xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/cse.c (revision 6cf6fe02a981b55727c49c3d37b0d8191a98c0ee)
1 /* Common subexpression elimination for GNU compiler.
2    Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3    1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4    Free Software Foundation, Inc.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 #include "config.h"
23 /* stdio.h must precede rtl.h for FFS.  */
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "regs.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "real.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "function.h"
37 #include "expr.h"
38 #include "toplev.h"
39 #include "output.h"
40 #include "ggc.h"
41 #include "timevar.h"
42 #include "except.h"
43 #include "target.h"
44 #include "params.h"
45 #include "rtlhooks-def.h"
46 #include "tree-pass.h"
47 #include "df.h"
48 #include "dbgcnt.h"
49 
50 /* The basic idea of common subexpression elimination is to go
51    through the code, keeping a record of expressions that would
52    have the same value at the current scan point, and replacing
53    expressions encountered with the cheapest equivalent expression.
54 
55    It is too complicated to keep track of the different possibilities
56    when control paths merge in this code; so, at each label, we forget all
57    that is known and start fresh.  This can be described as processing each
58    extended basic block separately.  We have a separate pass to perform
59    global CSE.
60 
61    Note CSE can turn a conditional or computed jump into a nop or
62    an unconditional jump.  When this occurs we arrange to run the jump
63    optimizer after CSE to delete the unreachable code.
64 
65    We use two data structures to record the equivalent expressions:
66    a hash table for most expressions, and a vector of "quantity
67    numbers" to record equivalent (pseudo) registers.
68 
69    The use of the special data structure for registers is desirable
70    because it is faster.  It is possible because registers references
71    contain a fairly small number, the register number, taken from
72    a contiguously allocated series, and two register references are
73    identical if they have the same number.  General expressions
74    do not have any such thing, so the only way to retrieve the
75    information recorded on an expression other than a register
76    is to keep it in a hash table.
77 
78 Registers and "quantity numbers":
79 
80    At the start of each basic block, all of the (hardware and pseudo)
81    registers used in the function are given distinct quantity
82    numbers to indicate their contents.  During scan, when the code
83    copies one register into another, we copy the quantity number.
84    When a register is loaded in any other way, we allocate a new
85    quantity number to describe the value generated by this operation.
86    `REG_QTY (N)' records what quantity register N is currently thought
87    of as containing.
88 
89    All real quantity numbers are greater than or equal to zero.
90    If register N has not been assigned a quantity, `REG_QTY (N)' will
91    equal -N - 1, which is always negative.
92 
93    Quantity numbers below zero do not exist and none of the `qty_table'
94    entries should be referenced with a negative index.
95 
96    We also maintain a bidirectional chain of registers for each
97    quantity number.  The `qty_table` members `first_reg' and `last_reg',
98    and `reg_eqv_table' members `next' and `prev' hold these chains.
99 
100    The first register in a chain is the one whose lifespan is least local.
101    Among equals, it is the one that was seen first.
102    We replace any equivalent register with that one.
103 
104    If two registers have the same quantity number, it must be true that
105    REG expressions with qty_table `mode' must be in the hash table for both
106    registers and must be in the same class.
107 
108    The converse is not true.  Since hard registers may be referenced in
109    any mode, two REG expressions might be equivalent in the hash table
110    but not have the same quantity number if the quantity number of one
111    of the registers is not the same mode as those expressions.
112 
113 Constants and quantity numbers
114 
115    When a quantity has a known constant value, that value is stored
116    in the appropriate qty_table `const_rtx'.  This is in addition to
117    putting the constant in the hash table as is usual for non-regs.
118 
119    Whether a reg or a constant is preferred is determined by the configuration
120    macro CONST_COSTS and will often depend on the constant value.  In any
121    event, expressions containing constants can be simplified, by fold_rtx.
122 
123    When a quantity has a known nearly constant value (such as an address
124    of a stack slot), that value is stored in the appropriate qty_table
125    `const_rtx'.
126 
127    Integer constants don't have a machine mode.  However, cse
128    determines the intended machine mode from the destination
129    of the instruction that moves the constant.  The machine mode
130    is recorded in the hash table along with the actual RTL
131    constant expression so that different modes are kept separate.
132 
133 Other expressions:
134 
135    To record known equivalences among expressions in general
136    we use a hash table called `table'.  It has a fixed number of buckets
137    that contain chains of `struct table_elt' elements for expressions.
138    These chains connect the elements whose expressions have the same
139    hash codes.
140 
141    Other chains through the same elements connect the elements which
142    currently have equivalent values.
143 
144    Register references in an expression are canonicalized before hashing
145    the expression.  This is done using `reg_qty' and qty_table `first_reg'.
146    The hash code of a register reference is computed using the quantity
147    number, not the register number.
148 
149    When the value of an expression changes, it is necessary to remove from the
150    hash table not just that expression but all expressions whose values
151    could be different as a result.
152 
153      1. If the value changing is in memory, except in special cases
154      ANYTHING referring to memory could be changed.  That is because
155      nobody knows where a pointer does not point.
156      The function `invalidate_memory' removes what is necessary.
157 
158      The special cases are when the address is constant or is
159      a constant plus a fixed register such as the frame pointer
160      or a static chain pointer.  When such addresses are stored in,
161      we can tell exactly which other such addresses must be invalidated
162      due to overlap.  `invalidate' does this.
163      All expressions that refer to non-constant
164      memory addresses are also invalidated.  `invalidate_memory' does this.
165 
166      2. If the value changing is a register, all expressions
167      containing references to that register, and only those,
168      must be removed.
169 
170    Because searching the entire hash table for expressions that contain
171    a register is very slow, we try to figure out when it isn't necessary.
172    Precisely, this is necessary only when expressions have been
173    entered in the hash table using this register, and then the value has
174    changed, and then another expression wants to be added to refer to
175    the register's new value.  This sequence of circumstances is rare
176    within any one basic block.
177 
178    `REG_TICK' and `REG_IN_TABLE', accessors for members of
179    cse_reg_info, are used to detect this case.  REG_TICK (i) is
180    incremented whenever a value is stored in register i.
181    REG_IN_TABLE (i) holds -1 if no references to register i have been
182    entered in the table; otherwise, it contains the value REG_TICK (i)
183    had when the references were entered.  If we want to enter a
184    reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
185    remove old references.  Until we want to enter a new entry, the
186    mere fact that the two vectors don't match makes the entries be
187    ignored if anyone tries to match them.
188 
189    Registers themselves are entered in the hash table as well as in
190    the equivalent-register chains.  However, `REG_TICK' and
191    `REG_IN_TABLE' do not apply to expressions which are simple
192    register references.  These expressions are removed from the table
193    immediately when they become invalid, and this can be done even if
194    we do not immediately search for all the expressions that refer to
195    the register.
196 
197    A CLOBBER rtx in an instruction invalidates its operand for further
198    reuse.  A CLOBBER or SET rtx whose operand is a MEM:BLK
199    invalidates everything that resides in memory.
200 
201 Related expressions:
202 
203    Constant expressions that differ only by an additive integer
204    are called related.  When a constant expression is put in
205    the table, the related expression with no constant term
206    is also entered.  These are made to point at each other
207    so that it is possible to find out if there exists any
208    register equivalent to an expression related to a given expression.  */
209 
210 /* Length of qty_table vector.  We know in advance we will not need
211    a quantity number this big.  */
212 
213 static int max_qty;
214 
215 /* Next quantity number to be allocated.
216    This is 1 + the largest number needed so far.  */
217 
218 static int next_qty;
219 
220 /* Per-qty information tracking.
221 
222    `first_reg' and `last_reg' track the head and tail of the
223    chain of registers which currently contain this quantity.
224 
225    `mode' contains the machine mode of this quantity.
226 
227    `const_rtx' holds the rtx of the constant value of this
228    quantity, if known.  A summations of the frame/arg pointer
229    and a constant can also be entered here.  When this holds
230    a known value, `const_insn' is the insn which stored the
231    constant value.
232 
233    `comparison_{code,const,qty}' are used to track when a
234    comparison between a quantity and some constant or register has
235    been passed.  In such a case, we know the results of the comparison
236    in case we see it again.  These members record a comparison that
237    is known to be true.  `comparison_code' holds the rtx code of such
238    a comparison, else it is set to UNKNOWN and the other two
239    comparison members are undefined.  `comparison_const' holds
240    the constant being compared against, or zero if the comparison
241    is not against a constant.  `comparison_qty' holds the quantity
242    being compared against when the result is known.  If the comparison
243    is not with a register, `comparison_qty' is -1.  */
244 
245 struct qty_table_elem
246 {
247   rtx const_rtx;
248   rtx const_insn;
249   rtx comparison_const;
250   int comparison_qty;
251   unsigned int first_reg, last_reg;
252   /* The sizes of these fields should match the sizes of the
253      code and mode fields of struct rtx_def (see rtl.h).  */
254   ENUM_BITFIELD(rtx_code) comparison_code : 16;
255   ENUM_BITFIELD(machine_mode) mode : 8;
256 };
257 
258 /* The table of all qtys, indexed by qty number.  */
259 static struct qty_table_elem *qty_table;
260 
261 /* Structure used to pass arguments via for_each_rtx to function
262    cse_change_cc_mode.  */
263 struct change_cc_mode_args
264 {
265   rtx insn;
266   rtx newreg;
267 };
268 
269 #ifdef HAVE_cc0
270 /* For machines that have a CC0, we do not record its value in the hash
271    table since its use is guaranteed to be the insn immediately following
272    its definition and any other insn is presumed to invalidate it.
273 
274    Instead, we store below the current and last value assigned to CC0.
275    If it should happen to be a constant, it is stored in preference
276    to the actual assigned value.  In case it is a constant, we store
277    the mode in which the constant should be interpreted.  */
278 
279 static rtx this_insn_cc0, prev_insn_cc0;
280 static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
281 #endif
282 
283 /* Insn being scanned.  */
284 
285 static rtx this_insn;
286 static bool optimize_this_for_speed_p;
287 
288 /* Index by register number, gives the number of the next (or
289    previous) register in the chain of registers sharing the same
290    value.
291 
292    Or -1 if this register is at the end of the chain.
293 
294    If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined.  */
295 
296 /* Per-register equivalence chain.  */
297 struct reg_eqv_elem
298 {
299   int next, prev;
300 };
301 
302 /* The table of all register equivalence chains.  */
303 static struct reg_eqv_elem *reg_eqv_table;
304 
305 struct cse_reg_info
306 {
307   /* The timestamp at which this register is initialized.  */
308   unsigned int timestamp;
309 
310   /* The quantity number of the register's current contents.  */
311   int reg_qty;
312 
313   /* The number of times the register has been altered in the current
314      basic block.  */
315   int reg_tick;
316 
317   /* The REG_TICK value at which rtx's containing this register are
318      valid in the hash table.  If this does not equal the current
319      reg_tick value, such expressions existing in the hash table are
320      invalid.  */
321   int reg_in_table;
322 
323   /* The SUBREG that was set when REG_TICK was last incremented.  Set
324      to -1 if the last store was to the whole register, not a subreg.  */
325   unsigned int subreg_ticked;
326 };
327 
328 /* A table of cse_reg_info indexed by register numbers.  */
329 static struct cse_reg_info *cse_reg_info_table;
330 
331 /* The size of the above table.  */
332 static unsigned int cse_reg_info_table_size;
333 
334 /* The index of the first entry that has not been initialized.  */
335 static unsigned int cse_reg_info_table_first_uninitialized;
336 
337 /* The timestamp at the beginning of the current run of
338    cse_extended_basic_block.  We increment this variable at the beginning of
339    the current run of cse_extended_basic_block.  The timestamp field of a
340    cse_reg_info entry matches the value of this variable if and only
341    if the entry has been initialized during the current run of
342    cse_extended_basic_block.  */
343 static unsigned int cse_reg_info_timestamp;
344 
345 /* A HARD_REG_SET containing all the hard registers for which there is
346    currently a REG expression in the hash table.  Note the difference
347    from the above variables, which indicate if the REG is mentioned in some
348    expression in the table.  */
349 
350 static HARD_REG_SET hard_regs_in_table;
351 
352 /* True if CSE has altered the CFG.  */
353 static bool cse_cfg_altered;
354 
355 /* True if CSE has altered conditional jump insns in such a way
356    that jump optimization should be redone.  */
357 static bool cse_jumps_altered;
358 
359 /* True if we put a LABEL_REF into the hash table for an INSN
360    without a REG_LABEL_OPERAND, we have to rerun jump after CSE
361    to put in the note.  */
362 static bool recorded_label_ref;
363 
364 /* canon_hash stores 1 in do_not_record
365    if it notices a reference to CC0, PC, or some other volatile
366    subexpression.  */
367 
368 static int do_not_record;
369 
370 /* canon_hash stores 1 in hash_arg_in_memory
371    if it notices a reference to memory within the expression being hashed.  */
372 
373 static int hash_arg_in_memory;
374 
375 /* The hash table contains buckets which are chains of `struct table_elt's,
376    each recording one expression's information.
377    That expression is in the `exp' field.
378 
379    The canon_exp field contains a canonical (from the point of view of
380    alias analysis) version of the `exp' field.
381 
382    Those elements with the same hash code are chained in both directions
383    through the `next_same_hash' and `prev_same_hash' fields.
384 
385    Each set of expressions with equivalent values
386    are on a two-way chain through the `next_same_value'
387    and `prev_same_value' fields, and all point with
388    the `first_same_value' field at the first element in
389    that chain.  The chain is in order of increasing cost.
390    Each element's cost value is in its `cost' field.
391 
392    The `in_memory' field is nonzero for elements that
393    involve any reference to memory.  These elements are removed
394    whenever a write is done to an unidentified location in memory.
395    To be safe, we assume that a memory address is unidentified unless
396    the address is either a symbol constant or a constant plus
397    the frame pointer or argument pointer.
398 
399    The `related_value' field is used to connect related expressions
400    (that differ by adding an integer).
401    The related expressions are chained in a circular fashion.
402    `related_value' is zero for expressions for which this
403    chain is not useful.
404 
405    The `cost' field stores the cost of this element's expression.
406    The `regcost' field stores the value returned by approx_reg_cost for
407    this element's expression.
408 
409    The `is_const' flag is set if the element is a constant (including
410    a fixed address).
411 
412    The `flag' field is used as a temporary during some search routines.
413 
414    The `mode' field is usually the same as GET_MODE (`exp'), but
415    if `exp' is a CONST_INT and has no machine mode then the `mode'
416    field is the mode it was being used as.  Each constant is
417    recorded separately for each mode it is used with.  */
418 
419 struct table_elt
420 {
421   rtx exp;
422   rtx canon_exp;
423   struct table_elt *next_same_hash;
424   struct table_elt *prev_same_hash;
425   struct table_elt *next_same_value;
426   struct table_elt *prev_same_value;
427   struct table_elt *first_same_value;
428   struct table_elt *related_value;
429   int cost;
430   int regcost;
431   /* The size of this field should match the size
432      of the mode field of struct rtx_def (see rtl.h).  */
433   ENUM_BITFIELD(machine_mode) mode : 8;
434   char in_memory;
435   char is_const;
436   char flag;
437 };
438 
439 /* We don't want a lot of buckets, because we rarely have very many
440    things stored in the hash table, and a lot of buckets slows
441    down a lot of loops that happen frequently.  */
442 #define HASH_SHIFT	5
443 #define HASH_SIZE	(1 << HASH_SHIFT)
444 #define HASH_MASK	(HASH_SIZE - 1)
445 
446 /* Compute hash code of X in mode M.  Special-case case where X is a pseudo
447    register (hard registers may require `do_not_record' to be set).  */
448 
449 #define HASH(X, M)	\
450  ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER	\
451   ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X)))	\
452   : canon_hash (X, M)) & HASH_MASK)
453 
454 /* Like HASH, but without side-effects.  */
455 #define SAFE_HASH(X, M)	\
456  ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER	\
457   ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X)))	\
458   : safe_hash (X, M)) & HASH_MASK)
459 
460 /* Determine whether register number N is considered a fixed register for the
461    purpose of approximating register costs.
462    It is desirable to replace other regs with fixed regs, to reduce need for
463    non-fixed hard regs.
464    A reg wins if it is either the frame pointer or designated as fixed.  */
465 #define FIXED_REGNO_P(N)  \
466   ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
467    || fixed_regs[N] || global_regs[N])
468 
469 /* Compute cost of X, as stored in the `cost' field of a table_elt.  Fixed
470    hard registers and pointers into the frame are the cheapest with a cost
471    of 0.  Next come pseudos with a cost of one and other hard registers with
472    a cost of 2.  Aside from these special cases, call `rtx_cost'.  */
473 
474 #define CHEAP_REGNO(N)							\
475   (REGNO_PTR_FRAME_P(N)							\
476    || (HARD_REGISTER_NUM_P (N)						\
477        && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
478 
479 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
480 #define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
481 
482 /* Get the number of times this register has been updated in this
483    basic block.  */
484 
485 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
486 
487 /* Get the point at which REG was recorded in the table.  */
488 
489 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
490 
491 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
492    SUBREG).  */
493 
494 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
495 
496 /* Get the quantity number for REG.  */
497 
498 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
499 
500 /* Determine if the quantity number for register X represents a valid index
501    into the qty_table.  */
502 
503 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
504 
505 /* Compare table_elt X and Y and return true iff X is cheaper than Y.  */
506 
507 #define CHEAPER(X, Y) \
508  (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
509 
510 static struct table_elt *table[HASH_SIZE];
511 
512 /* Chain of `struct table_elt's made so far for this function
513    but currently removed from the table.  */
514 
515 static struct table_elt *free_element_chain;
516 
517 /* Set to the cost of a constant pool reference if one was found for a
518    symbolic constant.  If this was found, it means we should try to
519    convert constants into constant pool entries if they don't fit in
520    the insn.  */
521 
522 static int constant_pool_entries_cost;
523 static int constant_pool_entries_regcost;
524 
525 /* Trace a patch through the CFG.  */
526 
527 struct branch_path
528 {
529   /* The basic block for this path entry.  */
530   basic_block bb;
531 };
532 
533 /* This data describes a block that will be processed by
534    cse_extended_basic_block.  */
535 
536 struct cse_basic_block_data
537 {
538   /* Total number of SETs in block.  */
539   int nsets;
540   /* Size of current branch path, if any.  */
541   int path_size;
542   /* Current path, indicating which basic_blocks will be processed.  */
543   struct branch_path *path;
544 };
545 
546 
547 /* Pointers to the live in/live out bitmaps for the boundaries of the
548    current EBB.  */
549 static bitmap cse_ebb_live_in, cse_ebb_live_out;
550 
551 /* A simple bitmap to track which basic blocks have been visited
552    already as part of an already processed extended basic block.  */
553 static sbitmap cse_visited_basic_blocks;
554 
555 static bool fixed_base_plus_p (rtx x);
556 static int notreg_cost (rtx, enum rtx_code);
557 static int approx_reg_cost_1 (rtx *, void *);
558 static int approx_reg_cost (rtx);
559 static int preferable (int, int, int, int);
560 static void new_basic_block (void);
561 static void make_new_qty (unsigned int, enum machine_mode);
562 static void make_regs_eqv (unsigned int, unsigned int);
563 static void delete_reg_equiv (unsigned int);
564 static int mention_regs (rtx);
565 static int insert_regs (rtx, struct table_elt *, int);
566 static void remove_from_table (struct table_elt *, unsigned);
567 static void remove_pseudo_from_table (rtx, unsigned);
568 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
569 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
570 static rtx lookup_as_function (rtx, enum rtx_code);
571 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
572 					    enum machine_mode, int, int);
573 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
574 				 enum machine_mode);
575 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
576 static void invalidate (rtx, enum machine_mode);
577 static bool cse_rtx_varies_p (const_rtx, bool);
578 static void remove_invalid_refs (unsigned int);
579 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
580 					enum machine_mode);
581 static void rehash_using_reg (rtx);
582 static void invalidate_memory (void);
583 static void invalidate_for_call (void);
584 static rtx use_related_value (rtx, struct table_elt *);
585 
586 static inline unsigned canon_hash (rtx, enum machine_mode);
587 static inline unsigned safe_hash (rtx, enum machine_mode);
588 static inline unsigned hash_rtx_string (const char *);
589 
590 static rtx canon_reg (rtx, rtx);
591 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
592 					   enum machine_mode *,
593 					   enum machine_mode *);
594 static rtx fold_rtx (rtx, rtx);
595 static rtx equiv_constant (rtx);
596 static void record_jump_equiv (rtx, bool);
597 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
598 			      int);
599 static void cse_insn (rtx);
600 static void cse_prescan_path (struct cse_basic_block_data *);
601 static void invalidate_from_clobbers (rtx);
602 static rtx cse_process_notes (rtx, rtx, bool *);
603 static void cse_extended_basic_block (struct cse_basic_block_data *);
604 static void count_reg_usage (rtx, int *, rtx, int);
605 static int check_for_label_ref (rtx *, void *);
606 extern void dump_class (struct table_elt*);
607 static void get_cse_reg_info_1 (unsigned int regno);
608 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
609 static int check_dependence (rtx *, void *);
610 
611 static void flush_hash_table (void);
612 static bool insn_live_p (rtx, int *);
613 static bool set_live_p (rtx, rtx, int *);
614 static int cse_change_cc_mode (rtx *, void *);
615 static void cse_change_cc_mode_insn (rtx, rtx);
616 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
617 static enum machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
618 				       bool);
619 
620 
621 #undef RTL_HOOKS_GEN_LOWPART
622 #define RTL_HOOKS_GEN_LOWPART		gen_lowpart_if_possible
623 
624 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
625 
626 /* Nonzero if X has the form (PLUS frame-pointer integer).  We check for
627    virtual regs here because the simplify_*_operation routines are called
628    by integrate.c, which is called before virtual register instantiation.  */
629 
630 static bool
631 fixed_base_plus_p (rtx x)
632 {
633   switch (GET_CODE (x))
634     {
635     case REG:
636       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
637 	return true;
638       if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
639 	return true;
640       if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
641 	  && REGNO (x) <= LAST_VIRTUAL_REGISTER)
642 	return true;
643       return false;
644 
645     case PLUS:
646       if (!CONST_INT_P (XEXP (x, 1)))
647 	return false;
648       return fixed_base_plus_p (XEXP (x, 0));
649 
650     default:
651       return false;
652     }
653 }
654 
655 /* Dump the expressions in the equivalence class indicated by CLASSP.
656    This function is used only for debugging.  */
657 void
658 dump_class (struct table_elt *classp)
659 {
660   struct table_elt *elt;
661 
662   fprintf (stderr, "Equivalence chain for ");
663   print_rtl (stderr, classp->exp);
664   fprintf (stderr, ": \n");
665 
666   for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
667     {
668       print_rtl (stderr, elt->exp);
669       fprintf (stderr, "\n");
670     }
671 }
672 
673 /* Subroutine of approx_reg_cost; called through for_each_rtx.  */
674 
675 static int
676 approx_reg_cost_1 (rtx *xp, void *data)
677 {
678   rtx x = *xp;
679   int *cost_p = (int *) data;
680 
681   if (x && REG_P (x))
682     {
683       unsigned int regno = REGNO (x);
684 
685       if (! CHEAP_REGNO (regno))
686 	{
687 	  if (regno < FIRST_PSEUDO_REGISTER)
688 	    {
689 	      if (SMALL_REGISTER_CLASSES)
690 		return 1;
691 	      *cost_p += 2;
692 	    }
693 	  else
694 	    *cost_p += 1;
695 	}
696     }
697 
698   return 0;
699 }
700 
701 /* Return an estimate of the cost of the registers used in an rtx.
702    This is mostly the number of different REG expressions in the rtx;
703    however for some exceptions like fixed registers we use a cost of
704    0.  If any other hard register reference occurs, return MAX_COST.  */
705 
706 static int
707 approx_reg_cost (rtx x)
708 {
709   int cost = 0;
710 
711   if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
712     return MAX_COST;
713 
714   return cost;
715 }
716 
717 /* Return a negative value if an rtx A, whose costs are given by COST_A
718    and REGCOST_A, is more desirable than an rtx B.
