xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/cse.c (revision f78a39098a724dc9cf9de2015260a6c3ffa0f8d7)
1 /* Common subexpression elimination for GNU compiler.
2    Copyright (C) 1987-2013 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "basic-block.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "diagnostic-core.h"
35 #include "toplev.h"
36 #include "ggc.h"
37 #include "except.h"
38 #include "target.h"
39 #include "params.h"
40 #include "rtlhooks-def.h"
41 #include "tree-pass.h"
42 #include "df.h"
43 #include "dbgcnt.h"
44 #include "pointer-set.h"
45 
46 /* The basic idea of common subexpression elimination is to go
47    through the code, keeping a record of expressions that would
48    have the same value at the current scan point, and replacing
49    expressions encountered with the cheapest equivalent expression.
50 
51    It is too complicated to keep track of the different possibilities
52    when control paths merge in this code; so, at each label, we forget all
53    that is known and start fresh.  This can be described as processing each
54    extended basic block separately.  We have a separate pass to perform
55    global CSE.
56 
57    Note CSE can turn a conditional or computed jump into a nop or
58    an unconditional jump.  When this occurs we arrange to run the jump
59    optimizer after CSE to delete the unreachable code.
60 
61    We use two data structures to record the equivalent expressions:
62    a hash table for most expressions, and a vector of "quantity
63    numbers" to record equivalent (pseudo) registers.
64 
65    The use of the special data structure for registers is desirable
66    because it is faster.  It is possible because registers references
67    contain a fairly small number, the register number, taken from
68    a contiguously allocated series, and two register references are
69    identical if they have the same number.  General expressions
70    do not have any such thing, so the only way to retrieve the
71    information recorded on an expression other than a register
72    is to keep it in a hash table.
73 
74 Registers and "quantity numbers":
75 
76    At the start of each basic block, all of the (hardware and pseudo)
77    registers used in the function are given distinct quantity
78    numbers to indicate their contents.  During scan, when the code
79    copies one register into another, we copy the quantity number.
80    When a register is loaded in any other way, we allocate a new
81    quantity number to describe the value generated by this operation.
82    `REG_QTY (N)' records what quantity register N is currently thought
83    of as containing.
84 
85    All real quantity numbers are greater than or equal to zero.
86    If register N has not been assigned a quantity, `REG_QTY (N)' will
87    equal -N - 1, which is always negative.
88 
89    Quantity numbers below zero do not exist and none of the `qty_table'
90    entries should be referenced with a negative index.
91 
92    We also maintain a bidirectional chain of registers for each
93    quantity number.  The `qty_table` members `first_reg' and `last_reg',
94    and `reg_eqv_table' members `next' and `prev' hold these chains.
95 
96    The first register in a chain is the one whose lifespan is least local.
97    Among equals, it is the one that was seen first.
98    We replace any equivalent register with that one.
99 
100    If two registers have the same quantity number, it must be true that
101    REG expressions with qty_table `mode' must be in the hash table for both
102    registers and must be in the same class.
103 
104    The converse is not true.  Since hard registers may be referenced in
105    any mode, two REG expressions might be equivalent in the hash table
106    but not have the same quantity number if the quantity number of one
107    of the registers is not the same mode as those expressions.
108 
109 Constants and quantity numbers
110 
111    When a quantity has a known constant value, that value is stored
112    in the appropriate qty_table `const_rtx'.  This is in addition to
113    putting the constant in the hash table as is usual for non-regs.
114 
115    Whether a reg or a constant is preferred is determined by the configuration
116    macro CONST_COSTS and will often depend on the constant value.  In any
117    event, expressions containing constants can be simplified, by fold_rtx.
118 
119    When a quantity has a known nearly constant value (such as an address
120    of a stack slot), that value is stored in the appropriate qty_table
121    `const_rtx'.
122 
123    Integer constants don't have a machine mode.  However, cse
124    determines the intended machine mode from the destination
125    of the instruction that moves the constant.  The machine mode
126    is recorded in the hash table along with the actual RTL
127    constant expression so that different modes are kept separate.
128 
129 Other expressions:
130 
131    To record known equivalences among expressions in general
132    we use a hash table called `table'.  It has a fixed number of buckets
133    that contain chains of `struct table_elt' elements for expressions.
134    These chains connect the elements whose expressions have the same
135    hash codes.
136 
137    Other chains through the same elements connect the elements which
138    currently have equivalent values.
139 
140    Register references in an expression are canonicalized before hashing
141    the expression.  This is done using `reg_qty' and qty_table `first_reg'.
142    The hash code of a register reference is computed using the quantity
143    number, not the register number.
144 
145    When the value of an expression changes, it is necessary to remove from the
146    hash table not just that expression but all expressions whose values
147    could be different as a result.
148 
149      1. If the value changing is in memory, except in special cases
150      ANYTHING referring to memory could be changed.  That is because
151      nobody knows where a pointer does not point.
152      The function `invalidate_memory' removes what is necessary.
153 
154      The special cases are when the address is constant or is
155      a constant plus a fixed register such as the frame pointer
156      or a static chain pointer.  When such addresses are stored in,
157      we can tell exactly which other such addresses must be invalidated
158      due to overlap.  `invalidate' does this.
159      All expressions that refer to non-constant
160      memory addresses are also invalidated.  `invalidate_memory' does this.
161 
162      2. If the value changing is a register, all expressions
163      containing references to that register, and only those,
164      must be removed.
165 
166    Because searching the entire hash table for expressions that contain
167    a register is very slow, we try to figure out when it isn't necessary.
168    Precisely, this is necessary only when expressions have been
169    entered in the hash table using this register, and then the value has
170    changed, and then another expression wants to be added to refer to
171    the register's new value.  This sequence of circumstances is rare
172    within any one basic block.
173 
174    `REG_TICK' and `REG_IN_TABLE', accessors for members of
175    cse_reg_info, are used to detect this case.  REG_TICK (i) is
176    incremented whenever a value is stored in register i.
177    REG_IN_TABLE (i) holds -1 if no references to register i have been
178    entered in the table; otherwise, it contains the value REG_TICK (i)
179    had when the references were entered.  If we want to enter a
180    reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
181    remove old references.  Until we want to enter a new entry, the
182    mere fact that the two vectors don't match makes the entries be
183    ignored if anyone tries to match them.
184 
185    Registers themselves are entered in the hash table as well as in
186    the equivalent-register chains.  However, `REG_TICK' and
187    `REG_IN_TABLE' do not apply to expressions which are simple
188    register references.  These expressions are removed from the table
189    immediately when they become invalid, and this can be done even if
190    we do not immediately search for all the expressions that refer to
191    the register.
192 
193    A CLOBBER rtx in an instruction invalidates its operand for further
194    reuse.  A CLOBBER or SET rtx whose operand is a MEM:BLK
195    invalidates everything that resides in memory.
196 
197 Related expressions:
198 
199    Constant expressions that differ only by an additive integer
200    are called related.  When a constant expression is put in
201    the table, the related expression with no constant term
202    is also entered.  These are made to point at each other
203    so that it is possible to find out if there exists any
204    register equivalent to an expression related to a given expression.  */
205 
206 /* Length of qty_table vector.  We know in advance we will not need
207    a quantity number this big.  */
208 
209 static int max_qty;
210 
211 /* Next quantity number to be allocated.
212    This is 1 + the largest number needed so far.  */
213 
214 static int next_qty;
215 
216 /* Per-qty information tracking.
217 
218    `first_reg' and `last_reg' track the head and tail of the
219    chain of registers which currently contain this quantity.
220 
221    `mode' contains the machine mode of this quantity.
222 
223    `const_rtx' holds the rtx of the constant value of this
224    quantity, if known.  A summations of the frame/arg pointer
225    and a constant can also be entered here.  When this holds
226    a known value, `const_insn' is the insn which stored the
227    constant value.
228 
229    `comparison_{code,const,qty}' are used to track when a
230    comparison between a quantity and some constant or register has
231    been passed.  In such a case, we know the results of the comparison
232    in case we see it again.  These members record a comparison that
233    is known to be true.  `comparison_code' holds the rtx code of such
234    a comparison, else it is set to UNKNOWN and the other two
235    comparison members are undefined.  `comparison_const' holds
236    the constant being compared against, or zero if the comparison
237    is not against a constant.  `comparison_qty' holds the quantity
238    being compared against when the result is known.  If the comparison
239    is not with a register, `comparison_qty' is -1.  */
240 
241 struct qty_table_elem
242 {
243   rtx const_rtx;
244   rtx const_insn;
245   rtx comparison_const;
246   int comparison_qty;
247   unsigned int first_reg, last_reg;
248   /* The sizes of these fields should match the sizes of the
249      code and mode fields of struct rtx_def (see rtl.h).  */
250   ENUM_BITFIELD(rtx_code) comparison_code : 16;
251   ENUM_BITFIELD(machine_mode) mode : 8;
252 };
253 
254 /* The table of all qtys, indexed by qty number.  */
255 static struct qty_table_elem *qty_table;
256 
257 /* Structure used to pass arguments via for_each_rtx to function
258    cse_change_cc_mode.  */
259 struct change_cc_mode_args
260 {
261   rtx insn;
262   rtx newreg;
263 };
264 
265 #ifdef HAVE_cc0
266 /* For machines that have a CC0, we do not record its value in the hash
267    table since its use is guaranteed to be the insn immediately following
268    its definition and any other insn is presumed to invalidate it.
269 
270    Instead, we store below the current and last value assigned to CC0.
271    If it should happen to be a constant, it is stored in preference
272    to the actual assigned value.  In case it is a constant, we store
273    the mode in which the constant should be interpreted.  */
274 
275 static rtx this_insn_cc0, prev_insn_cc0;
276 static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
277 #endif
278 
279 /* Insn being scanned.  */
280 
281 static rtx this_insn;
282 static bool optimize_this_for_speed_p;
283 
284 /* Index by register number, gives the number of the next (or
285    previous) register in the chain of registers sharing the same
286    value.
287 
288    Or -1 if this register is at the end of the chain.
289 
290    If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined.  */
291 
292 /* Per-register equivalence chain.  */
293 struct reg_eqv_elem
294 {
295   int next, prev;
296 };
297 
298 /* The table of all register equivalence chains.  */
299 static struct reg_eqv_elem *reg_eqv_table;
300 
301 struct cse_reg_info
302 {
303   /* The timestamp at which this register is initialized.  */
304   unsigned int timestamp;
305 
306   /* The quantity number of the register's current contents.  */
307   int reg_qty;
308 
309   /* The number of times the register has been altered in the current
310      basic block.  */
311   int reg_tick;
312 
313   /* The REG_TICK value at which rtx's containing this register are
314      valid in the hash table.  If this does not equal the current
315      reg_tick value, such expressions existing in the hash table are
316      invalid.  */
317   int reg_in_table;
318 
319   /* The SUBREG that was set when REG_TICK was last incremented.  Set
320      to -1 if the last store was to the whole register, not a subreg.  */
321   unsigned int subreg_ticked;
322 };
323 
324 /* A table of cse_reg_info indexed by register numbers.  */
325 static struct cse_reg_info *cse_reg_info_table;
326 
327 /* The size of the above table.  */
328 static unsigned int cse_reg_info_table_size;
329 
330 /* The index of the first entry that has not been initialized.  */
331 static unsigned int cse_reg_info_table_first_uninitialized;
332 
333 /* The timestamp at the beginning of the current run of
334    cse_extended_basic_block.  We increment this variable at the beginning of
335    the current run of cse_extended_basic_block.  The timestamp field of a
336    cse_reg_info entry matches the value of this variable if and only
337    if the entry has been initialized during the current run of
338    cse_extended_basic_block.  */
339 static unsigned int cse_reg_info_timestamp;
340 
341 /* A HARD_REG_SET containing all the hard registers for which there is
342    currently a REG expression in the hash table.  Note the difference
343    from the above variables, which indicate if the REG is mentioned in some
344    expression in the table.  */
345 
346 static HARD_REG_SET hard_regs_in_table;
347 
348 /* True if CSE has altered the CFG.  */
349 static bool cse_cfg_altered;
350 
351 /* True if CSE has altered conditional jump insns in such a way
352    that jump optimization should be redone.  */
353 static bool cse_jumps_altered;
354 
355 /* True if we put a LABEL_REF into the hash table for an INSN
356    without a REG_LABEL_OPERAND, we have to rerun jump after CSE
357    to put in the note.  */
358 static bool recorded_label_ref;
359 
360 /* canon_hash stores 1 in do_not_record
361    if it notices a reference to CC0, PC, or some other volatile
362    subexpression.  */
363 
364 static int do_not_record;
365 
366 /* canon_hash stores 1 in hash_arg_in_memory
367    if it notices a reference to memory within the expression being hashed.  */
368 
369 static int hash_arg_in_memory;
370 
371 /* The hash table contains buckets which are chains of `struct table_elt's,
372    each recording one expression's information.
373    That expression is in the `exp' field.
374 
375    The canon_exp field contains a canonical (from the point of view of
376    alias analysis) version of the `exp' field.
377 
378    Those elements with the same hash code are chained in both directions
379    through the `next_same_hash' and `prev_same_hash' fields.
380 
381    Each set of expressions with equivalent values
382    are on a two-way chain through the `next_same_value'
383    and `prev_same_value' fields, and all point with
384    the `first_same_value' field at the first element in
385    that chain.  The chain is in order of increasing cost.
386    Each element's cost value is in its `cost' field.
387 
388    The `in_memory' field is nonzero for elements that
389    involve any reference to memory.  These elements are removed
390    whenever a write is done to an unidentified location in memory.
391    To be safe, we assume that a memory address is unidentified unless
392    the address is either a symbol constant or a constant plus
393    the frame pointer or argument pointer.
394 
395    The `related_value' field is used to connect related expressions
396    (that differ by adding an integer).
397    The related expressions are chained in a circular fashion.
398    `related_value' is zero for expressions for which this
399    chain is not useful.
400 
401    The `cost' field stores the cost of this element's expression.
402    The `regcost' field stores the value returned by approx_reg_cost for
403    this element's expression.
404 
405    The `is_const' flag is set if the element is a constant (including
406    a fixed address).
407 
408    The `flag' field is used as a temporary during some search routines.
409 
410    The `mode' field is usually the same as GET_MODE (`exp'), but
411    if `exp' is a CONST_INT and has no machine mode then the `mode'
412    field is the mode it was being used as.  Each constant is
413    recorded separately for each mode it is used with.  */
414 
415 struct table_elt
416 {
417   rtx exp;
418   rtx canon_exp;
419   struct table_elt *next_same_hash;
420   struct table_elt *prev_same_hash;
421   struct table_elt *next_same_value;
422   struct table_elt *prev_same_value;
423   struct table_elt *first_same_value;
424   struct table_elt *related_value;
425   int cost;
426   int regcost;
427   /* The size of this field should match the size
428      of the mode field of struct rtx_def (see rtl.h).  */
429   ENUM_BITFIELD(machine_mode) mode : 8;
430   char in_memory;
431   char is_const;
432   char flag;
433 };
434 
435 /* We don't want a lot of buckets, because we rarely have very many
436    things stored in the hash table, and a lot of buckets slows
437    down a lot of loops that happen frequently.  */
438 #define HASH_SHIFT	5
439 #define HASH_SIZE	(1 << HASH_SHIFT)
440 #define HASH_MASK	(HASH_SIZE - 1)
441 
442 /* Compute hash code of X in mode M.  Special-case case where X is a pseudo
443    register (hard registers may require `do_not_record' to be set).  */
444 
445 #define HASH(X, M)	\
446  ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER	\
447   ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X)))	\
448   : canon_hash (X, M)) & HASH_MASK)
449 
450 /* Like HASH, but without side-effects.  */
451 #define SAFE_HASH(X, M)	\
452  ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER	\
453   ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X)))	\
454   : safe_hash (X, M)) & HASH_MASK)
455 
456 /* Determine whether register number N is considered a fixed register for the
457    purpose of approximating register costs.
458    It is desirable to replace other regs with fixed regs, to reduce need for
459    non-fixed hard regs.
460    A reg wins if it is either the frame pointer or designated as fixed.  */
461 #define FIXED_REGNO_P(N)  \
462   ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
463    || fixed_regs[N] || global_regs[N])
464 
465 /* Compute cost of X, as stored in the `cost' field of a table_elt.  Fixed
466    hard registers and pointers into the frame are the cheapest with a cost
467    of 0.  Next come pseudos with a cost of one and other hard registers with
468    a cost of 2.  Aside from these special cases, call `rtx_cost'.  */
469 
470 #define CHEAP_REGNO(N)							\
471   (REGNO_PTR_FRAME_P(N)							\
472    || (HARD_REGISTER_NUM_P (N)						\
473        && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
474 
475 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET, 1))
476 #define COST_IN(X, OUTER, OPNO) (REG_P (X) ? 0 : notreg_cost (X, OUTER, OPNO))
477 
478 /* Get the number of times this register has been updated in this
479    basic block.  */
480 
481 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
482 
483 /* Get the point at which REG was recorded in the table.  */
484 
485 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
486 
487 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
488    SUBREG).  */
489 
490 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
491 
492 /* Get the quantity number for REG.  */
493 
494 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
495 
496 /* Determine if the quantity number for register X represents a valid index
497    into the qty_table.  */
498 
499 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
500 
501 /* Compare table_elt X and Y and return true iff X is cheaper than Y.  */
502 
503 #define CHEAPER(X, Y) \
504  (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
505 
506 static struct table_elt *table[HASH_SIZE];
507 
508 /* Chain of `struct table_elt's made so far for this function
509    but currently removed from the table.  */
510 
511 static struct table_elt *free_element_chain;
512 
513 /* Set to the cost of a constant pool reference if one was found for a
514    symbolic constant.  If this was found, it means we should try to
515    convert constants into constant pool entries if they don't fit in
516    the insn.  */
517 
518 static int constant_pool_entries_cost;
519 static int constant_pool_entries_regcost;
520 
521 /* Trace a patch through the CFG.  */
522 
523 struct branch_path
524 {
525   /* The basic block for this path entry.  */
526   basic_block bb;
527 };
528 
529 /* This data describes a block that will be processed by
530    cse_extended_basic_block.  */
531 
532 struct cse_basic_block_data
533 {
534   /* Total number of SETs in block.  */
535   int nsets;
536   /* Size of current branch path, if any.  */
537   int path_size;
538   /* Current path, indicating which basic_blocks will be processed.  */
539   struct branch_path *path;
540 };
541 
542 
543 /* Pointers to the live in/live out bitmaps for the boundaries of the
544    current EBB.  */
545 static bitmap cse_ebb_live_in, cse_ebb_live_out;
546 
547 /* A simple bitmap to track which basic blocks have been visited
548    already as part of an already processed extended basic block.  */
549 static sbitmap cse_visited_basic_blocks;
550 
551 static bool fixed_base_plus_p (rtx x);
552 static int notreg_cost (rtx, enum rtx_code, int);
553 static int approx_reg_cost_1 (rtx *, void *);
554 static int approx_reg_cost (rtx);
555 static int preferable (int, int, int, int);
556 static void new_basic_block (void);
557 static void make_new_qty (unsigned int, enum machine_mode);
558 static void make_regs_eqv (unsigned int, unsigned int);
559 static void delete_reg_equiv (unsigned int);
560 static int mention_regs (rtx);
561 static int insert_regs (rtx, struct table_elt *, int);
562 static void remove_from_table (struct table_elt *, unsigned);
563 static void remove_pseudo_from_table (rtx, unsigned);
564 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
565 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
566 static rtx lookup_as_function (rtx, enum rtx_code);
567 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
568 					    enum machine_mode, int, int);
569 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
570 				 enum machine_mode);
571 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
572 static void invalidate (rtx, enum machine_mode);
573 static void remove_invalid_refs (unsigned int);
574 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
575 					enum machine_mode);
576 static void rehash_using_reg (rtx);
577 static void invalidate_memory (void);
578 static void invalidate_for_call (void);
579 static rtx use_related_value (rtx, struct table_elt *);
580 
581 static inline unsigned canon_hash (rtx, enum machine_mode);
582 static inline unsigned safe_hash (rtx, enum machine_mode);
583 static inline unsigned hash_rtx_string (const char *);
584 
585 static rtx canon_reg (rtx, rtx);
586 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
587 					   enum machine_mode *,
588 					   enum machine_mode *);
589 static rtx fold_rtx (rtx, rtx);
590 static rtx equiv_constant (rtx);
591 static void record_jump_equiv (rtx, bool);
592 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
593 			      int);
594 static void cse_insn (rtx);
595 static void cse_prescan_path (struct cse_basic_block_data *);
596 static void invalidate_from_clobbers (rtx);
597 static void invalidate_from_sets_and_clobbers (rtx);
598 static rtx cse_process_notes (rtx, rtx, bool *);
599 static void cse_extended_basic_block (struct cse_basic_block_data *);
600 static int check_for_label_ref (rtx *, void *);
601 extern void dump_class (struct table_elt*);
602 static void get_cse_reg_info_1 (unsigned int regno);
603 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
604 static int check_dependence (rtx *, void *);
605 
606 static void flush_hash_table (void);
607 static bool insn_live_p (rtx, int *);
608 static bool set_live_p (rtx, rtx, int *);
609 static int cse_change_cc_mode (rtx *, void *);
610 static void cse_change_cc_mode_insn (rtx, rtx);
611 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
612 static enum machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
613 				       bool);
614 
615 
616 #undef RTL_HOOKS_GEN_LOWPART
617 #define RTL_HOOKS_GEN_LOWPART		gen_lowpart_if_possible
618 
619 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
620 
621 /* Nonzero if X has the form (PLUS frame-pointer integer).  */
622 
623 static bool
624 fixed_base_plus_p (rtx x)
625 {
626   switch (GET_CODE (x))
627     {
628     case REG:
629       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
630 	return true;
631       if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
632 	return true;
633       return false;
634 
635     case PLUS:
636       if (!CONST_INT_P (XEXP (x, 1)))
637 	return false;
638       return fixed_base_plus_p (XEXP (x, 0));
639 
640     default:
641       return false;
642     }
643 }
644 
645 /* Dump the expressions in the equivalence class indicated by CLASSP.
646    This function is used only for debugging.  */
647 DEBUG_FUNCTION void
648 dump_class (struct table_elt *classp)
649 {
650   struct table_elt *elt;
651 
652   fprintf (stderr, "Equivalence chain for ");
653   print_rtl (stderr, classp->exp);
654   fprintf (stderr, ": \n");
655 
656   for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
657     {
658       print_rtl (stderr, elt->exp);
659       fprintf (stderr, "\n");
660     }
661 }
662 
663 /* Subroutine of approx_reg_cost; called through for_each_rtx.  */
664 
665 static int
666 approx_reg_cost_1 (rtx *xp, void *data)
667 {
668   rtx x = *xp;
669   int *cost_p = (int *) data;
670 
671   if (x && REG_P (x))
672     {
673       unsigned int regno = REGNO (x);
674 
675       if (! CHEAP_REGNO (regno))
676 	{
677 	  if (regno < FIRST_PSEUDO_REGISTER)
678 	    {
679 	      if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
680 		return 1;
681 	      *cost_p += 2;
682 	    }
683 	  else
684 	    *cost_p += 1;
685 	}
686     }
687 
688   return 0;
689 }
690 
691 /* Return an estimate of the cost of the registers used in an rtx.
692    This is mostly the number of different REG expressions in the rtx;
693    however for some exceptions like fixed registers we use a cost of
694    0.  If any other hard register reference occurs, return MAX_COST.  */
695 
696 static int
697 approx_reg_cost (rtx x)
698 {
699   int cost = 0;
700 
701   if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
702     return MAX_COST;
703 
704   return cost;
705 }
706 
707 /* Return a negative value if an rtx A, whose costs are given by COST_A
708    and REGCOST_A, is more desirable than an rtx B.
709    Return a positive value if A is less desirable, or 0 if the two are
710    equally good.  */
711 static int
712 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
713 {
714   /* First, get rid of cases involving expressions that are entirely
715      unwanted.  */
716   if (cost_a != cost_b)
717     {
718       if (cost_a == MAX_COST)
719 	return 1;
720       if (cost_b == MAX_COST)
721 	return -1;
722     }
723 
724   /* Avoid extending lifetimes of hardregs.  */
725   if (regcost_a != regcost_b)
726     {
727       if (regcost_a == MAX_COST)
728 	return 1;
729       if (regcost_b == MAX_COST)
730 	return -1;
731     }
732 
733   /* Normal operation costs take precedence.  */
734   if (cost_a != cost_b)
735     return cost_a - cost_b;
736   /* Only if these are identical consider effects on register pressure.  */
737   if (regcost_a != regcost_b)
738     return regcost_a - regcost_b;
739   return 0;
740 }
741 
742 /* Internal function, to compute cost when X is not a register; called
743    from COST macro to keep it simple.  */
744 
745 static int
746 notreg_cost (rtx x, enum rtx_code outer, int opno)
747 {
748   return ((GET_CODE (x) == SUBREG
749 	   && REG_P (SUBREG_REG (x))
750 	   && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
751 	   && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
752 	   && (GET_MODE_SIZE (GET_MODE (x))
753 	       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
754 	   && subreg_lowpart_p (x)
755 	   && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (x),
756 					     GET_MODE (SUBREG_REG (x))))
757 	  ? 0
758 	  : rtx_cost (x, outer, opno, optimize_this_for_speed_p) * 2);
759 }
760 
761 
762 /* Initialize CSE_REG_INFO_TABLE.  */
763 
764 static void
765 init_cse_reg_info (unsigned int nregs)
766 {
767   /* Do we need to grow the table?  */
768   if (nregs > cse_reg_info_table_size)
769     {
770       unsigned int new_size;
771 
772       if (cse_reg_info_table_size < 2048)
773 	{
774 	  /* Compute a new size that is a power of 2 and no smaller
775 	     than the large of NREGS and 64.  */
776 	  new_size = (cse_reg_info_table_size
777 		      ? cse_reg_info_table_size : 64);
778 
779 	  while (new_size < nregs)
780 	    new_size *= 2;
781 	}
782       else
783 	{
784 	  /* If we need a big table, allocate just enough to hold
785 	     NREGS registers.  */
786 	  new_size = nregs;
787 	}
788 
789       /* Reallocate the table with NEW_SIZE entries.  */
790       free (cse_reg_info_table);
791       cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
792       cse_reg_info_table_size = new_size;
793       cse_reg_info_table_first_uninitialized = 0;
794     }
795 
796   /* Do we have all of the first NREGS entries initialized?  */
797   if (cse_reg_info_table_first_uninitialized < nregs)
798     {
799       unsigned int old_timestamp = cse_reg_info_timestamp - 1;
800       unsigned int i;
801 
802       /* Put the old timestamp on newly allocated entries so that they
803 	 will all be considered out of date.  We do not touch those
804 	 entries beyond the first NREGS entries to be nice to the
805 	 virtual memory.  */
806       for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
807 	cse_reg_info_table[i].timestamp = old_timestamp;
808 
809       cse_reg_info_table_first_uninitialized = nregs;
810     }
811 }
812 
813 /* Given REGNO, initialize the cse_reg_info entry for REGNO.  */
814 
815 static void
816 get_cse_reg_info_1 (unsigned int regno)
817 {
818   /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
819      entry will be considered to have been initialized.  */
820   cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
821 
822   /* Initialize the rest of the entry.  */
823   cse_reg_info_table[regno].reg_tick = 1;
824   cse_reg_info_table[regno].reg_in_table = -1;
825   cse_reg_info_table[regno].subreg_ticked = -1;
826   cse_reg_info_table[regno].reg_qty = -regno - 1;
827 }
828 
829 /* Find a cse_reg_info entry for REGNO.  */
830 
831 static inline struct cse_reg_info *
832 get_cse_reg_info (unsigned int regno)
833 {
834   struct cse_reg_info *p = &cse_reg_info_table[regno];
835 
836   /* If this entry has not been initialized, go ahead and initialize
837      it.  */
838   if (p->timestamp != cse_reg_info_timestamp)
839     get_cse_reg_info_1 (regno);
840 
841   return p;
842 }
843 
844 /* Clear the hash table and initialize each register with its own quantity,
845    for a new basic block.  */
846 
847 static void
848 new_basic_block (void)
849 {
850   int i;
851 
852   next_qty = 0;
853 
854   /* Invalidate cse_reg_info_table.  */
855   cse_reg_info_timestamp++;
856 
857   /* Clear out hash table state for this pass.  */
858   CLEAR_HARD_REG_SET (hard_regs_in_table);
859 
860   /* The per-quantity values used to be initialized here, but it is
861      much faster to initialize each as it is made in `make_new_qty'.  */
862 
863   for (i = 0; i < HASH_SIZE; i++)
864     {
865       struct table_elt *first;
866 
867       first = table[i];
868       if (first != NULL)
869 	{
870 	  struct table_elt *last = first;
871 
872 	  table[i] = NULL;
873 
874 	  while (last->next_same_hash != NULL)
875 	    last = last->next_same_hash;
876 
877 	  /* Now relink this hash entire chain into
878 	     the free element list.  */
879 
880 	  last->next_same_hash = free_element_chain;
881 	  free_element_chain = first;
882 	}
883     }
884 
885 #ifdef HAVE_cc0
886   prev_insn_cc0 = 0;
887 #endif
888 }
889 
890 /* Say that register REG contains a quantity in mode MODE not in any
891    register before and initialize that quantity.  */
892 
893 static void
894 make_new_qty (unsigned int reg, enum machine_mode mode)
895 {
896   int q;
897   struct qty_table_elem *ent;
898   struct reg_eqv_elem *eqv;
899 
900   gcc_assert (next_qty < max_qty);
901 
902   q = REG_QTY (reg) = next_qty++;
903   ent = &qty_table[q];
904   ent->first_reg = reg;
905   ent->last_reg = reg;
906   ent->mode = mode;
907   ent->const_rtx = ent->const_insn = NULL_RTX;
908   ent->comparison_code = UNKNOWN;
909 
910   eqv = &reg_eqv_table[reg];
911   eqv->next = eqv->prev = -1;
912 }
913 
914 /* Make reg NEW equivalent to reg OLD.
915    OLD is not changing; NEW is.  */
916 
917 static void
918 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
919 {
920   unsigned int lastr, firstr;
921   int q = REG_QTY (old_reg);
922   struct qty_table_elem *ent;
923 
924   ent = &qty_table[q];
925 
926   /* Nothing should become eqv until it has a "non-invalid" qty number.  */
927   gcc_assert (REGNO_QTY_VALID_P (old_reg));
928 
929   REG_QTY (new_reg) = q;
930   firstr = ent->first_reg;
931   lastr = ent->last_reg;
932 
933   /* Prefer fixed hard registers to anything.  Prefer pseudo regs to other
934      hard regs.  Among pseudos, if NEW will live longer than any other reg
935      of the same qty, and that is beyond the current basic block,
936      make it the new canonical replacement for this qty.  */
937   if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
938       /* Certain fixed registers might be of the class NO_REGS.  This means
939 	 that not only can they not be allocated by the compiler, but
940 	 they cannot be used in substitutions or canonicalizations
941 	 either.  */
942       && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
943       && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
944 	  || (new_reg >= FIRST_PSEUDO_REGISTER
945 	      && (firstr < FIRST_PSEUDO_REGISTER
946 		  || (bitmap_bit_p (cse_ebb_live_out, new_reg)
947 		      && !bitmap_bit_p (cse_ebb_live_out, firstr))
948 		  || (bitmap_bit_p (cse_ebb_live_in, new_reg)
949 		      && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
950     {
951       reg_eqv_table[firstr].prev = new_reg;
952       reg_eqv_table[new_reg].next = firstr;
953       reg_eqv_table[new_reg].prev = -1;
954       ent->first_reg = new_reg;
955     }
956   else
957     {
958       /* If NEW is a hard reg (known to be non-fixed), insert at end.
959 	 Otherwise, insert before any non-fixed hard regs that are at the
960 	 end.  Registers of class NO_REGS cannot be used as an
961 	 equivalent for anything.  */
962       while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
963 	     && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
964 	     && new_reg >= FIRST_PSEUDO_REGISTER)
965 	lastr = reg_eqv_table[lastr].prev;
966       reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
967       if (reg_eqv_table[lastr].next >= 0)
968 	reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
969       else
970 	qty_table[q].last_reg = new_reg;
971       reg_eqv_table[lastr].next = new_reg;
972       reg_eqv_table[new_reg].prev = lastr;
973     }
974 }
975 
976 /* Remove REG from its equivalence class.  */
977 
978 static void
979 delete_reg_equiv (unsigned int reg)
980 {
981   struct qty_table_elem *ent;
982   int q = REG_QTY (reg);
983   int p, n;
984 
985   /* If invalid, do nothing.  */
986   if (! REGNO_QTY_VALID_P (reg))
987     return;
988 
989   ent = &qty_table[q];
990 
991   p = reg_eqv_table[reg].prev;
992   n = reg_eqv_table[reg].next;
993 
994   if (n != -1)
995     reg_eqv_table[n].prev = p;
996   else
997     ent->last_reg = p;
998   if (p != -1)
999     reg_eqv_table[p].next = n;
1000   else
1001     ent->first_reg = n;
1002 
1003   REG_QTY (reg) = -reg - 1;
1004 }
1005 
1006 /* Remove any invalid expressions from the hash table
1007    that refer to any of the registers contained in expression X.
