1 /* Common subexpression elimination library for GNU compiler. 2 Copyright (C) 1987-2013 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "tm.h" 24 25 #include "rtl.h" 26 #include "tree.h"/* FIXME: For hashing DEBUG_EXPR & friends. */ 27 #include "tm_p.h" 28 #include "regs.h" 29 #include "hard-reg-set.h" 30 #include "flags.h" 31 #include "insn-config.h" 32 #include "recog.h" 33 #include "function.h" 34 #include "emit-rtl.h" 35 #include "diagnostic-core.h" 36 #include "ggc.h" 37 #include "hashtab.h" 38 #include "dumpfile.h" 39 #include "cselib.h" 40 #include "valtrack.h" 41 #include "params.h" 42 #include "alloc-pool.h" 43 #include "target.h" 44 #include "bitmap.h" 45 46 /* A list of cselib_val structures. */ 47 struct elt_list { 48 struct elt_list *next; 49 cselib_val *elt; 50 }; 51 52 static bool cselib_record_memory; 53 static bool cselib_preserve_constants; 54 static bool cselib_any_perm_equivs; 55 static int entry_and_rtx_equal_p (const void *, const void *); 56 static hashval_t get_value_hash (const void *); 57 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *); 58 static void new_elt_loc_list (cselib_val *, rtx); 59 static void unchain_one_value (cselib_val *); 60 static void unchain_one_elt_list (struct elt_list **); 61 static void unchain_one_elt_loc_list (struct elt_loc_list **); 62 static int discard_useless_locs (void **, void *); 63 static int discard_useless_values (void **, void *); 64 static void remove_useless_values (void); 65 static int rtx_equal_for_cselib_1 (rtx, rtx, enum machine_mode); 66 static unsigned int cselib_hash_rtx (rtx, int, enum machine_mode); 67 static cselib_val *new_cselib_val (unsigned int, enum machine_mode, rtx); 68 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx); 69 static cselib_val *cselib_lookup_mem (rtx, int); 70 static void cselib_invalidate_regno (unsigned int, enum machine_mode); 71 static void cselib_invalidate_mem (rtx); 72 static void cselib_record_set (rtx, cselib_val *, cselib_val *); 73 static void cselib_record_sets (rtx); 74 75 struct expand_value_data 76 { 77 bitmap regs_active; 78 cselib_expand_callback callback; 79 void *callback_arg; 80 bool dummy; 81 }; 82 83 static rtx cselib_expand_value_rtx_1 (rtx, struct expand_value_data *, int); 84 85 /* There are three ways in which cselib can look up an rtx: 86 - for a REG, the reg_values table (which is indexed by regno) is used 87 - for a MEM, we recursively look up its address and then follow the 88 addr_list of that value 89 - for everything else, we compute a hash value and go through the hash 90 table. Since different rtx's can still have the same hash value, 91 this involves walking the table entries for a given value and comparing 92 the locations of the entries with the rtx we are looking up. */ 93 94 /* A table that enables us to look up elts by their value. */ 95 static htab_t cselib_hash_table; 96 97 /* This is a global so we don't have to pass this through every function. 98 It is used in new_elt_loc_list to set SETTING_INSN. */ 99 static rtx cselib_current_insn; 100 101 /* The unique id that the next create value will take. */ 102 static unsigned int next_uid; 103 104 /* The number of registers we had when the varrays were last resized. */ 105 static unsigned int cselib_nregs; 106 107 /* Count values without known locations, or with only locations that 108 wouldn't have been known except for debug insns. Whenever this 109 grows too big, we remove these useless values from the table. 110 111 Counting values with only debug values is a bit tricky. We don't 112 want to increment n_useless_values when we create a value for a 113 debug insn, for this would get n_useless_values out of sync, but we 114 want increment it if all locs in the list that were ever referenced 115 in nondebug insns are removed from the list. 116 117 In the general case, once we do that, we'd have to stop accepting 118 nondebug expressions in the loc list, to avoid having two values 119 equivalent that, without debug insns, would have been made into 120 separate values. However, because debug insns never introduce 121 equivalences themselves (no assignments), the only means for 122 growing loc lists is through nondebug assignments. If the locs 123 also happen to be referenced in debug insns, it will work just fine. 124 125 A consequence of this is that there's at most one debug-only loc in 126 each loc list. If we keep it in the first entry, testing whether 127 we have a debug-only loc list takes O(1). 128 129 Furthermore, since any additional entry in a loc list containing a 130 debug loc would have to come from an assignment (nondebug) that 131 references both the initial debug loc and the newly-equivalent loc, 132 the initial debug loc would be promoted to a nondebug loc, and the 133 loc list would not contain debug locs any more. 134 135 So the only case we have to be careful with in order to keep 136 n_useless_values in sync between debug and nondebug compilations is 137 to avoid incrementing n_useless_values when removing the single loc 138 from a value that turns out to not appear outside debug values. We 139 increment n_useless_debug_values instead, and leave such values 140 alone until, for other reasons, we garbage-collect useless 141 values. */ 142 static int n_useless_values; 143 static int n_useless_debug_values; 144 145 /* Count values whose locs have been taken exclusively from debug 146 insns for the entire life of the value. */ 147 static int n_debug_values; 148 149 /* Number of useless values before we remove them from the hash table. */ 150 #define MAX_USELESS_VALUES 32 151 152 /* This table maps from register number to values. It does not 153 contain pointers to cselib_val structures, but rather elt_lists. 154 The purpose is to be able to refer to the same register in 155 different modes. The first element of the list defines the mode in 156 which the register was set; if the mode is unknown or the value is 157 no longer valid in that mode, ELT will be NULL for the first 158 element. */ 159 static struct elt_list **reg_values; 160 static unsigned int reg_values_size; 161 #define REG_VALUES(i) reg_values[i] 162 163 /* The largest number of hard regs used by any entry added to the 164 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */ 165 static unsigned int max_value_regs; 166 167 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used 168 in cselib_clear_table() for fast emptying. */ 169 static unsigned int *used_regs; 170 static unsigned int n_used_regs; 171 172 /* We pass this to cselib_invalidate_mem to invalidate all of 173 memory for a non-const call instruction. */ 174 static GTY(()) rtx callmem; 175 176 /* Set by discard_useless_locs if it deleted the last location of any 177 value. */ 178 static int values_became_useless; 179 180 /* Used as stop element of the containing_mem list so we can check 181 presence in the list by checking the next pointer. */ 182 static cselib_val dummy_val; 183 184 /* If non-NULL, value of the eliminated arg_pointer_rtx or frame_pointer_rtx 185 that is constant through the whole function and should never be 186 eliminated. */ 187 static cselib_val *cfa_base_preserved_val; 188 static unsigned int cfa_base_preserved_regno = INVALID_REGNUM; 189 190 /* Used to list all values that contain memory reference. 191 May or may not contain the useless values - the list is compacted 192 each time memory is invalidated. */ 193 static cselib_val *first_containing_mem = &dummy_val; 194 static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool; 195 196 /* If nonnull, cselib will call this function before freeing useless 197 VALUEs. A VALUE is deemed useless if its "locs" field is null. */ 198 void (*cselib_discard_hook) (cselib_val *); 199 200 /* If nonnull, cselib will call this function before recording sets or 201 even clobbering outputs of INSN. All the recorded sets will be 202 represented in the array sets[n_sets]. new_val_min can be used to 203 tell whether values present in sets are introduced by this 204 instruction. */ 205 void (*cselib_record_sets_hook) (rtx insn, struct cselib_set *sets, 206 int n_sets); 207 208 #define PRESERVED_VALUE_P(RTX) \ 209 (RTL_FLAG_CHECK1("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging) 210 211 #define SP_BASED_VALUE_P(RTX) \ 212 (RTL_FLAG_CHECK1("SP_BASED_VALUE_P", (RTX), VALUE)->jump) 213 214 215 216 /* Allocate a struct elt_list and fill in its two elements with the 217 arguments. */ 218 219 static inline struct elt_list * 220 new_elt_list (struct elt_list *next, cselib_val *elt) 221 { 222 struct elt_list *el; 223 el = (struct elt_list *) pool_alloc (elt_list_pool); 224 el->next = next; 225 el->elt = elt; 226 return el; 227 } 228 229 /* Allocate a struct elt_loc_list with LOC and prepend it to VAL's loc 230 list. */ 231 232 static inline void 233 new_elt_loc_list (cselib_val *val, rtx loc) 234 { 235 struct elt_loc_list *el, *next = val->locs; 236 237 gcc_checking_assert (!next || !next->setting_insn 238 || !DEBUG_INSN_P (next->setting_insn) 239 || cselib_current_insn == next->setting_insn); 240 241 /* If we're creating the first loc in a debug insn context, we've 242 just created a debug value. Count it. */ 243 if (!next && cselib_current_insn && DEBUG_INSN_P (cselib_current_insn)) 244 n_debug_values++; 245 246 val = canonical_cselib_val (val); 247 next = val->locs; 248 249 if (GET_CODE (loc) == VALUE) 250 { 251 loc = canonical_cselib_val (CSELIB_VAL_PTR (loc))->val_rtx; 252 253 gcc_checking_assert (PRESERVED_VALUE_P (loc) 254 == PRESERVED_VALUE_P (val->val_rtx)); 255 256 if (val->val_rtx == loc) 257 return; 258 else if (val->uid > CSELIB_VAL_PTR (loc)->uid) 259 { 260 /* Reverse the insertion. */ 261 new_elt_loc_list (CSELIB_VAL_PTR (loc), val->val_rtx); 262 return; 263 } 264 265 gcc_checking_assert (val->uid < CSELIB_VAL_PTR (loc)->uid); 266 267 if (CSELIB_VAL_PTR (loc)->locs) 268 { 269 /* Bring all locs from LOC to VAL. */ 270 for (el = CSELIB_VAL_PTR (loc)->locs; el->next; el = el->next) 271 { 272 /* Adjust values that have LOC as canonical so that VAL 273 becomes their canonical. */ 274 if (el->loc && GET_CODE (el->loc) == VALUE) 275 { 276 gcc_checking_assert (CSELIB_VAL_PTR (el->loc)->locs->loc 277 == loc); 278 CSELIB_VAL_PTR (el->loc)->locs->loc = val->val_rtx; 279 } 280 } 281 el->next = val->locs; 282 next = val->locs = CSELIB_VAL_PTR (loc)->locs; 283 } 284 285 if (CSELIB_VAL_PTR (loc)->addr_list) 286 { 287 /* Bring in addr_list into canonical node. */ 288 struct elt_list *last = CSELIB_VAL_PTR (loc)->addr_list; 289 while (last->next) 290 last = last->next; 291 last->next = val->addr_list; 292 val->addr_list = CSELIB_VAL_PTR (loc)->addr_list; 293 CSELIB_VAL_PTR (loc)->addr_list = NULL; 294 } 295 296 if (CSELIB_VAL_PTR (loc)->next_containing_mem != NULL 297 && val->next_containing_mem == NULL) 298 { 299 /* Add VAL to the containing_mem list after LOC. LOC will 300 be removed when we notice it doesn't contain any 301 MEMs. */ 302 val->next_containing_mem = CSELIB_VAL_PTR (loc)->next_containing_mem; 303 CSELIB_VAL_PTR (loc)->next_containing_mem = val; 304 } 305 306 /* Chain LOC back to VAL. */ 307 el = (struct elt_loc_list *) pool_alloc (elt_loc_list_pool); 308 el->loc = val->val_rtx; 309 el->setting_insn = cselib_current_insn; 310 el->next = NULL; 311 CSELIB_VAL_PTR (loc)->locs = el; 312 } 313 314 el = (struct elt_loc_list *) pool_alloc (elt_loc_list_pool); 315 el->loc = loc; 316 el->setting_insn = cselib_current_insn; 317 el->next = next; 318 val->locs = el; 319 } 320 321 /* Promote loc L to a nondebug cselib_current_insn if L is marked as 322 originating from a debug insn, maintaining the debug values 323 count. */ 324 325 static inline void 326 promote_debug_loc (struct elt_loc_list *l) 327 { 328 if (l && l->setting_insn && DEBUG_INSN_P (l->setting_insn) 329 && (!cselib_current_insn || !DEBUG_INSN_P (cselib_current_insn))) 330 { 331 n_debug_values--; 332 l->setting_insn = cselib_current_insn; 333 if (cselib_preserve_constants && l->next) 334 { 335 gcc_assert (l->next->setting_insn 336 && DEBUG_INSN_P (l->next->setting_insn) 337 && !l->next->next); 338 l->next->setting_insn = cselib_current_insn; 339 } 340 else 341 gcc_assert (!l->next); 342 } 343 } 344 345 /* The elt_list at *PL is no longer needed. Unchain it and free its 346 storage. */ 347 348 static inline void 349 unchain_one_elt_list (struct elt_list **pl) 350 { 351 struct elt_list *l = *pl; 352 353 *pl = l->next; 354 pool_free (elt_list_pool, l); 355 } 356 357 /* Likewise for elt_loc_lists. */ 358 359 static void 360 unchain_one_elt_loc_list (struct elt_loc_list **pl) 361 { 362 struct elt_loc_list *l = *pl; 363 364 *pl = l->next; 365 pool_free (elt_loc_list_pool, l); 366 } 367 368 /* Likewise for cselib_vals. This also frees the addr_list associated with 369 V. */ 370 371 static void 372 unchain_one_value (cselib_val *v) 373 { 374 while (v->addr_list) 375 unchain_one_elt_list (&v->addr_list); 376 377 pool_free (cselib_val_pool, v); 378 } 379 380 /* Remove all entries from the hash table. Also used during 381 initialization. */ 382 383 void 384 cselib_clear_table (void) 385 { 386 cselib_reset_table (1); 387 } 388 389 /* Return TRUE if V is a constant, a function invariant or a VALUE 390 equivalence; FALSE otherwise. */ 391 392 static bool 393 invariant_or_equiv_p (cselib_val *v) 394 { 395 struct elt_loc_list *l; 396 397 if (v == cfa_base_preserved_val) 398 return true; 399 400 /* Keep VALUE equivalences around. */ 401 for (l = v->locs; l; l = l->next) 402 if (GET_CODE (l->loc) == VALUE) 403 return true; 404 405 if (v->locs != NULL 406 && v->locs->next == NULL) 407 { 408 if (CONSTANT_P (v->locs->loc) 409 && (GET_CODE (v->locs->loc) != CONST 410 || !references_value_p (v->locs->loc, 0))) 411 return true; 412 /* Although a debug expr may be bound to different expressions, 413 we can preserve it as if it was constant, to get unification 414 and proper merging within var-tracking. */ 415 if (GET_CODE (v->locs->loc) == DEBUG_EXPR 416 || GET_CODE (v->locs->loc) == DEBUG_IMPLICIT_PTR 417 || GET_CODE (v->locs->loc) == ENTRY_VALUE 418 || GET_CODE (v->locs->loc) == DEBUG_PARAMETER_REF) 419 return true; 420 421 /* (plus (value V) (const_int C)) is invariant iff V is invariant. */ 422 if (GET_CODE (v->locs->loc) == PLUS 423 && CONST_INT_P (XEXP (v->locs->loc, 1)) 424 && GET_CODE (XEXP (v->locs->loc, 0)) == VALUE 425 && invariant_or_equiv_p (CSELIB_VAL_PTR (XEXP (v->locs->loc, 0)))) 426 return true; 427 } 428 429 return false; 430 } 431 432 /* Remove from hash table all VALUEs except constants, function 433 invariants and VALUE equivalences. */ 434 435 static int 436 preserve_constants_and_equivs (void **x, void *info ATTRIBUTE_UNUSED) 437 { 438 cselib_val *v = (cselib_val *)*x; 439 440 if (!invariant_or_equiv_p (v)) 441 htab_clear_slot (cselib_hash_table, x); 442 return 1; 443 } 444 445 /* Remove all entries from the hash table, arranging for the next 446 value to be numbered NUM. */ 447 448 void 449 cselib_reset_table (unsigned int num) 450 { 451 unsigned int i; 452 453 max_value_regs = 0; 454 455 if (cfa_base_preserved_val) 456 { 457 unsigned int regno = cfa_base_preserved_regno; 458 unsigned int new_used_regs = 0; 459 for (i = 0; i < n_used_regs; i++) 460 if (used_regs[i] == regno) 461 { 462 new_used_regs = 1; 463 continue; 464 } 465 else 466 REG_VALUES (used_regs[i]) = 0; 467 gcc_assert (new_used_regs == 1); 468 n_used_regs = new_used_regs; 469 used_regs[0] = regno; 470 max_value_regs 471 = hard_regno_nregs[regno][GET_MODE (cfa_base_preserved_val->locs->loc)]; 472 } 473 else 474 { 475 for (i = 0; i < n_used_regs; i++) 476 REG_VALUES (used_regs[i]) = 0; 477 n_used_regs = 0; 478 } 479 480 if (cselib_preserve_constants) 481 htab_traverse (cselib_hash_table, preserve_constants_and_equivs, NULL); 482 else 483 { 484 htab_empty (cselib_hash_table); 485 gcc_checking_assert (!cselib_any_perm_equivs); 486 } 487 488 n_useless_values = 0; 489 n_useless_debug_values = 0; 490 n_debug_values = 0; 491 492 next_uid = num; 493 494 first_containing_mem = &dummy_val; 495 } 496 497 /* Return the number of the next value that will be generated. */ 498 499 unsigned int 500 cselib_get_next_uid (void) 501 { 502 return next_uid; 503 } 504 505 /* See the documentation of cselib_find_slot below. */ 506 static enum machine_mode find_slot_memmode; 507 508 /* Search for X, whose hashcode is HASH, in CSELIB_HASH_TABLE, 509 INSERTing if requested. When X is part of the address of a MEM, 510 MEMMODE should specify the mode of the MEM. While searching the 511 table, MEMMODE is held in FIND_SLOT_MEMMODE, so that autoinc RTXs 512 in X can be resolved. */ 513 514 static void ** 515 cselib_find_slot (rtx x, hashval_t hash, enum insert_option insert, 516 enum machine_mode memmode) 517 { 518 void **slot; 519 find_slot_memmode = memmode; 520 slot = htab_find_slot_with_hash (cselib_hash_table, x, hash, insert); 521 find_slot_memmode = VOIDmode; 522 return slot; 523 } 524 525 /* The equality test for our hash table. The first argument ENTRY is a table 526 element (i.e. a cselib_val), while the second arg X is an rtx. We know 527 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a 528 CONST of an appropriate mode. */ 529 530 static int 531 entry_and_rtx_equal_p (const void *entry, const void *x_arg) 532 { 533 struct elt_loc_list *l; 534 const cselib_val *const v = (const cselib_val *) entry; 535 rtx x = CONST_CAST_RTX ((const_rtx)x_arg); 536 enum machine_mode mode = GET_MODE (x); 537 538 gcc_assert (!CONST_SCALAR_INT_P (x) && GET_CODE (x) != CONST_FIXED); 539 540 if (mode != GET_MODE (v->val_rtx)) 541 return 0; 542 543 /* Unwrap X if necessary. */ 544 if (GET_CODE (x) == CONST 545 && (CONST_SCALAR_INT_P (XEXP (x, 0)) 546 || GET_CODE (XEXP (x, 0)) == CONST_FIXED)) 547 x = XEXP (x, 0); 548 549 /* We don't guarantee that distinct rtx's have different hash values, 550 so we need to do a comparison. */ 551 for (l = v->locs; l; l = l->next) 552 if (rtx_equal_for_cselib_1 (l->loc, x, find_slot_memmode)) 553 { 554 promote_debug_loc (l); 555 return 1; 556 } 557 558 return 0; 559 } 560 561 /* The hash function for our hash table. The value is always computed with 562 cselib_hash_rtx when adding an element; this function just extracts the 563 hash value from a cselib_val structure. */ 564 565 static hashval_t 566 get_value_hash (const void *entry) 567 { 568 const cselib_val *const v = (const cselib_val *) entry; 569 return v->hash; 570 } 571 572 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we 573 only return true for values which point to a cselib_val whose value 574 element has been set to zero, which implies the cselib_val will be 575 removed. */ 576 577 int 578 references_value_p (const_rtx x, int only_useless) 579 { 580 const enum rtx_code code = GET_CODE (x); 581 const char *fmt = GET_RTX_FORMAT (code); 582 int i, j; 583 584 if (GET_CODE (x) == VALUE 585 && (! only_useless || 586 (CSELIB_VAL_PTR (x)->locs == 0 && !PRESERVED_VALUE_P (x)))) 587 return 1; 588 589 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 590 { 591 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless)) 592 return 1; 593 else if (fmt[i] == 'E') 594 for (j = 0; j < XVECLEN (x, i); j++) 595 if (references_value_p (XVECEXP (x, i, j), only_useless)) 596 return 1; 597 } 598 599 return 0; 600 } 601 602 /* For all locations found in X, delete locations that reference useless 603 values (i.e. values without any location). Called through 604 htab_traverse. */ 605 606 static int 607 discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED) 608 { 609 cselib_val *v = (cselib_val *)*x; 610 struct elt_loc_list **p = &v->locs; 611 bool had_locs = v->locs != NULL; 612 rtx setting_insn = v->locs ? v->locs->setting_insn : NULL; 613 614 while (*p) 615 { 616 if (references_value_p ((*p)->loc, 1)) 617 unchain_one_elt_loc_list (p); 618 else 619 p = &(*p)->next; 620 } 621 622 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx)) 623 { 624 if (setting_insn && DEBUG_INSN_P (setting_insn)) 625 n_useless_debug_values++; 626 else 627 n_useless_values++; 628 values_became_useless = 1; 629 } 630 return 1; 631 } 632 633 /* If X is a value with no locations, remove it from the hashtable. */ 634 635 static int 636 discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED) 637 { 638 cselib_val *v = (cselib_val *)*x; 639 640 if (v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx)) 641 { 642 if (cselib_discard_hook) 643 cselib_discard_hook (v); 644 645 CSELIB_VAL_PTR (v->val_rtx) = NULL; 646 htab_clear_slot (cselib_hash_table, x); 647 unchain_one_value (v); 648 n_useless_values--; 649 } 650 651 return 1; 652 } 653 654 /* Clean out useless values (i.e. those