719    Return a positive value if A is less desirable, or 0 if the two are
720    equally good.  */
721 static int
722 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
723 {
724   /* First, get rid of cases involving expressions that are entirely
725      unwanted.  */
726   if (cost_a != cost_b)
727     {
728       if (cost_a == MAX_COST)
729 	return 1;
730       if (cost_b == MAX_COST)
731 	return -1;
732     }
733 
734   /* Avoid extending lifetimes of hardregs.  */
735   if (regcost_a != regcost_b)
736     {
737       if (regcost_a == MAX_COST)
738 	return 1;
739       if (regcost_b == MAX_COST)
740 	return -1;
741     }
742 
743   /* Normal operation costs take precedence.  */
744   if (cost_a != cost_b)
745     return cost_a - cost_b;
746   /* Only if these are identical consider effects on register pressure.  */
747   if (regcost_a != regcost_b)
748     return regcost_a - regcost_b;
749   return 0;
750 }
751 
752 /* Internal function, to compute cost when X is not a register; called
753    from COST macro to keep it simple.  */
754 
755 static int
756 notreg_cost (rtx x, enum rtx_code outer)
757 {
758   return ((GET_CODE (x) == SUBREG
759 	   && REG_P (SUBREG_REG (x))
760 	   && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
761 	   && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
762 	   && (GET_MODE_SIZE (GET_MODE (x))
763 	       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
764 	   && subreg_lowpart_p (x)
765 	   && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
766 				     GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
767 	  ? 0
768 	  : rtx_cost (x, outer, optimize_this_for_speed_p) * 2);
769 }
770 
771 
772 /* Initialize CSE_REG_INFO_TABLE.  */
773 
774 static void
775 init_cse_reg_info (unsigned int nregs)
776 {
777   /* Do we need to grow the table?  */
778   if (nregs > cse_reg_info_table_size)
779     {
780       unsigned int new_size;
781 
782       if (cse_reg_info_table_size < 2048)
783 	{
784 	  /* Compute a new size that is a power of 2 and no smaller
785 	     than the large of NREGS and 64.  */
786 	  new_size = (cse_reg_info_table_size
787 		      ? cse_reg_info_table_size : 64);
788 
789 	  while (new_size < nregs)
790 	    new_size *= 2;
791 	}
792       else
793 	{
794 	  /* If we need a big table, allocate just enough to hold
795 	     NREGS registers.  */
796 	  new_size = nregs;
797 	}
798 
799       /* Reallocate the table with NEW_SIZE entries.  */
800       if (cse_reg_info_table)
801 	free (cse_reg_info_table);
802       cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
803       cse_reg_info_table_size = new_size;
804       cse_reg_info_table_first_uninitialized = 0;
805     }
806 
807   /* Do we have all of the first NREGS entries initialized?  */
808   if (cse_reg_info_table_first_uninitialized < nregs)
809     {
810       unsigned int old_timestamp = cse_reg_info_timestamp - 1;
811       unsigned int i;
812 
813       /* Put the old timestamp on newly allocated entries so that they
814 	 will all be considered out of date.  We do not touch those
815 	 entries beyond the first NREGS entries to be nice to the
816 	 virtual memory.  */
817       for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
818 	cse_reg_info_table[i].timestamp = old_timestamp;
819 
820       cse_reg_info_table_first_uninitialized = nregs;
821     }
822 }
823 
824 /* Given REGNO, initialize the cse_reg_info entry for REGNO.  */
825 
826 static void
827 get_cse_reg_info_1 (unsigned int regno)
828 {
829   /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
830      entry will be considered to have been initialized.  */
831   cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
832 
833   /* Initialize the rest of the entry.  */
834   cse_reg_info_table[regno].reg_tick = 1;
835   cse_reg_info_table[regno].reg_in_table = -1;
836   cse_reg_info_table[regno].subreg_ticked = -1;
837   cse_reg_info_table[regno].reg_qty = -regno - 1;
838 }
839 
840 /* Find a cse_reg_info entry for REGNO.  */
841 
842 static inline struct cse_reg_info *
843 get_cse_reg_info (unsigned int regno)
844 {
845   struct cse_reg_info *p = &cse_reg_info_table[regno];
846 
847   /* If this entry has not been initialized, go ahead and initialize
848      it.  */
849   if (p->timestamp != cse_reg_info_timestamp)
850     get_cse_reg_info_1 (regno);
851 
852   return p;
853 }
854 
855 /* Clear the hash table and initialize each register with its own quantity,
856    for a new basic block.  */
857 
858 static void
859 new_basic_block (void)
860 {
861   int i;
862 
863   next_qty = 0;
864 
865   /* Invalidate cse_reg_info_table.  */
866   cse_reg_info_timestamp++;
867 
868   /* Clear out hash table state for this pass.  */
869   CLEAR_HARD_REG_SET (hard_regs_in_table);
870 
871   /* The per-quantity values used to be initialized here, but it is
872      much faster to initialize each as it is made in `make_new_qty'.  */
873 
874   for (i = 0; i < HASH_SIZE; i++)
875     {
876       struct table_elt *first;
877 
878       first = table[i];
879       if (first != NULL)
880 	{
881 	  struct table_elt *last = first;
882 
883 	  table[i] = NULL;
884 
885 	  while (last->next_same_hash != NULL)
886 	    last = last->next_same_hash;
887 
888 	  /* Now relink this hash entire chain into
889 	     the free element list.  */
890 
891 	  last->next_same_hash = free_element_chain;
892 	  free_element_chain = first;
893 	}
894     }
895 
896 #ifdef HAVE_cc0
897   prev_insn_cc0 = 0;
898 #endif
899 }
900 
901 /* Say that register REG contains a quantity in mode MODE not in any
902    register before and initialize that quantity.  */
903 
904 static void
905 make_new_qty (unsigned int reg, enum machine_mode mode)
906 {
907   int q;
908   struct qty_table_elem *ent;
909   struct reg_eqv_elem *eqv;
910 
911   gcc_assert (next_qty < max_qty);
912 
913   q = REG_QTY (reg) = next_qty++;
914   ent = &qty_table[q];
915   ent->first_reg = reg;
916   ent->last_reg = reg;
917   ent->mode = mode;
918   ent->const_rtx = ent->const_insn = NULL_RTX;
919   ent->comparison_code = UNKNOWN;
920 
921   eqv = &reg_eqv_table[reg];
922   eqv->next = eqv->prev = -1;
923 }
924 
925 /* Make reg NEW equivalent to reg OLD.
926    OLD is not changing; NEW is.  */
927 
928 static void
929 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
930 {
931   unsigned int lastr, firstr;
932   int q = REG_QTY (old_reg);
933   struct qty_table_elem *ent;
934 
935   ent = &qty_table[q];
936 
937   /* Nothing should become eqv until it has a "non-invalid" qty number.  */
938   gcc_assert (REGNO_QTY_VALID_P (old_reg));
939 
940   REG_QTY (new_reg) = q;
941   firstr = ent->first_reg;
942   lastr = ent->last_reg;
943 
944   /* Prefer fixed hard registers to anything.  Prefer pseudo regs to other
945      hard regs.  Among pseudos, if NEW will live longer than any other reg
946      of the same qty, and that is beyond the current basic block,
947      make it the new canonical replacement for this qty.  */
948   if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
949       /* Certain fixed registers might be of the class NO_REGS.  This means
950 	 that not only can they not be allocated by the compiler, but
951 	 they cannot be used in substitutions or canonicalizations
952 	 either.  */
953       && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
954       && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
955 	  || (new_reg >= FIRST_PSEUDO_REGISTER
956 	      && (firstr < FIRST_PSEUDO_REGISTER
957 		  || (bitmap_bit_p (cse_ebb_live_out, new_reg)
958 		      && !bitmap_bit_p (cse_ebb_live_out, firstr))
959 		  || (bitmap_bit_p (cse_ebb_live_in, new_reg)
960 		      && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
961     {
962       reg_eqv_table[firstr].prev = new_reg;
963       reg_eqv_table[new_reg].next = firstr;
964       reg_eqv_table[new_reg].prev = -1;
965       ent->first_reg = new_reg;
966     }
967   else
968     {
969       /* If NEW is a hard reg (known to be non-fixed), insert at end.
970 	 Otherwise, insert before any non-fixed hard regs that are at the
971 	 end.  Registers of class NO_REGS cannot be used as an
972 	 equivalent for anything.  */
973       while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
974 	     && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
975 	     && new_reg >= FIRST_PSEUDO_REGISTER)
976 	lastr = reg_eqv_table[lastr].prev;
977       reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
978       if (reg_eqv_table[lastr].next >= 0)
979 	reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
980       else
981 	qty_table[q].last_reg = new_reg;
982       reg_eqv_table[lastr].next = new_reg;
983       reg_eqv_table[new_reg].prev = lastr;
984     }
985 }
986 
987 /* Remove REG from its equivalence class.  */
988 
989 static void
990 delete_reg_equiv (unsigned int reg)
991 {
992   struct qty_table_elem *ent;
993   int q = REG_QTY (reg);
994   int p, n;
995 
996   /* If invalid, do nothing.  */
997   if (! REGNO_QTY_VALID_P (reg))
998     return;
999 
1000   ent = &qty_table[q];
1001 
1002   p = reg_eqv_table[reg].prev;
1003   n = reg_eqv_table[reg].next;
1004 
1005   if (n != -1)
1006     reg_eqv_table[n].prev = p;
1007   else
1008     ent->last_reg = p;
1009   if (p != -1)
1010     reg_eqv_table[p].next = n;
1011   else
1012     ent->first_reg = n;
1013 
1014   REG_QTY (reg) = -reg - 1;
1015 }
1016 
1017 /* Remove any invalid expressions from the hash table
1018    that refer to any of the registers contained in expression X.
1019 
1020    Make sure that newly inserted references to those registers
1021    as subexpressions will be considered valid.
1022 
1023    mention_regs is not called when a register itself
1024    is being stored in the table.
1025 
1026    Return 1 if we have done something that may have changed the hash code
1027    of X.  */
1028 
1029 static int
1030 mention_regs (rtx x)
1031 {
1032   enum rtx_code code;
1033   int i, j;
1034   const char *fmt;
1035   int changed = 0;
1036 
1037   if (x == 0)
1038     return 0;
1039 
1040   code = GET_CODE (x);
1041   if (code == REG)
1042     {
1043       unsigned int regno = REGNO (x);
1044       unsigned int endregno = END_REGNO (x);
1045       unsigned int i;
1046 
1047       for (i = regno; i < endregno; i++)
1048 	{
1049 	  if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1050 	    remove_invalid_refs (i);
1051 
1052 	  REG_IN_TABLE (i) = REG_TICK (i);
1053 	  SUBREG_TICKED (i) = -1;
1054 	}
1055 
1056       return 0;
1057     }
1058 
1059   /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1060      pseudo if they don't use overlapping words.  We handle only pseudos
1061      here for simplicity.  */
1062   if (code == SUBREG && REG_P (SUBREG_REG (x))
1063       && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1064     {
1065       unsigned int i = REGNO (SUBREG_REG (x));
1066 
1067       if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1068 	{
1069 	  /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1070 	     the last store to this register really stored into this
1071 	     subreg, then remove the memory of this subreg.
1072 	     Otherwise, remove any memory of the entire register and
1073 	     all its subregs from the table.  */
1074 	  if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1075 	      || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1076 	    remove_invalid_refs (i);
1077 	  else
1078 	    remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1079 	}
1080 
1081       REG_IN_TABLE (i) = REG_TICK (i);
1082       SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1083       return 0;
1084     }
1085 
1086   /* If X is a comparison or a COMPARE and either operand is a register
1087      that does not have a quantity, give it one.  This is so that a later
1088      call to record_jump_equiv won't cause X to be assigned a different
1089      hash code and not found in the table after that call.
1090 
1091      It is not necessary to do this here, since rehash_using_reg can
1092      fix up the table later, but doing this here eliminates the need to
1093      call that expensive function in the most common case where the only
1094      use of the register is in the comparison.  */
1095 
1096   if (code == COMPARE || COMPARISON_P (x))
1097     {
1098       if (REG_P (XEXP (x, 0))
1099 	  && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1100 	if (insert_regs (XEXP (x, 0), NULL, 0))
1101 	  {
1102 	    rehash_using_reg (XEXP (x, 0));
1103 	    changed = 1;
1104 	  }
1105 
1106       if (REG_P (XEXP (x, 1))
1107 	  && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1108 	if (insert_regs (XEXP (x, 1), NULL, 0))
1109 	  {
1110 	    rehash_using_reg (XEXP (x, 1));
1111 	    changed = 1;
1112 	  }
1113     }
1114 
1115   fmt = GET_RTX_FORMAT (code);
1116   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1117     if (fmt[i] == 'e')
1118       changed |= mention_regs (XEXP (x, i));
1119     else if (fmt[i] == 'E')
1120       for (j = 0; j < XVECLEN (x, i); j++)
1121 	changed |= mention_regs (XVECEXP (x, i, j));
1122 
1123   return changed;
1124 }
1125 
1126 /* Update the register quantities for inserting X into the hash table
1127    with a value equivalent to CLASSP.
1128    (If the class does not contain a REG, it is irrelevant.)
1129    If MODIFIED is nonzero, X is a destination; it is being modified.
1130    Note that delete_reg_equiv should be called on a register
1131    before insert_regs is done on that register with MODIFIED != 0.
1132 
1133    Nonzero value means that elements of reg_qty have changed
1134    so X's hash code may be different.  */
1135 
1136 static int
1137 insert_regs (rtx x, struct table_elt *classp, int modified)
1138 {
1139   if (REG_P (x))
1140     {
1141       unsigned int regno = REGNO (x);
1142       int qty_valid;
1143 
1144       /* If REGNO is in the equivalence table already but is of the
1145 	 wrong mode for that equivalence, don't do anything here.  */
1146 
1147       qty_valid = REGNO_QTY_VALID_P (regno);
1148       if (qty_valid)
1149 	{
1150 	  struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1151 
1152 	  if (ent->mode != GET_MODE (x))
1153 	    return 0;
1154 	}
1155 
1156       if (modified || ! qty_valid)
1157 	{
1158 	  if (classp)
1159 	    for (classp = classp->first_same_value;
1160 		 classp != 0;
1161 		 classp = classp->next_same_value)
1162 	      if (REG_P (classp->exp)
1163 		  && GET_MODE (classp->exp) == GET_MODE (x))
1164 		{
1165 		  unsigned c_regno = REGNO (classp->exp);
1166 
1167 		  gcc_assert (REGNO_QTY_VALID_P (c_regno));
1168 
1169 		  /* Suppose that 5 is hard reg and 100 and 101 are
1170 		     pseudos.  Consider
1171 
1172 		     (set (reg:si 100) (reg:si 5))
1173 		     (set (reg:si 5) (reg:si 100))
1174 		     (set (reg:di 101) (reg:di 5))
1175 
1176 		     We would now set REG_QTY (101) = REG_QTY (5), but the
1177 		     entry for 5 is in SImode.  When we use this later in
1178 		     copy propagation, we get the register in wrong mode.  */
1179 		  if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1180 		    continue;
1181 
1182 		  make_regs_eqv (regno, c_regno);
1183 		  return 1;
1184 		}
1185 
1186 	  /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1187 	     than REG_IN_TABLE to find out if there was only a single preceding
1188 	     invalidation - for the SUBREG - or another one, which would be
1189 	     for the full register.  However, if we find here that REG_TICK
1190 	     indicates that the register is invalid, it means that it has
1191 	     been invalidated in a separate operation.  The SUBREG might be used
1192 	     now (then this is a recursive call), or we might use the full REG
1193 	     now and a SUBREG of it later.  So bump up REG_TICK so that
1194 	     mention_regs will do the right thing.  */
1195 	  if (! modified
1196 	      && REG_IN_TABLE (regno) >= 0
1197 	      && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1198 	    REG_TICK (regno)++;
1199 	  make_new_qty (regno, GET_MODE (x));
1200 	  return 1;
1201 	}
1202 
1203       return 0;
1204     }
1205 
1206   /* If X is a SUBREG, we will likely be inserting the inner register in the
1207      table.  If that register doesn't have an assigned quantity number at
1208      this point but does later, the insertion that we will be doing now will
1209      not be accessible because its hash code will have changed.  So assign
1210      a quantity number now.  */
1211 
1212   else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1213 	   && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1214     {
1215       insert_regs (SUBREG_REG (x), NULL, 0);
1216       mention_regs (x);
1217       return 1;
1218     }
1219   else
1220     return mention_regs (x);
1221 }
1222 
1223 
1224 /* Compute upper and lower anchors for CST.  Also compute the offset of CST
1225    from these anchors/bases such that *_BASE + *_OFFS = CST.  Return false iff
1226    CST is equal to an anchor.  */
1227 
1228 static bool
1229 compute_const_anchors (rtx cst,
1230 		       HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1231 		       HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1232 {
1233   HOST_WIDE_INT n = INTVAL (cst);
1234 
1235   *lower_base = n & ~(targetm.const_anchor - 1);
1236   if (*lower_base == n)
1237     return false;
1238 
1239   *upper_base =
1240     (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1241   *upper_offs = n - *upper_base;
1242   *lower_offs = n - *lower_base;
1243   return true;
1244 }
1245 
1246 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE.  */
1247 
1248 static void
1249 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1250 		     enum machine_mode mode)
1251 {
1252   struct table_elt *elt;
1253   unsigned hash;
1254   rtx anchor_exp;
1255   rtx exp;
1256 
1257   anchor_exp = GEN_INT (anchor);
1258   hash = HASH (anchor_exp, mode);
1259   elt = lookup (anchor_exp, hash, mode);
1260   if (!elt)
1261     elt = insert (anchor_exp, NULL, hash, mode);
1262 
1263   exp = plus_constant (reg, offs);
1264   /* REG has just been inserted and the hash codes recomputed.  */
1265   mention_regs (exp);
1266   hash = HASH (exp, mode);
1267 
1268   /* Use the cost of the register rather than the whole expression.  When
1269      looking up constant anchors we will further offset the corresponding
1270      expression therefore it does not make sense to prefer REGs over
1271      reg-immediate additions.  Prefer instead the oldest expression.  Also
1272      don't prefer pseudos over hard regs so that we derive constants in
1273      argument registers from other argument registers rather than from the
1274      original pseudo that was used to synthesize the constant.  */
1275   insert_with_costs (exp, elt, hash, mode, COST (reg), 1);
1276 }
1277 
1278 /* The constant CST is equivalent to the register REG.  Create
1279    equivalences between the two anchors of CST and the corresponding
1280    register-offset expressions using REG.  */
1281 
1282 static void
1283 insert_const_anchors (rtx reg, rtx cst, enum machine_mode mode)
1284 {
1285   HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1286 
1287   if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1288 			      &upper_base, &upper_offs))
1289       return;
1290 
1291   /* Ignore anchors of value 0.  Constants accessible from zero are
1292      simple.  */
1293   if (lower_base != 0)
1294     insert_const_anchor (lower_base, reg, -lower_offs, mode);
1295 
1296   if (upper_base != 0)
1297     insert_const_anchor (upper_base, reg, -upper_offs, mode);
1298 }
1299 
1300 /* We need to express ANCHOR_ELT->exp + OFFS.  Walk the equivalence list of
1301    ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1302    valid expression.  Return the cheapest and oldest of such expressions.  In
1303    *OLD, return how old the resulting expression is compared to the other
1304    equivalent expressions.  */
1305 
1306 static rtx
1307 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1308 			   unsigned *old)
1309 {
1310   struct table_elt *elt;
1311   unsigned idx;
1312   struct table_elt *match_elt;
1313   rtx match;
1314 
1315   /* Find the cheapest and *oldest* expression to maximize the chance of
1316      reusing the same pseudo.  */
1317 
1318   match_elt = NULL;
1319   match = NULL_RTX;
1320   for (elt = anchor_elt->first_same_value, idx = 0;
1321        elt;
1322        elt = elt->next_same_value, idx++)
1323     {
1324       if (match_elt && CHEAPER (match_elt, elt))
1325 	return match;
1326 
1327       if (REG_P (elt->exp)
1328 	  || (GET_CODE (elt->exp) == PLUS
1329 	      && REG_P (XEXP (elt->exp, 0))
1330 	      && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1331 	{
1332 	  rtx x;
1333 
1334 	  /* Ignore expressions that are no longer valid.  */
1335 	  if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1336 	    continue;
1337 
1338 	  x = plus_constant (elt->exp, offs);
1339 	  if (REG_P (x)
1340 	      || (GET_CODE (x) == PLUS
1341 		  && IN_RANGE (INTVAL (XEXP (x, 1)),
1342 			       -targetm.const_anchor,
1343 			       targetm.const_anchor - 1)))
1344 	    {
1345 	      match = x;
1346 	      match_elt = elt;
1347 	      *old = idx;
1348 	    }
1349 	}
1350     }
1351 
1352   return match;
1353 }
1354 
1355 /* Try to express the constant SRC_CONST using a register+offset expression
1356    derived from a constant anchor.  Return it if successful or NULL_RTX,
1357    otherwise.  */
1358 
1359 static rtx
1360 try_const_anchors (rtx src_const, enum machine_mode mode)
1361 {
1362   struct table_elt *lower_elt, *upper_elt;
1363   HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1364   rtx lower_anchor_rtx, upper_anchor_rtx;
1365   rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1366   unsigned lower_old, upper_old;
1367 
1368   if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1369 			      &upper_base, &upper_offs))
1370     return NULL_RTX;
1371 
1372   lower_anchor_rtx = GEN_INT (lower_base);
1373   upper_anchor_rtx = GEN_INT (upper_base);
1374   lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1375   upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1376 
1377   if (lower_elt)
1378     lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1379   if (upper_elt)
1380     upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1381 
1382   if (!lower_exp)
1383     return upper_exp;
1384   if (!upper_exp)
1385     return lower_exp;
1386 
1387   /* Return the older expression.  */
1388   return (upper_old > lower_old ? upper_exp : lower_exp);
1389 }
1390 
1391 /* Look in or update the hash table.  */
1392 
1393 /* Remove table element ELT from use in the table.
1394    HASH is its hash code, made using the HASH macro.
1395    It's an argument because often that is known in advance
1396    and we save much time not recomputing it.  */
1397 
1398 static void
1399 remove_from_table (struct table_elt *elt, unsigned int hash)
1400 {
1401   if (elt == 0)
1402     return;
1403 
1404   /* Mark this element as removed.  See cse_insn.  */
1405   elt->first_same_value = 0;
1406 
1407   /* Remove the table element from its equivalence class.  */
1408 
1409   {
1410     struct table_elt *prev = elt->prev_same_value;
1411     struct table_elt *next = elt->next_same_value;
1412 
1413     if (next)
1414       next->prev_same_value = prev;
1415 
1416     if (prev)
1417       prev->next_same_value = next;
1418     else
1419       {
1420 	struct table_elt *newfirst = next;
1421 	while (next)
1422 	  {
1423 	    next->first_same_value = newfirst;
1424 	    next = next->next_same_value;
1425 	  }
1426       }
1427   }
1428 
1429   /* Remove the table element from its hash bucket.  */
1430 
1431   {
1432     struct table_elt *prev = elt->prev_same_hash;
1433     struct table_elt *next = elt->next_same_hash;
1434 
1435     if (next)
1436       next->prev_same_hash = prev;
1437 
1438     if (prev)
1439       prev->next_same_hash = next;
1440     else if (table[hash] == elt)
1441       table[hash] = next;
1442     else
1443       {
1444 	/* This entry is not in the proper hash bucket.  This can happen
1445 	   when two classes were merged by `merge_equiv_classes'.  Search
1446 	   for the hash bucket that it heads.  This happens only very
1447 	   rarely, so the cost is acceptable.  */
1448 	for (hash = 0; hash < HASH_SIZE; hash++)
1449 	  if (table[hash] == elt)
1450 	    table[hash] = next;
1451       }
1452   }
1453 
1454   /* Remove the table element from its related-value circular chain.  */
1455 
1456   if (elt->related_value != 0 && elt->related_value != elt)
1457     {
1458       struct table_elt *p = elt->related_value;
1459 
1460       while (p->related_value != elt)
1461 	p = p->related_value;
1462       p->related_value = elt->related_value;
1463       if (p->related_value == p)
1464 	p->related_value = 0;
1465     }
1466 
1467   /* Now add it to the free element chain.  */
1468   elt->next_same_hash = free_element_chain;
1469   free_element_chain = elt;
1470 }
1471 
1472 /* Same as above, but X is a pseudo-register.  */
1473 
1474 static void
1475 remove_pseudo_from_table (rtx x, unsigned int hash)
1476 {
1477   struct table_elt *elt;
1478 
1479   /* Because a pseudo-register can be referenced in more than one
1480      mode, we might have to remove more than one table entry.  */
1481   while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1482     remove_from_table (elt, hash);
1483 }
1484 
1485 /* Look up X in the hash table and return its table element,
1486    or 0 if X is not in the table.
1487 
1488    MODE is the machine-mode of X, or if X is an integer constant
1489    with VOIDmode then MODE is the mode with which X will be used.
1490 
1491    Here we are satisfied to find an expression whose tree structure
1492    looks like X.  */
1493 
1494 static struct table_elt *
1495 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1496 {
1497   struct table_elt *p;
1498 
1499   for (p = table[hash]; p; p = p->next_same_hash)
1500     if (mode == p->mode && ((x == p->exp && REG_P (x))
1501 			    || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1502       return p;
1503 
1504   return 0;
1505 }
1506 
1507 /* Like `lookup' but don't care whether the table element uses invalid regs.
1508    Also ignore discrepancies in the machine mode of a register.  */
1509 
1510 static struct table_elt *
1511 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1512 {
1513   struct table_elt *p;
1514 
1515   if (REG_P (x))
1516     {
1517       unsigned int regno = REGNO (x);
1518 
1519       /* Don't check the machine mode when comparing registers;
1520 	 invalidating (REG:SI 0) also invalidates (REG:DF 0).  */
1521       for (p = table[hash]; p; p = p->next_same_hash)
1522 	if (REG_P (p->exp)
1523 	    && REGNO (p->exp) == regno)
1524 	  return p;
1525     }
1526   else
1527     {
1528       for (p = table[hash]; p; p = p->next_same_hash)
1529 	if (mode == p->mode
1530 	    && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1531 	  return p;
1532     }
1533 
1534   return 0;
1535 }
1536 
1537 /* Look for an expression equivalent to X and with code CODE.
1538    If one is found, return that expression.  */
1539 
1540 static rtx
1541 lookup_as_function (rtx x, enum rtx_code code)
1542 {
1543   struct table_elt *p
1544     = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1545 
1546   if (p == 0)
1547     return 0;
1548 
1549   for (p = p->first_same_value; p; p = p->next_same_value)
1550     if (GET_CODE (p->exp) == code
1551 	/* Make sure this is a valid entry in the table.  */
1552 	&& exp_equiv_p (p->exp, p->exp, 1, false))
1553       return p->exp;
1554 
1555   return 0;
1556 }
1557 
1558 /* Insert X in the hash table, assuming HASH is its hash code and
1559    CLASSP is an element of the class it should go in (or 0 if a new
1560    class should be made).  COST is the code of X and reg_cost is the
1561    cost of registers in X.  It is inserted at the proper position to
1562    keep the class in the order cheapest first.
1563 
1564    MODE is the machine-mode of X, or if X is an integer constant
1565    with VOIDmode then MODE is the mode with which X will be used.
1566 
1567    For elements of equal cheapness, the most recent one
1568    goes in front, except that the first element in the list
1569    remains first unless a cheaper element is added.  The order of
1570    pseudo-registers does not matter, as canon_reg will be called to
1571    find the cheapest when a register is retrieved from the table.
1572 
1573    The in_memory field in the hash table element is set to 0.
1574    The caller must set it nonzero if appropriate.
1575 
1576    You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1577    and if insert_regs returns a nonzero value
1578    you must then recompute its hash code before calling here.
1579 
1580    If necessary, update table showing constant values of quantities.  */
1581 
1582 static struct table_elt *
1583 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1584 		   enum machine_mode mode, int cost, int reg_cost)
1585 {
1586   struct table_elt *elt;
1587 
1588   /* If X is a register and we haven't made a quantity for it,
1589      something is wrong.  */
1590   gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1591 
1592   /* If X is a hard register, show it is being put in the table.  */
1593   if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1594     add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1595 
1596   /* Put an element for X into the right hash bucket.  */
1597 
1598   elt = free_element_chain;
1599   if (elt)
1600     free_element_chain = elt->next_same_hash;
1601   else
1602     elt = XNEW (struct table_elt);
1603 
1604   elt->exp = x;
1605   elt->canon_exp = NULL_RTX;
1606   elt->cost = cost;
1607   elt->regcost = reg_cost;
1608   elt->next_same_value = 0;
1609   elt->prev_same_value = 0;
1610   elt->next_same_hash = table[hash];
1611   elt->prev_same_hash = 0;
1612   elt->related_value = 0;
1613   elt->in_memory = 0;
1614   elt->mode = mode;
1615   elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1616 
1617   if (table[hash])
1618     table[hash]->prev_same_hash = elt;
1619   table[hash] = elt;
1620 
1621   /* Put it into the proper value-class.  */
1622   if (classp)
1623     {
1624       classp = classp->first_same_value;
1625       if (CHEAPER (elt, classp))
1626 	/* Insert at the head of the class.  */
1627 	{
1628 	  struct table_elt *p;
1629 	  elt->next_same_value = classp;
1630 	  classp->prev_same_value = elt;
1631 	  elt->first_same_value = elt;
1632 
1633 	  for (p = classp; p; p = p->next_same_value)
1634 	    p->first_same_value = elt;
1635 	}
1636       else
1637 	{
1638 	  /* Insert not at head of the class.  */
1639 	  /* Put it after the last element cheaper than X.  */
1640 	  struct table_elt *p, *next;
1641 
1642 	  for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1643 	       p = next);
1644 
1645 	  /* Put it after P and before NEXT.  */
1646 	  elt->next_same_value = next;
1647 	  if (next)
1648 	    next->prev_same_value = elt;
1649 
1650 	  elt->prev_same_value = p;
1651 	  p->next_same_value = elt;
1652 	  elt->first_same_value = classp;
1653 	}
1654     }
1655   else
1656     elt->first_same_value = elt;
1657 
1658   /* If this is a constant being set equivalent to a register or a register
1659      being set equivalent to a constant, note the constant equivalence.