1008 
1009    Make sure that newly inserted references to those registers
1010    as subexpressions will be considered valid.
1011 
1012    mention_regs is not called when a register itself
1013    is being stored in the table.
1014 
1015    Return 1 if we have done something that may have changed the hash code
1016    of X.  */
1017 
1018 static int
1019 mention_regs (rtx x)
1020 {
1021   enum rtx_code code;
1022   int i, j;
1023   const char *fmt;
1024   int changed = 0;
1025 
1026   if (x == 0)
1027     return 0;
1028 
1029   code = GET_CODE (x);
1030   if (code == REG)
1031     {
1032       unsigned int regno = REGNO (x);
1033       unsigned int endregno = END_REGNO (x);
1034       unsigned int i;
1035 
1036       for (i = regno; i < endregno; i++)
1037 	{
1038 	  if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1039 	    remove_invalid_refs (i);
1040 
1041 	  REG_IN_TABLE (i) = REG_TICK (i);
1042 	  SUBREG_TICKED (i) = -1;
1043 	}
1044 
1045       return 0;
1046     }
1047 
1048   /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1049      pseudo if they don't use overlapping words.  We handle only pseudos
1050      here for simplicity.  */
1051   if (code == SUBREG && REG_P (SUBREG_REG (x))
1052       && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1053     {
1054       unsigned int i = REGNO (SUBREG_REG (x));
1055 
1056       if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1057 	{
1058 	  /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1059 	     the last store to this register really stored into this
1060 	     subreg, then remove the memory of this subreg.
1061 	     Otherwise, remove any memory of the entire register and
1062 	     all its subregs from the table.  */
1063 	  if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1064 	      || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1065 	    remove_invalid_refs (i);
1066 	  else
1067 	    remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1068 	}
1069 
1070       REG_IN_TABLE (i) = REG_TICK (i);
1071       SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1072       return 0;
1073     }
1074 
1075   /* If X is a comparison or a COMPARE and either operand is a register
1076      that does not have a quantity, give it one.  This is so that a later
1077      call to record_jump_equiv won't cause X to be assigned a different
1078      hash code and not found in the table after that call.
1079 
1080      It is not necessary to do this here, since rehash_using_reg can
1081      fix up the table later, but doing this here eliminates the need to
1082      call that expensive function in the most common case where the only
1083      use of the register is in the comparison.  */
1084 
1085   if (code == COMPARE || COMPARISON_P (x))
1086     {
1087       if (REG_P (XEXP (x, 0))
1088 	  && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1089 	if (insert_regs (XEXP (x, 0), NULL, 0))
1090 	  {
1091 	    rehash_using_reg (XEXP (x, 0));
1092 	    changed = 1;
1093 	  }
1094 
1095       if (REG_P (XEXP (x, 1))
1096 	  && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1097 	if (insert_regs (XEXP (x, 1), NULL, 0))
1098 	  {
1099 	    rehash_using_reg (XEXP (x, 1));
1100 	    changed = 1;
1101 	  }
1102     }
1103 
1104   fmt = GET_RTX_FORMAT (code);
1105   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1106     if (fmt[i] == 'e')
1107       changed |= mention_regs (XEXP (x, i));
1108     else if (fmt[i] == 'E')
1109       for (j = 0; j < XVECLEN (x, i); j++)
1110 	changed |= mention_regs (XVECEXP (x, i, j));
1111 
1112   return changed;
1113 }
1114 
1115 /* Update the register quantities for inserting X into the hash table
1116    with a value equivalent to CLASSP.
1117    (If the class does not contain a REG, it is irrelevant.)
1118    If MODIFIED is nonzero, X is a destination; it is being modified.
1119    Note that delete_reg_equiv should be called on a register
1120    before insert_regs is done on that register with MODIFIED != 0.
1121 
1122    Nonzero value means that elements of reg_qty have changed
1123    so X's hash code may be different.  */
1124 
1125 static int
1126 insert_regs (rtx x, struct table_elt *classp, int modified)
1127 {
1128   if (REG_P (x))
1129     {
1130       unsigned int regno = REGNO (x);
1131       int qty_valid;
1132 
1133       /* If REGNO is in the equivalence table already but is of the
1134 	 wrong mode for that equivalence, don't do anything here.  */
1135 
1136       qty_valid = REGNO_QTY_VALID_P (regno);
1137       if (qty_valid)
1138 	{
1139 	  struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1140 
1141 	  if (ent->mode != GET_MODE (x))
1142 	    return 0;
1143 	}
1144 
1145       if (modified || ! qty_valid)
1146 	{
1147 	  if (classp)
1148 	    for (classp = classp->first_same_value;
1149 		 classp != 0;
1150 		 classp = classp->next_same_value)
1151 	      if (REG_P (classp->exp)
1152 		  && GET_MODE (classp->exp) == GET_MODE (x))
1153 		{
1154 		  unsigned c_regno = REGNO (classp->exp);
1155 
1156 		  gcc_assert (REGNO_QTY_VALID_P (c_regno));
1157 
1158 		  /* Suppose that 5 is hard reg and 100 and 101 are
1159 		     pseudos.  Consider
1160 
1161 		     (set (reg:si 100) (reg:si 5))
1162 		     (set (reg:si 5) (reg:si 100))
1163 		     (set (reg:di 101) (reg:di 5))
1164 
1165 		     We would now set REG_QTY (101) = REG_QTY (5), but the
1166 		     entry for 5 is in SImode.  When we use this later in
1167 		     copy propagation, we get the register in wrong mode.  */
1168 		  if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1169 		    continue;
1170 
1171 		  make_regs_eqv (regno, c_regno);
1172 		  return 1;
1173 		}
1174 
1175 	  /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1176 	     than REG_IN_TABLE to find out if there was only a single preceding
1177 	     invalidation - for the SUBREG - or another one, which would be
1178 	     for the full register.  However, if we find here that REG_TICK
1179 	     indicates that the register is invalid, it means that it has
1180 	     been invalidated in a separate operation.  The SUBREG might be used
1181 	     now (then this is a recursive call), or we might use the full REG
1182 	     now and a SUBREG of it later.  So bump up REG_TICK so that
1183 	     mention_regs will do the right thing.  */
1184 	  if (! modified
1185 	      && REG_IN_TABLE (regno) >= 0
1186 	      && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1187 	    REG_TICK (regno)++;
1188 	  make_new_qty (regno, GET_MODE (x));
1189 	  return 1;
1190 	}
1191 
1192       return 0;
1193     }
1194 
1195   /* If X is a SUBREG, we will likely be inserting the inner register in the
1196      table.  If that register doesn't have an assigned quantity number at
1197      this point but does later, the insertion that we will be doing now will
1198      not be accessible because its hash code will have changed.  So assign
1199      a quantity number now.  */
1200 
1201   else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1202 	   && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1203     {
1204       insert_regs (SUBREG_REG (x), NULL, 0);
1205       mention_regs (x);
1206       return 1;
1207     }
1208   else
1209     return mention_regs (x);
1210 }
1211 
1212 
1213 /* Compute upper and lower anchors for CST.  Also compute the offset of CST
1214    from these anchors/bases such that *_BASE + *_OFFS = CST.  Return false iff
1215    CST is equal to an anchor.  */
1216 
1217 static bool
1218 compute_const_anchors (rtx cst,
1219 		       HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1220 		       HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1221 {
1222   HOST_WIDE_INT n = INTVAL (cst);
1223 
1224   *lower_base = n & ~(targetm.const_anchor - 1);
1225   if (*lower_base == n)
1226     return false;
1227 
1228   *upper_base =
1229     (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1230   *upper_offs = n - *upper_base;
1231   *lower_offs = n - *lower_base;
1232   return true;
1233 }
1234 
1235 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE.  */
1236 
1237 static void
1238 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1239 		     enum machine_mode mode)
1240 {
1241   struct table_elt *elt;
1242   unsigned hash;
1243   rtx anchor_exp;
1244   rtx exp;
1245 
1246   anchor_exp = GEN_INT (anchor);
1247   hash = HASH (anchor_exp, mode);
1248   elt = lookup (anchor_exp, hash, mode);
1249   if (!elt)
1250     elt = insert (anchor_exp, NULL, hash, mode);
1251 
1252   exp = plus_constant (mode, reg, offs);
1253   /* REG has just been inserted and the hash codes recomputed.  */
1254   mention_regs (exp);
1255   hash = HASH (exp, mode);
1256 
1257   /* Use the cost of the register rather than the whole expression.  When
1258      looking up constant anchors we will further offset the corresponding
1259      expression therefore it does not make sense to prefer REGs over
1260      reg-immediate additions.  Prefer instead the oldest expression.  Also
1261      don't prefer pseudos over hard regs so that we derive constants in
1262      argument registers from other argument registers rather than from the
1263      original pseudo that was used to synthesize the constant.  */
1264   insert_with_costs (exp, elt, hash, mode, COST (reg), 1);
1265 }
1266 
1267 /* The constant CST is equivalent to the register REG.  Create
1268    equivalences between the two anchors of CST and the corresponding
1269    register-offset expressions using REG.  */
1270 
1271 static void
1272 insert_const_anchors (rtx reg, rtx cst, enum machine_mode mode)
1273 {
1274   HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1275 
1276   if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1277 			      &upper_base, &upper_offs))
1278       return;
1279 
1280   /* Ignore anchors of value 0.  Constants accessible from zero are
1281      simple.  */
1282   if (lower_base != 0)
1283     insert_const_anchor (lower_base, reg, -lower_offs, mode);
1284 
1285   if (upper_base != 0)
1286     insert_const_anchor (upper_base, reg, -upper_offs, mode);
1287 }
1288 
1289 /* We need to express ANCHOR_ELT->exp + OFFS.  Walk the equivalence list of
1290    ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1291    valid expression.  Return the cheapest and oldest of such expressions.  In
1292    *OLD, return how old the resulting expression is compared to the other
1293    equivalent expressions.  */
1294 
1295 static rtx
1296 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1297 			   unsigned *old)
1298 {
1299   struct table_elt *elt;
1300   unsigned idx;
1301   struct table_elt *match_elt;
1302   rtx match;
1303 
1304   /* Find the cheapest and *oldest* expression to maximize the chance of
1305      reusing the same pseudo.  */
1306 
1307   match_elt = NULL;
1308   match = NULL_RTX;
1309   for (elt = anchor_elt->first_same_value, idx = 0;
1310        elt;
1311        elt = elt->next_same_value, idx++)
1312     {
1313       if (match_elt && CHEAPER (match_elt, elt))
1314 	return match;
1315 
1316       if (REG_P (elt->exp)
1317 	  || (GET_CODE (elt->exp) == PLUS
1318 	      && REG_P (XEXP (elt->exp, 0))
1319 	      && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1320 	{
1321 	  rtx x;
1322 
1323 	  /* Ignore expressions that are no longer valid.  */
1324 	  if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1325 	    continue;
1326 
1327 	  x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
1328 	  if (REG_P (x)
1329 	      || (GET_CODE (x) == PLUS
1330 		  && IN_RANGE (INTVAL (XEXP (x, 1)),
1331 			       -targetm.const_anchor,
1332 			       targetm.const_anchor - 1)))
1333 	    {
1334 	      match = x;
1335 	      match_elt = elt;
1336 	      *old = idx;
1337 	    }
1338 	}
1339     }
1340 
1341   return match;
1342 }
1343 
1344 /* Try to express the constant SRC_CONST using a register+offset expression
1345    derived from a constant anchor.  Return it if successful or NULL_RTX,
1346    otherwise.  */
1347 
1348 static rtx
1349 try_const_anchors (rtx src_const, enum machine_mode mode)
1350 {
1351   struct table_elt *lower_elt, *upper_elt;
1352   HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1353   rtx lower_anchor_rtx, upper_anchor_rtx;
1354   rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1355   unsigned lower_old, upper_old;
1356 
1357   if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1358 			      &upper_base, &upper_offs))
1359     return NULL_RTX;
1360 
1361   lower_anchor_rtx = GEN_INT (lower_base);
1362   upper_anchor_rtx = GEN_INT (upper_base);
1363   lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1364   upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1365 
1366   if (lower_elt)
1367     lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1368   if (upper_elt)
1369     upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1370 
1371   if (!lower_exp)
1372     return upper_exp;
1373   if (!upper_exp)
1374     return lower_exp;
1375 
1376   /* Return the older expression.  */
1377   return (upper_old > lower_old ? upper_exp : lower_exp);
1378 }
1379 
1380 /* Look in or update the hash table.  */
1381 
1382 /* Remove table element ELT from use in the table.
1383    HASH is its hash code, made using the HASH macro.
1384    It's an argument because often that is known in advance
1385    and we save much time not recomputing it.  */
1386 
1387 static void
1388 remove_from_table (struct table_elt *elt, unsigned int hash)
1389 {
1390   if (elt == 0)
1391     return;
1392 
1393   /* Mark this element as removed.  See cse_insn.  */
1394   elt->first_same_value = 0;
1395 
1396   /* Remove the table element from its equivalence class.  */
1397 
1398   {
1399     struct table_elt *prev = elt->prev_same_value;
1400     struct table_elt *next = elt->next_same_value;
1401 
1402     if (next)
1403       next->prev_same_value = prev;
1404 
1405     if (prev)
1406       prev->next_same_value = next;
1407     else
1408       {
1409 	struct table_elt *newfirst = next;
1410 	while (next)
1411 	  {
1412 	    next->first_same_value = newfirst;
1413 	    next = next->next_same_value;
1414 	  }
1415       }
1416   }
1417 
1418   /* Remove the table element from its hash bucket.  */
1419 
1420   {
1421     struct table_elt *prev = elt->prev_same_hash;
1422     struct table_elt *next = elt->next_same_hash;
1423 
1424     if (next)
1425       next->prev_same_hash = prev;
1426 
1427     if (prev)
1428       prev->next_same_hash = next;
1429     else if (table[hash] == elt)
1430       table[hash] = next;
1431     else
1432       {
1433 	/* This entry is not in the proper hash bucket.  This can happen
1434 	   when two classes were merged by `merge_equiv_classes'.  Search
1435 	   for the hash bucket that it heads.  This happens only very
1436 	   rarely, so the cost is acceptable.  */
1437 	for (hash = 0; hash < HASH_SIZE; hash++)
1438 	  if (table[hash] == elt)
1439 	    table[hash] = next;
1440       }
1441   }
1442 
1443   /* Remove the table element from its related-value circular chain.  */
1444 
1445   if (elt->related_value != 0 && elt->related_value != elt)
1446     {
1447       struct table_elt *p = elt->related_value;
1448 
1449       while (p->related_value != elt)
1450 	p = p->related_value;
1451       p->related_value = elt->related_value;
1452       if (p->related_value == p)
1453 	p->related_value = 0;
1454     }
1455 
1456   /* Now add it to the free element chain.  */
1457   elt->next_same_hash = free_element_chain;
1458   free_element_chain = elt;
1459 }
1460 
1461 /* Same as above, but X is a pseudo-register.  */
1462 
1463 static void
1464 remove_pseudo_from_table (rtx x, unsigned int hash)
1465 {
1466   struct table_elt *elt;
1467 
1468   /* Because a pseudo-register can be referenced in more than one
1469      mode, we might have to remove more than one table entry.  */
1470   while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1471     remove_from_table (elt, hash);
1472 }
1473 
1474 /* Look up X in the hash table and return its table element,
1475    or 0 if X is not in the table.
1476 
1477    MODE is the machine-mode of X, or if X is an integer constant
1478    with VOIDmode then MODE is the mode with which X will be used.
1479 
1480    Here we are satisfied to find an expression whose tree structure
1481    looks like X.  */
1482 
1483 static struct table_elt *
1484 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1485 {
1486   struct table_elt *p;
1487 
1488   for (p = table[hash]; p; p = p->next_same_hash)
1489     if (mode == p->mode && ((x == p->exp && REG_P (x))
1490 			    || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1491       return p;
1492 
1493   return 0;
1494 }
1495 
1496 /* Like `lookup' but don't care whether the table element uses invalid regs.
1497    Also ignore discrepancies in the machine mode of a register.  */
1498 
1499 static struct table_elt *
1500 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1501 {
1502   struct table_elt *p;
1503 
1504   if (REG_P (x))
1505     {
1506       unsigned int regno = REGNO (x);
1507 
1508       /* Don't check the machine mode when comparing registers;
1509 	 invalidating (REG:SI 0) also invalidates (REG:DF 0).  */
1510       for (p = table[hash]; p; p = p->next_same_hash)
1511 	if (REG_P (p->exp)
1512 	    && REGNO (p->exp) == regno)
1513 	  return p;
1514     }
1515   else
1516     {
1517       for (p = table[hash]; p; p = p->next_same_hash)
1518 	if (mode == p->mode
1519 	    && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1520 	  return p;
1521     }
1522 
1523   return 0;
1524 }
1525 
1526 /* Look for an expression equivalent to X and with code CODE.
1527    If one is found, return that expression.  */
1528 
1529 static rtx
1530 lookup_as_function (rtx x, enum rtx_code code)
1531 {
1532   struct table_elt *p
1533     = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1534 
1535   if (p == 0)
1536     return 0;
1537 
1538   for (p = p->first_same_value; p; p = p->next_same_value)
1539     if (GET_CODE (p->exp) == code
1540 	/* Make sure this is a valid entry in the table.  */
1541 	&& exp_equiv_p (p->exp, p->exp, 1, false))
1542       return p->exp;
1543 
1544   return 0;
1545 }
1546 
1547 /* Insert X in the hash table, assuming HASH is its hash code and
1548    CLASSP is an element of the class it should go in (or 0 if a new
1549    class should be made).  COST is the code of X and reg_cost is the
1550    cost of registers in X.  It is inserted at the proper position to
1551    keep the class in the order cheapest first.
1552 
1553    MODE is the machine-mode of X, or if X is an integer constant
1554    with VOIDmode then MODE is the mode with which X will be used.
1555 
1556    For elements of equal cheapness, the most recent one
1557    goes in front, except that the first element in the list
1558    remains first unless a cheaper element is added.  The order of
1559    pseudo-registers does not matter, as canon_reg will be called to
1560    find the cheapest when a register is retrieved from the table.
1561 
1562    The in_memory field in the hash table element is set to 0.
1563    The caller must set it nonzero if appropriate.
1564 
1565    You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1566    and if insert_regs returns a nonzero value
1567    you must then recompute its hash code before calling here.
1568 
1569    If necessary, update table showing constant values of quantities.  */
1570 
1571 static struct table_elt *
1572 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1573 		   enum machine_mode mode, int cost, int reg_cost)
1574 {
1575   struct table_elt *elt;
1576 
1577   /* If X is a register and we haven't made a quantity for it,
1578      something is wrong.  */
1579   gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1580 
1581   /* If X is a hard register, show it is being put in the table.  */
1582   if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1583     add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1584 
1585   /* Put an element for X into the right hash bucket.  */
1586 
1587   elt = free_element_chain;
1588   if (elt)
1589     free_element_chain = elt->next_same_hash;
1590   else
1591     elt = XNEW (struct table_elt);
1592 
1593   elt->exp = x;
1594   elt->canon_exp = NULL_RTX;
1595   elt->cost = cost;
1596   elt->regcost = reg_cost;
1597   elt->next_same_value = 0;
1598   elt->prev_same_value = 0;
1599   elt->next_same_hash = table[hash];
1600   elt->prev_same_hash = 0;
1601   elt->related_value = 0;
1602   elt->in_memory = 0;
1603   elt->mode = mode;
1604   elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1605 
1606   if (table[hash])
1607     table[hash]->prev_same_hash = elt;
1608   table[hash] = elt;
1609 
1610   /* Put it into the proper value-class.  */
1611   if (classp)
1612     {
1613       classp = classp->first_same_value;
1614       if (CHEAPER (elt, classp))
1615 	/* Insert at the head of the class.  */
1616 	{
1617 	  struct table_elt *p;
1618 	  elt->next_same_value = classp;
1619 	  classp->prev_same_value = elt;
1620 	  elt->first_same_value = elt;
1621 
1622 	  for (p = classp; p; p = p->next_same_value)
1623 	    p->first_same_value = elt;
1624 	}
1625       else
1626 	{
1627 	  /* Insert not at head of the class.  */
1628 	  /* Put it after the last element cheaper than X.  */
1629 	  struct table_elt *p, *next;
1630 
1631 	  for (p = classp;
1632 	       (next = p->next_same_value) && CHEAPER (next, elt);
1633 	       p = next)
1634 	    ;
1635 
1636 	  /* Put it after P and before NEXT.  */
1637 	  elt->next_same_value = next;
1638 	  if (next)
1639 	    next->prev_same_value = elt;
1640 
1641 	  elt->prev_same_value = p;
1642 	  p->next_same_value = elt;
1643 	  elt->first_same_value = classp;
1644 	}
1645     }
1646   else
1647     elt->first_same_value = elt;
1648 
1649   /* If this is a constant being set equivalent to a register or a register
1650      being set equivalent to a constant, note the constant equivalence.
1651 
1652      If this is a constant, it cannot be equivalent to a different constant,
1653      and a constant is the only thing that can be cheaper than a register.  So
1654      we know the register is the head of the class (before the constant was
1655      inserted).
1656 
1657      If this is a register that is not already known equivalent to a
1658      constant, we must check the entire class.
1659 
1660      If this is a register that is already known equivalent to an insn,
1661      update the qtys `const_insn' to show that `this_insn' is the latest
1662      insn making that quantity equivalent to the constant.  */
1663 
1664   if (elt->is_const && classp && REG_P (classp->exp)
1665       && !REG_P (x))
1666     {
1667       int exp_q = REG_QTY (REGNO (classp->exp));
1668       struct qty_table_elem *exp_ent = &qty_table[exp_q];
1669 
1670       exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1671       exp_ent->const_insn = this_insn;
1672     }
1673 
1674   else if (REG_P (x)
1675 	   && classp
1676 	   && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1677 	   && ! elt->is_const)
1678     {
1679       struct table_elt *p;
1680 
1681       for (p = classp; p != 0; p = p->next_same_value)
1682 	{
1683 	  if (p->is_const && !REG_P (p->exp))
1684 	    {
1685 	      int x_q = REG_QTY (REGNO (x));
1686 	      struct qty_table_elem *x_ent = &qty_table[x_q];
1687 
1688 	      x_ent->const_rtx
1689 		= gen_lowpart (GET_MODE (x), p->exp);
1690 	      x_ent->const_insn = this_insn;
1691 	      break;
1692 	    }
1693 	}
1694     }
1695 
1696   else if (REG_P (x)
1697 	   && qty_table[REG_QTY (REGNO (x))].const_rtx
1698 	   && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1699     qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1700 
1701   /* If this is a constant with symbolic value,
1702      and it has a term with an explicit integer value,
1703      link it up with related expressions.  */
1704   if (GET_CODE (x) == CONST)
1705     {
1706       rtx subexp = get_related_value (x);
1707       unsigned subhash;
1708       struct table_elt *subelt, *subelt_prev;
1709 
1710       if (subexp != 0)
1711 	{
1712 	  /* Get the integer-free subexpression in the hash table.  */
1713 	  subhash = SAFE_HASH (subexp, mode);
1714 	  subelt = lookup (subexp, subhash, mode);
1715 	  if (subelt == 0)
1716 	    subelt = insert (subexp, NULL, subhash, mode);
1717 	  /* Initialize SUBELT's circular chain if it has none.  */
1718 	  if (subelt->related_value == 0)
1719 	    subelt->related_value = subelt;
1720 	  /* Find the element in the circular chain that precedes SUBELT.  */
1721 	  subelt_prev = subelt;
1722 	  while (subelt_prev->related_value != subelt)
1723 	    subelt_prev = subelt_prev->related_value;
1724 	  /* Put new ELT into SUBELT's circular chain just before SUBELT.
1725 	     This way the element that follows SUBELT is the oldest one.  */
1726 	  elt->related_value = subelt_prev->related_value;
1727 	  subelt_prev->related_value = elt;
1728 	}
1729     }
1730 
1731   return elt;
1732 }
1733 
1734 /* Wrap insert_with_costs by passing the default costs.  */
1735 
1736 static struct table_elt *
1737 insert (rtx x, struct table_elt *classp, unsigned int hash,
1738 	enum machine_mode mode)
1739 {
1740   return
1741     insert_with_costs (x, classp, hash, mode, COST (x), approx_reg_cost (x));
1742 }
1743 
1744 
1745 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1746    CLASS2 into CLASS1.  This is done when we have reached an insn which makes
1747    the two classes equivalent.
1748 
1749    CLASS1 will be the surviving class; CLASS2 should not be used after this
1750    call.
1751 
1752    Any invalid entries in CLASS2 will not be copied.  */
1753 
1754 static void
1755 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1756 {
1757   struct table_elt *elt, *next, *new_elt;
1758 
1759   /* Ensure we start with the head of the classes.  */
1760   class1 = class1->first_same_value;
1761   class2 = class2->first_same_value;
1762 
1763   /* If they were already equal, forget it.  */
1764   if (class1 == class2)
1765     return;
1766 
1767   for (elt = class2; elt; elt = next)
1768     {
1769       unsigned int hash;
1770       rtx exp = elt->exp;
1771       enum machine_mode mode = elt->mode;
1772 
1773       next = elt->next_same_value;
1774 
1775       /* Remove old entry, make a new one in CLASS1's class.
1776 	 Don't do this for invalid entries as we cannot find their
1777 	 hash code (it also isn't necessary).  */
1778       if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1779 	{
1780 	  bool need_rehash = false;
1781 
1782 	  hash_arg_in_memory = 0;
1783 	  hash = HASH (exp, mode);
1784 
1785 	  if (REG_P (exp))
1786 	    {
1787 	      need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1788 	      delete_reg_equiv (REGNO (exp));
1789 	    }
1790 
1791 	  if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1792 	    remove_pseudo_from_table (exp, hash);
1793 	  else
1794 	    remove_from_table (elt, hash);
1795 
1796 	  if (insert_regs (exp, class1, 0) || need_rehash)
1797 	    {
1798 	      rehash_using_reg (exp);
1799 	      hash = HASH (exp, mode);
1800 	    }
1801 	  new_elt = insert (exp, class1, hash, mode);
1802 	  new_elt->in_memory = hash_arg_in_memory;
1803 	}
1804     }
1805 }
1806 
1807 /* Flush the entire hash table.  */
1808 
1809 static void
1810 flush_hash_table (void)
1811 {
1812   int i;
1813   struct table_elt *p;
1814 
1815   for (i = 0; i < HASH_SIZE; i++)
1816     for (p = table[i]; p; p = table[i])
1817       {
1818 	/* Note that invalidate can remove elements
1819 	   after P in the current hash chain.  */
1820 	if (REG_P (p->exp))
1821 	  invalidate (p->exp, VOIDmode);
1822 	else
1823 	  remove_from_table (p, i);
1824       }
1825 }
1826 
1827 /* Function called for each rtx to check whether an anti dependence exist.  */
1828 struct check_dependence_data
1829 {
1830   enum machine_mode mode;
1831   rtx exp;
1832   rtx addr;
1833 };
1834 
1835 static int
1836 check_dependence (rtx *x, void *data)
1837 {
1838   struct check_dependence_data *d = (struct check_dependence_data *) data;
1839   if (*x && MEM_P (*x))
1840     return canon_anti_dependence (*x, true, d->exp, d->mode, d->addr);
1841   else
1842     return 0;
1843 }
1844 
1845 /* Remove from the hash table, or mark as invalid, all expressions whose
1846    values could be altered by storing in X.  X is a register, a subreg, or
1847    a memory reference with nonvarying address (because, when a memory
1848    reference with a varying address is stored in, all memory references are
1849    removed by invalidate_memory so specific invalidation is superfluous).
1850    FULL_MODE, if not VOIDmode, indicates that this much should be
1851    invalidated instead of just the amount indicated by the mode of X.  This
1852    is only used for bitfield stores into memory.
1853 
1854    A nonvarying address may be just a register or just a symbol reference,
1855    or it may be either of those plus a numeric offset.  */
1856 
1857 static void
1858 invalidate (rtx x, enum machine_mode full_mode)
1859 {
1860   int i;
1861   struct table_elt *p;
1862   rtx addr;
1863 
1864   switch (GET_CODE (x))
1865     {
1866     case REG:
1867       {
1868 	/* If X is a register, dependencies on its contents are recorded
1869 	   through the qty number mechanism.  Just change the qty number of
1870 	   the register, mark it as invalid for expressions that refer to it,
1871 	   and remove it itself.  */
1872 	unsigned int regno = REGNO (x);
1873 	unsigned int hash = HASH (x, GET_MODE (x));
1874 
1875 	/* Remove REGNO from any quantity list it might be on and indicate
1876 	   that its value might have changed.  If it is a pseudo, remove its
1877 	   entry from the hash table.
1878 
1879 	   For a hard register, we do the first two actions above for any
1880 	   additional hard registers corresponding to X.  Then, if any of these
1881 	   registers are in the table, we must remove any REG entries that
1882 	   overlap these registers.  */
1883 
1884 	delete_reg_equiv (regno);
1885 	REG_TICK (regno)++;
1886 	SUBREG_TICKED (regno) = -1;
1887 
1888 	if (regno >= FIRST_PSEUDO_REGISTER)
1889 	  remove_pseudo_from_table (x, hash);
1890 	else
1891 	  {
1892 	    HOST_WIDE_INT in_table
1893 	      = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1894 	    unsigned int endregno = END_HARD_REGNO (x);
1895 	    unsigned int tregno, tendregno, rn;
1896 	    struct table_elt *p, *next;
1897 
1898 	    CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1899 
1900 	    for (rn = regno + 1; rn < endregno; rn++)
1901 	      {
1902 		in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1903 		CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1904 		delete_reg_equiv (rn);
1905 		REG_TICK (rn)++;
1906 		SUBREG_TICKED (rn) = -1;
1907 	      }
1908 
1909 	    if (in_table)
1910 	      for (hash = 0; hash < HASH_SIZE; hash++)
1911 		for (p = table[hash]; p; p = next)
1912 		  {
1913 		    next = p->next_same_hash;
1914 
1915 		    if (!REG_P (p->exp)
1916 			|| REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1917 		      continue;
1918 
1919 		    tregno = REGNO (p->exp);
1920 		    tendregno = END_HARD_REGNO (p->exp);
1921 		    if (tendregno > regno && tregno < endregno)
1922 		      remove_from_table (p, hash);
1923 		  }
1924 	  }
1925       }
1926       return;
1927 
1928     case SUBREG:
1929       invalidate (SUBREG_REG (x), VOIDmode);
1930       return;
1931 
1932     case PARALLEL:
1933       for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1934 	invalidate (XVECEXP (x, 0, i), VOIDmode);
1935       return;
1936 
1937     case EXPR_LIST:
1938       /* This is part of a disjoint return value; extract the location in
1939 	 question ignoring the offset.  */
1940       invalidate (XEXP (x, 0), VOIDmode);
1941       return;
1942 
1943     case MEM:
1944       addr = canon_rtx (get_addr (XEXP (x, 0)));
1945       /* Calculate the canonical version of X here so that
1946 	 true_dependence doesn't generate new RTL for X on each call.  */
1947       x = canon_rtx (x);
1948 
1949       /* Remove all hash table elements that refer to overlapping pieces of
1950 	 memory.  */
1951       if (full_mode == VOIDmode)
1952 	full_mode = GET_MODE (x);
1953 
1954       for (i = 0; i < HASH_SIZE; i++)
1955 	{
1956 	  struct table_elt *next;
1957 
1958 	  for (p = table[i]; p; p = next)
1959 	    {
1960 	      next = p->next_same_hash;
1961 	      if (p->in_memory)
1962 		{
1963 		  struct check_dependence_data d;
1964 
1965 		  /* Just canonicalize the expression once;
1966 		     otherwise each time we call invalidate
1967 		     true_dependence will canonicalize the
1968 		     expression again.  */
1969 		  if (!p->canon_exp)
1970 		    p->canon_exp = canon_rtx (p->exp);
1971 		  d.exp = x;
1972 		  d.addr = addr;
1973 		  d.mode = full_mode;
1974 		  if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1975 		    remove_from_table (p, i);
1976 		}
1977 	    }
1978 	}
1979       return;
1980 
1981     default:
1982       gcc_unreachable ();
1983     }
1984 }
1985 
1986 /* Remove all expressions that refer to register REGNO,
1987    since they are already invalid, and we are about to
1988    mark that register valid again and don't want the old
1989    expressions to reappear as valid.  */
1990 
1991 static void
1992 remove_invalid_refs (unsigned int regno)
1993 {
1994   unsigned int i;
1995   struct table_elt *p, *next;
1996 
1997   for (i = 0; i < HASH_SIZE; i++)
1998     for (p = table[i]; p; p = next)
1999       {
2000 	next = p->next_same_hash;
2001 	if (!REG_P (p->exp)
2002 	    && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
2003 	  remove_from_table (p, i);
2004       }
2005 }
2006 
2007 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
2008    and mode MODE.  */
2009 static void
2010 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
2011 			    enum machine_mode mode)
2012 {
2013   unsigned int i;
2014   struct table_elt *p, *next;
2015   unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
2016 
2017   for (i = 0; i < HASH_SIZE; i++)
2018     for (p = table[i]; p; p = next)
2019       {
2020 	rtx exp = p->exp;
2021 	next = p->next_same_hash;
2022 
2023 	if (!REG_P (exp)
2024 	    && (GET_CODE (exp) != SUBREG
2025 		|| !REG_P (SUBREG_REG (exp))
2026 		|| REGNO (SUBREG_REG (exp)) != regno
2027 		|| (((SUBREG_BYTE (exp)
2028 		      + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
2029 		    && SUBREG_BYTE (exp) <= end))
2030 	    && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
2031 	  remove_from_table (p, i);
2032       }
2033 }
2034 
2035 /* Recompute the hash codes of any valid entries in the hash table that
2036    reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2037 
2038    This is called when we make a jump equivalence.  */
2039 
2040 static void
2041 rehash_using_reg (rtx x)
2042 {
2043   unsigned int i;
2044   struct table_elt *p, *next;
2045   unsigned hash;
2046 
2047   if (GET_CODE (x) == SUBREG)
2048     x = SUBREG_REG (x);
2049 
2050   /* If X is not a register or if the register is known not to be in any
2051      valid entries in the table, we have no work to do.  */
2052 
2053   if (!REG_P (x)
2054       || REG_IN_TABLE (REGNO (x)) < 0
2055       || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2056     return;
2057 
2058   /* Scan all hash chains looking for valid entries that mention X.
