xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/df-core.c (revision 07ece4eabb6d327c320416d49d51617a7c0fb3be)
1 /* Allocation for dataflow support routines.
2    Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3    2008, 2009, 2010 Free Software Foundation, Inc.
4    Originally contributed by Michael P. Hayes
5              (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
6    Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
7              and Kenneth Zadeck (zadeck@naturalbridge.com).
8 
9 This file is part of GCC.
10 
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15 
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
19 for more details.
20 
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3.  If not see
23 <http://www.gnu.org/licenses/>.  */
24 
25 /*
26 OVERVIEW:
27 
28 The files in this collection (df*.c,df.h) provide a general framework
29 for solving dataflow problems.  The global dataflow is performed using
30 a good implementation of iterative dataflow analysis.
31 
32 The file df-problems.c provides problem instance for the most common
33 dataflow problems: reaching defs, upward exposed uses, live variables,
34 uninitialized variables, def-use chains, and use-def chains.  However,
35 the interface allows other dataflow problems to be defined as well.
36 
37 Dataflow analysis is available in most of the rtl backend (the parts
38 between pass_df_initialize and pass_df_finish).  It is quite likely
39 that these boundaries will be expanded in the future.  The only
40 requirement is that there be a correct control flow graph.
41 
42 There are three variations of the live variable problem that are
43 available whenever dataflow is available.  The LR problem finds the
44 areas that can reach a use of a variable, the UR problems finds the
45 areas that can be reached from a definition of a variable.  The LIVE
46 problem finds the intersection of these two areas.
47 
48 There are several optional problems.  These can be enabled when they
49 are needed and disabled when they are not needed.
50 
51 Dataflow problems are generally solved in three layers.  The bottom
52 layer is called scanning where a data structure is built for each rtl
53 insn that describes the set of defs and uses of that insn.  Scanning
54 is generally kept up to date, i.e. as the insns changes, the scanned
55 version of that insn changes also.  There are various mechanisms for
56 making this happen and are described in the INCREMENTAL SCANNING
57 section.
58 
59 In the middle layer, basic blocks are scanned to produce transfer
60 functions which describe the effects of that block on the global
61 dataflow solution.  The transfer functions are only rebuilt if the
62 some instruction within the block has changed.
63 
64 The top layer is the dataflow solution itself.  The dataflow solution
65 is computed by using an efficient iterative solver and the transfer
66 functions.  The dataflow solution must be recomputed whenever the
67 control changes or if one of the transfer function changes.
68 
69 
70 USAGE:
71 
72 Here is an example of using the dataflow routines.
73 
74       df_[chain,live,note,rd]_add_problem (flags);
75 
76       df_set_blocks (blocks);
77 
78       df_analyze ();
79 
80       df_dump (stderr);
81 
82       df_finish_pass (false);
83 
84 DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
85 instance to struct df_problem, to the set of problems solved in this
86 instance of df.  All calls to add a problem for a given instance of df
87 must occur before the first call to DF_ANALYZE.
88 
89 Problems can be dependent on other problems.  For instance, solving
90 def-use or use-def chains is dependent on solving reaching
91 definitions. As long as these dependencies are listed in the problem
92 definition, the order of adding the problems is not material.
93 Otherwise, the problems will be solved in the order of calls to
94 df_add_problem.  Note that it is not necessary to have a problem.  In
95 that case, df will just be used to do the scanning.
96 
97 
98 
99 DF_SET_BLOCKS is an optional call used to define a region of the
100 function on which the analysis will be performed.  The normal case is
101 to analyze the entire function and no call to df_set_blocks is made.
102 DF_SET_BLOCKS only effects the blocks that are effected when computing
103 the transfer functions and final solution.  The insn level information
104 is always kept up to date.
105 
106 When a subset is given, the analysis behaves as if the function only
107 contains those blocks and any edges that occur directly between the
108 blocks in the set.  Care should be taken to call df_set_blocks right
109 before the call to analyze in order to eliminate the possibility that
110 optimizations that reorder blocks invalidate the bitvector.
111 
112 DF_ANALYZE causes all of the defined problems to be (re)solved.  When
113 DF_ANALYZE is completes, the IN and OUT sets for each basic block
114 contain the computer information.  The DF_*_BB_INFO macros can be used
115 to access these bitvectors.  All deferred rescannings are down before
116 the transfer functions are recomputed.
117 
118 DF_DUMP can then be called to dump the information produce to some
119 file.  This calls DF_DUMP_START, to print the information that is not
120 basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
121 for each block to print the basic specific information.  These parts
122 can all be called separately as part of a larger dump function.
123 
124 
125 DF_FINISH_PASS causes df_remove_problem to be called on all of the
126 optional problems.  It also causes any insns whose scanning has been
127 deferred to be rescanned as well as clears all of the changeable flags.
128 Setting the pass manager TODO_df_finish flag causes this function to
129 be run.  However, the pass manager will call df_finish_pass AFTER the
130 pass dumping has been done, so if you want to see the results of the
131 optional problems in the pass dumps, use the TODO flag rather than
132 calling the function yourself.
133 
134 INCREMENTAL SCANNING
135 
136 There are four ways of doing the incremental scanning:
137 
138 1) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
139    df_bb_delete, df_insn_change_bb have been added to most of
140    the low level service functions that maintain the cfg and change
141    rtl.  Calling and of these routines many cause some number of insns
142    to be rescanned.
143 
144    For most modern rtl passes, this is certainly the easiest way to
145    manage rescanning the insns.  This technique also has the advantage
146    that the scanning information is always correct and can be relied
147    upon even after changes have been made to the instructions.  This
148    technique is contra indicated in several cases:
149 
150    a) If def-use chains OR use-def chains (but not both) are built,
151       using this is SIMPLY WRONG.  The problem is that when a ref is
152       deleted that is the target of an edge, there is not enough
153       information to efficiently find the source of the edge and
154       delete the edge.  This leaves a dangling reference that may
155       cause problems.
156 
157    b) If def-use chains AND use-def chains are built, this may
158       produce unexpected results.  The problem is that the incremental
159       scanning of an insn does not know how to repair the chains that
160       point into an insn when the insn changes.  So the incremental
161       scanning just deletes the chains that enter and exit the insn
162       being changed.  The dangling reference issue in (a) is not a
163       problem here, but if the pass is depending on the chains being
164       maintained after insns have been modified, this technique will
165       not do the correct thing.
166 
167    c) If the pass modifies insns several times, this incremental
168       updating may be expensive.
169 
170    d) If the pass modifies all of the insns, as does register
171       allocation, it is simply better to rescan the entire function.
172 
173 2) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
174    df_insn_delete do not immediately change the insn but instead make
175    a note that the insn needs to be rescanned.  The next call to
176    df_analyze, df_finish_pass, or df_process_deferred_rescans will
177    cause all of the pending rescans to be processed.
178 
179    This is the technique of choice if either 1a, 1b, or 1c are issues
180    in the pass.  In the case of 1a or 1b, a call to df_finish_pass
181    (either manually or via TODO_df_finish) should be made before the
182    next call to df_analyze or df_process_deferred_rescans.
183 
184    This mode is also used by a few passes that still rely on note_uses,
185    note_stores and for_each_rtx instead of using the DF data.  This
186    can be said to fall under case 1c.
187 
188    To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
189    (This mode can be cleared by calling df_clear_flags
190    (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
191    be rescanned.
192 
193 3) Total rescanning - In this mode the rescanning is disabled.
194    Only when insns are deleted is the df information associated with
195    it also deleted.  At the end of the pass, a call must be made to
196    df_insn_rescan_all.  This method is used by the register allocator
197    since it generally changes each insn multiple times (once for each ref)
198    and does not need to make use of the updated scanning information.
199 
200 4) Do it yourself - In this mechanism, the pass updates the insns
201    itself using the low level df primitives.  Currently no pass does
202    this, but it has the advantage that it is quite efficient given
203    that the pass generally has exact knowledge of what it is changing.
204 
205 DATA STRUCTURES
206 
207 Scanning produces a `struct df_ref' data structure (ref) is allocated
208 for every register reference (def or use) and this records the insn
209 and bb the ref is found within.  The refs are linked together in
210 chains of uses and defs for each insn and for each register.  Each ref
211 also has a chain field that links all the use refs for a def or all
212 the def refs for a use.  This is used to create use-def or def-use
213 chains.
214 
215 Different optimizations have different needs.  Ultimately, only
216 register allocation and schedulers should be using the bitmaps
217 produced for the live register and uninitialized register problems.
218 The rest of the backend should be upgraded to using and maintaining
219 the linked information such as def use or use def chains.
220 
221 
222 PHILOSOPHY:
223 
224 While incremental bitmaps are not worthwhile to maintain, incremental
225 chains may be perfectly reasonable.  The fastest way to build chains
226 from scratch or after significant modifications is to build reaching
227 definitions (RD) and build the chains from this.
228 
229 However, general algorithms for maintaining use-def or def-use chains
230 are not practical.  The amount of work to recompute the chain any
231 chain after an arbitrary change is large.  However, with a modest
232 amount of work it is generally possible to have the application that
233 uses the chains keep them up to date.  The high level knowledge of
234 what is really happening is essential to crafting efficient
235 incremental algorithms.