1660 
1661      If this is a constant, it cannot be equivalent to a different constant,
1662      and a constant is the only thing that can be cheaper than a register.  So
1663      we know the register is the head of the class (before the constant was
1664      inserted).
1665 
1666      If this is a register that is not already known equivalent to a
1667      constant, we must check the entire class.
1668 
1669      If this is a register that is already known equivalent to an insn,
1670      update the qtys `const_insn' to show that `this_insn' is the latest
1671      insn making that quantity equivalent to the constant.  */
1672 
1673   if (elt->is_const && classp && REG_P (classp->exp)
1674       && !REG_P (x))
1675     {
1676       int exp_q = REG_QTY (REGNO (classp->exp));
1677       struct qty_table_elem *exp_ent = &qty_table[exp_q];
1678 
1679       exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1680       exp_ent->const_insn = this_insn;
1681     }
1682 
1683   else if (REG_P (x)
1684 	   && classp
1685 	   && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1686 	   && ! elt->is_const)
1687     {
1688       struct table_elt *p;
1689 
1690       for (p = classp; p != 0; p = p->next_same_value)
1691 	{
1692 	  if (p->is_const && !REG_P (p->exp))
1693 	    {
1694 	      int x_q = REG_QTY (REGNO (x));
1695 	      struct qty_table_elem *x_ent = &qty_table[x_q];
1696 
1697 	      x_ent->const_rtx
1698 		= gen_lowpart (GET_MODE (x), p->exp);
1699 	      x_ent->const_insn = this_insn;
1700 	      break;
1701 	    }
1702 	}
1703     }
1704 
1705   else if (REG_P (x)
1706 	   && qty_table[REG_QTY (REGNO (x))].const_rtx
1707 	   && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1708     qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1709 
1710   /* If this is a constant with symbolic value,
1711      and it has a term with an explicit integer value,
1712      link it up with related expressions.  */
1713   if (GET_CODE (x) == CONST)
1714     {
1715       rtx subexp = get_related_value (x);
1716       unsigned subhash;
1717       struct table_elt *subelt, *subelt_prev;
1718 
1719       if (subexp != 0)
1720 	{
1721 	  /* Get the integer-free subexpression in the hash table.  */
1722 	  subhash = SAFE_HASH (subexp, mode);
1723 	  subelt = lookup (subexp, subhash, mode);
1724 	  if (subelt == 0)
1725 	    subelt = insert (subexp, NULL, subhash, mode);
1726 	  /* Initialize SUBELT's circular chain if it has none.  */
1727 	  if (subelt->related_value == 0)
1728 	    subelt->related_value = subelt;
1729 	  /* Find the element in the circular chain that precedes SUBELT.  */
1730 	  subelt_prev = subelt;
1731 	  while (subelt_prev->related_value != subelt)
1732 	    subelt_prev = subelt_prev->related_value;
1733 	  /* Put new ELT into SUBELT's circular chain just before SUBELT.
1734 	     This way the element that follows SUBELT is the oldest one.  */
1735 	  elt->related_value = subelt_prev->related_value;
1736 	  subelt_prev->related_value = elt;
1737 	}
1738     }
1739 
1740   return elt;
1741 }
1742 
1743 /* Wrap insert_with_costs by passing the default costs.  */
1744 
1745 static struct table_elt *
1746 insert (rtx x, struct table_elt *classp, unsigned int hash,
1747 	enum machine_mode mode)
1748 {
1749   return
1750     insert_with_costs (x, classp, hash, mode, COST (x), approx_reg_cost (x));
1751 }
1752 
1753 
1754 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1755    CLASS2 into CLASS1.  This is done when we have reached an insn which makes
1756    the two classes equivalent.
1757 
1758    CLASS1 will be the surviving class; CLASS2 should not be used after this
1759    call.
1760 
1761    Any invalid entries in CLASS2 will not be copied.  */
1762 
1763 static void
1764 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1765 {
1766   struct table_elt *elt, *next, *new_elt;
1767 
1768   /* Ensure we start with the head of the classes.  */
1769   class1 = class1->first_same_value;
1770   class2 = class2->first_same_value;
1771 
1772   /* If they were already equal, forget it.  */
1773   if (class1 == class2)
1774     return;
1775 
1776   for (elt = class2; elt; elt = next)
1777     {
1778       unsigned int hash;
1779       rtx exp = elt->exp;
1780       enum machine_mode mode = elt->mode;
1781 
1782       next = elt->next_same_value;
1783 
1784       /* Remove old entry, make a new one in CLASS1's class.
1785 	 Don't do this for invalid entries as we cannot find their
1786 	 hash code (it also isn't necessary).  */
1787       if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1788 	{
1789 	  bool need_rehash = false;
1790 
1791 	  hash_arg_in_memory = 0;
1792 	  hash = HASH (exp, mode);
1793 
1794 	  if (REG_P (exp))
1795 	    {
1796 	      need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1797 	      delete_reg_equiv (REGNO (exp));
1798 	    }
1799 
1800 	  if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1801 	    remove_pseudo_from_table (exp, hash);
1802 	  else
1803 	    remove_from_table (elt, hash);
1804 
1805 	  if (insert_regs (exp, class1, 0) || need_rehash)
1806 	    {
1807 	      rehash_using_reg (exp);
1808 	      hash = HASH (exp, mode);
1809 	    }
1810 	  new_elt = insert (exp, class1, hash, mode);
1811 	  new_elt->in_memory = hash_arg_in_memory;
1812 	}
1813     }
1814 }
1815 
1816 /* Flush the entire hash table.  */
1817 
1818 static void
1819 flush_hash_table (void)
1820 {
1821   int i;
1822   struct table_elt *p;
1823 
1824   for (i = 0; i < HASH_SIZE; i++)
1825     for (p = table[i]; p; p = table[i])
1826       {
1827 	/* Note that invalidate can remove elements
1828 	   after P in the current hash chain.  */
1829 	if (REG_P (p->exp))
1830 	  invalidate (p->exp, VOIDmode);
1831 	else
1832 	  remove_from_table (p, i);
1833       }
1834 }
1835 
1836 /* Function called for each rtx to check whether true dependence exist.  */
1837 struct check_dependence_data
1838 {
1839   enum machine_mode mode;
1840   rtx exp;
1841   rtx addr;
1842 };
1843 
1844 static int
1845 check_dependence (rtx *x, void *data)
1846 {
1847   struct check_dependence_data *d = (struct check_dependence_data *) data;
1848   if (*x && MEM_P (*x))
1849     return canon_true_dependence (d->exp, d->mode, d->addr, *x, NULL_RTX,
1850 		    		  cse_rtx_varies_p);
1851   else
1852     return 0;
1853 }
1854 
1855 /* Remove from the hash table, or mark as invalid, all expressions whose
1856    values could be altered by storing in X.  X is a register, a subreg, or
1857    a memory reference with nonvarying address (because, when a memory
1858    reference with a varying address is stored in, all memory references are
1859    removed by invalidate_memory so specific invalidation is superfluous).
1860    FULL_MODE, if not VOIDmode, indicates that this much should be
1861    invalidated instead of just the amount indicated by the mode of X.  This
1862    is only used for bitfield stores into memory.
1863 
1864    A nonvarying address may be just a register or just a symbol reference,
1865    or it may be either of those plus a numeric offset.  */
1866 
1867 static void
1868 invalidate (rtx x, enum machine_mode full_mode)
1869 {
1870   int i;
1871   struct table_elt *p;
1872   rtx addr;
1873 
1874   switch (GET_CODE (x))
1875     {
1876     case REG:
1877       {
1878 	/* If X is a register, dependencies on its contents are recorded
1879 	   through the qty number mechanism.  Just change the qty number of
1880 	   the register, mark it as invalid for expressions that refer to it,
1881 	   and remove it itself.  */
1882 	unsigned int regno = REGNO (x);
1883 	unsigned int hash = HASH (x, GET_MODE (x));
1884 
1885 	/* Remove REGNO from any quantity list it might be on and indicate
1886 	   that its value might have changed.  If it is a pseudo, remove its
1887 	   entry from the hash table.
1888 
1889 	   For a hard register, we do the first two actions above for any
1890 	   additional hard registers corresponding to X.  Then, if any of these
1891 	   registers are in the table, we must remove any REG entries that
1892 	   overlap these registers.  */
1893 
1894 	delete_reg_equiv (regno);
1895 	REG_TICK (regno)++;
1896 	SUBREG_TICKED (regno) = -1;
1897 
1898 	if (regno >= FIRST_PSEUDO_REGISTER)
1899 	  remove_pseudo_from_table (x, hash);
1900 	else
1901 	  {
1902 	    HOST_WIDE_INT in_table
1903 	      = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1904 	    unsigned int endregno = END_HARD_REGNO (x);
1905 	    unsigned int tregno, tendregno, rn;
1906 	    struct table_elt *p, *next;
1907 
1908 	    CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1909 
1910 	    for (rn = regno + 1; rn < endregno; rn++)
1911 	      {
1912 		in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1913 		CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1914 		delete_reg_equiv (rn);
1915 		REG_TICK (rn)++;
1916 		SUBREG_TICKED (rn) = -1;
1917 	      }
1918 
1919 	    if (in_table)
1920 	      for (hash = 0; hash < HASH_SIZE; hash++)
1921 		for (p = table[hash]; p; p = next)
1922 		  {
1923 		    next = p->next_same_hash;
1924 
1925 		    if (!REG_P (p->exp)
1926 			|| REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1927 		      continue;
1928 
1929 		    tregno = REGNO (p->exp);
1930 		    tendregno = END_HARD_REGNO (p->exp);
1931 		    if (tendregno > regno && tregno < endregno)
1932 		      remove_from_table (p, hash);
1933 		  }
1934 	  }
1935       }
1936       return;
1937 
1938     case SUBREG:
1939       invalidate (SUBREG_REG (x), VOIDmode);
1940       return;
1941 
1942     case PARALLEL:
1943       for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1944 	invalidate (XVECEXP (x, 0, i), VOIDmode);
1945       return;
1946 
1947     case EXPR_LIST:
1948       /* This is part of a disjoint return value; extract the location in
1949 	 question ignoring the offset.  */
1950       invalidate (XEXP (x, 0), VOIDmode);
1951       return;
1952 
1953     case MEM:
1954       addr = canon_rtx (get_addr (XEXP (x, 0)));
1955       /* Calculate the canonical version of X here so that
1956 	 true_dependence doesn't generate new RTL for X on each call.  */
1957       x = canon_rtx (x);
1958 
1959       /* Remove all hash table elements that refer to overlapping pieces of
1960 	 memory.  */
1961       if (full_mode == VOIDmode)
1962 	full_mode = GET_MODE (x);
1963 
1964       for (i = 0; i < HASH_SIZE; i++)
1965 	{
1966 	  struct table_elt *next;
1967 
1968 	  for (p = table[i]; p; p = next)
1969 	    {
1970 	      next = p->next_same_hash;
1971 	      if (p->in_memory)
1972 		{
1973 		  struct check_dependence_data d;
1974 
1975 		  /* Just canonicalize the expression once;
1976 		     otherwise each time we call invalidate
1977 		     true_dependence will canonicalize the
1978 		     expression again.  */
1979 		  if (!p->canon_exp)
1980 		    p->canon_exp = canon_rtx (p->exp);
1981 		  d.exp = x;
1982 		  d.addr = addr;
1983 		  d.mode = full_mode;
1984 		  if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1985 		    remove_from_table (p, i);
1986 		}
1987 	    }
1988 	}
1989       return;
1990 
1991     default:
1992       gcc_unreachable ();
1993     }
1994 }
1995 
1996 /* Remove all expressions that refer to register REGNO,
1997    since they are already invalid, and we are about to
1998    mark that register valid again and don't want the old
1999    expressions to reappear as valid.  */
2000 
2001 static void
2002 remove_invalid_refs (unsigned int regno)
2003 {
2004   unsigned int i;
2005   struct table_elt *p, *next;
2006 
2007   for (i = 0; i < HASH_SIZE; i++)
2008     for (p = table[i]; p; p = next)
2009       {
2010 	next = p->next_same_hash;
2011 	if (!REG_P (p->exp)
2012 	    && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
2013 	  remove_from_table (p, i);
2014       }
2015 }
2016 
2017 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
2018    and mode MODE.  */
2019 static void
2020 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
2021 			    enum machine_mode mode)
2022 {
2023   unsigned int i;
2024   struct table_elt *p, *next;
2025   unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
2026 
2027   for (i = 0; i < HASH_SIZE; i++)
2028     for (p = table[i]; p; p = next)
2029       {
2030 	rtx exp = p->exp;
2031 	next = p->next_same_hash;
2032 
2033 	if (!REG_P (exp)
2034 	    && (GET_CODE (exp) != SUBREG
2035 		|| !REG_P (SUBREG_REG (exp))
2036 		|| REGNO (SUBREG_REG (exp)) != regno
2037 		|| (((SUBREG_BYTE (exp)
2038 		      + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
2039 		    && SUBREG_BYTE (exp) <= end))
2040 	    && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
2041 	  remove_from_table (p, i);
2042       }
2043 }
2044 
2045 /* Recompute the hash codes of any valid entries in the hash table that
2046    reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2047 
2048    This is called when we make a jump equivalence.  */
2049 
2050 static void
2051 rehash_using_reg (rtx x)
2052 {
2053   unsigned int i;
2054   struct table_elt *p, *next;
2055   unsigned hash;
2056 
2057   if (GET_CODE (x) == SUBREG)
2058     x = SUBREG_REG (x);
2059 
2060   /* If X is not a register or if the register is known not to be in any
2061      valid entries in the table, we have no work to do.  */
2062 
2063   if (!REG_P (x)
2064       || REG_IN_TABLE (REGNO (x)) < 0
2065       || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2066     return;
2067 
2068   /* Scan all hash chains looking for valid entries that mention X.
2069      If we find one and it is in the wrong hash chain, move it.  */
2070 
2071   for (i = 0; i < HASH_SIZE; i++)
2072     for (p = table[i]; p; p = next)
2073       {
2074 	next = p->next_same_hash;
2075 	if (reg_mentioned_p (x, p->exp)
2076 	    && exp_equiv_p (p->exp, p->exp, 1, false)
2077 	    && i != (hash = SAFE_HASH (p->exp, p->mode)))
2078 	  {
2079 	    if (p->next_same_hash)
2080 	      p->next_same_hash->prev_same_hash = p->prev_same_hash;
2081 
2082 	    if (p->prev_same_hash)
2083 	      p->prev_same_hash->next_same_hash = p->next_same_hash;
2084 	    else
2085 	      table[i] = p->next_same_hash;
2086 
2087 	    p->next_same_hash = table[hash];
2088 	    p->prev_same_hash = 0;
2089 	    if (table[hash])
2090 	      table[hash]->prev_same_hash = p;
2091 	    table[hash] = p;
2092 	  }
2093       }
2094 }
2095 
2096 /* Remove from the hash table any expression that is a call-clobbered
2097    register.  Also update their TICK values.  */
2098 
2099 static void
2100 invalidate_for_call (void)
2101 {
2102   unsigned int regno, endregno;
2103   unsigned int i;
2104   unsigned hash;
2105   struct table_elt *p, *next;
2106   int in_table = 0;
2107 
2108   /* Go through all the hard registers.  For each that is clobbered in
2109      a CALL_INSN, remove the register from quantity chains and update
2110      reg_tick if defined.  Also see if any of these registers is currently
2111      in the table.  */
2112 
2113   for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2114     if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2115       {
2116 	delete_reg_equiv (regno);
2117 	if (REG_TICK (regno) >= 0)
2118 	  {
2119 	    REG_TICK (regno)++;
2120 	    SUBREG_TICKED (regno) = -1;
2121 	  }
2122 
2123 	in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2124       }
2125 
2126   /* In the case where we have no call-clobbered hard registers in the
2127      table, we are done.  Otherwise, scan the table and remove any
2128      entry that overlaps a call-clobbered register.  */
2129 
2130   if (in_table)
2131     for (hash = 0; hash < HASH_SIZE; hash++)
2132       for (p = table[hash]; p; p = next)
2133 	{
2134 	  next = p->next_same_hash;
2135 
2136 	  if (!REG_P (p->exp)
2137 	      || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2138 	    continue;
2139 
2140 	  regno = REGNO (p->exp);
2141 	  endregno = END_HARD_REGNO (p->exp);
2142 
2143 	  for (i = regno; i < endregno; i++)
2144 	    if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2145 	      {
2146 		remove_from_table (p, hash);
2147 		break;
2148 	      }
2149 	}
2150 }
2151 
2152 /* Given an expression X of type CONST,
2153    and ELT which is its table entry (or 0 if it
2154    is not in the hash table),
2155    return an alternate expression for X as a register plus integer.
2156    If none can be found, return 0.  */
2157 
2158 static rtx
2159 use_related_value (rtx x, struct table_elt *elt)
2160 {
2161   struct table_elt *relt = 0;
2162   struct table_elt *p, *q;
2163   HOST_WIDE_INT offset;
2164 
2165   /* First, is there anything related known?
2166      If we have a table element, we can tell from that.
2167      Otherwise, must look it up.  */
2168 
2169   if (elt != 0 && elt->related_value != 0)
2170     relt = elt;
2171   else if (elt == 0 && GET_CODE (x) == CONST)
2172     {
2173       rtx subexp = get_related_value (x);
2174       if (subexp != 0)
2175 	relt = lookup (subexp,
2176 		       SAFE_HASH (subexp, GET_MODE (subexp)),
2177 		       GET_MODE (subexp));
2178     }
2179 
2180   if (relt == 0)
2181     return 0;
2182 
2183   /* Search all related table entries for one that has an
2184      equivalent register.  */
2185 
2186   p = relt;
2187   while (1)
2188     {
2189       /* This loop is strange in that it is executed in two different cases.
2190 	 The first is when X is already in the table.  Then it is searching
2191 	 the RELATED_VALUE list of X's class (RELT).  The second case is when
2192 	 X is not in the table.  Then RELT points to a class for the related
2193 	 value.
2194 
2195 	 Ensure that, whatever case we are in, that we ignore classes that have
2196 	 the same value as X.  */
2197 
2198       if (rtx_equal_p (x, p->exp))
2199 	q = 0;
2200       else
2201 	for (q = p->first_same_value; q; q = q->next_same_value)
2202 	  if (REG_P (q->exp))
2203 	    break;
2204 
2205       if (q)
2206 	break;
2207 
2208       p = p->related_value;
2209 
2210       /* We went all the way around, so there is nothing to be found.
2211 	 Alternatively, perhaps RELT was in the table for some other reason
2212 	 and it has no related values recorded.  */
2213       if (p == relt || p == 0)
2214 	break;
2215     }
2216 
2217   if (q == 0)
2218     return 0;
2219 
2220   offset = (get_integer_term (x) - get_integer_term (p->exp));
2221   /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity.  */
2222   return plus_constant (q->exp, offset);
2223 }
2224 
2225 
2226 /* Hash a string.  Just add its bytes up.  */
2227 static inline unsigned
2228 hash_rtx_string (const char *ps)
2229 {
2230   unsigned hash = 0;
2231   const unsigned char *p = (const unsigned char *) ps;
2232 
2233   if (p)
2234     while (*p)
2235       hash += *p++;
2236 
2237   return hash;
2238 }
2239 
2240 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2241    When the callback returns true, we continue with the new rtx.  */
2242 
2243 unsigned
2244 hash_rtx_cb (const_rtx x, enum machine_mode mode,
2245              int *do_not_record_p, int *hash_arg_in_memory_p,
2246              bool have_reg_qty, hash_rtx_callback_function cb)
2247 {
2248   int i, j;
2249   unsigned hash = 0;
2250   enum rtx_code code;
2251   const char *fmt;
2252   enum machine_mode newmode;
2253   rtx newx;
2254 
2255   /* Used to turn recursion into iteration.  We can't rely on GCC's
2256      tail-recursion elimination since we need to keep accumulating values
2257      in HASH.  */
2258  repeat:
2259   if (x == 0)
2260     return hash;
2261 
2262   /* Invoke the callback first.  */
2263   if (cb != NULL
2264       && ((*cb) (x, mode, &newx, &newmode)))
2265     {
2266       hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2267                            hash_arg_in_memory_p, have_reg_qty, cb);
2268       return hash;
2269     }
2270 
2271   code = GET_CODE (x);
2272   switch (code)
2273     {
2274     case REG:
2275       {
2276 	unsigned int regno = REGNO (x);
2277 
2278 	if (do_not_record_p && !reload_completed)
2279 	  {
2280 	    /* On some machines, we can't record any non-fixed hard register,
2281 	       because extending its life will cause reload problems.  We
2282 	       consider ap, fp, sp, gp to be fixed for this purpose.
2283 
2284 	       We also consider CCmode registers to be fixed for this purpose;
2285 	       failure to do so leads to failure to simplify 0<100 type of
2286 	       conditionals.
2287 
2288 	       On all machines, we can't record any global registers.
2289 	       Nor should we record any register that is in a small
2290 	       class, as defined by CLASS_LIKELY_SPILLED_P.  */
2291 	    bool record;
2292 
2293 	    if (regno >= FIRST_PSEUDO_REGISTER)
2294 	      record = true;
2295 	    else if (x == frame_pointer_rtx
2296 		     || x == hard_frame_pointer_rtx
2297 		     || x == arg_pointer_rtx
2298 		     || x == stack_pointer_rtx
2299 		     || x == pic_offset_table_rtx)
2300 	      record = true;
2301 	    else if (global_regs[regno])
2302 	      record = false;
2303 	    else if (fixed_regs[regno])
2304 	      record = true;
2305 	    else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2306 	      record = true;
2307 	    else if (SMALL_REGISTER_CLASSES)
2308 	      record = false;
2309 	    else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2310 	      record = false;
2311 	    else
2312 	      record = true;
2313 
2314 	    if (!record)
2315 	      {
2316 		*do_not_record_p = 1;
2317 		return 0;
2318 	      }
2319 	  }
2320 
2321 	hash += ((unsigned int) REG << 7);
2322         hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2323 	return hash;
2324       }
2325 
2326     /* We handle SUBREG of a REG specially because the underlying
2327        reg changes its hash value with every value change; we don't
2328        want to have to forget unrelated subregs when one subreg changes.  */
2329     case SUBREG:
2330       {
2331 	if (REG_P (SUBREG_REG (x)))
2332 	  {
2333 	    hash += (((unsigned int) SUBREG << 7)
2334 		     + REGNO (SUBREG_REG (x))
2335 		     + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2336 	    return hash;
2337 	  }
2338 	break;
2339       }
2340 
2341     case CONST_INT:
2342       hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2343                + (unsigned int) INTVAL (x));
2344       return hash;
2345 
2346     case CONST_DOUBLE:
2347       /* This is like the general case, except that it only counts
2348 	 the integers representing the constant.  */
2349       hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2350       if (GET_MODE (x) != VOIDmode)
2351 	hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2352       else
2353 	hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2354 		 + (unsigned int) CONST_DOUBLE_HIGH (x));
2355       return hash;
2356 
2357     case CONST_FIXED:
2358       hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2359       hash += fixed_hash (CONST_FIXED_VALUE (x));
2360       return hash;
2361 
2362     case CONST_VECTOR:
2363       {
2364 	int units;
2365 	rtx elt;
2366 
2367 	units = CONST_VECTOR_NUNITS (x);
2368 
2369 	for (i = 0; i < units; ++i)
2370 	  {
2371 	    elt = CONST_VECTOR_ELT (x, i);
2372 	    hash += hash_rtx_cb (elt, GET_MODE (elt),
2373                                  do_not_record_p, hash_arg_in_memory_p,
2374                                  have_reg_qty, cb);
2375 	  }
2376 
2377 	return hash;
2378       }
2379 
2380       /* Assume there is only one rtx object for any given label.  */
2381     case LABEL_REF:
2382       /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2383 	 differences and differences between each stage's debugging dumps.  */
2384 	 hash += (((unsigned int) LABEL_REF << 7)
2385 		  + CODE_LABEL_NUMBER (XEXP (x, 0)));
2386       return hash;
2387 
2388     case SYMBOL_REF:
2389       {
2390 	/* Don't hash on the symbol's address to avoid bootstrap differences.
2391 	   Different hash values may cause expressions to be recorded in
2392 	   different orders and thus different registers to be used in the
2393 	   final assembler.  This also avoids differences in the dump files
2394 	   between various stages.  */
2395 	unsigned int h = 0;
2396 	const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2397 
2398 	while (*p)
2399 	  h += (h << 7) + *p++; /* ??? revisit */
2400 
2401 	hash += ((unsigned int) SYMBOL_REF << 7) + h;
2402 	return hash;
2403       }
2404 
2405     case MEM:
2406       /* We don't record if marked volatile or if BLKmode since we don't
2407 	 know the size of the move.  */
2408       if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2409 	{
2410 	  *do_not_record_p = 1;
2411 	  return 0;
2412 	}
2413       if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2414 	*hash_arg_in_memory_p = 1;
2415 
2416       /* Now that we have already found this special case,
2417 	 might as well speed it up as much as possible.  */
2418       hash += (unsigned) MEM;
2419       x = XEXP (x, 0);
2420       goto repeat;
2421 
2422     case USE:
2423       /* A USE that mentions non-volatile memory needs special
2424 	 handling since the MEM may be BLKmode which normally
2425 	 prevents an entry from being made.  Pure calls are
2426 	 marked by a USE which mentions BLKmode memory.
2427 	 See calls.c:emit_call_1.  */
2428       if (MEM_P (XEXP (x, 0))
2429 	  && ! MEM_VOLATILE_P (XEXP (x, 0)))
2430 	{
2431 	  hash += (unsigned) USE;
2432 	  x = XEXP (x, 0);
2433 
2434 	  if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2435 	    *hash_arg_in_memory_p = 1;
2436 
2437 	  /* Now that we have already found this special case,
2438 	     might as well speed it up as much as possible.  */
2439 	  hash += (unsigned) MEM;
2440 	  x = XEXP (x, 0);
2441 	  goto repeat;
2442 	}
2443       break;
2444 
2445     case PRE_DEC:
2446     case PRE_INC:
2447     case POST_DEC:
2448     case POST_INC:
2449     case PRE_MODIFY:
2450     case POST_MODIFY:
2451     case PC:
2452     case CC0:
2453     case CALL:
2454     case UNSPEC_VOLATILE:
2455       if (do_not_record_p) {
2456         *do_not_record_p = 1;
2457         return 0;
2458       }
2459       else
2460         return hash;
2461       break;
2462 
2463     case ASM_OPERANDS:
2464       if (do_not_record_p && MEM_VOLATILE_P (x))
2465 	{
2466 	  *do_not_record_p = 1;
2467 	  return 0;
2468 	}
2469       else
2470 	{
2471 	  /* We don't want to take the filename and line into account.  */
2472 	  hash += (unsigned) code + (unsigned) GET_MODE (x)
2473 	    + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2474 	    + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2475 	    + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2476 
2477 	  if (ASM_OPERANDS_INPUT_LENGTH (x))
2478 	    {
2479 	      for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2480 		{
2481 		  hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2482                                         GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2483                                         do_not_record_p, hash_arg_in_memory_p,
2484                                         have_reg_qty, cb)
2485 			   + hash_rtx_string
2486                            (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2487 		}
2488 
2489 	      hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2490 	      x = ASM_OPERANDS_INPUT (x, 0);
2491 	      mode = GET_MODE (x);
2492 	      goto repeat;
2493 	    }
2494 
2495 	  return hash;
2496 	}
2497       break;
2498 
2499     default:
2500       break;
2501     }
2502 
2503   i = GET_RTX_LENGTH (code) - 1;
2504   hash += (unsigned) code + (unsigned) GET_MODE (x);
2505   fmt = GET_RTX_FORMAT (code);
2506   for (; i >= 0; i--)
2507     {
2508       switch (fmt[i])
2509 	{
2510 	case 'e':
2511 	  /* If we are about to do the last recursive call
2512 	     needed at this level, change it into iteration.