2059      If we find one and it is in the wrong hash chain, move it.  */
2060 
2061   for (i = 0; i < HASH_SIZE; i++)
2062     for (p = table[i]; p; p = next)
2063       {
2064 	next = p->next_same_hash;
2065 	if (reg_mentioned_p (x, p->exp)
2066 	    && exp_equiv_p (p->exp, p->exp, 1, false)
2067 	    && i != (hash = SAFE_HASH (p->exp, p->mode)))
2068 	  {
2069 	    if (p->next_same_hash)
2070 	      p->next_same_hash->prev_same_hash = p->prev_same_hash;
2071 
2072 	    if (p->prev_same_hash)
2073 	      p->prev_same_hash->next_same_hash = p->next_same_hash;
2074 	    else
2075 	      table[i] = p->next_same_hash;
2076 
2077 	    p->next_same_hash = table[hash];
2078 	    p->prev_same_hash = 0;
2079 	    if (table[hash])
2080 	      table[hash]->prev_same_hash = p;
2081 	    table[hash] = p;
2082 	  }
2083       }
2084 }
2085 
2086 /* Remove from the hash table any expression that is a call-clobbered
2087    register.  Also update their TICK values.  */
2088 
2089 static void
2090 invalidate_for_call (void)
2091 {
2092   unsigned int regno, endregno;
2093   unsigned int i;
2094   unsigned hash;
2095   struct table_elt *p, *next;
2096   int in_table = 0;
2097   hard_reg_set_iterator hrsi;
2098 
2099   /* Go through all the hard registers.  For each that is clobbered in
2100      a CALL_INSN, remove the register from quantity chains and update
2101      reg_tick if defined.  Also see if any of these registers is currently
2102      in the table.  */
2103   EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
2104     {
2105       delete_reg_equiv (regno);
2106       if (REG_TICK (regno) >= 0)
2107 	{
2108 	  REG_TICK (regno)++;
2109 	  SUBREG_TICKED (regno) = -1;
2110 	}
2111       in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2112     }
2113 
2114   /* In the case where we have no call-clobbered hard registers in the
2115      table, we are done.  Otherwise, scan the table and remove any
2116      entry that overlaps a call-clobbered register.  */
2117 
2118   if (in_table)
2119     for (hash = 0; hash < HASH_SIZE; hash++)
2120       for (p = table[hash]; p; p = next)
2121 	{
2122 	  next = p->next_same_hash;
2123 
2124 	  if (!REG_P (p->exp)
2125 	      || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2126 	    continue;
2127 
2128 	  regno = REGNO (p->exp);
2129 	  endregno = END_HARD_REGNO (p->exp);
2130 
2131 	  for (i = regno; i < endregno; i++)
2132 	    if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2133 	      {
2134 		remove_from_table (p, hash);
2135 		break;
2136 	      }
2137 	}
2138 }
2139 
2140 /* Given an expression X of type CONST,
2141    and ELT which is its table entry (or 0 if it
2142    is not in the hash table),
2143    return an alternate expression for X as a register plus integer.
2144    If none can be found, return 0.  */
2145 
2146 static rtx
2147 use_related_value (rtx x, struct table_elt *elt)
2148 {
2149   struct table_elt *relt = 0;
2150   struct table_elt *p, *q;
2151   HOST_WIDE_INT offset;
2152 
2153   /* First, is there anything related known?
2154      If we have a table element, we can tell from that.
2155      Otherwise, must look it up.  */
2156 
2157   if (elt != 0 && elt->related_value != 0)
2158     relt = elt;
2159   else if (elt == 0 && GET_CODE (x) == CONST)
2160     {
2161       rtx subexp = get_related_value (x);
2162       if (subexp != 0)
2163 	relt = lookup (subexp,
2164 		       SAFE_HASH (subexp, GET_MODE (subexp)),
2165 		       GET_MODE (subexp));
2166     }
2167 
2168   if (relt == 0)
2169     return 0;
2170 
2171   /* Search all related table entries for one that has an
2172      equivalent register.  */
2173 
2174   p = relt;
2175   while (1)
2176     {
2177       /* This loop is strange in that it is executed in two different cases.
2178 	 The first is when X is already in the table.  Then it is searching
2179 	 the RELATED_VALUE list of X's class (RELT).  The second case is when
2180 	 X is not in the table.  Then RELT points to a class for the related
2181 	 value.
2182 
2183 	 Ensure that, whatever case we are in, that we ignore classes that have
2184 	 the same value as X.  */
2185 
2186       if (rtx_equal_p (x, p->exp))
2187 	q = 0;
2188       else
2189 	for (q = p->first_same_value; q; q = q->next_same_value)
2190 	  if (REG_P (q->exp))
2191 	    break;
2192 
2193       if (q)
2194 	break;
2195 
2196       p = p->related_value;
2197 
2198       /* We went all the way around, so there is nothing to be found.
2199 	 Alternatively, perhaps RELT was in the table for some other reason
2200 	 and it has no related values recorded.  */
2201       if (p == relt || p == 0)
2202 	break;
2203     }
2204 
2205   if (q == 0)
2206     return 0;
2207 
2208   offset = (get_integer_term (x) - get_integer_term (p->exp));
2209   /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity.  */
2210   return plus_constant (q->mode, q->exp, offset);
2211 }
2212 
2213 
2214 /* Hash a string.  Just add its bytes up.  */
2215 static inline unsigned
2216 hash_rtx_string (const char *ps)
2217 {
2218   unsigned hash = 0;
2219   const unsigned char *p = (const unsigned char *) ps;
2220 
2221   if (p)
2222     while (*p)
2223       hash += *p++;
2224 
2225   return hash;
2226 }
2227 
2228 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2229    When the callback returns true, we continue with the new rtx.  */
2230 
2231 unsigned
2232 hash_rtx_cb (const_rtx x, enum machine_mode mode,
2233              int *do_not_record_p, int *hash_arg_in_memory_p,
2234              bool have_reg_qty, hash_rtx_callback_function cb)
2235 {
2236   int i, j;
2237   unsigned hash = 0;
2238   enum rtx_code code;
2239   const char *fmt;
2240   enum machine_mode newmode;
2241   rtx newx;
2242 
2243   /* Used to turn recursion into iteration.  We can't rely on GCC's
2244      tail-recursion elimination since we need to keep accumulating values
2245      in HASH.  */
2246  repeat:
2247   if (x == 0)
2248     return hash;
2249 
2250   /* Invoke the callback first.  */
2251   if (cb != NULL
2252       && ((*cb) (x, mode, &newx, &newmode)))
2253     {
2254       hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2255                            hash_arg_in_memory_p, have_reg_qty, cb);
2256       return hash;
2257     }
2258 
2259   code = GET_CODE (x);
2260   switch (code)
2261     {
2262     case REG:
2263       {
2264 	unsigned int regno = REGNO (x);
2265 
2266 	if (do_not_record_p && !reload_completed)
2267 	  {
2268 	    /* On some machines, we can't record any non-fixed hard register,
2269 	       because extending its life will cause reload problems.  We
2270 	       consider ap, fp, sp, gp to be fixed for this purpose.
2271 
2272 	       We also consider CCmode registers to be fixed for this purpose;
2273 	       failure to do so leads to failure to simplify 0<100 type of
2274 	       conditionals.
2275 
2276 	       On all machines, we can't record any global registers.
2277 	       Nor should we record any register that is in a small
2278 	       class, as defined by TARGET_CLASS_LIKELY_SPILLED_P.  */
2279 	    bool record;
2280 
2281 	    if (regno >= FIRST_PSEUDO_REGISTER)
2282 	      record = true;
2283 	    else if (x == frame_pointer_rtx
2284 		     || x == hard_frame_pointer_rtx
2285 		     || x == arg_pointer_rtx
2286 		     || x == stack_pointer_rtx
2287 		     || x == pic_offset_table_rtx)
2288 	      record = true;
2289 	    else if (global_regs[regno])
2290 	      record = false;
2291 	    else if (fixed_regs[regno])
2292 	      record = true;
2293 	    else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2294 	      record = true;
2295 	    else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
2296 	      record = false;
2297 	    else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
2298 	      record = false;
2299 	    else
2300 	      record = true;
2301 
2302 	    if (!record)
2303 	      {
2304 		*do_not_record_p = 1;
2305 		return 0;
2306 	      }
2307 	  }
2308 
2309 	hash += ((unsigned int) REG << 7);
2310         hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2311 	return hash;
2312       }
2313 
2314     /* We handle SUBREG of a REG specially because the underlying
2315        reg changes its hash value with every value change; we don't
2316        want to have to forget unrelated subregs when one subreg changes.  */
2317     case SUBREG:
2318       {
2319 	if (REG_P (SUBREG_REG (x)))
2320 	  {
2321 	    hash += (((unsigned int) SUBREG << 7)
2322 		     + REGNO (SUBREG_REG (x))
2323 		     + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2324 	    return hash;
2325 	  }
2326 	break;
2327       }
2328 
2329     case CONST_INT:
2330       hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2331                + (unsigned int) INTVAL (x));
2332       return hash;
2333 
2334     case CONST_DOUBLE:
2335       /* This is like the general case, except that it only counts
2336 	 the integers representing the constant.  */
2337       hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2338       if (GET_MODE (x) != VOIDmode)
2339 	hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2340       else
2341 	hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2342 		 + (unsigned int) CONST_DOUBLE_HIGH (x));
2343       return hash;
2344 
2345     case CONST_FIXED:
2346       hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2347       hash += fixed_hash (CONST_FIXED_VALUE (x));
2348       return hash;
2349 
2350     case CONST_VECTOR:
2351       {
2352 	int units;
2353 	rtx elt;
2354 
2355 	units = CONST_VECTOR_NUNITS (x);
2356 
2357 	for (i = 0; i < units; ++i)
2358 	  {
2359 	    elt = CONST_VECTOR_ELT (x, i);
2360 	    hash += hash_rtx_cb (elt, GET_MODE (elt),
2361                                  do_not_record_p, hash_arg_in_memory_p,
2362                                  have_reg_qty, cb);
2363 	  }
2364 
2365 	return hash;
2366       }
2367 
2368       /* Assume there is only one rtx object for any given label.  */
2369     case LABEL_REF:
2370       /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2371 	 differences and differences between each stage's debugging dumps.  */
2372 	 hash += (((unsigned int) LABEL_REF << 7)
2373 		  + CODE_LABEL_NUMBER (XEXP (x, 0)));
2374       return hash;
2375 
2376     case SYMBOL_REF:
2377       {
2378 	/* Don't hash on the symbol's address to avoid bootstrap differences.
2379 	   Different hash values may cause expressions to be recorded in
2380 	   different orders and thus different registers to be used in the
2381 	   final assembler.  This also avoids differences in the dump files
2382 	   between various stages.  */
2383 	unsigned int h = 0;
2384 	const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2385 
2386 	while (*p)
2387 	  h += (h << 7) + *p++; /* ??? revisit */
2388 
2389 	hash += ((unsigned int) SYMBOL_REF << 7) + h;
2390 	return hash;
2391       }
2392 
2393     case MEM:
2394       /* We don't record if marked volatile or if BLKmode since we don't
2395 	 know the size of the move.  */
2396       if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2397 	{
2398 	  *do_not_record_p = 1;
2399 	  return 0;
2400 	}
2401       if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2402 	*hash_arg_in_memory_p = 1;
2403 
2404       /* Now that we have already found this special case,
2405 	 might as well speed it up as much as possible.  */
2406       hash += (unsigned) MEM;
2407       x = XEXP (x, 0);
2408       goto repeat;
2409 
2410     case USE:
2411       /* A USE that mentions non-volatile memory needs special
2412 	 handling since the MEM may be BLKmode which normally
2413 	 prevents an entry from being made.  Pure calls are
2414 	 marked by a USE which mentions BLKmode memory.
2415 	 See calls.c:emit_call_1.  */
2416       if (MEM_P (XEXP (x, 0))
2417 	  && ! MEM_VOLATILE_P (XEXP (x, 0)))
2418 	{
2419 	  hash += (unsigned) USE;
2420 	  x = XEXP (x, 0);
2421 
2422 	  if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2423 	    *hash_arg_in_memory_p = 1;
2424 
2425 	  /* Now that we have already found this special case,
2426 	     might as well speed it up as much as possible.  */
2427 	  hash += (unsigned) MEM;
2428 	  x = XEXP (x, 0);
2429 	  goto repeat;
2430 	}
2431       break;
2432 
2433     case PRE_DEC:
2434     case PRE_INC:
2435     case POST_DEC:
2436     case POST_INC:
2437     case PRE_MODIFY:
2438     case POST_MODIFY:
2439     case PC:
2440     case CC0:
2441     case CALL:
2442     case UNSPEC_VOLATILE:
2443       if (do_not_record_p) {
2444         *do_not_record_p = 1;
2445         return 0;
2446       }
2447       else
2448         return hash;
2449       break;
2450 
2451     case ASM_OPERANDS:
2452       if (do_not_record_p && MEM_VOLATILE_P (x))
2453 	{
2454 	  *do_not_record_p = 1;
2455 	  return 0;
2456 	}
2457       else
2458 	{
2459 	  /* We don't want to take the filename and line into account.  */
2460 	  hash += (unsigned) code + (unsigned) GET_MODE (x)
2461 	    + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2462 	    + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2463 	    + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2464 
2465 	  if (ASM_OPERANDS_INPUT_LENGTH (x))
2466 	    {
2467 	      for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2468 		{
2469 		  hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2470                                         GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2471                                         do_not_record_p, hash_arg_in_memory_p,
2472                                         have_reg_qty, cb)
2473 			   + hash_rtx_string
2474                            (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2475 		}
2476 
2477 	      hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2478 	      x = ASM_OPERANDS_INPUT (x, 0);
2479 	      mode = GET_MODE (x);
2480 	      goto repeat;
2481 	    }
2482 
2483 	  return hash;
2484 	}
2485       break;
2486 
2487     default:
2488       break;
2489     }
2490 
2491   i = GET_RTX_LENGTH (code) - 1;
2492   hash += (unsigned) code + (unsigned) GET_MODE (x);
2493   fmt = GET_RTX_FORMAT (code);
2494   for (; i >= 0; i--)
2495     {
2496       switch (fmt[i])
2497 	{
2498 	case 'e':
2499 	  /* If we are about to do the last recursive call
2500 	     needed at this level, change it into iteration.
2501 	     This function  is called enough to be worth it.  */
2502 	  if (i == 0)
2503 	    {
2504 	      x = XEXP (x, i);
2505 	      goto repeat;
2506 	    }
2507 
2508 	  hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2509                                hash_arg_in_memory_p,
2510                                have_reg_qty, cb);
2511 	  break;
2512 
2513 	case 'E':
2514 	  for (j = 0; j < XVECLEN (x, i); j++)
2515 	    hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2516                                  hash_arg_in_memory_p,
2517                                  have_reg_qty, cb);
2518 	  break;
2519 
2520 	case 's':
2521 	  hash += hash_rtx_string (XSTR (x, i));
2522 	  break;
2523 
2524 	case 'i':
2525 	  hash += (unsigned int) XINT (x, i);
2526 	  break;
2527 
2528 	case '0': case 't':
2529 	  /* Unused.  */
2530 	  break;
2531 
2532 	default:
2533 	  gcc_unreachable ();
2534 	}
2535     }
2536 
2537   return hash;
2538 }
2539 
2540 /* Hash an rtx.  We are careful to make sure the value is never negative.
2541    Equivalent registers hash identically.
2542    MODE is used in hashing for CONST_INTs only;
2543    otherwise the mode of X is used.
2544 
2545    Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2546 
2547    If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2548    a MEM rtx which does not have the MEM_READONLY_P flag set.
2549 
2550    Note that cse_insn knows that the hash code of a MEM expression
2551    is just (int) MEM plus the hash code of the address.  */
2552 
2553 unsigned
2554 hash_rtx (const_rtx x, enum machine_mode mode, int *do_not_record_p,
2555 	  int *hash_arg_in_memory_p, bool have_reg_qty)
2556 {
2557   return hash_rtx_cb (x, mode, do_not_record_p,
2558                       hash_arg_in_memory_p, have_reg_qty, NULL);
2559 }
2560 
2561 /* Hash an rtx X for cse via hash_rtx.
2562    Stores 1 in do_not_record if any subexpression is volatile.
2563    Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2564    does not have the MEM_READONLY_P flag set.  */
2565 
2566 static inline unsigned
2567 canon_hash (rtx x, enum machine_mode mode)
2568 {
2569   return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2570 }
2571 
2572 /* Like canon_hash but with no side effects, i.e. do_not_record
2573    and hash_arg_in_memory are not changed.  */
2574 
2575 static inline unsigned
2576 safe_hash (rtx x, enum machine_mode mode)
2577 {
2578   int dummy_do_not_record;
2579   return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2580 }
2581 
2582 /* Return 1 iff X and Y would canonicalize into the same thing,
2583    without actually constructing the canonicalization of either one.
2584    If VALIDATE is nonzero,
2585    we assume X is an expression being processed from the rtl
2586    and Y was found in the hash table.  We check register refs
2587    in Y for being marked as valid.
2588 
2589    If FOR_GCSE is true, we compare X and Y for equivalence for GCSE.  */
2590 
2591 int
2592 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2593 {
2594   int i, j;
2595   enum rtx_code code;
2596   const char *fmt;
2597 
2598   /* Note: it is incorrect to assume an expression is equivalent to itself
2599      if VALIDATE is nonzero.  */
2600   if (x == y && !validate)
2601     return 1;
2602 
2603   if (x == 0 || y == 0)
2604     return x == y;
2605 
2606   code = GET_CODE (x);
2607   if (code != GET_CODE (y))
2608     return 0;
2609 
2610   /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
2611   if (GET_MODE (x) != GET_MODE (y))
2612     return 0;
2613 
2614   /* MEMs referring to different address space are not equivalent.  */
2615   if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2616     return 0;
2617 
2618   switch (code)
2619     {
2620     case PC:
2621     case CC0:
2622     CASE_CONST_UNIQUE:
2623       return x == y;
2624 
2625     case LABEL_REF:
2626       return XEXP (x, 0) == XEXP (y, 0);
2627 
2628     case SYMBOL_REF:
2629       return XSTR (x, 0) == XSTR (y, 0);
2630 
2631     case REG:
2632       if (for_gcse)
2633 	return REGNO (x) == REGNO (y);
2634       else
2635 	{
2636 	  unsigned int regno = REGNO (y);
2637 	  unsigned int i;
2638 	  unsigned int endregno = END_REGNO (y);
2639 
2640 	  /* If the quantities are not the same, the expressions are not
2641 	     equivalent.  If there are and we are not to validate, they
2642 	     are equivalent.  Otherwise, ensure all regs are up-to-date.  */
2643 
2644 	  if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2645 	    return 0;
2646 
2647 	  if (! validate)
2648 	    return 1;
2649 
2650 	  for (i = regno; i < endregno; i++)
2651 	    if (REG_IN_TABLE (i) != REG_TICK (i))
2652 	      return 0;
2653 
2654 	  return 1;
2655 	}
2656 
2657     case MEM:
2658       if (for_gcse)
2659 	{
2660 	  /* A volatile mem should not be considered equivalent to any
2661 	     other.  */
2662 	  if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2663 	    return 0;
2664 
2665 	  /* Can't merge two expressions in different alias sets, since we
2666 	     can decide that the expression is transparent in a block when
2667 	     it isn't, due to it being set with the different alias set.
2668 
2669 	     Also, can't merge two expressions with different MEM_ATTRS.
2670 	     They could e.g. be two different entities allocated into the
2671 	     same space on the stack (see e.g. PR25130).  In that case, the
2672 	     MEM addresses can be the same, even though the two MEMs are
2673 	     absolutely not equivalent.
2674 
2675 	     But because really all MEM attributes should be the same for
2676 	     equivalent MEMs, we just use the invariant that MEMs that have
2677 	     the same attributes share the same mem_attrs data structure.  */
2678 	  if (MEM_ATTRS (x) != MEM_ATTRS (y))
2679 	    return 0;
2680 	}
2681       break;
2682 
2683     /*  For commutative operations, check both orders.  */
2684     case PLUS:
2685     case MULT:
2686     case AND:
2687     case IOR:
2688     case XOR:
2689     case NE:
2690     case EQ:
2691       return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2692 			     validate, for_gcse)
2693 	       && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2694 				validate, for_gcse))
2695 	      || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2696 				validate, for_gcse)
2697 		  && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2698 				   validate, for_gcse)));
2699 
2700     case ASM_OPERANDS:
2701       /* We don't use the generic code below because we want to
2702 	 disregard filename and line numbers.  */
2703 
2704       /* A volatile asm isn't equivalent to any other.  */
2705       if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2706 	return 0;
2707 
2708       if (GET_MODE (x) != GET_MODE (y)
2709 	  || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2710 	  || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2711 		     ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2712 	  || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2713 	  || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2714 	return 0;
2715 
2716       if (ASM_OPERANDS_INPUT_LENGTH (x))
2717 	{
2718 	  for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2719 	    if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2720 			       ASM_OPERANDS_INPUT (y, i),
2721 			       validate, for_gcse)
2722 		|| strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2723 			   ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2724 	      return 0;
2725 	}
2726 
2727       return 1;
2728 
2729     default:
2730       break;
2731     }
2732 
2733   /* Compare the elements.  If any pair of corresponding elements
2734      fail to match, return 0 for the whole thing.  */
2735 
2736   fmt = GET_RTX_FORMAT (code);
2737   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2738     {
2739       switch (fmt[i])
2740 	{
2741 	case 'e':
2742 	  if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2743 			      validate, for_gcse))
2744 	    return 0;
2745 	  break;
2746 
2747 	case 'E':
2748 	  if (XVECLEN (x, i) != XVECLEN (y, i))
2749 	    return 0;
2750 	  for (j = 0; j < XVECLEN (x, i); j++)
2751 	    if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2752 				validate, for_gcse))
2753 	      return 0;
2754 	  break;
2755 
2756 	case 's':
2757 	  if (strcmp (XSTR (x, i), XSTR (y, i)))
2758 	    return 0;
2759 	  break;
2760 
2761 	case 'i':
2762 	  if (XINT (x, i) != XINT (y, i))
2763 	    return 0;
2764 	  break;
2765 
2766 	case 'w':
2767 	  if (XWINT (x, i) != XWINT (y, i))
2768 	    return 0;
2769 	  break;
2770 
2771 	case '0':
2772 	case 't':
2773 	  break;
2774 
2775 	default:
2776 	  gcc_unreachable ();
2777 	}
2778     }
2779 
2780   return 1;
2781 }
2782 
2783 /* Subroutine of canon_reg.  Pass *XLOC through canon_reg, and validate
2784    the result if necessary.  INSN is as for canon_reg.  */
2785 
2786 static void
2787 validate_canon_reg (rtx *xloc, rtx insn)
2788 {
2789   if (*xloc)
2790     {
2791       rtx new_rtx = canon_reg (*xloc, insn);
2792 
2793       /* If replacing pseudo with hard reg or vice versa, ensure the
2794          insn remains valid.  Likewise if the insn has MATCH_DUPs.  */
2795       gcc_assert (insn && new_rtx);
2796       validate_change (insn, xloc, new_rtx, 1);
2797     }
2798 }
2799 
2800 /* Canonicalize an expression:
2801    replace each register reference inside it
2802    with the "oldest" equivalent register.
2803 
2804    If INSN is nonzero validate_change is used to ensure that INSN remains valid
2805    after we make our substitution.  The calls are made with IN_GROUP nonzero
2806    so apply_change_group must be called upon the outermost return from this
2807    function (unless INSN is zero).  The result of apply_change_group can
2808    generally be discarded since the changes we are making are optional.  */
2809 
2810 static rtx
2811 canon_reg (rtx x, rtx insn)
2812 {
2813   int i;
2814   enum rtx_code code;
2815   const char *fmt;
2816 
2817   if (x == 0)
2818     return x;
2819 
2820   code = GET_CODE (x);
2821   switch (code)
2822     {
2823     case PC:
2824     case CC0:
2825     case CONST:
2826     CASE_CONST_ANY:
2827     case SYMBOL_REF:
2828     case LABEL_REF:
2829     case ADDR_VEC:
2830     case ADDR_DIFF_VEC:
2831       return x;
2832 
2833     case REG:
2834       {
2835 	int first;
2836 	int q;
2837 	struct qty_table_elem *ent;
2838 
2839 	/* Never replace a hard reg, because hard regs can appear
2840 	   in more than one machine mode, and we must preserve the mode
2841 	   of each occurrence.  Also, some hard regs appear in
2842 	   MEMs that are shared and mustn't be altered.  Don't try to
2843 	   replace any reg that maps to a reg of class NO_REGS.  */
2844 	if (REGNO (x) < FIRST_PSEUDO_REGISTER
2845 	    || ! REGNO_QTY_VALID_P (REGNO (x)))
2846 	  return x;
2847 
2848 	q = REG_QTY (REGNO (x));
2849 	ent = &qty_table[q];
2850 	first = ent->first_reg;
2851 	return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2852 		: REGNO_REG_CLASS (first) == NO_REGS ? x
2853 		: gen_rtx_REG (ent->mode, first));
2854       }
2855 
2856     default:
2857       break;
2858     }
2859 
2860   fmt = GET_RTX_FORMAT (code);
2861   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2862     {
2863       int j;
2864 
2865       if (fmt[i] == 'e')
2866 	validate_canon_reg (&XEXP (x, i), insn);
2867       else if (fmt[i] == 'E')
2868 	for (j = 0; j < XVECLEN (x, i); j++)
2869 	  validate_canon_reg (&XVECEXP (x, i, j), insn);
2870     }
2871 
2872   return x;
2873 }
2874 
2875 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2876    operation (EQ, NE, GT, etc.), follow it back through the hash table and
2877    what values are being compared.
2878 
2879    *PARG1 and *PARG2 are updated to contain the rtx representing the values
2880    actually being compared.  For example, if *PARG1 was (cc0) and *PARG2
2881    was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2882    compared to produce cc0.
2883 
2884    The return value is the comparison operator and is either the code of
2885    A or the code corresponding to the inverse of the comparison.  */
2886 
2887 static enum rtx_code
2888 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2889 		      enum machine_mode *pmode1, enum machine_mode *pmode2)
2890 {
2891   rtx arg1, arg2;
2892   struct pointer_set_t *visited = NULL;
2893   /* Set nonzero when we find something of interest.  */
2894   rtx x = NULL;
2895 
2896   arg1 = *parg1, arg2 = *parg2;
2897 
2898   /* If ARG2 is const0_rtx, see what ARG1 is equivalent to.  */
2899 
2900   while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2901     {
2902       int reverse_code = 0;
2903       struct table_elt *p = 0;
2904 
2905       /* Remember state from previous iteration.  */
2906       if (x)
2907 	{
2908 	  if (!visited)
2909 	    visited = pointer_set_create ();
2910 	  pointer_set_insert (visited, x);
2911 	  x = 0;
2912 	}
2913 
2914       /* If arg1 is a COMPARE, extract the comparison arguments from it.
2915 	 On machines with CC0, this is the only case that can occur, since
2916 	 fold_rtx will return the COMPARE or item being compared with zero
2917 	 when given CC0.  */
2918 
2919       if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2920 	x = arg1;
2921 
2922       /* If ARG1 is a comparison operator and CODE is testing for
2923 	 STORE_FLAG_VALUE, get the inner arguments.  */
2924 
2925       else if (COMPARISON_P (arg1))
2926 	{
2927 #ifdef FLOAT_STORE_FLAG_VALUE
2928 	  REAL_VALUE_TYPE fsfv;
2929 #endif
2930 
2931 	  if (code == NE
2932 	      || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2933 		  && code == LT && STORE_FLAG_VALUE == -1)
2934 #ifdef FLOAT_STORE_FLAG_VALUE
2935 	      || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2936 		  && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2937 		      REAL_VALUE_NEGATIVE (fsfv)))
2938 #endif
2939 	      )
2940 	    x = arg1;
2941 	  else if (code == EQ
2942 		   || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2943 		       && code == GE && STORE_FLAG_VALUE == -1)
2944 #ifdef FLOAT_STORE_FLAG_VALUE
2945 		   || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2946 		       && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2947 			   REAL_VALUE_NEGATIVE (fsfv)))
2948 #endif
2949 		   )
2950 	    x = arg1, reverse_code = 1;
2951 	}
2952 
2953       /* ??? We could also check for
2954 
2955 	 (ne (and (eq (...) (const_int 1))) (const_int 0))
2956 
2957 	 and related forms, but let's wait until we see them occurring.  */
2958 
2959       if (x == 0)
2960 	/* Look up ARG1 in the hash table and see if it has an equivalence
2961 	   that lets us see what is being compared.  */
2962 	p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2963       if (p)
2964 	{
2965 	  p = p->first_same_value;
2966 
2967 	  /* If what we compare is already known to be constant, that is as
2968 	     good as it gets.
2969 	     We need to break the loop in this case, because otherwise we
2970 	     can have an infinite loop when looking at a reg that is known
2971 	     to be a constant which is the same as a comparison of a reg
2972 	     against zero which appears later in the insn stream, which in
2973 	     turn is constant and the same as the comparison of the first reg
2974 	     against zero...  */
2975 	  if (p->is_const)
2976 	    break;
2977 	}
2978 
2979       for (; p; p = p->next_same_value)
2980 	{
2981 	  enum machine_mode inner_mode = GET_MODE (p->exp);
2982 #ifdef FLOAT_STORE_FLAG_VALUE
2983 	  REAL_VALUE_TYPE fsfv;
2984 #endif
2985 
2986 	  /* If the entry isn't valid, skip it.  */
2987 	  if (! exp_equiv_p (p->exp, p->exp, 1, false))
2988 	    continue;
2989 
2990 	  /* If it's a comparison we've used before, skip it.  */
2991 	  if (visited && pointer_set_contains (visited, p->exp))
2992 	    continue;
2993 
2994 	  if (GET_CODE (p->exp) == COMPARE
2995 	      /* Another possibility is that this machine has a compare insn
2996 		 that includes the comparison code.  In that case, ARG1 would
2997 		 be equivalent to a comparison operation that would set ARG1 to
2998 		 either STORE_FLAG_VALUE or zero.  If this is an NE operation,
2999 		 ORIG_CODE is the actual comparison being done; if it is an EQ,
3000 		 we must reverse ORIG_CODE.  On machine with a negative value
3001 		 for STORE_FLAG_VALUE, also look at LT and GE operations.  */
3002 	      || ((code == NE
3003 		   || (code == LT
3004 		       && val_signbit_known_set_p (inner_mode,
3005 						   STORE_FLAG_VALUE))
3006 #ifdef FLOAT_STORE_FLAG_VALUE
3007 		   || (code == LT
3008 		       && SCALAR_FLOAT_MODE_P (inner_mode)
3009 		       && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3010 			   REAL_VALUE_NEGATIVE (fsfv)))
3011 #endif
3012 		   )
3013 		  && COMPARISON_P (p->exp)))
3014 	    {
3015 	      x = p->exp;
3016 	      break;
3017 	    }
3018 	  else if ((code == EQ
3019 		    || (code == GE
3020 			&& val_signbit_known_set_p (inner_mode,
3021 						    STORE_FLAG_VALUE))
3022 #ifdef FLOAT_STORE_FLAG_VALUE
3023 		    || (code == GE
3024 			&& SCALAR_FLOAT_MODE_P (inner_mode)
3025 			&& (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3026 			    REAL_VALUE_NEGATIVE (fsfv)))
3027 #endif
3028 		    )
3029 		   && COMPARISON_P (p->exp))
3030 	    {
3031 	      reverse_code = 1;
3032 	      x = p->exp;
3033 	      break;
3034 	    }
3035 
3036 	  /* If this non-trapping address, e.g. fp + constant, the
3037 	     equivalent is a better operand since it may let us predict
3038 	     the value of the comparison.  */
3039 	  else if (!rtx_addr_can_trap_p (p->exp))
3040 	    {
3041 	      arg1 = p->exp;
3042 	      continue;
3043 	    }
3044 	}
3045 
3046       /* If we didn't find a useful equivalence for ARG1, we are done.
