xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/cselib.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /* Common subexpression elimination library for GNU compiler.
2    Copyright (C) 1987-2013 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 
25 #include "rtl.h"
26 #include "tree.h"/* FIXME: For hashing DEBUG_EXPR & friends.  */
27 #include "tm_p.h"
28 #include "regs.h"
29 #include "hard-reg-set.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "function.h"
34 #include "emit-rtl.h"
35 #include "diagnostic-core.h"
36 #include "ggc.h"
37 #include "hashtab.h"
38 #include "dumpfile.h"
39 #include "cselib.h"
40 #include "valtrack.h"
41 #include "params.h"
42 #include "alloc-pool.h"
43 #include "target.h"
44 #include "bitmap.h"
45 
46 /* A list of cselib_val structures.  */
47 struct elt_list {
48     struct elt_list *next;
49     cselib_val *elt;
50 };
51 
52 static bool cselib_record_memory;
53 static bool cselib_preserve_constants;
54 static bool cselib_any_perm_equivs;
55 static int entry_and_rtx_equal_p (const void *, const void *);
56 static hashval_t get_value_hash (const void *);
57 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
58 static void new_elt_loc_list (cselib_val *, rtx);
59 static void unchain_one_value (cselib_val *);
60 static void unchain_one_elt_list (struct elt_list **);
61 static void unchain_one_elt_loc_list (struct elt_loc_list **);
62 static int discard_useless_locs (void **, void *);
63 static int discard_useless_values (void **, void *);
64 static void remove_useless_values (void);
65 static int rtx_equal_for_cselib_1 (rtx, rtx, enum machine_mode);
66 static unsigned int cselib_hash_rtx (rtx, int, enum machine_mode);
67 static cselib_val *new_cselib_val (unsigned int, enum machine_mode, rtx);
68 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
69 static cselib_val *cselib_lookup_mem (rtx, int);
70 static void cselib_invalidate_regno (unsigned int, enum machine_mode);
71 static void cselib_invalidate_mem (rtx);
72 static void cselib_record_set (rtx, cselib_val *, cselib_val *);
73 static void cselib_record_sets (rtx);
74 
75 struct expand_value_data
76 {
77   bitmap regs_active;
78   cselib_expand_callback callback;
79   void *callback_arg;
80   bool dummy;
81 };
82 
83 static rtx cselib_expand_value_rtx_1 (rtx, struct expand_value_data *, int);
84 
85 /* There are three ways in which cselib can look up an rtx:
86    - for a REG, the reg_values table (which is indexed by regno) is used
87    - for a MEM, we recursively look up its address and then follow the
88      addr_list of that value
89    - for everything else, we compute a hash value and go through the hash
90      table.  Since different rtx's can still have the same hash value,
91      this involves walking the table entries for a given value and comparing
92      the locations of the entries with the rtx we are looking up.  */
93 
94 /* A table that enables us to look up elts by their value.  */
95 static htab_t cselib_hash_table;
96 
97 /* This is a global so we don't have to pass this through every function.
98    It is used in new_elt_loc_list to set SETTING_INSN.  */
99 static rtx cselib_current_insn;
100 
101 /* The unique id that the next create value will take.  */
102 static unsigned int next_uid;
103 
104 /* The number of registers we had when the varrays were last resized.  */
105 static unsigned int cselib_nregs;
106 
107 /* Count values without known locations, or with only locations that
108    wouldn't have been known except for debug insns.  Whenever this
109    grows too big, we remove these useless values from the table.
110 
111    Counting values with only debug values is a bit tricky.  We don't
112    want to increment n_useless_values when we create a value for a
113    debug insn, for this would get n_useless_values out of sync, but we
114    want increment it if all locs in the list that were ever referenced
115    in nondebug insns are removed from the list.
116 
117    In the general case, once we do that, we'd have to stop accepting
118    nondebug expressions in the loc list, to avoid having two values
119    equivalent that, without debug insns, would have been made into
120    separate values.  However, because debug insns never introduce
121    equivalences themselves (no assignments), the only means for
122    growing loc lists is through nondebug assignments.  If the locs
123    also happen to be referenced in debug insns, it will work just fine.
124 
125    A consequence of this is that there's at most one debug-only loc in
126    each loc list.  If we keep it in the first entry, testing whether
127    we have a debug-only loc list takes O(1).
128 
129    Furthermore, since any additional entry in a loc list containing a
130    debug loc would have to come from an assignment (nondebug) that
131    references both the initial debug loc and the newly-equivalent loc,
132    the initial debug loc would be promoted to a nondebug loc, and the
133    loc list would not contain debug locs any more.
134 
135    So the only case we have to be careful with in order to keep
136    n_useless_values in sync between debug and nondebug compilations is
137    to avoid incrementing n_useless_values when removing the single loc
138    from a value that turns out to not appear outside debug values.  We
139    increment n_useless_debug_values instead, and leave such values
140    alone until, for other reasons, we garbage-collect useless
141    values.  */
142 static int n_useless_values;
143 static int n_useless_debug_values;
144 
145 /* Count values whose locs have been taken exclusively from debug
146    insns for the entire life of the value.  */
147 static int n_debug_values;
148 
149 /* Number of useless values before we remove them from the hash table.  */
150 #define MAX_USELESS_VALUES 32
151 
152 /* This table maps from register number to values.  It does not
153    contain pointers to cselib_val structures, but rather elt_lists.
154    The purpose is to be able to refer to the same register in
155    different modes.  The first element of the list defines the mode in
156    which the register was set; if the mode is unknown or the value is
157    no longer valid in that mode, ELT will be NULL for the first
158    element.  */
159 static struct elt_list **reg_values;
160 static unsigned int reg_values_size;
161 #define REG_VALUES(i) reg_values[i]
162 
163 /* The largest number of hard regs used by any entry added to the
164    REG_VALUES table.  Cleared on each cselib_clear_table() invocation.  */
165 static unsigned int max_value_regs;
166 
167 /* Here the set of indices I with REG_VALUES(I) != 0 is saved.  This is used
168    in cselib_clear_table() for fast emptying.  */
169 static unsigned int *used_regs;
170 static unsigned int n_used_regs;
171 
172 /* We pass this to cselib_invalidate_mem to invalidate all of
173    memory for a non-const call instruction.  */
174 static GTY(()) rtx callmem;
175 
176 /* Set by discard_useless_locs if it deleted the last location of any
177    value.  */
178 static int values_became_useless;
179 
180 /* Used as stop element of the containing_mem list so we can check
181    presence in the list by checking the next pointer.  */
182 static cselib_val dummy_val;
183 
184 /* If non-NULL, value of the eliminated arg_pointer_rtx or frame_pointer_rtx
185    that is constant through the whole function and should never be
186    eliminated.  */
187 static cselib_val *cfa_base_preserved_val;
188 static unsigned int cfa_base_preserved_regno = INVALID_REGNUM;
189 
190 /* Used to list all values that contain memory reference.
191    May or may not contain the useless values - the list is compacted
192    each time memory is invalidated.  */
193 static cselib_val *first_containing_mem = &dummy_val;
194 static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
195 
196 /* If nonnull, cselib will call this function before freeing useless
197    VALUEs.  A VALUE is deemed useless if its "locs" field is null.  */
198 void (*cselib_discard_hook) (cselib_val *);
199 
200 /* If nonnull, cselib will call this function before recording sets or
201    even clobbering outputs of INSN.  All the recorded sets will be
202    represented in the array sets[n_sets].  new_val_min can be used to
203    tell whether values present in sets are introduced by this
204    instruction.  */
205 void (*cselib_record_sets_hook) (rtx insn, struct cselib_set *sets,
206 				 int n_sets);
207 
208 #define PRESERVED_VALUE_P(RTX) \
209   (RTL_FLAG_CHECK1("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging)
210 
211 #define SP_BASED_VALUE_P(RTX) \
212   (RTL_FLAG_CHECK1("SP_BASED_VALUE_P", (RTX), VALUE)->jump)
213 
214 
215 
216 /* Allocate a struct elt_list and fill in its two elements with the
217    arguments.  */
218 
219 static inline struct elt_list *
220 new_elt_list (struct elt_list *next, cselib_val *elt)
221 {
222   struct elt_list *el;
223   el = (struct elt_list *) pool_alloc (elt_list_pool);
224   el->next = next;
225   el->elt = elt;
226   return el;
227 }
228 
229 /* Allocate a struct elt_loc_list with LOC and prepend it to VAL's loc
230    list.  */
231 
232 static inline void
233 new_elt_loc_list (cselib_val *val, rtx loc)
234 {
235   struct elt_loc_list *el, *next = val->locs;
236 
237   gcc_checking_assert (!next || !next->setting_insn
238 		       || !DEBUG_INSN_P (next->setting_insn)
239 		       || cselib_current_insn == next->setting_insn);
240 
241   /* If we're creating the first loc in a debug insn context, we've
242      just created a debug value.  Count it.  */
243   if (!next && cselib_current_insn && DEBUG_INSN_P (cselib_current_insn))
244     n_debug_values++;
245 
246   val = canonical_cselib_val (val);
247   next = val->locs;
248 
249   if (GET_CODE (loc) == VALUE)
250     {
251       loc = canonical_cselib_val (CSELIB_VAL_PTR (loc))->val_rtx;
252 
253       gcc_checking_assert (PRESERVED_VALUE_P (loc)
254 			   == PRESERVED_VALUE_P (val->val_rtx));
255 
256       if (val->val_rtx == loc)
257 	return;
258       else if (val->uid > CSELIB_VAL_PTR (loc)->uid)
259 	{
260 	  /* Reverse the insertion.  */
261 	  new_elt_loc_list (CSELIB_VAL_PTR (loc), val->val_rtx);
262 	  return;
263 	}
264 
265       gcc_checking_assert (val->uid < CSELIB_VAL_PTR (loc)->uid);
266 
267       if (CSELIB_VAL_PTR (loc)->locs)
268 	{
269 	  /* Bring all locs from LOC to VAL.  */
270 	  for (el = CSELIB_VAL_PTR (loc)->locs; el->next; el = el->next)
271 	    {
272 	      /* Adjust values that have LOC as canonical so that VAL
273 		 becomes their canonical.  */
274 	      if (el->loc && GET_CODE (el->loc) == VALUE)
275 		{
276 		  gcc_checking_assert (CSELIB_VAL_PTR (el->loc)->locs->loc
277 				       == loc);
278 		  CSELIB_VAL_PTR (el->loc)->locs->loc = val->val_rtx;
279 		}
280 	    }
281 	  el->next = val->locs;
282 	  next = val->locs = CSELIB_VAL_PTR (loc)->locs;
283 	}
284 
285       if (CSELIB_VAL_PTR (loc)->addr_list)
286 	{
287 	  /* Bring in addr_list into canonical node.  */
288 	  struct elt_list *last = CSELIB_VAL_PTR (loc)->addr_list;
289 	  while (last->next)
290 	    last = last->next;
291 	  last->next = val->addr_list;
292 	  val->addr_list = CSELIB_VAL_PTR (loc)->addr_list;
293 	  CSELIB_VAL_PTR (loc)->addr_list = NULL;
294 	}
295 
296       if (CSELIB_VAL_PTR (loc)->next_containing_mem != NULL
297 	  && val->next_containing_mem == NULL)
298 	{
299 	  /* Add VAL to the containing_mem list after LOC.  LOC will
300 	     be removed when we notice it doesn't contain any
301 	     MEMs.  */
302 	  val->next_containing_mem = CSELIB_VAL_PTR (loc)->next_containing_mem;
303 	  CSELIB_VAL_PTR (loc)->next_containing_mem = val;
304 	}
305 
306       /* Chain LOC back to VAL.  */
307       el = (struct elt_loc_list *) pool_alloc (elt_loc_list_pool);
308       el->loc = val->val_rtx;
309       el->setting_insn = cselib_current_insn;
310       el->next = NULL;
311       CSELIB_VAL_PTR (loc)->locs = el;
312     }
313 
314   el = (struct elt_loc_list *) pool_alloc (elt_loc_list_pool);
315   el->loc = loc;
316   el->setting_insn = cselib_current_insn;
317   el->next = next;
318   val->locs = el;
319 }
320 
321 /* Promote loc L to a nondebug cselib_current_insn if L is marked as
322    originating from a debug insn, maintaining the debug values
323    count.  */
324 
325 static inline void
326 promote_debug_loc (struct elt_loc_list *l)
327 {
328   if (l && l->setting_insn && DEBUG_INSN_P (l->setting_insn)
