec @gol
7540-fschedule-insns  -fschedule-insns2 @gol
7541-fstrict-aliasing -fstrict-overflow @gol
7542-ftree-builtin-call-dce @gol
7543-ftree-switch-conversion -ftree-tail-merge @gol
7544-ftree-pre @gol
7545-ftree-vrp @gol
7546-fipa-ra}
7547
7548Please note the warning under @option{-fgcse} about
7549invoking @option{-O2} on programs that use computed gotos.
7550
7551@item -O3
7552@opindex O3
7553Optimize yet more.  @option{-O3} turns on all optimizations specified
7554by @option{-O2} and also turns on the @option{-finline-functions},
7555@option{-funswitch-loops}, @option{-fpredictive-commoning},
7556@option{-fgcse-after-reload}, @option{-ftree-loop-vectorize},
7557@option{-ftree-loop-distribute-patterns},
7558@option{-ftree-slp-vectorize}, @option{-fvect-cost-model},
7559@option{-ftree-partial-pre} and @option{-fipa-cp-clone} options.
7560
7561@item -O0
7562@opindex O0
7563Reduce compilation time and make debugging produce the expected
7564results.  This is the default.
7565
7566@item -Os
7567@opindex Os
7568Optimize for size.  @option{-Os} enables all @option{-O2} optimizations that
7569do not typically increase code size.  It also performs further
7570optimizations designed to reduce code size.
7571
7572@option{-Os} disables the following optimization flags:
7573@gccoptlist{-falign-functions  -falign-jumps  -falign-loops @gol
7574-falign-labels  -freorder-blocks  -freorder-blocks-and-partition @gol
7575-fprefetch-loop-arrays}
7576
7577@item -Ofast
7578@opindex Ofast
7579Disregard strict standards compliance.  @option{-Ofast} enables all
7580@option{-O3} optimizations.  It also enables optimizations that are not
7581valid for all standard-compliant programs.
7582It turns on @option{-ffast-math} and the Fortran-specific
7583@option{-fno-protect-parens} and @option{-fstack-arrays}.
7584
7585@item -Og
7586@opindex Og
7587Optimize debugging experience.  @option{-Og} enables optimizations
7588that do not interfere with debugging. It should be the optimization
7589level of choice for the standard edit-compile-debug cycle, offering
7590a reasonable level of optimization while maintaining fast compilation
7591and a good debugging experience.
7592
7593If you use multiple @option{-O} options, with or without level numbers,
7594the last such option is the one that is effective.
7595@end table
7596
7597Options of the form @option{-f@var{flag}} specify machine-independent
7598flags.  Most flags have both positive and negative forms; the negative
7599form of @option{-ffoo} is @option{-fno-foo}.  In the table
7600below, only one of the forms is listed---the one you typically
7601use.  You can figure out the other form by either removing @samp{no-}
7602or adding it.
7603
7604The following options control specific optimizations.  They are either
7605activated by @option{-O} options or are related to ones that are.  You
7606can use the following flags in the rare cases when ``fine-tuning'' of
7607optimizations to be performed is desired.
7608
7609@table @gcctabopt
7610@item -fno-defer-pop
7611@opindex fno-defer-pop
7612Always pop the arguments to each function call as soon as that function
7613returns.  For machines that must pop arguments after a function call,
7614the compiler normally lets arguments accumulate on the stack for several
7615function calls and pops them all at once.
7616
7617Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7618
7619@item -fforward-propagate
7620@opindex fforward-propagate
7621Perform a forward propagation pass on RTL@.  The pass tries to combine two
7622instructions and checks if the result can be simplified.  If loop unrolling
7623is active, two passes are performed and the second is scheduled after
7624loop unrolling.
7625
7626This option is enabled by default at optimization levels @option{-O},
7627@option{-O2}, @option{-O3}, @option{-Os}.
7628
7629@item -ffp-contract=@var{style}
7630@opindex ffp-contract
7631@option{-ffp-contract=off} disables floating-point expression contraction.
7632@option{-ffp-contract=fast} enables floating-point expression contraction
7633such as forming of fused multiply-add operations if the target has
7634native support for them.
7635@option{-ffp-contract=on} enables floating-point expression contraction
7636if allowed by the language standard.  This is currently not implemented
7637and treated equal to @option{-ffp-contract=off}.
7638
7639The default is @option{-ffp-contract=fast}.
7640
7641@item -fomit-frame-pointer
7642@opindex fomit-frame-pointer
7643Don't keep the frame pointer in a register for functions that
7644don't need one.  This avoids the instructions to save, set up and
7645restore frame pointers; it also makes an extra register available
7646in many functions.  @strong{It also makes debugging impossible on
7647some machines.}
7648
7649On some machines, such as the VAX, this flag has no effect, because
7650the standard calling sequence automatically handles the frame pointer
7651and nothing is saved by pretending it doesn't exist.  The
7652machine-description macro @code{FRAME_POINTER_REQUIRED} controls
7653whether a target machine supports this flag.  @xref{Registers,,Register
7654Usage, gccint, GNU Compiler Collection (GCC) Internals}.
7655
7656The default setting (when not optimizing for
7657size) for 32-bit GNU/Linux x86 and 32-bit Darwin x86 targets is
7658@option{-fomit-frame-pointer}.  You can configure GCC with the
7659@option{--enable-frame-pointer} configure option to change the default.
7660
7661Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7662
7663@item -foptimize-sibling-calls
7664@opindex foptimize-sibling-calls
7665Optimize sibling and tail recursive calls.
7666
7667Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7668
7669@item -foptimize-strlen
7670@opindex foptimize-strlen
7671Optimize various standard C string functions (e.g. @code{strlen},
7672@code{strchr} or @code{strcpy}) and
7673their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
7674
7675Enabled at levels @option{-O2}, @option{-O3}.
7676
7677@item -fno-inline
7678@opindex fno-inline
7679Do not expand any functions inline apart from those marked with
7680the @code{always_inline} attribute.  This is the default when not
7681optimizing.
7682
7683Single functions can be exempted from inlining by marking them
7684with the @code{noinline} attribute.
7685
7686@item -finline-small-functions
7687@opindex finline-small-functions
7688Integrate functions into their callers when their body is smaller than expected
7689function call code (so overall size of program gets smaller).  The compiler
7690heuristically decides which functions are simple enough to be worth integrating
7691in this way.  This inlining applies to all functions, even those not declared
7692inline.
7693
7694Enabled at level @option{-O2}.
7695
7696@item -findirect-inlining
7697@opindex findirect-inlining
7698Inline also indirect calls that are discovered to be known at compile
7699time thanks to previous inlining.  This option has any effect only
7700when inlining itself is turned on by the @option{-finline-functions}
7701or @option{-finline-small-functions} options.
7702
7703Enabled at level @option{-O2}.
7704
7705@item -finline-functions
7706@opindex finline-functions
7707Consider all functions for inlining, even if they are not declared inline.
7708The compiler heuristically decides which functions are worth integrating
7709in this way.
7710
7711If all calls to a given function are integrated, and the function is
7712declared @code{static}, then the function is normally not output as
7713assembler code in its own right.
7714
7715Enabled at level @option{-O3}.
7716
7717@item -finline-functions-called-once
7718@opindex finline-functions-called-once
7719Consider all @code{static} functions called once for inlining into their
7720caller even if they are not marked @code{inline}.  If a call to a given
7721function is integrated, then the function is not output as assembler code
7722in its own right.
7723
7724Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os}.
7725
7726@item -fearly-inlining
7727@opindex fearly-inlining
7728Inline functions marked by @code{always_inline} and functions whose body seems
7729smaller than the function call overhead early before doing
7730@option{-fprofile-generate} instrumentation and real inlining pass.  Doing so
7731makes profiling significantly cheaper and usually inlining faster on programs
7732having large chains of nested wrapper functions.
7733
7734Enabled by default.
7735
7736@item -fipa-sra
7737@opindex fipa-sra
7738Perform interprocedural scalar replacement of aggregates, removal of
7739unused parameters and replacement of parameters passed by reference
7740by parameters passed by value.
7741
7742Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
7743
7744@item -finline-limit=@var{n}
7745@opindex finline-limit
7746By default, GCC limits the size of functions that can be inlined.  This flag
7747allows coarse control of this limit.  @var{n} is the size of functions that
7748can be inlined in number of pseudo instructions.
7749
7750Inlining is actually controlled by a number of parameters, which may be
7751specified individually by using @option{--param @var{name}=@var{value}}.
7752The @option{-finline-limit=@var{n}} option sets some of these parameters
7753as follows:
7754
7755@table @gcctabopt
7756@item max-inline-insns-single
7757is set to @var{n}/2.
7758@item max-inline-insns-auto
7759is set to @var{n}/2.
7760@end table
7761
7762See below for a documentation of the individual
7763parameters controlling inlining and for the defaults of these parameters.
7764
7765@emph{Note:} there may be no value to @option{-finline-limit} that results
7766in default behavior.
7767
7768@emph{Note:} pseudo instruction represents, in this particular context, an
7769abstract measurement of function's size.  In no way does it represent a count
7770of assembly instructions and as such its exact meaning might change from one
7771release to an another.
7772
7773@item -fno-keep-inline-dllexport
7774@opindex fno-keep-inline-dllexport
7775This is a more fine-grained version of @option{-fkeep-inline-functions},
7776which applies only to functions that are declared using the @code{dllexport}
7777attribute or declspec (@xref{Function Attributes,,Declaring Attributes of
7778Functions}.)
7779
7780@item -fkeep-inline-functions
7781@opindex fkeep-inline-functions
7782In C, emit @code{static} functions that are declared @code{inline}
7783into the object file, even if the function has been inlined into all
7784of its callers.  This switch does not affect functions using the
7785@code{extern inline} extension in GNU C90@.  In C++, emit any and all
7786inline functions into the object file.
7787
7788@item -fkeep-static-consts
7789@opindex fkeep-static-consts
7790Emit variables declared @code{static const} when optimization isn't turned
7791on, even if the variables aren't referenced.
7792
7793GCC enables this option by default.  If you want to force the compiler to
7794check if a variable is referenced, regardless of whether or not
7795optimization is turned on, use the @option{-fno-keep-static-consts} option.
7796
7797@item -fmerge-constants
7798@opindex fmerge-constants
7799Attempt to merge identical constants (string constants and floating-point
7800constants) across compilation units.
7801
7802This option is the default for optimized compilation if the assembler and
7803linker support it.  Use @option{-fno-merge-constants} to inhibit this
7804behavior.
7805
7806Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7807
7808@item -fmerge-all-constants
7809@opindex fmerge-all-constants
7810Attempt to merge identical constants and identical variables.
7811
7812This option implies @option{-fmerge-constants}.  In addition to
7813@option{-fmerge-constants} this considers e.g.@: even constant initialized
7814arrays or initialized constant variables with integral or floating-point
7815types.  Languages like C or C++ require each variable, including multiple
7816instances of the same variable in recursive calls, to have distinct locations,
7817so using this option results in non-conforming
7818behavior.
7819
7820@item -fmodulo-sched
7821@opindex fmodulo-sched
7822Perform swing modulo scheduling immediately before the first scheduling
7823pass.  This pass looks at innermost loops and reorders their
7824instructions by overlapping different iterations.
7825
7826@item -fmodulo-sched-allow-regmoves
7827@opindex fmodulo-sched-allow-regmoves
7828Perform more aggressive SMS-based modulo scheduling with register moves
7829allowed.  By setting this flag certain anti-dependences edges are
7830deleted, which triggers the generation of reg-moves based on the
7831life-range analysis.  This option is effective only with
7832@option{-fmodulo-sched} enabled.
7833
7834@item -fno-branch-count-reg
7835@opindex fno-branch-count-reg
7836Do not use ``decrement and branch'' instructions on a count register,
7837but instead generate a sequence of instructions that decrement a
7838register, compare it against zero, then branch based upon the result.
7839This option is only meaningful on architectures that support such
7840instructions, which include x86, PowerPC, IA-64 and S/390.
7841
7842Enabled by default at @option{-O1} and higher.
7843
7844The default is @option{-fbranch-count-reg}.
7845
7846@item -fno-function-cse
7847@opindex fno-function-cse
7848Do not put function addresses in registers; make each instruction that
7849calls a constant function contain the function's address explicitly.
7850
7851This option results in less efficient code, but some strange hacks
7852that alter the assembler output may be confused by the optimizations
7853performed when this option is not used.
7854
7855The default is @option{-ffunction-cse}
7856
7857@item -fno-zero-initialized-in-bss
7858@opindex fno-zero-initialized-in-bss
7859If the target supports a BSS section, GCC by default puts variables that
7860are initialized to zero into BSS@.  This can save space in the resulting
7861code.
7862
7863This option turns off this behavior because some programs explicitly
7864rely on variables going to the data section---e.g., so that the
7865resulting executable can find the beginning of that section and/or make
7866assumptions based on that.
7867
7868The default is @option{-fzero-initialized-in-bss}.
7869
7870@item -fthread-jumps
7871@opindex fthread-jumps
7872Perform optimizations that check to see if a jump branches to a
7873location where another comparison subsumed by the first is found.  If
7874so, the first branch is redirected to either the destination of the
7875second branch or a point immediately following it, depending on whether
7876the condition is known to be true or false.
7877
7878Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7879
7880@item -fsplit-wide-types
7881@opindex fsplit-wide-types
7882When using a type that occupies multiple registers, such as @code{long
7883long} on a 32-bit system, split the registers apart and allocate them
7884independently.  This normally generates better code for those types,
7885but may make debugging more difficult.
7886
7887Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
7888@option{-Os}.
7889
7890@item -fcse-follow-jumps
7891@opindex fcse-follow-jumps
7892In common subexpression elimination (CSE), scan through jump instructions
7893when the target of the jump is not reached by any other path.  For
7894example, when CSE encounters an @code{if} statement with an
7895@code{else} clause, CSE follows the jump when the condition
7896tested is false.
7897
7898Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7899
7900@item -fcse-skip-blocks
7901@opindex fcse-skip-blocks
7902This is similar to @option{-fcse-follow-jumps}, but causes CSE to
7903follow jumps that conditionally skip over blocks.  When CSE
7904encounters a simple @code{if} statement with no else clause,
7905@option{-fcse-skip-blocks} causes CSE to follow the jump around the
7906body of the @code{if}.
7907
7908Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7909
7910@item -frerun-cse-after-loop
7911@opindex frerun-cse-after-loop
7912Re-run common subexpression elimination after loop optimizations are
7913performed.
7914
7915Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7916
7917@item -fgcse
7918@opindex fgcse
7919Perform a global common subexpression elimination pass.
7920This pass also performs global constant and copy propagation.
7921
7922@emph{Note:} When compiling a program using computed gotos, a GCC
7923extension, you may get better run-time performance if you disable
7924the global common subexpression elimination pass by adding
7925@option{-fno-gcse} to the command line.
7926
7927Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7928
7929@item -fgcse-lm
7930@opindex fgcse-lm
7931When @option{-fgcse-lm} is enabled, global common subexpression elimination
7932attempts to move loads that are only killed by stores into themselves.  This
7933allows a loop containing a load/store sequence to be changed to a load outside
7934the loop, and a copy/store within the loop.
7935
7936Enabled by default when @option{-fgcse} is enabled.
7937
7938@item -fgcse-sm
7939@opindex fgcse-sm
7940When @option{-fgcse-sm} is enabled, a store motion pass is run after
7941global common subexpression elimination.  This pass attempts to move
7942stores out of loops.  When used in conjunction with @option{-fgcse-lm},
7943loops containing a load/store sequence can be changed to a load before
7944the loop and a store after the loop.
7945
7946Not enabled at any optimization level.
7947
7948@item -fgcse-las
7949@opindex fgcse-las
7950When @option{-fgcse-las} is enabled, the global common subexpression
7951elimination pass eliminates redundant loads that come after stores to the
7952same memory location (both partial and full redundancies).
7953
7954Not enabled at any optimization level.
7955
7956@item -fgcse-after-reload
7957@opindex fgcse-after-reload
7958When @option{-fgcse-after-reload} is enabled, a redundant load elimination
7959pass is performed after reload.  The purpose of this pass is to clean up
7960redundant spilling.
7961
7962@item -faggressive-loop-optimizations
7963@opindex faggressive-loop-optimizations
7964This option tells the loop optimizer to use language constraints to
7965derive bounds for the number of iterations of a loop.  This assumes that
7966loop code does not invoke undefined behavior by for example causing signed
7967integer overflows or out-of-bound array accesses.  The bounds for the
7968number of iterations of a loop are used to guide loop unrolling and peeling
7969and loop exit test optimizations.
7970This option is enabled by default.
7971
7972@item -funsafe-loop-optimizations
7973@opindex funsafe-loop-optimizations
7974This option tells the loop optimizer to assume that loop indices do not
7975overflow, and that loops with nontrivial exit condition are not
7976infinite.  This enables a wider range of loop optimizations even if
7977the loop optimizer itself cannot prove that these assumptions are valid.
7978If you use @option{-Wunsafe-loop-optimizations}, the compiler warns you
7979if it finds this kind of loop.
7980
7981@item -fcrossjumping
7982@opindex fcrossjumping
7983Perform cross-jumping transformation.
7984This transformation unifies equivalent code and saves code size.  The
7985resulting code may or may not perform better than without cross-jumping.
7986
7987Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7988
7989@item -fauto-inc-dec
7990@opindex fauto-inc-dec
7991Combine increments or decrements of addresses with memory accesses.
7992This pass is always skipped on architectures that do not have
7993instructions to support this.  Enabled by default at @option{-O} and
7994higher on architectures that support this.
7995
7996@item -fdce
7997@opindex fdce
7998Perform dead code elimination (DCE) on RTL@.
7999Enabled by default at @option{-O} and higher.
8000
8001@item -fdse
8002@opindex fdse
8003Perform dead store elimination (DSE) on RTL@.
8004Enabled by default at @option{-O} and higher.
8005
8006@item -fif-conversion
8007@opindex fif-conversion
8008Attempt to transform conditional jumps into branch-less equivalents.  This
8009includes use of conditional moves, min, max, set flags and abs instructions, and
8010some tricks doable by standard arithmetics.  The use of conditional execution
8011on chips where it is available is controlled by @option{-fif-conversion2}.
8012
8013Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8014
8015@item -fif-conversion2
8016@opindex fif-conversion2
8017Use conditional execution (where available) to transform conditional jumps into
8018branch-less equivalents.
8019
8020Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8021
8022@item -fdeclone-ctor-dtor
8023@opindex fdeclone-ctor-dtor
8024The C++ ABI requires multiple entry points for constructors and
8025destructors: one for a base subobject, one for a complete object, and
8026one for a virtual destructor that calls operator delete afterwards.
8027For a hierarchy with virtual bases, the base and complete variants are
8028clones, which means two copies of the function.  With this option, the
8029base and complete variants are changed to be thunks that call a common
8030implementation.
8031
8032Enabled by @option{-Os}.
8033
8034@item -fdelete-null-pointer-checks
8035@opindex fdelete-null-pointer-checks
8036Assume that programs cannot safely dereference null pointers, and that
8037no code or data element resides there.  This enables simple constant
8038folding optimizations at all optimization levels.  In addition, other
8039optimization passes in GCC use this flag to control global dataflow
8040analyses that eliminate useless checks for null pointers; these assume
8041that if a pointer is checked after it has already been dereferenced,
8042it cannot be null.
8043
8044Note however that in some environments this assumption is not true.
8045Use @option{-fno-delete-null-pointer-checks} to disable this optimization
8046for programs that depend on that behavior.
8047
8048Some targets, especially embedded ones, disable this option at all levels.
8049Otherwise it is enabled at all levels: @option{-O0}, @option{-O1},
8050@option{-O2}, @option{-O3}, @option{-Os}.  Passes that use the information
8051are enabled independently at different optimization levels.
8052
8053@item -fdevirtualize
8054@opindex fdevirtualize
8055Attempt to convert calls to virtual functions to direct calls.  This
8056is done both within a procedure and interprocedurally as part of
8057indirect inlining (@option{-findirect-inlining}) and interprocedural constant
8058propagation (@option{-fipa-cp}).
8059Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8060
8061@item -fdevirtualize-speculatively
8062@opindex fdevirtualize-speculatively
8063Attempt to convert calls to virtual functions to speculative direct calls.
8064Based on the analysis of the type inheritance graph, determine for a given call
8065the set of likely targets. If the set is small, preferably of size 1, change
8066the call into a conditional deciding between direct and indirect calls.  The
8067speculative calls enable more optimizations, such as inlining.  When they seem
8068useless after further optimization, they are converted back into original form.
8069
8070@item -fdevirtualize-at-ltrans
8071@opindex fdevirtualize-at-ltrans
8072Stream extra information needed for aggressive devirtualization when running
8073the link-time optimizer in local transformation mode.
8074This option enables more devirtualization but
8075significantly increases the size of streamed data. For this reason it is
8076disabled by default.
8077
8078@item -fexpensive-optimizations
8079@opindex fexpensive-optimizations
8080Perform a number of minor optimizations that are relatively expensive.
8081
8082Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8083
8084@item -free
8085@opindex free
8086Attempt to remove redundant extension instructions.  This is especially
8087helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
8088registers after writing to their lower 32-bit half.
8089
8090Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
8091@option{-O3}, @option{-Os}.
8092
8093@item -fno-lifetime-dse
8094@opindex fno-lifetime-dse
8095In C++ the value of an object is only affected by changes within its
8096lifetime: when the constructor begins, the object has an indeterminate
8097value, and any changes during the lifetime of the object are dead when
8098the object is destroyed.  Normally dead store elimination will take
8099advantage of this; if your code relies on the value of the object
8100storage persisting beyond the lifetime of the object, you can use this
8101flag to disable this optimization.
8102
8103@item -flive-range-shrinkage
8104@opindex flive-range-shrinkage
8105Attempt to decrease register pressure through register live range
8106shrinkage.  This is helpful for fast processors with small or moderate
8107size register sets.
8108
8109@item -fira-algorithm=@var{algorithm}
8110@opindex fira-algorithm
8111Use the specified coloring algorithm for the integrated register
8112allocator.  The @var{algorithm} argument can be @samp{priority}, which
8113specifies Chow's priority coloring, or @samp{CB}, which specifies
8114Chaitin-Briggs coloring.  Chaitin-Briggs coloring is not implemented
8115for all architectures, but for those targets that do support it, it is
8116the default because it generates better code.
8117
8118@item -fira-region=@var{region}
8119@opindex fira-region
8120Use specified regions for the integrated register allocator.  The
8121@var{region} argument should be one of the following:
8122
8123@table @samp
8124
8125@item all
8126Use all loops as register allocation regions.
8127This can give the best results for machines with a small and/or
8128irregular register set.
8129
8130@item mixed
8131Use all loops except for loops with small register pressure
8132as the regions.  This value usually gives
8133the best results in most cases and for most architectures,
8134and is enabled by default when compiling with optimization for speed
8135(@option{-O}, @option{-O2}, @dots{}).
8136
8137@item one
8138Use all functions as a single region.
8139This typically results in the smallest code size, and is enabled by default for
8140@option{-Os} or @option{-O0}.
8141
8142@end table
8143
8144@item -fira-hoist-pressure
8145@opindex fira-hoist-pressure
8146Use IRA to evaluate register pressure in the code hoisting pass for
8147decisions to hoist expressions.  This option usually results in smaller
8148code, but it can slow the compiler down.
8149
8150This option is enabled at level @option{-Os} for all targets.
8151
8152@item -fira-loop-pressure
8153@opindex fira-loop-pressure
8154Use IRA to evaluate register pressure in loops for decisions to move
8155loop invariants.  This option usually results in generation
8156of faster and smaller code on machines with large register files (>= 32
8157registers), but it can slow the compiler down.
8158
8159This option is enabled at level @option{-O3} for some targets.
8160
8161@item -fno-ira-share-save-slots
8162@opindex fno-ira-share-save-slots
8163Disable sharing of stack slots used for saving call-used hard
8164registers living through a call.  Each hard register gets a
8165separate stack slot, and as a result function stack frames are
8166larger.
8167
8168@item -fno-ira-share-spill-slots
8169@opindex fno-ira-share-spill-slots
8170Disable sharing of stack slots allocated for pseudo-registers.  Each
8171pseudo-register that does not get a hard register gets a separate
8172stack slot, and as a result function stack frames are larger.
8173
8174@item -fira-verbose=@var{n}
8175@opindex fira-verbose
8176Control the verbosity of the dump file for the integrated register allocator.
8177The default value is 5.  If the value @var{n} is greater or equal to 10,
8178the dump output is sent to stderr using the same format as @var{n} minus 10.
8179
8180@item -flra-remat
8181@opindex flra-remat
8182Enable CFG-sensitive rematerialization in LRA.  Instead of loading
8183values of spilled pseudos, LRA tries to rematerialize (recalculate)
8184values if it is profitable.
8185
8186Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8187
8188@item -fdelayed-branch
8189@opindex fdelayed-branch
8190If supported for the target machine, attempt to reorder instructions
8191to exploit instruction slots available after delayed branch
8192instructions.
8193
8194Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8195
8196@item -fschedule-insns
8197@opindex fschedule-insns
8198If supported for the target machine, attempt to reorder instructions to
8199eliminate execution stalls due to required data being unavailable.  This
8200helps machines that have slow floating point or memory load instructions
8201by allowing other instructions to be issued until the result of the load
8202or floating-point instruction is required.
8203
8204Enabled at levels @option{-O2}, @option{-O3}.
8205
8206@item -fschedule-insns2
8207@opindex fschedule-insns2
8208Similar to @option{-fschedule-insns}, but requests an additional pass of
8209instruction scheduling after register allocation has been done.  This is
8210especially useful on machines with a relatively small number of
8211registers and where memory load instructions take more than one cycle.
8212
8213Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8214
8215@item -fno-sched-interblock
8216@opindex fno-sched-interblock
8217Don't schedule instructions across basic blocks.  This is normally
8218enabled by default when scheduling before register allocation, i.e.@:
8219with @option{-fschedule-insns} or at @option{-O2} or higher.
8220
8221@item -fno-sched-spec
8222@opindex fno-sched-spec
8223Don't allow speculative motion of non-load instructions.  This is normally
8224enabled by default when scheduling before register allocation, i.e.@:
8225with @option{-fschedule-insns} or at @option{-O2} or higher.
8226
8227@item -fsched-pressure
8228@opindex fsched-pressure
8229Enable register pressure sensitive insn scheduling before register
8230allocation.  This only makes sense when scheduling before register
8231allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
8232@option{-O2} or higher.  Usage of this option can improve the
8233generated code and decrease its size by preventing register pressure
8234increase above the number of available hard registers and subsequent
8235spills in register allocation.
8236
8237@item -fsched-spec-load
8238@opindex fsched-spec-load
8239Allow speculative motion of some load instructions.  This only makes
8240sense when scheduling before register allocation, i.e.@: with
8241@option{-fschedule-insns} or at @option{-O2} or higher.
8242
8243@item -fsched-spec-load-dangerous
8244@opindex fsched-spec-load-dangerous
8245Allow speculative motion of more load instructions.  This only makes
8246sense when scheduling before register allocation, i.e.@: with
8247@option{-fschedule-insns} or at @option{-O2} or higher.
8248
8249@item -fsched-stalled-insns
8250@itemx -fsched-stalled-insns=@var{n}
8251@opindex fsched-stalled-insns
8252Define how many insns (if any) can be moved prematurely from the queue
8253of stalled insns into the ready list during the second scheduling pass.
8254@option{-fno-sched-stalled-insns} means that no insns are moved
8255prematurely, @option{-fsched-stalled-insns=0} means there is no limit
8256on how many queued insns can be moved prematurely.
8257@option{-fsched-stalled-insns} without a value is equivalent to
8258@option{-fsched-stalled-insns=1}.
8259
8260@item -fsched-stalled-insns-dep
8261@itemx -fsched-stalled-insns-dep=@var{n}
8262@opindex fsched-stalled-insns-dep
8263Define how many insn groups (cycles) are examined for a dependency
8264on a stalled insn that is a candidate for premature removal from the queue
8265of stalled insns.  This has an effect only during the second scheduling pass,
8266and only if @option{-fsched-stalled-insns} is used.
8267@option{-fno-sched-stalled-insns-dep} is equivalent to
8268@option{-fsched-stalled-insns-dep=0}.
8269@option{-fsched-stalled-insns-dep} without a value is equivalent to
8270@option{-fsched-stalled-insns-dep=1}.
8271
8272@item -fsched2-use-superblocks
8273@opindex fsched2-use-superblocks
8274When scheduling after register allocation, use superblock scheduling.
8275This allows motion across basic block boundaries,
8276resulting in faster schedules.  This option is experimental, as not all machine
8277descriptions used by GCC model the CPU closely enough to avoid unreliable
8278results from the algorithm.
8279
8280This only makes sense when scheduling after register allocation, i.e.@: with
8281@option{-fschedule-insns2} or at @option{-O2} or higher.
8282
8283@item -fsched-group-heuristic
8284@opindex fsched-group-heuristic
8285Enable the group heuristic in the scheduler.  This heuristic favors
8286the instruction that belongs to a schedule group.  This is enabled
8287by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8288or @option{-fschedule-insns2} or at @option{-O2} or higher.
8289
8290@item -fsched-critical-path-heuristic
8291@opindex fsched-critical-path-heuristic
8292Enable the critical-path heuristic in the scheduler.  This heuristic favors
8293instructions on the critical path.  This is enabled by default when
8294scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8295or @option{-fschedule-insns2} or at @option{-O2} or higher.
8296
8297@item -fsched-spec-insn-heuristic
8298@opindex fsched-spec-insn-heuristic
8299Enable the speculative instruction heuristic in the scheduler.  This
8300heuristic favors speculative instructions with greater dependency weakness.
8301This is enabled by default when scheduling is enabled, i.e.@:
8302with @option{-fschedule-insns} or @option{-fschedule-insns2}
8303or at @option{-O2} or higher.
8304
8305@item -fsched-rank-heuristic
8306@opindex fsched-rank-heuristic
8307Enable the rank heuristic in the scheduler.  This heuristic favors
8308the instruction belonging to a basic block with greater size or frequency.
8309This is enabled by default when scheduling is enabled, i.e.@:
8310with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8311at @option{-O2} or higher.
8312
8313@item -fsched-last-insn-heuristic
8314@opindex fsched-last-insn-heuristic
8315Enable the last-instruction heuristic in the scheduler.  This heuristic
8316favors the instruction that is less dependent on the last instruction
8317scheduled.  This is enabled by default when scheduling is enabled,
8318i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8319at @option{-O2} or higher.
8320
8321@item -fsched-dep-count-heuristic
8322@opindex fsched-dep-count-heuristic
8323Enable the dependent-count heuristic in the scheduler.  This heuristic
8324favors the instruction that has more instructions depending on it.
8325This is enabled by default when scheduling is enabled, i.e.@:
8326with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8327at @option{-O2} or higher.
8328
8329@item -freschedule-modulo-scheduled-loops
8330@opindex freschedule-modulo-scheduled-loops
8331Modulo scheduling is performed before traditional scheduling.  If a loop
8332is modulo scheduled, later scheduling passes may change its schedule.
8333Use this option to control that behavior.
8334
8335@item -fselective-scheduling
8336@opindex fselective-scheduling
8337Schedule instructions using selective scheduling algorithm.  Selective
8338scheduling runs instead of the first scheduler pass.
8339
8340@item -fselective-scheduling2
8341@opindex fselective-scheduling2
8342Schedule instructions using selective scheduling algorithm.  Selective
8343scheduling runs instead of the second scheduler pass.
8344
8345@item -fsel-sched-pipelining
8346@opindex fsel-sched-pipelining
8347Enable software pipelining of innermost loops during selective scheduling.
8348This option has no effect unless one of @option{-fselective-scheduling} or
8349@option{-fselective-scheduling2} is turned on.
8350
8351@item -fsel-sched-pipelining-outer-loops
8352@opindex fsel-sched-pipelining-outer-loops
8353When pipelining loops during selective scheduling, also pipeline outer loops.
8354This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
8355
8356@item -fsemantic-interposition
8357@opindex fsemantic-interposition
8358Some object formats, like ELF, allow interposing of symbols by the
8359dynamic linker.
8360This means that for symbols exported from the DSO, the compiler cannot perform
8361interprocedural propagation, inlining and other optimizations in anticipation
8362that the function or variable in question may change. While this feature is
8363useful, for example, to rewrite memory allocation functions by a debugging
8364implementation, it is expensive in the terms of code quality.
8365With @option{-fno-semantic-interposition} the compiler assumes that
8366if interposition happens for functions the overwriting function will have
8367precisely the same semantics (and side effects).
8368Similarly if interposition happens
8369for variables, the constructor of the variable will be the same. The flag
8370has no effect for functions explicitly declared inline
8371(where it is never allowed for interposition to change semantics)
8372and for symbols explicitly declared weak.
8373
8374@item -fshrink-wrap
8375@opindex fshrink-wrap
8376Emit function prologues only before parts of the function that need it,
8377rather than at the top of the function.  This flag is enabled by default at
8378@option{-O} and higher.
8379
8380@item -fcaller-saves
8381@opindex fcaller-saves
8382Enable allocation of values to registers that are clobbered by
8383function calls, by emitting extra instructions to save and restore the
8384registers around such calls.  Such allocation is done only when it
8385seems to result in better code.
8386
8387This option is always enabled by default on certain machines, usually
8388those which have no call-preserved registers to use instead.
8389
8390Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8391
8392@item -fcombine-stack-adjustments
8393@opindex fcombine-stack-adjustments
8394Tracks stack adjustments (pushes and pops) and stack memory references
8395and then tries to find ways to combine them.
8396
8397Enabled by default at @option{-O1} and higher.
8398
8399@item -fipa-ra
8400@opindex fipa-ra
8401Use caller save registers for allocation if those registers are not used by
8402any called function.  In that case it is not necessary to save and restore
8403them around calls.  This is only possible if called functions are part of
8404same compilation unit as current function and they are compiled before it.
8405
8406Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8407
8408@item -fconserve-stack
8409@opindex fconserve-stack
8410Attempt to minimize stack usage.  The compiler attempts to use less
8411stack space, even if that makes the program slower.  This option
8412implies setting the @option{large-stack-frame} parameter to 100
8413and the @option{large-stack-frame-growth} parameter to 400.
8414
8415@item -ftree-reassoc
8416@opindex ftree-reassoc
8417Perform reassociation on trees.  This flag is enabled by default
8418at @option{-O} and higher.
8419
8420@item -ftree-pre
8421@opindex ftree-pre
8422Perform partial redundancy elimination (PRE) on trees.  This flag is
8423enabled by default at @option{-O2} and @option{-O3}.
8424
8425@item -ftree-partial-pre
8426@opindex ftree-partial-pre
8427Make partial redundancy elimination (PRE) more aggressive.  This flag is
8428enabled by default at @option{-O3}.
8429
8430@item -ftree-forwprop
8431@opindex ftree-forwprop
8432Perform forward propagation on trees.  This flag is enabled by default
8433at @option{-O} and higher.
8434
8435@item -ftree-fre
8436@opindex ftree-fre
8437Perform full redundancy elimination (FRE) on trees.  The difference
8438between FRE and PRE is that FRE only considers expressions
8439that are computed on all paths leading to the redundant computation.
8440This analysis is faster than PRE, though it exposes fewer redundancies.
8441This flag is enabled by default at @option{-O} and higher.
8442
8443@item -ftree-phiprop
8444@opindex ftree-phiprop
8445Perform hoisting of loads from conditional pointers on trees.  This
8446pass is enabled by default at @option{-O} and higher.
8447
8448@item -fhoist-adjacent-loads
8449@opindex fhoist-adjacent-loads
8450Speculatively hoist loads from both branches of an if-then-else if the
8451loads are from adjacent locations in the same structure and the target
8452architecture has a conditional move instruction.  This flag is enabled
8453by default at @option{-O2} and higher.
8454
8455@item -ftree-copy-prop
8456@opindex ftree-copy-prop
8457Perform copy propagation on trees.  This pass eliminates unnecessary
8458copy operations.  This flag is enabled by default at @option{-O} and
8459higher.
8460
8461@item -fipa-pure-const
8462@opindex fipa-pure-const
8463Discover which functions are pure or constant.
8464Enabled by default at @option{-O} and higher.
8465
8466@item -fipa-reference
8467@opindex fipa-reference
8468Discover which static variables do not escape the
8469compilation unit.
8470Enabled by default at @option{-O} and higher.
8471
8472@item -fipa-pta
8473@opindex fipa-pta
8474Perform interprocedural pointer analysis and interprocedural modification
8475and reference analysis.  This option can cause excessive memory and
8476compile-time usage on large compilation units.  It is not enabled by
8477default at any optimization level.
8478
8479@item -fipa-profile
8480@opindex fipa-profile
8481Perform interprocedural profile propagation.  The functions called only from
8482cold functions are marked as cold. Also functions executed once (such as
8483@code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
8484functions and loop less parts of functions executed once are then optimized for
8485size.
8486Enabled by default at @option{-O} and higher.
8487
8488@item -fipa-cp
8489@opindex fipa-cp
8490Perform interprocedural constant propagation.
8491This optimization analyzes the program to determine when values passed
8492to functions are constants and then optimizes accordingly.
8493This optimization can substantially increase performance
8494if the application has constants passed to functions.
8495This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
8496
8497@item -fipa-cp-clone
8498@opindex fipa-cp-clone
8499Perform function cloning to make interprocedural constant propagation stronger.
8500When enabled, interprocedural constant propagation performs function cloning
8501when externally visible function can be called with constant arguments.
8502Because this optimization can create multiple copies of functions,
8503it may significantly increase code size
8504(see @option{--param ipcp-unit-growth=@var{value}}).
8505This flag is enabled by default at @option{-O3}.
8506
8507@item -fipa-cp-alignment
8508@opindex -fipa-cp-alignment
8509When enabled, this optimization propagates alignment of function
8510parameters to support better vectorization and string operations.
8511
8512This flag is enabled by default at @option{-O2} and @option{-Os}.  It
8513requires that @option{-fipa-cp} is enabled.
8514
8515@item -fipa-icf
8516@opindex fipa-icf
8517Perform Identical Code Folding for functions and read-only variables.
8518The optimization reduces code size and may disturb unwind stacks by replacing
8519a function by equivalent one with a different name. The optimization works
8520more effectively with link time optimization enabled.
8521
8522Nevertheless the behavior is similar to Gold Linker ICF optimization, GCC ICF
8523works on different levels and thus the optimizations are not same - there are
8524equivalences that are found only by GCC and equivalences found only by Gold.
8525
8526This flag is enabled by default at @option{-O2} and @option{-Os}.
8527
8528@item -fisolate-erroneous-paths-dereference
8529@opindex fisolate-erroneous-paths-dereference
8530Detect paths that trigger erroneous or undefined behavior due to
8531dereferencing a null pointer.  Isolate those paths from the main control
8532flow and turn the statement with erroneous or undefined behavior into a trap.
8533This flag is enabled by default at @option{-O2} and higher.
8534
8535@item -fisolate-erroneous-paths-attribute
8536@opindex fisolate-erroneous-paths-attribute
8537Detect paths that trigger erroneous or undefined behavior due a null value
8538being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
8539attribute.  Isolate those paths from the main control flow and turn the
8540statement with erroneous or undefined behavior into a trap.  This is not
8541currently enabled, but may be enabled by @option{-O2} in the future.
8542
8543@item -ftree-sink
8544@opindex ftree-sink
8545Perform forward store motion  on trees.  This flag is
8546enabled by default at @option{-O} and higher.
8547
8548@item -ftree-bit-ccp
8549@opindex ftree-bit-ccp
8550Perform sparse conditional bit constant propagation on trees and propagate
8551pointer alignment information.
8552This pass only operates on local scalar variables and is enabled by default
8553at @option{-O} and higher.  It requires that @option{-ftree-ccp} is enabled.
8554
8555@item -ftree-ccp
8556@opindex ftree-ccp
8557Perform sparse conditional constant propagation (CCP) on trees.  This
8558pass only operates on local scalar variables and is enabled by default
8559at @option{-O} and higher.
8560
8561@item -fssa-phiopt
8562@opindex fssa-phiopt
8563Perform pattern matching on SSA PHI nodes to optimize conditional
8564code.  This pass is enabled by default at @option{-O} and higher.
8565
8566@item -ftree-switch-conversion
8567@opindex ftree-switch-conversion
8568Perform conversion of simple initializations in a switch to
8569initializations from a scalar array.  This flag is enabled by default
8570at @option{-O2} and higher.
8571
8572@item -ftree-tail-merge
8573@opindex ftree-tail-merge
8574Look for identical code sequences.  When found, replace one with a jump to the
8575other.  This optimization is known as tail merging or cross jumping.  This flag
8576is enabled by default at @option{-O2} and higher.  The compilation time
8577in this pass can
8578be limited using @option{max-tail-merge-comparisons} parameter and
8579@option{max-tail-merge-iterations} parameter.
8580
8581@item -ftree-dce
8582@opindex ftree-dce
8583Perform dead code elimination (DCE) on trees.  This flag is enabled by
8584default at @option{-O} and higher.
8585
8586@item -ftree-builtin-call-dce
8587@opindex ftree-builtin-call-dce
8588Perform conditional dead code elimination (DCE) for calls to built-in functions
8589that may set @code{errno} but are otherwise side-effect free.  This flag is
8590enabled by default at @option{-O2} and higher if @option{-Os} is not also
8591specified.
8592
8593@item -ftree-dominator-opts
8594@opindex ftree-dominator-opts
8595Perform a variety of simple scalar cleanups (constant/copy
8596propagation, redundancy elimination, range propagation and expression
8597simplification) based on a dominator tree traversal.  This also
8598performs jump threading (to reduce jumps to jumps). This flag is
8599enabled by default at @option{-O} and higher.
8600
8601@item -ftree-dse
8602@opindex ftree-dse
8603Perform dead store elimination (DSE) on trees.  A dead store is a store into
8604a memory location that is later overwritten by another store without
8605any intervening loads.  In this case the earlier store can be deleted.  This
8606flag is enabled by default at @option{-O} and higher.
8607
8608@item -ftree-ch
8609@opindex ftree-ch
8610Perform loop header copying on trees.  This is beneficial since it increases
8611effectiveness of code motion optimizations.  It also saves one jump.  This flag
8612is enabled by default at @option{-O} and higher.  It is not enabled
8613for @option{-Os}, since it usually increases code size.
8614
8615@item -ftree-loop-optimize
8616@opindex ftree-loop-optimize
8617Perform loop optimizations on trees.  This flag is enabled by default
8618at @option{-O} and higher.
8619
8620@item -ftree-loop-linear
8621@opindex ftree-loop-linear
8622Perform loop interchange transformations on tree.  Same as
8623@option{-floop-interchange}.  To use this code transformation, GCC has
8624to be configured with @option{--with-isl} to enable the Graphite loop
8625transformation infrastructure.
8626
8627@item -floop-interchange
8628@opindex floop-interchange
8629Perform loop interchange transformations on loops.  Interchanging two
8630nested loops switches the inner and outer loops.  For example, given a
8631loop like:
8632@smallexample
8633DO J = 1, M
8634  DO I = 1, N
8635    A(J, I) = A(J, I) * C
8636  ENDDO
8637ENDDO
8638@end smallexample
8639@noindent
8640loop interchange transforms the loop as if it were written:
8641@smallexample
8642DO I = 1, N
8643  DO J = 1, M
8644    A(J, I) = A(J, I) * C
8645  ENDDO
8646ENDDO
8647@end smallexample
8648which can be beneficial when @code{N} is larger than the caches,
8649because in Fortran, the elements of an array are stored in memory
8650contiguously by column, and the original loop iterates over rows,
8651potentially creating at each access a cache miss.  This optimization
8652applies to all the languages supported by GCC and is not limited to
8653Fortran.  To use this code transformation, GCC has to be configured
8654with @option{--with-isl} to enable the Graphite loop transformation
8655infrastructure.
8656
8657@item -floop-strip-mine
8658@opindex floop-strip-mine
8659Perform loop strip mining transformations on loops.  Strip mining
8660splits a loop into two nested loops.  The outer loop has strides
8661equal to the strip size and the inner loop has strides of the
8662original loop within a strip.  The strip length can be changed
8663using the @option{loop-block-tile-size} parameter.  For example,
8664given a loop like:
8665@smallexample
8666DO I = 1, N
8667  A(I) = A(I) + C
8668ENDDO
8669@end smallexample
8670@noindent
8671loop strip mining transforms the loop as if it were written:
8672@smallexample
8673DO II = 1, N, 51
8674  DO I = II, min (II + 50, N)
8675    A(I) = A(I) + C
8676  ENDDO
8677ENDDO
8678@end smallexample
8679This optimization applies to all the languages supported by GCC and is
8680not limited to Fortran.  To use this code transformation, GCC has to
8681be configured with @option{--with-isl} to enable the Graphite loop
8682transformation infrastructure.
8683
8684@item -floop-block
8685@opindex floop-block
8686Perform loop blocking transformations on loops.  Blocking strip mines
8687each loop in the loop nest such that the memory accesses of the
8688element loops fit inside caches.  The strip length can be changed
8689using the @option{loop-block-tile-size} parameter.  For example, given
8690a loop like:
8691@smallexample
8692DO I = 1, N
8693  DO J = 1, M
8694    A(J, I) = B(I) + C(J)
8695  ENDDO
8696ENDDO
8697@end smallexample
8698@noindent
8699loop blocking transforms the loop as if it were written:
8700@smallexample
8701DO II = 1, N, 51
8702  DO JJ = 1, M, 51
8703    DO I = II, min (II + 50, N)
8704      DO J = JJ, min (JJ + 50, M)
8705        A(J, I) = B(I) + C(J)
8706      ENDDO
8707    ENDDO
8708  ENDDO
8709ENDDO
8710@end smallexample
8711which can be beneficial when @code{M} is larger than the caches,
8712because the innermost loop iterates over a smaller amount of data
8713which can be kept in the caches.  This optimization applies to all the
8714languages supported by GCC and is not limited to Fortran.  To use this
8715code transformation, GCC has to be configured with @option{--with-isl}
8716to enable the Graphite loop transformation infrastructure.
8717
8718@item -fgraphite-identity
8719@opindex fgraphite-identity
8720Enable the identity transformation for graphite.  For every SCoP we generate
8721the polyhedral representation and transform it back to gimple.  Using
8722@option{-fgraphite-identity} we can check the costs or benefits of the
8723GIMPLE -> GRAPHITE -> GIMPLE transformation.  Some minimal optimizations
8724are also performed by the code generator ISL, like index splitting and
8725dead code elimination in loops.
8726
8727@item -floop-nest-optimize
8728@opindex floop-nest-optimize
8729Enable the ISL based loop nest optimizer.  This is a generic loop nest
8730optimizer based on the Pluto optimization algorithms.  It calculates a loop
8731structure optimized for data-locality and parallelism.  This option
8732is experimental.
8733
8734@item -floop-unroll-and-jam
8735@opindex floop-unroll-and-jam
8736Enable unroll and jam for the ISL based loop nest optimizer.  The unroll
8737factor can be changed using the @option{loop-unroll-jam-size} parameter.
8738The unrolled dimension (counting from the most inner one) can be changed
8739using the @option{loop-unroll-jam-depth} parameter.                 .
8740
8741@item -floop-parallelize-all
8742@opindex floop-parallelize-all
8743Use the Graphite data dependence analysis to identify loops that can
8744be parallelized.  Parallelize all the loops that can be analyzed to
8745not contain loop carried dependences without checking that it is
8746profitable to parallelize the loops.
8747
8748@item -fcheck-data-deps
8749@opindex fcheck-data-deps
8750Compare the results of several data dependence analyzers.  This option
8751is used for debugging the data dependence analyzers.
8752
8753@item -ftree-loop-if-convert
8754@opindex ftree-loop-if-convert
8755Attempt to transform conditional jumps in the innermost loops to
8756branch-less equivalents.  The intent is to remove control-flow from
8757the innermost loops in order to improve the ability of the
8758vectorization pass to handle these loops.  This is enabled by default
8759if vectorization is enabled.
8760
8761@item -ftree-loop-if-convert-stores
8762@opindex ftree-loop-if-convert-stores
8763Attempt to also if-convert conditional jumps containing memory writes.
8764This transformation can be unsafe for multi-threaded programs as it
8765transforms conditional memory writes into unconditional memory writes.
8766For example,
8767@smallexample
8768for (i = 0; i < N; i++)
8769  if (cond)
8770    A[i] = expr;
8771@end smallexample
8772is transformed to
8773@smallexample
8774for (i = 0; i < N; i++)
8775  A[i] = cond ? expr : A[i];
8776@end smallexample
8777potentially producing data races.
8778
8779@item -ftree-loop-distribution
8780@opindex ftree-loop-distribution
8781Perform loop distribution.  This flag can improve cache performance on
8782big loop bodies and allow further loop optimizations, like
8783parallelization or vectorization, to take place.  For example, the loop
8784@smallexample
8785DO I = 1, N
8786  A(I) = B(I) + C
8787  D(I) = E(I) * F
8788ENDDO
8789@end smallexample
8790is transformed to
8791@smallexample
8792DO I = 1, N
8793   A(I) = B(I) + C
8794ENDDO
8795DO I = 1, N
8796   D(I) = E(I) * F
8797ENDDO
8798@end smallexample
8799
8800@item -ftree-loop-distribute-patterns
8801@opindex ftree-loop-distribute-patterns
8802Perform loop distribution of patterns that can be code generated with
8803calls to a library.  This flag is enabled by default at @option{-O3}.
8804
8805This pass distributes the initialization loops and generates a call to
8806memset zero.  For example, the loop
8807@smallexample
8808DO I = 1, N
8809  A(I) = 0
8810  B(I) = A(I) + I
8811ENDDO
8812@end smallexample
8813is transformed to
8814@smallexample
8815DO I = 1, N
8816   A(I) = 0
8817ENDDO
8818DO I = 1, N
8819   B(I) = A(I) + I
8820ENDDO
8821@end smallexample
8822and the initialization loop is transformed into a call to memset zero.
8823
8824@item -ftree-loop-im
8825@opindex ftree-loop-im
8826Perform loop invariant motion on trees.  This pass moves only invariants that
8827are hard to handle at RTL level (function calls, operations that expand to
8828nontrivial sequences of insns).  With @option{-funswitch-loops} it also moves
8829operands of conditions that are invariant out of the loop, so that we can use
8830just trivial invariantness analysis in loop unswitching.  The pass also includes
8831store motion.
8832
8833@item -ftree-loop-ivcanon
8834@opindex ftree-loop-ivcanon
8835Create a canonical counter for number of iterations in loops for which
8836determining number of iterations requires complicated analysis.  Later
8837optimizations then may determine the number easily.  Useful especially
8838in connection with unrolling.
8839
8840@item -fivopts
8841@opindex fivopts
8842Perform induction variable optimizations (strength reduction, induction
8843variable merging and induction variable elimination) on trees.
8844
8845@item -ftree-parallelize-loops=n
8846@opindex ftree-parallelize-loops
8847Parallelize loops, i.e., split their iteration space to run in n threads.
8848This is only possible for loops whose iterations are independent
8849and can be arbitrarily reordered.  The optimization is only
8850profitable on multiprocessor machines, for loops that are CPU-intensive,
8851rather than constrained e.g.@: by memory bandwidth.  This option
8852implies @option{-pthread}, and thus is only supported on targets
8853that have support for @option{-pthread}.
8854
8855@item -ftree-pta
8856@opindex ftree-pta
8857Perform function-local points-to analysis on trees.  This flag is
8858enabled by default at @option{-O} and higher.
8859
8860@item -ftree-sra
8861@opindex ftree-sra
8862Perform scalar replacement of aggregates.  This pass replaces structure
8863references with scalars to prevent committing structures to memory too
8864early.  This flag is enabled by default at @option{-O} and higher.
8865
8866@item -ftree-copyrename
8867@opindex ftree-copyrename
8868Perform copy renaming on trees.  This pass attempts to rename compiler
8869temporaries to other variables at copy locations, usually resulting in
8870variable names which more closely resemble the original variables.  This flag
8871is enabled by default at @option{-O} and higher.
8872
8873@item -ftree-coalesce-inlined-vars
8874@opindex ftree-coalesce-inlined-vars
8875Tell the copyrename pass (see @option{-ftree-copyrename}) to attempt to
8876combine small user-defined variables too, but only if they are inlined
8877from other functions.  It is a more limited form of
8878@option{-ftree-coalesce-vars}.  This may harm debug information of such
8879inlined variables, but it keeps variables of the inlined-into
8880function apart from each other, such that they are more likely to
8881contain the expected values in a debugging session.
8882
8883@item -ftree-coalesce-vars
8884@opindex ftree-coalesce-vars
8885Tell the copyrename pass (see @option{-ftree-copyrename}) to attempt to
8886combine small user-defined variables too, instead of just compiler
8887temporaries.  This may severely limit the ability to debug an optimized
8888program compiled with @option{-fno-var-tracking-assignments}.  In the
8889negated form, this flag prevents SSA coalescing of user variables,
8890including inlined ones.  This option is enabled by default.
8891
8892@item -ftree-ter
8893@opindex ftree-ter
8894Perform temporary expression replacement during the SSA->normal phase.  Single
8895use/single def temporaries are replaced at their use location with their
8896defining expression.  This results in non-GIMPLE code, but gives the expanders
8897much more complex trees to work on resulting in better RTL generation.  This is
8898enabled by default at @option{-O} and higher.
8899
8900@item -ftree-slsr
8901@opindex ftree-slsr
8902Perform straight-line strength reduction on trees.  This recognizes related
8903expressions involving multiplications and replaces them by less expensive
8904calculations when possible.  This is enabled by default at @option{-O} and
8905higher.
8906
8907@item -ftree-vectorize
8908@opindex ftree-vectorize
8909Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
8910and @option{-ftree-slp-vectorize} if not explicitly specified.
8911
8912@item -ftree-loop-vectorize
8913@opindex ftree-loop-vectorize
8914Perform loop vectorization on trees. This flag is enabled by default at
8915@option{-O3} and when @option{-ftree-vectorize} is enabled.
8916
8917@item -ftree-slp-vectorize
8918@opindex ftree-slp-vectorize
8919Perform basic block vectorization on trees. This flag is enabled by default at
8920@option{-O3} and when @option{-ftree-vectorize} is enabled.
8921
8922@item -fvect-cost-model=@var{model}
8923@opindex fvect-cost-model
8924Alter the cost model used for vectorization.  The @var{model} argument
8925should be one of @samp{unlimited}, @samp{dynamic} or @samp{cheap}.
8926With the @samp{unlimited} model the vectorized code-path is assumed
8927to be profitable while with the @samp{dynamic} model a runtime check
8928guards the vectorized code-path to enable it only for iteration
8929counts that will likely execute faster than when executing the original
8930scalar loop.  The @samp{cheap} model disables vectorization of
8931loops where doing so would be cost prohibitive for example due to
8932required runtime checks for data dependence or alignment but otherwise
8933is equal to the @samp{dynamic} model.
8934The default cost model depends on other optimization flags and is
8935either @samp{dynamic} or @samp{cheap}.
8936
8937@item -fsimd-cost-model=@var{model}
8938@opindex fsimd-cost-model
8939Alter the cost model used for vectorization of loops marked with the OpenMP
8940or Cilk Plus simd directive.  The @var{model} argument should be one of
8941@samp{unlimited}, @samp{dynamic}, @samp{cheap}.  All values of @var{model}
8942have the same meaning as described in @option{-fvect-cost-model} and by
8943default a cost model defined with @option{-fvect-cost-model} is used.
8944
8945@item -ftree-vrp
8946@opindex ftree-vrp
8947Perform Value Range Propagation on trees.  This is similar to the
8948constant propagation pass, but instead of values, ranges of values are
8949propagated.  This allows the optimizers to remove unnecessary range
8950checks like array bound checks and null pointer checks.  This is
8951enabled by default at @option{-O2} and higher.  Null pointer check
8952elimination is only done if @option{-fdelete-null-pointer-checks} is
8953enabled.
8954
8955@item -fsplit-ivs-in-unroller
8956@opindex fsplit-ivs-in-unroller
8957Enables expression of values of induction variables in later iterations
8958of the unrolled loop using the value in the first iteration.  This breaks
8959long dependency chains, thus improving efficiency of the scheduling passes.
8960
8961A combination of @option{-fweb} and CSE is often sufficient to obtain the
8962same effect.  However, that is not reliable in cases where the loop body
8963is more complicated than a single basic block.  It also does not work at all
8964on some architectures due to restrictions in the CSE pass.
8965
8966This optimization is enabled by default.
8967
8968@item -fvariable-expansion-in-unroller
8969@opindex fvariable-expansion-in-unroller
8970With this option, the compiler creates multiple copies of some
8971local variables when unrolling a loop, which can result in superior code.
8972
8973@item -fpartial-inlining
8974@opindex fpartial-inlining
8975Inline parts of functions.  This option has any effect only
8976when inlining itself is turned on by the @option{-finline-functions}
8977or @option{-finline-small-functions} options.
8978
8979Enabled at level @option{-O2}.
8980
8981@item -fpredictive-commoning
8982@opindex fpredictive-commoning
8983Perform predictive commoning optimization, i.e., reusing computations
8984(especially memory loads and stores) performed in previous
8985iterations of loops.
8986
8987This option is enabled at level @option{-O3}.
8988
8989@item -fprefetch-loop-arrays
8990@opindex fprefetch-loop-arrays
8991If supported by the target machine, generate instructions to prefetch
8992memory to improve the performance of loops that access large arrays.
8993
8994This option may generate better or worse code; results are highly
8995dependent on the structure of loops within the source code.
8996
8997Disabled at level @option{-Os}.
8998
8999@item -fno-peephole
9000@itemx -fno-peephole2
9001@opindex fno-peephole
9002@opindex fno-peephole2
9003Disable any machine-specific peephole optimizations.  The difference
9004between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
9005are implemented in the compiler; some targets use one, some use the
9006other, a few use both.
9007
9008@option{-fpeephole} is enabled by default.
9009@option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9010
9011@item -fno-guess-branch-probability
9012@opindex fno-guess-branch-probability
9013Do not guess branch probabilities using heuristics.
9014
9015GCC uses heuristics to guess branch probabilities if they are
9016not provided by profiling feedback (@option{-fprofile-arcs}).  These
9017heuristics are based on the control flow graph.  If some branch probabilities
9018are specified by @code{__builtin_expect}, then the heuristics are
9019used to guess branch probabilities for the rest of the control flow graph,
9020taking the @code{__builtin_expect} info into account.  The interactions
9021between the heuristics and @code{__builtin_expect} can be complex, and in
9022some cases, it may be useful to disable the heuristics so that the effects
9023of @code{__builtin_expect} are easier to understand.
9024
9025The default is @option{-fguess-branch-probability} at levels
9026@option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9027
9028@item -freorder-blocks
9029@opindex freorder-blocks
9030Reorder basic blocks in the compiled function in order to reduce number of
9031taken branches and improve code locality.
9032
9033Enabled at levels @option{-O2}, @option{-O3}.
9034
9035@item -freorder-blocks-and-partition
9036@opindex freorder-blocks-and-partition
9037In addition to reordering basic blocks in the compiled function, in order
9038to reduce number of taken branches, partitions hot and cold basic blocks
9039into separate sections of the assembly and .o files, to improve
9040paging and cache locality performance.
9041
9042This optimization is automatically turned off in the presence of
9043exception handling, for linkonce sections, for functions with a user-defined
9044section attribute and on any architecture that does not support named
9045sections.
9046
9047Enabled for x86 at levels @option{-O2}, @option{-O3}.
9048
9049@item -freorder-functions
9050@opindex freorder-functions
9051Reorder functions in the object file in order to
9052improve code locality.  This is implemented by using special
9053subsections @code{.text.hot} for most frequently executed functions and
9054@code{.text.unlikely} for unlikely executed functions.  Reordering is done by
9055the linker so object file format must support named sections and linker must
9056place them in a reasonable way.
9057
9058Also profile feedback must be available to make this option effective.  See
9059@option{-fprofile-arcs} for details.
9060
9061Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9062
9063@item -fstrict-aliasing
9064@opindex fstrict-aliasing
9065Allow the compiler to assume the strictest aliasing rules applicable to
9066the language being compiled.  For C (and C++), this activates
9067optimizations based on the type of expressions.  In particular, an
9068object of one type is assumed never to reside at the same address as an
9069object of a different type, unless the types are almost the same.  For
9070example, an @code{unsigned int} can alias an @code{int}, but not a
9071@code{void*} or a @code{double}.  A character type may alias any other
9072type.
9073
9074@anchor{Type-punning}Pay special attention to code like this:
9075@smallexample
9076union a_union @{
9077  int i;
9078  double d;
9079@};
9080
9081int f() @{
9082  union a_union t;
9083  t.d = 3.0;
9084  return t.i;
9085@}
9086@end smallexample
9087The practice of reading from a different union member than the one most
9088recently written to (called ``type-punning'') is common.  Even with
9089@option{-fstrict-aliasing}, type-punning is allowed, provided the memory
9090is accessed through the union type.  So, the code above works as
9091expected.  @xref{Structures unions enumerations and bit-fields
9092implementation}.  However, this code might not:
9093@smallexample
9094int f() @{
9095  union a_union t;
9096  int* ip;
9097  t.d = 3.0;
9098  ip = &t.i;
9099  return *ip;
9100@}
9101@end smallexample
9102
9103Similarly, access by taking the address, casting the resulting pointer
9104and dereferencing the result has undefined behavior, even if the cast
9105uses a union type, e.g.:
9106@smallexample
9107int f() @{
9108  double d = 3.0;
9109  return ((union a_union *) &d)->i;
9110@}
9111@end smallexample
9112
9113The @option{-fstrict-aliasing} option is enabled at levels
9114@option{-O2}, @option{-O3}, @option{-Os}.
9115
9116@item -fstrict-overflow
9117@opindex fstrict-overflow
9118Allow the compiler to assume strict signed overflow rules, depending
9119on the language being compiled.  For C (and C++) this means that
9120overflow when doing arithmetic with signed numbers is undefined, which
9121means that the compiler may assume that it does not happen.  This
9122permits various optimizations.  For example, the compiler assumes
9123that an expression like @code{i + 10 > i} is always true for
9124signed @code{i}.  This assumption is only valid if signed overflow is
9125undefined, as the expression is false if @code{i + 10} overflows when
9126using twos complement arithmetic.  When this option is in effect any
9127attempt to determine whether an operation on signed numbers
9128overflows must be written carefully to not actually involve overflow.
9129
9130This option also allows the compiler to assume strict pointer
9131semantics: given a pointer to an object, if adding an offset to that
9132pointer does not produce a pointer to the same object, the addition is
9133undefined.  This permits the compiler to conclude that @code{p + u >
9134p} is always true for a pointer @code{p} and unsigned integer
9135@code{u}.  This assumption is only valid because pointer wraparound is
9136undefined, as the expression is false if @code{p + u} overflows using
9137twos complement arithmetic.
9138
9139See also the @option{-fwrapv} option.  Using @option{-fwrapv} means
9140that integer signed overflow is fully defined: it wraps.  When
9141@option{-fwrapv} is used, there is no difference between
9142@option{-fstrict-overflow} and @option{-fno-strict-overflow} for
9143integers.  With @option{-fwrapv} certain types of overflow are
9144permitted.  For example, if the compiler gets an overflow when doing
9145arithmetic on constants, the overflowed value can still be used with
9146@option{-fwrapv}, but not otherwise.
9147
9148The @option{-fstrict-overflow} option is enabled at levels
9149@option{-O2}, @option{-O3}, @option{-Os}.
9150
9151@item -falign-functions
9152@itemx -falign-functions=@var{n}
9153@opindex falign-functions
9154Align the start of functions to the next power-of-two greater than
9155@var{n}, skipping up to @var{n} bytes.  For instance,
9156@option{-falign-functions=32} aligns functions to the next 32-byte
9157boundary, but @option{-falign-functions=24} aligns to the next
915832-byte boundary only if this can be done by skipping 23 bytes or less.
9159
9160@option{-fno-align-functions} and @option{-falign-functions=1} are
9161equivalent and mean that functions are not aligned.
9162
9163Some assemblers only support this flag when @var{n} is a power of two;
9164in that case, it is rounded up.
9165
9166If @var{n} is not specified or is zero, use a machine-dependent default.
9167
9168Enabled at levels @option{-O2}, @option{-O3}.
9169
9170@item -falign-labels
9171@itemx -falign-labels=@var{n}
9172@opindex falign-labels
9173Align all branch targets to a power-of-two boundary, skipping up to
9174@var{n} bytes like @option{-falign-functions}.  This option can easily
9175make code slower, because it must insert dummy operations for when the
9176branch target is reached in the usual flow of the code.
9177
9178@option{-fno-align-labels} and @option{-falign-labels=1} are
9179equivalent and mean that labels are not aligned.
9180
9181If @option{-falign-loops} or @option{-falign-jumps} are applicable and
9182are greater than this value, then their values are used instead.
9183
9184If @var{n} is not specified or is zero, use a machine-dependent default
9185which is very likely to be @samp{1}, meaning no alignment.
9186
9187Enabled at levels @option{-O2}, @option{-O3}.
9188
9189@item -falign-loops
9190@itemx -falign-loops=@var{n}
9191@opindex falign-loops
9192Align loops to a power-of-two boundary, skipping up to @var{n} bytes
9193like @option{-falign-functions}.  If the loops are
9194executed many times, this makes up for any execution of the dummy
9195operations.
9196
9197@option{-fno-align-loops} and @option{-falign-loops=1} are
9198equivalent and mean that loops are not aligned.
9199
9200If @var{n} is not specified or is zero, use a machine-dependent default.
9201
9202Enabled at levels @option{-O2}, @option{-O3}.
9203
9204@item -falign-jumps
9205@itemx -falign-jumps=@var{n}
9206@opindex falign-jumps
9207Align branch targets to a power-of-two boundary, for branch targets
9208where the targets can only be reached by jumping, skipping up to @var{n}
9209bytes like @option{-falign-functions}.  In this case, no dummy operations
9210need be executed.
9211
9212@option{-fno-align-jumps} and @option{-falign-jumps=1} are
9213equivalent and mean that loops are not aligned.
9214
9215If @var{n} is not specified or is zero, use a machine-dependent default.
9216
9217Enabled at levels @option{-O2}, @option{-O3}.
9218
9219@item -funit-at-a-time
9220@opindex funit-at-a-time
9221This option is left for compatibility reasons. @option{-funit-at-a-time}
9222has no effect, while @option{-fno-unit-at-a-time} implies
9223@option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
9224
9225Enabled by default.
9226
9227@item -fno-toplevel-reorder
9228@opindex fno-toplevel-reorder
9229Do not reorder top-level functions, variables, and @code{asm}
9230statements.  Output them in the same order that they appear in the
9231input file.  When this option is used, unreferenced static variables
9232are not removed.  This option is intended to support existing code
9233that relies on a particular ordering.  For new code, it is better to
9234use attributes when possible.
9235
9236Enabled at level @option{-O0}.  When disabled explicitly, it also implies
9237@option{-fno-section-anchors}, which is otherwise enabled at @option{-O0} on some
9238targets.
9239
9240@item -fweb
9241@opindex fweb
9242Constructs webs as commonly used for register allocation purposes and assign
9243each web individual pseudo register.  This allows the register allocation pass
9244to operate on pseudos directly, but also strengthens several other optimization
9245passes, such as CSE, loop optimizer and trivial dead code remover.  It can,
9246however, make debugging impossible, since variables no longer stay in a
9247``home register''.
9248
9249Enabled by default with @option{-funroll-loops}.
9250
9251@item -fwhole-program
9252@opindex fwhole-program
9253Assume that the current compilation unit represents the whole program being
9254compiled.  All public functions and variables with the exception of @code{main}
9255and those merged by attribute @code{externally_visible} become static functions
9256and in effect are optimized more aggressively by interprocedural optimizers.
9257
9258This option should not be used in combination with @option{-flto}.
9259Instead relying on a linker plugin should provide safer and more precise
9260information.
9261
9262@item -flto[=@var{n}]
9263@opindex flto
9264This option runs the standard link-time optimizer.  When invoked
9265with source code, it generates GIMPLE (one of GCC's internal
9266representations) and writes it to special ELF sections in the object
9267file.  When the object files are linked together, all the function
9268bodies are read from these ELF sections and instantiated as if they
9269had been part of the same translation unit.
9270
9271To use the link-time optimizer, @option{-flto} and optimization
9272options should be specified at compile time and during the final link.
9273For example:
9274
9275@smallexample
9276gcc -c -O2 -flto foo.c
9277gcc -c -O2 -flto bar.c
9278gcc -o myprog -flto -O2 foo.o bar.o
9279@end smallexample
9280
9281The first two invocations to GCC save a bytecode representation
9282of GIMPLE into special ELF sections inside @file{foo.o} and
9283@file{bar.o}.  The final invocation reads the GIMPLE bytecode from
9284@file{foo.o} and @file{bar.o}, merges the two files into a single
9285internal image, and compiles the result as usual.  Since both
9286@file{foo.o} and @file{bar.o} are merged into a single image, this
9287causes all the interprocedural analyses and optimizations in GCC to
9288work across the two files as if they were a single one.  This means,
9289for example, that the inliner is able to inline functions in
9290@file{bar.o} into functions in @file{foo.o} and vice-versa.
9291
9292Another (simpler) way to enable link-time optimization is:
9293
9294@smallexample
9295gcc -o myprog -flto -O2 foo.c bar.c
9296@end smallexample
9297
9298The above generates bytecode for @file{foo.c} and @file{bar.c},
9299merges them together into a single GIMPLE representation and optimizes
9300them as usual to produce @file{myprog}.
9301
9302The only important thing to keep in mind is that to enable link-time
9303optimizations you need to use the GCC driver to perform the link-step.
9304GCC then automatically performs link-time optimization if any of the
9305objects involved were compiled with the @option{-flto} command-line option.
9306You generally
9307should specify the optimization options to be used for link-time
9308optimization though GCC tries to be clever at guessing an
9309optimization level to use from the options used at compile-time
9310if you fail to specify one at link-time.  You can always override
9311the automatic decision to do link-time optimization at link-time
9312by passing @option{-fno-lto} to the link command.
9313
9314To make whole program optimization effective, it is necessary to make
9315certain whole program assumptions.  The compiler needs to know
9316what functions and variables can be accessed by libraries and runtime
9317outside of the link-time optimized unit.  When supported by the linker,
9318the linker plugin (see @option{-fuse-linker-plugin}) passes information
9319to the compiler about used and externally visible symbols.  When
9320the linker plugin is not available, @option{-fwhole-program} should be
9321used to allow the compiler to make these assumptions, which leads
9322to more aggressive optimization decisions.
9323
9324When @option{-fuse-linker-plugin} is not enabled then, when a file is
9325compiled with @option{-flto}, the generated object file is larger than
9326a regular object file because it contains GIMPLE bytecodes and the usual
9327final code (see @option{-ffat-lto-objects}.  This means that
9328object files with LTO information can be linked as normal object
9329files; if @option{-fno-lto} is passed to the linker, no
9330interprocedural optimizations are applied.  Note that when
9331@option{-fno-fat-lto-objects} is enabled the compile-stage is faster
9332but you cannot perform a regular, non-LTO link on them.
9333
9334Additionally, the optimization flags used to compile individual files
9335are not necessarily related to those used at link time.  For instance,
9336
9337@smallexample
9338gcc -c -O0 -ffat-lto-objects -flto foo.c
9339gcc -c -O0 -ffat-lto-objects -flto bar.c
9340gcc -o myprog -O3 foo.o bar.o
9341@end smallexample
9342
9343This produces individual object files with unoptimized assembler
9344code, but the resulting binary @file{myprog} is optimized at
9345@option{-O3}.  If, instead, the final binary is generated with
9346@option{-fno-lto}, then @file{myprog} is not optimized.
9347
9348When producing the final binary, GCC only
9349applies link-time optimizations to those files that contain bytecode.
9350Therefore, you can mix and match object files and libraries with
9351GIMPLE bytecodes and final object code.  GCC automatically selects
9352which files to optimize in LTO mode and which files to link without
9353further processing.
9354
9355There are some code generation flags preserved by GCC when
9356generating bytecodes, as they need to be used during the final link
9357stage.  Generally options specified at link-time override those
9358specified at compile-time.
9359
9360If you do not specify an optimization level option @option{-O} at
9361link-time then GCC computes one based on the optimization levels
9362used when compiling the object files.  The highest optimization
9363level wins here.
9364
9365Currently, the following options and their setting are take from
9366the first object file that explicitely specified it:
9367@option{-fPIC}, @option{-fpic}, @option{-fpie}, @option{-fcommon},
9368@option{-fexceptions}, @option{-fnon-call-exceptions}, @option{-fgnu-tm}
9369and all the @option{-m} target flags.
9370
9371Certain ABI changing flags are required to match in all compilation-units
9372and trying to override this at link-time with a conflicting value
9373is ignored.  This includes options such as @option{-freg-struct-return}
9374and @option{-fpcc-struct-return}.
9375
9376Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
9377@option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
9378are passed through to the link stage and merged conservatively for
9379conflicting translation units.  Specifically
9380@option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
9381precedence and for example @option{-ffp-contract=off} takes precedence
9382over @option{-ffp-contract=fast}.  You can override them at linke-time.
9383
9384It is recommended that you compile all the files participating in the
9385same link with the same options and also specify those options at
9386link time.
9387
9388If LTO encounters objects with C linkage declared with incompatible
9389types in separate translation units to be linked together (undefined
9390behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
9391issued.  The behavior is still undefined at run time.  Similar
9392diagnostics may be raised for other languages.
9393
9394Another feature of LTO is that it is possible to apply interprocedural
9395optimizations on files written in different languages:
9396
9397@smallexample
9398gcc -c -flto foo.c
9399g++ -c -flto bar.cc
9400gfortran -c -flto baz.f90
9401g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
9402@end smallexample
9403
9404Notice that the final link is done with @command{g++} to get the C++
9405runtime libraries and @option{-lgfortran} is added to get the Fortran
9406runtime libraries.  In general, when mixing languages in LTO mode, you
9407should use the same link command options as when mixing languages in a
9408regular (non-LTO) compilation.
9409
9410If object files containing GIMPLE bytecode are stored in a library archive, say
9411@file{libfoo.a}, it is possible to extract and use them in an LTO link if you
9412are using a linker with plugin support.  To create static libraries suitable
9413for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
9414and @command{ranlib};
9415to show the symbols of object files with GIMPLE bytecode, use
9416@command{gcc-nm}.  Those commands require that @command{ar}, @command{ranlib}
9417and @command{nm} have been compiled with plugin support.  At link time, use the the
9418flag @option{-fuse-linker-plugin} to ensure that the library participates in
9419the LTO optimization process:
9420
9421@smallexample
9422gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
9423@end smallexample
9424
9425With the linker plugin enabled, the linker extracts the needed
9426GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
9427to make them part of the aggregated GIMPLE image to be optimized.
9428
9429If you are not using a linker with plugin support and/or do not
9430enable the linker plugin, then the objects inside @file{libfoo.a}
9431are extracted and linked as usual, but they do not participate
9432in the LTO optimization process.  In order to make a static library suitable
9433for both LTO optimization and usual linkage, compile its object files with
9434@option{-flto} @option{-ffat-lto-objects}.
9435
9436Link-time optimizations do not require the presence of the whole program to
9437operate.  If the program does not require any symbols to be exported, it is
9438possible to combine @option{-flto} and @option{-fwhole-program} to allow
9439the interprocedural optimizers to use more aggressive assumptions which may
9440lead to improved optimization opportunities.
9441Use of @option{-fwhole-program} is not needed when linker plugin is
9442active (see @option{-fuse-linker-plugin}).
9443
9444The current implementation of LTO makes no
9445attempt to generate bytecode that is portable between different
9446types of hosts.  The bytecode files are versioned and there is a
9447strict version check, so bytecode files generated in one version of
9448GCC do not work with an older or newer version of GCC.
9449
9450Link-time optimization does not work well with generation of debugging
9451information.  Combining @option{-flto} with
9452@option{-g} is currently experimental and expected to produce unexpected
9453results.
9454
9455If you specify the optional @var{n}, the optimization and code
9456generation done at link time is executed in parallel using @var{n}
9457parallel jobs by utilizing an installed @command{make} program.  The
9458environment variable @env{MAKE} may be used to override the program
9459used.  The default value for @var{n} is 1.
9460
9461You can also specify @option{-flto=jobserver} to use GNU make's
9462job server mode to determine the number of parallel jobs. This
9463is useful when the Makefile calling GCC is already executing in parallel.
9464You must prepend a @samp{+} to the command recipe in the parent Makefile
9465for this to work.  This option likely only works if @env{MAKE} is
9466GNU make.
9467
9468@item -flto-partition=@var{alg}
9469@opindex flto-partition
9470Specify the partitioning algorithm used by the link-time optimizer.
9471The value is either @samp{1to1} to specify a partitioning mirroring
9472the original source files or @samp{balanced} to specify partitioning
9473into equally sized chunks (whenever possible) or @samp{max} to create
9474new partition for every symbol where possible.  Specifying @samp{none}
9475as an algorithm disables partitioning and streaming completely.
9476The default value is @samp{balanced}. While @samp{1to1} can be used
9477as an workaround for various code ordering issues, the @samp{max}
9478partitioning is intended for internal testing only.
9479The value @samp{one} specifies that exactly one partition should be
9480used while the value @samp{none} bypasses partitioning and executes
9481the link-time optimization step directly from the WPA phase.
9482
9483@item -flto-odr-type-merging
9484@opindex flto-odr-type-merging
9485Enable streaming of mangled types names of C++ types and their unification
9486at linktime.  This increases size of LTO object files, but enable
9487diagnostics about One Definition Rule violations.
9488
9489@item -flto-compression-level=@var{n}
9490@opindex flto-compression-level
9491This option specifies the level of compression used for intermediate
9492language written to LTO object files, and is only meaningful in
9493conjunction with LTO mode (@option{-flto}).  Valid
9494values are 0 (no compression) to 9 (maximum compression).  Values
9495outside this range are clamped to either 0 or 9.  If the option is not
9496given, a default balanced compression setting is used.
9497
9498@item -flto-report
9499@opindex flto-report
9500Prints a report with internal details on the workings of the link-time
9501optimizer.  The contents of this report vary from version to version.