which no longer have locations 655 associated with them) from the hash table. */ 656 657 static void 658 remove_useless_values (void) 659 { 660 cselib_val **p, *v; 661 662 /* First pass: eliminate locations that reference the value. That in 663 turn can make more values useless. */ 664 do 665 { 666 values_became_useless = 0; 667 htab_traverse (cselib_hash_table, discard_useless_locs, 0); 668 } 669 while (values_became_useless); 670 671 /* Second pass: actually remove the values. */ 672 673 p = &first_containing_mem; 674 for (v = *p; v != &dummy_val; v = v->next_containing_mem) 675 if (v->locs && v == canonical_cselib_val (v)) 676 { 677 *p = v; 678 p = &(*p)->next_containing_mem; 679 } 680 *p = &dummy_val; 681 682 n_useless_values += n_useless_debug_values; 683 n_debug_values -= n_useless_debug_values; 684 n_useless_debug_values = 0; 685 686 htab_traverse (cselib_hash_table, discard_useless_values, 0); 687 688 gcc_assert (!n_useless_values); 689 } 690 691 /* Arrange for a value to not be removed from the hash table even if 692 it becomes useless. */ 693 694 void 695 cselib_preserve_value (cselib_val *v) 696 { 697 PRESERVED_VALUE_P (v->val_rtx) = 1; 698 } 699 700 /* Test whether a value is preserved. */ 701 702 bool 703 cselib_preserved_value_p (cselib_val *v) 704 { 705 return PRESERVED_VALUE_P (v->val_rtx); 706 } 707 708 /* Arrange for a REG value to be assumed constant through the whole function, 709 never invalidated and preserved across cselib_reset_table calls. */ 710 711 void 712 cselib_preserve_cfa_base_value (cselib_val *v, unsigned int regno) 713 { 714 if (cselib_preserve_constants 715 && v->locs 716 && REG_P (v->locs->loc)) 717 { 718 cfa_base_preserved_val = v; 719 cfa_base_preserved_regno = regno; 720 } 721 } 722 723 /* Clean all non-constant expressions in the hash table, but retain 724 their values. */ 725 726 void 727 cselib_preserve_only_values (void) 728 { 729 int i; 730 731 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) 732 cselib_invalidate_regno (i, reg_raw_mode[i]); 733 734 cselib_invalidate_mem (callmem); 735 736 remove_useless_values (); 737 738 gcc_assert (first_containing_mem == &dummy_val); 739 } 740 741 /* Arrange for a value to be marked as based on stack pointer 742 for find_base_term purposes. */ 743 744 void 745 cselib_set_value_sp_based (cselib_val *v) 746 { 747 SP_BASED_VALUE_P (v->val_rtx) = 1; 748 } 749 750 /* Test whether a value is based on stack pointer for 751 find_base_term purposes. */ 752 753 bool 754 cselib_sp_based_value_p (cselib_val *v) 755 { 756 return SP_BASED_VALUE_P (v->val_rtx); 757 } 758 759 /* Return the mode in which a register was last set. If X is not a 760 register, return its mode. If the mode in which the register was 761 set is not known, or the value was already clobbered, return 762 VOIDmode. */ 763 764 enum machine_mode 765 cselib_reg_set_mode (const_rtx x) 766 { 767 if (!REG_P (x)) 768 return GET_MODE (x); 769 770 if (REG_VALUES (REGNO (x)) == NULL 771 || REG_VALUES (REGNO (x))->elt == NULL) 772 return VOIDmode; 773 774 return GET_MODE (REG_VALUES (REGNO (x))->elt->val_rtx); 775 } 776 777 /* Return nonzero if we can prove that X and Y contain the same value, taking 778 our gathered information into account. */ 779 780 int 781 rtx_equal_for_cselib_p (rtx x, rtx y) 782 { 783 return rtx_equal_for_cselib_1 (x, y, VOIDmode); 784 } 785 786 /* If x is a PLUS or an autoinc operation, expand the operation, 787 storing the offset, if any, in *OFF. */ 788 789 static rtx 790 autoinc_split (rtx x, rtx *off, enum machine_mode memmode) 791 { 792 switch (GET_CODE (x)) 793 { 794 case PLUS: 795 *off = XEXP (x, 1); 796 return XEXP (x, 0); 797 798 case PRE_DEC: 799 if (memmode == VOIDmode) 800 return x; 801 802 *off = GEN_INT (-GET_MODE_SIZE (memmode)); 803 return XEXP (x, 0); 804 break; 805 806 case PRE_INC: 807 if (memmode == VOIDmode) 808 return x; 809 810 *off = GEN_INT (GET_MODE_SIZE (memmode)); 811 return XEXP (x, 0); 812 813 case PRE_MODIFY: 814 return XEXP (x, 1); 815 816 case POST_DEC: 817 case POST_INC: 818 case POST_MODIFY: 819 return XEXP (x, 0); 820 821 default: 822 return x; 823 } 824 } 825 826 /* Return nonzero if we can prove that X and Y contain the same value, 827 taking our gathered information into account. MEMMODE holds the 828 mode of the enclosing MEM, if any, as required to deal with autoinc 829 addressing modes. If X and Y are not (known to be) part of 830 addresses, MEMMODE should be VOIDmode. */ 831 832 static int 833 rtx_equal_for_cselib_1 (rtx x, rtx y, enum machine_mode memmode) 834 { 835 enum rtx_code code; 836 const char *fmt; 837 int i; 838 839 if (REG_P (x) || MEM_P (x)) 840 { 841 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0, memmode); 842 843 if (e) 844 x = e->val_rtx; 845 } 846 847 if (REG_P (y) || MEM_P (y)) 848 { 849 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0, memmode); 850 851 if (e) 852 y = e->val_rtx; 853 } 854 855 if (x == y) 856 return 1; 857 858 if (GET_CODE (x) == VALUE) 859 { 860 cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (x)); 861 struct elt_loc_list *l; 862 863 if (GET_CODE (y) == VALUE) 864 return e == canonical_cselib_val (CSELIB_VAL_PTR (y)); 865 866 for (l = e->locs; l; l = l->next) 867 { 868 rtx t = l->loc; 869 870 /* Avoid infinite recursion. We know we have the canonical 871 value, so we can just skip any values in the equivalence 872 list. */ 873 if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE) 874 continue; 875 else if (rtx_equal_for_cselib_1 (t, y, memmode)) 876 return 1; 877 } 878 879 return 0; 880 } 881 else if (GET_CODE (y) == VALUE) 882 { 883 cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (y)); 884 struct elt_loc_list *l; 885 886 for (l = e->locs; l; l = l->next) 887 { 888 rtx t = l->loc; 889 890 if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE) 891 continue; 892 else if (rtx_equal_for_cselib_1 (x, t, memmode)) 893 return 1; 894 } 895 896 return 0; 897 } 898 899 if (GET_MODE (x) != GET_MODE (y)) 900 return 0; 901 902 if (GET_CODE (x) != GET_CODE (y)) 903 { 904 rtx xorig = x, yorig = y; 905 rtx xoff = NULL, yoff = NULL; 906 907 x = autoinc_split (x, &xoff, memmode); 908 y = autoinc_split (y, &yoff, memmode); 909 910 if (!xoff != !yoff) 911 return 0; 912 913 if (xoff && !rtx_equal_for_cselib_1 (xoff, yoff, memmode)) 914 return 0; 915 916 /* Don't recurse if nothing changed. */ 917 if (x != xorig || y != yorig) 918 return rtx_equal_for_cselib_1 (x, y, memmode); 919 920 return 0; 921 } 922 923 /* These won't be handled correctly by the code below. */ 924 switch (GET_CODE (x)) 925 { 926 case CONST_DOUBLE: 927 case CONST_FIXED: 928 case DEBUG_EXPR: 929 return 0; 930 931 case DEBUG_IMPLICIT_PTR: 932 return DEBUG_IMPLICIT_PTR_DECL (x) 933 == DEBUG_IMPLICIT_PTR_DECL (y); 934 935 case DEBUG_PARAMETER_REF: 936 return DEBUG_PARAMETER_REF_DECL (x) 937 == DEBUG_PARAMETER_REF_DECL (y); 938 939 case ENTRY_VALUE: 940 /* ENTRY_VALUEs are function invariant, it is thus undesirable to 941 use rtx_equal_for_cselib_1 to compare the operands. */ 942 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y)); 943 944 case LABEL_REF: 945 return XEXP (x, 0) == XEXP (y, 0); 946 947 case MEM: 948 /* We have to compare any autoinc operations in the addresses 949 using this MEM's mode. */ 950 return rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 0), GET_MODE (x)); 951 952 default: 953 break; 954 } 955 956 code = GET_CODE (x); 957 fmt = GET_RTX_FORMAT (code); 958 959 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 960 { 961 int j; 962 963 switch (fmt[i]) 964 { 965 case 'w': 966 if (XWINT (x, i) != XWINT (y, i)) 967 return 0; 968 break; 969 970 case 'n': 971 case 'i': 972 if (XINT (x, i) != XINT (y, i)) 973 return 0; 974 break; 975 976 case 'V': 977 case 'E': 978 /* Two vectors must have the same length. */ 979 if (XVECLEN (x, i) != XVECLEN (y, i)) 980 return 0; 981 982 /* And the corresponding elements must match. */ 983 for (j = 0; j < XVECLEN (x, i); j++) 984 if (! rtx_equal_for_cselib_1 (XVECEXP (x, i, j), 985 XVECEXP (y, i, j), memmode)) 986 return 0; 987 break; 988 989 case 'e': 990 if (i == 1 991 && targetm.commutative_p (x, UNKNOWN) 992 && rtx_equal_for_cselib_1 (XEXP (x, 1), XEXP (y, 0), memmode) 993 && rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 1), memmode)) 994 return 1; 995 if (! rtx_equal_for_cselib_1 (XEXP (x, i), XEXP (y, i), memmode)) 996 return 0; 997 break; 998 999 case 'S': 1000 case 's': 1001 if (strcmp (XSTR (x, i), XSTR (y, i))) 1002 return 0; 1003 break; 1004 1005 case 'u': 1006 /* These are just backpointers, so they don't matter. */ 1007 break; 1008 1009 case '0': 1010 case 't': 1011 break; 1012 1013 /* It is believed that rtx's at this level will never 1014 contain anything but integers and other rtx's, 1015 except for within LABEL_REFs and SYMBOL_REFs. */ 1016 default: 1017 gcc_unreachable (); 1018 } 1019 } 1020 return 1; 1021 } 1022 1023 /* We need to pass down the mode of constants through the hash table 1024 functions. For that purpose, wrap them in a CONST of the appropriate 1025 mode. */ 1026 static rtx 1027 wrap_constant (enum machine_mode mode, rtx x) 1028 { 1029 if ((!CONST_SCALAR_INT_P (x)) && GET_CODE (x) != CONST_FIXED) 1030 return x; 1031 gcc_assert (mode != VOIDmode); 1032 return gen_rtx_CONST (mode, x); 1033 } 1034 1035 /* Hash an rtx. Return 0 if we couldn't hash the rtx. 1036 For registers and memory locations, we look up their cselib_val structure 1037 and return its VALUE element. 1038 Possible reasons for return 0 are: the object is volatile, or we couldn't 1039 find a register or memory location in the table and CREATE is zero. If 1040 CREATE is nonzero, table elts are created for regs and mem. 1041 N.B. this hash function returns the same hash value for RTXes that 1042 differ only in the order of operands, thus it is suitable for comparisons 1043 that take commutativity into account. 1044 If we wanted to also support associative rules, we'd have to use a different 1045 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) . 1046 MEMMODE indicates the mode of an enclosing MEM, and it's only 1047 used to compute autoinc values. 