2513 	     This function  is called enough to be worth it.  */
2514 	  if (i == 0)
2515 	    {
2516 	      x = XEXP (x, i);
2517 	      goto repeat;
2518 	    }
2519 
2520 	  hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2521                                hash_arg_in_memory_p,
2522                                have_reg_qty, cb);
2523 	  break;
2524 
2525 	case 'E':
2526 	  for (j = 0; j < XVECLEN (x, i); j++)
2527 	    hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2528                                  hash_arg_in_memory_p,
2529                                  have_reg_qty, cb);
2530 	  break;
2531 
2532 	case 's':
2533 	  hash += hash_rtx_string (XSTR (x, i));
2534 	  break;
2535 
2536 	case 'i':
2537 	  hash += (unsigned int) XINT (x, i);
2538 	  break;
2539 
2540 	case '0': case 't':
2541 	  /* Unused.  */
2542 	  break;
2543 
2544 	default:
2545 	  gcc_unreachable ();
2546 	}
2547     }
2548 
2549   return hash;
2550 }
2551 
2552 /* Hash an rtx.  We are careful to make sure the value is never negative.
2553    Equivalent registers hash identically.
2554    MODE is used in hashing for CONST_INTs only;
2555    otherwise the mode of X is used.
2556 
2557    Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2558 
2559    If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2560    a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
2561 
2562    Note that cse_insn knows that the hash code of a MEM expression
2563    is just (int) MEM plus the hash code of the address.  */
2564 
2565 unsigned
2566 hash_rtx (const_rtx x, enum machine_mode mode, int *do_not_record_p,
2567 	  int *hash_arg_in_memory_p, bool have_reg_qty)
2568 {
2569   return hash_rtx_cb (x, mode, do_not_record_p,
2570                       hash_arg_in_memory_p, have_reg_qty, NULL);
2571 }
2572 
2573 /* Hash an rtx X for cse via hash_rtx.
2574    Stores 1 in do_not_record if any subexpression is volatile.
2575    Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2576    does not have the RTX_UNCHANGING_P bit set.  */
2577 
2578 static inline unsigned
2579 canon_hash (rtx x, enum machine_mode mode)
2580 {
2581   return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2582 }
2583 
2584 /* Like canon_hash but with no side effects, i.e. do_not_record
2585    and hash_arg_in_memory are not changed.  */
2586 
2587 static inline unsigned
2588 safe_hash (rtx x, enum machine_mode mode)
2589 {
2590   int dummy_do_not_record;
2591   return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2592 }
2593 
2594 /* Return 1 iff X and Y would canonicalize into the same thing,
2595    without actually constructing the canonicalization of either one.
2596    If VALIDATE is nonzero,
2597    we assume X is an expression being processed from the rtl
2598    and Y was found in the hash table.  We check register refs
2599    in Y for being marked as valid.
2600 
2601    If FOR_GCSE is true, we compare X and Y for equivalence for GCSE.  */
2602 
2603 int
2604 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2605 {
2606   int i, j;
2607   enum rtx_code code;
2608   const char *fmt;
2609 
2610   /* Note: it is incorrect to assume an expression is equivalent to itself
2611      if VALIDATE is nonzero.  */
2612   if (x == y && !validate)
2613     return 1;
2614 
2615   if (x == 0 || y == 0)
2616     return x == y;
2617 
2618   code = GET_CODE (x);
2619   if (code != GET_CODE (y))
2620     return 0;
2621 
2622   /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
2623   if (GET_MODE (x) != GET_MODE (y))
2624     return 0;
2625 
2626   /* MEMs refering to different address space are not equivalent.  */
2627   if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2628     return 0;
2629 
2630   switch (code)
2631     {
2632     case PC:
2633     case CC0:
2634     case CONST_INT:
2635     case CONST_DOUBLE:
2636     case CONST_FIXED:
2637       return x == y;
2638 
2639     case LABEL_REF:
2640       return XEXP (x, 0) == XEXP (y, 0);
2641 
2642     case SYMBOL_REF:
2643       return XSTR (x, 0) == XSTR (y, 0);
2644 
2645     case REG:
2646       if (for_gcse)
2647 	return REGNO (x) == REGNO (y);
2648       else
2649 	{
2650 	  unsigned int regno = REGNO (y);
2651 	  unsigned int i;
2652 	  unsigned int endregno = END_REGNO (y);
2653 
2654 	  /* If the quantities are not the same, the expressions are not
2655 	     equivalent.  If there are and we are not to validate, they
2656 	     are equivalent.  Otherwise, ensure all regs are up-to-date.  */
2657 
2658 	  if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2659 	    return 0;
2660 
2661 	  if (! validate)
2662 	    return 1;
2663 
2664 	  for (i = regno; i < endregno; i++)
2665 	    if (REG_IN_TABLE (i) != REG_TICK (i))
2666 	      return 0;
2667 
2668 	  return 1;
2669 	}
2670 
2671     case MEM:
2672       if (for_gcse)
2673 	{
2674 	  /* A volatile mem should not be considered equivalent to any
2675 	     other.  */
2676 	  if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2677 	    return 0;
2678 
2679 	  /* Can't merge two expressions in different alias sets, since we
2680 	     can decide that the expression is transparent in a block when
2681 	     it isn't, due to it being set with the different alias set.
2682 
2683 	     Also, can't merge two expressions with different MEM_ATTRS.
2684 	     They could e.g. be two different entities allocated into the
2685 	     same space on the stack (see e.g. PR25130).  In that case, the
2686 	     MEM addresses can be the same, even though the two MEMs are
2687 	     absolutely not equivalent.
2688 
2689 	     But because really all MEM attributes should be the same for
2690 	     equivalent MEMs, we just use the invariant that MEMs that have
2691 	     the same attributes share the same mem_attrs data structure.  */
2692 	  if (MEM_ATTRS (x) != MEM_ATTRS (y))
2693 	    return 0;
2694 	}
2695       break;
2696 
2697     /*  For commutative operations, check both orders.  */
2698     case PLUS:
2699     case MULT:
2700     case AND:
2701     case IOR:
2702     case XOR:
2703     case NE:
2704     case EQ:
2705       return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2706 			     validate, for_gcse)
2707 	       && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2708 				validate, for_gcse))
2709 	      || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2710 				validate, for_gcse)
2711 		  && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2712 				   validate, for_gcse)));
2713 
2714     case ASM_OPERANDS:
2715       /* We don't use the generic code below because we want to
2716 	 disregard filename and line numbers.  */
2717 
2718       /* A volatile asm isn't equivalent to any other.  */
2719       if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2720 	return 0;
2721 
2722       if (GET_MODE (x) != GET_MODE (y)
2723 	  || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2724 	  || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2725 		     ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2726 	  || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2727 	  || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2728 	return 0;
2729 
2730       if (ASM_OPERANDS_INPUT_LENGTH (x))
2731 	{
2732 	  for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2733 	    if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2734 			       ASM_OPERANDS_INPUT (y, i),
2735 			       validate, for_gcse)
2736 		|| strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2737 			   ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2738 	      return 0;
2739 	}
2740 
2741       return 1;
2742 
2743     default:
2744       break;
2745     }
2746 
2747   /* Compare the elements.  If any pair of corresponding elements
2748      fail to match, return 0 for the whole thing.  */
2749 
2750   fmt = GET_RTX_FORMAT (code);
2751   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2752     {
2753       switch (fmt[i])
2754 	{
2755 	case 'e':
2756 	  if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2757 			      validate, for_gcse))
2758 	    return 0;
2759 	  break;
2760 
2761 	case 'E':
2762 	  if (XVECLEN (x, i) != XVECLEN (y, i))
2763 	    return 0;
2764 	  for (j = 0; j < XVECLEN (x, i); j++)
2765 	    if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2766 				validate, for_gcse))
2767 	      return 0;
2768 	  break;
2769 
2770 	case 's':
2771 	  if (strcmp (XSTR (x, i), XSTR (y, i)))
2772 	    return 0;
2773 	  break;
2774 
2775 	case 'i':
2776 	  if (XINT (x, i) != XINT (y, i))
2777 	    return 0;
2778 	  break;
2779 
2780 	case 'w':
2781 	  if (XWINT (x, i) != XWINT (y, i))
2782 	    return 0;
2783 	  break;
2784 
2785 	case '0':
2786 	case 't':
2787 	  break;
2788 
2789 	default:
2790 	  gcc_unreachable ();
2791 	}
2792     }
2793 
2794   return 1;
2795 }
2796 
2797 /* Return 1 if X has a value that can vary even between two
2798    executions of the program.  0 means X can be compared reliably
2799    against certain constants or near-constants.  */
2800 
2801 static bool
2802 cse_rtx_varies_p (const_rtx x, bool from_alias)
2803 {
2804   /* We need not check for X and the equivalence class being of the same
2805      mode because if X is equivalent to a constant in some mode, it
2806      doesn't vary in any mode.  */
2807 
2808   if (REG_P (x)
2809       && REGNO_QTY_VALID_P (REGNO (x)))
2810     {
2811       int x_q = REG_QTY (REGNO (x));
2812       struct qty_table_elem *x_ent = &qty_table[x_q];
2813 
2814       if (GET_MODE (x) == x_ent->mode
2815 	  && x_ent->const_rtx != NULL_RTX)
2816 	return 0;
2817     }
2818 
2819   if (GET_CODE (x) == PLUS
2820       && CONST_INT_P (XEXP (x, 1))
2821       && REG_P (XEXP (x, 0))
2822       && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2823     {
2824       int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2825       struct qty_table_elem *x0_ent = &qty_table[x0_q];
2826 
2827       if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2828 	  && x0_ent->const_rtx != NULL_RTX)
2829 	return 0;
2830     }
2831 
2832   /* This can happen as the result of virtual register instantiation, if
2833      the initial constant is too large to be a valid address.  This gives
2834      us a three instruction sequence, load large offset into a register,
2835      load fp minus a constant into a register, then a MEM which is the
2836      sum of the two `constant' registers.  */
2837   if (GET_CODE (x) == PLUS
2838       && REG_P (XEXP (x, 0))
2839       && REG_P (XEXP (x, 1))
2840       && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2841       && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2842     {
2843       int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2844       int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2845       struct qty_table_elem *x0_ent = &qty_table[x0_q];
2846       struct qty_table_elem *x1_ent = &qty_table[x1_q];
2847 
2848       if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2849 	  && x0_ent->const_rtx != NULL_RTX
2850 	  && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2851 	  && x1_ent->const_rtx != NULL_RTX)
2852 	return 0;
2853     }
2854 
2855   return rtx_varies_p (x, from_alias);
2856 }
2857 
2858 /* Subroutine of canon_reg.  Pass *XLOC through canon_reg, and validate
2859    the result if necessary.  INSN is as for canon_reg.  */
2860 
2861 static void
2862 validate_canon_reg (rtx *xloc, rtx insn)
2863 {
2864   if (*xloc)
2865     {
2866       rtx new_rtx = canon_reg (*xloc, insn);
2867 
2868       /* If replacing pseudo with hard reg or vice versa, ensure the
2869          insn remains valid.  Likewise if the insn has MATCH_DUPs.  */
2870       gcc_assert (insn && new_rtx);
2871       validate_change (insn, xloc, new_rtx, 1);
2872     }
2873 }
2874 
2875 /* Canonicalize an expression:
2876    replace each register reference inside it
2877    with the "oldest" equivalent register.
2878 
2879    If INSN is nonzero validate_change is used to ensure that INSN remains valid
2880    after we make our substitution.  The calls are made with IN_GROUP nonzero
2881    so apply_change_group must be called upon the outermost return from this
2882    function (unless INSN is zero).  The result of apply_change_group can
2883    generally be discarded since the changes we are making are optional.  */
2884 
2885 static rtx
2886 canon_reg (rtx x, rtx insn)
2887 {
2888   int i;
2889   enum rtx_code code;
2890   const char *fmt;
2891 
2892   if (x == 0)
2893     return x;
2894 
2895   code = GET_CODE (x);
2896   switch (code)
2897     {
2898     case PC:
2899     case CC0:
2900     case CONST:
2901     case CONST_INT:
2902     case CONST_DOUBLE:
2903     case CONST_FIXED:
2904     case CONST_VECTOR:
2905     case SYMBOL_REF:
2906     case LABEL_REF:
2907     case ADDR_VEC:
2908     case ADDR_DIFF_VEC:
2909       return x;
2910 
2911     case REG:
2912       {
2913 	int first;
2914 	int q;
2915 	struct qty_table_elem *ent;
2916 
2917 	/* Never replace a hard reg, because hard regs can appear
2918 	   in more than one machine mode, and we must preserve the mode
2919 	   of each occurrence.  Also, some hard regs appear in
2920 	   MEMs that are shared and mustn't be altered.  Don't try to
2921 	   replace any reg that maps to a reg of class NO_REGS.  */
2922 	if (REGNO (x) < FIRST_PSEUDO_REGISTER
2923 	    || ! REGNO_QTY_VALID_P (REGNO (x)))
2924 	  return x;
2925 
2926 	q = REG_QTY (REGNO (x));
2927 	ent = &qty_table[q];
2928 	first = ent->first_reg;
2929 	return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2930 		: REGNO_REG_CLASS (first) == NO_REGS ? x
2931 		: gen_rtx_REG (ent->mode, first));
2932       }
2933 
2934     default:
2935       break;
2936     }
2937 
2938   fmt = GET_RTX_FORMAT (code);
2939   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2940     {
2941       int j;
2942 
2943       if (fmt[i] == 'e')
2944 	validate_canon_reg (&XEXP (x, i), insn);
2945       else if (fmt[i] == 'E')
2946 	for (j = 0; j < XVECLEN (x, i); j++)
2947 	  validate_canon_reg (&XVECEXP (x, i, j), insn);
2948     }
2949 
2950   return x;
2951 }
2952 
2953 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2954    operation (EQ, NE, GT, etc.), follow it back through the hash table and
2955    what values are being compared.
2956 
2957    *PARG1 and *PARG2 are updated to contain the rtx representing the values
2958    actually being compared.  For example, if *PARG1 was (cc0) and *PARG2
2959    was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2960    compared to produce cc0.
2961 
2962    The return value is the comparison operator and is either the code of
2963    A or the code corresponding to the inverse of the comparison.  */
2964 
2965 static enum rtx_code
2966 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2967 		      enum machine_mode *pmode1, enum machine_mode *pmode2)
2968 {
2969   rtx arg1, arg2;
2970 
2971   arg1 = *parg1, arg2 = *parg2;
2972 
2973   /* If ARG2 is const0_rtx, see what ARG1 is equivalent to.  */
2974 
2975   while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2976     {
2977       /* Set nonzero when we find something of interest.  */
2978       rtx x = 0;
2979       int reverse_code = 0;
2980       struct table_elt *p = 0;
2981 
2982       /* If arg1 is a COMPARE, extract the comparison arguments from it.
2983 	 On machines with CC0, this is the only case that can occur, since
2984 	 fold_rtx will return the COMPARE or item being compared with zero
2985 	 when given CC0.  */
2986 
2987       if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2988 	x = arg1;
2989 
2990       /* If ARG1 is a comparison operator and CODE is testing for
2991 	 STORE_FLAG_VALUE, get the inner arguments.  */
2992 
2993       else if (COMPARISON_P (arg1))
2994 	{
2995 #ifdef FLOAT_STORE_FLAG_VALUE
2996 	  REAL_VALUE_TYPE fsfv;
2997 #endif
2998 
2999 	  if (code == NE
3000 	      || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3001 		  && code == LT && STORE_FLAG_VALUE == -1)
3002 #ifdef FLOAT_STORE_FLAG_VALUE
3003 	      || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
3004 		  && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3005 		      REAL_VALUE_NEGATIVE (fsfv)))
3006 #endif
3007 	      )
3008 	    x = arg1;
3009 	  else if (code == EQ
3010 		   || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3011 		       && code == GE && STORE_FLAG_VALUE == -1)
3012 #ifdef FLOAT_STORE_FLAG_VALUE
3013 		   || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
3014 		       && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3015 			   REAL_VALUE_NEGATIVE (fsfv)))
3016 #endif
3017 		   )
3018 	    x = arg1, reverse_code = 1;
3019 	}
3020 
3021       /* ??? We could also check for
3022 
3023 	 (ne (and (eq (...) (const_int 1))) (const_int 0))
3024 
3025 	 and related forms, but let's wait until we see them occurring.  */
3026 
3027       if (x == 0)
3028 	/* Look up ARG1 in the hash table and see if it has an equivalence
3029 	   that lets us see what is being compared.  */
3030 	p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
3031       if (p)
3032 	{
3033 	  p = p->first_same_value;
3034 
3035 	  /* If what we compare is already known to be constant, that is as
3036 	     good as it gets.
3037 	     We need to break the loop in this case, because otherwise we
3038 	     can have an infinite loop when looking at a reg that is known
3039 	     to be a constant which is the same as a comparison of a reg
3040 	     against zero which appears later in the insn stream, which in
3041 	     turn is constant and the same as the comparison of the first reg
3042 	     against zero...  */
3043 	  if (p->is_const)
3044 	    break;
3045 	}
3046 
3047       for (; p; p = p->next_same_value)
3048 	{
3049 	  enum machine_mode inner_mode = GET_MODE (p->exp);
3050 #ifdef FLOAT_STORE_FLAG_VALUE
3051 	  REAL_VALUE_TYPE fsfv;
3052 #endif
3053 
3054 	  /* If the entry isn't valid, skip it.  */
3055 	  if (! exp_equiv_p (p->exp, p->exp, 1, false))
3056 	    continue;
3057 
3058 	  if (GET_CODE (p->exp) == COMPARE
3059 	      /* Another possibility is that this machine has a compare insn
3060 		 that includes the comparison code.  In that case, ARG1 would
3061 		 be equivalent to a comparison operation that would set ARG1 to
3062 		 either STORE_FLAG_VALUE or zero.  If this is an NE operation,
3063 		 ORIG_CODE is the actual comparison being done; if it is an EQ,
3064 		 we must reverse ORIG_CODE.  On machine with a negative value
3065 		 for STORE_FLAG_VALUE, also look at LT and GE operations.  */
3066 	      || ((code == NE
3067 		   || (code == LT
3068 		       && GET_MODE_CLASS (inner_mode) == MODE_INT
3069 		       && (GET_MODE_BITSIZE (inner_mode)
3070 			   <= HOST_BITS_PER_WIDE_INT)
3071 		       && (STORE_FLAG_VALUE
3072 			   & ((HOST_WIDE_INT) 1
3073 			      << (GET_MODE_BITSIZE (inner_mode) - 1))))
3074 #ifdef FLOAT_STORE_FLAG_VALUE
3075 		   || (code == LT
3076 		       && SCALAR_FLOAT_MODE_P (inner_mode)
3077 		       && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3078 			   REAL_VALUE_NEGATIVE (fsfv)))
3079 #endif
3080 		   )
3081 		  && COMPARISON_P (p->exp)))
3082 	    {
3083 	      x = p->exp;
3084 	      break;
3085 	    }
3086 	  else if ((code == EQ
3087 		    || (code == GE
3088 			&& GET_MODE_CLASS (inner_mode) == MODE_INT
3089 			&& (GET_MODE_BITSIZE (inner_mode)
3090 			    <= HOST_BITS_PER_WIDE_INT)
3091 			&& (STORE_FLAG_VALUE
3092 			    & ((HOST_WIDE_INT) 1
3093 			       << (GET_MODE_BITSIZE (inner_mode) - 1))))
3094 #ifdef FLOAT_STORE_FLAG_VALUE
3095 		    || (code == GE
3096 			&& SCALAR_FLOAT_MODE_P (inner_mode)
3097 			&& (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3098 			    REAL_VALUE_NEGATIVE (fsfv)))
3099 #endif
3100 		    )
3101 		   && COMPARISON_P (p->exp))
3102 	    {
3103 	      reverse_code = 1;
3104 	      x = p->exp;
3105 	      break;
3106 	    }
3107 
3108 	  /* If this non-trapping address, e.g. fp + constant, the
3109 	     equivalent is a better operand since it may let us predict
3110 	     the value of the comparison.  */
3111 	  else if (!rtx_addr_can_trap_p (p->exp))
3112 	    {
3113 	      arg1 = p->exp;
3114 	      continue;
3115 	    }
3116 	}
3117 
3118       /* If we didn't find a useful equivalence for ARG1, we are done.
3119 	 Otherwise, set up for the next iteration.  */
3120       if (x == 0)
3121 	break;
3122 
3123       /* If we need to reverse the comparison, make sure that that is
3124 	 possible -- we can't necessarily infer the value of GE from LT
3125 	 with floating-point operands.  */
3126       if (reverse_code)
3127 	{
3128 	  enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3129 	  if (reversed == UNKNOWN)
3130 	    break;
3131 	  else
3132 	    code = reversed;
3133 	}
3134       else if (COMPARISON_P (x))
3135 	code = GET_CODE (x);
3136       arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3137     }
3138 
3139   /* Return our results.  Return the modes from before fold_rtx
3140      because fold_rtx might produce const_int, and then it's too late.  */
3141   *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3142   *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3143 
3144   return code;
3145 }
3146 
3147 /* If X is a nontrivial arithmetic operation on an argument for which
3148    a constant value can be determined, return the result of operating
3149    on that value, as a constant.  Otherwise, return X, possibly with
3150    one or more operands changed to a forward-propagated constant.
3151 
3152    If X is a register whose contents are known, we do NOT return
3153    those contents here; equiv_constant is called to perform that task.
3154    For SUBREGs and MEMs, we do that both here and in equiv_constant.
3155 
3156    INSN is the insn that we may be modifying.  If it is 0, make a copy
3157    of X before modifying it.  */
3158 
3159 static rtx
3160 fold_rtx (rtx x, rtx insn)
3161 {
3162   enum rtx_code code;
3163   enum machine_mode mode;
3164   const char *fmt;
3165   int i;
3166   rtx new_rtx = 0;
3167   int changed = 0;
3168 
3169   /* Operands of X.  */
3170   rtx folded_arg0;
3171   rtx folded_arg1;
3172 
3173   /* Constant equivalents of first three operands of X;
3174      0 when no such equivalent is known.  */
3175   rtx const_arg0;
3176   rtx const_arg1;
3177   rtx const_arg2;
3178 
3179   /* The mode of the first operand of X.  We need this for sign and zero
3180      extends.  */
3181   enum machine_mode mode_arg0;
3182 
3183   if (x == 0)
3184     return x;
3185 
3186   /* Try to perform some initial simplifications on X.  */
3187   code = GET_CODE (x);
3188   switch (code)
3189     {
3190     case MEM:
3191     case SUBREG:
3192       if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3193         return new_rtx;
3194       return x;
3195 
3196     case CONST:
3197     case CONST_INT:
3198     case CONST_DOUBLE:
3199     case CONST_FIXED:
3200     case CONST_VECTOR:
3201     case SYMBOL_REF:
3202     case LABEL_REF:
3203     case REG:
3204     case PC:
3205       /* No use simplifying an EXPR_LIST
3206 	 since they are used only for lists of args
3207 	 in a function call's REG_EQUAL note.  */
3208     case EXPR_LIST:
3209       return x;
3210 
3211 #ifdef HAVE_cc0
3212     case CC0:
3213       return prev_insn_cc0;
3214 #endif
3215 
3216     case ASM_OPERANDS:
3217       if (insn)
3218 	{
3219 	  for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3220 	    validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3221 			     fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3222 	}
3223       return x;
3224 
3225 #ifdef NO_FUNCTION_CSE
3226     case CALL:
3227       if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3228 	return x;
3229       break;
3230 #endif
3231 
3232     /* Anything else goes through the loop below.  */
3233     default:
3234       break;
3235     }
3236 
3237   mode = GET_MODE (x);
3238   const_arg0 = 0;
3239   const_arg1 = 0;
3240   const_arg2 = 0;
3241   mode_arg0 = VOIDmode;
3242 
3243   /* Try folding our operands.