9502It is meant to be useful to GCC developers when processing object
9503files in LTO mode (via @option{-flto}).
9504
9505Disabled by default.
9506
9507@item -flto-report-wpa
9508@opindex flto-report-wpa
9509Like @option{-flto-report}, but only print for the WPA phase of Link
9510Time Optimization.
9511
9512@item -fuse-linker-plugin
9513@opindex fuse-linker-plugin
9514Enables the use of a linker plugin during link-time optimization.  This
9515option relies on plugin support in the linker, which is available in gold
9516or in GNU ld 2.21 or newer.
9517
9518This option enables the extraction of object files with GIMPLE bytecode out
9519of library archives. This improves the quality of optimization by exposing
9520more code to the link-time optimizer.  This information specifies what
9521symbols can be accessed externally (by non-LTO object or during dynamic
9522linking).  Resulting code quality improvements on binaries (and shared
9523libraries that use hidden visibility) are similar to @option{-fwhole-program}.
9524See @option{-flto} for a description of the effect of this flag and how to
9525use it.
9526
9527This option is enabled by default when LTO support in GCC is enabled
9528and GCC was configured for use with
9529a linker supporting plugins (GNU ld 2.21 or newer or gold).
9530
9531@item -ffat-lto-objects
9532@opindex ffat-lto-objects
9533Fat LTO objects are object files that contain both the intermediate language
9534and the object code. This makes them usable for both LTO linking and normal
9535linking. This option is effective only when compiling with @option{-flto}
9536and is ignored at link time.
9537
9538@option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
9539requires the complete toolchain to be aware of LTO. It requires a linker with
9540linker plugin support for basic functionality.  Additionally,
9541@command{nm}, @command{ar} and @command{ranlib}
9542need to support linker plugins to allow a full-featured build environment
9543(capable of building static libraries etc).  GCC provides the @command{gcc-ar},
9544@command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
9545to these tools. With non fat LTO makefiles need to be modified to use them.
9546
9547The default is @option{-fno-fat-lto-objects} on targets with linker plugin
9548support.
9549
9550@item -fcompare-elim
9551@opindex fcompare-elim
9552After register allocation and post-register allocation instruction splitting,
9553identify arithmetic instructions that compute processor flags similar to a
9554comparison operation based on that arithmetic.  If possible, eliminate the
9555explicit comparison operation.
9556
9557This pass only applies to certain targets that cannot explicitly represent
9558the comparison operation before register allocation is complete.
9559
9560Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9561
9562@item -fcprop-registers
9563@opindex fcprop-registers
9564After register allocation and post-register allocation instruction splitting,
9565perform a copy-propagation pass to try to reduce scheduling dependencies
9566and occasionally eliminate the copy.
9567
9568Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9569
9570@item -fprofile-correction
9571@opindex fprofile-correction
9572Profiles collected using an instrumented binary for multi-threaded programs may
9573be inconsistent due to missed counter updates. When this option is specified,
9574GCC uses heuristics to correct or smooth out such inconsistencies. By
9575default, GCC emits an error message when an inconsistent profile is detected.
9576
9577@item -fprofile-dir=@var{path}
9578@opindex fprofile-dir
9579
9580Set the directory to search for the profile data files in to @var{path}.
9581This option affects only the profile data generated by
9582@option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
9583and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
9584and its related options.  Both absolute and relative paths can be used.
9585By default, GCC uses the current directory as @var{path}, thus the
9586profile data file appears in the same directory as the object file.
9587
9588@item -fprofile-generate
9589@itemx -fprofile-generate=@var{path}
9590@opindex fprofile-generate
9591
9592Enable options usually used for instrumenting application to produce
9593profile useful for later recompilation with profile feedback based
9594optimization.  You must use @option{-fprofile-generate} both when
9595compiling and when linking your program.
9596
9597The following options are enabled: @option{-fprofile-arcs}, @option{-fprofile-values}, @option{-fvpt}.
9598
9599If @var{path} is specified, GCC looks at the @var{path} to find
9600the profile feedback data files. See @option{-fprofile-dir}.
9601
9602@item -fprofile-use
9603@itemx -fprofile-use=@var{path}
9604@opindex fprofile-use
9605Enable profile feedback-directed optimizations,
9606and the following optimizations
9607which are generally profitable only with profile feedback available:
9608@option{-fbranch-probabilities}, @option{-fvpt},
9609@option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9610@option{-ftree-vectorize}, and @option{ftree-loop-distribute-patterns}.
9611
9612By default, GCC emits an error message if the feedback profiles do not
9613match the source code.  This error can be turned into a warning by using
9614@option{-Wcoverage-mismatch}.  Note this may result in poorly optimized
9615code.
9616
9617If @var{path} is specified, GCC looks at the @var{path} to find
9618the profile feedback data files. See @option{-fprofile-dir}.
9619
9620@item -fauto-profile
9621@itemx -fauto-profile=@var{path}
9622@opindex fauto-profile
9623Enable sampling-based feedback-directed optimizations,
9624and the following optimizations
9625which are generally profitable only with profile feedback available:
9626@option{-fbranch-probabilities}, @option{-fvpt},
9627@option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9628@option{-ftree-vectorize},
9629@option{-finline-functions}, @option{-fipa-cp}, @option{-fipa-cp-clone},
9630@option{-fpredictive-commoning}, @option{-funswitch-loops},
9631@option{-fgcse-after-reload}, and @option{-ftree-loop-distribute-patterns}.
9632
9633@var{path} is the name of a file containing AutoFDO profile information.
9634If omitted, it defaults to @file{fbdata.afdo} in the current directory.
9635
9636Producing an AutoFDO profile data file requires running your program
9637with the @command{perf} utility on a supported GNU/Linux target system.
9638For more information, see @uref{https://perf.wiki.kernel.org/}.
9639
9640E.g.
9641@smallexample
9642perf record -e br_inst_retired:near_taken -b -o perf.data \
9643    -- your_program
9644@end smallexample
9645
9646Then use the @command{create_gcov} tool to convert the raw profile data
9647to a format that can be used by GCC.@  You must also supply the
9648unstripped binary for your program to this tool.
9649See @uref{https://github.com/google/autofdo}.
9650
9651E.g.
9652@smallexample
9653create_gcov --binary=your_program.unstripped --profile=perf.data \
9654    --gcov=profile.afdo
9655@end smallexample
9656@end table
9657
9658The following options control compiler behavior regarding floating-point
9659arithmetic.  These options trade off between speed and
9660correctness.  All must be specifically enabled.
9661
9662@table @gcctabopt
9663@item -ffloat-store
9664@opindex ffloat-store
9665Do not store floating-point variables in registers, and inhibit other
9666options that might change whether a floating-point value is taken from a
9667register or memory.
9668
9669@cindex floating-point precision
9670This option prevents undesirable excess precision on machines such as
9671the 68000 where the floating registers (of the 68881) keep more
9672precision than a @code{double} is supposed to have.  Similarly for the
9673x86 architecture.  For most programs, the excess precision does only
9674good, but a few programs rely on the precise definition of IEEE floating
9675point.  Use @option{-ffloat-store} for such programs, after modifying
9676them to store all pertinent intermediate computations into variables.
9677
9678@item -fexcess-precision=@var{style}
9679@opindex fexcess-precision
9680This option allows further control over excess precision on machines
9681where floating-point registers have more precision than the IEEE
9682@code{float} and @code{double} types and the processor does not
9683support operations rounding to those types.  By default,
9684@option{-fexcess-precision=fast} is in effect; this means that
9685operations are carried out in the precision of the registers and that
9686it is unpredictable when rounding to the types specified in the source
9687code takes place.  When compiling C, if
9688@option{-fexcess-precision=standard} is specified then excess
9689precision follows the rules specified in ISO C99; in particular,
9690both casts and assignments cause values to be rounded to their
9691semantic types (whereas @option{-ffloat-store} only affects
9692assignments).  This option is enabled by default for C if a strict
9693conformance option such as @option{-std=c99} is used.
9694
9695@opindex mfpmath
9696@option{-fexcess-precision=standard} is not implemented for languages
9697other than C, and has no effect if
9698@option{-funsafe-math-optimizations} or @option{-ffast-math} is
9699specified.  On the x86, it also has no effect if @option{-mfpmath=sse}
9700or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
9701semantics apply without excess precision, and in the latter, rounding
9702is unpredictable.
9703
9704@item -ffast-math
9705@opindex ffast-math
9706Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
9707@option{-ffinite-math-only}, @option{-fno-rounding-math},
9708@option{-fno-signaling-nans} and @option{-fcx-limited-range}.
9709
9710This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
9711
9712This option is not turned on by any @option{-O} option besides
9713@option{-Ofast} since it can result in incorrect output for programs
9714that depend on an exact implementation of IEEE or ISO rules/specifications
9715for math functions. It may, however, yield faster code for programs
9716that do not require the guarantees of these specifications.
9717
9718@item -fno-math-errno
9719@opindex fno-math-errno
9720Do not set @code{errno} after calling math functions that are executed
9721with a single instruction, e.g., @code{sqrt}.  A program that relies on
9722IEEE exceptions for math error handling may want to use this flag
9723for speed while maintaining IEEE arithmetic compatibility.
9724
9725This option is not turned on by any @option{-O} option since
9726it can result in incorrect output for programs that depend on
9727an exact implementation of IEEE or ISO rules/specifications for
9728math functions. It may, however, yield faster code for programs
9729that do not require the guarantees of these specifications.
9730
9731The default is @option{-fmath-errno}.
9732
9733On Darwin systems, the math library never sets @code{errno}.  There is
9734therefore no reason for the compiler to consider the possibility that
9735it might, and @option{-fno-math-errno} is the default.
9736
9737@item -funsafe-math-optimizations
9738@opindex funsafe-math-optimizations
9739
9740Allow optimizations for floating-point arithmetic that (a) assume
9741that arguments and results are valid and (b) may violate IEEE or
9742ANSI standards.  When used at link-time, it may include libraries
9743or startup files that change the default FPU control word or other
9744similar optimizations.
9745
9746This option is not turned on by any @option{-O} option since
9747it can result in incorrect output for programs that depend on
9748an exact implementation of IEEE or ISO rules/specifications for
9749math functions. It may, however, yield faster code for programs
9750that do not require the guarantees of these specifications.
9751Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
9752@option{-fassociative-math} and @option{-freciprocal-math}.
9753
9754The default is @option{-fno-unsafe-math-optimizations}.
9755
9756@item -fassociative-math
9757@opindex fassociative-math
9758
9759Allow re-association of operands in series of floating-point operations.
9760This violates the ISO C and C++ language standard by possibly changing
9761computation result.  NOTE: re-ordering may change the sign of zero as
9762well as ignore NaNs and inhibit or create underflow or overflow (and
9763thus cannot be used on code that relies on rounding behavior like
9764@code{(x + 2**52) - 2**52}.  May also reorder floating-point comparisons
9765and thus may not be used when ordered comparisons are required.
9766This option requires that both @option{-fno-signed-zeros} and
9767@option{-fno-trapping-math} be in effect.  Moreover, it doesn't make
9768much sense with @option{-frounding-math}. For Fortran the option
9769is automatically enabled when both @option{-fno-signed-zeros} and
9770@option{-fno-trapping-math} are in effect.
9771
9772The default is @option{-fno-associative-math}.
9773
9774@item -freciprocal-math
9775@opindex freciprocal-math
9776
9777Allow the reciprocal of a value to be used instead of dividing by
9778the value if this enables optimizations.  For example @code{x / y}
9779can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
9780is subject to common subexpression elimination.  Note that this loses
9781precision and increases the number of flops operating on the value.
9782
9783The default is @option{-fno-reciprocal-math}.
9784
9785@item -ffinite-math-only
9786@opindex ffinite-math-only
9787Allow optimizations for floating-point arithmetic that assume
9788that arguments and results are not NaNs or +-Infs.
9789
9790This option is not turned on by any @option{-O} option since
9791it can result in incorrect output for programs that depend on
9792an exact implementation of IEEE or ISO rules/specifications for
9793math functions. It may, however, yield faster code for programs
9794that do not require the guarantees of these specifications.
9795
9796The default is @option{-fno-finite-math-only}.
9797
9798@item -fno-signed-zeros
9799@opindex fno-signed-zeros
9800Allow optimizations for floating-point arithmetic that ignore the
9801signedness of zero.  IEEE arithmetic specifies the behavior of
9802distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
9803of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
9804This option implies that the sign of a zero result isn't significant.
9805
9806The default is @option{-fsigned-zeros}.
9807
9808@item -fno-trapping-math
9809@opindex fno-trapping-math
9810Compile code assuming that floating-point operations cannot generate
9811user-visible traps.  These traps include division by zero, overflow,
9812underflow, inexact result and invalid operation.  This option requires
9813that @option{-fno-signaling-nans} be in effect.  Setting this option may
9814allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
9815
9816This option should never be turned on by any @option{-O} option since
9817it can result in incorrect output for programs that depend on
9818an exact implementation of IEEE or ISO rules/specifications for
9819math functions.
9820
9821The default is @option{-ftrapping-math}.
9822
9823@item -frounding-math
9824@opindex frounding-math
9825Disable transformations and optimizations that assume default floating-point
9826rounding behavior.  This is round-to-zero for all floating point
9827to integer conversions, and round-to-nearest for all other arithmetic
9828truncations.  This option should be specified for programs that change
9829the FP rounding mode dynamically, or that may be executed with a
9830non-default rounding mode.  This option disables constant folding of
9831floating-point expressions at compile time (which may be affected by
9832rounding mode) and arithmetic transformations that are unsafe in the
9833presence of sign-dependent rounding modes.
9834
9835The default is @option{-fno-rounding-math}.
9836
9837This option is experimental and does not currently guarantee to
9838disable all GCC optimizations that are affected by rounding mode.
9839Future versions of GCC may provide finer control of this setting
9840using C99's @code{FENV_ACCESS} pragma.  This command-line option
9841will be used to specify the default state for @code{FENV_ACCESS}.
9842
9843@item -fsignaling-nans
9844@opindex fsignaling-nans
9845Compile code assuming that IEEE signaling NaNs may generate user-visible
9846traps during floating-point operations.  Setting this option disables
9847optimizations that may change the number of exceptions visible with
9848signaling NaNs.  This option implies @option{-ftrapping-math}.
9849
9850This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
9851be defined.
9852
9853The default is @option{-fno-signaling-nans}.
9854
9855This option is experimental and does not currently guarantee to
9856disable all GCC optimizations that affect signaling NaN behavior.
9857
9858@item -fsingle-precision-constant
9859@opindex fsingle-precision-constant
9860Treat floating-point constants as single precision instead of
9861implicitly converting them to double-precision constants.
9862
9863@item -fcx-limited-range
9864@opindex fcx-limited-range
9865When enabled, this option states that a range reduction step is not
9866needed when performing complex division.  Also, there is no checking
9867whether the result of a complex multiplication or division is @code{NaN
9868+ I*NaN}, with an attempt to rescue the situation in that case.  The
9869default is @option{-fno-cx-limited-range}, but is enabled by
9870@option{-ffast-math}.
9871
9872This option controls the default setting of the ISO C99
9873@code{CX_LIMITED_RANGE} pragma.  Nevertheless, the option applies to
9874all languages.
9875
9876@item -fcx-fortran-rules
9877@opindex fcx-fortran-rules
9878Complex multiplication and division follow Fortran rules.  Range
9879reduction is done as part of complex division, but there is no checking
9880whether the result of a complex multiplication or division is @code{NaN
9881+ I*NaN}, with an attempt to rescue the situation in that case.
9882
9883The default is @option{-fno-cx-fortran-rules}.
9884
9885@end table
9886
9887The following options control optimizations that may improve
9888performance, but are not enabled by any @option{-O} options.  This
9889section includes experimental options that may produce broken code.
9890
9891@table @gcctabopt
9892@item -fbranch-probabilities
9893@opindex fbranch-probabilities
9894After running a program compiled with @option{-fprofile-arcs}
9895(@pxref{Debugging Options,, Options for Debugging Your Program or
9896@command{gcc}}), you can compile it a second time using
9897@option{-fbranch-probabilities}, to improve optimizations based on
9898the number of times each branch was taken.  When a program
9899compiled with @option{-fprofile-arcs} exits, it saves arc execution
9900counts to a file called @file{@var{sourcename}.gcda} for each source
9901file.  The information in this data file is very dependent on the
9902structure of the generated code, so you must use the same source code
9903and the same optimization options for both compilations.
9904
9905With @option{-fbranch-probabilities}, GCC puts a
9906@samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
9907These can be used to improve optimization.  Currently, they are only
9908used in one place: in @file{reorg.c}, instead of guessing which path a
9909branch is most likely to take, the @samp{REG_BR_PROB} values are used to
9910exactly determine which path is taken more often.
9911
9912@item -fprofile-values
9913@opindex fprofile-values
9914If combined with @option{-fprofile-arcs}, it adds code so that some
9915data about values of expressions in the program is gathered.
9916
9917With @option{-fbranch-probabilities}, it reads back the data gathered
9918from profiling values of expressions for usage in optimizations.
9919
9920Enabled with @option{-fprofile-generate} and @option{-fprofile-use}.
9921
9922@item -fprofile-reorder-functions
9923@opindex fprofile-reorder-functions
9924Function reordering based on profile instrumentation collects
9925first time of execution of a function and orders these functions
9926in ascending order.
9927
9928Enabled with @option{-fprofile-use}.
9929
9930@item -fvpt
9931@opindex fvpt
9932If combined with @option{-fprofile-arcs}, this option instructs the compiler
9933to add code to gather information about values of expressions.
9934
9935With @option{-fbranch-probabilities}, it reads back the data gathered
9936and actually performs the optimizations based on them.
9937Currently the optimizations include specialization of division operations
9938using the knowledge about the value of the denominator.
9939
9940@item -frename-registers
9941@opindex frename-registers
9942Attempt to avoid false dependencies in scheduled code by making use
9943of registers left over after register allocation.  This optimization
9944most benefits processors with lots of registers.  Depending on the
9945debug information format adopted by the target, however, it can
9946make debugging impossible, since variables no longer stay in
9947a ``home register''.
9948
9949Enabled by default with @option{-funroll-loops} and @option{-fpeel-loops}.
9950
9951@item -fschedule-fusion
9952@opindex fschedule-fusion
9953Performs a target dependent pass over the instruction stream to schedule
9954instructions of same type together because target machine can execute them
9955more efficiently if they are adjacent to each other in the instruction flow.
9956
9957Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9958
9959@item -ftracer
9960@opindex ftracer
9961Perform tail duplication to enlarge superblock size.  This transformation
9962simplifies the control flow of the function allowing other optimizations to do
9963a better job.
9964
9965Enabled with @option{-fprofile-use}.
9966
9967@item -funroll-loops
9968@opindex funroll-loops
9969Unroll loops whose number of iterations can be determined at compile time or
9970upon entry to the loop.  @option{-funroll-loops} implies
9971@option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
9972It also turns on complete loop peeling (i.e.@: complete removal of loops with
9973a small constant number of iterations).  This option makes code larger, and may
9974or may not make it run faster.
9975
9976Enabled with @option{-fprofile-use}.
9977
9978@item -funroll-all-loops
9979@opindex funroll-all-loops
9980Unroll all loops, even if their number of iterations is uncertain when
9981the loop is entered.  This usually makes programs run more slowly.
9982@option{-funroll-all-loops} implies the same options as
9983@option{-funroll-loops}.
9984
9985@item -fpeel-loops
9986@opindex fpeel-loops
9987Peels loops for which there is enough information that they do not
9988roll much (from profile feedback).  It also turns on complete loop peeling
9989(i.e.@: complete removal of loops with small constant number of iterations).
9990
9991Enabled with @option{-fprofile-use}.
9992
9993@item -fmove-loop-invariants
9994@opindex fmove-loop-invariants
9995Enables the loop invariant motion pass in the RTL loop optimizer.  Enabled
9996at level @option{-O1}
9997
9998@item -funswitch-loops
9999@opindex funswitch-loops
10000Move branches with loop invariant conditions out of the loop, with duplicates
10001of the loop on both branches (modified according to result of the condition).
10002
10003@item -ffunction-sections
10004@itemx -fdata-sections
10005@opindex ffunction-sections
10006@opindex fdata-sections
10007Place each function or data item into its own section in the output
10008file if the target supports arbitrary sections.  The name of the
10009function or the name of the data item determines the section's name
10010in the output file.
10011
10012Use these options on systems where the linker can perform optimizations
10013to improve locality of reference in the instruction space.  Most systems
10014using the ELF object format and SPARC processors running Solaris 2 have
10015linkers with such optimizations.  AIX may have these optimizations in
10016the future.
10017
10018Only use these options when there are significant benefits from doing
10019so.  When you specify these options, the assembler and linker
10020create larger object and executable files and are also slower.
10021You cannot use @command{gprof} on all systems if you
10022specify this option, and you may have problems with debugging if
10023you specify both this option and @option{-g}.
10024
10025@item -fbranch-target-load-optimize
10026@opindex fbranch-target-load-optimize
10027Perform branch target register load optimization before prologue / epilogue
10028threading.
10029The use of target registers can typically be exposed only during reload,
10030thus hoisting loads out of loops and doing inter-block scheduling needs
10031a separate optimization pass.
10032
10033@item -fbranch-target-load-optimize2
10034@opindex fbranch-target-load-optimize2
10035Perform branch target register load optimization after prologue / epilogue
10036threading.
10037
10038@item -fbtr-bb-exclusive
10039@opindex fbtr-bb-exclusive
10040When performing branch target register load optimization, don't reuse
10041branch target registers within any basic block.
10042
10043@item -fstack-protector
10044@opindex fstack-protector
10045Emit extra code to check for buffer overflows, such as stack smashing
10046attacks.  This is done by adding a guard variable to functions with
10047vulnerable objects.  This includes functions that call @code{alloca}, and
10048functions with buffers larger than 8 bytes.  The guards are initialized
10049when a function is entered and then checked when the function exits.
10050If a guard check fails, an error message is printed and the program exits.
10051
10052@item -fstack-protector-all
10053@opindex fstack-protector-all
10054Like @option{-fstack-protector} except that all functions are protected.
10055
10056@item -fstack-protector-strong
10057@opindex fstack-protector-strong
10058Like @option{-fstack-protector} but includes additional functions to
10059be protected --- those that have local array definitions, or have
10060references to local frame addresses.
10061
10062@item -fstack-protector-explicit
10063@opindex fstack-protector-explicit
10064Like @option{-fstack-protector} but only protects those functions which
10065have the @code{stack_protect} attribute
10066
10067@item -fstdarg-opt
10068@opindex fstdarg-opt
10069Optimize the prologue of variadic argument functions with respect to usage of
10070those arguments.
10071
10072@item -fsection-anchors
10073@opindex fsection-anchors
10074Try to reduce the number of symbolic address calculations by using
10075shared ``anchor'' symbols to address nearby objects.  This transformation
10076can help to reduce the number of GOT entries and GOT accesses on some
10077targets.
10078
10079For example, the implementation of the following function @code{foo}:
10080
10081@smallexample
10082static int a, b, c;
10083int foo (void) @{ return a + b + c; @}
10084@end smallexample
10085
10086@noindent
10087usually calculates the addresses of all three variables, but if you
10088compile it with @option{-fsection-anchors}, it accesses the variables
10089from a common anchor point instead.  The effect is similar to the
10090following pseudocode (which isn't valid C):
10091
10092@smallexample
10093int foo (void)
10094@{
10095  register int *xr = &x;
10096  return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
10097@}
10098@end smallexample
10099
10100Not all targets support this option.
10101
10102@item --param @var{name}=@var{value}
10103@opindex param
10104In some places, GCC uses various constants to control the amount of
10105optimization that is done.  For example, GCC does not inline functions
10106that contain more than a certain number of instructions.  You can
10107control some of these constants on the command line using the
10108@option{--param} option.
10109
10110The names of specific parameters, and the meaning of the values, are
10111tied to the internals of the compiler, and are subject to change
10112without notice in future releases.
10113
10114In each case, the @var{value} is an integer.  The allowable choices for
10115@var{name} are:
10116
10117@table @gcctabopt
10118@item predictable-branch-outcome
10119When branch is predicted to be taken with probability lower than this threshold
10120(in percent), then it is considered well predictable. The default is 10.
10121
10122@item max-crossjump-edges
10123The maximum number of incoming edges to consider for cross-jumping.
10124The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
10125the number of edges incoming to each block.  Increasing values mean
10126more aggressive optimization, making the compilation time increase with
10127probably small improvement in executable size.
10128
10129@item min-crossjump-insns
10130The minimum number of instructions that must be matched at the end
10131of two blocks before cross-jumping is performed on them.  This
10132value is ignored in the case where all instructions in the block being
10133cross-jumped from are matched.  The default value is 5.
10134
10135@item max-grow-copy-bb-insns
10136The maximum code size expansion factor when copying basic blocks
10137instead of jumping.  The expansion is relative to a jump instruction.
10138The default value is 8.
10139
10140@item max-goto-duplication-insns
10141The maximum number of instructions to duplicate to a block that jumps
10142to a computed goto.  To avoid @math{O(N^2)} behavior in a number of
10143passes, GCC factors computed gotos early in the compilation process,
10144and unfactors them as late as possible.  Only computed jumps at the
10145end of a basic blocks with no more than max-goto-duplication-insns are
10146unfactored.  The default value is 8.
10147
10148@item max-delay-slot-insn-search
10149The maximum number of instructions to consider when looking for an
10150instruction to fill a delay slot.  If more than this arbitrary number of
10151instructions are searched, the time savings from filling the delay slot
10152are minimal, so stop searching.  Increasing values mean more
10153aggressive optimization, making the compilation time increase with probably
10154small improvement in execution time.
10155
10156@item max-delay-slot-live-search
10157When trying to fill delay slots, the maximum number of instructions to
10158consider when searching for a block with valid live register
10159information.  Increasing this arbitrarily chosen value means more
10160aggressive optimization, increasing the compilation time.  This parameter
10161should be removed when the delay slot code is rewritten to maintain the
10162control-flow graph.
10163
10164@item max-gcse-memory
10165The approximate maximum amount of memory that can be allocated in
10166order to perform the global common subexpression elimination
10167optimization.  If more memory than specified is required, the
10168optimization is not done.
10169
10170@item max-gcse-insertion-ratio
10171If the ratio of expression insertions to deletions is larger than this value
10172for any expression, then RTL PRE inserts or removes the expression and thus
10173leaves partially redundant computations in the instruction stream.  The default value is 20.
10174
10175@item max-pending-list-length
10176The maximum number of pending dependencies scheduling allows
10177before flushing the current state and starting over.  Large functions
10178with few branches or calls can create excessively large lists which
10179needlessly consume memory and resources.
10180
10181@item max-modulo-backtrack-attempts
10182The maximum number of backtrack attempts the scheduler should make
10183when modulo scheduling a loop.  Larger values can exponentially increase
10184compilation time.
10185
10186@item max-inline-insns-single
10187Several parameters control the tree inliner used in GCC@.
10188This number sets the maximum number of instructions (counted in GCC's
10189internal representation) in a single function that the tree inliner
10190considers for inlining.  This only affects functions declared
10191inline and methods implemented in a class declaration (C++).
10192The default value is 400.
10193
10194@item max-inline-insns-auto
10195When you use @option{-finline-functions} (included in @option{-O3}),
10196a lot of functions that would otherwise not be considered for inlining
10197by the compiler are investigated.  To those functions, a different
10198(more restrictive) limit compared to functions declared inline can
10199be applied.
10200The default value is 40.
10201
10202@item inline-min-speedup
10203When estimated performance improvement of caller + callee runtime exceeds this
10204threshold (in precent), the function can be inlined regardless the limit on
10205@option{--param max-inline-insns-single} and @option{--param
10206max-inline-insns-auto}.
10207
10208@item large-function-insns
10209The limit specifying really large functions.  For functions larger than this
10210limit after inlining, inlining is constrained by
10211@option{--param large-function-growth}.  This parameter is useful primarily
10212to avoid extreme compilation time caused by non-linear algorithms used by the
10213back end.
10214The default value is 2700.
10215
10216@item large-function-growth
10217Specifies maximal growth of large function caused by inlining in percents.
10218The default value is 100 which limits large function growth to 2.0 times
10219the original size.
10220
10221@item large-unit-insns
10222The limit specifying large translation unit.  Growth caused by inlining of
10223units larger than this limit is limited by @option{--param inline-unit-growth}.
10224For small units this might be too tight.
10225For example, consider a unit consisting of function A
10226that is inline and B that just calls A three times.  If B is small relative to
10227A, the growth of unit is 300\% and yet such inlining is very sane.  For very
10228large units consisting of small inlineable functions, however, the overall unit
10229growth limit is needed to avoid exponential explosion of code size.  Thus for
10230smaller units, the size is increased to @option{--param large-unit-insns}
10231before applying @option{--param inline-unit-growth}.  The default is 10000.
10232
10233@item inline-unit-growth
10234Specifies maximal overall growth of the compilation unit caused by inlining.
10235The default value is 20 which limits unit growth to 1.2 times the original
10236size. Cold functions (either marked cold via an attribute or by profile
10237feedback) are not accounted into the unit size.
10238
10239@item ipcp-unit-growth
10240Specifies maximal overall growth of the compilation unit caused by
10241interprocedural constant propagation.  The default value is 10 which limits
10242unit growth to 1.1 times the original size.
10243
10244@item large-stack-frame
10245The limit specifying large stack frames.  While inlining the algorithm is trying
10246to not grow past this limit too much.  The default value is 256 bytes.
10247
10248@item large-stack-frame-growth
10249Specifies maximal growth of large stack frames caused by inlining in percents.
10250The default value is 1000 which limits large stack frame growth to 11 times
10251the original size.
10252
10253@item max-inline-insns-recursive
10254@itemx max-inline-insns-recursive-auto
10255Specifies the maximum number of instructions an out-of-line copy of a
10256self-recursive inline
10257function can grow into by performing recursive inlining.
10258
10259@option{--param max-inline-insns-recursive} applies to functions
10260declared inline.
10261For functions not declared inline, recursive inlining
10262happens only when @option{-finline-functions} (included in @option{-O3}) is
10263enabled; @option{--param max-inline-insns-recursive-auto} applies instead.  The
10264default value is 450.
10265
10266@item max-inline-recursive-depth
10267@itemx max-inline-recursive-depth-auto
10268Specifies the maximum recursion depth used for recursive inlining.
10269
10270@option{--param max-inline-recursive-depth} applies to functions
10271declared inline.  For functions not declared inline, recursive inlining
10272happens only when @option{-finline-functions} (included in @option{-O3}) is
10273enabled; @option{--param max-inline-recursive-depth-auto} applies instead.  The
10274default value is 8.
10275
10276@item min-inline-recursive-probability
10277Recursive inlining is profitable only for function having deep recursion
10278in average and can hurt for function having little recursion depth by
10279increasing the prologue size or complexity of function body to other
10280optimizers.
10281
10282When profile feedback is available (see @option{-fprofile-generate}) the actual
10283recursion depth can be guessed from probability that function recurses via a
10284given call expression.  This parameter limits inlining only to call expressions
10285whose probability exceeds the given threshold (in percents).
10286The default value is 10.
10287
10288@item early-inlining-insns
10289Specify growth that the early inliner can make.  In effect it increases
10290the amount of inlining for code having a large abstraction penalty.
10291The default value is 14.
10292
10293@item max-early-inliner-iterations
10294Limit of iterations of the early inliner.  This basically bounds
10295the number of nested indirect calls the early inliner can resolve.
10296Deeper chains are still handled by late inlining.
10297
10298@item comdat-sharing-probability
10299Probability (in percent) that C++ inline function with comdat visibility
10300are shared across multiple compilation units.  The default value is 20.
10301
10302@item profile-func-internal-id
10303A parameter to control whether to use function internal id in profile
10304database lookup. If the value is 0, the compiler uses an id that
10305is based on function assembler name and filename, which makes old profile
10306data more tolerant to source changes such as function reordering etc.
10307The default value is 0.
10308
10309@item min-vect-loop-bound
10310The minimum number of iterations under which loops are not vectorized
10311when @option{-ftree-vectorize} is used.  The number of iterations after
10312vectorization needs to be greater than the value specified by this option
10313to allow vectorization.  The default value is 0.
10314
10315@item gcse-cost-distance-ratio
10316Scaling factor in calculation of maximum distance an expression
10317can be moved by GCSE optimizations.  This is currently supported only in the
10318code hoisting pass.  The bigger the ratio, the more aggressive code hoisting
10319is with simple expressions, i.e., the expressions that have cost
10320less than @option{gcse-unrestricted-cost}.  Specifying 0 disables
10321hoisting of simple expressions.  The default value is 10.
10322
10323@item gcse-unrestricted-cost
10324Cost, roughly measured as the cost of a single typical machine
10325instruction, at which GCSE optimizations do not constrain
10326the distance an expression can travel.  This is currently
10327supported only in the code hoisting pass.  The lesser the cost,
10328the more aggressive code hoisting is.  Specifying 0
10329allows all expressions to travel unrestricted distances.
10330The default value is 3.
10331
10332@item max-hoist-depth
10333The depth of search in the dominator tree for expressions to hoist.
10334This is used to avoid quadratic behavior in hoisting algorithm.
10335The value of 0 does not limit on the search, but may slow down compilation
10336of huge functions.  The default value is 30.
10337
10338@item max-tail-merge-comparisons
10339The maximum amount of similar bbs to compare a bb with.  This is used to
10340avoid quadratic behavior in tree tail merging.  The default value is 10.
10341
10342@item max-tail-merge-iterations
10343The maximum amount of iterations of the pass over the function.  This is used to
10344limit compilation time in tree tail merging.  The default value is 2.
10345
10346@item max-unrolled-insns
10347The maximum number of instructions that a loop may have to be unrolled.
10348If a loop is unrolled, this parameter also determines how many times
10349the loop code is unrolled.
10350
10351@item max-average-unrolled-insns
10352The maximum number of instructions biased by probabilities of their execution
10353that a loop may have to be unrolled.  If a loop is unrolled,
10354this parameter also determines how many times the loop code is unrolled.
10355
10356@item max-unroll-times
10357The maximum number of unrollings of a single loop.
10358
10359@item max-peeled-insns
10360The maximum number of instructions that a loop may have to be peeled.
10361If a loop is peeled, this parameter also determines how many times
10362the loop code is peeled.
10363
10364@item max-peel-times
10365The maximum number of peelings of a single loop.
10366
10367@item max-peel-branches
10368The maximum number of branches on the hot path through the peeled sequence.
10369
10370@item max-completely-peeled-insns
10371The maximum number of insns of a completely peeled loop.
10372
10373@item max-completely-peel-times
10374The maximum number of iterations of a loop to be suitable for complete peeling.
10375
10376@item max-completely-peel-loop-nest-depth
10377The maximum depth of a loop nest suitable for complete peeling.
10378
10379@item max-unswitch-insns
10380The maximum number of insns of an unswitched loop.
10381
10382@item max-unswitch-level
10383The maximum number of branches unswitched in a single loop.
10384
10385@item lim-expensive
10386The minimum cost of an expensive expression in the loop invariant motion.
10387
10388@item iv-consider-all-candidates-bound
10389Bound on number of candidates for induction variables, below which
10390all candidates are considered for each use in induction variable
10391optimizations.  If there are more candidates than this,
10392only the most relevant ones are considered to avoid quadratic time complexity.
10393
10394@item iv-max-considered-uses
10395The induction variable optimizations give up on loops that contain more
10396induction variable uses.
10397
10398@item iv-always-prune-cand-set-bound
10399If the number of candidates in the set is smaller than this value,
10400always try to remove unnecessary ivs from the set
10401when adding a new one.
10402
10403@item scev-max-expr-size
10404Bound on size of expressions used in the scalar evolutions analyzer.
10405Large expressions slow the analyzer.
10406
10407@item scev-max-expr-complexity
10408Bound on the complexity of the expressions in the scalar evolutions analyzer.
10409Complex expressions slow the analyzer.
10410
10411@item omega-max-vars
10412The maximum number of variables in an Omega constraint system.
10413The default value is 128.
10414
10415@item omega-max-geqs
10416The maximum number of inequalities in an Omega constraint system.
10417The default value is 256.
10418
10419@item omega-max-eqs
10420The maximum number of equalities in an Omega constraint system.
10421The default value is 128.
10422
10423@item omega-max-wild-cards
10424The maximum number of wildcard variables that the Omega solver is
10425able to insert.  The default value is 18.
10426
10427@item omega-hash-table-size
10428The size of the hash table in the Omega solver.  The default value is
10429550.
10430
10431@item omega-max-keys
10432The maximal number of keys used by the Omega solver.  The default
10433value is 500.
10434
10435@item omega-eliminate-redundant-constraints
10436When set to 1, use expensive methods to eliminate all redundant
10437constraints.  The default value is 0.
10438
10439@item vect-max-version-for-alignment-checks
10440The maximum number of run-time checks that can be performed when
10441doing loop versioning for alignment in the vectorizer.
10442
10443@item vect-max-version-for-alias-checks
10444The maximum number of run-time checks that can be performed when
10445doing loop versioning for alias in the vectorizer.
10446
10447@item vect-max-peeling-for-alignment
10448The maximum number of loop peels to enhance access alignment
10449for vectorizer. Value -1 means 'no limit'.
10450
10451@item max-iterations-to-track
10452The maximum number of iterations of a loop the brute-force algorithm
10453for analysis of the number of iterations of the loop tries to evaluate.
10454
10455@item hot-bb-count-ws-permille
10456A basic block profile count is considered hot if it contributes to
10457the given permillage (i.e. 0...1000) of the entire profiled execution.
10458
10459@item hot-bb-frequency-fraction
10460Select fraction of the entry block frequency of executions of basic block in
10461function given basic block needs to have to be considered hot.
10462
10463@item max-predicted-iterations
10464The maximum number of loop iterations we predict statically.  This is useful
10465in cases where a function contains a single loop with known bound and
10466another loop with unknown bound.
10467The known number of iterations is predicted correctly, while
10468the unknown number of iterations average to roughly 10.  This means that the
10469loop without bounds appears artificially cold relative to the other one.
10470
10471@item builtin-expect-probability
10472Control the probability of the expression having the specified value. This
10473parameter takes a percentage (i.e. 0 ... 100) as input.
10474The default probability of 90 is obtained empirically.
10475
10476@item align-threshold
10477
10478Select fraction of the maximal frequency of executions of a basic block in
10479a function to align the basic block.
10480
10481@item align-loop-iterations
10482
10483A loop expected to iterate at least the selected number of iterations is
10484aligned.
10485
10486@item tracer-dynamic-coverage
10487@itemx tracer-dynamic-coverage-feedback
10488
10489This value is used to limit superblock formation once the given percentage of
10490executed instructions is covered.  This limits unnecessary code size
10491expansion.
10492
10493The @option{tracer-dynamic-coverage-feedback} parameter
10494is used only when profile
10495feedback is available.  The real profiles (as opposed to statically estimated
10496ones) are much less balanced allowing the threshold to be larger value.
10497
10498@item tracer-max-code-growth
10499Stop tail duplication once code growth has reached given percentage.  This is
10500a rather artificial limit, as most of the duplicates are eliminated later in
10501cross jumping, so it may be set to much higher values than is the desired code
10502growth.
10503
10504@item tracer-min-branch-ratio
10505
10506Stop reverse growth when the reverse probability of best edge is less than this
10507threshold (in percent).
10508
10509@item tracer-min-branch-ratio
10510@itemx tracer-min-branch-ratio-feedback
10511
10512Stop forward growth if the best edge has probability lower than this
10513threshold.
10514
10515Similarly to @option{tracer-dynamic-coverage} two values are present, one for
10516compilation for profile feedback and one for compilation without.  The value
10517for compilation with profile feedback needs to be more conservative (higher) in
10518order to make tracer effective.
10519
10520@item max-cse-path-length
10521
10522The maximum number of basic blocks on path that CSE considers.
10523The default is 10.
10524
10525@item max-cse-insns
10526The maximum number of instructions CSE processes before flushing.
10527The default is 1000.
10528
10529@item ggc-min-expand
10530
10531GCC uses a garbage collector to manage its own memory allocation.  This
10532parameter specifies the minimum percentage by which the garbage
10533collector's heap should be allowed to expand between collections.
10534Tuning this may improve compilation speed; it has no effect on code
10535generation.
10536
10537The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
10538RAM >= 1GB@.  If @code{getrlimit} is available, the notion of ``RAM'' is
10539the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}.  If
10540GCC is not able to calculate RAM on a particular platform, the lower
10541bound of 30% is used.  Setting this parameter and
10542@option{ggc-min-heapsize} to zero causes a full collection to occur at
10543every opportunity.  This is extremely slow, but can be useful for
10544debugging.
10545
10546@item ggc-min-heapsize
10547
10548Minimum size of the garbage collector's heap before it begins bothering
10549to collect garbage.  The first collection occurs after the heap expands
10550by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}.  Again,
10551tuning this may improve compilation speed, and has no effect on code
10552generation.
10553
10554The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
10555tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
10556with a lower bound of 4096 (four megabytes) and an upper bound of
10557131072 (128 megabytes).  If GCC is not able to calculate RAM on a
10558particular platform, the lower bound is used.  Setting this parameter
10559very large effectively disables garbage collection.  Setting this
10560parameter and @option{ggc-min-expand} to zero causes a full collection
10561to occur at every opportunity.
10562
10563@item max-reload-search-insns
10564The maximum number of instruction reload should look backward for equivalent
10565register.  Increasing values mean more aggressive optimization, making the
10566compilation time increase with probably slightly better performance.
10567The default value is 100.
10568
10569@item max-cselib-memory-locations
10570The maximum number of memory locations cselib should take into account.
10571Increasing values mean more aggressive optimization, making the compilation time
10572increase with probably slightly better performance.  The default value is 500.
10573
10574@item reorder-blocks-duplicate
10575@itemx reorder-blocks-duplicate-feedback
10576
10577Used by the basic block reordering pass to decide whether to use unconditional
10578branch or duplicate the code on its destination.  Code is duplicated when its
10579estimated size is smaller than this value multiplied by the estimated size of
10580unconditional jump in the hot spots of the program.
10581
10582The @option{reorder-block-duplicate-feedback} parameter
10583is used only when profile
10584feedback is available.  It may be set to higher values than
10585@option{reorder-block-duplicate} since information about the hot spots is more
10586accurate.
10587
10588@item max-sched-ready-insns
10589The maximum number of instructions ready to be issued the scheduler should
10590consider at any given time during the first scheduling pass.  Increasing
10591values mean more thorough searches, making the compilation time increase
10592with probably little benefit.  The default value is 100.
10593
10594@item max-sched-region-blocks
10595The maximum number of blocks in a region to be considered for
10596interblock scheduling.  The default value is 10.
10597
10598@item max-pipeline-region-blocks
10599The maximum number of blocks in a region to be considered for
10600pipelining in the selective scheduler.  The default value is 15.
10601
10602@item max-sched-region-insns
10603The maximum number of insns in a region to be considered for
10604interblock scheduling.  The default value is 100.
10605
10606@item max-pipeline-region-insns
10607The maximum number of insns in a region to be considered for
10608pipelining in the selective scheduler.  The default value is 200.
10609
10610@item min-spec-prob
10611The minimum probability (in percents) of reaching a source block
10612for interblock speculative scheduling.  The default value is 40.
10613
10614@item max-sched-extend-regions-iters
10615The maximum number of iterations through CFG to extend regions.
10616A value of 0 (the default) disables region extensions.
10617
10618@item max-sched-insn-conflict-delay
10619The maximum conflict delay for an insn to be considered for speculative motion.
10620The default value is 3.
10621
10622@item sched-spec-prob-cutoff
10623The minimal probability of speculation success (in percents), so that
10624speculative insns are scheduled.
10625The default value is 40.
10626
10627@item sched-spec-state-edge-prob-cutoff
10628The minimum probability an edge must have for the scheduler to save its
10629state across it.
10630The default value is 10.
10631
10632@item sched-mem-true-dep-cost
10633Minimal distance (in CPU cycles) between store and load targeting same
10634memory locations.  The default value is 1.
10635
10636@item selsched-max-lookahead
10637The maximum size of the lookahead window of selective scheduling.  It is a
10638depth of search for available instructions.
10639The default value is 50.
10640
10641@item selsched-max-sched-times
10642The maximum number of times that an instruction is scheduled during
10643selective scheduling.  This is the limit on the number of iterations
10644through which the instruction may be pipelined.  The default value is 2.
10645
10646@item selsched-max-insns-to-rename
10647The maximum number of best instructions in the ready list that are considered
10648for renaming in the selective scheduler.  The default value is 2.
10649
10650@item sms-min-sc
10651The minimum value of stage count that swing modulo scheduler
10652generates.  The default value is 2.
10653
10654@item max-last-value-rtl
10655The maximum size measured as number of RTLs that can be recorded in an expression
10656in combiner for a pseudo register as last known value of that register.  The default
10657is 10000.
10658
10659@item max-combine-insns
10660The maximum number of instructions the RTL combiner tries to combine.
10661The default value is 2 at @option{-Og} and 4 otherwise.
10662
10663@item integer-share-limit
10664Small integer constants can use a shared data structure, reducing the
10665compiler's memory usage and increasing its speed.  This sets the maximum
10666value of a shared integer constant.  The default value is 256.
10667
10668@item ssp-buffer-size
10669The minimum size of buffers (i.e.@: arrays) that receive stack smashing
10670protection when @option{-fstack-protection} is used.
10671
10672@item min-size-for-stack-sharing
10673The minimum size of variables taking part in stack slot sharing when not
10674optimizing. The default value is 32.
10675
10676@item max-jump-thread-duplication-stmts
10677Maximum number of statements allowed in a block that needs to be
10678duplicated when threading jumps.
10679
10680@item max-fields-for-field-sensitive
10681Maximum number of fields in a structure treated in
10682a field sensitive manner during pointer analysis.  The default is zero
10683for @option{-O0} and @option{-O1},
10684and 100 for @option{-Os}, @option{-O2}, and @option{-O3}.
10685
10686@item prefetch-latency
10687Estimate on average number of instructions that are executed before
10688prefetch finishes.  The distance prefetched ahead is proportional
10689to this constant.  Increasing this number may also lead to less
10690streams being prefetched (see @option{simultaneous-prefetches}).
10691
10692@item simultaneous-prefetches
10693Maximum number of prefetches that can run at the same time.
10694
10695@item l1-cache-line-size
10696The size of cache line in L1 cache, in bytes.
10697
10698@item l1-cache-size
10699The size of L1 cache, in kilobytes.
10700
10701@item l2-cache-size
10702The size of L2 cache, in kilobytes.
10703
10704@item min-insn-to-prefetch-ratio
10705The minimum ratio between the number of instructions and the
10706number of prefetches to enable prefetching in a loop.
10707
10708@item prefetch-min-insn-to-mem-ratio
10709The minimum ratio between the number of instructions and the
10710number of memory references to enable prefetching in a loop.
10711
10712@item use-canonical-types
10713Whether the compiler should use the ``canonical'' type system.  By
10714default, this should always be 1, which uses a more efficient internal
10715mechanism for comparing types in C++ and Objective-C++.  However, if
10716bugs in the canonical type system are causing compilation failures,
10717set this value to 0 to disable canonical types.
10718
10719@item switch-conversion-max-branch-ratio
10720Switch initialization conversion refuses to create arrays that are
10721bigger than @option{switch-conversion-max-branch-ratio} times the number of
10722branches in the switch.
10723
10724@item max-partial-antic-length
10725Maximum length of the partial antic set computed during the tree
10726partial redundancy elimination optimization (@option{-ftree-pre}) when
10727optimizing at @option{-O3} and above.  For some sorts of source code
10728the enhanced partial redundancy elimination optimization can run away,
10729consuming all of the memory available on the host machine.  This
10730parameter sets a limit on the length of the sets that are computed,
10731which prevents the runaway behavior.  Setting a value of 0 for
10732this parameter allows an unlimited set length.
10733
10734@item sccvn-max-scc-size
10735Maximum size of a strongly connected component (SCC) during SCCVN
10736processing.  If this limit is hit, SCCVN processing for the whole
10737function is not done and optimizations depending on it are
10738disabled.  The default maximum SCC size is 10000.
10739
10740@item sccvn-max-alias-queries-per-access
10741Maximum number of alias-oracle queries we perform when looking for
10742redundancies for loads and stores.  If this limit is hit the search
10743is aborted and the load or store is not considered redundant.  The
10744number of queries is algorithmically limited to the number of
10745stores on all paths from the load to the function entry.
10746The default maxmimum number of queries is 1000.
10747
10748@item ira-max-loops-num
10749IRA uses regional register allocation by default.  If a function
10750contains more loops than the number given by this parameter, only at most
10751the given number of the most frequently-executed loops form regions
10752for regional register allocation.  The default value of the
10753parameter is 100.
10754
10755@item ira-max-conflict-table-size
10756Although IRA uses a sophisticated algorithm to compress the conflict
10757table, the table can still require excessive amounts of memory for
10758huge functions.  If the conflict table for a function could be more
10759than the size in MB given by this parameter, the register allocator
10760instead uses a faster, simpler, and lower-quality
10761algorithm that does not require building a pseudo-register conflict table.
10762The default value of the parameter is 2000.
10763
10764@item ira-loop-reserved-regs
10765IRA can be used to evaluate more accurate register pressure in loops
10766for decisions to move loop invariants (see @option{-O3}).  The number
10767of available registers reserved for some other purposes is given
10768by this parameter.  The default value of the parameter is 2, which is
10769the minimal number of registers needed by typical instructions.
10770This value is the best found from numerous experiments.
10771
10772@item lra-inheritance-ebb-probability-cutoff
10773LRA tries to reuse values reloaded in registers in subsequent insns.
10774This optimization is called inheritance.  EBB is used as a region to
10775do this optimization.  The parameter defines a minimal fall-through
10776edge probability in percentage used to add BB to inheritance EBB in
10777LRA.  The default value of the parameter is 40.  The value was chosen
10778from numerous runs of SPEC2000 on x86-64.
10779
10780@item loop-invariant-max-bbs-in-loop
10781Loop invariant motion can be very expensive, both in compilation time and
10782in amount of needed compile-time memory, with very large loops.  Loops
10783with more basic blocks than this parameter won't have loop invariant
10784motion optimization performed on them.  The default value of the
10785parameter is 1000 for @option{-O1} and 10000 for @option{-O2} and above.
10786
10787@item loop-max-datarefs-for-datadeps
10788Building data dapendencies is expensive for very large loops.  This
10789parameter limits the number of data references in loops that are
10790considered for data dependence analysis.  These large loops are no
10791handled by the optimizations using loop data dependencies.
10792The default value is 1000.
10793
10794@item max-vartrack-size
10795Sets a maximum number of hash table slots to use during variable
10796tracking dataflow analysis of any function.  If this limit is exceeded
10797with variable tracking at assignments enabled, analysis for that
10798function is retried without it, after removing all debug insns from
10799the function.  If the limit is exceeded even without debug insns, var
10800tracking analysis is completely disabled for the function.  Setting
10801the parameter to zero makes it unlimited.
10802
10803@item max-vartrack-expr-depth
10804Sets a maximum number of recursion levels when attempting to map
10805variable names or debug temporaries to value expressions.  This trades
10806compilation time for more complete debug information.  If this is set too
10807low, value expressions that are available and could be represented in
10808debug information may end up not being used; setting this higher may
10809enable the compiler to find more complex debug expressions, but compile
10810time and memory use may grow.  The default is 12.
10811
10812@item min-nondebug-insn-uid
10813Use uids starting at this parameter for nondebug insns.  The range below
10814the parameter is reserved exclusively for debug insns created by
10815@option{-fvar-tracking-assignments}, but debug insns may get
10816(non-overlapping) uids above it if the reserved range is exhausted.
10817
10818@item ipa-sra-ptr-growth-factor
10819IPA-SRA replaces a pointer to an aggregate with one or more new
10820parameters only when their cumulative size is less or equal to
10821@option{ipa-sra-ptr-growth-factor} times the size of the original
10822pointer parameter.
10823
10824@item sra-max-scalarization-size-Ospeed
10825@item sra-max-scalarization-size-Osize
10826The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
10827replace scalar parts of aggregates with uses of independent scalar
10828variables.  These parameters control the maximum size, in storage units,
10829of aggregate which is considered for replacement when compiling for
10830speed
10831(@option{sra-max-scalarization-size-Ospeed}) or size
10832(@option{sra-max-scalarization-size-Osize}) respectively.
10833
10834@item tm-max-aggregate-size
10835When making copies of thread-local variables in a transaction, this
10836parameter specifies the size in bytes after which variables are
10837saved with the logging functions as opposed to save/restore code
10838sequence pairs.  This option only applies when using
10839@option{-fgnu-tm}.
10840
10841@item graphite-max-nb-scop-params
10842To avoid exponential effects in the Graphite loop transforms, the
10843number of parameters in a Static Control Part (SCoP) is bounded.  The
10844default value is 10 parameters.  A variable whose value is unknown at
10845compilation time and defined outside a SCoP is a parameter of the SCoP.
10846
10847@item graphite-max-bbs-per-function
10848To avoid exponential effects in the detection of SCoPs, the size of
10849the functions analyzed by Graphite is bounded.  The default value is
10850100 basic blocks.
10851
10852@item loop-block-tile-size
10853Loop blocking or strip mining transforms, enabled with
10854@option{-floop-block} or @option{-floop-strip-mine}, strip mine each
10855loop in the loop nest by a given number of iterations.  The strip
10856length can be changed using the @option{loop-block-tile-size}
10857parameter.  The default value is 51 iterations.
10858
10859@item loop-unroll-jam-size
10860Specify the unroll factor for the @option{-floop-unroll-and-jam} option.  The
10861default value is 4.
10862
10863@item loop-unroll-jam-depth
10864Specify the dimension to be unrolled (counting from the most inner loop)
10865for the  @option{-floop-unroll-and-jam}.  The default value is 2.
10866
10867@item ipa-cp-value-list-size
10868IPA-CP attempts to track all possible values and types passed to a function's
10869parameter in order to propagate them and perform devirtualization.
10870@option{ipa-cp-value-list-size} is the maximum number of values and types it
10871stores per one formal parameter of a function.
10872
10873@item ipa-cp-eval-threshold
10874IPA-CP calculates its own score of cloning profitability heuristics
10875and performs those cloning opportunities with scores that exceed
10876@option{ipa-cp-eval-threshold}.
10877
10878@item ipa-cp-recursion-penalty
10879Percentage penalty the recursive functions will receive when they
10880are evaluated for cloning.
10881
10882@item ipa-cp-single-call-penalty
10883Percentage penalty functions containg a single call to another
10884function will receive when they are evaluated for cloning.
10885
10886
10887@item ipa-max-agg-items
10888IPA-CP is also capable to propagate a number of scalar values passed
10889in an aggregate. @option{ipa-max-agg-items} controls the maximum
10890number of such values per one parameter.
10891
10892@item ipa-cp-loop-hint-bonus
10893When IPA-CP determines that a cloning candidate would make the number
10894of iterations of a loop known, it adds a bonus of
10895@option{ipa-cp-loop-hint-bonus} to the profitability score of
10896the candidate.
10897
10898@item ipa-cp-array-index-hint-bonus
10899When IPA-CP determines that a cloning candidate would make the index of
10900an array access known, it adds a bonus of
10901@option{ipa-cp-array-index-hint-bonus} to the profitability
10902score of the candidate.
10903
10904@item ipa-max-aa-steps
10905During its analysis of function bodies, IPA-CP employs alias analysis
10906in order to track values pointed to by function parameters.  In order
10907not spend too much time analyzing huge functions, it gives up and
10908consider all memory clobbered after examining
10909@option{ipa-max-aa-steps} statements modifying memory.
10910
10911@item lto-partitions
10912Specify desired number of partitions produced during WHOPR compilation.
10913The number of partitions should exceed the number of CPUs used for compilation.
10914The default value is 32.
10915
10916@item lto-minpartition
10917Size of minimal partition for WHOPR (in estimated instructions).
10918This prevents expenses of splitting very small programs into too many
10919partitions.
10920
10921@item cxx-max-namespaces-for-diagnostic-help
10922The maximum number of namespaces to consult for suggestions when C++
10923name lookup fails for an identifier.  The default is 1000.
10924
10925@item sink-frequency-threshold
10926The maximum relative execution frequency (in percents) of the target block
10927relative to a statement's original block to allow statement sinking of a
10928statement.  Larger numbers result in more aggressive statement sinking.
10929The default value is 75.  A small positive adjustment is applied for
10930statements with memory operands as those are even more profitable so sink.
10931
10932@item max-stores-to-sink
10933The maximum number of conditional stores paires that can be sunk.  Set to 0
10934if either vectorization (@option{-ftree-vectorize}) or if-conversion
10935(@option{-ftree-loop-if-convert}) is disabled.  The default is 2.
10936
10937@item allow-store-data-races
10938Allow optimizers to introduce new data races on stores.
10939Set to 1 to allow, otherwise to 0.  This option is enabled by default
10940at optimization level @option{-Ofast}.
10941
10942@item case-values-threshold
10943The smallest number of different values for which it is best to use a
10944jump-table instead of a tree of conditional branches.  If the value is
109450, use the default for the machine.  The default is 0.
10946
10947@item tree-reassoc-width
10948Set the maximum number of instructions executed in parallel in
10949reassociated tree. This parameter overrides target dependent
10950heuristics used by default if has non zero value.
10951
10952@item sched-pressure-algorithm
10953Choose between the two available implementations of
10954@option{-fsched-pressure}.  Algorithm 1 is the original implementation
10955and is the more likely to prevent instructions from being reordered.
10956Algorithm 2 was designed to be a compromise between the relatively
10957conservative approach taken by algorithm 1 and the rather aggressive
10958approach taken by the default scheduler.  It relies more heavily on
10959having a regular register file and accurate register pressure classes.
10960See @file{haifa-sched.c} in the GCC sources for more details.
10961
10962The default choice depends on the target.
10963
10964@item max-slsr-cand-scan
10965Set the maximum number of existing candidates that are considered when
10966seeking a basis for a new straight-line strength reduction candidate.
10967
10968@item asan-globals
10969Enable buffer overflow detection for global objects.  This kind
10970of protection is enabled by default if you are using
10971@option{-fsanitize=address} option.
10972To disable global objects protection use @option{--param asan-globals=0}.
10973
10974@item asan-stack
10975Enable buffer overflow detection for stack objects.  This kind of
10976protection is enabled by default when using@option{-fsanitize=address}.
10977To disable stack protection use @option{--param asan-stack=0} option.
10978
10979@item asan-instrument-reads
10980Enable buffer overflow detection for memory reads.  This kind of
10981protection is enabled by default when using @option{-fsanitize=address}.
10982To disable memory reads protection use
10983@option{--param asan-instrument-reads=0}.
10984
10985@item asan-instrument-writes
10986Enable buffer overflow detection for memory writes.  This kind of
10987protection is enabled by default when using @option{-fsanitize=address}.
10988To disable memory writes protection use
10989@option{--param asan-instrument-writes=0} option.
10990
10991@item asan-memintrin
10992Enable detection for built-in functions.  This kind of protection
10993is enabled by default when using @option{-fsanitize=address}.
10994To disable built-in functions protection use
10995@option{--param asan-memintrin=0}.
10996
10997@item asan-use-after-return
10998Enable detection of use-after-return.  This kind of protection
10999is enabled by default when using @option{-fsanitize=address} option.
11000To disable use-after-return detection use
11001@option{--param asan-use-after-return=0}.
11002
11003@item asan-instrumentation-with-call-threshold
11004If number of memory accesses in function being instrumented
11005is greater or equal to this number, use callbacks instead of inline checks.
11006E.g. to disable inline code use
11007@option{--param asan-instrumentation-with-call-threshold=0}.
11008
11009@item chkp-max-ctor-size
11010Static constructors generated by Pointer Bounds Checker may become very
11011large and significantly increase compile time at optimization level
11012@option{-O1} and higher.  This parameter is a maximum nubmer of statements
11013in a single generated constructor.  Default value is 5000.
11014
11015@item max-fsm-thread-path-insns
11016Maximum number of instructions to copy when duplicating blocks on a
11017finite state automaton jump thread path.  The default is 100.
11018
11019@item max-fsm-thread-length
11020Maximum number of basic blocks on a finite state automaton jump thread
11021path.  The default is 10.
11022
11023@item max-fsm-thread-paths
11024Maximum number of new jump thread paths to create for a finite state
11025automaton.  The default is 50.
11026
11027@end table
11028@end table
11029
11030@node Preprocessor Options
11031@section Options Controlling the Preprocessor
11032@cindex preprocessor options
11033@cindex options, preprocessor
11034
11035These options control the C preprocessor, which is run on each C source
11036file before actual compilation.
11037
11038If you use the @option{-E} option, nothing is done except preprocessing.
11039Some of these options make sense only together with @option{-E} because
11040they cause the preprocessor output to be unsuitable for actual
11041compilation.
11042
11043@table @gcctabopt
11044@item -Wp,@var{option}
11045@opindex Wp
11046You can use @option{-Wp,@var{option}} to bypass the compiler driver
11047and pass @var{option} directly through to the preprocessor.  If
11048@var{option} contains commas, it is split into multiple options at the
11049commas.  However, many options are modified, translated or interpreted
11050by the compiler driver before being passed to the preprocessor, and
11051@option{-Wp} forcibly bypasses this phase.  The preprocessor's direct
11052interface is undocumented and subject to change, so whenever possible
11053you should avoid using @option{-Wp} and let the driver handle the
11054options instead.
11055
11056@item -Xpreprocessor @var{option}
11057@opindex Xpreprocessor
11058Pass @var{option} as an option to the preprocessor.  You can use this to
11059supply system-specific preprocessor options that GCC does not
11060recognize.
11061
11062If you want to pass an option that takes an argument, you must use
11063@option{-Xpreprocessor} twice, once for the option and once for the argument.
11064
11065@item -no-integrated-cpp
11066@opindex no-integrated-cpp
11067Perform preprocessing as a separate pass before compilation.
11068By default, GCC performs preprocessing as an integrated part of
11069input tokenization and parsing.
11070If this option is provided, the appropriate language front end
11071(@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
11072and Objective-C, respectively) is instead invoked twice,
11073once for preprocessing only and once for actual compilation
11074of the preprocessed input.
11075This option may be useful in conjunction with the @option{-B} or
11076@option{-wrapper} options to specify an alternate preprocessor or
11077perform additional processing of the program source between
11078normal preprocessing and compilation.
11079@end table
11080
11081@include cppopts.texi
11082
11083@node Assembler Options
11084@section Passing Options to the Assembler
11085
11086@c prevent bad page break with this line
11087You can pass options to the assembler.
11088
11089@table @gcctabopt
11090@item -Wa,@var{option}
11091@opindex Wa
11092Pass @var{option} as an option to the assembler.  If @var{option}
11093contains commas, it is split into multiple options at the commas.
11094
11095@item -Xassembler @var{option}
11096@opindex Xassembler
11097Pass @var{option} as an option to the assembler.  You can use this to
11098supply system-specific assembler options that GCC does not
11099recognize.
11100
11101If you want to pass an option that takes an argument, you must use
11102@option{-Xassembler} twice, once for the option and once for the argument.
11103
11104@end table
11105
11106@node Link Options
11107@section Options for Linking
11108@cindex link options
11109@cindex options, linking
11110
11111These options come into play when the compiler links object files into
11112an executable output file.  They are meaningless if the compiler is
11113not doing a link step.
11114
11115@table @gcctabopt
11116@cindex file names
11117@item @var{object-file-name}
11118A file name that does not end in a special recognized suffix is
11119considered to name an object file or library.  (Object files are
11120distinguished from libraries by the linker according to the file
11121contents.)  If linking is done, these object files are used as input
11122to the linker.
11123
11124@item -c
11125@itemx -S
11126@itemx -E
11127@opindex c
11128@opindex S
11129@opindex E
11130If any of these options is used, then the linker is not run, and
11131object file names should not be used as arguments.  @xref{Overall
11132Options}.
11133
11134@item -fuse-ld=bfd
11135@opindex fuse-ld=bfd
11136Use the @command{bfd} linker instead of the default linker.
11137
11138@item -fuse-ld=gold
11139@opindex fuse-ld=gold
11140Use the @command{gold} linker instead of the default linker.
11141
11142@cindex Libraries
11143@item -l@var{library}
11144@itemx -l @var{library}
11145@opindex l
11146Search the library named @var{library} when linking.  (The second
11147alternative with the library as a separate argument is only for
11148POSIX compliance and is not recommended.)
11149
11150It makes a difference where in the command you write this option; the
11151linker searches and processes libraries and object files in the order they
11152are specified.  Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
11153after file @file{foo.o} but before @file{bar.o}.  If @file{bar.o} refers
11154to functions in @samp{z}, those functions may not be loaded.
11155
11156The linker searches a standard list of directories for the library,
11157which is actually a file named @file{lib@var{library}.a}.  The linker
11158then uses this file as if it had been specified precisely by name.
11159
11160The directories searched include several standard system directories
11161plus any that you specify with @option{-L}.
11162
11163Normally the files found this way are library files---archive files
11164whose members are object files.  The linker handles an archive file by
11165scanning through it for members which define symbols that have so far
11166been referenced but not defined.  But if the file that is found is an
11167ordinary object file, it is linked in the usual fashion.  The only
11168difference between using an @option{-l} option and specifying a file name
11169is that @option{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
11170and searches several directories.
11171
11172@item -lobjc
11173@opindex lobjc
11174You need this special case of the @option{-l} option in order to
11175link an Objective-C or Objective-C++ program.
11176
11177@item -nostartfiles
11178@opindex nostartfiles
11179Do not use the standard system startup files when linking.
11180The standard system libraries are used normally, unless @option{-nostdlib}
11181or @option{-nodefaultlibs} is used.
11182
11183@item -nodefaultlibs
11184@opindex nodefaultlibs
11185Do not use the standard system libraries when linking.
11186Only the libraries you specify are passed to the linker, and options
11187specifying linkage of the system libraries, such as @option{-static-libgcc}
11188or @option{-shared-libgcc}, are ignored.
11189The standard startup files are used normally, unless @option{-nostartfiles}
11190is used.
11191
11192The compiler may generate calls to @code{memcmp},
11193@code{memset}, @code{memcpy} and @code{memmove}.
11194These entries are usually resolved by entries in
11195libc.  These entry points should be supplied through some other
11196mechanism when this option is specified.
11197
11198@item -nostdlib
11199@opindex nostdlib
11200Do not use the standard system startup files or libraries when linking.
11201No startup files and only the libraries you specify are passed to
11202the linker, and options specifying linkage of the system libraries, such as
11203@option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
11204
11205The compiler may generate calls to @code{memcmp}, @code{memset},
11206@code{memcpy} and @code{memmove}.
11207These entries are usually resolved by entries in
11208libc.  These entry points should be supplied through some other
11209mechanism when this option is specified.
11210
11211@cindex @option{-lgcc}, use with @option{-nostdlib}
11212@cindex @option{-nostdlib} and unresolved references
11213@cindex unresolved references and @option{-nostdlib}
11214@cindex @option{-lgcc}, use with @option{-nodefaultlibs}
11215@cindex @option{-nodefaultlibs} and unresolved references
11216@cindex unresolved references and @option{-nodefaultlibs}
11217One of the standard libraries bypassed by @option{-nostdlib} and
11218@option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
11219which GCC uses to overcome shortcomings of particular machines, or special
11220needs for some languages.
11221(@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
11222Collection (GCC) Internals},
11223for more discussion of @file{libgcc.a}.)
11224In most cases, you need @file{libgcc.a} even when you want to avoid
11225other standard libraries.  In other words, when you specify @option{-nostdlib}
11226or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
11227This ensures that you have no unresolved references to internal GCC
11228library subroutines.
11229(An example of such an internal subroutine is @code{__main}, used to ensure C++
11230constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
11231GNU Compiler Collection (GCC) Internals}.)
11232
11233@item -pie
11234@opindex pie
11235Produce a position independent executable on targets that support it.
11236For predictable results, you must also specify the same set of options
11237used for compilation (@option{-fpie}, @option{-fPIE},
11238or model suboptions) when you specify this linker option.
11239
11240@item -rdynamic
11241@opindex rdynamic
11242Pass the flag @option{-export-dynamic} to the ELF linker, on targets
11243that support it. This instructs the linker to add all symbols, not
11244only used ones, to the dynamic symbol table. This option is needed
11245for some uses of @code{dlopen} or to allow obtaining backtraces
11246from within a program.
11247
11248@item -s
11249@opindex s
11250Remove all symbol table and relocation information from the executable.
11251
11252@item -static
11253@opindex static
11254On systems that support dynamic linking, this prevents linking with the shared
11255libraries.  On other systems, this option has no effect.
11256
11257@item -shared
11258@opindex shared
11259Produce a shared object which can then be linked with other objects to
11260form an executable.  Not all systems support this option.  For predictable
11261results, you must also specify the same set of options used for compilation
11262(@option{-fpic}, @option{-fPIC}, or model suboptions) when
11263you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
11264needs to build supplementary stub code for constructors to work.  On
11265multi-libbed systems, @samp{gcc -shared} must select the correct support
11266libraries to link against.  Failing to supply the correct flags may lead
11267to subtle defects.  Supplying them in cases where they are not necessary
11268is innocuous.}
11269
11270@item -shared-libgcc
11271@itemx -static-libgcc
11272@opindex shared-libgcc
11273@opindex static-libgcc
11274On systems that provide @file{libgcc} as a shared library, these options
11275force the use of either the shared or static version, respectively.
11276If no shared version of @file{libgcc} was built when the compiler was
11277configured, these options have no effect.
11278
11279There are several situations in which an application should use the
11280shared @file{libgcc} instead of the static version.  The most common
11281of these is when the application wishes to throw and catch exceptions
11282across different shared libraries.  In that case, each of the libraries
11283as well as the application itself should use the shared @file{libgcc}.
11284
11285Therefore, the G++ and GCJ drivers automatically add
11286@option{-shared-libgcc} whenever you build a shared library or a main
11287executable, because C++ and Java programs typically use exceptions, so
11288this is the right thing to do.
11289
11290If, instead, you use the GCC driver to create shared libraries, you may
11291find that they are not always linked with the shared @file{libgcc}.
11292If GCC finds, at its configuration time, that you have a non-GNU linker
11293or a GNU linker that does not support option @option{--eh-frame-hdr},
11294it links the shared version of @file{libgcc} into shared libraries
11295by default.  Otherwise, it takes advantage of the linker and optimizes
11296away the linking with the shared version of @file{libgcc}, linking with
11297the static version of libgcc by default.  This allows exceptions to
11298propagate through such shared libraries, without incurring relocation
11299costs at library load time.
11300
11301However, if a library or main executable is supposed to throw or catch
11302exceptions, you must link it using the G++ or GCJ driver, as appropriate
11303for the languages used in the program, or using the option
11304@option{-shared-libgcc}, such that it is linked with the shared
11305@file{libgcc}.
11306
11307@item -static-libasan
11308@opindex static-libasan
11309When the @option{-fsanitize=address} option is used to link a program,
11310the GCC driver automatically links against @option{libasan}.  If
11311@file{libasan} is available as a shared library, and the @option{-static}
11312option is not used, then this links against the shared version of
11313@file{libasan}.  The @option{-static-libasan} option directs the GCC
11314driver to link @file{libasan} statically, without necessarily linking
11315other libraries statically.
11316
11317@item -static-libtsan
11318@opindex static-libtsan
11319When the @option{-fsanitize=thread} option is used to link a program,
11320the GCC driver automatically links against @option{libtsan}.  If
11321@file{libtsan} is available as a shared library, and the @option{-static}
11322option is not used, then this links against the shared version of
11323@file{libtsan}.  The @option{-static-libtsan} option directs the GCC
11324driver to link @file{libtsan} statically, without necessarily linking
11325other libraries statically.
11326
11327@item -static-liblsan
11328@opindex static-liblsan
11329When the @option{-fsanitize=leak} option is used to link a program,
11330the GCC driver automatically links against @option{liblsan}.  If
11331@file{liblsan} is available as a shared library, and the @option{-static}
11332option is not used, then this links against the shared version of
11333@file{liblsan}.  The @option{-static-liblsan} option directs the GCC
11334driver to link @file{liblsan} statically, without necessarily linking
11335other libraries statically.
11336
11337@item -static-libubsan
11338@opindex static-libubsan
11339When the @option{-fsanitize=undefined} option is used to link a program,
11340the GCC driver automatically links against @option{libubsan}.  If
11341@file{libubsan} is available as a shared library, and the @option{-static}
11342option is not used, then this links against the shared version of
11343@file{libubsan}.  The @option{-static-libubsan} option directs the GCC
11344driver to link @file{libubsan} statically, without necessarily linking
11345other libraries statically.
11346
11347@item -static-libmpx
11348@opindex static-libmpx
11349When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are
11350used to link a program, the GCC driver automatically links against
11351@file{libmpx}.  If @file{libmpx} is available as a shared library,
11352and the @option{-static} option is not used, then this links against
11353the shared version of @file{libmpx}.  The @option{-static-libmpx}
11354option directs the GCC driver to link @file{libmpx} statically,
11355without necessarily linking other libraries statically.
11356
11357@item -static-libmpxwrappers
11358@opindex static-libmpxwrappers
11359When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are used
11360to link a program without also using @option{-fno-chkp-use-wrappers}, the
11361GCC driver automatically links against @file{libmpxwrappers}.  If
11362@file{libmpxwrappers} is available as a shared library, and the
11363@option{-static} option is not used, then this links against the shared
11364version of @file{libmpxwrappers}.  The @option{-static-libmpxwrappers}
11365option directs the GCC driver to link @file{libmpxwrappers} statically,
11366without necessarily linking other libraries statically.
11367
11368@item -static-libstdc++
11369@opindex static-libstdc++
11370When the @command{g++} program is used to link a C++ program, it
11371normally automatically links against @option{libstdc++}.  If
11372@file{libstdc++} is available as a shared library, and the
11373@option{-static} option is not used, then this links against the
11374shared version of @file{libstdc++}.  That is normally fine.  However, it
11375is sometimes useful to freeze the version of @file{libstdc++} used by
11376the program without going all the way to a fully static link.  The
11377@option{-static-libstdc++} option directs the @command{g++} driver to
11378link @file{libstdc++} statically, without necessarily linking other
11379libraries statically.
11380
11381@item -symbolic
11382@opindex symbolic
11383Bind references to global symbols when building a shared object.  Warn
11384about any unresolved references (unless overridden by the link editor
11385option @option{-Xlinker -z -Xlinker defs}).  Only a few systems support
11386this option.
11387
11388@item -T @var{script}
11389@opindex T
11390@cindex linker script
11391Use @var{script} as the linker script.  This option is supported by most
11392systems using the GNU linker.  On some targets, such as bare-board
11393targets without an operating system, the @option{-T} option may be required
11394when linking to avoid references to undefined symbols.
11395
11396@item -Xlinker @var{option}
11397@opindex Xlinker
11398Pass @var{option} as an option to the linker.  You can use this to
11399supply system-specific linker options that GCC does not recognize.
11400
11401If you want to pass an option that takes a separate argument, you must use
11402@option{-Xlinker} twice, once for the option and once for the argument.
11403For example, to pass @option{-assert definitions}, you must write
11404@option{-Xlinker -assert -Xlinker definitions}.  It does not work to write
11405@option{-Xlinker "-assert definitions"}, because this passes the entire
11406string as a single argument, which is not what the linker expects.
11407
11408When using the GNU linker, it is usually more convenient to pass
11409arguments to linker options using the @option{@var{option}=@var{value}}
11410syntax than as separate arguments.  For example, you can specify
11411@option{-Xlinker -Map=output.map} rather than
11412@option{-Xlinker -Map -Xlinker output.map}.  Other linkers may not support
11413this syntax for command-line options.
11414
11415@item -Wl,@var{option}
11416@opindex Wl
11417Pass @var{option} as an option to the linker.  If @var{option} contains
11418commas, it is split into multiple options at the commas.  You can use this
11419syntax to pass an argument to the option.
11420For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
11421linker.  When using the GNU linker, you can also get the same effect with
11422@option{-Wl,-Map=output.map}.
11423
11424@item -u @var{symbol}
11425@opindex u
11426Pretend the symbol @var{symbol} is undefined, to force linking of
11427library modules to define it.  You can use @option{-u} multiple times with
11428different symbols to force loading of additional library modules.
11429
11430@item -z @var{keyword}
11431@opindex z
11432@option{-z} is passed directly on to the linker along with the keyword
11433@var{keyword}. See the section in the documentation of your linker for
11434permitted values and their meanings.
11435@end table
11436
11437@node Directory Options
11438@section Options for Directory Search
11439@cindex directory options
11440@cindex options, directory search
11441@cindex search path
11442
11443These options specify directories to search for header files, for
11444libraries and for parts of the compiler:
11445
11446@table @gcctabopt
11447@item -I@var{dir}
11448@opindex I
11449Add the directory @var{dir} to the head of the list of directories to be
11450searched for header files.  This can be used to override a system header
11451file, substituting your own version, since these directories are
11452searched before the system header file directories.  However, you should
11453not use this option to add directories that contain vendor-supplied
11454system header files (use @option{-isystem} for that).  If you use more than
11455one @option{-I} option, the directories are scanned in left-to-right
11456order; the standard system directories come after.
11457
11458If a standard system include directory, or a directory specified with
11459@option{-isystem}, is also specified with @option{-I}, the @option{-I}
11460option is ignored.  The directory is still searched but as a
11461system directory at its normal position in the system include chain.
11462This is to ensure that GCC's procedure to fix buggy system headers and
11463the ordering for the @code{include_next} directive are not inadvertently changed.
11464If you really need to change the search order for system directories,
11465use the @option{-nostdinc} and/or @option{-isystem} options.
11466
11467@item -iplugindir=@var{dir}
11468@opindex iplugindir=
11469Set the directory to search for plugins that are passed
11470by @option{-fplugin=@var{name}} instead of
11471@option{-fplugin=@var{path}/@var{name}.so}.  This option is not meant
11472to be used by the user, but only passed by the driver.