329       && (!cselib_current_insn || !DEBUG_INSN_P (cselib_current_insn)))
330     {
331       n_debug_values--;
332       l->setting_insn = cselib_current_insn;
333       if (cselib_preserve_constants && l->next)
334 	{
335 	  gcc_assert (l->next->setting_insn
336 		      && DEBUG_INSN_P (l->next->setting_insn)
337 		      && !l->next->next);
338 	  l->next->setting_insn = cselib_current_insn;
339 	}
340       else
341 	gcc_assert (!l->next);
342     }
343 }
344 
345 /* The elt_list at *PL is no longer needed.  Unchain it and free its
346    storage.  */
347 
348 static inline void
349 unchain_one_elt_list (struct elt_list **pl)
350 {
351   struct elt_list *l = *pl;
352 
353   *pl = l->next;
354   pool_free (elt_list_pool, l);
355 }
356 
357 /* Likewise for elt_loc_lists.  */
358 
359 static void
360 unchain_one_elt_loc_list (struct elt_loc_list **pl)
361 {
362   struct elt_loc_list *l = *pl;
363 
364   *pl = l->next;
365   pool_free (elt_loc_list_pool, l);
366 }
367 
368 /* Likewise for cselib_vals.  This also frees the addr_list associated with
369    V.  */
370 
371 static void
372 unchain_one_value (cselib_val *v)
373 {
374   while (v->addr_list)
375     unchain_one_elt_list (&v->addr_list);
376 
377   pool_free (cselib_val_pool, v);
378 }
379 
380 /* Remove all entries from the hash table.  Also used during
381    initialization.  */
382 
383 void
384 cselib_clear_table (void)
385 {
386   cselib_reset_table (1);
387 }
388 
389 /* Return TRUE if V is a constant, a function invariant or a VALUE
390    equivalence; FALSE otherwise.  */
391 
392 static bool
393 invariant_or_equiv_p (cselib_val *v)
394 {
395   struct elt_loc_list *l;
396 
397   if (v == cfa_base_preserved_val)
398     return true;
399 
400   /* Keep VALUE equivalences around.  */
401   for (l = v->locs; l; l = l->next)
402     if (GET_CODE (l->loc) == VALUE)
403       return true;
404 
405   if (v->locs != NULL
406       && v->locs->next == NULL)
407     {
408       if (CONSTANT_P (v->locs->loc)
409 	  && (GET_CODE (v->locs->loc) != CONST
410 	      || !references_value_p (v->locs->loc, 0)))
411 	return true;
412       /* Although a debug expr may be bound to different expressions,
413 	 we can preserve it as if it was constant, to get unification
414 	 and proper merging within var-tracking.  */
415       if (GET_CODE (v->locs->loc) == DEBUG_EXPR
416 	  || GET_CODE (v->locs->loc) == DEBUG_IMPLICIT_PTR
417 	  || GET_CODE (v->locs->loc) == ENTRY_VALUE
418 	  || GET_CODE (v->locs->loc) == DEBUG_PARAMETER_REF)
419 	return true;
420 
421       /* (plus (value V) (const_int C)) is invariant iff V is invariant.  */
422       if (GET_CODE (v->locs->loc) == PLUS
423 	  && CONST_INT_P (XEXP (v->locs->loc, 1))
424 	  && GET_CODE (XEXP (v->locs->loc, 0)) == VALUE
425 	  && invariant_or_equiv_p (CSELIB_VAL_PTR (XEXP (v->locs->loc, 0))))
426 	return true;
427     }
428 
429   return false;
430 }
431 
432 /* Remove from hash table all VALUEs except constants, function
433    invariants and VALUE equivalences.  */
434 
435 static int
436 preserve_constants_and_equivs (void **x, void *info ATTRIBUTE_UNUSED)
437 {
438   cselib_val *v = (cselib_val *)*x;
439 
440   if (!invariant_or_equiv_p (v))
441     htab_clear_slot (cselib_hash_table, x);
442   return 1;
443 }
444 
445 /* Remove all entries from the hash table, arranging for the next
446    value to be numbered NUM.  */
447 
448 void
449 cselib_reset_table (unsigned int num)
450 {
451   unsigned int i;
452 
453   max_value_regs = 0;
454 
455   if (cfa_base_preserved_val)
456     {
457       unsigned int regno = cfa_base_preserved_regno;
458       unsigned int new_used_regs = 0;
459       for (i = 0; i < n_used_regs; i++)
460 	if (used_regs[i] == regno)
461 	  {
462 	    new_used_regs = 1;
463 	    continue;
464 	  }
465 	else
466 	  REG_VALUES (used_regs[i]) = 0;
467       gcc_assert (new_used_regs == 1);
468       n_used_regs = new_used_regs;
469       used_regs[0] = regno;
470       max_value_regs
471 	= hard_regno_nregs[regno][GET_MODE (cfa_base_preserved_val->locs->loc)];
472     }
473   else
474     {
475       for (i = 0; i < n_used_regs; i++)
476 	REG_VALUES (used_regs[i]) = 0;
477       n_used_regs = 0;
478     }
479 
480   if (cselib_preserve_constants)
481     htab_traverse (cselib_hash_table, preserve_constants_and_equivs, NULL);
482   else
483     {
484       htab_empty (cselib_hash_table);
485       gcc_checking_assert (!cselib_any_perm_equivs);
486     }
487 
488   n_useless_values = 0;
489   n_useless_debug_values = 0;
490   n_debug_values = 0;
491 
492   next_uid = num;
493 
494   first_containing_mem = &dummy_val;
495 }
496 
497 /* Return the number of the next value that will be generated.  */
498 
499 unsigned int
500 cselib_get_next_uid (void)
501 {
502   return next_uid;
503 }
504 
505 /* See the documentation of cselib_find_slot below.  */
506 static enum machine_mode find_slot_memmode;
507 
508 /* Search for X, whose hashcode is HASH, in CSELIB_HASH_TABLE,
509    INSERTing if requested.  When X is part of the address of a MEM,
510    MEMMODE should specify the mode of the MEM.  While searching the
511    table, MEMMODE is held in FIND_SLOT_MEMMODE, so that autoinc RTXs
512    in X can be resolved.  */
513 
514 static void **
515 cselib_find_slot (rtx x, hashval_t hash, enum insert_option insert,
516 		  enum machine_mode memmode)
517 {
518   void **slot;
519   find_slot_memmode = memmode;
520   slot = htab_find_slot_with_hash (cselib_hash_table, x, hash, insert);
521   find_slot_memmode = VOIDmode;
522   return slot;
523 }
524 
525 /* The equality test for our hash table.  The first argument ENTRY is a table
526    element (i.e. a cselib_val), while the second arg X is an rtx.  We know
527    that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
528    CONST of an appropriate mode.  */
529 
530 static int
531 entry_and_rtx_equal_p (const void *entry, const void *x_arg)
532 {
533   struct elt_loc_list *l;
534   const cselib_val *const v = (const cselib_val *) entry;
535   rtx x = CONST_CAST_RTX ((const_rtx)x_arg);
536   enum machine_mode mode = GET_MODE (x);
537 
538   gcc_assert (!CONST_SCALAR_INT_P (x) && GET_CODE (x) != CONST_FIXED);
539 
540   if (mode != GET_MODE (v->val_rtx))
541     return 0;
542 
543   /* Unwrap X if necessary.  */
544   if (GET_CODE (x) == CONST
545       && (CONST_SCALAR_INT_P (XEXP (x, 0))
546 	  || GET_CODE (XEXP (x, 0)) == CONST_FIXED))
547     x = XEXP (x, 0);
548 
549   /* We don't guarantee that distinct rtx's have different hash values,
550      so we need to do a comparison.  */
551   for (l = v->locs; l; l = l->next)
552     if (rtx_equal_for_cselib_1 (l->loc, x, find_slot_memmode))
553       {
554 	promote_debug_loc (l);
555 	return 1;
556       }
557 
558   return 0;
559 }
560 
561 /* The hash function for our hash table.  The value is always computed with
562    cselib_hash_rtx when adding an element; this function just extracts the
563    hash value from a cselib_val structure.  */
564 
565 static hashval_t
566 get_value_hash (const void *entry)
567 {
568   const cselib_val *const v = (const cselib_val *) entry;
569   return v->hash;
570 }
571 
572 /* Return true if X contains a VALUE rtx.  If ONLY_USELESS is set, we
573    only return true for values which point to a cselib_val whose value
574    element has been set to zero, which implies the cselib_val will be
575    removed.  */
576 
577 int
578 references_value_p (const_rtx x, int only_useless)
579 {
580   const enum rtx_code code = GET_CODE (x);
581   const char *fmt = GET_RTX_FORMAT (code);
582   int i, j;
583 
584   if (GET_CODE (x) == VALUE
585       && (! only_useless ||
586 	  (CSELIB_VAL_PTR (x)->locs == 0 && !PRESERVED_VALUE_P (x))))
587     return 1;
588 
589   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
590     {
591       if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
592 	return 1;
593       else if (fmt[i] == 'E')
594 	for (j = 0; j < XVECLEN (x, i); j++)
595 	  if (references_value_p (XVECEXP (x, i, j), only_useless))
596 	    return 1;
597     }
598 
599   return 0;
600 }
601 
602 /* For all locations found in X, delete locations that reference useless
603    values (i.e. values without any location).  Called through
604    htab_traverse.  */
605 
606 static int
607 discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
608 {
609   cselib_val *v = (cselib_val *)*x;
610   struct elt_loc_list **p = &v->locs;
611   bool had_locs = v->locs != NULL;
612   rtx setting_insn = v->locs ? v->locs->setting_insn : NULL;
613 
614   while (*p)
615     {
616       if (references_value_p ((*p)->loc, 1))
617 	unchain_one_elt_loc_list (p);
618       else
619 	p = &(*p)->next;
620     }
621 
622   if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
623     {
624       if (setting_insn && DEBUG_INSN_P (setting_insn))
625 	n_useless_debug_values++;
626       else
627 	n_useless_values++;
628       values_became_useless = 1;
629     }
630   return 1;
631 }
632 
633 /* If X is a value with no locations, remove it from the hashtable.  */
634 
635 static int
636 discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
637 {
638   cselib_val *v = (cselib_val *)*x;
639 
640   if (v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
641     {
642       if (cselib_discard_hook)
643 	cselib_discard_hook (v);
644 
645       CSELIB_VAL_PTR (v->val_rtx) = NULL;
646       htab_clear_slot (cselib_hash_table, x);
647       unchain_one_value (v);
648       n_useless_values--;
649     }
650 
651   return 1;
652 }
653 
654 /* Clean out useless values (i.e. those which no longer have locations
655    associated with them) from the hash table.  */
656 
657 static void
658 remove_useless_values (void)
659 {
660   cselib_val **p, *v;
661 
662   /* First pass: eliminate locations that reference the value.  That in
663      turn can make more values useless.  */
664   do
665     {
666       values_became_useless = 0;
667       htab_traverse (cselib_hash_table, discard_useless_locs, 0);
668     }
669   while (values_became_useless);
670 
671   /* Second pass: actually remove the values.  */
672 
673   p = &first_containing_mem;
674   for (v = *p; v != &dummy_val; v = v->next_containing_mem)
675     if (v->locs && v == canonical_cselib_val (v))
676       {
677 	*p = v;
678 	p = &(*p)->next_containing_mem;
679       }
680   *p = &dummy_val;
681 
682   n_useless_values += n_useless_debug_values;
683   n_debug_values -= n_useless_debug_values;
684   n_useless_debug_values = 0;
685 
686   htab_traverse (cselib_hash_table, discard_useless_values, 0);
687 
688   gcc_assert (!n_useless_values);
689 }
690 
691 /* Arrange for a value to not be removed from the hash table even if
692    it becomes useless.  */
693 
694 void
695 cselib_preserve_value (cselib_val *v)
696 {
697   PRESERVED_VALUE_P (v->val_rtx) = 1;
698 }
699 
700 /* Test whether a value is preserved.  */
701 
702 bool
703 cselib_preserved_value_p (cselib_val *v)
704 {
705   return PRESERVED_VALUE_P (v->val_rtx);
706 }
707 
708 /* Arrange for a REG value to be assumed constant through the whole function,
709    never invalidated and preserved across cselib_reset_table calls.  */
710 
711 void
712 cselib_preserve_cfa_base_value (cselib_val *v, unsigned int regno)
713 {
714   if (cselib_preserve_constants
715       && v->locs
716       && REG_P (v->locs->loc))
717     {
718       cfa_base_preserved_val = v;
719       cfa_base_preserved_regno = regno;
720     }
721 }
722 
723 /* Clean all non-constant expressions in the hash table, but retain
724    their values.  */
725 
726 void
727 cselib_preserve_only_values (void)
728 {
729   int i;
730 
731   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
732     cselib_invalidate_regno (i, reg_raw_mode[i]);
733 
734   cselib_invalidate_mem (callmem);
735 
736   remove_useless_values ();
737 
738   gcc_assert (first_containing_mem == &dummy_val);
739 }
740 
741 /* Arrange for a value to be marked as based on stack pointer
742    for find_base_term purposes.  */
743 
744 void
745 cselib_set_value_sp_based (cselib_val *v)
746 {
747   SP_BASED_VALUE_P (v->val_rtx) = 1;
748 }
749 
750 /* Test whether a value is based on stack pointer for
751    find_base_term purposes.  */
752 
753 bool
754 cselib_sp_based_value_p (cselib_val *v)
755 {
756   return SP_BASED_VALUE_P (v->val_rtx);
757 }
758 
759 /* Return the mode in which a register was last set.  If X is not a
760    register, return its mode.  If the mode in which the register was
761    set is not known, or the value was already clobbered, return