236 
237 As for the bit vector problems, there is no interface to give a set of
238 blocks over with to resolve the iteration.  In general, restarting a
239 dataflow iteration is difficult and expensive.  Again, the best way to
240 keep the dataflow information up to data (if this is really what is
241 needed) it to formulate a problem specific solution.
242 
243 There are fine grained calls for creating and deleting references from
244 instructions in df-scan.c.  However, these are not currently connected
245 to the engine that resolves the dataflow equations.
246 
247 
248 DATA STRUCTURES:
249 
250 The basic object is a DF_REF (reference) and this may either be a
251 DEF (definition) or a USE of a register.
252 
253 These are linked into a variety of lists; namely reg-def, reg-use,
254 insn-def, insn-use, def-use, and use-def lists.  For example, the
255 reg-def lists contain all the locations that define a given register
256 while the insn-use lists contain all the locations that use a
257 register.
258 
259 Note that the reg-def and reg-use chains are generally short for
260 pseudos and long for the hard registers.
261 
262 ACCESSING INSNS:
263 
264 1) The df insn information is kept in an array of DF_INSN_INFO objects.
265    The array is indexed by insn uid, and every DF_REF points to the
266    DF_INSN_INFO object of the insn that contains the reference.
267 
268 2) Each insn has three sets of refs, which are linked into one of three
269    lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
270    DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
271    (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
272    DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
273    DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
274    The latter list are the list of references in REG_EQUAL or REG_EQUIV
275    notes.  These macros produce a ref (or NULL), the rest of the list
276    can be obtained by traversal of the NEXT_REF field (accessed by the
277    DF_REF_NEXT_REF macro.)  There is no significance to the ordering of
278    the uses or refs in an instruction.
279 
280 3) Each insn has a logical uid field (LUID) which is stored in the
281    DF_INSN_INFO object for the insn.  The LUID field is accessed by
282    the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
283    When properly set, the LUID is an integer that numbers each insn in
284    the basic block, in order from the start of the block.
285    The numbers are only correct after a call to df_analyze.  They will
286    rot after insns are added deleted or moved round.
287 
288 ACCESSING REFS:
289 
290 There are 4 ways to obtain access to refs:
291 
292 1) References are divided into two categories, REAL and ARTIFICIAL.
293 
294    REAL refs are associated with instructions.
295 
296    ARTIFICIAL refs are associated with basic blocks.  The heads of
297    these lists can be accessed by calling df_get_artificial_defs or
298    df_get_artificial_uses for the particular basic block.
299 
300    Artificial defs and uses occur both at the beginning and ends of blocks.
301 
302      For blocks that area at the destination of eh edges, the
303      artificial uses and defs occur at the beginning.  The defs relate
304      to the registers specified in EH_RETURN_DATA_REGNO and the uses
305      relate to the registers specified in ED_USES.  Logically these
306      defs and uses should really occur along the eh edge, but there is
307      no convenient way to do this.  Artificial edges that occur at the
308      beginning of the block have the DF_REF_AT_TOP flag set.
309 
310      Artificial uses occur at the end of all blocks.  These arise from
311      the hard registers that are always live, such as the stack
312      register and are put there to keep the code from forgetting about
313      them.
314 
315      Artificial defs occur at the end of the entry block.  These arise
316      from registers that are live at entry to the function.
317 
318 2) There are three types of refs: defs, uses and eq_uses.  (Eq_uses are
319    uses that appear inside a REG_EQUAL or REG_EQUIV note.)
320 
321    All of the eq_uses, uses and defs associated with each pseudo or
322    hard register may be linked in a bidirectional chain.  These are
323    called reg-use or reg_def chains.  If the changeable flag
324    DF_EQ_NOTES is set when the chains are built, the eq_uses will be
325    treated like uses.  If it is not set they are ignored.
326 
327    The first use, eq_use or def for a register can be obtained using
328    the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
329    macros.  Subsequent uses for the same regno can be obtained by
330    following the next_reg field of the ref.  The number of elements in
331    each of the chains can be found by using the DF_REG_USE_COUNT,
332    DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
333 
334    In previous versions of this code, these chains were ordered.  It
335    has not been practical to continue this practice.
336 
337 3) If def-use or use-def chains are built, these can be traversed to
338    get to other refs.  If the flag DF_EQ_NOTES has been set, the chains
339    include the eq_uses.  Otherwise these are ignored when building the
340    chains.
341 
342 4) An array of all of the uses (and an array of all of the defs) can
343    be built.  These arrays are indexed by the value in the id
344    structure.  These arrays are only lazily kept up to date, and that
345    process can be expensive.  To have these arrays built, call
346    df_reorganize_defs or df_reorganize_uses.  If the flag DF_EQ_NOTES
347    has been set the array will contain the eq_uses.  Otherwise these
348    are ignored when building the array and assigning the ids.  Note
349    that the values in the id field of a ref may change across calls to
350    df_analyze or df_reorganize_defs or df_reorganize_uses.
351 
352    If the only use of this array is to find all of the refs, it is
353    better to traverse all of the registers and then traverse all of
354    reg-use or reg-def chains.
355 
356 NOTES:
357 
358 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
359 both a use and a def.  These are both marked read/write to show that they
360 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
361 will generate a use of reg 42 followed by a def of reg 42 (both marked
362 read/write).  Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
363 generates a use of reg 41 then a def of reg 41 (both marked read/write),
364 even though reg 41 is decremented before it is used for the memory
365 address in this second example.
366 
367 A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
368 for which the number of word_mode units covered by the outer mode is
369 smaller than that covered by the inner mode, invokes a read-modify-write
370 operation.  We generate both a use and a def and again mark them
371 read/write.
372 
373 Paradoxical subreg writes do not leave a trace of the old content, so they
374 are write-only operations.
375 */
376 
377 
378 #include "config.h"
379 #include "system.h"
380 #include "coretypes.h"
381 #include "tm.h"
382 #include "rtl.h"
383 #include "tm_p.h"
384 #include "insn-config.h"
385 #include "recog.h"
386 #include "function.h"
387 #include "regs.h"
388 #include "output.h"
389 #include "alloc-pool.h"
390 #include "flags.h"
391 #include "hard-reg-set.h"
392 #include "basic-block.h"
393 #include "sbitmap.h"
394 #include "bitmap.h"
395 #include "timevar.h"
396 #include "df.h"
397 #include "tree-pass.h"
398 #include "params.h"
399 
400 static void *df_get_bb_info (struct dataflow *, unsigned int);
401 static void df_set_bb_info (struct dataflow *, unsigned int, void *);
402 #ifdef DF_DEBUG_CFG
403 static void df_set_clean_cfg (void);
404 #endif
405 
406 /* An obstack for bitmap not related to specific dataflow problems.
407    This obstack should e.g. be used for bitmaps with a short life time
408    such as temporary bitmaps.  */
409 
410 bitmap_obstack df_bitmap_obstack;
411 
412 
413 /*----------------------------------------------------------------------------
414   Functions to create, destroy and manipulate an instance of df.
415 ----------------------------------------------------------------------------*/
416 
417 struct df *df;
418 
419 /* Add PROBLEM (and any dependent problems) to the DF instance.  */
420 
421 void
422 df_add_problem (struct df_problem *problem)
423 {
424   struct dataflow *dflow;
425   int i;
426 
427   /* First try to add the dependent problem. */
428   if (problem->dependent_problem)
429     df_add_problem (problem->dependent_problem);
430 
431   /* Check to see if this problem has already been defined.  If it
432      has, just return that instance, if not, add it to the end of the
433      vector.  */
434   dflow = df->problems_by_index[problem->id];
435   if (dflow)
436     return;
437 
438   /* Make a new one and add it to the end.  */
439   dflow = XCNEW (struct dataflow);
440   dflow->problem = problem;
441   dflow->computed = false;
442   dflow->solutions_dirty = true;
443   df->problems_by_index[dflow->problem->id] = dflow;
444 
445   /* Keep the defined problems ordered by index.  This solves the
446      problem that RI will use the information from UREC if UREC has
447      been defined, or from LIVE if LIVE is defined and otherwise LR.