3047 	 Otherwise, set up for the next iteration.  */
3048       if (x == 0)
3049 	break;
3050 
3051       /* If we need to reverse the comparison, make sure that that is
3052 	 possible -- we can't necessarily infer the value of GE from LT
3053 	 with floating-point operands.  */
3054       if (reverse_code)
3055 	{
3056 	  enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3057 	  if (reversed == UNKNOWN)
3058 	    break;
3059 	  else
3060 	    code = reversed;
3061 	}
3062       else if (COMPARISON_P (x))
3063 	code = GET_CODE (x);
3064       arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3065     }
3066 
3067   /* Return our results.  Return the modes from before fold_rtx
3068      because fold_rtx might produce const_int, and then it's too late.  */
3069   *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3070   *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3071 
3072   if (visited)
3073     pointer_set_destroy (visited);
3074   return code;
3075 }
3076 
3077 /* If X is a nontrivial arithmetic operation on an argument for which
3078    a constant value can be determined, return the result of operating
3079    on that value, as a constant.  Otherwise, return X, possibly with
3080    one or more operands changed to a forward-propagated constant.
3081 
3082    If X is a register whose contents are known, we do NOT return
3083    those contents here; equiv_constant is called to perform that task.
3084    For SUBREGs and MEMs, we do that both here and in equiv_constant.
3085 
3086    INSN is the insn that we may be modifying.  If it is 0, make a copy
3087    of X before modifying it.  */
3088 
3089 static rtx
3090 fold_rtx (rtx x, rtx insn)
3091 {
3092   enum rtx_code code;
3093   enum machine_mode mode;
3094   const char *fmt;
3095   int i;
3096   rtx new_rtx = 0;
3097   int changed = 0;
3098 
3099   /* Operands of X.  */
3100   rtx folded_arg0;
3101   rtx folded_arg1;
3102 
3103   /* Constant equivalents of first three operands of X;
3104      0 when no such equivalent is known.  */
3105   rtx const_arg0;
3106   rtx const_arg1;
3107   rtx const_arg2;
3108 
3109   /* The mode of the first operand of X.  We need this for sign and zero
3110      extends.  */
3111   enum machine_mode mode_arg0;
3112 
3113   if (x == 0)
3114     return x;
3115 
3116   /* Try to perform some initial simplifications on X.  */
3117   code = GET_CODE (x);
3118   switch (code)
3119     {
3120     case MEM:
3121     case SUBREG:
3122       if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3123         return new_rtx;
3124       return x;
3125 
3126     case CONST:
3127     CASE_CONST_ANY:
3128     case SYMBOL_REF:
3129     case LABEL_REF:
3130     case REG:
3131     case PC:
3132       /* No use simplifying an EXPR_LIST
3133 	 since they are used only for lists of args
3134 	 in a function call's REG_EQUAL note.  */
3135     case EXPR_LIST:
3136       return x;
3137 
3138 #ifdef HAVE_cc0
3139     case CC0:
3140       return prev_insn_cc0;
3141 #endif
3142 
3143     case ASM_OPERANDS:
3144       if (insn)
3145 	{
3146 	  for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3147 	    validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3148 			     fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3149 	}
3150       return x;
3151 
3152 #ifdef NO_FUNCTION_CSE
3153     case CALL:
3154       if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3155 	return x;
3156       break;
3157 #endif
3158 
3159     /* Anything else goes through the loop below.  */
3160     default:
3161       break;
3162     }
3163 
3164   mode = GET_MODE (x);
3165   const_arg0 = 0;
3166   const_arg1 = 0;
3167   const_arg2 = 0;
3168   mode_arg0 = VOIDmode;
3169 
3170   /* Try folding our operands.
3171      Then see which ones have constant values known.  */
3172 
3173   fmt = GET_RTX_FORMAT (code);
3174   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3175     if (fmt[i] == 'e')
3176       {
3177 	rtx folded_arg = XEXP (x, i), const_arg;
3178 	enum machine_mode mode_arg = GET_MODE (folded_arg);
3179 
3180 	switch (GET_CODE (folded_arg))
3181 	  {
3182 	  case MEM:
3183 	  case REG:
3184 	  case SUBREG:
3185 	    const_arg = equiv_constant (folded_arg);
3186 	    break;
3187 
3188 	  case CONST:
3189 	  CASE_CONST_ANY:
3190 	  case SYMBOL_REF:
3191 	  case LABEL_REF:
3192 	    const_arg = folded_arg;
3193 	    break;
3194 
3195 #ifdef HAVE_cc0
3196 	  case CC0:
3197 	    folded_arg = prev_insn_cc0;
3198 	    mode_arg = prev_insn_cc0_mode;
3199 	    const_arg = equiv_constant (folded_arg);
3200 	    break;
3201 #endif
3202 
3203 	  default:
3204 	    folded_arg = fold_rtx (folded_arg, insn);
3205 	    const_arg = equiv_constant (folded_arg);
3206 	    break;
3207 	  }
3208 
3209 	/* For the first three operands, see if the operand
3210 	   is constant or equivalent to a constant.  */
3211 	switch (i)
3212 	  {
3213 	  case 0:
3214 	    folded_arg0 = folded_arg;
3215 	    const_arg0 = const_arg;
3216 	    mode_arg0 = mode_arg;
3217 	    break;
3218 	  case 1:
3219 	    folded_arg1 = folded_arg;
3220 	    const_arg1 = const_arg;
3221 	    break;
3222 	  case 2:
3223 	    const_arg2 = const_arg;
3224 	    break;
3225 	  }
3226 
3227 	/* Pick the least expensive of the argument and an equivalent constant
3228 	   argument.  */
3229 	if (const_arg != 0
3230 	    && const_arg != folded_arg
3231 	    && COST_IN (const_arg, code, i) <= COST_IN (folded_arg, code, i)
3232 
3233 	    /* It's not safe to substitute the operand of a conversion
3234 	       operator with a constant, as the conversion's identity
3235 	       depends upon the mode of its operand.  This optimization
3236 	       is handled by the call to simplify_unary_operation.  */
3237 	    && (GET_RTX_CLASS (code) != RTX_UNARY
3238 		|| GET_MODE (const_arg) == mode_arg0
3239 		|| (code != ZERO_EXTEND
3240 		    && code != SIGN_EXTEND
3241 		    && code != TRUNCATE
3242 		    && code != FLOAT_TRUNCATE
3243 		    && code != FLOAT_EXTEND
3244 		    && code != FLOAT
3245 		    && code != FIX
3246 		    && code != UNSIGNED_FLOAT
3247 		    && code != UNSIGNED_FIX)))
3248 	  folded_arg = const_arg;
3249 
3250 	if (folded_arg == XEXP (x, i))
3251 	  continue;
3252 
3253 	if (insn == NULL_RTX && !changed)
3254 	  x = copy_rtx (x);
3255 	changed = 1;
3256 	validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3257       }
3258 
3259   if (changed)
3260     {
3261       /* Canonicalize X if necessary, and keep const_argN and folded_argN
3262 	 consistent with the order in X.  */
3263       if (canonicalize_change_group (insn, x))
3264 	{
3265 	  rtx tem;
3266 	  tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3267 	  tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3268 	}
3269 
3270       apply_change_group ();
3271     }
3272 
3273   /* If X is an arithmetic operation, see if we can simplify it.  */
3274 
3275   switch (GET_RTX_CLASS (code))
3276     {
3277     case RTX_UNARY:
3278       {
3279 	/* We can't simplify extension ops unless we know the
3280 	   original mode.  */
3281 	if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3282 	    && mode_arg0 == VOIDmode)
3283 	  break;
3284 
3285 	new_rtx = simplify_unary_operation (code, mode,
3286 					const_arg0 ? const_arg0 : folded_arg0,
3287 					mode_arg0);
3288       }
3289       break;
3290 
3291     case RTX_COMPARE:
3292     case RTX_COMM_COMPARE:
3293       /* See what items are actually being compared and set FOLDED_ARG[01]
3294 	 to those values and CODE to the actual comparison code.  If any are
3295 	 constant, set CONST_ARG0 and CONST_ARG1 appropriately.  We needn't
3296 	 do anything if both operands are already known to be constant.  */
3297 
3298       /* ??? Vector mode comparisons are not supported yet.  */
3299       if (VECTOR_MODE_P (mode))
3300 	break;
3301 
3302       if (const_arg0 == 0 || const_arg1 == 0)
3303 	{
3304 	  struct table_elt *p0, *p1;
3305 	  rtx true_rtx, false_rtx;
3306 	  enum machine_mode mode_arg1;
3307 
3308 	  if (SCALAR_FLOAT_MODE_P (mode))
3309 	    {
3310 #ifdef FLOAT_STORE_FLAG_VALUE
3311 	      true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3312 			  (FLOAT_STORE_FLAG_VALUE (mode), mode));
3313 #else
3314 	      true_rtx = NULL_RTX;
3315 #endif
3316 	      false_rtx = CONST0_RTX (mode);
3317 	    }
3318 	  else
3319 	    {
3320 	      true_rtx = const_true_rtx;
3321 	      false_rtx = const0_rtx;
3322 	    }
3323 
3324 	  code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3325 				       &mode_arg0, &mode_arg1);
3326 
3327 	  /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3328 	     what kinds of things are being compared, so we can't do
3329 	     anything with this comparison.  */
3330 
3331 	  if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3332 	    break;
3333 
3334 	  const_arg0 = equiv_constant (folded_arg0);
3335 	  const_arg1 = equiv_constant (folded_arg1);
3336 
3337 	  /* If we do not now have two constants being compared, see
3338 	     if we can nevertheless deduce some things about the
3339 	     comparison.  */
3340 	  if (const_arg0 == 0 || const_arg1 == 0)
3341 	    {
3342 	      if (const_arg1 != NULL)
3343 		{
3344 		  rtx cheapest_simplification;
3345 		  int cheapest_cost;
3346 		  rtx simp_result;
3347 		  struct table_elt *p;
3348 
3349 		  /* See if we can find an equivalent of folded_arg0
3350 		     that gets us a cheaper expression, possibly a
3351 		     constant through simplifications.  */
3352 		  p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3353 			      mode_arg0);
3354 
3355 		  if (p != NULL)
3356 		    {
3357 		      cheapest_simplification = x;
3358 		      cheapest_cost = COST (x);
3359 
3360 		      for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3361 			{
3362 			  int cost;
3363 
3364 			  /* If the entry isn't valid, skip it.  */
3365 			  if (! exp_equiv_p (p->exp, p->exp, 1, false))
3366 			    continue;
3367 
3368 			  /* Try to simplify using this equivalence.  */
3369 			  simp_result
3370 			    = simplify_relational_operation (code, mode,
3371 							     mode_arg0,
3372 							     p->exp,
3373 							     const_arg1);
3374 
3375 			  if (simp_result == NULL)
3376 			    continue;
3377 
3378 			  cost = COST (simp_result);
3379 			  if (cost < cheapest_cost)
3380 			    {
3381 			      cheapest_cost = cost;
3382 			      cheapest_simplification = simp_result;
3383 			    }
3384 			}
3385 
3386 		      /* If we have a cheaper expression now, use that
3387 			 and try folding it further, from the top.  */
3388 		      if (cheapest_simplification != x)
3389 			return fold_rtx (copy_rtx (cheapest_simplification),
3390 					 insn);
3391 		    }
3392 		}
3393 
3394 	      /* See if the two operands are the same.  */
3395 
3396 	      if ((REG_P (folded_arg0)
3397 		   && REG_P (folded_arg1)
3398 		   && (REG_QTY (REGNO (folded_arg0))
3399 		       == REG_QTY (REGNO (folded_arg1))))
3400 		  || ((p0 = lookup (folded_arg0,
3401 				    SAFE_HASH (folded_arg0, mode_arg0),
3402 				    mode_arg0))
3403 		      && (p1 = lookup (folded_arg1,
3404 				       SAFE_HASH (folded_arg1, mode_arg0),
3405 				       mode_arg0))
3406 		      && p0->first_same_value == p1->first_same_value))
3407 		folded_arg1 = folded_arg0;
3408 
3409 	      /* If FOLDED_ARG0 is a register, see if the comparison we are
3410 		 doing now is either the same as we did before or the reverse
3411 		 (we only check the reverse if not floating-point).  */
3412 	      else if (REG_P (folded_arg0))
3413 		{
3414 		  int qty = REG_QTY (REGNO (folded_arg0));
3415 
3416 		  if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3417 		    {
3418 		      struct qty_table_elem *ent = &qty_table[qty];
3419 
3420 		      if ((comparison_dominates_p (ent->comparison_code, code)
3421 			   || (! FLOAT_MODE_P (mode_arg0)
3422 			       && comparison_dominates_p (ent->comparison_code,
3423 						          reverse_condition (code))))
3424 			  && (rtx_equal_p (ent->comparison_const, folded_arg1)
3425 			      || (const_arg1
3426 				  && rtx_equal_p (ent->comparison_const,
3427 						  const_arg1))
3428 			      || (REG_P (folded_arg1)
3429 				  && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3430 			{
3431 			  if (comparison_dominates_p (ent->comparison_code, code))
3432 			    {
3433 			      if (true_rtx)
3434 				return true_rtx;
3435 			      else
3436 				break;
3437 			    }
3438 			  else
3439 			    return false_rtx;
3440 			}
3441 		    }
3442 		}
3443 	    }
3444 	}
3445 
3446       /* If we are comparing against zero, see if the first operand is
3447 	 equivalent to an IOR with a constant.  If so, we may be able to
3448 	 determine the result of this comparison.  */
3449       if (const_arg1 == const0_rtx && !const_arg0)
3450 	{
3451 	  rtx y = lookup_as_function (folded_arg0, IOR);
3452 	  rtx inner_const;
3453 
3454 	  if (y != 0
3455 	      && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3456 	      && CONST_INT_P (inner_const)
3457 	      && INTVAL (inner_const) != 0)
3458 	    folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3459 	}
3460 
3461       {
3462 	rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0);
3463 	rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1);
3464 	new_rtx = simplify_relational_operation (code, mode, mode_arg0,
3465 						 op0, op1);
3466       }
3467       break;
3468 
3469     case RTX_BIN_ARITH:
3470     case RTX_COMM_ARITH:
3471       switch (code)
3472 	{
3473 	case PLUS:
3474 	  /* If the second operand is a LABEL_REF, see if the first is a MINUS
3475 	     with that LABEL_REF as its second operand.  If so, the result is
3476 	     the first operand of that MINUS.  This handles switches with an
3477 	     ADDR_DIFF_VEC table.  */
3478 	  if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3479 	    {
3480 	      rtx y
3481 		= GET_CODE (folded_arg0) == MINUS ? folded_arg0
3482 		: lookup_as_function (folded_arg0, MINUS);
3483 
3484 	      if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3485 		  && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3486 		return XEXP (y, 0);
3487 
3488 	      /* Now try for a CONST of a MINUS like the above.  */
3489 	      if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3490 			: lookup_as_function (folded_arg0, CONST))) != 0
3491 		  && GET_CODE (XEXP (y, 0)) == MINUS
3492 		  && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3493 		  && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
3494 		return XEXP (XEXP (y, 0), 0);
3495 	    }
3496 
3497 	  /* Likewise if the operands are in the other order.  */
3498 	  if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3499 	    {
3500 	      rtx y
3501 		= GET_CODE (folded_arg1) == MINUS ? folded_arg1
3502 		: lookup_as_function (folded_arg1, MINUS);
3503 
3504 	      if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3505 		  && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3506 		return XEXP (y, 0);
3507 
3508 	      /* Now try for a CONST of a MINUS like the above.  */
3509 	      if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3510 			: lookup_as_function (folded_arg1, CONST))) != 0
3511 		  && GET_CODE (XEXP (y, 0)) == MINUS
3512 		  && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3513 		  && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
3514 		return XEXP (XEXP (y, 0), 0);
3515 	    }
3516 
3517 	  /* If second operand is a register equivalent to a negative
3518 	     CONST_INT, see if we can find a register equivalent to the
3519 	     positive constant.  Make a MINUS if so.  Don't do this for
3520 	     a non-negative constant since we might then alternate between
3521 	     choosing positive and negative constants.  Having the positive
3522 	     constant previously-used is the more common case.  Be sure
3523 	     the resulting constant is non-negative; if const_arg1 were
3524 	     the smallest negative number this would overflow: depending
3525 	     on the mode, this would either just be the same value (and
3526 	     hence not save anything) or be incorrect.  */
3527 	  if (const_arg1 != 0 && CONST_INT_P (const_arg1)
3528 	      && INTVAL (const_arg1) < 0
3529 	      /* This used to test
3530 
3531 	         -INTVAL (const_arg1) >= 0
3532 
3533 		 But The Sun V5.0 compilers mis-compiled that test.  So
3534 		 instead we test for the problematic value in a more direct
3535 		 manner and hope the Sun compilers get it correct.  */
3536 	      && INTVAL (const_arg1) !=
3537 	        ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3538 	      && REG_P (folded_arg1))
3539 	    {
3540 	      rtx new_const = GEN_INT (-INTVAL (const_arg1));
3541 	      struct table_elt *p
3542 		= lookup (new_const, SAFE_HASH (new_const, mode), mode);
3543 
3544 	      if (p)
3545 		for (p = p->first_same_value; p; p = p->next_same_value)
3546 		  if (REG_P (p->exp))
3547 		    return simplify_gen_binary (MINUS, mode, folded_arg0,
3548 						canon_reg (p->exp, NULL_RTX));
3549 	    }
3550 	  goto from_plus;
3551 
3552 	case MINUS:
3553 	  /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3554 	     If so, produce (PLUS Z C2-C).  */
3555 	  if (const_arg1 != 0 && CONST_INT_P (const_arg1))
3556 	    {
3557 	      rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3558 	      if (y && CONST_INT_P (XEXP (y, 1)))
3559 		return fold_rtx (plus_constant (mode, copy_rtx (y),
3560 						-INTVAL (const_arg1)),
3561 				 NULL_RTX);
3562 	    }
3563 
3564 	  /* Fall through.  */
3565 
3566 	from_plus:
3567 	case SMIN:    case SMAX:      case UMIN:    case UMAX:
3568 	case IOR:     case AND:       case XOR:
3569 	case MULT:
3570 	case ASHIFT:  case LSHIFTRT:  case ASHIFTRT:
3571 	  /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3572 	     is known to be of similar form, we may be able to replace the
3573 	     operation with a combined operation.  This may eliminate the
3574 	     intermediate operation if every use is simplified in this way.
3575 	     Note that the similar optimization done by combine.c only works
3576 	     if the intermediate operation's result has only one reference.  */
3577 
3578 	  if (REG_P (folded_arg0)
3579 	      && const_arg1 && CONST_INT_P (const_arg1))
3580 	    {
3581 	      int is_shift
3582 		= (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3583 	      rtx y, inner_const, new_const;
3584 	      rtx canon_const_arg1 = const_arg1;
3585 	      enum rtx_code associate_code;
3586 
3587 	      if (is_shift
3588 		  && (INTVAL (const_arg1) >= GET_MODE_PRECISION (mode)
3589 		      || INTVAL (const_arg1) < 0))
3590 		{
3591 		  if (SHIFT_COUNT_TRUNCATED)
3592 		    canon_const_arg1 = GEN_INT (INTVAL (const_arg1)
3593 						& (GET_MODE_BITSIZE (mode)
3594 						   - 1));
3595 		  else
3596 		    break;
3597 		}
3598 
3599 	      y = lookup_as_function (folded_arg0, code);
3600 	      if (y == 0)
3601 		break;
3602 
3603 	      /* If we have compiled a statement like
3604 		 "if (x == (x & mask1))", and now are looking at
3605 		 "x & mask2", we will have a case where the first operand
3606 		 of Y is the same as our first operand.  Unless we detect
3607 		 this case, an infinite loop will result.  */
3608 	      if (XEXP (y, 0) == folded_arg0)
3609 		break;
3610 
3611 	      inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3612 	      if (!inner_const || !CONST_INT_P (inner_const))
3613 		break;
3614 
3615 	      /* Don't associate these operations if they are a PLUS with the
3616 		 same constant and it is a power of two.  These might be doable
3617 		 with a pre- or post-increment.  Similarly for two subtracts of
3618 		 identical powers of two with post decrement.  */
3619 
3620 	      if (code == PLUS && const_arg1 == inner_const
3621 		  && ((HAVE_PRE_INCREMENT
3622 			  && exact_log2 (INTVAL (const_arg1)) >= 0)
3623 		      || (HAVE_POST_INCREMENT
3624 			  && exact_log2 (INTVAL (const_arg1)) >= 0)
3625 		      || (HAVE_PRE_DECREMENT
3626 			  && exact_log2 (- INTVAL (const_arg1)) >= 0)
3627 		      || (HAVE_POST_DECREMENT
3628 			  && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3629 		break;
3630 
3631 	      /* ??? Vector mode shifts by scalar
3632 		 shift operand are not supported yet.  */
3633 	      if (is_shift && VECTOR_MODE_P (mode))
3634                 break;
3635 
3636 	      if (is_shift
3637 		  && (INTVAL (inner_const) >= GET_MODE_PRECISION (mode)
3638 		      || INTVAL (inner_const) < 0))
3639 		{
3640 		  if (SHIFT_COUNT_TRUNCATED)
3641 		    inner_const = GEN_INT (INTVAL (inner_const)
3642 					   & (GET_MODE_BITSIZE (mode) - 1));
3643 		  else
3644 		    break;
3645 		}
3646 
3647 	      /* Compute the code used to compose the constants.  For example,
3648 		 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS.  */
3649 
3650 	      associate_code = (is_shift || code == MINUS ? PLUS : code);
3651 
3652 	      new_const = simplify_binary_operation (associate_code, mode,
3653 						     canon_const_arg1,
3654 						     inner_const);
3655 
3656 	      if (new_const == 0)
3657 		break;
3658 
3659 	      /* If we are associating shift operations, don't let this
3660 		 produce a shift of the size of the object or larger.
3661 		 This could occur when we follow a sign-extend by a right
3662 		 shift on a machine that does a sign-extend as a pair
3663 		 of shifts.  */
3664 
3665 	      if (is_shift
3666 		  && CONST_INT_P (new_const)
3667 		  && INTVAL (new_const) >= GET_MODE_PRECISION (mode))
3668 		{
3669 		  /* As an exception, we can turn an ASHIFTRT of this
3670 		     form into a shift of the number of bits - 1.  */
3671 		  if (code == ASHIFTRT)
3672 		    new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3673 		  else if (!side_effects_p (XEXP (y, 0)))
3674 		    return CONST0_RTX (mode);
3675 		  else
3676 		    break;
3677 		}
3678 
3679 	      y = copy_rtx (XEXP (y, 0));
3680 
3681 	      /* If Y contains our first operand (the most common way this
3682 		 can happen is if Y is a MEM), we would do into an infinite
3683 		 loop if we tried to fold it.  So don't in that case.  */
3684 
3685 	      if (! reg_mentioned_p (folded_arg0, y))
3686 		y = fold_rtx (y, insn);
3687 
3688 	      return simplify_gen_binary (code, mode, y, new_const);
3689 	    }
3690 	  break;
3691 
3692 	case DIV:       case UDIV:
3693 	  /* ??? The associative optimization performed immediately above is
3694 	     also possible for DIV and UDIV using associate_code of MULT.
3695 	     However, we would need extra code to verify that the
3696 	     multiplication does not overflow, that is, there is no overflow
3697 	     in the calculation of new_const.  */
3698 	  break;
3699 
3700 	default:
3701 	  break;
3702 	}
3703 
3704       new_rtx = simplify_binary_operation (code, mode,
3705 				       const_arg0 ? const_arg0 : folded_arg0,
3706 				       const_arg1 ? const_arg1 : folded_arg1);
3707       break;
3708 
3709     case RTX_OBJ:
3710       /* (lo_sum (high X) X) is simply X.  */
3711       if (code == LO_SUM && const_arg0 != 0
3712 	  && GET_CODE (const_arg0) == HIGH
3713 	  && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3714 	return const_arg1;
3715       break;
3716 
3717     case RTX_TERNARY:
3718     case RTX_BITFIELD_OPS:
3719       new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3720 					const_arg0 ? const_arg0 : folded_arg0,
3721 					const_arg1 ? const_arg1 : folded_arg1,
3722 					const_arg2 ? const_arg2 : XEXP (x, 2));
3723       break;
3724 
3725     default:
3726       break;
3727     }
3728 
3729   return new_rtx ? new_rtx : x;
3730 }
3731 
3732 /* Return a constant value currently equivalent to X.
3733    Return 0 if we don't know one.  */
3734 
3735 static rtx
3736 equiv_constant (rtx x)
3737 {
3738   if (REG_P (x)
3739       && REGNO_QTY_VALID_P (REGNO (x)))
3740     {
3741       int x_q = REG_QTY (REGNO (x));
3742       struct qty_table_elem *x_ent = &qty_table[x_q];
3743 
3744       if (x_ent->const_rtx)
3745 	x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3746     }
3747 
3748   if (x == 0 || CONSTANT_P (x))
3749     return x;
3750 
3751   if (GET_CODE (x) == SUBREG)
3752     {
3753       enum machine_mode mode = GET_MODE (x);
3754       enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3755       rtx new_rtx;
3756 
3757       /* See if we previously assigned a constant value to this SUBREG.  */
3758       if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3759           || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3760           || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3761         return new_rtx;
3762 
3763       /* If we didn't and if doing so makes sense, see if we previously
3764 	 assigned a constant value to the enclosing word mode SUBREG.  */
3765       if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)
3766 	  && GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode))
3767 	{
3768 	  int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode);
3769 	  if (byte >= 0 && (byte % UNITS_PER_WORD) == 0)
3770 	    {
3771 	      rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3772 	      new_rtx = lookup_as_function (y, CONST_INT);
3773 	      if (new_rtx)
3774 		return gen_lowpart (mode, new_rtx);
3775 	    }
3776 	}
3777 
3778       /* Otherwise see if we already have a constant for the inner REG,
3779 	 and if that is enough to calculate an equivalent constant for
3780 	 the subreg.  Note that the upper bits of paradoxical subregs
3781 	 are undefined, so they cannot be said to equal anything.  */
3782       if (REG_P (SUBREG_REG (x))
3783 	  && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (imode)
3784 	  && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3785         return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3786 
3787       return 0;
3788     }
3789 
3790   /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3791      the hash table in case its value was seen before.  */
3792 
3793   if (MEM_P (x))
3794     {
3795       struct table_elt *elt;
3796 
3797       x = avoid_constant_pool_reference (x);
3798       if (CONSTANT_P (x))
3799 	return x;
3800 
3801       elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3802       if (elt == 0)
3803 	return 0;
3804 
3805       for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3806 	if (elt->is_const && CONSTANT_P (elt->exp))
3807 	  return elt->exp;
3808     }
3809 
3810   return 0;
3811 }
3812 
3813 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3814    "taken" branch.
3815 
3816    In certain cases, this can cause us to add an equivalence.  For example,
3817    if we are following the taken case of
3818 	if (i == 2)
3819    we can add the fact that `i' and '2' are now equivalent.
3820 
3821    In any case, we can record that this comparison was passed.  If the same
3822    comparison is seen later, we will know its value.  */
3823 
3824 static void
3825 record_jump_equiv (rtx insn, bool taken)
3826 {
3827   int cond_known_true;
3828   rtx op0, op1;
3829   rtx set;
3830   enum machine_mode mode, mode0, mode1;
3831   int reversed_nonequality = 0;
3832   enum rtx_code code;
3833 
3834   /* Ensure this is the right kind of insn.  */
3835   gcc_assert (any_condjump_p (insn));
3836 
3837   set = pc_set (insn);
3838 
3839   /* See if this jump condition is known true or false.  */
3840   if (taken)
3841     cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3842   else
3843     cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3844 
3845   /* Get the type of comparison being done and the operands being compared.
