1 /* Common subexpression elimination library for GNU compiler. 2 Copyright (C) 1987-2017 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "backend.h" 24 #include "target.h" 25 #include "rtl.h" 26 #include "tree.h" 27 #include "df.h" 28 #include "memmodel.h" 29 #include "tm_p.h" 30 #include "regs.h" 31 #include "emit-rtl.h" 32 #include "dumpfile.h" 33 #include "cselib.h" 34 #include "params.h" 35 36 /* A list of cselib_val structures. */ 37 struct elt_list 38 { 39 struct elt_list *next; 40 cselib_val *elt; 41 }; 42 43 static bool cselib_record_memory; 44 static bool cselib_preserve_constants; 45 static bool cselib_any_perm_equivs; 46 static inline void promote_debug_loc (struct elt_loc_list *l); 47 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *); 48 static void new_elt_loc_list (cselib_val *, rtx); 49 static void unchain_one_value (cselib_val *); 50 static void unchain_one_elt_list (struct elt_list **); 51 static void unchain_one_elt_loc_list (struct elt_loc_list **); 52 static void remove_useless_values (void); 53 static unsigned int cselib_hash_rtx (rtx, int, machine_mode); 54 static cselib_val *new_cselib_val (unsigned int, machine_mode, rtx); 55 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx); 56 static cselib_val *cselib_lookup_mem (rtx, int); 57 static void cselib_invalidate_regno (unsigned int, machine_mode); 58 static void cselib_invalidate_mem (rtx); 59 static void cselib_record_set (rtx, cselib_val *, cselib_val *); 60 static void cselib_record_sets (rtx_insn *); 61 62 struct expand_value_data 63 { 64 bitmap regs_active; 65 cselib_expand_callback callback; 66 void *callback_arg; 67 bool dummy; 68 }; 69 70 static rtx cselib_expand_value_rtx_1 (rtx, struct expand_value_data *, int); 71 72 /* There are three ways in which cselib can look up an rtx: 73 - for a REG, the reg_values table (which is indexed by regno) is used 74 - for a MEM, we recursively look up its address and then follow the 75 addr_list of that value 76 - for everything else, we compute a hash value and go through the hash 77 table. Since different rtx's can still have the same hash value, 78 this involves walking the table entries for a given value and comparing 79 the locations of the entries with the rtx we are looking up. */ 80 81 struct cselib_hasher : nofree_ptr_hash <cselib_val> 82 { 83 struct key { 84 /* The rtx value and its mode (needed separately for constant 85 integers). */ 86 machine_mode mode; 87 rtx x; 88 /* The mode of the contaning MEM, if any, otherwise VOIDmode. */ 89 machine_mode memmode; 90 }; 91 typedef key *compare_type; 92 static inline hashval_t hash (const cselib_val *); 93 static inline bool equal (const cselib_val *, const key *); 94 }; 95 96 /* The hash function for our hash table. The value is always computed with 97 cselib_hash_rtx when adding an element; this function just extracts the 98 hash value from a cselib_val structure. */ 99 100 inline hashval_t 101 cselib_hasher::hash (const cselib_val *v) 102 { 103 return v->hash; 104 } 105 106 /* The equality test for our hash table. The first argument V is a table 107 element (i.e. a cselib_val), while the second arg X is an rtx. We know 108 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a 109 CONST of an appropriate mode. */ 110 111 inline bool 112 cselib_hasher::equal (const cselib_val *v, const key *x_arg) 113 { 114 struct elt_loc_list *l; 115 rtx x = x_arg->x; 116 machine_mode mode = x_arg->mode; 117 machine_mode memmode = x_arg->memmode; 118 119 if (mode != GET_MODE (v->val_rtx)) 120 return false; 121 122 if (GET_CODE (x) == VALUE) 123 return x == v->val_rtx; 124 125 /* We don't guarantee that distinct rtx's have different hash values, 126 so we need to do a comparison. */ 127 for (l = v->locs; l; l = l->next) 128 if (rtx_equal_for_cselib_1 (l->loc, x, memmode, 0)) 129 { 130 promote_debug_loc (l); 131 return true; 132 } 133 134 return false; 135 } 136 137 /* A table that enables us to look up elts by their value. */ 138 static hash_table<cselib_hasher> *cselib_hash_table; 139 140 /* A table to hold preserved values. */ 141 static hash_table<cselib_hasher> *cselib_preserved_hash_table; 142 143 /* This is a global so we don't have to pass this through every function. 144 It is used in new_elt_loc_list to set SETTING_INSN. */ 145 static rtx_insn *cselib_current_insn; 146 147 /* The unique id that the next create value will take. */ 148 static unsigned int next_uid; 149 150 /* The number of registers we had when the varrays were last resized. */ 151 static unsigned int cselib_nregs; 152 153 /* Count values without known locations, or with only locations that 154 wouldn't have been known except for debug insns. Whenever this 155 grows too big, we remove these useless values from the table. 156 157 Counting values with only debug values is a bit tricky. We don't 158 want to increment n_useless_values when we create a value for a 159 debug insn, for this would get n_useless_values out of sync, but we 160 want increment it if all locs in the list that were ever referenced 161 in nondebug insns are removed from the list. 162 163 In the general case, once we do that, we'd have to stop accepting 164 nondebug expressions in the loc list, to avoid having two values 165 equivalent that, without debug insns, would have been made into 166 separate values. However, because debug insns never introduce 167 equivalences themselves (no assignments), the only means for 168 growing loc lists is through nondebug assignments. If the locs 169 also happen to be referenced in debug insns, it will work just fine. 170 171 A consequence of this is that there's at most one debug-only loc in 172 each loc list. If we keep it in the first entry, testing whether 173 we have a debug-only loc list takes O(1). 174 175 Furthermore, since any additional entry in a loc list containing a 176 debug loc would have to come from an assignment (nondebug) that 177 references both the initial debug loc and the newly-equivalent loc, 178 the initial debug loc would be promoted to a nondebug loc, and the 179 loc list would not contain debug locs any more. 180 181 So the only case we have to be careful with in order to keep 182 n_useless_values in sync between debug and nondebug compilations is 183 to avoid incrementing n_useless_values when removing the single loc 184 from a value that turns out to not appear outside debug values. We 185 increment n_useless_debug_values instead, and leave such values 186 alone until, for other reasons, we garbage-collect useless 187 values. */ 188 static int n_useless_values; 189 static int n_useless_debug_values; 190 191 /* Count values whose locs have been taken exclusively from debug 192 insns for the entire life of the value. */ 193 static int n_debug_values; 194 195 /* Number of useless values before we remove them from the hash table. */ 196 #define MAX_USELESS_VALUES 32 197 198 /* This table maps from register number to values. It does not 199 contain pointers to cselib_val structures, but rather elt_lists. 200 The purpose is to be able to refer to the same register in 201 different modes. The first element of the list defines the mode in 202 which the register was set; if the mode is unknown or the value is 203 no longer valid in that mode, ELT will be NULL for the first 204 element. */ 205 static struct elt_list **reg_values; 206 static unsigned int reg_values_size; 207 #define REG_VALUES(i) reg_values[i] 208 209 /* The largest number of hard regs used by any entry added to the 210 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */ 211 static unsigned int max_value_regs; 212 213 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used 214 in cselib_clear_table() for fast emptying. */ 215 static unsigned int *used_regs; 216 static unsigned int n_used_regs; 217 218 /* We pass this to cselib_invalidate_mem to invalidate all of 219 memory for a non-const call instruction. */ 220 static GTY(()) rtx callmem; 221 222 /* Set by discard_useless_locs if it deleted the last location of any 223 value. */ 224 static int values_became_useless; 225 226 /* Used as stop element of the containing_mem list so we can check 227 presence in the list by checking the next pointer. */ 228 static cselib_val dummy_val; 229 230 /* If non-NULL, value of the eliminated arg_pointer_rtx or frame_pointer_rtx 231 that is constant through the whole function and should never be 232 eliminated. */ 233 static cselib_val *cfa_base_preserved_val; 234 static unsigned int cfa_base_preserved_regno = INVALID_REGNUM; 235 236 /* Used to list all values that contain memory reference. 237 May or may not contain the useless values - the list is compacted 238 each time memory is invalidated. */ 239 static cselib_val *first_containing_mem = &dummy_val; 240 241 static object_allocator<elt_list> elt_list_pool ("elt_list"); 242 static object_allocator<elt_loc_list> elt_loc_list_pool ("elt_loc_list"); 243 static object_allocator<cselib_val> cselib_val_pool ("cselib_val_list"); 244 245 static pool_allocator value_pool ("value", RTX_CODE_SIZE (VALUE)); 246 247 /* If nonnull, cselib will call this function before freeing useless 248 VALUEs. A VALUE is deemed useless if its "locs" field is null. */ 249 void (*cselib_discard_hook) (cselib_val *); 250 251 /* If nonnull, cselib will call this function before recording sets or 252 even clobbering outputs of INSN. All the recorded sets will be 253 represented in the array sets[n_sets]. new_val_min can be used to 254 tell whether values present in sets are introduced by this 255 instruction. */ 256 void (*cselib_record_sets_hook) (rtx_insn *insn, struct cselib_set *sets, 257 int n_sets); 258 259 #define PRESERVED_VALUE_P(RTX) \ 260 (RTL_FLAG_CHECK1 ("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging) 261 262 #define SP_BASED_VALUE_P(RTX) \ 263 (RTL_FLAG_CHECK1 ("SP_BASED_VALUE_P", (RTX), VALUE)->jump) 264 265 266 267 /* Allocate a struct elt_list and fill in its two elements with the 268 arguments. */ 269 270 static inline struct elt_list * 271 new_elt_list (struct elt_list *next, cselib_val *elt) 272 { 273 elt_list *el = elt_list_pool.allocate (); 274 el->next = next; 275 el->elt = elt; 276 return el; 277 } 278 279 /* Allocate a struct elt_loc_list with LOC and prepend it to VAL's loc 280 list. */ 281 282 static inline void 283 new_elt_loc_list (cselib_val *val, rtx loc) 284 { 285 struct elt_loc_list *el, *next = val->locs; 286 287 gcc_checking_assert (!next || !next->setting_insn 288 || !DEBUG_INSN_P (next->setting_insn) 289 || cselib_current_insn == next->setting_insn); 290 291 /* If we're creating the first loc in a debug insn context, we've 292 just created a debug value. Count it. */ 293 if (!next && cselib_current_insn && DEBUG_INSN_P (cselib_current_insn)) 294 n_debug_values++; 295 296 val = canonical_cselib_val (val); 297 next = val->locs; 298 299 if (GET_CODE (loc) == VALUE) 300 { 301 loc = canonical_cselib_val (CSELIB_VAL_PTR (loc))->val_rtx; 302 303 gcc_checking_assert (PRESERVED_VALUE_P (loc) 304 == PRESERVED_VALUE_P (val->val_rtx)); 305 306 if (val->val_rtx == loc) 307 return; 308 else if (val->uid > CSELIB_VAL_PTR (loc)->uid) 309 { 310 /* Reverse the insertion. */ 311 new_elt_loc_list (CSELIB_VAL_PTR (loc), val->val_rtx); 312 return; 313 } 314 315 gcc_checking_assert (val->uid < CSELIB_VAL_PTR (loc)->uid); 316 317 if (CSELIB_VAL_PTR (loc)->locs) 318 { 319 /* Bring all locs from LOC to VAL. */ 320 for (el = CSELIB_VAL_PTR (loc)->locs; el->next; el = el->next) 321 { 322 /* Adjust values that have LOC as canonical so that VAL 323 becomes their canonical. */ 324 if (el->loc && GET_CODE (el->loc) == VALUE) 325 { 326 gcc_checking_assert (CSELIB_VAL_PTR (el->loc)->locs->loc 327 == loc); 328 CSELIB_VAL_PTR (el->loc)->locs->loc = val->val_rtx; 329 } 330 } 331 el->next = val->locs; 332 next = val->locs = CSELIB_VAL_PTR (loc)->locs; 333 } 334 335 if (CSELIB_VAL_PTR (loc)->addr_list) 336 { 337 /* Bring in addr_list into canonical node. */ 338 struct elt_list *last = CSELIB_VAL_PTR (loc)->addr_list; 339 while (last->next) 340 last = last->next; 341 last->next = val->addr_list; 342 val->addr_list = CSELIB_VAL_PTR (loc)->addr_list; 343 CSELIB_VAL_PTR (loc)->addr_list = NULL; 344 } 345 346 if (CSELIB_VAL_PTR (loc)->next_containing_mem != NULL 347 && val->next_containing_mem == NULL) 348 { 349 /* Add VAL to the containing_mem list after LOC. LOC will 350 be removed when we notice it doesn't contain any 351 MEMs. */ 352 val->next_containing_mem = CSELIB_VAL_PTR (loc)->next_containing_mem; 353 CSELIB_VAL_PTR (loc)->next_containing_mem = val; 354 } 355 356 /* Chain LOC back to VAL. */ 357 el = elt_loc_list_pool.allocate (); 358 el->loc = val->val_rtx; 359 el->setting_insn = cselib_current_insn; 360 el->next = NULL; 361 CSELIB_VAL_PTR (loc)->locs = el; 362 } 363 364 el = elt_loc_list_pool.allocate (); 365 el->loc = loc; 366 el->setting_insn = cselib_current_insn; 367 el->next = next; 368 val->locs = el; 369 } 370 371 /* Promote loc L to a nondebug cselib_current_insn if L is marked as 372 originating from a debug insn, maintaining the debug values 373 count. */ 374 375 static inline void 376 promote_debug_loc (struct elt_loc_list *l) 377 { 378 if (l && l->setting_insn && DEBUG_INSN_P (l->setting_insn) 379 && (!cselib_current_insn || !DEBUG_INSN_P (cselib_current_insn))) 380 { 381 n_debug_values--; 382 l->setting_insn = cselib_current_insn; 383 if (cselib_preserve_constants && l->next) 384 { 385 gcc_assert (l->next->setting_insn 386 && DEBUG_INSN_P (l->next->setting_insn) 387 && !l->next->next); 388 l->next->setting_insn = cselib_current_insn; 389 } 390 else 391 gcc_assert (!l->next); 392 } 393 } 394 395 /* The elt_list at *PL is no longer needed. Unchain it and free its 396 storage. */ 397 398 static inline void 399 unchain_one_elt_list (struct elt_list **pl) 400 { 401 struct elt_list *l = *pl; 402 403 *pl = l->next; 404 elt_list_pool.remove (l); 405 } 406 407 /* Likewise for elt_loc_lists. */ 408 409 static void 410 unchain_one_elt_loc_list (struct elt_loc_list **pl) 411 { 412 struct elt_loc_list *l = *pl; 413 414 *pl = l->next; 415 elt_loc_list_pool.remove (l); 416 } 417 418 /* Likewise for cselib_vals. This also frees the addr_list associated with 419 V. */ 420 421 static void 422 unchain_one_value (cselib_val *v) 423 { 424 while (v->addr_list) 425 unchain_one_elt_list (&v->addr_list); 426 427 cselib_val_pool.remove (v); 428 } 429 430 /* Remove all entries from the hash table. Also used during 431 initialization. */ 432 433 void 434 cselib_clear_table (void) 435 { 436 cselib_reset_table (1); 437 } 438 439 /* Return TRUE if V is a constant, a function invariant or a VALUE 440 equivalence; FALSE otherwise. */ 441 442 static bool 443 invariant_or_equiv_p (cselib_val *v) 444 { 445 struct elt_loc_list *l; 446 447 if (v == cfa_base_preserved_val) 448 return true; 449 450 /* Keep VALUE equivalences around. */ 451 for (l = v->locs; l; l = l->next) 452 if (GET_CODE (l->loc) == VALUE) 453 return true; 454 455 if (v->locs != NULL 456 && v->locs->next == NULL) 457 { 458 if (CONSTANT_P (v->locs->loc) 459 && (GET_CODE (v->locs->loc) != CONST 460 || !references_value_p (v->locs->loc, 0))) 461 return true; 462 /* Although a debug expr may be bound to different expressions, 463 we can preserve it as if it was constant, to get unification 464 and proper merging within var-tracking. */ 465 if (GET_CODE (v->locs->loc) == DEBUG_EXPR 466 || GET_CODE (v->locs->loc) == DEBUG_IMPLICIT_PTR 467 || GET_CODE (v->locs->loc) == ENTRY_VALUE 468 || GET_CODE (v->locs->loc) == DEBUG_PARAMETER_REF) 469 return true; 470 471 /* (plus (value V) (const_int C)) is invariant iff V is invariant. */ 472 if (GET_CODE (v->locs->loc) == PLUS 473 && CONST_INT_P (XEXP (v->locs->loc, 1)) 474 && GET_CODE (XEXP (v->locs->loc, 0)) == VALUE 475 && invariant_or_equiv_p (CSELIB_VAL_PTR (XEXP (v->locs->loc, 0)))) 476 return true; 477 } 478 479 return false; 480 } 481 482 /* Remove from hash table all VALUEs except constants, function 483 invariants and VALUE equivalences. */ 484 485 int 486 preserve_constants_and_equivs (cselib_val **x, void *info ATTRIBUTE_UNUSED) 487 { 488 cselib_val *v = *x; 489 490 if (invariant_or_equiv_p (v)) 491 { 492 cselib_hasher::key lookup = { 493 GET_MODE (v->val_rtx), v->val_rtx, VOIDmode 494 }; 495 cselib_val **slot 496 = cselib_preserved_hash_table->find_slot_with_hash (&lookup, 497 v->hash, INSERT); 498 gcc_assert (!*slot); 499 *slot = v; 500 } 501 502 cselib_hash_table->clear_slot (x); 503 504 return 1; 505 } 506 507 /* Remove all entries from the hash table, arranging for the next 508 value to be numbered NUM. */ 509 510 void 511 cselib_reset_table (unsigned int num) 512 { 513 unsigned int i; 514 515 max_value_regs = 0; 516 517 if (cfa_base_preserved_val) 518 { 519 unsigned int regno = cfa_base_preserved_regno; 520 unsigned int new_used_regs = 0; 521 for (i = 0; i < n_used_regs; i++) 522 if (used_regs[i] == regno) 523 { 524 new_used_regs = 1; 525 continue; 526 } 527 else 528 REG_VALUES (used_regs[i]) = 0; 529 gcc_assert (new_used_regs == 1); 530 n_used_regs = new_used_regs; 531 used_regs[0] = regno; 532 max_value_regs 533 = hard_regno_nregs[regno][GET_MODE (cfa_base_preserved_val->locs->loc)]; 534 } 535 else 536 { 537 for (i = 0; i < n_used_regs; i++) 538 REG_VALUES (used_regs[i]) = 0; 539 n_used_regs = 0; 540 } 541 542 if (cselib_preserve_constants) 543 cselib_hash_table->traverse <void *, preserve_constants_and_equivs> 544 (NULL); 545 else 546 { 547 cselib_hash_table->empty (); 548 gcc_checking_assert (!cselib_any_perm_equivs); 549 } 550 551 n_useless_values = 0; 552 n_useless_debug_values = 0; 553 n_debug_values = 0; 554 555 next_uid = num; 556 557 first_containing_mem = &dummy_val; 558 } 559 560 /* Return the number of the next value that will be generated. */ 561 562 unsigned int 563 cselib_get_next_uid (void) 564 { 565 return next_uid; 566 } 567 568 /* Search for X, whose hashcode is HASH, in CSELIB_HASH_TABLE, 569 INSERTing if requested. When X is part of the address of a MEM, 570 MEMMODE should specify the mode of the MEM. */ 571 572 static cselib_val ** 573 cselib_find_slot (machine_mode mode, rtx x, hashval_t hash, 574 enum insert_option insert, machine_mode memmode) 575 { 576 cselib_val **slot = NULL; 577 cselib_hasher::key lookup = { mode, x, memmode }; 578 if (cselib_preserve_constants) 579 slot = cselib_preserved_hash_table->find_slot_with_hash (&lookup, hash, 580 NO_INSERT); 581 if (!slot) 582 slot = cselib_hash_table->find_slot_with_hash (&lookup, hash, insert); 583 return slot; 584 } 585 586 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we 587 only return true for values which point to a cselib_val whose value 588 element has been set to zero, which implies the cselib_val will be 589 removed. */ 590 591 int 592 references_value_p (const_rtx x, int only_useless) 593 { 594 const enum rtx_code code = GET_CODE (x); 595 const char *fmt = GET_RTX_FORMAT (code); 596 int i, j; 597 598 if (GET_CODE (x) == VALUE 599 && (! only_useless || 600 (CSELIB_VAL_PTR (x)->locs == 0 && !PRESERVED_VALUE_P (x)))) 601 return 1; 602 603 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 604 { 605 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless)) 606 return 1; 607 else if (fmt[i] == 'E') 608 for (j = 0; j < XVECLEN (x, i); j++) 609 if (references_value_p (XVECEXP (x, i, j), only_useless)) 610 return 1; 611 } 612 613 return 0; 614 } 615 616 /* For all locations found in X, delete locations that reference useless 617 values (i.e. values without any location). Called through 618 htab_traverse. */ 619 620 int 621 discard_useless_locs (cselib_val **x, void *info ATTRIBUTE_UNUSED) 622 { 623 cselib_val *v = *x; 624 struct elt_loc_list **p = &v->locs; 625 bool had_locs = v->locs != NULL; 626 rtx_insn *setting_insn = v->locs ? v->locs->setting_insn : NULL; 627 628 while (*p) 629 { 630 if (references_value_p ((*p)->loc, 1)) 631 unchain_one_elt_loc_list (p); 632 else 633 p = &(*p)->next; 634 } 635 636 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx)) 637 { 638 if (setting_insn && DEBUG_INSN_P (setting_insn)) 639 n_useless_debug_values++; 640 else 641 n_useless_values++; 642 values_became_useless = 1; 643 } 644 return 1; 645 } 646 647 /* If X is a value with no locations, remove it from the hashtable. */ 648 649 int 650 discard_useless_values (cselib_val **x, void *info ATTRIBUTE_UNUSED) 651 { 652 cselib_val *v = *x; 653 654 if (v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx)) 655 { 656 if (cselib_discard_hook) 657 cselib_discard_hook (v); 658 659 CSELIB_VAL_PTR (v->val_rtx) = NULL; 660 cselib_hash_table->clear_slot (x); 661 unchain_one_value (v); 662 n_useless_values--; 