762    VOIDmode.  */
763 
764 enum machine_mode
765 cselib_reg_set_mode (const_rtx x)
766 {
767   if (!REG_P (x))
768     return GET_MODE (x);
769 
770   if (REG_VALUES (REGNO (x)) == NULL
771       || REG_VALUES (REGNO (x))->elt == NULL)
772     return VOIDmode;
773 
774   return GET_MODE (REG_VALUES (REGNO (x))->elt->val_rtx);
775 }
776 
777 /* Return nonzero if we can prove that X and Y contain the same value, taking
778    our gathered information into account.  */
779 
780 int
781 rtx_equal_for_cselib_p (rtx x, rtx y)
782 {
783   return rtx_equal_for_cselib_1 (x, y, VOIDmode);
784 }
785 
786 /* If x is a PLUS or an autoinc operation, expand the operation,
787    storing the offset, if any, in *OFF.  */
788 
789 static rtx
790 autoinc_split (rtx x, rtx *off, enum machine_mode memmode)
791 {
792   switch (GET_CODE (x))
793     {
794     case PLUS:
795       *off = XEXP (x, 1);
796       return XEXP (x, 0);
797 
798     case PRE_DEC:
799       if (memmode == VOIDmode)
800 	return x;
801 
802       *off = GEN_INT (-GET_MODE_SIZE (memmode));
803       return XEXP (x, 0);
804       break;
805 
806     case PRE_INC:
807       if (memmode == VOIDmode)
808 	return x;
809 
810       *off = GEN_INT (GET_MODE_SIZE (memmode));
811       return XEXP (x, 0);
812 
813     case PRE_MODIFY:
814       return XEXP (x, 1);
815 
816     case POST_DEC:
817     case POST_INC:
818     case POST_MODIFY:
819       return XEXP (x, 0);
820 
821     default:
822       return x;
823     }
824 }
825 
826 /* Return nonzero if we can prove that X and Y contain the same value,
827    taking our gathered information into account.  MEMMODE holds the
828    mode of the enclosing MEM, if any, as required to deal with autoinc
829    addressing modes.  If X and Y are not (known to be) part of
830    addresses, MEMMODE should be VOIDmode.  */
831 
832 static int
833 rtx_equal_for_cselib_1 (rtx x, rtx y, enum machine_mode memmode)
834 {
835   enum rtx_code code;
836   const char *fmt;
837   int i;
838 
839   if (REG_P (x) || MEM_P (x))
840     {
841       cselib_val *e = cselib_lookup (x, GET_MODE (x), 0, memmode);
842 
843       if (e)
844 	x = e->val_rtx;
845     }
846 
847   if (REG_P (y) || MEM_P (y))
848     {
849       cselib_val *e = cselib_lookup (y, GET_MODE (y), 0, memmode);
850 
851       if (e)
852 	y = e->val_rtx;
853     }
854 
855   if (x == y)
856     return 1;
857 
858   if (GET_CODE (x) == VALUE)
859     {
860       cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (x));
861       struct elt_loc_list *l;
862 
863       if (GET_CODE (y) == VALUE)
864 	return e == canonical_cselib_val (CSELIB_VAL_PTR (y));
865 
866       for (l = e->locs; l; l = l->next)
867 	{
868 	  rtx t = l->loc;
869 
870 	  /* Avoid infinite recursion.  We know we have the canonical
871 	     value, so we can just skip any values in the equivalence
872 	     list.  */
873 	  if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
874 	    continue;
875 	  else if (rtx_equal_for_cselib_1 (t, y, memmode))
876 	    return 1;
877 	}
878 
879       return 0;
880     }
881   else if (GET_CODE (y) == VALUE)
882     {
883       cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (y));
884       struct elt_loc_list *l;
885 
886       for (l = e->locs; l; l = l->next)
887 	{
888 	  rtx t = l->loc;
889 
890 	  if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
891 	    continue;
892 	  else if (rtx_equal_for_cselib_1 (x, t, memmode))
893 	    return 1;
894 	}
895 
896       return 0;
897     }
898 
899   if (GET_MODE (x) != GET_MODE (y))
900     return 0;
901 
902   if (GET_CODE (x) != GET_CODE (y))
903     {
904       rtx xorig = x, yorig = y;
905       rtx xoff = NULL, yoff = NULL;
906 
907       x = autoinc_split (x, &xoff, memmode);
908       y = autoinc_split (y, &yoff, memmode);
909 
910       if (!xoff != !yoff)
911 	return 0;
912 
913       if (xoff && !rtx_equal_for_cselib_1 (xoff, yoff, memmode))
914 	return 0;
915 
916       /* Don't recurse if nothing changed.  */
917       if (x != xorig || y != yorig)
918 	return rtx_equal_for_cselib_1 (x, y, memmode);
919 
920       return 0;
921     }
922 
923   /* These won't be handled correctly by the code below.  */
924   switch (GET_CODE (x))
925     {
926     case CONST_DOUBLE:
927     case CONST_FIXED:
928     case DEBUG_EXPR:
929       return 0;
930 
931     case DEBUG_IMPLICIT_PTR:
932       return DEBUG_IMPLICIT_PTR_DECL (x)
933 	     == DEBUG_IMPLICIT_PTR_DECL (y);
934 
935     case DEBUG_PARAMETER_REF:
936       return DEBUG_PARAMETER_REF_DECL (x)
937 	     == DEBUG_PARAMETER_REF_DECL (y);
938 
939     case ENTRY_VALUE:
940       /* ENTRY_VALUEs are function invariant, it is thus undesirable to
941 	 use rtx_equal_for_cselib_1 to compare the operands.  */
942       return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
943 
944     case LABEL_REF:
945       return XEXP (x, 0) == XEXP (y, 0);
946 
947     case MEM:
948       /* We have to compare any autoinc operations in the addresses
949 	 using this MEM's mode.  */
950       return rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 0), GET_MODE (x));
951 
952     default:
953       break;
954     }
955 
956   code = GET_CODE (x);
957   fmt = GET_RTX_FORMAT (code);
958 
959   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
960     {
961       int j;
962 
963       switch (fmt[i])
964 	{
965 	case 'w':
966 	  if (XWINT (x, i) != XWINT (y, i))
967 	    return 0;
968 	  break;
969 
970 	case 'n':
971 	case 'i':
972 	  if (XINT (x, i) != XINT (y, i))
973 	    return 0;
974 	  break;
975 
976 	case 'V':
977 	case 'E':
978 	  /* Two vectors must have the same length.  */
979 	  if (XVECLEN (x, i) != XVECLEN (y, i))
980 	    return 0;
981 
982 	  /* And the corresponding elements must match.  */
983 	  for (j = 0; j < XVECLEN (x, i); j++)
984 	    if (! rtx_equal_for_cselib_1 (XVECEXP (x, i, j),
985 					  XVECEXP (y, i, j), memmode))
986 	      return 0;
987 	  break;
988 
989 	case 'e':
990 	  if (i == 1
991 	      && targetm.commutative_p (x, UNKNOWN)
992 	      && rtx_equal_for_cselib_1 (XEXP (x, 1), XEXP (y, 0), memmode)
993 	      && rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 1), memmode))
994 	    return 1;
995 	  if (! rtx_equal_for_cselib_1 (XEXP (x, i), XEXP (y, i), memmode))
996 	    return 0;
997 	  break;
998 
999 	case 'S':
1000 	case 's':
1001 	  if (strcmp (XSTR (x, i), XSTR (y, i)))
1002 	    return 0;
1003 	  break;
1004 
1005 	case 'u':
1006 	  /* These are just backpointers, so they don't matter.  */
1007 	  break;
1008 
1009 	case '0':
1010 	case 't':
1011 	  break;
1012 
1013 	  /* It is believed that rtx's at this level will never
1014 	     contain anything but integers and other rtx's,
1015 	     except for within LABEL_REFs and SYMBOL_REFs.  */
1016 	default:
1017 	  gcc_unreachable ();
1018 	}
1019     }
1020   return 1;
1021 }
1022 
1023 /* We need to pass down the mode of constants through the hash table
1024    functions.  For that purpose, wrap them in a CONST of the appropriate
1025    mode.  */
1026 static rtx
1027 wrap_constant (enum machine_mode mode, rtx x)
1028 {
1029   if ((!CONST_SCALAR_INT_P (x)) && GET_CODE (x) != CONST_FIXED)
1030     return x;
1031   gcc_assert (mode != VOIDmode);
1032   return gen_rtx_CONST (mode, x);
1033 }
1034 
1035 /* Hash an rtx.  Return 0 if we couldn't hash the rtx.
1036    For registers and memory locations, we look up their cselib_val structure
1037    and return its VALUE element.
1038    Possible reasons for return 0 are: the object is volatile, or we couldn't
1039    find a register or memory location in the table and CREATE is zero.  If
1040    CREATE is nonzero, table elts are created for regs and mem.
1041    N.B. this hash function returns the same hash value for RTXes that
1042    differ only in the order of operands, thus it is suitable for comparisons
1043    that take commutativity into account.
1044    If we wanted to also support associative rules, we'd have to use a different
1045    strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
1046    MEMMODE indicates the mode of an enclosing MEM, and it's only
1047    used to compute autoinc values.
1048    We used to have a MODE argument for hashing for CONST_INTs, but that
1049    didn't make sense, since it caused spurious hash differences between
1050     (set (reg:SI 1) (const_int))
1051     (plus:SI (reg:SI 2) (reg:SI 1))
1052    and
1053     (plus:SI (reg:SI 2) (const_int))
1054    If the mode is important in any context, it must be checked specifically
1055    in a comparison anyway, since relying on hash differences is unsafe.  */
1056 
1057 static unsigned int
1058 cselib_hash_rtx (rtx x, int create, enum machine_mode memmode)
1059 {
1060   cselib_val *e;
1061   int i, j;
1062   enum rtx_code code;
1063   const char *fmt;
1064   unsigned int hash = 0;
1065 
1066   code = GET_CODE (x);
1067   hash += (unsigned) code + (unsigned) GET_MODE (x);
1068 
1069   switch (code)
1070     {
1071     case VALUE:
1072       e = CSELIB_VAL_PTR (x);
1073       return e->hash;
1074 
1075     case MEM:
1076     case REG:
1077       e = cselib_lookup (x, GET_MODE (x), create, memmode);
1078       if (! e)
1079 	return 0;
1080 
1081       return e->hash;
1082 
1083     case DEBUG_EXPR:
1084       hash += ((unsigned) DEBUG_EXPR << 7)
1085 	      + DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x));
1086       return hash ? hash : (unsigned int) DEBUG_EXPR;
1087 
1088     case DEBUG_IMPLICIT_PTR:
1089       hash += ((unsigned) DEBUG_IMPLICIT_PTR << 7)
1090 	      + DECL_UID (DEBUG_IMPLICIT_PTR_DECL (x));
1091       return hash ? hash : (unsigned int) DEBUG_IMPLICIT_PTR;
1092 
1093     case DEBUG_PARAMETER_REF:
1094       hash += ((unsigned) DEBUG_PARAMETER_REF << 7)
1095 	      + DECL_UID (DEBUG_PARAMETER_REF_DECL (x));
1096       return hash ? hash : (unsigned int) DEBUG_PARAMETER_REF;
1097 
1098     case ENTRY_VALUE:
1099       /* ENTRY_VALUEs are function invariant, thus try to avoid
1100 	 recursing on argument if ENTRY_VALUE is one of the
1101 	 forms emitted by expand_debug_expr, otherwise
1102 	 ENTRY_VALUE hash would depend on the current value
1103 	 in some register or memory.  */
1104       if (REG_P (ENTRY_VALUE_EXP (x)))
1105 	hash += (unsigned int) REG
1106 		+ (unsigned int) GET_MODE (ENTRY_VALUE_EXP (x))
1107 		+ (unsigned int) REGNO (ENTRY_VALUE_EXP (x));
1108       else if (MEM_P (ENTRY_VALUE_EXP (x))
1109 	       && REG_P (XEXP (ENTRY_VALUE_EXP (x), 0)))
1110 	hash += (unsigned int) MEM
1111 		+ (unsigned int) GET_MODE (XEXP (ENTRY_VALUE_EXP (x), 0))
1112 		+ (unsigned int) REGNO (XEXP (ENTRY_VALUE_EXP (x), 0));
1113       else
1114 	hash += cselib_hash_rtx (ENTRY_VALUE_EXP (x), create, memmode);
1115       return hash ? hash : (unsigned int) ENTRY_VALUE;
1116 
1117     case CONST_INT:
1118       hash += ((unsigned) CONST_INT << 7) + INTVAL (x);
1119       return hash ? hash : (unsigned int) CONST_INT;
1120 
1121     case CONST_DOUBLE:
1122       /* This is like the general case, except that it only counts
1123 	 the integers representing the constant.  */
1124       hash += (unsigned) code + (unsigned) GET_MODE (x);
1125       if (GET_MODE (x) != VOIDmode)
1126 	hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
1127       else
1128 	hash += ((unsigned) CONST_DOUBLE_LOW (x)
1129 		 + (unsigned) CONST_DOUBLE_HIGH (x));
1130       return hash ? hash : (unsigned int) CONST_DOUBLE;
1131 
1132     case CONST_FIXED:
1133       hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1134       hash += fixed_hash (CONST_FIXED_VALUE (x));
1135       return hash ? hash : (unsigned int) CONST_FIXED;
1136 
1137     case CONST_VECTOR:
1138       {
1139 	int units;
1140 	rtx elt;
1141 
1142 	units = CONST_VECTOR_NUNITS (x);
1143 
1144 	for (i = 0; i < units; ++i)
1145 	  {
1146 	    elt = CONST_VECTOR_ELT (x, i);
1147 	    hash += cselib_hash_rtx (elt, 0, memmode);
1148 	  }
1149 
1150 	return hash;
1151       }
1152 
1153       /* Assume there is only one rtx object for any given label.  */
1154     case LABEL_REF:
1155       /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1156 	 differences and differences between each stage's debugging dumps.  */
1157       hash += (((unsigned int) LABEL_REF << 7)
1158 	       + CODE_LABEL_NUMBER (XEXP (x, 0)));
1159       return hash ? hash : (unsigned int) LABEL_REF;
1160 
1161     case SYMBOL_REF:
1162       {
1163 	/* Don't hash on the symbol's address to avoid bootstrap differences.