11473
11474@item -iquote@var{dir}
11475@opindex iquote
11476Add the directory @var{dir} to the head of the list of directories to
11477be searched for header files only for the case of @code{#include
11478"@var{file}"}; they are not searched for @code{#include <@var{file}>},
11479otherwise just like @option{-I}.
11480
11481@item -iremap @var{src}:@var{dst}
11482@opindex iremap
11483Replace the prefix @var{src} in __FILE__ with @var{dst} at expansion time.
11484This option can be specified more than once.  Processing stops at the first
11485match.
11486
11487@item -L@var{dir}
11488@opindex L
11489Add directory @var{dir} to the list of directories to be searched
11490for @option{-l}.
11491
11492@item -B@var{prefix}
11493@opindex B
11494This option specifies where to find the executables, libraries,
11495include files, and data files of the compiler itself.
11496
11497The compiler driver program runs one or more of the subprograms
11498@command{cpp}, @command{cc1}, @command{as} and @command{ld}.  It tries
11499@var{prefix} as a prefix for each program it tries to run, both with and
11500without @samp{@var{machine}/@var{version}/} (@pxref{Target Options}).
11501
11502For each subprogram to be run, the compiler driver first tries the
11503@option{-B} prefix, if any.  If that name is not found, or if @option{-B}
11504is not specified, the driver tries two standard prefixes,
11505@file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}.  If neither of
11506those results in a file name that is found, the unmodified program
11507name is searched for using the directories specified in your
11508@env{PATH} environment variable.
11509
11510The compiler checks to see if the path provided by @option{-B}
11511refers to a directory, and if necessary it adds a directory
11512separator character at the end of the path.
11513
11514@option{-B} prefixes that effectively specify directory names also apply
11515to libraries in the linker, because the compiler translates these
11516options into @option{-L} options for the linker.  They also apply to
11517include files in the preprocessor, because the compiler translates these
11518options into @option{-isystem} options for the preprocessor.  In this case,
11519the compiler appends @samp{include} to the prefix.
11520
11521The runtime support file @file{libgcc.a} can also be searched for using
11522the @option{-B} prefix, if needed.  If it is not found there, the two
11523standard prefixes above are tried, and that is all.  The file is left
11524out of the link if it is not found by those means.
11525
11526Another way to specify a prefix much like the @option{-B} prefix is to use
11527the environment variable @env{GCC_EXEC_PREFIX}.  @xref{Environment
11528Variables}.
11529
11530As a special kludge, if the path provided by @option{-B} is
11531@file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
115329, then it is replaced by @file{[dir/]include}.  This is to help
11533with boot-strapping the compiler.
11534
11535@item -specs=@var{file}
11536@opindex specs
11537Process @var{file} after the compiler reads in the standard @file{specs}
11538file, in order to override the defaults which the @command{gcc} driver
11539program uses when determining what switches to pass to @command{cc1},
11540@command{cc1plus}, @command{as}, @command{ld}, etc.  More than one
11541@option{-specs=@var{file}} can be specified on the command line, and they
11542are processed in order, from left to right.
11543
11544@item --sysroot=@var{dir}
11545@opindex sysroot
11546Use @var{dir} as the logical root directory for headers and libraries.
11547For example, if the compiler normally searches for headers in
11548@file{/usr/include} and libraries in @file{/usr/lib}, it instead
11549searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
11550
11551If you use both this option and the @option{-isysroot} option, then
11552the @option{--sysroot} option applies to libraries, but the
11553@option{-isysroot} option applies to header files.
11554
11555The GNU linker (beginning with version 2.16) has the necessary support
11556for this option.  If your linker does not support this option, the
11557header file aspect of @option{--sysroot} still works, but the
11558library aspect does not.
11559
11560@item --no-sysroot-suffix
11561@opindex no-sysroot-suffix
11562For some targets, a suffix is added to the root directory specified
11563with @option{--sysroot}, depending on the other options used, so that
11564headers may for example be found in
11565@file{@var{dir}/@var{suffix}/usr/include} instead of
11566@file{@var{dir}/usr/include}.  This option disables the addition of
11567such a suffix.
11568
11569@item -I-
11570@opindex I-
11571This option has been deprecated.  Please use @option{-iquote} instead for
11572@option{-I} directories before the @option{-I-} and remove the @option{-I-}
11573option.
11574Any directories you specify with @option{-I} options before the @option{-I-}
11575option are searched only for the case of @code{#include "@var{file}"};
11576they are not searched for @code{#include <@var{file}>}.
11577
11578If additional directories are specified with @option{-I} options after
11579the @option{-I-} option, these directories are searched for all @code{#include}
11580directives.  (Ordinarily @emph{all} @option{-I} directories are used
11581this way.)
11582
11583In addition, the @option{-I-} option inhibits the use of the current
11584directory (where the current input file came from) as the first search
11585directory for @code{#include "@var{file}"}.  There is no way to
11586override this effect of @option{-I-}.  With @option{-I.} you can specify
11587searching the directory that is current when the compiler is
11588invoked.  That is not exactly the same as what the preprocessor does
11589by default, but it is often satisfactory.
11590
11591@option{-I-} does not inhibit the use of the standard system directories
11592for header files.  Thus, @option{-I-} and @option{-nostdinc} are
11593independent.
11594@end table
11595
11596@c man end
11597
11598@node Spec Files
11599@section Specifying Subprocesses and the Switches to Pass to Them
11600@cindex Spec Files
11601
11602@command{gcc} is a driver program.  It performs its job by invoking a
11603sequence of other programs to do the work of compiling, assembling and
11604linking.  GCC interprets its command-line parameters and uses these to
11605deduce which programs it should invoke, and which command-line options
11606it ought to place on their command lines.  This behavior is controlled
11607by @dfn{spec strings}.  In most cases there is one spec string for each
11608program that GCC can invoke, but a few programs have multiple spec
11609strings to control their behavior.  The spec strings built into GCC can
11610be overridden by using the @option{-specs=} command-line switch to specify
11611a spec file.
11612
11613@dfn{Spec files} are plaintext files that are used to construct spec
11614strings.  They consist of a sequence of directives separated by blank
11615lines.  The type of directive is determined by the first non-whitespace
11616character on the line, which can be one of the following:
11617
11618@table @code
11619@item %@var{command}
11620Issues a @var{command} to the spec file processor.  The commands that can
11621appear here are:
11622
11623@table @code
11624@item %include <@var{file}>
11625@cindex @code{%include}
11626Search for @var{file} and insert its text at the current point in the
11627specs file.
11628
11629@item %include_noerr <@var{file}>
11630@cindex @code{%include_noerr}
11631Just like @samp{%include}, but do not generate an error message if the include
11632file cannot be found.
11633
11634@item %rename @var{old_name} @var{new_name}
11635@cindex @code{%rename}
11636Rename the spec string @var{old_name} to @var{new_name}.
11637
11638@end table
11639
11640@item *[@var{spec_name}]:
11641This tells the compiler to create, override or delete the named spec
11642string.  All lines after this directive up to the next directive or
11643blank line are considered to be the text for the spec string.  If this
11644results in an empty string then the spec is deleted.  (Or, if the
11645spec did not exist, then nothing happens.)  Otherwise, if the spec
11646does not currently exist a new spec is created.  If the spec does
11647exist then its contents are overridden by the text of this
11648directive, unless the first character of that text is the @samp{+}
11649character, in which case the text is appended to the spec.
11650
11651@item [@var{suffix}]:
11652Creates a new @samp{[@var{suffix}] spec} pair.  All lines after this directive
11653and up to the next directive or blank line are considered to make up the
11654spec string for the indicated suffix.  When the compiler encounters an
11655input file with the named suffix, it processes the spec string in
11656order to work out how to compile that file.  For example:
11657
11658@smallexample
11659.ZZ:
11660z-compile -input %i
11661@end smallexample
11662
11663This says that any input file whose name ends in @samp{.ZZ} should be
11664passed to the program @samp{z-compile}, which should be invoked with the
11665command-line switch @option{-input} and with the result of performing the
11666@samp{%i} substitution.  (See below.)
11667
11668As an alternative to providing a spec string, the text following a
11669suffix directive can be one of the following:
11670
11671@table @code
11672@item @@@var{language}
11673This says that the suffix is an alias for a known @var{language}.  This is
11674similar to using the @option{-x} command-line switch to GCC to specify a
11675language explicitly.  For example:
11676
11677@smallexample
11678.ZZ:
11679@@c++
11680@end smallexample
11681
11682Says that .ZZ files are, in fact, C++ source files.
11683
11684@item #@var{name}
11685This causes an error messages saying:
11686
11687@smallexample
11688@var{name} compiler not installed on this system.
11689@end smallexample
11690@end table
11691
11692GCC already has an extensive list of suffixes built into it.
11693This directive adds an entry to the end of the list of suffixes, but
11694since the list is searched from the end backwards, it is effectively
11695possible to override earlier entries using this technique.
11696
11697@end table
11698
11699GCC has the following spec strings built into it.  Spec files can
11700override these strings or create their own.  Note that individual
11701targets can also add their own spec strings to this list.
11702
11703@smallexample
11704asm          Options to pass to the assembler
11705asm_final    Options to pass to the assembler post-processor
11706cpp          Options to pass to the C preprocessor
11707cc1          Options to pass to the C compiler
11708cc1plus      Options to pass to the C++ compiler
11709endfile      Object files to include at the end of the link
11710link         Options to pass to the linker
11711lib          Libraries to include on the command line to the linker
11712libgcc       Decides which GCC support library to pass to the linker
11713linker       Sets the name of the linker
11714predefines   Defines to be passed to the C preprocessor
11715signed_char  Defines to pass to CPP to say whether @code{char} is signed
11716             by default
11717startfile    Object files to include at the start of the link
11718@end smallexample
11719
11720Here is a small example of a spec file:
11721
11722@smallexample
11723%rename lib                 old_lib
11724
11725*lib:
11726--start-group -lgcc -lc -leval1 --end-group %(old_lib)
11727@end smallexample
11728
11729This example renames the spec called @samp{lib} to @samp{old_lib} and
11730then overrides the previous definition of @samp{lib} with a new one.
11731The new definition adds in some extra command-line options before
11732including the text of the old definition.
11733
11734@dfn{Spec strings} are a list of command-line options to be passed to their
11735corresponding program.  In addition, the spec strings can contain
11736@samp{%}-prefixed sequences to substitute variable text or to
11737conditionally insert text into the command line.  Using these constructs
11738it is possible to generate quite complex command lines.
11739
11740Here is a table of all defined @samp{%}-sequences for spec
11741strings.  Note that spaces are not generated automatically around the
11742results of expanding these sequences.  Therefore you can concatenate them
11743together or combine them with constant text in a single argument.
11744
11745@table @code
11746@item %%
11747Substitute one @samp{%} into the program name or argument.
11748
11749@item %i
11750Substitute the name of the input file being processed.
11751
11752@item %b
11753Substitute the basename of the input file being processed.
11754This is the substring up to (and not including) the last period
11755and not including the directory.
11756
11757@item %B
11758This is the same as @samp{%b}, but include the file suffix (text after
11759the last period).
11760
11761@item %d
11762Marks the argument containing or following the @samp{%d} as a
11763temporary file name, so that that file is deleted if GCC exits
11764successfully.  Unlike @samp{%g}, this contributes no text to the
11765argument.
11766
11767@item %g@var{suffix}
11768Substitute a file name that has suffix @var{suffix} and is chosen
11769once per compilation, and mark the argument in the same way as
11770@samp{%d}.  To reduce exposure to denial-of-service attacks, the file
11771name is now chosen in a way that is hard to predict even when previously
11772chosen file names are known.  For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
11773might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}.  @var{suffix} matches
11774the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
11775treated exactly as if @samp{%O} had been preprocessed.  Previously, @samp{%g}
11776was simply substituted with a file name chosen once per compilation,
11777without regard to any appended suffix (which was therefore treated
11778just like ordinary text), making such attacks more likely to succeed.
11779
11780@item %u@var{suffix}
11781Like @samp{%g}, but generates a new temporary file name
11782each time it appears instead of once per compilation.
11783
11784@item %U@var{suffix}
11785Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
11786new one if there is no such last file name.  In the absence of any
11787@samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
11788the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
11789involves the generation of two distinct file names, one
11790for each @samp{%g.s} and another for each @samp{%U.s}.  Previously, @samp{%U} was
11791simply substituted with a file name chosen for the previous @samp{%u},
11792without regard to any appended suffix.
11793
11794@item %j@var{suffix}
11795Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
11796writable, and if @option{-save-temps} is not used;
11797otherwise, substitute the name
11798of a temporary file, just like @samp{%u}.  This temporary file is not
11799meant for communication between processes, but rather as a junk
11800disposal mechanism.
11801
11802@item %|@var{suffix}
11803@itemx %m@var{suffix}
11804Like @samp{%g}, except if @option{-pipe} is in effect.  In that case
11805@samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
11806all.  These are the two most common ways to instruct a program that it
11807should read from standard input or write to standard output.  If you
11808need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
11809construct: see for example @file{f/lang-specs.h}.
11810
11811@item %.@var{SUFFIX}
11812Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
11813when it is subsequently output with @samp{%*}.  @var{SUFFIX} is
11814terminated by the next space or %.
11815
11816@item %w
11817Marks the argument containing or following the @samp{%w} as the
11818designated output file of this compilation.  This puts the argument
11819into the sequence of arguments that @samp{%o} substitutes.
11820
11821@item %o
11822Substitutes the names of all the output files, with spaces
11823automatically placed around them.  You should write spaces
11824around the @samp{%o} as well or the results are undefined.
11825@samp{%o} is for use in the specs for running the linker.
11826Input files whose names have no recognized suffix are not compiled
11827at all, but they are included among the output files, so they are
11828linked.
11829
11830@item %O
11831Substitutes the suffix for object files.  Note that this is
11832handled specially when it immediately follows @samp{%g, %u, or %U},
11833because of the need for those to form complete file names.  The
11834handling is such that @samp{%O} is treated exactly as if it had already
11835been substituted, except that @samp{%g, %u, and %U} do not currently
11836support additional @var{suffix} characters following @samp{%O} as they do
11837following, for example, @samp{.o}.
11838
11839@item %p
11840Substitutes the standard macro predefinitions for the
11841current target machine.  Use this when running @command{cpp}.
11842
11843@item %P
11844Like @samp{%p}, but puts @samp{__} before and after the name of each
11845predefined macro, except for macros that start with @samp{__} or with
11846@samp{_@var{L}}, where @var{L} is an uppercase letter.  This is for ISO
11847C@.
11848
11849@item %I
11850Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
11851@option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
11852@option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
11853and @option{-imultilib} as necessary.
11854
11855@item %s
11856Current argument is the name of a library or startup file of some sort.
11857Search for that file in a standard list of directories and substitute
11858the full name found.  The current working directory is included in the
11859list of directories scanned.
11860
11861@item %T
11862Current argument is the name of a linker script.  Search for that file
11863in the current list of directories to scan for libraries. If the file
11864is located insert a @option{--script} option into the command line
11865followed by the full path name found.  If the file is not found then
11866generate an error message.  Note: the current working directory is not
11867searched.
11868
11869@item %e@var{str}
11870Print @var{str} as an error message.  @var{str} is terminated by a newline.
11871Use this when inconsistent options are detected.
11872
11873@item %(@var{name})
11874Substitute the contents of spec string @var{name} at this point.
11875
11876@item %x@{@var{option}@}
11877Accumulate an option for @samp{%X}.
11878
11879@item %X
11880Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
11881spec string.
11882
11883@item %Y
11884Output the accumulated assembler options specified by @option{-Wa}.
11885
11886@item %Z
11887Output the accumulated preprocessor options specified by @option{-Wp}.
11888
11889@item %a
11890Process the @code{asm} spec.  This is used to compute the
11891switches to be passed to the assembler.
11892
11893@item %A
11894Process the @code{asm_final} spec.  This is a spec string for
11895passing switches to an assembler post-processor, if such a program is
11896needed.
11897
11898@item %l
11899Process the @code{link} spec.  This is the spec for computing the
11900command line passed to the linker.  Typically it makes use of the
11901@samp{%L %G %S %D and %E} sequences.
11902
11903@item %D
11904Dump out a @option{-L} option for each directory that GCC believes might
11905contain startup files.  If the target supports multilibs then the
11906current multilib directory is prepended to each of these paths.
11907
11908@item %L
11909Process the @code{lib} spec.  This is a spec string for deciding which
11910libraries are included on the command line to the linker.
11911
11912@item %G
11913Process the @code{libgcc} spec.  This is a spec string for deciding
11914which GCC support library is included on the command line to the linker.
11915
11916@item %S
11917Process the @code{startfile} spec.  This is a spec for deciding which
11918object files are the first ones passed to the linker.  Typically
11919this might be a file named @file{crt0.o}.
11920
11921@item %E
11922Process the @code{endfile} spec.  This is a spec string that specifies
11923the last object files that are passed to the linker.
11924
11925@item %C
11926Process the @code{cpp} spec.  This is used to construct the arguments
11927to be passed to the C preprocessor.
11928
11929@item %1
11930Process the @code{cc1} spec.  This is used to construct the options to be
11931passed to the actual C compiler (@command{cc1}).
11932
11933@item %2
11934Process the @code{cc1plus} spec.  This is used to construct the options to be
11935passed to the actual C++ compiler (@command{cc1plus}).
11936
11937@item %*
11938Substitute the variable part of a matched option.  See below.
11939Note that each comma in the substituted string is replaced by
11940a single space.
11941
11942@item %<@code{S}
11943Remove all occurrences of @code{-S} from the command line.  Note---this
11944command is position dependent.  @samp{%} commands in the spec string
11945before this one see @code{-S}, @samp{%} commands in the spec string
11946after this one do not.
11947
11948@item %:@var{function}(@var{args})
11949Call the named function @var{function}, passing it @var{args}.
11950@var{args} is first processed as a nested spec string, then split
11951into an argument vector in the usual fashion.  The function returns
11952a string which is processed as if it had appeared literally as part
11953of the current spec.
11954
11955The following built-in spec functions are provided:
11956
11957@table @code
11958@item @code{getenv}
11959The @code{getenv} spec function takes two arguments: an environment
11960variable name and a string.  If the environment variable is not
11961defined, a fatal error is issued.  Otherwise, the return value is the
11962value of the environment variable concatenated with the string.  For
11963example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
11964
11965@smallexample
11966%:getenv(TOPDIR /include)
11967@end smallexample
11968
11969expands to @file{/path/to/top/include}.
11970
11971@item @code{if-exists}
11972The @code{if-exists} spec function takes one argument, an absolute
11973pathname to a file.  If the file exists, @code{if-exists} returns the
11974pathname.  Here is a small example of its usage:
11975
11976@smallexample
11977*startfile:
11978crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
11979@end smallexample
11980
11981@item @code{if-exists-else}
11982The @code{if-exists-else} spec function is similar to the @code{if-exists}
11983spec function, except that it takes two arguments.  The first argument is
11984an absolute pathname to a file.  If the file exists, @code{if-exists-else}
11985returns the pathname.  If it does not exist, it returns the second argument.
11986This way, @code{if-exists-else} can be used to select one file or another,
11987based on the existence of the first.  Here is a small example of its usage:
11988
11989@smallexample
11990*startfile:
11991crt0%O%s %:if-exists(crti%O%s) \
11992%:if-exists-else(crtbeginT%O%s crtbegin%O%s)
11993@end smallexample
11994
11995@item @code{replace-outfile}
11996The @code{replace-outfile} spec function takes two arguments.  It looks for the
11997first argument in the outfiles array and replaces it with the second argument.  Here
11998is a small example of its usage:
11999
12000@smallexample
12001%@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
12002@end smallexample
12003
12004@item @code{remove-outfile}
12005The @code{remove-outfile} spec function takes one argument.  It looks for the
12006first argument in the outfiles array and removes it.  Here is a small example
12007its usage:
12008
12009@smallexample
12010%:remove-outfile(-lm)
12011@end smallexample
12012
12013@item @code{pass-through-libs}
12014The @code{pass-through-libs} spec function takes any number of arguments.  It
12015finds any @option{-l} options and any non-options ending in @file{.a} (which it
12016assumes are the names of linker input library archive files) and returns a
12017result containing all the found arguments each prepended by
12018@option{-plugin-opt=-pass-through=} and joined by spaces.  This list is
12019intended to be passed to the LTO linker plugin.
12020
12021@smallexample
12022%:pass-through-libs(%G %L %G)
12023@end smallexample
12024
12025@item @code{print-asm-header}
12026The @code{print-asm-header} function takes no arguments and simply
12027prints a banner like:
12028
12029@smallexample
12030Assembler options
12031=================
12032
12033Use "-Wa,OPTION" to pass "OPTION" to the assembler.
12034@end smallexample
12035
12036It is used to separate compiler options from assembler options
12037in the @option{--target-help} output.
12038@end table
12039
12040@item %@{@code{S}@}
12041Substitutes the @code{-S} switch, if that switch is given to GCC@.
12042If that switch is not specified, this substitutes nothing.  Note that
12043the leading dash is omitted when specifying this option, and it is
12044automatically inserted if the substitution is performed.  Thus the spec
12045string @samp{%@{foo@}} matches the command-line option @option{-foo}
12046and outputs the command-line option @option{-foo}.
12047
12048@item %W@{@code{S}@}
12049Like %@{@code{S}@} but mark last argument supplied within as a file to be
12050deleted on failure.
12051
12052@item %@{@code{S}*@}
12053Substitutes all the switches specified to GCC whose names start
12054with @code{-S}, but which also take an argument.  This is used for
12055switches like @option{-o}, @option{-D}, @option{-I}, etc.
12056GCC considers @option{-o foo} as being
12057one switch whose name starts with @samp{o}.  %@{o*@} substitutes this
12058text, including the space.  Thus two arguments are generated.
12059
12060@item %@{@code{S}*&@code{T}*@}
12061Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
12062(the order of @code{S} and @code{T} in the spec is not significant).
12063There can be any number of ampersand-separated variables; for each the
12064wild card is optional.  Useful for CPP as @samp{%@{D*&U*&A*@}}.
12065
12066@item %@{@code{S}:@code{X}@}
12067Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
12068
12069@item %@{!@code{S}:@code{X}@}
12070Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
12071
12072@item %@{@code{S}*:@code{X}@}
12073Substitutes @code{X} if one or more switches whose names start with
12074@code{-S} are specified to GCC@.  Normally @code{X} is substituted only
12075once, no matter how many such switches appeared.  However, if @code{%*}
12076appears somewhere in @code{X}, then @code{X} is substituted once
12077for each matching switch, with the @code{%*} replaced by the part of
12078that switch matching the @code{*}.
12079
12080If @code{%*} appears as the last part of a spec sequence then a space
12081is added after the end of the last substitution.  If there is more
12082text in the sequence, however, then a space is not generated.  This
12083allows the @code{%*} substitution to be used as part of a larger
12084string.  For example, a spec string like this:
12085
12086@smallexample
12087%@{mcu=*:--script=%*/memory.ld@}
12088@end smallexample
12089
12090@noindent
12091when matching an option like @option{-mcu=newchip} produces:
12092
12093@smallexample
12094--script=newchip/memory.ld
12095@end smallexample
12096
12097@item %@{.@code{S}:@code{X}@}
12098Substitutes @code{X}, if processing a file with suffix @code{S}.
12099
12100@item %@{!.@code{S}:@code{X}@}
12101Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
12102
12103@item %@{,@code{S}:@code{X}@}
12104Substitutes @code{X}, if processing a file for language @code{S}.
12105
12106@item %@{!,@code{S}:@code{X}@}
12107Substitutes @code{X}, if not processing a file for language @code{S}.
12108
12109@item %@{@code{S}|@code{P}:@code{X}@}
12110Substitutes @code{X} if either @code{-S} or @code{-P} is given to
12111GCC@.  This may be combined with @samp{!}, @samp{.}, @samp{,}, and
12112@code{*} sequences as well, although they have a stronger binding than
12113the @samp{|}.  If @code{%*} appears in @code{X}, all of the
12114alternatives must be starred, and only the first matching alternative
12115is substituted.
12116
12117For example, a spec string like this:
12118
12119@smallexample
12120%@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
12121@end smallexample
12122
12123@noindent
12124outputs the following command-line options from the following input
12125command-line options:
12126
12127@smallexample
12128fred.c        -foo -baz
12129jim.d         -bar -boggle
12130-d fred.c     -foo -baz -boggle
12131-d jim.d      -bar -baz -boggle
12132@end smallexample
12133
12134@item %@{S:X; T:Y; :D@}
12135
12136If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
12137given to GCC, substitutes @code{Y}; else substitutes @code{D}.  There can
12138be as many clauses as you need.  This may be combined with @code{.},
12139@code{,}, @code{!}, @code{|}, and @code{*} as needed.
12140
12141
12142@end table
12143
12144The conditional text @code{X} in a %@{@code{S}:@code{X}@} or similar
12145construct may contain other nested @samp{%} constructs or spaces, or
12146even newlines.  They are processed as usual, as described above.
12147Trailing white space in @code{X} is ignored.  White space may also
12148appear anywhere on the left side of the colon in these constructs,
12149except between @code{.} or @code{*} and the corresponding word.
12150
12151The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
12152handled specifically in these constructs.  If another value of
12153@option{-O} or the negated form of a @option{-f}, @option{-m}, or
12154@option{-W} switch is found later in the command line, the earlier
12155switch value is ignored, except with @{@code{S}*@} where @code{S} is
12156just one letter, which passes all matching options.
12157
12158The character @samp{|} at the beginning of the predicate text is used to
12159indicate that a command should be piped to the following command, but
12160only if @option{-pipe} is specified.
12161
12162It is built into GCC which switches take arguments and which do not.
12163(You might think it would be useful to generalize this to allow each
12164compiler's spec to say which switches take arguments.  But this cannot
12165be done in a consistent fashion.  GCC cannot even decide which input
12166files have been specified without knowing which switches take arguments,
12167and it must know which input files to compile in order to tell which
12168compilers to run).
12169
12170GCC also knows implicitly that arguments starting in @option{-l} are to be
12171treated as compiler output files, and passed to the linker in their
12172proper position among the other output files.
12173
12174@c man begin OPTIONS
12175
12176@node Target Options
12177@section Specifying Target Machine and Compiler Version
12178@cindex target options
12179@cindex cross compiling
12180@cindex specifying machine version
12181@cindex specifying compiler version and target machine
12182@cindex compiler version, specifying
12183@cindex target machine, specifying
12184
12185The usual way to run GCC is to run the executable called @command{gcc}, or
12186@command{@var{machine}-gcc} when cross-compiling, or
12187@command{@var{machine}-gcc-@var{version}} to run a version other than the
12188one that was installed last.
12189
12190@node Submodel Options
12191@section Hardware Models and Configurations
12192@cindex submodel options
12193@cindex specifying hardware config
12194@cindex hardware models and configurations, specifying
12195@cindex machine dependent options
12196
12197Each target machine types can have its own
12198special options, starting with @samp{-m}, to choose among various
12199hardware models or configurations---for example, 68010 vs 68020,
12200floating coprocessor or none.  A single installed version of the
12201compiler can compile for any model or configuration, according to the
12202options specified.
12203
12204Some configurations of the compiler also support additional special
12205options, usually for compatibility with other compilers on the same
12206platform.
12207
12208@c This list is ordered alphanumerically by subsection name.
12209@c It should be the same order and spelling as these options are listed
12210@c in Machine Dependent Options
12211
12212@menu
12213* AArch64 Options::
12214* Adapteva Epiphany Options::
12215* ARC Options::
12216* ARM Options::
12217* AVR Options::
12218* Blackfin Options::
12219* C6X Options::
12220* CRIS Options::
12221* CR16 Options::
12222* Darwin Options::
12223* DEC Alpha Options::
12224* FR30 Options::
12225* FRV Options::
12226* GNU/Linux Options::
12227* H8/300 Options::
12228* HPPA Options::
12229* IA-64 Options::
12230* LM32 Options::
12231* M32C Options::
12232* M32R/D Options::
12233* M680x0 Options::
12234* MCore Options::
12235* MeP Options::
12236* MicroBlaze Options::
12237* MIPS Options::
12238* MMIX Options::
12239* MN10300 Options::
12240* Moxie Options::
12241* MSP430 Options::
12242* NDS32 Options::
12243* Nios II Options::
12244* Nvidia PTX Options::
12245* PDP-11 Options::
12246* picoChip Options::
12247* PowerPC Options::
12248* RL78 Options::
12249* RS/6000 and PowerPC Options::
12250* RX Options::
12251* S/390 and zSeries Options::
12252* Score Options::
12253* SH Options::
12254* Solaris 2 Options::
12255* SPARC Options::
12256* SPU Options::
12257* System V Options::
12258* TILE-Gx Options::
12259* TILEPro Options::
12260* V850 Options::
12261* VAX Options::
12262* Visium Options::
12263* VMS Options::
12264* VxWorks Options::
12265* x86 Options::
12266* x86 Windows Options::
12267* Xstormy16 Options::
12268* Xtensa Options::
12269* zSeries Options::
12270@end menu
12271
12272@node AArch64 Options
12273@subsection AArch64 Options
12274@cindex AArch64 Options
12275
12276These options are defined for AArch64 implementations:
12277
12278@table @gcctabopt
12279
12280@item -mabi=@var{name}
12281@opindex mabi
12282Generate code for the specified data model.  Permissible values
12283are @samp{ilp32} for SysV-like data model where int, long int and pointer
12284are 32-bit, and @samp{lp64} for SysV-like data model where int is 32-bit,
12285but long int and pointer are 64-bit.
12286
12287The default depends on the specific target configuration.  Note that
12288the LP64 and ILP32 ABIs are not link-compatible; you must compile your
12289entire program with the same ABI, and link with a compatible set of libraries.
12290
12291@item -mbig-endian
12292@opindex mbig-endian
12293Generate big-endian code.  This is the default when GCC is configured for an
12294@samp{aarch64_be-*-*} target.
12295
12296@item -mgeneral-regs-only
12297@opindex mgeneral-regs-only
12298Generate code which uses only the general registers.
12299
12300@item -mlittle-endian
12301@opindex mlittle-endian
12302Generate little-endian code.  This is the default when GCC is configured for an
12303@samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
12304
12305@item -mcmodel=tiny
12306@opindex mcmodel=tiny
12307Generate code for the tiny code model.  The program and its statically defined
12308symbols must be within 1GB of each other.  Pointers are 64 bits.  Programs can
12309be statically or dynamically linked.  This model is not fully implemented and
12310mostly treated as @samp{small}.
12311
12312@item -mcmodel=small
12313@opindex mcmodel=small
12314Generate code for the small code model.  The program and its statically defined
12315symbols must be within 4GB of each other.  Pointers are 64 bits.  Programs can
12316be statically or dynamically linked.  This is the default code model.
12317
12318@item -mcmodel=large
12319@opindex mcmodel=large
12320Generate code for the large code model.  This makes no assumptions about
12321addresses and sizes of sections.  Pointers are 64 bits.  Programs can be
12322statically linked only.
12323
12324@item -mstrict-align
12325@opindex mstrict-align
12326Do not assume that unaligned memory references are handled by the system.
12327
12328@item -momit-leaf-frame-pointer
12329@itemx -mno-omit-leaf-frame-pointer
12330@opindex momit-leaf-frame-pointer
12331@opindex mno-omit-leaf-frame-pointer
12332Omit or keep the frame pointer in leaf functions.  The former behaviour is the
12333default.
12334
12335@item -mtls-dialect=desc
12336@opindex mtls-dialect=desc
12337Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
12338of TLS variables.  This is the default.
12339
12340@item -mtls-dialect=traditional
12341@opindex mtls-dialect=traditional
12342Use traditional TLS as the thread-local storage mechanism for dynamic accesses
12343of TLS variables.
12344
12345@item -mfix-cortex-a53-835769
12346@itemx -mno-fix-cortex-a53-835769
12347@opindex mfix-cortex-a53-835769
12348@opindex mno-fix-cortex-a53-835769
12349Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
12350This involves inserting a NOP instruction between memory instructions and
1235164-bit integer multiply-accumulate instructions.
12352
12353@item -mfix-cortex-a53-843419
12354@itemx -mno-fix-cortex-a53-843419
12355@opindex mfix-cortex-a53-843419
12356@opindex mno-fix-cortex-a53-843419
12357Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
12358This erratum workaround is made at link time and this will only pass the
12359corresponding flag to the linker.
12360
12361@item -march=@var{name}
12362@opindex march
12363Specify the name of the target architecture, optionally suffixed by one or
12364more feature modifiers.  This option has the form
12365@option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where the
12366only permissible value for @var{arch} is @samp{armv8-a}.  The permissible
12367values for @var{feature} are documented in the sub-section below.
12368
12369Where conflicting feature modifiers are specified, the right-most feature is
12370used.
12371
12372GCC uses this name to determine what kind of instructions it can emit when
12373generating assembly code.
12374
12375Where @option{-march} is specified without either of @option{-mtune}
12376or @option{-mcpu} also being specified, the code is tuned to perform
12377well across a range of target processors implementing the target
12378architecture.
12379
12380@item -mtune=@var{name}
12381@opindex mtune
12382Specify the name of the target processor for which GCC should tune the
12383performance of the code.  Permissible values for this option are:
12384@samp{generic}, @samp{cortex-a53}, @samp{cortex-a57}, @samp{cortex-a72},
12385@samp{exynos-m1}, @samp{thunderx}, @samp{xgene1}.
12386
12387Additionally, this option can specify that GCC should tune the performance
12388of the code for a big.LITTLE system.  Permissible values for this
12389option are: @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53}.
12390
12391Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
12392are specified, the code is tuned to perform well across a range
12393of target processors.
12394
12395This option cannot be suffixed by feature modifiers.
12396
12397@item -mcpu=@var{name}
12398@opindex mcpu
12399Specify the name of the target processor, optionally suffixed by one or more
12400feature modifiers.  This option has the form
12401@option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where the
12402permissible values for @var{cpu} are the same as those available for
12403@option{-mtune}.
12404
12405The permissible values for @var{feature} are documented in the sub-section
12406below.
12407
12408Where conflicting feature modifiers are specified, the right-most feature is
12409used.
12410
12411GCC uses this name to determine what kind of instructions it can emit when
12412generating assembly code (as if by @option{-march}) and to determine
12413the target processor for which to tune for performance (as if
12414by @option{-mtune}).  Where this option is used in conjunction
12415with @option{-march} or @option{-mtune}, those options take precedence
12416over the appropriate part of this option.
12417@end table
12418
12419@subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
12420@cindex @option{-march} feature modifiers
12421@cindex @option{-mcpu} feature modifiers
12422Feature modifiers used with @option{-march} and @option{-mcpu} can be one
12423the following:
12424
12425@table @samp
12426@item crc
12427Enable CRC extension.
12428@item crypto
12429Enable Crypto extension.  This implies Advanced SIMD is enabled.
12430@item fp
12431Enable floating-point instructions.
12432@item simd
12433Enable Advanced SIMD instructions.  This implies floating-point instructions
12434are enabled.  This is the default for all current possible values for options
12435@option{-march} and @option{-mcpu=}.
12436@end table
12437
12438@node Adapteva Epiphany Options
12439@subsection Adapteva Epiphany Options
12440
12441These @samp{-m} options are defined for Adapteva Epiphany:
12442
12443@table @gcctabopt
12444@item -mhalf-reg-file
12445@opindex mhalf-reg-file
12446Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
12447That allows code to run on hardware variants that lack these registers.
12448
12449@item -mprefer-short-insn-regs
12450@opindex mprefer-short-insn-regs
12451Preferrentially allocate registers that allow short instruction generation.
12452This can result in increased instruction count, so this may either reduce or
12453increase overall code size.
12454
12455@item -mbranch-cost=@var{num}
12456@opindex mbranch-cost
12457Set the cost of branches to roughly @var{num} ``simple'' instructions.
12458This cost is only a heuristic and is not guaranteed to produce
12459consistent results across releases.
12460
12461@item -mcmove
12462@opindex mcmove
12463Enable the generation of conditional moves.
12464
12465@item -mnops=@var{num}
12466@opindex mnops
12467Emit @var{num} NOPs before every other generated instruction.
12468
12469@item -mno-soft-cmpsf
12470@opindex mno-soft-cmpsf
12471For single-precision floating-point comparisons, emit an @code{fsub} instruction
12472and test the flags.  This is faster than a software comparison, but can
12473get incorrect results in the presence of NaNs, or when two different small
12474numbers are compared such that their difference is calculated as zero.
12475The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
12476software comparisons.
12477
12478@item -mstack-offset=@var{num}
12479@opindex mstack-offset
12480Set the offset between the top of the stack and the stack pointer.
12481E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
12482can be used by leaf functions without stack allocation.
12483Values other than @samp{8} or @samp{16} are untested and unlikely to work.
12484Note also that this option changes the ABI; compiling a program with a
12485different stack offset than the libraries have been compiled with
12486generally does not work.
12487This option can be useful if you want to evaluate if a different stack
12488offset would give you better code, but to actually use a different stack
12489offset to build working programs, it is recommended to configure the
12490toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
12491
12492@item -mno-round-nearest
12493@opindex mno-round-nearest
12494Make the scheduler assume that the rounding mode has been set to
12495truncating.  The default is @option{-mround-nearest}.
12496
12497@item -mlong-calls
12498@opindex mlong-calls
12499If not otherwise specified by an attribute, assume all calls might be beyond
12500the offset range of the @code{b} / @code{bl} instructions, and therefore load the
12501function address into a register before performing a (otherwise direct) call.
12502This is the default.
12503
12504@item -mshort-calls
12505@opindex short-calls
12506If not otherwise specified by an attribute, assume all direct calls are
12507in the range of the @code{b} / @code{bl} instructions, so use these instructions
12508for direct calls.  The default is @option{-mlong-calls}.
12509
12510@item -msmall16
12511@opindex msmall16
12512Assume addresses can be loaded as 16-bit unsigned values.  This does not
12513apply to function addresses for which @option{-mlong-calls} semantics
12514are in effect.
12515
12516@item -mfp-mode=@var{mode}
12517@opindex mfp-mode
12518Set the prevailing mode of the floating-point unit.
12519This determines the floating-point mode that is provided and expected
12520at function call and return time.  Making this mode match the mode you
12521predominantly need at function start can make your programs smaller and
12522faster by avoiding unnecessary mode switches.
12523
12524@var{mode} can be set to one the following values:
12525
12526@table @samp
12527@item caller
12528Any mode at function entry is valid, and retained or restored when
12529the function returns, and when it calls other functions.
12530This mode is useful for compiling libraries or other compilation units
12531you might want to incorporate into different programs with different
12532prevailing FPU modes, and the convenience of being able to use a single
12533object file outweighs the size and speed overhead for any extra
12534mode switching that might be needed, compared with what would be needed
12535with a more specific choice of prevailing FPU mode.
12536
12537@item truncate
12538This is the mode used for floating-point calculations with
12539truncating (i.e.@: round towards zero) rounding mode.  That includes
12540conversion from floating point to integer.
12541
12542@item round-nearest
12543This is the mode used for floating-point calculations with
12544round-to-nearest-or-even rounding mode.
12545
12546@item int
12547This is the mode used to perform integer calculations in the FPU, e.g.@:
12548integer multiply, or integer multiply-and-accumulate.
12549@end table
12550
12551The default is @option{-mfp-mode=caller}
12552
12553@item -mnosplit-lohi
12554@itemx -mno-postinc
12555@itemx -mno-postmodify
12556@opindex mnosplit-lohi
12557@opindex mno-postinc
12558@opindex mno-postmodify
12559Code generation tweaks that disable, respectively, splitting of 32-bit
12560loads, generation of post-increment addresses, and generation of
12561post-modify addresses.  The defaults are @option{msplit-lohi},
12562@option{-mpost-inc}, and @option{-mpost-modify}.
12563
12564@item -mnovect-double
12565@opindex mno-vect-double
12566Change the preferred SIMD mode to SImode.  The default is
12567@option{-mvect-double}, which uses DImode as preferred SIMD mode.
12568
12569@item -max-vect-align=@var{num}
12570@opindex max-vect-align
12571The maximum alignment for SIMD vector mode types.
12572@var{num} may be 4 or 8.  The default is 8.
12573Note that this is an ABI change, even though many library function
12574interfaces are unaffected if they don't use SIMD vector modes
12575in places that affect size and/or alignment of relevant types.
12576
12577@item -msplit-vecmove-early
12578@opindex msplit-vecmove-early
12579Split vector moves into single word moves before reload.  In theory this
12580can give better register allocation, but so far the reverse seems to be
12581generally the case.
12582
12583@item -m1reg-@var{reg}
12584@opindex m1reg-
12585Specify a register to hold the constant @minus{}1, which makes loading small negative
12586constants and certain bitmasks faster.
12587Allowable values for @var{reg} are @samp{r43} and @samp{r63},
12588which specify use of that register as a fixed register,
12589and @samp{none}, which means that no register is used for this
12590purpose.  The default is @option{-m1reg-none}.
12591
12592@end table
12593
12594@node ARC Options
12595@subsection ARC Options
12596@cindex ARC options
12597
12598The following options control the architecture variant for which code
12599is being compiled:
12600
12601@c architecture variants
12602@table @gcctabopt
12603
12604@item -mbarrel-shifter
12605@opindex mbarrel-shifter
12606Generate instructions supported by barrel shifter.  This is the default
12607unless @option{-mcpu=ARC601} is in effect.
12608
12609@item -mcpu=@var{cpu}
12610@opindex mcpu
12611Set architecture type, register usage, and instruction scheduling
12612parameters for @var{cpu}.  There are also shortcut alias options
12613available for backward compatibility and convenience.  Supported
12614values for @var{cpu} are
12615
12616@table @samp
12617@opindex mA6
12618@opindex mARC600
12619@item ARC600
12620Compile for ARC600.  Aliases: @option{-mA6}, @option{-mARC600}.
12621
12622@item ARC601
12623@opindex mARC601
12624Compile for ARC601.  Alias: @option{-mARC601}.
12625
12626@item ARC700
12627@opindex mA7
12628@opindex mARC700
12629Compile for ARC700.  Aliases: @option{-mA7}, @option{-mARC700}.
12630This is the default when configured with @option{--with-cpu=arc700}@.
12631@end table
12632
12633@item -mdpfp
12634@opindex mdpfp
12635@itemx -mdpfp-compact
12636@opindex mdpfp-compact
12637FPX: Generate Double Precision FPX instructions, tuned for the compact
12638implementation.
12639
12640@item -mdpfp-fast
12641@opindex mdpfp-fast
12642FPX: Generate Double Precision FPX instructions, tuned for the fast
12643implementation.
12644
12645@item -mno-dpfp-lrsr
12646@opindex mno-dpfp-lrsr
12647Disable LR and SR instructions from using FPX extension aux registers.
12648
12649@item -mea
12650@opindex mea
12651Generate Extended arithmetic instructions.  Currently only
12652@code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
12653supported.  This is always enabled for @option{-mcpu=ARC700}.
12654
12655@item -mno-mpy
12656@opindex mno-mpy
12657Do not generate mpy instructions for ARC700.
12658
12659@item -mmul32x16
12660@opindex mmul32x16
12661Generate 32x16 bit multiply and mac instructions.
12662
12663@item -mmul64
12664@opindex mmul64
12665Generate mul64 and mulu64 instructions.  Only valid for @option{-mcpu=ARC600}.
12666
12667@item -mnorm
12668@opindex mnorm
12669Generate norm instruction.  This is the default if @option{-mcpu=ARC700}
12670is in effect.
12671
12672@item -mspfp
12673@opindex mspfp
12674@itemx -mspfp-compact
12675@opindex mspfp-compact
12676FPX: Generate Single Precision FPX instructions, tuned for the compact
12677implementation.
12678
12679@item -mspfp-fast
12680@opindex mspfp-fast
12681FPX: Generate Single Precision FPX instructions, tuned for the fast
12682implementation.
12683
12684@item -msimd
12685@opindex msimd
12686Enable generation of ARC SIMD instructions via target-specific
12687builtins.  Only valid for @option{-mcpu=ARC700}.
12688
12689@item -msoft-float
12690@opindex msoft-float
12691This option ignored; it is provided for compatibility purposes only.
12692Software floating point code is emitted by default, and this default
12693can overridden by FPX options; @samp{mspfp}, @samp{mspfp-compact}, or
12694@samp{mspfp-fast} for single precision, and @samp{mdpfp},
12695@samp{mdpfp-compact}, or @samp{mdpfp-fast} for double precision.
12696
12697@item -mswap
12698@opindex mswap
12699Generate swap instructions.
12700
12701@end table
12702
12703The following options are passed through to the assembler, and also
12704define preprocessor macro symbols.
12705
12706@c Flags used by the assembler, but for which we define preprocessor
12707@c macro symbols as well.
12708@table @gcctabopt
12709@item -mdsp-packa
12710@opindex mdsp-packa
12711Passed down to the assembler to enable the DSP Pack A extensions.
12712Also sets the preprocessor symbol @code{__Xdsp_packa}.
12713
12714@item -mdvbf
12715@opindex mdvbf
12716Passed down to the assembler to enable the dual viterbi butterfly
12717extension.  Also sets the preprocessor symbol @code{__Xdvbf}.
12718
12719@c ARC700 4.10 extension instruction
12720@item -mlock
12721@opindex mlock
12722Passed down to the assembler to enable the Locked Load/Store
12723Conditional extension.  Also sets the preprocessor symbol
12724@code{__Xlock}.
12725
12726@item -mmac-d16
12727@opindex mmac-d16
12728Passed down to the assembler.  Also sets the preprocessor symbol
12729@code{__Xxmac_d16}.
12730
12731@item -mmac-24
12732@opindex mmac-24
12733Passed down to the assembler.  Also sets the preprocessor symbol
12734@code{__Xxmac_24}.
12735
12736@c ARC700 4.10 extension instruction
12737@item -mrtsc
12738@opindex mrtsc
12739Passed down to the assembler to enable the 64-bit Time-Stamp Counter
12740extension instruction.  Also sets the preprocessor symbol
12741@code{__Xrtsc}.
12742
12743@c ARC700 4.10 extension instruction
12744@item -mswape
12745@opindex mswape
12746Passed down to the assembler to enable the swap byte ordering
12747extension instruction.  Also sets the preprocessor symbol
12748@code{__Xswape}.
12749
12750@item -mtelephony
12751@opindex mtelephony
12752Passed down to the assembler to enable dual and single operand
12753instructions for telephony.  Also sets the preprocessor symbol
12754@code{__Xtelephony}.
12755
12756@item -mxy
12757@opindex mxy
12758Passed down to the assembler to enable the XY Memory extension.  Also
12759sets the preprocessor symbol @code{__Xxy}.
12760
12761@end table
12762
12763The following options control how the assembly code is annotated:
12764
12765@c Assembly annotation options
12766@table @gcctabopt
12767@item -misize
12768@opindex misize
12769Annotate assembler instructions with estimated addresses.
12770
12771@item -mannotate-align
12772@opindex mannotate-align
12773Explain what alignment considerations lead to the decision to make an
12774instruction short or long.
12775
12776@end table
12777
12778The following options are passed through to the linker:
12779
12780@c options passed through to the linker
12781@table @gcctabopt
12782@item -marclinux
12783@opindex marclinux
12784Passed through to the linker, to specify use of the @code{arclinux} emulation.
12785This option is enabled by default in tool chains built for
12786@w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
12787when profiling is not requested.
12788
12789@item -marclinux_prof
12790@opindex marclinux_prof
12791Passed through to the linker, to specify use of the
12792@code{arclinux_prof} emulation.  This option is enabled by default in
12793tool chains built for @w{@code{arc-linux-uclibc}} and
12794@w{@code{arceb-linux-uclibc}} targets when profiling is requested.
12795
12796@end table
12797
12798The following options control the semantics of generated code:
12799
12800@c semantically relevant code generation options
12801@table @gcctabopt
12802@item -mepilogue-cfi
12803@opindex mepilogue-cfi
12804Enable generation of call frame information for epilogues.
12805
12806@item -mno-epilogue-cfi
12807@opindex mno-epilogue-cfi
12808Disable generation of call frame information for epilogues.
12809
12810@item -mlong-calls
12811@opindex mlong-calls
12812Generate call insns as register indirect calls, thus providing access
12813to the full 32-bit address range.
12814
12815@item -mmedium-calls
12816@opindex mmedium-calls
12817Don't use less than 25 bit addressing range for calls, which is the
12818offset available for an unconditional branch-and-link
12819instruction.  Conditional execution of function calls is suppressed, to
12820allow use of the 25-bit range, rather than the 21-bit range with
12821conditional branch-and-link.  This is the default for tool chains built
12822for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
12823
12824@item -mno-sdata
12825@opindex mno-sdata
12826Do not generate sdata references.  This is the default for tool chains
12827built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
12828targets.
12829
12830@item -mucb-mcount
12831@opindex mucb-mcount
12832Instrument with mcount calls as used in UCB code.  I.e. do the
12833counting in the callee, not the caller.  By default ARC instrumentation
12834counts in the caller.
12835
12836@item -mvolatile-cache
12837@opindex mvolatile-cache
12838Use ordinarily cached memory accesses for volatile references.  This is the
12839default.
12840
12841@item -mno-volatile-cache
12842@opindex mno-volatile-cache
12843Enable cache bypass for volatile references.
12844
12845@end table
12846
12847The following options fine tune code generation:
12848@c code generation tuning options
12849@table @gcctabopt
12850@item -malign-call
12851@opindex malign-call
12852Do alignment optimizations for call instructions.
12853
12854@item -mauto-modify-reg
12855@opindex mauto-modify-reg
12856Enable the use of pre/post modify with register displacement.
12857
12858@item -mbbit-peephole
12859@opindex mbbit-peephole
12860Enable bbit peephole2.
12861
12862@item -mno-brcc
12863@opindex mno-brcc
12864This option disables a target-specific pass in @file{arc_reorg} to
12865generate @code{BRcc} instructions.  It has no effect on @code{BRcc}
12866generation driven by the combiner pass.
12867
12868@item -mcase-vector-pcrel
12869@opindex mcase-vector-pcrel
12870Use pc-relative switch case tables - this enables case table shortening.
12871This is the default for @option{-Os}.
12872
12873@item -mcompact-casesi
12874@opindex mcompact-casesi
12875Enable compact casesi pattern.
12876This is the default for @option{-Os}.
12877
12878@item -mno-cond-exec
12879@opindex mno-cond-exec
12880Disable ARCompact specific pass to generate conditional execution instructions.
12881Due to delay slot scheduling and interactions between operand numbers,
12882literal sizes, instruction lengths, and the support for conditional execution,
12883the target-independent pass to generate conditional execution is often lacking,
12884so the ARC port has kept a special pass around that tries to find more
12885conditional execution generating opportunities after register allocation,
12886branch shortening, and delay slot scheduling have been done.  This pass
12887generally, but not always, improves performance and code size, at the cost of
12888extra compilation time, which is why there is an option to switch it off.
12889If you have a problem with call instructions exceeding their allowable
12890offset range because they are conditionalized, you should consider using
12891@option{-mmedium-calls} instead.
12892
12893@item -mearly-cbranchsi
12894@opindex mearly-cbranchsi
12895Enable pre-reload use of the cbranchsi pattern.
12896
12897@item -mexpand-adddi
12898@opindex mexpand-adddi
12899Expand @code{adddi3} and @code{subdi3} at rtl generation time into
12900@code{add.f}, @code{adc} etc.
12901
12902@item -mindexed-loads
12903@opindex mindexed-loads
12904Enable the use of indexed loads.  This can be problematic because some
12905optimizers then assume that indexed stores exist, which is not
12906the case.
12907
12908@item -mlra
12909@opindex mlra
12910Enable Local Register Allocation.  This is still experimental for ARC,
12911so by default the compiler uses standard reload
12912(i.e. @option{-mno-lra}).
12913
12914@item -mlra-priority-none
12915@opindex mlra-priority-none
12916Don't indicate any priority for target registers.
12917
12918@item -mlra-priority-compact
12919@opindex mlra-priority-compact
12920Indicate target register priority for r0..r3 / r12..r15.
12921
12922@item -mlra-priority-noncompact
12923@opindex mlra-priority-noncompact
12924Reduce target regsiter priority for r0..r3 / r12..r15.
12925
12926@item -mno-millicode
12927@opindex mno-millicode
12928When optimizing for size (using @option{-Os}), prologues and epilogues
12929that have to save or restore a large number of registers are often
12930shortened by using call to a special function in libgcc; this is
12931referred to as a @emph{millicode} call.  As these calls can pose
12932performance issues, and/or cause linking issues when linking in a
12933nonstandard way, this option is provided to turn off millicode call
12934generation.
12935
12936@item -mmixed-code
12937@opindex mmixed-code
12938Tweak register allocation to help 16-bit instruction generation.
12939This generally has the effect of decreasing the average instruction size
12940while increasing the instruction count.
12941
12942@item -mq-class
12943@opindex mq-class
12944Enable 'q' instruction alternatives.
12945This is the default for @option{-Os}.
12946
12947@item -mRcq
12948@opindex mRcq
12949Enable Rcq constraint handling - most short code generation depends on this.
12950This is the default.
12951
12952@item -mRcw
12953@opindex mRcw
12954Enable Rcw constraint handling - ccfsm condexec mostly depends on this.
12955This is the default.
12956
12957@item -msize-level=@var{level}
12958@opindex msize-level
12959Fine-tune size optimization with regards to instruction lengths and alignment.
12960The recognized values for @var{level} are:
12961@table @samp
12962@item 0
12963No size optimization.  This level is deprecated and treated like @samp{1}.
12964
12965@item 1
12966Short instructions are used opportunistically.
12967
12968@item 2
12969In addition, alignment of loops and of code after barriers are dropped.
12970
12971@item 3
12972In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
12973
12974@end table
12975
12976This defaults to @samp{3} when @option{-Os} is in effect.  Otherwise,
12977the behavior when this is not set is equivalent to level @samp{1}.
12978
12979@item -mtune=@var{cpu}
12980@opindex mtune
12981Set instruction scheduling parameters for @var{cpu}, overriding any implied
12982by @option{-mcpu=}.
12983
12984Supported values for @var{cpu} are
12985
12986@table @samp
12987@item ARC600
12988Tune for ARC600 cpu.
12989
12990@item ARC601
12991Tune for ARC601 cpu.
12992
12993@item ARC700
12994Tune for ARC700 cpu with standard multiplier block.
12995
12996@item ARC700-xmac
12997Tune for ARC700 cpu with XMAC block.
12998
12999@item ARC725D
13000Tune for ARC725D cpu.
13001
13002@item ARC750D
13003Tune for ARC750D cpu.
13004
13005@end table
13006
13007@item -mmultcost=@var{num}
13008@opindex mmultcost
13009Cost to assume for a multiply instruction, with @samp{4} being equal to a
13010normal instruction.
13011
13012@item -munalign-prob-threshold=@var{probability}
13013@opindex munalign-prob-threshold
13014Set probability threshold for unaligning branches.
13015When tuning for @samp{ARC700} and optimizing for speed, branches without
13016filled delay slot are preferably emitted unaligned and long, unless
13017profiling indicates that the probability for the branch to be taken
13018is below @var{probability}.  @xref{Cross-profiling}.
13019The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
13020
13021@end table
13022
13023The following options are maintained for backward compatibility, but
13024are now deprecated and will be removed in a future release:
13025
13026@c Deprecated options
13027@table @gcctabopt
13028
13029@item -margonaut
13030@opindex margonaut
13031Obsolete FPX.
13032
13033@item -mbig-endian
13034@opindex mbig-endian
13035@itemx -EB
13036@opindex EB
13037Compile code for big endian targets.  Use of these options is now
13038deprecated.  Users wanting big-endian code, should use the
13039@w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets when
13040building the tool chain, for which big-endian is the default.
13041
13042@item -mlittle-endian
13043@opindex mlittle-endian
13044@itemx -EL
13045@opindex EL
13046Compile code for little endian targets.  Use of these options is now
13047deprecated.  Users wanting little-endian code should use the
13048@w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets when
13049building the tool chain, for which little-endian is the default.
13050
13051@item -mbarrel_shifter
13052@opindex mbarrel_shifter
13053Replaced by @option{-mbarrel-shifter}.
13054
13055@item -mdpfp_compact
13056@opindex mdpfp_compact
13057Replaced by @option{-mdpfp-compact}.
13058
13059@item -mdpfp_fast
13060@opindex mdpfp_fast
13061Replaced by @option{-mdpfp-fast}.
13062
13063@item -mdsp_packa
13064@opindex mdsp_packa
13065Replaced by @option{-mdsp-packa}.
13066
13067@item -mEA
13068@opindex mEA
13069Replaced by @option{-mea}.
13070
13071@item -mmac_24
13072@opindex mmac_24
13073Replaced by @option{-mmac-24}.
13074
13075@item -mmac_d16
13076@opindex mmac_d16
13077Replaced by @option{-mmac-d16}.
13078
13079@item -mspfp_compact
13080@opindex mspfp_compact
13081Replaced by @option{-mspfp-compact}.
13082
13083@item -mspfp_fast
13084@opindex mspfp_fast
13085Replaced by @option{-mspfp-fast}.
13086
13087@item -mtune=@var{cpu}
13088@opindex mtune
13089Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
13090@samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
13091@samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively
13092
13093@item -multcost=@var{num}
13094@opindex multcost
13095Replaced by @option{-mmultcost}.
13096
13097@end table
13098
13099@node ARM Options
13100@subsection ARM Options
13101@cindex ARM options
13102
13103These @samp{-m} options are defined for the ARM port:
13104
13105@table @gcctabopt
13106@item -mabi=@var{name}
13107@opindex mabi
13108Generate code for the specified ABI@.  Permissible values are: @samp{apcs-gnu},
13109@samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
13110
13111@item -mapcs-frame
13112@opindex mapcs-frame
13113Generate a stack frame that is compliant with the ARM Procedure Call
13114Standard for all functions, even if this is not strictly necessary for
13115correct execution of the code.  Specifying @option{-fomit-frame-pointer}
13116with this option causes the stack frames not to be generated for
13117leaf functions.  The default is @option{-mno-apcs-frame}.
13118This option is deprecated.
13119
13120@item -mapcs
13121@opindex mapcs
13122This is a synonym for @option{-mapcs-frame} and is deprecated.
13123
13124@ignore
13125@c not currently implemented
13126@item -mapcs-stack-check
13127@opindex mapcs-stack-check
13128Generate code to check the amount of stack space available upon entry to
13129every function (that actually uses some stack space).  If there is
13130insufficient space available then either the function
13131@code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
13132called, depending upon the amount of stack space required.  The runtime
13133system is required to provide these functions.  The default is
13134@option{-mno-apcs-stack-check}, since this produces smaller code.
13135
13136@c not currently implemented
13137@item -mapcs-float
13138@opindex mapcs-float
13139Pass floating-point arguments using the floating-point registers.  This is
13140one of the variants of the APCS@.  This option is recommended if the
13141target hardware has a floating-point unit or if a lot of floating-point
13142arithmetic is going to be performed by the code.  The default is
13143@option{-mno-apcs-float}, since the size of integer-only code is
13144slightly increased if @option{-mapcs-float} is used.
13145
13146@c not currently implemented
13147@item -mapcs-reentrant
13148@opindex mapcs-reentrant
13149Generate reentrant, position-independent code.  The default is
13150@option{-mno-apcs-reentrant}.
13151@end ignore
13152
13153@item -mthumb-interwork
13154@opindex mthumb-interwork
13155Generate code that supports calling between the ARM and Thumb
13156instruction sets.  Without this option, on pre-v5 architectures, the
13157two instruction sets cannot be reliably used inside one program.  The
13158default is @option{-mno-thumb-interwork}, since slightly larger code
13159is generated when @option{-mthumb-interwork} is specified.  In AAPCS
13160configurations this option is meaningless.
13161
13162@item -mno-sched-prolog
13163@opindex mno-sched-prolog
13164Prevent the reordering of instructions in the function prologue, or the
13165merging of those instruction with the instructions in the function's
13166body.  This means that all functions start with a recognizable set
13167of instructions (or in fact one of a choice from a small set of
13168different function prologues), and this information can be used to
13169locate the start of functions inside an executable piece of code.  The
13170default is @option{-msched-prolog}.
13171
13172@item -mfloat-abi=@var{name}
13173@opindex mfloat-abi
13174Specifies which floating-point ABI to use.  Permissible values
13175are: @samp{soft}, @samp{softfp} and @samp{hard}.
13176
13177Specifying @samp{soft} causes GCC to generate output containing
13178library calls for floating-point operations.
13179@samp{softfp} allows the generation of code using hardware floating-point
13180instructions, but still uses the soft-float calling conventions.
13181@samp{hard} allows generation of floating-point instructions
13182and uses FPU-specific calling conventions.
13183
13184The default depends on the specific target configuration.  Note that
13185the hard-float and soft-float ABIs are not link-compatible; you must
13186compile your entire program with the same ABI, and link with a
13187compatible set of libraries.
13188
13189@item -mlittle-endian
13190@opindex mlittle-endian
13191Generate code for a processor running in little-endian mode.  This is
13192the default for all standard configurations.
13193
13194@item -mbig-endian
13195@opindex mbig-endian
13196Generate code for a processor running in big-endian mode; the default is
13197to compile code for a little-endian processor.
13198
13199@item -march=@var{name}
13200@opindex march
13201This specifies the name of the target ARM architecture.  GCC uses this
13202name to determine what kind of instructions it can emit when generating
13203assembly code.  This option can be used in conjunction with or instead
13204of the @option{-mcpu=} option.  Permissible names are: @samp{armv2},
13205@samp{armv2a}, @samp{armv3}, @samp{armv3m}, @samp{armv4}, @samp{armv4t},
13206@samp{armv5}, @samp{armv5t}, @samp{armv5e}, @samp{armv5te},
13207@samp{armv6}, @samp{armv6j},
13208@samp{armv6t2}, @samp{armv6z}, @samp{armv6zk}, @samp{armv6-m},
13209@samp{armv7}, @samp{armv7-a}, @samp{armv7-r}, @samp{armv7-m}, @samp{armv7e-m},
13210@samp{armv7ve}, @samp{armv8-a}, @samp{armv8-a+crc},
13211@samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312}.
13212
13213@option{-march=armv7ve} is the armv7-a architecture with virtualization
13214extensions.
13215
13216@option{-march=armv8-a+crc} enables code generation for the ARMv8-A
13217architecture together with the optional CRC32 extensions.
13218
13219@option{-march=native} causes the compiler to auto-detect the architecture
13220of the build computer.  At present, this feature is only supported on
13221GNU/Linux, and not all architectures are recognized.  If the auto-detect
13222is unsuccessful the option has no effect.
13223
13224@item -mtune=@var{name}
13225@opindex mtune
13226This option specifies the name of the target ARM processor for
13227which GCC should tune the performance of the code.
13228For some ARM implementations better performance can be obtained by using
13229this option.
13230Permissible names are: @samp{arm2}, @samp{arm250},
13231@samp{arm3}, @samp{arm6}, @samp{arm60}, @samp{arm600}, @samp{arm610},
13232@samp{arm620}, @samp{arm7}, @samp{arm7m}, @samp{arm7d}, @samp{arm7dm},
13233@samp{arm7di}, @samp{arm7dmi}, @samp{arm70}, @samp{arm700},
13234@samp{arm700i}, @samp{arm710}, @samp{arm710c}, @samp{arm7100},
13235@samp{arm720},
13236@samp{arm7500}, @samp{arm7500fe}, @samp{arm7tdmi}, @samp{arm7tdmi-s},
13237@samp{arm710t}, @samp{arm720t}, @samp{arm740t},
13238@samp{strongarm}, @samp{strongarm110}, @samp{strongarm1100},
13239@samp{strongarm1110},
13240@samp{arm8}, @samp{arm810}, @samp{arm9}, @samp{arm9e}, @samp{arm920},
13241@samp{arm920t}, @samp{arm922t}, @samp{arm946e-s}, @samp{arm966e-s},
13242@samp{arm968e-s}, @samp{arm926ej-s}, @samp{arm940t}, @samp{arm9tdmi},
13243@samp{arm10tdmi}, @samp{arm1020t}, @samp{arm1026ej-s},
13244@samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
13245@samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
13246@samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
13247@samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8}, @samp{cortex-a9},
13248@samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a53},
13249@samp{cortex-a57}, @samp{cortex-a72},
13250@samp{cortex-r4},
13251@samp{cortex-r4f}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-m7},
13252@samp{cortex-m4},
13253@samp{cortex-m3},
13254@samp{cortex-m1},
13255@samp{cortex-m0},
13256@samp{cortex-m0plus},
13257@samp{cortex-m1.small-multiply},
13258@samp{cortex-m0.small-multiply},
13259@samp{cortex-m0plus.small-multiply},
13260@samp{exynos-m1},
13261@samp{marvell-pj4},
13262@samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312},
13263@samp{fa526}, @samp{fa626},
13264@samp{fa606te}, @samp{fa626te}, @samp{fmp626}, @samp{fa726te},
13265@samp{xgene1}.
13266
13267Additionally, this option can specify that GCC should tune the performance
13268of the code for a big.LITTLE system.  Permissible names are:
13269@samp{cortex-a15.cortex-a7}, @samp{cortex-a57.cortex-a53},
13270@samp{cortex-a72.cortex-a53}.
13271
13272@option{-mtune=generic-@var{arch}} specifies that GCC should tune the
13273performance for a blend of processors within architecture @var{arch}.
13274The aim is to generate code that run well on the current most popular
13275processors, balancing between optimizations that benefit some CPUs in the
13276range, and avoiding performance pitfalls of other CPUs.  The effects of
13277this option may change in future GCC versions as CPU models come and go.
13278
13279@option{-mtune=native} causes the compiler to auto-detect the CPU
13280of the build computer.  At present, this feature is only supported on
13281GNU/Linux, and not all architectures are recognized.  If the auto-detect is
13282unsuccessful the option has no effect.
13283
13284@item -mcpu=@var{name}
13285@opindex mcpu
13286This specifies the name of the target ARM processor.  GCC uses this name
13287to derive the name of the target ARM architecture (as if specified
13288by @option{-march}) and the ARM processor type for which to tune for
13289performance (as if specified by @option{-mtune}).  Where this option
13290is used in conjunction with @option{-march} or @option{-mtune},
13291those options take precedence over the appropriate part of this option.
13292
13293Permissible names for this option are the same as those for
13294@option{-mtune}.
13295
13296@option{-mcpu=generic-@var{arch}} is also permissible, and is
13297equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
13298See @option{-mtune} for more information.
13299
13300@option{-mcpu=native} causes the compiler to auto-detect the CPU
13301of the build computer.  At present, this feature is only supported on
13302GNU/Linux, and not all architectures are recognized.  If the auto-detect
13303is unsuccessful the option has no effect.
13304
13305@item -mfpu=@var{name}
13306@opindex mfpu
13307This specifies what floating-point hardware (or hardware emulation) is
13308available on the target.  Permissible names are: @samp{vfp}, @samp{vfpv3},
13309@samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
13310@samp{vfpv3xd-fp16}, @samp{neon}, @samp{neon-fp16}, @samp{vfpv4},
13311@samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
13312@samp{fpv5-d16}, @samp{fpv5-sp-d16},
13313@samp{fp-armv8}, @samp{neon-fp-armv8}, and @samp{crypto-neon-fp-armv8}.
13314
13315If @option{-msoft-float} is specified this specifies the format of
13316floating-point values.
13317
13318If the selected floating-point hardware includes the NEON extension
13319(e.g. @option{-mfpu}=@samp{neon}), note that floating-point
13320operations are not generated by GCC's auto-vectorization pass unless
13321@option{-funsafe-math-optimizations} is also specified.  This is
13322because NEON hardware does not fully implement the IEEE 754 standard for
13323floating-point arithmetic (in particular denormal values are treated as
13324zero), so the use of NEON instructions may lead to a loss of precision.
13325
13326@item -mfp16-format=@var{name}
13327@opindex mfp16-format
13328Specify the format of the @code{__fp16} half-precision floating-point type.
13329Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
13330the default is @samp{none}, in which case the @code{__fp16} type is not
13331defined.  @xref{Half-Precision}, for more information.
13332
13333@item -mstructure-size-boundary=@var{n}
13334@opindex mstructure-size-boundary
13335The sizes of all structures and unions are rounded up to a multiple
13336of the number of bits set by this option.  Permissible values are 8, 32
13337and 64.  The default value varies for different toolchains.  For the COFF
13338targeted toolchain the default value is 8.  A value of 64 is only allowed
13339if the underlying ABI supports it.
13340
13341Specifying a larger number can produce faster, more efficient code, but
13342can also increase the size of the program.  Different values are potentially
13343incompatible.  Code compiled with one value cannot necessarily expect to
13344work with code or libraries compiled with another value, if they exchange
13345information using structures or unions.
13346
13347@item -mabort-on-noreturn
13348@opindex mabort-on-noreturn
13349Generate a call to the function @code{abort} at the end of a
13350@code{noreturn} function.  It is executed if the function tries to
13351return.
13352
13353@item -mlong-calls
13354@itemx -mno-long-calls
13355@opindex mlong-calls
13356@opindex mno-long-calls
13357Tells the compiler to perform function calls by first loading the
13358address of the function into a register and then performing a subroutine
13359call on this register.  This switch is needed if the target function
13360lies outside of the 64-megabyte addressing range of the offset-based
13361version of subroutine call instruction.
13362
13363Even if this switch is enabled, not all function calls are turned
13364into long calls.  The heuristic is that static functions, functions
13365that have the @code{short_call} attribute, functions that are inside
13366the scope of a @code{#pragma no_long_calls} directive, and functions whose
13367definitions have already been compiled within the current compilation
13368unit are not turned into long calls.  The exceptions to this rule are
13369that weak function definitions, functions with the @code{long_call}
13370attribute or the @code{section} attribute, and functions that are within
13371the scope of a @code{#pragma long_calls} directive are always
13372turned into long calls.
13373
13374This feature is not enabled by default.  Specifying
13375@option{-mno-long-calls} restores the default behavior, as does
13376placing the function calls within the scope of a @code{#pragma
13377long_calls_off} directive.  Note these switches have no effect on how
13378the compiler generates code to handle function calls via function
13379pointers.
13380
13381@item -msingle-pic-base
13382@opindex msingle-pic-base
13383Treat the register used for PIC addressing as read-only, rather than
13384loading it in the prologue for each function.  The runtime system is
13385responsible for initializing this register with an appropriate value
13386before execution begins.
13387
13388@item -mpic-register=@var{reg}
13389@opindex mpic-register
13390Specify the register to be used for PIC addressing.
13391For standard PIC base case, the default is any suitable register
13392determined by compiler.  For single PIC base case, the default is
13393@samp{R9} if target is EABI based or stack-checking is enabled,
13394otherwise the default is @samp{R10}.
13395
13396@item -mpic-data-is-text-relative
13397@opindex mpic-data-is-text-relative
13398Assume that each data segments are relative to text segment at load time.
13399Therefore, it permits addressing data using PC-relative operations.
13400This option is on by default for targets other than VxWorks RTP.
13401
13402@item -mpoke-function-name
13403@opindex mpoke-function-name
13404Write the name of each function into the text section, directly
13405preceding the function prologue.  The generated code is similar to this:
13406
13407@smallexample
13408     t0
13409         .ascii "arm_poke_function_name", 0
13410         .align
13411     t1
13412         .word 0xff000000 + (t1 - t0)
13413     arm_poke_function_name
13414         mov     ip, sp
13415         stmfd   sp!, @{fp, ip, lr, pc@}
13416         sub     fp, ip, #4
13417@end smallexample
13418
13419When performing a stack backtrace, code can inspect the value of
13420@code{pc} stored at @code{fp + 0}.  If the trace function then looks at
13421location @code{pc - 12} and the top 8 bits are set, then we know that
13422there is a function name embedded immediately preceding this location
13423and has length @code{((pc[-3]) & 0xff000000)}.
13424
13425@item -mthumb
13426@itemx -marm
13427@opindex marm
13428@opindex mthumb
13429
13430Select between generating code that executes in ARM and Thumb
13431states.  The default for most configurations is to generate code
13432that executes in ARM state, but the default can be changed by
13433configuring GCC with the @option{--with-mode=}@var{state}
13434configure option.
13435
13436@item -mtpcs-frame
13437@opindex mtpcs-frame
13438Generate a stack frame that is compliant with the Thumb Procedure Call
13439Standard for all non-leaf functions.  (A leaf function is one that does
13440not call any other functions.)  The default is @option{-mno-tpcs-frame}.
13441
13442@item -mtpcs-leaf-frame
13443@opindex mtpcs-leaf-frame
13444Generate a stack frame that is compliant with the Thumb Procedure Call
13445Standard for all leaf functions.  (A leaf function is one that does
13446not call any other functions.)  The default is @option{-mno-apcs-leaf-frame}.
13447
13448@item -mcallee-super-interworking
13449@opindex mcallee-super-interworking
13450Gives all externally visible functions in the file being compiled an ARM
13451instruction set header which switches to Thumb mode before executing the
13452rest of the function.  This allows these functions to be called from
13453non-interworking code.  This option is not valid in AAPCS configurations
13454because interworking is enabled by default.
13455
13456@item -mcaller-super-interworking
13457@opindex mcaller-super-interworking
13458Allows calls via function pointers (including virtual functions) to
13459execute correctly regardless of whether the target code has been
13460compiled for interworking or not.  There is a small overhead in the cost
13461of executing a function pointer if this option is enabled.  This option
13462is not valid in AAPCS configurations because interworking is enabled
13463by default.
13464
13465@item -mtp=@var{name}
13466@opindex mtp
13467Specify the access model for the thread local storage pointer.  The valid
13468models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
13469@samp{cp15}, which fetches the thread pointer from @code{cp15} directly
13470(supported in the arm6k architecture), and @samp{auto}, which uses the
13471best available method for the selected processor.  The default setting is
13472@samp{auto}.
13473
13474@item -mtls-dialect=@var{dialect}
13475@opindex mtls-dialect
13476Specify the dialect to use for accessing thread local storage.  Two
13477@var{dialect}s are supported---@samp{gnu} and @samp{gnu2}.  The
13478@samp{gnu} dialect selects the original GNU scheme for supporting
13479local and global dynamic TLS models.  The @samp{gnu2} dialect
13480selects the GNU descriptor scheme, which provides better performance
13481for shared libraries.  The GNU descriptor scheme is compatible with
13482the original scheme, but does require new assembler, linker and
13483library support.  Initial and local exec TLS models are unaffected by
13484this option and always use the original scheme.
13485
13486@item -mword-relocations
13487@opindex mword-relocations
13488Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32).
13489This is enabled by default on targets (uClinux, SymbianOS) where the runtime
13490loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
13491is specified.
13492
13493@item -mfix-cortex-m3-ldrd
13494@opindex mfix-cortex-m3-ldrd
13495Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
13496with overlapping destination and base registers are used.  This option avoids
13497generating these instructions.  This option is enabled by default when
13498@option{-mcpu=cortex-m3} is specified.
13499
13500@item -munaligned-access
13501@itemx -mno-unaligned-access
13502@opindex munaligned-access
13503@opindex mno-unaligned-access
13504Enables (or disables) reading and writing of 16- and 32- bit values
13505from addresses that are not 16- or 32- bit aligned.  By default
13506unaligned access is disabled for all pre-ARMv6 and all ARMv6-M
13507architectures, and enabled for all other architectures.  If unaligned
13508access is not enabled then words in packed data structures are
13509accessed a byte at a time.
13510
13511The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
13512generated object file to either true or false, depending upon the
13513setting of this option.  If unaligned access is enabled then the
13514preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
13515defined.
13516
13517@item -mneon-for-64bits
13518@opindex mneon-for-64bits
13519Enables using Neon to handle scalar 64-bits operations. This is
13520disabled by default since the cost of moving data from core registers
13521to Neon is high.
13522
13523@item -mslow-flash-data
13524@opindex mslow-flash-data
13525Assume loading data from flash is slower than fetching instruction.
13526Therefore literal load is minimized for better performance.
13527This option is only supported when compiling for ARMv7 M-profile and
13528off by default.
13529
13530@item -masm-syntax-unified
13531@opindex masm-syntax-unified
13532Assume inline assembler is using unified asm syntax.  The default is
13533currently off which implies divided syntax.  Currently this option is
13534available only for Thumb1 and has no effect on ARM state and Thumb2.
13535However, this may change in future releases of GCC.  Divided syntax
13536should be considered deprecated.
13537
13538@item -mrestrict-it
13539@opindex mrestrict-it
13540Restricts generation of IT blocks to conform to the rules of ARMv8.
13541IT blocks can only contain a single 16-bit instruction from a select
13542set of instructions. This option is on by default for ARMv8 Thumb mode.
13543
13544@item -mprint-tune-info
13545@opindex mprint-tune-info
13546Print CPU tuning information as comment in assembler file.  This is
13547an option used only for regression testing of the compiler and not
13548intended for ordinary use in compiling code.  This option is disabled
13549by default.
13550@end table
13551
13552@node AVR Options
13553@subsection AVR Options
13554@cindex AVR Options
13555
13556These options are defined for AVR implementations:
13557
13558@table @gcctabopt
13559@item -mmcu=@var{mcu}
13560@opindex mmcu
13561Specify Atmel AVR instruction set architectures (ISA) or MCU type.
13562
13563The default for this option is@tie{}@samp{avr2}.
13564
13565GCC supports the following AVR devices and ISAs:
13566
13567@include avr-mmcu.texi
13568
13569@item -maccumulate-args
13570@opindex maccumulate-args
13571Accumulate outgoing function arguments and acquire/release the needed
13572stack space for outgoing function arguments once in function
13573prologue/epilogue.  Without this option, outgoing arguments are pushed
13574before calling a function and popped afterwards.
13575
13576Popping the arguments after the function call can be expensive on
13577AVR so that accumulating the stack space might lead to smaller
13578executables because arguments need not to be removed from the
13579stack after such a function call.
13580
13581This option can lead to reduced code size for functions that perform
13582several calls to functions that get their arguments on the stack like
13583calls to printf-like functions.
13584
13585@item -mbranch-cost=@var{cost}
13586@opindex mbranch-cost
13587Set the branch costs for conditional branch instructions to
13588@var{cost}.  Reasonable values for @var{cost} are small, non-negative
13589integers. The default branch cost is 0.