3244      Then see which ones have constant values known.  */
3245 
3246   fmt = GET_RTX_FORMAT (code);
3247   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3248     if (fmt[i] == 'e')
3249       {
3250 	rtx folded_arg = XEXP (x, i), const_arg;
3251 	enum machine_mode mode_arg = GET_MODE (folded_arg);
3252 
3253 	switch (GET_CODE (folded_arg))
3254 	  {
3255 	  case MEM:
3256 	  case REG:
3257 	  case SUBREG:
3258 	    const_arg = equiv_constant (folded_arg);
3259 	    break;
3260 
3261 	  case CONST:
3262 	  case CONST_INT:
3263 	  case SYMBOL_REF:
3264 	  case LABEL_REF:
3265 	  case CONST_DOUBLE:
3266 	  case CONST_FIXED:
3267 	  case CONST_VECTOR:
3268 	    const_arg = folded_arg;
3269 	    break;
3270 
3271 #ifdef HAVE_cc0
3272 	  case CC0:
3273 	    folded_arg = prev_insn_cc0;
3274 	    mode_arg = prev_insn_cc0_mode;
3275 	    const_arg = equiv_constant (folded_arg);
3276 	    break;
3277 #endif
3278 
3279 	  default:
3280 	    folded_arg = fold_rtx (folded_arg, insn);
3281 	    const_arg = equiv_constant (folded_arg);
3282 	    break;
3283 	  }
3284 
3285 	/* For the first three operands, see if the operand
3286 	   is constant or equivalent to a constant.  */
3287 	switch (i)
3288 	  {
3289 	  case 0:
3290 	    folded_arg0 = folded_arg;
3291 	    const_arg0 = const_arg;
3292 	    mode_arg0 = mode_arg;
3293 	    break;
3294 	  case 1:
3295 	    folded_arg1 = folded_arg;
3296 	    const_arg1 = const_arg;
3297 	    break;
3298 	  case 2:
3299 	    const_arg2 = const_arg;
3300 	    break;
3301 	  }
3302 
3303 	/* Pick the least expensive of the argument and an equivalent constant
3304 	   argument.  */
3305 	if (const_arg != 0
3306 	    && const_arg != folded_arg
3307 	    && COST_IN (const_arg, code) <= COST_IN (folded_arg, code)
3308 
3309 	    /* It's not safe to substitute the operand of a conversion
3310 	       operator with a constant, as the conversion's identity
3311 	       depends upon the mode of its operand.  This optimization
3312 	       is handled by the call to simplify_unary_operation.  */
3313 	    && (GET_RTX_CLASS (code) != RTX_UNARY
3314 		|| GET_MODE (const_arg) == mode_arg0
3315 		|| (code != ZERO_EXTEND
3316 		    && code != SIGN_EXTEND
3317 		    && code != TRUNCATE
3318 		    && code != FLOAT_TRUNCATE
3319 		    && code != FLOAT_EXTEND
3320 		    && code != FLOAT
3321 		    && code != FIX
3322 		    && code != UNSIGNED_FLOAT
3323 		    && code != UNSIGNED_FIX)))
3324 	  folded_arg = const_arg;
3325 
3326 	if (folded_arg == XEXP (x, i))
3327 	  continue;
3328 
3329 	if (insn == NULL_RTX && !changed)
3330 	  x = copy_rtx (x);
3331 	changed = 1;
3332 	validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3333       }
3334 
3335   if (changed)
3336     {
3337       /* Canonicalize X if necessary, and keep const_argN and folded_argN
3338 	 consistent with the order in X.  */
3339       if (canonicalize_change_group (insn, x))
3340 	{
3341 	  rtx tem;
3342 	  tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3343 	  tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3344 	}
3345 
3346       apply_change_group ();
3347     }
3348 
3349   /* If X is an arithmetic operation, see if we can simplify it.  */
3350 
3351   switch (GET_RTX_CLASS (code))
3352     {
3353     case RTX_UNARY:
3354       {
3355 	/* We can't simplify extension ops unless we know the
3356 	   original mode.  */
3357 	if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3358 	    && mode_arg0 == VOIDmode)
3359 	  break;
3360 
3361 	new_rtx = simplify_unary_operation (code, mode,
3362 					const_arg0 ? const_arg0 : folded_arg0,
3363 					mode_arg0);
3364       }
3365       break;
3366 
3367     case RTX_COMPARE:
3368     case RTX_COMM_COMPARE:
3369       /* See what items are actually being compared and set FOLDED_ARG[01]
3370 	 to those values and CODE to the actual comparison code.  If any are
3371 	 constant, set CONST_ARG0 and CONST_ARG1 appropriately.  We needn't
3372 	 do anything if both operands are already known to be constant.  */
3373 
3374       /* ??? Vector mode comparisons are not supported yet.  */
3375       if (VECTOR_MODE_P (mode))
3376 	break;
3377 
3378       if (const_arg0 == 0 || const_arg1 == 0)
3379 	{
3380 	  struct table_elt *p0, *p1;
3381 	  rtx true_rtx, false_rtx;
3382 	  enum machine_mode mode_arg1;
3383 
3384 	  if (SCALAR_FLOAT_MODE_P (mode))
3385 	    {
3386 #ifdef FLOAT_STORE_FLAG_VALUE
3387 	      true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3388 			  (FLOAT_STORE_FLAG_VALUE (mode), mode));
3389 #else
3390 	      true_rtx = NULL_RTX;
3391 #endif
3392 	      false_rtx = CONST0_RTX (mode);
3393 	    }
3394 	  else
3395 	    {
3396 	      true_rtx = const_true_rtx;
3397 	      false_rtx = const0_rtx;
3398 	    }
3399 
3400 	  code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3401 				       &mode_arg0, &mode_arg1);
3402 
3403 	  /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3404 	     what kinds of things are being compared, so we can't do
3405 	     anything with this comparison.  */
3406 
3407 	  if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3408 	    break;
3409 
3410 	  const_arg0 = equiv_constant (folded_arg0);
3411 	  const_arg1 = equiv_constant (folded_arg1);
3412 
3413 	  /* If we do not now have two constants being compared, see
3414 	     if we can nevertheless deduce some things about the
3415 	     comparison.  */
3416 	  if (const_arg0 == 0 || const_arg1 == 0)
3417 	    {
3418 	      if (const_arg1 != NULL)
3419 		{
3420 		  rtx cheapest_simplification;
3421 		  int cheapest_cost;
3422 		  rtx simp_result;
3423 		  struct table_elt *p;
3424 
3425 		  /* See if we can find an equivalent of folded_arg0
3426 		     that gets us a cheaper expression, possibly a
3427 		     constant through simplifications.  */
3428 		  p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3429 			      mode_arg0);
3430 
3431 		  if (p != NULL)
3432 		    {
3433 		      cheapest_simplification = x;
3434 		      cheapest_cost = COST (x);
3435 
3436 		      for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3437 			{
3438 			  int cost;
3439 
3440 			  /* If the entry isn't valid, skip it.  */
3441 			  if (! exp_equiv_p (p->exp, p->exp, 1, false))
3442 			    continue;
3443 
3444 			  /* Try to simplify using this equivalence.  */
3445 			  simp_result
3446 			    = simplify_relational_operation (code, mode,
3447 							     mode_arg0,
3448 							     p->exp,
3449 							     const_arg1);
3450 
3451 			  if (simp_result == NULL)
3452 			    continue;
3453 
3454 			  cost = COST (simp_result);
3455 			  if (cost < cheapest_cost)
3456 			    {
3457 			      cheapest_cost = cost;
3458 			      cheapest_simplification = simp_result;
3459 			    }
3460 			}
3461 
3462 		      /* If we have a cheaper expression now, use that
3463 			 and try folding it further, from the top.  */
3464 		      if (cheapest_simplification != x)
3465 			return fold_rtx (copy_rtx (cheapest_simplification),
3466 					 insn);
3467 		    }
3468 		}
3469 
3470 	      /* See if the two operands are the same.  */
3471 
3472 	      if ((REG_P (folded_arg0)
3473 		   && REG_P (folded_arg1)
3474 		   && (REG_QTY (REGNO (folded_arg0))
3475 		       == REG_QTY (REGNO (folded_arg1))))
3476 		  || ((p0 = lookup (folded_arg0,
3477 				    SAFE_HASH (folded_arg0, mode_arg0),
3478 				    mode_arg0))
3479 		      && (p1 = lookup (folded_arg1,
3480 				       SAFE_HASH (folded_arg1, mode_arg0),
3481 				       mode_arg0))
3482 		      && p0->first_same_value == p1->first_same_value))
3483 		folded_arg1 = folded_arg0;
3484 
3485 	      /* If FOLDED_ARG0 is a register, see if the comparison we are
3486 		 doing now is either the same as we did before or the reverse
3487 		 (we only check the reverse if not floating-point).  */
3488 	      else if (REG_P (folded_arg0))
3489 		{
3490 		  int qty = REG_QTY (REGNO (folded_arg0));
3491 
3492 		  if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3493 		    {
3494 		      struct qty_table_elem *ent = &qty_table[qty];
3495 
3496 		      if ((comparison_dominates_p (ent->comparison_code, code)
3497 			   || (! FLOAT_MODE_P (mode_arg0)
3498 			       && comparison_dominates_p (ent->comparison_code,
3499 						          reverse_condition (code))))
3500 			  && (rtx_equal_p (ent->comparison_const, folded_arg1)
3501 			      || (const_arg1
3502 				  && rtx_equal_p (ent->comparison_const,
3503 						  const_arg1))
3504 			      || (REG_P (folded_arg1)
3505 				  && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3506 			{
3507 			  if (comparison_dominates_p (ent->comparison_code, code))
3508 			    {
3509 			      if (true_rtx)
3510 				return true_rtx;
3511 			      else
3512 				break;
3513 			    }
3514 			  else
3515 			    return false_rtx;
3516 			}
3517 		    }
3518 		}
3519 	    }
3520 	}
3521 
3522       /* If we are comparing against zero, see if the first operand is
3523 	 equivalent to an IOR with a constant.  If so, we may be able to
3524 	 determine the result of this comparison.  */
3525       if (const_arg1 == const0_rtx && !const_arg0)
3526 	{
3527 	  rtx y = lookup_as_function (folded_arg0, IOR);
3528 	  rtx inner_const;
3529 
3530 	  if (y != 0
3531 	      && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3532 	      && CONST_INT_P (inner_const)
3533 	      && INTVAL (inner_const) != 0)
3534 	    folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3535 	}
3536 
3537       {
3538 	rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
3539 	rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
3540         new_rtx = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
3541       }
3542       break;
3543 
3544     case RTX_BIN_ARITH:
3545     case RTX_COMM_ARITH:
3546       switch (code)
3547 	{
3548 	case PLUS:
3549 	  /* If the second operand is a LABEL_REF, see if the first is a MINUS
3550 	     with that LABEL_REF as its second operand.  If so, the result is
3551 	     the first operand of that MINUS.  This handles switches with an
3552 	     ADDR_DIFF_VEC table.  */
3553 	  if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3554 	    {
3555 	      rtx y
3556 		= GET_CODE (folded_arg0) == MINUS ? folded_arg0
3557 		: lookup_as_function (folded_arg0, MINUS);
3558 
3559 	      if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3560 		  && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3561 		return XEXP (y, 0);
3562 
3563 	      /* Now try for a CONST of a MINUS like the above.  */
3564 	      if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3565 			: lookup_as_function (folded_arg0, CONST))) != 0
3566 		  && GET_CODE (XEXP (y, 0)) == MINUS
3567 		  && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3568 		  && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
3569 		return XEXP (XEXP (y, 0), 0);
3570 	    }
3571 
3572 	  /* Likewise if the operands are in the other order.  */
3573 	  if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3574 	    {
3575 	      rtx y
3576 		= GET_CODE (folded_arg1) == MINUS ? folded_arg1
3577 		: lookup_as_function (folded_arg1, MINUS);
3578 
3579 	      if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3580 		  && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3581 		return XEXP (y, 0);
3582 
3583 	      /* Now try for a CONST of a MINUS like the above.  */
3584 	      if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3585 			: lookup_as_function (folded_arg1, CONST))) != 0
3586 		  && GET_CODE (XEXP (y, 0)) == MINUS
3587 		  && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3588 		  && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
3589 		return XEXP (XEXP (y, 0), 0);
3590 	    }
3591 
3592 	  /* If second operand is a register equivalent to a negative
3593 	     CONST_INT, see if we can find a register equivalent to the
3594 	     positive constant.  Make a MINUS if so.  Don't do this for
3595 	     a non-negative constant since we might then alternate between
3596 	     choosing positive and negative constants.  Having the positive
3597 	     constant previously-used is the more common case.  Be sure
3598 	     the resulting constant is non-negative; if const_arg1 were
3599 	     the smallest negative number this would overflow: depending
3600 	     on the mode, this would either just be the same value (and
3601 	     hence not save anything) or be incorrect.  */
3602 	  if (const_arg1 != 0 && CONST_INT_P (const_arg1)
3603 	      && INTVAL (const_arg1) < 0
3604 	      /* This used to test
3605 
3606 	         -INTVAL (const_arg1) >= 0
3607 
3608 		 But The Sun V5.0 compilers mis-compiled that test.  So
3609 		 instead we test for the problematic value in a more direct
3610 		 manner and hope the Sun compilers get it correct.  */
3611 	      && INTVAL (const_arg1) !=
3612 	        ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3613 	      && REG_P (folded_arg1))
3614 	    {
3615 	      rtx new_const = GEN_INT (-INTVAL (const_arg1));
3616 	      struct table_elt *p
3617 		= lookup (new_const, SAFE_HASH (new_const, mode), mode);
3618 
3619 	      if (p)
3620 		for (p = p->first_same_value; p; p = p->next_same_value)
3621 		  if (REG_P (p->exp))
3622 		    return simplify_gen_binary (MINUS, mode, folded_arg0,
3623 						canon_reg (p->exp, NULL_RTX));
3624 	    }
3625 	  goto from_plus;
3626 
3627 	case MINUS:
3628 	  /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3629 	     If so, produce (PLUS Z C2-C).  */
3630 	  if (const_arg1 != 0 && CONST_INT_P (const_arg1))
3631 	    {
3632 	      rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3633 	      if (y && CONST_INT_P (XEXP (y, 1)))
3634 		return fold_rtx (plus_constant (copy_rtx (y),
3635 						-INTVAL (const_arg1)),
3636 				 NULL_RTX);
3637 	    }
3638 
3639 	  /* Fall through.  */
3640 
3641 	from_plus:
3642 	case SMIN:    case SMAX:      case UMIN:    case UMAX:
3643 	case IOR:     case AND:       case XOR:
3644 	case MULT:
3645 	case ASHIFT:  case LSHIFTRT:  case ASHIFTRT:
3646 	  /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3647 	     is known to be of similar form, we may be able to replace the
3648 	     operation with a combined operation.  This may eliminate the
3649 	     intermediate operation if every use is simplified in this way.
3650 	     Note that the similar optimization done by combine.c only works
3651 	     if the intermediate operation's result has only one reference.  */
3652 
3653 	  if (REG_P (folded_arg0)
3654 	      && const_arg1 && CONST_INT_P (const_arg1))
3655 	    {
3656 	      int is_shift
3657 		= (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3658 	      rtx y, inner_const, new_const;
3659 	      rtx canon_const_arg1 = const_arg1;
3660 	      enum rtx_code associate_code;
3661 
3662 	      if (is_shift
3663 		  && (INTVAL (const_arg1) >= GET_MODE_BITSIZE (mode)
3664 		      || INTVAL (const_arg1) < 0))
3665 		{
3666 		  if (SHIFT_COUNT_TRUNCATED)
3667 		    canon_const_arg1 = GEN_INT (INTVAL (const_arg1)
3668 						& (GET_MODE_BITSIZE (mode)
3669 						   - 1));
3670 		  else
3671 		    break;
3672 		}
3673 
3674 	      y = lookup_as_function (folded_arg0, code);
3675 	      if (y == 0)
3676 		break;
3677 
3678 	      /* If we have compiled a statement like
3679 		 "if (x == (x & mask1))", and now are looking at
3680 		 "x & mask2", we will have a case where the first operand
3681 		 of Y is the same as our first operand.  Unless we detect
3682 		 this case, an infinite loop will result.  */
3683 	      if (XEXP (y, 0) == folded_arg0)
3684 		break;
3685 
3686 	      inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3687 	      if (!inner_const || !CONST_INT_P (inner_const))
3688 		break;
3689 
3690 	      /* Don't associate these operations if they are a PLUS with the
3691 		 same constant and it is a power of two.  These might be doable
3692 		 with a pre- or post-increment.  Similarly for two subtracts of
3693 		 identical powers of two with post decrement.  */
3694 
3695 	      if (code == PLUS && const_arg1 == inner_const
3696 		  && ((HAVE_PRE_INCREMENT
3697 			  && exact_log2 (INTVAL (const_arg1)) >= 0)
3698 		      || (HAVE_POST_INCREMENT
3699 			  && exact_log2 (INTVAL (const_arg1)) >= 0)
3700 		      || (HAVE_PRE_DECREMENT
3701 			  && exact_log2 (- INTVAL (const_arg1)) >= 0)
3702 		      || (HAVE_POST_DECREMENT
3703 			  && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3704 		break;
3705 
3706 	      /* ??? Vector mode shifts by scalar
3707 		 shift operand are not supported yet.  */
3708 	      if (is_shift && VECTOR_MODE_P (mode))
3709                 break;
3710 
3711 	      if (is_shift
3712 		  && (INTVAL (inner_const) >= GET_MODE_BITSIZE (mode)
3713 		      || INTVAL (inner_const) < 0))
3714 		{
3715 		  if (SHIFT_COUNT_TRUNCATED)
3716 		    inner_const = GEN_INT (INTVAL (inner_const)
3717 					   & (GET_MODE_BITSIZE (mode) - 1));
3718 		  else
3719 		    break;
3720 		}
3721 
3722 	      /* Compute the code used to compose the constants.  For example,
3723 		 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS.  */
3724 
3725 	      associate_code = (is_shift || code == MINUS ? PLUS : code);
3726 
3727 	      new_const = simplify_binary_operation (associate_code, mode,
3728 						     canon_const_arg1,
3729 						     inner_const);
3730 
3731 	      if (new_const == 0)
3732 		break;
3733 
3734 	      /* If we are associating shift operations, don't let this
3735 		 produce a shift of the size of the object or larger.
3736 		 This could occur when we follow a sign-extend by a right
3737 		 shift on a machine that does a sign-extend as a pair
3738 		 of shifts.  */
3739 
3740 	      if (is_shift
3741 		  && CONST_INT_P (new_const)
3742 		  && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
3743 		{
3744 		  /* As an exception, we can turn an ASHIFTRT of this
3745 		     form into a shift of the number of bits - 1.  */
3746 		  if (code == ASHIFTRT)
3747 		    new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3748 		  else if (!side_effects_p (XEXP (y, 0)))
3749 		    return CONST0_RTX (mode);
3750 		  else
3751 		    break;
3752 		}
3753 
3754 	      y = copy_rtx (XEXP (y, 0));
3755 
3756 	      /* If Y contains our first operand (the most common way this
3757 		 can happen is if Y is a MEM), we would do into an infinite
3758 		 loop if we tried to fold it.  So don't in that case.  */
3759 
3760 	      if (! reg_mentioned_p (folded_arg0, y))
3761 		y = fold_rtx (y, insn);
3762 
3763 	      return simplify_gen_binary (code, mode, y, new_const);
3764 	    }
3765 	  break;
3766 
3767 	case DIV:       case UDIV:
3768 	  /* ??? The associative optimization performed immediately above is
3769 	     also possible for DIV and UDIV using associate_code of MULT.
3770 	     However, we would need extra code to verify that the
3771 	     multiplication does not overflow, that is, there is no overflow
3772 	     in the calculation of new_const.  */
3773 	  break;
3774 
3775 	default:
3776 	  break;
3777 	}
3778 
3779       new_rtx = simplify_binary_operation (code, mode,
3780 				       const_arg0 ? const_arg0 : folded_arg0,
3781 				       const_arg1 ? const_arg1 : folded_arg1);
3782       break;
3783 
3784     case RTX_OBJ:
3785       /* (lo_sum (high X) X) is simply X.  */
3786       if (code == LO_SUM && const_arg0 != 0
3787 	  && GET_CODE (const_arg0) == HIGH
3788 	  && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3789 	return const_arg1;
3790       break;
3791 
3792     case RTX_TERNARY:
3793     case RTX_BITFIELD_OPS:
3794       new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3795 					const_arg0 ? const_arg0 : folded_arg0,
3796 					const_arg1 ? const_arg1 : folded_arg1,
3797 					const_arg2 ? const_arg2 : XEXP (x, 2));
3798       break;
3799 
3800     default:
3801       break;
3802     }
3803 
3804   return new_rtx ? new_rtx : x;
3805 }
3806 
3807 /* Return a constant value currently equivalent to X.
3808    Return 0 if we don't know one.  */
3809 
3810 static rtx
3811 equiv_constant (rtx x)
3812 {
3813   if (REG_P (x)
3814       && REGNO_QTY_VALID_P (REGNO (x)))
3815     {
3816       int x_q = REG_QTY (REGNO (x));
3817       struct qty_table_elem *x_ent = &qty_table[x_q];
3818 
3819       if (x_ent->const_rtx)
3820 	x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3821     }
3822 
3823   if (x == 0 || CONSTANT_P (x))
3824     return x;
3825 
3826   if (GET_CODE (x) == SUBREG)
3827     {
3828       enum machine_mode mode = GET_MODE (x);
3829       enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3830       rtx new_rtx;
3831 
3832       /* See if we previously assigned a constant value to this SUBREG.  */
3833       if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3834           || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3835           || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3836         return new_rtx;
3837 
3838       /* If we didn't and if doing so makes sense, see if we previously
3839 	 assigned a constant value to the enclosing word mode SUBREG.  */
3840       if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)
3841 	  && GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode))
3842 	{
3843 	  int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode);
3844 	  if (byte >= 0 && (byte % UNITS_PER_WORD) == 0)
3845 	    {
3846 	      rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3847 	      new_rtx = lookup_as_function (y, CONST_INT);
3848 	      if (new_rtx)
3849 		return gen_lowpart (mode, new_rtx);
3850 	    }
3851 	}
3852 
3853       /* Otherwise see if we already have a constant for the inner REG.  */
3854       if (REG_P (SUBREG_REG (x))
3855 	  && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3856         return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3857 
3858       return 0;
3859     }
3860 
3861   /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3862      the hash table in case its value was seen before.  */
3863 
3864   if (MEM_P (x))
3865     {
3866       struct table_elt *elt;
3867 
3868       x = avoid_constant_pool_reference (x);
3869       if (CONSTANT_P (x))
3870 	return x;
3871 
3872       elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3873       if (elt == 0)
3874 	return 0;
3875 
3876       for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3877 	if (elt->is_const && CONSTANT_P (elt->exp))
3878 	  return elt->exp;
3879     }
3880 
3881   return 0;
3882 }
3883 
3884 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3885    "taken" branch.
3886 
3887    In certain cases, this can cause us to add an equivalence.  For example,
3888    if we are following the taken case of
3889 	if (i == 2)
3890    we can add the fact that `i' and '2' are now equivalent.
3891 
3892    In any case, we can record that this comparison was passed.  If the same
3893    comparison is seen later, we will know its value.  */
3894 
3895 static void
3896 record_jump_equiv (rtx insn, bool taken)
3897 {
3898   int cond_known_true;
3899   rtx op0, op1;
3900   rtx set;
3901   enum machine_mode mode, mode0, mode1;
3902   int reversed_nonequality = 0;
3903   enum rtx_code code;
3904 
3905   /* Ensure this is the right kind of insn.  */
3906   gcc_assert (any_condjump_p (insn));
3907 
3908   set = pc_set (insn);
3909 
3910   /* See if this jump condition is known true or false.  */
3911   if (taken)
3912     cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3913   else
3914     cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3915 
3916   /* Get the type of comparison being done and the operands being compared.
3917      If we had to reverse a non-equality condition, record that fact so we
3918      know that it isn't valid for floating-point.  */
3919   code = GET_CODE (XEXP (SET_SRC (set), 0));
3920   op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3921   op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3922 
3923   code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3924   if (! cond_known_true)
3925     {
3926       code = reversed_comparison_code_parts (code, op0, op1, insn);
3927 
3928       /* Don't remember if we can't find the inverse.  */
3929       if (code == UNKNOWN)
3930 	return;
3931     }
3932 
3933   /* The mode is the mode of the non-constant.  */
3934   mode = mode0;
3935   if (mode1 != VOIDmode)
3936     mode = mode1;
3937 
3938   record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3939 }
3940 
3941 /* Yet another form of subreg creation.  In this case, we want something in
3942    MODE, and we should assume OP has MODE iff it is naturally modeless.  */
3943 
3944 static rtx
3945 record_jump_cond_subreg (enum machine_mode mode, rtx op)
3946 {
3947   enum machine_mode op_mode = GET_MODE (op);
3948   if (op_mode == mode || op_mode == VOIDmode)
3949     return op;
3950   return lowpart_subreg (mode, op, op_mode);
3951 }
3952 
3953 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3954    REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3955    Make any useful entries we can with that information.  Called from
3956    above function and called recursively.  */
3957 
3958 static void
3959 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
3960 		  rtx op1, int reversed_nonequality)
3961 {
3962   unsigned op0_hash, op1_hash;
3963   int op0_in_memory, op1_in_memory;
3964   struct table_elt *op0_elt, *op1_elt;
3965 
3966   /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3967      we know that they are also equal in the smaller mode (this is also
3968      true for all smaller modes whether or not there is a SUBREG, but
3969      is not worth testing for with no SUBREG).  */
3970 
3971   /* Note that GET_MODE (op0) may not equal MODE.  */
3972   if (code == EQ && GET_CODE (op0) == SUBREG
3973       && (GET_MODE_SIZE (GET_MODE (op0))
3974 	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3975     {
3976       enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3977       rtx tem = record_jump_cond_subreg (inner_mode, op1);
3978       if (tem)
3979 	record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3980 			  reversed_nonequality);
3981     }
3982 
3983   if (code == EQ && GET_CODE (op1) == SUBREG
3984       && (GET_MODE_SIZE (GET_MODE (op1))
3985 	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3986     {
3987       enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3988       rtx tem = record_jump_cond_subreg (inner_mode, op0);
3989       if (tem)
3990 	record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3991 			  reversed_nonequality);
3992     }
3993 
3994   /* Similarly, if this is an NE comparison, and either is a SUBREG
3995      making a smaller mode, we know the whole thing is also NE.  */
3996 
3997   /* Note that GET_MODE (op0) may not equal MODE;
3998      if we test MODE instead, we can get an infinite recursion
3999      alternating between two modes each wider than MODE.  */
4000 
4001   if (code == NE && GET_CODE (op0) == SUBREG
4002       && subreg_lowpart_p (op0)
4003       && (GET_MODE_SIZE (GET_MODE (op0))
4004 	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
4005     {
4006       enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4007       rtx tem = record_jump_cond_subreg (inner_mode, op1);
4008       if (tem)
4009 	record_jump_cond (code, mode, SUBREG_REG (op0), tem,
4010 			  reversed_nonequality);
4011     }
4012 
4013   if (code == NE && GET_CODE (op1) == SUBREG
4014       && subreg_lowpart_p (op1)
4015       && (GET_MODE_SIZE (GET_MODE (op1))
4016 	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
4017     {
4018       enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4019       rtx tem = record_jump_cond_subreg (inner_mode, op0);
4020       if (tem)
4021 	record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4022 			  reversed_nonequality);
4023     }
4024 
4025   /* Hash both operands.  */
4026 
4027   do_not_record = 0;
4028   hash_arg_in_memory = 0;
4029   op0_hash = HASH (op0, mode);
4030   op0_in_memory = hash_arg_in_memory;
4031 
4032   if (do_not_record)
4033     return;
4034 
4035   do_not_record = 0;
4036   hash_arg_in_memory = 0;
4037   op1_hash = HASH (op1, mode);
4038   op1_in_memory = hash_arg_in_memory;
4039 
4040   if (do_not_record)
4041     return;
4042 
4043   /* Look up both operands.  */
4044   op0_elt = lookup (op0, op0_hash, mode);
4045   op1_elt = lookup (op1, op1_hash, mode);
4046 
4047   /* If both operands are already equivalent or if they are not in the
4048      table but are identical, do nothing.  */
4049   if ((op0_elt != 0 && op1_elt != 0
4050        && op0_elt->first_same_value == op1_elt->first_same_value)
4051       || op0 == op1 || rtx_equal_p (op0, op1))
4052     return;
4053 
4054   /* If we aren't setting two things equal all we can do is save this
4055      comparison.   Similarly if this is floating-point.  In the latter
4056      case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4057      If we record the equality, we might inadvertently delete code
4058      whose intent was to change -0 to +0.  */
4059 
4060   if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4061     {
4062       struct qty_table_elem *ent;
4063       int qty;
4064 
4065       /* If we reversed a floating-point comparison, if OP0 is not a
4066 	 register, or if OP1 is neither a register or constant, we can't
4067 	 do anything.  */
4068 
4069       if (!REG_P (op1))
4070 	op1 = equiv_constant (op1);
4071 
4072       if ((reversed_nonequality && FLOAT_MODE_P (mode))
4073 	  || !REG_P (op0) || op1 == 0)
4074 	return;
4075 
4076       /* Put OP0 in the hash table if it isn't already.  This gives it a
4077 	 new quantity number.  */
4078       if (op0_elt == 0)
4079 	{
4080 	  if (insert_regs (op0, NULL, 0))
4081 	    {
4082 	      rehash_using_reg (op0);
4083 	      op0_hash = HASH (op0, mode);
4084 
4085 	      /* If OP0 is contained in OP1, this changes its hash code
4086 		 as well.  Faster to rehash than to check, except
4087 		 for the simple case of a constant.  */
4088 	      if (! CONSTANT_P (op1))
4089 		op1_hash = HASH (op1,mode);
4090 	    }
4091 
4092 	  op0_elt = insert (op0, NULL, op0_hash, mode);
4093 	  op0_elt->in_memory = op0_in_memory;
4094 	}
4095 
4096       qty = REG_QTY (REGNO (op0));
4097       ent = &qty_table[qty];
4098 
4099       ent->comparison_code = code;
4100       if (REG_P (op1))
4101 	{
4102 	  /* Look it up again--in case op0 and op1 are the same.  */
4103 	  op1_elt = lookup (op1, op1_hash, mode);
4104 
4105 	  /* Put OP1 in the hash table so it gets a new quantity number.  */
4106 	  if (op1_elt == 0)
4107 	    {
4108 	      if (insert_regs (op1, NULL, 0))
4109 		{
4110 		  rehash_using_reg (op1);
4111 		  op1_hash = HASH (op1, mode);
4112 		}
4113 
4114 	      op1_elt = insert (op1, NULL, op1_hash, mode);
4115 	      op1_elt->in_memory = op1_in_memory;
4116 	    }
4117 
4118 	  ent->comparison_const = NULL_RTX;
4119 	  ent->comparison_qty = REG_QTY (REGNO (op1));
4120 	}
4121       else
4122 	{
4123 	  ent->comparison_const = op1;
4124 	  ent->comparison_qty = -1;
4125 	}
4126 
4127       return;
4128     }
4129 
4130   /* If either side is still missing an equivalence, make it now,
4131      then merge the equivalences.  */
4132 
4133   if (op0_elt == 0)
4134     {
4135       if (insert_regs (op0, NULL, 0))
4136 	{
4137 	  rehash_using_reg (op0);
4138 	  op0_hash = HASH (op0, mode);
4139 	}
4140 
4141       op0_elt = insert (op0, NULL, op0_hash, mode);
4142       op0_elt->in_memory = op0_in_memory;
4143     }
4144 
4145   if (op1_elt == 0)
4146     {
4147       if (insert_regs (op1, NULL, 0))
4148 	{
4149 	  rehash_using_reg (op1);
4150 	  op1_hash = HASH (op1, mode);
4151 	}
4152 
4153       op1_elt = insert (op1, NULL, op1_hash, mode);
4154       op1_elt->in_memory = op1_in_memory;
4155     }
4156 
4157   merge_equiv_classes (op0_elt, op1_elt);
4158 }
4159 
4160 /* CSE processing for one instruction.