3846      If we had to reverse a non-equality condition, record that fact so we
3847      know that it isn't valid for floating-point.  */
3848   code = GET_CODE (XEXP (SET_SRC (set), 0));
3849   op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3850   op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3851 
3852   code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3853   if (! cond_known_true)
3854     {
3855       code = reversed_comparison_code_parts (code, op0, op1, insn);
3856 
3857       /* Don't remember if we can't find the inverse.  */
3858       if (code == UNKNOWN)
3859 	return;
3860     }
3861 
3862   /* The mode is the mode of the non-constant.  */
3863   mode = mode0;
3864   if (mode1 != VOIDmode)
3865     mode = mode1;
3866 
3867   record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3868 }
3869 
3870 /* Yet another form of subreg creation.  In this case, we want something in
3871    MODE, and we should assume OP has MODE iff it is naturally modeless.  */
3872 
3873 static rtx
3874 record_jump_cond_subreg (enum machine_mode mode, rtx op)
3875 {
3876   enum machine_mode op_mode = GET_MODE (op);
3877   if (op_mode == mode || op_mode == VOIDmode)
3878     return op;
3879   return lowpart_subreg (mode, op, op_mode);
3880 }
3881 
3882 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3883    REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3884    Make any useful entries we can with that information.  Called from
3885    above function and called recursively.  */
3886 
3887 static void
3888 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
3889 		  rtx op1, int reversed_nonequality)
3890 {
3891   unsigned op0_hash, op1_hash;
3892   int op0_in_memory, op1_in_memory;
3893   struct table_elt *op0_elt, *op1_elt;
3894 
3895   /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3896      we know that they are also equal in the smaller mode (this is also
3897      true for all smaller modes whether or not there is a SUBREG, but
3898      is not worth testing for with no SUBREG).  */
3899 
3900   /* Note that GET_MODE (op0) may not equal MODE.  */
3901   if (code == EQ && paradoxical_subreg_p (op0))
3902     {
3903       enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3904       rtx tem = record_jump_cond_subreg (inner_mode, op1);
3905       if (tem)
3906 	record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3907 			  reversed_nonequality);
3908     }
3909 
3910   if (code == EQ && paradoxical_subreg_p (op1))
3911     {
3912       enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3913       rtx tem = record_jump_cond_subreg (inner_mode, op0);
3914       if (tem)
3915 	record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3916 			  reversed_nonequality);
3917     }
3918 
3919   /* Similarly, if this is an NE comparison, and either is a SUBREG
3920      making a smaller mode, we know the whole thing is also NE.  */
3921 
3922   /* Note that GET_MODE (op0) may not equal MODE;
3923      if we test MODE instead, we can get an infinite recursion
3924      alternating between two modes each wider than MODE.  */
3925 
3926   if (code == NE && GET_CODE (op0) == SUBREG
3927       && subreg_lowpart_p (op0)
3928       && (GET_MODE_SIZE (GET_MODE (op0))
3929 	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3930     {
3931       enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3932       rtx tem = record_jump_cond_subreg (inner_mode, op1);
3933       if (tem)
3934 	record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3935 			  reversed_nonequality);
3936     }
3937 
3938   if (code == NE && GET_CODE (op1) == SUBREG
3939       && subreg_lowpart_p (op1)
3940       && (GET_MODE_SIZE (GET_MODE (op1))
3941 	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3942     {
3943       enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3944       rtx tem = record_jump_cond_subreg (inner_mode, op0);
3945       if (tem)
3946 	record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3947 			  reversed_nonequality);
3948     }
3949 
3950   /* Hash both operands.  */
3951 
3952   do_not_record = 0;
3953   hash_arg_in_memory = 0;
3954   op0_hash = HASH (op0, mode);
3955   op0_in_memory = hash_arg_in_memory;
3956 
3957   if (do_not_record)
3958     return;
3959 
3960   do_not_record = 0;
3961   hash_arg_in_memory = 0;
3962   op1_hash = HASH (op1, mode);
3963   op1_in_memory = hash_arg_in_memory;
3964 
3965   if (do_not_record)
3966     return;
3967 
3968   /* Look up both operands.  */
3969   op0_elt = lookup (op0, op0_hash, mode);
3970   op1_elt = lookup (op1, op1_hash, mode);
3971 
3972   /* If both operands are already equivalent or if they are not in the
3973      table but are identical, do nothing.  */
3974   if ((op0_elt != 0 && op1_elt != 0
3975        && op0_elt->first_same_value == op1_elt->first_same_value)
3976       || op0 == op1 || rtx_equal_p (op0, op1))
3977     return;
3978 
3979   /* If we aren't setting two things equal all we can do is save this
3980      comparison.   Similarly if this is floating-point.  In the latter
3981      case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
3982      If we record the equality, we might inadvertently delete code
3983      whose intent was to change -0 to +0.  */
3984 
3985   if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
3986     {
3987       struct qty_table_elem *ent;
3988       int qty;
3989 
3990       /* If we reversed a floating-point comparison, if OP0 is not a
3991 	 register, or if OP1 is neither a register or constant, we can't
3992 	 do anything.  */
3993 
3994       if (!REG_P (op1))
3995 	op1 = equiv_constant (op1);
3996 
3997       if ((reversed_nonequality && FLOAT_MODE_P (mode))
3998 	  || !REG_P (op0) || op1 == 0)
3999 	return;
4000 
4001       /* Put OP0 in the hash table if it isn't already.  This gives it a
4002 	 new quantity number.  */
4003       if (op0_elt == 0)
4004 	{
4005 	  if (insert_regs (op0, NULL, 0))
4006 	    {
4007 	      rehash_using_reg (op0);
4008 	      op0_hash = HASH (op0, mode);
4009 
4010 	      /* If OP0 is contained in OP1, this changes its hash code
4011 		 as well.  Faster to rehash than to check, except
4012 		 for the simple case of a constant.  */
4013 	      if (! CONSTANT_P (op1))
4014 		op1_hash = HASH (op1,mode);
4015 	    }
4016 
4017 	  op0_elt = insert (op0, NULL, op0_hash, mode);
4018 	  op0_elt->in_memory = op0_in_memory;
4019 	}
4020 
4021       qty = REG_QTY (REGNO (op0));
4022       ent = &qty_table[qty];
4023 
4024       ent->comparison_code = code;
4025       if (REG_P (op1))
4026 	{
4027 	  /* Look it up again--in case op0 and op1 are the same.  */
4028 	  op1_elt = lookup (op1, op1_hash, mode);
4029 
4030 	  /* Put OP1 in the hash table so it gets a new quantity number.  */
4031 	  if (op1_elt == 0)
4032 	    {
4033 	      if (insert_regs (op1, NULL, 0))
4034 		{
4035 		  rehash_using_reg (op1);
4036 		  op1_hash = HASH (op1, mode);
4037 		}
4038 
4039 	      op1_elt = insert (op1, NULL, op1_hash, mode);
4040 	      op1_elt->in_memory = op1_in_memory;
4041 	    }
4042 
4043 	  ent->comparison_const = NULL_RTX;
4044 	  ent->comparison_qty = REG_QTY (REGNO (op1));
4045 	}
4046       else
4047 	{
4048 	  ent->comparison_const = op1;
4049 	  ent->comparison_qty = -1;
4050 	}
4051 
4052       return;
4053     }
4054 
4055   /* If either side is still missing an equivalence, make it now,
4056      then merge the equivalences.  */
4057 
4058   if (op0_elt == 0)
4059     {
4060       if (insert_regs (op0, NULL, 0))
4061 	{
4062 	  rehash_using_reg (op0);
4063 	  op0_hash = HASH (op0, mode);
4064 	}
4065 
4066       op0_elt = insert (op0, NULL, op0_hash, mode);
4067       op0_elt->in_memory = op0_in_memory;
4068     }
4069 
4070   if (op1_elt == 0)
4071     {
4072       if (insert_regs (op1, NULL, 0))
4073 	{
4074 	  rehash_using_reg (op1);
4075 	  op1_hash = HASH (op1, mode);
4076 	}
4077 
4078       op1_elt = insert (op1, NULL, op1_hash, mode);
4079       op1_elt->in_memory = op1_in_memory;
4080     }
4081 
4082   merge_equiv_classes (op0_elt, op1_elt);
4083 }
4084 
4085 /* CSE processing for one instruction.
4086 
4087    Most "true" common subexpressions are mostly optimized away in GIMPLE,
4088    but the few that "leak through" are cleaned up by cse_insn, and complex
4089    addressing modes are often formed here.
4090 
4091    The main function is cse_insn, and between here and that function
4092    a couple of helper functions is defined to keep the size of cse_insn
4093    within reasonable proportions.
4094 
4095    Data is shared between the main and helper functions via STRUCT SET,
4096    that contains all data related for every set in the instruction that
4097    is being processed.
4098 
4099    Note that cse_main processes all sets in the instruction.  Most
4100    passes in GCC only process simple SET insns or single_set insns, but
4101    CSE processes insns with multiple sets as well.  */
4102 
4103 /* Data on one SET contained in the instruction.  */
4104 
4105 struct set
4106 {
4107   /* The SET rtx itself.  */
4108   rtx rtl;
4109   /* The SET_SRC of the rtx (the original value, if it is changing).  */
4110   rtx src;
4111   /* The hash-table element for the SET_SRC of the SET.  */
4112   struct table_elt *src_elt;
4113   /* Hash value for the SET_SRC.  */
4114   unsigned src_hash;
4115   /* Hash value for the SET_DEST.  */
4116   unsigned dest_hash;
4117   /* The SET_DEST, with SUBREG, etc., stripped.  */
4118   rtx inner_dest;
4119   /* Nonzero if the SET_SRC is in memory.  */
4120   char src_in_memory;
4121   /* Nonzero if the SET_SRC contains something
4122      whose value cannot be predicted and understood.  */
4123   char src_volatile;
4124   /* Original machine mode, in case it becomes a CONST_INT.
4125      The size of this field should match the size of the mode
4126      field of struct rtx_def (see rtl.h).  */
4127   ENUM_BITFIELD(machine_mode) mode : 8;
4128   /* A constant equivalent for SET_SRC, if any.  */
4129   rtx src_const;
4130   /* Hash value of constant equivalent for SET_SRC.  */
4131   unsigned src_const_hash;
4132   /* Table entry for constant equivalent for SET_SRC, if any.  */
4133   struct table_elt *src_const_elt;
4134   /* Table entry for the destination address.  */
4135   struct table_elt *dest_addr_elt;
4136 };
4137 
4138 /* Special handling for (set REG0 REG1) where REG0 is the
4139    "cheapest", cheaper than REG1.  After cse, REG1 will probably not
4140    be used in the sequel, so (if easily done) change this insn to
4141    (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4142    that computed their value.  Then REG1 will become a dead store
4143    and won't cloud the situation for later optimizations.
4144 
4145    Do not make this change if REG1 is a hard register, because it will
4146    then be used in the sequel and we may be changing a two-operand insn
4147    into a three-operand insn.
4148 
4149    This is the last transformation that cse_insn will try to do.  */
4150 
4151 static void
4152 try_back_substitute_reg (rtx set, rtx insn)
4153 {
4154   rtx dest = SET_DEST (set);
4155   rtx src = SET_SRC (set);
4156 
4157   if (REG_P (dest)
4158       && REG_P (src) && ! HARD_REGISTER_P (src)
4159       && REGNO_QTY_VALID_P (REGNO (src)))
4160     {
4161       int src_q = REG_QTY (REGNO (src));
4162       struct qty_table_elem *src_ent = &qty_table[src_q];
4163 
4164       if (src_ent->first_reg == REGNO (dest))
4165 	{
4166 	  /* Scan for the previous nonnote insn, but stop at a basic
4167 	     block boundary.  */
4168 	  rtx prev = insn;
4169 	  rtx bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
4170 	  do
4171 	    {
4172 	      prev = PREV_INSN (prev);
4173 	    }
4174 	  while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
4175 
4176 	  /* Do not swap the registers around if the previous instruction
4177 	     attaches a REG_EQUIV note to REG1.
4178 
4179 	     ??? It's not entirely clear whether we can transfer a REG_EQUIV
4180 	     from the pseudo that originally shadowed an incoming argument
4181 	     to another register.  Some uses of REG_EQUIV might rely on it
4182 	     being attached to REG1 rather than REG2.
4183 
4184 	     This section previously turned the REG_EQUIV into a REG_EQUAL
4185 	     note.  We cannot do that because REG_EQUIV may provide an
4186 	     uninitialized stack slot when REG_PARM_STACK_SPACE is used.  */
4187 	  if (NONJUMP_INSN_P (prev)
4188 	      && GET_CODE (PATTERN (prev)) == SET
4189 	      && SET_DEST (PATTERN (prev)) == src
4190 	      && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4191 	    {
4192 	      rtx note;
4193 
4194 	      validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4195 	      validate_change (insn, &SET_DEST (set), src, 1);
4196 	      validate_change (insn, &SET_SRC (set), dest, 1);
4197 	      apply_change_group ();
4198 
4199 	      /* If INSN has a REG_EQUAL note, and this note mentions
4200 		 REG0, then we must delete it, because the value in
4201 		 REG0 has changed.  If the note's value is REG1, we must
4202 		 also delete it because that is now this insn's dest.  */
4203 	      note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4204 	      if (note != 0
4205 		  && (reg_mentioned_p (dest, XEXP (note, 0))
4206 		      || rtx_equal_p (src, XEXP (note, 0))))
4207 		remove_note (insn, note);
4208 	    }
4209 	}
4210     }
4211 }
4212 
4213 /* Record all the SETs in this instruction into SETS_PTR,
4214    and return the number of recorded sets.  */
4215 static int
4216 find_sets_in_insn (rtx insn, struct set **psets)
4217 {
4218   struct set *sets = *psets;
4219   int n_sets = 0;
4220   rtx x = PATTERN (insn);
4221 
4222   if (GET_CODE (x) == SET)
4223     {
4224       /* Ignore SETs that are unconditional jumps.
4225 	 They never need cse processing, so this does not hurt.
4226 	 The reason is not efficiency but rather
4227 	 so that we can test at the end for instructions
4228 	 that have been simplified to unconditional jumps
4229 	 and not be misled by unchanged instructions
4230 	 that were unconditional jumps to begin with.  */
4231       if (SET_DEST (x) == pc_rtx
4232 	  && GET_CODE (SET_SRC (x)) == LABEL_REF)
4233 	;
4234       /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4235 	 The hard function value register is used only once, to copy to
4236 	 someplace else, so it isn't worth cse'ing.  */
4237       else if (GET_CODE (SET_SRC (x)) == CALL)
4238 	;
4239       else
4240 	sets[n_sets++].rtl = x;
4241     }
4242   else if (GET_CODE (x) == PARALLEL)
4243     {
4244       int i, lim = XVECLEN (x, 0);
4245 
4246       /* Go over the epressions of the PARALLEL in forward order, to
4247 	 put them in the same order in the SETS array.  */
4248       for (i = 0; i < lim; i++)
4249 	{
4250 	  rtx y = XVECEXP (x, 0, i);
4251 	  if (GET_CODE (y) == SET)
4252 	    {
4253 	      /* As above, we ignore unconditional jumps and call-insns and
4254 		 ignore the result of apply_change_group.  */
4255 	      if (SET_DEST (y) == pc_rtx
4256 		  && GET_CODE (SET_SRC (y)) == LABEL_REF)
4257 		;
4258 	      else if (GET_CODE (SET_SRC (y)) == CALL)
4259 		;
4260 	      else
4261 		sets[n_sets++].rtl = y;
4262 	    }
4263 	}
4264     }
4265 
4266   return n_sets;
4267 }
4268 
4269 /* Where possible, substitute every register reference in the N_SETS
4270    number of SETS in INSN with the the canonical register.
4271 
4272    Register canonicalization propagatest the earliest register (i.e.
4273    one that is set before INSN) with the same value.  This is a very
4274    useful, simple form of CSE, to clean up warts from expanding GIMPLE
4275    to RTL.  For instance, a CONST for an address is usually expanded
4276    multiple times to loads into different registers, thus creating many
4277    subexpressions of the form:
4278 
4279    (set (reg1) (some_const))
4280    (set (mem (... reg1 ...) (thing)))
4281    (set (reg2) (some_const))
4282    (set (mem (... reg2 ...) (thing)))
4283 
4284    After canonicalizing, the code takes the following form:
4285 
4286    (set (reg1) (some_const))
4287    (set (mem (... reg1 ...) (thing)))
4288    (set (reg2) (some_const))
4289    (set (mem (... reg1 ...) (thing)))
4290 
4291    The set to reg2 is now trivially dead, and the memory reference (or
4292    address, or whatever) may be a candidate for further CSEing.
4293 
4294    In this function, the result of apply_change_group can be ignored;
4295    see canon_reg.  */
4296 
4297 static void
4298 canonicalize_insn (rtx insn, struct set **psets, int n_sets)
4299 {
4300   struct set *sets = *psets;
4301   rtx tem;
4302   rtx x = PATTERN (insn);
4303   int i;
4304 
4305   if (CALL_P (insn))
4306     {
4307       for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4308 	if (GET_CODE (XEXP (tem, 0)) != SET)
4309 	  XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4310     }
4311 
4312   if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4313     {
4314       canon_reg (SET_SRC (x), insn);
4315       apply_change_group ();
4316       fold_rtx (SET_SRC (x), insn);
4317     }
4318   else if (GET_CODE (x) == CLOBBER)
4319     {
4320       /* If we clobber memory, canon the address.
4321 	 This does nothing when a register is clobbered
4322 	 because we have already invalidated the reg.  */
4323       if (MEM_P (XEXP (x, 0)))
4324 	canon_reg (XEXP (x, 0), insn);
4325     }
4326   else if (GET_CODE (x) == USE
4327 	   && ! (REG_P (XEXP (x, 0))
4328 		 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4329     /* Canonicalize a USE of a pseudo register or memory location.  */
4330     canon_reg (x, insn);
4331   else if (GET_CODE (x) == ASM_OPERANDS)
4332     {
4333       for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4334 	{
4335 	  rtx input = ASM_OPERANDS_INPUT (x, i);
4336 	  if (!(REG_P (input) && REGNO (input) < FIRST_PSEUDO_REGISTER))
4337 	    {
4338 	      input = canon_reg (input, insn);
4339 	      validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4340 	    }
4341 	}
4342     }
4343   else if (GET_CODE (x) == CALL)
4344     {
4345       canon_reg (x, insn);
4346       apply_change_group ();
4347       fold_rtx (x, insn);
4348     }
4349   else if (DEBUG_INSN_P (insn))
4350     canon_reg (PATTERN (insn), insn);
4351   else if (GET_CODE (x) == PARALLEL)
4352     {
4353       for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4354 	{
4355 	  rtx y = XVECEXP (x, 0, i);
4356 	  if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4357 	    {
4358 	      canon_reg (SET_SRC (y), insn);
4359 	      apply_change_group ();
4360 	      fold_rtx (SET_SRC (y), insn);
4361 	    }
4362 	  else if (GET_CODE (y) == CLOBBER)
4363 	    {
4364 	      if (MEM_P (XEXP (y, 0)))
4365 		canon_reg (XEXP (y, 0), insn);
4366 	    }
4367 	  else if (GET_CODE (y) == USE
4368 		   && ! (REG_P (XEXP (y, 0))
4369 			 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4370 	    canon_reg (y, insn);
4371 	  else if (GET_CODE (y) == CALL)
4372 	    {
4373 	      canon_reg (y, insn);
4374 	      apply_change_group ();
4375 	      fold_rtx (y, insn);
4376 	    }
4377 	}
4378     }
4379 
4380   if (n_sets == 1 && REG_NOTES (insn) != 0
4381       && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4382     {
4383       /* We potentially will process this insn many times.  Therefore,
4384 	 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4385 	 unique set in INSN.
4386 
4387 	 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4388 	 because cse_insn handles those specially.  */
4389       if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4390 	  && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4391 	remove_note (insn, tem);
4392       else
4393 	{
4394 	  canon_reg (XEXP (tem, 0), insn);
4395 	  apply_change_group ();
4396 	  XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4397 	  df_notes_rescan (insn);
4398 	}
4399     }
4400 
4401   /* Canonicalize sources and addresses of destinations.
4402      We do this in a separate pass to avoid problems when a MATCH_DUP is
4403      present in the insn pattern.  In that case, we want to ensure that
4404      we don't break the duplicate nature of the pattern.  So we will replace
4405      both operands at the same time.  Otherwise, we would fail to find an
4406      equivalent substitution in the loop calling validate_change below.
4407 
4408      We used to suppress canonicalization of DEST if it appears in SRC,
4409      but we don't do this any more.  */
4410 
4411   for (i = 0; i < n_sets; i++)
4412     {
4413       rtx dest = SET_DEST (sets[i].rtl);
4414       rtx src = SET_SRC (sets[i].rtl);
4415       rtx new_rtx = canon_reg (src, insn);
4416 
4417       validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4418 
4419       if (GET_CODE (dest) == ZERO_EXTRACT)
4420 	{
4421 	  validate_change (insn, &XEXP (dest, 1),
4422 			   canon_reg (XEXP (dest, 1), insn), 1);
4423 	  validate_change (insn, &XEXP (dest, 2),
4424 			   canon_reg (XEXP (dest, 2), insn), 1);
4425 	}
4426 
4427       while (GET_CODE (dest) == SUBREG
4428 	     || GET_CODE (dest) == ZERO_EXTRACT
4429 	     || GET_CODE (dest) == STRICT_LOW_PART)
4430 	dest = XEXP (dest, 0);
4431 
4432       if (MEM_P (dest))
4433 	canon_reg (dest, insn);
4434     }
4435 
4436   /* Now that we have done all the replacements, we can apply the change
4437      group and see if they all work.  Note that this will cause some
4438      canonicalizations that would have worked individually not to be applied
4439      because some other canonicalization didn't work, but this should not
4440      occur often.
4441 
4442      The result of apply_change_group can be ignored; see canon_reg.  */
4443 
4444   apply_change_group ();
4445 }
4446 
4447 /* Main function of CSE.
4448    First simplify sources and addresses of all assignments
4449    in the instruction, using previously-computed equivalents values.
4450    Then install the new sources and destinations in the table
4451    of available values.  */
4452 
4453 static void
4454 cse_insn (rtx insn)
4455 {
4456   rtx x = PATTERN (insn);
4457   int i;
4458   rtx tem;
4459   int n_sets = 0;
4460 
4461   rtx src_eqv = 0;
4462   struct table_elt *src_eqv_elt = 0;
4463   int src_eqv_volatile = 0;
4464   int src_eqv_in_memory = 0;
4465   unsigned src_eqv_hash = 0;
4466 
4467   struct set *sets = (struct set *) 0;
4468 
4469   if (GET_CODE (x) == SET)
4470     sets = XALLOCA (struct set);
4471   else if (GET_CODE (x) == PARALLEL)
4472     sets = XALLOCAVEC (struct set, XVECLEN (x, 0));
4473 
4474   this_insn = insn;
4475 #ifdef HAVE_cc0
4476   /* Records what this insn does to set CC0.  */
4477   this_insn_cc0 = 0;
4478   this_insn_cc0_mode = VOIDmode;
4479 #endif
4480 
4481   /* Find all regs explicitly clobbered in this insn,
4482      to ensure they are not replaced with any other regs
4483      elsewhere in this insn.  */
4484   invalidate_from_sets_and_clobbers (insn);
4485 
4486   /* Record all the SETs in this instruction.  */
4487   n_sets = find_sets_in_insn (insn, &sets);
4488 
4489   /* Substitute the canonical register where possible.  */
4490   canonicalize_insn (insn, &sets, n_sets);
4491 
4492   /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
4493      if different, or if the DEST is a STRICT_LOW_PART.  The latter condition
4494      is necessary because SRC_EQV is handled specially for this case, and if
4495      it isn't set, then there will be no equivalence for the destination.  */
4496   if (n_sets == 1 && REG_NOTES (insn) != 0
4497       && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4498       && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4499 	  || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4500     src_eqv = copy_rtx (XEXP (tem, 0));
4501 
4502   /* Set sets[i].src_elt to the class each source belongs to.
4503      Detect assignments from or to volatile things
4504      and set set[i] to zero so they will be ignored
4505      in the rest of this function.
4506 
4507      Nothing in this loop changes the hash table or the register chains.  */
4508 
4509   for (i = 0; i < n_sets; i++)
4510     {
4511       bool repeat = false;
4512       rtx src, dest;
4513       rtx src_folded;
4514       struct table_elt *elt = 0, *p;
4515       enum machine_mode mode;
4516       rtx src_eqv_here;
4517       rtx src_const = 0;
4518       rtx src_related = 0;
4519       bool src_related_is_const_anchor = false;
4520       struct table_elt *src_const_elt = 0;
4521       int src_cost = MAX_COST;
4522       int src_eqv_cost = MAX_COST;
4523       int src_folded_cost = MAX_COST;
4524       int src_related_cost = MAX_COST;
4525       int src_elt_cost = MAX_COST;
4526       int src_regcost = MAX_COST;
4527       int src_eqv_regcost = MAX_COST;
4528       int src_folded_regcost = MAX_COST;
4529       int src_related_regcost = MAX_COST;
4530       int src_elt_regcost = MAX_COST;
4531       /* Set nonzero if we need to call force_const_mem on with the
4532 	 contents of src_folded before using it.  */
4533       int src_folded_force_flag = 0;
4534 
4535       dest = SET_DEST (sets[i].rtl);
4536       src = SET_SRC (sets[i].rtl);
4537 
4538       /* If SRC is a constant that has no machine mode,
4539 	 hash it with the destination's machine mode.
4540 	 This way we can keep different modes separate.  */
4541 
4542       mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4543       sets[i].mode = mode;
4544 
4545       if (src_eqv)
4546 	{
4547 	  enum machine_mode eqvmode = mode;
4548 	  if (GET_CODE (dest) == STRICT_LOW_PART)
4549 	    eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4550 	  do_not_record = 0;
4551 	  hash_arg_in_memory = 0;
4552 	  src_eqv_hash = HASH (src_eqv, eqvmode);
4553 
4554 	  /* Find the equivalence class for the equivalent expression.  */
4555 
4556 	  if (!do_not_record)
4557 	    src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4558 
4559 	  src_eqv_volatile = do_not_record;
4560 	  src_eqv_in_memory = hash_arg_in_memory;
4561 	}
4562 
4563       /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4564 	 value of the INNER register, not the destination.  So it is not
4565 	 a valid substitution for the source.  But save it for later.  */
4566       if (GET_CODE (dest) == STRICT_LOW_PART)
4567 	src_eqv_here = 0;
4568       else
4569 	src_eqv_here = src_eqv;
4570 
4571       /* Simplify and foldable subexpressions in SRC.  Then get the fully-
4572 	 simplified result, which may not necessarily be valid.  */
4573       src_folded = fold_rtx (src, insn);
4574 
4575 #if 0
4576       /* ??? This caused bad code to be generated for the m68k port with -O2.
4577 	 Suppose src is (CONST_INT -1), and that after truncation src_folded
4578 	 is (CONST_INT 3).  Suppose src_folded is then used for src_const.
4579 	 At the end we will add src and src_const to the same equivalence
4580 	 class.  We now have 3 and -1 on the same equivalence class.  This
4581 	 causes later instructions to be mis-optimized.  */
4582       /* If storing a constant in a bitfield, pre-truncate the constant
4583 	 so we will be able to record it later.  */
4584       if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4585 	{
4586 	  rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4587 
4588 	  if (CONST_INT_P (src)
4589 	      && CONST_INT_P (width)
4590 	      && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4591 	      && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4592 	    src_folded
4593 	      = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4594 					  << INTVAL (width)) - 1));
4595 	}
4596 #endif
4597 
4598       /* Compute SRC's hash code, and also notice if it
4599 	 should not be recorded at all.  In that case,
4600 	 prevent any further processing of this assignment.  */
4601       do_not_record = 0;
4602       hash_arg_in_memory = 0;
4603 
4604       sets[i].src = src;
4605       sets[i].src_hash = HASH (src, mode);
4606       sets[i].src_volatile = do_not_record;
4607       sets[i].src_in_memory = hash_arg_in_memory;
4608 
4609       /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4610 	 a pseudo, do not record SRC.  Using SRC as a replacement for
4611 	 anything else will be incorrect in that situation.  Note that
4612 	 this usually occurs only for stack slots, in which case all the
4613 	 RTL would be referring to SRC, so we don't lose any optimization
4614 	 opportunities by not having SRC in the hash table.  */
4615 
4616       if (MEM_P (src)
4617 	  && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4618 	  && REG_P (dest)
4619 	  && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4620 	sets[i].src_volatile = 1;
4621 
4622 #if 0
4623       /* It is no longer clear why we used to do this, but it doesn't
4624 	 appear to still be needed.  So let's try without it since this
4625 	 code hurts cse'ing widened ops.  */
4626       /* If source is a paradoxical subreg (such as QI treated as an SI),
4627 	 treat it as volatile.  It may do the work of an SI in one context
4628 	 where the extra bits are not being used, but cannot replace an SI
4629 	 in general.  */
4630       if (paradoxical_subreg_p (src))
4631 	sets[i].src_volatile = 1;
4632 #endif
4633 
4634       /* Locate all possible equivalent forms for SRC.  Try to replace
4635          SRC in the insn with each cheaper equivalent.
4636 
4637          We have the following types of equivalents: SRC itself, a folded
4638          version, a value given in a REG_EQUAL note, or a value related
4639 	 to a constant.
4640 
4641          Each of these equivalents may be part of an additional class
4642          of equivalents (if more than one is in the table, they must be in
4643          the same class; we check for this).
4644 
4645 	 If the source is volatile, we don't do any table lookups.
4646 
4647          We note any constant equivalent for possible later use in a
4648          REG_NOTE.  */
4649 
4650       if (!sets[i].src_volatile)
4651 	elt = lookup (src, sets[i].src_hash, mode);
4652 
4653       sets[i].src_elt = elt;
4654 
4655       if (elt && src_eqv_here && src_eqv_elt)
4656 	{
4657 	  if (elt->first_same_value != src_eqv_elt->first_same_value)
4658 	    {
4659 	      /* The REG_EQUAL is indicating that two formerly distinct
4660 		 classes are now equivalent.  So merge them.  */
4661 	      merge_equiv_classes (elt, src_eqv_elt);
4662 	      src_eqv_hash = HASH (src_eqv, elt->mode);
4663 	      src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4664 	    }
4665 
4666 	  src_eqv_here = 0;
4667 	}
4668 
4669       else if (src_eqv_elt)
4670 	elt = src_eqv_elt;
4671 
4672       /* Try to find a constant somewhere and record it in `src_const'.
4673 	 Record its table element, if any, in `src_const_elt'.  Look in
4674 	 any known equivalences first.  (If the constant is not in the
4675 	 table, also set `sets[i].src_const_hash').  */
4676       if (elt)
4677 	for (p = elt->first_same_value; p; p = p->next_same_value)
4678 	  if (p->is_const)
4679 	    {
4680 	      src_const = p->exp;
4681 	      src_const_elt = elt;
4682 	      break;
4683 	    }
4684 
4685       if (src_const == 0
4686 	  && (CONSTANT_P (src_folded)
4687 	      /* Consider (minus (label_ref L1) (label_ref L2)) as
4688 		 "constant" here so we will record it. This allows us
4689 		 to fold switch statements when an ADDR_DIFF_VEC is used.  */
4690 	      || (GET_CODE (src_folded) == MINUS
4691 		  && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4692 		  && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4693 	src_const = src_folded, src_const_elt = elt;
4694       else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4695 	src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4696 
4697       /* If we don't know if the constant is in the table, get its
4698 	 hash code and look it up.  */
4699       if (src_const && src_const_elt == 0)
4700 	{
4701 	  sets[i].src_const_hash = HASH (src_const, mode);
4702 	  src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4703 	}
4704 
4705       sets[i].src_const = src_const;
4706       sets[i].src_const_elt = src_const_elt;
4707 
4708       /* If the constant and our source are both in the table, mark them as
4709 	 equivalent.  Otherwise, if a constant is in the table but the source
4710 	 isn't, set ELT to it.  */
4711       if (src_const_elt && elt
4712 	  && src_const_elt->first_same_value != elt->first_same_value)
4713 	merge_equiv_classes (elt, src_const_elt);
4714       else if (src_const_elt && elt == 0)
4715 	elt = src_const_elt;
4716 
4717       /* See if there is a register linearly related to a constant
4718          equivalent of SRC.  */
4719       if (src_const
4720 	  && (GET_CODE (src_const) == CONST
4721 	      || (src_const_elt && src_const_elt->related_value != 0)))
4722 	{
4723 	  src_related = use_related_value (src_const, src_const_elt);
4724 	  if (src_related)
4725 	    {
4726 	      struct table_elt *src_related_elt
4727 		= lookup (src_related, HASH (src_related, mode), mode);
4728 	      if (src_related_elt && elt)
4729 		{
4730 		  if (elt->first_same_value
4731 		      != src_related_elt->first_same_value)
4732 		    /* This can occur when we previously saw a CONST
4733 		       involving a SYMBOL_REF and then see the SYMBOL_REF
4734 		       twice.  Merge the involved classes.  */
4735 		    merge_equiv_classes (elt, src_related_elt);
4736 
4737 		  src_related = 0;
4738 		  src_related_elt = 0;
4739 		}
4740 	      else if (src_related_elt && elt == 0)
4741 		elt = src_related_elt;
4742 	    }
4743 	}
4744 
4745       /* See if we have a CONST_INT that is already in a register in a
4746 	 wider mode.  */
4747 
4748       if (src_const && src_related == 0 && CONST_INT_P (src_const)
4749 	  && GET_MODE_CLASS (mode) == MODE_INT
4750 	  && GET_MODE_PRECISION (mode) < BITS_PER_WORD)
4751 	{
4752 	  enum machine_mode wider_mode;
4753 
4754 	  for (wider_mode = GET_MODE_WIDER_MODE (mode);
4755 	       wider_mode != VOIDmode
4756 	       && GET_MODE_PRECISION (wider_mode) <= BITS_PER_WORD
4757 	       && src_related == 0;
4758 	       wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4759 	    {
4760 	      struct table_elt *const_elt
4761 		= lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4762 
4763 	      if (const_elt == 0)
4764 		continue;
4765 
4766 	      for (const_elt = const_elt->first_same_value;
4767 		   const_elt; const_elt = const_elt->next_same_value)
4768 		if (REG_P (const_elt->exp))
4769 		  {
4770 		    src_related = gen_lowpart (mode, const_elt->exp);
4771 		    break;
4772 		  }
4773 	    }
4774 	}
4775 
4776       /* Another possibility is that we have an AND with a constant in
4777 	 a mode narrower than a word.  If so, it might have been generated
4778 	 as part of an "if" which would narrow the AND.  If we already
4779 	 have done the AND in a wider mode, we can use a SUBREG of that
4780 	 value.  */
4781 
4782       if (flag_expensive_optimizations && ! src_related
4783 	  && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
4784 	  && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4785 	{
4786 	  enum machine_mode tmode;
4787 	  rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4788 
4789 	  for (tmode = GET_MODE_WIDER_MODE (mode);
4790 	       GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4791 	       tmode = GET_MODE_WIDER_MODE (tmode))
4792 	    {
4793 	      rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4794 	      struct table_elt *larger_elt;
4795 
4796 	      if (inner)
4797 		{
4798 		  PUT_MODE (new_and, tmode);
4799 		  XEXP (new_and, 0) = inner;
4800 		  larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4801 		  if (larger_elt == 0)
4802 		    continue;
4803 
4804 		  for (larger_elt = larger_elt->first_same_value;
4805 		       larger_elt; larger_elt = larger_elt->next_same_value)
4806 		    if (REG_P (larger_elt->exp))
4807 		      {
4808 			src_related
4809 			  = gen_lowpart (mode, larger_elt->exp);
4810 			break;
4811 		      }
4812 
4813 		  if (src_related)
4814 		    break;
4815 		}
4816 	    }
4817 	}
4818 
4819 #ifdef LOAD_EXTEND_OP
4820       /* See if a MEM has already been loaded with a widening operation;
4821 	 if it has, we can use a subreg of that.  Many CISC machines
4822 	 also have such operations, but this is only likely to be
4823 	 beneficial on these machines.  */
4824 
4825       if (flag_expensive_optimizations && src_related == 0
4826 	  && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4827 	  && GET_MODE_CLASS (mode) == MODE_INT
4828 	  && MEM_P (src) && ! do_not_record
4829 	  && LOAD_EXTEND_OP (mode) != UNKNOWN)
4830 	{
4831 	  struct rtx_def memory_extend_buf;
4832 	  rtx memory_extend_rtx = &memory_extend_buf;
4833 	  enum machine_mode tmode;
4834 
4835 	  /* Set what we are trying to extend and the operation it might
4836 	     have been extended with.  */
4837 	  memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
4838 	  PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4839 	  XEXP (memory_extend_rtx, 0) = src;
4840 
4841 	  for (tmode = GET_MODE_WIDER_MODE (mode);
4842 	       GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4843 	       tmode = GET_MODE_WIDER_MODE (tmode))
4844 	    {
4845 	      struct table_elt *larger_elt;
4846 
4847 	      PUT_MODE (memory_extend_rtx, tmode);
4848 	      larger_elt = lookup (memory_extend_rtx,
4849 				   HASH (memory_extend_rtx, tmode), tmode);
4850 	      if (larger_elt == 0)
4851 		continue;
4852 
4853 	      for (larger_elt = larger_elt->first_same_value;
4854 		   larger_elt; larger_elt = larger_elt->next_same_value)
4855 		if (REG_P (larger_elt->exp))
4856 		  {
4857 		    src_related = gen_lowpart (mode, larger_elt->exp);
4858 		    break;
4859 		  }
4860 
4861 	      if (src_related)
4862 		break;
4863 	    }
4864 	}
4865 #endif /* LOAD_EXTEND_OP */
4866 
4867       /* Try to express the constant using a register+offset expression
4868 	 derived from a constant anchor.  */
4869 
4870       if (targetm.const_anchor
4871 	  && !src_related
4872 	  && src_const
4873 	  && GET_CODE (src_const) == CONST_INT)
4874 	{
4875 	  src_related = try_const_anchors (src_const, mode);
4876 	  src_related_is_const_anchor = src_related != NULL_RTX;
4877 	}
4878 
4879 
4880       if (src == src_folded)
4881 	src_folded = 0;
4882 
4883       /* At this point, ELT, if nonzero, points to a class of expressions
4884          equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4885 	 and SRC_RELATED, if nonzero, each contain additional equivalent
4886 	 expressions.  Prune these latter expressions by deleting expressions
4887 	 already in the equivalence class.