13590
13591@item -mcall-prologues
13592@opindex mcall-prologues
13593Functions prologues/epilogues are expanded as calls to appropriate
13594subroutines.  Code size is smaller.
13595
13596@item -mint8
13597@opindex mint8
13598Assume @code{int} to be 8-bit integer.  This affects the sizes of all types: a
13599@code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
13600and @code{long long} is 4 bytes.  Please note that this option does not
13601conform to the C standards, but it results in smaller code
13602size.
13603
13604@item -mn-flash=@var{num}
13605@opindex mn-flash
13606Assume that the flash memory has a size of
13607@var{num} times 64@tie{}KiB.
13608
13609@item -mno-interrupts
13610@opindex mno-interrupts
13611Generated code is not compatible with hardware interrupts.
13612Code size is smaller.
13613
13614@item -mrelax
13615@opindex mrelax
13616Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
13617@code{RCALL} resp.@: @code{RJMP} instruction if applicable.
13618Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
13619the assembler's command line and the @option{--relax} option to the
13620linker's command line.
13621
13622Jump relaxing is performed by the linker because jump offsets are not
13623known before code is located. Therefore, the assembler code generated by the
13624compiler is the same, but the instructions in the executable may
13625differ from instructions in the assembler code.
13626
13627Relaxing must be turned on if linker stubs are needed, see the
13628section on @code{EIND} and linker stubs below.
13629
13630@item -mrmw
13631@opindex mrmw
13632Assume that the device supports the Read-Modify-Write
13633instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
13634
13635@item -msp8
13636@opindex msp8
13637Treat the stack pointer register as an 8-bit register,
13638i.e.@: assume the high byte of the stack pointer is zero.
13639In general, you don't need to set this option by hand.
13640
13641This option is used internally by the compiler to select and
13642build multilibs for architectures @code{avr2} and @code{avr25}.
13643These architectures mix devices with and without @code{SPH}.
13644For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
13645the compiler driver adds or removes this option from the compiler
13646proper's command line, because the compiler then knows if the device
13647or architecture has an 8-bit stack pointer and thus no @code{SPH}
13648register or not.
13649
13650@item -mstrict-X
13651@opindex mstrict-X
13652Use address register @code{X} in a way proposed by the hardware.  This means
13653that @code{X} is only used in indirect, post-increment or
13654pre-decrement addressing.
13655
13656Without this option, the @code{X} register may be used in the same way
13657as @code{Y} or @code{Z} which then is emulated by additional
13658instructions.
13659For example, loading a value with @code{X+const} addressing with a
13660small non-negative @code{const < 64} to a register @var{Rn} is
13661performed as
13662
13663@example
13664adiw r26, const   ; X += const
13665ld   @var{Rn}, X        ; @var{Rn} = *X
13666sbiw r26, const   ; X -= const
13667@end example
13668
13669@item -mtiny-stack
13670@opindex mtiny-stack
13671Only change the lower 8@tie{}bits of the stack pointer.
13672
13673@item -nodevicelib
13674@opindex nodevicelib
13675Don't link against AVR-LibC's device specific library @code{lib<mcu>.a}.
13676
13677@item -Waddr-space-convert
13678@opindex Waddr-space-convert
13679Warn about conversions between address spaces in the case where the
13680resulting address space is not contained in the incoming address space.
13681
13682@item -Wmisspelled-isr
13683@opindex Wmisspelled-isr
13684Warn if the ISR is misspelled, i.e. without @code{__vector} prefix.
13685Enabled by default.
13686@end table
13687
13688@subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
13689@cindex @code{EIND}
13690Pointers in the implementation are 16@tie{}bits wide.
13691The address of a function or label is represented as word address so
13692that indirect jumps and calls can target any code address in the
13693range of 64@tie{}Ki words.
13694
13695In order to facilitate indirect jump on devices with more than 128@tie{}Ki
13696bytes of program memory space, there is a special function register called
13697@code{EIND} that serves as most significant part of the target address
13698when @code{EICALL} or @code{EIJMP} instructions are used.
13699
13700Indirect jumps and calls on these devices are handled as follows by
13701the compiler and are subject to some limitations:
13702
13703@itemize @bullet
13704
13705@item
13706The compiler never sets @code{EIND}.
13707
13708@item
13709The compiler uses @code{EIND} implicitely in @code{EICALL}/@code{EIJMP}
13710instructions or might read @code{EIND} directly in order to emulate an
13711indirect call/jump by means of a @code{RET} instruction.
13712
13713@item
13714The compiler assumes that @code{EIND} never changes during the startup
13715code or during the application. In particular, @code{EIND} is not
13716saved/restored in function or interrupt service routine
13717prologue/epilogue.
13718
13719@item
13720For indirect calls to functions and computed goto, the linker
13721generates @emph{stubs}. Stubs are jump pads sometimes also called
13722@emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
13723The stub contains a direct jump to the desired address.
13724
13725@item
13726Linker relaxation must be turned on so that the linker generates
13727the stubs correctly in all situations. See the compiler option
13728@option{-mrelax} and the linker option @option{--relax}.
13729There are corner cases where the linker is supposed to generate stubs
13730but aborts without relaxation and without a helpful error message.
13731
13732@item
13733The default linker script is arranged for code with @code{EIND = 0}.
13734If code is supposed to work for a setup with @code{EIND != 0}, a custom
13735linker script has to be used in order to place the sections whose
13736name start with @code{.trampolines} into the segment where @code{EIND}
13737points to.
13738
13739@item
13740The startup code from libgcc never sets @code{EIND}.
13741Notice that startup code is a blend of code from libgcc and AVR-LibC.
13742For the impact of AVR-LibC on @code{EIND}, see the
13743@w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
13744
13745@item
13746It is legitimate for user-specific startup code to set up @code{EIND}
13747early, for example by means of initialization code located in
13748section @code{.init3}. Such code runs prior to general startup code
13749that initializes RAM and calls constructors, but after the bit
13750of startup code from AVR-LibC that sets @code{EIND} to the segment
13751where the vector table is located.
13752@example
13753#include <avr/io.h>
13754
13755static void
13756__attribute__((section(".init3"),naked,used,no_instrument_function))
13757init3_set_eind (void)
13758@{
13759  __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
13760                  "out %i0,r24" :: "n" (&EIND) : "r24","memory");
13761@}
13762@end example
13763
13764@noindent
13765The @code{__trampolines_start} symbol is defined in the linker script.
13766
13767@item
13768Stubs are generated automatically by the linker if
13769the following two conditions are met:
13770@itemize @minus
13771
13772@item The address of a label is taken by means of the @code{gs} modifier
13773(short for @emph{generate stubs}) like so:
13774@example
13775LDI r24, lo8(gs(@var{func}))
13776LDI r25, hi8(gs(@var{func}))
13777@end example
13778@item The final location of that label is in a code segment
13779@emph{outside} the segment where the stubs are located.
13780@end itemize
13781
13782@item
13783The compiler emits such @code{gs} modifiers for code labels in the
13784following situations:
13785@itemize @minus
13786@item Taking address of a function or code label.
13787@item Computed goto.
13788@item If prologue-save function is used, see @option{-mcall-prologues}
13789command-line option.
13790@item Switch/case dispatch tables. If you do not want such dispatch
13791tables you can specify the @option{-fno-jump-tables} command-line option.
13792@item C and C++ constructors/destructors called during startup/shutdown.
13793@item If the tools hit a @code{gs()} modifier explained above.
13794@end itemize
13795
13796@item
13797Jumping to non-symbolic addresses like so is @emph{not} supported:
13798
13799@example
13800int main (void)
13801@{
13802    /* Call function at word address 0x2 */
13803    return ((int(*)(void)) 0x2)();
13804@}
13805@end example
13806
13807Instead, a stub has to be set up, i.e.@: the function has to be called
13808through a symbol (@code{func_4} in the example):
13809
13810@example
13811int main (void)
13812@{
13813    extern int func_4 (void);
13814
13815    /* Call function at byte address 0x4 */
13816    return func_4();
13817@}
13818@end example
13819
13820and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
13821Alternatively, @code{func_4} can be defined in the linker script.
13822@end itemize
13823
13824@subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
13825@cindex @code{RAMPD}
13826@cindex @code{RAMPX}
13827@cindex @code{RAMPY}
13828@cindex @code{RAMPZ}
13829Some AVR devices support memories larger than the 64@tie{}KiB range
13830that can be accessed with 16-bit pointers.  To access memory locations
13831outside this 64@tie{}KiB range, the contentent of a @code{RAMP}
13832register is used as high part of the address:
13833The @code{X}, @code{Y}, @code{Z} address register is concatenated
13834with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
13835register, respectively, to get a wide address. Similarly,
13836@code{RAMPD} is used together with direct addressing.
13837
13838@itemize
13839@item
13840The startup code initializes the @code{RAMP} special function
13841registers with zero.
13842
13843@item
13844If a @ref{AVR Named Address Spaces,named address space} other than
13845generic or @code{__flash} is used, then @code{RAMPZ} is set
13846as needed before the operation.
13847
13848@item
13849If the device supports RAM larger than 64@tie{}KiB and the compiler
13850needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
13851is reset to zero after the operation.
13852
13853@item
13854If the device comes with a specific @code{RAMP} register, the ISR
13855prologue/epilogue saves/restores that SFR and initializes it with
13856zero in case the ISR code might (implicitly) use it.
13857
13858@item
13859RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
13860If you use inline assembler to read from locations outside the
1386116-bit address range and change one of the @code{RAMP} registers,
13862you must reset it to zero after the access.
13863
13864@end itemize
13865
13866@subsubsection AVR Built-in Macros
13867
13868GCC defines several built-in macros so that the user code can test
13869for the presence or absence of features.  Almost any of the following
13870built-in macros are deduced from device capabilities and thus
13871triggered by the @option{-mmcu=} command-line option.
13872
13873For even more AVR-specific built-in macros see
13874@ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
13875
13876@table @code
13877
13878@item __AVR_ARCH__
13879Build-in macro that resolves to a decimal number that identifies the
13880architecture and depends on the @option{-mmcu=@var{mcu}} option.
13881Possible values are:
13882
13883@code{2}, @code{25}, @code{3}, @code{31}, @code{35},
13884@code{4}, @code{5}, @code{51}, @code{6}
13885
13886for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
13887@code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
13888
13889respectively and
13890
13891@code{100}, @code{102}, @code{104},
13892@code{105}, @code{106}, @code{107}
13893
13894for @var{mcu}=@code{avrtiny}, @code{avrxmega2}, @code{avrxmega4},
13895@code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
13896If @var{mcu} specifies a device, this built-in macro is set
13897accordingly. For example, with @option{-mmcu=atmega8} the macro is
13898defined to @code{4}.
13899
13900@item __AVR_@var{Device}__
13901Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
13902the device's name. For example, @option{-mmcu=atmega8} defines the
13903built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
13904@code{__AVR_ATtiny261A__}, etc.
13905
13906The built-in macros' names follow
13907the scheme @code{__AVR_@var{Device}__} where @var{Device} is
13908the device name as from the AVR user manual. The difference between
13909@var{Device} in the built-in macro and @var{device} in
13910@option{-mmcu=@var{device}} is that the latter is always lowercase.
13911
13912If @var{device} is not a device but only a core architecture like
13913@samp{avr51}, this macro is not defined.
13914
13915@item __AVR_DEVICE_NAME__
13916Setting @option{-mmcu=@var{device}} defines this built-in macro to
13917the device's name. For example, with @option{-mmcu=atmega8} the macro
13918is defined to @code{atmega8}.
13919
13920If @var{device} is not a device but only a core architecture like
13921@samp{avr51}, this macro is not defined.
13922
13923@item __AVR_XMEGA__
13924The device / architecture belongs to the XMEGA family of devices.
13925
13926@item __AVR_HAVE_ELPM__
13927The device has the the @code{ELPM} instruction.
13928
13929@item __AVR_HAVE_ELPMX__
13930The device has the @code{ELPM R@var{n},Z} and @code{ELPM
13931R@var{n},Z+} instructions.
13932
13933@item __AVR_HAVE_MOVW__
13934The device has the @code{MOVW} instruction to perform 16-bit
13935register-register moves.
13936
13937@item __AVR_HAVE_LPMX__
13938The device has the @code{LPM R@var{n},Z} and
13939@code{LPM R@var{n},Z+} instructions.
13940
13941@item __AVR_HAVE_MUL__
13942The device has a hardware multiplier.
13943
13944@item __AVR_HAVE_JMP_CALL__
13945The device has the @code{JMP} and @code{CALL} instructions.
13946This is the case for devices with at least 16@tie{}KiB of program
13947memory.
13948
13949@item __AVR_HAVE_EIJMP_EICALL__
13950@itemx __AVR_3_BYTE_PC__
13951The device has the @code{EIJMP} and @code{EICALL} instructions.
13952This is the case for devices with more than 128@tie{}KiB of program memory.
13953This also means that the program counter
13954(PC) is 3@tie{}bytes wide.
13955
13956@item __AVR_2_BYTE_PC__
13957The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
13958with up to 128@tie{}KiB of program memory.
13959
13960@item __AVR_HAVE_8BIT_SP__
13961@itemx __AVR_HAVE_16BIT_SP__
13962The stack pointer (SP) register is treated as 8-bit respectively
1396316-bit register by the compiler.
13964The definition of these macros is affected by @option{-mtiny-stack}.
13965
13966@item __AVR_HAVE_SPH__
13967@itemx __AVR_SP8__
13968The device has the SPH (high part of stack pointer) special function
13969register or has an 8-bit stack pointer, respectively.
13970The definition of these macros is affected by @option{-mmcu=} and
13971in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
13972by @option{-msp8}.
13973
13974@item __AVR_HAVE_RAMPD__
13975@itemx __AVR_HAVE_RAMPX__
13976@itemx __AVR_HAVE_RAMPY__
13977@itemx __AVR_HAVE_RAMPZ__
13978The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
13979@code{RAMPZ} special function register, respectively.
13980
13981@item __NO_INTERRUPTS__
13982This macro reflects the @option{-mno-interrupts} command-line option.
13983
13984@item __AVR_ERRATA_SKIP__
13985@itemx __AVR_ERRATA_SKIP_JMP_CALL__
13986Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
13987instructions because of a hardware erratum.  Skip instructions are
13988@code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
13989The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
13990set.
13991
13992@item __AVR_ISA_RMW__
13993The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
13994
13995@item __AVR_SFR_OFFSET__=@var{offset}
13996Instructions that can address I/O special function registers directly
13997like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
13998address as if addressed by an instruction to access RAM like @code{LD}
13999or @code{STS}. This offset depends on the device architecture and has
14000to be subtracted from the RAM address in order to get the
14001respective I/O@tie{}address.
14002
14003@item __WITH_AVRLIBC__
14004The compiler is configured to be used together with AVR-Libc.
14005See the @option{--with-avrlibc} configure option.
14006
14007@end table
14008
14009@node Blackfin Options
14010@subsection Blackfin Options
14011@cindex Blackfin Options
14012
14013@table @gcctabopt
14014@item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
14015@opindex mcpu=
14016Specifies the name of the target Blackfin processor.  Currently, @var{cpu}
14017can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
14018@samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
14019@samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
14020@samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
14021@samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
14022@samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
14023@samp{bf561}, @samp{bf592}.
14024
14025The optional @var{sirevision} specifies the silicon revision of the target
14026Blackfin processor.  Any workarounds available for the targeted silicon revision
14027are enabled.  If @var{sirevision} is @samp{none}, no workarounds are enabled.
14028If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
14029are enabled.  The @code{__SILICON_REVISION__} macro is defined to two
14030hexadecimal digits representing the major and minor numbers in the silicon
14031revision.  If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
14032is not defined.  If @var{sirevision} is @samp{any}, the
14033@code{__SILICON_REVISION__} is defined to be @code{0xffff}.
14034If this optional @var{sirevision} is not used, GCC assumes the latest known
14035silicon revision of the targeted Blackfin processor.
14036
14037GCC defines a preprocessor macro for the specified @var{cpu}.
14038For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
14039provided by libgloss to be linked in if @option{-msim} is not given.
14040
14041Without this option, @samp{bf532} is used as the processor by default.
14042
14043Note that support for @samp{bf561} is incomplete.  For @samp{bf561},
14044only the preprocessor macro is defined.
14045
14046@item -msim
14047@opindex msim
14048Specifies that the program will be run on the simulator.  This causes
14049the simulator BSP provided by libgloss to be linked in.  This option
14050has effect only for @samp{bfin-elf} toolchain.
14051Certain other options, such as @option{-mid-shared-library} and
14052@option{-mfdpic}, imply @option{-msim}.
14053
14054@item -momit-leaf-frame-pointer
14055@opindex momit-leaf-frame-pointer
14056Don't keep the frame pointer in a register for leaf functions.  This
14057avoids the instructions to save, set up and restore frame pointers and
14058makes an extra register available in leaf functions.  The option
14059@option{-fomit-frame-pointer} removes the frame pointer for all functions,
14060which might make debugging harder.
14061
14062@item -mspecld-anomaly
14063@opindex mspecld-anomaly
14064When enabled, the compiler ensures that the generated code does not
14065contain speculative loads after jump instructions. If this option is used,
14066@code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
14067
14068@item -mno-specld-anomaly
14069@opindex mno-specld-anomaly
14070Don't generate extra code to prevent speculative loads from occurring.
14071
14072@item -mcsync-anomaly
14073@opindex mcsync-anomaly
14074When enabled, the compiler ensures that the generated code does not
14075contain CSYNC or SSYNC instructions too soon after conditional branches.
14076If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
14077
14078@item -mno-csync-anomaly
14079@opindex mno-csync-anomaly
14080Don't generate extra code to prevent CSYNC or SSYNC instructions from
14081occurring too soon after a conditional branch.
14082
14083@item -mlow-64k
14084@opindex mlow-64k
14085When enabled, the compiler is free to take advantage of the knowledge that
14086the entire program fits into the low 64k of memory.
14087
14088@item -mno-low-64k
14089@opindex mno-low-64k
14090Assume that the program is arbitrarily large.  This is the default.
14091
14092@item -mstack-check-l1
14093@opindex mstack-check-l1
14094Do stack checking using information placed into L1 scratchpad memory by the
14095uClinux kernel.
14096
14097@item -mid-shared-library
14098@opindex mid-shared-library
14099Generate code that supports shared libraries via the library ID method.
14100This allows for execute in place and shared libraries in an environment
14101without virtual memory management.  This option implies @option{-fPIC}.
14102With a @samp{bfin-elf} target, this option implies @option{-msim}.
14103
14104@item -mno-id-shared-library
14105@opindex mno-id-shared-library
14106Generate code that doesn't assume ID-based shared libraries are being used.
14107This is the default.
14108
14109@item -mleaf-id-shared-library
14110@opindex mleaf-id-shared-library
14111Generate code that supports shared libraries via the library ID method,
14112but assumes that this library or executable won't link against any other
14113ID shared libraries.  That allows the compiler to use faster code for jumps
14114and calls.
14115
14116@item -mno-leaf-id-shared-library
14117@opindex mno-leaf-id-shared-library
14118Do not assume that the code being compiled won't link against any ID shared
14119libraries.  Slower code is generated for jump and call insns.
14120
14121@item -mshared-library-id=n
14122@opindex mshared-library-id
14123Specifies the identification number of the ID-based shared library being
14124compiled.  Specifying a value of 0 generates more compact code; specifying
14125other values forces the allocation of that number to the current
14126library but is no more space- or time-efficient than omitting this option.
14127
14128@item -msep-data
14129@opindex msep-data
14130Generate code that allows the data segment to be located in a different
14131area of memory from the text segment.  This allows for execute in place in
14132an environment without virtual memory management by eliminating relocations
14133against the text section.
14134
14135@item -mno-sep-data
14136@opindex mno-sep-data
14137Generate code that assumes that the data segment follows the text segment.
14138This is the default.
14139
14140@item -mlong-calls
14141@itemx -mno-long-calls
14142@opindex mlong-calls
14143@opindex mno-long-calls
14144Tells the compiler to perform function calls by first loading the
14145address of the function into a register and then performing a subroutine
14146call on this register.  This switch is needed if the target function
14147lies outside of the 24-bit addressing range of the offset-based
14148version of subroutine call instruction.
14149
14150This feature is not enabled by default.  Specifying
14151@option{-mno-long-calls} restores the default behavior.  Note these
14152switches have no effect on how the compiler generates code to handle
14153function calls via function pointers.
14154
14155@item -mfast-fp
14156@opindex mfast-fp
14157Link with the fast floating-point library. This library relaxes some of
14158the IEEE floating-point standard's rules for checking inputs against
14159Not-a-Number (NAN), in the interest of performance.
14160
14161@item -minline-plt
14162@opindex minline-plt
14163Enable inlining of PLT entries in function calls to functions that are
14164not known to bind locally.  It has no effect without @option{-mfdpic}.
14165
14166@item -mmulticore
14167@opindex mmulticore
14168Build a standalone application for multicore Blackfin processors.
14169This option causes proper start files and link scripts supporting
14170multicore to be used, and defines the macro @code{__BFIN_MULTICORE}.
14171It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}.
14172
14173This option can be used with @option{-mcorea} or @option{-mcoreb}, which
14174selects the one-application-per-core programming model.  Without
14175@option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
14176programming model is used. In this model, the main function of Core B
14177should be named as @code{coreb_main}.
14178
14179If this option is not used, the single-core application programming
14180model is used.
14181
14182@item -mcorea
14183@opindex mcorea
14184Build a standalone application for Core A of BF561 when using
14185the one-application-per-core programming model. Proper start files
14186and link scripts are used to support Core A, and the macro
14187@code{__BFIN_COREA} is defined.
14188This option can only be used in conjunction with @option{-mmulticore}.
14189
14190@item -mcoreb
14191@opindex mcoreb
14192Build a standalone application for Core B of BF561 when using
14193the one-application-per-core programming model. Proper start files
14194and link scripts are used to support Core B, and the macro
14195@code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
14196should be used instead of @code{main}.
14197This option can only be used in conjunction with @option{-mmulticore}.
14198
14199@item -msdram
14200@opindex msdram
14201Build a standalone application for SDRAM. Proper start files and
14202link scripts are used to put the application into SDRAM, and the macro
14203@code{__BFIN_SDRAM} is defined.
14204The loader should initialize SDRAM before loading the application.
14205
14206@item -micplb
14207@opindex micplb
14208Assume that ICPLBs are enabled at run time.  This has an effect on certain
14209anomaly workarounds.  For Linux targets, the default is to assume ICPLBs
14210are enabled; for standalone applications the default is off.
14211@end table
14212
14213@node C6X Options
14214@subsection C6X Options
14215@cindex C6X Options
14216
14217@table @gcctabopt
14218@item -march=@var{name}
14219@opindex march
14220This specifies the name of the target architecture.  GCC uses this
14221name to determine what kind of instructions it can emit when generating
14222assembly code.  Permissible names are: @samp{c62x},
14223@samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
14224
14225@item -mbig-endian
14226@opindex mbig-endian
14227Generate code for a big-endian target.
14228
14229@item -mlittle-endian
14230@opindex mlittle-endian
14231Generate code for a little-endian target.  This is the default.
14232
14233@item -msim
14234@opindex msim
14235Choose startup files and linker script suitable for the simulator.
14236
14237@item -msdata=default
14238@opindex msdata=default
14239Put small global and static data in the @code{.neardata} section,
14240which is pointed to by register @code{B14}.  Put small uninitialized
14241global and static data in the @code{.bss} section, which is adjacent
14242to the @code{.neardata} section.  Put small read-only data into the
14243@code{.rodata} section.  The corresponding sections used for large
14244pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
14245
14246@item -msdata=all
14247@opindex msdata=all
14248Put all data, not just small objects, into the sections reserved for
14249small data, and use addressing relative to the @code{B14} register to
14250access them.
14251
14252@item -msdata=none
14253@opindex msdata=none
14254Make no use of the sections reserved for small data, and use absolute
14255addresses to access all data.  Put all initialized global and static
14256data in the @code{.fardata} section, and all uninitialized data in the
14257@code{.far} section.  Put all constant data into the @code{.const}
14258section.
14259@end table
14260
14261@node CRIS Options
14262@subsection CRIS Options
14263@cindex CRIS Options
14264
14265These options are defined specifically for the CRIS ports.
14266
14267@table @gcctabopt
14268@item -march=@var{architecture-type}
14269@itemx -mcpu=@var{architecture-type}
14270@opindex march
14271@opindex mcpu
14272Generate code for the specified architecture.  The choices for
14273@var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
14274respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
14275Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
14276@samp{v10}.
14277
14278@item -mtune=@var{architecture-type}
14279@opindex mtune
14280Tune to @var{architecture-type} everything applicable about the generated
14281code, except for the ABI and the set of available instructions.  The
14282choices for @var{architecture-type} are the same as for
14283@option{-march=@var{architecture-type}}.
14284
14285@item -mmax-stack-frame=@var{n}
14286@opindex mmax-stack-frame
14287Warn when the stack frame of a function exceeds @var{n} bytes.
14288
14289@item -metrax4
14290@itemx -metrax100
14291@opindex metrax4
14292@opindex metrax100
14293The options @option{-metrax4} and @option{-metrax100} are synonyms for
14294@option{-march=v3} and @option{-march=v8} respectively.
14295
14296@item -mmul-bug-workaround
14297@itemx -mno-mul-bug-workaround
14298@opindex mmul-bug-workaround
14299@opindex mno-mul-bug-workaround
14300Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
14301models where it applies.  This option is active by default.
14302
14303@item -mpdebug
14304@opindex mpdebug
14305Enable CRIS-specific verbose debug-related information in the assembly
14306code.  This option also has the effect of turning off the @samp{#NO_APP}
14307formatted-code indicator to the assembler at the beginning of the
14308assembly file.
14309
14310@item -mcc-init
14311@opindex mcc-init
14312Do not use condition-code results from previous instruction; always emit
14313compare and test instructions before use of condition codes.
14314
14315@item -mno-side-effects
14316@opindex mno-side-effects
14317Do not emit instructions with side effects in addressing modes other than
14318post-increment.
14319
14320@item -mstack-align
14321@itemx -mno-stack-align
14322@itemx -mdata-align
14323@itemx -mno-data-align
14324@itemx -mconst-align
14325@itemx -mno-const-align
14326@opindex mstack-align
14327@opindex mno-stack-align
14328@opindex mdata-align
14329@opindex mno-data-align
14330@opindex mconst-align
14331@opindex mno-const-align
14332These options (@samp{no-} options) arrange (eliminate arrangements) for the
14333stack frame, individual data and constants to be aligned for the maximum
14334single data access size for the chosen CPU model.  The default is to
14335arrange for 32-bit alignment.  ABI details such as structure layout are
14336not affected by these options.
14337
14338@item -m32-bit
14339@itemx -m16-bit
14340@itemx -m8-bit
14341@opindex m32-bit
14342@opindex m16-bit
14343@opindex m8-bit
14344Similar to the stack- data- and const-align options above, these options
14345arrange for stack frame, writable data and constants to all be 32-bit,
1434616-bit or 8-bit aligned.  The default is 32-bit alignment.
14347
14348@item -mno-prologue-epilogue
14349@itemx -mprologue-epilogue
14350@opindex mno-prologue-epilogue
14351@opindex mprologue-epilogue
14352With @option{-mno-prologue-epilogue}, the normal function prologue and
14353epilogue which set up the stack frame are omitted and no return
14354instructions or return sequences are generated in the code.  Use this
14355option only together with visual inspection of the compiled code: no
14356warnings or errors are generated when call-saved registers must be saved,
14357or storage for local variables needs to be allocated.
14358
14359@item -mno-gotplt
14360@itemx -mgotplt
14361@opindex mno-gotplt
14362@opindex mgotplt
14363With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
14364instruction sequences that load addresses for functions from the PLT part
14365of the GOT rather than (traditional on other architectures) calls to the
14366PLT@.  The default is @option{-mgotplt}.
14367
14368@item -melf
14369@opindex melf
14370Legacy no-op option only recognized with the cris-axis-elf and
14371cris-axis-linux-gnu targets.
14372
14373@item -mlinux
14374@opindex mlinux
14375Legacy no-op option only recognized with the cris-axis-linux-gnu target.
14376
14377@item -sim
14378@opindex sim
14379This option, recognized for the cris-axis-elf, arranges
14380to link with input-output functions from a simulator library.  Code,
14381initialized data and zero-initialized data are allocated consecutively.
14382
14383@item -sim2
14384@opindex sim2
14385Like @option{-sim}, but pass linker options to locate initialized data at
143860x40000000 and zero-initialized data at 0x80000000.
14387@end table
14388
14389@node CR16 Options
14390@subsection CR16 Options
14391@cindex CR16 Options
14392
14393These options are defined specifically for the CR16 ports.
14394
14395@table @gcctabopt
14396
14397@item -mmac
14398@opindex mmac
14399Enable the use of multiply-accumulate instructions. Disabled by default.
14400
14401@item -mcr16cplus
14402@itemx -mcr16c
14403@opindex mcr16cplus
14404@opindex mcr16c
14405Generate code for CR16C or CR16C+ architecture. CR16C+ architecture
14406is default.
14407
14408@item -msim
14409@opindex msim
14410Links the library libsim.a which is in compatible with simulator. Applicable
14411to ELF compiler only.
14412
14413@item -mint32
14414@opindex mint32
14415Choose integer type as 32-bit wide.
14416
14417@item -mbit-ops
14418@opindex mbit-ops
14419Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
14420
14421@item -mdata-model=@var{model}
14422@opindex mdata-model
14423Choose a data model. The choices for @var{model} are @samp{near},
14424@samp{far} or @samp{medium}. @samp{medium} is default.
14425However, @samp{far} is not valid with @option{-mcr16c}, as the
14426CR16C architecture does not support the far data model.
14427@end table
14428
14429@node Darwin Options
14430@subsection Darwin Options
14431@cindex Darwin options
14432
14433These options are defined for all architectures running the Darwin operating
14434system.
14435
14436FSF GCC on Darwin does not create ``fat'' object files; it creates
14437an object file for the single architecture that GCC was built to
14438target.  Apple's GCC on Darwin does create ``fat'' files if multiple
14439@option{-arch} options are used; it does so by running the compiler or
14440linker multiple times and joining the results together with
14441@file{lipo}.
14442
14443The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
14444@samp{i686}) is determined by the flags that specify the ISA
14445that GCC is targeting, like @option{-mcpu} or @option{-march}.  The
14446@option{-force_cpusubtype_ALL} option can be used to override this.
14447
14448The Darwin tools vary in their behavior when presented with an ISA
14449mismatch.  The assembler, @file{as}, only permits instructions to
14450be used that are valid for the subtype of the file it is generating,
14451so you cannot put 64-bit instructions in a @samp{ppc750} object file.
14452The linker for shared libraries, @file{/usr/bin/libtool}, fails
14453and prints an error if asked to create a shared library with a less
14454restrictive subtype than its input files (for instance, trying to put
14455a @samp{ppc970} object file in a @samp{ppc7400} library).  The linker
14456for executables, @command{ld}, quietly gives the executable the most
14457restrictive subtype of any of its input files.
14458
14459@table @gcctabopt
14460@item -F@var{dir}
14461@opindex F
14462Add the framework directory @var{dir} to the head of the list of
14463directories to be searched for header files.  These directories are
14464interleaved with those specified by @option{-I} options and are
14465scanned in a left-to-right order.
14466
14467A framework directory is a directory with frameworks in it.  A
14468framework is a directory with a @file{Headers} and/or
14469@file{PrivateHeaders} directory contained directly in it that ends
14470in @file{.framework}.  The name of a framework is the name of this
14471directory excluding the @file{.framework}.  Headers associated with
14472the framework are found in one of those two directories, with
14473@file{Headers} being searched first.  A subframework is a framework
14474directory that is in a framework's @file{Frameworks} directory.
14475Includes of subframework headers can only appear in a header of a
14476framework that contains the subframework, or in a sibling subframework
14477header.  Two subframeworks are siblings if they occur in the same
14478framework.  A subframework should not have the same name as a
14479framework; a warning is issued if this is violated.  Currently a
14480subframework cannot have subframeworks; in the future, the mechanism
14481may be extended to support this.  The standard frameworks can be found
14482in @file{/System/Library/Frameworks} and
14483@file{/Library/Frameworks}.  An example include looks like
14484@code{#include <Framework/header.h>}, where @file{Framework} denotes
14485the name of the framework and @file{header.h} is found in the
14486@file{PrivateHeaders} or @file{Headers} directory.
14487
14488@item -iframework@var{dir}
14489@opindex iframework
14490Like @option{-F} except the directory is a treated as a system
14491directory.  The main difference between this @option{-iframework} and
14492@option{-F} is that with @option{-iframework} the compiler does not
14493warn about constructs contained within header files found via
14494@var{dir}.  This option is valid only for the C family of languages.
14495
14496@item -gused
14497@opindex gused
14498Emit debugging information for symbols that are used.  For stabs
14499debugging format, this enables @option{-feliminate-unused-debug-symbols}.
14500This is by default ON@.
14501
14502@item -gfull
14503@opindex gfull
14504Emit debugging information for all symbols and types.
14505
14506@item -mmacosx-version-min=@var{version}
14507The earliest version of MacOS X that this executable will run on
14508is @var{version}.  Typical values of @var{version} include @code{10.1},
14509@code{10.2}, and @code{10.3.9}.
14510
14511If the compiler was built to use the system's headers by default,
14512then the default for this option is the system version on which the
14513compiler is running, otherwise the default is to make choices that
14514are compatible with as many systems and code bases as possible.
14515
14516@item -mkernel
14517@opindex mkernel
14518Enable kernel development mode.  The @option{-mkernel} option sets
14519@option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
14520@option{-fno-exceptions}, @option{-fno-non-call-exceptions},
14521@option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
14522applicable.  This mode also sets @option{-mno-altivec},
14523@option{-msoft-float}, @option{-fno-builtin} and
14524@option{-mlong-branch} for PowerPC targets.
14525
14526@item -mone-byte-bool
14527@opindex mone-byte-bool
14528Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
14529By default @code{sizeof(bool)} is @code{4} when compiling for
14530Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
14531option has no effect on x86.
14532
14533@strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
14534to generate code that is not binary compatible with code generated
14535without that switch.  Using this switch may require recompiling all
14536other modules in a program, including system libraries.  Use this
14537switch to conform to a non-default data model.
14538
14539@item -mfix-and-continue
14540@itemx -ffix-and-continue
14541@itemx -findirect-data
14542@opindex mfix-and-continue
14543@opindex ffix-and-continue
14544@opindex findirect-data
14545Generate code suitable for fast turnaround development, such as to
14546allow GDB to dynamically load @file{.o} files into already-running
14547programs.  @option{-findirect-data} and @option{-ffix-and-continue}
14548are provided for backwards compatibility.
14549
14550@item -all_load
14551@opindex all_load
14552Loads all members of static archive libraries.
14553See man ld(1) for more information.
14554
14555@item -arch_errors_fatal
14556@opindex arch_errors_fatal
14557Cause the errors having to do with files that have the wrong architecture
14558to be fatal.
14559
14560@item -bind_at_load
14561@opindex bind_at_load
14562Causes the output file to be marked such that the dynamic linker will
14563bind all undefined references when the file is loaded or launched.
14564
14565@item -bundle
14566@opindex bundle
14567Produce a Mach-o bundle format file.
14568See man ld(1) for more information.
14569
14570@item -bundle_loader @var{executable}
14571@opindex bundle_loader
14572This option specifies the @var{executable} that will load the build
14573output file being linked.  See man ld(1) for more information.
14574
14575@item -dynamiclib
14576@opindex dynamiclib
14577When passed this option, GCC produces a dynamic library instead of
14578an executable when linking, using the Darwin @file{libtool} command.
14579
14580@item -force_cpusubtype_ALL
14581@opindex force_cpusubtype_ALL
14582This causes GCC's output file to have the @samp{ALL} subtype, instead of
14583one controlled by the @option{-mcpu} or @option{-march} option.
14584
14585@item -allowable_client  @var{client_name}
14586@itemx -client_name
14587@itemx -compatibility_version
14588@itemx -current_version
14589@itemx -dead_strip
14590@itemx -dependency-file
14591@itemx -dylib_file
14592@itemx -dylinker_install_name
14593@itemx -dynamic
14594@itemx -exported_symbols_list
14595@itemx -filelist
14596@need 800
14597@itemx -flat_namespace
14598@itemx -force_flat_namespace
14599@itemx -headerpad_max_install_names
14600@itemx -image_base
14601@itemx -init
14602@itemx -install_name
14603@itemx -keep_private_externs
14604@itemx -multi_module
14605@itemx -multiply_defined
14606@itemx -multiply_defined_unused
14607@need 800
14608@itemx -noall_load
14609@itemx -no_dead_strip_inits_and_terms
14610@itemx -nofixprebinding
14611@itemx -nomultidefs
14612@itemx -noprebind
14613@itemx -noseglinkedit
14614@itemx -pagezero_size
14615@itemx -prebind
14616@itemx -prebind_all_twolevel_modules
14617@itemx -private_bundle
14618@need 800
14619@itemx -read_only_relocs
14620@itemx -sectalign
14621@itemx -sectobjectsymbols
14622@itemx -whyload
14623@itemx -seg1addr
14624@itemx -sectcreate
14625@itemx -sectobjectsymbols
14626@itemx -sectorder
14627@itemx -segaddr
14628@itemx -segs_read_only_addr
14629@need 800
14630@itemx -segs_read_write_addr
14631@itemx -seg_addr_table
14632@itemx -seg_addr_table_filename
14633@itemx -seglinkedit
14634@itemx -segprot
14635@itemx -segs_read_only_addr
14636@itemx -segs_read_write_addr
14637@itemx -single_module
14638@itemx -static
14639@itemx -sub_library
14640@need 800
14641@itemx -sub_umbrella
14642@itemx -twolevel_namespace
14643@itemx -umbrella
14644@itemx -undefined
14645@itemx -unexported_symbols_list
14646@itemx -weak_reference_mismatches
14647@itemx -whatsloaded
14648@opindex allowable_client
14649@opindex client_name
14650@opindex compatibility_version
14651@opindex current_version
14652@opindex dead_strip
14653@opindex dependency-file
14654@opindex dylib_file
14655@opindex dylinker_install_name
14656@opindex dynamic
14657@opindex exported_symbols_list
14658@opindex filelist
14659@opindex flat_namespace
14660@opindex force_flat_namespace
14661@opindex headerpad_max_install_names
14662@opindex image_base
14663@opindex init
14664@opindex install_name
14665@opindex keep_private_externs
14666@opindex multi_module
14667@opindex multiply_defined
14668@opindex multiply_defined_unused
14669@opindex noall_load
14670@opindex no_dead_strip_inits_and_terms
14671@opindex nofixprebinding
14672@opindex nomultidefs
14673@opindex noprebind
14674@opindex noseglinkedit
14675@opindex pagezero_size
14676@opindex prebind
14677@opindex prebind_all_twolevel_modules
14678@opindex private_bundle
14679@opindex read_only_relocs
14680@opindex sectalign
14681@opindex sectobjectsymbols
14682@opindex whyload
14683@opindex seg1addr
14684@opindex sectcreate
14685@opindex sectobjectsymbols
14686@opindex sectorder
14687@opindex segaddr
14688@opindex segs_read_only_addr
14689@opindex segs_read_write_addr
14690@opindex seg_addr_table
14691@opindex seg_addr_table_filename
14692@opindex seglinkedit
14693@opindex segprot
14694@opindex segs_read_only_addr
14695@opindex segs_read_write_addr
14696@opindex single_module
14697@opindex static
14698@opindex sub_library
14699@opindex sub_umbrella
14700@opindex twolevel_namespace
14701@opindex umbrella
14702@opindex undefined
14703@opindex unexported_symbols_list
14704@opindex weak_reference_mismatches
14705@opindex whatsloaded
14706These options are passed to the Darwin linker.  The Darwin linker man page
14707describes them in detail.
14708@end table
14709
14710@node DEC Alpha Options
14711@subsection DEC Alpha Options
14712
14713These @samp{-m} options are defined for the DEC Alpha implementations:
14714
14715@table @gcctabopt
14716@item -mno-soft-float
14717@itemx -msoft-float
14718@opindex mno-soft-float
14719@opindex msoft-float
14720Use (do not use) the hardware floating-point instructions for
14721floating-point operations.  When @option{-msoft-float} is specified,
14722functions in @file{libgcc.a} are used to perform floating-point
14723operations.  Unless they are replaced by routines that emulate the
14724floating-point operations, or compiled in such a way as to call such
14725emulations routines, these routines issue floating-point
14726operations.   If you are compiling for an Alpha without floating-point
14727operations, you must ensure that the library is built so as not to call
14728them.
14729
14730Note that Alpha implementations without floating-point operations are
14731required to have floating-point registers.
14732
14733@item -mfp-reg
14734@itemx -mno-fp-regs
14735@opindex mfp-reg
14736@opindex mno-fp-regs
14737Generate code that uses (does not use) the floating-point register set.
14738@option{-mno-fp-regs} implies @option{-msoft-float}.  If the floating-point
14739register set is not used, floating-point operands are passed in integer
14740registers as if they were integers and floating-point results are passed
14741in @code{$0} instead of @code{$f0}.  This is a non-standard calling sequence,
14742so any function with a floating-point argument or return value called by code
14743compiled with @option{-mno-fp-regs} must also be compiled with that
14744option.
14745
14746A typical use of this option is building a kernel that does not use,
14747and hence need not save and restore, any floating-point registers.
14748
14749@item -mieee
14750@opindex mieee
14751The Alpha architecture implements floating-point hardware optimized for
14752maximum performance.  It is mostly compliant with the IEEE floating-point
14753standard.  However, for full compliance, software assistance is
14754required.  This option generates code fully IEEE-compliant code
14755@emph{except} that the @var{inexact-flag} is not maintained (see below).
14756If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
14757defined during compilation.  The resulting code is less efficient but is
14758able to correctly support denormalized numbers and exceptional IEEE
14759values such as not-a-number and plus/minus infinity.  Other Alpha
14760compilers call this option @option{-ieee_with_no_inexact}.
14761
14762@item -mieee-with-inexact
14763@opindex mieee-with-inexact
14764This is like @option{-mieee} except the generated code also maintains
14765the IEEE @var{inexact-flag}.  Turning on this option causes the
14766generated code to implement fully-compliant IEEE math.  In addition to
14767@code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
14768macro.  On some Alpha implementations the resulting code may execute
14769significantly slower than the code generated by default.  Since there is
14770very little code that depends on the @var{inexact-flag}, you should
14771normally not specify this option.  Other Alpha compilers call this
14772option @option{-ieee_with_inexact}.
14773
14774@item -mfp-trap-mode=@var{trap-mode}
14775@opindex mfp-trap-mode
14776This option controls what floating-point related traps are enabled.
14777Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
14778The trap mode can be set to one of four values:
14779
14780@table @samp
14781@item n
14782This is the default (normal) setting.  The only traps that are enabled
14783are the ones that cannot be disabled in software (e.g., division by zero
14784trap).
14785
14786@item u
14787In addition to the traps enabled by @samp{n}, underflow traps are enabled
14788as well.
14789
14790@item su
14791Like @samp{u}, but the instructions are marked to be safe for software
14792completion (see Alpha architecture manual for details).
14793
14794@item sui
14795Like @samp{su}, but inexact traps are enabled as well.
14796@end table
14797
14798@item -mfp-rounding-mode=@var{rounding-mode}
14799@opindex mfp-rounding-mode
14800Selects the IEEE rounding mode.  Other Alpha compilers call this option
14801@option{-fprm @var{rounding-mode}}.  The @var{rounding-mode} can be one
14802of:
14803
14804@table @samp
14805@item n
14806Normal IEEE rounding mode.  Floating-point numbers are rounded towards
14807the nearest machine number or towards the even machine number in case
14808of a tie.
14809
14810@item m
14811Round towards minus infinity.
14812
14813@item c
14814Chopped rounding mode.  Floating-point numbers are rounded towards zero.
14815
14816@item d
14817Dynamic rounding mode.  A field in the floating-point control register
14818(@var{fpcr}, see Alpha architecture reference manual) controls the
14819rounding mode in effect.  The C library initializes this register for
14820rounding towards plus infinity.  Thus, unless your program modifies the
14821@var{fpcr}, @samp{d} corresponds to round towards plus infinity.
14822@end table
14823
14824@item -mtrap-precision=@var{trap-precision}
14825@opindex mtrap-precision
14826In the Alpha architecture, floating-point traps are imprecise.  This
14827means without software assistance it is impossible to recover from a
14828floating trap and program execution normally needs to be terminated.
14829GCC can generate code that can assist operating system trap handlers
14830in determining the exact location that caused a floating-point trap.
14831Depending on the requirements of an application, different levels of
14832precisions can be selected:
14833
14834@table @samp
14835@item p
14836Program precision.  This option is the default and means a trap handler
14837can only identify which program caused a floating-point exception.
14838
14839@item f
14840Function precision.  The trap handler can determine the function that
14841caused a floating-point exception.
14842
14843@item i
14844Instruction precision.  The trap handler can determine the exact
14845instruction that caused a floating-point exception.
14846@end table
14847
14848Other Alpha compilers provide the equivalent options called
14849@option{-scope_safe} and @option{-resumption_safe}.
14850
14851@item -mieee-conformant
14852@opindex mieee-conformant
14853This option marks the generated code as IEEE conformant.  You must not
14854use this option unless you also specify @option{-mtrap-precision=i} and either
14855@option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}.  Its only effect
14856is to emit the line @samp{.eflag 48} in the function prologue of the
14857generated assembly file.
14858
14859@item -mbuild-constants
14860@opindex mbuild-constants
14861Normally GCC examines a 32- or 64-bit integer constant to
14862see if it can construct it from smaller constants in two or three
14863instructions.  If it cannot, it outputs the constant as a literal and
14864generates code to load it from the data segment at run time.
14865
14866Use this option to require GCC to construct @emph{all} integer constants
14867using code, even if it takes more instructions (the maximum is six).
14868
14869You typically use this option to build a shared library dynamic
14870loader.  Itself a shared library, it must relocate itself in memory
14871before it can find the variables and constants in its own data segment.
14872
14873@item -mbwx
14874@itemx -mno-bwx
14875@itemx -mcix
14876@itemx -mno-cix
14877@itemx -mfix
14878@itemx -mno-fix
14879@itemx -mmax
14880@itemx -mno-max
14881@opindex mbwx
14882@opindex mno-bwx
14883@opindex mcix
14884@opindex mno-cix
14885@opindex mfix
14886@opindex mno-fix
14887@opindex mmax
14888@opindex mno-max
14889Indicate whether GCC should generate code to use the optional BWX,
14890CIX, FIX and MAX instruction sets.  The default is to use the instruction
14891sets supported by the CPU type specified via @option{-mcpu=} option or that
14892of the CPU on which GCC was built if none is specified.
14893
14894@item -mfloat-vax
14895@itemx -mfloat-ieee
14896@opindex mfloat-vax
14897@opindex mfloat-ieee
14898Generate code that uses (does not use) VAX F and G floating-point
14899arithmetic instead of IEEE single and double precision.
14900
14901@item -mexplicit-relocs
14902@itemx -mno-explicit-relocs
14903@opindex mexplicit-relocs
14904@opindex mno-explicit-relocs
14905Older Alpha assemblers provided no way to generate symbol relocations
14906except via assembler macros.  Use of these macros does not allow
14907optimal instruction scheduling.  GNU binutils as of version 2.12
14908supports a new syntax that allows the compiler to explicitly mark
14909which relocations should apply to which instructions.  This option
14910is mostly useful for debugging, as GCC detects the capabilities of
14911the assembler when it is built and sets the default accordingly.
14912
14913@item -msmall-data
14914@itemx -mlarge-data
14915@opindex msmall-data
14916@opindex mlarge-data
14917When @option{-mexplicit-relocs} is in effect, static data is
14918accessed via @dfn{gp-relative} relocations.  When @option{-msmall-data}
14919is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
14920(the @code{.sdata} and @code{.sbss} sections) and are accessed via
1492116-bit relocations off of the @code{$gp} register.  This limits the
14922size of the small data area to 64KB, but allows the variables to be
14923directly accessed via a single instruction.
14924
14925The default is @option{-mlarge-data}.  With this option the data area
14926is limited to just below 2GB@.  Programs that require more than 2GB of
14927data must use @code{malloc} or @code{mmap} to allocate the data in the
14928heap instead of in the program's data segment.
14929
14930When generating code for shared libraries, @option{-fpic} implies
14931@option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
14932
14933@item -msmall-text
14934@itemx -mlarge-text
14935@opindex msmall-text
14936@opindex mlarge-text
14937When @option{-msmall-text} is used, the compiler assumes that the
14938code of the entire program (or shared library) fits in 4MB, and is
14939thus reachable with a branch instruction.  When @option{-msmall-data}
14940is used, the compiler can assume that all local symbols share the
14941same @code{$gp} value, and thus reduce the number of instructions
14942required for a function call from 4 to 1.
14943
14944The default is @option{-mlarge-text}.
14945
14946@item -mcpu=@var{cpu_type}
14947@opindex mcpu
14948Set the instruction set and instruction scheduling parameters for
14949machine type @var{cpu_type}.  You can specify either the @samp{EV}
14950style name or the corresponding chip number.  GCC supports scheduling
14951parameters for the EV4, EV5 and EV6 family of processors and
14952chooses the default values for the instruction set from the processor
14953you specify.  If you do not specify a processor type, GCC defaults
14954to the processor on which the compiler was built.
14955
14956Supported values for @var{cpu_type} are
14957
14958@table @samp
14959@item ev4
14960@itemx ev45
14961@itemx 21064
14962Schedules as an EV4 and has no instruction set extensions.
14963
14964@item ev5
14965@itemx 21164
14966Schedules as an EV5 and has no instruction set extensions.
14967
14968@item ev56
14969@itemx 21164a
14970Schedules as an EV5 and supports the BWX extension.
14971
14972@item pca56
14973@itemx 21164pc
14974@itemx 21164PC
14975Schedules as an EV5 and supports the BWX and MAX extensions.
14976
14977@item ev6
14978@itemx 21264
14979Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
14980
14981@item ev67
14982@itemx 21264a
14983Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
14984@end table
14985
14986Native toolchains also support the value @samp{native},
14987which selects the best architecture option for the host processor.
14988@option{-mcpu=native} has no effect if GCC does not recognize
14989the processor.
14990
14991@item -mtune=@var{cpu_type}
14992@opindex mtune
14993Set only the instruction scheduling parameters for machine type
14994@var{cpu_type}.  The instruction set is not changed.
14995
14996Native toolchains also support the value @samp{native},
14997which selects the best architecture option for the host processor.
14998@option{-mtune=native} has no effect if GCC does not recognize
14999the processor.
15000
15001@item -mmemory-latency=@var{time}
15002@opindex mmemory-latency
15003Sets the latency the scheduler should assume for typical memory
15004references as seen by the application.  This number is highly
15005dependent on the memory access patterns used by the application
15006and the size of the external cache on the machine.
15007
15008Valid options for @var{time} are
15009
15010@table @samp
15011@item @var{number}
15012A decimal number representing clock cycles.
15013
15014@item L1
15015@itemx L2
15016@itemx L3
15017@itemx main
15018The compiler contains estimates of the number of clock cycles for
15019``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
15020(also called Dcache, Scache, and Bcache), as well as to main memory.
15021Note that L3 is only valid for EV5.
15022
15023@end table
15024@end table
15025
15026@node FR30 Options
15027@subsection FR30 Options
15028@cindex FR30 Options
15029
15030These options are defined specifically for the FR30 port.
15031
15032@table @gcctabopt
15033
15034@item -msmall-model
15035@opindex msmall-model
15036Use the small address space model.  This can produce smaller code, but
15037it does assume that all symbolic values and addresses fit into a
1503820-bit range.
15039
15040@item -mno-lsim
15041@opindex mno-lsim
15042Assume that runtime support has been provided and so there is no need
15043to include the simulator library (@file{libsim.a}) on the linker
15044command line.
15045
15046@end table
15047
15048@node FRV Options
15049@subsection FRV Options
15050@cindex FRV Options
15051
15052@table @gcctabopt
15053@item -mgpr-32
15054@opindex mgpr-32
15055
15056Only use the first 32 general-purpose registers.
15057
15058@item -mgpr-64
15059@opindex mgpr-64
15060
15061Use all 64 general-purpose registers.
15062
15063@item -mfpr-32
15064@opindex mfpr-32
15065
15066Use only the first 32 floating-point registers.
15067
15068@item -mfpr-64
15069@opindex mfpr-64
15070
15071Use all 64 floating-point registers.
15072
15073@item -mhard-float
15074@opindex mhard-float
15075
15076Use hardware instructions for floating-point operations.
15077
15078@item -msoft-float
15079@opindex msoft-float
15080
15081Use library routines for floating-point operations.
15082
15083@item -malloc-cc
15084@opindex malloc-cc
15085
15086Dynamically allocate condition code registers.
15087
15088@item -mfixed-cc
15089@opindex mfixed-cc
15090
15091Do not try to dynamically allocate condition code registers, only
15092use @code{icc0} and @code{fcc0}.
15093
15094@item -mdword
15095@opindex mdword
15096
15097Change ABI to use double word insns.
15098
15099@item -mno-dword
15100@opindex mno-dword
15101
15102Do not use double word instructions.
15103
15104@item -mdouble
15105@opindex mdouble
15106
15107Use floating-point double instructions.
15108
15109@item -mno-double
15110@opindex mno-double
15111
15112Do not use floating-point double instructions.
15113
15114@item -mmedia
15115@opindex mmedia
15116
15117Use media instructions.
15118
15119@item -mno-media
15120@opindex mno-media
15121
15122Do not use media instructions.
15123
15124@item -mmuladd
15125@opindex mmuladd
15126
15127Use multiply and add/subtract instructions.
15128
15129@item -mno-muladd
15130@opindex mno-muladd
15131
15132Do not use multiply and add/subtract instructions.
15133
15134@item -mfdpic
15135@opindex mfdpic
15136
15137Select the FDPIC ABI, which uses function descriptors to represent
15138pointers to functions.  Without any PIC/PIE-related options, it
15139implies @option{-fPIE}.  With @option{-fpic} or @option{-fpie}, it
15140assumes GOT entries and small data are within a 12-bit range from the
15141GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
15142are computed with 32 bits.
15143With a @samp{bfin-elf} target, this option implies @option{-msim}.
15144
15145@item -minline-plt
15146@opindex minline-plt
15147
15148Enable inlining of PLT entries in function calls to functions that are
15149not known to bind locally.  It has no effect without @option{-mfdpic}.
15150It's enabled by default if optimizing for speed and compiling for
15151shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
15152optimization option such as @option{-O3} or above is present in the
15153command line.
15154
15155@item -mTLS
15156@opindex mTLS
15157
15158Assume a large TLS segment when generating thread-local code.
15159
15160@item -mtls
15161@opindex mtls
15162
15163Do not assume a large TLS segment when generating thread-local code.
15164
15165@item -mgprel-ro
15166@opindex mgprel-ro
15167
15168Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
15169that is known to be in read-only sections.  It's enabled by default,
15170except for @option{-fpic} or @option{-fpie}: even though it may help
15171make the global offset table smaller, it trades 1 instruction for 4.
15172With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
15173one of which may be shared by multiple symbols, and it avoids the need
15174for a GOT entry for the referenced symbol, so it's more likely to be a
15175win.  If it is not, @option{-mno-gprel-ro} can be used to disable it.
15176
15177@item -multilib-library-pic
15178@opindex multilib-library-pic
15179
15180Link with the (library, not FD) pic libraries.  It's implied by
15181@option{-mlibrary-pic}, as well as by @option{-fPIC} and
15182@option{-fpic} without @option{-mfdpic}.  You should never have to use
15183it explicitly.
15184
15185@item -mlinked-fp
15186@opindex mlinked-fp
15187
15188Follow the EABI requirement of always creating a frame pointer whenever
15189a stack frame is allocated.  This option is enabled by default and can
15190be disabled with @option{-mno-linked-fp}.
15191
15192@item -mlong-calls
15193@opindex mlong-calls
15194
15195Use indirect addressing to call functions outside the current
15196compilation unit.  This allows the functions to be placed anywhere
15197within the 32-bit address space.
15198
15199@item -malign-labels
15200@opindex malign-labels
15201
15202Try to align labels to an 8-byte boundary by inserting NOPs into the
15203previous packet.  This option only has an effect when VLIW packing
15204is enabled.  It doesn't create new packets; it merely adds NOPs to
15205existing ones.
15206
15207@item -mlibrary-pic
15208@opindex mlibrary-pic
15209
15210Generate position-independent EABI code.
15211
15212@item -macc-4
15213@opindex macc-4
15214
15215Use only the first four media accumulator registers.
15216
15217@item -macc-8
15218@opindex macc-8
15219
15220Use all eight media accumulator registers.
15221
15222@item -mpack
15223@opindex mpack
15224
15225Pack VLIW instructions.
15226
15227@item -mno-pack
15228@opindex mno-pack
15229
15230Do not pack VLIW instructions.
15231
15232@item -mno-eflags
15233@opindex mno-eflags
15234
15235Do not mark ABI switches in e_flags.
15236
15237@item -mcond-move
15238@opindex mcond-move
15239
15240Enable the use of conditional-move instructions (default).
15241
15242This switch is mainly for debugging the compiler and will likely be removed
15243in a future version.
15244
15245@item -mno-cond-move
15246@opindex mno-cond-move
15247
15248Disable the use of conditional-move instructions.
15249
15250This switch is mainly for debugging the compiler and will likely be removed
15251in a future version.
15252
15253@item -mscc
15254@opindex mscc
15255
15256Enable the use of conditional set instructions (default).
15257
15258This switch is mainly for debugging the compiler and will likely be removed
15259in a future version.
15260
15261@item -mno-scc
15262@opindex mno-scc
15263
15264Disable the use of conditional set instructions.
15265
15266This switch is mainly for debugging the compiler and will likely be removed
15267in a future version.
15268
15269@item -mcond-exec
15270@opindex mcond-exec
15271
15272Enable the use of conditional execution (default).
15273
15274This switch is mainly for debugging the compiler and will likely be removed
15275in a future version.
15276
15277@item -mno-cond-exec
15278@opindex mno-cond-exec
15279
15280Disable the use of conditional execution.
15281
15282This switch is mainly for debugging the compiler and will likely be removed
15283in a future version.
15284
15285@item -mvliw-branch
15286@opindex mvliw-branch
15287
15288Run a pass to pack branches into VLIW instructions (default).
15289
15290This switch is mainly for debugging the compiler and will likely be removed
15291in a future version.
15292
15293@item -mno-vliw-branch
15294@opindex mno-vliw-branch
15295
15296Do not run a pass to pack branches into VLIW instructions.
15297
15298This switch is mainly for debugging the compiler and will likely be removed
15299in a future version.
15300
15301@item -mmulti-cond-exec
15302@opindex mmulti-cond-exec
15303
15304Enable optimization of @code{&&} and @code{||} in conditional execution
15305(default).
15306
15307This switch is mainly for debugging the compiler and will likely be removed
15308in a future version.
15309
15310@item -mno-multi-cond-exec
15311@opindex mno-multi-cond-exec
15312
15313Disable optimization of @code{&&} and @code{||} in conditional execution.
15314
15315This switch is mainly for debugging the compiler and will likely be removed
15316in a future version.
15317
15318@item -mnested-cond-exec
15319@opindex mnested-cond-exec
15320
15321Enable nested conditional execution optimizations (default).
15322
15323This switch is mainly for debugging the compiler and will likely be removed
15324in a future version.
15325
15326@item -mno-nested-cond-exec
15327@opindex mno-nested-cond-exec
15328
15329Disable nested conditional execution optimizations.
15330
15331This switch is mainly for debugging the compiler and will likely be removed
15332in a future version.
15333
15334@item -moptimize-membar
15335@opindex moptimize-membar
15336
15337This switch removes redundant @code{membar} instructions from the
15338compiler-generated code.  It is enabled by default.
15339
15340@item -mno-optimize-membar
15341@opindex mno-optimize-membar
15342
15343This switch disables the automatic removal of redundant @code{membar}
15344instructions from the generated code.
15345
15346@item -mtomcat-stats
15347@opindex mtomcat-stats
15348
15349Cause gas to print out tomcat statistics.
15350
15351@item -mcpu=@var{cpu}
15352@opindex mcpu
15353
15354Select the processor type for which to generate code.  Possible values are
15355@samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
15356@samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
15357
15358@end table
15359
15360@node GNU/Linux Options
15361@subsection GNU/Linux Options
15362
15363These @samp{-m} options are defined for GNU/Linux targets:
15364
15365@table @gcctabopt
15366@item -mglibc
15367@opindex mglibc
15368Use the GNU C library.  This is the default except
15369on @samp{*-*-linux-*uclibc*} and @samp{*-*-linux-*android*} targets.
15370
15371@item -muclibc
15372@opindex muclibc
15373Use uClibc C library.  This is the default on
15374@samp{*-*-linux-*uclibc*} targets.
15375
15376@item -mbionic
15377@opindex mbionic
15378Use Bionic C library.  This is the default on
15379@samp{*-*-linux-*android*} targets.
15380
15381@item -mandroid
15382@opindex mandroid
15383Compile code compatible with Android platform.  This is the default on
15384@samp{*-*-linux-*android*} targets.
15385
15386When compiling, this option enables @option{-mbionic}, @option{-fPIC},
15387@option{-fno-exceptions} and @option{-fno-rtti} by default.  When linking,
15388this option makes the GCC driver pass Android-specific options to the linker.
15389Finally, this option causes the preprocessor macro @code{__ANDROID__}
15390to be defined.
15391
15392@item -tno-android-cc
15393@opindex tno-android-cc
15394Disable compilation effects of @option{-mandroid}, i.e., do not enable
15395@option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
15396@option{-fno-rtti} by default.
15397
15398@item -tno-android-ld
15399@opindex tno-android-ld
15400Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
15401linking options to the linker.
15402
15403@end table
15404
15405@node H8/300 Options
15406@subsection H8/300 Options
15407
15408These @samp{-m} options are defined for the H8/300 implementations:
15409
15410@table @gcctabopt
15411@item -mrelax
15412@opindex mrelax
15413Shorten some address references at link time, when possible; uses the
15414linker option @option{-relax}.  @xref{H8/300,, @code{ld} and the H8/300,
15415ld, Using ld}, for a fuller description.
15416
15417@item -mh
15418@opindex mh
15419Generate code for the H8/300H@.
15420
15421@item -ms
15422@opindex ms
15423Generate code for the H8S@.
15424
15425@item -mn
15426@opindex mn
15427Generate code for the H8S and H8/300H in the normal mode.  This switch
15428must be used either with @option{-mh} or @option{-ms}.
15429
15430@item -ms2600
15431@opindex ms2600
15432Generate code for the H8S/2600.  This switch must be used with @option{-ms}.
15433
15434@item -mexr
15435@opindex mexr
15436Extended registers are stored on stack before execution of function
15437with monitor attribute. Default option is @option{-mexr}.
15438This option is valid only for H8S targets.
15439
15440@item -mno-exr
15441@opindex mno-exr
15442Extended registers are not stored on stack before execution of function
15443with monitor attribute. Default option is @option{-mno-exr}.
15444This option is valid only for H8S targets.
15445
15446@item -mint32
15447@opindex mint32
15448Make @code{int} data 32 bits by default.
15449
15450@item -malign-300
15451@opindex malign-300
15452On the H8/300H and H8S, use the same alignment rules as for the H8/300.
15453The default for the H8/300H and H8S is to align longs and floats on
154544-byte boundaries.
15455@option{-malign-300} causes them to be aligned on 2-byte boundaries.
15456This option has no effect on the H8/300.
15457@end table
15458
15459@node HPPA Options
15460@subsection HPPA Options
15461@cindex HPPA Options
15462
15463These @samp{-m} options are defined for the HPPA family of computers:
15464
15465@table @gcctabopt
15466@item -march=@var{architecture-type}
15467@opindex march
15468Generate code for the specified architecture.  The choices for
15469@var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
154701.1, and @samp{2.0} for PA 2.0 processors.  Refer to
15471@file{/usr/lib/sched.models} on an HP-UX system to determine the proper
15472architecture option for your machine.  Code compiled for lower numbered
15473architectures runs on higher numbered architectures, but not the
15474other way around.
15475
15476@item -mpa-risc-1-0
15477@itemx -mpa-risc-1-1
15478@itemx -mpa-risc-2-0
15479@opindex mpa-risc-1-0
15480@opindex mpa-risc-1-1
15481@opindex mpa-risc-2-0
15482Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
15483
15484@item -mjump-in-delay
15485@opindex mjump-in-delay
15486This option is ignored and provided for compatibility purposes only.
15487
15488@item -mdisable-fpregs
15489@opindex mdisable-fpregs
15490Prevent floating-point registers from being used in any manner.  This is
15491necessary for compiling kernels that perform lazy context switching of
15492floating-point registers.  If you use this option and attempt to perform
15493floating-point operations, the compiler aborts.
15494
15495@item -mdisable-indexing
15496@opindex mdisable-indexing
15497Prevent the compiler from using indexing address modes.  This avoids some
15498rather obscure problems when compiling MIG generated code under MACH@.
15499
15500@item -mno-space-regs
15501@opindex mno-space-regs
15502Generate code that assumes the target has no space registers.  This allows
15503GCC to generate faster indirect calls and use unscaled index address modes.
15504
15505Such code is suitable for level 0 PA systems and kernels.
15506
15507@item -mfast-indirect-calls
15508@opindex mfast-indirect-calls
15509Generate code that assumes calls never cross space boundaries.  This
15510allows GCC to emit code that performs faster indirect calls.
15511
15512This option does not work in the presence of shared libraries or nested
15513functions.
15514
15515@item -mfixed-range=@var{register-range}
15516@opindex mfixed-range
15517Generate code treating the given register range as fixed registers.
15518A fixed register is one that the register allocator cannot use.  This is
15519useful when compiling kernel code.  A register range is specified as
15520two registers separated by a dash.  Multiple register ranges can be
15521specified separated by a comma.
15522
15523@item -mlong-load-store
15524@opindex mlong-load-store
15525Generate 3-instruction load and store sequences as sometimes required by
15526the HP-UX 10 linker.  This is equivalent to the @samp{+k} option to
15527the HP compilers.
15528
15529@item -mportable-runtime
15530@opindex mportable-runtime
15531Use the portable calling conventions proposed by HP for ELF systems.
15532
15533@item -mgas
15534@opindex mgas
15535Enable the use of assembler directives only GAS understands.
15536
15537@item -mschedule=@var{cpu-type}
15538@opindex mschedule
15539Schedule code according to the constraints for the machine type
15540@var{cpu-type}.  The choices for @var{cpu-type} are @samp{700}
15541@samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}.  Refer
15542to @file{/usr/lib/sched.models} on an HP-UX system to determine the
15543proper scheduling option for your machine.  The default scheduling is
15544@samp{8000}.
15545
15546@item -mlinker-opt
15547@opindex mlinker-opt
15548Enable the optimization pass in the HP-UX linker.  Note this makes symbolic
15549debugging impossible.  It also triggers a bug in the HP-UX 8 and HP-UX 9
15550linkers in which they give bogus error messages when linking some programs.
15551
15552@item -msoft-float
15553@opindex msoft-float
15554Generate output containing library calls for floating point.
15555@strong{Warning:} the requisite libraries are not available for all HPPA
15556targets.  Normally the facilities of the machine's usual C compiler are
15557used, but this cannot be done directly in cross-compilation.  You must make
15558your own arrangements to provide suitable library functions for
15559cross-compilation.
15560
15561@option{-msoft-float} changes the calling convention in the output file;
15562therefore, it is only useful if you compile @emph{all} of a program with
15563this option.  In particular, you need to compile @file{libgcc.a}, the
15564library that comes with GCC, with @option{-msoft-float} in order for
15565this to work.
15566
15567@item -msio
15568@opindex msio
15569Generate the predefine, @code{_SIO}, for server IO@.  The default is
15570@option{-mwsio}.  This generates the predefines, @code{__hp9000s700},
15571@code{__hp9000s700__} and @code{_WSIO}, for workstation IO@.  These
15572options are available under HP-UX and HI-UX@.
15573
15574@item -mgnu-ld
15575@opindex mgnu-ld
15576Use options specific to GNU @command{ld}.
15577This passes @option{-shared} to @command{ld} when
15578building a shared library.  It is the default when GCC is configured,
15579explicitly or implicitly, with the GNU linker.  This option does not
15580affect which @command{ld} is called; it only changes what parameters
15581are passed to that @command{ld}.
15582The @command{ld} that is called is determined by the
15583@option{--with-ld} configure option, GCC's program search path, and
15584finally by the user's @env{PATH}.  The linker used by GCC can be printed
15585using @samp{which `gcc -print-prog-name=ld`}.  This option is only available
15586on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
15587
15588@item -mhp-ld
15589@opindex mhp-ld
15590Use options specific to HP @command{ld}.
15591This passes @option{-b} to @command{ld} when building
15592a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
15593links.  It is the default when GCC is configured, explicitly or
15594implicitly, with the HP linker.  This option does not affect
15595which @command{ld} is called; it only changes what parameters are passed to that
15596@command{ld}.
15597The @command{ld} that is called is determined by the @option{--with-ld}
15598configure option, GCC's program search path, and finally by the user's
15599@env{PATH}.  The linker used by GCC can be printed using @samp{which
15600`gcc -print-prog-name=ld`}.  This option is only available on the 64-bit
15601HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
15602
15603@item -mlong-calls
15604@opindex mno-long-calls
15605Generate code that uses long call sequences.  This ensures that a call
15606is always able to reach linker generated stubs.  The default is to generate
15607long calls only when the distance from the call site to the beginning
15608of the function or translation unit, as the case may be, exceeds a
15609predefined limit set by the branch type being used.  The limits for
15610normal calls are 7,600,000 and 240,000 bytes, respectively for the
15611PA 2.0 and PA 1.X architectures.  Sibcalls are always limited at
15612240,000 bytes.
15613
15614Distances are measured from the beginning of functions when using the
15615@option{-ffunction-sections} option, or when using the @option{-mgas}
15616and @option{-mno-portable-runtime} options together under HP-UX with
15617the SOM linker.
15618
15619It is normally not desirable to use this option as it degrades
15620performance.  However, it may be useful in large applications,
15621particularly when partial linking is used to build the application.
15622
15623The types of long calls used depends on the capabilities of the
15624assembler and linker, and the type of code being generated.  The
15625impact on systems that support long absolute calls, and long pic
15626symbol-difference or pc-relative calls should be relatively small.
15627However, an indirect call is used on 32-bit ELF systems in pic code
15628and it is quite long.
15629
15630@item -munix=@var{unix-std}
15631@opindex march
15632Generate compiler predefines and select a startfile for the specified
15633UNIX standard.  The choices for @var{unix-std} are @samp{93}, @samp{95}
15634and @samp{98}.  @samp{93} is supported on all HP-UX versions.  @samp{95}
15635is available on HP-UX 10.10 and later.  @samp{98} is available on HP-UX
1563611.11 and later.  The default values are @samp{93} for HP-UX 10.00,
15637@samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
15638and later.
15639
15640@option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
15641@option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
15642and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
15643@option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
15644@code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
15645@code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
15646
15647It is @emph{important} to note that this option changes the interfaces
15648for various library routines.  It also affects the operational behavior
15649of the C library.  Thus, @emph{extreme} care is needed in using this
15650option.
15651
15652Library code that is intended to operate with more than one UNIX
15653standard must test, set and restore the variable @code{__xpg4_extended_mask}
15654as appropriate.  Most GNU software doesn't provide this capability.
15655
15656@item -nolibdld
15657@opindex nolibdld
15658Suppress the generation of link options to search libdld.sl when the
15659@option{-static} option is specified on HP-UX 10 and later.
15660
15661@item -static
15662@opindex static
15663The HP-UX implementation of setlocale in libc has a dependency on
15664libdld.sl.  There isn't an archive version of libdld.sl.  Thus,
15665when the @option{-static} option is specified, special link options
15666are needed to resolve this dependency.
15667
15668On HP-UX 10 and later, the GCC driver adds the necessary options to
15669link with libdld.sl when the @option{-static} option is specified.
15670This causes the resulting binary to be dynamic.  On the 64-bit port,
15671the linkers generate dynamic binaries by default in any case.  The
15672@option{-nolibdld} option can be used to prevent the GCC driver from
15673adding these link options.
15674
15675@item -threads
15676@opindex threads
15677Add support for multithreading with the @dfn{dce thread} library
15678under HP-UX@.  This option sets flags for both the preprocessor and
15679linker.
15680@end table
15681
15682@node IA-64 Options
15683@subsection IA-64 Options
15684@cindex IA-64 Options
15685
15686These are the @samp{-m} options defined for the Intel IA-64 architecture.
15687
15688@table @gcctabopt
15689@item -mbig-endian
15690@opindex mbig-endian
15691Generate code for a big-endian target.  This is the default for HP-UX@.
15692
15693@item -mlittle-endian
15694@opindex mlittle-endian
15695Generate code for a little-endian target.  This is the default for AIX5
15696and GNU/Linux.
15697
15698@item -mgnu-as
15699@itemx -mno-gnu-as
15700@opindex mgnu-as
15701@opindex mno-gnu-as
15702Generate (or don't) code for the GNU assembler.  This is the default.
15703@c Also, this is the default if the configure option @option{--with-gnu-as}
15704@c is used.
15705
15706@item -mgnu-ld
15707@itemx -mno-gnu-ld
15708@opindex mgnu-ld
15709@opindex mno-gnu-ld
15710Generate (or don't) code for the GNU linker.  This is the default.
15711@c Also, this is the default if the configure option @option{--with-gnu-ld}
15712@c is used.
15713
15714@item -mno-pic
15715@opindex mno-pic
15716Generate code that does not use a global pointer register.  The result
15717is not position independent code, and violates the IA-64 ABI@.
15718
15719@item -mvolatile-asm-stop
15720@itemx -mno-volatile-asm-stop
15721@opindex mvolatile-asm-stop
15722@opindex mno-volatile-asm-stop
15723Generate (or don't) a stop bit immediately before and after volatile asm
15724statements.
15725
15726@item -mregister-names
15727@itemx -mno-register-names
15728@opindex mregister-names
15729@opindex mno-register-names
15730Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
15731the stacked registers.  This may make assembler output more readable.
15732
15733@item -mno-sdata
15734@itemx -msdata
15735@opindex mno-sdata
15736@opindex msdata
15737Disable (or enable) optimizations that use the small data section.  This may
15738be useful for working around optimizer bugs.
15739
15740@item -mconstant-gp
15741@opindex mconstant-gp
15742Generate code that uses a single constant global pointer value.  This is
15743useful when compiling kernel code.
15744
15745@item -mauto-pic
15746@opindex mauto-pic
15747Generate code that is self-relocatable.  This implies @option{-mconstant-gp}.
15748This is useful when compiling firmware code.
15749
15750@item -minline-float-divide-min-latency
15751@opindex minline-float-divide-min-latency
15752Generate code for inline divides of floating-point values
15753using the minimum latency algorithm.
15754
15755@item -minline-float-divide-max-throughput
15756@opindex minline-float-divide-max-throughput
15757Generate code for inline divides of floating-point values
15758using the maximum throughput algorithm.
15759
15760@item -mno-inline-float-divide
15761@opindex mno-inline-float-divide
15762Do not generate inline code for divides of floating-point values.
15763
15764@item -minline-int-divide-min-latency
15765@opindex minline-int-divide-min-latency
15766Generate code for inline divides of integer values
15767using the minimum latency algorithm.
15768
15769@item -minline-int-divide-max-throughput
15770@opindex minline-int-divide-max-throughput
15771Generate code for inline divides of integer values
15772using the maximum throughput algorithm.
15773
15774@item -mno-inline-int-divide
15775@opindex mno-inline-int-divide
15776Do not generate inline code for divides of integer values.
15777
15778@item -minline-sqrt-min-latency
15779@opindex minline-sqrt-min-latency
15780Generate code for inline square roots
15781using the minimum latency algorithm.
15782
15783@item -minline-sqrt-max-throughput
15784@opindex minline-sqrt-max-throughput
15785Generate code for inline square roots
15786using the maximum throughput algorithm.
15787
15788@item -mno-inline-sqrt
15789@opindex mno-inline-sqrt
15790Do not generate inline code for @code{sqrt}.
15791
15792@item -mfused-madd
15793@itemx -mno-fused-madd
15794@opindex mfused-madd
15795@opindex mno-fused-madd
15796Do (don't) generate code that uses the fused multiply/add or multiply/subtract
15797instructions.  The default is to use these instructions.
15798
15799@item -mno-dwarf2-asm
15800@itemx -mdwarf2-asm
15801@opindex mno-dwarf2-asm
15802@opindex mdwarf2-asm
15803Don't (or do) generate assembler code for the DWARF 2 line number debugging
15804info.  This may be useful when not using the GNU assembler.
15805
15806@item -mearly-stop-bits
15807@itemx -mno-early-stop-bits
15808@opindex mearly-stop-bits
15809@opindex mno-early-stop-bits
15810Allow stop bits to be placed earlier than immediately preceding the
15811instruction that triggered the stop bit.  This can improve instruction
15812scheduling, but does not always do so.
15813
15814@item -mfixed-range=@var{register-range}
15815@opindex mfixed-range
15816Generate code treating the given register range as fixed registers.
15817A fixed register is one that the register allocator cannot use.  This is
15818useful when compiling kernel code.  A register range is specified as
15819two registers separated by a dash.  Multiple register ranges can be
15820specified separated by a comma.
15821
15822@item -mtls-size=@var{tls-size}
15823@opindex mtls-size
15824Specify bit size of immediate TLS offsets.  Valid values are 14, 22, and
1582564.
15826
15827@item -mtune=@var{cpu-type}
15828@opindex mtune
15829Tune the instruction scheduling for a particular CPU, Valid values are
15830@samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
15831and @samp{mckinley}.
15832
15833@item -milp32
15834@itemx -mlp64
15835@opindex milp32
15836@opindex mlp64
15837Generate code for a 32-bit or 64-bit environment.
15838The 32-bit environment sets int, long and pointer to 32 bits.
15839The 64-bit environment sets int to 32 bits and long and pointer
15840to 64 bits.  These are HP-UX specific flags.