448      However for this to work, the computation of RI must be pushed
449      after which ever of those problems is defined, but we do not
450      require any of those except for LR to have actually been
451      defined.  */
452   df->num_problems_defined++;
453   for (i = df->num_problems_defined - 2; i >= 0; i--)
454     {
455       if (problem->id < df->problems_in_order[i]->problem->id)
456 	df->problems_in_order[i+1] = df->problems_in_order[i];
457       else
458 	{
459 	  df->problems_in_order[i+1] = dflow;
460 	  return;
461 	}
462     }
463   df->problems_in_order[0] = dflow;
464 }
465 
466 
467 /* Set the MASK flags in the DFLOW problem.  The old flags are
468    returned.  If a flag is not allowed to be changed this will fail if
469    checking is enabled.  */
470 int
471 df_set_flags (int changeable_flags)
472 {
473   int old_flags = df->changeable_flags;
474   df->changeable_flags |= changeable_flags;
475   return old_flags;
476 }
477 
478 
479 /* Clear the MASK flags in the DFLOW problem.  The old flags are
480    returned.  If a flag is not allowed to be changed this will fail if
481    checking is enabled.  */
482 int
483 df_clear_flags (int changeable_flags)
484 {
485   int old_flags = df->changeable_flags;
486   df->changeable_flags &= ~changeable_flags;
487   return old_flags;
488 }
489 
490 
491 /* Set the blocks that are to be considered for analysis.  If this is
492    not called or is called with null, the entire function in
493    analyzed.  */
494 
495 void
496 df_set_blocks (bitmap blocks)
497 {
498   if (blocks)
499     {
500       if (dump_file)
501 	bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
502       if (df->blocks_to_analyze)
503 	{
504 	  /* This block is called to change the focus from one subset
505 	     to another.  */
506 	  int p;
507 	  bitmap diff = BITMAP_ALLOC (&df_bitmap_obstack);
508 	  bitmap_and_compl (diff, df->blocks_to_analyze, blocks);
509 	  for (p = 0; p < df->num_problems_defined; p++)
510 	    {
511 	      struct dataflow *dflow = df->problems_in_order[p];
512 	      if (dflow->optional_p && dflow->problem->reset_fun)
513 		dflow->problem->reset_fun (df->blocks_to_analyze);
514 	      else if (dflow->problem->free_blocks_on_set_blocks)
515 		{
516 		  bitmap_iterator bi;
517 		  unsigned int bb_index;
518 
519 		  EXECUTE_IF_SET_IN_BITMAP (diff, 0, bb_index, bi)
520 		    {
521 		      basic_block bb = BASIC_BLOCK (bb_index);
522 		      if (bb)
523 			{
524 			  void *bb_info = df_get_bb_info (dflow, bb_index);
525 			  if (bb_info)
526 			    {
527 			      dflow->problem->free_bb_fun (bb, bb_info);
528 			      df_set_bb_info (dflow, bb_index, NULL);
529 			    }
530 			}
531 		    }
532 		}
533 	    }
534 
535 	  BITMAP_FREE (diff);
536 	}
537       else
538 	{
539 	  /* This block of code is executed to change the focus from
540 	     the entire function to a subset.  */
541 	  bitmap blocks_to_reset = NULL;
542 	  int p;
543 	  for (p = 0; p < df->num_problems_defined; p++)
544 	    {
545 	      struct dataflow *dflow = df->problems_in_order[p];
546 	      if (dflow->optional_p && dflow->problem->reset_fun)
547 		{
548 		  if (!blocks_to_reset)
549 		    {
550 		      basic_block bb;
551 		      blocks_to_reset =
552 			BITMAP_ALLOC (&df_bitmap_obstack);
553 		      FOR_ALL_BB(bb)
554 			{
555 			  bitmap_set_bit (blocks_to_reset, bb->index);
556 			}
557 		    }
558 		  dflow->problem->reset_fun (blocks_to_reset);
559 		}
560 	    }
561 	  if (blocks_to_reset)
562 	    BITMAP_FREE (blocks_to_reset);
563 
564 	  df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
565 	}
566       bitmap_copy (df->blocks_to_analyze, blocks);
567       df->analyze_subset = true;
568     }
569   else
570     {
571       /* This block is executed to reset the focus to the entire
572 	 function.  */
573       if (dump_file)
574 	fprintf (dump_file, "clearing blocks_to_analyze\n");
575       if (df->blocks_to_analyze)
576 	{
577 	  BITMAP_FREE (df->blocks_to_analyze);
578 	  df->blocks_to_analyze = NULL;
579 	}
580       df->analyze_subset = false;
581     }
582 
583   /* Setting the blocks causes the refs to be unorganized since only
584      the refs in the blocks are seen.  */
585   df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
586   df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
587   df_mark_solutions_dirty ();
588 }
589 
590 
591 /* Delete a DFLOW problem (and any problems that depend on this
592    problem).  */
593 
594 void
595 df_remove_problem (struct dataflow *dflow)
596 {
597   struct df_problem *problem;
598   int i;
599 
600   if (!dflow)
601     return;
602 
603   problem = dflow->problem;
604   gcc_assert (problem->remove_problem_fun);
605 
606   /* Delete any problems that depended on this problem first.  */
607   for (i = 0; i < df->num_problems_defined; i++)
608     if (df->problems_in_order[i]->problem->dependent_problem == problem)
609       df_remove_problem (df->problems_in_order[i]);
610 
611   /* Now remove this problem.  */
612   for (i = 0; i < df->num_problems_defined; i++)
613     if (df->problems_in_order[i] == dflow)
614       {
615 	int j;
616 	for (j = i + 1; j < df->num_problems_defined; j++)
617 	  df->problems_in_order[j-1] = df->problems_in_order[j];
618 	df->problems_in_order[j-1] = NULL;
619 	df->num_problems_defined--;
620 	break;
621       }
622 
623   (problem->remove_problem_fun) ();
624   df->problems_by_index[problem->id] = NULL;
625 }
626 
627 
628 /* Remove all of the problems that are not permanent.  Scanning, LR
629    and (at -O2 or higher) LIVE are permanent, the rest are removable.
630    Also clear all of the changeable_flags.  */
631 
632 void
633 df_finish_pass (bool verify ATTRIBUTE_UNUSED)
634 {
635   int i;
636   int removed = 0;
637 
638 #ifdef ENABLE_DF_CHECKING
639   int saved_flags;
640 #endif
641 
642   if (!df)
643     return;
644 
645   df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
646   df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
647 
648 #ifdef ENABLE_DF_CHECKING
649   saved_flags = df->changeable_flags;
650 #endif
651 
652   for (i = 0; i < df->num_problems_defined; i++)
653     {
654       struct dataflow *dflow = df->problems_in_order[i];
655       struct df_problem *problem = dflow->problem;
656 
657       if (dflow->optional_p)
658 	{
659 	  gcc_assert (problem->remove_problem_fun);
660 	  (problem->remove_problem_fun) ();
661 	  df->problems_in_order[i] = NULL;
662 	  df->problems_by_index[problem->id] = NULL;
663 	  removed++;
664 	}
665     }
666   df->num_problems_defined -= removed;
667 
668   /* Clear all of the flags.  */
669   df->changeable_flags = 0;
670   df_process_deferred_rescans ();
671 
672   /* Set the focus back to the whole function.  */
673   if (df->blocks_to_analyze)
674     {
675       BITMAP_FREE (df->blocks_to_analyze);
676       df->blocks_to_analyze = NULL;
677       df_mark_solutions_dirty ();
678       df->analyze_subset = false;
679     }
680 
681 #ifdef ENABLE_DF_CHECKING
682   /* Verification will fail in DF_NO_INSN_RESCAN.  */
683   if (!(saved_flags & DF_NO_INSN_RESCAN))
684     {
685       df_lr_verify_transfer_functions ();
686       if (df_live)
687 	df_live_verify_transfer_functions ();
688     }
689 
690 #ifdef DF_DEBUG_CFG
691   df_set_clean_cfg ();
692 #endif
693 #endif
694 
695 #ifdef ENABLE_CHECKING
696   if (verify)
697     df->changeable_flags |= DF_VERIFY_SCHEDULED;
698 #endif
699 }
700 
701 
702 /* Set up the dataflow instance for the entire back end.  */
703 
704 static unsigned int
705 rest_of_handle_df_initialize (void)
706 {
707   gcc_assert (!df);
708   df = XCNEW (struct df);
709   df->changeable_flags = 0;
710 
711   bitmap_obstack_initialize (&df_bitmap_obstack);
712 
713   /* Set this to a conservative value.  Stack_ptr_mod will compute it
714      correctly later.  */
715   current_function_sp_is_unchanging = 0;
716 
717   df_scan_add_problem ();
718   df_scan_alloc (NULL);
719 
720   /* These three problems are permanent.  */
721   df_lr_add_problem ();
722   if (optimize > 1)
723     df_live_add_problem ();
724 
725   df->postorder = XNEWVEC (int, last_basic_block);
726   df->postorder_inverted = XNEWVEC (int, last_basic_block);
727   df->n_blocks = post_order_compute (df->postorder, true, true);
728   df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
729   gcc_assert (df->n_blocks == df->n_blocks_inverted);
730 
731   df->hard_regs_live_count = XNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
732   memset (df->hard_regs_live_count, 0,
733 	  sizeof (unsigned int) * FIRST_PSEUDO_REGISTER);
734 
735   df_hard_reg_init ();
736   /* After reload, some ports add certain bits to regs_ever_live so
737      this cannot be reset.  */
738   df_compute_regs_ever_live (true);
739   df_scan_blocks ();
740   df_compute_regs_ever_live (false);
741   return 0;
742 }
743 
744 
745 static bool
746 gate_opt (void)
747 {
748   return optimize > 0;
749 }
750 
751 
752 struct rtl_opt_pass pass_df_initialize_opt =
753 {
754  {
755   RTL_PASS,
756   "dfinit",                             /* name */
757   gate_opt,                             /* gate */
758   rest_of_handle_df_initialize,         /* execute */
759   NULL,                                 /* sub */
760   NULL,                                 /* next */
761   0,                                    /* static_pass_number */
762   TV_NONE,                              /* tv_id */
763   0,                                    /* properties_required */
764   0,                                    /* properties_provided */
765   0,                                    /* properties_destroyed */
766   0,                                    /* todo_flags_start */
767   0                                     /* todo_flags_finish */
768  }
769 };
770 
771 
772 static bool
773 gate_no_opt (void)
774 {
775   return optimize == 0;
776 }
777 
778 
779 struct rtl_opt_pass pass_df_initialize_no_opt =
780 {
781  {
782   RTL_PASS,
783   "no-opt dfinit",                      /* name */
784   gate_no_opt,                          /* gate */
785   rest_of_handle_df_initialize,         /* execute */
786   NULL,                                 /* sub */
787   NULL,                                 /* next */
788   0,                                    /* static_pass_number */
789   TV_NONE,                              /* tv_id */
790   0,                                    /* properties_required */
791   0,                                    /* properties_provided */
792   0,                                    /* properties_destroyed */
793   0,                                    /* todo_flags_start */
794   0                                     /* todo_flags_finish */
795  }
796 };
797 
798 
799 /* Free all the dataflow info and the DF structure.  This should be
800    called from the df_finish macro which also NULLs the parm.  */
801 
802 static unsigned int
803 rest_of_handle_df_finish (void)
804 {
805   int i;
806 
807   gcc_assert (df);
808 
809   for (i = 0; i < df->num_problems_defined; i++)
810     {
811       struct dataflow *dflow = df->problems_in_order[i];
812       dflow->problem->free_fun ();
813     }
814 
815   if (df->postorder)
816     free (df->postorder);
817   if (df->postorder_inverted)
818     free (df->postorder_inverted);
819   free (df->hard_regs_live_count);
820   free (df);
821   df = NULL;
822 
823   bitmap_obstack_release (&df_bitmap_obstack);
824   return 0;
825 }
826 
827 
828 struct rtl_opt_pass pass_df_finish =
829 {
830  {
831   RTL_PASS,
832   "dfinish",                            /* name */
833   NULL,					/* gate */
834   rest_of_handle_df_finish,             /* execute */
835   NULL,                                 /* sub */
836   NULL,                                 /* next */
837   0,                                    /* static_pass_number */
838   TV_NONE,                              /* tv_id */
839   0,                                    /* properties_required */
840   0,                                    /* properties_provided */
841   0,                                    /* properties_destroyed */
842   0,                                    /* todo_flags_start */
843   0                                     /* todo_flags_finish */
844  }
845 };
846 
847 
848 
849 
850 
851 /*----------------------------------------------------------------------------