1164 	   Different hash values may cause expressions to be recorded in
1165 	   different orders and thus different registers to be used in the
1166 	   final assembler.  This also avoids differences in the dump files
1167 	   between various stages.  */
1168 	unsigned int h = 0;
1169 	const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1170 
1171 	while (*p)
1172 	  h += (h << 7) + *p++; /* ??? revisit */
1173 
1174 	hash += ((unsigned int) SYMBOL_REF << 7) + h;
1175 	return hash ? hash : (unsigned int) SYMBOL_REF;
1176       }
1177 
1178     case PRE_DEC:
1179     case PRE_INC:
1180       /* We can't compute these without knowing the MEM mode.  */
1181       gcc_assert (memmode != VOIDmode);
1182       i = GET_MODE_SIZE (memmode);
1183       if (code == PRE_DEC)
1184 	i = -i;
1185       /* Adjust the hash so that (mem:MEMMODE (pre_* (reg))) hashes
1186 	 like (mem:MEMMODE (plus (reg) (const_int I))).  */
1187       hash += (unsigned) PLUS - (unsigned)code
1188 	+ cselib_hash_rtx (XEXP (x, 0), create, memmode)
1189 	+ cselib_hash_rtx (GEN_INT (i), create, memmode);
1190       return hash ? hash : 1 + (unsigned) PLUS;
1191 
1192     case PRE_MODIFY:
1193       gcc_assert (memmode != VOIDmode);
1194       return cselib_hash_rtx (XEXP (x, 1), create, memmode);
1195 
1196     case POST_DEC:
1197     case POST_INC:
1198     case POST_MODIFY:
1199       gcc_assert (memmode != VOIDmode);
1200       return cselib_hash_rtx (XEXP (x, 0), create, memmode);
1201 
1202     case PC:
1203     case CC0:
1204     case CALL:
1205     case UNSPEC_VOLATILE:
1206       return 0;
1207 
1208     case ASM_OPERANDS:
1209       if (MEM_VOLATILE_P (x))
1210 	return 0;
1211 
1212       break;
1213 
1214     default:
1215       break;
1216     }
1217 
1218   i = GET_RTX_LENGTH (code) - 1;
1219   fmt = GET_RTX_FORMAT (code);
1220   for (; i >= 0; i--)
1221     {
1222       switch (fmt[i])
1223 	{
1224 	case 'e':
1225 	  {
1226 	    rtx tem = XEXP (x, i);
1227 	    unsigned int tem_hash = cselib_hash_rtx (tem, create, memmode);
1228 
1229 	    if (tem_hash == 0)
1230 	      return 0;
1231 
1232 	    hash += tem_hash;
1233 	  }
1234 	  break;
1235 	case 'E':
1236 	  for (j = 0; j < XVECLEN (x, i); j++)
1237 	    {
1238 	      unsigned int tem_hash
1239 		= cselib_hash_rtx (XVECEXP (x, i, j), create, memmode);
1240 
1241 	      if (tem_hash == 0)
1242 		return 0;
1243 
1244 	      hash += tem_hash;
1245 	    }
1246 	  break;
1247 
1248 	case 's':
1249 	  {
1250 	    const unsigned char *p = (const unsigned char *) XSTR (x, i);
1251 
1252 	    if (p)
1253 	      while (*p)
1254 		hash += *p++;
1255 	    break;
1256 	  }
1257 
1258 	case 'i':
1259 	  hash += XINT (x, i);
1260 	  break;
1261 
1262 	case '0':
1263 	case 't':
1264 	  /* unused */
1265 	  break;
1266 
1267 	default:
1268 	  gcc_unreachable ();
1269 	}
1270     }
1271 
1272   return hash ? hash : 1 + (unsigned int) GET_CODE (x);
1273 }
1274 
1275 /* Create a new value structure for VALUE and initialize it.  The mode of the
1276    value is MODE.  */
1277 
1278 static inline cselib_val *
1279 new_cselib_val (unsigned int hash, enum machine_mode mode, rtx x)
1280 {
1281   cselib_val *e = (cselib_val *) pool_alloc (cselib_val_pool);
1282 
1283   gcc_assert (hash);
1284   gcc_assert (next_uid);
1285 
1286   e->hash = hash;
1287   e->uid = next_uid++;
1288   /* We use an alloc pool to allocate this RTL construct because it
1289      accounts for about 8% of the overall memory usage.  We know
1290      precisely when we can have VALUE RTXen (when cselib is active)
1291      so we don't need to put them in garbage collected memory.
1292      ??? Why should a VALUE be an RTX in the first place?  */
1293   e->val_rtx = (rtx) pool_alloc (value_pool);
1294   memset (e->val_rtx, 0, RTX_HDR_SIZE);
1295   PUT_CODE (e->val_rtx, VALUE);
1296   PUT_MODE (e->val_rtx, mode);
1297   CSELIB_VAL_PTR (e->val_rtx) = e;
1298   e->addr_list = 0;
1299   e->locs = 0;
1300   e->next_containing_mem = 0;
1301 
1302   if (dump_file && (dump_flags & TDF_CSELIB))
1303     {
1304       fprintf (dump_file, "cselib value %u:%u ", e->uid, hash);
1305       if (flag_dump_noaddr || flag_dump_unnumbered)
1306 	fputs ("# ", dump_file);
1307       else
1308 	fprintf (dump_file, "%p ", (void*)e);
1309       print_rtl_single (dump_file, x);
1310       fputc ('\n', dump_file);
1311     }
1312 
1313   return e;
1314 }
1315 
1316 /* ADDR_ELT is a value that is used as address.  MEM_ELT is the value that
1317    contains the data at this address.  X is a MEM that represents the
1318    value.  Update the two value structures to represent this situation.  */
1319 
1320 static void
1321 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
1322 {
1323   struct elt_loc_list *l;
1324 
1325   addr_elt = canonical_cselib_val (addr_elt);
1326   mem_elt = canonical_cselib_val (mem_elt);
1327 
1328   /* Avoid duplicates.  */
1329   for (l = mem_elt->locs; l; l = l->next)
1330     if (MEM_P (l->loc)
1331 	&& CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
1332       {
1333 	promote_debug_loc (l);
1334 	return;
1335       }
1336 
1337   addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
1338   new_elt_loc_list (mem_elt,
1339 		    replace_equiv_address_nv (x, addr_elt->val_rtx));
1340   if (mem_elt->next_containing_mem == NULL)
1341     {
1342       mem_elt->next_containing_mem = first_containing_mem;
1343       first_containing_mem = mem_elt;
1344     }
1345 }
1346 
1347 /* Subroutine of cselib_lookup.  Return a value for X, which is a MEM rtx.
1348    If CREATE, make a new one if we haven't seen it before.  */
1349 
1350 static cselib_val *
1351 cselib_lookup_mem (rtx x, int create)
1352 {
1353   enum machine_mode mode = GET_MODE (x);
1354   enum machine_mode addr_mode;
1355   void **slot;
1356   cselib_val *addr;
1357   cselib_val *mem_elt;
1358   struct elt_list *l;
1359 
1360   if (MEM_VOLATILE_P (x) || mode == BLKmode
1361       || !cselib_record_memory
1362       || (FLOAT_MODE_P (mode) && flag_float_store))
1363     return 0;
1364 
1365   addr_mode = GET_MODE (XEXP (x, 0));
1366   if (addr_mode == VOIDmode)
1367     addr_mode = Pmode;
1368 
1369   /* Look up the value for the address.  */
1370   addr = cselib_lookup (XEXP (x, 0), addr_mode, create, mode);
1371   if (! addr)
1372     return 0;
1373 
1374   addr = canonical_cselib_val (addr);
1375   /* Find a value that describes a value of our mode at that address.  */
1376   for (l = addr->addr_list; l; l = l->next)
1377     if (GET_MODE (l->elt->val_rtx) == mode)
1378       {
1379 	promote_debug_loc (l->elt->locs);
1380 	return l->elt;
1381       }
1382 
1383   if (! create)
1384     return 0;
1385 
1386   mem_elt = new_cselib_val (next_uid, mode, x);
1387   add_mem_for_addr (addr, mem_elt, x);
1388   slot = cselib_find_slot (wrap_constant (mode, x), mem_elt->hash,
1389 			   INSERT, mode);
1390   *slot = mem_elt;
1391   return mem_elt;
1392 }
1393 
1394 /* Search through the possible substitutions in P.  We prefer a non reg
1395    substitution because this allows us to expand the tree further.  If
1396    we find, just a reg, take the lowest regno.  There may be several
1397    non-reg results, we just take the first one because they will all
1398    expand to the same place.  */
1399 
1400 static rtx
1401 expand_loc (struct elt_loc_list *p, struct expand_value_data *evd,
1402 	    int max_depth)
1403 {
1404   rtx reg_result = NULL;
1405   unsigned int regno = UINT_MAX;
1406   struct elt_loc_list *p_in = p;
1407 
1408   for (; p; p = p->next)
1409     {
1410       /* Return these right away to avoid returning stack pointer based
1411 	 expressions for frame pointer and vice versa, which is something
1412 	 that would confuse DSE.  See the comment in cselib_expand_value_rtx_1
1413 	 for more details.  */
1414       if (REG_P (p->loc)
1415 	  && (REGNO (p->loc) == STACK_POINTER_REGNUM
1416 	      || REGNO (p->loc) == FRAME_POINTER_REGNUM
1417 	      || REGNO (p->loc) == HARD_FRAME_POINTER_REGNUM
1418 	      || REGNO (p->loc) == cfa_base_preserved_regno))
1419 	return p->loc;
1420       /* Avoid infinite recursion trying to expand a reg into a
1421 	 the same reg.  */
1422       if ((REG_P (p->loc))
1423 	  && (REGNO (p->loc) < regno)
1424 	  && !bitmap_bit_p (evd->regs_active, REGNO (p->loc)))
1425 	{
1426 	  reg_result = p->loc;
1427 	  regno = REGNO (p->loc);
1428 	}
1429       /* Avoid infinite recursion and do not try to expand the
1430 	 value.  */
1431       else if (GET_CODE (p->loc) == VALUE
1432 	       && CSELIB_VAL_PTR (p->loc)->locs == p_in)
1433 	continue;
1434       else if (!REG_P (p->loc))
1435 	{
1436 	  rtx result, note;
1437 	  if (dump_file && (dump_flags & TDF_CSELIB))
1438 	    {
1439 	      print_inline_rtx (dump_file, p->loc, 0);
1440 	      fprintf (dump_file, "\n");
1441 	    }
1442 	  if (GET_CODE (p->loc) == LO_SUM
1443 	      && GET_CODE (XEXP (p->loc, 1)) == SYMBOL_REF
1444 	      && p->setting_insn
1445 	      && (note = find_reg_note (p->setting_insn, REG_EQUAL, NULL_RTX))
1446 	      && XEXP (note, 0) == XEXP (p->loc, 1))
1447 	    return XEXP (p->loc, 1);
1448 	  result = cselib_expand_value_rtx_1 (p->loc, evd, max_depth - 1);
1449 	  if (result)
1450 	    return result;
1451 	}
1452 
1453     }
1454 
1455   if (regno != UINT_MAX)
1456     {
1457       rtx result;
1458       if (dump_file && (dump_flags & TDF_CSELIB))
1459 	fprintf (dump_file, "r%d\n", regno);
1460 
1461       result = cselib_expand_value_rtx_1 (reg_result, evd, max_depth - 1);
1462       if (result)
1463 	return result;
1464     }
1465 
1466   if (dump_file && (dump_flags & TDF_CSELIB))
1467     {
1468       if (reg_result)
1469 	{
1470 	  print_inline_rtx (dump_file, reg_result, 0);
1471 	  fprintf (dump_file, "\n");
1472 	}
1473       else
1474 	fprintf (dump_file, "NULL\n");
1475     }
1476   return reg_result;
1477 }
1478 
1479 
1480 /* Forward substitute and expand an expression out to its roots.