4161    First simplify sources and addresses of all assignments
4162    in the instruction, using previously-computed equivalents values.
4163    Then install the new sources and destinations in the table
4164    of available values.  */
4165 
4166 /* Data on one SET contained in the instruction.  */
4167 
4168 struct set
4169 {
4170   /* The SET rtx itself.  */
4171   rtx rtl;
4172   /* The SET_SRC of the rtx (the original value, if it is changing).  */
4173   rtx src;
4174   /* The hash-table element for the SET_SRC of the SET.  */
4175   struct table_elt *src_elt;
4176   /* Hash value for the SET_SRC.  */
4177   unsigned src_hash;
4178   /* Hash value for the SET_DEST.  */
4179   unsigned dest_hash;
4180   /* The SET_DEST, with SUBREG, etc., stripped.  */
4181   rtx inner_dest;
4182   /* Nonzero if the SET_SRC is in memory.  */
4183   char src_in_memory;
4184   /* Nonzero if the SET_SRC contains something
4185      whose value cannot be predicted and understood.  */
4186   char src_volatile;
4187   /* Original machine mode, in case it becomes a CONST_INT.
4188      The size of this field should match the size of the mode
4189      field of struct rtx_def (see rtl.h).  */
4190   ENUM_BITFIELD(machine_mode) mode : 8;
4191   /* A constant equivalent for SET_SRC, if any.  */
4192   rtx src_const;
4193   /* Hash value of constant equivalent for SET_SRC.  */
4194   unsigned src_const_hash;
4195   /* Table entry for constant equivalent for SET_SRC, if any.  */
4196   struct table_elt *src_const_elt;
4197   /* Table entry for the destination address.  */
4198   struct table_elt *dest_addr_elt;
4199 };
4200 
4201 static void
4202 cse_insn (rtx insn)
4203 {
4204   rtx x = PATTERN (insn);
4205   int i;
4206   rtx tem;
4207   int n_sets = 0;
4208 
4209   rtx src_eqv = 0;
4210   struct table_elt *src_eqv_elt = 0;
4211   int src_eqv_volatile = 0;
4212   int src_eqv_in_memory = 0;
4213   unsigned src_eqv_hash = 0;
4214 
4215   struct set *sets = (struct set *) 0;
4216 
4217   this_insn = insn;
4218 #ifdef HAVE_cc0
4219   /* Records what this insn does to set CC0.  */
4220   this_insn_cc0 = 0;
4221   this_insn_cc0_mode = VOIDmode;
4222 #endif
4223 
4224   /* Find all the SETs and CLOBBERs in this instruction.
4225      Record all the SETs in the array `set' and count them.
4226      Also determine whether there is a CLOBBER that invalidates
4227      all memory references, or all references at varying addresses.  */
4228 
4229   if (CALL_P (insn))
4230     {
4231       for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4232 	{
4233 	  if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4234 	    invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4235 	  XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4236 	}
4237     }
4238 
4239   if (GET_CODE (x) == SET)
4240     {
4241       sets = XALLOCA (struct set);
4242       sets[0].rtl = x;
4243 
4244       /* Ignore SETs that are unconditional jumps.
4245 	 They never need cse processing, so this does not hurt.
4246 	 The reason is not efficiency but rather
4247 	 so that we can test at the end for instructions
4248 	 that have been simplified to unconditional jumps
4249 	 and not be misled by unchanged instructions
4250 	 that were unconditional jumps to begin with.  */
4251       if (SET_DEST (x) == pc_rtx
4252 	  && GET_CODE (SET_SRC (x)) == LABEL_REF)
4253 	;
4254 
4255       /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4256 	 The hard function value register is used only once, to copy to
4257 	 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4258 	 Ensure we invalidate the destination register.  On the 80386 no
4259 	 other code would invalidate it since it is a fixed_reg.
4260 	 We need not check the return of apply_change_group; see canon_reg.  */
4261 
4262       else if (GET_CODE (SET_SRC (x)) == CALL)
4263 	{
4264 	  canon_reg (SET_SRC (x), insn);
4265 	  apply_change_group ();
4266 	  fold_rtx (SET_SRC (x), insn);
4267 	  invalidate (SET_DEST (x), VOIDmode);
4268 	}
4269       else
4270 	n_sets = 1;
4271     }
4272   else if (GET_CODE (x) == PARALLEL)
4273     {
4274       int lim = XVECLEN (x, 0);
4275 
4276       sets = XALLOCAVEC (struct set, lim);
4277 
4278       /* Find all regs explicitly clobbered in this insn,
4279 	 and ensure they are not replaced with any other regs
4280 	 elsewhere in this insn.
4281 	 When a reg that is clobbered is also used for input,
4282 	 we should presume that that is for a reason,
4283 	 and we should not substitute some other register
4284 	 which is not supposed to be clobbered.
4285 	 Therefore, this loop cannot be merged into the one below
4286 	 because a CALL may precede a CLOBBER and refer to the
4287 	 value clobbered.  We must not let a canonicalization do
4288 	 anything in that case.  */
4289       for (i = 0; i < lim; i++)
4290 	{
4291 	  rtx y = XVECEXP (x, 0, i);
4292 	  if (GET_CODE (y) == CLOBBER)
4293 	    {
4294 	      rtx clobbered = XEXP (y, 0);
4295 
4296 	      if (REG_P (clobbered)
4297 		  || GET_CODE (clobbered) == SUBREG)
4298 		invalidate (clobbered, VOIDmode);
4299 	      else if (GET_CODE (clobbered) == STRICT_LOW_PART
4300 		       || GET_CODE (clobbered) == ZERO_EXTRACT)
4301 		invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4302 	    }
4303 	}
4304 
4305       for (i = 0; i < lim; i++)
4306 	{
4307 	  rtx y = XVECEXP (x, 0, i);
4308 	  if (GET_CODE (y) == SET)
4309 	    {
4310 	      /* As above, we ignore unconditional jumps and call-insns and
4311 		 ignore the result of apply_change_group.  */
4312 	      if (GET_CODE (SET_SRC (y)) == CALL)
4313 		{
4314 		  canon_reg (SET_SRC (y), insn);
4315 		  apply_change_group ();
4316 		  fold_rtx (SET_SRC (y), insn);
4317 		  invalidate (SET_DEST (y), VOIDmode);
4318 		}
4319 	      else if (SET_DEST (y) == pc_rtx
4320 		       && GET_CODE (SET_SRC (y)) == LABEL_REF)
4321 		;
4322 	      else
4323 		sets[n_sets++].rtl = y;
4324 	    }
4325 	  else if (GET_CODE (y) == CLOBBER)
4326 	    {
4327 	      /* If we clobber memory, canon the address.
4328 		 This does nothing when a register is clobbered
4329 		 because we have already invalidated the reg.  */
4330 	      if (MEM_P (XEXP (y, 0)))
4331 		canon_reg (XEXP (y, 0), insn);
4332 	    }
4333 	  else if (GET_CODE (y) == USE
4334 		   && ! (REG_P (XEXP (y, 0))
4335 			 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4336 	    canon_reg (y, insn);
4337 	  else if (GET_CODE (y) == CALL)
4338 	    {
4339 	      /* The result of apply_change_group can be ignored; see
4340 		 canon_reg.  */
4341 	      canon_reg (y, insn);
4342 	      apply_change_group ();
4343 	      fold_rtx (y, insn);
4344 	    }
4345 	}
4346     }
4347   else if (GET_CODE (x) == CLOBBER)
4348     {
4349       if (MEM_P (XEXP (x, 0)))
4350 	canon_reg (XEXP (x, 0), insn);
4351     }
4352 
4353   /* Canonicalize a USE of a pseudo register or memory location.  */
4354   else if (GET_CODE (x) == USE
4355 	   && ! (REG_P (XEXP (x, 0))
4356 		 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4357     canon_reg (XEXP (x, 0), insn);
4358   else if (GET_CODE (x) == CALL)
4359     {
4360       /* The result of apply_change_group can be ignored; see canon_reg.  */
4361       canon_reg (x, insn);
4362       apply_change_group ();
4363       fold_rtx (x, insn);
4364     }
4365   else if (DEBUG_INSN_P (insn))
4366     canon_reg (PATTERN (insn), insn);
4367 
4368   /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4369      is a STRICT_LOW_PART.  The latter condition is necessary because SRC_EQV
4370      is handled specially for this case, and if it isn't set, then there will
4371      be no equivalence for the destination.  */
4372   if (n_sets == 1 && REG_NOTES (insn) != 0
4373       && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4374       && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4375 	  || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4376     {
4377       /* The result of apply_change_group can be ignored; see canon_reg.  */
4378       canon_reg (XEXP (tem, 0), insn);
4379       apply_change_group ();
4380       src_eqv = fold_rtx (XEXP (tem, 0), insn);
4381       XEXP (tem, 0) = copy_rtx (src_eqv);
4382       df_notes_rescan (insn);
4383     }
4384 
4385   /* Canonicalize sources and addresses of destinations.
4386      We do this in a separate pass to avoid problems when a MATCH_DUP is
4387      present in the insn pattern.  In that case, we want to ensure that
4388      we don't break the duplicate nature of the pattern.  So we will replace
4389      both operands at the same time.  Otherwise, we would fail to find an
4390      equivalent substitution in the loop calling validate_change below.
4391 
4392      We used to suppress canonicalization of DEST if it appears in SRC,
4393      but we don't do this any more.  */
4394 
4395   for (i = 0; i < n_sets; i++)
4396     {
4397       rtx dest = SET_DEST (sets[i].rtl);
4398       rtx src = SET_SRC (sets[i].rtl);
4399       rtx new_rtx = canon_reg (src, insn);
4400 
4401       validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4402 
4403       if (GET_CODE (dest) == ZERO_EXTRACT)
4404 	{
4405 	  validate_change (insn, &XEXP (dest, 1),
4406 			   canon_reg (XEXP (dest, 1), insn), 1);
4407 	  validate_change (insn, &XEXP (dest, 2),
4408 			   canon_reg (XEXP (dest, 2), insn), 1);
4409 	}
4410 
4411       while (GET_CODE (dest) == SUBREG
4412 	     || GET_CODE (dest) == ZERO_EXTRACT
4413 	     || GET_CODE (dest) == STRICT_LOW_PART)
4414 	dest = XEXP (dest, 0);
4415 
4416       if (MEM_P (dest))
4417 	canon_reg (dest, insn);
4418     }
4419 
4420   /* Now that we have done all the replacements, we can apply the change
4421      group and see if they all work.  Note that this will cause some
4422      canonicalizations that would have worked individually not to be applied
4423      because some other canonicalization didn't work, but this should not
4424      occur often.
4425 
4426      The result of apply_change_group can be ignored; see canon_reg.  */
4427 
4428   apply_change_group ();
4429 
4430   /* Set sets[i].src_elt to the class each source belongs to.
4431      Detect assignments from or to volatile things
4432      and set set[i] to zero so they will be ignored
4433      in the rest of this function.
4434 
4435      Nothing in this loop changes the hash table or the register chains.  */
4436 
4437   for (i = 0; i < n_sets; i++)
4438     {
4439       bool repeat = false;
4440       rtx src, dest;
4441       rtx src_folded;
4442       struct table_elt *elt = 0, *p;
4443       enum machine_mode mode;
4444       rtx src_eqv_here;
4445       rtx src_const = 0;
4446       rtx src_related = 0;
4447       bool src_related_is_const_anchor = false;
4448       struct table_elt *src_const_elt = 0;
4449       int src_cost = MAX_COST;
4450       int src_eqv_cost = MAX_COST;
4451       int src_folded_cost = MAX_COST;
4452       int src_related_cost = MAX_COST;
4453       int src_elt_cost = MAX_COST;
4454       int src_regcost = MAX_COST;
4455       int src_eqv_regcost = MAX_COST;
4456       int src_folded_regcost = MAX_COST;
4457       int src_related_regcost = MAX_COST;
4458       int src_elt_regcost = MAX_COST;
4459       /* Set nonzero if we need to call force_const_mem on with the
4460 	 contents of src_folded before using it.  */
4461       int src_folded_force_flag = 0;
4462 
4463       dest = SET_DEST (sets[i].rtl);
4464       src = SET_SRC (sets[i].rtl);
4465 
4466       /* If SRC is a constant that has no machine mode,
4467 	 hash it with the destination's machine mode.
4468 	 This way we can keep different modes separate.  */
4469 
4470       mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4471       sets[i].mode = mode;
4472 
4473       if (src_eqv)
4474 	{
4475 	  enum machine_mode eqvmode = mode;
4476 	  if (GET_CODE (dest) == STRICT_LOW_PART)
4477 	    eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4478 	  do_not_record = 0;
4479 	  hash_arg_in_memory = 0;
4480 	  src_eqv_hash = HASH (src_eqv, eqvmode);
4481 
4482 	  /* Find the equivalence class for the equivalent expression.  */
4483 
4484 	  if (!do_not_record)
4485 	    src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4486 
4487 	  src_eqv_volatile = do_not_record;
4488 	  src_eqv_in_memory = hash_arg_in_memory;
4489 	}
4490 
4491       /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4492 	 value of the INNER register, not the destination.  So it is not
4493 	 a valid substitution for the source.  But save it for later.  */
4494       if (GET_CODE (dest) == STRICT_LOW_PART)
4495 	src_eqv_here = 0;
4496       else
4497 	src_eqv_here = src_eqv;
4498 
4499       /* Simplify and foldable subexpressions in SRC.  Then get the fully-
4500 	 simplified result, which may not necessarily be valid.  */
4501       src_folded = fold_rtx (src, insn);
4502 
4503 #if 0
4504       /* ??? This caused bad code to be generated for the m68k port with -O2.
4505 	 Suppose src is (CONST_INT -1), and that after truncation src_folded
4506 	 is (CONST_INT 3).  Suppose src_folded is then used for src_const.
4507 	 At the end we will add src and src_const to the same equivalence
4508 	 class.  We now have 3 and -1 on the same equivalence class.  This
4509 	 causes later instructions to be mis-optimized.  */
4510       /* If storing a constant in a bitfield, pre-truncate the constant
4511 	 so we will be able to record it later.  */
4512       if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4513 	{
4514 	  rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4515 
4516 	  if (CONST_INT_P (src)
4517 	      && CONST_INT_P (width)
4518 	      && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4519 	      && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4520 	    src_folded
4521 	      = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4522 					  << INTVAL (width)) - 1));
4523 	}
4524 #endif
4525 
4526       /* Compute SRC's hash code, and also notice if it
4527 	 should not be recorded at all.  In that case,
4528 	 prevent any further processing of this assignment.  */
4529       do_not_record = 0;
4530       hash_arg_in_memory = 0;
4531 
4532       sets[i].src = src;
4533       sets[i].src_hash = HASH (src, mode);
4534       sets[i].src_volatile = do_not_record;
4535       sets[i].src_in_memory = hash_arg_in_memory;
4536 
4537       /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4538 	 a pseudo, do not record SRC.  Using SRC as a replacement for
4539 	 anything else will be incorrect in that situation.  Note that
4540 	 this usually occurs only for stack slots, in which case all the
4541 	 RTL would be referring to SRC, so we don't lose any optimization
4542 	 opportunities by not having SRC in the hash table.  */
4543 
4544       if (MEM_P (src)
4545 	  && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4546 	  && REG_P (dest)
4547 	  && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4548 	sets[i].src_volatile = 1;
4549 
4550 #if 0
4551       /* It is no longer clear why we used to do this, but it doesn't
4552 	 appear to still be needed.  So let's try without it since this
4553 	 code hurts cse'ing widened ops.  */
4554       /* If source is a paradoxical subreg (such as QI treated as an SI),
4555 	 treat it as volatile.  It may do the work of an SI in one context
4556 	 where the extra bits are not being used, but cannot replace an SI
4557 	 in general.  */
4558       if (GET_CODE (src) == SUBREG
4559 	  && (GET_MODE_SIZE (GET_MODE (src))
4560 	      > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
4561 	sets[i].src_volatile = 1;
4562 #endif
4563 
4564       /* Locate all possible equivalent forms for SRC.  Try to replace
4565          SRC in the insn with each cheaper equivalent.
4566 
4567          We have the following types of equivalents: SRC itself, a folded
4568          version, a value given in a REG_EQUAL note, or a value related
4569 	 to a constant.
4570 
4571          Each of these equivalents may be part of an additional class
4572          of equivalents (if more than one is in the table, they must be in
4573          the same class; we check for this).
4574 
4575 	 If the source is volatile, we don't do any table lookups.
4576 
4577          We note any constant equivalent for possible later use in a
4578          REG_NOTE.  */
4579 
4580       if (!sets[i].src_volatile)
4581 	elt = lookup (src, sets[i].src_hash, mode);
4582 
4583       sets[i].src_elt = elt;
4584 
4585       if (elt && src_eqv_here && src_eqv_elt)
4586 	{
4587 	  if (elt->first_same_value != src_eqv_elt->first_same_value)
4588 	    {
4589 	      /* The REG_EQUAL is indicating that two formerly distinct
4590 		 classes are now equivalent.  So merge them.  */
4591 	      merge_equiv_classes (elt, src_eqv_elt);
4592 	      src_eqv_hash = HASH (src_eqv, elt->mode);
4593 	      src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4594 	    }
4595 
4596 	  src_eqv_here = 0;
4597 	}
4598 
4599       else if (src_eqv_elt)
4600 	elt = src_eqv_elt;
4601 
4602       /* Try to find a constant somewhere and record it in `src_const'.
4603 	 Record its table element, if any, in `src_const_elt'.  Look in
4604 	 any known equivalences first.  (If the constant is not in the
4605 	 table, also set `sets[i].src_const_hash').  */
4606       if (elt)
4607 	for (p = elt->first_same_value; p; p = p->next_same_value)
4608 	  if (p->is_const)
4609 	    {
4610 	      src_const = p->exp;
4611 	      src_const_elt = elt;
4612 	      break;
4613 	    }
4614 
4615       if (src_const == 0
4616 	  && (CONSTANT_P (src_folded)
4617 	      /* Consider (minus (label_ref L1) (label_ref L2)) as
4618 		 "constant" here so we will record it. This allows us
4619 		 to fold switch statements when an ADDR_DIFF_VEC is used.  */
4620 	      || (GET_CODE (src_folded) == MINUS
4621 		  && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4622 		  && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4623 	src_const = src_folded, src_const_elt = elt;
4624       else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4625 	src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4626 
4627       /* If we don't know if the constant is in the table, get its
4628 	 hash code and look it up.  */
4629       if (src_const && src_const_elt == 0)
4630 	{
4631 	  sets[i].src_const_hash = HASH (src_const, mode);
4632 	  src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4633 	}
4634 
4635       sets[i].src_const = src_const;
4636       sets[i].src_const_elt = src_const_elt;
4637 
4638       /* If the constant and our source are both in the table, mark them as
4639 	 equivalent.  Otherwise, if a constant is in the table but the source
4640 	 isn't, set ELT to it.  */
4641       if (src_const_elt && elt
4642 	  && src_const_elt->first_same_value != elt->first_same_value)
4643 	merge_equiv_classes (elt, src_const_elt);
4644       else if (src_const_elt && elt == 0)
4645 	elt = src_const_elt;
4646 
4647       /* See if there is a register linearly related to a constant
4648          equivalent of SRC.  */
4649       if (src_const
4650 	  && (GET_CODE (src_const) == CONST
4651 	      || (src_const_elt && src_const_elt->related_value != 0)))
4652 	{
4653 	  src_related = use_related_value (src_const, src_const_elt);
4654 	  if (src_related)
4655 	    {
4656 	      struct table_elt *src_related_elt
4657 		= lookup (src_related, HASH (src_related, mode), mode);
4658 	      if (src_related_elt && elt)
4659 		{
4660 		  if (elt->first_same_value
4661 		      != src_related_elt->first_same_value)
4662 		    /* This can occur when we previously saw a CONST
4663 		       involving a SYMBOL_REF and then see the SYMBOL_REF
4664 		       twice.  Merge the involved classes.  */
4665 		    merge_equiv_classes (elt, src_related_elt);
4666 
4667 		  src_related = 0;
4668 		  src_related_elt = 0;
4669 		}
4670 	      else if (src_related_elt && elt == 0)
4671 		elt = src_related_elt;
4672 	    }
4673 	}
4674 
4675       /* See if we have a CONST_INT that is already in a register in a
4676 	 wider mode.  */
4677 
4678       if (src_const && src_related == 0 && CONST_INT_P (src_const)
4679 	  && GET_MODE_CLASS (mode) == MODE_INT
4680 	  && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
4681 	{
4682 	  enum machine_mode wider_mode;
4683 
4684 	  for (wider_mode = GET_MODE_WIDER_MODE (mode);
4685 	       wider_mode != VOIDmode
4686 	       && GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
4687 	       && src_related == 0;
4688 	       wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4689 	    {
4690 	      struct table_elt *const_elt
4691 		= lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4692 
4693 	      if (const_elt == 0)
4694 		continue;
4695 
4696 	      for (const_elt = const_elt->first_same_value;
4697 		   const_elt; const_elt = const_elt->next_same_value)
4698 		if (REG_P (const_elt->exp))
4699 		  {
4700 		    src_related = gen_lowpart (mode, const_elt->exp);
4701 		    break;
4702 		  }
4703 	    }
4704 	}
4705 
4706       /* Another possibility is that we have an AND with a constant in
4707 	 a mode narrower than a word.  If so, it might have been generated
4708 	 as part of an "if" which would narrow the AND.  If we already
4709 	 have done the AND in a wider mode, we can use a SUBREG of that
4710 	 value.  */
4711 
4712       if (flag_expensive_optimizations && ! src_related
4713 	  && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
4714 	  && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4715 	{
4716 	  enum machine_mode tmode;
4717 	  rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4718 
4719 	  for (tmode = GET_MODE_WIDER_MODE (mode);
4720 	       GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4721 	       tmode = GET_MODE_WIDER_MODE (tmode))
4722 	    {
4723 	      rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4724 	      struct table_elt *larger_elt;
4725 
4726 	      if (inner)
4727 		{
4728 		  PUT_MODE (new_and, tmode);
4729 		  XEXP (new_and, 0) = inner;
4730 		  larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4731 		  if (larger_elt == 0)
4732 		    continue;
4733 
4734 		  for (larger_elt = larger_elt->first_same_value;
4735 		       larger_elt; larger_elt = larger_elt->next_same_value)
4736 		    if (REG_P (larger_elt->exp))
4737 		      {
4738 			src_related
4739 			  = gen_lowpart (mode, larger_elt->exp);
4740 			break;
4741 		      }
4742 
4743 		  if (src_related)
4744 		    break;
4745 		}
4746 	    }
4747 	}
4748 
4749 #ifdef LOAD_EXTEND_OP
4750       /* See if a MEM has already been loaded with a widening operation;
4751 	 if it has, we can use a subreg of that.  Many CISC machines
4752 	 also have such operations, but this is only likely to be
4753 	 beneficial on these machines.  */
4754 
4755       if (flag_expensive_optimizations && src_related == 0
4756 	  && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4757 	  && GET_MODE_CLASS (mode) == MODE_INT
4758 	  && MEM_P (src) && ! do_not_record
4759 	  && LOAD_EXTEND_OP (mode) != UNKNOWN)
4760 	{
4761 	  struct rtx_def memory_extend_buf;
4762 	  rtx memory_extend_rtx = &memory_extend_buf;
4763 	  enum machine_mode tmode;
4764 
4765 	  /* Set what we are trying to extend and the operation it might
4766 	     have been extended with.  */
4767 	  memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
4768 	  PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4769 	  XEXP (memory_extend_rtx, 0) = src;
4770 
4771 	  for (tmode = GET_MODE_WIDER_MODE (mode);
4772 	       GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4773 	       tmode = GET_MODE_WIDER_MODE (tmode))
4774 	    {
4775 	      struct table_elt *larger_elt;
4776 
4777 	      PUT_MODE (memory_extend_rtx, tmode);
4778 	      larger_elt = lookup (memory_extend_rtx,
4779 				   HASH (memory_extend_rtx, tmode), tmode);
4780 	      if (larger_elt == 0)
4781 		continue;
4782 
4783 	      for (larger_elt = larger_elt->first_same_value;
4784 		   larger_elt; larger_elt = larger_elt->next_same_value)
4785 		if (REG_P (larger_elt->exp))
4786 		  {
4787 		    src_related = gen_lowpart (mode, larger_elt->exp);
4788 		    break;
4789 		  }
4790 
4791 	      if (src_related)
4792 		break;
4793 	    }
4794 	}
4795 #endif /* LOAD_EXTEND_OP */
4796 
4797       /* Try to express the constant using a register+offset expression
4798 	 derived from a constant anchor.  */
4799 
4800       if (targetm.const_anchor
4801 	  && !src_related
4802 	  && src_const
4803 	  && GET_CODE (src_const) == CONST_INT)
4804 	{
4805 	  src_related = try_const_anchors (src_const, mode);
4806 	  src_related_is_const_anchor = src_related != NULL_RTX;
4807 	}
4808 
4809 
4810       if (src == src_folded)
4811 	src_folded = 0;
4812 
4813       /* At this point, ELT, if nonzero, points to a class of expressions
4814          equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4815 	 and SRC_RELATED, if nonzero, each contain additional equivalent
4816 	 expressions.  Prune these latter expressions by deleting expressions
4817 	 already in the equivalence class.