663 } 664 665 return 1; 666 } 667 668 /* Clean out useless values (i.e. those which no longer have locations 669 associated with them) from the hash table. */ 670 671 static void 672 remove_useless_values (void) 673 { 674 cselib_val **p, *v; 675 676 /* First pass: eliminate locations that reference the value. That in 677 turn can make more values useless. */ 678 do 679 { 680 values_became_useless = 0; 681 cselib_hash_table->traverse <void *, discard_useless_locs> (NULL); 682 } 683 while (values_became_useless); 684 685 /* Second pass: actually remove the values. */ 686 687 p = &first_containing_mem; 688 for (v = *p; v != &dummy_val; v = v->next_containing_mem) 689 if (v->locs && v == canonical_cselib_val (v)) 690 { 691 *p = v; 692 p = &(*p)->next_containing_mem; 693 } 694 *p = &dummy_val; 695 696 n_useless_values += n_useless_debug_values; 697 n_debug_values -= n_useless_debug_values; 698 n_useless_debug_values = 0; 699 700 cselib_hash_table->traverse <void *, discard_useless_values> (NULL); 701 702 gcc_assert (!n_useless_values); 703 } 704 705 /* Arrange for a value to not be removed from the hash table even if 706 it becomes useless. */ 707 708 void 709 cselib_preserve_value (cselib_val *v) 710 { 711 PRESERVED_VALUE_P (v->val_rtx) = 1; 712 } 713 714 /* Test whether a value is preserved. */ 715 716 bool 717 cselib_preserved_value_p (cselib_val *v) 718 { 719 return PRESERVED_VALUE_P (v->val_rtx); 720 } 721 722 /* Arrange for a REG value to be assumed constant through the whole function, 723 never invalidated and preserved across cselib_reset_table calls. */ 724 725 void 726 cselib_preserve_cfa_base_value (cselib_val *v, unsigned int regno) 727 { 728 if (cselib_preserve_constants 729 && v->locs 730 && REG_P (v->locs->loc)) 731 { 732 cfa_base_preserved_val = v; 733 cfa_base_preserved_regno = regno; 734 } 735 } 736 737 /* Clean all non-constant expressions in the hash table, but retain 738 their values. */ 739 740 void 741 cselib_preserve_only_values (void) 742 { 743 int i; 744 745 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) 746 cselib_invalidate_regno (i, reg_raw_mode[i]); 747 748 cselib_invalidate_mem (callmem); 749 750 remove_useless_values (); 751 752 gcc_assert (first_containing_mem == &dummy_val); 753 } 754 755 /* Arrange for a value to be marked as based on stack pointer 756 for find_base_term purposes. */ 757 758 void 759 cselib_set_value_sp_based (cselib_val *v) 760 { 761 SP_BASED_VALUE_P (v->val_rtx) = 1; 762 } 763 764 /* Test whether a value is based on stack pointer for 765 find_base_term purposes. */ 766 767 bool 768 cselib_sp_based_value_p (cselib_val *v) 769 { 770 return SP_BASED_VALUE_P (v->val_rtx); 771 } 772 773 /* Return the mode in which a register was last set. If X is not a 774 register, return its mode. If the mode in which the register was 775 set is not known, or the value was already clobbered, return 776 VOIDmode. */ 777 778 machine_mode 779 cselib_reg_set_mode (const_rtx x) 780 { 781 if (!REG_P (x)) 782 return GET_MODE (x); 783 784 if (REG_VALUES (REGNO (x)) == NULL 785 || REG_VALUES (REGNO (x))->elt == NULL) 786 return VOIDmode; 787 788 return GET_MODE (REG_VALUES (REGNO (x))->elt->val_rtx); 789 } 790 791 /* If x is a PLUS or an autoinc operation, expand the operation, 792 storing the offset, if any, in *OFF. */ 793 794 static rtx 795 autoinc_split (rtx x, rtx *off, machine_mode memmode) 796 { 797 switch (GET_CODE (x)) 798 { 799 case PLUS: 800 *off = XEXP (x, 1); 801 return XEXP (x, 0); 802 803 case PRE_DEC: 804 if (memmode == VOIDmode) 805 return x; 806 807 *off = GEN_INT (-GET_MODE_SIZE (memmode)); 808 return XEXP (x, 0); 809 810 case PRE_INC: 811 if (memmode == VOIDmode) 812 return x; 813 814 *off = GEN_INT (GET_MODE_SIZE (memmode)); 815 return XEXP (x, 0); 816 817 case PRE_MODIFY: 818 return XEXP (x, 1); 819 820 case POST_DEC: 821 case POST_INC: 822 case POST_MODIFY: 823 return XEXP (x, 0); 824 825 default: 826 return x; 827 } 828 } 829 830 /* Return nonzero if we can prove that X and Y contain the same value, 831 taking our gathered information into account. MEMMODE holds the 832 mode of the enclosing MEM, if any, as required to deal with autoinc 833 addressing modes. If X and Y are not (known to be) part of 834 addresses, MEMMODE should be VOIDmode. */ 835 836 int 837 rtx_equal_for_cselib_1 (rtx x, rtx y, machine_mode memmode, int depth) 838 { 839 enum rtx_code code; 840 const char *fmt; 841 int i; 842 843 if (REG_P (x) || MEM_P (x)) 844 { 845 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0, memmode); 846 847 if (e) 848 x = e->val_rtx; 849 } 850 851 if (REG_P (y) || MEM_P (y)) 852 { 853 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0, memmode); 854 855 if (e) 856 y = e->val_rtx; 857 } 858 859 if (x == y) 860 return 1; 861 862 if (GET_CODE (x) == VALUE) 863 { 864 cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (x)); 865 struct elt_loc_list *l; 866 867 if (GET_CODE (y) == VALUE) 868 return e == canonical_cselib_val (CSELIB_VAL_PTR (y)); 869 870 if (depth == 128) 871 return 0; 872 873 for (l = e->locs; l; l = l->next) 874 { 875 rtx t = l->loc; 876 877 /* Avoid infinite recursion. We know we have the canonical 878 value, so we can just skip any values in the equivalence 879 list. */ 880 if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE) 881 continue; 882 else if (rtx_equal_for_cselib_1 (t, y, memmode, depth + 1)) 883 return 1; 884 } 885 886 return 0; 887 } 888 else if (GET_CODE (y) == VALUE) 889 { 890 cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (y)); 891 struct elt_loc_list *l; 892 893 if (depth == 128) 894 return 0; 895 896 for (l = e->locs; l; l = l->next) 897 { 898 rtx t = l->loc; 899 900 if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE) 901 continue; 902 else if (rtx_equal_for_cselib_1 (x, t, memmode, depth + 1)) 903 return 1; 904 } 905 906 return 0; 907 } 908 909 if (GET_MODE (x) != GET_MODE (y)) 910 return 0; 911 912 if (GET_CODE (x) != GET_CODE (y)) 913 { 914 rtx xorig = x, yorig = y; 915 rtx xoff = NULL, yoff = NULL; 916 917 x = autoinc_split (x, &xoff, memmode); 918 y = autoinc_split (y, &yoff, memmode); 919 920 if (!xoff != !yoff) 921 return 0; 922 923 if (xoff && !rtx_equal_for_cselib_1 (xoff, yoff, memmode, depth)) 924 return 0; 925 926 /* Don't recurse if nothing changed. */ 927 if (x != xorig || y != yorig) 928 return rtx_equal_for_cselib_1 (x, y, memmode, depth); 929 930 return 0; 931 } 932 933 /* These won't be handled correctly by the code below. */ 934 switch (GET_CODE (x)) 935 { 936 CASE_CONST_UNIQUE: 937 case DEBUG_EXPR: 938 return 0; 939 940 case DEBUG_IMPLICIT_PTR: 941 return DEBUG_IMPLICIT_PTR_DECL (x) 942 == DEBUG_IMPLICIT_PTR_DECL (y); 943 944 case DEBUG_PARAMETER_REF: 945 return DEBUG_PARAMETER_REF_DECL (x) 946 == DEBUG_PARAMETER_REF_DECL (y); 947 948 case ENTRY_VALUE: 949 /* ENTRY_VALUEs are function invariant, it is thus undesirable to 950 use rtx_equal_for_cselib_1 to compare the operands. */ 951 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y)); 952 953 case LABEL_REF: 954 return label_ref_label (x) == label_ref_label (y); 955 956 case REG: 957 return REGNO (x) == REGNO (y); 958 959 case MEM: 960 /* We have to compare any autoinc operations in the addresses 961 using this MEM's mode. */ 962 return rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 0), GET_MODE (x), 963 depth); 964 965 default: 966 break; 967 } 968 969 code = GET_CODE (x); 970 fmt = GET_RTX_FORMAT (code); 971 972 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 973 { 974 int j; 975 976 switch (fmt[i]) 977 { 978 case 'w': 979 if (XWINT (x, i) != XWINT (y, i)) 980 return 0; 981 break; 982 983 case 'n': 984 case 'i': 985 if (XINT (x, i) != XINT (y, i)) 986 return 0; 987 break; 988 989 case 'V': 990 case 'E': 991 /* Two vectors must have the same length. */ 992 if (XVECLEN (x, i) != XVECLEN (y, i)) 993 return 0; 994 995 /* And the corresponding elements must match. */ 996 for (j = 0; j < XVECLEN (x, i); j++) 997 if (! rtx_equal_for_cselib_1 (XVECEXP (x, i, j), 998 XVECEXP (y, i, j), memmode, depth)) 999 return 0; 1000 break; 1001 1002 case 'e': 1003 if (i == 1 1004 && targetm.commutative_p (x, UNKNOWN) 1005 && rtx_equal_for_cselib_1 (XEXP (x, 1), XEXP (y, 0), memmode, 1006 depth) 1007 && rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 1), memmode, 1008 depth)) 1009 return 1; 1010 if (! rtx_equal_for_cselib_1 (XEXP (x, i), XEXP (y, i), memmode, 1011 depth)) 1012 return 0; 1013 break; 1014 1015 case 'S': 1016 case 's': 1017 if (strcmp (XSTR (x, i), XSTR (y, i))) 1018 return 0; 1019 break; 1020 1021 case 'u': 1022 /* These are just backpointers, so they don't matter. */ 1023 break; 1024 1025 case '0': 1026 case 't': 1027 break; 1028 1029 /* It is believed that rtx's at this level will never 1030 contain anything but integers and other rtx's, 1031 except for within LABEL_REFs and SYMBOL_REFs. */ 1032 default: 1033 gcc_unreachable (); 1034 } 1035 } 1036 return 1; 1037 } 1038 1039 /* Hash an rtx. Return 0 if we couldn't hash the rtx. 1040 For registers and memory locations, we look up their cselib_val structure 1041 and return its VALUE element. 1042 Possible reasons for return 0 are: the object is volatile, or we couldn't 1043 find a register or memory location in the table and CREATE is zero. If 1044 CREATE is nonzero, table elts are created for regs and mem. 1045 N.B. this hash function returns the same hash value for RTXes that 1046 differ only in the order of operands, thus it is suitable for comparisons 1047 that take commutativity into account. 1048 If we wanted to also support associative rules, we'd have to use a different 1049 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) . 1050 MEMMODE indicates the mode of an enclosing MEM, and it's only 1051 used to compute autoinc values. 