1481    This is the opposite of common subexpression.  Because local value
1482    numbering is such a weak optimization, the expanded expression is
1483    pretty much unique (not from a pointer equals point of view but
1484    from a tree shape point of view.
1485 
1486    This function returns NULL if the expansion fails.  The expansion
1487    will fail if there is no value number for one of the operands or if
1488    one of the operands has been overwritten between the current insn
1489    and the beginning of the basic block.  For instance x has no
1490    expansion in:
1491 
1492    r1 <- r1 + 3
1493    x <- r1 + 8
1494 
1495    REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
1496    It is clear on return.  */
1497 
1498 rtx
1499 cselib_expand_value_rtx (rtx orig, bitmap regs_active, int max_depth)
1500 {
1501   struct expand_value_data evd;
1502 
1503   evd.regs_active = regs_active;
1504   evd.callback = NULL;
1505   evd.callback_arg = NULL;
1506   evd.dummy = false;
1507 
1508   return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1509 }
1510 
1511 /* Same as cselib_expand_value_rtx, but using a callback to try to
1512    resolve some expressions.  The CB function should return ORIG if it
1513    can't or does not want to deal with a certain RTX.  Any other
1514    return value, including NULL, will be used as the expansion for
1515    VALUE, without any further changes.  */
1516 
1517 rtx
1518 cselib_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1519 			    cselib_expand_callback cb, void *data)
1520 {
1521   struct expand_value_data evd;
1522 
1523   evd.regs_active = regs_active;
1524   evd.callback = cb;
1525   evd.callback_arg = data;
1526   evd.dummy = false;
1527 
1528   return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1529 }
1530 
1531 /* Similar to cselib_expand_value_rtx_cb, but no rtxs are actually copied
1532    or simplified.  Useful to find out whether cselib_expand_value_rtx_cb
1533    would return NULL or non-NULL, without allocating new rtx.  */
1534 
1535 bool
1536 cselib_dummy_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1537 				  cselib_expand_callback cb, void *data)
1538 {
1539   struct expand_value_data evd;
1540 
1541   evd.regs_active = regs_active;
1542   evd.callback = cb;
1543   evd.callback_arg = data;
1544   evd.dummy = true;
1545 
1546   return cselib_expand_value_rtx_1 (orig, &evd, max_depth) != NULL;
1547 }
1548 
1549 /* Internal implementation of cselib_expand_value_rtx and
1550    cselib_expand_value_rtx_cb.  */
1551 
1552 static rtx
1553 cselib_expand_value_rtx_1 (rtx orig, struct expand_value_data *evd,
1554 			   int max_depth)
1555 {
1556   rtx copy, scopy;
1557   int i, j;
1558   RTX_CODE code;
1559   const char *format_ptr;
1560   enum machine_mode mode;
1561 
1562   code = GET_CODE (orig);
1563 
1564   /* For the context of dse, if we end up expand into a huge tree, we
1565      will not have a useful address, so we might as well just give up
1566      quickly.  */
1567   if (max_depth <= 0)
1568     return NULL;
1569 
1570   switch (code)
1571     {
1572     case REG:
1573       {
1574 	struct elt_list *l = REG_VALUES (REGNO (orig));
1575 
1576 	if (l && l->elt == NULL)
1577 	  l = l->next;
1578 	for (; l; l = l->next)
1579 	  if (GET_MODE (l->elt->val_rtx) == GET_MODE (orig))
1580 	    {
1581 	      rtx result;
1582 	      unsigned regno = REGNO (orig);
1583 
1584 	      /* The only thing that we are not willing to do (this
1585 		 is requirement of dse and if others potential uses
1586 		 need this function we should add a parm to control
1587 		 it) is that we will not substitute the
1588 		 STACK_POINTER_REGNUM, FRAME_POINTER or the
1589 		 HARD_FRAME_POINTER.
1590 
1591 		 These expansions confuses the code that notices that
1592 		 stores into the frame go dead at the end of the
1593 		 function and that the frame is not effected by calls
1594 		 to subroutines.  If you allow the
1595 		 STACK_POINTER_REGNUM substitution, then dse will
1596 		 think that parameter pushing also goes dead which is
1597 		 wrong.  If you allow the FRAME_POINTER or the
1598 		 HARD_FRAME_POINTER then you lose the opportunity to
1599 		 make the frame assumptions.  */
1600 	      if (regno == STACK_POINTER_REGNUM
1601 		  || regno == FRAME_POINTER_REGNUM
1602 		  || regno == HARD_FRAME_POINTER_REGNUM
1603 		  || regno == cfa_base_preserved_regno)
1604 		return orig;
1605 
1606 	      bitmap_set_bit (evd->regs_active, regno);
1607 
1608 	      if (dump_file && (dump_flags & TDF_CSELIB))
1609 		fprintf (dump_file, "expanding: r%d into: ", regno);
1610 
1611 	      result = expand_loc (l->elt->locs, evd, max_depth);
1612 	      bitmap_clear_bit (evd->regs_active, regno);
1613 
1614 	      if (result)
1615 		return result;
1616 	      else
1617 		return orig;
1618 	    }
1619       }
1620 
1621     CASE_CONST_ANY:
1622     case SYMBOL_REF:
1623     case CODE_LABEL:
1624     case PC:
1625     case CC0:
1626     case SCRATCH:
1627       /* SCRATCH must be shared because they represent distinct values.  */
1628       return orig;
1629     case CLOBBER:
1630       if (REG_P (XEXP (orig, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0))))
1631 	return orig;
1632       break;
1633 
1634     case CONST:
1635       if (shared_const_p (orig))
1636 	return orig;
1637       break;
1638 
1639     case SUBREG:
1640       {
1641 	rtx subreg;
1642 
1643 	if (evd->callback)
1644 	  {
1645 	    subreg = evd->callback (orig, evd->regs_active, max_depth,
1646 				    evd->callback_arg);
1647 	    if (subreg != orig)
1648 	      return subreg;
1649 	  }
1650 
1651 	subreg = cselib_expand_value_rtx_1 (SUBREG_REG (orig), evd,
1652 					    max_depth - 1);
1653 	if (!subreg)
1654 	  return NULL;
1655 	scopy = simplify_gen_subreg (GET_MODE (orig), subreg,
1656 				     GET_MODE (SUBREG_REG (orig)),
1657 				     SUBREG_BYTE (orig));
1658 	if (scopy == NULL
1659 	    || (GET_CODE (scopy) == SUBREG
1660 		&& !REG_P (SUBREG_REG (scopy))
1661 		&& !MEM_P (SUBREG_REG (scopy))))
1662 	  return NULL;
1663 
1664 	return scopy;
1665       }
1666 
1667     case VALUE:
1668       {
1669 	rtx result;
1670 
1671 	if (dump_file && (dump_flags & TDF_CSELIB))
1672 	  {
1673 	    fputs ("\nexpanding ", dump_file);
1674 	    print_rtl_single (dump_file, orig);
1675 	    fputs (" into...", dump_file);
1676 	  }
1677 
1678 	if (evd->callback)
1679 	  {
1680 	    result = evd->callback (orig, evd->regs_active, max_depth,
1681 				    evd->callback_arg);
1682 
1683 	    if (result != orig)
1684 	      return result;
1685 	  }
1686 
1687 	result = expand_loc (CSELIB_VAL_PTR (orig)->locs, evd, max_depth);
1688 	return result;
1689       }
1690 
1691     case DEBUG_EXPR:
1692       if (evd->callback)
1693 	return evd->callback (orig, evd->regs_active, max_depth,
1694 			      evd->callback_arg);
1695       return orig;
1696 
1697     default:
1698       break;
1699     }
1700 
1701   /* Copy the various flags, fields, and other information.  We assume
1702      that all fields need copying, and then clear the fields that should
1703      not be copied.  That is the sensible default behavior, and forces
1704      us to explicitly document why we are *not* copying a flag.  */
1705   if (evd->dummy)
1706     copy = NULL;
1707   else
1708     copy = shallow_copy_rtx (orig);
1709 
1710   format_ptr = GET_RTX_FORMAT (code);
1711 
1712   for (i = 0; i < GET_RTX_LENGTH (code); i++)
1713     switch (*format_ptr++)
1714       {
1715       case 'e':
1716 	if (XEXP (orig, i) != NULL)
1717 	  {
1718 	    rtx result = cselib_expand_value_rtx_1 (XEXP (orig, i), evd,
1719 						    max_depth - 1);
1720 	    if (!result)
1721 	      return NULL;
1722 	    if (copy)
1723 	      XEXP (copy, i) = result;
1724 	  }
1725 	break;
1726 
1727       case 'E':
1728       case 'V':
1729 	if (XVEC (orig, i) != NULL)
1730 	  {
1731 	    if (copy)
1732 	      XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
1733 	    for (j = 0; j < XVECLEN (orig, i); j++)
1734 	      {
1735 		rtx result = cselib_expand_value_rtx_1 (XVECEXP (orig, i, j),
1736 							evd, max_depth - 1);
1737 		if (!result)
1738 		  return NULL;
1739 		if (copy)
1740 		  XVECEXP (copy, i, j) = result;
1741 	      }
1742 	  }
1743 	break;
1744 
1745       case 't':
1746       case 'w':
1747       case 'i':
1748       case 's':
1749       case 'S':
1750       case 'T':
1751       case 'u':
1752       case 'B':
1753       case '0':
1754 	/* These are left unchanged.  */
1755 	break;
1756 
1757       default:
1758 	gcc_unreachable ();
1759       }
1760 
1761   if (evd->dummy)
1762     return orig;
1763 
1764   mode = GET_MODE (copy);
1765   /* If an operand has been simplified into CONST_INT, which doesn't
1766      have a mode and the mode isn't derivable from whole rtx's mode,
1767      try simplify_*_operation first with mode from original's operand
1768      and as a fallback wrap CONST_INT into gen_rtx_CONST.  */
1769   scopy = copy;
1770   switch (GET_RTX_CLASS (code))
1771     {
1772     case RTX_UNARY:
1773       if (CONST_INT_P (XEXP (copy, 0))
1774 	  && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1775 	{
1776 	  scopy = simplify_unary_operation (code, mode, XEXP (copy, 0),
1777 					    GET_MODE (XEXP (orig, 0)));
1778 	  if (scopy)
1779 	    return scopy;
1780 	}
1781       break;
1782     case RTX_COMM_ARITH:
1783     case RTX_BIN_ARITH:
1784       /* These expressions can derive operand modes from the whole rtx's mode.  */
1785       break;
1786     case RTX_TERNARY:
1787     case RTX_BITFIELD_OPS:
1788       if (CONST_INT_P (XEXP (copy, 0))
1789 	  && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1790 	{
1791 	  scopy = simplify_ternary_operation (code, mode,
1792 					      GET_MODE (XEXP (orig, 0)),
1793 					      XEXP (copy, 0), XEXP (copy, 1),
1794 					      XEXP (copy, 2));
1795 	  if (scopy)
1796 	    return scopy;
1797 	}
1798       break;
1799     case RTX_COMPARE:
1800     case RTX_COMM_COMPARE:
1801       if (CONST_INT_P (XEXP (copy, 0))
1802 	  && GET_MODE (XEXP (copy, 1)) == VOIDmode
1803 	  && (GET_MODE (XEXP (orig, 0)) != VOIDmode
1804 	      || GET_MODE (XEXP (orig, 1)) != VOIDmode))
1805 	{
1806 	  scopy = simplify_relational_operation (code, mode,
1807 						 (GET_MODE (XEXP (orig, 0))
1808 						  != VOIDmode)
1809 						 ? GET_MODE (XEXP (orig, 0))
1810 						 : GET_MODE (XEXP (orig, 1)),
1811 						 XEXP (copy, 0),
1812 						 XEXP (copy, 1));
1813 	  if (scopy)
1814 	    return scopy;
1815 	}
1816       break;
1817     default:
1818       break;
1819     }
1820   scopy = simplify_rtx (copy);
1821   if (scopy)
1822     return scopy;
1823   return copy;
1824 }
1825 
1826 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
1827    with VALUE expressions.  This way, it becomes independent of changes
1828    to registers and memory.