4818 
4819 	 Check for an equivalent identical to the destination.  If found,
4820 	 this is the preferred equivalent since it will likely lead to
4821 	 elimination of the insn.  Indicate this by placing it in
4822 	 `src_related'.  */
4823 
4824       if (elt)
4825 	elt = elt->first_same_value;
4826       for (p = elt; p; p = p->next_same_value)
4827 	{
4828 	  enum rtx_code code = GET_CODE (p->exp);
4829 
4830 	  /* If the expression is not valid, ignore it.  Then we do not
4831 	     have to check for validity below.  In most cases, we can use
4832 	     `rtx_equal_p', since canonicalization has already been done.  */
4833 	  if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4834 	    continue;
4835 
4836 	  /* Also skip paradoxical subregs, unless that's what we're
4837 	     looking for.  */
4838 	  if (code == SUBREG
4839 	      && (GET_MODE_SIZE (GET_MODE (p->exp))
4840 		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
4841 	      && ! (src != 0
4842 		    && GET_CODE (src) == SUBREG
4843 		    && GET_MODE (src) == GET_MODE (p->exp)
4844 		    && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4845 			< GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4846 	    continue;
4847 
4848 	  if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4849 	    src = 0;
4850 	  else if (src_folded && GET_CODE (src_folded) == code
4851 		   && rtx_equal_p (src_folded, p->exp))
4852 	    src_folded = 0;
4853 	  else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4854 		   && rtx_equal_p (src_eqv_here, p->exp))
4855 	    src_eqv_here = 0;
4856 	  else if (src_related && GET_CODE (src_related) == code
4857 		   && rtx_equal_p (src_related, p->exp))
4858 	    src_related = 0;
4859 
4860 	  /* This is the same as the destination of the insns, we want
4861 	     to prefer it.  Copy it to src_related.  The code below will
4862 	     then give it a negative cost.  */
4863 	  if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4864 	    src_related = dest;
4865 	}
4866 
4867       /* Find the cheapest valid equivalent, trying all the available
4868          possibilities.  Prefer items not in the hash table to ones
4869          that are when they are equal cost.  Note that we can never
4870          worsen an insn as the current contents will also succeed.
4871 	 If we find an equivalent identical to the destination, use it as best,
4872 	 since this insn will probably be eliminated in that case.  */
4873       if (src)
4874 	{
4875 	  if (rtx_equal_p (src, dest))
4876 	    src_cost = src_regcost = -1;
4877 	  else
4878 	    {
4879 	      src_cost = COST (src);
4880 	      src_regcost = approx_reg_cost (src);
4881 	    }
4882 	}
4883 
4884       if (src_eqv_here)
4885 	{
4886 	  if (rtx_equal_p (src_eqv_here, dest))
4887 	    src_eqv_cost = src_eqv_regcost = -1;
4888 	  else
4889 	    {
4890 	      src_eqv_cost = COST (src_eqv_here);
4891 	      src_eqv_regcost = approx_reg_cost (src_eqv_here);
4892 	    }
4893 	}
4894 
4895       if (src_folded)
4896 	{
4897 	  if (rtx_equal_p (src_folded, dest))
4898 	    src_folded_cost = src_folded_regcost = -1;
4899 	  else
4900 	    {
4901 	      src_folded_cost = COST (src_folded);
4902 	      src_folded_regcost = approx_reg_cost (src_folded);
4903 	    }
4904 	}
4905 
4906       if (src_related)
4907 	{
4908 	  if (rtx_equal_p (src_related, dest))
4909 	    src_related_cost = src_related_regcost = -1;
4910 	  else
4911 	    {
4912 	      src_related_cost = COST (src_related);
4913 	      src_related_regcost = approx_reg_cost (src_related);
4914 
4915 	      /* If a const-anchor is used to synthesize a constant that
4916 		 normally requires multiple instructions then slightly prefer
4917 		 it over the original sequence.  These instructions are likely
4918 		 to become redundant now.  We can't compare against the cost
4919 		 of src_eqv_here because, on MIPS for example, multi-insn
4920 		 constants have zero cost; they are assumed to be hoisted from
4921 		 loops.  */
4922 	      if (src_related_is_const_anchor
4923 		  && src_related_cost == src_cost
4924 		  && src_eqv_here)
4925 		src_related_cost--;
4926 	    }
4927 	}
4928 
4929       /* If this was an indirect jump insn, a known label will really be
4930 	 cheaper even though it looks more expensive.  */
4931       if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
4932 	src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
4933 
4934       /* Terminate loop when replacement made.  This must terminate since
4935          the current contents will be tested and will always be valid.  */
4936       while (1)
4937 	{
4938 	  rtx trial;
4939 
4940 	  /* Skip invalid entries.  */
4941 	  while (elt && !REG_P (elt->exp)
4942 		 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
4943 	    elt = elt->next_same_value;
4944 
4945 	  /* A paradoxical subreg would be bad here: it'll be the right
4946 	     size, but later may be adjusted so that the upper bits aren't
4947 	     what we want.  So reject it.  */
4948 	  if (elt != 0
4949 	      && GET_CODE (elt->exp) == SUBREG
4950 	      && (GET_MODE_SIZE (GET_MODE (elt->exp))
4951 		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
4952 	      /* It is okay, though, if the rtx we're trying to match
4953 		 will ignore any of the bits we can't predict.  */
4954 	      && ! (src != 0
4955 		    && GET_CODE (src) == SUBREG
4956 		    && GET_MODE (src) == GET_MODE (elt->exp)
4957 		    && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4958 			< GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
4959 	    {
4960 	      elt = elt->next_same_value;
4961 	      continue;
4962 	    }
4963 
4964 	  if (elt)
4965 	    {
4966 	      src_elt_cost = elt->cost;
4967 	      src_elt_regcost = elt->regcost;
4968 	    }
4969 
4970 	  /* Find cheapest and skip it for the next time.   For items
4971 	     of equal cost, use this order:
4972 	     src_folded, src, src_eqv, src_related and hash table entry.  */
4973 	  if (src_folded
4974 	      && preferable (src_folded_cost, src_folded_regcost,
4975 			     src_cost, src_regcost) <= 0
4976 	      && preferable (src_folded_cost, src_folded_regcost,
4977 			     src_eqv_cost, src_eqv_regcost) <= 0
4978 	      && preferable (src_folded_cost, src_folded_regcost,
4979 			     src_related_cost, src_related_regcost) <= 0
4980 	      && preferable (src_folded_cost, src_folded_regcost,
4981 			     src_elt_cost, src_elt_regcost) <= 0)
4982 	    {
4983 	      trial = src_folded, src_folded_cost = MAX_COST;
4984 	      if (src_folded_force_flag)
4985 		{
4986 		  rtx forced = force_const_mem (mode, trial);
4987 		  if (forced)
4988 		    trial = forced;
4989 		}
4990 	    }
4991 	  else if (src
4992 		   && preferable (src_cost, src_regcost,
4993 				  src_eqv_cost, src_eqv_regcost) <= 0
4994 		   && preferable (src_cost, src_regcost,
4995 				  src_related_cost, src_related_regcost) <= 0
4996 		   && preferable (src_cost, src_regcost,
4997 				  src_elt_cost, src_elt_regcost) <= 0)
4998 	    trial = src, src_cost = MAX_COST;
4999 	  else if (src_eqv_here
5000 		   && preferable (src_eqv_cost, src_eqv_regcost,
5001 				  src_related_cost, src_related_regcost) <= 0
5002 		   && preferable (src_eqv_cost, src_eqv_regcost,
5003 				  src_elt_cost, src_elt_regcost) <= 0)
5004 	    trial = src_eqv_here, src_eqv_cost = MAX_COST;
5005 	  else if (src_related
5006 		   && preferable (src_related_cost, src_related_regcost,
5007 				  src_elt_cost, src_elt_regcost) <= 0)
5008 	    trial = src_related, src_related_cost = MAX_COST;
5009 	  else
5010 	    {
5011 	      trial = elt->exp;
5012 	      elt = elt->next_same_value;
5013 	      src_elt_cost = MAX_COST;
5014 	    }
5015 
5016 	  /* Avoid creation of overlapping memory moves.  */
5017 	  if (MEM_P (trial) && MEM_P (SET_DEST (sets[i].rtl)))
5018 	    {
5019 	      rtx src, dest;
5020 
5021 	      /* BLKmode moves are not handled by cse anyway.  */
5022 	      if (GET_MODE (trial) == BLKmode)
5023 		break;
5024 
5025 	      src = canon_rtx (trial);
5026 	      dest = canon_rtx (SET_DEST (sets[i].rtl));
5027 
5028 	      if (!MEM_P (src) || !MEM_P (dest)
5029 		  || !nonoverlapping_memrefs_p (src, dest))
5030 		break;
5031 	    }
5032 
5033 	  /* Try to optimize
5034 	     (set (reg:M N) (const_int A))
5035 	     (set (reg:M2 O) (const_int B))
5036 	     (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5037 		  (reg:M2 O)).  */
5038 	  if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5039 	      && CONST_INT_P (trial)
5040 	      && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5041 	      && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5042 	      && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
5043 	      && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (sets[i].rtl)))
5044 		  >= INTVAL (XEXP (SET_DEST (sets[i].rtl), 1)))
5045 	      && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5046 		  + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5047 		  <= HOST_BITS_PER_WIDE_INT))
5048 	    {
5049 	      rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5050 	      rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5051 	      rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5052 	      unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5053 	      struct table_elt *dest_elt
5054 		= lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5055 	      rtx dest_cst = NULL;
5056 
5057 	      if (dest_elt)
5058 		for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5059 		  if (p->is_const && CONST_INT_P (p->exp))
5060 		    {
5061 		      dest_cst = p->exp;
5062 		      break;
5063 		    }
5064 	      if (dest_cst)
5065 		{
5066 		  HOST_WIDE_INT val = INTVAL (dest_cst);
5067 		  HOST_WIDE_INT mask;
5068 		  unsigned int shift;
5069 		  if (BITS_BIG_ENDIAN)
5070 		    shift = GET_MODE_BITSIZE (GET_MODE (dest_reg))
5071 			    - INTVAL (pos) - INTVAL (width);
5072 		  else
5073 		    shift = INTVAL (pos);
5074 		  if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5075 		    mask = ~(HOST_WIDE_INT) 0;
5076 		  else
5077 		    mask = ((HOST_WIDE_INT) 1 << INTVAL (width)) - 1;
5078 		  val &= ~(mask << shift);
5079 		  val |= (INTVAL (trial) & mask) << shift;
5080 		  val = trunc_int_for_mode (val, GET_MODE (dest_reg));
5081 		  validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5082 					   dest_reg, 1);
5083 		  validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5084 					   GEN_INT (val), 1);
5085 		  if (apply_change_group ())
5086 		    {
5087 		      rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5088 		      if (note)
5089 			{
5090 			  remove_note (insn, note);
5091 			  df_notes_rescan (insn);
5092 			}
5093 		      src_eqv = NULL_RTX;
5094 		      src_eqv_elt = NULL;
5095 		      src_eqv_volatile = 0;
5096 		      src_eqv_in_memory = 0;
5097 		      src_eqv_hash = 0;
5098 		      repeat = true;
5099 		      break;
5100 		    }
5101 		}
5102 	    }
5103 
5104 	  /* We don't normally have an insn matching (set (pc) (pc)), so
5105 	     check for this separately here.  We will delete such an
5106 	     insn below.
5107 
5108 	     For other cases such as a table jump or conditional jump
5109 	     where we know the ultimate target, go ahead and replace the
5110 	     operand.  While that may not make a valid insn, we will
5111 	     reemit the jump below (and also insert any necessary
5112 	     barriers).  */
5113 	  if (n_sets == 1 && dest == pc_rtx
5114 	      && (trial == pc_rtx
5115 		  || (GET_CODE (trial) == LABEL_REF
5116 		      && ! condjump_p (insn))))
5117 	    {
5118 	      /* Don't substitute non-local labels, this confuses CFG.  */
5119 	      if (GET_CODE (trial) == LABEL_REF
5120 		  && LABEL_REF_NONLOCAL_P (trial))
5121 		continue;
5122 
5123 	      SET_SRC (sets[i].rtl) = trial;
5124 	      cse_jumps_altered = true;
5125 	      break;
5126 	    }
5127 
5128 	  /* Reject certain invalid forms of CONST that we create.  */
5129 	  else if (CONSTANT_P (trial)
5130 		   && GET_CODE (trial) == CONST
5131 		   /* Reject cases that will cause decode_rtx_const to
5132 		      die.  On the alpha when simplifying a switch, we
5133 		      get (const (truncate (minus (label_ref)
5134 		      (label_ref)))).  */
5135 		   && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5136 		       /* Likewise on IA-64, except without the
5137 			  truncate.  */
5138 		       || (GET_CODE (XEXP (trial, 0)) == MINUS
5139 			   && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5140 			   && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5141 	    /* Do nothing for this case.  */
5142 	    ;
5143 
5144 	  /* Look for a substitution that makes a valid insn.  */
5145 	  else if (validate_unshare_change
5146 		     (insn, &SET_SRC (sets[i].rtl), trial, 0))
5147 	    {
5148 	      rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
5149 
5150 	      /* The result of apply_change_group can be ignored; see
5151 		 canon_reg.  */
5152 
5153 	      validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
5154 	      apply_change_group ();
5155 
5156 	      break;
5157 	    }
5158 
5159 	  /* If we previously found constant pool entries for
5160 	     constants and this is a constant, try making a
5161 	     pool entry.  Put it in src_folded unless we already have done
5162 	     this since that is where it likely came from.  */
5163 
5164 	  else if (constant_pool_entries_cost
5165 		   && CONSTANT_P (trial)
5166 		   && (src_folded == 0
5167 		       || (!MEM_P (src_folded)
5168 			   && ! src_folded_force_flag))
5169 		   && GET_MODE_CLASS (mode) != MODE_CC
5170 		   && mode != VOIDmode)
5171 	    {
5172 	      src_folded_force_flag = 1;
5173 	      src_folded = trial;
5174 	      src_folded_cost = constant_pool_entries_cost;
5175 	      src_folded_regcost = constant_pool_entries_regcost;
5176 	    }
5177 	}
5178 
5179       /* If we changed the insn too much, handle this set from scratch.  */
5180       if (repeat)
5181 	{
5182 	  i--;
5183 	  continue;
5184 	}
5185 
5186       src = SET_SRC (sets[i].rtl);
5187 
5188       /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5189 	 However, there is an important exception:  If both are registers
5190 	 that are not the head of their equivalence class, replace SET_SRC
5191 	 with the head of the class.  If we do not do this, we will have
5192 	 both registers live over a portion of the basic block.  This way,
5193 	 their lifetimes will likely abut instead of overlapping.  */
5194       if (REG_P (dest)
5195 	  && REGNO_QTY_VALID_P (REGNO (dest)))
5196 	{
5197 	  int dest_q = REG_QTY (REGNO (dest));
5198 	  struct qty_table_elem *dest_ent = &qty_table[dest_q];
5199 
5200 	  if (dest_ent->mode == GET_MODE (dest)
5201 	      && dest_ent->first_reg != REGNO (dest)
5202 	      && REG_P (src) && REGNO (src) == REGNO (dest)
5203 	      /* Don't do this if the original insn had a hard reg as
5204 		 SET_SRC or SET_DEST.  */
5205 	      && (!REG_P (sets[i].src)
5206 		  || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5207 	      && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5208 	    /* We can't call canon_reg here because it won't do anything if
5209 	       SRC is a hard register.  */
5210 	    {
5211 	      int src_q = REG_QTY (REGNO (src));
5212 	      struct qty_table_elem *src_ent = &qty_table[src_q];
5213 	      int first = src_ent->first_reg;
5214 	      rtx new_src
5215 		= (first >= FIRST_PSEUDO_REGISTER
5216 		   ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5217 
5218 	      /* We must use validate-change even for this, because this
5219 		 might be a special no-op instruction, suitable only to
5220 		 tag notes onto.  */
5221 	      if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5222 		{
5223 		  src = new_src;
5224 		  /* If we had a constant that is cheaper than what we are now
5225 		     setting SRC to, use that constant.  We ignored it when we
5226 		     thought we could make this into a no-op.  */
5227 		  if (src_const && COST (src_const) < COST (src)
5228 		      && validate_change (insn, &SET_SRC (sets[i].rtl),
5229 					  src_const, 0))
5230 		    src = src_const;
5231 		}
5232 	    }
5233 	}
5234 
5235       /* If we made a change, recompute SRC values.  */
5236       if (src != sets[i].src)
5237 	{
5238 	  do_not_record = 0;
5239 	  hash_arg_in_memory = 0;
5240 	  sets[i].src = src;
5241 	  sets[i].src_hash = HASH (src, mode);
5242 	  sets[i].src_volatile = do_not_record;
5243 	  sets[i].src_in_memory = hash_arg_in_memory;
5244 	  sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5245 	}
5246 
5247       /* If this is a single SET, we are setting a register, and we have an
5248 	 equivalent constant, we want to add a REG_NOTE.   We don't want
5249 	 to write a REG_EQUAL note for a constant pseudo since verifying that
5250 	 that pseudo hasn't been eliminated is a pain.  Such a note also
5251 	 won't help anything.
5252 
5253 	 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5254 	 which can be created for a reference to a compile time computable
5255 	 entry in a jump table.  */
5256 
5257       if (n_sets == 1 && src_const && REG_P (dest)
5258 	  && !REG_P (src_const)
5259 	  && ! (GET_CODE (src_const) == CONST
5260 		&& GET_CODE (XEXP (src_const, 0)) == MINUS
5261 		&& GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5262 		&& GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
5263 	{
5264 	  /* We only want a REG_EQUAL note if src_const != src.  */
5265 	  if (! rtx_equal_p (src, src_const))
5266 	    {
5267 	      /* Make sure that the rtx is not shared.  */
5268 	      src_const = copy_rtx (src_const);
5269 
5270 	      /* Record the actual constant value in a REG_EQUAL note,
5271 		 making a new one if one does not already exist.  */
5272 	      set_unique_reg_note (insn, REG_EQUAL, src_const);
5273 	      df_notes_rescan (insn);
5274 	    }
5275 	}
5276 
5277       /* Now deal with the destination.  */
5278       do_not_record = 0;
5279 
5280       /* Look within any ZERO_EXTRACT to the MEM or REG within it.  */
5281       while (GET_CODE (dest) == SUBREG
5282 	     || GET_CODE (dest) == ZERO_EXTRACT
5283 	     || GET_CODE (dest) == STRICT_LOW_PART)
5284 	dest = XEXP (dest, 0);
5285 
5286       sets[i].inner_dest = dest;
5287 
5288       if (MEM_P (dest))
5289 	{
5290 #ifdef PUSH_ROUNDING
5291 	  /* Stack pushes invalidate the stack pointer.  */
5292 	  rtx addr = XEXP (dest, 0);
5293 	  if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5294 	      && XEXP (addr, 0) == stack_pointer_rtx)
5295 	    invalidate (stack_pointer_rtx, VOIDmode);
5296 #endif
5297 	  dest = fold_rtx (dest, insn);
5298 	}
5299 
5300       /* Compute the hash code of the destination now,
5301 	 before the effects of this instruction are recorded,
5302 	 since the register values used in the address computation
5303 	 are those before this instruction.  */
5304       sets[i].dest_hash = HASH (dest, mode);
5305 
5306       /* Don't enter a bit-field in the hash table
5307 	 because the value in it after the store
5308 	 may not equal what was stored, due to truncation.  */
5309 
5310       if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5311 	{
5312 	  rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5313 
5314 	  if (src_const != 0 && CONST_INT_P (src_const)
5315 	      && CONST_INT_P (width)
5316 	      && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5317 	      && ! (INTVAL (src_const)
5318 		    & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5319 	    /* Exception: if the value is constant,
5320 	       and it won't be truncated, record it.  */
5321 	    ;
5322 	  else
5323 	    {
5324 	      /* This is chosen so that the destination will be invalidated
5325 		 but no new value will be recorded.
5326 		 We must invalidate because sometimes constant
5327 		 values can be recorded for bitfields.  */
5328 	      sets[i].src_elt = 0;
5329 	      sets[i].src_volatile = 1;
5330 	      src_eqv = 0;
5331 	      src_eqv_elt = 0;
5332 	    }
5333 	}
5334 
5335       /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5336 	 the insn.  */
5337       else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5338 	{
5339 	  /* One less use of the label this insn used to jump to.  */
5340 	  delete_insn_and_edges (insn);
5341 	  cse_jumps_altered = true;
5342 	  /* No more processing for this set.  */
5343 	  sets[i].rtl = 0;
5344 	}
5345 
5346       /* If this SET is now setting PC to a label, we know it used to
5347 	 be a conditional or computed branch.  */
5348       else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5349 	       && !LABEL_REF_NONLOCAL_P (src))
5350 	{
5351 	  /* We reemit the jump in as many cases as possible just in
5352 	     case the form of an unconditional jump is significantly
5353 	     different than a computed jump or conditional jump.
5354 
5355 	     If this insn has multiple sets, then reemitting the
5356 	     jump is nontrivial.  So instead we just force rerecognition
5357 	     and hope for the best.  */
5358 	  if (n_sets == 1)
5359 	    {
5360 	      rtx new_rtx, note;
5361 
5362 	      new_rtx = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5363 	      JUMP_LABEL (new_rtx) = XEXP (src, 0);
5364 	      LABEL_NUSES (XEXP (src, 0))++;
5365 
5366 	      /* Make sure to copy over REG_NON_LOCAL_GOTO.  */
5367 	      note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5368 	      if (note)
5369 		{
5370 		  XEXP (note, 1) = NULL_RTX;
5371 		  REG_NOTES (new_rtx) = note;
5372 		}
5373 
5374 	      delete_insn_and_edges (insn);
5375 	      insn = new_rtx;
5376 	    }
5377 	  else
5378 	    INSN_CODE (insn) = -1;
5379 
5380 	  /* Do not bother deleting any unreachable code, let jump do it.  */
5381 	  cse_jumps_altered = true;
5382 	  sets[i].rtl = 0;
5383 	}
5384 
5385       /* If destination is volatile, invalidate it and then do no further
5386 	 processing for this assignment.  */
5387 
5388       else if (do_not_record)
5389 	{
5390 	  if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5391 	    invalidate (dest, VOIDmode);
5392 	  else if (MEM_P (dest))
5393 	    invalidate (dest, VOIDmode);
5394 	  else if (GET_CODE (dest) == STRICT_LOW_PART
5395 		   || GET_CODE (dest) == ZERO_EXTRACT)
5396 	    invalidate (XEXP (dest, 0), GET_MODE (dest));
5397 	  sets[i].rtl = 0;
5398 	}
5399 
5400       if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5401 	sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5402 
5403 #ifdef HAVE_cc0
5404       /* If setting CC0, record what it was set to, or a constant, if it
5405 	 is equivalent to a constant.  If it is being set to a floating-point
5406 	 value, make a COMPARE with the appropriate constant of 0.  If we
5407 	 don't do this, later code can interpret this as a test against
5408 	 const0_rtx, which can cause problems if we try to put it into an
5409 	 insn as a floating-point operand.  */
5410       if (dest == cc0_rtx)
5411 	{
5412 	  this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5413 	  this_insn_cc0_mode = mode;
5414 	  if (FLOAT_MODE_P (mode))
5415 	    this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5416 					     CONST0_RTX (mode));
5417 	}
5418 #endif
5419     }
5420 
5421   /* Now enter all non-volatile source expressions in the hash table
5422      if they are not already present.
5423      Record their equivalence classes in src_elt.
5424      This way we can insert the corresponding destinations into
5425      the same classes even if the actual sources are no longer in them
5426      (having been invalidated).  */
5427 
5428   if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5429       && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5430     {
5431       struct table_elt *elt;
5432       struct table_elt *classp = sets[0].src_elt;
5433       rtx dest = SET_DEST (sets[0].rtl);
5434       enum machine_mode eqvmode = GET_MODE (dest);
5435 
5436       if (GET_CODE (dest) == STRICT_LOW_PART)
5437 	{
5438 	  eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5439 	  classp = 0;
5440 	}
5441       if (insert_regs (src_eqv, classp, 0))
5442 	{
5443 	  rehash_using_reg (src_eqv);
5444 	  src_eqv_hash = HASH (src_eqv, eqvmode);
5445 	}
5446       elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5447       elt->in_memory = src_eqv_in_memory;
5448       src_eqv_elt = elt;
5449 
5450       /* Check to see if src_eqv_elt is the same as a set source which
5451 	 does not yet have an elt, and if so set the elt of the set source
5452 	 to src_eqv_elt.  */
5453       for (i = 0; i < n_sets; i++)
5454 	if (sets[i].rtl && sets[i].src_elt == 0
5455 	    && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5456 	  sets[i].src_elt = src_eqv_elt;
5457     }
5458 
5459   for (i = 0; i < n_sets; i++)
5460     if (sets[i].rtl && ! sets[i].src_volatile
5461 	&& ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5462       {
5463 	if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5464 	  {
5465 	    /* REG_EQUAL in setting a STRICT_LOW_PART
5466 	       gives an equivalent for the entire destination register,
5467 	       not just for the subreg being stored in now.
5468 	       This is a more interesting equivalence, so we arrange later
5469 	       to treat the entire reg as the destination.  */
5470 	    sets[i].src_elt = src_eqv_elt;
5471 	    sets[i].src_hash = src_eqv_hash;
5472 	  }
5473 	else
5474 	  {
5475 	    /* Insert source and constant equivalent into hash table, if not
5476 	       already present.  */
5477 	    struct table_elt *classp = src_eqv_elt;
5478 	    rtx src = sets[i].src;
5479 	    rtx dest = SET_DEST (sets[i].rtl);
5480 	    enum machine_mode mode
5481 	      = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5482 
5483 	    /* It's possible that we have a source value known to be
5484 	       constant but don't have a REG_EQUAL note on the insn.