1052 We used to have a MODE argument for hashing for CONST_INTs, but that 1053 didn't make sense, since it caused spurious hash differences between 1054 (set (reg:SI 1) (const_int)) 1055 (plus:SI (reg:SI 2) (reg:SI 1)) 1056 and 1057 (plus:SI (reg:SI 2) (const_int)) 1058 If the mode is important in any context, it must be checked specifically 1059 in a comparison anyway, since relying on hash differences is unsafe. */ 1060 1061 static unsigned int 1062 cselib_hash_rtx (rtx x, int create, machine_mode memmode) 1063 { 1064 cselib_val *e; 1065 int i, j; 1066 enum rtx_code code; 1067 const char *fmt; 1068 unsigned int hash = 0; 1069 1070 code = GET_CODE (x); 1071 hash += (unsigned) code + (unsigned) GET_MODE (x); 1072 1073 switch (code) 1074 { 1075 case VALUE: 1076 e = CSELIB_VAL_PTR (x); 1077 return e->hash; 1078 1079 case MEM: 1080 case REG: 1081 e = cselib_lookup (x, GET_MODE (x), create, memmode); 1082 if (! e) 1083 return 0; 1084 1085 return e->hash; 1086 1087 case DEBUG_EXPR: 1088 hash += ((unsigned) DEBUG_EXPR << 7) 1089 + DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x)); 1090 return hash ? hash : (unsigned int) DEBUG_EXPR; 1091 1092 case DEBUG_IMPLICIT_PTR: 1093 hash += ((unsigned) DEBUG_IMPLICIT_PTR << 7) 1094 + DECL_UID (DEBUG_IMPLICIT_PTR_DECL (x)); 1095 return hash ? hash : (unsigned int) DEBUG_IMPLICIT_PTR; 1096 1097 case DEBUG_PARAMETER_REF: 1098 hash += ((unsigned) DEBUG_PARAMETER_REF << 7) 1099 + DECL_UID (DEBUG_PARAMETER_REF_DECL (x)); 1100 return hash ? hash : (unsigned int) DEBUG_PARAMETER_REF; 1101 1102 case ENTRY_VALUE: 1103 /* ENTRY_VALUEs are function invariant, thus try to avoid 1104 recursing on argument if ENTRY_VALUE is one of the 1105 forms emitted by expand_debug_expr, otherwise 1106 ENTRY_VALUE hash would depend on the current value 1107 in some register or memory. */ 1108 if (REG_P (ENTRY_VALUE_EXP (x))) 1109 hash += (unsigned int) REG 1110 + (unsigned int) GET_MODE (ENTRY_VALUE_EXP (x)) 1111 + (unsigned int) REGNO (ENTRY_VALUE_EXP (x)); 1112 else if (MEM_P (ENTRY_VALUE_EXP (x)) 1113 && REG_P (XEXP (ENTRY_VALUE_EXP (x), 0))) 1114 hash += (unsigned int) MEM 1115 + (unsigned int) GET_MODE (XEXP (ENTRY_VALUE_EXP (x), 0)) 1116 + (unsigned int) REGNO (XEXP (ENTRY_VALUE_EXP (x), 0)); 1117 else 1118 hash += cselib_hash_rtx (ENTRY_VALUE_EXP (x), create, memmode); 1119 return hash ? hash : (unsigned int) ENTRY_VALUE; 1120 1121 case CONST_INT: 1122 hash += ((unsigned) CONST_INT << 7) + UINTVAL (x); 1123 return hash ? hash : (unsigned int) CONST_INT; 1124 1125 case CONST_WIDE_INT: 1126 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++) 1127 hash += CONST_WIDE_INT_ELT (x, i); 1128 return hash; 1129 1130 case CONST_DOUBLE: 1131 /* This is like the general case, except that it only counts 1132 the integers representing the constant. */ 1133 hash += (unsigned) code + (unsigned) GET_MODE (x); 1134 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode) 1135 hash += ((unsigned) CONST_DOUBLE_LOW (x) 1136 + (unsigned) CONST_DOUBLE_HIGH (x)); 1137 else 1138 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x)); 1139 return hash ? hash : (unsigned int) CONST_DOUBLE; 1140 1141 case CONST_FIXED: 1142 hash += (unsigned int) code + (unsigned int) GET_MODE (x); 1143 hash += fixed_hash (CONST_FIXED_VALUE (x)); 1144 return hash ? hash : (unsigned int) CONST_FIXED; 1145 1146 case CONST_VECTOR: 1147 { 1148 int units; 1149 rtx elt; 1150 1151 units = CONST_VECTOR_NUNITS (x); 1152 1153 for (i = 0; i < units; ++i) 1154 { 1155 elt = CONST_VECTOR_ELT (x, i); 1156 hash += cselib_hash_rtx (elt, 0, memmode); 1157 } 1158 1159 return hash; 1160 } 1161 1162 /* Assume there is only one rtx object for any given label. */ 1163 case LABEL_REF: 1164 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap 1165 differences and differences between each stage's debugging dumps. */ 1166 hash += (((unsigned int) LABEL_REF << 7) 1167 + CODE_LABEL_NUMBER (label_ref_label (x))); 1168 return hash ? hash : (unsigned int) LABEL_REF; 1169 1170 case SYMBOL_REF: 1171 { 1172 /* Don't hash on the symbol's address to avoid bootstrap differences. 1173 Different hash values may cause expressions to be recorded in 1174 different orders and thus different registers to be used in the 1175 final assembler. This also avoids differences in the dump files 1176 between various stages. */ 1177 unsigned int h = 0; 1178 const unsigned char *p = (const unsigned char *) XSTR (x, 0); 1179 1180 while (*p) 1181 h += (h << 7) + *p++; /* ??? revisit */ 1182 1183 hash += ((unsigned int) SYMBOL_REF << 7) + h; 1184 return hash ? hash : (unsigned int) SYMBOL_REF; 1185 } 1186 1187 case PRE_DEC: 1188 case PRE_INC: 1189 /* We can't compute these without knowing the MEM mode. */ 1190 gcc_assert (memmode != VOIDmode); 1191 i = GET_MODE_SIZE (memmode); 1192 if (code == PRE_DEC) 1193 i = -i; 1194 /* Adjust the hash so that (mem:MEMMODE (pre_* (reg))) hashes 1195 like (mem:MEMMODE (plus (reg) (const_int I))). */ 1196 hash += (unsigned) PLUS - (unsigned)code 1197 + cselib_hash_rtx (XEXP (x, 0), create, memmode) 1198 + cselib_hash_rtx (GEN_INT (i), create, memmode); 1199 return hash ? hash : 1 + (unsigned) PLUS; 1200 1201 case PRE_MODIFY: 1202 gcc_assert (memmode != VOIDmode); 1203 return cselib_hash_rtx (XEXP (x, 1), create, memmode); 1204 1205 case POST_DEC: 1206 case POST_INC: 1207 case POST_MODIFY: 1208 gcc_assert (memmode != VOIDmode); 1209 return cselib_hash_rtx (XEXP (x, 0), create, memmode); 1210 1211 case PC: 1212 case CC0: 1213 case CALL: 1214 case UNSPEC_VOLATILE: 1215 return 0; 1216 1217 case ASM_OPERANDS: 1218 if (MEM_VOLATILE_P (x)) 1219 return 0; 1220 1221 break; 1222 1223 default: 1224 break; 1225 } 1226 1227 i = GET_RTX_LENGTH (code) - 1; 1228 fmt = GET_RTX_FORMAT (code); 1229 for (; i >= 0; i--) 1230 { 1231 switch (fmt[i]) 1232 { 1233 case 'e': 1234 { 1235 rtx tem = XEXP (x, i); 1236 unsigned int tem_hash = cselib_hash_rtx (tem, create, memmode); 1237 1238 if (tem_hash == 0) 1239 return 0; 1240 1241 hash += tem_hash; 1242 } 1243 break; 1244 case 'E': 1245 for (j = 0; j < XVECLEN (x, i); j++) 1246 { 1247 unsigned int tem_hash 1248 = cselib_hash_rtx (XVECEXP (x, i, j), create, memmode); 1249 1250 if (tem_hash == 0) 1251 return 0; 1252 1253 hash += tem_hash; 1254 } 1255 break; 1256 1257 case 's': 1258 { 1259 const unsigned char *p = (const unsigned char *) XSTR (x, i); 1260 1261 if (p) 1262 while (*p) 1263 hash += *p++; 1264 break; 1265 } 1266 1267 case 'i': 1268 hash += XINT (x, i); 1269 break; 1270 1271 case '0': 1272 case 't': 1273 /* unused */ 1274 break; 1275 1276 default: 1277 gcc_unreachable (); 1278 } 1279 } 1280 1281 return hash ? hash : 1 + (unsigned int) GET_CODE (x); 1282 } 1283 1284 /* Create a new value structure for VALUE and initialize it. The mode of the 1285 value is MODE. */ 1286 1287 static inline cselib_val * 1288 new_cselib_val (unsigned int hash, machine_mode mode, rtx x) 1289 { 1290 cselib_val *e = cselib_val_pool.allocate (); 1291 1292 gcc_assert (hash); 1293 gcc_assert (next_uid); 1294 1295 e->hash = hash; 1296 e->uid = next_uid++; 1297 /* We use an alloc pool to allocate this RTL construct because it 1298 accounts for about 8% of the overall memory usage. We know 1299 precisely when we can have VALUE RTXen (when cselib is active) 1300 so we don't need to put them in garbage collected memory. 1301 ??? Why should a VALUE be an RTX in the first place? */ 1302 e->val_rtx = (rtx_def*) value_pool.allocate (); 1303 memset (e->val_rtx, 0, RTX_HDR_SIZE); 1304 PUT_CODE (e->val_rtx, VALUE); 1305 PUT_MODE (e->val_rtx, mode); 1306 CSELIB_VAL_PTR (e->val_rtx) = e; 1307 e->addr_list = 0; 1308 e->locs = 0; 1309 e->next_containing_mem = 0; 1310 1311 if (dump_file && (dump_flags & TDF_CSELIB)) 1312 { 1313 fprintf (dump_file, "cselib value %u:%u ", e->uid, hash); 1314 if (flag_dump_noaddr || flag_dump_unnumbered) 1315 fputs ("# ", dump_file); 1316 else 1317 fprintf (dump_file, "%p ", (void*)e); 1318 print_rtl_single (dump_file, x); 1319 fputc ('\n', dump_file); 1320 } 1321 1322 return e; 1323 } 1324 1325 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that 1326 contains the data at this address. X is a MEM that represents the 1327 value. Update the two value structures to represent this situation. */ 1328 1329 static void 1330 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x) 1331 { 1332 addr_elt = canonical_cselib_val (addr_elt); 1333 mem_elt = canonical_cselib_val (mem_elt); 1334 1335 /* Avoid duplicates. */ 1336 addr_space_t as = MEM_ADDR_SPACE (x); 1337 for (elt_loc_list *l = mem_elt->locs; l; l = l->next) 1338 if (MEM_P (l->loc) 1339 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt 1340 && MEM_ADDR_SPACE (l->loc) == as) 1341 { 1342 promote_debug_loc (l); 1343 return; 1344 } 1345 1346 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt); 1347 new_elt_loc_list (mem_elt, 1348 replace_equiv_address_nv (x, addr_elt->val_rtx)); 1349 if (mem_elt->next_containing_mem == NULL) 1350 { 1351 mem_elt->next_containing_mem = first_containing_mem; 1352 first_containing_mem = mem_elt; 1353 } 1354 } 1355 1356 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx. 1357 If CREATE, make a new one if we haven't seen it before. */ 1358 1359 static cselib_val * 1360 cselib_lookup_mem (rtx x, int create) 1361 { 1362 machine_mode mode = GET_MODE (x); 1363 machine_mode addr_mode; 1364 cselib_val **slot; 1365 cselib_val *addr; 1366 cselib_val *mem_elt; 1367 1368 if (MEM_VOLATILE_P (x) || mode == BLKmode 1369 || !cselib_record_memory 1370 || (FLOAT_MODE_P (mode) && flag_float_store)) 1371 return 0; 1372 1373 addr_mode = GET_MODE (XEXP (x, 0)); 1374 if (addr_mode == VOIDmode) 1375 addr_mode = Pmode; 1376 1377 /* Look up the value for the address. */ 1378 addr = cselib_lookup (XEXP (x, 0), addr_mode, create, mode); 1379 if (! addr) 1380 return 0; 1381 addr = canonical_cselib_val (addr); 1382 1383 /* Find a value that describes a value of our mode at that address. */ 1384 addr_space_t as = MEM_ADDR_SPACE (x); 1385 for (elt_list *l = addr->addr_list; l; l = l->next) 1386 if (GET_MODE (l->elt->val_rtx) == mode) 1387 { 1388 for (elt_loc_list *l2 = l->elt->locs; l2; l2 = l2->next) 1389 if (MEM_P (l2->loc) && MEM_ADDR_SPACE (l2->loc) == as) 1390 { 1391 promote_debug_loc (l->elt->locs); 1392 return l->elt; 1393 } 1394 } 1395 1396 if (! create) 1397 return 0; 1398 1399 mem_elt = new_cselib_val (next_uid, mode, x); 1400 add_mem_for_addr (addr, mem_elt, x); 1401 slot = cselib_find_slot (mode, x, mem_elt->hash, INSERT, VOIDmode); 1402 *slot = mem_elt; 1403 return mem_elt; 1404 } 1405 1406 /* Search through the possible substitutions in P. We prefer a non reg 1407 substitution because this allows us to expand the tree further. If 1408 we find, just a reg, take the lowest regno. There may be several 1409 non-reg results, we just take the first one because they will all 1410 expand to the same place. */ 