15841
15842@item -mno-sched-br-data-spec
15843@itemx -msched-br-data-spec
15844@opindex mno-sched-br-data-spec
15845@opindex msched-br-data-spec
15846(Dis/En)able data speculative scheduling before reload.
15847This results in generation of @code{ld.a} instructions and
15848the corresponding check instructions (@code{ld.c} / @code{chk.a}).
15849The default is 'disable'.
15850
15851@item -msched-ar-data-spec
15852@itemx -mno-sched-ar-data-spec
15853@opindex msched-ar-data-spec
15854@opindex mno-sched-ar-data-spec
15855(En/Dis)able data speculative scheduling after reload.
15856This results in generation of @code{ld.a} instructions and
15857the corresponding check instructions (@code{ld.c} / @code{chk.a}).
15858The default is 'enable'.
15859
15860@item -mno-sched-control-spec
15861@itemx -msched-control-spec
15862@opindex mno-sched-control-spec
15863@opindex msched-control-spec
15864(Dis/En)able control speculative scheduling.  This feature is
15865available only during region scheduling (i.e.@: before reload).
15866This results in generation of the @code{ld.s} instructions and
15867the corresponding check instructions @code{chk.s}.
15868The default is 'disable'.
15869
15870@item -msched-br-in-data-spec
15871@itemx -mno-sched-br-in-data-spec
15872@opindex msched-br-in-data-spec
15873@opindex mno-sched-br-in-data-spec
15874(En/Dis)able speculative scheduling of the instructions that
15875are dependent on the data speculative loads before reload.
15876This is effective only with @option{-msched-br-data-spec} enabled.
15877The default is 'enable'.
15878
15879@item -msched-ar-in-data-spec
15880@itemx -mno-sched-ar-in-data-spec
15881@opindex msched-ar-in-data-spec
15882@opindex mno-sched-ar-in-data-spec
15883(En/Dis)able speculative scheduling of the instructions that
15884are dependent on the data speculative loads after reload.
15885This is effective only with @option{-msched-ar-data-spec} enabled.
15886The default is 'enable'.
15887
15888@item -msched-in-control-spec
15889@itemx -mno-sched-in-control-spec
15890@opindex msched-in-control-spec
15891@opindex mno-sched-in-control-spec
15892(En/Dis)able speculative scheduling of the instructions that
15893are dependent on the control speculative loads.
15894This is effective only with @option{-msched-control-spec} enabled.
15895The default is 'enable'.
15896
15897@item -mno-sched-prefer-non-data-spec-insns
15898@itemx -msched-prefer-non-data-spec-insns
15899@opindex mno-sched-prefer-non-data-spec-insns
15900@opindex msched-prefer-non-data-spec-insns
15901If enabled, data-speculative instructions are chosen for schedule
15902only if there are no other choices at the moment.  This makes
15903the use of the data speculation much more conservative.
15904The default is 'disable'.
15905
15906@item -mno-sched-prefer-non-control-spec-insns
15907@itemx -msched-prefer-non-control-spec-insns
15908@opindex mno-sched-prefer-non-control-spec-insns
15909@opindex msched-prefer-non-control-spec-insns
15910If enabled, control-speculative instructions are chosen for schedule
15911only if there are no other choices at the moment.  This makes
15912the use of the control speculation much more conservative.
15913The default is 'disable'.
15914
15915@item -mno-sched-count-spec-in-critical-path
15916@itemx -msched-count-spec-in-critical-path
15917@opindex mno-sched-count-spec-in-critical-path
15918@opindex msched-count-spec-in-critical-path
15919If enabled, speculative dependencies are considered during
15920computation of the instructions priorities.  This makes the use of the
15921speculation a bit more conservative.
15922The default is 'disable'.
15923
15924@item -msched-spec-ldc
15925@opindex msched-spec-ldc
15926Use a simple data speculation check.  This option is on by default.
15927
15928@item -msched-control-spec-ldc
15929@opindex msched-spec-ldc
15930Use a simple check for control speculation.  This option is on by default.
15931
15932@item -msched-stop-bits-after-every-cycle
15933@opindex msched-stop-bits-after-every-cycle
15934Place a stop bit after every cycle when scheduling.  This option is on
15935by default.
15936
15937@item -msched-fp-mem-deps-zero-cost
15938@opindex msched-fp-mem-deps-zero-cost
15939Assume that floating-point stores and loads are not likely to cause a conflict
15940when placed into the same instruction group.  This option is disabled by
15941default.
15942
15943@item -msel-sched-dont-check-control-spec
15944@opindex msel-sched-dont-check-control-spec
15945Generate checks for control speculation in selective scheduling.
15946This flag is disabled by default.
15947
15948@item -msched-max-memory-insns=@var{max-insns}
15949@opindex msched-max-memory-insns
15950Limit on the number of memory insns per instruction group, giving lower
15951priority to subsequent memory insns attempting to schedule in the same
15952instruction group. Frequently useful to prevent cache bank conflicts.
15953The default value is 1.
15954
15955@item -msched-max-memory-insns-hard-limit
15956@opindex msched-max-memory-insns-hard-limit
15957Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
15958disallowing more than that number in an instruction group.
15959Otherwise, the limit is ``soft'', meaning that non-memory operations
15960are preferred when the limit is reached, but memory operations may still
15961be scheduled.
15962
15963@end table
15964
15965@node LM32 Options
15966@subsection LM32 Options
15967@cindex LM32 options
15968
15969These @option{-m} options are defined for the LatticeMico32 architecture:
15970
15971@table @gcctabopt
15972@item -mbarrel-shift-enabled
15973@opindex mbarrel-shift-enabled
15974Enable barrel-shift instructions.
15975
15976@item -mdivide-enabled
15977@opindex mdivide-enabled
15978Enable divide and modulus instructions.
15979
15980@item -mmultiply-enabled
15981@opindex multiply-enabled
15982Enable multiply instructions.
15983
15984@item -msign-extend-enabled
15985@opindex msign-extend-enabled
15986Enable sign extend instructions.
15987
15988@item -muser-enabled
15989@opindex muser-enabled
15990Enable user-defined instructions.
15991
15992@end table
15993
15994@node M32C Options
15995@subsection M32C Options
15996@cindex M32C options
15997
15998@table @gcctabopt
15999@item -mcpu=@var{name}
16000@opindex mcpu=
16001Select the CPU for which code is generated.  @var{name} may be one of
16002@samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
16003/60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
16004the M32C/80 series.
16005
16006@item -msim
16007@opindex msim
16008Specifies that the program will be run on the simulator.  This causes
16009an alternate runtime library to be linked in which supports, for
16010example, file I/O@.  You must not use this option when generating
16011programs that will run on real hardware; you must provide your own
16012runtime library for whatever I/O functions are needed.
16013
16014@item -memregs=@var{number}
16015@opindex memregs=
16016Specifies the number of memory-based pseudo-registers GCC uses
16017during code generation.  These pseudo-registers are used like real
16018registers, so there is a tradeoff between GCC's ability to fit the
16019code into available registers, and the performance penalty of using
16020memory instead of registers.  Note that all modules in a program must
16021be compiled with the same value for this option.  Because of that, you
16022must not use this option with GCC's default runtime libraries.
16023
16024@end table
16025
16026@node M32R/D Options
16027@subsection M32R/D Options
16028@cindex M32R/D options
16029
16030These @option{-m} options are defined for Renesas M32R/D architectures:
16031
16032@table @gcctabopt
16033@item -m32r2
16034@opindex m32r2
16035Generate code for the M32R/2@.
16036
16037@item -m32rx
16038@opindex m32rx
16039Generate code for the M32R/X@.
16040
16041@item -m32r
16042@opindex m32r
16043Generate code for the M32R@.  This is the default.
16044
16045@item -mmodel=small
16046@opindex mmodel=small
16047Assume all objects live in the lower 16MB of memory (so that their addresses
16048can be loaded with the @code{ld24} instruction), and assume all subroutines
16049are reachable with the @code{bl} instruction.
16050This is the default.
16051
16052The addressability of a particular object can be set with the
16053@code{model} attribute.
16054
16055@item -mmodel=medium
16056@opindex mmodel=medium
16057Assume objects may be anywhere in the 32-bit address space (the compiler
16058generates @code{seth/add3} instructions to load their addresses), and
16059assume all subroutines are reachable with the @code{bl} instruction.
16060
16061@item -mmodel=large
16062@opindex mmodel=large
16063Assume objects may be anywhere in the 32-bit address space (the compiler
16064generates @code{seth/add3} instructions to load their addresses), and
16065assume subroutines may not be reachable with the @code{bl} instruction
16066(the compiler generates the much slower @code{seth/add3/jl}
16067instruction sequence).
16068
16069@item -msdata=none
16070@opindex msdata=none
16071Disable use of the small data area.  Variables are put into
16072one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
16073@code{section} attribute has been specified).
16074This is the default.
16075
16076The small data area consists of sections @code{.sdata} and @code{.sbss}.
16077Objects may be explicitly put in the small data area with the
16078@code{section} attribute using one of these sections.
16079
16080@item -msdata=sdata
16081@opindex msdata=sdata
16082Put small global and static data in the small data area, but do not
16083generate special code to reference them.
16084
16085@item -msdata=use
16086@opindex msdata=use
16087Put small global and static data in the small data area, and generate
16088special instructions to reference them.
16089
16090@item -G @var{num}
16091@opindex G
16092@cindex smaller data references
16093Put global and static objects less than or equal to @var{num} bytes
16094into the small data or BSS sections instead of the normal data or BSS
16095sections.  The default value of @var{num} is 8.
16096The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
16097for this option to have any effect.
16098
16099All modules should be compiled with the same @option{-G @var{num}} value.
16100Compiling with different values of @var{num} may or may not work; if it
16101doesn't the linker gives an error message---incorrect code is not
16102generated.
16103
16104@item -mdebug
16105@opindex mdebug
16106Makes the M32R-specific code in the compiler display some statistics
16107that might help in debugging programs.
16108
16109@item -malign-loops
16110@opindex malign-loops
16111Align all loops to a 32-byte boundary.
16112
16113@item -mno-align-loops
16114@opindex mno-align-loops
16115Do not enforce a 32-byte alignment for loops.  This is the default.
16116
16117@item -missue-rate=@var{number}
16118@opindex missue-rate=@var{number}
16119Issue @var{number} instructions per cycle.  @var{number} can only be 1
16120or 2.
16121
16122@item -mbranch-cost=@var{number}
16123@opindex mbranch-cost=@var{number}
16124@var{number} can only be 1 or 2.  If it is 1 then branches are
16125preferred over conditional code, if it is 2, then the opposite applies.
16126
16127@item -mflush-trap=@var{number}
16128@opindex mflush-trap=@var{number}
16129Specifies the trap number to use to flush the cache.  The default is
1613012.  Valid numbers are between 0 and 15 inclusive.
16131
16132@item -mno-flush-trap
16133@opindex mno-flush-trap
16134Specifies that the cache cannot be flushed by using a trap.
16135
16136@item -mflush-func=@var{name}
16137@opindex mflush-func=@var{name}
16138Specifies the name of the operating system function to call to flush
16139the cache.  The default is @samp{_flush_cache}, but a function call
16140is only used if a trap is not available.
16141
16142@item -mno-flush-func
16143@opindex mno-flush-func
16144Indicates that there is no OS function for flushing the cache.
16145
16146@end table
16147
16148@node M680x0 Options
16149@subsection M680x0 Options
16150@cindex M680x0 options
16151
16152These are the @samp{-m} options defined for M680x0 and ColdFire processors.
16153The default settings depend on which architecture was selected when
16154the compiler was configured; the defaults for the most common choices
16155are given below.
16156
16157@table @gcctabopt
16158@item -march=@var{arch}
16159@opindex march
16160Generate code for a specific M680x0 or ColdFire instruction set
16161architecture.  Permissible values of @var{arch} for M680x0
16162architectures are: @samp{68000}, @samp{68010}, @samp{68020},
16163@samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}.  ColdFire
16164architectures are selected according to Freescale's ISA classification
16165and the permissible values are: @samp{isaa}, @samp{isaaplus},
16166@samp{isab} and @samp{isac}.
16167
16168GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
16169code for a ColdFire target.  The @var{arch} in this macro is one of the
16170@option{-march} arguments given above.
16171
16172When used together, @option{-march} and @option{-mtune} select code
16173that runs on a family of similar processors but that is optimized
16174for a particular microarchitecture.
16175
16176@item -mcpu=@var{cpu}
16177@opindex mcpu
16178Generate code for a specific M680x0 or ColdFire processor.
16179The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
16180@samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
16181and @samp{cpu32}.  The ColdFire @var{cpu}s are given by the table
16182below, which also classifies the CPUs into families:
16183
16184@multitable @columnfractions 0.20 0.80
16185@item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
16186@item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
16187@item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
16188@item @samp{5206e} @tab @samp{5206e}
16189@item @samp{5208} @tab @samp{5207} @samp{5208}
16190@item @samp{5211a} @tab @samp{5210a} @samp{5211a}
16191@item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
16192@item @samp{5216} @tab @samp{5214} @samp{5216}
16193@item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
16194@item @samp{5225} @tab @samp{5224} @samp{5225}
16195@item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
16196@item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
16197@item @samp{5249} @tab @samp{5249}
16198@item @samp{5250} @tab @samp{5250}
16199@item @samp{5271} @tab @samp{5270} @samp{5271}
16200@item @samp{5272} @tab @samp{5272}
16201@item @samp{5275} @tab @samp{5274} @samp{5275}
16202@item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
16203@item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
16204@item @samp{5307} @tab @samp{5307}
16205@item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
16206@item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
16207@item @samp{5407} @tab @samp{5407}
16208@item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
16209@end multitable
16210
16211@option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
16212@var{arch} is compatible with @var{cpu}.  Other combinations of
16213@option{-mcpu} and @option{-march} are rejected.
16214
16215GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
16216@var{cpu} is selected.  It also defines @code{__mcf_family_@var{family}},
16217where the value of @var{family} is given by the table above.
16218
16219@item -mtune=@var{tune}
16220@opindex mtune
16221Tune the code for a particular microarchitecture within the
16222constraints set by @option{-march} and @option{-mcpu}.
16223The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
16224@samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
16225and @samp{cpu32}.  The ColdFire microarchitectures
16226are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
16227
16228You can also use @option{-mtune=68020-40} for code that needs
16229to run relatively well on 68020, 68030 and 68040 targets.
16230@option{-mtune=68020-60} is similar but includes 68060 targets
16231as well.  These two options select the same tuning decisions as
16232@option{-m68020-40} and @option{-m68020-60} respectively.
16233
16234GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
16235when tuning for 680x0 architecture @var{arch}.  It also defines
16236@code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
16237option is used.  If GCC is tuning for a range of architectures,
16238as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
16239it defines the macros for every architecture in the range.
16240
16241GCC also defines the macro @code{__m@var{uarch}__} when tuning for
16242ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
16243of the arguments given above.
16244
16245@item -m68000
16246@itemx -mc68000
16247@opindex m68000
16248@opindex mc68000
16249Generate output for a 68000.  This is the default
16250when the compiler is configured for 68000-based systems.
16251It is equivalent to @option{-march=68000}.
16252
16253Use this option for microcontrollers with a 68000 or EC000 core,
16254including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
16255
16256@item -m68010
16257@opindex m68010
16258Generate output for a 68010.  This is the default
16259when the compiler is configured for 68010-based systems.
16260It is equivalent to @option{-march=68010}.
16261
16262@item -m68020
16263@itemx -mc68020
16264@opindex m68020
16265@opindex mc68020
16266Generate output for a 68020.  This is the default
16267when the compiler is configured for 68020-based systems.
16268It is equivalent to @option{-march=68020}.
16269
16270@item -m68030
16271@opindex m68030
16272Generate output for a 68030.  This is the default when the compiler is
16273configured for 68030-based systems.  It is equivalent to
16274@option{-march=68030}.
16275
16276@item -m68040
16277@opindex m68040
16278Generate output for a 68040.  This is the default when the compiler is
16279configured for 68040-based systems.  It is equivalent to
16280@option{-march=68040}.
16281
16282This option inhibits the use of 68881/68882 instructions that have to be
16283emulated by software on the 68040.  Use this option if your 68040 does not
16284have code to emulate those instructions.
16285
16286@item -m68060
16287@opindex m68060
16288Generate output for a 68060.  This is the default when the compiler is
16289configured for 68060-based systems.  It is equivalent to
16290@option{-march=68060}.
16291
16292This option inhibits the use of 68020 and 68881/68882 instructions that
16293have to be emulated by software on the 68060.  Use this option if your 68060
16294does not have code to emulate those instructions.
16295
16296@item -mcpu32
16297@opindex mcpu32
16298Generate output for a CPU32.  This is the default
16299when the compiler is configured for CPU32-based systems.
16300It is equivalent to @option{-march=cpu32}.
16301
16302Use this option for microcontrollers with a
16303CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
1630468336, 68340, 68341, 68349 and 68360.
16305
16306@item -m5200
16307@opindex m5200
16308Generate output for a 520X ColdFire CPU@.  This is the default
16309when the compiler is configured for 520X-based systems.
16310It is equivalent to @option{-mcpu=5206}, and is now deprecated
16311in favor of that option.
16312
16313Use this option for microcontroller with a 5200 core, including
16314the MCF5202, MCF5203, MCF5204 and MCF5206.
16315
16316@item -m5206e
16317@opindex m5206e
16318Generate output for a 5206e ColdFire CPU@.  The option is now
16319deprecated in favor of the equivalent @option{-mcpu=5206e}.
16320
16321@item -m528x
16322@opindex m528x
16323Generate output for a member of the ColdFire 528X family.
16324The option is now deprecated in favor of the equivalent
16325@option{-mcpu=528x}.
16326
16327@item -m5307
16328@opindex m5307
16329Generate output for a ColdFire 5307 CPU@.  The option is now deprecated
16330in favor of the equivalent @option{-mcpu=5307}.
16331
16332@item -m5407
16333@opindex m5407
16334Generate output for a ColdFire 5407 CPU@.  The option is now deprecated
16335in favor of the equivalent @option{-mcpu=5407}.
16336
16337@item -mcfv4e
16338@opindex mcfv4e
16339Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
16340This includes use of hardware floating-point instructions.
16341The option is equivalent to @option{-mcpu=547x}, and is now
16342deprecated in favor of that option.
16343
16344@item -m68020-40
16345@opindex m68020-40
16346Generate output for a 68040, without using any of the new instructions.
16347This results in code that can run relatively efficiently on either a
1634868020/68881 or a 68030 or a 68040.  The generated code does use the
1634968881 instructions that are emulated on the 68040.
16350
16351The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
16352
16353@item -m68020-60
16354@opindex m68020-60
16355Generate output for a 68060, without using any of the new instructions.
16356This results in code that can run relatively efficiently on either a
1635768020/68881 or a 68030 or a 68040.  The generated code does use the
1635868881 instructions that are emulated on the 68060.
16359
16360The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
16361
16362@item -mhard-float
16363@itemx -m68881
16364@opindex mhard-float
16365@opindex m68881
16366Generate floating-point instructions.  This is the default for 68020
16367and above, and for ColdFire devices that have an FPU@.  It defines the
16368macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
16369on ColdFire targets.
16370
16371@item -msoft-float
16372@opindex msoft-float
16373Do not generate floating-point instructions; use library calls instead.
16374This is the default for 68000, 68010, and 68832 targets.  It is also
16375the default for ColdFire devices that have no FPU.
16376
16377@item -mdiv
16378@itemx -mno-div
16379@opindex mdiv
16380@opindex mno-div
16381Generate (do not generate) ColdFire hardware divide and remainder
16382instructions.  If @option{-march} is used without @option{-mcpu},
16383the default is ``on'' for ColdFire architectures and ``off'' for M680x0
16384architectures.  Otherwise, the default is taken from the target CPU
16385(either the default CPU, or the one specified by @option{-mcpu}).  For
16386example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
16387@option{-mcpu=5206e}.
16388
16389GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
16390
16391@item -mshort
16392@opindex mshort
16393Consider type @code{int} to be 16 bits wide, like @code{short int}.
16394Additionally, parameters passed on the stack are also aligned to a
1639516-bit boundary even on targets whose API mandates promotion to 32-bit.
16396
16397@item -mno-short
16398@opindex mno-short
16399Do not consider type @code{int} to be 16 bits wide.  This is the default.
16400
16401@item -mnobitfield
16402@itemx -mno-bitfield
16403@opindex mnobitfield
16404@opindex mno-bitfield
16405Do not use the bit-field instructions.  The @option{-m68000}, @option{-mcpu32}
16406and @option{-m5200} options imply @w{@option{-mnobitfield}}.
16407
16408@item -mbitfield
16409@opindex mbitfield
16410Do use the bit-field instructions.  The @option{-m68020} option implies
16411@option{-mbitfield}.  This is the default if you use a configuration
16412designed for a 68020.
16413
16414@item -mrtd
16415@opindex mrtd
16416Use a different function-calling convention, in which functions
16417that take a fixed number of arguments return with the @code{rtd}
16418instruction, which pops their arguments while returning.  This
16419saves one instruction in the caller since there is no need to pop
16420the arguments there.
16421
16422This calling convention is incompatible with the one normally
16423used on Unix, so you cannot use it if you need to call libraries
16424compiled with the Unix compiler.
16425
16426Also, you must provide function prototypes for all functions that
16427take variable numbers of arguments (including @code{printf});
16428otherwise incorrect code is generated for calls to those
16429functions.
16430
16431In addition, seriously incorrect code results if you call a
16432function with too many arguments.  (Normally, extra arguments are
16433harmlessly ignored.)
16434
16435The @code{rtd} instruction is supported by the 68010, 68020, 68030,
1643668040, 68060 and CPU32 processors, but not by the 68000 or 5200.
16437
16438@item -mno-rtd
16439@opindex mno-rtd
16440Do not use the calling conventions selected by @option{-mrtd}.
16441This is the default.
16442
16443@item -malign-int
16444@itemx -mno-align-int
16445@opindex malign-int
16446@opindex mno-align-int
16447Control whether GCC aligns @code{int}, @code{long}, @code{long long},
16448@code{float}, @code{double}, and @code{long double} variables on a 32-bit
16449boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
16450Aligning variables on 32-bit boundaries produces code that runs somewhat
16451faster on processors with 32-bit busses at the expense of more memory.
16452
16453@strong{Warning:} if you use the @option{-malign-int} switch, GCC
16454aligns structures containing the above types differently than
16455most published application binary interface specifications for the m68k.
16456
16457@item -mpcrel
16458@opindex mpcrel
16459Use the pc-relative addressing mode of the 68000 directly, instead of
16460using a global offset table.  At present, this option implies @option{-fpic},
16461allowing at most a 16-bit offset for pc-relative addressing.  @option{-fPIC} is
16462not presently supported with @option{-mpcrel}, though this could be supported for
1646368020 and higher processors.
16464
16465@item -mno-strict-align
16466@itemx -mstrict-align
16467@opindex mno-strict-align
16468@opindex mstrict-align
16469Do not (do) assume that unaligned memory references are handled by
16470the system.
16471
16472@item -msep-data
16473Generate code that allows the data segment to be located in a different
16474area of memory from the text segment.  This allows for execute-in-place in
16475an environment without virtual memory management.  This option implies
16476@option{-fPIC}.
16477
16478@item -mno-sep-data
16479Generate code that assumes that the data segment follows the text segment.
16480This is the default.
16481
16482@item -mid-shared-library
16483Generate code that supports shared libraries via the library ID method.
16484This allows for execute-in-place and shared libraries in an environment
16485without virtual memory management.  This option implies @option{-fPIC}.
16486
16487@item -mno-id-shared-library
16488Generate code that doesn't assume ID-based shared libraries are being used.
16489This is the default.
16490
16491@item -mshared-library-id=n
16492Specifies the identification number of the ID-based shared library being
16493compiled.  Specifying a value of 0 generates more compact code; specifying
16494other values forces the allocation of that number to the current
16495library, but is no more space- or time-efficient than omitting this option.
16496
16497@item -mxgot
16498@itemx -mno-xgot
16499@opindex mxgot
16500@opindex mno-xgot
16501When generating position-independent code for ColdFire, generate code
16502that works if the GOT has more than 8192 entries.  This code is
16503larger and slower than code generated without this option.  On M680x0
16504processors, this option is not needed; @option{-fPIC} suffices.
16505
16506GCC normally uses a single instruction to load values from the GOT@.
16507While this is relatively efficient, it only works if the GOT
16508is smaller than about 64k.  Anything larger causes the linker
16509to report an error such as:
16510
16511@cindex relocation truncated to fit (ColdFire)
16512@smallexample
16513relocation truncated to fit: R_68K_GOT16O foobar
16514@end smallexample
16515
16516If this happens, you should recompile your code with @option{-mxgot}.
16517It should then work with very large GOTs.  However, code generated with
16518@option{-mxgot} is less efficient, since it takes 4 instructions to fetch
16519the value of a global symbol.
16520
16521Note that some linkers, including newer versions of the GNU linker,
16522can create multiple GOTs and sort GOT entries.  If you have such a linker,
16523you should only need to use @option{-mxgot} when compiling a single
16524object file that accesses more than 8192 GOT entries.  Very few do.
16525
16526These options have no effect unless GCC is generating
16527position-independent code.
16528
16529@end table
16530
16531@node MCore Options
16532@subsection MCore Options
16533@cindex MCore options
16534
16535These are the @samp{-m} options defined for the Motorola M*Core
16536processors.
16537
16538@table @gcctabopt
16539
16540@item -mhardlit
16541@itemx -mno-hardlit
16542@opindex mhardlit
16543@opindex mno-hardlit
16544Inline constants into the code stream if it can be done in two
16545instructions or less.
16546
16547@item -mdiv
16548@itemx -mno-div
16549@opindex mdiv
16550@opindex mno-div
16551Use the divide instruction.  (Enabled by default).
16552
16553@item -mrelax-immediate
16554@itemx -mno-relax-immediate
16555@opindex mrelax-immediate
16556@opindex mno-relax-immediate
16557Allow arbitrary-sized immediates in bit operations.
16558
16559@item -mwide-bitfields
16560@itemx -mno-wide-bitfields
16561@opindex mwide-bitfields
16562@opindex mno-wide-bitfields
16563Always treat bit-fields as @code{int}-sized.
16564
16565@item -m4byte-functions
16566@itemx -mno-4byte-functions
16567@opindex m4byte-functions
16568@opindex mno-4byte-functions
16569Force all functions to be aligned to a 4-byte boundary.
16570
16571@item -mcallgraph-data
16572@itemx -mno-callgraph-data
16573@opindex mcallgraph-data
16574@opindex mno-callgraph-data
16575Emit callgraph information.
16576
16577@item -mslow-bytes
16578@itemx -mno-slow-bytes
16579@opindex mslow-bytes
16580@opindex mno-slow-bytes
16581Prefer word access when reading byte quantities.
16582
16583@item -mlittle-endian
16584@itemx -mbig-endian
16585@opindex mlittle-endian
16586@opindex mbig-endian
16587Generate code for a little-endian target.
16588
16589@item -m210
16590@itemx -m340
16591@opindex m210
16592@opindex m340
16593Generate code for the 210 processor.
16594
16595@item -mno-lsim
16596@opindex mno-lsim
16597Assume that runtime support has been provided and so omit the
16598simulator library (@file{libsim.a)} from the linker command line.
16599
16600@item -mstack-increment=@var{size}
16601@opindex mstack-increment
16602Set the maximum amount for a single stack increment operation.  Large
16603values can increase the speed of programs that contain functions
16604that need a large amount of stack space, but they can also trigger a
16605segmentation fault if the stack is extended too much.  The default
16606value is 0x1000.
16607
16608@end table
16609
16610@node MeP Options
16611@subsection MeP Options
16612@cindex MeP options
16613
16614@table @gcctabopt
16615
16616@item -mabsdiff
16617@opindex mabsdiff
16618Enables the @code{abs} instruction, which is the absolute difference
16619between two registers.
16620
16621@item -mall-opts
16622@opindex mall-opts
16623Enables all the optional instructions---average, multiply, divide, bit
16624operations, leading zero, absolute difference, min/max, clip, and
16625saturation.
16626
16627
16628@item -maverage
16629@opindex maverage
16630Enables the @code{ave} instruction, which computes the average of two
16631registers.
16632
16633@item -mbased=@var{n}
16634@opindex mbased=
16635Variables of size @var{n} bytes or smaller are placed in the
16636@code{.based} section by default.  Based variables use the @code{$tp}
16637register as a base register, and there is a 128-byte limit to the
16638@code{.based} section.
16639
16640@item -mbitops
16641@opindex mbitops
16642Enables the bit operation instructions---bit test (@code{btstm}), set
16643(@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
16644test-and-set (@code{tas}).
16645
16646@item -mc=@var{name}
16647@opindex mc=
16648Selects which section constant data is placed in.  @var{name} may
16649be @samp{tiny}, @samp{near}, or @samp{far}.
16650
16651@item -mclip
16652@opindex mclip
16653Enables the @code{clip} instruction.  Note that @option{-mclip} is not
16654useful unless you also provide @option{-mminmax}.
16655
16656@item -mconfig=@var{name}
16657@opindex mconfig=
16658Selects one of the built-in core configurations.  Each MeP chip has
16659one or more modules in it; each module has a core CPU and a variety of
16660coprocessors, optional instructions, and peripherals.  The
16661@code{MeP-Integrator} tool, not part of GCC, provides these
16662configurations through this option; using this option is the same as
16663using all the corresponding command-line options.  The default
16664configuration is @samp{default}.
16665
16666@item -mcop
16667@opindex mcop
16668Enables the coprocessor instructions.  By default, this is a 32-bit
16669coprocessor.  Note that the coprocessor is normally enabled via the
16670@option{-mconfig=} option.
16671
16672@item -mcop32
16673@opindex mcop32
16674Enables the 32-bit coprocessor's instructions.
16675
16676@item -mcop64
16677@opindex mcop64
16678Enables the 64-bit coprocessor's instructions.
16679
16680@item -mivc2
16681@opindex mivc2
16682Enables IVC2 scheduling.  IVC2 is a 64-bit VLIW coprocessor.
16683
16684@item -mdc
16685@opindex mdc
16686Causes constant variables to be placed in the @code{.near} section.
16687
16688@item -mdiv
16689@opindex mdiv
16690Enables the @code{div} and @code{divu} instructions.
16691
16692@item -meb
16693@opindex meb
16694Generate big-endian code.
16695
16696@item -mel
16697@opindex mel
16698Generate little-endian code.
16699
16700@item -mio-volatile
16701@opindex mio-volatile
16702Tells the compiler that any variable marked with the @code{io}
16703attribute is to be considered volatile.
16704
16705@item -ml
16706@opindex ml
16707Causes variables to be assigned to the @code{.far} section by default.
16708
16709@item -mleadz
16710@opindex mleadz
16711Enables the @code{leadz} (leading zero) instruction.
16712
16713@item -mm
16714@opindex mm
16715Causes variables to be assigned to the @code{.near} section by default.
16716
16717@item -mminmax
16718@opindex mminmax
16719Enables the @code{min} and @code{max} instructions.
16720
16721@item -mmult
16722@opindex mmult
16723Enables the multiplication and multiply-accumulate instructions.
16724
16725@item -mno-opts
16726@opindex mno-opts
16727Disables all the optional instructions enabled by @option{-mall-opts}.
16728
16729@item -mrepeat
16730@opindex mrepeat
16731Enables the @code{repeat} and @code{erepeat} instructions, used for
16732low-overhead looping.
16733
16734@item -ms
16735@opindex ms
16736Causes all variables to default to the @code{.tiny} section.  Note
16737that there is a 65536-byte limit to this section.  Accesses to these
16738variables use the @code{%gp} base register.
16739
16740@item -msatur
16741@opindex msatur
16742Enables the saturation instructions.  Note that the compiler does not
16743currently generate these itself, but this option is included for
16744compatibility with other tools, like @code{as}.
16745
16746@item -msdram
16747@opindex msdram
16748Link the SDRAM-based runtime instead of the default ROM-based runtime.
16749
16750@item -msim
16751@opindex msim
16752Link the simulator run-time libraries.
16753
16754@item -msimnovec
16755@opindex msimnovec
16756Link the simulator runtime libraries, excluding built-in support
16757for reset and exception vectors and tables.
16758
16759@item -mtf
16760@opindex mtf
16761Causes all functions to default to the @code{.far} section.  Without
16762this option, functions default to the @code{.near} section.
16763
16764@item -mtiny=@var{n}
16765@opindex mtiny=
16766Variables that are @var{n} bytes or smaller are allocated to the
16767@code{.tiny} section.  These variables use the @code{$gp} base
16768register.  The default for this option is 4, but note that there's a
1676965536-byte limit to the @code{.tiny} section.
16770
16771@end table
16772
16773@node MicroBlaze Options
16774@subsection MicroBlaze Options
16775@cindex MicroBlaze Options
16776
16777@table @gcctabopt
16778
16779@item -msoft-float
16780@opindex msoft-float
16781Use software emulation for floating point (default).
16782
16783@item -mhard-float
16784@opindex mhard-float
16785Use hardware floating-point instructions.
16786
16787@item -mmemcpy
16788@opindex mmemcpy
16789Do not optimize block moves, use @code{memcpy}.
16790
16791@item -mno-clearbss
16792@opindex mno-clearbss
16793This option is deprecated.  Use @option{-fno-zero-initialized-in-bss} instead.
16794
16795@item -mcpu=@var{cpu-type}
16796@opindex mcpu=
16797Use features of, and schedule code for, the given CPU.
16798Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
16799where @var{X} is a major version, @var{YY} is the minor version, and
16800@var{Z} is compatibility code.  Example values are @samp{v3.00.a},
16801@samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v5.00.b}, @samp{v6.00.a}.
16802
16803@item -mxl-soft-mul
16804@opindex mxl-soft-mul
16805Use software multiply emulation (default).
16806
16807@item -mxl-soft-div
16808@opindex mxl-soft-div
16809Use software emulation for divides (default).
16810
16811@item -mxl-barrel-shift
16812@opindex mxl-barrel-shift
16813Use the hardware barrel shifter.
16814
16815@item -mxl-pattern-compare
16816@opindex mxl-pattern-compare
16817Use pattern compare instructions.
16818
16819@item -msmall-divides
16820@opindex msmall-divides
16821Use table lookup optimization for small signed integer divisions.
16822
16823@item -mxl-stack-check
16824@opindex mxl-stack-check
16825This option is deprecated.  Use @option{-fstack-check} instead.
16826
16827@item -mxl-gp-opt
16828@opindex mxl-gp-opt
16829Use GP-relative @code{.sdata}/@code{.sbss} sections.
16830
16831@item -mxl-multiply-high
16832@opindex mxl-multiply-high
16833Use multiply high instructions for high part of 32x32 multiply.
16834
16835@item -mxl-float-convert
16836@opindex mxl-float-convert
16837Use hardware floating-point conversion instructions.
16838
16839@item -mxl-float-sqrt
16840@opindex mxl-float-sqrt
16841Use hardware floating-point square root instruction.
16842
16843@item -mbig-endian
16844@opindex mbig-endian
16845Generate code for a big-endian target.
16846
16847@item -mlittle-endian
16848@opindex mlittle-endian
16849Generate code for a little-endian target.
16850
16851@item -mxl-reorder
16852@opindex mxl-reorder
16853Use reorder instructions (swap and byte reversed load/store).
16854
16855@item -mxl-mode-@var{app-model}
16856Select application model @var{app-model}.  Valid models are
16857@table @samp
16858@item executable
16859normal executable (default), uses startup code @file{crt0.o}.
16860
16861@item xmdstub
16862for use with Xilinx Microprocessor Debugger (XMD) based
16863software intrusive debug agent called xmdstub. This uses startup file
16864@file{crt1.o} and sets the start address of the program to 0x800.
16865
16866@item bootstrap
16867for applications that are loaded using a bootloader.
16868This model uses startup file @file{crt2.o} which does not contain a processor
16869reset vector handler. This is suitable for transferring control on a
16870processor reset to the bootloader rather than the application.
16871
16872@item novectors
16873for applications that do not require any of the
16874MicroBlaze vectors. This option may be useful for applications running
16875within a monitoring application. This model uses @file{crt3.o} as a startup file.
16876@end table
16877
16878Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
16879@option{-mxl-mode-@var{app-model}}.
16880
16881@end table
16882
16883@node MIPS Options
16884@subsection MIPS Options
16885@cindex MIPS options
16886
16887@table @gcctabopt
16888
16889@item -EB
16890@opindex EB
16891Generate big-endian code.
16892
16893@item -EL
16894@opindex EL
16895Generate little-endian code.  This is the default for @samp{mips*el-*-*}
16896configurations.
16897
16898@item -march=@var{arch}
16899@opindex march
16900Generate code that runs on @var{arch}, which can be the name of a
16901generic MIPS ISA, or the name of a particular processor.
16902The ISA names are:
16903@samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
16904@samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
16905@samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
16906@samp{mips64r5} and @samp{mips64r6}.
16907The processor names are:
16908@samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
16909@samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
16910@samp{5kc}, @samp{5kf},
16911@samp{20kc},
16912@samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
16913@samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
16914@samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
16915@samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
16916@samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
16917@samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a},
16918@samp{m4k},
16919@samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
16920@samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
16921@samp{orion},
16922@samp{p5600},
16923@samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
16924@samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r6000}, @samp{r8000},
16925@samp{rm7000}, @samp{rm9000},
16926@samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
16927@samp{sb1},
16928@samp{sr71000},
16929@samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
16930@samp{vr5000}, @samp{vr5400}, @samp{vr5500},
16931@samp{xlr} and @samp{xlp}.
16932The special value @samp{from-abi} selects the
16933most compatible architecture for the selected ABI (that is,
16934@samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
16935
16936The native Linux/GNU toolchain also supports the value @samp{native},
16937which selects the best architecture option for the host processor.
16938@option{-march=native} has no effect if GCC does not recognize
16939the processor.
16940
16941In processor names, a final @samp{000} can be abbreviated as @samp{k}
16942(for example, @option{-march=r2k}).  Prefixes are optional, and
16943@samp{vr} may be written @samp{r}.
16944
16945Names of the form @samp{@var{n}f2_1} refer to processors with
16946FPUs clocked at half the rate of the core, names of the form
16947@samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
16948rate as the core, and names of the form @samp{@var{n}f3_2} refer to
16949processors with FPUs clocked a ratio of 3:2 with respect to the core.
16950For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
16951for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
16952accepted as synonyms for @samp{@var{n}f1_1}.
16953
16954GCC defines two macros based on the value of this option.  The first
16955is @code{_MIPS_ARCH}, which gives the name of target architecture, as
16956a string.  The second has the form @code{_MIPS_ARCH_@var{foo}},
16957where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
16958For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
16959to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
16960
16961Note that the @code{_MIPS_ARCH} macro uses the processor names given
16962above.  In other words, it has the full prefix and does not
16963abbreviate @samp{000} as @samp{k}.  In the case of @samp{from-abi},
16964the macro names the resolved architecture (either @code{"mips1"} or
16965@code{"mips3"}).  It names the default architecture when no
16966@option{-march} option is given.
16967
16968@item -mtune=@var{arch}
16969@opindex mtune
16970Optimize for @var{arch}.  Among other things, this option controls
16971the way instructions are scheduled, and the perceived cost of arithmetic
16972operations.  The list of @var{arch} values is the same as for
16973@option{-march}.
16974
16975When this option is not used, GCC optimizes for the processor
16976specified by @option{-march}.  By using @option{-march} and
16977@option{-mtune} together, it is possible to generate code that
16978runs on a family of processors, but optimize the code for one
16979particular member of that family.
16980
16981@option{-mtune} defines the macros @code{_MIPS_TUNE} and
16982@code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
16983@option{-march} ones described above.
16984
16985@item -mips1
16986@opindex mips1
16987Equivalent to @option{-march=mips1}.
16988
16989@item -mips2
16990@opindex mips2
16991Equivalent to @option{-march=mips2}.
16992
16993@item -mips3
16994@opindex mips3
16995Equivalent to @option{-march=mips3}.
16996
16997@item -mips4
16998@opindex mips4
16999Equivalent to @option{-march=mips4}.
17000
17001@item -mips32
17002@opindex mips32
17003Equivalent to @option{-march=mips32}.
17004
17005@item -mips32r3
17006@opindex mips32r3
17007Equivalent to @option{-march=mips32r3}.
17008
17009@item -mips32r5
17010@opindex mips32r5
17011Equivalent to @option{-march=mips32r5}.
17012
17013@item -mips32r6
17014@opindex mips32r6
17015Equivalent to @option{-march=mips32r6}.
17016
17017@item -mips64
17018@opindex mips64
17019Equivalent to @option{-march=mips64}.
17020
17021@item -mips64r2
17022@opindex mips64r2
17023Equivalent to @option{-march=mips64r2}.
17024
17025@item -mips64r3
17026@opindex mips64r3
17027Equivalent to @option{-march=mips64r3}.
17028
17029@item -mips64r5
17030@opindex mips64r5
17031Equivalent to @option{-march=mips64r5}.
17032
17033@item -mips64r6
17034@opindex mips64r6
17035Equivalent to @option{-march=mips64r6}.
17036
17037@item -mips16
17038@itemx -mno-mips16
17039@opindex mips16
17040@opindex mno-mips16
17041Generate (do not generate) MIPS16 code.  If GCC is targeting a
17042MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
17043
17044MIPS16 code generation can also be controlled on a per-function basis
17045by means of @code{mips16} and @code{nomips16} attributes.
17046@xref{Function Attributes}, for more information.
17047
17048@item -mflip-mips16
17049@opindex mflip-mips16
17050Generate MIPS16 code on alternating functions.  This option is provided
17051for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
17052not intended for ordinary use in compiling user code.
17053
17054@item -minterlink-compressed
17055@item -mno-interlink-compressed
17056@opindex minterlink-compressed
17057@opindex mno-interlink-compressed
17058Require (do not require) that code using the standard (uncompressed) MIPS ISA
17059be link-compatible with MIPS16 and microMIPS code, and vice versa.
17060
17061For example, code using the standard ISA encoding cannot jump directly
17062to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
17063@option{-minterlink-compressed} therefore disables direct jumps unless GCC
17064knows that the target of the jump is not compressed.
17065
17066@item -minterlink-mips16
17067@itemx -mno-interlink-mips16
17068@opindex minterlink-mips16
17069@opindex mno-interlink-mips16
17070Aliases of @option{-minterlink-compressed} and
17071@option{-mno-interlink-compressed}.  These options predate the microMIPS ASE
17072and are retained for backwards compatibility.
17073
17074@item -mabi=32
17075@itemx -mabi=o64
17076@itemx -mabi=n32
17077@itemx -mabi=64
17078@itemx -mabi=eabi
17079@opindex mabi=32
17080@opindex mabi=o64
17081@opindex mabi=n32
17082@opindex mabi=64
17083@opindex mabi=eabi
17084Generate code for the given ABI@.
17085
17086Note that the EABI has a 32-bit and a 64-bit variant.  GCC normally
17087generates 64-bit code when you select a 64-bit architecture, but you
17088can use @option{-mgp32} to get 32-bit code instead.
17089
17090For information about the O64 ABI, see
17091@uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
17092
17093GCC supports a variant of the o32 ABI in which floating-point registers
17094are 64 rather than 32 bits wide.  You can select this combination with
17095@option{-mabi=32} @option{-mfp64}.  This ABI relies on the @code{mthc1}
17096and @code{mfhc1} instructions and is therefore only supported for
17097MIPS32R2, MIPS32R3 and MIPS32R5 processors.
17098
17099The register assignments for arguments and return values remain the
17100same, but each scalar value is passed in a single 64-bit register
17101rather than a pair of 32-bit registers.  For example, scalar
17102floating-point values are returned in @samp{$f0} only, not a
17103@samp{$f0}/@samp{$f1} pair.  The set of call-saved registers also
17104remains the same in that the even-numbered double-precision registers
17105are saved.
17106
17107Two additional variants of the o32 ABI are supported to enable
17108a transition from 32-bit to 64-bit registers.  These are FPXX
17109(@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
17110The FPXX extension mandates that all code must execute correctly
17111when run using 32-bit or 64-bit registers.  The code can be interlinked
17112with either FP32 or FP64, but not both.
17113The FP64A extension is similar to the FP64 extension but forbids the
17114use of odd-numbered single-precision registers.  This can be used
17115in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
17116processors and allows both FP32 and FP64A code to interlink and
17117run in the same process without changing FPU modes.
17118
17119@item -mabicalls
17120@itemx -mno-abicalls
17121@opindex mabicalls
17122@opindex mno-abicalls
17123Generate (do not generate) code that is suitable for SVR4-style
17124dynamic objects.  @option{-mabicalls} is the default for SVR4-based
17125systems.
17126
17127@item -mshared
17128@itemx -mno-shared
17129Generate (do not generate) code that is fully position-independent,
17130and that can therefore be linked into shared libraries.  This option
17131only affects @option{-mabicalls}.
17132
17133All @option{-mabicalls} code has traditionally been position-independent,
17134regardless of options like @option{-fPIC} and @option{-fpic}.  However,
17135as an extension, the GNU toolchain allows executables to use absolute
17136accesses for locally-binding symbols.  It can also use shorter GP
17137initialization sequences and generate direct calls to locally-defined
17138functions.  This mode is selected by @option{-mno-shared}.
17139
17140@option{-mno-shared} depends on binutils 2.16 or higher and generates
17141objects that can only be linked by the GNU linker.  However, the option
17142does not affect the ABI of the final executable; it only affects the ABI
17143of relocatable objects.  Using @option{-mno-shared} generally makes
17144executables both smaller and quicker.
17145
17146@option{-mshared} is the default.
17147
17148@item -mplt
17149@itemx -mno-plt
17150@opindex mplt
17151@opindex mno-plt
17152Assume (do not assume) that the static and dynamic linkers
17153support PLTs and copy relocations.  This option only affects
17154@option{-mno-shared -mabicalls}.  For the n64 ABI, this option
17155has no effect without @option{-msym32}.
17156
17157You can make @option{-mplt} the default by configuring
17158GCC with @option{--with-mips-plt}.  The default is
17159@option{-mno-plt} otherwise.
17160
17161@item -mxgot
17162@itemx -mno-xgot
17163@opindex mxgot
17164@opindex mno-xgot
17165Lift (do not lift) the usual restrictions on the size of the global
17166offset table.
17167
17168GCC normally uses a single instruction to load values from the GOT@.
17169While this is relatively efficient, it only works if the GOT
17170is smaller than about 64k.  Anything larger causes the linker
17171to report an error such as:
17172
17173@cindex relocation truncated to fit (MIPS)
17174@smallexample
17175relocation truncated to fit: R_MIPS_GOT16 foobar
17176@end smallexample
17177
17178If this happens, you should recompile your code with @option{-mxgot}.
17179This works with very large GOTs, although the code is also
17180less efficient, since it takes three instructions to fetch the
17181value of a global symbol.
17182
17183Note that some linkers can create multiple GOTs.  If you have such a
17184linker, you should only need to use @option{-mxgot} when a single object
17185file accesses more than 64k's worth of GOT entries.  Very few do.
17186
17187These options have no effect unless GCC is generating position
17188independent code.
17189
17190@item -mgp32
17191@opindex mgp32
17192Assume that general-purpose registers are 32 bits wide.
17193
17194@item -mgp64
17195@opindex mgp64
17196Assume that general-purpose registers are 64 bits wide.
17197
17198@item -mfp32
17199@opindex mfp32
17200Assume that floating-point registers are 32 bits wide.
17201
17202@item -mfp64
17203@opindex mfp64
17204Assume that floating-point registers are 64 bits wide.
17205
17206@item -mfpxx
17207@opindex mfpxx
17208Do not assume the width of floating-point registers.
17209
17210@item -mhard-float
17211@opindex mhard-float
17212Use floating-point coprocessor instructions.
17213
17214@item -msoft-float
17215@opindex msoft-float
17216Do not use floating-point coprocessor instructions.  Implement
17217floating-point calculations using library calls instead.
17218
17219@item -mno-float
17220@opindex mno-float
17221Equivalent to @option{-msoft-float}, but additionally asserts that the
17222program being compiled does not perform any floating-point operations.
17223This option is presently supported only by some bare-metal MIPS
17224configurations, where it may select a special set of libraries
17225that lack all floating-point support (including, for example, the
17226floating-point @code{printf} formats).
17227If code compiled with @option{-mno-float} accidentally contains
17228floating-point operations, it is likely to suffer a link-time
17229or run-time failure.
17230
17231@item -msingle-float
17232@opindex msingle-float
17233Assume that the floating-point coprocessor only supports single-precision
17234operations.
17235
17236@item -mdouble-float
17237@opindex mdouble-float
17238Assume that the floating-point coprocessor supports double-precision
17239operations.  This is the default.
17240
17241@item -modd-spreg
17242@itemx -mno-odd-spreg
17243@opindex modd-spreg
17244@opindex mno-odd-spreg
17245Enable the use of odd-numbered single-precision floating-point registers
17246for the o32 ABI.  This is the default for processors that are known to
17247support these registers.  When using the o32 FPXX ABI, @option{-mno-odd-spreg}
17248is set by default.
17249
17250@item -mabs=2008
17251@itemx -mabs=legacy
17252@opindex mabs=2008
17253@opindex mabs=legacy
17254These options control the treatment of the special not-a-number (NaN)
17255IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
17256@code{neg.@i{fmt}} machine instructions.
17257
17258By default or when @option{-mabs=legacy} is used the legacy
17259treatment is selected.  In this case these instructions are considered
17260arithmetic and avoided where correct operation is required and the
17261input operand might be a NaN.  A longer sequence of instructions that
17262manipulate the sign bit of floating-point datum manually is used
17263instead unless the @option{-ffinite-math-only} option has also been
17264specified.
17265
17266The @option{-mabs=2008} option selects the IEEE 754-2008 treatment.  In
17267this case these instructions are considered non-arithmetic and therefore
17268operating correctly in all cases, including in particular where the
17269input operand is a NaN.  These instructions are therefore always used
17270for the respective operations.
17271
17272@item -mnan=2008
17273@itemx -mnan=legacy
17274@opindex mnan=2008
17275@opindex mnan=legacy
17276These options control the encoding of the special not-a-number (NaN)
17277IEEE 754 floating-point data.
17278
17279The @option{-mnan=legacy} option selects the legacy encoding.  In this
17280case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
17281significand field being 0, whereas signalling NaNs (sNaNs) are denoted
17282by the first bit of their trailing significand field being 1.
17283
17284The @option{-mnan=2008} option selects the IEEE 754-2008 encoding.  In
17285this case qNaNs are denoted by the first bit of their trailing
17286significand field being 1, whereas sNaNs are denoted by the first bit of
17287their trailing significand field being 0.
17288
17289The default is @option{-mnan=legacy} unless GCC has been configured with
17290@option{--with-nan=2008}.
17291
17292@item -mllsc
17293@itemx -mno-llsc
17294@opindex mllsc
17295@opindex mno-llsc
17296Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
17297implement atomic memory built-in functions.  When neither option is
17298specified, GCC uses the instructions if the target architecture
17299supports them.
17300
17301@option{-mllsc} is useful if the runtime environment can emulate the
17302instructions and @option{-mno-llsc} can be useful when compiling for
17303nonstandard ISAs.  You can make either option the default by
17304configuring GCC with @option{--with-llsc} and @option{--without-llsc}
17305respectively.  @option{--with-llsc} is the default for some
17306configurations; see the installation documentation for details.
17307
17308@item -mdsp
17309@itemx -mno-dsp
17310@opindex mdsp
17311@opindex mno-dsp
17312Use (do not use) revision 1 of the MIPS DSP ASE@.
17313@xref{MIPS DSP Built-in Functions}.  This option defines the
17314preprocessor macro @code{__mips_dsp}.  It also defines
17315@code{__mips_dsp_rev} to 1.
17316
17317@item -mdspr2
17318@itemx -mno-dspr2
17319@opindex mdspr2
17320@opindex mno-dspr2
17321Use (do not use) revision 2 of the MIPS DSP ASE@.
17322@xref{MIPS DSP Built-in Functions}.  This option defines the
17323preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
17324It also defines @code{__mips_dsp_rev} to 2.
17325
17326@item -msmartmips
17327@itemx -mno-smartmips
17328@opindex msmartmips
17329@opindex mno-smartmips
17330Use (do not use) the MIPS SmartMIPS ASE.
17331
17332@item -mpaired-single
17333@itemx -mno-paired-single
17334@opindex mpaired-single
17335@opindex mno-paired-single
17336Use (do not use) paired-single floating-point instructions.
17337@xref{MIPS Paired-Single Support}.  This option requires
17338hardware floating-point support to be enabled.
17339
17340@item -mdmx
17341@itemx -mno-mdmx
17342@opindex mdmx
17343@opindex mno-mdmx
17344Use (do not use) MIPS Digital Media Extension instructions.
17345This option can only be used when generating 64-bit code and requires
17346hardware floating-point support to be enabled.
17347
17348@item -mips3d
17349@itemx -mno-mips3d
17350@opindex mips3d
17351@opindex mno-mips3d
17352Use (do not use) the MIPS-3D ASE@.  @xref{MIPS-3D Built-in Functions}.
17353The option @option{-mips3d} implies @option{-mpaired-single}.
17354
17355@item -mmicromips
17356@itemx -mno-micromips
17357@opindex mmicromips
17358@opindex mno-mmicromips
17359Generate (do not generate) microMIPS code.
17360
17361MicroMIPS code generation can also be controlled on a per-function basis
17362by means of @code{micromips} and @code{nomicromips} attributes.
17363@xref{Function Attributes}, for more information.
17364
17365@item -mmt
17366@itemx -mno-mt
17367@opindex mmt
17368@opindex mno-mt
17369Use (do not use) MT Multithreading instructions.
17370
17371@item -mmcu
17372@itemx -mno-mcu
17373@opindex mmcu
17374@opindex mno-mcu
17375Use (do not use) the MIPS MCU ASE instructions.
17376
17377@item -meva
17378@itemx -mno-eva
17379@opindex meva
17380@opindex mno-eva
17381Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
17382
17383@item -mvirt
17384@itemx -mno-virt
17385@opindex mvirt
17386@opindex mno-virt
17387Use (do not use) the MIPS Virtualization Application Specific instructions.
17388
17389@item -mxpa
17390@itemx -mno-xpa
17391@opindex mxpa
17392@opindex mno-xpa
17393Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
17394
17395@item -mlong64
17396@opindex mlong64
17397Force @code{long} types to be 64 bits wide.  See @option{-mlong32} for
17398an explanation of the default and the way that the pointer size is
17399determined.
17400
17401@item -mlong32
17402@opindex mlong32
17403Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
17404
17405The default size of @code{int}s, @code{long}s and pointers depends on
17406the ABI@.  All the supported ABIs use 32-bit @code{int}s.  The n64 ABI
17407uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
1740832-bit @code{long}s.  Pointers are the same size as @code{long}s,
17409or the same size as integer registers, whichever is smaller.
17410
17411@item -msym32
17412@itemx -mno-sym32
17413@opindex msym32
17414@opindex mno-sym32
17415Assume (do not assume) that all symbols have 32-bit values, regardless
17416of the selected ABI@.  This option is useful in combination with
17417@option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
17418to generate shorter and faster references to symbolic addresses.
17419
17420@item -G @var{num}
17421@opindex G
17422Put definitions of externally-visible data in a small data section
17423if that data is no bigger than @var{num} bytes.  GCC can then generate
17424more efficient accesses to the data; see @option{-mgpopt} for details.
17425
17426The default @option{-G} option depends on the configuration.
17427
17428@item -mlocal-sdata
17429@itemx -mno-local-sdata
17430@opindex mlocal-sdata
17431@opindex mno-local-sdata
17432Extend (do not extend) the @option{-G} behavior to local data too,
17433such as to static variables in C@.  @option{-mlocal-sdata} is the
17434default for all configurations.
17435
17436If the linker complains that an application is using too much small data,
17437you might want to try rebuilding the less performance-critical parts with
17438@option{-mno-local-sdata}.  You might also want to build large
17439libraries with @option{-mno-local-sdata}, so that the libraries leave
17440more room for the main program.
17441
17442@item -mextern-sdata
17443@itemx -mno-extern-sdata
17444@opindex mextern-sdata
17445@opindex mno-extern-sdata
17446Assume (do not assume) that externally-defined data is in
17447a small data section if the size of that data is within the @option{-G} limit.
17448@option{-mextern-sdata} is the default for all configurations.
17449
17450If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
17451@var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
17452that is no bigger than @var{num} bytes, you must make sure that @var{Var}
17453is placed in a small data section.  If @var{Var} is defined by another
17454module, you must either compile that module with a high-enough
17455@option{-G} setting or attach a @code{section} attribute to @var{Var}'s
17456definition.  If @var{Var} is common, you must link the application
17457with a high-enough @option{-G} setting.
17458
17459The easiest way of satisfying these restrictions is to compile
17460and link every module with the same @option{-G} option.  However,
17461you may wish to build a library that supports several different
17462small data limits.  You can do this by compiling the library with
17463the highest supported @option{-G} setting and additionally using
17464@option{-mno-extern-sdata} to stop the library from making assumptions
17465about externally-defined data.
17466
17467@item -mgpopt
17468@itemx -mno-gpopt
17469@opindex mgpopt
17470@opindex mno-gpopt
17471Use (do not use) GP-relative accesses for symbols that are known to be
17472in a small data section; see @option{-G}, @option{-mlocal-sdata} and
17473@option{-mextern-sdata}.  @option{-mgpopt} is the default for all
17474configurations.
17475
17476@option{-mno-gpopt} is useful for cases where the @code{$gp} register
17477might not hold the value of @code{_gp}.  For example, if the code is
17478part of a library that might be used in a boot monitor, programs that
17479call boot monitor routines pass an unknown value in @code{$gp}.
17480(In such situations, the boot monitor itself is usually compiled
17481with @option{-G0}.)
17482
17483@option{-mno-gpopt} implies @option{-mno-local-sdata} and
17484@option{-mno-extern-sdata}.
17485
17486@item -membedded-data
17487@itemx -mno-embedded-data
17488@opindex membedded-data
17489@opindex mno-embedded-data
17490Allocate variables to the read-only data section first if possible, then
17491next in the small data section if possible, otherwise in data.  This gives
17492slightly slower code than the default, but reduces the amount of RAM required
17493when executing, and thus may be preferred for some embedded systems.
17494
17495@item -muninit-const-in-rodata
17496@itemx -mno-uninit-const-in-rodata
17497@opindex muninit-const-in-rodata
17498@opindex mno-uninit-const-in-rodata
17499Put uninitialized @code{const} variables in the read-only data section.
17500This option is only meaningful in conjunction with @option{-membedded-data}.
17501
17502@item -mcode-readable=@var{setting}
17503@opindex mcode-readable
17504Specify whether GCC may generate code that reads from executable sections.
17505There are three possible settings:
17506
17507@table @gcctabopt
17508@item -mcode-readable=yes
17509Instructions may freely access executable sections.  This is the
17510default setting.
17511
17512@item -mcode-readable=pcrel
17513MIPS16 PC-relative load instructions can access executable sections,
17514but other instructions must not do so.  This option is useful on 4KSc
17515and 4KSd processors when the code TLBs have the Read Inhibit bit set.
17516It is also useful on processors that can be configured to have a dual
17517instruction/data SRAM interface and that, like the M4K, automatically
17518redirect PC-relative loads to the instruction RAM.
17519
17520@item -mcode-readable=no
17521Instructions must not access executable sections.  This option can be
17522useful on targets that are configured to have a dual instruction/data
17523SRAM interface but that (unlike the M4K) do not automatically redirect
17524PC-relative loads to the instruction RAM.
17525@end table
17526
17527@item -msplit-addresses
17528@itemx -mno-split-addresses
17529@opindex msplit-addresses
17530@opindex mno-split-addresses
17531Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
17532relocation operators.  This option has been superseded by
17533@option{-mexplicit-relocs} but is retained for backwards compatibility.
17534
17535@item -mexplicit-relocs
17536@itemx -mno-explicit-relocs
17537@opindex mexplicit-relocs
17538@opindex mno-explicit-relocs
17539Use (do not use) assembler relocation operators when dealing with symbolic
17540addresses.  The alternative, selected by @option{-mno-explicit-relocs},
17541is to use assembler macros instead.
17542
17543@option{-mexplicit-relocs} is the default if GCC was configured
17544to use an assembler that supports relocation operators.
17545
17546@item -mcheck-zero-division
17547@itemx -mno-check-zero-division
17548@opindex mcheck-zero-division
17549@opindex mno-check-zero-division
17550Trap (do not trap) on integer division by zero.
17551
17552The default is @option{-mcheck-zero-division}.
17553
17554@item -mdivide-traps
17555@itemx -mdivide-breaks
17556@opindex mdivide-traps
17557@opindex mdivide-breaks
17558MIPS systems check for division by zero by generating either a
17559conditional trap or a break instruction.  Using traps results in
17560smaller code, but is only supported on MIPS II and later.  Also, some
17561versions of the Linux kernel have a bug that prevents trap from
17562generating the proper signal (@code{SIGFPE}).  Use @option{-mdivide-traps} to
17563allow conditional traps on architectures that support them and
17564@option{-mdivide-breaks} to force the use of breaks.
17565
17566The default is usually @option{-mdivide-traps}, but this can be
17567overridden at configure time using @option{--with-divide=breaks}.
17568Divide-by-zero checks can be completely disabled using
17569@option{-mno-check-zero-division}.
17570
17571@item -mmemcpy
17572@itemx -mno-memcpy
17573@opindex mmemcpy
17574@opindex mno-memcpy
17575Force (do not force) the use of @code{memcpy} for non-trivial block
17576moves.  The default is @option{-mno-memcpy}, which allows GCC to inline
17577most constant-sized copies.
17578
17579@item -mlong-calls
17580@itemx -mno-long-calls
17581@opindex mlong-calls
17582@opindex mno-long-calls
17583Disable (do not disable) use of the @code{jal} instruction.  Calling
17584functions using @code{jal} is more efficient but requires the caller
17585and callee to be in the same 256 megabyte segment.
17586
17587This option has no effect on abicalls code.  The default is
17588@option{-mno-long-calls}.
17589
17590@item -mmad
17591@itemx -mno-mad
17592@opindex mmad
17593@opindex mno-mad
17594Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
17595instructions, as provided by the R4650 ISA@.
17596
17597@item -mimadd
17598@itemx -mno-imadd
17599@opindex mimadd
17600@opindex mno-imadd
17601Enable (disable) use of the @code{madd} and @code{msub} integer
17602instructions.  The default is @option{-mimadd} on architectures
17603that support @code{madd} and @code{msub} except for the 74k
17604architecture where it was found to generate slower code.
17605
17606@item -mfused-madd
17607@itemx -mno-fused-madd
17608@opindex mfused-madd
17609@opindex mno-fused-madd
17610Enable (disable) use of the floating-point multiply-accumulate
17611instructions, when they are available.  The default is
17612@option{-mfused-madd}.
17613
17614On the R8000 CPU when multiply-accumulate instructions are used,
17615the intermediate product is calculated to infinite precision
17616and is not subject to the FCSR Flush to Zero bit.  This may be
17617undesirable in some circumstances.  On other processors the result
17618is numerically identical to the equivalent computation using
17619separate multiply, add, subtract and negate instructions.
17620
17621@item -nocpp
17622@opindex nocpp
17623Tell the MIPS assembler to not run its preprocessor over user
17624assembler files (with a @samp{.s} suffix) when assembling them.
17625
17626@item -mfix-24k
17627@item -mno-fix-24k
17628@opindex mfix-24k
17629@opindex mno-fix-24k
17630Work around the 24K E48 (lost data on stores during refill) errata.
17631The workarounds are implemented by the assembler rather than by GCC@.
17632
17633@item -mfix-r4000
17634@itemx -mno-fix-r4000
17635@opindex mfix-r4000
17636@opindex mno-fix-r4000
17637Work around certain R4000 CPU errata:
17638@itemize @minus
17639@item
17640A double-word or a variable shift may give an incorrect result if executed
17641immediately after starting an integer division.
17642@item
17643A double-word or a variable shift may give an incorrect result if executed
17644while an integer multiplication is in progress.
17645@item
17646An integer division may give an incorrect result if started in a delay slot
17647of a taken branch or a jump.
17648@end itemize
17649
17650@item -mfix-r4400
17651@itemx -mno-fix-r4400
17652@opindex mfix-r4400
17653@opindex mno-fix-r4400
17654Work around certain R4400 CPU errata:
17655@itemize @minus
17656@item
17657A double-word or a variable shift may give an incorrect result if executed
17658immediately after starting an integer division.
17659@end itemize
17660
17661@item -mfix-r10000
17662@itemx -mno-fix-r10000
17663@opindex mfix-r10000
17664@opindex mno-fix-r10000
17665Work around certain R10000 errata:
17666@itemize @minus
17667@item
17668@code{ll}/@code{sc} sequences may not behave atomically on revisions
17669prior to 3.0.  They may deadlock on revisions 2.6 and earlier.
17670@end itemize
17671
17672This option can only be used if the target architecture supports
17673branch-likely instructions.  @option{-mfix-r10000} is the default when
17674@option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
17675otherwise.
17676
17677@item -mfix-rm7000
17678@itemx -mno-fix-rm7000
17679@opindex mfix-rm7000
17680Work around the RM7000 @code{dmult}/@code{dmultu} errata.  The
17681workarounds are implemented by the assembler rather than by GCC@.
17682
17683@item -mfix-vr4120
17684@itemx -mno-fix-vr4120
17685@opindex mfix-vr4120
17686Work around certain VR4120 errata:
17687@itemize @minus
17688@item
17689@code{dmultu} does not always produce the correct result.
17690@item
17691@code{div} and @code{ddiv} do not always produce the correct result if one
17692of the operands is negative.
17693@end itemize
17694The workarounds for the division errata rely on special functions in
17695@file{libgcc.a}.  At present, these functions are only provided by
17696the @code{mips64vr*-elf} configurations.
17697
17698Other VR4120 errata require a NOP to be inserted between certain pairs of
17699instructions.  These errata are handled by the assembler, not by GCC itself.
17700
17701@item -mfix-vr4130
17702@opindex mfix-vr4130
17703Work around the VR4130 @code{mflo}/@code{mfhi} errata.  The
17704workarounds are implemented by the assembler rather than by GCC,
17705although GCC avoids using @code{mflo} and @code{mfhi} if the
17706VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
17707instructions are available instead.
17708
17709@item -mfix-sb1
17710@itemx -mno-fix-sb1
17711@opindex mfix-sb1
17712Work around certain SB-1 CPU core errata.
17713(This flag currently works around the SB-1 revision 2
17714``F1'' and ``F2'' floating-point errata.)
17715
17716@item -mr10k-cache-barrier=@var{setting}
17717@opindex mr10k-cache-barrier
17718Specify whether GCC should insert cache barriers to avoid the
17719side-effects of speculation on R10K processors.
17720
17721In common with many processors, the R10K tries to predict the outcome
17722of a conditional branch and speculatively executes instructions from
17723the ``taken'' branch.  It later aborts these instructions if the
17724predicted outcome is wrong.  However, on the R10K, even aborted
17725instructions can have side effects.
17726
17727This problem only affects kernel stores and, depending on the system,
17728kernel loads.  As an example, a speculatively-executed store may load
17729the target memory into cache and mark the cache line as dirty, even if
17730the store itself is later aborted.  If a DMA operation writes to the
17731same area of memory before the ``dirty'' line is flushed, the cached
17732data overwrites the DMA-ed data.  See the R10K processor manual
17733for a full description, including other potential problems.
17734
17735One workaround is to insert cache barrier instructions before every memory
17736access that might be speculatively executed and that might have side
17737effects even if aborted.  @option{-mr10k-cache-barrier=@var{setting}}
17738controls GCC's implementation of this workaround.  It assumes that
17739aborted accesses to any byte in the following regions does not have
17740side effects:
17741
17742@enumerate
17743@item
17744the memory occupied by the current function's stack frame;
17745
17746@item
17747the memory occupied by an incoming stack argument;
17748
17749@item
17750the memory occupied by an object with a link-time-constant address.
17751@end enumerate
17752
17753It is the kernel's responsibility to ensure that speculative
17754accesses to these regions are indeed safe.
17755
17756If the input program contains a function declaration such as:
17757
17758@smallexample
17759void foo (void);
17760@end smallexample
17761
17762then the implementation of @code{foo} must allow @code{j foo} and
17763@code{jal foo} to be executed speculatively.  GCC honors this
17764restriction for functions it compiles itself.  It expects non-GCC
17765functions (such as hand-written assembly code) to do the same.
17766
17767The option has three forms:
17768
17769@table @gcctabopt
17770@item -mr10k-cache-barrier=load-store
17771Insert a cache barrier before a load or store that might be
17772speculatively executed and that might have side effects even
17773if aborted.
17774
17775@item -mr10k-cache-barrier=store
17776Insert a cache barrier before a store that might be speculatively
17777executed and that might have side effects even if aborted.
17778
17779@item -mr10k-cache-barrier=none
17780Disable the insertion of cache barriers.  This is the default setting.
17781@end table
17782
17783@item -mflush-func=@var{func}
17784@itemx -mno-flush-func
17785@opindex mflush-func
17786Specifies the function to call to flush the I and D caches, or to not
17787call any such function.  If called, the function must take the same
17788arguments as the common @code{_flush_func}, that is, the address of the
17789memory range for which the cache is being flushed, the size of the
17790memory range, and the number 3 (to flush both caches).  The default
17791depends on the target GCC was configured for, but commonly is either
17792@code{_flush_func} or @code{__cpu_flush}.
17793
17794@item mbranch-cost=@var{num}
17795@opindex mbranch-cost
17796Set the cost of branches to roughly @var{num} ``simple'' instructions.
17797This cost is only a heuristic and is not guaranteed to produce
17798consistent results across releases.  A zero cost redundantly selects
17799the default, which is based on the @option{-mtune} setting.
17800
17801@item -mbranch-likely
17802@itemx -mno-branch-likely
17803@opindex mbranch-likely
17804@opindex mno-branch-likely
17805Enable or disable use of Branch Likely instructions, regardless of the
17806default for the selected architecture.  By default, Branch Likely
17807instructions may be generated if they are supported by the selected
17808architecture.  An exception is for the MIPS32 and MIPS64 architectures
17809and processors that implement those architectures; for those, Branch
17810Likely instructions are not be generated by default because the MIPS32
17811and MIPS64 architectures specifically deprecate their use.
17812
17813@item -mfp-exceptions
17814@itemx -mno-fp-exceptions
17815@opindex mfp-exceptions
17816Specifies whether FP exceptions are enabled.  This affects how
17817FP instructions are scheduled for some processors.
17818The default is that FP exceptions are
17819enabled.
17820
17821For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
1782264-bit code, then we can use both FP pipes.  Otherwise, we can only use one
17823FP pipe.
17824
17825@item -mvr4130-align
17826@itemx -mno-vr4130-align
17827@opindex mvr4130-align
17828The VR4130 pipeline is two-way superscalar, but can only issue two
17829instructions together if the first one is 8-byte aligned.  When this
17830option is enabled, GCC aligns pairs of instructions that it
17831thinks should execute in parallel.
17832
17833This option only has an effect when optimizing for the VR4130.
17834It normally makes code faster, but at the expense of making it bigger.
17835It is enabled by default at optimization level @option{-O3}.
17836
17837@item -msynci
17838@itemx -mno-synci
17839@opindex msynci
17840Enable (disable) generation of @code{synci} instructions on
17841architectures that support it.  The @code{synci} instructions (if
17842enabled) are generated when @code{__builtin___clear_cache} is
17843compiled.
17844
17845This option defaults to @option{-mno-synci}, but the default can be
17846overridden by configuring GCC with @option{--with-synci}.
17847
17848When compiling code for single processor systems, it is generally safe
17849to use @code{synci}.  However, on many multi-core (SMP) systems, it
17850does not invalidate the instruction caches on all cores and may lead
17851to undefined behavior.
17852
17853@item -mrelax-pic-calls
17854@itemx -mno-relax-pic-calls
17855@opindex mrelax-pic-calls
17856Try to turn PIC calls that are normally dispatched via register
17857@code{$25} into direct calls.  This is only possible if the linker can
17858resolve the destination at link-time and if the destination is within
17859range for a direct call.
17860
17861@option{-mrelax-pic-calls} is the default if GCC was configured to use
17862an assembler and a linker that support the @code{.reloc} assembly
17863directive and @option{-mexplicit-relocs} is in effect.  With
17864@option{-mno-explicit-relocs}, this optimization can be performed by the
17865assembler and the linker alone without help from the compiler.
17866
17867@item -mmcount-ra-address
17868@itemx -mno-mcount-ra-address
17869@opindex mmcount-ra-address
17870@opindex mno-mcount-ra-address
17871Emit (do not emit) code that allows @code{_mcount} to modify the
17872calling function's return address.  When enabled, this option extends
17873the usual @code{_mcount} interface with a new @var{ra-address}
17874parameter, which has type @code{intptr_t *} and is passed in register
17875@code{$12}.  @code{_mcount} can then modify the return address by
17876doing both of the following:
17877@itemize
17878@item
17879Returning the new address in register @code{$31}.
17880@item
17881Storing the new address in @code{*@var{ra-address}},
17882if @var{ra-address} is nonnull.
17883@end itemize
17884
17885The default is @option{-mno-mcount-ra-address}.
17886
17887@end table
17888
17889@node MMIX Options
17890@subsection MMIX Options
17891@cindex MMIX Options
17892
17893These options are defined for the MMIX:
17894
17895@table @gcctabopt
17896@item -mlibfuncs
17897@itemx -mno-libfuncs
17898@opindex mlibfuncs
17899@opindex mno-libfuncs
17900Specify that intrinsic library functions are being compiled, passing all
17901values in registers, no matter the size.
17902
17903@item -mepsilon
17904@itemx -mno-epsilon
17905@opindex mepsilon
17906@opindex mno-epsilon
17907Generate floating-point comparison instructions that compare with respect
17908to the @code{rE} epsilon register.
17909
17910@item -mabi=mmixware
17911@itemx -mabi=gnu
17912@opindex mabi=mmixware
17913@opindex mabi=gnu
17914Generate code that passes function parameters and return values that (in
17915the called function) are seen as registers @code{$0} and up, as opposed to
17916the GNU ABI which uses global registers @code{$231} and up.
17917
17918@item -mzero-extend
17919@itemx -mno-zero-extend
17920@opindex mzero-extend
17921@opindex mno-zero-extend
17922When reading data from memory in sizes shorter than 64 bits, use (do not
17923use) zero-extending load instructions by default, rather than
17924sign-extending ones.
17925
17926@item -mknuthdiv
17927@itemx -mno-knuthdiv
17928@opindex mknuthdiv
17929@opindex mno-knuthdiv
17930Make the result of a division yielding a remainder have the same sign as
17931the divisor.  With the default, @option{-mno-knuthdiv}, the sign of the
17932remainder follows the sign of the dividend.  Both methods are
17933arithmetically valid, the latter being almost exclusively used.
17934
17935@item -mtoplevel-symbols
17936@itemx -mno-toplevel-symbols
17937@opindex mtoplevel-symbols
17938@opindex mno-toplevel-symbols
17939Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
17940code can be used with the @code{PREFIX} assembly directive.
17941
17942@item -melf
17943@opindex melf
17944Generate an executable in the ELF format, rather than the default
17945@samp{mmo} format used by the @command{mmix} simulator.
17946
17947@item -mbranch-predict
17948@itemx -mno-branch-predict
17949@opindex mbranch-predict
17950@opindex mno-branch-predict
17951Use (do not use) the probable-branch instructions, when static branch
17952prediction indicates a probable branch.
17953
17954@item -mbase-addresses
17955@itemx -mno-base-addresses
17956@opindex mbase-addresses
17957@opindex mno-base-addresses
17958Generate (do not generate) code that uses @emph{base addresses}.  Using a
17959base address automatically generates a request (handled by the assembler
17960and the linker) for a constant to be set up in a global register.  The
17961register is used for one or more base address requests within the range 0
17962to 255 from the value held in the register.  The generally leads to short
17963and fast code, but the number of different data items that can be
17964addressed is limited.  This means that a program that uses lots of static
17965data may require @option{-mno-base-addresses}.
17966
17967@item -msingle-exit
17968@itemx -mno-single-exit
17969@opindex msingle-exit
17970@opindex mno-single-exit
17971Force (do not force) generated code to have a single exit point in each
17972function.
17973@end table
17974
17975@node MN10300 Options
17976@subsection MN10300 Options
17977@cindex MN10300 options
17978
17979These @option{-m} options are defined for Matsushita MN10300 architectures:
17980
17981@table @gcctabopt
17982@item -mmult-bug
17983@opindex mmult-bug
17984Generate code to avoid bugs in the multiply instructions for the MN10300
17985processors.  This is the default.
17986
17987@item -mno-mult-bug
17988@opindex mno-mult-bug
17989Do not generate code to avoid bugs in the multiply instructions for the
17990MN10300 processors.
17991
17992@item -mam33
17993@opindex mam33
17994Generate code using features specific to the AM33 processor.
17995
17996@item -mno-am33
17997@opindex mno-am33
17998Do not generate code using features specific to the AM33 processor.  This
17999is the default.
18000
18001@item -mam33-2
18002@opindex mam33-2
18003Generate code using features specific to the AM33/2.0 processor.
18004
18005@item -mam34
18006@opindex mam34
18007Generate code using features specific to the AM34 processor.
18008
18009@item -mtune=@var{cpu-type}
18010@opindex mtune
18011Use the timing characteristics of the indicated CPU type when
18012scheduling instructions.  This does not change the targeted processor
18013type.  The CPU type must be one of @samp{mn10300}, @samp{am33},
18014@samp{am33-2} or @samp{am34}.
18015
18016@item -mreturn-pointer-on-d0
18017@opindex mreturn-pointer-on-d0
18018When generating a function that returns a pointer, return the pointer
18019in both @code{a0} and @code{d0}.  Otherwise, the pointer is returned
18020only in @code{a0}, and attempts to call such functions without a prototype
18021result in errors.  Note that this option is on by default; use
18022@option{-mno-return-pointer-on-d0} to disable it.