4888 
4889 	 Check for an equivalent identical to the destination.  If found,
4890 	 this is the preferred equivalent since it will likely lead to
4891 	 elimination of the insn.  Indicate this by placing it in
4892 	 `src_related'.  */
4893 
4894       if (elt)
4895 	elt = elt->first_same_value;
4896       for (p = elt; p; p = p->next_same_value)
4897 	{
4898 	  enum rtx_code code = GET_CODE (p->exp);
4899 
4900 	  /* If the expression is not valid, ignore it.  Then we do not
4901 	     have to check for validity below.  In most cases, we can use
4902 	     `rtx_equal_p', since canonicalization has already been done.  */
4903 	  if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4904 	    continue;
4905 
4906 	  /* Also skip paradoxical subregs, unless that's what we're
4907 	     looking for.  */
4908 	  if (paradoxical_subreg_p (p->exp)
4909 	      && ! (src != 0
4910 		    && GET_CODE (src) == SUBREG
4911 		    && GET_MODE (src) == GET_MODE (p->exp)
4912 		    && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4913 			< GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4914 	    continue;
4915 
4916 	  if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4917 	    src = 0;
4918 	  else if (src_folded && GET_CODE (src_folded) == code
4919 		   && rtx_equal_p (src_folded, p->exp))
4920 	    src_folded = 0;
4921 	  else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4922 		   && rtx_equal_p (src_eqv_here, p->exp))
4923 	    src_eqv_here = 0;
4924 	  else if (src_related && GET_CODE (src_related) == code
4925 		   && rtx_equal_p (src_related, p->exp))
4926 	    src_related = 0;
4927 
4928 	  /* This is the same as the destination of the insns, we want
4929 	     to prefer it.  Copy it to src_related.  The code below will
4930 	     then give it a negative cost.  */
4931 	  if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4932 	    src_related = dest;
4933 	}
4934 
4935       /* Find the cheapest valid equivalent, trying all the available
4936          possibilities.  Prefer items not in the hash table to ones
4937          that are when they are equal cost.  Note that we can never
4938          worsen an insn as the current contents will also succeed.
4939 	 If we find an equivalent identical to the destination, use it as best,
4940 	 since this insn will probably be eliminated in that case.  */
4941       if (src)
4942 	{
4943 	  if (rtx_equal_p (src, dest))
4944 	    src_cost = src_regcost = -1;
4945 	  else
4946 	    {
4947 	      src_cost = COST (src);
4948 	      src_regcost = approx_reg_cost (src);
4949 	    }
4950 	}
4951 
4952       if (src_eqv_here)
4953 	{
4954 	  if (rtx_equal_p (src_eqv_here, dest))
4955 	    src_eqv_cost = src_eqv_regcost = -1;
4956 	  else
4957 	    {
4958 	      src_eqv_cost = COST (src_eqv_here);
4959 	      src_eqv_regcost = approx_reg_cost (src_eqv_here);
4960 	    }
4961 	}
4962 
4963       if (src_folded)
4964 	{
4965 	  if (rtx_equal_p (src_folded, dest))
4966 	    src_folded_cost = src_folded_regcost = -1;
4967 	  else
4968 	    {
4969 	      src_folded_cost = COST (src_folded);
4970 	      src_folded_regcost = approx_reg_cost (src_folded);
4971 	    }
4972 	}
4973 
4974       if (src_related)
4975 	{
4976 	  if (rtx_equal_p (src_related, dest))
4977 	    src_related_cost = src_related_regcost = -1;
4978 	  else
4979 	    {
4980 	      src_related_cost = COST (src_related);
4981 	      src_related_regcost = approx_reg_cost (src_related);
4982 
4983 	      /* If a const-anchor is used to synthesize a constant that
4984 		 normally requires multiple instructions then slightly prefer
4985 		 it over the original sequence.  These instructions are likely
4986 		 to become redundant now.  We can't compare against the cost
4987 		 of src_eqv_here because, on MIPS for example, multi-insn
4988 		 constants have zero cost; they are assumed to be hoisted from
4989 		 loops.  */
4990 	      if (src_related_is_const_anchor
4991 		  && src_related_cost == src_cost
4992 		  && src_eqv_here)
4993 		src_related_cost--;
4994 	    }
4995 	}
4996 
4997       /* If this was an indirect jump insn, a known label will really be
4998 	 cheaper even though it looks more expensive.  */
4999       if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5000 	src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5001 
5002       /* Terminate loop when replacement made.  This must terminate since
5003          the current contents will be tested and will always be valid.  */
5004       while (1)
5005 	{
5006 	  rtx trial;
5007 
5008 	  /* Skip invalid entries.  */
5009 	  while (elt && !REG_P (elt->exp)
5010 		 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5011 	    elt = elt->next_same_value;
5012 
5013 	  /* A paradoxical subreg would be bad here: it'll be the right
5014 	     size, but later may be adjusted so that the upper bits aren't
5015 	     what we want.  So reject it.  */
5016 	  if (elt != 0
5017 	      && paradoxical_subreg_p (elt->exp)
5018 	      /* It is okay, though, if the rtx we're trying to match
5019 		 will ignore any of the bits we can't predict.  */
5020 	      && ! (src != 0
5021 		    && GET_CODE (src) == SUBREG
5022 		    && GET_MODE (src) == GET_MODE (elt->exp)
5023 		    && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5024 			< GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5025 	    {
5026 	      elt = elt->next_same_value;
5027 	      continue;
5028 	    }
5029 
5030 	  if (elt)
5031 	    {
5032 	      src_elt_cost = elt->cost;
5033 	      src_elt_regcost = elt->regcost;
5034 	    }
5035 
5036 	  /* Find cheapest and skip it for the next time.   For items
5037 	     of equal cost, use this order:
5038 	     src_folded, src, src_eqv, src_related and hash table entry.  */
5039 	  if (src_folded
5040 	      && preferable (src_folded_cost, src_folded_regcost,
5041 			     src_cost, src_regcost) <= 0
5042 	      && preferable (src_folded_cost, src_folded_regcost,
5043 			     src_eqv_cost, src_eqv_regcost) <= 0
5044 	      && preferable (src_folded_cost, src_folded_regcost,
5045 			     src_related_cost, src_related_regcost) <= 0
5046 	      && preferable (src_folded_cost, src_folded_regcost,
5047 			     src_elt_cost, src_elt_regcost) <= 0)
5048 	    {
5049 	      trial = src_folded, src_folded_cost = MAX_COST;
5050 	      if (src_folded_force_flag)
5051 		{
5052 		  rtx forced = force_const_mem (mode, trial);
5053 		  if (forced)
5054 		    trial = forced;
5055 		}
5056 	    }
5057 	  else if (src
5058 		   && preferable (src_cost, src_regcost,
5059 				  src_eqv_cost, src_eqv_regcost) <= 0
5060 		   && preferable (src_cost, src_regcost,
5061 				  src_related_cost, src_related_regcost) <= 0
5062 		   && preferable (src_cost, src_regcost,
5063 				  src_elt_cost, src_elt_regcost) <= 0)
5064 	    trial = src, src_cost = MAX_COST;
5065 	  else if (src_eqv_here
5066 		   && preferable (src_eqv_cost, src_eqv_regcost,
5067 				  src_related_cost, src_related_regcost) <= 0
5068 		   && preferable (src_eqv_cost, src_eqv_regcost,
5069 				  src_elt_cost, src_elt_regcost) <= 0)
5070 	    trial = src_eqv_here, src_eqv_cost = MAX_COST;
5071 	  else if (src_related
5072 		   && preferable (src_related_cost, src_related_regcost,
5073 				  src_elt_cost, src_elt_regcost) <= 0)
5074 	    trial = src_related, src_related_cost = MAX_COST;
5075 	  else
5076 	    {
5077 	      trial = elt->exp;
5078 	      elt = elt->next_same_value;
5079 	      src_elt_cost = MAX_COST;
5080 	    }
5081 
5082 	  /* Avoid creation of overlapping memory moves.  */
5083 	  if (MEM_P (trial) && MEM_P (SET_DEST (sets[i].rtl)))
5084 	    {
5085 	      rtx src, dest;
5086 
5087 	      /* BLKmode moves are not handled by cse anyway.  */
5088 	      if (GET_MODE (trial) == BLKmode)
5089 		break;
5090 
5091 	      src = canon_rtx (trial);
5092 	      dest = canon_rtx (SET_DEST (sets[i].rtl));
5093 
5094 	      if (!MEM_P (src) || !MEM_P (dest)
5095 		  || !nonoverlapping_memrefs_p (src, dest, false))
5096 		break;
5097 	    }
5098 
5099 	  /* Try to optimize
5100 	     (set (reg:M N) (const_int A))
5101 	     (set (reg:M2 O) (const_int B))
5102 	     (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5103 		  (reg:M2 O)).  */
5104 	  if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5105 	      && CONST_INT_P (trial)
5106 	      && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5107 	      && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5108 	      && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
5109 	      && (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl)))
5110 		  >= INTVAL (XEXP (SET_DEST (sets[i].rtl), 1)))
5111 	      && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5112 		  + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5113 		  <= HOST_BITS_PER_WIDE_INT))
5114 	    {
5115 	      rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5116 	      rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5117 	      rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5118 	      unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5119 	      struct table_elt *dest_elt
5120 		= lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5121 	      rtx dest_cst = NULL;
5122 
5123 	      if (dest_elt)
5124 		for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5125 		  if (p->is_const && CONST_INT_P (p->exp))
5126 		    {
5127 		      dest_cst = p->exp;
5128 		      break;
5129 		    }
5130 	      if (dest_cst)
5131 		{
5132 		  HOST_WIDE_INT val = INTVAL (dest_cst);
5133 		  HOST_WIDE_INT mask;
5134 		  unsigned int shift;
5135 		  if (BITS_BIG_ENDIAN)
5136 		    shift = GET_MODE_PRECISION (GET_MODE (dest_reg))
5137 			    - INTVAL (pos) - INTVAL (width);
5138 		  else
5139 		    shift = INTVAL (pos);
5140 		  if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5141 		    mask = ~(HOST_WIDE_INT) 0;
5142 		  else
5143 		    mask = ((HOST_WIDE_INT) 1 << INTVAL (width)) - 1;
5144 		  val &= ~(mask << shift);
5145 		  val |= (INTVAL (trial) & mask) << shift;
5146 		  val = trunc_int_for_mode (val, GET_MODE (dest_reg));
5147 		  validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5148 					   dest_reg, 1);
5149 		  validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5150 					   GEN_INT (val), 1);
5151 		  if (apply_change_group ())
5152 		    {
5153 		      rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5154 		      if (note)
5155 			{
5156 			  remove_note (insn, note);
5157 			  df_notes_rescan (insn);
5158 			}
5159 		      src_eqv = NULL_RTX;
5160 		      src_eqv_elt = NULL;
5161 		      src_eqv_volatile = 0;
5162 		      src_eqv_in_memory = 0;
5163 		      src_eqv_hash = 0;
5164 		      repeat = true;
5165 		      break;
5166 		    }
5167 		}
5168 	    }
5169 
5170 	  /* We don't normally have an insn matching (set (pc) (pc)), so
5171 	     check for this separately here.  We will delete such an
5172 	     insn below.
5173 
5174 	     For other cases such as a table jump or conditional jump
5175 	     where we know the ultimate target, go ahead and replace the
5176 	     operand.  While that may not make a valid insn, we will
5177 	     reemit the jump below (and also insert any necessary
5178 	     barriers).  */
5179 	  if (n_sets == 1 && dest == pc_rtx
5180 	      && (trial == pc_rtx
5181 		  || (GET_CODE (trial) == LABEL_REF
5182 		      && ! condjump_p (insn))))
5183 	    {
5184 	      /* Don't substitute non-local labels, this confuses CFG.  */
5185 	      if (GET_CODE (trial) == LABEL_REF
5186 		  && LABEL_REF_NONLOCAL_P (trial))
5187 		continue;
5188 
5189 	      SET_SRC (sets[i].rtl) = trial;
5190 	      cse_jumps_altered = true;
5191 	      break;
5192 	    }
5193 
5194 	  /* Reject certain invalid forms of CONST that we create.  */
5195 	  else if (CONSTANT_P (trial)
5196 		   && GET_CODE (trial) == CONST
5197 		   /* Reject cases that will cause decode_rtx_const to
5198 		      die.  On the alpha when simplifying a switch, we
5199 		      get (const (truncate (minus (label_ref)
5200 		      (label_ref)))).  */
5201 		   && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5202 		       /* Likewise on IA-64, except without the
5203 			  truncate.  */
5204 		       || (GET_CODE (XEXP (trial, 0)) == MINUS
5205 			   && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5206 			   && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5207 	    /* Do nothing for this case.  */
5208 	    ;
5209 
5210 	  /* Look for a substitution that makes a valid insn.  */
5211 	  else if (validate_unshare_change
5212 		     (insn, &SET_SRC (sets[i].rtl), trial, 0))
5213 	    {
5214 	      rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
5215 
5216 	      /* The result of apply_change_group can be ignored; see
5217 		 canon_reg.  */
5218 
5219 	      validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
5220 	      apply_change_group ();
5221 
5222 	      break;
5223 	    }
5224 
5225 	  /* If we previously found constant pool entries for
5226 	     constants and this is a constant, try making a
5227 	     pool entry.  Put it in src_folded unless we already have done
5228 	     this since that is where it likely came from.  */
5229 
5230 	  else if (constant_pool_entries_cost
5231 		   && CONSTANT_P (trial)
5232 		   && (src_folded == 0
5233 		       || (!MEM_P (src_folded)
5234 			   && ! src_folded_force_flag))
5235 		   && GET_MODE_CLASS (mode) != MODE_CC
5236 		   && mode != VOIDmode)
5237 	    {
5238 	      src_folded_force_flag = 1;
5239 	      src_folded = trial;
5240 	      src_folded_cost = constant_pool_entries_cost;
5241 	      src_folded_regcost = constant_pool_entries_regcost;
5242 	    }
5243 	}
5244 
5245       /* If we changed the insn too much, handle this set from scratch.  */
5246       if (repeat)
5247 	{
5248 	  i--;
5249 	  continue;
5250 	}
5251 
5252       src = SET_SRC (sets[i].rtl);
5253 
5254       /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5255 	 However, there is an important exception:  If both are registers
5256 	 that are not the head of their equivalence class, replace SET_SRC
5257 	 with the head of the class.  If we do not do this, we will have
5258 	 both registers live over a portion of the basic block.  This way,
5259 	 their lifetimes will likely abut instead of overlapping.  */
5260       if (REG_P (dest)
5261 	  && REGNO_QTY_VALID_P (REGNO (dest)))
5262 	{
5263 	  int dest_q = REG_QTY (REGNO (dest));
5264 	  struct qty_table_elem *dest_ent = &qty_table[dest_q];
5265 
5266 	  if (dest_ent->mode == GET_MODE (dest)
5267 	      && dest_ent->first_reg != REGNO (dest)
5268 	      && REG_P (src) && REGNO (src) == REGNO (dest)
5269 	      /* Don't do this if the original insn had a hard reg as
5270 		 SET_SRC or SET_DEST.  */
5271 	      && (!REG_P (sets[i].src)
5272 		  || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5273 	      && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5274 	    /* We can't call canon_reg here because it won't do anything if
5275 	       SRC is a hard register.  */
5276 	    {
5277 	      int src_q = REG_QTY (REGNO (src));
5278 	      struct qty_table_elem *src_ent = &qty_table[src_q];
5279 	      int first = src_ent->first_reg;
5280 	      rtx new_src
5281 		= (first >= FIRST_PSEUDO_REGISTER
5282 		   ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5283 
5284 	      /* We must use validate-change even for this, because this
5285 		 might be a special no-op instruction, suitable only to
5286 		 tag notes onto.  */
5287 	      if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5288 		{
5289 		  src = new_src;
5290 		  /* If we had a constant that is cheaper than what we are now
5291 		     setting SRC to, use that constant.  We ignored it when we
5292 		     thought we could make this into a no-op.  */
5293 		  if (src_const && COST (src_const) < COST (src)
5294 		      && validate_change (insn, &SET_SRC (sets[i].rtl),
5295 					  src_const, 0))
5296 		    src = src_const;
5297 		}
5298 	    }
5299 	}
5300 
5301       /* If we made a change, recompute SRC values.  */
5302       if (src != sets[i].src)
5303 	{
5304 	  do_not_record = 0;
5305 	  hash_arg_in_memory = 0;
5306 	  sets[i].src = src;
5307 	  sets[i].src_hash = HASH (src, mode);
5308 	  sets[i].src_volatile = do_not_record;
5309 	  sets[i].src_in_memory = hash_arg_in_memory;
5310 	  sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5311 	}
5312 
5313       /* If this is a single SET, we are setting a register, and we have an
5314 	 equivalent constant, we want to add a REG_EQUAL note if the constant
5315 	 is different from the source.  We don't want to do it for a constant
5316 	 pseudo since verifying that this pseudo hasn't been eliminated is a
5317 	 pain; moreover such a note won't help anything.
5318 
5319 	 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5320 	 which can be created for a reference to a compile time computable
5321 	 entry in a jump table.  */
5322       if (n_sets == 1
5323 	  && REG_P (dest)
5324 	  && src_const
5325 	  && !REG_P (src_const)
5326 	  && !(GET_CODE (src_const) == SUBREG
5327 	       && REG_P (SUBREG_REG (src_const)))
5328 	  && !(GET_CODE (src_const) == CONST
5329 	       && GET_CODE (XEXP (src_const, 0)) == MINUS
5330 	       && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5331 	       && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF)
5332 	  && !rtx_equal_p (src, src_const))
5333 	{
5334 	  /* Make sure that the rtx is not shared.  */
5335 	  src_const = copy_rtx (src_const);
5336 
5337 	  /* Record the actual constant value in a REG_EQUAL note,
5338 	     making a new one if one does not already exist.  */
5339 	  set_unique_reg_note (insn, REG_EQUAL, src_const);
5340 	  df_notes_rescan (insn);
5341 	}
5342 
5343       /* Now deal with the destination.  */
5344       do_not_record = 0;
5345 
5346       /* Look within any ZERO_EXTRACT to the MEM or REG within it.  */
5347       while (GET_CODE (dest) == SUBREG
5348 	     || GET_CODE (dest) == ZERO_EXTRACT
5349 	     || GET_CODE (dest) == STRICT_LOW_PART)
5350 	dest = XEXP (dest, 0);
5351 
5352       sets[i].inner_dest = dest;
5353 
5354       if (MEM_P (dest))
5355 	{
5356 #ifdef PUSH_ROUNDING
5357 	  /* Stack pushes invalidate the stack pointer.  */
5358 	  rtx addr = XEXP (dest, 0);
5359 	  if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5360 	      && XEXP (addr, 0) == stack_pointer_rtx)
5361 	    invalidate (stack_pointer_rtx, VOIDmode);
5362 #endif
5363 	  dest = fold_rtx (dest, insn);
5364 	}
5365 
5366       /* Compute the hash code of the destination now,
5367 	 before the effects of this instruction are recorded,
5368 	 since the register values used in the address computation
5369 	 are those before this instruction.  */
5370       sets[i].dest_hash = HASH (dest, mode);
5371 
5372       /* Don't enter a bit-field in the hash table
5373 	 because the value in it after the store
5374 	 may not equal what was stored, due to truncation.  */
5375 
5376       if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5377 	{
5378 	  rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5379 
5380 	  if (src_const != 0 && CONST_INT_P (src_const)
5381 	      && CONST_INT_P (width)
5382 	      && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5383 	      && ! (INTVAL (src_const)
5384 		    & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5385 	    /* Exception: if the value is constant,
5386 	       and it won't be truncated, record it.  */
5387 	    ;
5388 	  else
5389 	    {
5390 	      /* This is chosen so that the destination will be invalidated
5391 		 but no new value will be recorded.
5392 		 We must invalidate because sometimes constant
5393 		 values can be recorded for bitfields.  */
5394 	      sets[i].src_elt = 0;
5395 	      sets[i].src_volatile = 1;
5396 	      src_eqv = 0;
5397 	      src_eqv_elt = 0;
5398 	    }
5399 	}
5400 
5401       /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5402 	 the insn.  */
5403       else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5404 	{
5405 	  /* One less use of the label this insn used to jump to.  */
5406 	  delete_insn_and_edges (insn);
5407 	  cse_jumps_altered = true;
5408 	  /* No more processing for this set.  */
5409 	  sets[i].rtl = 0;
5410 	}
5411 
5412       /* If this SET is now setting PC to a label, we know it used to
5413 	 be a conditional or computed branch.  */
5414       else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5415 	       && !LABEL_REF_NONLOCAL_P (src))
5416 	{
5417 	  /* We reemit the jump in as many cases as possible just in
5418 	     case the form of an unconditional jump is significantly
5419 	     different than a computed jump or conditional jump.
5420 
5421 	     If this insn has multiple sets, then reemitting the
5422 	     jump is nontrivial.  So instead we just force rerecognition
5423 	     and hope for the best.  */
5424 	  if (n_sets == 1)
5425 	    {
5426 	      rtx new_rtx, note;
5427 
5428 	      new_rtx = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5429 	      JUMP_LABEL (new_rtx) = XEXP (src, 0);
5430 	      LABEL_NUSES (XEXP (src, 0))++;
5431 
5432 	      /* Make sure to copy over REG_NON_LOCAL_GOTO.  */
5433 	      note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5434 	      if (note)
5435 		{
5436 		  XEXP (note, 1) = NULL_RTX;
5437 		  REG_NOTES (new_rtx) = note;
5438 		}
5439 
5440 	      delete_insn_and_edges (insn);
5441 	      insn = new_rtx;
5442 	    }
5443 	  else
5444 	    INSN_CODE (insn) = -1;
5445 
5446 	  /* Do not bother deleting any unreachable code, let jump do it.  */
5447 	  cse_jumps_altered = true;
5448 	  sets[i].rtl = 0;
5449 	}
5450 
5451       /* If destination is volatile, invalidate it and then do no further
5452 	 processing for this assignment.  */
5453 
5454       else if (do_not_record)
5455 	{
5456 	  if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5457 	    invalidate (dest, VOIDmode);
5458 	  else if (MEM_P (dest))
5459 	    invalidate (dest, VOIDmode);
5460 	  else if (GET_CODE (dest) == STRICT_LOW_PART
5461 		   || GET_CODE (dest) == ZERO_EXTRACT)
5462 	    invalidate (XEXP (dest, 0), GET_MODE (dest));
5463 	  sets[i].rtl = 0;
5464 	}
5465 
5466       if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5467 	sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5468 
5469 #ifdef HAVE_cc0
5470       /* If setting CC0, record what it was set to, or a constant, if it
5471 	 is equivalent to a constant.  If it is being set to a floating-point
5472 	 value, make a COMPARE with the appropriate constant of 0.  If we
5473 	 don't do this, later code can interpret this as a test against
5474 	 const0_rtx, which can cause problems if we try to put it into an
5475 	 insn as a floating-point operand.  */
5476       if (dest == cc0_rtx)
5477 	{
5478 	  this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5479 	  this_insn_cc0_mode = mode;
5480 	  if (FLOAT_MODE_P (mode))
5481 	    this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5482 					     CONST0_RTX (mode));
5483 	}
5484 #endif
5485     }
5486 
5487   /* Now enter all non-volatile source expressions in the hash table
5488      if they are not already present.
5489      Record their equivalence classes in src_elt.
5490      This way we can insert the corresponding destinations into
5491      the same classes even if the actual sources are no longer in them
5492      (having been invalidated).  */
5493 
5494   if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5495       && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5496     {
5497       struct table_elt *elt;
5498       struct table_elt *classp = sets[0].src_elt;
5499       rtx dest = SET_DEST (sets[0].rtl);
5500       enum machine_mode eqvmode = GET_MODE (dest);
5501 
5502       if (GET_CODE (dest) == STRICT_LOW_PART)
5503 	{
5504 	  eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5505 	  classp = 0;
5506 	}
5507       if (insert_regs (src_eqv, classp, 0))
5508 	{
5509 	  rehash_using_reg (src_eqv);
5510 	  src_eqv_hash = HASH (src_eqv, eqvmode);
5511 	}
5512       elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5513       elt->in_memory = src_eqv_in_memory;
5514       src_eqv_elt = elt;
5515 
5516       /* Check to see if src_eqv_elt is the same as a set source which
5517 	 does not yet have an elt, and if so set the elt of the set source
5518 	 to src_eqv_elt.  */
5519       for (i = 0; i < n_sets; i++)
5520 	if (sets[i].rtl && sets[i].src_elt == 0
5521 	    && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5522 	  sets[i].src_elt = src_eqv_elt;
5523     }
5524 
5525   for (i = 0; i < n_sets; i++)
5526     if (sets[i].rtl && ! sets[i].src_volatile
5527 	&& ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5528       {
5529 	if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5530 	  {
5531 	    /* REG_EQUAL in setting a STRICT_LOW_PART
5532 	       gives an equivalent for the entire destination register,
5533 	       not just for the subreg being stored in now.
5534 	       This is a more interesting equivalence, so we arrange later
5535 	       to treat the entire reg as the destination.  */
5536 	    sets[i].src_elt = src_eqv_elt;
5537 	    sets[i].src_hash = src_eqv_hash;
5538 	  }
5539 	else
5540 	  {
5541 	    /* Insert source and constant equivalent into hash table, if not
5542 	       already present.  */
5543 	    struct table_elt *classp = src_eqv_elt;
5544 	    rtx src = sets[i].src;
5545 	    rtx dest = SET_DEST (sets[i].rtl);
5546 	    enum machine_mode mode
5547 	      = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5548 
5549 	    /* It's possible that we have a source value known to be
5550 	       constant but don't have a REG_EQUAL note on the insn.
5551 	       Lack of a note will mean src_eqv_elt will be NULL.  This
5552 	       can happen where we've generated a SUBREG to access a
5553 	       CONST_INT that is already in a register in a wider mode.
5554 	       Ensure that the source expression is put in the proper
5555 	       constant class.  */
5556 	    if (!classp)
5557 	      classp = sets[i].src_const_elt;
5558 
5559 	    if (sets[i].src_elt == 0)
5560 	      {
5561 		struct table_elt *elt;
5562 
5563 		/* Note that these insert_regs calls cannot remove
5564 		   any of the src_elt's, because they would have failed to
5565 		   match if not still valid.  */
5566 		if (insert_regs (src, classp, 0))
5567 		  {
5568 		    rehash_using_reg (src);
5569 		    sets[i].src_hash = HASH (src, mode);
5570 		  }
5571 		elt = insert (src, classp, sets[i].src_hash, mode);
5572 		elt->in_memory = sets[i].src_in_memory;
5573 		sets[i].src_elt = classp = elt;
5574 	      }
5575 	    if (sets[i].src_const && sets[i].src_const_elt == 0
5576 		&& src != sets[i].src_const
5577 		&& ! rtx_equal_p (sets[i].src_const, src))
5578 	      sets[i].src_elt = insert (sets[i].src_const, classp,
5579 					sets[i].src_const_hash, mode);
5580 	  }
5581       }
5582     else if (sets[i].src_elt == 0)
5583       /* If we did not insert the source into the hash table (e.g., it was
5584 	 volatile), note the equivalence class for the REG_EQUAL value, if any,
5585 	 so that the destination goes into that class.  */
5586       sets[i].src_elt = src_eqv_elt;
5587 
5588   /* Record destination addresses in the hash table.  This allows us to
5589      check if they are invalidated by other sets.  */
5590   for (i = 0; i < n_sets; i++)
5591     {
5592       if (sets[i].rtl)
5593 	{
5594 	  rtx x = sets[i].inner_dest;
5595 	  struct table_elt *elt;
5596 	  enum machine_mode mode;
5597 	  unsigned hash;
5598 
5599 	  if (MEM_P (x))
5600 	    {
5601 	      x = XEXP (x, 0);
5602 	      mode = GET_MODE (x);
5603 	      hash = HASH (x, mode);
5604 	      elt = lookup (x, hash, mode);
5605 	      if (!elt)
5606 		{
5607 		  if (insert_regs (x, NULL, 0))
5608 		    {
5609 		      rtx dest = SET_DEST (sets[i].rtl);
5610 
5611 		      rehash_using_reg (x);
5612 		      hash = HASH (x, mode);
5613 		      sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5614 		    }
5615 		  elt = insert (x, NULL, hash, mode);
5616 		}
5617 
5618 	      sets[i].dest_addr_elt = elt;
5619 	    }
5620 	  else
5621 	    sets[i].dest_addr_elt = NULL;
5622 	}
5623     }
5624 
5625   invalidate_from_clobbers (insn);
5626 
5627   /* Some registers are invalidated by subroutine calls.  Memory is
5628      invalidated by non-constant calls.  */
5629 
5630   if (CALL_P (insn))
5631     {
5632       if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5633 	invalidate_memory ();
5634       invalidate_for_call ();
5635     }
5636 
5637   /* Now invalidate everything set by this instruction.
5638      If a SUBREG or other funny destination is being set,
5639      sets[i].rtl is still nonzero, so here we invalidate the reg
5640      a part of which is being set.  */
5641 
5642   for (i = 0; i < n_sets; i++)
5643     if (sets[i].rtl)
5644       {
5645 	/* We can't use the inner dest, because the mode associated with
5646 	   a ZERO_EXTRACT is significant.  */
5647 	rtx dest = SET_DEST (sets[i].rtl);
5648 
5649 	/* Needed for registers to remove the register from its
5650 	   previous quantity's chain.
5651 	   Needed for memory if this is a nonvarying address, unless
5652 	   we have just done an invalidate_memory that covers even those.  */
5653 	if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5654 	  invalidate (dest, VOIDmode);
5655 	else if (MEM_P (dest))
5656 	  invalidate (dest, VOIDmode);
5657 	else if (GET_CODE (dest) == STRICT_LOW_PART
5658 		 || GET_CODE (dest) == ZERO_EXTRACT)
5659 	  invalidate (XEXP (dest, 0), GET_MODE (dest));
5660       }
5661 
5662   /* A volatile ASM invalidates everything.  */
5663   if (NONJUMP_INSN_P (insn)
5664       && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5665       && MEM_VOLATILE_P (PATTERN (insn)))
5666     flush_hash_table ();
5667 
5668   /* Don't cse over a call to setjmp; on some machines (eg VAX)
5669      the regs restored by the longjmp come from a later time
5670      than the setjmp.  */
5671   if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5672     {
5673       flush_hash_table ();
5674       goto done;
5675     }
5676 
5677   /* Make sure registers mentioned in destinations
5678      are safe for use in an expression to be inserted.
5679      This removes from the hash table
5680      any invalid entry that refers to one of these registers.
5681 
5682      We don't care about the return value from mention_regs because
5683      we are going to hash the SET_DEST values unconditionally.  */
5684 
5685   for (i = 0; i < n_sets; i++)
5686     {
5687       if (sets[i].rtl)
5688 	{
5689 	  rtx x = SET_DEST (sets[i].rtl);
5690 
5691 	  if (!REG_P (x))
5692 	    mention_regs (x);
5693 	  else
5694 	    {
5695 	      /* We used to rely on all references to a register becoming
5696 		 inaccessible when a register changes to a new quantity,
5697 		 since that changes the hash code.  However, that is not
5698 		 safe, since after HASH_SIZE new quantities we get a
5699 		 hash 'collision' of a register with its own invalid
5700 		 entries.  And since SUBREGs have been changed not to
5701 		 change their hash code with the hash code of the register,
5702 		 it wouldn't work any longer at all.  So we have to check
5703 		 for any invalid references lying around now.