852    The general data flow analysis engine.
853 ----------------------------------------------------------------------------*/
854 
855 
856 /* Helper function for df_worklist_dataflow.
857    Propagate the dataflow forward.
858    Given a BB_INDEX, do the dataflow propagation
859    and set bits on for successors in PENDING
860    if the out set of the dataflow has changed. */
861 
862 static void
863 df_worklist_propagate_forward (struct dataflow *dataflow,
864                                unsigned bb_index,
865                                unsigned *bbindex_to_postorder,
866                                bitmap pending,
867                                sbitmap considered)
868 {
869   edge e;
870   edge_iterator ei;
871   basic_block bb = BASIC_BLOCK (bb_index);
872 
873   /*  Calculate <conf_op> of incoming edges.  */
874   if (EDGE_COUNT (bb->preds) > 0)
875     FOR_EACH_EDGE (e, ei, bb->preds)
876       {
877         if (TEST_BIT (considered, e->src->index))
878           dataflow->problem->con_fun_n (e);
879       }
880   else if (dataflow->problem->con_fun_0)
881     dataflow->problem->con_fun_0 (bb);
882 
883   if (dataflow->problem->trans_fun (bb_index))
884     {
885       /* The out set of this block has changed.
886          Propagate to the outgoing blocks.  */
887       FOR_EACH_EDGE (e, ei, bb->succs)
888         {
889           unsigned ob_index = e->dest->index;
890 
891           if (TEST_BIT (considered, ob_index))
892             bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
893         }
894     }
895 }
896 
897 
898 /* Helper function for df_worklist_dataflow.
899    Propagate the dataflow backward.  */
900 
901 static void
902 df_worklist_propagate_backward (struct dataflow *dataflow,
903                                 unsigned bb_index,
904                                 unsigned *bbindex_to_postorder,
905                                 bitmap pending,
906                                 sbitmap considered)
907 {
908   edge e;
909   edge_iterator ei;
910   basic_block bb = BASIC_BLOCK (bb_index);
911 
912   /*  Calculate <conf_op> of incoming edges.  */
913   if (EDGE_COUNT (bb->succs) > 0)
914     FOR_EACH_EDGE (e, ei, bb->succs)
915       {
916         if (TEST_BIT (considered, e->dest->index))
917           dataflow->problem->con_fun_n (e);
918       }
919   else if (dataflow->problem->con_fun_0)
920     dataflow->problem->con_fun_0 (bb);
921 
922   if (dataflow->problem->trans_fun (bb_index))
923     {
924       /* The out set of this block has changed.
925          Propagate to the outgoing blocks.  */
926       FOR_EACH_EDGE (e, ei, bb->preds)
927         {
928           unsigned ob_index = e->src->index;
929 
930           if (TEST_BIT (considered, ob_index))
931             bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
932         }
933     }
934 }
935 
936 
937 
938 /* This will free "pending". */
939 
940 static void
941 df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
942 			  	  bitmap pending,
943                                   sbitmap considered,
944                                   int *blocks_in_postorder,
945 				  unsigned *bbindex_to_postorder)
946 {
947   enum df_flow_dir dir = dataflow->problem->dir;
948   int dcount = 0;
949   bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
950 
951   /* Double-queueing. Worklist is for the current iteration,
952      and pending is for the next. */
953   while (!bitmap_empty_p (pending))
954     {
955       /* Swap pending and worklist. */
956       bitmap temp = worklist;
957       worklist = pending;
958       pending = temp;
959 
960       do
961 	{
962 	  int index;
963 	  unsigned bb_index;
964 	  dcount++;
965 
966 	  index = bitmap_first_set_bit (worklist);
967 	  bitmap_clear_bit (worklist, index);
968 
969 	  bb_index = blocks_in_postorder[index];
970 
971 	  if (dir == DF_FORWARD)
972 	    df_worklist_propagate_forward (dataflow, bb_index,
973 					   bbindex_to_postorder,
974 					   pending, considered);
975 	  else
976 	    df_worklist_propagate_backward (dataflow, bb_index,
977 					    bbindex_to_postorder,
978 					    pending, considered);
979 	}
980       while (!bitmap_empty_p (worklist));
981     }
982 
983   BITMAP_FREE (worklist);
984   BITMAP_FREE (pending);
985 
986   /* Dump statistics. */
987   if (dump_file)
988     fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
989 	     "n_basic_blocks %d n_edges %d"
990 	     " count %d (%5.2g)\n",
991 	     n_basic_blocks, n_edges,
992 	     dcount, dcount / (float)n_basic_blocks);
993 }
994 
995 /* Worklist-based dataflow solver. It uses sbitmap as a worklist,
996    with "n"-th bit representing the n-th block in the reverse-postorder order.
997    The solver is a double-queue algorithm similar to the "double stack" solver
998    from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
999    The only significant difference is that the worklist in this implementation
1000    is always sorted in RPO of the CFG visiting direction.  */
1001 
1002 void
1003 df_worklist_dataflow (struct dataflow *dataflow,
1004                       bitmap blocks_to_consider,
1005                       int *blocks_in_postorder,
1006                       int n_blocks)
1007 {
1008   bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
1009   sbitmap considered = sbitmap_alloc (last_basic_block);
1010   bitmap_iterator bi;
1011   unsigned int *bbindex_to_postorder;
1012   int i;
1013   unsigned int index;
1014   enum df_flow_dir dir = dataflow->problem->dir;
1015 
1016   gcc_assert (dir != DF_NONE);
1017 
1018   /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder.  */
1019   bbindex_to_postorder =
1020     (unsigned int *)xmalloc (last_basic_block * sizeof (unsigned int));
1021 
1022   /* Initialize the array to an out-of-bound value.  */
1023   for (i = 0; i < last_basic_block; i++)
1024     bbindex_to_postorder[i] = last_basic_block;
1025 
1026   /* Initialize the considered map.  */
1027   sbitmap_zero (considered);
1028   EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
1029     {
1030       SET_BIT (considered, index);
1031     }
1032 
1033   /* Initialize the mapping of block index to postorder.  */
1034   for (i = 0; i < n_blocks; i++)
1035     {
1036       bbindex_to_postorder[blocks_in_postorder[i]] = i;
1037       /* Add all blocks to the worklist.  */
1038       bitmap_set_bit (pending, i);
1039     }
1040 
1041   /* Initialize the problem. */
1042   if (dataflow->problem->init_fun)
1043     dataflow->problem->init_fun (blocks_to_consider);
1044 
1045   /* Solve it.  */
1046   df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1047 				    blocks_in_postorder,
1048 				    bbindex_to_postorder);
1049 
1050   sbitmap_free (considered);
1051   free (bbindex_to_postorder);
1052 }
1053 
1054 
1055 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1056    the order of the remaining entries.  Returns the length of the resulting
1057    list.  */
1058 
1059 static unsigned
1060 df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1061 {
1062   unsigned act, last;
1063 
1064   for (act = 0, last = 0; act < len; act++)
1065     if (bitmap_bit_p (blocks, list[act]))
1066       list[last++] = list[act];
1067 
1068   return last;
1069 }
1070 
1071 
1072 /* Execute dataflow analysis on a single dataflow problem.