1411 1412 static rtx 1413 expand_loc (struct elt_loc_list *p, struct expand_value_data *evd, 1414 int max_depth) 1415 { 1416 rtx reg_result = NULL; 1417 unsigned int regno = UINT_MAX; 1418 struct elt_loc_list *p_in = p; 1419 1420 for (; p; p = p->next) 1421 { 1422 /* Return these right away to avoid returning stack pointer based 1423 expressions for frame pointer and vice versa, which is something 1424 that would confuse DSE. See the comment in cselib_expand_value_rtx_1 1425 for more details. */ 1426 if (REG_P (p->loc) 1427 && (REGNO (p->loc) == STACK_POINTER_REGNUM 1428 || REGNO (p->loc) == FRAME_POINTER_REGNUM 1429 || REGNO (p->loc) == HARD_FRAME_POINTER_REGNUM 1430 || REGNO (p->loc) == cfa_base_preserved_regno)) 1431 return p->loc; 1432 /* Avoid infinite recursion trying to expand a reg into a 1433 the same reg. */ 1434 if ((REG_P (p->loc)) 1435 && (REGNO (p->loc) < regno) 1436 && !bitmap_bit_p (evd->regs_active, REGNO (p->loc))) 1437 { 1438 reg_result = p->loc; 1439 regno = REGNO (p->loc); 1440 } 1441 /* Avoid infinite recursion and do not try to expand the 1442 value. */ 1443 else if (GET_CODE (p->loc) == VALUE 1444 && CSELIB_VAL_PTR (p->loc)->locs == p_in) 1445 continue; 1446 else if (!REG_P (p->loc)) 1447 { 1448 rtx result, note; 1449 if (dump_file && (dump_flags & TDF_CSELIB)) 1450 { 1451 print_inline_rtx (dump_file, p->loc, 0); 1452 fprintf (dump_file, "\n"); 1453 } 1454 if (GET_CODE (p->loc) == LO_SUM 1455 && GET_CODE (XEXP (p->loc, 1)) == SYMBOL_REF 1456 && p->setting_insn 1457 && (note = find_reg_note (p->setting_insn, REG_EQUAL, NULL_RTX)) 1458 && XEXP (note, 0) == XEXP (p->loc, 1)) 1459 return XEXP (p->loc, 1); 1460 result = cselib_expand_value_rtx_1 (p->loc, evd, max_depth - 1); 1461 if (result) 1462 return result; 1463 } 1464 1465 } 1466 1467 if (regno != UINT_MAX) 1468 { 1469 rtx result; 1470 if (dump_file && (dump_flags & TDF_CSELIB)) 1471 fprintf (dump_file, "r%d\n", regno); 1472 1473 result = cselib_expand_value_rtx_1 (reg_result, evd, max_depth - 1); 1474 if (result) 1475 return result; 1476 } 1477 1478 if (dump_file && (dump_flags & TDF_CSELIB)) 1479 { 1480 if (reg_result) 1481 { 1482 print_inline_rtx (dump_file, reg_result, 0); 1483 fprintf (dump_file, "\n"); 1484 } 1485 else 1486 fprintf (dump_file, "NULL\n"); 1487 } 1488 return reg_result; 1489 } 1490 1491 1492 /* Forward substitute and expand an expression out to its roots. 1493 This is the opposite of common subexpression. Because local value 1494 numbering is such a weak optimization, the expanded expression is 1495 pretty much unique (not from a pointer equals point of view but 1496 from a tree shape point of view. 1497 1498 This function returns NULL if the expansion fails. The expansion 1499 will fail if there is no value number for one of the operands or if 1500 one of the operands has been overwritten between the current insn 1501 and the beginning of the basic block. For instance x has no 1502 expansion in: 1503 1504 r1 <- r1 + 3 1505 x <- r1 + 8 1506 1507 REGS_ACTIVE is a scratch bitmap that should be clear when passing in. 1508 It is clear on return. */ 1509 1510 rtx 1511 cselib_expand_value_rtx (rtx orig, bitmap regs_active, int max_depth) 1512 { 1513 struct expand_value_data evd; 1514 1515 evd.regs_active = regs_active; 1516 evd.callback = NULL; 1517 evd.callback_arg = NULL; 1518 evd.dummy = false; 1519 1520 return cselib_expand_value_rtx_1 (orig, &evd, max_depth); 1521 } 1522 1523 /* Same as cselib_expand_value_rtx, but using a callback to try to 1524 resolve some expressions. The CB function should return ORIG if it 1525 can't or does not want to deal with a certain RTX. Any other 1526 return value, including NULL, will be used as the expansion for 1527 VALUE, without any further changes. */ 1528 1529 rtx 1530 cselib_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth, 1531 cselib_expand_callback cb, void *data) 1532 { 1533 struct expand_value_data evd; 1534 1535 evd.regs_active = regs_active; 1536 evd.callback = cb; 1537 evd.callback_arg = data; 1538 evd.dummy = false; 1539 1540 return cselib_expand_value_rtx_1 (orig, &evd, max_depth); 1541 } 1542 1543 /* Similar to cselib_expand_value_rtx_cb, but no rtxs are actually copied 1544 or simplified. Useful to find out whether cselib_expand_value_rtx_cb 1545 would return NULL or non-NULL, without allocating new rtx. */ 1546 1547 bool 1548 cselib_dummy_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth, 1549 cselib_expand_callback cb, void *data) 1550 { 1551 struct expand_value_data evd; 1552 1553 evd.regs_active = regs_active; 1554 evd.callback = cb; 1555 evd.callback_arg = data; 1556 evd.dummy = true; 1557 1558 return cselib_expand_value_rtx_1 (orig, &evd, max_depth) != NULL; 1559 } 1560 1561 /* Internal implementation of cselib_expand_value_rtx and 1562 cselib_expand_value_rtx_cb. */ 1563 1564 static rtx 1565 cselib_expand_value_rtx_1 (rtx orig, struct expand_value_data *evd, 1566 int max_depth) 1567 { 1568 rtx copy, scopy; 1569 int i, j; 1570 RTX_CODE code; 1571 const char *format_ptr; 1572 machine_mode mode; 1573 1574 code = GET_CODE (orig); 1575 1576 /* For the context of dse, if we end up expand into a huge tree, we 1577 will not have a useful address, so we might as well just give up 1578 quickly. */ 1579 if (max_depth <= 0) 1580 return NULL; 1581 1582 switch (code) 1583 { 1584 case REG: 1585 { 1586 struct elt_list *l = REG_VALUES (REGNO (orig)); 1587 1588 if (l && l->elt == NULL) 1589 l = l->next; 1590 for (; l; l = l->next) 1591 if (GET_MODE (l->elt->val_rtx) == GET_MODE (orig)) 1592 { 1593 rtx result; 1594 unsigned regno = REGNO (orig); 1595 1596 /* The only thing that we are not willing to do (this 1597 is requirement of dse and if others potential uses 1598 need this function we should add a parm to control 1599 it) is that we will not substitute the 1600 STACK_POINTER_REGNUM, FRAME_POINTER or the 1601 HARD_FRAME_POINTER. 1602 1603 These expansions confuses the code that notices that 1604 stores into the frame go dead at the end of the 1605 function and that the frame is not effected by calls 1606 to subroutines. If you allow the 1607 STACK_POINTER_REGNUM substitution, then dse will 1608 think that parameter pushing also goes dead which is 1609 wrong. If you allow the FRAME_POINTER or the 1610 HARD_FRAME_POINTER then you lose the opportunity to 1611 make the frame assumptions. */ 1612 if (regno == STACK_POINTER_REGNUM 1613 || regno == FRAME_POINTER_REGNUM 1614 || regno == HARD_FRAME_POINTER_REGNUM 1615 || regno == cfa_base_preserved_regno) 1616 return orig; 1617 1618 bitmap_set_bit (evd->regs_active, regno); 1619 1620 if (dump_file && (dump_flags & TDF_CSELIB)) 1621 fprintf (dump_file, "expanding: r%d into: ", regno); 1622 1623 result = expand_loc (l->elt->locs, evd, max_depth); 1624 bitmap_clear_bit (evd->regs_active, regno); 1625 1626 if (result) 1627 return result; 1628 else 1629 return orig; 1630 } 1631 return orig; 1632 } 1633 1634 CASE_CONST_ANY: 1635 case SYMBOL_REF: 1636 case CODE_LABEL: 1637 case PC: 1638 case CC0: 1639 case SCRATCH: 1640 /* SCRATCH must be shared because they represent distinct values. */ 1641 return orig; 1642 case CLOBBER: 1643 if (REG_P (XEXP (orig, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0)))) 1644 return orig; 1645 break; 1646 1647 case CONST: 1648 if (shared_const_p (orig)) 1649 return orig; 1650 break; 1651 1652 case SUBREG: 1653 { 1654 rtx subreg; 1655 1656 if (evd->callback) 1657 { 1658 subreg = evd->callback (orig, evd->regs_active, max_depth, 1659 evd->callback_arg); 1660 if (subreg != orig) 1661 return subreg; 1662 } 1663 1664 subreg = cselib_expand_value_rtx_1 (SUBREG_REG (orig), evd, 1665 max_depth - 1); 1666 if (!subreg) 1667 return NULL; 1668 scopy = simplify_gen_subreg (GET_MODE (orig), subreg, 1669 GET_MODE (SUBREG_REG (orig)), 1670 SUBREG_BYTE (orig)); 1671 if (scopy == NULL 1672 || (GET_CODE (scopy) == SUBREG 1673 && !REG_P (SUBREG_REG (scopy)) 1674 && !MEM_P (SUBREG_REG (scopy)))) 1675 return NULL; 1676 1677 return scopy; 1678 } 1679 1680 case VALUE: 1681 { 1682 rtx result; 1683 1684 if (dump_file && (dump_flags & TDF_CSELIB)) 1685 { 1686 fputs ("\nexpanding ", dump_file); 1687 print_rtl_single (dump_file, orig); 1688 fputs (" into...", dump_file); 1689 } 1690 1691 if (evd->callback) 1692 { 1693 result = evd->callback (orig, evd->regs_active, max_depth, 1694 evd->callback_arg); 1695 1696 if (result != orig) 1697 return result; 1698 } 1699 1700 result = expand_loc (CSELIB_VAL_PTR (orig)->locs, evd, max_depth); 1701 return result; 1702 } 1703 1704 case DEBUG_EXPR: 1705 if (evd->callback) 1706 return evd->callback (orig, evd->regs_active, max_depth, 1707 evd->callback_arg); 1708 return orig; 1709 1710 default: 1711 break; 1712 } 1713 1714 /* Copy the various flags, fields, and other information. We assume 1715 that all fields need copying, and then clear the fields that should 1716 not be copied. That is the sensible default behavior, and forces 1717 us to explicitly document why we are *not* copying a flag. */ 1718 if (evd->dummy) 1719 copy = NULL; 1720 else 1721 copy = shallow_copy_rtx (orig); 1722 1723 format_ptr = GET_RTX_FORMAT (code); 1724 1725 for (i = 0; i < GET_RTX_LENGTH (code); i++) 1726 switch (*format_ptr++) 1727 { 1728 case 'e': 1729 if (XEXP (orig, i) != NULL) 1730 { 1731 rtx result = cselib_expand_value_rtx_1 (XEXP (orig, i), evd, 1732 max_depth - 1); 1733 if (!result) 1734 return NULL; 1735 if (copy) 1736 XEXP (copy, i) = result; 1737 } 1738 break; 1739 1740 case 'E': 1741 case 'V': 1742 if (XVEC (orig, i) != NULL) 1743 { 1744 if (copy) 1745 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i)); 1746 for (j = 0; j < XVECLEN (orig, i); j++) 1747 { 1748 rtx result = cselib_expand_value_rtx_1 (XVECEXP (orig, i, j), 1749 evd, max_depth - 1); 1750 if (!result) 1751 return NULL; 1752 if (copy) 1753 XVECEXP (copy, i, j) = result; 1754 } 1755 } 1756 break; 1757 1758 case 't': 1759 case 'w': 1760 case 'i': 1761 case 's': 1762 case 'S': 1763 case 'T': 1764 case 'u': 1765 case 'B': 1766 case '0': 1767 /* These are left unchanged. */ 1768 break; 1769 1770 default: 1771 gcc_unreachable (); 1772 } 1773 1774 if (evd->dummy) 1775 return orig; 1776 1777 mode = GET_MODE (copy); 1778 /* If an operand has been simplified into CONST_INT, which doesn't 1779 have a mode and the mode isn't derivable from whole