1048 We used to have a MODE argument for hashing for CONST_INTs, but that 1049 didn't make sense, since it caused spurious hash differences between 1050 (set (reg:SI 1) (const_int)) 1051 (plus:SI (reg:SI 2) (reg:SI 1)) 1052 and 1053 (plus:SI (reg:SI 2) (const_int)) 1054 If the mode is important in any context, it must be checked specifically 1055 in a comparison anyway, since relying on hash differences is unsafe. */ 1056 1057 static unsigned int 1058 cselib_hash_rtx (rtx x, int create, enum machine_mode memmode) 1059 { 1060 cselib_val *e; 1061 int i, j; 1062 enum rtx_code code; 1063 const char *fmt; 1064 unsigned int hash = 0; 1065 1066 code = GET_CODE (x); 1067 hash += (unsigned) code + (unsigned) GET_MODE (x); 1068 1069 switch (code) 1070 { 1071 case VALUE: 1072 e = CSELIB_VAL_PTR (x); 1073 return e->hash; 1074 1075 case MEM: 1076 case REG: 1077 e = cselib_lookup (x, GET_MODE (x), create, memmode); 1078 if (! e) 1079 return 0; 1080 1081 return e->hash; 1082 1083 case DEBUG_EXPR: 1084 hash += ((unsigned) DEBUG_EXPR << 7) 1085 + DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x)); 1086 return hash ? hash : (unsigned int) DEBUG_EXPR; 1087 1088 case DEBUG_IMPLICIT_PTR: 1089 hash += ((unsigned) DEBUG_IMPLICIT_PTR << 7) 1090 + DECL_UID (DEBUG_IMPLICIT_PTR_DECL (x)); 1091 return hash ? hash : (unsigned int) DEBUG_IMPLICIT_PTR; 1092 1093 case DEBUG_PARAMETER_REF: 1094 hash += ((unsigned) DEBUG_PARAMETER_REF << 7) 1095 + DECL_UID (DEBUG_PARAMETER_REF_DECL (x)); 1096 return hash ? hash : (unsigned int) DEBUG_PARAMETER_REF; 1097 1098 case ENTRY_VALUE: 1099 /* ENTRY_VALUEs are function invariant, thus try to avoid 1100 recursing on argument if ENTRY_VALUE is one of the 1101 forms emitted by expand_debug_expr, otherwise 1102 ENTRY_VALUE hash would depend on the current value 1103 in some register or memory. */ 1104 if (REG_P (ENTRY_VALUE_EXP (x))) 1105 hash += (unsigned int) REG 1106 + (unsigned int) GET_MODE (ENTRY_VALUE_EXP (x)) 1107 + (unsigned int) REGNO (ENTRY_VALUE_EXP (x)); 1108 else if (MEM_P (ENTRY_VALUE_EXP (x)) 1109 && REG_P (XEXP (ENTRY_VALUE_EXP (x), 0))) 1110 hash += (unsigned int) MEM 1111 + (unsigned int) GET_MODE (XEXP (ENTRY_VALUE_EXP (x), 0)) 1112 + (unsigned int) REGNO (XEXP (ENTRY_VALUE_EXP (x), 0)); 1113 else 1114 hash += cselib_hash_rtx (ENTRY_VALUE_EXP (x), create, memmode); 1115 return hash ? hash : (unsigned int) ENTRY_VALUE; 1116 1117 case CONST_INT: 1118 hash += ((unsigned) CONST_INT << 7) + INTVAL (x); 1119 return hash ? hash : (unsigned int) CONST_INT; 1120 1121 case CONST_DOUBLE: 1122 /* This is like the general case, except that it only counts 1123 the integers representing the constant. */ 1124 hash += (unsigned) code + (unsigned) GET_MODE (x); 1125 if (GET_MODE (x) != VOIDmode) 1126 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x)); 1127 else 1128 hash += ((unsigned) CONST_DOUBLE_LOW (x) 1129 + (unsigned) CONST_DOUBLE_HIGH (x)); 1130 return hash ? hash : (unsigned int) CONST_DOUBLE; 1131 1132 case CONST_FIXED: 1133 hash += (unsigned int) code + (unsigned int) GET_MODE (x); 1134 hash += fixed_hash (CONST_FIXED_VALUE (x)); 1135 return hash ? hash : (unsigned int) CONST_FIXED; 1136 1137 case CONST_VECTOR: 1138 { 1139 int units; 1140 rtx elt; 1141 1142 units = CONST_VECTOR_NUNITS (x); 1143 1144 for (i = 0; i < units; ++i) 1145 { 1146 elt = CONST_VECTOR_ELT (x, i); 1147 hash += cselib_hash_rtx (elt, 0, memmode); 1148 } 1149 1150 return hash; 1151 } 1152 1153 /* Assume there is only one rtx object for any given label. */ 1154 case LABEL_REF: 1155 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap 1156 differences and differences between each stage's debugging dumps. */ 1157 hash += (((unsigned int) LABEL_REF << 7) 1158 + CODE_LABEL_NUMBER (XEXP (x, 0))); 1159 return hash ? hash : (unsigned int) LABEL_REF; 1160 1161 case SYMBOL_REF: 1162 { 1163 /* Don't hash on the symbol's address to avoid bootstrap differences. 1164 Different hash values may cause expressions to be recorded in 1165 different orders and thus different registers to be used in the 1166 final assembler. This also avoids differences in the dump files 1167 between various stages. */ 1168 unsigned int h = 0; 1169 const unsigned char *p = (const unsigned char *) XSTR (x, 0); 1170 1171 while (*p) 1172 h += (h << 7) + *p++; /* ??? revisit */ 1173 1174 hash += ((unsigned int) SYMBOL_REF << 7) + h; 1175 return hash ? hash : (unsigned int) SYMBOL_REF; 1176 } 1177 1178 case PRE_DEC: 1179 case PRE_INC: 1180 /* We can't compute these without knowing the MEM mode. */ 1181 gcc_assert (memmode != VOIDmode); 1182 i = GET_MODE_SIZE (memmode); 1183 if (code == PRE_DEC) 1184 i = -i; 1185 /* Adjust the hash so that (mem:MEMMODE (pre_* (reg))) hashes 1186 like (mem:MEMMODE (plus (reg) (const_int I))). */ 1187 hash += (unsigned) PLUS - (unsigned)code 1188 + cselib_hash_rtx (XEXP (x, 0), create, memmode) 1189 + cselib_hash_rtx (GEN_INT (i), create, memmode); 1190 return hash ? hash : 1 + (unsigned) PLUS; 1191 1192 case PRE_MODIFY: 1193 gcc_assert (memmode != VOIDmode); 1194 return cselib_hash_rtx (XEXP (x, 1), create, memmode); 1195 1196 case POST_DEC: 1197 case POST_INC: 1198 case POST_MODIFY: 1199 gcc_assert (memmode != VOIDmode); 1200 return cselib_hash_rtx (XEXP (x, 0), create, memmode); 1201 1202 case PC: 1203 case CC0: 1204 case CALL: 1205 case UNSPEC_VOLATILE: 1206 return 0; 1207 1208 case ASM_OPERANDS: 1209 if (MEM_VOLATILE_P (x)) 1210 return 0; 1211 1212 break; 1213 1214 default: 1215 break; 1216 } 1217 1218 i = GET_RTX_LENGTH (code) - 1; 1219 fmt = GET_RTX_FORMAT (code); 1220 for (; i >= 0; i--) 1221 { 1222 switch (fmt[i]) 1223 { 1224 case 'e': 1225 { 1226 rtx tem = XEXP (x, i); 1227 unsigned int tem_hash = cselib_hash_rtx (tem, create, memmode); 1228 1229 if (tem_hash == 0) 1230 return 0; 1231 1232 hash += tem_hash; 1233 } 1234 break; 1235 case 'E': 1236 for (j = 0; j < XVECLEN (x, i); j++) 1237 { 1238 unsigned int tem_hash 1239 = cselib_hash_rtx (XVECEXP (x, i, j), create, memmode); 1240 1241 if (tem_hash == 0) 1242 return 0; 1243 1244 hash += tem_hash; 1245 } 1246 break; 1247 1248 case 's': 1249 { 1250 const unsigned char *p = (const unsigned char *) XSTR (x, i); 1251 1252 if (p) 1253 while (*p) 1254 hash += *p++; 1255 break; 1256 } 1257 1258 case 'i': 1259 hash += XINT (x, i); 1260 break; 1261 1262 case '0': 1263 case 't': 1264 /* unused */ 1265 break; 1266 1267 default: 1268 gcc_unreachable (); 1269 } 1270 } 1271 1272 return hash ? hash : 1 + (unsigned int) GET_CODE (x); 1273 } 1274 1275 /* Create a new value structure for VALUE and initialize it. The mode of the 1276 value is MODE. */ 1277 1278 static inline cselib_val * 1279 new_cselib_val (unsigned int hash, enum machine_mode mode, rtx x) 1280 { 1281 cselib_val *e = (cselib_val *) pool_alloc (cselib_val_pool); 1282 1283 gcc_assert (hash); 1284 gcc_assert (next_uid); 1285 1286 e->hash = hash; 1287 e->uid = next_uid++; 1288 /* We use an alloc pool to allocate this RTL construct because it 1289 accounts for about 8% of the overall memory usage. We know 1290 precisely when we can have VALUE RTXen (when cselib is active) 1291 so we don't need to put them in garbage collected memory. 1292 ??? Why should a VALUE be an RTX in the first place? */ 1293 e->val_rtx = (rtx) pool_alloc (value_pool); 1294 memset (e->val_rtx, 0, RTX_HDR_SIZE); 1295 PUT_CODE (e->val_rtx, VALUE); 1296 PUT_MODE (e->val_rtx, mode); 1297 CSELIB_VAL_PTR (e->val_rtx) = e; 1298 e->addr_list = 0; 1299 e->locs = 0; 1300 e->next_containing_mem = 0; 1301 1302 if (dump_file && (dump_flags & TDF_CSELIB)) 1303 { 1304 fprintf (dump_file, "cselib value %u:%u ", e->uid, hash); 1305 if (flag_dump_noaddr || flag_dump_unnumbered) 1306 fputs ("# ", dump_file); 1307 else 1308 fprintf (dump_file, "%p ", (void*)e); 1309 print_rtl_single (dump_file, x); 1310 fputc ('\n', dump_file); 1311 } 1312 1313 return e; 1314 } 1315 1316 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that 1317 contains the data at this address. X is a MEM that represents the 1318 value. Update the two value structures to represent this situation. */ 1319 1320 static void 1321 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x) 1322 { 1323 struct elt_loc_list *l; 1324 1325 addr_elt = canonical_cselib_val (addr_elt); 1326 mem_elt = canonical_cselib_val (mem_elt); 1327 1328 /* Avoid duplicates. */ 1329 for (l = mem_elt->locs; l; l = l->next) 1330 if (MEM_P (l->loc) 1331 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt) 1332 { 1333 promote_debug_loc (l); 1334 return; 1335 } 1336 1337 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt); 1338 new_elt_loc_list (mem_elt, 1339 replace_equiv_address_nv (x, addr_elt->val_rtx)); 1340 if (mem_elt->next_containing_mem == NULL) 1341 { 1342 mem_elt->next_containing_mem = first_containing_mem; 1343 first_containing_mem = mem_elt; 1344 } 1345 } 1346 1347 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx. 1348 If CREATE, make a new one if we haven't seen it before. */ 1349 1350 static cselib_val * 1351 cselib_lookup_mem (rtx x, int create) 1352 { 1353 enum machine_mode mode = GET_MODE (x); 1354 enum machine_mode addr_mode; 1355 void **slot; 1356 cselib_val *addr; 1357 cselib_val *mem_elt; 1358 struct elt_list *l; 1359 1360 if (MEM_VOLATILE_P (x) || mode == BLKmode 1361 || !cselib_record_memory 1362 || (FLOAT_MODE_P (mode) && flag_float_store)) 1363 return 0; 1364 1365 addr_mode = GET_MODE (XEXP (x, 0)); 1366 if (addr_mode == VOIDmode) 1367 addr_mode = Pmode; 1368 1369 /* Look up the value for the address. */ 1370 addr = cselib_lookup (XEXP (x, 0), addr_mode, create, mode); 1371 if (! addr) 1372 return 0; 1373 1374 addr = canonical_cselib_val (addr); 1375 /* Find a value that describes a value of our mode at that address. */ 1376 for (l = addr->addr_list; l; l = l->next) 1377 if (GET_MODE (l->elt->val_rtx) == mode) 1378 { 1379 promote_debug_loc (l->elt->locs); 1380 return l->elt; 1381 } 1382 1383 if (! create) 1384 return 0; 1385 1386 mem_elt = new_cselib_val (next_uid, mode, x); 1387 add_mem_for_addr (addr, mem_elt, x); 1388 slot = cselib_find_slot (wrap_constant (mode, x), mem_elt->hash, 1389 INSERT, mode); 1390 *slot = mem_elt; 1391 return mem_elt; 1392 } 1393 1394 /* Search through the possible substitutions in P. We prefer a non reg 1395 substitution because this allows us to expand the tree further. If 1396 we find, just a reg, take the lowest regno. There may be several 1397 non-reg results, we just take the first one because they will all 1398 expand to the same place. */ 