1073 
1074    BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1075    examined or will be computed.  For calls from DF_ANALYZE, this is
1076    the set of blocks that has been passed to DF_SET_BLOCKS.
1077 */
1078 
1079 void
1080 df_analyze_problem (struct dataflow *dflow,
1081 		    bitmap blocks_to_consider,
1082 		    int *postorder, int n_blocks)
1083 {
1084   timevar_push (dflow->problem->tv_id);
1085 
1086 #ifdef ENABLE_DF_CHECKING
1087   if (dflow->problem->verify_start_fun)
1088     dflow->problem->verify_start_fun ();
1089 #endif
1090 
1091   /* (Re)Allocate the datastructures necessary to solve the problem.  */
1092   if (dflow->problem->alloc_fun)
1093     dflow->problem->alloc_fun (blocks_to_consider);
1094 
1095   /* Set up the problem and compute the local information.  */
1096   if (dflow->problem->local_compute_fun)
1097     dflow->problem->local_compute_fun (blocks_to_consider);
1098 
1099   /* Solve the equations.  */
1100   if (dflow->problem->dataflow_fun)
1101     dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1102 				  postorder, n_blocks);
1103 
1104   /* Massage the solution.  */
1105   if (dflow->problem->finalize_fun)
1106     dflow->problem->finalize_fun (blocks_to_consider);
1107 
1108 #ifdef ENABLE_DF_CHECKING
1109   if (dflow->problem->verify_end_fun)
1110     dflow->problem->verify_end_fun ();
1111 #endif
1112 
1113   timevar_pop (dflow->problem->tv_id);
1114 
1115   dflow->computed = true;
1116 }
1117 
1118 
1119 /* Analyze dataflow info for the basic blocks specified by the bitmap
1120    BLOCKS, or for the whole CFG if BLOCKS is zero.  */
1121 
1122 void
1123 df_analyze (void)
1124 {
1125   bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1126   bool everything;
1127   int i;
1128 
1129   if (df->postorder)
1130     free (df->postorder);
1131   if (df->postorder_inverted)
1132     free (df->postorder_inverted);
1133   df->postorder = XNEWVEC (int, last_basic_block);
1134   df->postorder_inverted = XNEWVEC (int, last_basic_block);
1135   df->n_blocks = post_order_compute (df->postorder, true, true);
1136   df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
1137 
1138   /* These should be the same.  */
1139   gcc_assert (df->n_blocks == df->n_blocks_inverted);
1140 
1141   /* We need to do this before the df_verify_all because this is
1142      not kept incrementally up to date.  */
1143   df_compute_regs_ever_live (false);
1144   df_process_deferred_rescans ();
1145 
1146   if (dump_file)
1147     fprintf (dump_file, "df_analyze called\n");
1148 
1149 #ifndef ENABLE_DF_CHECKING
1150   if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1151 #endif
1152     df_verify ();
1153 
1154   for (i = 0; i < df->n_blocks; i++)
1155     bitmap_set_bit (current_all_blocks, df->postorder[i]);
1156 
1157 #ifdef ENABLE_CHECKING
1158   /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1159      the ENTRY block.  */
1160   for (i = 0; i < df->n_blocks_inverted; i++)
1161     gcc_assert (bitmap_bit_p (current_all_blocks, df->postorder_inverted[i]));
1162 #endif
1163 
1164   /* Make sure that we have pruned any unreachable blocks from these
1165      sets.  */
1166   if (df->analyze_subset)
1167     {
1168       everything = false;
1169       bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
1170       df->n_blocks = df_prune_to_subcfg (df->postorder,
1171 					 df->n_blocks, df->blocks_to_analyze);
1172       df->n_blocks_inverted = df_prune_to_subcfg (df->postorder_inverted,
1173 			                          df->n_blocks_inverted,
1174                                                   df->blocks_to_analyze);
1175       BITMAP_FREE (current_all_blocks);
1176     }
1177   else
1178     {
1179       everything = true;
1180       df->blocks_to_analyze = current_all_blocks;
1181       current_all_blocks = NULL;
1182     }
1183 
1184   /* Skip over the DF_SCAN problem. */
1185   for (i = 1; i < df->num_problems_defined; i++)
1186     {
1187       struct dataflow *dflow = df->problems_in_order[i];
1188       if (dflow->solutions_dirty)
1189         {
1190           if (dflow->problem->dir == DF_FORWARD)
1191             df_analyze_problem (dflow,
1192                                 df->blocks_to_analyze,
1193                                 df->postorder_inverted,
1194                                 df->n_blocks_inverted);
1195           else
1196             df_analyze_problem (dflow,
1197                                 df->blocks_to_analyze,
1198                                 df->postorder,
1199                                 df->n_blocks);
1200         }
1201     }
1202 
1203   if (everything)
1204     {
1205       BITMAP_FREE (df->blocks_to_analyze);
1206       df->blocks_to_analyze = NULL;
1207     }
1208 
1209 #ifdef DF_DEBUG_CFG
1210   df_set_clean_cfg ();
1211 #endif
1212 }
1213 
1214 
1215 /* Return the number of basic blocks from the last call to df_analyze.  */
1216 
1217 int
1218 df_get_n_blocks (enum df_flow_dir dir)
1219 {
1220   gcc_assert (dir != DF_NONE);
1221 
1222   if (dir == DF_FORWARD)
1223     {
1224       gcc_assert (df->postorder_inverted);
1225       return df->n_blocks_inverted;
1226     }
1227 
1228   gcc_assert (df->postorder);
1229   return df->n_blocks;
1230 }
1231 
1232 
1233 /* Return a pointer to the array of basic blocks in the reverse postorder.
1234    Depending on the direction of the dataflow problem,
1235    it returns either the usual reverse postorder array
1236    or the reverse postorder of inverted traversal. */
1237 int *
1238 df_get_postorder (enum df_flow_dir dir)
1239 {
1240   gcc_assert (dir != DF_NONE);
1241 
1242   if (dir == DF_FORWARD)
1243     {
1244       gcc_assert (df->postorder_inverted);
1245       return df->postorder_inverted;
1246     }
1247   gcc_assert (df->postorder);
1248   return df->postorder;
1249 }
1250 
1251 static struct df_problem user_problem;
1252 static struct dataflow user_dflow;
1253 
1254 /* Interface for calling iterative dataflow with user defined
1255    confluence and transfer functions.  All that is necessary is to
1256    supply DIR, a direction, CONF_FUN_0, a confluence function for
1257    blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1258    confluence function, TRANS_FUN, the basic block transfer function,
1259    and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1260    postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1261 
1262 void
1263 df_simple_dataflow (enum df_flow_dir dir,
1264 		    df_init_function init_fun,
1265 		    df_confluence_function_0 con_fun_0,
1266 		    df_confluence_function_n con_fun_n,
1267 		    df_transfer_function trans_fun,
1268 		    bitmap blocks, int * postorder, int n_blocks)
1269 {
1270   memset (&user_problem, 0, sizeof (struct df_problem));
1271   user_problem.dir = dir;
1272   user_problem.init_fun = init_fun;
1273   user_problem.con_fun_0 = con_fun_0;
1274   user_problem.con_fun_n = con_fun_n;
1275   user_problem.trans_fun = trans_fun;
1276   user_dflow.problem = &user_problem;
1277   df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1278 }
1279 
1280 
1281 
1282 /*----------------------------------------------------------------------------