1829    X isn't actually modified; if modifications are needed, new rtl is
1830    allocated.  However, the return value can share rtl with X.
1831    If X is within a MEM, MEMMODE must be the mode of the MEM.  */
1832 
1833 rtx
1834 cselib_subst_to_values (rtx x, enum machine_mode memmode)
1835 {
1836   enum rtx_code code = GET_CODE (x);
1837   const char *fmt = GET_RTX_FORMAT (code);
1838   cselib_val *e;
1839   struct elt_list *l;
1840   rtx copy = x;
1841   int i;
1842 
1843   switch (code)
1844     {
1845     case REG:
1846       l = REG_VALUES (REGNO (x));
1847       if (l && l->elt == NULL)
1848 	l = l->next;
1849       for (; l; l = l->next)
1850 	if (GET_MODE (l->elt->val_rtx) == GET_MODE (x))
1851 	  return l->elt->val_rtx;
1852 
1853       gcc_unreachable ();
1854 
1855     case MEM:
1856       e = cselib_lookup_mem (x, 0);
1857       /* This used to happen for autoincrements, but we deal with them
1858 	 properly now.  Remove the if stmt for the next release.  */
1859       if (! e)
1860 	{
1861 	  /* Assign a value that doesn't match any other.  */
1862 	  e = new_cselib_val (next_uid, GET_MODE (x), x);
1863 	}
1864       return e->val_rtx;
1865 
1866     case ENTRY_VALUE:
1867       e = cselib_lookup (x, GET_MODE (x), 0, memmode);
1868       if (! e)
1869 	break;
1870       return e->val_rtx;
1871 
1872     CASE_CONST_ANY:
1873       return x;
1874 
1875     case PRE_DEC:
1876     case PRE_INC:
1877       gcc_assert (memmode != VOIDmode);
1878       i = GET_MODE_SIZE (memmode);
1879       if (code == PRE_DEC)
1880 	i = -i;
1881       return cselib_subst_to_values (plus_constant (GET_MODE (x),
1882 						    XEXP (x, 0), i),
1883 				     memmode);
1884 
1885     case PRE_MODIFY:
1886       gcc_assert (memmode != VOIDmode);
1887       return cselib_subst_to_values (XEXP (x, 1), memmode);
1888 
1889     case POST_DEC:
1890     case POST_INC:
1891     case POST_MODIFY:
1892       gcc_assert (memmode != VOIDmode);
1893       return cselib_subst_to_values (XEXP (x, 0), memmode);
1894 
1895     default:
1896       break;
1897     }
1898 
1899   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1900     {
1901       if (fmt[i] == 'e')
1902 	{
1903 	  rtx t = cselib_subst_to_values (XEXP (x, i), memmode);
1904 
1905 	  if (t != XEXP (x, i))
1906 	    {
1907 	      if (x == copy)
1908 		copy = shallow_copy_rtx (x);
1909 	      XEXP (copy, i) = t;
1910 	    }
1911 	}
1912       else if (fmt[i] == 'E')
1913 	{
1914 	  int j;
1915 
1916 	  for (j = 0; j < XVECLEN (x, i); j++)
1917 	    {
1918 	      rtx t = cselib_subst_to_values (XVECEXP (x, i, j), memmode);
1919 
1920 	      if (t != XVECEXP (x, i, j))
1921 		{
1922 		  if (XVEC (x, i) == XVEC (copy, i))
1923 		    {
1924 		      if (x == copy)
1925 			copy = shallow_copy_rtx (x);
1926 		      XVEC (copy, i) = shallow_copy_rtvec (XVEC (x, i));
1927 		    }
1928 		  XVECEXP (copy, i, j) = t;
1929 		}
1930 	    }
1931 	}
1932     }
1933 
1934   return copy;
1935 }
1936 
1937 /* Wrapper for cselib_subst_to_values, that indicates X is in INSN.  */
1938 
1939 rtx
1940 cselib_subst_to_values_from_insn (rtx x, enum machine_mode memmode, rtx insn)
1941 {
1942   rtx ret;
1943   gcc_assert (!cselib_current_insn);
1944   cselib_current_insn = insn;
1945   ret = cselib_subst_to_values (x, memmode);
1946   cselib_current_insn = NULL;
1947   return ret;
1948 }
1949 
1950 /* Look up the rtl expression X in our tables and return the value it
1951    has.  If CREATE is zero, we return NULL if we don't know the value.
1952    Otherwise, we create a new one if possible, using mode MODE if X
1953    doesn't have a mode (i.e. because it's a constant).  When X is part
1954    of an address, MEMMODE should be the mode of the enclosing MEM if
1955    we're tracking autoinc expressions.  */
1956 
1957 static cselib_val *
1958 cselib_lookup_1 (rtx x, enum machine_mode mode,
1959 		 int create, enum machine_mode memmode)
1960 {
1961   void **slot;
1962   cselib_val *e;
1963   unsigned int hashval;
1964 
1965   if (GET_MODE (x) != VOIDmode)
1966     mode = GET_MODE (x);
1967 
1968   if (GET_CODE (x) == VALUE)
1969     return CSELIB_VAL_PTR (x);
1970 
1971   if (REG_P (x))
1972     {
1973       struct elt_list *l;
1974       unsigned int i = REGNO (x);
1975 
1976       l = REG_VALUES (i);
1977       if (l && l->elt == NULL)
1978 	l = l->next;
1979       for (; l; l = l->next)
1980 	if (mode == GET_MODE (l->elt->val_rtx))
1981 	  {
1982 	    promote_debug_loc (l->elt->locs);
1983 	    return l->elt;
1984 	  }
1985 
1986       if (! create)
1987 	return 0;
1988 
1989       if (i < FIRST_PSEUDO_REGISTER)
1990 	{
1991 	  unsigned int n = hard_regno_nregs[i][mode];
1992 
1993 	  if (n > max_value_regs)
1994 	    max_value_regs = n;
1995 	}
1996 
1997       e = new_cselib_val (next_uid, GET_MODE (x), x);
1998       new_elt_loc_list (e, x);
1999       if (REG_VALUES (i) == 0)
2000 	{
2001 	  /* Maintain the invariant that the first entry of
2002 	     REG_VALUES, if present, must be the value used to set the
2003 	     register, or NULL.  */
2004 	  used_regs[n_used_regs++] = i;
2005 	  REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
2006 	}
2007       else if (cselib_preserve_constants
2008 	       && GET_MODE_CLASS (mode) == MODE_INT)
2009 	{
2010 	  /* During var-tracking, try harder to find equivalences
2011 	     for SUBREGs.  If a setter sets say a DImode register
2012 	     and user uses that register only in SImode, add a lowpart
2013 	     subreg location.  */
2014 	  struct elt_list *lwider = NULL;
2015 	  l = REG_VALUES (i);
2016 	  if (l && l->elt == NULL)
2017 	    l = l->next;
2018 	  for (; l; l = l->next)
2019 	    if (GET_MODE_CLASS (GET_MODE (l->elt->val_rtx)) == MODE_INT
2020 		&& GET_MODE_SIZE (GET_MODE (l->elt->val_rtx))
2021 		   > GET_MODE_SIZE (mode)
2022 		&& (lwider == NULL
2023 		    || GET_MODE_SIZE (GET_MODE (l->elt->val_rtx))
2024 		       < GET_MODE_SIZE (GET_MODE (lwider->elt->val_rtx))))
2025 	      {
2026 		struct elt_loc_list *el;
2027 		if (i < FIRST_PSEUDO_REGISTER
2028 		    && hard_regno_nregs[i][GET_MODE (l->elt->val_rtx)] != 1)
2029 		  continue;
2030 		for (el = l->elt->locs; el; el = el->next)
2031 		  if (!REG_P (el->loc))
2032 		    break;
2033 		if (el)
2034 		  lwider = l;
2035 	      }
2036 	  if (lwider)
2037 	    {
2038 	      rtx sub = lowpart_subreg (mode, lwider->elt->val_rtx,
2039 					GET_MODE (lwider->elt->val_rtx));
2040 	      if (sub)
2041 		new_elt_loc_list (e, sub);
2042 	    }
2043 	}
2044       REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
2045       slot = cselib_find_slot (x, e->hash, INSERT, memmode);
2046       *slot = e;
2047       return e;
2048     }
2049 
2050   if (MEM_P (x))
2051     return cselib_lookup_mem (x, create);
2052 
2053   hashval = cselib_hash_rtx (x, create, memmode);
2054   /* Can't even create if hashing is not possible.  */
2055   if (! hashval)
2056     return 0;
2057 
2058   slot = cselib_find_slot (wrap_constant (mode, x), hashval,
2059 			   create ? INSERT : NO_INSERT, memmode);
2060   if (slot == 0)
2061     return 0;
2062 
2063   e = (cselib_val *) *slot;
2064   if (e)
2065     return e;
2066 
2067   e = new_cselib_val (hashval, mode, x);
2068 
2069   /* We have to fill the slot before calling cselib_subst_to_values:
2070      the hash table is inconsistent until we do so, and
2071      cselib_subst_to_values will need to do lookups.  */
2072   *slot = (void *) e;
2073   new_elt_loc_list (e, cselib_subst_to_values (x, memmode));
2074   return e;
2075 }
2076 
2077 /* Wrapper for cselib_lookup, that indicates X is in INSN.  */
2078 
2079 cselib_val *
2080 cselib_lookup_from_insn (rtx x, enum machine_mode mode,
2081 			 int create, enum machine_mode memmode, rtx insn)
2082 {
2083   cselib_val *ret;
2084 
2085   gcc_assert (!cselib_current_insn);
2086   cselib_current_insn = insn;
2087 
2088   ret = cselib_lookup (x, mode, create, memmode);
2089 
2090   cselib_current_insn = NULL;
2091 
2092   return ret;
2093 }
2094 
2095 /* Wrapper for cselib_lookup_1, that logs the lookup result and
2096    maintains invariants related with debug insns.  */
2097 
2098 cselib_val *
2099 cselib_lookup (rtx x, enum machine_mode mode,
2100 	       int create, enum machine_mode memmode)
2101 {
2102   cselib_val *ret = cselib_lookup_1 (x, mode, create, memmode);
2103 
2104   /* ??? Should we return NULL if we're not to create an entry, the
2105      found loc is a debug loc and cselib_current_insn is not DEBUG?