1399 1400 static rtx 1401 expand_loc (struct elt_loc_list *p, struct expand_value_data *evd, 1402 int max_depth) 1403 { 1404 rtx reg_result = NULL; 1405 unsigned int regno = UINT_MAX; 1406 struct elt_loc_list *p_in = p; 1407 1408 for (; p; p = p->next) 1409 { 1410 /* Return these right away to avoid returning stack pointer based 1411 expressions for frame pointer and vice versa, which is something 1412 that would confuse DSE. See the comment in cselib_expand_value_rtx_1 1413 for more details. */ 1414 if (REG_P (p->loc) 1415 && (REGNO (p->loc) == STACK_POINTER_REGNUM 1416 || REGNO (p->loc) == FRAME_POINTER_REGNUM 1417 || REGNO (p->loc) == HARD_FRAME_POINTER_REGNUM 1418 || REGNO (p->loc) == cfa_base_preserved_regno)) 1419 return p->loc; 1420 /* Avoid infinite recursion trying to expand a reg into a 1421 the same reg. */ 1422 if ((REG_P (p->loc)) 1423 && (REGNO (p->loc) < regno) 1424 && !bitmap_bit_p (evd->regs_active, REGNO (p->loc))) 1425 { 1426 reg_result = p->loc; 1427 regno = REGNO (p->loc); 1428 } 1429 /* Avoid infinite recursion and do not try to expand the 1430 value. */ 1431 else if (GET_CODE (p->loc) == VALUE 1432 && CSELIB_VAL_PTR (p->loc)->locs == p_in) 1433 continue; 1434 else if (!REG_P (p->loc)) 1435 { 1436 rtx result, note; 1437 if (dump_file && (dump_flags & TDF_CSELIB)) 1438 { 1439 print_inline_rtx (dump_file, p->loc, 0); 1440 fprintf (dump_file, "\n"); 1441 } 1442 if (GET_CODE (p->loc) == LO_SUM 1443 && GET_CODE (XEXP (p->loc, 1)) == SYMBOL_REF 1444 && p->setting_insn 1445 && (note = find_reg_note (p->setting_insn, REG_EQUAL, NULL_RTX)) 1446 && XEXP (note, 0) == XEXP (p->loc, 1)) 1447 return XEXP (p->loc, 1); 1448 result = cselib_expand_value_rtx_1 (p->loc, evd, max_depth - 1); 1449 if (result) 1450 return result; 1451 } 1452 1453 } 1454 1455 if (regno != UINT_MAX) 1456 { 1457 rtx result; 1458 if (dump_file && (dump_flags & TDF_CSELIB)) 1459 fprintf (dump_file, "r%d\n", regno); 1460 1461 result = cselib_expand_value_rtx_1 (reg_result, evd, max_depth - 1); 1462 if (result) 1463 return result; 1464 } 1465 1466 if (dump_file && (dump_flags & TDF_CSELIB)) 1467 { 1468 if (reg_result) 1469 { 1470 print_inline_rtx (dump_file, reg_result, 0); 1471 fprintf (dump_file, "\n"); 1472 } 1473 else 1474 fprintf (dump_file, "NULL\n"); 1475 } 1476 return reg_result; 1477 } 1478 1479 1480 /* Forward substitute and expand an expression out to its roots. 1481 This is the opposite of common subexpression. Because local value 1482 numbering is such a weak optimization, the expanded expression is 1483 pretty much unique (not from a pointer equals point of view but 1484 from a tree shape point of view. 1485 1486 This function returns NULL if the expansion fails. The expansion 1487 will fail if there is no value number for one of the operands or if 1488 one of the operands has been overwritten between the current insn 1489 and the beginning of the basic block. For instance x has no 1490 expansion in: 1491 1492 r1 <- r1 + 3 1493 x <- r1 + 8 1494 1495 REGS_ACTIVE is a scratch bitmap that should be clear when passing in. 1496 It is clear on return. */ 1497 1498 rtx 1499 cselib_expand_value_rtx (rtx orig, bitmap regs_active, int max_depth) 1500 { 1501 struct expand_value_data evd; 1502 1503 evd.regs_active = regs_active; 1504 evd.callback = NULL; 1505 evd.callback_arg = NULL; 1506 evd.dummy = false; 1507 1508 return cselib_expand_value_rtx_1 (orig, &evd, max_depth); 1509 } 1510 1511 /* Same as cselib_expand_value_rtx, but using a callback to try to 1512 resolve some expressions. The CB function should return ORIG if it 1513 can't or does not want to deal with a certain RTX. Any other 1514 return value, including NULL, will be used as the expansion for 1515 VALUE, without any further changes. */ 1516 1517 rtx 1518 cselib_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth, 1519 cselib_expand_callback cb, void *data) 1520 { 1521 struct expand_value_data evd; 1522 1523 evd.regs_active = regs_active; 1524 evd.callback = cb; 1525 evd.callback_arg = data; 1526 evd.dummy = false; 1527 1528 return cselib_expand_value_rtx_1 (orig, &evd, max_depth); 1529 } 1530 1531 /* Similar to cselib_expand_value_rtx_cb, but no rtxs are actually copied 1532 or simplified. Useful to find out whether cselib_expand_value_rtx_cb 1533 would return NULL or non-NULL, without allocating new rtx. */ 1534 1535 bool 1536 cselib_dummy_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth, 1537 cselib_expand_callback cb, void *data) 1538 { 1539 struct expand_value_data evd; 1540 1541 evd.regs_active = regs_active; 1542 evd.callback = cb; 1543 evd.callback_arg = data; 1544 evd.dummy = true; 1545 1546 return cselib_expand_value_rtx_1 (orig, &evd, max_depth) != NULL; 1547 } 1548 1549 /* Internal implementation of cselib_expand_value_rtx and 1550 cselib_expand_value_rtx_cb. */ 1551 1552 static rtx 1553 cselib_expand_value_rtx_1 (rtx orig, struct expand_value_data *evd, 1554 int max_depth) 1555 { 1556 rtx copy, scopy; 1557 int i, j; 1558 RTX_CODE code; 1559 const char *format_ptr; 1560 enum machine_mode mode; 1561 1562 code = GET_CODE (orig); 1563 1564 /* For the context of dse, if we end up expand into a huge tree, we 1565 will not have a useful address, so we might as well just give up 1566 quickly. */ 1567 if (max_depth <= 0) 1568 return NULL; 1569 1570 switch (code) 1571 { 1572 case REG: 1573 { 1574 struct elt_list *l = REG_VALUES (REGNO (orig)); 1575 1576 if (l && l->elt == NULL) 1577 l = l->next; 1578 for (; l; l = l->next) 1579 if (GET_MODE (l->elt->val_rtx) == GET_MODE (orig)) 1580 { 1581 rtx result; 1582 unsigned regno = REGNO (orig); 1583 1584 /* The only thing that we are not willing to do (this 1585 is requirement of dse and if others potential uses 1586 need this function we should add a parm to control 1587 it) is that we will not substitute the 1588 STACK_POINTER_REGNUM, FRAME_POINTER or the 1589 HARD_FRAME_POINTER. 1590 1591 These expansions confuses the code that notices that 1592 stores into the frame go dead at the end of the 1593 function and that the frame is not effected by calls 1594 to subroutines. If you allow the 1595 STACK_POINTER_REGNUM substitution, then dse will 1596 think that parameter pushing also goes dead which is 1597 wrong. If you allow the FRAME_POINTER or the 1598 HARD_FRAME_POINTER then you lose the opportunity to 1599 make the frame assumptions. */ 1600 if (regno == STACK_POINTER_REGNUM 1601 || regno == FRAME_POINTER_REGNUM 1602 || regno == HARD_FRAME_POINTER_REGNUM 1603 || regno == cfa_base_preserved_regno) 1604 return orig; 1605 1606 bitmap_set_bit (evd->regs_active, regno); 1607 1608 if (dump_file && (dump_flags & TDF_CSELIB)) 1609 fprintf (dump_file, "expanding: r%d into: ", regno); 1610 1611 result = expand_loc (l->elt->locs, evd, max_depth); 1612 bitmap_clear_bit (evd->regs_active, regno); 1613 1614 if (result) 1615 return result; 1616 else 1617 return orig; 1618 } 1619 } 1620 1621 CASE_CONST_ANY: 1622 case SYMBOL_REF: 1623 case CODE_LABEL: 1624 case PC: 1625 case CC0: 1626 case SCRATCH: 1627 /* SCRATCH must be shared because they represent distinct values. */ 1628 return orig; 1629 case CLOBBER: 1630 if (REG_P (XEXP (orig, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0)))) 1631 return orig; 1632 break; 1633 1634 case CONST: 1635 if (shared_const_p (orig)) 1636 return orig; 1637 break; 1638 1639 case SUBREG: 1640 { 1641 rtx subreg; 1642 1643 if (evd->callback) 1644 { 1645 subreg = evd->callback (orig, evd->regs_active, max_depth, 1646 evd->callback_arg); 1647 if (subreg != orig) 1648 return subreg; 1649 } 1650 1651 subreg = cselib_expand_value_rtx_1 (SUBREG_REG (orig), evd, 1652 max_depth - 1); 1653 if (!subreg) 1654 return NULL; 1655 scopy = simplify_gen_subreg (GET_MODE (orig), subreg, 1656 GET_MODE (SUBREG_REG (orig)), 1657 SUBREG_BYTE (orig)); 1658 if (scopy == NULL 1659 || (GET_CODE (scopy) == SUBREG 1660 && !REG_P (SUBREG_REG (scopy)) 1661 && !MEM_P (SUBREG_REG (scopy)))) 1662 return NULL; 1663 1664 return scopy; 1665 } 1666 1667 case VALUE: 1668 { 1669 rtx result; 1670 1671 if (dump_file && (dump_flags & TDF_CSELIB)) 1672 { 1673 fputs ("\nexpanding ", dump_file); 1674 print_rtl_single (dump_file, orig); 1675 fputs (" into...", dump_file); 1676 } 1677 1678 if (evd->callback) 1679 { 1680 result = evd->callback (orig, evd->regs_active, max_depth, 1681 evd->callback_arg); 1682 1683 if (result != orig) 1684 return result; 1685 } 1686 1687 result = expand_loc (CSELIB_VAL_PTR (orig)->locs, evd, max_depth); 1688 return result; 1689 } 1690 1691 case DEBUG_EXPR: 1692 if (evd->callback) 1693 return evd->callback (orig, evd->regs_active, max_depth, 1694 evd->callback_arg); 1695 return orig; 1696 1697 default: 1698 break; 1699 } 1700 1701 /* Copy the various flags, fields, and other information. We assume 1702 that all fields need copying, and then clear the fields that should 1703 not be copied. That is the sensible default behavior, and forces 1704 us to explicitly document why we are *not* copying a flag. */ 1705 if (evd->dummy) 1706 copy = NULL; 1707 else 1708 copy = shallow_copy_rtx (orig); 1709 1710 format_ptr = GET_RTX_FORMAT (code); 1711 1712 for (i = 0; i < GET_RTX_LENGTH (code); i++) 1713 switch (*format_ptr++) 1714 { 1715 case 'e': 1716 if (XEXP (orig, i) != NULL) 1717 { 1718 rtx result = cselib_expand_value_rtx_1 (XEXP (orig, i), evd, 1719 max_depth - 1); 1720 if (!result) 1721 return NULL; 1722 if (copy) 1723 XEXP (copy, i) = result; 1724 } 1725 break; 1726 1727 case 'E': 1728 case 'V': 1729 if (XVEC (orig, i) != NULL) 1730 { 1731 if (copy) 1732 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i)); 1733 for (j = 0; j < XVECLEN (orig, i); j++) 1734 { 1735 rtx result = cselib_expand_value_rtx_1 (XVECEXP (orig, i, j), 1736 evd, max_depth - 1); 1737 if (!result) 1738 return NULL; 1739 if (copy) 1740 XVECEXP (copy, i, j) = result; 1741 } 1742 } 1743 break; 1744 1745 case 't': 1746 case 'w': 1747 case 'i': 1748 case 's': 1749 case 'S': 1750 case 'T': 1751 case 'u': 1752 case 'B': 1753 case '0': 1754 /* These are left unchanged. */ 1755 break; 1756 1757 default: 1758 gcc_unreachable (); 1759 } 1760 1761 if (evd->dummy) 1762 return orig; 1763 1764 mode = GET_MODE (copy); 1765 /* If an operand has been simplified into CONST_INT, which doesn't 1766 have a mode and the mode isn't derivable from whole rtx's mode, 