1283    Functions to support limited incremental change.
1284 ----------------------------------------------------------------------------*/
1285 
1286 
1287 /* Get basic block info.  */
1288 
1289 static void *
1290 df_get_bb_info (struct dataflow *dflow, unsigned int index)
1291 {
1292   if (dflow->block_info == NULL)
1293     return NULL;
1294   if (index >= dflow->block_info_size)
1295     return NULL;
1296   return (struct df_scan_bb_info *) dflow->block_info[index];
1297 }
1298 
1299 
1300 /* Set basic block info.  */
1301 
1302 static void
1303 df_set_bb_info (struct dataflow *dflow, unsigned int index,
1304 		void *bb_info)
1305 {
1306   gcc_assert (dflow->block_info);
1307   dflow->block_info[index] = bb_info;
1308 }
1309 
1310 
1311 /* Mark the solutions as being out of date.  */
1312 
1313 void
1314 df_mark_solutions_dirty (void)
1315 {
1316   if (df)
1317     {
1318       int p;
1319       for (p = 1; p < df->num_problems_defined; p++)
1320 	df->problems_in_order[p]->solutions_dirty = true;
1321     }
1322 }
1323 
1324 
1325 /* Return true if BB needs it's transfer functions recomputed.  */
1326 
1327 bool
1328 df_get_bb_dirty (basic_block bb)
1329 {
1330   if (df && df_live)
1331     return bitmap_bit_p (df_live->out_of_date_transfer_functions, bb->index);
1332   else
1333     return false;
1334 }
1335 
1336 
1337 /* Mark BB as needing it's transfer functions as being out of
1338    date.  */
1339 
1340 void
1341 df_set_bb_dirty (basic_block bb)
1342 {
1343   if (df)
1344     {
1345       int p;
1346       for (p = 1; p < df->num_problems_defined; p++)
1347 	{
1348 	  struct dataflow *dflow = df->problems_in_order[p];
1349 	  if (dflow->out_of_date_transfer_functions)
1350 	    bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1351 	}
1352       df_mark_solutions_dirty ();
1353     }
1354 }
1355 
1356 
1357 /* Mark BB as needing it's transfer functions as being out of
1358    date, except for LR problem.  Used when analyzing DEBUG_INSNs,
1359    as LR problem can trigger DCE, and DEBUG_INSNs shouldn't ever
1360    shorten or enlarge lifetime of regs.  */
1361 
1362 void
1363 df_set_bb_dirty_nonlr (basic_block bb)
1364 {
1365   if (df)
1366     {
1367       int p;
1368       for (p = 1; p < df->num_problems_defined; p++)
1369 	{
1370 	  struct dataflow *dflow = df->problems_in_order[p];
1371 	  if (dflow == df_lr)
1372 	    continue;
1373 	  if (dflow->out_of_date_transfer_functions)
1374 	    bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1375 	  dflow->solutions_dirty = true;
1376 	}
1377     }
1378 }
1379 
1380 
1381 /* Clear the dirty bits.  This is called from places that delete
1382    blocks.  */
1383 static void
1384 df_clear_bb_dirty (basic_block bb)
1385 {
1386   int p;
1387   for (p = 1; p < df->num_problems_defined; p++)
1388     {
1389       struct dataflow *dflow = df->problems_in_order[p];
1390       if (dflow->out_of_date_transfer_functions)
1391 	bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1392     }
1393 }
1394 /* Called from the rtl_compact_blocks to reorganize the problems basic
1395    block info.  */
1396 
1397 void
1398 df_compact_blocks (void)
1399 {
1400   int i, p;
1401   basic_block bb;
1402   void **problem_temps;
1403   int size = last_basic_block * sizeof (void *);
1404   bitmap tmp = BITMAP_ALLOC (&df_bitmap_obstack);
1405   problem_temps = XNEWVAR (void *, size);
1406 
1407   for (p = 0; p < df->num_problems_defined; p++)
1408     {
1409       struct dataflow *dflow = df->problems_in_order[p];
1410 
1411       /* Need to reorganize the out_of_date_transfer_functions for the
1412 	 dflow problem.  */
1413       if (dflow->out_of_date_transfer_functions)
1414 	{
1415 	  bitmap_copy (tmp, dflow->out_of_date_transfer_functions);
1416 	  bitmap_clear (dflow->out_of_date_transfer_functions);
1417 	  if (bitmap_bit_p (tmp, ENTRY_BLOCK))
1418 	    bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
1419 	  if (bitmap_bit_p (tmp, EXIT_BLOCK))
1420 	    bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1421 
1422 	  i = NUM_FIXED_BLOCKS;
1423 	  FOR_EACH_BB (bb)
1424 	    {
1425 	      if (bitmap_bit_p (tmp, bb->index))
1426 		bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1427 	      i++;
1428 	    }
1429 	}
1430 
1431       /* Now shuffle the block info for the problem.  */
1432       if (dflow->problem->free_bb_fun)
1433 	{
1434 	  df_grow_bb_info (dflow);
1435 	  memcpy (problem_temps, dflow->block_info, size);
1436 
1437 	  /* Copy the bb info from the problem tmps to the proper
1438 	     place in the block_info vector.  Null out the copied
1439 	     item.  The entry and exit blocks never move.  */
1440 	  i = NUM_FIXED_BLOCKS;
1441 	  FOR_EACH_BB (bb)
1442 	    {
1443 	      df_set_bb_info (dflow, i, problem_temps[bb->index]);
1444 	      problem_temps[bb->index] = NULL;
1445 	      i++;
1446 	    }
1447 	  memset (dflow->block_info + i, 0,
1448 		  (last_basic_block - i) *sizeof (void *));
1449 
1450 	  /* Free any block infos that were not copied (and NULLed).
1451 	     These are from orphaned blocks.  */
1452 	  for (i = NUM_FIXED_BLOCKS; i < last_basic_block; i++)
1453 	    {
1454 	      basic_block bb = BASIC_BLOCK (i);
1455 	      if (problem_temps[i] && bb)
1456 		dflow->problem->free_bb_fun
1457 		  (bb, problem_temps[i]);
1458 	    }
1459 	}
1460     }
1461 
1462   /* Shuffle the bits in the basic_block indexed arrays.  */
1463 
1464   if (df->blocks_to_analyze)
1465     {
1466       if (bitmap_bit_p (tmp, ENTRY_BLOCK))
1467 	bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
1468       if (bitmap_bit_p (tmp, EXIT_BLOCK))
1469 	bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
1470       bitmap_copy (tmp, df->blocks_to_analyze);
1471       bitmap_clear (df->blocks_to_analyze);
1472       i = NUM_FIXED_BLOCKS;
1473       FOR_EACH_BB (bb)
1474 	{
1475 	  if (bitmap_bit_p (tmp, bb->index))
1476 	    bitmap_set_bit (df->blocks_to_analyze, i);
1477 	  i++;
1478 	}
1479     }
1480 
1481   BITMAP_FREE (tmp);
1482 
1483   free (problem_temps);
1484 
1485   i = NUM_FIXED_BLOCKS;
1486   FOR_EACH_BB (bb)
1487     {
1488       SET_BASIC_BLOCK (i, bb);
1489       bb->index = i;
1490       i++;
1491     }
1492 
1493   gcc_assert (i == n_basic_blocks);
1494 
1495   for (; i < last_basic_block; i++)
1496     SET_BASIC_BLOCK (i, NULL);
1497 
1498 #ifdef DF_DEBUG_CFG
1499   if (!df_lr->solutions_dirty)
1500     df_set_clean_cfg ();
1501 #endif
1502 }
1503 
1504 
1505 /* Shove NEW_BLOCK in at OLD_INDEX.  Called from ifcvt to hack a
1506    block.  There is no excuse for people to do this kind of thing.  */
1507 
1508 void
1509 df_bb_replace (int old_index, basic_block new_block)
1510 {
1511   int new_block_index = new_block->index;
1512   int p;
1513 
1514   if (dump_file)
1515     fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1516 
1517   gcc_assert (df);
1518   gcc_assert (BASIC_BLOCK (old_index) == NULL);
1519 
1520   for (p = 0; p < df->num_problems_defined; p++)
1521     {
1522       struct dataflow *dflow = df->problems_in_order[p];
1523       if (dflow->block_info)
1524 	{
1525 	  df_grow_bb_info (dflow);
1526 	  gcc_assert (df_get_bb_info (dflow, old_index) == NULL);
1527 	  df_set_bb_info (dflow, old_index,
1528 			  df_get_bb_info (dflow, new_block_index));
1529 	}
1530     }
1531 
1532   df_clear_bb_dirty (new_block);
1533   SET_BASIC_BLOCK (old_index, new_block);
1534   new_block->index = old_index;
1535   df_set_bb_dirty (BASIC_BLOCK (old_index));
1536   SET_BASIC_BLOCK (new_block_index, NULL);
1537 }
1538 
1539 
1540 /* Free all of the per basic block dataflow from all of the problems.