rtx's mode, 1780 try simplify_*_operation first with mode from original's operand 1781 and as a fallback wrap CONST_INT into gen_rtx_CONST. */ 1782 scopy = copy; 1783 switch (GET_RTX_CLASS (code)) 1784 { 1785 case RTX_UNARY: 1786 if (CONST_INT_P (XEXP (copy, 0)) 1787 && GET_MODE (XEXP (orig, 0)) != VOIDmode) 1788 { 1789 scopy = simplify_unary_operation (code, mode, XEXP (copy, 0), 1790 GET_MODE (XEXP (orig, 0))); 1791 if (scopy) 1792 return scopy; 1793 } 1794 break; 1795 case RTX_COMM_ARITH: 1796 case RTX_BIN_ARITH: 1797 /* These expressions can derive operand modes from the whole rtx's mode. */ 1798 break; 1799 case RTX_TERNARY: 1800 case RTX_BITFIELD_OPS: 1801 if (CONST_INT_P (XEXP (copy, 0)) 1802 && GET_MODE (XEXP (orig, 0)) != VOIDmode) 1803 { 1804 scopy = simplify_ternary_operation (code, mode, 1805 GET_MODE (XEXP (orig, 0)), 1806 XEXP (copy, 0), XEXP (copy, 1), 1807 XEXP (copy, 2)); 1808 if (scopy) 1809 return scopy; 1810 } 1811 break; 1812 case RTX_COMPARE: 1813 case RTX_COMM_COMPARE: 1814 if (CONST_INT_P (XEXP (copy, 0)) 1815 && GET_MODE (XEXP (copy, 1)) == VOIDmode 1816 && (GET_MODE (XEXP (orig, 0)) != VOIDmode 1817 || GET_MODE (XEXP (orig, 1)) != VOIDmode)) 1818 { 1819 scopy = simplify_relational_operation (code, mode, 1820 (GET_MODE (XEXP (orig, 0)) 1821 != VOIDmode) 1822 ? GET_MODE (XEXP (orig, 0)) 1823 : GET_MODE (XEXP (orig, 1)), 1824 XEXP (copy, 0), 1825 XEXP (copy, 1)); 1826 if (scopy) 1827 return scopy; 1828 } 1829 break; 1830 default: 1831 break; 1832 } 1833 scopy = simplify_rtx (copy); 1834 if (scopy) 1835 return scopy; 1836 return copy; 1837 } 1838 1839 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions 1840 with VALUE expressions. This way, it becomes independent of changes 1841 to registers and memory. 1842 X isn't actually modified; if modifications are needed, new rtl is 1843 allocated. However, the return value can share rtl with X. 1844 If X is within a MEM, MEMMODE must be the mode of the MEM. */ 1845 1846 rtx 1847 cselib_subst_to_values (rtx x, machine_mode memmode) 1848 { 1849 enum rtx_code code = GET_CODE (x); 1850 const char *fmt = GET_RTX_FORMAT (code); 1851 cselib_val *e; 1852 struct elt_list *l; 1853 rtx copy = x; 1854 int i; 1855 1856 switch (code) 1857 { 1858 case REG: 1859 l = REG_VALUES (REGNO (x)); 1860 if (l && l->elt == NULL) 1861 l = l->next; 1862 for (; l; l = l->next) 1863 if (GET_MODE (l->elt->val_rtx) == GET_MODE (x)) 1864 return l->elt->val_rtx; 1865 1866 gcc_unreachable (); 1867 1868 case MEM: 1869 e = cselib_lookup_mem (x, 0); 1870 /* This used to happen for autoincrements, but we deal with them 1871 properly now. Remove the if stmt for the next release. */ 1872 if (! e) 1873 { 1874 /* Assign a value that doesn't match any other. */ 1875 e = new_cselib_val (next_uid, GET_MODE (x), x); 1876 } 1877 return e->val_rtx; 1878 1879 case ENTRY_VALUE: 1880 e = cselib_lookup (x, GET_MODE (x), 0, memmode); 1881 if (! e) 1882 break; 1883 return e->val_rtx; 1884 1885 CASE_CONST_ANY: 1886 return x; 1887 1888 case PRE_DEC: 1889 case PRE_INC: 1890 gcc_assert (memmode != VOIDmode); 1891 i = GET_MODE_SIZE (memmode); 1892 if (code == PRE_DEC) 1893 i = -i; 1894 return cselib_subst_to_values (plus_constant (GET_MODE (x), 1895 XEXP (x, 0), i), 1896 memmode); 1897 1898 case PRE_MODIFY: 1899 gcc_assert (memmode != VOIDmode); 1900 return cselib_subst_to_values (XEXP (x, 1), memmode); 1901 1902 case POST_DEC: 1903 case POST_INC: 1904 case POST_MODIFY: 1905 gcc_assert (memmode != VOIDmode); 1906 return cselib_subst_to_values (XEXP (x, 0), memmode); 1907 1908 default: 1909 break; 1910 } 1911 1912 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 1913 { 1914 if (fmt[i] == 'e') 1915 { 1916 rtx t = cselib_subst_to_values (XEXP (x, i), memmode); 1917 1918 if (t != XEXP (x, i)) 1919 { 1920 if (x == copy) 1921 copy = shallow_copy_rtx (x); 1922 XEXP (copy, i) = t; 1923 } 1924 } 1925 else if (fmt[i] == 'E') 1926 { 1927 int j; 1928 1929 for (j = 0; j < XVECLEN (x, i); j++) 1930 { 1931 rtx t = cselib_subst_to_values (XVECEXP (x, i, j), memmode); 1932 1933 if (t != XVECEXP (x, i, j)) 1934 { 1935 if (XVEC (x, i) == XVEC (copy, i)) 1936 { 1937 if (x == copy) 1938 copy = shallow_copy_rtx (x); 1939 XVEC (copy, i) = shallow_copy_rtvec (XVEC (x, i)); 1940 } 1941 XVECEXP (copy, i, j) = t; 1942 } 1943 } 1944 } 1945 } 1946 1947 return copy; 1948 } 1949 1950 /* Wrapper for cselib_subst_to_values, that indicates X is in INSN. */ 1951 1952 rtx 1953 cselib_subst_to_values_from_insn (rtx x, machine_mode memmode, rtx_insn *insn) 1954 { 1955 rtx ret; 1956 gcc_assert (!cselib_current_insn); 1957 cselib_current_insn = insn; 1958 ret = cselib_subst_to_values (x, memmode); 1959 cselib_current_insn = NULL; 1960 return ret; 1961 } 1962 1963 /* Look up the rtl expression X in our tables and return the value it 1964 has. If CREATE is zero, we return NULL if we don't know the value. 1965 Otherwise, we create a new one if possible, using mode MODE if X 1966 doesn't have a mode (i.e. because it's a constant). When X is part 1967 of an address, MEMMODE should be the mode of the enclosing MEM if 1968 we're tracking autoinc expressions. */ 1969 1970 static cselib_val * 1971 cselib_lookup_1 (rtx x, machine_mode mode, 1972 int create, machine_mode memmode) 1973 { 1974 cselib_val **slot; 1975 cselib_val *e; 1976 unsigned int hashval; 1977 1978 if (GET_MODE (x) != VOIDmode) 1979 mode = GET_MODE (x); 1980 1981 if (GET_CODE (x) == VALUE) 1982 return CSELIB_VAL_PTR (x); 1983 1984 if (REG_P (x)) 1985 { 1986 struct elt_list *l; 1987 unsigned int i = REGNO (x); 1988 1989 l = REG_VALUES (i); 1990 if (l && l->elt == NULL) 1991 l = l->next; 1992 for (; l; l = l->next) 1993 if (mode == GET_MODE (l->elt->val_rtx)) 1994 { 1995 promote_debug_loc (l->elt->locs); 1996 return l->elt; 1997 } 1998 1999 if (! create) 2000 return 0; 2001 2002 if (i < FIRST_PSEUDO_REGISTER) 2003 { 2004 unsigned int n = hard_regno_nregs[i][mode]; 2005 2006 if (n > max_value_regs) 2007 max_value_regs = n; 2008 } 2009 2010 e = new_cselib_val (next_uid, GET_MODE (x), x); 2011 new_elt_loc_list (e, x); 2012 if (REG_VALUES (i) == 0) 2013 { 2014 /* Maintain the invariant that the first entry of 2015 REG_VALUES, if present, must be the value used to set the 2016 register, or NULL. */ 2017 used_regs[n_used_regs++] = i; 2018 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL); 2019 } 2020 else if (cselib_preserve_constants 2021 && GET_MODE_CLASS (mode) == MODE_INT) 2022 { 2023 /* During var-tracking, try harder to find equivalences 2024 for SUBREGs. If a setter sets say a DImode register 2025 and user uses that register only in SImode, add a lowpart 2026 subreg location. */ 2027 struct elt_list *lwider = NULL; 2028 l = REG_VALUES (i); 2029 if (l && l->elt == NULL) 2030 l = l->next; 2031 for (; l; l = l->next) 2032 if (GET_MODE_CLASS (GET_MODE (l->elt->val_rtx)) == MODE_INT 2033 && GET_MODE_SIZE (GET_MODE (l->elt->val_rtx)) 2034 > GET_MODE_SIZE (mode) 2035 && (lwider == NULL 2036 || GET_MODE_SIZE (GET_MODE (l->elt->val_rtx)) 2037 < GET_MODE_SIZE (GET_MODE (lwider->elt->val_rtx)))) 2038 { 2039 struct elt_loc_list *el; 2040 if (i < FIRST_PSEUDO_REGISTER 2041 && hard_regno_nregs[i][GET_MODE (l->elt->val_rtx)] != 1) 2042 continue; 2043 for (el = l->elt->locs; el; el = el->next) 2044 if (!REG_P (el->loc)) 2045 break; 2046 if (el) 2047 lwider = l; 2048 } 2049 if (lwider) 2050 { 2051 rtx sub = lowpart_subreg (mode, lwider->elt->val_rtx, 2052 GET_MODE (lwider->elt->val_rtx)); 2053 if (sub) 2054 new_elt_loc_list (e, sub); 2055 } 2056 } 2057 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e); 2058 slot = cselib_find_slot (mode, x, e->hash, INSERT, memmode); 2059 *slot = e; 2060 return e; 2061 } 2062 2063 if (MEM_P (x)) 2064 return cselib_lookup_mem (x, create); 2065 2066 hashval = cselib_hash_rtx (x, create, memmode); 2067 /* Can't even create if hashing is not possible. */ 2068 if (! hashval) 2069 return 0; 2070 2071 slot = cselib_find_slot (mode, x, hashval, 2072 create ? INSERT : NO_INSERT, memmode); 2073 if (slot == 0) 2074 return 0; 2075 2076 e = (cselib_val *) *slot; 2077 if (e) 2078 return e; 2079 2080 e = new_cselib_val (hashval, mode, x); 2081 2082 /* We have to fill the slot before calling cselib_subst_to_values: 2083 the hash table is inconsistent until we do so, and 2084 cselib_subst_to_values will need to do lookups. */ 2085 *slot = e; 2086 new_elt_loc_list (e, cselib_subst_to_values (x, memmode)); 2087 return e; 2088 } 2089 2090 /* Wrapper for cselib_lookup, that indicates X is in INSN. */ 2091 2092 cselib_val * 2093 cselib_lookup_from_insn (rtx x, machine_mode mode, 2094 int create, machine_mode memmode, rtx_insn *insn) 2095 { 2096 cselib_val *ret; 2097 2098 gcc_assert (!cselib_current_insn); 2099 cselib_current_insn = insn; 2100 2101 ret = cselib_lookup (x, mode, create, memmode); 2102 2103 cselib_current_insn = NULL; 2104 2105 return ret; 2106 } 2107 2108 /* Wrapper for cselib_lookup_1, that logs the lookup result and 2109 maintains invariants related with debug insns. */ 2110 2111 cselib_val * 2112 cselib_lookup (rtx x, machine_mode mode, 2113 int create, machine_mode memmode) 2114 { 2115 cselib_val *ret = cselib_lookup_1 (x, mode, create, memmode); 2116 2117 /* ??? Should we return NULL if we're not to create an entry, the 2118 found loc is a debug loc and cselib_current_insn is not DEBUG? 