1767 try simplify_*_operation first with mode from original's operand 1768 and as a fallback wrap CONST_INT into gen_rtx_CONST. */ 1769 scopy = copy; 1770 switch (GET_RTX_CLASS (code)) 1771 { 1772 case RTX_UNARY: 1773 if (CONST_INT_P (XEXP (copy, 0)) 1774 && GET_MODE (XEXP (orig, 0)) != VOIDmode) 1775 { 1776 scopy = simplify_unary_operation (code, mode, XEXP (copy, 0), 1777 GET_MODE (XEXP (orig, 0))); 1778 if (scopy) 1779 return scopy; 1780 } 1781 break; 1782 case RTX_COMM_ARITH: 1783 case RTX_BIN_ARITH: 1784 /* These expressions can derive operand modes from the whole rtx's mode. */ 1785 break; 1786 case RTX_TERNARY: 1787 case RTX_BITFIELD_OPS: 1788 if (CONST_INT_P (XEXP (copy, 0)) 1789 && GET_MODE (XEXP (orig, 0)) != VOIDmode) 1790 { 1791 scopy = simplify_ternary_operation (code, mode, 1792 GET_MODE (XEXP (orig, 0)), 1793 XEXP (copy, 0), XEXP (copy, 1), 1794 XEXP (copy, 2)); 1795 if (scopy) 1796 return scopy; 1797 } 1798 break; 1799 case RTX_COMPARE: 1800 case RTX_COMM_COMPARE: 1801 if (CONST_INT_P (XEXP (copy, 0)) 1802 && GET_MODE (XEXP (copy, 1)) == VOIDmode 1803 && (GET_MODE (XEXP (orig, 0)) != VOIDmode 1804 || GET_MODE (XEXP (orig, 1)) != VOIDmode)) 1805 { 1806 scopy = simplify_relational_operation (code, mode, 1807 (GET_MODE (XEXP (orig, 0)) 1808 != VOIDmode) 1809 ? GET_MODE (XEXP (orig, 0)) 1810 : GET_MODE (XEXP (orig, 1)), 1811 XEXP (copy, 0), 1812 XEXP (copy, 1)); 1813 if (scopy) 1814 return scopy; 1815 } 1816 break; 1817 default: 1818 break; 1819 } 1820 scopy = simplify_rtx (copy); 1821 if (scopy) 1822 return scopy; 1823 return copy; 1824 } 1825 1826 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions 1827 with VALUE expressions. This way, it becomes independent of changes 1828 to registers and memory. 1829 X isn't actually modified; if modifications are needed, new rtl is 1830 allocated. However, the return value can share rtl with X. 1831 If X is within a MEM, MEMMODE must be the mode of the MEM. */ 1832 1833 rtx 1834 cselib_subst_to_values (rtx x, enum machine_mode memmode) 1835 { 1836 enum rtx_code code = GET_CODE (x); 1837 const char *fmt = GET_RTX_FORMAT (code); 1838 cselib_val *e; 1839 struct elt_list *l; 1840 rtx copy = x; 1841 int i; 1842 1843 switch (code) 1844 { 1845 case REG: 1846 l = REG_VALUES (REGNO (x)); 1847 if (l && l->elt == NULL) 1848 l = l->next; 1849 for (; l; l = l->next) 1850 if (GET_MODE (l->elt->val_rtx) == GET_MODE (x)) 1851 return l->elt->val_rtx; 1852 1853 gcc_unreachable (); 1854 1855 case MEM: 1856 e = cselib_lookup_mem (x, 0); 1857 /* This used to happen for autoincrements, but we deal with them 1858 properly now. Remove the if stmt for the next release. */ 1859 if (! e) 1860 { 1861 /* Assign a value that doesn't match any other. */ 1862 e = new_cselib_val (next_uid, GET_MODE (x), x); 1863 } 1864 return e->val_rtx; 1865 1866 case ENTRY_VALUE: 1867 e = cselib_lookup (x, GET_MODE (x), 0, memmode); 1868 if (! e) 1869 break; 1870 return e->val_rtx; 1871 1872 CASE_CONST_ANY: 1873 return x; 1874 1875 case PRE_DEC: 1876 case PRE_INC: 1877 gcc_assert (memmode != VOIDmode); 1878 i = GET_MODE_SIZE (memmode); 1879 if (code == PRE_DEC) 1880 i = -i; 1881 return cselib_subst_to_values (plus_constant (GET_MODE (x), 1882 XEXP (x, 0), i), 1883 memmode); 1884 1885 case PRE_MODIFY: 1886 gcc_assert (memmode != VOIDmode); 1887 return cselib_subst_to_values (XEXP (x, 1), memmode); 1888 1889 case POST_DEC: 1890 case POST_INC: 1891 case POST_MODIFY: 1892 gcc_assert (memmode != VOIDmode); 1893 return cselib_subst_to_values (XEXP (x, 0), memmode); 1894 1895 default: 1896 break; 1897 } 1898 1899 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 1900 { 1901 if (fmt[i] == 'e') 1902 { 1903 rtx t = cselib_subst_to_values (XEXP (x, i), memmode); 1904 1905 if (t != XEXP (x, i)) 1906 { 1907 if (x == copy) 1908 copy = shallow_copy_rtx (x); 1909 XEXP (copy, i) = t; 1910 } 1911 } 1912 else if (fmt[i] == 'E') 1913 { 1914 int j; 1915 1916 for (j = 0; j < XVECLEN (x, i); j++) 1917 { 1918 rtx t = cselib_subst_to_values (XVECEXP (x, i, j), memmode); 1919 1920 if (t != XVECEXP (x, i, j)) 1921 { 1922 if (XVEC (x, i) == XVEC (copy, i)) 1923 { 1924 if (x == copy) 1925 copy = shallow_copy_rtx (x); 1926 XVEC (copy, i) = shallow_copy_rtvec (XVEC (x, i)); 1927 } 1928 XVECEXP (copy, i, j) = t; 1929 } 1930 } 1931 } 1932 } 1933 1934 return copy; 1935 } 1936 1937 /* Wrapper for cselib_subst_to_values, that indicates X is in INSN. */ 1938 1939 rtx 1940 cselib_subst_to_values_from_insn (rtx x, enum machine_mode memmode, rtx insn) 1941 { 1942 rtx ret; 1943 gcc_assert (!cselib_current_insn); 1944 cselib_current_insn = insn; 1945 ret = cselib_subst_to_values (x, memmode); 1946 cselib_current_insn = NULL; 1947 return ret; 1948 } 1949 1950 /* Look up the rtl expression X in our tables and return the value it 1951 has. If CREATE is zero, we return NULL if we don't know the value. 1952 Otherwise, we create a new one if possible, using mode MODE if X 1953 doesn't have a mode (i.e. because it's a constant). When X is part 1954 of an address, MEMMODE should be the mode of the enclosing MEM if 1955 we're tracking autoinc expressions. */ 1956 1957 static cselib_val * 1958 cselib_lookup_1 (rtx x, enum machine_mode mode, 1959 int create, enum machine_mode memmode) 1960 { 1961 void **slot; 1962 cselib_val *e; 1963 unsigned int hashval; 1964 1965 if (GET_MODE (x) != VOIDmode) 1966 mode = GET_MODE (x); 1967 1968 if (GET_CODE (x) == VALUE) 1969 return CSELIB_VAL_PTR (x); 1970 1971 if (REG_P (x)) 1972 { 1973 struct elt_list *l; 1974 unsigned int i = REGNO (x); 1975 1976 l = REG_VALUES (i); 1977 if (l && l->elt == NULL) 1978 l = l->next; 1979 for (; l; l = l->next) 1980 if (mode == GET_MODE (l->elt->val_rtx)) 1981 { 1982 promote_debug_loc (l->elt->locs); 1983 return l->elt; 1984 } 1985 1986 if (! create) 1987 return 0; 1988 1989 if (i < FIRST_PSEUDO_REGISTER) 1990 { 1991 unsigned int n = hard_regno_nregs[i][mode]; 1992 1993 if (n > max_value_regs) 1994 max_value_regs = n; 1995 } 1996 1997 e = new_cselib_val (next_uid, GET_MODE (x), x); 1998 new_elt_loc_list (e, x); 1999 if (REG_VALUES (i) == 0) 2000 { 2001 /* Maintain the invariant that the first entry of 2002 REG_VALUES, if present, must be the value used to set the 2003 register, or NULL. */ 2004 used_regs[n_used_regs++] = i; 2005 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL); 2006 } 2007 else if (cselib_preserve_constants 2008 && GET_MODE_CLASS (mode) == MODE_INT) 2009 { 2010 /* During var-tracking, try harder to find equivalences 2011 for SUBREGs. If a setter sets say a DImode register 2012 and user uses that register only in SImode, add a lowpart 2013 subreg location. */ 2014 struct elt_list *lwider = NULL; 2015 l = REG_VALUES (i); 2016 if (l && l->elt == NULL) 2017 l = l->next; 2018 for (; l; l = l->next) 2019 if (GET_MODE_CLASS (GET_MODE (l->elt->val_rtx)) == MODE_INT 2020 && GET_MODE_SIZE (GET_MODE (l->elt->val_rtx)) 2021 > GET_MODE_SIZE (mode) 2022 && (lwider == NULL 2023 || GET_MODE_SIZE (GET_MODE (l->elt->val_rtx)) 2024 < GET_MODE_SIZE (GET_MODE (lwider->elt->val_rtx)))) 2025 { 2026 struct elt_loc_list *el; 2027 if (i < FIRST_PSEUDO_REGISTER 2028 && hard_regno_nregs[i][GET_MODE (l->elt->val_rtx)] != 1) 2029 continue; 2030 for (el = l->elt->locs; el; el = el->next) 2031 if (!REG_P (el->loc)) 2032 break; 2033 if (el) 2034 lwider = l; 2035 } 2036 if (lwider) 2037 { 2038 rtx sub = lowpart_subreg (mode, lwider->elt->val_rtx, 2039 GET_MODE (lwider->elt->val_rtx)); 2040 if (sub) 2041 new_elt_loc_list (e, sub); 2042 } 2043 } 2044 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e); 2045 slot = cselib_find_slot (x, e->hash, INSERT, memmode); 2046 *slot = e; 2047 return e; 2048 } 2049 2050 if (MEM_P (x)) 2051 return cselib_lookup_mem (x, create); 2052 2053 hashval = cselib_hash_rtx (x, create, memmode); 2054 /* Can't even create if hashing is not possible. */ 2055 if (! hashval) 2056 return 0; 2057 2058 slot = cselib_find_slot (wrap_constant (mode, x), hashval, 2059 create ? INSERT : NO_INSERT, memmode); 2060 if (slot == 0) 2061 return 0; 2062 2063 e = (cselib_val *) *slot; 2064 if (e) 2065 return e; 2066 2067 e = new_cselib_val (hashval, mode, x); 2068 2069 /* We have to fill the slot before calling cselib_subst_to_values: 2070 the hash table is inconsistent until we do so, and 2071 cselib_subst_to_values will need to do lookups. */ 2072 *slot = (void *) e; 2073 new_elt_loc_list (e, cselib_subst_to_values (x, memmode)); 2074 return e; 2075 } 2076 2077 /* Wrapper for cselib_lookup, that indicates X is in INSN. */ 2078 2079 cselib_val * 2080 cselib_lookup_from_insn (rtx x, enum machine_mode mode, 2081 int create, enum machine_mode memmode, rtx insn) 2082 { 2083 cselib_val *ret; 2084 2085 gcc_assert (!cselib_current_insn); 2086 cselib_current_insn = insn; 2087 2088 ret = cselib_lookup (x, mode, create, memmode); 2089 2090 cselib_current_insn = NULL; 2091 2092 return ret; 2093 } 2094 2095 /* Wrapper for cselib_lookup_1, that logs the lookup result and 2096 maintains invariants related with debug insns. */ 2097 2098 cselib_val * 2099 cselib_lookup (rtx x, enum machine_mode mode, 2100 int create, enum machine_mode memmode) 2101 { 2102 cselib_val *ret = cselib_lookup_1 (x, mode, create, memmode); 2103 2104 /* ??? Should we return NULL if we're not to create an entry, the 2105 found loc is a debug loc and cselib_current_insn is not DEBUG? 