1541    This is typically called before a basic block is deleted and the
1542    problem will be reanalyzed.  */
1543 
1544 void
1545 df_bb_delete (int bb_index)
1546 {
1547   basic_block bb = BASIC_BLOCK (bb_index);
1548   int i;
1549 
1550   if (!df)
1551     return;
1552 
1553   for (i = 0; i < df->num_problems_defined; i++)
1554     {
1555       struct dataflow *dflow = df->problems_in_order[i];
1556       if (dflow->problem->free_bb_fun)
1557 	{
1558 	  void *bb_info = df_get_bb_info (dflow, bb_index);
1559 	  if (bb_info)
1560 	    {
1561 	      dflow->problem->free_bb_fun (bb, bb_info);
1562 	      df_set_bb_info (dflow, bb_index, NULL);
1563 	    }
1564 	}
1565     }
1566   df_clear_bb_dirty (bb);
1567   df_mark_solutions_dirty ();
1568 }
1569 
1570 
1571 /* Verify that there is a place for everything and everything is in
1572    its place.  This is too expensive to run after every pass in the
1573    mainline.  However this is an excellent debugging tool if the
1574    dataflow information is not being updated properly.  You can just
1575    sprinkle calls in until you find the place that is changing an
1576    underlying structure without calling the proper updating
1577    routine.  */
1578 
1579 void
1580 df_verify (void)
1581 {
1582   df_scan_verify ();
1583 #ifdef ENABLE_DF_CHECKING
1584   df_lr_verify_transfer_functions ();
1585   if (df_live)
1586     df_live_verify_transfer_functions ();
1587 #endif
1588 }
1589 
1590 #ifdef DF_DEBUG_CFG
1591 
1592 /* Compute an array of ints that describes the cfg.  This can be used
1593    to discover places where the cfg is modified by the appropriate
1594    calls have not been made to the keep df informed.  The internals of
1595    this are unexciting, the key is that two instances of this can be
1596    compared to see if any changes have been made to the cfg.  */
1597 
1598 static int *
1599 df_compute_cfg_image (void)
1600 {
1601   basic_block bb;
1602   int size = 2 + (2 * n_basic_blocks);
1603   int i;
1604   int * map;
1605 
1606   FOR_ALL_BB (bb)
1607     {
1608       size += EDGE_COUNT (bb->succs);
1609     }
1610 
1611   map = XNEWVEC (int, size);
1612   map[0] = size;
1613   i = 1;
1614   FOR_ALL_BB (bb)
1615     {
1616       edge_iterator ei;
1617       edge e;
1618 
1619       map[i++] = bb->index;
1620       FOR_EACH_EDGE (e, ei, bb->succs)
1621 	map[i++] = e->dest->index;
1622       map[i++] = -1;
1623     }
1624   map[i] = -1;
1625   return map;
1626 }
1627 
1628 static int *saved_cfg = NULL;
1629 
1630 
1631 /* This function compares the saved version of the cfg with the
1632    current cfg and aborts if the two are identical.  The function
1633    silently returns if the cfg has been marked as dirty or the two are
1634    the same.  */
1635 
1636 void
1637 df_check_cfg_clean (void)
1638 {
1639   int *new_map;
1640 
1641   if (!df)
1642     return;
1643 
1644   if (df_lr->solutions_dirty)
1645     return;
1646 
1647   if (saved_cfg == NULL)
1648     return;
1649 
1650   new_map = df_compute_cfg_image ();
1651   gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1652   free (new_map);
1653 }
1654 
1655 
1656 /* This function builds a cfg fingerprint and squirrels it away in
1657    saved_cfg.  */
1658 
1659 static void
1660 df_set_clean_cfg (void)
1661 {
1662   if (saved_cfg)
1663     free (saved_cfg);
1664   saved_cfg = df_compute_cfg_image ();
1665 }
1666 
1667 #endif /* DF_DEBUG_CFG  */
1668 /*----------------------------------------------------------------------------
1669    PUBLIC INTERFACES TO QUERY INFORMATION.
1670 ----------------------------------------------------------------------------*/
1671 
1672 
1673 /* Return first def of REGNO within BB.  */
1674 
1675 df_ref
1676 df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
1677 {
1678   rtx insn;
1679   df_ref *def_rec;
1680   unsigned int uid;
1681 
1682   FOR_BB_INSNS (bb, insn)
1683     {
1684       if (!INSN_P (insn))
1685 	continue;
1686 
1687       uid = INSN_UID (insn);
1688       for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1689 	{
1690 	  df_ref def = *def_rec;
1691 	  if (DF_REF_REGNO (def) == regno)
1692 	    return def;
1693 	}
1694     }
1695   return NULL;
1696 }
1697 
1698 
1699 /* Return last def of REGNO within BB.  */
1700 
1701 df_ref
1702 df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
1703 {
1704   rtx insn;
1705   df_ref *def_rec;
1706   unsigned int uid;
1707 
1708   FOR_BB_INSNS_REVERSE (bb, insn)
1709     {
1710       if (!INSN_P (insn))
1711 	continue;
1712 
1713       uid = INSN_UID (insn);
1714       for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1715 	{
1716 	  df_ref def = *def_rec;
1717 	  if (DF_REF_REGNO (def) == regno)
1718 	    return def;
1719 	}
1720     }
1721 
1722   return NULL;
1723 }
1724 
1725 /* Finds the reference corresponding to the definition of REG in INSN.
1726    DF is the dataflow object.  */
1727 
1728 df_ref
1729 df_find_def (rtx insn, rtx reg)
1730 {
1731   unsigned int uid;
1732   df_ref *def_rec;
1733 
1734   if (GET_CODE (reg) == SUBREG)
1735     reg = SUBREG_REG (reg);
1736   gcc_assert (REG_P (reg));
1737 
1738   uid = INSN_UID (insn);
1739   for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1740     {
1741       df_ref def = *def_rec;
1742       if (rtx_equal_p (DF_REF_REAL_REG (def), reg))
1743 	return def;
1744     }
1745 
1746   return NULL;
1747 }
1748 
1749 
1750 /* Return true if REG is defined in INSN, zero otherwise.  */
1751 
1752 bool
1753 df_reg_defined (rtx insn, rtx reg)
1754 {
1755   return df_find_def (insn, reg) != NULL;
1756 }
1757 
1758 
1759 /* Finds the reference corresponding to the use of REG in INSN.
1760    DF is the dataflow object.  */
1761 
1762 df_ref
1763 df_find_use (rtx insn, rtx reg)
1764 {
1765   unsigned int uid;
1766   df_ref *use_rec;
1767 
1768   if (GET_CODE (reg) == SUBREG)
1769     reg = SUBREG_REG (reg);
1770   gcc_assert (REG_P (reg));
1771 
1772   uid = INSN_UID (insn);
1773   for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
1774     {
1775       df_ref use = *use_rec;
1776       if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
1777 	return use;
1778     }
1779   if (df->changeable_flags & DF_EQ_NOTES)
1780     for (use_rec = DF_INSN_UID_EQ_USES (uid); *use_rec; use_rec++)
1781       {
1782 	df_ref use = *use_rec;
1783 	if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
1784 	  return use;
1785       }
1786   return NULL;
1787 }
1788 
1789 
1790 /* Return true if REG is referenced in INSN, zero otherwise.  */
1791 
1792 bool
1793 df_reg_used (rtx insn, rtx reg)
1794 {
1795   return df_find_use (insn, reg) != NULL;
1796 }
1797 
1798 
1799 /*----------------------------------------------------------------------------
1800    Debugging and printing functions.
1801 ----------------------------------------------------------------------------*/
1802 
1803 
1804 /* Write information about registers and basic blocks into FILE.
1805    This is part of making a debugging dump.  */
1806 
1807 void
1808 df_print_regset (FILE *file, bitmap r)
1809 {
1810   unsigned int i;
1811   bitmap_iterator bi;
1812 
1813   if (r == NULL)
1814     fputs (" (nil)", file);
1815   else
1816     {
1817       EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
1818 	{
1819 	  fprintf (file, " %d", i);
1820 	  if (i < FIRST_PSEUDO_REGISTER)
1821 	    fprintf (file, " [%s]", reg_names[i]);
1822 	}
1823     }
1824   fprintf (file, "\n");
1825 }
1826 
1827 
1828 /* Write information about registers and basic blocks into FILE.  The
1829    bitmap is in the form used by df_byte_lr.  This is part of making a
1830    debugging dump.  */
1831 
1832 void
1833 df_print_byte_regset (FILE *file, bitmap r)
1834 {
1835   unsigned int max_reg = max_reg_num ();
1836   bitmap_iterator bi;
1837 
1838   if (r == NULL)
1839     fputs (" (nil)", file);
1840   else
1841     {
1842       unsigned int i;
1843       for (i = 0; i < max_reg; i++)
1844 	{
1845 	  unsigned int first = df_byte_lr_get_regno_start (i);
1846 	  unsigned int len = df_byte_lr_get_regno_len (i);
1847 
1848 	  if (len > 1)
1849 	    {
1850 	      bool found = false;
1851 	      unsigned int j;
1852 
1853 	      EXECUTE_IF_SET_IN_BITMAP (r, first, j, bi)
1854 		{
1855 		  found = j < first + len;
1856 		  break;
1857 		}
1858 	      if (found)
1859 		{
1860 		  const char * sep = "";
1861 		  fprintf (file, " %d", i);
1862 		  if (i < FIRST_PSEUDO_REGISTER)
1863 		    fprintf (file, " [%s]", reg_names[i]);
1864 		  fprintf (file, "(");