18023
18024@item -mno-crt0
18025@opindex mno-crt0
18026Do not link in the C run-time initialization object file.
18027
18028@item -mrelax
18029@opindex mrelax
18030Indicate to the linker that it should perform a relaxation optimization pass
18031to shorten branches, calls and absolute memory addresses.  This option only
18032has an effect when used on the command line for the final link step.
18033
18034This option makes symbolic debugging impossible.
18035
18036@item -mliw
18037@opindex mliw
18038Allow the compiler to generate @emph{Long Instruction Word}
18039instructions if the target is the @samp{AM33} or later.  This is the
18040default.  This option defines the preprocessor macro @code{__LIW__}.
18041
18042@item -mnoliw
18043@opindex mnoliw
18044Do not allow the compiler to generate @emph{Long Instruction Word}
18045instructions.  This option defines the preprocessor macro
18046@code{__NO_LIW__}.
18047
18048@item -msetlb
18049@opindex msetlb
18050Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
18051instructions if the target is the @samp{AM33} or later.  This is the
18052default.  This option defines the preprocessor macro @code{__SETLB__}.
18053
18054@item -mnosetlb
18055@opindex mnosetlb
18056Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
18057instructions.  This option defines the preprocessor macro
18058@code{__NO_SETLB__}.
18059
18060@end table
18061
18062@node Moxie Options
18063@subsection Moxie Options
18064@cindex Moxie Options
18065
18066@table @gcctabopt
18067
18068@item -meb
18069@opindex meb
18070Generate big-endian code.  This is the default for @samp{moxie-*-*}
18071configurations.
18072
18073@item -mel
18074@opindex mel
18075Generate little-endian code.
18076
18077@item -mmul.x
18078@opindex mmul.x
18079Generate mul.x and umul.x instructions.  This is the default for
18080@samp{moxiebox-*-*} configurations.
18081
18082@item -mno-crt0
18083@opindex mno-crt0
18084Do not link in the C run-time initialization object file.
18085
18086@end table
18087
18088@node MSP430 Options
18089@subsection MSP430 Options
18090@cindex MSP430 Options
18091
18092These options are defined for the MSP430:
18093
18094@table @gcctabopt
18095
18096@item -masm-hex
18097@opindex masm-hex
18098Force assembly output to always use hex constants.  Normally such
18099constants are signed decimals, but this option is available for
18100testsuite and/or aesthetic purposes.
18101
18102@item -mmcu=
18103@opindex mmcu=
18104Select the MCU to target.  This is used to create a C preprocessor
18105symbol based upon the MCU name, converted to upper case and pre- and
18106post-fixed with @samp{__}.  This in turn is used by the
18107@file{msp430.h} header file to select an MCU-specific supplementary
18108header file.
18109
18110The option also sets the ISA to use.  If the MCU name is one that is
18111known to only support the 430 ISA then that is selected, otherwise the
18112430X ISA is selected.  A generic MCU name of @samp{msp430} can also be
18113used to select the 430 ISA.  Similarly the generic @samp{msp430x} MCU
18114name selects the 430X ISA.
18115
18116In addition an MCU-specific linker script is added to the linker
18117command line.  The script's name is the name of the MCU with
18118@file{.ld} appended.  Thus specifying @option{-mmcu=xxx} on the @command{gcc}
18119command line defines the C preprocessor symbol @code{__XXX__} and
18120cause the linker to search for a script called @file{xxx.ld}.
18121
18122This option is also passed on to the assembler.
18123
18124@item -mcpu=
18125@opindex mcpu=
18126Specifies the ISA to use.  Accepted values are @samp{msp430},
18127@samp{msp430x} and @samp{msp430xv2}.  This option is deprecated.  The
18128@option{-mmcu=} option should be used to select the ISA.
18129
18130@item -msim
18131@opindex msim
18132Link to the simulator runtime libraries and linker script.  Overrides
18133any scripts that would be selected by the @option{-mmcu=} option.
18134
18135@item -mlarge
18136@opindex mlarge
18137Use large-model addressing (20-bit pointers, 32-bit @code{size_t}).
18138
18139@item -msmall
18140@opindex msmall
18141Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
18142
18143@item -mrelax
18144@opindex mrelax
18145This option is passed to the assembler and linker, and allows the
18146linker to perform certain optimizations that cannot be done until
18147the final link.
18148
18149@item mhwmult=
18150@opindex mhwmult=
18151Describes the type of hardware multiply supported by the target.
18152Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
18153for the original 16-bit-only multiply supported by early MCUs.
18154@samp{32bit} for the 16/32-bit multiply supported by later MCUs and
18155@samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
18156A value of @samp{auto} can also be given.  This tells GCC to deduce
18157the hardware multiply support based upon the MCU name provided by the
18158@option{-mmcu} option.  If no @option{-mmcu} option is specified then
18159@samp{32bit} hardware multiply support is assumed.  @samp{auto} is the
18160default setting.
18161
18162Hardware multiplies are normally performed by calling a library
18163routine.  This saves space in the generated code.  When compiling at
18164@option{-O3} or higher however the hardware multiplier is invoked
18165inline.  This makes for bigger, but faster code.
18166
18167The hardware multiply routines disable interrupts whilst running and
18168restore the previous interrupt state when they finish.  This makes
18169them safe to use inside interrupt handlers as well as in normal code.
18170
18171@item -minrt
18172@opindex minrt
18173Enable the use of a minimum runtime environment - no static
18174initializers or constructors.  This is intended for memory-constrained
18175devices.  The compiler includes special symbols in some objects
18176that tell the linker and runtime which code fragments are required.
18177
18178@end table
18179
18180@node NDS32 Options
18181@subsection NDS32 Options
18182@cindex NDS32 Options
18183
18184These options are defined for NDS32 implementations:
18185
18186@table @gcctabopt
18187
18188@item -mbig-endian
18189@opindex mbig-endian
18190Generate code in big-endian mode.
18191
18192@item -mlittle-endian
18193@opindex mlittle-endian
18194Generate code in little-endian mode.
18195
18196@item -mreduced-regs
18197@opindex mreduced-regs
18198Use reduced-set registers for register allocation.
18199
18200@item -mfull-regs
18201@opindex mfull-regs
18202Use full-set registers for register allocation.
18203
18204@item -mcmov
18205@opindex mcmov
18206Generate conditional move instructions.
18207
18208@item -mno-cmov
18209@opindex mno-cmov
18210Do not generate conditional move instructions.
18211
18212@item -mperf-ext
18213@opindex mperf-ext
18214Generate performance extension instructions.
18215
18216@item -mno-perf-ext
18217@opindex mno-perf-ext
18218Do not generate performance extension instructions.
18219
18220@item -mv3push
18221@opindex mv3push
18222Generate v3 push25/pop25 instructions.
18223
18224@item -mno-v3push
18225@opindex mno-v3push
18226Do not generate v3 push25/pop25 instructions.
18227
18228@item -m16-bit
18229@opindex m16-bit
18230Generate 16-bit instructions.
18231
18232@item -mno-16-bit
18233@opindex mno-16-bit
18234Do not generate 16-bit instructions.
18235
18236@item -misr-vector-size=@var{num}
18237@opindex misr-vector-size
18238Specify the size of each interrupt vector, which must be 4 or 16.
18239
18240@item -mcache-block-size=@var{num}
18241@opindex mcache-block-size
18242Specify the size of each cache block,
18243which must be a power of 2 between 4 and 512.
18244
18245@item -march=@var{arch}
18246@opindex march
18247Specify the name of the target architecture.
18248
18249@item -mcmodel=@var{code-model}
18250@opindex mcmodel
18251Set the code model to one of
18252@table @asis
18253@item @samp{small}
18254All the data and read-only data segments must be within 512KB addressing space.
18255The text segment must be within 16MB addressing space.
18256@item @samp{medium}
18257The data segment must be within 512KB while the read-only data segment can be
18258within 4GB addressing space.  The text segment should be still within 16MB
18259addressing space.
18260@item @samp{large}
18261All the text and data segments can be within 4GB addressing space.
18262@end table
18263
18264@item -mctor-dtor
18265@opindex mctor-dtor
18266Enable constructor/destructor feature.
18267
18268@item -mrelax
18269@opindex mrelax
18270Guide linker to relax instructions.
18271
18272@end table
18273
18274@node Nios II Options
18275@subsection Nios II Options
18276@cindex Nios II options
18277@cindex Altera Nios II options
18278
18279These are the options defined for the Altera Nios II processor.
18280
18281@table @gcctabopt
18282
18283@item -G @var{num}
18284@opindex G
18285@cindex smaller data references
18286Put global and static objects less than or equal to @var{num} bytes
18287into the small data or BSS sections instead of the normal data or BSS
18288sections.  The default value of @var{num} is 8.
18289
18290@item -mgpopt=@var{option}
18291@item -mgpopt
18292@itemx -mno-gpopt
18293@opindex mgpopt
18294@opindex mno-gpopt
18295Generate (do not generate) GP-relative accesses.  The following
18296@var{option} names are recognized:
18297
18298@table @samp
18299
18300@item none
18301Do not generate GP-relative accesses.
18302
18303@item local
18304Generate GP-relative accesses for small data objects that are not
18305external or weak.  Also use GP-relative addressing for objects that
18306have been explicitly placed in a small data section via a @code{section}
18307attribute.
18308
18309@item global
18310As for @samp{local}, but also generate GP-relative accesses for
18311small data objects that are external or weak.  If you use this option,
18312you must ensure that all parts of your program (including libraries) are
18313compiled with the same @option{-G} setting.
18314
18315@item data
18316Generate GP-relative accesses for all data objects in the program.  If you
18317use this option, the entire data and BSS segments
18318of your program must fit in 64K of memory and you must use an appropriate
18319linker script to allocate them within the addressible range of the
18320global pointer.
18321
18322@item all
18323Generate GP-relative addresses for function pointers as well as data
18324pointers.  If you use this option, the entire text, data, and BSS segments
18325of your program must fit in 64K of memory and you must use an appropriate
18326linker script to allocate them within the addressible range of the
18327global pointer.
18328
18329@end table
18330
18331@option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
18332@option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
18333
18334The default is @option{-mgpopt} except when @option{-fpic} or
18335@option{-fPIC} is specified to generate position-independent code.
18336Note that the Nios II ABI does not permit GP-relative accesses from
18337shared libraries.
18338
18339You may need to specify @option{-mno-gpopt} explicitly when building
18340programs that include large amounts of small data, including large
18341GOT data sections.  In this case, the 16-bit offset for GP-relative
18342addressing may not be large enough to allow access to the entire
18343small data section.
18344
18345@item -mel
18346@itemx -meb
18347@opindex mel
18348@opindex meb
18349Generate little-endian (default) or big-endian (experimental) code,
18350respectively.
18351
18352@item -mbypass-cache
18353@itemx -mno-bypass-cache
18354@opindex mno-bypass-cache
18355@opindex mbypass-cache
18356Force all load and store instructions to always bypass cache by
18357using I/O variants of the instructions. The default is not to
18358bypass the cache.
18359
18360@item -mno-cache-volatile
18361@itemx -mcache-volatile
18362@opindex mcache-volatile
18363@opindex mno-cache-volatile
18364Volatile memory access bypass the cache using the I/O variants of
18365the load and store instructions. The default is not to bypass the cache.
18366
18367@item -mno-fast-sw-div
18368@itemx -mfast-sw-div
18369@opindex mno-fast-sw-div
18370@opindex mfast-sw-div
18371Do not use table-based fast divide for small numbers. The default
18372is to use the fast divide at @option{-O3} and above.
18373
18374@item -mno-hw-mul
18375@itemx -mhw-mul
18376@itemx -mno-hw-mulx
18377@itemx -mhw-mulx
18378@itemx -mno-hw-div
18379@itemx -mhw-div
18380@opindex mno-hw-mul
18381@opindex mhw-mul
18382@opindex mno-hw-mulx
18383@opindex mhw-mulx
18384@opindex mno-hw-div
18385@opindex mhw-div
18386Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of
18387instructions by the compiler. The default is to emit @code{mul}
18388and not emit @code{div} and @code{mulx}.
18389
18390@item -mcustom-@var{insn}=@var{N}
18391@itemx -mno-custom-@var{insn}
18392@opindex mcustom-@var{insn}
18393@opindex mno-custom-@var{insn}
18394Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
18395custom instruction with encoding @var{N} when generating code that uses
18396@var{insn}.  For example, @option{-mcustom-fadds=253} generates custom
18397instruction 253 for single-precision floating-point add operations instead
18398of the default behavior of using a library call.
18399
18400The following values of @var{insn} are supported.  Except as otherwise
18401noted, floating-point operations are expected to be implemented with
18402normal IEEE 754 semantics and correspond directly to the C operators or the
18403equivalent GCC built-in functions (@pxref{Other Builtins}).
18404
18405Single-precision floating point:
18406@table @asis
18407
18408@item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
18409Binary arithmetic operations.
18410
18411@item @samp{fnegs}
18412Unary negation.
18413
18414@item @samp{fabss}
18415Unary absolute value.
18416
18417@item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
18418Comparison operations.
18419
18420@item @samp{fmins}, @samp{fmaxs}
18421Floating-point minimum and maximum.  These instructions are only
18422generated if @option{-ffinite-math-only} is specified.
18423
18424@item @samp{fsqrts}
18425Unary square root operation.
18426
18427@item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
18428Floating-point trigonometric and exponential functions.  These instructions
18429are only generated if @option{-funsafe-math-optimizations} is also specified.
18430
18431@end table
18432
18433Double-precision floating point:
18434@table @asis
18435
18436@item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
18437Binary arithmetic operations.
18438
18439@item @samp{fnegd}
18440Unary negation.
18441
18442@item @samp{fabsd}
18443Unary absolute value.
18444
18445@item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
18446Comparison operations.
18447
18448@item @samp{fmind}, @samp{fmaxd}
18449Double-precision minimum and maximum.  These instructions are only
18450generated if @option{-ffinite-math-only} is specified.
18451
18452@item @samp{fsqrtd}
18453Unary square root operation.
18454
18455@item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
18456Double-precision trigonometric and exponential functions.  These instructions
18457are only generated if @option{-funsafe-math-optimizations} is also specified.
18458
18459@end table
18460
18461Conversions:
18462@table @asis
18463@item @samp{fextsd}
18464Conversion from single precision to double precision.
18465
18466@item @samp{ftruncds}
18467Conversion from double precision to single precision.
18468
18469@item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
18470Conversion from floating point to signed or unsigned integer types, with
18471truncation towards zero.
18472
18473@item @samp{round}
18474Conversion from single-precision floating point to signed integer,
18475rounding to the nearest integer and ties away from zero.
18476This corresponds to the @code{__builtin_lroundf} function when
18477@option{-fno-math-errno} is used.
18478
18479@item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
18480Conversion from signed or unsigned integer types to floating-point types.
18481
18482@end table
18483
18484In addition, all of the following transfer instructions for internal
18485registers X and Y must be provided to use any of the double-precision
18486floating-point instructions.  Custom instructions taking two
18487double-precision source operands expect the first operand in the
1848864-bit register X.  The other operand (or only operand of a unary
18489operation) is given to the custom arithmetic instruction with the
18490least significant half in source register @var{src1} and the most
18491significant half in @var{src2}.  A custom instruction that returns a
18492double-precision result returns the most significant 32 bits in the
18493destination register and the other half in 32-bit register Y.
18494GCC automatically generates the necessary code sequences to write
18495register X and/or read register Y when double-precision floating-point
18496instructions are used.
18497
18498@table @asis
18499
18500@item @samp{fwrx}
18501Write @var{src1} into the least significant half of X and @var{src2} into
18502the most significant half of X.
18503
18504@item @samp{fwry}
18505Write @var{src1} into Y.
18506
18507@item @samp{frdxhi}, @samp{frdxlo}
18508Read the most or least (respectively) significant half of X and store it in
18509@var{dest}.
18510
18511@item @samp{frdy}
18512Read the value of Y and store it into @var{dest}.
18513@end table
18514
18515Note that you can gain more local control over generation of Nios II custom
18516instructions by using the @code{target("custom-@var{insn}=@var{N}")}
18517and @code{target("no-custom-@var{insn}")} function attributes
18518(@pxref{Function Attributes})
18519or pragmas (@pxref{Function Specific Option Pragmas}).
18520
18521@item -mcustom-fpu-cfg=@var{name}
18522@opindex mcustom-fpu-cfg
18523
18524This option enables a predefined, named set of custom instruction encodings
18525(see @option{-mcustom-@var{insn}} above).
18526Currently, the following sets are defined:
18527
18528@option{-mcustom-fpu-cfg=60-1} is equivalent to:
18529@gccoptlist{-mcustom-fmuls=252 @gol
18530-mcustom-fadds=253 @gol
18531-mcustom-fsubs=254 @gol
18532-fsingle-precision-constant}
18533
18534@option{-mcustom-fpu-cfg=60-2} is equivalent to:
18535@gccoptlist{-mcustom-fmuls=252 @gol
18536-mcustom-fadds=253 @gol
18537-mcustom-fsubs=254 @gol
18538-mcustom-fdivs=255 @gol
18539-fsingle-precision-constant}
18540
18541@option{-mcustom-fpu-cfg=72-3} is equivalent to:
18542@gccoptlist{-mcustom-floatus=243 @gol
18543-mcustom-fixsi=244 @gol
18544-mcustom-floatis=245 @gol
18545-mcustom-fcmpgts=246 @gol
18546-mcustom-fcmples=249 @gol
18547-mcustom-fcmpeqs=250 @gol
18548-mcustom-fcmpnes=251 @gol
18549-mcustom-fmuls=252 @gol
18550-mcustom-fadds=253 @gol
18551-mcustom-fsubs=254 @gol
18552-mcustom-fdivs=255 @gol
18553-fsingle-precision-constant}
18554
18555Custom instruction assignments given by individual
18556@option{-mcustom-@var{insn}=} options override those given by
18557@option{-mcustom-fpu-cfg=}, regardless of the
18558order of the options on the command line.
18559
18560Note that you can gain more local control over selection of a FPU
18561configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
18562function attribute (@pxref{Function Attributes})
18563or pragma (@pxref{Function Specific Option Pragmas}).
18564
18565@end table
18566
18567These additional @samp{-m} options are available for the Altera Nios II
18568ELF (bare-metal) target:
18569
18570@table @gcctabopt
18571
18572@item -mhal
18573@opindex mhal
18574Link with HAL BSP.  This suppresses linking with the GCC-provided C runtime
18575startup and termination code, and is typically used in conjunction with
18576@option{-msys-crt0=} to specify the location of the alternate startup code
18577provided by the HAL BSP.
18578
18579@item -msmallc
18580@opindex msmallc
18581Link with a limited version of the C library, @option{-lsmallc}, rather than
18582Newlib.
18583
18584@item -msys-crt0=@var{startfile}
18585@opindex msys-crt0
18586@var{startfile} is the file name of the startfile (crt0) to use
18587when linking.  This option is only useful in conjunction with @option{-mhal}.
18588
18589@item -msys-lib=@var{systemlib}
18590@opindex msys-lib
18591@var{systemlib} is the library name of the library that provides
18592low-level system calls required by the C library,
18593e.g. @code{read} and @code{write}.
18594This option is typically used to link with a library provided by a HAL BSP.
18595
18596@end table
18597
18598@node Nvidia PTX Options
18599@subsection Nvidia PTX Options
18600@cindex Nvidia PTX options
18601@cindex nvptx options
18602
18603These options are defined for Nvidia PTX:
18604
18605@table @gcctabopt
18606
18607@item -m32
18608@itemx -m64
18609@opindex m32
18610@opindex m64
18611Generate code for 32-bit or 64-bit ABI.
18612
18613@item -mmainkernel
18614@opindex mmainkernel
18615Link in code for a __main kernel.  This is for stand-alone instead of
18616offloading execution.
18617
18618@end table
18619
18620@node PDP-11 Options
18621@subsection PDP-11 Options
18622@cindex PDP-11 Options
18623
18624These options are defined for the PDP-11:
18625
18626@table @gcctabopt
18627@item -mfpu
18628@opindex mfpu
18629Use hardware FPP floating point.  This is the default.  (FIS floating
18630point on the PDP-11/40 is not supported.)
18631
18632@item -msoft-float
18633@opindex msoft-float
18634Do not use hardware floating point.
18635
18636@item -mac0
18637@opindex mac0
18638Return floating-point results in ac0 (fr0 in Unix assembler syntax).
18639
18640@item -mno-ac0
18641@opindex mno-ac0
18642Return floating-point results in memory.  This is the default.
18643
18644@item -m40
18645@opindex m40
18646Generate code for a PDP-11/40.
18647
18648@item -m45
18649@opindex m45
18650Generate code for a PDP-11/45.  This is the default.
18651
18652@item -m10
18653@opindex m10
18654Generate code for a PDP-11/10.
18655
18656@item -mbcopy-builtin
18657@opindex mbcopy-builtin
18658Use inline @code{movmemhi} patterns for copying memory.  This is the
18659default.
18660
18661@item -mbcopy
18662@opindex mbcopy
18663Do not use inline @code{movmemhi} patterns for copying memory.
18664
18665@item -mint16
18666@itemx -mno-int32
18667@opindex mint16
18668@opindex mno-int32
18669Use 16-bit @code{int}.  This is the default.
18670
18671@item -mint32
18672@itemx -mno-int16
18673@opindex mint32
18674@opindex mno-int16
18675Use 32-bit @code{int}.
18676
18677@item -mfloat64
18678@itemx -mno-float32
18679@opindex mfloat64
18680@opindex mno-float32
18681Use 64-bit @code{float}.  This is the default.
18682
18683@item -mfloat32
18684@itemx -mno-float64
18685@opindex mfloat32
18686@opindex mno-float64
18687Use 32-bit @code{float}.
18688
18689@item -mabshi
18690@opindex mabshi
18691Use @code{abshi2} pattern.  This is the default.
18692
18693@item -mno-abshi
18694@opindex mno-abshi
18695Do not use @code{abshi2} pattern.
18696
18697@item -mbranch-expensive
18698@opindex mbranch-expensive
18699Pretend that branches are expensive.  This is for experimenting with
18700code generation only.
18701
18702@item -mbranch-cheap
18703@opindex mbranch-cheap
18704Do not pretend that branches are expensive.  This is the default.
18705
18706@item -munix-asm
18707@opindex munix-asm
18708Use Unix assembler syntax.  This is the default when configured for
18709@samp{pdp11-*-bsd}.
18710
18711@item -mdec-asm
18712@opindex mdec-asm
18713Use DEC assembler syntax.  This is the default when configured for any
18714PDP-11 target other than @samp{pdp11-*-bsd}.
18715@end table
18716
18717@node picoChip Options
18718@subsection picoChip Options
18719@cindex picoChip options
18720
18721These @samp{-m} options are defined for picoChip implementations:
18722
18723@table @gcctabopt
18724
18725@item -mae=@var{ae_type}
18726@opindex mcpu
18727Set the instruction set, register set, and instruction scheduling
18728parameters for array element type @var{ae_type}.  Supported values
18729for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
18730
18731@option{-mae=ANY} selects a completely generic AE type.  Code
18732generated with this option runs on any of the other AE types.  The
18733code is not as efficient as it would be if compiled for a specific
18734AE type, and some types of operation (e.g., multiplication) do not
18735work properly on all types of AE.
18736
18737@option{-mae=MUL} selects a MUL AE type.  This is the most useful AE type
18738for compiled code, and is the default.
18739
18740@option{-mae=MAC} selects a DSP-style MAC AE.  Code compiled with this
18741option may suffer from poor performance of byte (char) manipulation,
18742since the DSP AE does not provide hardware support for byte load/stores.
18743
18744@item -msymbol-as-address
18745Enable the compiler to directly use a symbol name as an address in a
18746load/store instruction, without first loading it into a
18747register.  Typically, the use of this option generates larger
18748programs, which run faster than when the option isn't used.  However, the
18749results vary from program to program, so it is left as a user option,
18750rather than being permanently enabled.
18751
18752@item -mno-inefficient-warnings
18753Disables warnings about the generation of inefficient code.  These
18754warnings can be generated, for example, when compiling code that
18755performs byte-level memory operations on the MAC AE type.  The MAC AE has
18756no hardware support for byte-level memory operations, so all byte
18757load/stores must be synthesized from word load/store operations.  This is
18758inefficient and a warning is generated to indicate
18759that you should rewrite the code to avoid byte operations, or to target
18760an AE type that has the necessary hardware support.  This option disables
18761these warnings.
18762
18763@end table
18764
18765@node PowerPC Options
18766@subsection PowerPC Options
18767@cindex PowerPC options
18768
18769These are listed under @xref{RS/6000 and PowerPC Options}.
18770
18771@node RL78 Options
18772@subsection RL78 Options
18773@cindex RL78 Options
18774
18775@table @gcctabopt
18776
18777@item -msim
18778@opindex msim
18779Links in additional target libraries to support operation within a
18780simulator.
18781
18782@item -mmul=none
18783@itemx -mmul=g13
18784@itemx -mmul=rl78
18785@opindex mmul
18786Specifies the type of hardware multiplication support to be used.  The
18787default is @samp{none}, which uses software multiplication functions.
18788The @samp{g13} option is for the hardware multiply/divide peripheral
18789only on the RL78/G13 targets.  The @samp{rl78} option is for the
18790standard hardware multiplication defined in the RL78 software manual.
18791
18792@item -m64bit-doubles
18793@itemx -m32bit-doubles
18794@opindex m64bit-doubles
18795@opindex m32bit-doubles
18796Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
18797or 32 bits (@option{-m32bit-doubles}) in size.  The default is
18798@option{-m32bit-doubles}.
18799
18800@end table
18801
18802@node RS/6000 and PowerPC Options
18803@subsection IBM RS/6000 and PowerPC Options
18804@cindex RS/6000 and PowerPC Options
18805@cindex IBM RS/6000 and PowerPC Options
18806
18807These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
18808@table @gcctabopt
18809@item -mpowerpc-gpopt
18810@itemx -mno-powerpc-gpopt
18811@itemx -mpowerpc-gfxopt
18812@itemx -mno-powerpc-gfxopt
18813@need 800
18814@itemx -mpowerpc64
18815@itemx -mno-powerpc64
18816@itemx -mmfcrf
18817@itemx -mno-mfcrf
18818@itemx -mpopcntb
18819@itemx -mno-popcntb
18820@itemx -mpopcntd
18821@itemx -mno-popcntd
18822@itemx -mfprnd
18823@itemx -mno-fprnd
18824@need 800
18825@itemx -mcmpb
18826@itemx -mno-cmpb
18827@itemx -mmfpgpr
18828@itemx -mno-mfpgpr
18829@itemx -mhard-dfp
18830@itemx -mno-hard-dfp
18831@opindex mpowerpc-gpopt
18832@opindex mno-powerpc-gpopt
18833@opindex mpowerpc-gfxopt
18834@opindex mno-powerpc-gfxopt
18835@opindex mpowerpc64
18836@opindex mno-powerpc64
18837@opindex mmfcrf
18838@opindex mno-mfcrf
18839@opindex mpopcntb
18840@opindex mno-popcntb
18841@opindex mpopcntd
18842@opindex mno-popcntd
18843@opindex mfprnd
18844@opindex mno-fprnd
18845@opindex mcmpb
18846@opindex mno-cmpb
18847@opindex mmfpgpr
18848@opindex mno-mfpgpr
18849@opindex mhard-dfp
18850@opindex mno-hard-dfp
18851You use these options to specify which instructions are available on the
18852processor you are using.  The default value of these options is
18853determined when configuring GCC@.  Specifying the
18854@option{-mcpu=@var{cpu_type}} overrides the specification of these
18855options.  We recommend you use the @option{-mcpu=@var{cpu_type}} option
18856rather than the options listed above.
18857
18858Specifying @option{-mpowerpc-gpopt} allows
18859GCC to use the optional PowerPC architecture instructions in the
18860General Purpose group, including floating-point square root.  Specifying
18861@option{-mpowerpc-gfxopt} allows GCC to
18862use the optional PowerPC architecture instructions in the Graphics
18863group, including floating-point select.
18864
18865The @option{-mmfcrf} option allows GCC to generate the move from
18866condition register field instruction implemented on the POWER4
18867processor and other processors that support the PowerPC V2.01
18868architecture.
18869The @option{-mpopcntb} option allows GCC to generate the popcount and
18870double-precision FP reciprocal estimate instruction implemented on the
18871POWER5 processor and other processors that support the PowerPC V2.02
18872architecture.
18873The @option{-mpopcntd} option allows GCC to generate the popcount
18874instruction implemented on the POWER7 processor and other processors
18875that support the PowerPC V2.06 architecture.
18876The @option{-mfprnd} option allows GCC to generate the FP round to
18877integer instructions implemented on the POWER5+ processor and other
18878processors that support the PowerPC V2.03 architecture.
18879The @option{-mcmpb} option allows GCC to generate the compare bytes
18880instruction implemented on the POWER6 processor and other processors
18881that support the PowerPC V2.05 architecture.
18882The @option{-mmfpgpr} option allows GCC to generate the FP move to/from
18883general-purpose register instructions implemented on the POWER6X
18884processor and other processors that support the extended PowerPC V2.05
18885architecture.
18886The @option{-mhard-dfp} option allows GCC to generate the decimal
18887floating-point instructions implemented on some POWER processors.
18888
18889The @option{-mpowerpc64} option allows GCC to generate the additional
1889064-bit instructions that are found in the full PowerPC64 architecture
18891and to treat GPRs as 64-bit, doubleword quantities.  GCC defaults to
18892@option{-mno-powerpc64}.
18893
18894@item -mcpu=@var{cpu_type}
18895@opindex mcpu
18896Set architecture type, register usage, and
18897instruction scheduling parameters for machine type @var{cpu_type}.
18898Supported values for @var{cpu_type} are @samp{401}, @samp{403},
18899@samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
18900@samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
18901@samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
18902@samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
18903@samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
18904@samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
18905@samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
18906@samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
18907@samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8}, @samp{powerpc},
18908@samp{powerpc64}, @samp{powerpc64le}, and @samp{rs64}.
18909
18910@option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
18911@option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
18912endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
18913architecture machine types, with an appropriate, generic processor
18914model assumed for scheduling purposes.
18915
18916The other options specify a specific processor.  Code generated under
18917those options runs best on that processor, and may not run at all on
18918others.
18919
18920The @option{-mcpu} options automatically enable or disable the
18921following options:
18922
18923@gccoptlist{-maltivec  -mfprnd  -mhard-float  -mmfcrf  -mmultiple @gol
18924-mpopcntb -mpopcntd  -mpowerpc64 @gol
18925-mpowerpc-gpopt  -mpowerpc-gfxopt  -msingle-float -mdouble-float @gol
18926-msimple-fpu -mstring  -mmulhw  -mdlmzb  -mmfpgpr -mvsx @gol
18927-mcrypto -mdirect-move -mhtm -mpower8-fusion -mpower8-vector @gol
18928-mquad-memory -mquad-memory-atomic}
18929
18930The particular options set for any particular CPU varies between
18931compiler versions, depending on what setting seems to produce optimal
18932code for that CPU; it doesn't necessarily reflect the actual hardware's
18933capabilities.  If you wish to set an individual option to a particular
18934value, you may specify it after the @option{-mcpu} option, like
18935@option{-mcpu=970 -mno-altivec}.
18936
18937On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
18938not enabled or disabled by the @option{-mcpu} option at present because
18939AIX does not have full support for these options.  You may still
18940enable or disable them individually if you're sure it'll work in your
18941environment.
18942
18943@item -mtune=@var{cpu_type}
18944@opindex mtune
18945Set the instruction scheduling parameters for machine type
18946@var{cpu_type}, but do not set the architecture type or register usage,
18947as @option{-mcpu=@var{cpu_type}} does.  The same
18948values for @var{cpu_type} are used for @option{-mtune} as for
18949@option{-mcpu}.  If both are specified, the code generated uses the
18950architecture and registers set by @option{-mcpu}, but the
18951scheduling parameters set by @option{-mtune}.
18952
18953@item -mcmodel=small
18954@opindex mcmodel=small
18955Generate PowerPC64 code for the small model: The TOC is limited to
1895664k.
18957
18958@item -mcmodel=medium
18959@opindex mcmodel=medium
18960Generate PowerPC64 code for the medium model: The TOC and other static
18961data may be up to a total of 4G in size.
18962
18963@item -mcmodel=large
18964@opindex mcmodel=large
18965Generate PowerPC64 code for the large model: The TOC may be up to 4G
18966in size.  Other data and code is only limited by the 64-bit address
18967space.
18968
18969@item -maltivec
18970@itemx -mno-altivec
18971@opindex maltivec
18972@opindex mno-altivec
18973Generate code that uses (does not use) AltiVec instructions, and also
18974enable the use of built-in functions that allow more direct access to
18975the AltiVec instruction set.  You may also need to set
18976@option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
18977enhancements.
18978
18979When @option{-maltivec} is used, rather than @option{-maltivec=le} or
18980@option{-maltivec=be}, the element order for Altivec intrinsics such
18981as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert}
18982match array element order corresponding to the endianness of the
18983target.  That is, element zero identifies the leftmost element in a
18984vector register when targeting a big-endian platform, and identifies
18985the rightmost element in a vector register when targeting a
18986little-endian platform.
18987
18988@item -maltivec=be
18989@opindex maltivec=be
18990Generate Altivec instructions using big-endian element order,
18991regardless of whether the target is big- or little-endian.  This is
18992the default when targeting a big-endian platform.
18993
18994The element order is used to interpret element numbers in Altivec
18995intrinsics such as @code{vec_splat}, @code{vec_extract}, and
18996@code{vec_insert}.  By default, these match array element order
18997corresponding to the endianness for the target.
18998
18999@item -maltivec=le
19000@opindex maltivec=le
19001Generate Altivec instructions using little-endian element order,
19002regardless of whether the target is big- or little-endian.  This is
19003the default when targeting a little-endian platform.  This option is
19004currently ignored when targeting a big-endian platform.
19005
19006The element order is used to interpret element numbers in Altivec
19007intrinsics such as @code{vec_splat}, @code{vec_extract}, and
19008@code{vec_insert}.  By default, these match array element order
19009corresponding to the endianness for the target.
19010
19011@item -mvrsave
19012@itemx -mno-vrsave
19013@opindex mvrsave
19014@opindex mno-vrsave
19015Generate VRSAVE instructions when generating AltiVec code.
19016
19017@item -mgen-cell-microcode
19018@opindex mgen-cell-microcode
19019Generate Cell microcode instructions.
19020
19021@item -mwarn-cell-microcode
19022@opindex mwarn-cell-microcode
19023Warn when a Cell microcode instruction is emitted.  An example
19024of a Cell microcode instruction is a variable shift.
19025
19026@item -msecure-plt
19027@opindex msecure-plt
19028Generate code that allows @command{ld} and @command{ld.so}
19029to build executables and shared
19030libraries with non-executable @code{.plt} and @code{.got} sections.
19031This is a PowerPC
1903232-bit SYSV ABI option.
19033
19034@item -mbss-plt
19035@opindex mbss-plt
19036Generate code that uses a BSS @code{.plt} section that @command{ld.so}
19037fills in, and
19038requires @code{.plt} and @code{.got}
19039sections that are both writable and executable.
19040This is a PowerPC 32-bit SYSV ABI option.
19041
19042@item -misel
19043@itemx -mno-isel
19044@opindex misel
19045@opindex mno-isel
19046This switch enables or disables the generation of ISEL instructions.
19047
19048@item -misel=@var{yes/no}
19049This switch has been deprecated.  Use @option{-misel} and
19050@option{-mno-isel} instead.
19051
19052@item -mspe
19053@itemx -mno-spe
19054@opindex mspe
19055@opindex mno-spe
19056This switch enables or disables the generation of SPE simd
19057instructions.
19058
19059@item -mpaired
19060@itemx -mno-paired
19061@opindex mpaired
19062@opindex mno-paired
19063This switch enables or disables the generation of PAIRED simd
19064instructions.
19065
19066@item -mspe=@var{yes/no}
19067This option has been deprecated.  Use @option{-mspe} and
19068@option{-mno-spe} instead.
19069
19070@item -mvsx
19071@itemx -mno-vsx
19072@opindex mvsx
19073@opindex mno-vsx
19074Generate code that uses (does not use) vector/scalar (VSX)
19075instructions, and also enable the use of built-in functions that allow
19076more direct access to the VSX instruction set.
19077
19078@item -mcrypto
19079@itemx -mno-crypto
19080@opindex mcrypto
19081@opindex mno-crypto
19082Enable the use (disable) of the built-in functions that allow direct
19083access to the cryptographic instructions that were added in version
190842.07 of the PowerPC ISA.
19085
19086@item -mdirect-move
19087@itemx -mno-direct-move
19088@opindex mdirect-move
19089@opindex mno-direct-move
19090Generate code that uses (does not use) the instructions to move data
19091between the general purpose registers and the vector/scalar (VSX)
19092registers that were added in version 2.07 of the PowerPC ISA.
19093
19094@item -mhtm
19095@itemx -mno-htm
19096@opindex mhtm
19097@opindex mno-htm
19098Enable (disable) the use of the built-in functions that allow direct
19099access to the Hardware Transactional Memory (HTM) instructions that
19100were added in version 2.07 of the PowerPC ISA.
19101
19102@item -mpower8-fusion
19103@itemx -mno-power8-fusion
19104@opindex mpower8-fusion
19105@opindex mno-power8-fusion
19106Generate code that keeps (does not keeps) some integer operations
19107adjacent so that the instructions can be fused together on power8 and
19108later processors.
19109
19110@item -mpower8-vector
19111@itemx -mno-power8-vector
19112@opindex mpower8-vector
19113@opindex mno-power8-vector
19114Generate code that uses (does not use) the vector and scalar
19115instructions that were added in version 2.07 of the PowerPC ISA.  Also
19116enable the use of built-in functions that allow more direct access to
19117the vector instructions.
19118
19119@item -mquad-memory
19120@itemx -mno-quad-memory
19121@opindex mquad-memory
19122@opindex mno-quad-memory
19123Generate code that uses (does not use) the non-atomic quad word memory
19124instructions.  The @option{-mquad-memory} option requires use of
1912564-bit mode.
19126
19127@item -mquad-memory-atomic
19128@itemx -mno-quad-memory-atomic
19129@opindex mquad-memory-atomic
19130@opindex mno-quad-memory-atomic
19131Generate code that uses (does not use) the atomic quad word memory
19132instructions.  The @option{-mquad-memory-atomic} option requires use of
1913364-bit mode.
19134
19135@item -mupper-regs-df
19136@itemx -mno-upper-regs-df
19137@opindex mupper-regs-df
19138@opindex mno-upper-regs-df
19139Generate code that uses (does not use) the scalar double precision
19140instructions that target all 64 registers in the vector/scalar
19141floating point register set that were added in version 2.06 of the
19142PowerPC ISA.  @option{-mupper-regs-df} is turned on by default if you
19143use any of the @option{-mcpu=power7}, @option{-mcpu=power8}, or
19144@option{-mvsx} options.
19145
19146@item -mupper-regs-sf
19147@itemx -mno-upper-regs-sf
19148@opindex mupper-regs-sf
19149@opindex mno-upper-regs-sf
19150Generate code that uses (does not use) the scalar single precision
19151instructions that target all 64 registers in the vector/scalar
19152floating point register set that were added in version 2.07 of the
19153PowerPC ISA.  @option{-mupper-regs-sf} is turned on by default if you
19154use either of the @option{-mcpu=power8} or @option{-mpower8-vector}
19155options.
19156
19157@item -mupper-regs
19158@itemx -mno-upper-regs
19159@opindex mupper-regs
19160@opindex mno-upper-regs
19161Generate code that uses (does not use) the scalar
19162instructions that target all 64 registers in the vector/scalar
19163floating point register set, depending on the model of the machine.
19164
19165If the @option{-mno-upper-regs} option is used, it turns off both
19166@option{-mupper-regs-sf} and @option{-mupper-regs-df} options.
19167
19168@item -mfloat-gprs=@var{yes/single/double/no}
19169@itemx -mfloat-gprs
19170@opindex mfloat-gprs
19171This switch enables or disables the generation of floating-point
19172operations on the general-purpose registers for architectures that
19173support it.
19174
19175The argument @samp{yes} or @samp{single} enables the use of
19176single-precision floating-point operations.
19177
19178The argument @samp{double} enables the use of single and
19179double-precision floating-point operations.
19180
19181The argument @samp{no} disables floating-point operations on the
19182general-purpose registers.
19183
19184This option is currently only available on the MPC854x.
19185
19186@item -m32
19187@itemx -m64
19188@opindex m32
19189@opindex m64
19190Generate code for 32-bit or 64-bit environments of Darwin and SVR4
19191targets (including GNU/Linux).  The 32-bit environment sets int, long
19192and pointer to 32 bits and generates code that runs on any PowerPC
19193variant.  The 64-bit environment sets int to 32 bits and long and
19194pointer to 64 bits, and generates code for PowerPC64, as for
19195@option{-mpowerpc64}.
19196
19197@item -mfull-toc
19198@itemx -mno-fp-in-toc
19199@itemx -mno-sum-in-toc
19200@itemx -mminimal-toc
19201@opindex mfull-toc
19202@opindex mno-fp-in-toc
19203@opindex mno-sum-in-toc
19204@opindex mminimal-toc
19205Modify generation of the TOC (Table Of Contents), which is created for
19206every executable file.  The @option{-mfull-toc} option is selected by
19207default.  In that case, GCC allocates at least one TOC entry for
19208each unique non-automatic variable reference in your program.  GCC
19209also places floating-point constants in the TOC@.  However, only
1921016,384 entries are available in the TOC@.
19211
19212If you receive a linker error message that saying you have overflowed
19213the available TOC space, you can reduce the amount of TOC space used
19214with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
19215@option{-mno-fp-in-toc} prevents GCC from putting floating-point
19216constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
19217generate code to calculate the sum of an address and a constant at
19218run time instead of putting that sum into the TOC@.  You may specify one
19219or both of these options.  Each causes GCC to produce very slightly
19220slower and larger code at the expense of conserving TOC space.
19221
19222If you still run out of space in the TOC even when you specify both of
19223these options, specify @option{-mminimal-toc} instead.  This option causes
19224GCC to make only one TOC entry for every file.  When you specify this
19225option, GCC produces code that is slower and larger but which
19226uses extremely little TOC space.  You may wish to use this option
19227only on files that contain less frequently-executed code.
19228
19229@item -maix64
19230@itemx -maix32
19231@opindex maix64
19232@opindex maix32
19233Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
19234@code{long} type, and the infrastructure needed to support them.
19235Specifying @option{-maix64} implies @option{-mpowerpc64},
19236while @option{-maix32} disables the 64-bit ABI and
19237implies @option{-mno-powerpc64}.  GCC defaults to @option{-maix32}.
19238
19239@item -mxl-compat
19240@itemx -mno-xl-compat
19241@opindex mxl-compat
19242@opindex mno-xl-compat
19243Produce code that conforms more closely to IBM XL compiler semantics
19244when using AIX-compatible ABI@.  Pass floating-point arguments to
19245prototyped functions beyond the register save area (RSA) on the stack
19246in addition to argument FPRs.  Do not assume that most significant
19247double in 128-bit long double value is properly rounded when comparing
19248values and converting to double.  Use XL symbol names for long double
19249support routines.
19250
19251The AIX calling convention was extended but not initially documented to
19252handle an obscure K&R C case of calling a function that takes the
19253address of its arguments with fewer arguments than declared.  IBM XL
19254compilers access floating-point arguments that do not fit in the
19255RSA from the stack when a subroutine is compiled without
19256optimization.  Because always storing floating-point arguments on the
19257stack is inefficient and rarely needed, this option is not enabled by
19258default and only is necessary when calling subroutines compiled by IBM
19259XL compilers without optimization.
19260
19261@item -mpe
19262@opindex mpe
19263Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@.  Link an
19264application written to use message passing with special startup code to
19265enable the application to run.  The system must have PE installed in the
19266standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
19267must be overridden with the @option{-specs=} option to specify the
19268appropriate directory location.  The Parallel Environment does not
19269support threads, so the @option{-mpe} option and the @option{-pthread}
19270option are incompatible.
19271
19272@item -malign-natural
19273@itemx -malign-power
19274@opindex malign-natural
19275@opindex malign-power
19276On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
19277@option{-malign-natural} overrides the ABI-defined alignment of larger
19278types, such as floating-point doubles, on their natural size-based boundary.
19279The option @option{-malign-power} instructs GCC to follow the ABI-specified
19280alignment rules.  GCC defaults to the standard alignment defined in the ABI@.
19281
19282On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
19283is not supported.
19284
19285@item -msoft-float
19286@itemx -mhard-float
19287@opindex msoft-float
19288@opindex mhard-float
19289Generate code that does not use (uses) the floating-point register set.
19290Software floating-point emulation is provided if you use the
19291@option{-msoft-float} option, and pass the option to GCC when linking.
19292
19293@item -msingle-float
19294@itemx -mdouble-float
19295@opindex msingle-float
19296@opindex mdouble-float
19297Generate code for single- or double-precision floating-point operations.
19298@option{-mdouble-float} implies @option{-msingle-float}.
19299
19300@item -msimple-fpu
19301@opindex msimple-fpu
19302Do not generate @code{sqrt} and @code{div} instructions for hardware
19303floating-point unit.
19304
19305@item -mfpu=@var{name}
19306@opindex mfpu
19307Specify type of floating-point unit.  Valid values for @var{name} are
19308@samp{sp_lite} (equivalent to @option{-msingle-float -msimple-fpu}),
19309@samp{dp_lite} (equivalent to @option{-mdouble-float -msimple-fpu}),
19310@samp{sp_full} (equivalent to @option{-msingle-float}),
19311and @samp{dp_full} (equivalent to @option{-mdouble-float}).
19312
19313@item -mxilinx-fpu
19314@opindex mxilinx-fpu
19315Perform optimizations for the floating-point unit on Xilinx PPC 405/440.
19316
19317@item -mmultiple
19318@itemx -mno-multiple
19319@opindex mmultiple
19320@opindex mno-multiple
19321Generate code that uses (does not use) the load multiple word
19322instructions and the store multiple word instructions.  These
19323instructions are generated by default on POWER systems, and not
19324generated on PowerPC systems.  Do not use @option{-mmultiple} on little-endian
19325PowerPC systems, since those instructions do not work when the
19326processor is in little-endian mode.  The exceptions are PPC740 and
19327PPC750 which permit these instructions in little-endian mode.
19328
19329@item -mstring
19330@itemx -mno-string
19331@opindex mstring
19332@opindex mno-string
19333Generate code that uses (does not use) the load string instructions
19334and the store string word instructions to save multiple registers and
19335do small block moves.  These instructions are generated by default on
19336POWER systems, and not generated on PowerPC systems.  Do not use
19337@option{-mstring} on little-endian PowerPC systems, since those
19338instructions do not work when the processor is in little-endian mode.
19339The exceptions are PPC740 and PPC750 which permit these instructions
19340in little-endian mode.
19341
19342@item -mupdate
19343@itemx -mno-update
19344@opindex mupdate
19345@opindex mno-update
19346Generate code that uses (does not use) the load or store instructions
19347that update the base register to the address of the calculated memory
19348location.  These instructions are generated by default.  If you use
19349@option{-mno-update}, there is a small window between the time that the
19350stack pointer is updated and the address of the previous frame is
19351stored, which means code that walks the stack frame across interrupts or
19352signals may get corrupted data.
19353
19354@item -mavoid-indexed-addresses
19355@itemx -mno-avoid-indexed-addresses
19356@opindex mavoid-indexed-addresses
19357@opindex mno-avoid-indexed-addresses
19358Generate code that tries to avoid (not avoid) the use of indexed load
19359or store instructions. These instructions can incur a performance
19360penalty on Power6 processors in certain situations, such as when
19361stepping through large arrays that cross a 16M boundary.  This option
19362is enabled by default when targeting Power6 and disabled otherwise.
19363
19364@item -mfused-madd
19365@itemx -mno-fused-madd
19366@opindex mfused-madd
19367@opindex mno-fused-madd
19368Generate code that uses (does not use) the floating-point multiply and
19369accumulate instructions.  These instructions are generated by default
19370if hardware floating point is used.  The machine-dependent
19371@option{-mfused-madd} option is now mapped to the machine-independent
19372@option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
19373mapped to @option{-ffp-contract=off}.
19374
19375@item -mmulhw
19376@itemx -mno-mulhw
19377@opindex mmulhw
19378@opindex mno-mulhw
19379Generate code that uses (does not use) the half-word multiply and
19380multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
19381These instructions are generated by default when targeting those
19382processors.
19383
19384@item -mdlmzb
19385@itemx -mno-dlmzb
19386@opindex mdlmzb
19387@opindex mno-dlmzb
19388Generate code that uses (does not use) the string-search @samp{dlmzb}
19389instruction on the IBM 405, 440, 464 and 476 processors.  This instruction is
19390generated by default when targeting those processors.
19391
19392@item -mno-bit-align
19393@itemx -mbit-align
19394@opindex mno-bit-align
19395@opindex mbit-align
19396On System V.4 and embedded PowerPC systems do not (do) force structures
19397and unions that contain bit-fields to be aligned to the base type of the
19398bit-field.
19399
19400For example, by default a structure containing nothing but 8
19401@code{unsigned} bit-fields of length 1 is aligned to a 4-byte
19402boundary and has a size of 4 bytes.  By using @option{-mno-bit-align},
19403the structure is aligned to a 1-byte boundary and is 1 byte in
19404size.
19405
19406@item -mno-strict-align
19407@itemx -mstrict-align
19408@opindex mno-strict-align
19409@opindex mstrict-align
19410On System V.4 and embedded PowerPC systems do not (do) assume that
19411unaligned memory references are handled by the system.
19412
19413@item -mrelocatable
19414@itemx -mno-relocatable
19415@opindex mrelocatable
19416@opindex mno-relocatable
19417Generate code that allows (does not allow) a static executable to be
19418relocated to a different address at run time.  A simple embedded
19419PowerPC system loader should relocate the entire contents of
19420@code{.got2} and 4-byte locations listed in the @code{.fixup} section,
19421a table of 32-bit addresses generated by this option.  For this to
19422work, all objects linked together must be compiled with
19423@option{-mrelocatable} or @option{-mrelocatable-lib}.
19424@option{-mrelocatable} code aligns the stack to an 8-byte boundary.
19425
19426@item -mrelocatable-lib
19427@itemx -mno-relocatable-lib
19428@opindex mrelocatable-lib
19429@opindex mno-relocatable-lib
19430Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
19431@code{.fixup} section to allow static executables to be relocated at
19432run time, but @option{-mrelocatable-lib} does not use the smaller stack
19433alignment of @option{-mrelocatable}.  Objects compiled with
19434@option{-mrelocatable-lib} may be linked with objects compiled with
19435any combination of the @option{-mrelocatable} options.
19436
19437@item -mno-toc
19438@itemx -mtoc
19439@opindex mno-toc
19440@opindex mtoc
19441On System V.4 and embedded PowerPC systems do not (do) assume that
19442register 2 contains a pointer to a global area pointing to the addresses
19443used in the program.
19444
19445@item -mlittle
19446@itemx -mlittle-endian
19447@opindex mlittle
19448@opindex mlittle-endian
19449On System V.4 and embedded PowerPC systems compile code for the
19450processor in little-endian mode.  The @option{-mlittle-endian} option is
19451the same as @option{-mlittle}.
19452
19453@item -mbig
19454@itemx -mbig-endian
19455@opindex mbig
19456@opindex mbig-endian
19457On System V.4 and embedded PowerPC systems compile code for the
19458processor in big-endian mode.  The @option{-mbig-endian} option is
19459the same as @option{-mbig}.
19460
19461@item -mdynamic-no-pic
19462@opindex mdynamic-no-pic
19463On Darwin and Mac OS X systems, compile code so that it is not
19464relocatable, but that its external references are relocatable.  The
19465resulting code is suitable for applications, but not shared
19466libraries.
19467
19468@item -msingle-pic-base
19469@opindex msingle-pic-base
19470Treat the register used for PIC addressing as read-only, rather than
19471loading it in the prologue for each function.  The runtime system is
19472responsible for initializing this register with an appropriate value
19473before execution begins.
19474
19475@item -mprioritize-restricted-insns=@var{priority}
19476@opindex mprioritize-restricted-insns
19477This option controls the priority that is assigned to
19478dispatch-slot restricted instructions during the second scheduling
19479pass.  The argument @var{priority} takes the value @samp{0}, @samp{1},
19480or @samp{2} to assign no, highest, or second-highest (respectively)
19481priority to dispatch-slot restricted
19482instructions.
19483
19484@item -msched-costly-dep=@var{dependence_type}
19485@opindex msched-costly-dep
19486This option controls which dependences are considered costly
19487by the target during instruction scheduling.  The argument
19488@var{dependence_type} takes one of the following values:
19489
19490@table @asis
19491@item @samp{no}
19492No dependence is costly.
19493
19494@item @samp{all}
19495All dependences are costly.
19496
19497@item @samp{true_store_to_load}
19498A true dependence from store to load is costly.
19499
19500@item @samp{store_to_load}
19501Any dependence from store to load is costly.
19502
19503@item @var{number}
19504Any dependence for which the latency is greater than or equal to
19505@var{number} is costly.
19506@end table
19507
19508@item -minsert-sched-nops=@var{scheme}
19509@opindex minsert-sched-nops
19510This option controls which NOP insertion scheme is used during
19511the second scheduling pass.  The argument @var{scheme} takes one of the
19512following values:
19513
19514@table @asis
19515@item @samp{no}
19516Don't insert NOPs.
19517
19518@item @samp{pad}
19519Pad with NOPs any dispatch group that has vacant issue slots,
19520according to the scheduler's grouping.
19521
19522@item @samp{regroup_exact}
19523Insert NOPs to force costly dependent insns into
19524separate groups.  Insert exactly as many NOPs as needed to force an insn
19525to a new group, according to the estimated processor grouping.
19526
19527@item @var{number}
19528Insert NOPs to force costly dependent insns into
19529separate groups.  Insert @var{number} NOPs to force an insn to a new group.
19530@end table
19531
19532@item -mcall-sysv
19533@opindex mcall-sysv
19534On System V.4 and embedded PowerPC systems compile code using calling
19535conventions that adhere to the March 1995 draft of the System V
19536Application Binary Interface, PowerPC processor supplement.  This is the
19537default unless you configured GCC using @samp{powerpc-*-eabiaix}.
19538
19539@item -mcall-sysv-eabi
19540@itemx -mcall-eabi
19541@opindex mcall-sysv-eabi
19542@opindex mcall-eabi
19543Specify both @option{-mcall-sysv} and @option{-meabi} options.
19544
19545@item -mcall-sysv-noeabi
19546@opindex mcall-sysv-noeabi
19547Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
19548
19549@item -mcall-aixdesc
19550@opindex m
19551On System V.4 and embedded PowerPC systems compile code for the AIX
19552operating system.
19553
19554@item -mcall-linux
19555@opindex mcall-linux
19556On System V.4 and embedded PowerPC systems compile code for the
19557Linux-based GNU system.
19558
19559@item -mcall-freebsd
19560@opindex mcall-freebsd
19561On System V.4 and embedded PowerPC systems compile code for the
19562FreeBSD operating system.
19563
19564@item -mcall-netbsd
19565@opindex mcall-netbsd
19566On System V.4 and embedded PowerPC systems compile code for the
19567NetBSD operating system.
19568
19569@item -mcall-openbsd
19570@opindex mcall-netbsd
19571On System V.4 and embedded PowerPC systems compile code for the
19572OpenBSD operating system.
19573
19574@item -maix-struct-return
19575@opindex maix-struct-return
19576Return all structures in memory (as specified by the AIX ABI)@.
19577
19578@item -msvr4-struct-return
19579@opindex msvr4-struct-return
19580Return structures smaller than 8 bytes in registers (as specified by the
19581SVR4 ABI)@.
19582
19583@item -mabi=@var{abi-type}
19584@opindex mabi
19585Extend the current ABI with a particular extension, or remove such extension.
19586Valid values are @samp{altivec}, @samp{no-altivec}, @samp{spe},
19587@samp{no-spe}, @samp{ibmlongdouble}, @samp{ieeelongdouble},
19588@samp{elfv1}, @samp{elfv2}@.
19589
19590@item -mabi=spe
19591@opindex mabi=spe
19592Extend the current ABI with SPE ABI extensions.  This does not change
19593the default ABI, instead it adds the SPE ABI extensions to the current
19594ABI@.
19595
19596@item -mabi=no-spe
19597@opindex mabi=no-spe
19598Disable Book-E SPE ABI extensions for the current ABI@.
19599
19600@item -mabi=ibmlongdouble
19601@opindex mabi=ibmlongdouble
19602Change the current ABI to use IBM extended-precision long double.
19603This is a PowerPC 32-bit SYSV ABI option.
19604
19605@item -mabi=ieeelongdouble
19606@opindex mabi=ieeelongdouble
19607Change the current ABI to use IEEE extended-precision long double.
19608This is a PowerPC 32-bit Linux ABI option.
19609
19610@item -mabi=elfv1
19611@opindex mabi=elfv1
19612Change the current ABI to use the ELFv1 ABI.
19613This is the default ABI for big-endian PowerPC 64-bit Linux.
19614Overriding the default ABI requires special system support and is
19615likely to fail in spectacular ways.
19616
19617@item -mabi=elfv2
19618@opindex mabi=elfv2
19619Change the current ABI to use the ELFv2 ABI.
19620This is the default ABI for little-endian PowerPC 64-bit Linux.
19621Overriding the default ABI requires special system support and is
19622likely to fail in spectacular ways.
19623
19624@item -mprototype
19625@itemx -mno-prototype
19626@opindex mprototype
19627@opindex mno-prototype
19628On System V.4 and embedded PowerPC systems assume that all calls to
19629variable argument functions are properly prototyped.  Otherwise, the
19630compiler must insert an instruction before every non-prototyped call to
19631set or clear bit 6 of the condition code register (@code{CR}) to
19632indicate whether floating-point values are passed in the floating-point
19633registers in case the function takes variable arguments.  With
19634@option{-mprototype}, only calls to prototyped variable argument functions
19635set or clear the bit.
19636
19637@item -msim
19638@opindex msim
19639On embedded PowerPC systems, assume that the startup module is called
19640@file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
19641@file{libc.a}.  This is the default for @samp{powerpc-*-eabisim}
19642configurations.
19643
19644@item -mmvme
19645@opindex mmvme
19646On embedded PowerPC systems, assume that the startup module is called
19647@file{crt0.o} and the standard C libraries are @file{libmvme.a} and
19648@file{libc.a}.
19649
19650@item -mads
19651@opindex mads
19652On embedded PowerPC systems, assume that the startup module is called
19653@file{crt0.o} and the standard C libraries are @file{libads.a} and
19654@file{libc.a}.
19655
19656@item -myellowknife
19657@opindex myellowknife
19658On embedded PowerPC systems, assume that the startup module is called
19659@file{crt0.o} and the standard C libraries are @file{libyk.a} and
19660@file{libc.a}.
19661
19662@item -mvxworks
19663@opindex mvxworks
19664On System V.4 and embedded PowerPC systems, specify that you are
19665compiling for a VxWorks system.
19666
19667@item -memb
19668@opindex memb
19669On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
19670header to indicate that @samp{eabi} extended relocations are used.
19671
19672@item -meabi
19673@itemx -mno-eabi
19674@opindex meabi
19675@opindex mno-eabi
19676On System V.4 and embedded PowerPC systems do (do not) adhere to the
19677Embedded Applications Binary Interface (EABI), which is a set of
19678modifications to the System V.4 specifications.  Selecting @option{-meabi}
19679means that the stack is aligned to an 8-byte boundary, a function
19680@code{__eabi} is called from @code{main} to set up the EABI
19681environment, and the @option{-msdata} option can use both @code{r2} and
19682@code{r13} to point to two separate small data areas.  Selecting
19683@option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
19684no EABI initialization function is called from @code{main}, and the
19685@option{-msdata} option only uses @code{r13} to point to a single
19686small data area.  The @option{-meabi} option is on by default if you
19687configured GCC using one of the @samp{powerpc*-*-eabi*} options.
19688
19689@item -msdata=eabi
19690@opindex msdata=eabi
19691On System V.4 and embedded PowerPC systems, put small initialized
19692@code{const} global and static data in the @code{.sdata2} section, which
19693is pointed to by register @code{r2}.  Put small initialized
19694non-@code{const} global and static data in the @code{.sdata} section,
19695which is pointed to by register @code{r13}.  Put small uninitialized
19696global and static data in the @code{.sbss} section, which is adjacent to
19697the @code{.sdata} section.  The @option{-msdata=eabi} option is
19698incompatible with the @option{-mrelocatable} option.  The
19699@option{-msdata=eabi} option also sets the @option{-memb} option.
19700
19701@item -msdata=sysv
19702@opindex msdata=sysv
19703On System V.4 and embedded PowerPC systems, put small global and static
19704data in the @code{.sdata} section, which is pointed to by register
19705@code{r13}.  Put small uninitialized global and static data in the
19706@code{.sbss} section, which is adjacent to the @code{.sdata} section.
19707The @option{-msdata=sysv} option is incompatible with the
19708@option{-mrelocatable} option.
19709
19710@item -msdata=default
19711@itemx -msdata
19712@opindex msdata=default
19713@opindex msdata
19714On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
19715compile code the same as @option{-msdata=eabi}, otherwise compile code the
19716same as @option{-msdata=sysv}.
19717
19718@item -msdata=data
19719@opindex msdata=data
19720On System V.4 and embedded PowerPC systems, put small global
19721data in the @code{.sdata} section.  Put small uninitialized global
19722data in the @code{.sbss} section.  Do not use register @code{r13}
19723to address small data however.  This is the default behavior unless
19724other @option{-msdata} options are used.
19725
19726@item -msdata=none
19727@itemx -mno-sdata
19728@opindex msdata=none
19729@opindex mno-sdata
19730On embedded PowerPC systems, put all initialized global and static data
19731in the @code{.data} section, and all uninitialized data in the
19732@code{.bss} section.
19733
19734@item -mblock-move-inline-limit=@var{num}
19735@opindex mblock-move-inline-limit
19736Inline all block moves (such as calls to @code{memcpy} or structure
19737copies) less than or equal to @var{num} bytes.  The minimum value for
19738@var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
19739targets.  The default value is target-specific.
19740
19741@item -G @var{num}
19742@opindex G
19743@cindex smaller data references (PowerPC)
19744@cindex .sdata/.sdata2 references (PowerPC)
19745On embedded PowerPC systems, put global and static items less than or
19746equal to @var{num} bytes into the small data or BSS sections instead of
19747the normal data or BSS section.  By default, @var{num} is 8.  The
19748@option{-G @var{num}} switch is also passed to the linker.
19749All modules should be compiled with the same @option{-G @var{num}} value.
19750
19751@item -mregnames
19752@itemx -mno-regnames
19753@opindex mregnames
19754@opindex mno-regnames
19755On System V.4 and embedded PowerPC systems do (do not) emit register
19756names in the assembly language output using symbolic forms.
19757
19758@item -mlongcall
19759@itemx -mno-longcall
19760@opindex mlongcall
19761@opindex mno-longcall
19762By default assume that all calls are far away so that a longer and more
19763expensive calling sequence is required.  This is required for calls
19764farther than 32 megabytes (33,554,432 bytes) from the current location.
19765A short call is generated if the compiler knows
19766the call cannot be that far away.  This setting can be overridden by
19767the @code{shortcall} function attribute, or by @code{#pragma
19768longcall(0)}.
19769
19770Some linkers are capable of detecting out-of-range calls and generating
19771glue code on the fly.  On these systems, long calls are unnecessary and
19772generate slower code.  As of this writing, the AIX linker can do this,
19773as can the GNU linker for PowerPC/64.  It is planned to add this feature
19774to the GNU linker for 32-bit PowerPC systems as well.
19775
19776On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
19777callee, L42}, plus a @dfn{branch island} (glue code).  The two target
19778addresses represent the callee and the branch island.  The
19779Darwin/PPC linker prefers the first address and generates a @code{bl
19780callee} if the PPC @code{bl} instruction reaches the callee directly;
19781otherwise, the linker generates @code{bl L42} to call the branch
19782island.  The branch island is appended to the body of the
19783calling function; it computes the full 32-bit address of the callee
19784and jumps to it.
19785
19786On Mach-O (Darwin) systems, this option directs the compiler emit to
19787the glue for every direct call, and the Darwin linker decides whether
19788to use or discard it.
19789
19790In the future, GCC may ignore all longcall specifications
19791when the linker is known to generate glue.
19792
19793@item -mtls-markers
19794@itemx -mno-tls-markers
19795@opindex mtls-markers
19796@opindex mno-tls-markers
19797Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
19798specifying the function argument.  The relocation allows the linker to
19799reliably associate function call with argument setup instructions for
19800TLS optimization, which in turn allows GCC to better schedule the
19801sequence.
19802
19803@item -pthread
19804@opindex pthread
19805Adds support for multithreading with the @dfn{pthreads} library.
19806This option sets flags for both the preprocessor and linker.
19807
19808@item -mrecip
19809@itemx -mno-recip
19810@opindex mrecip
19811This option enables use of the reciprocal estimate and
19812reciprocal square root estimate instructions with additional
19813Newton-Raphson steps to increase precision instead of doing a divide or
19814square root and divide for floating-point arguments.  You should use
19815the @option{-ffast-math} option when using @option{-mrecip} (or at
19816least @option{-funsafe-math-optimizations},
19817@option{-finite-math-only}, @option{-freciprocal-math} and
19818@option{-fno-trapping-math}).  Note that while the throughput of the
19819sequence is generally higher than the throughput of the non-reciprocal
19820instruction, the precision of the sequence can be decreased by up to 2
19821ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
19822roots.
19823
19824@item -mrecip=@var{opt}
19825@opindex mrecip=opt
19826This option controls which reciprocal estimate instructions
19827may be used.  @var{opt} is a comma-separated list of options, which may
19828be preceded by a @code{!} to invert the option:
19829
19830@table @samp
19831
19832@item all
19833Enable all estimate instructions.
19834
19835@item default
19836Enable the default instructions, equivalent to @option{-mrecip}.
19837
19838@item none
19839Disable all estimate instructions, equivalent to @option{-mno-recip}.
19840
19841@item div
19842Enable the reciprocal approximation instructions for both
19843single and double precision.
19844
19845@item divf
19846Enable the single-precision reciprocal approximation instructions.
19847
19848@item divd
19849Enable the double-precision reciprocal approximation instructions.
19850
19851@item rsqrt
19852Enable the reciprocal square root approximation instructions for both
19853single and double precision.
19854
19855@item rsqrtf
19856Enable the single-precision reciprocal square root approximation instructions.
19857
19858@item rsqrtd
19859Enable the double-precision reciprocal square root approximation instructions.
19860
19861@end table
19862
19863So, for example, @option{-mrecip=all,!rsqrtd} enables
19864all of the reciprocal estimate instructions, except for the
19865@code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
19866which handle the double-precision reciprocal square root calculations.
19867
19868@item -mrecip-precision
19869@itemx -mno-recip-precision
19870@opindex mrecip-precision
19871Assume (do not assume) that the reciprocal estimate instructions
19872provide higher-precision estimates than is mandated by the PowerPC
19873ABI.  Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
19874@option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
19875The double-precision square root estimate instructions are not generated by
19876default on low-precision machines, since they do not provide an
19877estimate that converges after three steps.
19878
19879@item -mveclibabi=@var{type}
19880@opindex mveclibabi
19881Specifies the ABI type to use for vectorizing intrinsics using an
19882external library.  The only type supported at present is @samp{mass},
19883which specifies to use IBM's Mathematical Acceleration Subsystem
19884(MASS) libraries for vectorizing intrinsics using external libraries.
19885GCC currently emits calls to @code{acosd2}, @code{acosf4},
19886@code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
19887@code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
19888@code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
19889@code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
19890@code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
19891@code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
19892@code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
19893@code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
19894@code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
19895@code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
19896@code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
19897@code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
19898@code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
19899for power7.  Both @option{-ftree-vectorize} and
19900@option{-funsafe-math-optimizations} must also be enabled.  The MASS
19901libraries must be specified at link time.
19902
19903@item -mfriz
19904@itemx -mno-friz
19905@opindex mfriz
19906Generate (do not generate) the @code{friz} instruction when the
19907@option{-funsafe-math-optimizations} option is used to optimize
19908rounding of floating-point values to 64-bit integer and back to floating
19909point.  The @code{friz} instruction does not return the same value if
19910the floating-point number is too large to fit in an integer.
19911
19912@item -mpointers-to-nested-functions
19913@itemx -mno-pointers-to-nested-functions
19914@opindex mpointers-to-nested-functions
19915Generate (do not generate) code to load up the static chain register
19916(@code{r11}) when calling through a pointer on AIX and 64-bit Linux
19917systems where a function pointer points to a 3-word descriptor giving
19918the function address, TOC value to be loaded in register @code{r2}, and
19919static chain value to be loaded in register @code{r11}.  The
19920@option{-mpointers-to-nested-functions} is on by default.  You cannot
19921call through pointers to nested functions or pointers
19922to functions compiled in other languages that use the static chain if
19923you use @option{-mno-pointers-to-nested-functions}.
19924
19925@item -msave-toc-indirect
19926@itemx -mno-save-toc-indirect
19927@opindex msave-toc-indirect
19928Generate (do not generate) code to save the TOC value in the reserved
19929stack location in the function prologue if the function calls through
19930a pointer on AIX and 64-bit Linux systems.  If the TOC value is not
19931saved in the prologue, it is saved just before the call through the
19932pointer.  The @option{-mno-save-toc-indirect} option is the default.
19933
19934@item -mcompat-align-parm
19935@itemx -mno-compat-align-parm
19936@opindex mcompat-align-parm
19937Generate (do not generate) code to pass structure parameters with a
19938maximum alignment of 64 bits, for compatibility with older versions
19939of GCC.
19940
19941Older versions of GCC (prior to 4.9.0) incorrectly did not align a
19942structure parameter on a 128-bit boundary when that structure contained
19943a member requiring 128-bit alignment.  This is corrected in more
19944recent versions of GCC.  This option may be used to generate code
19945that is compatible with functions compiled with older versions of
19946GCC.
19947
19948The @option{-mno-compat-align-parm} option is the default.
19949@end table
19950
19951@node RX Options
19952@subsection RX Options
19953@cindex RX Options
19954
19955These command-line options are defined for RX targets:
19956
19957@table @gcctabopt
19958@item -m64bit-doubles
19959@itemx -m32bit-doubles
19960@opindex m64bit-doubles
19961@opindex m32bit-doubles
19962Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
19963or 32 bits (@option{-m32bit-doubles}) in size.  The default is
19964@option{-m32bit-doubles}.  @emph{Note} RX floating-point hardware only
19965works on 32-bit values, which is why the default is
19966@option{-m32bit-doubles}.
19967
19968@item -fpu
19969@itemx -nofpu
19970@opindex fpu
19971@opindex nofpu
19972Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
19973floating-point hardware.  The default is enabled for the RX600
19974series and disabled for the RX200 series.
19975
19976Floating-point instructions are only generated for 32-bit floating-point
19977values, however, so the FPU hardware is not used for doubles if the
19978@option{-m64bit-doubles} option is used.
19979
19980@emph{Note} If the @option{-fpu} option is enabled then
19981@option{-funsafe-math-optimizations} is also enabled automatically.
19982This is because the RX FPU instructions are themselves unsafe.
19983
19984@item -mcpu=@var{name}
19985@opindex mcpu
19986Selects the type of RX CPU to be targeted.  Currently three types are
19987supported, the generic @samp{RX600} and @samp{RX200} series hardware and
19988the specific @samp{RX610} CPU.  The default is @samp{RX600}.
19989
19990The only difference between @samp{RX600} and @samp{RX610} is that the
19991@samp{RX610} does not support the @code{MVTIPL} instruction.
19992
19993The @samp{RX200} series does not have a hardware floating-point unit
19994and so @option{-nofpu} is enabled by default when this type is
19995selected.
19996
19997@item -mbig-endian-data
19998@itemx -mlittle-endian-data
19999@opindex mbig-endian-data
20000@opindex mlittle-endian-data
20001Store data (but not code) in the big-endian format.  The default is
20002@option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
20003format.
20004
20005@item -msmall-data-limit=@var{N}
20006@opindex msmall-data-limit
20007Specifies the maximum size in bytes of global and static variables
20008which can be placed into the small data area.  Using the small data
20009area can lead to smaller and faster code, but the size of area is
20010limited and it is up to the programmer to ensure that the area does
20011not overflow.  Also when the small data area is used one of the RX's
20012registers (usually @code{r13}) is reserved for use pointing to this
20013area, so it is no longer available for use by the compiler.  This
20014could result in slower and/or larger code if variables are pushed onto
20015the stack instead of being held in this register.
20016
20017Note, common variables (variables that have not been initialized) and
20018constants are not placed into the small data area as they are assigned
20019to other sections in the output executable.
20020
20021The default value is zero, which disables this feature.  Note, this
20022feature is not enabled by default with higher optimization levels
20023(@option{-O2} etc) because of the potentially detrimental effects of
20024reserving a register.  It is up to the programmer to experiment and
20025discover whether this feature is of benefit to their program.  See the
20026description of the @option{-mpid} option for a description of how the
20027actual register to hold the small data area pointer is chosen.
20028
20029@item -msim
20030@itemx -mno-sim
20031@opindex msim
20032@opindex mno-sim
20033Use the simulator runtime.  The default is to use the libgloss
20034board-specific runtime.
20035
20036@item -mas100-syntax
20037@itemx -mno-as100-syntax
20038@opindex mas100-syntax
20039@opindex mno-as100-syntax
20040When generating assembler output use a syntax that is compatible with
20041Renesas's AS100 assembler.  This syntax can also be handled by the GAS
20042assembler, but it has some restrictions so it is not generated by default.
20043
20044@item -mmax-constant-size=@var{N}
20045@opindex mmax-constant-size
20046Specifies the maximum size, in bytes, of a constant that can be used as
20047an operand in a RX instruction.  Although the RX instruction set does
20048allow constants of up to 4 bytes in length to be used in instructions,
20049a longer value equates to a longer instruction.  Thus in some
20050circumstances it can be beneficial to restrict the size of constants
20051that are used in instructions.  Constants that are too big are instead
20052placed into a constant pool and referenced via register indirection.
20053
20054The value @var{N} can be between 0 and 4.  A value of 0 (the default)
20055or 4 means that constants of any size are allowed.
20056
20057@item -mrelax
20058@opindex mrelax
20059Enable linker relaxation.  Linker relaxation is a process whereby the
20060linker attempts to reduce the size of a program by finding shorter
20061versions of various instructions.  Disabled by default.
20062
20063@item -mint-register=@var{N}
20064@opindex mint-register
20065Specify the number of registers to reserve for fast interrupt handler
20066functions.  The value @var{N} can be between 0 and 4.  A value of 1
20067means that register @code{r13} is reserved for the exclusive use
20068of fast interrupt handlers.  A value of 2 reserves @code{r13} and
20069@code{r12}.  A value of 3 reserves @code{r13}, @code{r12} and
20070@code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
20071A value of 0, the default, does not reserve any registers.
20072
20073@item -msave-acc-in-interrupts
20074@opindex msave-acc-in-interrupts
20075Specifies that interrupt handler functions should preserve the
20076accumulator register.  This is only necessary if normal code might use
20077the accumulator register, for example because it performs 64-bit
20078multiplications.  The default is to ignore the accumulator as this
20079makes the interrupt handlers faster.
20080
20081@item -mpid
20082@itemx -mno-pid
20083@opindex mpid
20084@opindex mno-pid
20085Enables the generation of position independent data.  When enabled any
20086access to constant data is done via an offset from a base address
20087held in a register.  This allows the location of constant data to be
20088determined at run time without requiring the executable to be
20089relocated, which is a benefit to embedded applications with tight
20090memory constraints.  Data that can be modified is not affected by this
20091option.
20092
20093Note, using this feature reserves a register, usually @code{r13}, for
20094the constant data base address.  This can result in slower and/or
20095larger code, especially in complicated functions.
20096
20097The actual register chosen to hold the constant data base address
20098depends upon whether the @option{-msmall-data-limit} and/or the
20099@option{-mint-register} command-line options are enabled.  Starting
20100with register @code{r13} and proceeding downwards, registers are
20101allocated first to satisfy the requirements of @option{-mint-register},
20102then @option{-mpid} and finally @option{-msmall-data-limit}.  Thus it
20103is possible for the small data area register to be @code{r8} if both
20104@option{-mint-register=4} and @option{-mpid} are specified on the
20105command line.
20106
20107By default this feature is not enabled.  The default can be restored
20108via the @option{-mno-pid} command-line option.
20109
20110@item -mno-warn-multiple-fast-interrupts
20111@itemx -mwarn-multiple-fast-interrupts
20112@opindex mno-warn-multiple-fast-interrupts
20113@opindex mwarn-multiple-fast-interrupts
20114Prevents GCC from issuing a warning message if it finds more than one
20115fast interrupt handler when it is compiling a file.  The default is to
20116issue a warning for each extra fast interrupt handler found, as the RX
20117only supports one such interrupt.
20118
20119@end table
20120
20121@emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
20122has special significance to the RX port when used with the
20123@code{interrupt} function attribute.  This attribute indicates a
20124function intended to process fast interrupts.  GCC ensures
20125that it only uses the registers @code{r10}, @code{r11}, @code{r12}
20126and/or @code{r13} and only provided that the normal use of the
20127corresponding registers have been restricted via the
20128@option{-ffixed-@var{reg}} or @option{-mint-register} command-line
20129options.
20130
20131@node S/390 and zSeries Options
20132@subsection S/390 and zSeries Options
20133@cindex S/390 and zSeries Options
20134
20135These are the @samp{-m} options defined for the S/390 and zSeries architecture.
20136
20137@table @gcctabopt
20138@item -mhard-float
20139@itemx -msoft-float
20140@opindex mhard-float
20141@opindex msoft-float
20142Use (do not use) the hardware floating-point instructions and registers
20143for floating-point operations.  When @option{-msoft-float} is specified,
20144functions in @file{libgcc.a} are used to perform floating-point
20145operations.  When @option{-mhard-float} is specified, the compiler
20146generates IEEE floating-point instructions.  This is the default.