2106 If so, we should also avoid converting val to non-DEBUG; probably 2107 easiest setting cselib_current_insn to NULL before the call 2108 above. */ 2109 2110 if (dump_file && (dump_flags & TDF_CSELIB)) 2111 { 2112 fputs ("cselib lookup ", dump_file); 2113 print_inline_rtx (dump_file, x, 2); 2114 fprintf (dump_file, " => %u:%u\n", 2115 ret ? ret->uid : 0, 2116 ret ? ret->hash : 0); 2117 } 2118 2119 return ret; 2120 } 2121 2122 /* Invalidate any entries in reg_values that overlap REGNO. This is called 2123 if REGNO is changing. MODE is the mode of the assignment to REGNO, which 2124 is used to determine how many hard registers are being changed. If MODE 2125 is VOIDmode, then only REGNO is being changed; this is used when 2126 invalidating call clobbered registers across a call. */ 2127 2128 static void 2129 cselib_invalidate_regno (unsigned int regno, enum machine_mode mode) 2130 { 2131 unsigned int endregno; 2132 unsigned int i; 2133 2134 /* If we see pseudos after reload, something is _wrong_. */ 2135 gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER 2136 || reg_renumber[regno] < 0); 2137 2138 /* Determine the range of registers that must be invalidated. For 2139 pseudos, only REGNO is affected. For hard regs, we must take MODE 2140 into account, and we must also invalidate lower register numbers 2141 if they contain values that overlap REGNO. */ 2142 if (regno < FIRST_PSEUDO_REGISTER) 2143 { 2144 gcc_assert (mode != VOIDmode); 2145 2146 if (regno < max_value_regs) 2147 i = 0; 2148 else 2149 i = regno - max_value_regs; 2150 2151 endregno = end_hard_regno (mode, regno); 2152 } 2153 else 2154 { 2155 i = regno; 2156 endregno = regno + 1; 2157 } 2158 2159 for (; i < endregno; i++) 2160 { 2161 struct elt_list **l = ®_VALUES (i); 2162 2163 /* Go through all known values for this reg; if it overlaps the range 2164 we're invalidating, remove the value. */ 2165 while (*l) 2166 { 2167 cselib_val *v = (*l)->elt; 2168 bool had_locs; 2169 rtx setting_insn; 2170 struct elt_loc_list **p; 2171 unsigned int this_last = i; 2172 2173 if (i < FIRST_PSEUDO_REGISTER && v != NULL) 2174 this_last = end_hard_regno (GET_MODE (v->val_rtx), i) - 1; 2175 2176 if (this_last < regno || v == NULL 2177 || (v == cfa_base_preserved_val 2178 && i == cfa_base_preserved_regno)) 2179 { 2180 l = &(*l)->next; 2181 continue; 2182 } 2183 2184 /* We have an overlap. */ 2185 if (*l == REG_VALUES (i)) 2186 { 2187 /* Maintain the invariant that the first entry of 2188 REG_VALUES, if present, must be the value used to set 2189 the register, or NULL. This is also nice because 2190 then we won't push the same regno onto user_regs 2191 multiple times. */ 2192 (*l)->elt = NULL; 2193 l = &(*l)->next; 2194 } 2195 else 2196 unchain_one_elt_list (l); 2197 2198 v = canonical_cselib_val (v); 2199 2200 had_locs = v->locs != NULL; 2201 setting_insn = v->locs ? v->locs->setting_insn : NULL; 2202 2203 /* Now, we clear the mapping from value to reg. It must exist, so 2204 this code will crash intentionally if it doesn't. */ 2205 for (p = &v->locs; ; p = &(*p)->next) 2206 { 2207 rtx x = (*p)->loc; 2208 2209 if (REG_P (x) && REGNO (x) == i) 2210 { 2211 unchain_one_elt_loc_list (p); 2212 break; 2213 } 2214 } 2215 2216 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx)) 2217 { 2218 if (setting_insn && DEBUG_INSN_P (setting_insn)) 2219 n_useless_debug_values++; 2220 else 2221 n_useless_values++; 2222 } 2223 } 2224 } 2225 } 2226 2227 /* Invalidate any locations in the table which are changed because of a 2228 store to MEM_RTX. If this is called because of a non-const call 2229 instruction, MEM_RTX is (mem:BLK const0_rtx). */ 2230 2231 static void 2232 cselib_invalidate_mem (rtx mem_rtx) 2233 { 2234 cselib_val **vp, *v, *next; 2235 int num_mems = 0; 2236 rtx mem_addr; 2237 2238 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0))); 2239 mem_rtx = canon_rtx (mem_rtx); 2240 2241 vp = &first_containing_mem; 2242 for (v = *vp; v != &dummy_val; v = next) 2243 { 2244 bool has_mem = false; 2245 struct elt_loc_list **p = &v->locs; 2246 bool had_locs = v->locs != NULL; 2247 rtx setting_insn = v->locs ? v->locs->setting_insn : NULL; 2248 2249 while (*p) 2250 { 2251 rtx x = (*p)->loc; 2252 cselib_val *addr; 2253 struct elt_list **mem_chain; 2254 2255 /* MEMs may occur in locations only at the top level; below 2256 that every MEM or REG is substituted by its VALUE. */ 2257 if (!MEM_P (x)) 2258 { 2259 p = &(*p)->next; 2260 continue; 2261 } 2262 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS) 2263 && ! canon_anti_dependence (x, false, mem_rtx, 2264 GET_MODE (mem_rtx), mem_addr)) 2265 { 2266 has_mem = true; 2267 num_mems++; 2268 p = &(*p)->next; 2269 continue; 2270 } 2271 2272 /* This one overlaps. */ 2273 /* We must have a mapping from this MEM's address to the 2274 value (E). Remove that, too. */ 2275 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0, GET_MODE (x)); 2276 addr = canonical_cselib_val (addr); 2277 gcc_checking_assert (v == canonical_cselib_val (v)); 2278 mem_chain = &addr->addr_list; 2279 for (;;) 2280 { 2281 cselib_val *canon = canonical_cselib_val ((*mem_chain)->elt); 2282 2283 if (canon == v) 2284 { 2285 unchain_one_elt_list (mem_chain); 2286 break; 2287 } 2288 2289 /* Record canonicalized elt. */ 2290 (*mem_chain)->elt = canon; 2291 2292 mem_chain = &(*mem_chain)->next; 2293 } 2294 2295 unchain_one_elt_loc_list (p); 2296 } 2297 2298 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx)) 2299 { 2300 if (setting_insn && DEBUG_INSN_P (setting_insn)) 2301 n_useless_debug_values++; 2302 else 2303 n_useless_values++; 2304 } 2305 2306 next = v->next_containing_mem; 2307 if (has_mem) 2308 { 2309 *vp = v; 2310 vp = &(*vp)->next_containing_mem; 2311 } 2312 else 2313 v->next_containing_mem = NULL; 2314 } 2315 *vp = &dummy_val; 2316 } 2317 2318 /* Invalidate DEST, which is being assigned to or clobbered. */ 2319 2320 void 2321 cselib_invalidate_rtx (rtx dest) 2322 { 2323 while (GET_CODE (dest) == SUBREG 2324 || GET_CODE (dest) == ZERO_EXTRACT 2325 || GET_CODE (dest) == STRICT_LOW_PART) 2326 dest = XEXP (dest, 0); 2327 2328 if (REG_P (dest)) 2329 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest)); 2330 else if (MEM_P (dest)) 2331 cselib_invalidate_mem (dest); 2332 } 2333 2334 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */ 2335 2336 static void 2337 cselib_invalidate_rtx_note_stores (rtx dest, const_rtx ignore ATTRIBUTE_UNUSED, 2338 void *data ATTRIBUTE_UNUSED) 2339 { 2340 cselib_invalidate_rtx (dest); 2341 } 2342 2343 /* Record the result of a SET instruction. DEST is being set; the source 2344 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT 2345 describes its address. */ 2346 2347 static void 2348 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt) 2349 { 2350 int dreg = REG_P (dest) ? (int) REGNO (dest) : -1; 2351 2352 if (src_elt == 0 || side_effects_p (dest)) 2353 return; 2354 2355 if (dreg >= 0) 2356 { 2357 if (dreg < FIRST_PSEUDO_REGISTER) 2358 { 2359 unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)]; 2360 2361 if (n > max_value_regs) 2362 max_value_regs = n; 2363 } 2364 2365 if (REG_VALUES (dreg) == 0) 2366 { 2367 used_regs[n_used_regs++] = dreg; 2368 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt); 2369 } 2370 else 2371 { 2372 /* The register should have been invalidated. */ 2373 gcc_assert (REG_VALUES (dreg)->elt == 0); 2374 REG_VALUES (dreg)->elt = src_elt; 2375 } 2376 2377 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx)) 2378 n_useless_values--; 2379 new_elt_loc_list (src_elt, dest); 2380 } 2381 else if (MEM_P (dest) && dest_addr_elt != 0 2382 && cselib_record_memory) 2383 { 2384 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx)) 2385 n_useless_values--; 2386 add_mem_for_addr (dest_addr_elt, src_elt, dest); 2387 } 2388 } 2389 2390 /* Make ELT and X's VALUE equivalent to each other at INSN. */ 2391 2392 void 2393 cselib_add_permanent_equiv (cselib_val *elt, rtx x, rtx insn) 2394 { 2395 cselib_val *nelt; 2396 rtx save_cselib_current_insn = cselib_current_insn; 2397 2398 gcc_checking_assert (elt); 2399 gcc_checking_assert (PRESERVED_VALUE_P (elt->val_rtx)); 2400 gcc_checking_assert (!side_effects_p (x)); 2401 2402 cselib_current_insn = insn; 2403 2404 nelt = cselib_lookup (x, GET_MODE (elt->val_rtx), 1, VOIDmode); 2405 2406 if (nelt != elt) 2407 { 2408 cselib_any_perm_equivs = true; 2409 2410 if (!PRESERVED_VALUE_P (nelt->val_rtx)) 2411 cselib_preserve_value (nelt); 2412 2413 new_elt_loc_list (nelt, elt->val_rtx); 2414 } 2415 2416 cselib_current_insn = save_cselib_current_insn; 2417 } 2418 2419 /* Return TRUE if any permanent equivalences have been recorded since 2420 the table was last initialized. */ 2421 bool 2422 cselib_have_permanent_equivalences (void) 2423 { 2424 return cselib_any_perm_equivs; 2425 } 2426 2427 /* There is no good way to determine how many elements there can be 2428 in a PARALLEL. Since it's fairly cheap, use a really large number. */ 2429 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2) 2430 2431 struct cselib_record_autoinc_data 2432 { 2433 struct cselib_set *sets; 2434 int n_sets; 2435 }; 2436 2437 /* Callback for for_each_inc_dec. Records in ARG the SETs implied by 2438 autoinc RTXs: SRC plus SRCOFF if non-NULL is stored in DEST. */ 2439 2440 static int 2441 cselib_record_autoinc_cb (rtx mem ATTRIBUTE_UNUSED, rtx op ATTRIBUTE_UNUSED, 2442 rtx dest, rtx src, rtx srcoff, void *arg) 2443 { 2444 struct cselib_record_autoinc_data *data; 2445 data = (struct cselib_record_autoinc_data *)arg; 2446 2447 data->sets[data->n_sets].dest = dest; 2448 2449 if (srcoff) 2450 data->sets[data->n_sets].src = gen_rtx_PLUS (GET_MODE (src), src, srcoff); 2451 else 2452 data->sets[data->n_sets].src = src; 2453 2454 data->n_sets++; 2455 2456 return -1; 2457 } 2458 2459 /* Record the effects of any sets and autoincs in INSN. */ 2460 static void 2461 cselib_record_sets (rtx insn) 2462 { 2463 int n_sets = 0; 2464 int i; 2465 struct cselib_set sets[MAX_SETS]; 2466 rtx body = PATTERN (insn); 2467 rtx cond = 0; 2468 int n_sets_before_autoinc; 2469 struct cselib_record_autoinc_data data; 2470 2471 body = PATTERN (insn); 2472 if (GET_CODE (body) == COND_EXEC) 2473 { 2474 cond = COND_EXEC_TEST (body); 2475 body = COND_EXEC_CODE (body); 2476 } 2477 2478 /* Find all sets. */ 2479 if (GET_CODE (body) == SET) 2480 { 2481 sets[0].src = SET_SRC (body); 2482 sets[0].dest = SET_DEST (body); 2483 n_sets = 1; 2484 } 2485 else if (GET_CODE (body) == PARALLEL) 2486 { 2487 /* Look through the PARALLEL and record the values being 2488 set, if possible. Also handle any CLOBBERs. */ 2489 for (i = XVECLEN (body, 0) - 1; i >= 0; --i) 2490 { 2491 rtx x = XVECEXP (body, 0, i); 2492 2493 if (GET_CODE (x) == SET) 2494 { 2495 sets[n_sets].src = SET_SRC (x); 2496 sets[n_sets].dest = SET_DEST (x); 2497 n_sets++; 2498 } 2499 } 2500 } 2501 2502 if (n_sets == 1 2503 && MEM_P (sets[0].src) 2504 && !cselib_record_memory 2505 && MEM_READONLY_P (sets[0].src)) 2506 { 2507 rtx note = find_reg_equal_equiv_note (insn); 2508 2509 if (note && CONSTANT_P (XEXP (note, 0))) 2510 sets[0].src = XEXP (note, 0); 2511 } 2512 2513 data.sets = sets; 2514 data.n_sets = n_sets_before_autoinc = n_sets; 2515 for_each_inc_dec (&insn, cselib_record_autoinc_cb, &data); 2516 n_sets = data.n_sets; 2517 2518 /* Look up the values that are read. Do this before invalidating the 2519 locations that are written. */ 2520 for (i = 0; i < n_sets; i++) 2521 { 2522 rtx dest = sets[i].dest; 2523 2524 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for 2525 the low part after invalidating any knowledge about larger modes. */ 2526 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART) 2527 sets[i].dest = dest = XEXP (dest, 0); 2528 2529 /* We don't know how to record anything but REG or MEM. */ 2530 if (REG_P (dest) 2531 || (MEM_P (dest) && cselib_record_memory)) 2532 { 2533 rtx src = sets[i].src; 2534 if (cond) 2535 src = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), cond, src, dest); 2536 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1, VOIDmode); 2537 if (MEM_P (dest)) 2538 { 2539 enum machine_mode address_mode = get_address_mode (dest); 2540 2541 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0), 2542 address_mode, 1, 2543 GET_MODE (dest)); 2544 } 2545 else 2546 sets[i].dest_addr_elt = 0; 2547 } 2548 } 2549 2550 if (cselib_record_sets_hook) 2551 cselib_record_sets_hook (insn, sets, n_sets); 2552 2553 /* Invalidate all locations written by this insn. Note that the elts we 2554 looked up in the previous loop aren't affected, just some of their 2555 locations may go away. */ 2556 note_stores (body, cselib_invalidate_rtx_note_stores, NULL); 2557 2558 for (i = n_sets_before_autoinc; i < n_sets; i++) 2559 cselib_invalidate_rtx (sets[i].dest); 2560 2561 /* If this is an asm, look for duplicate sets. This can happen when the 2562 user uses the same value as an output multiple times. This is valid 2563 if the outputs are not actually used thereafter. Treat this case as 2564 if the value isn't actually set. We do this by smashing the destination 2565 to pc_rtx, so that we won't record the value later. */ 2566 if (n_sets >= 2 && asm_noperands (body) >= 0) 2567 { 2568 for (i = 0; i < n_sets; i++) 2569 { 2570 rtx dest = sets[i].dest; 2571 if (REG_P (dest) || MEM_P (dest)) 2572 { 2573 int j; 2574 for (j = i + 1; j < n_sets; j++) 2575 if (rtx_equal_p (dest, sets[j].dest)) 2576 { 2577 sets[i].dest = pc_rtx; 2578 sets[j].dest = pc_rtx; 2579 } 2580 } 2581 } 2582 } 2583 2584 /* Now enter the equivalences in our tables. */ 2585 for (i = 0; i < n_sets; i++) 2586 { 2587 rtx dest = sets[i].dest; 2588 if (REG_P (dest) 2589 || (MEM_P (dest) && cselib_record_memory)) 2590 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt); 2591 } 2592 } 2593 2594 /* Return true if INSN in the prologue initializes hard_frame_pointer_rtx. */ 2595 2596 bool 2597 fp_setter_insn (rtx insn) 2598 { 2599 rtx expr, pat = NULL_RTX; 2600 2601 if (!RTX_FRAME_RELATED_P (insn)) 2602 return false; 2603 2604 expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX); 2605 if (expr) 2606 pat = XEXP (expr, 0); 2607 if (!modified_in_p (hard_frame_pointer_rtx, pat ? pat : insn)) 2608 return false; 2609 2610 /* Don't return true for frame pointer restores in the epilogue. */ 2611 if (find_reg_note (insn, REG_CFA_RESTORE, hard_frame_pointer_rtx)) 2612 return false; 2613 return true; 2614 } 2615 2616 /* Record the effects of INSN. */ 2617 2618 void 2619 cselib_process_insn (rtx insn) 2620 { 2621 int i; 2622 rtx x; 2623 2624 cselib_current_insn = insn; 2625 2626 /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */ 2627 if ((LABEL_P (insn) 2628 || (CALL_P (insn) 2629 && find_reg_note (insn, REG_SETJMP, NULL)) 2630 || (NONJUMP_INSN_P (insn) 2631 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS 2632 && MEM_VOLATILE_P (PATTERN (insn)))) 2633 && !cselib_preserve_constants) 2634 { 2635 cselib_reset_table (next_uid); 2636 cselib_current_insn = NULL_RTX; 2637 return; 2638 } 2639 2640 if (! INSN_P (insn)) 2641 { 2642 cselib_current_insn = NULL_RTX; 2643 return; 2644 } 2645 2646 /* If this is a call instruction, forget anything stored in a 2647 call clobbered register, or, if this is not a const call, in 2648 memory. */ 2649 if (CALL_P (insn)) 2650 { 2651 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) 2652 if (call_used_regs[i] 2653 || (REG_VALUES (i) && REG_VALUES (i)->elt 2654 && HARD_REGNO_CALL_PART_CLOBBERED (i, 2655 GET_MODE (REG_VALUES (i)->elt->val_rtx)))) 2656 cselib_invalidate_regno (i, reg_raw_mode[i]); 2657 2658 /* Since it is not clear how cselib is going to be used, be 2659 conservative here and treat looping pure or const functions 2660 as if they were regular functions. */ 2661 if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn) 2662 || !(RTL_CONST_OR_PURE_CALL_P (insn))) 2663 cselib_invalidate_mem (callmem); 2664 } 2665 2666 cselib_record_sets (insn); 2667 2668 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only 2669 after we have processed the insn. */ 2670 if (CALL_P (insn)) 2671 { 2672 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1)) 2673 if (GET_CODE (XEXP (x, 0)) == CLOBBER) 2674 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0)); 2675 /* Flush evertything on setjmp. */ 2676 if (cselib_preserve_constants 2677 && find_reg_note (insn, REG_SETJMP, NULL)) 2678 { 2679 cselib_preserve_only_values (); 2680 cselib_reset_table (next_uid); 2681 } 2682 } 2683 2684 /* On setter of the hard frame pointer if frame_pointer_needed, 2685 invalidate stack_pointer_rtx, so that sp and {,h}fp based 2686 VALUEs are distinct. */ 2687 if (reload_completed 2688 && frame_pointer_needed 2689 && fp_setter_insn (insn)) 2690 cselib_invalidate_rtx (stack_pointer_rtx); 2691 2692 cselib_current_insn = NULL_RTX; 2693 2694 if (n_useless_values > MAX_USELESS_VALUES 2695 /* remove_useless_values is linear in the hash table size. Avoid 2696 quadratic behavior for very large hashtables with very few 2697 useless elements. */ 2698 && ((unsigned int)n_useless_values 2699 > (cselib_hash_table->n_elements 2700 - cselib_hash_table->n_deleted 2701 - n_debug_values) / 4)) 2702 remove_useless_values (); 2703 } 2704 2705 /* Initialize cselib for one pass. The caller must also call 2706 init_alias_analysis. */ 2707 2708 void 2709 cselib_init (int record_what) 2710 { 2711 elt_list_pool = create_alloc_pool ("elt_list", 2712 sizeof (struct elt_list), 10); 2713 elt_loc_list_pool = create_alloc_pool ("elt_loc_list", 2714 sizeof (struct elt_loc_list), 10); 2715 cselib_val_pool = create_alloc_pool ("cselib_val_list", 2716 sizeof (cselib_val), 10); 2717 value_pool = create_alloc_pool ("value", RTX_CODE_SIZE (VALUE), 100); 2718 cselib_record_memory = record_what & CSELIB_RECORD_MEMORY; 2719 cselib_preserve_constants = record_what & CSELIB_PRESERVE_CONSTANTS; 2720 cselib_any_perm_equivs = false; 2721 2722 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything, 2723 see canon_true_dependence. This is only created once. */ 2724 if (! callmem) 2725 callmem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)); 2726 2727 cselib_nregs = max_reg_num (); 2728 2729 /* We preserve reg_values to allow expensive clearing of the whole thing. 2730 Reallocate it however if it happens to be too large. */ 2731 if (!reg_values || reg_values_size < cselib_nregs 2732 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4)) 2733 { 2734 free (reg_values); 2735 /* Some space for newly emit instructions so we don't end up 2736 reallocating in between passes. */ 2737 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16; 2738 reg_values = XCNEWVEC (struct elt_list *, reg_values_size); 2739 } 2740 used_regs = XNEWVEC (unsigned int, cselib_nregs); 2741 n_used_regs = 0; 2742 cselib_hash_table = htab_create (31, get_value_hash, 2743 entry_and_rtx_equal_p, NULL); 2744 next_uid = 1; 2745 } 2746 2747 /* Called when the current user is done with cselib. */ 2748 2749 void 2750 cselib_finish (void) 2751 { 2752 cselib_discard_hook = NULL; 2753 cselib_preserve_constants = false; 2754 cselib_any_perm_equivs = false; 2755 cfa_base_preserved_val = NULL; 2756 cfa_base_preserved_regno = INVALID_REGNUM; 2757 free_alloc_pool (elt_list_pool); 2758 free_alloc_pool (elt_loc_list_pool); 2759 free_alloc_pool (cselib_val_pool); 2760 free_alloc_pool (value_pool); 2761 cselib_clear_table (); 2762 htab_delete (cselib_hash_table); 2763 free (used_regs); 2764 used_regs = 0; 2765 cselib_hash_table = 0; 2766 n_useless_values = 0; 2767 n_useless_debug_values = 0; 2768 n_debug_values = 0; 2769 next_uid = 0; 2770 } 2771 2772 /* Dump the cselib_val *X to FILE *info. */ 2773 2774 static int 2775 dump_cselib_val (void **x, void *info) 2776 { 2777 cselib_val *v = (cselib_val *)*x; 2778 FILE *out = (FILE *)info; 2779 bool need_lf = true; 2780 2781 print_inline_rtx (out, v->val_rtx, 0); 2782 2783 if (v->locs) 2784 { 2785 struct elt_loc_list *l = v->locs; 2786 if (need_lf) 2787 { 2788 fputc ('\n', out); 2789 need_lf = false; 2790 } 2791 fputs (" locs:", out); 2792 do 2793 { 2794 if (l->setting_insn) 2795 fprintf (out, "\n from insn %i ", 2796 INSN_UID (l->setting_insn)); 2797 else 2798 fprintf (out, "\n "); 2799 print_inline_rtx (out, l->loc, 4); 2800 } 2801 while ((l = l->next)); 2802 fputc ('\n', out); 2803 } 2804 else 2805 { 2806 fputs (" no locs", out); 2807 need_lf = true; 2808 } 2809 2810 if (v->addr_list) 2811 { 2812 struct elt_list *e = v->addr_list; 2813 if (need_lf) 2814 { 2815 fputc ('\n', out); 2816 need_lf = false; 2817 } 2818 fputs (" addr list:", out); 2819 do 2820 { 2821 fputs ("\n ", out); 2822 print_inline_rtx (out, e->elt->val_rtx, 2); 2823 } 2824 while ((e = e->next)); 2825 fputc ('\n', out); 2826 } 2827 else 2828 { 2829 fputs (" no addrs", out); 2830 need_lf = true; 2831 } 2832 2833 if (v->next_containing_mem == &dummy_val) 2834 fputs (" last mem\n", out); 2835 else if (v->next_containing_mem) 2836 { 2837 fputs (" next mem ", out); 2838 print_inline_rtx (out, v->next_containing_mem->val_rtx, 2); 2839 fputc ('\n', out); 2840 } 2841 else if (need_lf) 2842 fputc ('\n', out); 2843 2844 return 1; 2845 } 2846 2847 /* Dump to OUT everything in the CSELIB table. */ 2848 2849 void 2850 dump_cselib_table (FILE *out) 2851 { 2852 fprintf (out, "cselib hash table:\n"); 2853 htab_traverse (cselib_hash_table, dump_cselib_val, out); 2854 if (first_containing_mem != &dummy_val) 2855 { 2856 fputs ("first mem ", out); 2857 print_inline_rtx (out, first_containing_mem->val_rtx, 2); 2858 fputc ('\n', out); 2859 } 2860 fprintf (out, "next uid %i\n", next_uid); 2861 } 2862 2863 #include "gt-cselib.h" 2864