2106      If so, we should also avoid converting val to non-DEBUG; probably
2107      easiest setting cselib_current_insn to NULL before the call
2108      above.  */
2109 
2110   if (dump_file && (dump_flags & TDF_CSELIB))
2111     {
2112       fputs ("cselib lookup ", dump_file);
2113       print_inline_rtx (dump_file, x, 2);
2114       fprintf (dump_file, " => %u:%u\n",
2115 	       ret ? ret->uid : 0,
2116 	       ret ? ret->hash : 0);
2117     }
2118 
2119   return ret;
2120 }
2121 
2122 /* Invalidate any entries in reg_values that overlap REGNO.  This is called
2123    if REGNO is changing.  MODE is the mode of the assignment to REGNO, which
2124    is used to determine how many hard registers are being changed.  If MODE
2125    is VOIDmode, then only REGNO is being changed; this is used when
2126    invalidating call clobbered registers across a call.  */
2127 
2128 static void
2129 cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
2130 {
2131   unsigned int endregno;
2132   unsigned int i;
2133 
2134   /* If we see pseudos after reload, something is _wrong_.  */
2135   gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
2136 	      || reg_renumber[regno] < 0);
2137 
2138   /* Determine the range of registers that must be invalidated.  For
2139      pseudos, only REGNO is affected.  For hard regs, we must take MODE
2140      into account, and we must also invalidate lower register numbers
2141      if they contain values that overlap REGNO.  */
2142   if (regno < FIRST_PSEUDO_REGISTER)
2143     {
2144       gcc_assert (mode != VOIDmode);
2145 
2146       if (regno < max_value_regs)
2147 	i = 0;
2148       else
2149 	i = regno - max_value_regs;
2150 
2151       endregno = end_hard_regno (mode, regno);
2152     }
2153   else
2154     {
2155       i = regno;
2156       endregno = regno + 1;
2157     }
2158 
2159   for (; i < endregno; i++)
2160     {
2161       struct elt_list **l = &REG_VALUES (i);
2162 
2163       /* Go through all known values for this reg; if it overlaps the range
2164 	 we're invalidating, remove the value.  */
2165       while (*l)
2166 	{
2167 	  cselib_val *v = (*l)->elt;
2168 	  bool had_locs;
2169 	  rtx setting_insn;
2170 	  struct elt_loc_list **p;
2171 	  unsigned int this_last = i;
2172 
2173 	  if (i < FIRST_PSEUDO_REGISTER && v != NULL)
2174 	    this_last = end_hard_regno (GET_MODE (v->val_rtx), i) - 1;
2175 
2176 	  if (this_last < regno || v == NULL
2177 	      || (v == cfa_base_preserved_val
2178 		  && i == cfa_base_preserved_regno))
2179 	    {
2180 	      l = &(*l)->next;
2181 	      continue;
2182 	    }
2183 
2184 	  /* We have an overlap.  */
2185 	  if (*l == REG_VALUES (i))
2186 	    {
2187 	      /* Maintain the invariant that the first entry of
2188 		 REG_VALUES, if present, must be the value used to set
2189 		 the register, or NULL.  This is also nice because
2190 		 then we won't push the same regno onto user_regs
2191 		 multiple times.  */
2192 	      (*l)->elt = NULL;
2193 	      l = &(*l)->next;
2194 	    }
2195 	  else
2196 	    unchain_one_elt_list (l);
2197 
2198 	  v = canonical_cselib_val (v);
2199 
2200 	  had_locs = v->locs != NULL;
2201 	  setting_insn = v->locs ? v->locs->setting_insn : NULL;
2202 
2203 	  /* Now, we clear the mapping from value to reg.  It must exist, so
2204 	     this code will crash intentionally if it doesn't.  */
2205 	  for (p = &v->locs; ; p = &(*p)->next)
2206 	    {
2207 	      rtx x = (*p)->loc;
2208 
2209 	      if (REG_P (x) && REGNO (x) == i)
2210 		{
2211 		  unchain_one_elt_loc_list (p);
2212 		  break;
2213 		}
2214 	    }
2215 
2216 	  if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
2217 	    {
2218 	      if (setting_insn && DEBUG_INSN_P (setting_insn))
2219 		n_useless_debug_values++;
2220 	      else
2221 		n_useless_values++;
2222 	    }
2223 	}
2224     }
2225 }
2226 
2227 /* Invalidate any locations in the table which are changed because of a
2228    store to MEM_RTX.  If this is called because of a non-const call
2229    instruction, MEM_RTX is (mem:BLK const0_rtx).  */
2230 
2231 static void
2232 cselib_invalidate_mem (rtx mem_rtx)
2233 {
2234   cselib_val **vp, *v, *next;
2235   int num_mems = 0;
2236   rtx mem_addr;
2237 
2238   mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
2239   mem_rtx = canon_rtx (mem_rtx);
2240 
2241   vp = &first_containing_mem;
2242   for (v = *vp; v != &dummy_val; v = next)
2243     {
2244       bool has_mem = false;
2245       struct elt_loc_list **p = &v->locs;
2246       bool had_locs = v->locs != NULL;
2247       rtx setting_insn = v->locs ? v->locs->setting_insn : NULL;
2248 
2249       while (*p)
2250 	{
2251 	  rtx x = (*p)->loc;
2252 	  cselib_val *addr;
2253 	  struct elt_list **mem_chain;
2254 
2255 	  /* MEMs may occur in locations only at the top level; below
2256 	     that every MEM or REG is substituted by its VALUE.  */
2257 	  if (!MEM_P (x))
2258 	    {
2259 	      p = &(*p)->next;
2260 	      continue;
2261 	    }
2262 	  if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
2263 	      && ! canon_anti_dependence (x, false, mem_rtx,
2264 					  GET_MODE (mem_rtx), mem_addr))
2265 	    {
2266 	      has_mem = true;
2267 	      num_mems++;
2268 	      p = &(*p)->next;
2269 	      continue;
2270 	    }
2271 
2272 	  /* This one overlaps.  */
2273 	  /* We must have a mapping from this MEM's address to the
2274 	     value (E).  Remove that, too.  */
2275 	  addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0, GET_MODE (x));
2276 	  addr = canonical_cselib_val (addr);
2277 	  gcc_checking_assert (v == canonical_cselib_val (v));
2278 	  mem_chain = &addr->addr_list;
2279 	  for (;;)
2280 	    {
2281 	      cselib_val *canon = canonical_cselib_val ((*mem_chain)->elt);
2282 
2283 	      if (canon == v)
2284 		{
2285 		  unchain_one_elt_list (mem_chain);
2286 		  break;
2287 		}
2288 
2289 	      /* Record canonicalized elt.  */
2290 	      (*mem_chain)->elt = canon;
2291 
2292 	      mem_chain = &(*mem_chain)->next;
2293 	    }
2294 
2295 	  unchain_one_elt_loc_list (p);
2296 	}
2297 
2298       if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
2299 	{
2300 	  if (setting_insn && DEBUG_INSN_P (setting_insn))
2301 	    n_useless_debug_values++;
2302 	  else
2303 	    n_useless_values++;
2304 	}
2305 
2306       next = v->next_containing_mem;
2307       if (has_mem)
2308 	{
2309 	  *vp = v;
2310 	  vp = &(*vp)->next_containing_mem;
2311 	}
2312       else
2313 	v->next_containing_mem = NULL;
2314     }
2315   *vp = &dummy_val;
2316 }
2317 
2318 /* Invalidate DEST, which is being assigned to or clobbered.  */
2319 
2320 void
2321 cselib_invalidate_rtx (rtx dest)
2322 {
2323   while (GET_CODE (dest) == SUBREG
2324 	 || GET_CODE (dest) == ZERO_EXTRACT
2325 	 || GET_CODE (dest) == STRICT_LOW_PART)
2326     dest = XEXP (dest, 0);
2327 
2328   if (REG_P (dest))
2329     cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
2330   else if (MEM_P (dest))
2331     cselib_invalidate_mem (dest);
2332 }
2333 
2334 /* A wrapper for cselib_invalidate_rtx to be called via note_stores.  */
2335 
2336 static void
2337 cselib_invalidate_rtx_note_stores (rtx dest, const_rtx ignore ATTRIBUTE_UNUSED,
2338 				   void *data ATTRIBUTE_UNUSED)
2339 {
2340   cselib_invalidate_rtx (dest);
2341 }
2342 
2343 /* Record the result of a SET instruction.  DEST is being set; the source
2344    contains the value described by SRC_ELT.  If DEST is a MEM, DEST_ADDR_ELT
2345    describes its address.  */
2346 
2347 static void
2348 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
2349 {
2350   int dreg = REG_P (dest) ? (int) REGNO (dest) : -1;
2351 
2352   if (src_elt == 0 || side_effects_p (dest))
2353     return;
2354 
2355   if (dreg >= 0)
2356     {
2357       if (dreg < FIRST_PSEUDO_REGISTER)
2358 	{
2359 	  unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
2360 
2361 	  if (n > max_value_regs)
2362 	    max_value_regs = n;
2363 	}
2364 
2365       if (REG_VALUES (dreg) == 0)
2366 	{
2367 	  used_regs[n_used_regs++] = dreg;
2368 	  REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
2369 	}
2370       else
2371 	{
2372 	  /* The register should have been invalidated.  */
2373 	  gcc_assert (REG_VALUES (dreg)->elt == 0);
2374 	  REG_VALUES (dreg)->elt = src_elt;
2375 	}
2376 
2377       if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
2378 	n_useless_values--;
2379       new_elt_loc_list (src_elt, dest);
2380     }
2381   else if (MEM_P (dest) && dest_addr_elt != 0
2382 	   && cselib_record_memory)
2383     {
2384       if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
2385 	n_useless_values--;
2386       add_mem_for_addr (dest_addr_elt, src_elt, dest);
2387     }
2388 }
2389 
2390 /* Make ELT and X's VALUE equivalent to each other at INSN.  */
2391 
2392 void
2393 cselib_add_permanent_equiv (cselib_val *elt, rtx x, rtx insn)
2394 {
2395   cselib_val *nelt;
2396   rtx save_cselib_current_insn = cselib_current_insn;
2397 
2398   gcc_checking_assert (elt);
2399   gcc_checking_assert (PRESERVED_VALUE_P (elt->val_rtx));
2400   gcc_checking_assert (!side_effects_p (x));
2401 
2402   cselib_current_insn = insn;
2403 
2404   nelt = cselib_lookup (x, GET_MODE (elt->val_rtx), 1, VOIDmode);
2405 
2406   if (nelt != elt)
2407     {
2408       cselib_any_perm_equivs = true;
2409 
2410       if (!PRESERVED_VALUE_P (nelt->val_rtx))
2411 	cselib_preserve_value (nelt);
2412 
2413       new_elt_loc_list (nelt, elt->val_rtx);
2414     }
2415 
2416   cselib_current_insn = save_cselib_current_insn;
2417 }
2418 
2419 /* Return TRUE if any permanent equivalences have been recorded since
2420    the table was last initialized.  */
2421 bool
2422 cselib_have_permanent_equivalences (void)
2423 {
2424   return cselib_any_perm_equivs;
2425 }
2426 
2427 /* There is no good way to determine how many elements there can be
2428    in a PARALLEL.  Since it's fairly cheap, use a really large number.  */
2429 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
2430 
2431 struct cselib_record_autoinc_data
2432 {
2433   struct cselib_set *sets;
2434   int n_sets;
2435 };
2436 
2437 /* Callback for for_each_inc_dec.  Records in ARG the SETs implied by
2438    autoinc RTXs: SRC plus SRCOFF if non-NULL is stored in DEST.  */
2439 
2440 static int
2441 cselib_record_autoinc_cb (rtx mem ATTRIBUTE_UNUSED, rtx op ATTRIBUTE_UNUSED,
2442 			  rtx dest, rtx src, rtx srcoff, void *arg)
2443 {
2444   struct cselib_record_autoinc_data *data;
2445   data = (struct cselib_record_autoinc_data *)arg;
2446 
2447   data->sets[data->n_sets].dest = dest;
2448 
2449   if (srcoff)
2450     data->sets[data->n_sets].src = gen_rtx_PLUS (GET_MODE (src), src, srcoff);
2451   else
2452     data->sets[data->n_sets].src = src;
2453 
2454   data->n_sets++;
2455 
2456   return -1;
2457 }
2458 
2459 /* Record the effects of any sets and autoincs in INSN.  */
2460 static void
2461 cselib_record_sets (rtx insn)
2462 {
2463   int n_sets = 0;
2464   int i;
2465   struct cselib_set sets[MAX_SETS];
2466   rtx body = PATTERN (insn);
2467   rtx cond = 0;
2468   int n_sets_before_autoinc;
2469   struct cselib_record_autoinc_data data;
2470 
2471   body = PATTERN (insn);
2472   if (GET_CODE (body) == COND_EXEC)
2473     {
2474       cond = COND_EXEC_TEST (body);
2475       body = COND_EXEC_CODE (body);
2476     }
2477 
2478   /* Find all sets.  */
2479   if (GET_CODE (body) == SET)
2480     {
2481       sets[0].src = SET_SRC (body);
2482       sets[0].dest = SET_DEST (body);
2483       n_sets = 1;
2484     }
2485   else if (GET_CODE (body) == PARALLEL)
2486     {
2487       /* Look through the PARALLEL and record the values being
2488 	 set, if possible.  Also handle any CLOBBERs.  */
2489       for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
2490 	{
2491 	  rtx x = XVECEXP (body, 0, i);
2492 
2493 	  if (GET_CODE (x) == SET)
2494 	    {
2495 	      sets[n_sets].src = SET_SRC (x);
2496 	      sets[n_sets].dest = SET_DEST (x);