2119 If so, we should also avoid converting val to non-DEBUG; probably 2120 easiest setting cselib_current_insn to NULL before the call 2121 above. */ 2122 2123 if (dump_file && (dump_flags & TDF_CSELIB)) 2124 { 2125 fputs ("cselib lookup ", dump_file); 2126 print_inline_rtx (dump_file, x, 2); 2127 fprintf (dump_file, " => %u:%u\n", 2128 ret ? ret->uid : 0, 2129 ret ? ret->hash : 0); 2130 } 2131 2132 return ret; 2133 } 2134 2135 /* Invalidate any entries in reg_values that overlap REGNO. This is called 2136 if REGNO is changing. MODE is the mode of the assignment to REGNO, which 2137 is used to determine how many hard registers are being changed. If MODE 2138 is VOIDmode, then only REGNO is being changed; this is used when 2139 invalidating call clobbered registers across a call. */ 2140 2141 static void 2142 cselib_invalidate_regno (unsigned int regno, machine_mode mode) 2143 { 2144 unsigned int endregno; 2145 unsigned int i; 2146 2147 /* If we see pseudos after reload, something is _wrong_. */ 2148 gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER 2149 || reg_renumber[regno] < 0); 2150 2151 /* Determine the range of registers that must be invalidated. For 2152 pseudos, only REGNO is affected. For hard regs, we must take MODE 2153 into account, and we must also invalidate lower register numbers 2154 if they contain values that overlap REGNO. */ 2155 if (regno < FIRST_PSEUDO_REGISTER) 2156 { 2157 gcc_assert (mode != VOIDmode); 2158 2159 if (regno < max_value_regs) 2160 i = 0; 2161 else 2162 i = regno - max_value_regs; 2163 2164 endregno = end_hard_regno (mode, regno); 2165 } 2166 else 2167 { 2168 i = regno; 2169 endregno = regno + 1; 2170 } 2171 2172 for (; i < endregno; i++) 2173 { 2174 struct elt_list **l = ®_VALUES (i); 2175 2176 /* Go through all known values for this reg; if it overlaps the range 2177 we're invalidating, remove the value. */ 2178 while (*l) 2179 { 2180 cselib_val *v = (*l)->elt; 2181 bool had_locs; 2182 rtx_insn *setting_insn; 2183 struct elt_loc_list **p; 2184 unsigned int this_last = i; 2185 2186 if (i < FIRST_PSEUDO_REGISTER && v != NULL) 2187 this_last = end_hard_regno (GET_MODE (v->val_rtx), i) - 1; 2188 2189 if (this_last < regno || v == NULL 2190 || (v == cfa_base_preserved_val 2191 && i == cfa_base_preserved_regno)) 2192 { 2193 l = &(*l)->next; 2194 continue; 2195 } 2196 2197 /* We have an overlap. */ 2198 if (*l == REG_VALUES (i)) 2199 { 2200 /* Maintain the invariant that the first entry of 2201 REG_VALUES, if present, must be the value used to set 2202 the register, or NULL. This is also nice because 2203 then we won't push the same regno onto user_regs 2204 multiple times. */ 2205 (*l)->elt = NULL; 2206 l = &(*l)->next; 2207 } 2208 else 2209 unchain_one_elt_list (l); 2210 2211 v = canonical_cselib_val (v); 2212 2213 had_locs = v->locs != NULL; 2214 setting_insn = v->locs ? v->locs->setting_insn : NULL; 2215 2216 /* Now, we clear the mapping from value to reg. It must exist, so 2217 this code will crash intentionally if it doesn't. */ 2218 for (p = &v->locs; ; p = &(*p)->next) 2219 { 2220 rtx x = (*p)->loc; 2221 2222 if (REG_P (x) && REGNO (x) == i) 2223 { 2224 unchain_one_elt_loc_list (p); 2225 break; 2226 } 2227 } 2228 2229 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx)) 2230 { 2231 if (setting_insn && DEBUG_INSN_P (setting_insn)) 2232 n_useless_debug_values++; 2233 else 2234 n_useless_values++; 2235 } 2236 } 2237 } 2238 } 2239 2240 /* Invalidate any locations in the table which are changed because of a 2241 store to MEM_RTX. If this is called because of a non-const call 2242 instruction, MEM_RTX is (mem:BLK const0_rtx). */ 2243 2244 static void 2245 cselib_invalidate_mem (rtx mem_rtx) 2246 { 2247 cselib_val **vp, *v, *next; 2248 int num_mems = 0; 2249 rtx mem_addr; 2250 2251 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0))); 2252 mem_rtx = canon_rtx (mem_rtx); 2253 2254 vp = &first_containing_mem; 2255 for (v = *vp; v != &dummy_val; v = next) 2256 { 2257 bool has_mem = false; 2258 struct elt_loc_list **p = &v->locs; 2259 bool had_locs = v->locs != NULL; 2260 rtx_insn *setting_insn = v->locs ? v->locs->setting_insn : NULL; 2261 2262 while (*p) 2263 { 2264 rtx x = (*p)->loc; 2265 cselib_val *addr; 2266 struct elt_list **mem_chain; 2267 2268 /* MEMs may occur in locations only at the top level; below 2269 that every MEM or REG is substituted by its VALUE. */ 2270 if (!MEM_P (x)) 2271 { 2272 p = &(*p)->next; 2273 continue; 2274 } 2275 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS) 2276 && ! canon_anti_dependence (x, false, mem_rtx, 2277 GET_MODE (mem_rtx), mem_addr)) 2278 { 2279 has_mem = true; 2280 num_mems++; 2281 p = &(*p)->next; 2282 continue; 2283 } 2284 2285 /* This one overlaps. */ 2286 /* We must have a mapping from this MEM's address to the 2287 value (E). Remove that, too. */ 2288 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0, GET_MODE (x)); 2289 addr = canonical_cselib_val (addr); 2290 gcc_checking_assert (v == canonical_cselib_val (v)); 2291 mem_chain = &addr->addr_list; 2292 for (;;) 2293 { 2294 cselib_val *canon = canonical_cselib_val ((*mem_chain)->elt); 2295 2296 if (canon == v) 2297 { 2298 unchain_one_elt_list (mem_chain); 2299 break; 2300 } 2301 2302 /* Record canonicalized elt. */ 2303 (*mem_chain)->elt = canon; 2304 2305 mem_chain = &(*mem_chain)->next; 2306 } 2307 2308 unchain_one_elt_loc_list (p); 2309 } 2310 2311 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx)) 2312 { 2313 if (setting_insn && DEBUG_INSN_P (setting_insn)) 2314 n_useless_debug_values++; 2315 else 2316 n_useless_values++; 2317 } 2318 2319 next = v->next_containing_mem; 2320 if (has_mem) 2321 { 2322 *vp = v; 2323 vp = &(*vp)->next_containing_mem; 2324 } 2325 else 2326 v->next_containing_mem = NULL; 2327 } 2328 *vp = &dummy_val; 2329 } 2330 2331 /* Invalidate DEST, which is being assigned to or clobbered. */ 2332 2333 void 2334 cselib_invalidate_rtx (rtx dest) 2335 { 2336 while (GET_CODE (dest) == SUBREG 2337 || GET_CODE (dest) == ZERO_EXTRACT 2338 || GET_CODE (dest) == STRICT_LOW_PART) 2339 dest = XEXP (dest, 0); 2340 2341 if (REG_P (dest)) 2342 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest)); 2343 else if (MEM_P (dest)) 2344 cselib_invalidate_mem (dest); 2345 } 2346 2347 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */ 2348 2349 static void 2350 cselib_invalidate_rtx_note_stores (rtx dest, const_rtx ignore ATTRIBUTE_UNUSED, 2351 void *data ATTRIBUTE_UNUSED) 2352 { 2353 cselib_invalidate_rtx (dest); 2354 } 2355 2356 /* Record the result of a SET instruction. DEST is being set; the source 2357 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT 2358 describes its address. */ 2359 2360 static void 2361 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt) 2362 { 2363 if (src_elt == 0 || side_effects_p (dest)) 2364 return; 2365 2366 if (REG_P (dest)) 2367 { 2368 unsigned int dreg = REGNO (dest); 2369 if (dreg < FIRST_PSEUDO_REGISTER) 2370 { 2371 unsigned int n = REG_NREGS (dest); 2372 2373 if (n > max_value_regs) 2374 max_value_regs = n; 2375 } 2376 2377 if (REG_VALUES (dreg) == 0) 2378 { 2379 used_regs[n_used_regs++] = dreg; 2380 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt); 2381 } 2382 else 2383 { 2384 /* The register should have been invalidated. */ 2385 gcc_assert (REG_VALUES (dreg)->elt == 0); 2386 REG_VALUES (dreg)->elt = src_elt; 2387 } 2388 2389 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx)) 2390 n_useless_values--; 2391 new_elt_loc_list (src_elt, dest); 2392 } 2393 else if (MEM_P (dest) && dest_addr_elt != 0 2394 && cselib_record_memory) 2395 { 2396 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx)) 2397 n_useless_values--; 2398 add_mem_for_addr (dest_addr_elt, src_elt, dest); 2399 } 2400 } 2401 2402 /* Make ELT and X's VALUE equivalent to each other at INSN. */ 2403 2404 void 2405 cselib_add_permanent_equiv (cselib_val *elt, rtx x, rtx_insn *insn) 2406 { 2407 cselib_val *nelt; 2408 rtx_insn *save_cselib_current_insn = cselib_current_insn; 2409 2410 gcc_checking_assert (elt); 2411 gcc_checking_assert (PRESERVED_VALUE_P (elt->val_rtx)); 2412 gcc_checking_assert (!side_effects_p (x)); 2413 2414 cselib_current_insn = insn; 2415 2416 nelt = cselib_lookup (x, GET_MODE (elt->val_rtx), 1, VOIDmode); 2417 2418 if (nelt != elt) 2419 { 2420 cselib_any_perm_equivs = true; 2421 2422 if (!PRESERVED_VALUE_P (nelt->val_rtx)) 2423 cselib_preserve_value (nelt); 2424 2425 new_elt_loc_list (nelt, elt->val_rtx); 2426 } 2427 2428 cselib_current_insn = save_cselib_current_insn; 2429 } 2430 2431 /* Return TRUE if any permanent equivalences have been recorded since 2432 the table was last initialized. */ 2433 bool 2434 cselib_have_permanent_equivalences (void) 2435 { 2436 return cselib_any_perm_equivs; 2437 } 2438 2439 /* There is no good way to determine how many elements there can be 2440 in a PARALLEL. Since it's fairly cheap, use a really large number. */ 2441 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2) 2442 2443 struct cselib_record_autoinc_data 2444 { 2445 struct cselib_set *sets; 2446 int n_sets; 2447 }; 2448 2449 /* Callback for for_each_inc_dec. Records in ARG the SETs implied by 2450 autoinc RTXs: SRC plus SRCOFF if non-NULL is stored in DEST. */ 2451 2452 static int 2453 cselib_record_autoinc_cb (rtx mem ATTRIBUTE_UNUSED, rtx op ATTRIBUTE_UNUSED, 2454 rtx dest, rtx src, rtx srcoff, void *arg) 2455 { 2456 struct cselib_record_autoinc_data *data; 2457 data = (struct cselib_record_autoinc_data *)arg; 2458 2459 data->sets[data->n_sets].dest = dest; 2460 2461 if (srcoff) 2462 data->sets[data->n_sets].src = gen_rtx_PLUS (GET_MODE (src), src, srcoff); 2463 else 2464 data->sets[data->n_sets].src = src; 2465 2466 data->n_sets++; 2467 2468 return 0; 2469 } 2470 2471 /* Record the effects of any sets and autoincs in INSN. */ 2472 static void 2473 cselib_record_sets (rtx_insn *insn) 2474 { 2475 int n_sets = 0; 2476 int i; 2477 struct cselib_set sets[MAX_SETS]; 2478 rtx body = PATTERN (insn); 2479 rtx cond = 0; 2480 int n_sets_before_autoinc; 2481 struct cselib_record_autoinc_data data; 2482 2483 body = PATTERN (insn); 2484 if (GET_CODE (body) == COND_EXEC) 2485 { 2486 cond = COND_EXEC_TEST (body); 2487 body = COND_EXEC_CODE (body); 2488 } 2489 2490 /* Find all sets. */ 2491 if (GET_CODE (body) == SET) 2492 { 2493 sets[0].src = SET_SRC (body); 2494 sets[0].dest = SET_DEST (body); 2495 n_sets = 1; 2496 } 2497 else if (GET_CODE (body) == PARALLEL) 2498 { 2499 /* Look through the PARALLEL and record the values being 2500 set, if possible. Also handle any CLOBBERs. */ 2501 for (i = XVECLEN (body, 0) - 1; i >= 0; --i) 2502 { 2503 rtx x = XVECEXP (body, 0, i); 2504 2505 if (GET_CODE (x) == SET) 2506 { 2507 sets[n_sets].src = SET_SRC (x); 2508 sets[n_sets].dest = SET_DEST (x); 2509 n_sets++; 2510 } 2511 } 2512 } 2513 2514 if (n_sets == 1 2515 && MEM_P (sets[0].src) 2516 && !cselib_record_memory 2517 && MEM_READONLY_P (sets[0].src)) 2518 { 2519 rtx note = find_reg_equal_equiv_note (insn); 2520 2521 if (note && CONSTANT_P (XEXP (note, 0))) 2522 sets[0].src = XEXP (note, 0); 2523 } 2524 2525 data.sets = sets; 2526 data.n_sets = n_sets_before_autoinc = n_sets; 2527 for_each_inc_dec (PATTERN (insn), cselib_record_autoinc_cb, &data); 2528 n_sets = data.n_sets; 2529 2530 /* Look up the values that are