20147
20148@item -mhard-dfp
20149@itemx -mno-hard-dfp
20150@opindex mhard-dfp
20151@opindex mno-hard-dfp
20152Use (do not use) the hardware decimal-floating-point instructions for
20153decimal-floating-point operations.  When @option{-mno-hard-dfp} is
20154specified, functions in @file{libgcc.a} are used to perform
20155decimal-floating-point operations.  When @option{-mhard-dfp} is
20156specified, the compiler generates decimal-floating-point hardware
20157instructions.  This is the default for @option{-march=z9-ec} or higher.
20158
20159@item -mlong-double-64
20160@itemx -mlong-double-128
20161@opindex mlong-double-64
20162@opindex mlong-double-128
20163These switches control the size of @code{long double} type. A size
20164of 64 bits makes the @code{long double} type equivalent to the @code{double}
20165type. This is the default.
20166
20167@item -mbackchain
20168@itemx -mno-backchain
20169@opindex mbackchain
20170@opindex mno-backchain
20171Store (do not store) the address of the caller's frame as backchain pointer
20172into the callee's stack frame.
20173A backchain may be needed to allow debugging using tools that do not understand
20174DWARF 2 call frame information.
20175When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
20176at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
20177the backchain is placed into the topmost word of the 96/160 byte register
20178save area.
20179
20180In general, code compiled with @option{-mbackchain} is call-compatible with
20181code compiled with @option{-mmo-backchain}; however, use of the backchain
20182for debugging purposes usually requires that the whole binary is built with
20183@option{-mbackchain}.  Note that the combination of @option{-mbackchain},
20184@option{-mpacked-stack} and @option{-mhard-float} is not supported.  In order
20185to build a linux kernel use @option{-msoft-float}.
20186
20187The default is to not maintain the backchain.
20188
20189@item -mpacked-stack
20190@itemx -mno-packed-stack
20191@opindex mpacked-stack
20192@opindex mno-packed-stack
20193Use (do not use) the packed stack layout.  When @option{-mno-packed-stack} is
20194specified, the compiler uses the all fields of the 96/160 byte register save
20195area only for their default purpose; unused fields still take up stack space.
20196When @option{-mpacked-stack} is specified, register save slots are densely
20197packed at the top of the register save area; unused space is reused for other
20198purposes, allowing for more efficient use of the available stack space.
20199However, when @option{-mbackchain} is also in effect, the topmost word of
20200the save area is always used to store the backchain, and the return address
20201register is always saved two words below the backchain.
20202
20203As long as the stack frame backchain is not used, code generated with
20204@option{-mpacked-stack} is call-compatible with code generated with
20205@option{-mno-packed-stack}.  Note that some non-FSF releases of GCC 2.95 for
20206S/390 or zSeries generated code that uses the stack frame backchain at run
20207time, not just for debugging purposes.  Such code is not call-compatible
20208with code compiled with @option{-mpacked-stack}.  Also, note that the
20209combination of @option{-mbackchain},
20210@option{-mpacked-stack} and @option{-mhard-float} is not supported.  In order
20211to build a linux kernel use @option{-msoft-float}.
20212
20213The default is to not use the packed stack layout.
20214
20215@item -msmall-exec
20216@itemx -mno-small-exec
20217@opindex msmall-exec
20218@opindex mno-small-exec
20219Generate (or do not generate) code using the @code{bras} instruction
20220to do subroutine calls.
20221This only works reliably if the total executable size does not
20222exceed 64k.  The default is to use the @code{basr} instruction instead,
20223which does not have this limitation.
20224
20225@item -m64
20226@itemx -m31
20227@opindex m64
20228@opindex m31
20229When @option{-m31} is specified, generate code compliant to the
20230GNU/Linux for S/390 ABI@.  When @option{-m64} is specified, generate
20231code compliant to the GNU/Linux for zSeries ABI@.  This allows GCC in
20232particular to generate 64-bit instructions.  For the @samp{s390}
20233targets, the default is @option{-m31}, while the @samp{s390x}
20234targets default to @option{-m64}.
20235
20236@item -mzarch
20237@itemx -mesa
20238@opindex mzarch
20239@opindex mesa
20240When @option{-mzarch} is specified, generate code using the
20241instructions available on z/Architecture.
20242When @option{-mesa} is specified, generate code using the
20243instructions available on ESA/390.  Note that @option{-mesa} is
20244not possible with @option{-m64}.
20245When generating code compliant to the GNU/Linux for S/390 ABI,
20246the default is @option{-mesa}.  When generating code compliant
20247to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
20248
20249@item -mmvcle
20250@itemx -mno-mvcle
20251@opindex mmvcle
20252@opindex mno-mvcle
20253Generate (or do not generate) code using the @code{mvcle} instruction
20254to perform block moves.  When @option{-mno-mvcle} is specified,
20255use a @code{mvc} loop instead.  This is the default unless optimizing for
20256size.
20257
20258@item -mdebug
20259@itemx -mno-debug
20260@opindex mdebug
20261@opindex mno-debug
20262Print (or do not print) additional debug information when compiling.
20263The default is to not print debug information.
20264
20265@item -march=@var{cpu-type}
20266@opindex march
20267Generate code that runs on @var{cpu-type}, which is the name of a system
20268representing a certain processor type.  Possible values for
20269@var{cpu-type} are @samp{g5}, @samp{g6}, @samp{z900}, @samp{z990},
20270@samp{z9-109}, @samp{z9-ec}, @samp{z10},  @samp{z196}, @samp{zEC12},
20271and @samp{z13}.
20272When generating code using the instructions available on z/Architecture,
20273the default is @option{-march=z900}.  Otherwise, the default is
20274@option{-march=g5}.
20275
20276@item -mtune=@var{cpu-type}
20277@opindex mtune
20278Tune to @var{cpu-type} everything applicable about the generated code,
20279except for the ABI and the set of available instructions.
20280The list of @var{cpu-type} values is the same as for @option{-march}.
20281The default is the value used for @option{-march}.
20282
20283@item -mtpf-trace
20284@itemx -mno-tpf-trace
20285@opindex mtpf-trace
20286@opindex mno-tpf-trace
20287Generate code that adds (does not add) in TPF OS specific branches to trace
20288routines in the operating system.  This option is off by default, even
20289when compiling for the TPF OS@.
20290
20291@item -mfused-madd
20292@itemx -mno-fused-madd
20293@opindex mfused-madd
20294@opindex mno-fused-madd
20295Generate code that uses (does not use) the floating-point multiply and
20296accumulate instructions.  These instructions are generated by default if
20297hardware floating point is used.
20298
20299@item -mwarn-framesize=@var{framesize}
20300@opindex mwarn-framesize
20301Emit a warning if the current function exceeds the given frame size.  Because
20302this is a compile-time check it doesn't need to be a real problem when the program
20303runs.  It is intended to identify functions that most probably cause
20304a stack overflow.  It is useful to be used in an environment with limited stack
20305size e.g.@: the linux kernel.
20306
20307@item -mwarn-dynamicstack
20308@opindex mwarn-dynamicstack
20309Emit a warning if the function calls @code{alloca} or uses dynamically-sized
20310arrays.  This is generally a bad idea with a limited stack size.
20311
20312@item -mstack-guard=@var{stack-guard}
20313@itemx -mstack-size=@var{stack-size}
20314@opindex mstack-guard
20315@opindex mstack-size
20316If these options are provided the S/390 back end emits additional instructions in
20317the function prologue that trigger a trap if the stack size is @var{stack-guard}
20318bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
20319If the @var{stack-guard} option is omitted the smallest power of 2 larger than
20320the frame size of the compiled function is chosen.
20321These options are intended to be used to help debugging stack overflow problems.
20322The additionally emitted code causes only little overhead and hence can also be
20323used in production-like systems without greater performance degradation.  The given
20324values have to be exact powers of 2 and @var{stack-size} has to be greater than
20325@var{stack-guard} without exceeding 64k.
20326In order to be efficient the extra code makes the assumption that the stack starts
20327at an address aligned to the value given by @var{stack-size}.
20328The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
20329
20330@item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
20331@opindex mhotpatch
20332If the hotpatch option is enabled, a ``hot-patching'' function
20333prologue is generated for all functions in the compilation unit.
20334The funtion label is prepended with the given number of two-byte
20335NOP instructions (@var{pre-halfwords}, maximum 1000000).  After
20336the label, 2 * @var{post-halfwords} bytes are appended, using the
20337largest NOP like instructions the architecture allows (maximum
203381000000).
20339
20340If both arguments are zero, hotpatching is disabled.
20341
20342This option can be overridden for individual functions with the
20343@code{hotpatch} attribute.
20344@end table
20345
20346@node Score Options
20347@subsection Score Options
20348@cindex Score Options
20349
20350These options are defined for Score implementations:
20351
20352@table @gcctabopt
20353@item -meb
20354@opindex meb
20355Compile code for big-endian mode.  This is the default.
20356
20357@item -mel
20358@opindex mel
20359Compile code for little-endian mode.
20360
20361@item -mnhwloop
20362@opindex mnhwloop
20363Disable generation of @code{bcnz} instructions.
20364
20365@item -muls
20366@opindex muls
20367Enable generation of unaligned load and store instructions.
20368
20369@item -mmac
20370@opindex mmac
20371Enable the use of multiply-accumulate instructions. Disabled by default.
20372
20373@item -mscore5
20374@opindex mscore5
20375Specify the SCORE5 as the target architecture.
20376
20377@item -mscore5u
20378@opindex mscore5u
20379Specify the SCORE5U of the target architecture.
20380
20381@item -mscore7
20382@opindex mscore7
20383Specify the SCORE7 as the target architecture. This is the default.
20384
20385@item -mscore7d
20386@opindex mscore7d
20387Specify the SCORE7D as the target architecture.
20388@end table
20389
20390@node SH Options
20391@subsection SH Options
20392
20393These @samp{-m} options are defined for the SH implementations:
20394
20395@table @gcctabopt
20396@item -m1
20397@opindex m1
20398Generate code for the SH1.
20399
20400@item -m2
20401@opindex m2
20402Generate code for the SH2.
20403
20404@item -m2e
20405Generate code for the SH2e.
20406
20407@item -m2a-nofpu
20408@opindex m2a-nofpu
20409Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
20410that the floating-point unit is not used.
20411
20412@item -m2a-single-only
20413@opindex m2a-single-only
20414Generate code for the SH2a-FPU, in such a way that no double-precision
20415floating-point operations are used.
20416
20417@item -m2a-single
20418@opindex m2a-single
20419Generate code for the SH2a-FPU assuming the floating-point unit is in
20420single-precision mode by default.
20421
20422@item -m2a
20423@opindex m2a
20424Generate code for the SH2a-FPU assuming the floating-point unit is in
20425double-precision mode by default.
20426
20427@item -m3
20428@opindex m3
20429Generate code for the SH3.
20430
20431@item -m3e
20432@opindex m3e
20433Generate code for the SH3e.
20434
20435@item -m4-nofpu
20436@opindex m4-nofpu
20437Generate code for the SH4 without a floating-point unit.
20438
20439@item -m4-single-only
20440@opindex m4-single-only
20441Generate code for the SH4 with a floating-point unit that only
20442supports single-precision arithmetic.
20443
20444@item -m4-single
20445@opindex m4-single
20446Generate code for the SH4 assuming the floating-point unit is in
20447single-precision mode by default.
20448
20449@item -m4
20450@opindex m4
20451Generate code for the SH4.
20452
20453@item -m4-100
20454@opindex m4-100
20455Generate code for SH4-100.
20456
20457@item -m4-100-nofpu
20458@opindex m4-100-nofpu
20459Generate code for SH4-100 in such a way that the
20460floating-point unit is not used.
20461
20462@item -m4-100-single
20463@opindex m4-100-single
20464Generate code for SH4-100 assuming the floating-point unit is in
20465single-precision mode by default.
20466
20467@item -m4-100-single-only
20468@opindex m4-100-single-only
20469Generate code for SH4-100 in such a way that no double-precision
20470floating-point operations are used.
20471
20472@item -m4-200
20473@opindex m4-200
20474Generate code for SH4-200.
20475
20476@item -m4-200-nofpu
20477@opindex m4-200-nofpu
20478Generate code for SH4-200 without in such a way that the
20479floating-point unit is not used.
20480
20481@item -m4-200-single
20482@opindex m4-200-single
20483Generate code for SH4-200 assuming the floating-point unit is in
20484single-precision mode by default.
20485
20486@item -m4-200-single-only
20487@opindex m4-200-single-only
20488Generate code for SH4-200 in such a way that no double-precision
20489floating-point operations are used.
20490
20491@item -m4-300
20492@opindex m4-300
20493Generate code for SH4-300.
20494
20495@item -m4-300-nofpu
20496@opindex m4-300-nofpu
20497Generate code for SH4-300 without in such a way that the
20498floating-point unit is not used.
20499
20500@item -m4-300-single
20501@opindex m4-300-single
20502Generate code for SH4-300 in such a way that no double-precision
20503floating-point operations are used.
20504
20505@item -m4-300-single-only
20506@opindex m4-300-single-only
20507Generate code for SH4-300 in such a way that no double-precision
20508floating-point operations are used.
20509
20510@item -m4-340
20511@opindex m4-340
20512Generate code for SH4-340 (no MMU, no FPU).
20513
20514@item -m4-500
20515@opindex m4-500
20516Generate code for SH4-500 (no FPU).  Passes @option{-isa=sh4-nofpu} to the
20517assembler.
20518
20519@item -m4a-nofpu
20520@opindex m4a-nofpu
20521Generate code for the SH4al-dsp, or for a SH4a in such a way that the
20522floating-point unit is not used.
20523
20524@item -m4a-single-only
20525@opindex m4a-single-only
20526Generate code for the SH4a, in such a way that no double-precision
20527floating-point operations are used.
20528
20529@item -m4a-single
20530@opindex m4a-single
20531Generate code for the SH4a assuming the floating-point unit is in
20532single-precision mode by default.
20533
20534@item -m4a
20535@opindex m4a
20536Generate code for the SH4a.
20537
20538@item -m4al
20539@opindex m4al
20540Same as @option{-m4a-nofpu}, except that it implicitly passes
20541@option{-dsp} to the assembler.  GCC doesn't generate any DSP
20542instructions at the moment.
20543
20544@item -m5-32media
20545@opindex m5-32media
20546Generate 32-bit code for SHmedia.
20547
20548@item -m5-32media-nofpu
20549@opindex m5-32media-nofpu
20550Generate 32-bit code for SHmedia in such a way that the
20551floating-point unit is not used.
20552
20553@item -m5-64media
20554@opindex m5-64media
20555Generate 64-bit code for SHmedia.
20556
20557@item -m5-64media-nofpu
20558@opindex m5-64media-nofpu
20559Generate 64-bit code for SHmedia in such a way that the
20560floating-point unit is not used.
20561
20562@item -m5-compact
20563@opindex m5-compact
20564Generate code for SHcompact.
20565
20566@item -m5-compact-nofpu
20567@opindex m5-compact-nofpu
20568Generate code for SHcompact in such a way that the
20569floating-point unit is not used.
20570
20571@item -mb
20572@opindex mb
20573Compile code for the processor in big-endian mode.
20574
20575@item -ml
20576@opindex ml
20577Compile code for the processor in little-endian mode.
20578
20579@item -mdalign
20580@opindex mdalign
20581Align doubles at 64-bit boundaries.  Note that this changes the calling
20582conventions, and thus some functions from the standard C library do
20583not work unless you recompile it first with @option{-mdalign}.
20584
20585@item -mrelax
20586@opindex mrelax
20587Shorten some address references at link time, when possible; uses the
20588linker option @option{-relax}.
20589
20590@item -mbigtable
20591@opindex mbigtable
20592Use 32-bit offsets in @code{switch} tables.  The default is to use
2059316-bit offsets.
20594
20595@item -mbitops
20596@opindex mbitops
20597Enable the use of bit manipulation instructions on SH2A.
20598
20599@item -mfmovd
20600@opindex mfmovd
20601Enable the use of the instruction @code{fmovd}.  Check @option{-mdalign} for
20602alignment constraints.
20603
20604@item -mrenesas
20605@opindex mrenesas
20606Comply with the calling conventions defined by Renesas.
20607
20608@item -mno-renesas
20609@opindex mno-renesas
20610Comply with the calling conventions defined for GCC before the Renesas
20611conventions were available.  This option is the default for all
20612targets of the SH toolchain.
20613
20614@item -mnomacsave
20615@opindex mnomacsave
20616Mark the @code{MAC} register as call-clobbered, even if
20617@option{-mrenesas} is given.
20618
20619@item -mieee
20620@itemx -mno-ieee
20621@opindex mieee
20622@opindex mno-ieee
20623Control the IEEE compliance of floating-point comparisons, which affects the
20624handling of cases where the result of a comparison is unordered.  By default
20625@option{-mieee} is implicitly enabled.  If @option{-ffinite-math-only} is
20626enabled @option{-mno-ieee} is implicitly set, which results in faster
20627floating-point greater-equal and less-equal comparisons.  The implcit settings
20628can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
20629
20630@item -minline-ic_invalidate
20631@opindex minline-ic_invalidate
20632Inline code to invalidate instruction cache entries after setting up
20633nested function trampolines.
20634This option has no effect if @option{-musermode} is in effect and the selected
20635code generation option (e.g. @option{-m4}) does not allow the use of the @code{icbi}
20636instruction.
20637If the selected code generation option does not allow the use of the @code{icbi}
20638instruction, and @option{-musermode} is not in effect, the inlined code
20639manipulates the instruction cache address array directly with an associative
20640write.  This not only requires privileged mode at run time, but it also
20641fails if the cache line had been mapped via the TLB and has become unmapped.
20642
20643@item -misize
20644@opindex misize
20645Dump instruction size and location in the assembly code.
20646
20647@item -mpadstruct
20648@opindex mpadstruct
20649This option is deprecated.  It pads structures to multiple of 4 bytes,
20650which is incompatible with the SH ABI@.
20651
20652@item -matomic-model=@var{model}
20653@opindex matomic-model=@var{model}
20654Sets the model of atomic operations and additional parameters as a comma
20655separated list.  For details on the atomic built-in functions see
20656@ref{__atomic Builtins}.  The following models and parameters are supported:
20657
20658@table @samp
20659
20660@item none
20661Disable compiler generated atomic sequences and emit library calls for atomic
20662operations.  This is the default if the target is not @code{sh*-*-linux*}.
20663
20664@item soft-gusa
20665Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
20666built-in functions.  The generated atomic sequences require additional support
20667from the interrupt/exception handling code of the system and are only suitable
20668for SH3* and SH4* single-core systems.  This option is enabled by default when
20669the target is @code{sh*-*-linux*} and SH3* or SH4*.  When the target is SH4A,
20670this option also partially utilizes the hardware atomic instructions
20671@code{movli.l} and @code{movco.l} to create more efficient code, unless
20672@samp{strict} is specified.
20673
20674@item soft-tcb
20675Generate software atomic sequences that use a variable in the thread control
20676block.  This is a variation of the gUSA sequences which can also be used on
20677SH1* and SH2* targets.  The generated atomic sequences require additional
20678support from the interrupt/exception handling code of the system and are only
20679suitable for single-core systems.  When using this model, the @samp{gbr-offset=}
20680parameter has to be specified as well.
20681
20682@item soft-imask
20683Generate software atomic sequences that temporarily disable interrupts by
20684setting @code{SR.IMASK = 1111}.  This model works only when the program runs
20685in privileged mode and is only suitable for single-core systems.  Additional
20686support from the interrupt/exception handling code of the system is not
20687required.  This model is enabled by default when the target is
20688@code{sh*-*-linux*} and SH1* or SH2*.
20689
20690@item hard-llcs
20691Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
20692instructions only.  This is only available on SH4A and is suitable for
20693multi-core systems.  Since the hardware instructions support only 32 bit atomic
20694variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
20695Code compiled with this option is also compatible with other software
20696atomic model interrupt/exception handling systems if executed on an SH4A
20697system.  Additional support from the interrupt/exception handling code of the
20698system is not required for this model.
20699
20700@item gbr-offset=
20701This parameter specifies the offset in bytes of the variable in the thread
20702control block structure that should be used by the generated atomic sequences
20703when the @samp{soft-tcb} model has been selected.  For other models this
20704parameter is ignored.  The specified value must be an integer multiple of four
20705and in the range 0-1020.
20706
20707@item strict
20708This parameter prevents mixed usage of multiple atomic models, even if they
20709are compatible, and makes the compiler generate atomic sequences of the
20710specified model only.
20711
20712@end table
20713
20714@item -mtas
20715@opindex mtas
20716Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
20717Notice that depending on the particular hardware and software configuration
20718this can degrade overall performance due to the operand cache line flushes
20719that are implied by the @code{tas.b} instruction.  On multi-core SH4A
20720processors the @code{tas.b} instruction must be used with caution since it
20721can result in data corruption for certain cache configurations.
20722
20723@item -mprefergot
20724@opindex mprefergot
20725When generating position-independent code, emit function calls using
20726the Global Offset Table instead of the Procedure Linkage Table.
20727
20728@item -musermode
20729@itemx -mno-usermode
20730@opindex musermode
20731@opindex mno-usermode
20732Don't allow (allow) the compiler generating privileged mode code.  Specifying
20733@option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
20734inlined code would not work in user mode.  @option{-musermode} is the default
20735when the target is @code{sh*-*-linux*}.  If the target is SH1* or SH2*
20736@option{-musermode} has no effect, since there is no user mode.
20737
20738@item -multcost=@var{number}
20739@opindex multcost=@var{number}
20740Set the cost to assume for a multiply insn.
20741
20742@item -mdiv=@var{strategy}
20743@opindex mdiv=@var{strategy}
20744Set the division strategy to be used for integer division operations.
20745For SHmedia @var{strategy} can be one of:
20746
20747@table @samp
20748
20749@item fp
20750Performs the operation in floating point.  This has a very high latency,
20751but needs only a few instructions, so it might be a good choice if
20752your code has enough easily-exploitable ILP to allow the compiler to
20753schedule the floating-point instructions together with other instructions.
20754Division by zero causes a floating-point exception.
20755
20756@item inv
20757Uses integer operations to calculate the inverse of the divisor,
20758and then multiplies the dividend with the inverse.  This strategy allows
20759CSE and hoisting of the inverse calculation.  Division by zero calculates
20760an unspecified result, but does not trap.
20761
20762@item inv:minlat
20763A variant of @samp{inv} where, if no CSE or hoisting opportunities
20764have been found, or if the entire operation has been hoisted to the same
20765place, the last stages of the inverse calculation are intertwined with the
20766final multiply to reduce the overall latency, at the expense of using a few
20767more instructions, and thus offering fewer scheduling opportunities with
20768other code.
20769
20770@item call
20771Calls a library function that usually implements the @samp{inv:minlat}
20772strategy.
20773This gives high code density for @code{m5-*media-nofpu} compilations.
20774
20775@item call2
20776Uses a different entry point of the same library function, where it
20777assumes that a pointer to a lookup table has already been set up, which
20778exposes the pointer load to CSE and code hoisting optimizations.
20779
20780@item inv:call
20781@itemx inv:call2
20782@itemx inv:fp
20783Use the @samp{inv} algorithm for initial
20784code generation, but if the code stays unoptimized, revert to the @samp{call},
20785@samp{call2}, or @samp{fp} strategies, respectively.  Note that the
20786potentially-trapping side effect of division by zero is carried by a
20787separate instruction, so it is possible that all the integer instructions
20788are hoisted out, but the marker for the side effect stays where it is.
20789A recombination to floating-point operations or a call is not possible
20790in that case.
20791
20792@item inv20u
20793@itemx inv20l
20794Variants of the @samp{inv:minlat} strategy.  In the case
20795that the inverse calculation is not separated from the multiply, they speed
20796up division where the dividend fits into 20 bits (plus sign where applicable)
20797by inserting a test to skip a number of operations in this case; this test
20798slows down the case of larger dividends.  @samp{inv20u} assumes the case of a such
20799a small dividend to be unlikely, and @samp{inv20l} assumes it to be likely.
20800
20801@end table
20802
20803For targets other than SHmedia @var{strategy} can be one of:
20804
20805@table @samp
20806
20807@item call-div1
20808Calls a library function that uses the single-step division instruction
20809@code{div1} to perform the operation.  Division by zero calculates an
20810unspecified result and does not trap.  This is the default except for SH4,
20811SH2A and SHcompact.
20812
20813@item call-fp
20814Calls a library function that performs the operation in double precision
20815floating point.  Division by zero causes a floating-point exception.  This is
20816the default for SHcompact with FPU.  Specifying this for targets that do not
20817have a double precision FPU defaults to @code{call-div1}.
20818
20819@item call-table
20820Calls a library function that uses a lookup table for small divisors and
20821the @code{div1} instruction with case distinction for larger divisors.  Division
20822by zero calculates an unspecified result and does not trap.  This is the default
20823for SH4.  Specifying this for targets that do not have dynamic shift
20824instructions defaults to @code{call-div1}.
20825
20826@end table
20827
20828When a division strategy has not been specified the default strategy is
20829selected based on the current target.  For SH2A the default strategy is to
20830use the @code{divs} and @code{divu} instructions instead of library function
20831calls.
20832
20833@item -maccumulate-outgoing-args
20834@opindex maccumulate-outgoing-args
20835Reserve space once for outgoing arguments in the function prologue rather
20836than around each call.  Generally beneficial for performance and size.  Also
20837needed for unwinding to avoid changing the stack frame around conditional code.
20838
20839@item -mdivsi3_libfunc=@var{name}
20840@opindex mdivsi3_libfunc=@var{name}
20841Set the name of the library function used for 32-bit signed division to
20842@var{name}.
20843This only affects the name used in the @samp{call} and @samp{inv:call}
20844division strategies, and the compiler still expects the same
20845sets of input/output/clobbered registers as if this option were not present.
20846
20847@item -mfixed-range=@var{register-range}
20848@opindex mfixed-range
20849Generate code treating the given register range as fixed registers.
20850A fixed register is one that the register allocator can not use.  This is
20851useful when compiling kernel code.  A register range is specified as
20852two registers separated by a dash.  Multiple register ranges can be
20853specified separated by a comma.
20854
20855@item -mindexed-addressing
20856@opindex mindexed-addressing
20857Enable the use of the indexed addressing mode for SHmedia32/SHcompact.
20858This is only safe if the hardware and/or OS implement 32-bit wrap-around
20859semantics for the indexed addressing mode.  The architecture allows the
20860implementation of processors with 64-bit MMU, which the OS could use to
20861get 32-bit addressing, but since no current hardware implementation supports
20862this or any other way to make the indexed addressing mode safe to use in
20863the 32-bit ABI, the default is @option{-mno-indexed-addressing}.
20864
20865@item -mgettrcost=@var{number}
20866@opindex mgettrcost=@var{number}
20867Set the cost assumed for the @code{gettr} instruction to @var{number}.
20868The default is 2 if @option{-mpt-fixed} is in effect, 100 otherwise.
20869
20870@item -mpt-fixed
20871@opindex mpt-fixed
20872Assume @code{pt*} instructions won't trap.  This generally generates
20873better-scheduled code, but is unsafe on current hardware.
20874The current architecture
20875definition says that @code{ptabs} and @code{ptrel} trap when the target
20876anded with 3 is 3.
20877This has the unintentional effect of making it unsafe to schedule these
20878instructions before a branch, or hoist them out of a loop.  For example,
20879@code{__do_global_ctors}, a part of @file{libgcc}
20880that runs constructors at program
20881startup, calls functions in a list which is delimited by @minus{}1.  With the
20882@option{-mpt-fixed} option, the @code{ptabs} is done before testing against @minus{}1.
20883That means that all the constructors run a bit more quickly, but when
20884the loop comes to the end of the list, the program crashes because @code{ptabs}
20885loads @minus{}1 into a target register.
20886
20887Since this option is unsafe for any
20888hardware implementing the current architecture specification, the default
20889is @option{-mno-pt-fixed}.  Unless specified explicitly with
20890@option{-mgettrcost}, @option{-mno-pt-fixed} also implies @option{-mgettrcost=100};
20891this deters register allocation from using target registers for storing
20892ordinary integers.
20893
20894@item -minvalid-symbols
20895@opindex minvalid-symbols
20896Assume symbols might be invalid.  Ordinary function symbols generated by
20897the compiler are always valid to load with
20898@code{movi}/@code{shori}/@code{ptabs} or
20899@code{movi}/@code{shori}/@code{ptrel},
20900but with assembler and/or linker tricks it is possible
20901to generate symbols that cause @code{ptabs} or @code{ptrel} to trap.
20902This option is only meaningful when @option{-mno-pt-fixed} is in effect.
20903It prevents cross-basic-block CSE, hoisting and most scheduling
20904of symbol loads.  The default is @option{-mno-invalid-symbols}.
20905
20906@item -mbranch-cost=@var{num}
20907@opindex mbranch-cost=@var{num}
20908Assume @var{num} to be the cost for a branch instruction.  Higher numbers
20909make the compiler try to generate more branch-free code if possible.
20910If not specified the value is selected depending on the processor type that
20911is being compiled for.
20912
20913@item -mzdcbranch
20914@itemx -mno-zdcbranch
20915@opindex mzdcbranch
20916@opindex mno-zdcbranch
20917Assume (do not assume) that zero displacement conditional branch instructions
20918@code{bt} and @code{bf} are fast.  If @option{-mzdcbranch} is specified, the
20919compiler prefers zero displacement branch code sequences.  This is
20920enabled by default when generating code for SH4 and SH4A.  It can be explicitly
20921disabled by specifying @option{-mno-zdcbranch}.
20922
20923@item -mcbranch-force-delay-slot
20924@opindex mcbranch-force-delay-slot
20925Force the usage of delay slots for conditional branches, which stuffs the delay
20926slot with a @code{nop} if a suitable instruction can't be found.  By default
20927this option is disabled.  It can be enabled to work around hardware bugs as
20928found in the original SH7055.
20929
20930@item -mfused-madd
20931@itemx -mno-fused-madd
20932@opindex mfused-madd
20933@opindex mno-fused-madd
20934Generate code that uses (does not use) the floating-point multiply and
20935accumulate instructions.  These instructions are generated by default
20936if hardware floating point is used.  The machine-dependent
20937@option{-mfused-madd} option is now mapped to the machine-independent
20938@option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
20939mapped to @option{-ffp-contract=off}.
20940
20941@item -mfsca
20942@itemx -mno-fsca
20943@opindex mfsca
20944@opindex mno-fsca
20945Allow or disallow the compiler to emit the @code{fsca} instruction for sine
20946and cosine approximations.  The option @option{-mfsca} must be used in
20947combination with @option{-funsafe-math-optimizations}.  It is enabled by default
20948when generating code for SH4A.  Using @option{-mno-fsca} disables sine and cosine
20949approximations even if @option{-funsafe-math-optimizations} is in effect.
20950
20951@item -mfsrra
20952@itemx -mno-fsrra
20953@opindex mfsrra
20954@opindex mno-fsrra
20955Allow or disallow the compiler to emit the @code{fsrra} instruction for
20956reciprocal square root approximations.  The option @option{-mfsrra} must be used
20957in combination with @option{-funsafe-math-optimizations} and
20958@option{-ffinite-math-only}.  It is enabled by default when generating code for
20959SH4A.  Using @option{-mno-fsrra} disables reciprocal square root approximations
20960even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
20961in effect.
20962
20963@item -mpretend-cmove
20964@opindex mpretend-cmove
20965Prefer zero-displacement conditional branches for conditional move instruction
20966patterns.  This can result in faster code on the SH4 processor.
20967
20968@end table
20969
20970@node Solaris 2 Options
20971@subsection Solaris 2 Options
20972@cindex Solaris 2 options
20973
20974These @samp{-m} options are supported on Solaris 2:
20975
20976@table @gcctabopt
20977@item -mclear-hwcap
20978@opindex mclear-hwcap
20979@option{-mclear-hwcap} tells the compiler to remove the hardware
20980capabilities generated by the Solaris assembler.  This is only necessary
20981when object files use ISA extensions not supported by the current
20982machine, but check at runtime whether or not to use them.
20983
20984@item -mimpure-text
20985@opindex mimpure-text
20986@option{-mimpure-text}, used in addition to @option{-shared}, tells
20987the compiler to not pass @option{-z text} to the linker when linking a
20988shared object.  Using this option, you can link position-dependent
20989code into a shared object.
20990
20991@option{-mimpure-text} suppresses the ``relocations remain against
20992allocatable but non-writable sections'' linker error message.
20993However, the necessary relocations trigger copy-on-write, and the
20994shared object is not actually shared across processes.  Instead of
20995using @option{-mimpure-text}, you should compile all source code with
20996@option{-fpic} or @option{-fPIC}.
20997
20998@end table
20999
21000These switches are supported in addition to the above on Solaris 2:
21001
21002@table @gcctabopt
21003@item -pthreads
21004@opindex pthreads
21005Add support for multithreading using the POSIX threads library.  This
21006option sets flags for both the preprocessor and linker.  This option does
21007not affect the thread safety of object code produced  by the compiler or
21008that of libraries supplied with it.
21009
21010@item -pthread
21011@opindex pthread
21012This is a synonym for @option{-pthreads}.
21013@end table
21014
21015@node SPARC Options
21016@subsection SPARC Options
21017@cindex SPARC options
21018
21019These @samp{-m} options are supported on the SPARC:
21020
21021@table @gcctabopt
21022@item -mno-app-regs
21023@itemx -mapp-regs
21024@opindex mno-app-regs
21025@opindex mapp-regs
21026Specify @option{-mapp-regs} to generate output using the global registers
210272 through 4, which the SPARC SVR4 ABI reserves for applications.  Like the
21028global register 1, each global register 2 through 4 is then treated as an
21029allocable register that is clobbered by function calls.  This is the default.
21030
21031To be fully SVR4 ABI-compliant at the cost of some performance loss,
21032specify @option{-mno-app-regs}.  You should compile libraries and system
21033software with this option.
21034
21035@item -mflat
21036@itemx -mno-flat
21037@opindex mflat
21038@opindex mno-flat
21039With @option{-mflat}, the compiler does not generate save/restore instructions
21040and uses a ``flat'' or single register window model.  This model is compatible
21041with the regular register window model.  The local registers and the input
21042registers (0--5) are still treated as ``call-saved'' registers and are
21043saved on the stack as needed.
21044
21045With @option{-mno-flat} (the default), the compiler generates save/restore
21046instructions (except for leaf functions).  This is the normal operating mode.
21047
21048@item -mfpu
21049@itemx -mhard-float
21050@opindex mfpu
21051@opindex mhard-float
21052Generate output containing floating-point instructions.  This is the
21053default.
21054
21055@item -mno-fpu
21056@itemx -msoft-float
21057@opindex mno-fpu
21058@opindex msoft-float
21059Generate output containing library calls for floating point.
21060@strong{Warning:} the requisite libraries are not available for all SPARC
21061targets.  Normally the facilities of the machine's usual C compiler are
21062used, but this cannot be done directly in cross-compilation.  You must make
21063your own arrangements to provide suitable library functions for
21064cross-compilation.  The embedded targets @samp{sparc-*-aout} and
21065@samp{sparclite-*-*} do provide software floating-point support.
21066
21067@option{-msoft-float} changes the calling convention in the output file;
21068therefore, it is only useful if you compile @emph{all} of a program with
21069this option.  In particular, you need to compile @file{libgcc.a}, the
21070library that comes with GCC, with @option{-msoft-float} in order for
21071this to work.
21072
21073@item -mhard-quad-float
21074@opindex mhard-quad-float
21075Generate output containing quad-word (long double) floating-point
21076instructions.
21077
21078@item -msoft-quad-float
21079@opindex msoft-quad-float
21080Generate output containing library calls for quad-word (long double)
21081floating-point instructions.  The functions called are those specified
21082in the SPARC ABI@.  This is the default.
21083
21084As of this writing, there are no SPARC implementations that have hardware
21085support for the quad-word floating-point instructions.  They all invoke
21086a trap handler for one of these instructions, and then the trap handler
21087emulates the effect of the instruction.  Because of the trap handler overhead,
21088this is much slower than calling the ABI library routines.  Thus the
21089@option{-msoft-quad-float} option is the default.
21090
21091@item -mno-unaligned-doubles
21092@itemx -munaligned-doubles
21093@opindex mno-unaligned-doubles
21094@opindex munaligned-doubles
21095Assume that doubles have 8-byte alignment.  This is the default.
21096
21097With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
21098alignment only if they are contained in another type, or if they have an
21099absolute address.  Otherwise, it assumes they have 4-byte alignment.
21100Specifying this option avoids some rare compatibility problems with code
21101generated by other compilers.  It is not the default because it results
21102in a performance loss, especially for floating-point code.
21103
21104@item -muser-mode
21105@itemx -mno-user-mode
21106@opindex muser-mode
21107@opindex mno-user-mode
21108Do not generate code that can only run in supervisor mode.  This is relevant
21109only for the @code{casa} instruction emitted for the LEON3 processor.  This
21110is the default.
21111
21112@item -mno-faster-structs
21113@itemx -mfaster-structs
21114@opindex mno-faster-structs
21115@opindex mfaster-structs
21116With @option{-mfaster-structs}, the compiler assumes that structures
21117should have 8-byte alignment.  This enables the use of pairs of
21118@code{ldd} and @code{std} instructions for copies in structure
21119assignment, in place of twice as many @code{ld} and @code{st} pairs.
21120However, the use of this changed alignment directly violates the SPARC
21121ABI@.  Thus, it's intended only for use on targets where the developer
21122acknowledges that their resulting code is not directly in line with
21123the rules of the ABI@.
21124
21125@item -mcpu=@var{cpu_type}
21126@opindex mcpu
21127Set the instruction set, register set, and instruction scheduling parameters
21128for machine type @var{cpu_type}.  Supported values for @var{cpu_type} are
21129@samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
21130@samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
21131@samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
21132@samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
21133@samp{niagara3} and @samp{niagara4}.
21134
21135Native Solaris and GNU/Linux toolchains also support the value @samp{native},
21136which selects the best architecture option for the host processor.
21137@option{-mcpu=native} has no effect if GCC does not recognize
21138the processor.
21139
21140Default instruction scheduling parameters are used for values that select
21141an architecture and not an implementation.  These are @samp{v7}, @samp{v8},
21142@samp{sparclite}, @samp{sparclet}, @samp{v9}.
21143
21144Here is a list of each supported architecture and their supported
21145implementations.
21146
21147@table @asis
21148@item v7
21149cypress, leon3v7
21150
21151@item v8
21152supersparc, hypersparc, leon, leon3
21153
21154@item sparclite
21155f930, f934, sparclite86x
21156
21157@item sparclet
21158tsc701
21159
21160@item v9
21161ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4
21162@end table
21163
21164By default (unless configured otherwise), GCC generates code for the V7
21165variant of the SPARC architecture.  With @option{-mcpu=cypress}, the compiler
21166additionally optimizes it for the Cypress CY7C602 chip, as used in the
21167SPARCStation/SPARCServer 3xx series.  This is also appropriate for the older
21168SPARCStation 1, 2, IPX etc.
21169
21170With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
21171architecture.  The only difference from V7 code is that the compiler emits
21172the integer multiply and integer divide instructions which exist in SPARC-V8
21173but not in SPARC-V7.  With @option{-mcpu=supersparc}, the compiler additionally
21174optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
211752000 series.
21176
21177With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
21178the SPARC architecture.  This adds the integer multiply, integer divide step
21179and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
21180With @option{-mcpu=f930}, the compiler additionally optimizes it for the
21181Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@.  With
21182@option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
21183MB86934 chip, which is the more recent SPARClite with FPU@.
21184
21185With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
21186the SPARC architecture.  This adds the integer multiply, multiply/accumulate,
21187integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
21188but not in SPARC-V7.  With @option{-mcpu=tsc701}, the compiler additionally
21189optimizes it for the TEMIC SPARClet chip.
21190
21191With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
21192architecture.  This adds 64-bit integer and floating-point move instructions,
211933 additional floating-point condition code registers and conditional move
21194instructions.  With @option{-mcpu=ultrasparc}, the compiler additionally
21195optimizes it for the Sun UltraSPARC I/II/IIi chips.  With
21196@option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
21197Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips.  With
21198@option{-mcpu=niagara}, the compiler additionally optimizes it for
21199Sun UltraSPARC T1 chips.  With @option{-mcpu=niagara2}, the compiler
21200additionally optimizes it for Sun UltraSPARC T2 chips. With
21201@option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
21202UltraSPARC T3 chips.  With @option{-mcpu=niagara4}, the compiler
21203additionally optimizes it for Sun UltraSPARC T4 chips.
21204
21205@item -mtune=@var{cpu_type}
21206@opindex mtune
21207Set the instruction scheduling parameters for machine type
21208@var{cpu_type}, but do not set the instruction set or register set that the
21209option @option{-mcpu=@var{cpu_type}} does.
21210
21211The same values for @option{-mcpu=@var{cpu_type}} can be used for
21212@option{-mtune=@var{cpu_type}}, but the only useful values are those
21213that select a particular CPU implementation.  Those are @samp{cypress},
21214@samp{supersparc}, @samp{hypersparc}, @samp{leon}, @samp{leon3},
21215@samp{leon3v7}, @samp{f930}, @samp{f934}, @samp{sparclite86x}, @samp{tsc701},
21216@samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
21217@samp{niagara3} and @samp{niagara4}.  With native Solaris and GNU/Linux
21218toolchains, @samp{native} can also be used.
21219
21220@item -mv8plus
21221@itemx -mno-v8plus
21222@opindex mv8plus
21223@opindex mno-v8plus
21224With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@.  The
21225difference from the V8 ABI is that the global and out registers are
21226considered 64 bits wide.  This is enabled by default on Solaris in 32-bit
21227mode for all SPARC-V9 processors.
21228
21229@item -mvis
21230@itemx -mno-vis
21231@opindex mvis
21232@opindex mno-vis
21233With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
21234Visual Instruction Set extensions.  The default is @option{-mno-vis}.
21235
21236@item -mvis2
21237@itemx -mno-vis2
21238@opindex mvis2
21239@opindex mno-vis2
21240With @option{-mvis2}, GCC generates code that takes advantage of
21241version 2.0 of the UltraSPARC Visual Instruction Set extensions.  The
21242default is @option{-mvis2} when targeting a cpu that supports such
21243instructions, such as UltraSPARC-III and later.  Setting @option{-mvis2}
21244also sets @option{-mvis}.
21245
21246@item -mvis3
21247@itemx -mno-vis3
21248@opindex mvis3
21249@opindex mno-vis3
21250With @option{-mvis3}, GCC generates code that takes advantage of
21251version 3.0 of the UltraSPARC Visual Instruction Set extensions.  The
21252default is @option{-mvis3} when targeting a cpu that supports such
21253instructions, such as niagara-3 and later.  Setting @option{-mvis3}
21254also sets @option{-mvis2} and @option{-mvis}.
21255
21256@item -mcbcond
21257@itemx -mno-cbcond
21258@opindex mcbcond
21259@opindex mno-cbcond
21260With @option{-mcbcond}, GCC generates code that takes advantage of
21261compare-and-branch instructions, as defined in the Sparc Architecture 2011.
21262The default is @option{-mcbcond} when targeting a cpu that supports such
21263instructions, such as niagara-4 and later.
21264
21265@item -mpopc
21266@itemx -mno-popc
21267@opindex mpopc
21268@opindex mno-popc
21269With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
21270population count instruction.  The default is @option{-mpopc}
21271when targeting a cpu that supports such instructions, such as Niagara-2 and
21272later.
21273
21274@item -mfmaf
21275@itemx -mno-fmaf
21276@opindex mfmaf
21277@opindex mno-fmaf
21278With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
21279Fused Multiply-Add Floating-point extensions.  The default is @option{-mfmaf}
21280when targeting a cpu that supports such instructions, such as Niagara-3 and
21281later.
21282
21283@item -mfix-at697f
21284@opindex mfix-at697f
21285Enable the documented workaround for the single erratum of the Atmel AT697F
21286processor (which corresponds to erratum #13 of the AT697E processor).
21287
21288@item -mfix-ut699
21289@opindex mfix-ut699
21290Enable the documented workarounds for the floating-point errata and the data
21291cache nullify errata of the UT699 processor.
21292@end table
21293
21294These @samp{-m} options are supported in addition to the above
21295on SPARC-V9 processors in 64-bit environments:
21296
21297@table @gcctabopt
21298@item -m32
21299@itemx -m64
21300@opindex m32
21301@opindex m64
21302Generate code for a 32-bit or 64-bit environment.
21303The 32-bit environment sets int, long and pointer to 32 bits.
21304The 64-bit environment sets int to 32 bits and long and pointer
21305to 64 bits.
21306
21307@item -mcmodel=@var{which}
21308@opindex mcmodel
21309Set the code model to one of
21310
21311@table @samp
21312@item medlow
21313The Medium/Low code model: 64-bit addresses, programs
21314must be linked in the low 32 bits of memory.  Programs can be statically
21315or dynamically linked.
21316
21317@item medmid
21318The Medium/Middle code model: 64-bit addresses, programs
21319must be linked in the low 44 bits of memory, the text and data segments must
21320be less than 2GB in size and the data segment must be located within 2GB of
21321the text segment.
21322
21323@item medany
21324The Medium/Anywhere code model: 64-bit addresses, programs
21325may be linked anywhere in memory, the text and data segments must be less
21326than 2GB in size and the data segment must be located within 2GB of the
21327text segment.
21328
21329@item embmedany
21330The Medium/Anywhere code model for embedded systems:
2133164-bit addresses, the text and data segments must be less than 2GB in
21332size, both starting anywhere in memory (determined at link time).  The
21333global register %g4 points to the base of the data segment.  Programs
21334are statically linked and PIC is not supported.
21335@end table
21336
21337@item -mmemory-model=@var{mem-model}
21338@opindex mmemory-model
21339Set the memory model in force on the processor to one of
21340
21341@table @samp
21342@item default
21343The default memory model for the processor and operating system.
21344
21345@item rmo
21346Relaxed Memory Order
21347
21348@item pso
21349Partial Store Order
21350
21351@item tso
21352Total Store Order
21353
21354@item sc
21355Sequential Consistency
21356@end table
21357
21358These memory models are formally defined in Appendix D of the Sparc V9
21359architecture manual, as set in the processor's @code{PSTATE.MM} field.
21360
21361@item -mstack-bias
21362@itemx -mno-stack-bias
21363@opindex mstack-bias
21364@opindex mno-stack-bias
21365With @option{-mstack-bias}, GCC assumes that the stack pointer, and
21366frame pointer if present, are offset by @minus{}2047 which must be added back
21367when making stack frame references.  This is the default in 64-bit mode.
21368Otherwise, assume no such offset is present.
21369@end table
21370
21371@node SPU Options
21372@subsection SPU Options
21373@cindex SPU options
21374
21375These @samp{-m} options are supported on the SPU:
21376
21377@table @gcctabopt
21378@item -mwarn-reloc
21379@itemx -merror-reloc
21380@opindex mwarn-reloc
21381@opindex merror-reloc
21382
21383The loader for SPU does not handle dynamic relocations.  By default, GCC
21384gives an error when it generates code that requires a dynamic
21385relocation.  @option{-mno-error-reloc} disables the error,
21386@option{-mwarn-reloc} generates a warning instead.
21387
21388@item -msafe-dma
21389@itemx -munsafe-dma
21390@opindex msafe-dma
21391@opindex munsafe-dma
21392
21393Instructions that initiate or test completion of DMA must not be
21394reordered with respect to loads and stores of the memory that is being
21395accessed.
21396With @option{-munsafe-dma} you must use the @code{volatile} keyword to protect
21397memory accesses, but that can lead to inefficient code in places where the
21398memory is known to not change.  Rather than mark the memory as volatile,
21399you can use @option{-msafe-dma} to tell the compiler to treat
21400the DMA instructions as potentially affecting all memory.
21401
21402@item -mbranch-hints
21403@opindex mbranch-hints
21404
21405By default, GCC generates a branch hint instruction to avoid
21406pipeline stalls for always-taken or probably-taken branches.  A hint
21407is not generated closer than 8 instructions away from its branch.
21408There is little reason to disable them, except for debugging purposes,
21409or to make an object a little bit smaller.
21410
21411@item -msmall-mem
21412@itemx -mlarge-mem
21413@opindex msmall-mem
21414@opindex mlarge-mem
21415
21416By default, GCC generates code assuming that addresses are never larger
21417than 18 bits.  With @option{-mlarge-mem} code is generated that assumes
21418a full 32-bit address.
21419
21420@item -mstdmain
21421@opindex mstdmain
21422
21423By default, GCC links against startup code that assumes the SPU-style
21424main function interface (which has an unconventional parameter list).
21425With @option{-mstdmain}, GCC links your program against startup
21426code that assumes a C99-style interface to @code{main}, including a
21427local copy of @code{argv} strings.
21428
21429@item -mfixed-range=@var{register-range}
21430@opindex mfixed-range
21431Generate code treating the given register range as fixed registers.
21432A fixed register is one that the register allocator cannot use.  This is
21433useful when compiling kernel code.  A register range is specified as
21434two registers separated by a dash.  Multiple register ranges can be
21435specified separated by a comma.
21436
21437@item -mea32
21438@itemx -mea64
21439@opindex mea32
21440@opindex mea64
21441Compile code assuming that pointers to the PPU address space accessed
21442via the @code{__ea} named address space qualifier are either 32 or 64
21443bits wide.  The default is 32 bits.  As this is an ABI-changing option,
21444all object code in an executable must be compiled with the same setting.
21445
21446@item -maddress-space-conversion
21447@itemx -mno-address-space-conversion
21448@opindex maddress-space-conversion
21449@opindex mno-address-space-conversion
21450Allow/disallow treating the @code{__ea} address space as superset
21451of the generic address space.  This enables explicit type casts
21452between @code{__ea} and generic pointer as well as implicit
21453conversions of generic pointers to @code{__ea} pointers.  The
21454default is to allow address space pointer conversions.
21455
21456@item -mcache-size=@var{cache-size}
21457@opindex mcache-size
21458This option controls the version of libgcc that the compiler links to an
21459executable and selects a software-managed cache for accessing variables
21460in the @code{__ea} address space with a particular cache size.  Possible
21461options for @var{cache-size} are @samp{8}, @samp{16}, @samp{32}, @samp{64}
21462and @samp{128}.  The default cache size is 64KB.
21463
21464@item -matomic-updates
21465@itemx -mno-atomic-updates
21466@opindex matomic-updates
21467@opindex mno-atomic-updates
21468This option controls the version of libgcc that the compiler links to an
21469executable and selects whether atomic updates to the software-managed
21470cache of PPU-side variables are used.  If you use atomic updates, changes
21471to a PPU variable from SPU code using the @code{__ea} named address space
21472qualifier do not interfere with changes to other PPU variables residing
21473in the same cache line from PPU code.  If you do not use atomic updates,
21474such interference may occur; however, writing back cache lines is
21475more efficient.  The default behavior is to use atomic updates.
21476
21477@item -mdual-nops
21478@itemx -mdual-nops=@var{n}
21479@opindex mdual-nops
21480By default, GCC inserts nops to increase dual issue when it expects
21481it to increase performance.  @var{n} can be a value from 0 to 10.  A
21482smaller @var{n} inserts fewer nops.  10 is the default, 0 is the
21483same as @option{-mno-dual-nops}.  Disabled with @option{-Os}.
21484
21485@item -mhint-max-nops=@var{n}
21486@opindex mhint-max-nops
21487Maximum number of nops to insert for a branch hint.  A branch hint must
21488be at least 8 instructions away from the branch it is affecting.  GCC
21489inserts up to @var{n} nops to enforce this, otherwise it does not
21490generate the branch hint.
21491
21492@item -mhint-max-distance=@var{n}
21493@opindex mhint-max-distance
21494The encoding of the branch hint instruction limits the hint to be within
21495256 instructions of the branch it is affecting.  By default, GCC makes
21496sure it is within 125.
21497
21498@item -msafe-hints
21499@opindex msafe-hints
21500Work around a hardware bug that causes the SPU to stall indefinitely.
21501By default, GCC inserts the @code{hbrp} instruction to make sure
21502this stall won't happen.
21503
21504@end table
21505
21506@node System V Options
21507@subsection Options for System V
21508
21509These additional options are available on System V Release 4 for
21510compatibility with other compilers on those systems:
21511
21512@table @gcctabopt
21513@item -G
21514@opindex G
21515Create a shared object.
21516It is recommended that @option{-symbolic} or @option{-shared} be used instead.
21517
21518@item -Qy
21519@opindex Qy
21520Identify the versions of each tool used by the compiler, in a
21521@code{.ident} assembler directive in the output.
21522
21523@item -Qn
21524@opindex Qn
21525Refrain from adding @code{.ident} directives to the output file (this is
21526the default).
21527
21528@item -YP,@var{dirs}
21529@opindex YP
21530Search the directories @var{dirs}, and no others, for libraries
21531specified with @option{-l}.
21532
21533@item -Ym,@var{dir}
21534@opindex Ym
21535Look in the directory @var{dir} to find the M4 preprocessor.
21536The assembler uses this option.
21537@c This is supposed to go with a -Yd for predefined M4 macro files, but
21538@c the generic assembler that comes with Solaris takes just -Ym.
21539@end table
21540
21541@node TILE-Gx Options
21542@subsection TILE-Gx Options
21543@cindex TILE-Gx options
21544
21545These @samp{-m} options are supported on the TILE-Gx:
21546
21547@table @gcctabopt
21548@item -mcmodel=small
21549@opindex mcmodel=small
21550Generate code for the small model.  The distance for direct calls is
21551limited to 500M in either direction.  PC-relative addresses are 32
21552bits.  Absolute addresses support the full address range.
21553
21554@item -mcmodel=large
21555@opindex mcmodel=large
21556Generate code for the large model.  There is no limitation on call
21557distance, pc-relative addresses, or absolute addresses.
21558
21559@item -mcpu=@var{name}
21560@opindex mcpu
21561Selects the type of CPU to be targeted.  Currently the only supported
21562type is @samp{tilegx}.
21563
21564@item -m32
21565@itemx -m64
21566@opindex m32
21567@opindex m64
21568Generate code for a 32-bit or 64-bit environment.  The 32-bit
21569environment sets int, long, and pointer to 32 bits.  The 64-bit
21570environment sets int to 32 bits and long and pointer to 64 bits.
21571
21572@item -mbig-endian
21573@itemx -mlittle-endian
21574@opindex mbig-endian
21575@opindex mlittle-endian
21576Generate code in big/little endian mode, respectively.
21577@end table
21578
21579@node TILEPro Options
21580@subsection TILEPro Options
21581@cindex TILEPro options
21582
21583These @samp{-m} options are supported on the TILEPro:
21584
21585@table @gcctabopt
21586@item -mcpu=@var{name}
21587@opindex mcpu
21588Selects the type of CPU to be targeted.  Currently the only supported
21589type is @samp{tilepro}.
21590
21591@item -m32
21592@opindex m32
21593Generate code for a 32-bit environment, which sets int, long, and
21594pointer to 32 bits.  This is the only supported behavior so the flag
21595is essentially ignored.
21596@end table
21597
21598@node V850 Options
21599@subsection V850 Options
21600@cindex V850 Options
21601
21602These @samp{-m} options are defined for V850 implementations:
21603
21604@table @gcctabopt
21605@item -mlong-calls
21606@itemx -mno-long-calls
21607@opindex mlong-calls
21608@opindex mno-long-calls
21609Treat all calls as being far away (near).  If calls are assumed to be
21610far away, the compiler always loads the function's address into a
21611register, and calls indirect through the pointer.
21612
21613@item -mno-ep
21614@itemx -mep
21615@opindex mno-ep
21616@opindex mep
21617Do not optimize (do optimize) basic blocks that use the same index
21618pointer 4 or more times to copy pointer into the @code{ep} register, and
21619use the shorter @code{sld} and @code{sst} instructions.  The @option{-mep}
21620option is on by default if you optimize.
21621
21622@item -mno-prolog-function
21623@itemx -mprolog-function
21624@opindex mno-prolog-function
21625@opindex mprolog-function
21626Do not use (do use) external functions to save and restore registers
21627at the prologue and epilogue of a function.  The external functions
21628are slower, but use less code space if more than one function saves
21629the same number of registers.  The @option{-mprolog-function} option
21630is on by default if you optimize.
21631
21632@item -mspace
21633@opindex mspace
21634Try to make the code as small as possible.  At present, this just turns
21635on the @option{-mep} and @option{-mprolog-function} options.
21636
21637@item -mtda=@var{n}
21638@opindex mtda
21639Put static or global variables whose size is @var{n} bytes or less into
21640the tiny data area that register @code{ep} points to.  The tiny data
21641area can hold up to 256 bytes in total (128 bytes for byte references).
21642
21643@item -msda=@var{n}
21644@opindex msda
21645Put static or global variables whose size is @var{n} bytes or less into
21646the small data area that register @code{gp} points to.  The small data
21647area can hold up to 64 kilobytes.
21648
21649@item -mzda=@var{n}
21650@opindex mzda
21651Put static or global variables whose size is @var{n} bytes or less into
21652the first 32 kilobytes of memory.
21653
21654@item -mv850
21655@opindex mv850
21656Specify that the target processor is the V850.
21657
21658@item -mv850e3v5
21659@opindex mv850e3v5
21660Specify that the target processor is the V850E3V5.  The preprocessor
21661constant @code{__v850e3v5__} is defined if this option is used.
21662
21663@item -mv850e2v4
21664@opindex mv850e2v4
21665Specify that the target processor is the V850E3V5.  This is an alias for
21666the @option{-mv850e3v5} option.
21667
21668@item -mv850e2v3
21669@opindex mv850e2v3
21670Specify that the target processor is the V850E2V3.  The preprocessor
21671constant @code{__v850e2v3__} is defined if this option is used.
21672
21673@item -mv850e2
21674@opindex mv850e2
21675Specify that the target processor is the V850E2.  The preprocessor
21676constant @code{__v850e2__} is defined if this option is used.
21677
21678@item -mv850e1
21679@opindex mv850e1
21680Specify that the target processor is the V850E1.  The preprocessor
21681constants @code{__v850e1__} and @code{__v850e__} are defined if
21682this option is used.
21683
21684@item -mv850es
21685@opindex mv850es
21686Specify that the target processor is the V850ES.  This is an alias for
21687the @option{-mv850e1} option.
21688
21689@item -mv850e
21690@opindex mv850e
21691Specify that the target processor is the V850E@.  The preprocessor
21692constant @code{__v850e__} is defined if this option is used.
21693
21694If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
21695nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
21696are defined then a default target processor is chosen and the
21697relevant @samp{__v850*__} preprocessor constant is defined.
21698
21699The preprocessor constants @code{__v850} and @code{__v851__} are always
21700defined, regardless of which processor variant is the target.
21701
21702@item -mdisable-callt
21703@itemx -mno-disable-callt
21704@opindex mdisable-callt
21705@opindex mno-disable-callt
21706This option suppresses generation of the @code{CALLT} instruction for the
21707v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
21708architecture.
21709
21710This option is enabled by default when the RH850 ABI is
21711in use (see @option{-mrh850-abi}), and disabled by default when the
21712GCC ABI is in use.  If @code{CALLT} instructions are being generated
21713then the C preprocessor symbol @code{__V850_CALLT__} is defined.
21714
21715@item -mrelax
21716@itemx -mno-relax
21717@opindex mrelax
21718@opindex mno-relax
21719Pass on (or do not pass on) the @option{-mrelax} command-line option
21720to the assembler.
21721
21722@item -mlong-jumps
21723@itemx -mno-long-jumps
21724@opindex mlong-jumps
21725@opindex mno-long-jumps
21726Disable (or re-enable) the generation of PC-relative jump instructions.
21727
21728@item -msoft-float
21729@itemx -mhard-float
21730@opindex msoft-float
21731@opindex mhard-float
21732Disable (or re-enable) the generation of hardware floating point
21733instructions.  This option is only significant when the target
21734architecture is @samp{V850E2V3} or higher.  If hardware floating point
21735instructions are being generated then the C preprocessor symbol
21736@code{__FPU_OK__} is defined, otherwise the symbol
21737@code{__NO_FPU__} is defined.
21738
21739@item -mloop
21740@opindex mloop
21741Enables the use of the e3v5 LOOP instruction.  The use of this
21742instruction is not enabled by default when the e3v5 architecture is
21743selected because its use is still experimental.
21744
21745@item -mrh850-abi
21746@itemx -mghs
21747@opindex mrh850-abi
21748@opindex mghs
21749Enables support for the RH850 version of the V850 ABI.  This is the
21750default.  With this version of the ABI the following rules apply:
21751
21752@itemize
21753@item
21754Integer sized structures and unions are returned via a memory pointer
21755rather than a register.
21756
21757@item
21758Large structures and unions (more than 8 bytes in size) are passed by
21759value.
21760
21761@item
21762Functions are aligned to 16-bit boundaries.
21763
21764@item
21765The @option{-m8byte-align} command-line option is supported.
21766
21767@item
21768The @option{-mdisable-callt} command-line option is enabled by
21769default.  The @option{-mno-disable-callt} command-line option is not
21770supported.
21771@end itemize
21772
21773When this version of the ABI is enabled the C preprocessor symbol
21774@code{__V850_RH850_ABI__} is defined.
21775
21776@item -mgcc-abi
21777@opindex mgcc-abi
21778Enables support for the old GCC version of the V850 ABI.  With this
21779version of the ABI the following rules apply:
21780
21781@itemize
21782@item
21783Integer sized structures and unions are returned in register @code{r10}.
21784
21785@item
21786Large structures and unions (more than 8 bytes in size) are passed by
21787reference.
21788
21789@item
21790Functions are aligned to 32-bit boundaries, unless optimizing for
21791size.
21792
21793@item
21794The @option{-m8byte-align} command-line option is not supported.
21795
21796@item
21797The @option{-mdisable-callt} command-line option is supported but not
21798enabled by default.
21799@end itemize
21800
21801When this version of the ABI is enabled the C preprocessor symbol
21802@code{__V850_GCC_ABI__} is defined.
21803
21804@item -m8byte-align
21805@itemx -mno-8byte-align
21806@opindex m8byte-align
21807@opindex mno-8byte-align
21808Enables support for @code{double} and @code{long long} types to be
21809aligned on 8-byte boundaries.  The default is to restrict the
21810alignment of all objects to at most 4-bytes.  When
21811@option{-m8byte-align} is in effect the C preprocessor symbol
21812@code{__V850_8BYTE_ALIGN__} is defined.
21813
21814@item -mbig-switch
21815@opindex mbig-switch
21816Generate code suitable for big switch tables.  Use this option only if
21817the assembler/linker complain about out of range branches within a switch
21818table.
21819
21820@item -mapp-regs
21821@opindex mapp-regs
21822This option causes r2 and r5 to be used in the code generated by
21823the compiler.  This setting is the default.
21824
21825@item -mno-app-regs
21826@opindex mno-app-regs
21827This option causes r2 and r5 to be treated as fixed registers.
21828
21829@end table
21830
21831@node VAX Options
21832@subsection VAX Options
21833@cindex VAX options
21834
21835These @samp{-m} options are defined for the VAX:
21836
21837@table @gcctabopt
21838@item -munix
21839@opindex munix
21840Do not output certain jump instructions (@code{aobleq} and so on)
21841that the Unix assembler for the VAX cannot handle across long
21842ranges.
21843
21844@item -mgnu
21845@opindex mgnu
21846Do output those jump instructions, on the assumption that the
21847GNU assembler is being used.
21848
21849@item -mg
21850@opindex mg
21851Output code for G-format floating-point numbers instead of D-format.
21852@end table
21853
21854@node Visium Options
21855@subsection Visium Options
21856@cindex Visium options
21857
21858@table @gcctabopt
21859
21860@item -mdebug
21861@opindex mdebug
21862A program which performs file I/O and is destined to run on an MCM target
21863should be linked with this option.  It causes the libraries libc.a and
21864libdebug.a to be linked.  The program should be run on the target under
21865the control of the GDB remote debugging stub.
21866
21867@item -msim
21868@opindex msim
21869A program which performs file I/O and is destined to run on the simulator
21870should be linked with option.  This causes libraries libc.a and libsim.a to
21871be linked.
21872
21873@item -mfpu
21874@itemx -mhard-float
21875@opindex mfpu
21876@opindex mhard-float
21877Generate code containing floating-point instructions.  This is the
21878default.
21879
21880@item -mno-fpu
21881@itemx -msoft-float
21882@opindex mno-fpu
21883@opindex msoft-float
21884Generate code containing library calls for floating-point.
21885
21886@option{-msoft-float} changes the calling convention in the output file;
21887therefore, it is only useful if you compile @emph{all} of a program with
21888this option.  In particular, you need to compile @file{libgcc.a}, the
21889library that comes with GCC, with @option{-msoft-float} in order for
21890this to work.
21891
21892@item -mcpu=@var{cpu_type}
21893@opindex mcpu
21894Set the instruction set, register set, and instruction scheduling parameters
21895for machine type @var{cpu_type}.  Supported values for @var{cpu_type} are
21896@samp{mcm}, @samp{gr5} and @samp{gr6}.
21897
21898@samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
21899
21900By default (unless configured otherwise), GCC generates code for the GR5
21901variant of the Visium architecture.
21902
21903With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
21904architecture.  The only difference from GR5 code is that the compiler will
21905generate block move instructions.
21906
21907@item -mtune=@var{cpu_type}
21908@opindex mtune
21909Set the instruction scheduling parameters for machine type @var{cpu_type},
21910but do not set the instruction set or register set that the option
21911@option{-mcpu=@var{cpu_type}} would.
21912
21913@item -msv-mode
21914@opindex msv-mode
21915Generate code for the supervisor mode, where there are no restrictions on
21916the access to general registers.  This is the default.
21917
21918@item -muser-mode
21919@opindex muser-mode
21920Generate code for the user mode, where the access to some general registers
21921is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
21922mode; on the GR6, only registers r29 to r31 are affected.
21923@end table
21924
21925@node VMS Options
21926@subsection VMS Options
21927
21928These @samp{-m} options are defined for the VMS implementations:
21929
21930@table @gcctabopt
21931@item -mvms-return-codes
21932@opindex mvms-return-codes
21933Return VMS condition codes from @code{main}. The default is to return POSIX-style
21934condition (e.g.@ error) codes.
21935
21936@item -mdebug-main=@var{prefix}
21937@opindex mdebug-main=@var{prefix}
21938Flag the first routine whose name starts with @var{prefix} as the main
21939routine for the debugger.
21940
21941@item -mmalloc64
21942@opindex mmalloc64
21943Default to 64-bit memory allocation routines.
21944
21945@item -mpointer-size=@var{size}
21946@opindex mpointer-size=@var{size}
21947Set the default size of pointers. Possible options for @var{size} are
21948@samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
21949for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
21950The later option disables @code{pragma pointer_size}.
21951@end table
21952
21953@node VxWorks Options
21954@subsection VxWorks Options
21955@cindex VxWorks Options
21956
21957The options in this section are defined for all VxWorks targets.
21958Options specific to the target hardware are listed with the other
21959options for that target.
21960
21961@table @gcctabopt
21962@item -mrtp
21963@opindex mrtp
21964GCC can generate code for both VxWorks kernels and real time processes
21965(RTPs).  This option switches from the former to the latter.  It also
21966defines the preprocessor macro @code{__RTP__}.
21967
21968@item -non-static
21969@opindex non-static
21970Link an RTP executable against shared libraries rather than static
21971libraries.  The options @option{-static} and @option{-shared} can
21972also be used for RTPs (@pxref{Link Options}); @option{-static}
21973is the default.
21974
21975@item -Bstatic
21976@itemx -Bdynamic
21977@opindex Bstatic
21978@opindex Bdynamic
21979These options are passed down to the linker.  They are defined for
21980compatibility with Diab.
21981
21982@item -Xbind-lazy
21983@opindex Xbind-lazy
21984Enable lazy binding of function calls.  This option is equivalent to
21985@option{-Wl,-z,now} and is defined for compatibility with Diab.
21986
21987@item -Xbind-now
21988@opindex Xbind-now
21989Disable lazy binding of function calls.  This option is the default and
21990is defined for compatibility with Diab.
21991@end table
21992
21993@node x86 Options
21994@subsection x86 Options
21995@cindex x86 Options
21996
21997These @samp{-m} options are defined for the x86 family of computers.
21998
21999@table @gcctabopt
22000
22001@item -march=@var{cpu-type}
22002@opindex march
22003Generate instructions for the machine type @var{cpu-type}.  In contrast to
22004@option{-mtune=@var{cpu-type}}, which merely tunes the generated code
22005for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
22006to generate code that may not run at all on processors other than the one
22007indicated.  Specifying @option{-march=@var{cpu-type}} implies
22008@option{-mtune=@var{cpu-type}}.
22009
22010The choices for @var{cpu-type} are:
22011
22012@table @samp
22013@item native
22014This selects the CPU to generate code for at compilation time by determining
22015the processor type of the compiling machine.  Using @option{-march=native}
22016enables all instruction subsets supported by the local machine (hence
22017the result might not run on different machines).  Using @option{-mtune=native}
22018produces code optimized for the local machine under the constraints
22019of the selected instruction set.
22020
22021@item i386
22022Original Intel i386 CPU@.
22023
22024@item i486
22025Intel i486 CPU@.  (No scheduling is implemented for this chip.)
22026
22027@item i586
22028@itemx pentium
22029Intel Pentium CPU with no MMX support.
22030
22031@item pentium-mmx
22032Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
22033
22034@item pentiumpro
22035Intel Pentium Pro CPU@.
22036
22037@item i686
22038When used with @option{-march}, the Pentium Pro
22039instruction set is used, so the code runs on all i686 family chips.
22040When used with @option{-mtune}, it has the same meaning as @samp{generic}.
22041
22042@item pentium2
22043Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
22044support.
22045
22046@item pentium3
22047@itemx pentium3m
22048Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
22049set support.
22050
22051@item pentium-m
22052Intel Pentium M; low-power version of Intel Pentium III CPU
22053with MMX, SSE and SSE2 instruction set support.  Used by Centrino notebooks.
22054
22055@item pentium4
22056@itemx pentium4m
22057Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
22058
22059@item prescott
22060Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
22061set support.
22062
22063@item nocona
22064Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
22065SSE2 and SSE3 instruction set support.
22066
22067@item core2
22068Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
22069instruction set support.
22070
22071@item nehalem
22072Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22073SSE4.1, SSE4.2 and POPCNT instruction set support.
22074
22075@item westmere
22076Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22077SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
22078
22079@item sandybridge
22080Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22081SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
22082
22083@item ivybridge
22084Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22085SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
22086instruction set support.
22087
22088@item haswell
22089Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22090SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22091BMI, BMI2 and F16C instruction set support.
22092
22093@item broadwell
22094Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22095SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22096BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
22097
22098@item bonnell
22099Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
22100instruction set support.
22101
22102@item silvermont
22103Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22104SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
22105
22106@item knl
22107Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
22108SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22109BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
22110AVX512CD instruction set support.
22111
22112@item k6
22113AMD K6 CPU with MMX instruction set support.
22114
22115@item k6-2
22116@itemx k6-3
22117Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
22118
22119@item athlon
22120@itemx athlon-tbird
22121AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
22122support.
22123
22124@item athlon-4
22125@itemx athlon-xp
22126@itemx athlon-mp
22127Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
22128instruction set support.
22129
22130@item k8
22131@itemx opteron
22132@itemx athlon64
22133@itemx athlon-fx
22134Processors based on the AMD K8 core with x86-64 instruction set support,
22135including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
22136(This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
22137instruction set extensions.)
22138
22139@item k8-sse3
22140@itemx opteron-sse3
22141@itemx athlon64-sse3
22142Improved versions of AMD K8 cores with SSE3 instruction set support.
22143
22144@item amdfam10
22145@itemx barcelona
22146CPUs based on AMD Family 10h cores with x86-64 instruction set support.  (This
22147supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
22148instruction set extensions.)
22149
22150@item bdver1
22151CPUs based on AMD Family 15h cores with x86-64 instruction set support.  (This
22152supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
22153SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
22154@item bdver2
22155AMD Family 15h core based CPUs with x86-64 instruction set support.  (This
22156supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
22157SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
22158extensions.)
22159@item bdver3
22160AMD Family 15h core based CPUs with x86-64 instruction set support.  (This
22161supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
22162PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and
2216364-bit instruction set extensions.
22164@item bdver4
22165AMD Family 15h core based CPUs with x86-64 instruction set support.  (This
22166supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
22167AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
22168SSE4.2, ABM and 64-bit instruction set extensions.
22169
22170@item btver1
22171CPUs based on AMD Family 14h cores with x86-64 instruction set support.  (This
22172supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
22173instruction set extensions.)
22174
22175@item btver2
22176CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
22177includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
22178SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
22179
22180@item winchip-c6
22181IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
22182set support.
22183
22184@item winchip2
22185IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
22186instruction set support.
22187
22188@item c3
22189VIA C3 CPU with MMX and 3DNow!@: instruction set support.  (No scheduling is
22190implemented for this chip.)
22191
22192@item c3-2
22193VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
22194(No scheduling is
22195implemented for this chip.)
22196
22197@item geode
22198AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
22199@end table
22200
22201@item -mtune=@var{cpu-type}
22202@opindex mtune
22203Tune to @var{cpu-type} everything applicable about the generated code, except
22204for the ABI and the set of available instructions.
22205While picking a specific @var{cpu-type} schedules things appropriately
22206for that particular chip, the compiler does not generate any code that
22207cannot run on the default machine type unless you use a
22208@option{-march=@var{cpu-type}} option.
22209For example, if GCC is configured for i686-pc-linux-gnu
22210then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
22211but still runs on i686 machines.
22212
22213The choices for @var{cpu-type} are the same as for @option{-march}.
22214In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
22215
22216@table @samp
22217@item generic
22218Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
22219If you know the CPU on which your code will run, then you should use
22220the corresponding @option{-mtune} or @option{-march} option instead of
22221@option{-mtune=generic}.  But, if you do not know exactly what CPU users
22222of your application will have, then you should use this option.
22223
22224As new processors are deployed in the marketplace, the behavior of this
22225option will change.  Therefore, if you upgrade to a newer version of
22226GCC, code generation controlled by this option will change to reflect
22227the processors
22228that are most common at the time that version of GCC is released.
22229
22230There is no @option{-march=generic} option because @option{-march}
22231indicates the instruction set the compiler can use, and there is no
22232generic instruction set applicable to all processors.  In contrast,
22233@option{-mtune} indicates the processor (or, in this case, collection of
22234processors) for which the code is optimized.
22235
22236@item intel
22237Produce code optimized for the most current Intel processors, which are
22238Haswell and Silvermont for this version of GCC.  If you know the CPU
22239on which your code will run, then you should use the corresponding
22240@option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
22241But, if you want your application performs better on both Haswell and
22242Silvermont, then you should use this option.
22243
22244As new Intel processors are deployed in the marketplace, the behavior of
22245this option will change.  Therefore, if you upgrade to a newer version of
22246GCC, code generation controlled by this option will change to reflect
22247the most current Intel processors at the time that version of GCC is
22248released.
22249
22250There is no @option{-march=intel} option because @option{-march} indicates
22251the instruction set the compiler can use, and there is no common
22252instruction set applicable to all processors.  In contrast,
22253@option{-mtune} indicates the processor (or, in this case, collection of
22254processors) for which the code is optimized.
22255@end table
22256
22257@item -mcpu=@var{cpu-type}
22258@opindex mcpu
22259A deprecated synonym for @option{-mtune}.
22260
22261@item -mfpmath=@var{unit}
22262@opindex mfpmath
22263Generate floating-point arithmetic for selected unit @var{unit}.  The choices
22264for @var{unit} are:
22265
22266@table @samp
22267@item 387
22268Use the standard 387 floating-point coprocessor present on the majority of chips and
22269emulated otherwise.  Code compiled with this option runs almost everywhere.
22270The temporary results are computed in 80-bit precision instead of the precision
22271specified by the type, resulting in slightly different results compared to most
22272of other chips.  See @option{-ffloat-store} for more detailed description.
22273
22274This is the default choice for x86-32 targets.
22275
22276@item sse
22277Use scalar floating-point instructions present in the SSE instruction set.
22278This instruction set is supported by Pentium III and newer chips,
22279and in the AMD line
22280by Athlon-4, Athlon XP and Athlon MP chips.  The earlier version of the SSE
22281instruction set supports only single-precision arithmetic, thus the double and
22282extended-precision arithmetic are still done using 387.  A later version, present
22283only in Pentium 4 and AMD x86-64 chips, supports double-precision
22284arithmetic too.
22285
22286For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
22287or @option{-msse2} switches to enable SSE extensions and make this option
22288effective.  For the x86-64 compiler, these extensions are enabled by default.
22289
22290The resulting code should be considerably faster in the majority of cases and avoid
22291the numerical instability problems of 387 code, but may break some existing
22292code that expects temporaries to be 80 bits.
22293
22294This is the default choice for the x86-64 compiler.
22295
22296@item sse,387
22297@itemx sse+387
22298@itemx both
22299Attempt to utilize both instruction sets at once.  This effectively doubles the
22300amount of available registers, and on chips with separate execution units for
22301387 and SSE the execution resources too.  Use this option with care, as it is
22302still experimental, because the GCC register allocator does not model separate
22303functional units well, resulting in unstable performance.
22304@end table
22305
22306@item -masm=@var{dialect}
22307@opindex masm=@var{dialect}
22308Output assembly instructions using selected @var{dialect}.  Also affects
22309which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
22310extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
22311order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
22312not support @samp{intel}.
22313
22314@item -mieee-fp
22315@itemx -mno-ieee-fp
22316@opindex mieee-fp
22317@opindex mno-ieee-fp
22318Control whether or not the compiler uses IEEE floating-point
22319comparisons.  These correctly handle the case where the result of a
22320comparison is unordered.
22321
22322@item -msoft-float
22323@opindex msoft-float
22324Generate output containing library calls for floating point.
22325
22326@strong{Warning:} the requisite libraries are not part of GCC@.
22327Normally the facilities of the machine's usual C compiler are used, but
22328this can't be done directly in cross-compilation.  You must make your
22329own arrangements to provide suitable library functions for
22330cross-compilation.