5704 		 This code is similar to the REG case in mention_regs,
5705 		 but it knows that reg_tick has been incremented, and
5706 		 it leaves reg_in_table as -1 .  */
5707 	      unsigned int regno = REGNO (x);
5708 	      unsigned int endregno = END_REGNO (x);
5709 	      unsigned int i;
5710 
5711 	      for (i = regno; i < endregno; i++)
5712 		{
5713 		  if (REG_IN_TABLE (i) >= 0)
5714 		    {
5715 		      remove_invalid_refs (i);
5716 		      REG_IN_TABLE (i) = -1;
5717 		    }
5718 		}
5719 	    }
5720 	}
5721     }
5722 
5723   /* We may have just removed some of the src_elt's from the hash table.
5724      So replace each one with the current head of the same class.
5725      Also check if destination addresses have been removed.  */
5726 
5727   for (i = 0; i < n_sets; i++)
5728     if (sets[i].rtl)
5729       {
5730 	if (sets[i].dest_addr_elt
5731 	    && sets[i].dest_addr_elt->first_same_value == 0)
5732 	  {
5733 	    /* The elt was removed, which means this destination is not
5734 	       valid after this instruction.  */
5735 	    sets[i].rtl = NULL_RTX;
5736 	  }
5737 	else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5738 	  /* If elt was removed, find current head of same class,
5739 	     or 0 if nothing remains of that class.  */
5740 	  {
5741 	    struct table_elt *elt = sets[i].src_elt;
5742 
5743 	    while (elt && elt->prev_same_value)
5744 	      elt = elt->prev_same_value;
5745 
5746 	    while (elt && elt->first_same_value == 0)
5747 	      elt = elt->next_same_value;
5748 	    sets[i].src_elt = elt ? elt->first_same_value : 0;
5749 	  }
5750       }
5751 
5752   /* Now insert the destinations into their equivalence classes.  */
5753 
5754   for (i = 0; i < n_sets; i++)
5755     if (sets[i].rtl)
5756       {
5757 	rtx dest = SET_DEST (sets[i].rtl);
5758 	struct table_elt *elt;
5759 
5760 	/* Don't record value if we are not supposed to risk allocating
5761 	   floating-point values in registers that might be wider than
5762 	   memory.  */
5763 	if ((flag_float_store
5764 	     && MEM_P (dest)
5765 	     && FLOAT_MODE_P (GET_MODE (dest)))
5766 	    /* Don't record BLKmode values, because we don't know the
5767 	       size of it, and can't be sure that other BLKmode values
5768 	       have the same or smaller size.  */
5769 	    || GET_MODE (dest) == BLKmode
5770 	    /* If we didn't put a REG_EQUAL value or a source into the hash
5771 	       table, there is no point is recording DEST.  */
5772 	    || sets[i].src_elt == 0
5773 	    /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5774 	       or SIGN_EXTEND, don't record DEST since it can cause
5775 	       some tracking to be wrong.
5776 
5777 	       ??? Think about this more later.  */
5778 	    || (paradoxical_subreg_p (dest)
5779 		&& (GET_CODE (sets[i].src) == SIGN_EXTEND
5780 		    || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5781 	  continue;
5782 
5783 	/* STRICT_LOW_PART isn't part of the value BEING set,
5784 	   and neither is the SUBREG inside it.
5785 	   Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT.  */
5786 	if (GET_CODE (dest) == STRICT_LOW_PART)
5787 	  dest = SUBREG_REG (XEXP (dest, 0));
5788 
5789 	if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5790 	  /* Registers must also be inserted into chains for quantities.  */
5791 	  if (insert_regs (dest, sets[i].src_elt, 1))
5792 	    {
5793 	      /* If `insert_regs' changes something, the hash code must be
5794 		 recalculated.  */
5795 	      rehash_using_reg (dest);
5796 	      sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5797 	    }
5798 
5799 	elt = insert (dest, sets[i].src_elt,
5800 		      sets[i].dest_hash, GET_MODE (dest));
5801 
5802 	/* If this is a constant, insert the constant anchors with the
5803 	   equivalent register-offset expressions using register DEST.  */
5804 	if (targetm.const_anchor
5805 	    && REG_P (dest)
5806 	    && SCALAR_INT_MODE_P (GET_MODE (dest))
5807 	    && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5808 	  insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5809 
5810 	elt->in_memory = (MEM_P (sets[i].inner_dest)
5811 			  && !MEM_READONLY_P (sets[i].inner_dest));
5812 
5813 	/* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5814 	   narrower than M2, and both M1 and M2 are the same number of words,
5815 	   we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5816 	   make that equivalence as well.
5817 
5818 	   However, BAR may have equivalences for which gen_lowpart
5819 	   will produce a simpler value than gen_lowpart applied to
5820 	   BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5821 	   BAR's equivalences.  If we don't get a simplified form, make
5822 	   the SUBREG.  It will not be used in an equivalence, but will
5823 	   cause two similar assignments to be detected.
5824 
5825 	   Note the loop below will find SUBREG_REG (DEST) since we have
5826 	   already entered SRC and DEST of the SET in the table.  */
5827 
5828 	if (GET_CODE (dest) == SUBREG
5829 	    && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5830 		 / UNITS_PER_WORD)
5831 		== (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5832 	    && (GET_MODE_SIZE (GET_MODE (dest))
5833 		>= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5834 	    && sets[i].src_elt != 0)
5835 	  {
5836 	    enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5837 	    struct table_elt *elt, *classp = 0;
5838 
5839 	    for (elt = sets[i].src_elt->first_same_value; elt;
5840 		 elt = elt->next_same_value)
5841 	      {
5842 		rtx new_src = 0;
5843 		unsigned src_hash;
5844 		struct table_elt *src_elt;
5845 		int byte = 0;
5846 
5847 		/* Ignore invalid entries.  */
5848 		if (!REG_P (elt->exp)
5849 		    && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5850 		  continue;
5851 
5852 		/* We may have already been playing subreg games.  If the
5853 		   mode is already correct for the destination, use it.  */
5854 		if (GET_MODE (elt->exp) == new_mode)
5855 		  new_src = elt->exp;
5856 		else
5857 		  {
5858 		    /* Calculate big endian correction for the SUBREG_BYTE.
5859 		       We have already checked that M1 (GET_MODE (dest))
5860 		       is not narrower than M2 (new_mode).  */
5861 		    if (BYTES_BIG_ENDIAN)
5862 		      byte = (GET_MODE_SIZE (GET_MODE (dest))
5863 			      - GET_MODE_SIZE (new_mode));
5864 
5865 		    new_src = simplify_gen_subreg (new_mode, elt->exp,
5866 					           GET_MODE (dest), byte);
5867 		  }
5868 
5869 		/* The call to simplify_gen_subreg fails if the value
5870 		   is VOIDmode, yet we can't do any simplification, e.g.
5871 		   for EXPR_LISTs denoting function call results.
5872 		   It is invalid to construct a SUBREG with a VOIDmode
5873 		   SUBREG_REG, hence a zero new_src means we can't do
5874 		   this substitution.  */
5875 		if (! new_src)
5876 		  continue;
5877 
5878 		src_hash = HASH (new_src, new_mode);
5879 		src_elt = lookup (new_src, src_hash, new_mode);
5880 
5881 		/* Put the new source in the hash table is if isn't
5882 		   already.  */
5883 		if (src_elt == 0)
5884 		  {
5885 		    if (insert_regs (new_src, classp, 0))
5886 		      {
5887 			rehash_using_reg (new_src);
5888 			src_hash = HASH (new_src, new_mode);
5889 		      }
5890 		    src_elt = insert (new_src, classp, src_hash, new_mode);
5891 		    src_elt->in_memory = elt->in_memory;
5892 		  }
5893 		else if (classp && classp != src_elt->first_same_value)
5894 		  /* Show that two things that we've seen before are
5895 		     actually the same.  */
5896 		  merge_equiv_classes (src_elt, classp);
5897 
5898 		classp = src_elt->first_same_value;
5899 		/* Ignore invalid entries.  */
5900 		while (classp
5901 		       && !REG_P (classp->exp)
5902 		       && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5903 		  classp = classp->next_same_value;
5904 	      }
5905 	  }
5906       }
5907 
5908   /* Special handling for (set REG0 REG1) where REG0 is the
5909      "cheapest", cheaper than REG1.  After cse, REG1 will probably not
5910      be used in the sequel, so (if easily done) change this insn to
5911      (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5912      that computed their value.  Then REG1 will become a dead store
5913      and won't cloud the situation for later optimizations.
5914 
5915      Do not make this change if REG1 is a hard register, because it will
5916      then be used in the sequel and we may be changing a two-operand insn
5917      into a three-operand insn.
5918 
5919      Also do not do this if we are operating on a copy of INSN.  */
5920 
5921   if (n_sets == 1 && sets[0].rtl)
5922     try_back_substitute_reg (sets[0].rtl, insn);
5923 
5924 done:;
5925 }
5926 
5927 /* Remove from the hash table all expressions that reference memory.  */
5928 
5929 static void
5930 invalidate_memory (void)
5931 {
5932   int i;
5933   struct table_elt *p, *next;
5934 
5935   for (i = 0; i < HASH_SIZE; i++)
5936     for (p = table[i]; p; p = next)
5937       {
5938 	next = p->next_same_hash;
5939 	if (p->in_memory)
5940 	  remove_from_table (p, i);
5941       }
5942 }
5943 
5944 /* Perform invalidation on the basis of everything about INSN,
5945    except for invalidating the actual places that are SET in it.
5946    This includes the places CLOBBERed, and anything that might
5947    alias with something that is SET or CLOBBERed.  */
5948 
5949 static void
5950 invalidate_from_clobbers (rtx insn)
5951 {
5952   rtx x = PATTERN (insn);
5953 
5954   if (GET_CODE (x) == CLOBBER)
5955     {
5956       rtx ref = XEXP (x, 0);
5957       if (ref)
5958 	{
5959 	  if (REG_P (ref) || GET_CODE (ref) == SUBREG
5960 	      || MEM_P (ref))
5961 	    invalidate (ref, VOIDmode);
5962 	  else if (GET_CODE (ref) == STRICT_LOW_PART
5963 		   || GET_CODE (ref) == ZERO_EXTRACT)
5964 	    invalidate (XEXP (ref, 0), GET_MODE (ref));
5965 	}
5966     }
5967   else if (GET_CODE (x) == PARALLEL)
5968     {
5969       int i;
5970       for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
5971 	{
5972 	  rtx y = XVECEXP (x, 0, i);
5973 	  if (GET_CODE (y) == CLOBBER)
5974 	    {
5975 	      rtx ref = XEXP (y, 0);
5976 	      if (REG_P (ref) || GET_CODE (ref) == SUBREG
5977 		  || MEM_P (ref))
5978 		invalidate (ref, VOIDmode);
5979 	      else if (GET_CODE (ref) == STRICT_LOW_PART
5980 		       || GET_CODE (ref) == ZERO_EXTRACT)
5981 		invalidate (XEXP (ref, 0), GET_MODE (ref));
5982 	    }
5983 	}
5984     }
5985 }
5986 
5987 /* Perform invalidation on the basis of everything about INSN.
5988    This includes the places CLOBBERed, and anything that might
5989    alias with something that is SET or CLOBBERed.  */
5990 
5991 static void
5992 invalidate_from_sets_and_clobbers (rtx insn)
5993 {
5994   rtx tem;
5995   rtx x = PATTERN (insn);
5996 
5997   if (CALL_P (insn))
5998     {
5999       for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
6000 	if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
6001 	  invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
6002     }
6003 
6004   /* Ensure we invalidate the destination register of a CALL insn.
6005      This is necessary for machines where this register is a fixed_reg,
6006      because no other code would invalidate it.  */
6007   if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6008     invalidate (SET_DEST (x), VOIDmode);
6009 
6010   else if (GET_CODE (x) == PARALLEL)
6011     {
6012       int i;
6013 
6014       for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6015 	{
6016 	  rtx y = XVECEXP (x, 0, i);
6017 	  if (GET_CODE (y) == CLOBBER)
6018 	    {
6019 	      rtx clobbered = XEXP (y, 0);
6020 
6021 	      if (REG_P (clobbered)
6022 		  || GET_CODE (clobbered) == SUBREG)
6023 		invalidate (clobbered, VOIDmode);
6024 	      else if (GET_CODE (clobbered) == STRICT_LOW_PART
6025 		       || GET_CODE (clobbered) == ZERO_EXTRACT)
6026 		invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6027 	    }
6028 	  else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6029 	    invalidate (SET_DEST (y), VOIDmode);
6030 	}
6031     }
6032 }
6033 
6034 /* Process X, part of the REG_NOTES of an insn.  Look at any REG_EQUAL notes
6035    and replace any registers in them with either an equivalent constant
6036    or the canonical form of the register.  If we are inside an address,
6037    only do this if the address remains valid.
6038 
6039    OBJECT is 0 except when within a MEM in which case it is the MEM.
6040 
6041    Return the replacement for X.  */
6042 
6043 static rtx
6044 cse_process_notes_1 (rtx x, rtx object, bool *changed)
6045 {
6046   enum rtx_code code = GET_CODE (x);
6047   const char *fmt = GET_RTX_FORMAT (code);
6048   int i;
6049 
6050   switch (code)
6051     {
6052     case CONST:
6053     case SYMBOL_REF:
6054     case LABEL_REF:
6055     CASE_CONST_ANY:
6056     case PC:
6057     case CC0:
6058     case LO_SUM:
6059       return x;
6060 
6061     case MEM:
6062       validate_change (x, &XEXP (x, 0),
6063 		       cse_process_notes (XEXP (x, 0), x, changed), 0);
6064       return x;
6065 
6066     case EXPR_LIST:
6067     case INSN_LIST:
6068       if (REG_NOTE_KIND (x) == REG_EQUAL)
6069 	XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
6070       if (XEXP (x, 1))
6071 	XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
6072       return x;
6073 
6074     case SIGN_EXTEND:
6075     case ZERO_EXTEND:
6076     case SUBREG:
6077       {
6078 	rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6079 	/* We don't substitute VOIDmode constants into these rtx,
6080 	   since they would impede folding.  */
6081 	if (GET_MODE (new_rtx) != VOIDmode)
6082 	  validate_change (object, &XEXP (x, 0), new_rtx, 0);
6083 	return x;
6084       }
6085 
6086     case UNSIGNED_FLOAT:
6087       {
6088 	rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6089 	/* We don't substitute negative VOIDmode constants into these rtx,
6090 	   since they would impede folding.  */
6091 	if (GET_MODE (new_rtx) != VOIDmode
6092 	    || (CONST_INT_P (new_rtx) && INTVAL (new_rtx) >= 0)
6093 	    || (CONST_DOUBLE_P (new_rtx) && CONST_DOUBLE_HIGH (new_rtx) >= 0))
6094 	  validate_change (object, &XEXP (x, 0), new_rtx, 0);
6095 	return x;
6096       }
6097 
6098     case REG:
6099       i = REG_QTY (REGNO (x));
6100 
6101       /* Return a constant or a constant register.  */
6102       if (REGNO_QTY_VALID_P (REGNO (x)))
6103 	{
6104 	  struct qty_table_elem *ent = &qty_table[i];
6105 
6106 	  if (ent->const_rtx != NULL_RTX
6107 	      && (CONSTANT_P (ent->const_rtx)
6108 		  || REG_P (ent->const_rtx)))
6109 	    {
6110 	      rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6111 	      if (new_rtx)
6112 		return copy_rtx (new_rtx);
6113 	    }
6114 	}
6115 
6116       /* Otherwise, canonicalize this register.  */
6117       return canon_reg (x, NULL_RTX);
6118 
6119     default:
6120       break;
6121     }
6122 
6123   for (i = 0; i < GET_RTX_LENGTH (code); i++)
6124     if (fmt[i] == 'e')
6125       validate_change (object, &XEXP (x, i),
6126 		       cse_process_notes (XEXP (x, i), object, changed), 0);
6127 
6128   return x;
6129 }
6130 
6131 static rtx
6132 cse_process_notes (rtx x, rtx object, bool *changed)
6133 {
6134   rtx new_rtx = cse_process_notes_1 (x, object, changed);
6135   if (new_rtx != x)
6136     *changed = true;
6137   return new_rtx;
6138 }
6139 
6140 
6141 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6142 
6143    DATA is a pointer to a struct cse_basic_block_data, that is used to
6144    describe the path.
6145    It is filled with a queue of basic blocks, starting with FIRST_BB
6146    and following a trace through the CFG.
6147 
6148    If all paths starting at FIRST_BB have been followed, or no new path
6149    starting at FIRST_BB can be constructed, this function returns FALSE.
6150    Otherwise, DATA->path is filled and the function returns TRUE indicating
6151    that a path to follow was found.
6152 
6153    If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6154    block in the path will be FIRST_BB.  */
6155 
6156 static bool
6157 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6158 	       int follow_jumps)
6159 {
6160   basic_block bb;
6161   edge e;
6162   int path_size;
6163 
6164   bitmap_set_bit (cse_visited_basic_blocks, first_bb->index);
6165 
6166   /* See if there is a previous path.  */
6167   path_size = data->path_size;
6168 
6169   /* There is a previous path.  Make sure it started with FIRST_BB.  */
6170   if (path_size)
6171     gcc_assert (data->path[0].bb == first_bb);
6172 
6173   /* There was only one basic block in the last path.  Clear the path and
6174      return, so that paths starting at another basic block can be tried.  */
6175   if (path_size == 1)
6176     {
6177       path_size = 0;
6178       goto done;
6179     }
6180 
6181   /* If the path was empty from the beginning, construct a new path.  */
6182   if (path_size == 0)
6183     data->path[path_size++].bb = first_bb;
6184   else
6185     {
6186       /* Otherwise, path_size must be equal to or greater than 2, because
6187 	 a previous path exists that is at least two basic blocks long.
6188 
6189 	 Update the previous branch path, if any.  If the last branch was
6190 	 previously along the branch edge, take the fallthrough edge now.  */
6191       while (path_size >= 2)
6192 	{
6193 	  basic_block last_bb_in_path, previous_bb_in_path;
6194 	  edge e;
6195 
6196 	  --path_size;
6197 	  last_bb_in_path = data->path[path_size].bb;
6198 	  previous_bb_in_path = data->path[path_size - 1].bb;
6199 
6200 	  /* If we previously followed a path along the branch edge, try
6201 	     the fallthru edge now.  */
6202 	  if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6203 	      && any_condjump_p (BB_END (previous_bb_in_path))
6204 	      && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6205 	      && e == BRANCH_EDGE (previous_bb_in_path))
6206 	    {
6207 	      bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6208 	      if (bb != EXIT_BLOCK_PTR
6209 		  && single_pred_p (bb)
6210 		  /* We used to assert here that we would only see blocks
6211 		     that we have not visited yet.  But we may end up
6212 		     visiting basic blocks twice if the CFG has changed
6213 		     in this run of cse_main, because when the CFG changes
6214 		     the topological sort of the CFG also changes.  A basic
6215 		     blocks that previously had more than two predecessors
6216 		     may now have a single predecessor, and become part of
6217 		     a path that starts at another basic block.
6218 
6219 		     We still want to visit each basic block only once, so
6220 		     halt the path here if we have already visited BB.  */
6221 		  && !bitmap_bit_p (cse_visited_basic_blocks, bb->index))
6222 		{
6223 		  bitmap_set_bit (cse_visited_basic_blocks, bb->index);
6224 		  data->path[path_size++].bb = bb;
6225 		  break;
6226 		}
6227 	    }
6228 
6229 	  data->path[path_size].bb = NULL;
6230 	}
6231 
6232       /* If only one block remains in the path, bail.  */
6233       if (path_size == 1)
6234 	{
6235 	  path_size = 0;
6236 	  goto done;
6237 	}
6238     }
6239 
6240   /* Extend the path if possible.  */
6241   if (follow_jumps)
6242     {
6243       bb = data->path[path_size - 1].bb;
6244       while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6245 	{
6246 	  if (single_succ_p (bb))
6247 	    e = single_succ_edge (bb);
6248 	  else if (EDGE_COUNT (bb->succs) == 2
6249 		   && any_condjump_p (BB_END (bb)))
6250 	    {
6251 	      /* First try to follow the branch.  If that doesn't lead
6252 		 to a useful path, follow the fallthru edge.  */
6253 	      e = BRANCH_EDGE (bb);
6254 	      if (!single_pred_p (e->dest))
6255 		e = FALLTHRU_EDGE (bb);
6256 	    }
6257 	  else
6258 	    e = NULL;
6259 
6260 	  if (e
6261 	      && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
6262 	      && e->dest != EXIT_BLOCK_PTR
6263 	      && single_pred_p (e->dest)
6264 	      /* Avoid visiting basic blocks twice.  The large comment
6265 		 above explains why this can happen.  */
6266 	      && !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index))
6267 	    {
6268 	      basic_block bb2 = e->dest;
6269 	      bitmap_set_bit (cse_visited_basic_blocks, bb2->index);
6270 	      data->path[path_size++].bb = bb2;
6271 	      bb = bb2;
6272 	    }
6273 	  else
6274 	    bb = NULL;
6275 	}
6276     }
6277 
6278 done:
6279   data->path_size = path_size;
6280   return path_size != 0;
6281 }
6282 
6283 /* Dump the path in DATA to file F.  NSETS is the number of sets
6284    in the path.  */
6285 
6286 static void
6287 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6288 {
6289   int path_entry;
6290 
6291   fprintf (f, ";; Following path with %d sets: ", nsets);
6292   for (path_entry = 0; path_entry < data->path_size; path_entry++)
6293     fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6294   fputc ('\n', dump_file);
6295   fflush (f);
6296 }
6297 
6298 
6299 /* Return true if BB has exception handling successor edges.  */
6300 
6301 static bool
6302 have_eh_succ_edges (basic_block bb)
6303 {
6304   edge e;
6305   edge_iterator ei;
6306 
6307   FOR_EACH_EDGE (e, ei, bb->succs)
6308     if (e->flags & EDGE_EH)
6309       return true;
6310 
6311   return false;
6312 }
6313 
6314 
6315 /* Scan to the end of the path described by DATA.  Return an estimate of
6316    the total number of SETs of all insns in the path.  */
6317 
6318 static void
6319 cse_prescan_path (struct cse_basic_block_data *data)
6320 {
6321   int nsets = 0;
6322   int path_size = data->path_size;
6323   int path_entry;
6324 
6325   /* Scan to end of each basic block in the path.  */
6326   for (path_entry = 0; path_entry < path_size; path_entry++)
6327     {
6328       basic_block bb;
6329       rtx insn;
6330 
6331       bb = data->path[path_entry].bb;
6332 
6333       FOR_BB_INSNS (bb, insn)
6334 	{
6335 	  if (!INSN_P (insn))
6336 	    continue;
6337 
6338 	  /* A PARALLEL can have lots of SETs in it,
6339 	     especially if it is really an ASM_OPERANDS.  */
6340 	  if (GET_CODE (PATTERN (insn)) == PARALLEL)
6341 	    nsets += XVECLEN (PATTERN (insn), 0);
6342 	  else
6343 	    nsets += 1;
6344 	}
6345     }
6346 
6347   data->nsets = nsets;
6348 }
6349 
6350 /* Process a single extended basic block described by EBB_DATA.  */
6351 
6352 static void
6353 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6354 {
6355   int path_size = ebb_data->path_size;
6356   int path_entry;
6357   int num_insns = 0;
6358 
6359   /* Allocate the space needed by qty_table.  */
6360   qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6361 
6362   new_basic_block ();
6363   cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6364   cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6365   for (path_entry = 0; path_entry < path_size; path_entry++)
6366     {
6367       basic_block bb;
6368       rtx insn;
6369 
6370       bb = ebb_data->path[path_entry].bb;
6371 
6372       /* Invalidate recorded information for eh regs if there is an EH
6373 	 edge pointing to that bb.  */
6374       if (bb_has_eh_pred (bb))
6375 	{
6376 	  df_ref *def_rec;
6377 
6378 	  for (def_rec = df_get_artificial_defs (bb->index); *def_rec; def_rec++)
6379 	    {
6380 	      df_ref def = *def_rec;
6381 	      if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6382 		invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6383 	    }
6384 	}
6385 
6386       optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6387       FOR_BB_INSNS (bb, insn)
6388 	{
6389 	  /* If we have processed 1,000 insns, flush the hash table to
6390 	     avoid extreme quadratic behavior.  We must not include NOTEs
6391 	     in the count since there may be more of them when generating
6392 	     debugging information.  If we clear the table at different
6393 	     times, code generated with -g -O might be different than code
6394 	     generated with -O but not -g.
6395 
6396 	     FIXME: This is a real kludge and needs to be done some other
6397 		    way.  */
6398 	  if (NONDEBUG_INSN_P (insn)
6399 	      && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6400 	    {
6401 	      flush_hash_table ();
6402 	      num_insns = 0;
6403 	    }
6404 
6405 	  if (INSN_P (insn))
6406 	    {
6407 	      /* Process notes first so we have all notes in canonical forms
6408 		 when looking for duplicate operations.  */
6409 	      if (REG_NOTES (insn))
6410 		{
6411 		  bool changed = false;
6412 		  REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6413 						        NULL_RTX, &changed);
6414 		  if (changed)
6415 		    df_notes_rescan (insn);
6416 		}
6417 
6418 	      cse_insn (insn);
6419 
6420 	      /* If we haven't already found an insn where we added a LABEL_REF,
6421 		 check this one.  */
6422 	      if (INSN_P (insn) && !recorded_label_ref
6423 		  && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6424 				   (void *) insn))
6425 		recorded_label_ref = true;
6426 
6427 #ifdef HAVE_cc0
6428 	      if (NONDEBUG_INSN_P (insn))
6429 		{
6430 		  /* If the previous insn sets CC0 and this insn no
6431 		     longer references CC0, delete the previous insn.
6432 		     Here we use fact that nothing expects CC0 to be
6433 		     valid over an insn, which is true until the final
6434 		     pass.  */
6435 		  rtx prev_insn, tem;
6436 
6437 		  prev_insn = prev_nonnote_nondebug_insn (insn);
6438 		  if (prev_insn && NONJUMP_INSN_P (prev_insn)
6439 		      && (tem = single_set (prev_insn)) != NULL_RTX
6440 		      && SET_DEST (tem) == cc0_rtx
6441 		      && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6442 		    delete_insn (prev_insn);
6443 
6444 		  /* If this insn is not the last insn in the basic
6445 		     block, it will be PREV_INSN(insn) in the next
6446 		     iteration.  If we recorded any CC0-related
6447 		     information for this insn, remember it.  */
6448 		  if (insn != BB_END (bb))
6449 		    {
6450 		      prev_insn_cc0 = this_insn_cc0;
6451 		      prev_insn_cc0_mode = this_insn_cc0_mode;
6452 		    }
6453 		}
6454 #endif
6455 	    }
6456 	}
6457 
6458       /* With non-call exceptions, we are not always able to update
6459 	 the CFG properly inside cse_insn.  So clean up possibly
6460 	 redundant EH edges here.  */
6461       if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
6462 	cse_cfg_altered |= purge_dead_edges (bb);
6463 
6464       /* If we changed a conditional jump, we may have terminated
6465 	 the path we are following.  Check that by verifying that
6466 	 the edge we would take still exists.  If the edge does
6467 	 not exist anymore, purge the remainder of the path.
6468 	 Note that this will cause us to return to the caller.  */
6469       if (path_entry < path_size - 1)
6470 	{
6471 	  basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6472 	  if (!find_edge (bb, next_bb))
6473 	    {
6474 	      do
6475 		{
6476 		  path_size--;
6477 
6478 		  /* If we truncate the path, we must also reset the
6479 		     visited bit on the remaining blocks in the path,
6480 		     or we will never visit them at all.  */
6481 		  bitmap_clear_bit (cse_visited_basic_blocks,
6482 			     ebb_data->path[path_size].bb->index);
6483 		  ebb_data->path[path_size].bb = NULL;
6484 		}
6485 	      while (path_size - 1 != path_entry);
6486 	      ebb_data->path_size = path_size;
6487 	    }
6488 	}
6489 
6490       /* If this is a conditional jump insn, record any known
6491 	 equivalences due to the condition being tested.  */
6492       insn = BB_END (bb);
6493       if (path_entry < path_size - 1
6494 	  && JUMP_P (insn)
6495 	  && single_set (insn)
6496 	  && any_condjump_p (insn))
6497 	{
6498 	  basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6499 	  bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6500 	  record_jump_equiv (insn, taken);
6501 	}
6502 
6503 #ifdef HAVE_cc0
6504       /* Clear the CC0-tracking related insns, they can't provide
6505 	 useful information across basic block boundaries.  */
6506       prev_insn_cc0 = 0;
6507 #endif
6508     }
6509 
6510   gcc_assert (next_qty <= max_qty);
6511 
6512   free (qty_table);
6513 }
6514 
6515 
6516 /* Perform cse on the instructions of a function.
6517    F is the first instruction.
6518    NREGS is one plus the highest pseudo-reg number used in the instruction.
6519 
6520    Return 2 if jump optimizations should be redone due to simplifications
6521    in conditional jump instructions.
6522    Return 1 if the CFG should be cleaned up because it has been modified.
6523    Return 0 otherwise.  */
6524 
6525 static int
6526 cse_main (rtx f ATTRIBUTE_UNUSED, int nregs)
6527 {
6528   struct cse_basic_block_data ebb_data;
6529   basic_block bb;
6530   int *rc_order = XNEWVEC (int, last_basic_block);
6531   int i, n_blocks;
6532 
6533   df_set_flags (DF_LR_RUN_DCE);
6534   df_note_add_problem ();
6535   df_analyze ();
6536   df_set_flags (DF_DEFER_INSN_RESCAN);
6537 
6538   reg_scan (get_insns (), max_reg_num ());
6539   init_cse_reg_info (nregs);
6540 
6541   ebb_data.path = XNEWVEC (struct branch_path,
6542 			   PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6543 
6544   cse_cfg_altered = false;
6545   cse_jumps_altered = false;
6546   recorded_label_ref = false;
6547   constant_pool_entries_cost = 0;
6548   constant_pool_entries_regcost = 0;
6549   ebb_data.path_size = 0;
6550   ebb_data.nsets = 0;
6551   rtl_hooks = cse_rtl_hooks;
6552 
6553   init_recog ();
6554   init_alias_analysis ();
6555 
6556   reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6557 
6558   /* Set up the table of already visited basic blocks.  */
6559   cse_visited_basic_blocks = sbitmap_alloc (last_basic_block);
6560   bitmap_clear (cse_visited_basic_blocks);
6561 
6562   /* Loop over basic blocks in reverse completion order (RPO),
6563      excluding the ENTRY and EXIT blocks.  */
6564   n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6565   i = 0;
6566   while (i < n_blocks)
6567     {
6568       /* Find the first block in the RPO queue that we have not yet
6569 	 processed before.  */
6570       do
6571 	{
6572 	  bb = BASIC_BLOCK (rc_order[i++]);
6573 	}
6574       while (bitmap_bit_p (cse_visited_basic_blocks, bb->index)
6575 	     && i < n_blocks);
6576 
6577       /* Find all paths starting with BB, and process them.  */
6578       while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6579 	{
6580 	  /* Pre-scan the path.  */
6581 	  cse_prescan_path (&ebb_data);
6582 
6583 	  /* If this basic block has no sets, skip it.  */
6584 	  if (ebb_data.nsets == 0)
6585 	    continue;
6586 
6587 	  /* Get a reasonable estimate for the maximum number of qty's
6588 	     needed for this path.  For this, we take the number of sets
6589 	     and multiply that by MAX_RECOG_OPERANDS.  */
6590 	  max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6591 
6592 	  /* Dump the path we're about to process.  */
6593 	  if (dump_file)
6594 	    cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6595 
6596 	  cse_extended_basic_block (&ebb_data);
6597 	}
6598     }
6599 
6600   /* Clean up.  */
6601   end_alias_analysis ();
6602   free (reg_eqv_table);
6603   free (ebb_data.path);
6604   sbitmap_free (cse_visited_basic_blocks);
6605   free (rc_order);
6606   rtl_hooks = general_rtl_hooks;
6607 
6608   if (cse_jumps_altered || recorded_label_ref)
6609     return 2;
6610   else if (cse_cfg_altered)
6611     return 1;
6612   else
6613     return 0;
6614 }
6615 
6616 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for
6617    which there isn't a REG_LABEL_OPERAND note.