read. Do this before invalidating the 2531 locations that are written. */ 2532 for (i = 0; i < n_sets; i++) 2533 { 2534 rtx dest = sets[i].dest; 2535 2536 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for 2537 the low part after invalidating any knowledge about larger modes. */ 2538 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART) 2539 sets[i].dest = dest = XEXP (dest, 0); 2540 2541 /* We don't know how to record anything but REG or MEM. */ 2542 if (REG_P (dest) 2543 || (MEM_P (dest) && cselib_record_memory)) 2544 { 2545 rtx src = sets[i].src; 2546 if (cond) 2547 src = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), cond, src, dest); 2548 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1, VOIDmode); 2549 if (MEM_P (dest)) 2550 { 2551 machine_mode address_mode = get_address_mode (dest); 2552 2553 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0), 2554 address_mode, 1, 2555 GET_MODE (dest)); 2556 } 2557 else 2558 sets[i].dest_addr_elt = 0; 2559 } 2560 } 2561 2562 if (cselib_record_sets_hook) 2563 cselib_record_sets_hook (insn, sets, n_sets); 2564 2565 /* Invalidate all locations written by this insn. Note that the elts we 2566 looked up in the previous loop aren't affected, just some of their 2567 locations may go away. */ 2568 note_stores (body, cselib_invalidate_rtx_note_stores, NULL); 2569 2570 for (i = n_sets_before_autoinc; i < n_sets; i++) 2571 cselib_invalidate_rtx (sets[i].dest); 2572 2573 /* If this is an asm, look for duplicate sets. This can happen when the 2574 user uses the same value as an output multiple times. This is valid 2575 if the outputs are not actually used thereafter. Treat this case as 2576 if the value isn't actually set. We do this by smashing the destination 2577 to pc_rtx, so that we won't record the value later. */ 2578 if (n_sets >= 2 && asm_noperands (body) >= 0) 2579 { 2580 for (i = 0; i < n_sets; i++) 2581 { 2582 rtx dest = sets[i].dest; 2583 if (REG_P (dest) || MEM_P (dest)) 2584 { 2585 int j; 2586 for (j = i + 1; j < n_sets; j++) 2587 if (rtx_equal_p (dest, sets[j].dest)) 2588 { 2589 sets[i].dest = pc_rtx; 2590 sets[j].dest = pc_rtx; 2591 } 2592 } 2593 } 2594 } 2595 2596 /* Now enter the equivalences in our tables. */ 2597 for (i = 0; i < n_sets; i++) 2598 { 2599 rtx dest = sets[i].dest; 2600 if (REG_P (dest) 2601 || (MEM_P (dest) && cselib_record_memory)) 2602 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt); 2603 } 2604 } 2605 2606 /* Return true if INSN in the prologue initializes hard_frame_pointer_rtx. */ 2607 2608 bool 2609 fp_setter_insn (rtx_insn *insn) 2610 { 2611 rtx expr, pat = NULL_RTX; 2612 2613 if (!RTX_FRAME_RELATED_P (insn)) 2614 return false; 2615 2616 expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX); 2617 if (expr) 2618 pat = XEXP (expr, 0); 2619 if (!modified_in_p (hard_frame_pointer_rtx, pat ? pat : insn)) 2620 return false; 2621 2622 /* Don't return true for frame pointer restores in the epilogue. */ 2623 if (find_reg_note (insn, REG_CFA_RESTORE, hard_frame_pointer_rtx)) 2624 return false; 2625 return true; 2626 } 2627 2628 /* Record the effects of INSN. */ 2629 2630 void 2631 cselib_process_insn (rtx_insn *insn) 2632 { 2633 int i; 2634 rtx x; 2635 2636 cselib_current_insn = insn; 2637 2638 /* Forget everything at a CODE_LABEL or a setjmp. */ 2639 if ((LABEL_P (insn) 2640 || (CALL_P (insn) 2641 && find_reg_note (insn, REG_SETJMP, NULL))) 2642 && !cselib_preserve_constants) 2643 { 2644 cselib_reset_table (next_uid); 2645 cselib_current_insn = NULL; 2646 return; 2647 } 2648 2649 if (! INSN_P (insn)) 2650 { 2651 cselib_current_insn = NULL; 2652 return; 2653 } 2654 2655 /* If this is a call instruction, forget anything stored in a 2656 call clobbered register, or, if this is not a const call, in 2657 memory. */ 2658 if (CALL_P (insn)) 2659 { 2660 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) 2661 if (call_used_regs[i] 2662 || (REG_VALUES (i) && REG_VALUES (i)->elt 2663 && HARD_REGNO_CALL_PART_CLOBBERED (i, 2664 GET_MODE (REG_VALUES (i)->elt->val_rtx)))) 2665 cselib_invalidate_regno (i, reg_raw_mode[i]); 2666 2667 /* Since it is not clear how cselib is going to be used, be 2668 conservative here and treat looping pure or const functions 2669 as if they were regular functions. */ 2670 if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn) 2671 || !(RTL_CONST_OR_PURE_CALL_P (insn))) 2672 cselib_invalidate_mem (callmem); 2673 else 2674 /* For const/pure calls, invalidate any argument slots because 2675 they are owned by the callee. */ 2676 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1)) 2677 if (GET_CODE (XEXP (x, 0)) == USE 2678 && MEM_P (XEXP (XEXP (x, 0), 0))) 2679 cselib_invalidate_mem (XEXP (XEXP (x, 0), 0)); 2680 } 2681 2682 cselib_record_sets (insn); 2683 2684 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only 2685 after we have processed the insn. */ 2686 if (CALL_P (insn)) 2687 { 2688 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1)) 2689 if (GET_CODE (XEXP (x, 0)) == CLOBBER) 2690 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0)); 2691 /* Flush evertything on setjmp. */ 2692 if (cselib_preserve_constants 2693 && find_reg_note (insn, REG_SETJMP, NULL)) 2694 { 2695 cselib_preserve_only_values (); 2696 cselib_reset_table (next_uid); 2697 } 2698 } 2699 2700 /* On setter of the hard frame pointer if frame_pointer_needed, 2701 invalidate stack_pointer_rtx, so that sp and {,h}fp based 2702 VALUEs are distinct. */ 2703 if (reload_completed 2704 && frame_pointer_needed 2705 && fp_setter_insn (insn)) 2706 cselib_invalidate_rtx (stack_pointer_rtx); 2707 2708 cselib_current_insn = NULL; 2709 2710 if (n_useless_values > MAX_USELESS_VALUES 2711 /* remove_useless_values is linear in the hash table size. Avoid 2712 quadratic behavior for very large hashtables with very few 2713 useless elements. */ 2714 && ((unsigned int)n_useless_values 2715 > (cselib_hash_table->elements () - n_debug_values) / 4)) 2716 remove_useless_values (); 2717 } 2718 2719 /* Initialize cselib for one pass. The caller must also call 2720 init_alias_analysis. */ 2721 2722 void 2723 cselib_init (int record_what) 2724 { 2725 cselib_record_memory = record_what & CSELIB_RECORD_MEMORY; 2726 cselib_preserve_constants = record_what & CSELIB_PRESERVE_CONSTANTS; 2727 cselib_any_perm_equivs = false; 2728 2729 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything, 2730 see canon_true_dependence. This is only created once. */ 2731 if (! callmem) 2732 callmem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)); 2733 2734 cselib_nregs = max_reg_num (); 2735 2736 /* We preserve reg_values to allow expensive clearing of the whole thing. 2737 Reallocate it however if it happens to be too large. */ 2738 if (!reg_values || reg_values_size < cselib_nregs 2739 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4)) 2740 { 2741 free (reg_values); 2742 /* Some space for newly emit instructions so we don't end up 2743 reallocating in between passes. */ 2744 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16; 2745 reg_values = XCNEWVEC (struct elt_list *, reg_values_size); 2746 } 2747 used_regs = XNEWVEC (unsigned int, cselib_nregs); 2748 n_used_regs = 0; 2749 cselib_hash_table = new hash_table<cselib_hasher> (31); 2750 if (cselib_preserve_constants) 2751 cselib_preserved_hash_table = new hash_table<cselib_hasher> (31); 2752 next_uid = 1; 2753 } 2754 2755 /* Called when the current user is done with cselib. */ 2756 2757 void 2758 cselib_finish (void) 2759 { 2760 bool preserved = cselib_preserve_constants; 2761 cselib_discard_hook = NULL; 2762 cselib_preserve_constants = false; 2763 cselib_any_perm_equivs = false; 2764 cfa_base_preserved_val = NULL; 2765 cfa_base_preserved_regno = INVALID_REGNUM; 2766 elt_list_pool.release (); 2767 elt_loc_list_pool.release (); 2768 cselib_val_pool.release (); 2769 value_pool.release (); 2770 cselib_clear_table (); 2771 delete cselib_hash_table; 2772 cselib_hash_table = NULL; 2773 if (preserved) 2774 delete cselib_preserved_hash_table; 2775 cselib_preserved_hash_table = NULL; 2776 free (used_regs); 2777 used_regs = 0; 2778 n_useless_values = 0; 2779 n_useless_debug_values = 0; 2780 n_debug_values = 0; 2781 next_uid = 0; 2782 } 2783 2784 /* Dump the cselib_val *X to FILE *OUT. */ 2785 2786 int 2787 dump_cselib_val (cselib_val **x, FILE *out) 2788 { 2789 cselib_val *v = *x; 2790 bool need_lf = true; 2791 2792 print_inline_rtx (out, v->val_rtx, 0); 2793 2794 if (v->locs) 2795 { 2796 struct elt_loc_list *l = v->locs; 2797 if (need_lf) 2798 { 2799 fputc ('\n', out); 2800 need_lf = false; 2801 } 2802 fputs (" locs:", out); 2803 do 2804 { 2805 if (l->setting_insn) 2806 fprintf (out, "\n from insn %i ", 2807 INSN_UID (l->setting_insn)); 2808 else 2809 fprintf (out, "\n "); 2810 print_inline_rtx (out, l->loc, 4); 2811 } 2812 while ((l = l->next)); 2813 fputc ('\n', out); 2814 } 2815 else 2816 { 2817 fputs (" no locs", out); 2818 need_lf = true; 2819 } 2820 2821 if (v->addr_list) 2822 { 2823 struct elt_list *e = v->addr_list; 2824 if (need_lf) 2825 { 2826 fputc ('\n', out); 2827 need_lf = false; 2828 } 2829 fputs (" addr list:", out); 2830 do 2831 { 2832 fputs ("\n ", out); 2833 print_inline_rtx (out, e->elt->val_rtx, 2); 2834 } 2835 while ((e = e->next)); 2836 fputc ('\n', out); 2837 } 2838 else 2839 { 2840 fputs (" no addrs", out); 2841 need_lf = true; 2842 } 2843 2844 if (v->next_containing_mem == &dummy_val) 2845 fputs (" last mem\n", out); 2846 else if (v->next_containing_mem) 2847 { 2848 fputs (" next mem ", out); 2849 print_inline_rtx (out, v->next_containing_mem->val_rtx, 2); 2850 fputc ('\n', out); 2851 } 2852 else if (need_lf) 2853 fputc ('\n', out); 2854 2855 return 1; 2856 } 2857 2858 /* Dump to OUT everything in the CSELIB table. */ 2859 2860 void 2861 dump_cselib_table (FILE *out) 2862 { 2863 fprintf (out, "cselib hash table:\n"); 2864 cselib_hash_table->traverse <FILE *, dump_cselib_val> (out); 2865 fprintf (out, "cselib preserved hash table:\n"); 2866 cselib_preserved_hash_table->traverse <FILE *, dump_cselib_val> (out); 2867 if (first_containing_mem != &dummy_val) 2868 { 2869 fputs ("first mem ", out); 2870 print_inline_rtx (out, first_containing_mem->val_rtx, 2); 2871 fputc ('\n', out); 2872 } 2873 fprintf (out, "next uid %i\n", next_uid); 2874 } 2875 2876 #include "gt-cselib.h" 2877