22331
22332On machines where a function returns floating-point results in the 80387
22333register stack, some floating-point opcodes may be emitted even if
22334@option{-msoft-float} is used.
22335
22336@item -mno-fp-ret-in-387
22337@opindex mno-fp-ret-in-387
22338Do not use the FPU registers for return values of functions.
22339
22340The usual calling convention has functions return values of types
22341@code{float} and @code{double} in an FPU register, even if there
22342is no FPU@.  The idea is that the operating system should emulate
22343an FPU@.
22344
22345The option @option{-mno-fp-ret-in-387} causes such values to be returned
22346in ordinary CPU registers instead.
22347
22348@item -mno-fancy-math-387
22349@opindex mno-fancy-math-387
22350Some 387 emulators do not support the @code{sin}, @code{cos} and
22351@code{sqrt} instructions for the 387.  Specify this option to avoid
22352generating those instructions.  This option is the default on
22353OpenBSD and NetBSD@.  This option is overridden when @option{-march}
22354indicates that the target CPU always has an FPU and so the
22355instruction does not need emulation.  These
22356instructions are not generated unless you also use the
22357@option{-funsafe-math-optimizations} switch.
22358
22359@item -malign-double
22360@itemx -mno-align-double
22361@opindex malign-double
22362@opindex mno-align-double
22363Control whether GCC aligns @code{double}, @code{long double}, and
22364@code{long long} variables on a two-word boundary or a one-word
22365boundary.  Aligning @code{double} variables on a two-word boundary
22366produces code that runs somewhat faster on a Pentium at the
22367expense of more memory.
22368
22369On x86-64, @option{-malign-double} is enabled by default.
22370
22371@strong{Warning:} if you use the @option{-malign-double} switch,
22372structures containing the above types are aligned differently than
22373the published application binary interface specifications for the x86-32
22374and are not binary compatible with structures in code compiled
22375without that switch.
22376
22377@item -m96bit-long-double
22378@itemx -m128bit-long-double
22379@opindex m96bit-long-double
22380@opindex m128bit-long-double
22381These switches control the size of @code{long double} type.  The x86-32
22382application binary interface specifies the size to be 96 bits,
22383so @option{-m96bit-long-double} is the default in 32-bit mode.
22384
22385Modern architectures (Pentium and newer) prefer @code{long double}
22386to be aligned to an 8- or 16-byte boundary.  In arrays or structures
22387conforming to the ABI, this is not possible.  So specifying
22388@option{-m128bit-long-double} aligns @code{long double}
22389to a 16-byte boundary by padding the @code{long double} with an additional
2239032-bit zero.
22391
22392In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
22393its ABI specifies that @code{long double} is aligned on 16-byte boundary.
22394
22395Notice that neither of these options enable any extra precision over the x87
22396standard of 80 bits for a @code{long double}.
22397
22398@strong{Warning:} if you override the default value for your target ABI, this
22399changes the size of
22400structures and arrays containing @code{long double} variables,
22401as well as modifying the function calling convention for functions taking
22402@code{long double}.  Hence they are not binary-compatible
22403with code compiled without that switch.
22404
22405@item -mlong-double-64
22406@itemx -mlong-double-80
22407@itemx -mlong-double-128
22408@opindex mlong-double-64
22409@opindex mlong-double-80
22410@opindex mlong-double-128
22411These switches control the size of @code{long double} type. A size
22412of 64 bits makes the @code{long double} type equivalent to the @code{double}
22413type. This is the default for 32-bit Bionic C library.  A size
22414of 128 bits makes the @code{long double} type equivalent to the
22415@code{__float128} type. This is the default for 64-bit Bionic C library.
22416
22417@strong{Warning:} if you override the default value for your target ABI, this
22418changes the size of
22419structures and arrays containing @code{long double} variables,
22420as well as modifying the function calling convention for functions taking
22421@code{long double}.  Hence they are not binary-compatible
22422with code compiled without that switch.
22423
22424@item -malign-data=@var{type}
22425@opindex malign-data
22426Control how GCC aligns variables.  Supported values for @var{type} are
22427@samp{compat} uses increased alignment value compatible uses GCC 4.8
22428and earlier, @samp{abi} uses alignment value as specified by the
22429psABI, and @samp{cacheline} uses increased alignment value to match
22430the cache line size.  @samp{compat} is the default.
22431
22432@item -mlarge-data-threshold=@var{threshold}
22433@opindex mlarge-data-threshold
22434When @option{-mcmodel=medium} is specified, data objects larger than
22435@var{threshold} are placed in the large data section.  This value must be the
22436same across all objects linked into the binary, and defaults to 65535.
22437
22438@item -mrtd
22439@opindex mrtd
22440Use a different function-calling convention, in which functions that
22441take a fixed number of arguments return with the @code{ret @var{num}}
22442instruction, which pops their arguments while returning.  This saves one
22443instruction in the caller since there is no need to pop the arguments
22444there.
22445
22446You can specify that an individual function is called with this calling
22447sequence with the function attribute @code{stdcall}.  You can also
22448override the @option{-mrtd} option by using the function attribute
22449@code{cdecl}.  @xref{Function Attributes}.
22450
22451@strong{Warning:} this calling convention is incompatible with the one
22452normally used on Unix, so you cannot use it if you need to call
22453libraries compiled with the Unix compiler.
22454
22455Also, you must provide function prototypes for all functions that
22456take variable numbers of arguments (including @code{printf});
22457otherwise incorrect code is generated for calls to those
22458functions.
22459
22460In addition, seriously incorrect code results if you call a
22461function with too many arguments.  (Normally, extra arguments are
22462harmlessly ignored.)
22463
22464@item -mregparm=@var{num}
22465@opindex mregparm
22466Control how many registers are used to pass integer arguments.  By
22467default, no registers are used to pass arguments, and at most 3
22468registers can be used.  You can control this behavior for a specific
22469function by using the function attribute @code{regparm}.
22470@xref{Function Attributes}.
22471
22472@strong{Warning:} if you use this switch, and
22473@var{num} is nonzero, then you must build all modules with the same
22474value, including any libraries.  This includes the system libraries and
22475startup modules.
22476
22477@item -msseregparm
22478@opindex msseregparm
22479Use SSE register passing conventions for float and double arguments
22480and return values.  You can control this behavior for a specific
22481function by using the function attribute @code{sseregparm}.
22482@xref{Function Attributes}.
22483
22484@strong{Warning:} if you use this switch then you must build all
22485modules with the same value, including any libraries.  This includes
22486the system libraries and startup modules.
22487
22488@item -mvect8-ret-in-mem
22489@opindex mvect8-ret-in-mem
22490Return 8-byte vectors in memory instead of MMX registers.  This is the
22491default on Solaris@tie{}8 and 9 and VxWorks to match the ABI of the Sun
22492Studio compilers until version 12.  Later compiler versions (starting
22493with Studio 12 Update@tie{}1) follow the ABI used by other x86 targets, which
22494is the default on Solaris@tie{}10 and later.  @emph{Only} use this option if
22495you need to remain compatible with existing code produced by those
22496previous compiler versions or older versions of GCC@.
22497
22498@item -mpc32
22499@itemx -mpc64
22500@itemx -mpc80
22501@opindex mpc32
22502@opindex mpc64
22503@opindex mpc80
22504
22505Set 80387 floating-point precision to 32, 64 or 80 bits.  When @option{-mpc32}
22506is specified, the significands of results of floating-point operations are
22507rounded to 24 bits (single precision); @option{-mpc64} rounds the
22508significands of results of floating-point operations to 53 bits (double
22509precision) and @option{-mpc80} rounds the significands of results of
22510floating-point operations to 64 bits (extended double precision), which is
22511the default.  When this option is used, floating-point operations in higher
22512precisions are not available to the programmer without setting the FPU
22513control word explicitly.
22514
22515Setting the rounding of floating-point operations to less than the default
2251680 bits can speed some programs by 2% or more.  Note that some mathematical
22517libraries assume that extended-precision (80-bit) floating-point operations
22518are enabled by default; routines in such libraries could suffer significant
22519loss of accuracy, typically through so-called ``catastrophic cancellation'',
22520when this option is used to set the precision to less than extended precision.
22521
22522@item -mstackrealign
22523@opindex mstackrealign
22524Realign the stack at entry.  On the x86, the @option{-mstackrealign}
22525option generates an alternate prologue and epilogue that realigns the
22526run-time stack if necessary.  This supports mixing legacy codes that keep
225274-byte stack alignment with modern codes that keep 16-byte stack alignment for
22528SSE compatibility.  See also the attribute @code{force_align_arg_pointer},
22529applicable to individual functions.
22530
22531@item -mpreferred-stack-boundary=@var{num}
22532@opindex mpreferred-stack-boundary
22533Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
22534byte boundary.  If @option{-mpreferred-stack-boundary} is not specified,
22535the default is 4 (16 bytes or 128 bits).
22536
22537@strong{Warning:} When generating code for the x86-64 architecture with
22538SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
22539used to keep the stack boundary aligned to 8 byte boundary.  Since
22540x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
22541intended to be used in controlled environment where stack space is
22542important limitation.  This option leads to wrong code when functions
22543compiled with 16 byte stack alignment (such as functions from a standard
22544library) are called with misaligned stack.  In this case, SSE
22545instructions may lead to misaligned memory access traps.  In addition,
22546variable arguments are handled incorrectly for 16 byte aligned
22547objects (including x87 long double and __int128), leading to wrong
22548results.  You must build all modules with
22549@option{-mpreferred-stack-boundary=3}, including any libraries.  This
22550includes the system libraries and startup modules.
22551
22552@item -mincoming-stack-boundary=@var{num}
22553@opindex mincoming-stack-boundary
22554Assume the incoming stack is aligned to a 2 raised to @var{num} byte
22555boundary.  If @option{-mincoming-stack-boundary} is not specified,
22556the one specified by @option{-mpreferred-stack-boundary} is used.
22557
22558On Pentium and Pentium Pro, @code{double} and @code{long double} values
22559should be aligned to an 8-byte boundary (see @option{-malign-double}) or
22560suffer significant run time performance penalties.  On Pentium III, the
22561Streaming SIMD Extension (SSE) data type @code{__m128} may not work
22562properly if it is not 16-byte aligned.
22563
22564To ensure proper alignment of this values on the stack, the stack boundary
22565must be as aligned as that required by any value stored on the stack.
22566Further, every function must be generated such that it keeps the stack
22567aligned.  Thus calling a function compiled with a higher preferred
22568stack boundary from a function compiled with a lower preferred stack
22569boundary most likely misaligns the stack.  It is recommended that
22570libraries that use callbacks always use the default setting.
22571
22572This extra alignment does consume extra stack space, and generally
22573increases code size.  Code that is sensitive to stack space usage, such
22574as embedded systems and operating system kernels, may want to reduce the
22575preferred alignment to @option{-mpreferred-stack-boundary=2}.
22576
22577@need 200
22578@item -mmmx
22579@opindex mmmx
22580@need 200
22581@itemx -msse
22582@opindex msse
22583@need 200
22584@itemx -msse2
22585@need 200
22586@itemx -msse3
22587@need 200
22588@itemx -mssse3
22589@need 200
22590@itemx -msse4
22591@need 200
22592@itemx -msse4a
22593@need 200
22594@itemx -msse4.1
22595@need 200
22596@itemx -msse4.2
22597@need 200
22598@itemx -mavx
22599@opindex mavx
22600@need 200
22601@itemx -mavx2
22602@need 200
22603@itemx -mavx512f
22604@need 200
22605@itemx -mavx512pf
22606@need 200
22607@itemx -mavx512er
22608@need 200
22609@itemx -mavx512cd
22610@need 200
22611@itemx -msha
22612@opindex msha
22613@need 200
22614@itemx -maes
22615@opindex maes
22616@need 200
22617@itemx -mpclmul
22618@opindex mpclmul
22619@need 200
22620@itemx -mclfushopt
22621@opindex mclfushopt
22622@need 200
22623@itemx -mfsgsbase
22624@opindex mfsgsbase
22625@need 200
22626@itemx -mrdrnd
22627@opindex mrdrnd
22628@need 200
22629@itemx -mf16c
22630@opindex mf16c
22631@need 200
22632@itemx -mfma
22633@opindex mfma
22634@need 200
22635@itemx -mfma4
22636@need 200
22637@itemx -mno-fma4
22638@need 200
22639@itemx -mprefetchwt1
22640@opindex mprefetchwt1
22641@need 200
22642@itemx -mxop
22643@opindex mxop
22644@need 200
22645@itemx -mlwp
22646@opindex mlwp
22647@need 200
22648@itemx -m3dnow
22649@opindex m3dnow
22650@need 200
22651@itemx -mpopcnt
22652@opindex mpopcnt
22653@need 200
22654@itemx -mabm
22655@opindex mabm
22656@need 200
22657@itemx -mbmi
22658@opindex mbmi
22659@need 200
22660@itemx -mbmi2
22661@need 200
22662@itemx -mlzcnt
22663@opindex mlzcnt
22664@need 200
22665@itemx -mfxsr
22666@opindex mfxsr
22667@need 200
22668@itemx -mxsave
22669@opindex mxsave
22670@need 200
22671@itemx -mxsaveopt
22672@opindex mxsaveopt
22673@need 200
22674@itemx -mxsavec
22675@opindex mxsavec
22676@need 200
22677@itemx -mxsaves
22678@opindex mxsaves
22679@need 200
22680@itemx -mrtm
22681@opindex mrtm
22682@need 200
22683@itemx -mtbm
22684@opindex mtbm
22685@need 200
22686@itemx -mmpx
22687@opindex mmpx
22688@need 200
22689@itemx -mmwaitx
22690@opindex mmwaitx
22691These switches enable the use of instructions in the MMX, SSE,
22692SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD,
22693SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM,
22694BMI, BMI2, FXSR, XSAVE, XSAVEOPT, LZCNT, RTM, MPX, MWAITX or 3DNow!@:
22695extended instruction sets.  Each has a corresponding @option{-mno-} option
22696to disable use of these instructions.
22697
22698These extensions are also available as built-in functions: see
22699@ref{x86 Built-in Functions}, for details of the functions enabled and
22700disabled by these switches.
22701
22702To generate SSE/SSE2 instructions automatically from floating-point
22703code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
22704
22705GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
22706generates new AVX instructions or AVX equivalence for all SSEx instructions
22707when needed.
22708
22709These options enable GCC to use these extended instructions in
22710generated code, even without @option{-mfpmath=sse}.  Applications that
22711perform run-time CPU detection must compile separate files for each
22712supported architecture, using the appropriate flags.  In particular,
22713the file containing the CPU detection code should be compiled without
22714these options.
22715
22716@item -mdump-tune-features
22717@opindex mdump-tune-features
22718This option instructs GCC to dump the names of the x86 performance
22719tuning features and default settings. The names can be used in
22720@option{-mtune-ctrl=@var{feature-list}}.
22721
22722@item -mtune-ctrl=@var{feature-list}
22723@opindex mtune-ctrl=@var{feature-list}
22724This option is used to do fine grain control of x86 code generation features.
22725@var{feature-list} is a comma separated list of @var{feature} names. See also
22726@option{-mdump-tune-features}. When specified, the @var{feature} is turned
22727on if it is not preceded with @samp{^}, otherwise, it is turned off.
22728@option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
22729developers. Using it may lead to code paths not covered by testing and can
22730potentially result in compiler ICEs or runtime errors.
22731
22732@item -mno-default
22733@opindex mno-default
22734This option instructs GCC to turn off all tunable features. See also
22735@option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
22736
22737@item -mcld
22738@opindex mcld
22739This option instructs GCC to emit a @code{cld} instruction in the prologue
22740of functions that use string instructions.  String instructions depend on
22741the DF flag to select between autoincrement or autodecrement mode.  While the
22742ABI specifies the DF flag to be cleared on function entry, some operating
22743systems violate this specification by not clearing the DF flag in their
22744exception dispatchers.  The exception handler can be invoked with the DF flag
22745set, which leads to wrong direction mode when string instructions are used.
22746This option can be enabled by default on 32-bit x86 targets by configuring
22747GCC with the @option{--enable-cld} configure option.  Generation of @code{cld}
22748instructions can be suppressed with the @option{-mno-cld} compiler option
22749in this case.
22750
22751@item -mvzeroupper
22752@opindex mvzeroupper
22753This option instructs GCC to emit a @code{vzeroupper} instruction
22754before a transfer of control flow out of the function to minimize
22755the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
22756intrinsics.
22757
22758@item -mprefer-avx128
22759@opindex mprefer-avx128
22760This option instructs GCC to use 128-bit AVX instructions instead of
22761256-bit AVX instructions in the auto-vectorizer.
22762
22763@item -mcx16
22764@opindex mcx16
22765This option enables GCC to generate @code{CMPXCHG16B} instructions.
22766@code{CMPXCHG16B} allows for atomic operations on 128-bit double quadword
22767(or oword) data types.
22768This is useful for high-resolution counters that can be updated
22769by multiple processors (or cores).  This instruction is generated as part of
22770atomic built-in functions: see @ref{__sync Builtins} or
22771@ref{__atomic Builtins} for details.
22772
22773@item -msahf
22774@opindex msahf
22775This option enables generation of @code{SAHF} instructions in 64-bit code.
22776Early Intel Pentium 4 CPUs with Intel 64 support,
22777prior to the introduction of Pentium 4 G1 step in December 2005,
22778lacked the @code{LAHF} and @code{SAHF} instructions
22779which are supported by AMD64.
22780These are load and store instructions, respectively, for certain status flags.
22781In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
22782@code{drem}, and @code{remainder} built-in functions;
22783see @ref{Other Builtins} for details.
22784
22785@item -mmovbe
22786@opindex mmovbe
22787This option enables use of the @code{movbe} instruction to implement
22788@code{__builtin_bswap32} and @code{__builtin_bswap64}.
22789
22790@item -mcrc32
22791@opindex mcrc32
22792This option enables built-in functions @code{__builtin_ia32_crc32qi},
22793@code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
22794@code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
22795
22796@item -mrecip
22797@opindex mrecip
22798This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
22799(and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
22800with an additional Newton-Raphson step
22801to increase precision instead of @code{DIVSS} and @code{SQRTSS}
22802(and their vectorized
22803variants) for single-precision floating-point arguments.  These instructions
22804are generated only when @option{-funsafe-math-optimizations} is enabled
22805together with @option{-finite-math-only} and @option{-fno-trapping-math}.
22806Note that while the throughput of the sequence is higher than the throughput
22807of the non-reciprocal instruction, the precision of the sequence can be
22808decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
22809
22810Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
22811(or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
22812combination), and doesn't need @option{-mrecip}.
22813
22814Also note that GCC emits the above sequence with additional Newton-Raphson step
22815for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
22816already with @option{-ffast-math} (or the above option combination), and
22817doesn't need @option{-mrecip}.
22818
22819@item -mrecip=@var{opt}
22820@opindex mrecip=opt
22821This option controls which reciprocal estimate instructions
22822may be used.  @var{opt} is a comma-separated list of options, which may
22823be preceded by a @samp{!} to invert the option:
22824
22825@table @samp
22826@item all
22827Enable all estimate instructions.
22828
22829@item default
22830Enable the default instructions, equivalent to @option{-mrecip}.
22831
22832@item none
22833Disable all estimate instructions, equivalent to @option{-mno-recip}.
22834
22835@item div
22836Enable the approximation for scalar division.
22837
22838@item vec-div
22839Enable the approximation for vectorized division.
22840
22841@item sqrt
22842Enable the approximation for scalar square root.
22843
22844@item vec-sqrt
22845Enable the approximation for vectorized square root.
22846@end table
22847
22848So, for example, @option{-mrecip=all,!sqrt} enables
22849all of the reciprocal approximations, except for square root.
22850
22851@item -mveclibabi=@var{type}
22852@opindex mveclibabi
22853Specifies the ABI type to use for vectorizing intrinsics using an
22854external library.  Supported values for @var{type} are @samp{svml}
22855for the Intel short
22856vector math library and @samp{acml} for the AMD math core library.
22857To use this option, both @option{-ftree-vectorize} and
22858@option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML
22859ABI-compatible library must be specified at link time.
22860
22861GCC currently emits calls to @code{vmldExp2},
22862@code{vmldLn2}, @code{vmldLog102}, @code{vmldLog102}, @code{vmldPow2},
22863@code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
22864@code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
22865@code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
22866@code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4}, @code{vmlsLog104},
22867@code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
22868@code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
22869@code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
22870@code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
22871function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
22872@code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
22873@code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
22874@code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
22875@code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
22876when @option{-mveclibabi=acml} is used.
22877
22878@item -mabi=@var{name}
22879@opindex mabi
22880Generate code for the specified calling convention.  Permissible values
22881are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
22882@samp{ms} for the Microsoft ABI.  The default is to use the Microsoft
22883ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
22884You can control this behavior for specific functions by
22885using the function attributes @code{ms_abi} and @code{sysv_abi}.
22886@xref{Function Attributes}.
22887
22888@item -mtls-dialect=@var{type}
22889@opindex mtls-dialect
22890Generate code to access thread-local storage using the @samp{gnu} or
22891@samp{gnu2} conventions.  @samp{gnu} is the conservative default;
22892@samp{gnu2} is more efficient, but it may add compile- and run-time
22893requirements that cannot be satisfied on all systems.
22894
22895@item -mpush-args
22896@itemx -mno-push-args
22897@opindex mpush-args
22898@opindex mno-push-args
22899Use PUSH operations to store outgoing parameters.  This method is shorter
22900and usually equally fast as method using SUB/MOV operations and is enabled
22901by default.  In some cases disabling it may improve performance because of
22902improved scheduling and reduced dependencies.
22903
22904@item -maccumulate-outgoing-args
22905@opindex maccumulate-outgoing-args
22906If enabled, the maximum amount of space required for outgoing arguments is
22907computed in the function prologue.  This is faster on most modern CPUs
22908because of reduced dependencies, improved scheduling and reduced stack usage
22909when the preferred stack boundary is not equal to 2.  The drawback is a notable
22910increase in code size.  This switch implies @option{-mno-push-args}.
22911
22912@item -mthreads
22913@opindex mthreads
22914Support thread-safe exception handling on MinGW.  Programs that rely
22915on thread-safe exception handling must compile and link all code with the
22916@option{-mthreads} option.  When compiling, @option{-mthreads} defines
22917@option{-D_MT}; when linking, it links in a special thread helper library
22918@option{-lmingwthrd} which cleans up per-thread exception-handling data.
22919
22920@item -mno-align-stringops
22921@opindex mno-align-stringops
22922Do not align the destination of inlined string operations.  This switch reduces
22923code size and improves performance in case the destination is already aligned,
22924but GCC doesn't know about it.
22925
22926@item -minline-all-stringops
22927@opindex minline-all-stringops
22928By default GCC inlines string operations only when the destination is
22929known to be aligned to least a 4-byte boundary.
22930This enables more inlining and increases code
22931size, but may improve performance of code that depends on fast
22932@code{memcpy}, @code{strlen},
22933and @code{memset} for short lengths.
22934
22935@item -minline-stringops-dynamically
22936@opindex minline-stringops-dynamically
22937For string operations of unknown size, use run-time checks with
22938inline code for small blocks and a library call for large blocks.
22939
22940@item -mstringop-strategy=@var{alg}
22941@opindex mstringop-strategy=@var{alg}
22942Override the internal decision heuristic for the particular algorithm to use
22943for inlining string operations.  The allowed values for @var{alg} are:
22944
22945@table @samp
22946@item rep_byte
22947@itemx rep_4byte
22948@itemx rep_8byte
22949Expand using i386 @code{rep} prefix of the specified size.
22950
22951@item byte_loop
22952@itemx loop
22953@itemx unrolled_loop
22954Expand into an inline loop.
22955
22956@item libcall
22957Always use a library call.
22958@end table
22959
22960@item -mmemcpy-strategy=@var{strategy}
22961@opindex mmemcpy-strategy=@var{strategy}
22962Override the internal decision heuristic to decide if @code{__builtin_memcpy}
22963should be inlined and what inline algorithm to use when the expected size
22964of the copy operation is known. @var{strategy}
22965is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets.
22966@var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
22967the max byte size with which inline algorithm @var{alg} is allowed.  For the last
22968triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
22969in the list must be specified in increasing order.  The minimal byte size for
22970@var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the
22971preceding range.
22972
22973@item -mmemset-strategy=@var{strategy}
22974@opindex mmemset-strategy=@var{strategy}
22975The option is similar to @option{-mmemcpy-strategy=} except that it is to control
22976@code{__builtin_memset} expansion.
22977
22978@item -momit-leaf-frame-pointer
22979@opindex momit-leaf-frame-pointer
22980Don't keep the frame pointer in a register for leaf functions.  This
22981avoids the instructions to save, set up, and restore frame pointers and
22982makes an extra register available in leaf functions.  The option
22983@option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
22984which might make debugging harder.
22985
22986@item -mtls-direct-seg-refs
22987@itemx -mno-tls-direct-seg-refs
22988@opindex mtls-direct-seg-refs
22989Controls whether TLS variables may be accessed with offsets from the
22990TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
22991or whether the thread base pointer must be added.  Whether or not this
22992is valid depends on the operating system, and whether it maps the
22993segment to cover the entire TLS area.
22994
22995For systems that use the GNU C Library, the default is on.
22996
22997@item -msse2avx
22998@itemx -mno-sse2avx
22999@opindex msse2avx
23000Specify that the assembler should encode SSE instructions with VEX
23001prefix.  The option @option{-mavx} turns this on by default.
23002
23003@item -mfentry
23004@itemx -mno-fentry
23005@opindex mfentry
23006If profiling is active (@option{-pg}), put the profiling
23007counter call before the prologue.
23008Note: On x86 architectures the attribute @code{ms_hook_prologue}
23009isn't possible at the moment for @option{-mfentry} and @option{-pg}.
23010
23011@item -mrecord-mcount
23012@itemx -mno-record-mcount
23013@opindex mrecord-mcount
23014If profiling is active (@option{-pg}), generate a __mcount_loc section
23015that contains pointers to each profiling call. This is useful for
23016automatically patching and out calls.
23017
23018@item -mnop-mcount
23019@itemx -mno-nop-mcount
23020@opindex mnop-mcount
23021If profiling is active (@option{-pg}), generate the calls to
23022the profiling functions as nops. This is useful when they
23023should be patched in later dynamically. This is likely only
23024useful together with @option{-mrecord-mcount}.
23025
23026@item -mskip-rax-setup
23027@itemx -mno-skip-rax-setup
23028@opindex mskip-rax-setup
23029When generating code for the x86-64 architecture with SSE extensions
23030disabled, @option{-mskip-rax-setup} can be used to skip setting up RAX
23031register when there are no variable arguments passed in vector registers.
23032
23033@strong{Warning:} Since RAX register is used to avoid unnecessarily
23034saving vector registers on stack when passing variable arguments, the
23035impacts of this option are callees may waste some stack space,
23036misbehave or jump to a random location.  GCC 4.4 or newer don't have
23037those issues, regardless the RAX register value.
23038
23039@item -m8bit-idiv
23040@itemx -mno-8bit-idiv
23041@opindex m8bit-idiv
23042On some processors, like Intel Atom, 8-bit unsigned integer divide is
23043much faster than 32-bit/64-bit integer divide.  This option generates a
23044run-time check.  If both dividend and divisor are within range of 0
23045to 255, 8-bit unsigned integer divide is used instead of
2304632-bit/64-bit integer divide.
23047
23048@item -mavx256-split-unaligned-load
23049@itemx -mavx256-split-unaligned-store
23050@opindex mavx256-split-unaligned-load
23051@opindex mavx256-split-unaligned-store
23052Split 32-byte AVX unaligned load and store.
23053
23054@item -mstack-protector-guard=@var{guard}
23055@opindex mstack-protector-guard=@var{guard}
23056Generate stack protection code using canary at @var{guard}.  Supported
23057locations are @samp{global} for global canary or @samp{tls} for per-thread
23058canary in the TLS block (the default).  This option has effect only when
23059@option{-fstack-protector} or @option{-fstack-protector-all} is specified.
23060
23061@end table
23062
23063These @samp{-m} switches are supported in addition to the above
23064on x86-64 processors in 64-bit environments.
23065
23066@table @gcctabopt
23067@item -m32
23068@itemx -m64
23069@itemx -mx32
23070@itemx -m16
23071@opindex m32
23072@opindex m64
23073@opindex mx32
23074@opindex m16
23075Generate code for a 16-bit, 32-bit or 64-bit environment.
23076The @option{-m32} option sets @code{int}, @code{long}, and pointer types
23077to 32 bits, and
23078generates code that runs on any i386 system.
23079
23080The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
23081types to 64 bits, and generates code for the x86-64 architecture.
23082For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
23083and @option{-mdynamic-no-pic} options.
23084
23085The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
23086to 32 bits, and
23087generates code for the x86-64 architecture.
23088
23089The @option{-m16} option is the same as @option{-m32}, except for that
23090it outputs the @code{.code16gcc} assembly directive at the beginning of
23091the assembly output so that the binary can run in 16-bit mode.
23092
23093@item -mno-red-zone
23094@opindex mno-red-zone
23095Do not use a so-called ``red zone'' for x86-64 code.  The red zone is mandated
23096by the x86-64 ABI; it is a 128-byte area beyond the location of the
23097stack pointer that is not modified by signal or interrupt handlers
23098and therefore can be used for temporary data without adjusting the stack
23099pointer.  The flag @option{-mno-red-zone} disables this red zone.
23100
23101@item -mcmodel=small
23102@opindex mcmodel=small
23103Generate code for the small code model: the program and its symbols must
23104be linked in the lower 2 GB of the address space.  Pointers are 64 bits.
23105Programs can be statically or dynamically linked.  This is the default
23106code model.
23107
23108@item -mcmodel=kernel
23109@opindex mcmodel=kernel
23110Generate code for the kernel code model.  The kernel runs in the
23111negative 2 GB of the address space.
23112This model has to be used for Linux kernel code.
23113
23114@item -mcmodel=medium
23115@opindex mcmodel=medium
23116Generate code for the medium model: the program is linked in the lower 2
23117GB of the address space.  Small symbols are also placed there.  Symbols
23118with sizes larger than @option{-mlarge-data-threshold} are put into
23119large data or BSS sections and can be located above 2GB.  Programs can
23120be statically or dynamically linked.
23121
23122@item -mcmodel=large
23123@opindex mcmodel=large
23124Generate code for the large model.  This model makes no assumptions
23125about addresses and sizes of sections.
23126
23127@item -maddress-mode=long
23128@opindex maddress-mode=long
23129Generate code for long address mode.  This is only supported for 64-bit
23130and x32 environments.  It is the default address mode for 64-bit
23131environments.
23132
23133@item -maddress-mode=short
23134@opindex maddress-mode=short
23135Generate code for short address mode.  This is only supported for 32-bit
23136and x32 environments.  It is the default address mode for 32-bit and
23137x32 environments.
23138@end table
23139
23140@node x86 Windows Options
23141@subsection x86 Windows Options
23142@cindex x86 Windows Options
23143@cindex Windows Options for x86
23144
23145These additional options are available for Microsoft Windows targets:
23146
23147@table @gcctabopt
23148@item -mconsole
23149@opindex mconsole
23150This option
23151specifies that a console application is to be generated, by
23152instructing the linker to set the PE header subsystem type
23153required for console applications.
23154This option is available for Cygwin and MinGW targets and is
23155enabled by default on those targets.
23156
23157@item -mdll
23158@opindex mdll
23159This option is available for Cygwin and MinGW targets.  It
23160specifies that a DLL---a dynamic link library---is to be
23161generated, enabling the selection of the required runtime
23162startup object and entry point.
23163
23164@item -mnop-fun-dllimport
23165@opindex mnop-fun-dllimport
23166This option is available for Cygwin and MinGW targets.  It
23167specifies that the @code{dllimport} attribute should be ignored.
23168
23169@item -mthread
23170@opindex mthread
23171This option is available for MinGW targets. It specifies
23172that MinGW-specific thread support is to be used.
23173
23174@item -municode
23175@opindex municode
23176This option is available for MinGW-w64 targets.  It causes
23177the @code{UNICODE} preprocessor macro to be predefined, and
23178chooses Unicode-capable runtime startup code.
23179
23180@item -mwin32
23181@opindex mwin32
23182This option is available for Cygwin and MinGW targets.  It
23183specifies that the typical Microsoft Windows predefined macros are to
23184be set in the pre-processor, but does not influence the choice
23185of runtime library/startup code.
23186
23187@item -mwindows
23188@opindex mwindows
23189This option is available for Cygwin and MinGW targets.  It
23190specifies that a GUI application is to be generated by
23191instructing the linker to set the PE header subsystem type
23192appropriately.
23193
23194@item -fno-set-stack-executable
23195@opindex fno-set-stack-executable
23196This option is available for MinGW targets. It specifies that
23197the executable flag for the stack used by nested functions isn't
23198set. This is necessary for binaries running in kernel mode of
23199Microsoft Windows, as there the User32 API, which is used to set executable
23200privileges, isn't available.
23201
23202@item -fwritable-relocated-rdata
23203@opindex fno-writable-relocated-rdata
23204This option is available for MinGW and Cygwin targets.  It specifies
23205that relocated-data in read-only section is put into .data
23206section.  This is a necessary for older runtimes not supporting
23207modification of .rdata sections for pseudo-relocation.
23208
23209@item -mpe-aligned-commons
23210@opindex mpe-aligned-commons
23211This option is available for Cygwin and MinGW targets.  It
23212specifies that the GNU extension to the PE file format that
23213permits the correct alignment of COMMON variables should be
23214used when generating code.  It is enabled by default if
23215GCC detects that the target assembler found during configuration
23216supports the feature.
23217
23218@item -mindirect-branch=@var{choice}
23219@opindex -mindirect-branch
23220Convert indirect call and jump with @var{choice}.  The default is
23221@samp{keep}, which keeps indirect call and jump unmodified.
23222@samp{thunk} converts indirect call and jump to call and return thunk.
23223@samp{thunk-inline} converts indirect call and jump to inlined call
23224and return thunk.  @samp{thunk-extern} converts indirect call and jump
23225to external call and return thunk provided in a separate object file.
23226You can control this behavior for a specific function by using the
23227function attribute @code{indirect_branch}.  @xref{Function Attributes}.
23228
23229Note that @option{-mcmodel=large} is incompatible with
23230@option{-mindirect-branch=thunk} nor
23231@option{-mindirect-branch=thunk-extern} since the thunk function may
23232not be reachable in large code model.
23233
23234@item -mfunction-return=@var{choice}
23235@opindex -mfunction-return
23236Convert function return with @var{choice}.  The default is @samp{keep},
23237which keeps function return unmodified.  @samp{thunk} converts function
23238return to call and return thunk.  @samp{thunk-inline} converts function
23239return to inlined call and return thunk.  @samp{thunk-extern} converts
23240function return to external call and return thunk provided in a separate
23241object file.  You can control this behavior for a specific function by
23242using the function attribute @code{function_return}.
23243@xref{Function Attributes}.
23244
23245Note that @option{-mcmodel=large} is incompatible with
23246@option{-mfunction-return=thunk} nor
23247@option{-mfunction-return=thunk-extern} since the thunk function may
23248not be reachable in large code model.
23249
23250@item -mindirect-branch-register
23251@opindex -mindirect-branch-register
23252Force indirect call and jump via register.
23253@end table
23254
23255See also under @ref{x86 Options} for standard options.
23256
23257@node Xstormy16 Options
23258@subsection Xstormy16 Options
23259@cindex Xstormy16 Options
23260
23261These options are defined for Xstormy16:
23262
23263@table @gcctabopt
23264@item -msim
23265@opindex msim
23266Choose startup files and linker script suitable for the simulator.
23267@end table
23268
23269@node Xtensa Options
23270@subsection Xtensa Options
23271@cindex Xtensa Options
23272
23273These options are supported for Xtensa targets:
23274
23275@table @gcctabopt
23276@item -mconst16
23277@itemx -mno-const16
23278@opindex mconst16
23279@opindex mno-const16
23280Enable or disable use of @code{CONST16} instructions for loading
23281constant values.  The @code{CONST16} instruction is currently not a
23282standard option from Tensilica.  When enabled, @code{CONST16}
23283instructions are always used in place of the standard @code{L32R}
23284instructions.  The use of @code{CONST16} is enabled by default only if
23285the @code{L32R} instruction is not available.
23286
23287@item -mfused-madd
23288@itemx -mno-fused-madd
23289@opindex mfused-madd
23290@opindex mno-fused-madd
23291Enable or disable use of fused multiply/add and multiply/subtract
23292instructions in the floating-point option.  This has no effect if the
23293floating-point option is not also enabled.  Disabling fused multiply/add
23294and multiply/subtract instructions forces the compiler to use separate
23295instructions for the multiply and add/subtract operations.  This may be
23296desirable in some cases where strict IEEE 754-compliant results are
23297required: the fused multiply add/subtract instructions do not round the
23298intermediate result, thereby producing results with @emph{more} bits of
23299precision than specified by the IEEE standard.  Disabling fused multiply
23300add/subtract instructions also ensures that the program output is not
23301sensitive to the compiler's ability to combine multiply and add/subtract
23302operations.
23303
23304@item -mserialize-volatile
23305@itemx -mno-serialize-volatile
23306@opindex mserialize-volatile
23307@opindex mno-serialize-volatile
23308When this option is enabled, GCC inserts @code{MEMW} instructions before
23309@code{volatile} memory references to guarantee sequential consistency.
23310The default is @option{-mserialize-volatile}.  Use
23311@option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
23312
23313@item -mforce-no-pic
23314@opindex mforce-no-pic
23315For targets, like GNU/Linux, where all user-mode Xtensa code must be
23316position-independent code (PIC), this option disables PIC for compiling
23317kernel code.
23318
23319@item -mtext-section-literals
23320@itemx -mno-text-section-literals
23321@opindex mtext-section-literals
23322@opindex mno-text-section-literals
23323These options control the treatment of literal pools.  The default is
23324@option{-mno-text-section-literals}, which places literals in a separate
23325section in the output file.  This allows the literal pool to be placed
23326in a data RAM/ROM, and it also allows the linker to combine literal
23327pools from separate object files to remove redundant literals and
23328improve code size.  With @option{-mtext-section-literals}, the literals
23329are interspersed in the text section in order to keep them as close as
23330possible to their references.  This may be necessary for large assembly
23331files.
23332
23333@item -mtarget-align
23334@itemx -mno-target-align
23335@opindex mtarget-align
23336@opindex mno-target-align
23337When this option is enabled, GCC instructs the assembler to
23338automatically align instructions to reduce branch penalties at the
23339expense of some code density.  The assembler attempts to widen density
23340instructions to align branch targets and the instructions following call
23341instructions.  If there are not enough preceding safe density
23342instructions to align a target, no widening is performed.  The
23343default is @option{-mtarget-align}.  These options do not affect the
23344treatment of auto-aligned instructions like @code{LOOP}, which the
23345assembler always aligns, either by widening density instructions or
23346by inserting NOP instructions.
23347
23348@item -mlongcalls
23349@itemx -mno-longcalls
23350@opindex mlongcalls
23351@opindex mno-longcalls
23352When this option is enabled, GCC instructs the assembler to translate
23353direct calls to indirect calls unless it can determine that the target
23354of a direct call is in the range allowed by the call instruction.  This
23355translation typically occurs for calls to functions in other source
23356files.  Specifically, the assembler translates a direct @code{CALL}
23357instruction into an @code{L32R} followed by a @code{CALLX} instruction.
23358The default is @option{-mno-longcalls}.  This option should be used in
23359programs where the call target can potentially be out of range.  This
23360option is implemented in the assembler, not the compiler, so the
23361assembly code generated by GCC still shows direct call
23362instructions---look at the disassembled object code to see the actual
23363instructions.  Note that the assembler uses an indirect call for
23364every cross-file call, not just those that really are out of range.
23365@end table
23366
23367@node zSeries Options
23368@subsection zSeries Options
23369@cindex zSeries options
23370
23371These are listed under @xref{S/390 and zSeries Options}.
23372
23373@node Code Gen Options
23374@section Options for Code Generation Conventions
23375@cindex code generation conventions
23376@cindex options, code generation
23377@cindex run-time options
23378
23379These machine-independent options control the interface conventions
23380used in code generation.
23381
23382Most of them have both positive and negative forms; the negative form
23383of @option{-ffoo} is @option{-fno-foo}.  In the table below, only
23384one of the forms is listed---the one that is not the default.  You
23385can figure out the other form by either removing @samp{no-} or adding
23386it.
23387
23388@table @gcctabopt
23389@item -fbounds-check
23390@opindex fbounds-check
23391For front ends that support it, generate additional code to check that
23392indices used to access arrays are within the declared range.  This is
23393currently only supported by the Java and Fortran front ends, where
23394this option defaults to true and false respectively.
23395
23396@item -fstack-reuse=@var{reuse-level}
23397@opindex fstack_reuse
23398This option controls stack space reuse for user declared local/auto variables
23399and compiler generated temporaries.  @var{reuse_level} can be @samp{all},
23400@samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
23401local variables and temporaries, @samp{named_vars} enables the reuse only for
23402user defined local variables with names, and @samp{none} disables stack reuse
23403completely. The default value is @samp{all}. The option is needed when the
23404program extends the lifetime of a scoped local variable or a compiler generated
23405temporary beyond the end point defined by the language.  When a lifetime of
23406a variable ends, and if the variable lives in memory, the optimizing compiler
23407has the freedom to reuse its stack space with other temporaries or scoped
23408local variables whose live range does not overlap with it. Legacy code extending
23409local lifetime is likely to break with the stack reuse optimization.
23410
23411For example,
23412
23413@smallexample
23414   int *p;
23415   @{
23416     int local1;
23417
23418     p = &local1;
23419     local1 = 10;
23420     ....
23421   @}
23422   @{
23423      int local2;
23424      local2 = 20;
23425      ...
23426   @}
23427
23428   if (*p == 10)  // out of scope use of local1
23429     @{
23430
23431     @}
23432@end smallexample
23433
23434Another example:
23435@smallexample
23436
23437   struct A
23438   @{
23439       A(int k) : i(k), j(k) @{ @}
23440       int i;
23441       int j;
23442   @};
23443
23444   A *ap;
23445
23446   void foo(const A& ar)
23447   @{
23448      ap = &ar;
23449   @}
23450
23451   void bar()
23452   @{
23453      foo(A(10)); // temp object's lifetime ends when foo returns
23454
23455      @{
23456        A a(20);
23457        ....
23458      @}
23459      ap->i+= 10;  // ap references out of scope temp whose space
23460                   // is reused with a. What is the value of ap->i?
23461   @}
23462
23463@end smallexample
23464
23465The lifetime of a compiler generated temporary is well defined by the C++
23466standard. When a lifetime of a temporary ends, and if the temporary lives
23467in memory, the optimizing compiler has the freedom to reuse its stack
23468space with other temporaries or scoped local variables whose live range
23469does not overlap with it. However some of the legacy code relies on
23470the behavior of older compilers in which temporaries' stack space is
23471not reused, the aggressive stack reuse can lead to runtime errors. This
23472option is used to control the temporary stack reuse optimization.
23473
23474@item -ftrapv
23475@opindex ftrapv
23476This option generates traps for signed overflow on addition, subtraction,
23477multiplication operations.
23478
23479@item -fwrapv
23480@opindex fwrapv
23481This option instructs the compiler to assume that signed arithmetic
23482overflow of addition, subtraction and multiplication wraps around
23483using twos-complement representation.  This flag enables some optimizations
23484and disables others.  This option is enabled by default for the Java
23485front end, as required by the Java language specification.
23486
23487@item -fexceptions
23488@opindex fexceptions
23489Enable exception handling.  Generates extra code needed to propagate
23490exceptions.  For some targets, this implies GCC generates frame
23491unwind information for all functions, which can produce significant data
23492size overhead, although it does not affect execution.  If you do not
23493specify this option, GCC enables it by default for languages like
23494C++ that normally require exception handling, and disables it for
23495languages like C that do not normally require it.  However, you may need
23496to enable this option when compiling C code that needs to interoperate
23497properly with exception handlers written in C++.  You may also wish to
23498disable this option if you are compiling older C++ programs that don't
23499use exception handling.
23500
23501@item -fnon-call-exceptions
23502@opindex fnon-call-exceptions
23503Generate code that allows trapping instructions to throw exceptions.
23504Note that this requires platform-specific runtime support that does
23505not exist everywhere.  Moreover, it only allows @emph{trapping}
23506instructions to throw exceptions, i.e.@: memory references or floating-point
23507instructions.  It does not allow exceptions to be thrown from
23508arbitrary signal handlers such as @code{SIGALRM}.
23509
23510@item -fdelete-dead-exceptions
23511@opindex fdelete-dead-exceptions
23512Consider that instructions that may throw exceptions but don't otherwise
23513contribute to the execution of the program can be optimized away.
23514This option is enabled by default for the Ada front end, as permitted by
23515the Ada language specification.
23516Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
23517
23518@item -funwind-tables
23519@opindex funwind-tables
23520Similar to @option{-fexceptions}, except that it just generates any needed
23521static data, but does not affect the generated code in any other way.
23522You normally do not need to enable this option; instead, a language processor
23523that needs this handling enables it on your behalf.
23524
23525@item -fasynchronous-unwind-tables
23526@opindex fasynchronous-unwind-tables
23527Generate unwind table in DWARF 2 format, if supported by target machine.  The
23528table is exact at each instruction boundary, so it can be used for stack
23529unwinding from asynchronous events (such as debugger or garbage collector).
23530
23531@item -fno-gnu-unique
23532@opindex fno-gnu-unique
23533On systems with recent GNU assembler and C library, the C++ compiler
23534uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
23535of template static data members and static local variables in inline
23536functions are unique even in the presence of @code{RTLD_LOCAL}; this
23537is necessary to avoid problems with a library used by two different
23538@code{RTLD_LOCAL} plugins depending on a definition in one of them and
23539therefore disagreeing with the other one about the binding of the
23540symbol.  But this causes @code{dlclose} to be ignored for affected
23541DSOs; if your program relies on reinitialization of a DSO via
23542@code{dlclose} and @code{dlopen}, you can use
23543@option{-fno-gnu-unique}.
23544
23545@item -fpcc-struct-return
23546@opindex fpcc-struct-return
23547Return ``short'' @code{struct} and @code{union} values in memory like
23548longer ones, rather than in registers.  This convention is less
23549efficient, but it has the advantage of allowing intercallability between
23550GCC-compiled files and files compiled with other compilers, particularly
23551the Portable C Compiler (pcc).
23552
23553The precise convention for returning structures in memory depends
23554on the target configuration macros.
23555
23556Short structures and unions are those whose size and alignment match
23557that of some integer type.
23558
23559@strong{Warning:} code compiled with the @option{-fpcc-struct-return}
23560switch is not binary compatible with code compiled with the
23561@option{-freg-struct-return} switch.
23562Use it to conform to a non-default application binary interface.
23563
23564@item -freg-struct-return
23565@opindex freg-struct-return
23566Return @code{struct} and @code{union} values in registers when possible.
23567This is more efficient for small structures than
23568@option{-fpcc-struct-return}.
23569
23570If you specify neither @option{-fpcc-struct-return} nor
23571@option{-freg-struct-return}, GCC defaults to whichever convention is
23572standard for the target.  If there is no standard convention, GCC
23573defaults to @option{-fpcc-struct-return}, except on targets where GCC is
23574the principal compiler.  In those cases, we can choose the standard, and
23575we chose the more efficient register return alternative.
23576
23577@strong{Warning:} code compiled with the @option{-freg-struct-return}
23578switch is not binary compatible with code compiled with the
23579@option{-fpcc-struct-return} switch.
23580Use it to conform to a non-default application binary interface.
23581
23582@item -fshort-enums
23583@opindex fshort-enums
23584Allocate to an @code{enum} type only as many bytes as it needs for the
23585declared range of possible values.  Specifically, the @code{enum} type
23586is equivalent to the smallest integer type that has enough room.
23587
23588@strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
23589code that is not binary compatible with code generated without that switch.
23590Use it to conform to a non-default application binary interface.
23591
23592@item -fshort-double
23593@opindex fshort-double
23594Use the same size for @code{double} as for @code{float}.
23595
23596@strong{Warning:} the @option{-fshort-double} switch causes GCC to generate
23597code that is not binary compatible with code generated without that switch.
23598Use it to conform to a non-default application binary interface.
23599
23600@item -fshort-wchar
23601@opindex fshort-wchar
23602Override the underlying type for @code{wchar_t} to be @code{short
23603unsigned int} instead of the default for the target.  This option is
23604useful for building programs to run under WINE@.
23605
23606@strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
23607code that is not binary compatible with code generated without that switch.
23608Use it to conform to a non-default application binary interface.
23609
23610@item -fno-common
23611@opindex fno-common
23612In C code, controls the placement of uninitialized global variables.
23613Unix C compilers have traditionally permitted multiple definitions of
23614such variables in different compilation units by placing the variables
23615in a common block.
23616This is the behavior specified by @option{-fcommon}, and is the default
23617for GCC on most targets.
23618On the other hand, this behavior is not required by ISO C, and on some
23619targets may carry a speed or code size penalty on variable references.
23620The @option{-fno-common} option specifies that the compiler should place
23621uninitialized global variables in the data section of the object file,
23622rather than generating them as common blocks.
23623This has the effect that if the same variable is declared
23624(without @code{extern}) in two different compilations,
23625you get a multiple-definition error when you link them.
23626In this case, you must compile with @option{-fcommon} instead.
23627Compiling with @option{-fno-common} is useful on targets for which
23628it provides better performance, or if you wish to verify that the
23629program will work on other systems that always treat uninitialized
23630variable declarations this way.
23631
23632@item -fno-ident
23633@opindex fno-ident
23634Ignore the @code{#ident} directive.
23635
23636@item -finhibit-size-directive
23637@opindex finhibit-size-directive
23638Don't output a @code{.size} assembler directive, or anything else that
23639would cause trouble if the function is split in the middle, and the
23640two halves are placed at locations far apart in memory.  This option is
23641used when compiling @file{crtstuff.c}; you should not need to use it
23642for anything else.
23643
23644@item -fverbose-asm
23645@opindex fverbose-asm
23646Put extra commentary information in the generated assembly code to
23647make it more readable.  This option is generally only of use to those
23648who actually need to read the generated assembly code (perhaps while
23649debugging the compiler itself).
23650
23651@option{-fno-verbose-asm}, the default, causes the
23652extra information to be omitted and is useful when comparing two assembler
23653files.
23654
23655@item -frecord-gcc-switches
23656@opindex frecord-gcc-switches
23657This switch causes the command line used to invoke the
23658compiler to be recorded into the object file that is being created.
23659This switch is only implemented on some targets and the exact format
23660of the recording is target and binary file format dependent, but it
23661usually takes the form of a section containing ASCII text.  This
23662switch is related to the @option{-fverbose-asm} switch, but that
23663switch only records information in the assembler output file as
23664comments, so it never reaches the object file.
23665See also @option{-grecord-gcc-switches} for another
23666way of storing compiler options into the object file.
23667
23668@item -fpic
23669@opindex fpic
23670@cindex global offset table
23671@cindex PIC
23672Generate position-independent code (PIC) suitable for use in a shared
23673library, if supported for the target machine.  Such code accesses all
23674constant addresses through a global offset table (GOT)@.  The dynamic
23675loader resolves the GOT entries when the program starts (the dynamic
23676loader is not part of GCC; it is part of the operating system).  If
23677the GOT size for the linked executable exceeds a machine-specific
23678maximum size, you get an error message from the linker indicating that
23679@option{-fpic} does not work; in that case, recompile with @option{-fPIC}
23680instead.  (These maximums are 8k on the SPARC and 32k
23681on the m68k and RS/6000.  The x86 has no such limit.)
23682
23683Position-independent code requires special support, and therefore works
23684only on certain machines.  For the x86, GCC supports PIC for System V
23685but not for the Sun 386i.  Code generated for the IBM RS/6000 is always
23686position-independent.
23687
23688When this flag is set, the macros @code{__pic__} and @code{__PIC__}
23689are defined to 1.
23690
23691@item -fPIC
23692@opindex fPIC
23693If supported for the target machine, emit position-independent code,
23694suitable for dynamic linking and avoiding any limit on the size of the
23695global offset table.  This option makes a difference on the m68k,
23696PowerPC and SPARC@.
23697
23698Position-independent code requires special support, and therefore works
23699only on certain machines.
23700
23701When this flag is set, the macros @code{__pic__} and @code{__PIC__}
23702are defined to 2.
23703
23704@item -fpie
23705@itemx -fPIE
23706@opindex fpie
23707@opindex fPIE
23708These options are similar to @option{-fpic} and @option{-fPIC}, but
23709generated position independent code can be only linked into executables.
23710Usually these options are used when @option{-pie} GCC option is
23711used during linking.
23712
23713@option{-fpie} and @option{-fPIE} both define the macros
23714@code{__pie__} and @code{__PIE__}.  The macros have the value 1
23715for @option{-fpie} and 2 for @option{-fPIE}.
23716
23717@item -fno-jump-tables
23718@opindex fno-jump-tables
23719Do not use jump tables for switch statements even where it would be
23720more efficient than other code generation strategies.  This option is
23721of use in conjunction with @option{-fpic} or @option{-fPIC} for
23722building code that forms part of a dynamic linker and cannot
23723reference the address of a jump table.  On some targets, jump tables
23724do not require a GOT and this option is not needed.
23725
23726@item -ffixed-@var{reg}
23727@opindex ffixed
23728Treat the register named @var{reg} as a fixed register; generated code
23729should never refer to it (except perhaps as a stack pointer, frame
23730pointer or in some other fixed role).
23731
23732@var{reg} must be the name of a register.  The register names accepted
23733are machine-specific and are defined in the @code{REGISTER_NAMES}
23734macro in the machine description macro file.
23735
23736This flag does not have a negative form, because it specifies a
23737three-way choice.
23738
23739@item -fcall-used-@var{reg}
23740@opindex fcall-used
23741Treat the register named @var{reg} as an allocable register that is
23742clobbered by function calls.  It may be allocated for temporaries or
23743variables that do not live across a call.  Functions compiled this way
23744do not save and restore the register @var{reg}.
23745
23746It is an error to use this flag with the frame pointer or stack pointer.
23747Use of this flag for other registers that have fixed pervasive roles in
23748the machine's execution model produces disastrous results.
23749
23750This flag does not have a negative form, because it specifies a
23751three-way choice.
23752
23753@item -fcall-saved-@var{reg}
23754@opindex fcall-saved
23755Treat the register named @var{reg} as an allocable register saved by
23756functions.  It may be allocated even for temporaries or variables that
23757live across a call.  Functions compiled this way save and restore
23758the register @var{reg} if they use it.
23759
23760It is an error to use this flag with the frame pointer or stack pointer.
23761Use of this flag for other registers that have fixed pervasive roles in
23762the machine's execution model produces disastrous results.
23763
23764A different sort of disaster results from the use of this flag for
23765a register in which function values may be returned.
23766
23767This flag does not have a negative form, because it specifies a
23768three-way choice.
23769
23770@item -fpack-struct[=@var{n}]
23771@opindex fpack-struct
23772Without a value specified, pack all structure members together without
23773holes.  When a value is specified (which must be a small power of two), pack
23774structure members according to this value, representing the maximum
23775alignment (that is, objects with default alignment requirements larger than
23776this are output potentially unaligned at the next fitting location.
23777
23778@strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
23779code that is not binary compatible with code generated without that switch.
23780Additionally, it makes the code suboptimal.
23781Use it to conform to a non-default application binary interface.
23782
23783@item -finstrument-functions
23784@opindex finstrument-functions
23785Generate instrumentation calls for entry and exit to functions.  Just
23786after function entry and just before function exit, the following
23787profiling functions are called with the address of the current
23788function and its call site.  (On some platforms,
23789@code{__builtin_return_address} does not work beyond the current
23790function, so the call site information may not be available to the
23791profiling functions otherwise.)
23792
23793@smallexample
23794void __cyg_profile_func_enter (void *this_fn,
23795                               void *call_site);
23796void __cyg_profile_func_exit  (void *this_fn,
23797                               void *call_site);
23798@end smallexample
23799
23800The first argument is the address of the start of the current function,
23801which may be looked up exactly in the symbol table.
23802
23803This instrumentation is also done for functions expanded inline in other
23804functions.  The profiling calls indicate where, conceptually, the
23805inline function is entered and exited.  This means that addressable
23806versions of such functions must be available.  If all your uses of a
23807function are expanded inline, this may mean an additional expansion of
23808code size.  If you use @code{extern inline} in your C code, an
23809addressable version of such functions must be provided.  (This is
23810normally the case anyway, but if you get lucky and the optimizer always
23811expands the functions inline, you might have gotten away without
23812providing static copies.)
23813
23814A function may be given the attribute @code{no_instrument_function}, in
23815which case this instrumentation is not done.  This can be used, for
23816example, for the profiling functions listed above, high-priority
23817interrupt routines, and any functions from which the profiling functions
23818cannot safely be called (perhaps signal handlers, if the profiling
23819routines generate output or allocate memory).
23820
23821@item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
23822@opindex finstrument-functions-exclude-file-list
23823
23824Set the list of functions that are excluded from instrumentation (see
23825the description of @option{-finstrument-functions}).  If the file that
23826contains a function definition matches with one of @var{file}, then
23827that function is not instrumented.  The match is done on substrings:
23828if the @var{file} parameter is a substring of the file name, it is
23829considered to be a match.
23830
23831For example:
23832
23833@smallexample
23834-finstrument-functions-exclude-file-list=/bits/stl,include/sys
23835@end smallexample
23836
23837@noindent
23838excludes any inline function defined in files whose pathnames
23839contain @file{/bits/stl} or @file{include/sys}.
23840
23841If, for some reason, you want to include letter @samp{,} in one of
23842@var{sym}, write @samp{\,}. For example,
23843@option{-finstrument-functions-exclude-file-list='\,\,tmp'}
23844(note the single quote surrounding the option).
23845
23846@item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
23847@opindex finstrument-functions-exclude-function-list
23848
23849This is similar to @option{-finstrument-functions-exclude-file-list},
23850but this option sets the list of function names to be excluded from
23851instrumentation.  The function name to be matched is its user-visible
23852name, such as @code{vector<int> blah(const vector<int> &)}, not the
23853internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}).  The
23854match is done on substrings: if the @var{sym} parameter is a substring
23855of the function name, it is considered to be a match.  For C99 and C++
23856extended identifiers, the function name must be given in UTF-8, not
23857using universal character names.
23858
23859@item -fstack-check
23860@opindex fstack-check
23861Generate code to verify that you do not go beyond the boundary of the
23862stack.  You should specify this flag if you are running in an
23863environment with multiple threads, but you only rarely need to specify it in
23864a single-threaded environment since stack overflow is automatically
23865detected on nearly all systems if there is only one stack.
23866
23867Note that this switch does not actually cause checking to be done; the
23868operating system or the language runtime must do that.  The switch causes
23869generation of code to ensure that they see the stack being extended.
23870
23871You can additionally specify a string parameter: @samp{no} means no
23872checking, @samp{generic} means force the use of old-style checking,
23873@samp{specific} means use the best checking method and is equivalent
23874to bare @option{-fstack-check}.
23875
23876Old-style checking is a generic mechanism that requires no specific
23877target support in the compiler but comes with the following drawbacks:
23878
23879@enumerate
23880@item
23881Modified allocation strategy for large objects: they are always
23882allocated dynamically if their size exceeds a fixed threshold.
23883
23884@item
23885Fixed limit on the size of the static frame of functions: when it is
23886topped by a particular function, stack checking is not reliable and
23887a warning is issued by the compiler.
23888
23889@item
23890Inefficiency: because of both the modified allocation strategy and the
23891generic implementation, code performance is hampered.
23892@end enumerate
23893
23894Note that old-style stack checking is also the fallback method for
23895@samp{specific} if no target support has been added in the compiler.
23896
23897@item -fstack-limit-register=@var{reg}
23898@itemx -fstack-limit-symbol=@var{sym}
23899@itemx -fno-stack-limit
23900@opindex fstack-limit-register
23901@opindex fstack-limit-symbol
23902@opindex fno-stack-limit
23903Generate code to ensure that the stack does not grow beyond a certain value,
23904either the value of a register or the address of a symbol.  If a larger
23905stack is required, a signal is raised at run time.  For most targets,
23906the signal is raised before the stack overruns the boundary, so
23907it is possible to catch the signal without taking special precautions.
23908
23909For instance, if the stack starts at absolute address @samp{0x80000000}
23910and grows downwards, you can use the flags
23911@option{-fstack-limit-symbol=__stack_limit} and
23912@option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
23913of 128KB@.  Note that this may only work with the GNU linker.
23914
23915@item -fsplit-stack
23916@opindex fsplit-stack
23917Generate code to automatically split the stack before it overflows.
23918The resulting program has a discontiguous stack which can only
23919overflow if the program is unable to allocate any more memory.  This
23920is most useful when running threaded programs, as it is no longer
23921necessary to calculate a good stack size to use for each thread.  This
23922is currently only implemented for the x86 targets running
23923GNU/Linux.
23924
23925When code compiled with @option{-fsplit-stack} calls code compiled
23926without @option{-fsplit-stack}, there may not be much stack space
23927available for the latter code to run.  If compiling all code,
23928including library code, with @option{-fsplit-stack} is not an option,
23929then the linker can fix up these calls so that the code compiled
23930without @option{-fsplit-stack} always has a large stack.  Support for
23931this is implemented in the gold linker in GNU binutils release 2.21
23932and later.
23933
23934@item -fleading-underscore
23935@opindex fleading-underscore
23936This option and its counterpart, @option{-fno-leading-underscore}, forcibly
23937change the way C symbols are represented in the object file.  One use
23938is to help link with legacy assembly code.
23939
23940@strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
23941generate code that is not binary compatible with code generated without that
23942switch.  Use it to conform to a non-default application binary interface.
23943Not all targets provide complete support for this switch.
23944
23945@item -ftls-model=@var{model}
23946@opindex ftls-model
23947Alter the thread-local storage model to be used (@pxref{Thread-Local}).
23948The @var{model} argument should be one of @samp{global-dynamic},
23949@samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
23950Note that the choice is subject to optimization: the compiler may use
23951a more efficient model for symbols not visible outside of the translation
23952unit, or if @option{-fpic} is not given on the command line.
23953
23954The default without @option{-fpic} is @samp{initial-exec}; with
23955@option{-fpic} the default is @samp{global-dynamic}.
23956
23957@item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
23958@opindex fvisibility
23959Set the default ELF image symbol visibility to the specified option---all
23960symbols are marked with this unless overridden within the code.
23961Using this feature can very substantially improve linking and
23962load times of shared object libraries, produce more optimized
23963code, provide near-perfect API export and prevent symbol clashes.
23964It is @strong{strongly} recommended that you use this in any shared objects
23965you distribute.
23966
23967Despite the nomenclature, @samp{default} always means public; i.e.,
23968available to be linked against from outside the shared object.
23969@samp{protected} and @samp{internal} are pretty useless in real-world
23970usage so the only other commonly used option is @samp{hidden}.
23971The default if @option{-fvisibility} isn't specified is
23972@samp{default}, i.e., make every symbol public.
23973
23974A good explanation of the benefits offered by ensuring ELF
23975symbols have the correct visibility is given by ``How To Write
23976Shared Libraries'' by Ulrich Drepper (which can be found at
23977@w{@uref{http://www.akkadia.org/drepper/}})---however a superior
23978solution made possible by this option to marking things hidden when
23979the default is public is to make the default hidden and mark things
23980public.  This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
23981and @code{__attribute__ ((visibility("default")))} instead of
23982@code{__declspec(dllexport)} you get almost identical semantics with
23983identical syntax.  This is a great boon to those working with
23984cross-platform projects.
23985
23986For those adding visibility support to existing code, you may find
23987@code{#pragma GCC visibility} of use.  This works by you enclosing
23988the declarations you wish to set visibility for with (for example)
23989@code{#pragma GCC visibility push(hidden)} and
23990@code{#pragma GCC visibility pop}.
23991Bear in mind that symbol visibility should be viewed @strong{as
23992part of the API interface contract} and thus all new code should
23993always specify visibility when it is not the default; i.e., declarations
23994only for use within the local DSO should @strong{always} be marked explicitly
23995as hidden as so to avoid PLT indirection overheads---making this
23996abundantly clear also aids readability and self-documentation of the code.
23997Note that due to ISO C++ specification requirements, @code{operator new} and
23998@code{operator delete} must always be of default visibility.
23999
24000Be aware that headers from outside your project, in particular system
24001headers and headers from any other library you use, may not be
24002expecting to be compiled with visibility other than the default.  You
24003may need to explicitly say @code{#pragma GCC visibility push(default)}
24004before including any such headers.
24005
24006@code{extern} declarations are not affected by @option{-fvisibility}, so
24007a lot of code can be recompiled with @option{-fvisibility=hidden} with
24008no modifications.  However, this means that calls to @code{extern}
24009functions with no explicit visibility use the PLT, so it is more
24010effective to use @code{__attribute ((visibility))} and/or
24011@code{#pragma GCC visibility} to tell the compiler which @code{extern}
24012declarations should be treated as hidden.
24013
24014Note that @option{-fvisibility} does affect C++ vague linkage
24015entities. This means that, for instance, an exception class that is
24016be thrown between DSOs must be explicitly marked with default
24017visibility so that the @samp{type_info} nodes are unified between
24018the DSOs.
24019
24020An overview of these techniques, their benefits and how to use them
24021is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
24022
24023@item -fstrict-volatile-bitfields
24024@opindex fstrict-volatile-bitfields
24025This option should be used if accesses to volatile bit-fields (or other
24026structure fields, although the compiler usually honors those types
24027anyway) should use a single access of the width of the
24028field's type, aligned to a natural alignment if possible.  For
24029example, targets with memory-mapped peripheral registers might require
24030all such accesses to be 16 bits wide; with this flag you can
24031declare all peripheral bit-fields as @code{unsigned short} (assuming short
24032is 16 bits on these targets) to force GCC to use 16-bit accesses
24033instead of, perhaps, a more efficient 32-bit access.
24034
24035If this option is disabled, the compiler uses the most efficient
24036instruction.  In the previous example, that might be a 32-bit load
24037instruction, even though that accesses bytes that do not contain
24038any portion of the bit-field, or memory-mapped registers unrelated to
24039the one being updated.
24040
24041In some cases, such as when the @code{packed} attribute is applied to a
24042structure field, it may not be possible to access the field with a single
24043read or write that is correctly aligned for the target machine.  In this
24044case GCC falls back to generating multiple accesses rather than code that
24045will fault or truncate the result at run time.
24046
24047Note:  Due to restrictions of the C/C++11 memory model, write accesses are
24048not allowed to touch non bit-field members.  It is therefore recommended
24049to define all bits of the field's type as bit-field members.
24050
24051The default value of this option is determined by the application binary
24052interface for the target processor.
24053
24054@item -fsync-libcalls
24055@opindex fsync-libcalls
24056This option controls whether any out-of-line instance of the @code{__sync}
24057family of functions may be used to implement the C++11 @code{__atomic}
24058family of functions.
24059
24060The default value of this option is enabled, thus the only useful form
24061of the option is @option{-fno-sync-libcalls}.  This option is used in
24062the implementation of the @file{libatomic} runtime library.
24063
24064@end table
24065
24066@c man end
24067
24068@node Environment Variables
24069@section Environment Variables Affecting GCC
24070@cindex environment variables
24071
24072@c man begin ENVIRONMENT
24073This section describes several environment variables that affect how GCC
24074operates.  Some of them work by specifying directories or prefixes to use
24075when searching for various kinds of files.  Some are used to specify other
24076aspects of the compilation environment.
24077
24078Note that you can also specify places to search using options such as
24079@option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}).  These
24080take precedence over places specified using environment variables, which
24081in turn take precedence over those specified by the configuration of GCC@.
24082@xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
24083GNU Compiler Collection (GCC) Internals}.
24084
24085@table @env
24086@item LANG
24087@itemx LC_CTYPE
24088@c @itemx LC_COLLATE
24089@itemx LC_MESSAGES
24090@c @itemx LC_MONETARY
24091@c @itemx LC_NUMERIC
24092@c @itemx LC_TIME
24093@itemx LC_ALL
24094@findex LANG
24095@findex LC_CTYPE
24096@c @findex LC_COLLATE
24097@findex LC_MESSAGES
24098@c @findex LC_MONETARY
24099@c @findex LC_NUMERIC
24100@c @findex LC_TIME
24101@findex LC_ALL
24102@cindex locale
24103These environment variables control the way that GCC uses
24104localization information which allows GCC to work with different
24105national conventions.  GCC inspects the locale categories
24106@env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
24107so.  These locale categories can be set to any value supported by your
24108installation.  A typical value is @samp{en_GB.UTF-8} for English in the United
24109Kingdom encoded in UTF-8.
24110
24111The @env{LC_CTYPE} environment variable specifies character
24112classification.  GCC uses it to determine the character boundaries in
24113a string; this is needed for some multibyte encodings that contain quote
24114and escape characters that are otherwise interpreted as a string
24115end or escape.
24116
24117The @env{LC_MESSAGES} environment variable specifies the language to
24118use in diagnostic messages.
24119
24120If the @env{LC_ALL} environment variable is set, it overrides the value
24121of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
24122and @env{LC_MESSAGES} default to the value of the @env{LANG}
24123environment variable.  If none of these variables are set, GCC
24124defaults to traditional C English behavior.
24125
24126@item TMPDIR
24127@findex TMPDIR
24128If @env{TMPDIR} is set, it specifies the directory to use for temporary
24129files.  GCC uses temporary files to hold the output of one stage of
24130compilation which is to be used as input to the next stage: for example,
24131the output of the preprocessor, which is the input to the compiler
24132proper.
24133
24134@item GCC_COMPARE_DEBUG
24135@findex GCC_COMPARE_DEBUG
24136Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
24137@option{-fcompare-debug} to the compiler driver.  See the documentation
24138of this option for more details.
24139
24140@item GCC_EXEC_PREFIX
24141@findex GCC_EXEC_PREFIX
24142If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
24143names of the subprograms executed by the compiler.  No slash is added
24144when this prefix is combined with the name of a subprogram, but you can
24145specify a prefix that ends with a slash if you wish.
24146
24147If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
24148an appropriate prefix to use based on the pathname it is invoked with.
24149
24150If GCC cannot find the subprogram using the specified prefix, it
24151tries looking in the usual places for the subprogram.
24152
24153The default value of @env{GCC_EXEC_PREFIX} is
24154@file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
24155the installed compiler. In many cases @var{prefix} is the value
24156of @code{prefix} when you ran the @file{configure} script.
24157
24158Other prefixes specified with @option{-B} take precedence over this prefix.
24159
24160This prefix is also used for finding files such as @file{crt0.o} that are
24161used for linking.
24162
24163In addition, the prefix is used in an unusual way in finding the
24164directories to search for header files.  For each of the standard
24165directories whose name normally begins with @samp{/usr/local/lib/gcc}
24166(more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
24167replacing that beginning with the specified prefix to produce an
24168alternate directory name.  Thus, with @option{-Bfoo/}, GCC searches
24169@file{foo/bar} just before it searches the standard directory
24170@file{/usr/local/lib/bar}.
24171If a standard directory begins with the configured
24172@var{prefix} then the value of @var{prefix} is replaced by
24173@env{GCC_EXEC_PREFIX} when looking for header files.
24174
24175@item COMPILER_PATH
24176@findex COMPILER_PATH
24177The value of @env{COMPILER_PATH} is a colon-separated list of
24178directories, much like @env{PATH}.  GCC tries the directories thus
24179specified when searching for subprograms, if it can't find the
24180subprograms using @env{GCC_EXEC_PREFIX}.
24181
24182@item LIBRARY_PATH
24183@findex LIBRARY_PATH
24184The value of @env{LIBRARY_PATH} is a colon-separated list of
24185directories, much like @env{PATH}.  When configured as a native compiler,
24186GCC tries the directories thus specified when searching for special
24187linker files, if it can't find them using @env{GCC_EXEC_PREFIX}.  Linking
24188using GCC also uses these directories when searching for ordinary
24189libraries for the @option{-l} option (but directories specified with
24190@option{-L} come first).
24191
24192@item LANG
24193@findex LANG
24194@cindex locale definition
24195This variable is used to pass locale information to the compiler.  One way in
24196which this information is used is to determine the character set to be used
24197when character literals, string literals and comments are parsed in C and C++.
24198When the compiler is configured to allow multibyte characters,
24199the following values for @env{LANG} are recognized:
24200
24201@table @samp
24202@item C-JIS
24203Recognize JIS characters.
24204@item C-SJIS
24205Recognize SJIS characters.
24206@item C-EUCJP
24207Recognize EUCJP characters.
24208@end table
24209
24210If @env{LANG} is not defined, or if it has some other value, then the
24211compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
24212recognize and translate multibyte characters.
24213@end table
24214
24215@noindent
24216Some additional environment variables affect the behavior of the
24217preprocessor.
24218
24219@include cppenv.texi
24220
24221@c man end
24222
24223@node Precompiled Headers
24224@section Using Precompiled Headers
24225@cindex precompiled headers
24226@cindex speed of compilation
24227
24228Often large projects have many header files that are included in every
24229source file.  The time the compiler takes to process these header files
24230over and over again can account for nearly all of the time required to
24231build the project.  To make builds faster, GCC allows you to
24232@dfn{precompile} a header file.
24233
24234To create a precompiled header file, simply compile it as you would any
24235other file, if necessary using the @option{-x} option to make the driver
24236treat it as a C or C++ header file.  You may want to use a
24237tool like @command{make} to keep the precompiled header up-to-date when
24238the headers it contains change.
24239
24240A precompiled header file is searched for when @code{#include} is
24241seen in the compilation.  As it searches for the included file
24242(@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
24243compiler looks for a precompiled header in each directory just before it
24244looks for the include file in that directory.  The name searched for is
24245the name specified in the @code{#include} with @samp{.gch} appended.  If
24246the precompiled header file can't be used, it is ignored.
24247
24248For instance, if you have @code{#include "all.h"}, and you have
24249@file{all.h.gch} in the same directory as @file{all.h}, then the
24250precompiled header file is used if possible, and the original
24251header is used otherwise.
24252
24253Alternatively, you might decide to put the precompiled header file in a
24254directory and use @option{-I} to ensure that directory is searched
24255before (or instead of) the directory containing the original header.
24256Then, if you want to check that the precompiled header file is always
24257used, you can put a file of the same name as the original header in this
24258directory containing an @code{#error} command.
24259
24260This also works with @option{-include}.  So yet another way to use
24261precompiled headers, good for projects not designed with precompiled
24262header files in mind, is to simply take most of the header files used by
24263a project, include them from another header file, precompile that header
24264file, and @option{-include} the precompiled header.  If the header files
24265have guards against multiple inclusion, they are skipped because
24266they've already been included (in the precompiled header).
24267
24268If you need to precompile the same header file for different
24269languages, targets, or compiler options, you can instead make a
24270@emph{directory} named like @file{all.h.gch}, and put each precompiled
24271header in the directory, perhaps using @option{-o}.  It doesn't matter
24272what you call the files in the directory; every precompiled header in
24273the directory is considered.  The first precompiled header
24274encountered in the directory that is valid for this compilation is
24275used; they're searched in no particular order.
24276
24277There are many other possibilities, limited only by your imagination,
24278good sense, and the constraints of your build system.
24279
24280A precompiled header file can be used only when these conditions apply:
24281
24282@itemize
24283@item
24284Only one precompiled header can be used in a particular compilation.
24285
24286@item
24287A precompiled header can't be used once the first C token is seen.  You
24288can have preprocessor directives before a precompiled header; you cannot
24289include a precompiled header from inside another header.
24290
24291@item
24292The precompiled header file must be produced for the same language as
24293the current compilation.  You can't use a C precompiled header for a C++
24294compilation.
24295
24296@item
24297The precompiled header file must have been produced by the same compiler
24298binary as the current compilation is using.
24299
24300@item
24301Any macros defined before the precompiled header is included must
24302either be defined in the same way as when the precompiled header was
24303generated, or must not affect the precompiled header, which usually
24304means that they don't appear in the precompiled header at all.
24305
24306The @option{-D} option is one way to define a macro before a
24307precompiled header is included; using a @code{#define} can also do it.
24308There are also some options that define macros implicitly, like
24309@option{-O} and @option{-Wdeprecated}; the same rule applies to macros
24310defined this way.
24311
24312@item If debugging information is output when using the precompiled
24313header, using @option{-g} or similar, the same kind of debugging information
24314must have been output when building the precompiled header.  However,
24315a precompiled header built using @option{-g} can be used in a compilation
24316when no debugging information is being output.
24317
24318@item The same @option{-m} options must generally be used when building
24319and using the precompiled header.  @xref{Submodel Options},
24320for any cases where this rule is relaxed.
24321
24322@item Each of the following options must be the same when building and using
24323the precompiled header:
24324
24325@gccoptlist{-fexceptions}
24326
24327@item
24328Some other command-line options starting with @option{-f},
24329@option{-p}, or @option{-O} must be defined in the same way as when
24330the precompiled header was generated.  At present, it's not clear
24331which options are safe to change and which are not; the safest choice
24332is to use exactly the same options when generating and using the
24333precompiled header.  The following are known to be safe:
24334
24335@gccoptlist{-fmessage-length=  -fpreprocessed  -fsched-interblock @gol
24336-fsched-spec  -fsched-spec-load  -fsched-spec-load-dangerous @gol
24337-fsched-verbose=@var{number}  -fschedule-insns  -fvisibility= @gol
24338-pedantic-errors}
24339
24340@end itemize
24341
24342For all of these except the last, the compiler automatically
24343ignores the precompiled header if the conditions aren't met.  If you
24344find an option combination that doesn't work and doesn't cause the
24345precompiled header to be ignored, please consider filing a bug report,
24346see @ref{Bugs}.
24347
24348If you do use differing options when generating and using the
24349precompiled header, the actual behavior is a mixture of the
24350behavior for the options.  For instance, if you use @option{-g} to
24351generate the precompiled header but not when using it, you may or may
24352not get debugging information for routines in the precompiled header.
24353