6618    Return one if so.  DATA is the insn.  */
6619 
6620 static int
6621 check_for_label_ref (rtx *rtl, void *data)
6622 {
6623   rtx insn = (rtx) data;
6624 
6625   /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6626      note for it, we must rerun jump since it needs to place the note.  If
6627      this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6628      don't do this since no REG_LABEL_OPERAND will be added.  */
6629   return (GET_CODE (*rtl) == LABEL_REF
6630 	  && ! LABEL_REF_NONLOCAL_P (*rtl)
6631 	  && (!JUMP_P (insn)
6632 	      || !label_is_jump_target_p (XEXP (*rtl, 0), insn))
6633 	  && LABEL_P (XEXP (*rtl, 0))
6634 	  && INSN_UID (XEXP (*rtl, 0)) != 0
6635 	  && ! find_reg_note (insn, REG_LABEL_OPERAND, XEXP (*rtl, 0)));
6636 }
6637 
6638 /* Count the number of times registers are used (not set) in X.
6639    COUNTS is an array in which we accumulate the count, INCR is how much
6640    we count each register usage.
6641 
6642    Don't count a usage of DEST, which is the SET_DEST of a SET which
6643    contains X in its SET_SRC.  This is because such a SET does not
6644    modify the liveness of DEST.
6645    DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6646    We must then count uses of a SET_DEST regardless, because the insn can't be
6647    deleted here.  */
6648 
6649 static void
6650 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6651 {
6652   enum rtx_code code;
6653   rtx note;
6654   const char *fmt;
6655   int i, j;
6656 
6657   if (x == 0)
6658     return;
6659 
6660   switch (code = GET_CODE (x))
6661     {
6662     case REG:
6663       if (x != dest)
6664 	counts[REGNO (x)] += incr;
6665       return;
6666 
6667     case PC:
6668     case CC0:
6669     case CONST:
6670     CASE_CONST_ANY:
6671     case SYMBOL_REF:
6672     case LABEL_REF:
6673       return;
6674 
6675     case CLOBBER:
6676       /* If we are clobbering a MEM, mark any registers inside the address
6677          as being used.  */
6678       if (MEM_P (XEXP (x, 0)))
6679 	count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6680       return;
6681 
6682     case SET:
6683       /* Unless we are setting a REG, count everything in SET_DEST.  */
6684       if (!REG_P (SET_DEST (x)))
6685 	count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6686       count_reg_usage (SET_SRC (x), counts,
6687 		       dest ? dest : SET_DEST (x),
6688 		       incr);
6689       return;
6690 
6691     case DEBUG_INSN:
6692       return;
6693 
6694     case CALL_INSN:
6695     case INSN:
6696     case JUMP_INSN:
6697       /* We expect dest to be NULL_RTX here.  If the insn may throw,
6698 	 or if it cannot be deleted due to side-effects, mark this fact
6699 	 by setting DEST to pc_rtx.  */
6700       if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6701 	  || side_effects_p (PATTERN (x)))
6702 	dest = pc_rtx;
6703       if (code == CALL_INSN)
6704 	count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6705       count_reg_usage (PATTERN (x), counts, dest, incr);
6706 
6707       /* Things used in a REG_EQUAL note aren't dead since loop may try to
6708 	 use them.  */
6709 
6710       note = find_reg_equal_equiv_note (x);
6711       if (note)
6712 	{
6713 	  rtx eqv = XEXP (note, 0);
6714 
6715 	  if (GET_CODE (eqv) == EXPR_LIST)
6716 	  /* This REG_EQUAL note describes the result of a function call.
6717 	     Process all the arguments.  */
6718 	    do
6719 	      {
6720 		count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6721 		eqv = XEXP (eqv, 1);
6722 	      }
6723 	    while (eqv && GET_CODE (eqv) == EXPR_LIST);
6724 	  else
6725 	    count_reg_usage (eqv, counts, dest, incr);
6726 	}
6727       return;
6728 
6729     case EXPR_LIST:
6730       if (REG_NOTE_KIND (x) == REG_EQUAL
6731 	  || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6732 	  /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6733 	     involving registers in the address.  */
6734 	  || GET_CODE (XEXP (x, 0)) == CLOBBER)
6735 	count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6736 
6737       count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6738       return;
6739 
6740     case ASM_OPERANDS:
6741       /* Iterate over just the inputs, not the constraints as well.  */
6742       for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6743 	count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6744       return;
6745 
6746     case INSN_LIST:
6747       gcc_unreachable ();
6748 
6749     default:
6750       break;
6751     }
6752 
6753   fmt = GET_RTX_FORMAT (code);
6754   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6755     {
6756       if (fmt[i] == 'e')
6757 	count_reg_usage (XEXP (x, i), counts, dest, incr);
6758       else if (fmt[i] == 'E')
6759 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6760 	  count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6761     }
6762 }
6763 
6764 /* Return true if X is a dead register.  */
6765 
6766 static inline int
6767 is_dead_reg (rtx x, int *counts)
6768 {
6769   return (REG_P (x)
6770 	  && REGNO (x) >= FIRST_PSEUDO_REGISTER
6771 	  && counts[REGNO (x)] == 0);
6772 }
6773 
6774 /* Return true if set is live.  */
6775 static bool
6776 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0.  */
6777 	    int *counts)
6778 {
6779 #ifdef HAVE_cc0
6780   rtx tem;
6781 #endif
6782 
6783   if (set_noop_p (set))
6784     ;
6785 
6786 #ifdef HAVE_cc0
6787   else if (GET_CODE (SET_DEST (set)) == CC0
6788 	   && !side_effects_p (SET_SRC (set))
6789 	   && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
6790 	       || !INSN_P (tem)
6791 	       || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6792     return false;
6793 #endif
6794   else if (!is_dead_reg (SET_DEST (set), counts)
6795 	   || side_effects_p (SET_SRC (set)))
6796     return true;
6797   return false;
6798 }
6799 
6800 /* Return true if insn is live.  */
6801 
6802 static bool
6803 insn_live_p (rtx insn, int *counts)
6804 {
6805   int i;
6806   if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
6807     return true;
6808   else if (GET_CODE (PATTERN (insn)) == SET)
6809     return set_live_p (PATTERN (insn), insn, counts);
6810   else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6811     {
6812       for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6813 	{
6814 	  rtx elt = XVECEXP (PATTERN (insn), 0, i);
6815 
6816 	  if (GET_CODE (elt) == SET)
6817 	    {
6818 	      if (set_live_p (elt, insn, counts))
6819 		return true;
6820 	    }
6821 	  else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6822 	    return true;
6823 	}
6824       return false;
6825     }
6826   else if (DEBUG_INSN_P (insn))
6827     {
6828       rtx next;
6829 
6830       for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
6831 	if (NOTE_P (next))
6832 	  continue;
6833 	else if (!DEBUG_INSN_P (next))
6834 	  return true;
6835 	else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
6836 	  return false;
6837 
6838       return true;
6839     }
6840   else
6841     return true;
6842 }
6843 
6844 /* Count the number of stores into pseudo.  Callback for note_stores.  */
6845 
6846 static void
6847 count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
6848 {
6849   int *counts = (int *) data;
6850   if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
6851     counts[REGNO (x)]++;
6852 }
6853 
6854 struct dead_debug_insn_data
6855 {
6856   int *counts;
6857   rtx *replacements;
6858   bool seen_repl;
6859 };
6860 
6861 /* Return if a DEBUG_INSN needs to be reset because some dead
6862    pseudo doesn't have a replacement.  Callback for for_each_rtx.  */
6863 
6864 static int
6865 is_dead_debug_insn (rtx *loc, void *data)
6866 {
6867   rtx x = *loc;
6868   struct dead_debug_insn_data *ddid = (struct dead_debug_insn_data *) data;
6869 
6870   if (is_dead_reg (x, ddid->counts))
6871     {
6872       if (ddid->replacements && ddid->replacements[REGNO (x)] != NULL_RTX)
6873 	ddid->seen_repl = true;
6874       else
6875 	return 1;
6876     }
6877   return 0;
6878 }
6879 
6880 /* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
6881    Callback for simplify_replace_fn_rtx.  */
6882 
6883 static rtx
6884 replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
6885 {
6886   rtx *replacements = (rtx *) data;
6887 
6888   if (REG_P (x)
6889       && REGNO (x) >= FIRST_PSEUDO_REGISTER
6890       && replacements[REGNO (x)] != NULL_RTX)
6891     {
6892       if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
6893 	return replacements[REGNO (x)];
6894       return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
6895 			     GET_MODE (replacements[REGNO (x)]));
6896     }
6897   return NULL_RTX;
6898 }
6899 
6900 /* Scan all the insns and delete any that are dead; i.e., they store a register
6901    that is never used or they copy a register to itself.
6902 
6903    This is used to remove insns made obviously dead by cse, loop or other
6904    optimizations.  It improves the heuristics in loop since it won't try to
6905    move dead invariants out of loops or make givs for dead quantities.  The
6906    remaining passes of the compilation are also sped up.  */
6907 
6908 int
6909 delete_trivially_dead_insns (rtx insns, int nreg)
6910 {
6911   int *counts;
6912   rtx insn, prev;
6913   rtx *replacements = NULL;
6914   int ndead = 0;
6915 
6916   timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6917   /* First count the number of times each register is used.  */
6918   if (MAY_HAVE_DEBUG_INSNS)
6919     {
6920       counts = XCNEWVEC (int, nreg * 3);
6921       for (insn = insns; insn; insn = NEXT_INSN (insn))
6922 	if (DEBUG_INSN_P (insn))
6923 	  count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
6924 			   NULL_RTX, 1);
6925 	else if (INSN_P (insn))
6926 	  {
6927 	    count_reg_usage (insn, counts, NULL_RTX, 1);
6928 	    note_stores (PATTERN (insn), count_stores, counts + nreg * 2);
6929 	  }
6930       /* If there can be debug insns, COUNTS are 3 consecutive arrays.
6931 	 First one counts how many times each pseudo is used outside
6932 	 of debug insns, second counts how many times each pseudo is
6933 	 used in debug insns and third counts how many times a pseudo
6934 	 is stored.  */
6935     }
6936   else
6937     {
6938       counts = XCNEWVEC (int, nreg);
6939       for (insn = insns; insn; insn = NEXT_INSN (insn))
6940 	if (INSN_P (insn))
6941 	  count_reg_usage (insn, counts, NULL_RTX, 1);
6942       /* If no debug insns can be present, COUNTS is just an array
6943 	 which counts how many times each pseudo is used.  */
6944     }
6945   /* Go from the last insn to the first and delete insns that only set unused
6946      registers or copy a register to itself.  As we delete an insn, remove
6947      usage counts for registers it uses.
6948 
6949      The first jump optimization pass may leave a real insn as the last
6950      insn in the function.   We must not skip that insn or we may end
6951      up deleting code that is not really dead.
6952 
6953      If some otherwise unused register is only used in DEBUG_INSNs,
6954      try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
6955      the setter.  Then go through DEBUG_INSNs and if a DEBUG_EXPR
6956      has been created for the unused register, replace it with
6957      the DEBUG_EXPR, otherwise reset the DEBUG_INSN.  */
6958   for (insn = get_last_insn (); insn; insn = prev)
6959     {
6960       int live_insn = 0;
6961 
6962       prev = PREV_INSN (insn);
6963       if (!INSN_P (insn))
6964 	continue;
6965 
6966       live_insn = insn_live_p (insn, counts);
6967 
6968       /* If this is a dead insn, delete it and show registers in it aren't
6969 	 being used.  */
6970 
6971       if (! live_insn && dbg_cnt (delete_trivial_dead))
6972 	{
6973 	  if (DEBUG_INSN_P (insn))
6974 	    count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
6975 			     NULL_RTX, -1);
6976 	  else
6977 	    {
6978 	      rtx set;
6979 	      if (MAY_HAVE_DEBUG_INSNS
6980 		  && (set = single_set (insn)) != NULL_RTX
6981 		  && is_dead_reg (SET_DEST (set), counts)
6982 		  /* Used at least once in some DEBUG_INSN.  */
6983 		  && counts[REGNO (SET_DEST (set)) + nreg] > 0
6984 		  /* And set exactly once.  */
6985 		  && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
6986 		  && !side_effects_p (SET_SRC (set))
6987 		  && asm_noperands (PATTERN (insn)) < 0)
6988 		{
6989 		  rtx dval, bind;
6990 
6991 		  /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL).  */
6992 		  dval = make_debug_expr_from_rtl (SET_DEST (set));
6993 
6994 		  /* Emit a debug bind insn before the insn in which
6995 		     reg dies.  */
6996 		  bind = gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
6997 					       DEBUG_EXPR_TREE_DECL (dval),
6998 					       SET_SRC (set),
6999 					       VAR_INIT_STATUS_INITIALIZED);
7000 		  count_reg_usage (bind, counts + nreg, NULL_RTX, 1);
7001 
7002 		  bind = emit_debug_insn_before (bind, insn);
7003 		  df_insn_rescan (bind);
7004 
7005 		  if (replacements == NULL)
7006 		    replacements = XCNEWVEC (rtx, nreg);
7007 		  replacements[REGNO (SET_DEST (set))] = dval;
7008 		}
7009 
7010 	      count_reg_usage (insn, counts, NULL_RTX, -1);
7011 	      ndead++;
7012 	    }
7013 	  delete_insn_and_edges (insn);
7014 	}
7015     }
7016 
7017   if (MAY_HAVE_DEBUG_INSNS)
7018     {
7019       struct dead_debug_insn_data ddid;
7020       ddid.counts = counts;
7021       ddid.replacements = replacements;
7022       for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7023 	if (DEBUG_INSN_P (insn))
7024 	  {
7025 	    /* If this debug insn references a dead register that wasn't replaced
7026 	       with an DEBUG_EXPR, reset the DEBUG_INSN.  */
7027 	    ddid.seen_repl = false;
7028 	    if (for_each_rtx (&INSN_VAR_LOCATION_LOC (insn),
7029 			      is_dead_debug_insn, &ddid))
7030 	      {
7031 		INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7032 		df_insn_rescan (insn);
7033 	      }
7034 	    else if (ddid.seen_repl)
7035 	      {
7036 		INSN_VAR_LOCATION_LOC (insn)
7037 		  = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7038 					     NULL_RTX, replace_dead_reg,
7039 					     replacements);
7040 		df_insn_rescan (insn);
7041 	      }
7042 	  }
7043       free (replacements);
7044     }
7045 
7046   if (dump_file && ndead)
7047     fprintf (dump_file, "Deleted %i trivially dead insns\n",
7048 	     ndead);
7049   /* Clean up.  */
7050   free (counts);
7051   timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7052   return ndead;
7053 }
7054 
7055 /* This function is called via for_each_rtx.  The argument, NEWREG, is
7056    a condition code register with the desired mode.  If we are looking
7057    at the same register in a different mode, replace it with
7058    NEWREG.  */
7059 
7060 static int
7061 cse_change_cc_mode (rtx *loc, void *data)
7062 {
7063   struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
7064 
7065   if (*loc
7066       && REG_P (*loc)
7067       && REGNO (*loc) == REGNO (args->newreg)
7068       && GET_MODE (*loc) != GET_MODE (args->newreg))
7069     {
7070       validate_change (args->insn, loc, args->newreg, 1);
7071 
7072       return -1;
7073     }
7074   return 0;
7075 }
7076 
7077 /* Change the mode of any reference to the register REGNO (NEWREG) to
7078    GET_MODE (NEWREG) in INSN.  */
7079 
7080 static void
7081 cse_change_cc_mode_insn (rtx insn, rtx newreg)
7082 {
7083   struct change_cc_mode_args args;
7084   int success;
7085 
7086   if (!INSN_P (insn))
7087     return;
7088 
7089   args.insn = insn;
7090   args.newreg = newreg;
7091 
7092   for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
7093   for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
7094 
7095   /* If the following assertion was triggered, there is most probably
7096      something wrong with the cc_modes_compatible back end function.
7097      CC modes only can be considered compatible if the insn - with the mode
7098      replaced by any of the compatible modes - can still be recognized.  */
7099   success = apply_change_group ();
7100   gcc_assert (success);
7101 }
7102 
7103 /* Change the mode of any reference to the register REGNO (NEWREG) to
7104    GET_MODE (NEWREG), starting at START.  Stop before END.  Stop at
7105    any instruction which modifies NEWREG.  */
7106 
7107 static void
7108 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
7109 {
7110   rtx insn;
7111 
7112   for (insn = start; insn != end; insn = NEXT_INSN (insn))
7113     {
7114       if (! INSN_P (insn))
7115 	continue;
7116 
7117       if (reg_set_p (newreg, insn))
7118 	return;
7119 
7120       cse_change_cc_mode_insn (insn, newreg);
7121     }
7122 }
7123 
7124 /* BB is a basic block which finishes with CC_REG as a condition code
7125    register which is set to CC_SRC.  Look through the successors of BB
7126    to find blocks which have a single predecessor (i.e., this one),
7127    and look through those blocks for an assignment to CC_REG which is
7128    equivalent to CC_SRC.  CAN_CHANGE_MODE indicates whether we are
7129    permitted to change the mode of CC_SRC to a compatible mode.  This
7130    returns VOIDmode if no equivalent assignments were found.
7131    Otherwise it returns the mode which CC_SRC should wind up with.
7132    ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7133    but is passed unmodified down to recursive calls in order to prevent
7134    endless recursion.
7135 
7136    The main complexity in this function is handling the mode issues.
7137    We may have more than one duplicate which we can eliminate, and we
7138    try to find a mode which will work for multiple duplicates.  */
7139 
7140 static enum machine_mode
7141 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7142 	      bool can_change_mode)
7143 {
7144   bool found_equiv;
7145   enum machine_mode mode;
7146   unsigned int insn_count;
7147   edge e;
7148   rtx insns[2];
7149   enum machine_mode modes[2];
7150   rtx last_insns[2];
7151   unsigned int i;
7152   rtx newreg;
7153   edge_iterator ei;
7154 
7155   /* We expect to have two successors.  Look at both before picking
7156      the final mode for the comparison.  If we have more successors
7157      (i.e., some sort of table jump, although that seems unlikely),
7158      then we require all beyond the first two to use the same
7159      mode.  */
7160 
7161   found_equiv = false;
7162   mode = GET_MODE (cc_src);
7163   insn_count = 0;
7164   FOR_EACH_EDGE (e, ei, bb->succs)
7165     {
7166       rtx insn;
7167       rtx end;
7168 
7169       if (e->flags & EDGE_COMPLEX)
7170 	continue;
7171 
7172       if (EDGE_COUNT (e->dest->preds) != 1
7173 	  || e->dest == EXIT_BLOCK_PTR
7174 	  /* Avoid endless recursion on unreachable blocks.  */
7175 	  || e->dest == orig_bb)
7176 	continue;
7177 
7178       end = NEXT_INSN (BB_END (e->dest));
7179       for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7180 	{
7181 	  rtx set;
7182 
7183 	  if (! INSN_P (insn))
7184 	    continue;
7185 
7186 	  /* If CC_SRC is modified, we have to stop looking for
7187 	     something which uses it.  */
7188 	  if (modified_in_p (cc_src, insn))
7189 	    break;
7190 
7191 	  /* Check whether INSN sets CC_REG to CC_SRC.  */
7192 	  set = single_set (insn);
7193 	  if (set
7194 	      && REG_P (SET_DEST (set))
7195 	      && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7196 	    {
7197 	      bool found;
7198 	      enum machine_mode set_mode;
7199 	      enum machine_mode comp_mode;
7200 
7201 	      found = false;
7202 	      set_mode = GET_MODE (SET_SRC (set));
7203 	      comp_mode = set_mode;
7204 	      if (rtx_equal_p (cc_src, SET_SRC (set)))
7205 		found = true;
7206 	      else if (GET_CODE (cc_src) == COMPARE
7207 		       && GET_CODE (SET_SRC (set)) == COMPARE
7208 		       && mode != set_mode
7209 		       && rtx_equal_p (XEXP (cc_src, 0),
7210 				       XEXP (SET_SRC (set), 0))
7211 		       && rtx_equal_p (XEXP (cc_src, 1),
7212 				       XEXP (SET_SRC (set), 1)))
7213 
7214 		{
7215 		  comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7216 		  if (comp_mode != VOIDmode
7217 		      && (can_change_mode || comp_mode == mode))
7218 		    found = true;
7219 		}
7220 
7221 	      if (found)
7222 		{
7223 		  found_equiv = true;
7224 		  if (insn_count < ARRAY_SIZE (insns))
7225 		    {
7226 		      insns[insn_count] = insn;
7227 		      modes[insn_count] = set_mode;
7228 		      last_insns[insn_count] = end;
7229 		      ++insn_count;
7230 
7231 		      if (mode != comp_mode)
7232 			{
7233 			  gcc_assert (can_change_mode);
7234 			  mode = comp_mode;
7235 
7236 			  /* The modified insn will be re-recognized later.  */
7237 			  PUT_MODE (cc_src, mode);
7238 			}
7239 		    }
7240 		  else
7241 		    {
7242 		      if (set_mode != mode)
7243 			{
7244 			  /* We found a matching expression in the
7245 			     wrong mode, but we don't have room to
7246 			     store it in the array.  Punt.  This case
7247 			     should be rare.  */
7248 			  break;
7249 			}
7250 		      /* INSN sets CC_REG to a value equal to CC_SRC
7251 			 with the right mode.  We can simply delete
7252 			 it.  */
7253 		      delete_insn (insn);
7254 		    }
7255 
7256 		  /* We found an instruction to delete.  Keep looking,
7257 		     in the hopes of finding a three-way jump.  */
7258 		  continue;
7259 		}
7260 
7261 	      /* We found an instruction which sets the condition
7262 		 code, so don't look any farther.  */
7263 	      break;
7264 	    }
7265 
7266 	  /* If INSN sets CC_REG in some other way, don't look any
7267 	     farther.  */
7268 	  if (reg_set_p (cc_reg, insn))
7269 	    break;
7270 	}
7271 
7272       /* If we fell off the bottom of the block, we can keep looking
7273 	 through successors.  We pass CAN_CHANGE_MODE as false because
7274 	 we aren't prepared to handle compatibility between the
7275 	 further blocks and this block.  */
7276       if (insn == end)
7277 	{
7278 	  enum machine_mode submode;
7279 
7280 	  submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
7281 	  if (submode != VOIDmode)
7282 	    {
7283 	      gcc_assert (submode == mode);
7284 	      found_equiv = true;
7285 	      can_change_mode = false;
7286 	    }
7287 	}
7288     }
7289 
7290   if (! found_equiv)
7291     return VOIDmode;
7292 
7293   /* Now INSN_COUNT is the number of instructions we found which set
7294      CC_REG to a value equivalent to CC_SRC.  The instructions are in
7295      INSNS.  The modes used by those instructions are in MODES.  */
7296 
7297   newreg = NULL_RTX;
7298   for (i = 0; i < insn_count; ++i)
7299     {
7300       if (modes[i] != mode)
7301 	{
7302 	  /* We need to change the mode of CC_REG in INSNS[i] and
7303 	     subsequent instructions.  */
7304 	  if (! newreg)
7305 	    {
7306 	      if (GET_MODE (cc_reg) == mode)
7307 		newreg = cc_reg;
7308 	      else
7309 		newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7310 	    }
7311 	  cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7312 				    newreg);
7313 	}
7314 
7315       delete_insn_and_edges (insns[i]);
7316     }
7317 
7318   return mode;
7319 }
7320 
7321 /* If we have a fixed condition code register (or two), walk through
7322    the instructions and try to eliminate duplicate assignments.  */
7323 
7324 static void
7325 cse_condition_code_reg (void)
7326 {
7327   unsigned int cc_regno_1;
7328   unsigned int cc_regno_2;
7329   rtx cc_reg_1;
7330   rtx cc_reg_2;
7331   basic_block bb;
7332 
7333   if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7334     return;
7335 
7336   cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7337   if (cc_regno_2 != INVALID_REGNUM)
7338     cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7339   else
7340     cc_reg_2 = NULL_RTX;
7341 
7342   FOR_EACH_BB (bb)
7343     {
7344       rtx last_insn;
7345       rtx cc_reg;
7346       rtx insn;
7347       rtx cc_src_insn;
7348       rtx cc_src;
7349       enum machine_mode mode;
7350       enum machine_mode orig_mode;
7351 
7352       /* Look for blocks which end with a conditional jump based on a
7353 	 condition code register.  Then look for the instruction which
7354 	 sets the condition code register.  Then look through the
7355 	 successor blocks for instructions which set the condition
7356 	 code register to the same value.  There are other possible
7357 	 uses of the condition code register, but these are by far the
7358 	 most common and the ones which we are most likely to be able
7359 	 to optimize.  */
7360 
7361       last_insn = BB_END (bb);
7362       if (!JUMP_P (last_insn))
7363 	continue;
7364 
7365       if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7366 	cc_reg = cc_reg_1;
7367       else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7368 	cc_reg = cc_reg_2;
7369       else
7370 	continue;
7371 
7372       cc_src_insn = NULL_RTX;
7373       cc_src = NULL_RTX;
7374       for (insn = PREV_INSN (last_insn);
7375 	   insn && insn != PREV_INSN (BB_HEAD (bb));
7376 	   insn = PREV_INSN (insn))
7377 	{
7378 	  rtx set;
7379 
7380 	  if (! INSN_P (insn))
7381 	    continue;
7382 	  set = single_set (insn);
7383 	  if (set
7384 	      && REG_P (SET_DEST (set))
7385 	      && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7386 	    {
7387 	      cc_src_insn = insn;
7388 	      cc_src = SET_SRC (set);
7389 	      break;
7390 	    }
7391 	  else if (reg_set_p (cc_reg, insn))
7392 	    break;
7393 	}
7394 
7395       if (! cc_src_insn)
7396 	continue;
7397 
7398       if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7399 	continue;
7400 
7401       /* Now CC_REG is a condition code register used for a
7402 	 conditional jump at the end of the block, and CC_SRC, in
7403 	 CC_SRC_INSN, is the value to which that condition code
7404 	 register is set, and CC_SRC is still meaningful at the end of
7405 	 the basic block.  */
7406 
7407       orig_mode = GET_MODE (cc_src);
7408       mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
7409       if (mode != VOIDmode)
7410 	{
7411 	  gcc_assert (mode == GET_MODE (cc_src));
7412 	  if (mode != orig_mode)
7413 	    {
7414 	      rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7415 
7416 	      cse_change_cc_mode_insn (cc_src_insn, newreg);
7417 
7418 	      /* Do the same in the following insns that use the
7419 		 current value of CC_REG within BB.  */
7420 	      cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7421 					NEXT_INSN (last_insn),
7422 					newreg);
7423 	    }
7424 	}
7425     }
7426 }
7427 
7428 
7429 /* Perform common subexpression elimination.  Nonzero value from
7430    `cse_main' means that jumps were simplified and some code may now
7431    be unreachable, so do jump optimization again.  */
7432 static bool
7433 gate_handle_cse (void)
7434 {
7435   return optimize > 0;
7436 }
7437 
7438 static unsigned int
7439 rest_of_handle_cse (void)
7440 {
7441   int tem;
7442 
7443   if (dump_file)
7444     dump_flow_info (dump_file, dump_flags);
7445 
7446   tem = cse_main (get_insns (), max_reg_num ());
7447 
7448   /* If we are not running more CSE passes, then we are no longer
7449      expecting CSE to be run.  But always rerun it in a cheap mode.  */
7450   cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7451 
7452   if (tem == 2)
7453     {
7454       timevar_push (TV_JUMP);
7455       rebuild_jump_labels (get_insns ());
7456       cleanup_cfg (CLEANUP_CFG_CHANGED);
7457       timevar_pop (TV_JUMP);
7458     }
7459   else if (tem == 1 || optimize > 1)
7460     cleanup_cfg (0);
7461 
7462   return 0;
7463 }
7464 
7465 struct rtl_opt_pass pass_cse =
7466 {
7467  {
7468   RTL_PASS,
7469   "cse1",                               /* name */
7470   OPTGROUP_NONE,                        /* optinfo_flags */
7471   gate_handle_cse,                      /* gate */
7472   rest_of_handle_cse,			/* execute */
7473   NULL,                                 /* sub */
7474   NULL,                                 /* next */
7475   0,                                    /* static_pass_number */
7476   TV_CSE,                               /* tv_id */
7477   0,                                    /* properties_required */
7478   0,                                    /* properties_provided */
7479   0,                                    /* properties_destroyed */
7480   0,                                    /* todo_flags_start */
7481   TODO_df_finish | TODO_verify_rtl_sharing |
7482   TODO_ggc_collect |
7483   TODO_verify_flow,                     /* todo_flags_finish */
7484  }
7485 };
7486 
7487 
7488 static bool
7489 gate_handle_cse2 (void)
7490 {
7491   return optimize > 0 && flag_rerun_cse_after_loop;
7492 }
7493 
7494 /* Run second CSE pass after loop optimizations.  */
7495 static unsigned int
7496 rest_of_handle_cse2 (void)
7497 {
7498   int tem;
7499 
7500   if (dump_file)
7501     dump_flow_info (dump_file, dump_flags);
7502 
7503   tem = cse_main (get_insns (), max_reg_num ());
7504 
7505   /* Run a pass to eliminate duplicated assignments to condition code
7506      registers.  We have to run this after bypass_jumps, because it
7507      makes it harder for that pass to determine whether a jump can be
7508      bypassed safely.  */
7509   cse_condition_code_reg ();
7510 
7511   delete_trivially_dead_insns (get_insns (), max_reg_num ());
7512 
7513   if (tem == 2)
7514     {
7515       timevar_push (TV_JUMP);
7516       rebuild_jump_labels (get_insns ());
7517       cleanup_cfg (CLEANUP_CFG_CHANGED);
7518       timevar_pop (TV_JUMP);
7519     }
7520   else if (tem == 1)
7521     cleanup_cfg (0);
7522 
7523   cse_not_expected = 1;
7524   return 0;
7525 }
7526 
7527 
7528 struct rtl_opt_pass pass_cse2 =
7529 {
7530  {
7531   RTL_PASS,
7532   "cse2",                               /* name */
7533   OPTGROUP_NONE,                        /* optinfo_flags */
7534   gate_handle_cse2,                     /* gate */
7535   rest_of_handle_cse2,			/* execute */
7536   NULL,                                 /* sub */
7537   NULL,                                 /* next */
7538   0,                                    /* static_pass_number */
7539   TV_CSE2,                              /* tv_id */
7540   0,                                    /* properties_required */
7541   0,                                    /* properties_provided */
7542   0,                                    /* properties_destroyed */
7543   0,                                    /* todo_flags_start */
7544   TODO_df_finish | TODO_verify_rtl_sharing |
7545   TODO_ggc_collect |
7546   TODO_verify_flow                      /* todo_flags_finish */
7547  }
7548 };
7549 
7550 static bool
7551 gate_handle_cse_after_global_opts (void)
7552 {
7553   return optimize > 0 && flag_rerun_cse_after_global_opts;
7554 }
7555 
7556 /* Run second CSE pass after loop optimizations.  */
7557 static unsigned int
7558 rest_of_handle_cse_after_global_opts (void)
7559 {
7560   int save_cfj;
7561   int tem;
7562 
7563   /* We only want to do local CSE, so don't follow jumps.  */
7564   save_cfj = flag_cse_follow_jumps;
7565   flag_cse_follow_jumps = 0;
7566 
7567   rebuild_jump_labels (get_insns ());
7568   tem = cse_main (get_insns (), max_reg_num ());
7569   purge_all_dead_edges ();
7570   delete_trivially_dead_insns (get_insns (), max_reg_num ());
7571 
7572   cse_not_expected = !flag_rerun_cse_after_loop;
7573 
7574   /* If cse altered any jumps, rerun jump opts to clean things up.  */
7575   if (tem == 2)
7576     {
7577       timevar_push (TV_JUMP);
7578       rebuild_jump_labels (get_insns ());
7579       cleanup_cfg (CLEANUP_CFG_CHANGED);
7580       timevar_pop (TV_JUMP);
7581     }
7582   else if (tem == 1)
7583     cleanup_cfg (0);
7584 
7585   flag_cse_follow_jumps = save_cfj;
7586   return 0;
7587 }
7588 
7589 struct rtl_opt_pass pass_cse_after_global_opts =
7590 {
7591  {
7592   RTL_PASS,
7593   "cse_local",                          /* name */
7594   OPTGROUP_NONE,                        /* optinfo_flags */
7595   gate_handle_cse_after_global_opts,    /* gate */
7596   rest_of_handle_cse_after_global_opts, /* execute */
7597   NULL,                                 /* sub */
7598   NULL,                                 /* next */
7599   0,                                    /* static_pass_number */
7600   TV_CSE,                               /* tv_id */
7601   0,                                    /* properties_required */
7602   0,                                    /* properties_provided */
7603   0,                                    /* properties_destroyed */
7604   0,                                    /* todo_flags_start */
7605   TODO_df_finish | TODO_verify_rtl_sharing |
7606   TODO_ggc_collect |
7607   TODO_verify_flow                      /* todo_flags_finish */
7608  }
7609 };
7610