1865 		  EXECUTE_IF_SET_IN_BITMAP (r, first, j, bi)
1866 		    {
1867 		      if (j > first + len - 1)
1868 			break;
1869 		      fprintf (file, "%s%d", sep, j-first);
1870 		      sep = ", ";
1871 		    }
1872 		  fprintf (file, ")");
1873 		}
1874 	    }
1875 	  else
1876 	    {
1877 	      if (bitmap_bit_p (r, first))
1878 		{
1879 		  fprintf (file, " %d", i);
1880 		  if (i < FIRST_PSEUDO_REGISTER)
1881 		    fprintf (file, " [%s]", reg_names[i]);
1882 		}
1883 	    }
1884 
1885 	}
1886     }
1887   fprintf (file, "\n");
1888 }
1889 
1890 
1891 /* Dump dataflow info.  */
1892 
1893 void
1894 df_dump (FILE *file)
1895 {
1896   basic_block bb;
1897   df_dump_start (file);
1898 
1899   FOR_ALL_BB (bb)
1900     {
1901       df_print_bb_index (bb, file);
1902       df_dump_top (bb, file);
1903       df_dump_bottom (bb, file);
1904     }
1905 
1906   fprintf (file, "\n");
1907 }
1908 
1909 
1910 /* Dump dataflow info for df->blocks_to_analyze.  */
1911 
1912 void
1913 df_dump_region (FILE *file)
1914 {
1915   if (df->blocks_to_analyze)
1916     {
1917       bitmap_iterator bi;
1918       unsigned int bb_index;
1919 
1920       fprintf (file, "\n\nstarting region dump\n");
1921       df_dump_start (file);
1922 
1923       EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
1924 	{
1925 	  basic_block bb = BASIC_BLOCK (bb_index);
1926 
1927 	  df_print_bb_index (bb, file);
1928 	  df_dump_top (bb, file);
1929 	  df_dump_bottom (bb, file);
1930 	}
1931       fprintf (file, "\n");
1932     }
1933   else
1934     df_dump (file);
1935 }
1936 
1937 
1938 /* Dump the introductory information for each problem defined.  */
1939 
1940 void
1941 df_dump_start (FILE *file)
1942 {
1943   int i;
1944 
1945   if (!df || !file)
1946     return;
1947 
1948   fprintf (file, "\n\n%s\n", current_function_name ());
1949   fprintf (file, "\nDataflow summary:\n");
1950   if (df->blocks_to_analyze)
1951     fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
1952 	     DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
1953 
1954   for (i = 0; i < df->num_problems_defined; i++)
1955     {
1956       struct dataflow *dflow = df->problems_in_order[i];
1957       if (dflow->computed)
1958 	{
1959 	  df_dump_problem_function fun = dflow->problem->dump_start_fun;
1960 	  if (fun)
1961 	    fun(file);
1962 	}
1963     }
1964 }
1965 
1966 
1967 /* Dump the top of the block information for BB.  */
1968 
1969 void
1970 df_dump_top (basic_block bb, FILE *file)
1971 {
1972   int i;
1973 
1974   if (!df || !file)
1975     return;
1976 
1977   for (i = 0; i < df->num_problems_defined; i++)
1978     {
1979       struct dataflow *dflow = df->problems_in_order[i];
1980       if (dflow->computed)
1981 	{
1982 	  df_dump_bb_problem_function bbfun = dflow->problem->dump_top_fun;
1983 	  if (bbfun)
1984 	    bbfun (bb, file);
1985 	}
1986     }
1987 }
1988 
1989 
1990 /* Dump the bottom of the block information for BB.  */
1991 
1992 void
1993 df_dump_bottom (basic_block bb, FILE *file)
1994 {
1995   int i;
1996 
1997   if (!df || !file)
1998     return;
1999 
2000   for (i = 0; i < df->num_problems_defined; i++)
2001     {
2002       struct dataflow *dflow = df->problems_in_order[i];
2003       if (dflow->computed)
2004 	{
2005 	  df_dump_bb_problem_function bbfun = dflow->problem->dump_bottom_fun;
2006 	  if (bbfun)
2007 	    bbfun (bb, file);
2008 	}
2009     }
2010 }
2011 
2012 
2013 static void
2014 df_ref_dump (df_ref ref, FILE *file)
2015 {
2016   fprintf (file, "%c%d(%d)",
2017 	   DF_REF_REG_DEF_P (ref)
2018 	   ? 'd'
2019 	   : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2020 	   DF_REF_ID (ref),
2021 	   DF_REF_REGNO (ref));
2022 }
2023 
2024 void
2025 df_refs_chain_dump (df_ref *ref_rec, bool follow_chain, FILE *file)
2026 {
2027   fprintf (file, "{ ");
2028   while (*ref_rec)
2029     {
2030       df_ref ref = *ref_rec;
2031       df_ref_dump (ref, file);
2032       if (follow_chain)
2033 	df_chain_dump (DF_REF_CHAIN (ref), file);
2034       ref_rec++;
2035     }
2036   fprintf (file, "}");
2037 }
2038 
2039 
2040 /* Dump either a ref-def or reg-use chain.  */
2041 
2042 void
2043 df_regs_chain_dump (df_ref ref,  FILE *file)
2044 {
2045   fprintf (file, "{ ");
2046   while (ref)
2047     {
2048       df_ref_dump (ref, file);
2049       ref = DF_REF_NEXT_REG (ref);
2050     }
2051   fprintf (file, "}");
2052 }
2053 
2054 
2055 static void
2056 df_mws_dump (struct df_mw_hardreg **mws, FILE *file)
2057 {
2058   while (*mws)
2059     {
2060       fprintf (file, "mw %c r[%d..%d]\n",
2061 	       (DF_MWS_REG_DEF_P (*mws)) ? 'd' : 'u',
2062 	       (*mws)->start_regno, (*mws)->end_regno);
2063       mws++;
2064     }
2065 }
2066 
2067 
2068 static void
2069 df_insn_uid_debug (unsigned int uid,
2070 		   bool follow_chain, FILE *file)
2071 {
2072   fprintf (file, "insn %d luid %d",
2073 	   uid, DF_INSN_UID_LUID (uid));
2074 
2075   if (DF_INSN_UID_DEFS (uid))
2076     {
2077       fprintf (file, " defs ");
2078       df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
2079     }
2080 
2081   if (DF_INSN_UID_USES (uid))
2082     {
2083       fprintf (file, " uses ");
2084       df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2085     }
2086 
2087   if (DF_INSN_UID_EQ_USES (uid))
2088     {
2089       fprintf (file, " eq uses ");
2090       df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
2091     }
2092 
2093   if (DF_INSN_UID_MWS (uid))
2094     {
2095       fprintf (file, " mws ");
2096       df_mws_dump (DF_INSN_UID_MWS (uid), file);
2097     }
2098   fprintf (file, "\n");
2099 }
2100 
2101 
2102 void
2103 df_insn_debug (rtx insn, bool follow_chain, FILE *file)
2104 {
2105   df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
2106 }
2107 
2108 void
2109 df_insn_debug_regno (rtx insn, FILE *file)
2110 {
2111   struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2112 
2113   fprintf (file, "insn %d bb %d luid %d defs ",
2114 	   INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2115 	   DF_INSN_INFO_LUID (insn_info));
2116   df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
2117 
2118   fprintf (file, " uses ");
2119   df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
2120 
2121   fprintf (file, " eq_uses ");
2122   df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
2123   fprintf (file, "\n");
2124 }
2125 
2126 void
2127 df_regno_debug (unsigned int regno, FILE *file)
2128 {
2129   fprintf (file, "reg %d defs ", regno);
2130   df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
2131   fprintf (file, " uses ");
2132   df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2133   fprintf (file, " eq_uses ");
2134   df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
2135   fprintf (file, "\n");
2136 }
2137 
2138 
2139 void
2140 df_ref_debug (df_ref ref, FILE *file)
2141 {
2142   fprintf (file, "%c%d ",
2143 	   DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2144 	   DF_REF_ID (ref));
2145   fprintf (file, "reg %d bb %d insn %d flag 0x%x type 0x%x ",
2146 	   DF_REF_REGNO (ref),
2147 	   DF_REF_BBNO (ref),
2148 	   DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
2149 	   DF_REF_FLAGS (ref),
2150 	   DF_REF_TYPE (ref));
2151   if (DF_REF_LOC (ref))
2152     {
2153       if (flag_dump_noaddr)
2154 	fprintf (file, "loc #(#) chain ");
2155       else
2156 	fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2157 		 (void *)*DF_REF_LOC (ref));
2158     }
2159   else
2160     fprintf (file, "chain ");
2161   df_chain_dump (DF_REF_CHAIN (ref), file);
2162   fprintf (file, "\n");
2163 }
2164 
2165 /* Functions for debugging from GDB.  */
2166 
2167 void
2168 debug_df_insn (rtx insn)
2169 {
2170   df_insn_debug (insn, true, stderr);
2171   debug_rtx (insn);
2172 }
2173 
2174 
2175 void
2176 debug_df_reg (rtx reg)
2177 {
2178   df_regno_debug (REGNO (reg), stderr);
2179 }
2180 
2181 
2182 void
2183 debug_df_regno (unsigned int regno)
2184 {
2185   df_regno_debug (regno, stderr);
2186 }
2187 
2188 
2189 void
2190 debug_df_ref (df_ref ref)
2191 {
2192   df_ref_debug (ref, stderr);
2193 }
2194 
2195 
2196 void
2197 debug_df_defno (unsigned int defno)
2198 {
2199   df_ref_debug (DF_DEFS_GET (defno), stderr);
2200 }
2201 
2202 
2203 void
2204 debug_df_useno (unsigned int defno)
2205 {
2206   df_ref_debug (DF_USES_GET (defno), stderr);
2207 }
2208 
2209 
2210 void
2211 debug_df_chain (struct df_link *link)
2212 {
2213   df_chain_dump (link, stderr);
2214   fputc ('\n', stderr);
2215 }
2216