2497 	      n_sets++;
2498 	    }
2499 	}
2500     }
2501 
2502   if (n_sets == 1
2503       && MEM_P (sets[0].src)
2504       && !cselib_record_memory
2505       && MEM_READONLY_P (sets[0].src))
2506     {
2507       rtx note = find_reg_equal_equiv_note (insn);
2508 
2509       if (note && CONSTANT_P (XEXP (note, 0)))
2510 	sets[0].src = XEXP (note, 0);
2511     }
2512 
2513   data.sets = sets;
2514   data.n_sets = n_sets_before_autoinc = n_sets;
2515   for_each_inc_dec (&insn, cselib_record_autoinc_cb, &data);
2516   n_sets = data.n_sets;
2517 
2518   /* Look up the values that are read.  Do this before invalidating the
2519      locations that are written.  */
2520   for (i = 0; i < n_sets; i++)
2521     {
2522       rtx dest = sets[i].dest;
2523 
2524       /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
2525          the low part after invalidating any knowledge about larger modes.  */
2526       if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
2527 	sets[i].dest = dest = XEXP (dest, 0);
2528 
2529       /* We don't know how to record anything but REG or MEM.  */
2530       if (REG_P (dest)
2531 	  || (MEM_P (dest) && cselib_record_memory))
2532         {
2533 	  rtx src = sets[i].src;
2534 	  if (cond)
2535 	    src = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), cond, src, dest);
2536 	  sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1, VOIDmode);
2537 	  if (MEM_P (dest))
2538 	    {
2539 	      enum machine_mode address_mode = get_address_mode (dest);
2540 
2541 	      sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0),
2542 						     address_mode, 1,
2543 						     GET_MODE (dest));
2544 	    }
2545 	  else
2546 	    sets[i].dest_addr_elt = 0;
2547 	}
2548     }
2549 
2550   if (cselib_record_sets_hook)
2551     cselib_record_sets_hook (insn, sets, n_sets);
2552 
2553   /* Invalidate all locations written by this insn.  Note that the elts we
2554      looked up in the previous loop aren't affected, just some of their
2555      locations may go away.  */
2556   note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
2557 
2558   for (i = n_sets_before_autoinc; i < n_sets; i++)
2559     cselib_invalidate_rtx (sets[i].dest);
2560 
2561   /* If this is an asm, look for duplicate sets.  This can happen when the
2562      user uses the same value as an output multiple times.  This is valid
2563      if the outputs are not actually used thereafter.  Treat this case as
2564      if the value isn't actually set.  We do this by smashing the destination
2565      to pc_rtx, so that we won't record the value later.  */
2566   if (n_sets >= 2 && asm_noperands (body) >= 0)
2567     {
2568       for (i = 0; i < n_sets; i++)
2569 	{
2570 	  rtx dest = sets[i].dest;
2571 	  if (REG_P (dest) || MEM_P (dest))
2572 	    {
2573 	      int j;
2574 	      for (j = i + 1; j < n_sets; j++)
2575 		if (rtx_equal_p (dest, sets[j].dest))
2576 		  {
2577 		    sets[i].dest = pc_rtx;
2578 		    sets[j].dest = pc_rtx;
2579 		  }
2580 	    }
2581 	}
2582     }
2583 
2584   /* Now enter the equivalences in our tables.  */
2585   for (i = 0; i < n_sets; i++)
2586     {
2587       rtx dest = sets[i].dest;
2588       if (REG_P (dest)
2589 	  || (MEM_P (dest) && cselib_record_memory))
2590 	cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
2591     }
2592 }
2593 
2594 /* Return true if INSN in the prologue initializes hard_frame_pointer_rtx.  */
2595 
2596 bool
2597 fp_setter_insn (rtx insn)
2598 {
2599   rtx expr, pat = NULL_RTX;
2600 
2601   if (!RTX_FRAME_RELATED_P (insn))
2602     return false;
2603 
2604   expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
2605   if (expr)
2606     pat = XEXP (expr, 0);
2607   if (!modified_in_p (hard_frame_pointer_rtx, pat ? pat : insn))
2608     return false;
2609 
2610   /* Don't return true for frame pointer restores in the epilogue.  */
2611   if (find_reg_note (insn, REG_CFA_RESTORE, hard_frame_pointer_rtx))
2612     return false;
2613   return true;
2614 }
2615 
2616 /* Record the effects of INSN.  */
2617 
2618 void
2619 cselib_process_insn (rtx insn)
2620 {
2621   int i;
2622   rtx x;
2623 
2624   cselib_current_insn = insn;
2625 
2626   /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp.  */
2627   if ((LABEL_P (insn)
2628        || (CALL_P (insn)
2629 	   && find_reg_note (insn, REG_SETJMP, NULL))
2630        || (NONJUMP_INSN_P (insn)
2631 	   && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
2632 	   && MEM_VOLATILE_P (PATTERN (insn))))
2633       && !cselib_preserve_constants)
2634     {
2635       cselib_reset_table (next_uid);
2636       cselib_current_insn = NULL_RTX;
2637       return;
2638     }
2639 
2640   if (! INSN_P (insn))
2641     {
2642       cselib_current_insn = NULL_RTX;
2643       return;
2644     }
2645 
2646   /* If this is a call instruction, forget anything stored in a
2647      call clobbered register, or, if this is not a const call, in
2648      memory.  */
2649   if (CALL_P (insn))
2650     {
2651       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2652 	if (call_used_regs[i]
2653 	    || (REG_VALUES (i) && REG_VALUES (i)->elt
2654 		&& HARD_REGNO_CALL_PART_CLOBBERED (i,
2655 		      GET_MODE (REG_VALUES (i)->elt->val_rtx))))
2656 	  cselib_invalidate_regno (i, reg_raw_mode[i]);
2657 
2658       /* Since it is not clear how cselib is going to be used, be
2659 	 conservative here and treat looping pure or const functions
2660 	 as if they were regular functions.  */
2661       if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
2662 	  || !(RTL_CONST_OR_PURE_CALL_P (insn)))
2663 	cselib_invalidate_mem (callmem);
2664     }
2665 
2666   cselib_record_sets (insn);
2667 
2668   /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
2669      after we have processed the insn.  */
2670   if (CALL_P (insn))
2671     {
2672       for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
2673 	if (GET_CODE (XEXP (x, 0)) == CLOBBER)
2674 	  cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
2675       /* Flush evertything on setjmp.  */
2676       if (cselib_preserve_constants
2677 	  && find_reg_note (insn, REG_SETJMP, NULL))
2678 	{
2679 	  cselib_preserve_only_values ();
2680 	  cselib_reset_table (next_uid);
2681 	}
2682     }
2683 
2684   /* On setter of the hard frame pointer if frame_pointer_needed,
2685      invalidate stack_pointer_rtx, so that sp and {,h}fp based
2686      VALUEs are distinct.  */
2687   if (reload_completed
2688       && frame_pointer_needed
2689       && fp_setter_insn (insn))
2690     cselib_invalidate_rtx (stack_pointer_rtx);
2691 
2692   cselib_current_insn = NULL_RTX;
2693 
2694   if (n_useless_values > MAX_USELESS_VALUES
2695       /* remove_useless_values is linear in the hash table size.  Avoid
2696          quadratic behavior for very large hashtables with very few
2697 	 useless elements.  */
2698       && ((unsigned int)n_useless_values
2699 	  > (cselib_hash_table->n_elements
2700 	     - cselib_hash_table->n_deleted
2701 	     - n_debug_values) / 4))
2702     remove_useless_values ();
2703 }
2704 
2705 /* Initialize cselib for one pass.  The caller must also call
2706    init_alias_analysis.  */
2707 
2708 void
2709 cselib_init (int record_what)
2710 {
2711   elt_list_pool = create_alloc_pool ("elt_list",
2712 				     sizeof (struct elt_list), 10);
2713   elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
2714 				         sizeof (struct elt_loc_list), 10);
2715   cselib_val_pool = create_alloc_pool ("cselib_val_list",
2716 				       sizeof (cselib_val), 10);
2717   value_pool = create_alloc_pool ("value", RTX_CODE_SIZE (VALUE), 100);
2718   cselib_record_memory = record_what & CSELIB_RECORD_MEMORY;
2719   cselib_preserve_constants = record_what & CSELIB_PRESERVE_CONSTANTS;
2720   cselib_any_perm_equivs = false;
2721 
2722   /* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
2723      see canon_true_dependence.  This is only created once.  */
2724   if (! callmem)
2725     callmem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
2726 
2727   cselib_nregs = max_reg_num ();
2728 
2729   /* We preserve reg_values to allow expensive clearing of the whole thing.
2730      Reallocate it however if it happens to be too large.  */
2731   if (!reg_values || reg_values_size < cselib_nregs
2732       || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
2733     {
2734       free (reg_values);
2735       /* Some space for newly emit instructions so we don't end up
2736 	 reallocating in between passes.  */
2737       reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
2738       reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
2739     }
2740   used_regs = XNEWVEC (unsigned int, cselib_nregs);
2741   n_used_regs = 0;
2742   cselib_hash_table = htab_create (31, get_value_hash,
2743 				   entry_and_rtx_equal_p, NULL);
2744   next_uid = 1;
2745 }
2746 
2747 /* Called when the current user is done with cselib.  */
2748 
2749 void
2750 cselib_finish (void)
2751 {
2752   cselib_discard_hook = NULL;
2753   cselib_preserve_constants = false;
2754   cselib_any_perm_equivs = false;
2755   cfa_base_preserved_val = NULL;
2756   cfa_base_preserved_regno = INVALID_REGNUM;
2757   free_alloc_pool (elt_list_pool);
2758   free_alloc_pool (elt_loc_list_pool);
2759   free_alloc_pool (cselib_val_pool);
2760   free_alloc_pool (value_pool);
2761   cselib_clear_table ();
2762   htab_delete (cselib_hash_table);
2763   free (used_regs);
2764   used_regs = 0;
2765   cselib_hash_table = 0;
2766   n_useless_values = 0;
2767   n_useless_debug_values = 0;
2768   n_debug_values = 0;
2769   next_uid = 0;
2770 }
2771 
2772 /* Dump the cselib_val *X to FILE *info.  */
2773 
2774 static int
2775 dump_cselib_val (void **x, void *info)
2776 {
2777   cselib_val *v = (cselib_val *)*x;
2778   FILE *out = (FILE *)info;
2779   bool need_lf = true;
2780 
2781   print_inline_rtx (out, v->val_rtx, 0);
2782 
2783   if (v->locs)
2784     {
2785       struct elt_loc_list *l = v->locs;
2786       if (need_lf)
2787 	{
2788 	  fputc ('\n', out);
2789 	  need_lf = false;
2790 	}
2791       fputs (" locs:", out);
2792       do
2793 	{
2794 	  if (l->setting_insn)
2795 	    fprintf (out, "\n  from insn %i ",
2796 		     INSN_UID (l->setting_insn));
2797 	  else
2798 	    fprintf (out, "\n   ");
2799 	  print_inline_rtx (out, l->loc, 4);
2800 	}
2801       while ((l = l->next));
2802       fputc ('\n', out);
2803     }
2804   else
2805     {
2806       fputs (" no locs", out);
2807       need_lf = true;
2808     }
2809 
2810   if (v->addr_list)
2811     {
2812       struct elt_list *e = v->addr_list;
2813       if (need_lf)
2814 	{
2815 	  fputc ('\n', out);
2816 	  need_lf = false;
2817 	}
2818       fputs (" addr list:", out);
2819       do
2820 	{
2821 	  fputs ("\n  ", out);
2822 	  print_inline_rtx (out, e->elt->val_rtx, 2);
2823 	}
2824       while ((e = e->next));
2825       fputc ('\n', out);
2826     }
2827   else
2828     {
2829       fputs (" no addrs", out);
2830       need_lf = true;
2831     }
2832 
2833   if (v->next_containing_mem == &dummy_val)
2834     fputs (" last mem\n", out);
2835   else if (v->next_containing_mem)
2836     {
2837       fputs (" next mem ", out);
2838       print_inline_rtx (out, v->next_containing_mem->val_rtx, 2);
2839       fputc ('\n', out);
2840     }
2841   else if (need_lf)
2842     fputc ('\n', out);
2843 
2844   return 1;
2845 }
2846 
2847 /* Dump to OUT everything in the CSELIB table.  */
2848 
2849 void
2850 dump_cselib_table (FILE *out)
2851 {
2852   fprintf (out, "cselib hash table:\n");
2853   htab_traverse (cselib_hash_table, dump_cselib_val, out);
2854   if (first_containing_mem != &dummy_val)
2855     {
2856       fputs ("first mem ", out);
2857       print_inline_rtx (out, first_containing_mem->val_rtx, 2);
2858       fputc ('\n', out);
2859     }
2860   fprintf (out, "next uid %i\n", next_uid);
2861 }
2862 
2863 #include "gt-cselib.h"
2864