5485 	       Lack of a note will mean src_eqv_elt will be NULL.  This
5486 	       can happen where we've generated a SUBREG to access a
5487 	       CONST_INT that is already in a register in a wider mode.
5488 	       Ensure that the source expression is put in the proper
5489 	       constant class.  */
5490 	    if (!classp)
5491 	      classp = sets[i].src_const_elt;
5492 
5493 	    if (sets[i].src_elt == 0)
5494 	      {
5495 		struct table_elt *elt;
5496 
5497 		/* Note that these insert_regs calls cannot remove
5498 		   any of the src_elt's, because they would have failed to
5499 		   match if not still valid.  */
5500 		if (insert_regs (src, classp, 0))
5501 		  {
5502 		    rehash_using_reg (src);
5503 		    sets[i].src_hash = HASH (src, mode);
5504 		  }
5505 		elt = insert (src, classp, sets[i].src_hash, mode);
5506 		elt->in_memory = sets[i].src_in_memory;
5507 		sets[i].src_elt = classp = elt;
5508 	      }
5509 	    if (sets[i].src_const && sets[i].src_const_elt == 0
5510 		&& src != sets[i].src_const
5511 		&& ! rtx_equal_p (sets[i].src_const, src))
5512 	      sets[i].src_elt = insert (sets[i].src_const, classp,
5513 					sets[i].src_const_hash, mode);
5514 	  }
5515       }
5516     else if (sets[i].src_elt == 0)
5517       /* If we did not insert the source into the hash table (e.g., it was
5518 	 volatile), note the equivalence class for the REG_EQUAL value, if any,
5519 	 so that the destination goes into that class.  */
5520       sets[i].src_elt = src_eqv_elt;
5521 
5522   /* Record destination addresses in the hash table.  This allows us to
5523      check if they are invalidated by other sets.  */
5524   for (i = 0; i < n_sets; i++)
5525     {
5526       if (sets[i].rtl)
5527 	{
5528 	  rtx x = sets[i].inner_dest;
5529 	  struct table_elt *elt;
5530 	  enum machine_mode mode;
5531 	  unsigned hash;
5532 
5533 	  if (MEM_P (x))
5534 	    {
5535 	      x = XEXP (x, 0);
5536 	      mode = GET_MODE (x);
5537 	      hash = HASH (x, mode);
5538 	      elt = lookup (x, hash, mode);
5539 	      if (!elt)
5540 		{
5541 		  if (insert_regs (x, NULL, 0))
5542 		    {
5543 		      rtx dest = SET_DEST (sets[i].rtl);
5544 
5545 		      rehash_using_reg (x);
5546 		      hash = HASH (x, mode);
5547 		      sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5548 		    }
5549 		  elt = insert (x, NULL, hash, mode);
5550 		}
5551 
5552 	      sets[i].dest_addr_elt = elt;
5553 	    }
5554 	  else
5555 	    sets[i].dest_addr_elt = NULL;
5556 	}
5557     }
5558 
5559   invalidate_from_clobbers (x);
5560 
5561   /* Some registers are invalidated by subroutine calls.  Memory is
5562      invalidated by non-constant calls.  */
5563 
5564   if (CALL_P (insn))
5565     {
5566       if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5567 	invalidate_memory ();
5568       invalidate_for_call ();
5569     }
5570 
5571   /* Now invalidate everything set by this instruction.
5572      If a SUBREG or other funny destination is being set,
5573      sets[i].rtl is still nonzero, so here we invalidate the reg
5574      a part of which is being set.  */
5575 
5576   for (i = 0; i < n_sets; i++)
5577     if (sets[i].rtl)
5578       {
5579 	/* We can't use the inner dest, because the mode associated with
5580 	   a ZERO_EXTRACT is significant.  */
5581 	rtx dest = SET_DEST (sets[i].rtl);
5582 
5583 	/* Needed for registers to remove the register from its
5584 	   previous quantity's chain.
5585 	   Needed for memory if this is a nonvarying address, unless
5586 	   we have just done an invalidate_memory that covers even those.  */
5587 	if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5588 	  invalidate (dest, VOIDmode);
5589 	else if (MEM_P (dest))
5590 	  invalidate (dest, VOIDmode);
5591 	else if (GET_CODE (dest) == STRICT_LOW_PART
5592 		 || GET_CODE (dest) == ZERO_EXTRACT)
5593 	  invalidate (XEXP (dest, 0), GET_MODE (dest));
5594       }
5595 
5596   /* A volatile ASM invalidates everything.  */
5597   if (NONJUMP_INSN_P (insn)
5598       && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5599       && MEM_VOLATILE_P (PATTERN (insn)))
5600     flush_hash_table ();
5601 
5602   /* Don't cse over a call to setjmp; on some machines (eg VAX)
5603      the regs restored by the longjmp come from a later time
5604      than the setjmp.  */
5605   if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5606     {
5607       flush_hash_table ();
5608       goto done;
5609     }
5610 
5611   /* Make sure registers mentioned in destinations
5612      are safe for use in an expression to be inserted.
5613      This removes from the hash table
5614      any invalid entry that refers to one of these registers.
5615 
5616      We don't care about the return value from mention_regs because
5617      we are going to hash the SET_DEST values unconditionally.  */
5618 
5619   for (i = 0; i < n_sets; i++)
5620     {
5621       if (sets[i].rtl)
5622 	{
5623 	  rtx x = SET_DEST (sets[i].rtl);
5624 
5625 	  if (!REG_P (x))
5626 	    mention_regs (x);
5627 	  else
5628 	    {
5629 	      /* We used to rely on all references to a register becoming
5630 		 inaccessible when a register changes to a new quantity,
5631 		 since that changes the hash code.  However, that is not
5632 		 safe, since after HASH_SIZE new quantities we get a
5633 		 hash 'collision' of a register with its own invalid
5634 		 entries.  And since SUBREGs have been changed not to
5635 		 change their hash code with the hash code of the register,
5636 		 it wouldn't work any longer at all.  So we have to check
5637 		 for any invalid references lying around now.
5638 		 This code is similar to the REG case in mention_regs,
5639 		 but it knows that reg_tick has been incremented, and
5640 		 it leaves reg_in_table as -1 .  */
5641 	      unsigned int regno = REGNO (x);
5642 	      unsigned int endregno = END_REGNO (x);
5643 	      unsigned int i;
5644 
5645 	      for (i = regno; i < endregno; i++)
5646 		{
5647 		  if (REG_IN_TABLE (i) >= 0)
5648 		    {
5649 		      remove_invalid_refs (i);
5650 		      REG_IN_TABLE (i) = -1;
5651 		    }
5652 		}
5653 	    }
5654 	}
5655     }
5656 
5657   /* We may have just removed some of the src_elt's from the hash table.
5658      So replace each one with the current head of the same class.
5659      Also check if destination addresses have been removed.  */
5660 
5661   for (i = 0; i < n_sets; i++)
5662     if (sets[i].rtl)
5663       {
5664 	if (sets[i].dest_addr_elt
5665 	    && sets[i].dest_addr_elt->first_same_value == 0)
5666 	  {
5667 	    /* The elt was removed, which means this destination is not
5668 	       valid after this instruction.  */
5669 	    sets[i].rtl = NULL_RTX;
5670 	  }
5671 	else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5672 	  /* If elt was removed, find current head of same class,
5673 	     or 0 if nothing remains of that class.  */
5674 	  {
5675 	    struct table_elt *elt = sets[i].src_elt;
5676 
5677 	    while (elt && elt->prev_same_value)
5678 	      elt = elt->prev_same_value;
5679 
5680 	    while (elt && elt->first_same_value == 0)
5681 	      elt = elt->next_same_value;
5682 	    sets[i].src_elt = elt ? elt->first_same_value : 0;
5683 	  }
5684       }
5685 
5686   /* Now insert the destinations into their equivalence classes.  */
5687 
5688   for (i = 0; i < n_sets; i++)
5689     if (sets[i].rtl)
5690       {
5691 	rtx dest = SET_DEST (sets[i].rtl);
5692 	struct table_elt *elt;
5693 
5694 	/* Don't record value if we are not supposed to risk allocating
5695 	   floating-point values in registers that might be wider than
5696 	   memory.  */
5697 	if ((flag_float_store
5698 	     && MEM_P (dest)
5699 	     && FLOAT_MODE_P (GET_MODE (dest)))
5700 	    /* Don't record BLKmode values, because we don't know the
5701 	       size of it, and can't be sure that other BLKmode values
5702 	       have the same or smaller size.  */
5703 	    || GET_MODE (dest) == BLKmode
5704 	    /* If we didn't put a REG_EQUAL value or a source into the hash
5705 	       table, there is no point is recording DEST.  */
5706 	    || sets[i].src_elt == 0
5707 	    /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5708 	       or SIGN_EXTEND, don't record DEST since it can cause
5709 	       some tracking to be wrong.
5710 
5711 	       ??? Think about this more later.  */
5712 	    || (GET_CODE (dest) == SUBREG
5713 		&& (GET_MODE_SIZE (GET_MODE (dest))
5714 		    > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5715 		&& (GET_CODE (sets[i].src) == SIGN_EXTEND
5716 		    || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5717 	  continue;
5718 
5719 	/* STRICT_LOW_PART isn't part of the value BEING set,
5720 	   and neither is the SUBREG inside it.
5721 	   Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT.  */
5722 	if (GET_CODE (dest) == STRICT_LOW_PART)
5723 	  dest = SUBREG_REG (XEXP (dest, 0));
5724 
5725 	if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5726 	  /* Registers must also be inserted into chains for quantities.  */
5727 	  if (insert_regs (dest, sets[i].src_elt, 1))
5728 	    {
5729 	      /* If `insert_regs' changes something, the hash code must be
5730 		 recalculated.  */
5731 	      rehash_using_reg (dest);
5732 	      sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5733 	    }
5734 
5735 	elt = insert (dest, sets[i].src_elt,
5736 		      sets[i].dest_hash, GET_MODE (dest));
5737 
5738 	/* If this is a constant, insert the constant anchors with the
5739 	   equivalent register-offset expressions using register DEST.  */
5740 	if (targetm.const_anchor
5741 	    && REG_P (dest)
5742 	    && SCALAR_INT_MODE_P (GET_MODE (dest))
5743 	    && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5744 	  insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5745 
5746 	elt->in_memory = (MEM_P (sets[i].inner_dest)
5747 			  && !MEM_READONLY_P (sets[i].inner_dest));
5748 
5749 	/* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5750 	   narrower than M2, and both M1 and M2 are the same number of words,
5751 	   we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5752 	   make that equivalence as well.
5753 
5754 	   However, BAR may have equivalences for which gen_lowpart
5755 	   will produce a simpler value than gen_lowpart applied to
5756 	   BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5757 	   BAR's equivalences.  If we don't get a simplified form, make
5758 	   the SUBREG.  It will not be used in an equivalence, but will
5759 	   cause two similar assignments to be detected.
5760 
5761 	   Note the loop below will find SUBREG_REG (DEST) since we have
5762 	   already entered SRC and DEST of the SET in the table.  */
5763 
5764 	if (GET_CODE (dest) == SUBREG
5765 	    && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5766 		 / UNITS_PER_WORD)
5767 		== (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5768 	    && (GET_MODE_SIZE (GET_MODE (dest))
5769 		>= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5770 	    && sets[i].src_elt != 0)
5771 	  {
5772 	    enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5773 	    struct table_elt *elt, *classp = 0;
5774 
5775 	    for (elt = sets[i].src_elt->first_same_value; elt;
5776 		 elt = elt->next_same_value)
5777 	      {
5778 		rtx new_src = 0;
5779 		unsigned src_hash;
5780 		struct table_elt *src_elt;
5781 		int byte = 0;
5782 
5783 		/* Ignore invalid entries.  */
5784 		if (!REG_P (elt->exp)
5785 		    && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5786 		  continue;
5787 
5788 		/* We may have already been playing subreg games.  If the
5789 		   mode is already correct for the destination, use it.  */
5790 		if (GET_MODE (elt->exp) == new_mode)
5791 		  new_src = elt->exp;
5792 		else
5793 		  {
5794 		    /* Calculate big endian correction for the SUBREG_BYTE.
5795 		       We have already checked that M1 (GET_MODE (dest))
5796 		       is not narrower than M2 (new_mode).  */
5797 		    if (BYTES_BIG_ENDIAN)
5798 		      byte = (GET_MODE_SIZE (GET_MODE (dest))
5799 			      - GET_MODE_SIZE (new_mode));
5800 
5801 		    new_src = simplify_gen_subreg (new_mode, elt->exp,
5802 					           GET_MODE (dest), byte);
5803 		  }
5804 
5805 		/* The call to simplify_gen_subreg fails if the value
5806 		   is VOIDmode, yet we can't do any simplification, e.g.
5807 		   for EXPR_LISTs denoting function call results.
5808 		   It is invalid to construct a SUBREG with a VOIDmode
5809 		   SUBREG_REG, hence a zero new_src means we can't do
5810 		   this substitution.  */
5811 		if (! new_src)
5812 		  continue;
5813 
5814 		src_hash = HASH (new_src, new_mode);
5815 		src_elt = lookup (new_src, src_hash, new_mode);
5816 
5817 		/* Put the new source in the hash table is if isn't
5818 		   already.  */
5819 		if (src_elt == 0)
5820 		  {
5821 		    if (insert_regs (new_src, classp, 0))
5822 		      {
5823 			rehash_using_reg (new_src);
5824 			src_hash = HASH (new_src, new_mode);
5825 		      }
5826 		    src_elt = insert (new_src, classp, src_hash, new_mode);
5827 		    src_elt->in_memory = elt->in_memory;
5828 		  }
5829 		else if (classp && classp != src_elt->first_same_value)
5830 		  /* Show that two things that we've seen before are
5831 		     actually the same.  */
5832 		  merge_equiv_classes (src_elt, classp);
5833 
5834 		classp = src_elt->first_same_value;
5835 		/* Ignore invalid entries.  */
5836 		while (classp
5837 		       && !REG_P (classp->exp)
5838 		       && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5839 		  classp = classp->next_same_value;
5840 	      }
5841 	  }
5842       }
5843 
5844   /* Special handling for (set REG0 REG1) where REG0 is the
5845      "cheapest", cheaper than REG1.  After cse, REG1 will probably not
5846      be used in the sequel, so (if easily done) change this insn to
5847      (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5848      that computed their value.  Then REG1 will become a dead store
5849      and won't cloud the situation for later optimizations.
5850 
5851      Do not make this change if REG1 is a hard register, because it will
5852      then be used in the sequel and we may be changing a two-operand insn
5853      into a three-operand insn.
5854 
5855      Also do not do this if we are operating on a copy of INSN.  */
5856 
5857   if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
5858       && NEXT_INSN (PREV_INSN (insn)) == insn
5859       && REG_P (SET_SRC (sets[0].rtl))
5860       && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
5861       && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
5862     {
5863       int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
5864       struct qty_table_elem *src_ent = &qty_table[src_q];
5865 
5866       if (src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
5867 	{
5868 	  /* Scan for the previous nonnote insn, but stop at a basic
5869 	     block boundary.  */
5870 	  rtx prev = insn;
5871 	  rtx bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
5872 	  do
5873 	    {
5874 	      prev = PREV_INSN (prev);
5875 	    }
5876 	  while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
5877 
5878 	  /* Do not swap the registers around if the previous instruction
5879 	     attaches a REG_EQUIV note to REG1.
5880 
5881 	     ??? It's not entirely clear whether we can transfer a REG_EQUIV
5882 	     from the pseudo that originally shadowed an incoming argument
5883 	     to another register.  Some uses of REG_EQUIV might rely on it
5884 	     being attached to REG1 rather than REG2.
5885 
5886 	     This section previously turned the REG_EQUIV into a REG_EQUAL
5887 	     note.  We cannot do that because REG_EQUIV may provide an
5888 	     uninitialized stack slot when REG_PARM_STACK_SPACE is used.  */
5889 	  if (NONJUMP_INSN_P (prev)
5890 	      && GET_CODE (PATTERN (prev)) == SET
5891 	      && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
5892 	      && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
5893 	    {
5894 	      rtx dest = SET_DEST (sets[0].rtl);
5895 	      rtx src = SET_SRC (sets[0].rtl);
5896 	      rtx note;
5897 
5898 	      validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
5899 	      validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
5900 	      validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
5901 	      apply_change_group ();
5902 
5903 	      /* If INSN has a REG_EQUAL note, and this note mentions
5904 		 REG0, then we must delete it, because the value in
5905 		 REG0 has changed.  If the note's value is REG1, we must
5906 		 also delete it because that is now this insn's dest.  */
5907 	      note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5908 	      if (note != 0
5909 		  && (reg_mentioned_p (dest, XEXP (note, 0))
5910 		      || rtx_equal_p (src, XEXP (note, 0))))
5911 		remove_note (insn, note);
5912 	    }
5913 	}
5914     }
5915 
5916 done:;
5917 }
5918 
5919 /* Remove from the hash table all expressions that reference memory.  */
5920 
5921 static void
5922 invalidate_memory (void)
5923 {
5924   int i;
5925   struct table_elt *p, *next;
5926 
5927   for (i = 0; i < HASH_SIZE; i++)
5928     for (p = table[i]; p; p = next)
5929       {
5930 	next = p->next_same_hash;
5931 	if (p->in_memory)
5932 	  remove_from_table (p, i);
5933       }
5934 }
5935 
5936 /* Perform invalidation on the basis of everything about an insn
5937    except for invalidating the actual places that are SET in it.
5938    This includes the places CLOBBERed, and anything that might
5939    alias with something that is SET or CLOBBERed.
5940 
5941    X is the pattern of the insn.  */
5942 
5943 static void
5944 invalidate_from_clobbers (rtx x)
5945 {
5946   if (GET_CODE (x) == CLOBBER)
5947     {
5948       rtx ref = XEXP (x, 0);
5949       if (ref)
5950 	{
5951 	  if (REG_P (ref) || GET_CODE (ref) == SUBREG
5952 	      || MEM_P (ref))
5953 	    invalidate (ref, VOIDmode);
5954 	  else if (GET_CODE (ref) == STRICT_LOW_PART
5955 		   || GET_CODE (ref) == ZERO_EXTRACT)
5956 	    invalidate (XEXP (ref, 0), GET_MODE (ref));
5957 	}
5958     }
5959   else if (GET_CODE (x) == PARALLEL)
5960     {
5961       int i;
5962       for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
5963 	{
5964 	  rtx y = XVECEXP (x, 0, i);
5965 	  if (GET_CODE (y) == CLOBBER)
5966 	    {
5967 	      rtx ref = XEXP (y, 0);
5968 	      if (REG_P (ref) || GET_CODE (ref) == SUBREG
5969 		  || MEM_P (ref))
5970 		invalidate (ref, VOIDmode);
5971 	      else if (GET_CODE (ref) == STRICT_LOW_PART
5972 		       || GET_CODE (ref) == ZERO_EXTRACT)
5973 		invalidate (XEXP (ref, 0), GET_MODE (ref));
5974 	    }
5975 	}
5976     }
5977 }
5978 
5979 /* Process X, part of the REG_NOTES of an insn.  Look at any REG_EQUAL notes
5980    and replace any registers in them with either an equivalent constant
5981    or the canonical form of the register.  If we are inside an address,
5982    only do this if the address remains valid.
5983 
5984    OBJECT is 0 except when within a MEM in which case it is the MEM.
5985 
5986    Return the replacement for X.  */
5987 
5988 static rtx
5989 cse_process_notes_1 (rtx x, rtx object, bool *changed)
5990 {
5991   enum rtx_code code = GET_CODE (x);
5992   const char *fmt = GET_RTX_FORMAT (code);
5993   int i;
5994 
5995   switch (code)
5996     {
5997     case CONST_INT:
5998     case CONST:
5999     case SYMBOL_REF:
6000     case LABEL_REF:
6001     case CONST_DOUBLE:
6002     case CONST_FIXED:
6003     case CONST_VECTOR:
6004     case PC:
6005     case CC0:
6006     case LO_SUM:
6007       return x;
6008 
6009     case MEM:
6010       validate_change (x, &XEXP (x, 0),
6011 		       cse_process_notes (XEXP (x, 0), x, changed), 0);
6012       return x;
6013 
6014     case EXPR_LIST:
6015     case INSN_LIST:
6016       if (REG_NOTE_KIND (x) == REG_EQUAL)
6017 	XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
6018       if (XEXP (x, 1))
6019 	XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
6020       return x;
6021 
6022     case SIGN_EXTEND:
6023     case ZERO_EXTEND:
6024     case SUBREG:
6025       {
6026 	rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6027 	/* We don't substitute VOIDmode constants into these rtx,
6028 	   since they would impede folding.  */
6029 	if (GET_MODE (new_rtx) != VOIDmode)
6030 	  validate_change (object, &XEXP (x, 0), new_rtx, 0);
6031 	return x;
6032       }
6033 
6034     case REG:
6035       i = REG_QTY (REGNO (x));
6036 
6037       /* Return a constant or a constant register.  */
6038       if (REGNO_QTY_VALID_P (REGNO (x)))
6039 	{
6040 	  struct qty_table_elem *ent = &qty_table[i];
6041 
6042 	  if (ent->const_rtx != NULL_RTX
6043 	      && (CONSTANT_P (ent->const_rtx)
6044 		  || REG_P (ent->const_rtx)))
6045 	    {
6046 	      rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6047 	      if (new_rtx)
6048 		return copy_rtx (new_rtx);
6049 	    }
6050 	}
6051 
6052       /* Otherwise, canonicalize this register.  */
6053       return canon_reg (x, NULL_RTX);
6054 
6055     default:
6056       break;
6057     }
6058 
6059   for (i = 0; i < GET_RTX_LENGTH (code); i++)
6060     if (fmt[i] == 'e')
6061       validate_change (object, &XEXP (x, i),
6062 		       cse_process_notes (XEXP (x, i), object, changed), 0);
6063 
6064   return x;
6065 }
6066 
6067 static rtx
6068 cse_process_notes (rtx x, rtx object, bool *changed)
6069 {
6070   rtx new_rtx = cse_process_notes_1 (x, object, changed);
6071   if (new_rtx != x)
6072     *changed = true;
6073   return new_rtx;
6074 }
6075 
6076 
6077 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6078 
6079    DATA is a pointer to a struct cse_basic_block_data, that is used to
6080    describe the path.
6081    It is filled with a queue of basic blocks, starting with FIRST_BB
6082    and following a trace through the CFG.
6083 
6084    If all paths starting at FIRST_BB have been followed, or no new path
6085    starting at FIRST_BB can be constructed, this function returns FALSE.
6086    Otherwise, DATA->path is filled and the function returns TRUE indicating
6087    that a path to follow was found.
6088 
6089    If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6090    block in the path will be FIRST_BB.  */
6091 
6092 static bool
6093 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6094 	       int follow_jumps)
6095 {
6096   basic_block bb;
6097   edge e;
6098   int path_size;
6099 
6100   SET_BIT (cse_visited_basic_blocks, first_bb->index);
6101 
6102   /* See if there is a previous path.  */
6103   path_size = data->path_size;
6104 
6105   /* There is a previous path.  Make sure it started with FIRST_BB.  */
6106   if (path_size)
6107     gcc_assert (data->path[0].bb == first_bb);
6108 
6109   /* There was only one basic block in the last path.  Clear the path and
6110      return, so that paths starting at another basic block can be tried.  */
6111   if (path_size == 1)
6112     {
6113       path_size = 0;
6114       goto done;
6115     }
6116 
6117   /* If the path was empty from the beginning, construct a new path.  */
6118   if (path_size == 0)
6119     data->path[path_size++].bb = first_bb;
6120   else
6121     {
6122       /* Otherwise, path_size must be equal to or greater than 2, because
6123 	 a previous path exists that is at least two basic blocks long.
6124 
6125 	 Update the previous branch path, if any.  If the last branch was
6126 	 previously along the branch edge, take the fallthrough edge now.  */
6127       while (path_size >= 2)
6128 	{
6129 	  basic_block last_bb_in_path, previous_bb_in_path;
6130 	  edge e;
6131 
6132 	  --path_size;
6133 	  last_bb_in_path = data->path[path_size].bb;
6134 	  previous_bb_in_path = data->path[path_size - 1].bb;
6135 
6136 	  /* If we previously followed a path along the branch edge, try
6137 	     the fallthru edge now.  */
6138 	  if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6139 	      && any_condjump_p (BB_END (previous_bb_in_path))
6140 	      && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6141 	      && e == BRANCH_EDGE (previous_bb_in_path))
6142 	    {
6143 	      bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6144 	      if (bb != EXIT_BLOCK_PTR
6145 		  && single_pred_p (bb)
6146 		  /* We used to assert here that we would only see blocks
6147 		     that we have not visited yet.  But we may end up
6148 		     visiting basic blocks twice if the CFG has changed
6149 		     in this run of cse_main, because when the CFG changes
6150 		     the topological sort of the CFG also changes.  A basic
6151 		     blocks that previously had more than two predecessors
6152 		     may now have a single predecessor, and become part of
6153 		     a path that starts at another basic block.
6154 
6155 		     We still want to visit each basic block only once, so
6156 		     halt the path here if we have already visited BB.  */
6157 		  && !TEST_BIT (cse_visited_basic_blocks, bb->index))
6158 		{
6159 		  SET_BIT (cse_visited_basic_blocks, bb->index);
6160 		  data->path[path_size++].bb = bb;
6161 		  break;
6162 		}
6163 	    }
6164 
6165 	  data->path[path_size].bb = NULL;
6166 	}
6167 
6168       /* If only one block remains in the path, bail.  */
6169       if (path_size == 1)
6170 	{
6171 	  path_size = 0;
6172 	  goto done;
6173 	}
6174     }
6175 
6176   /* Extend the path if possible.  */
6177   if (follow_jumps)
6178     {
6179       bb = data->path[path_size - 1].bb;
6180       while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6181 	{
6182 	  if (single_succ_p (bb))
6183 	    e = single_succ_edge (bb);
6184 	  else if (EDGE_COUNT (bb->succs) == 2
6185 		   && any_condjump_p (BB_END (bb)))
6186 	    {
6187 	      /* First try to follow the branch.  If that doesn't lead
6188 		 to a useful path, follow the fallthru edge.  */
6189 	      e = BRANCH_EDGE (bb);
6190 	      if (!single_pred_p (e->dest))
6191 		e = FALLTHRU_EDGE (bb);
6192 	    }
6193 	  else
6194 	    e = NULL;
6195 
6196 	  if (e && e->dest != EXIT_BLOCK_PTR
6197 	      && single_pred_p (e->dest)
6198 	      /* Avoid visiting basic blocks twice.  The large comment
6199 		 above explains why this can happen.  */
6200 	      && !TEST_BIT (cse_visited_basic_blocks, e->dest->index))
6201 	    {
6202 	      basic_block bb2 = e->dest;
6203 	      SET_BIT (cse_visited_basic_blocks, bb2->index);
6204 	      data->path[path_size++].bb = bb2;
6205 	      bb = bb2;
6206 	    }
6207 	  else
6208 	    bb = NULL;
6209 	}
6210     }
6211 
6212 done:
6213   data->path_size = path_size;
6214   return path_size != 0;
6215 }
6216 
6217 /* Dump the path in DATA to file F.  NSETS is the number of sets
6218    in the path.  */
6219 
6220 static void
6221 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6222 {
6223   int path_entry;
6224 
6225   fprintf (f, ";; Following path with %d sets: ", nsets);
6226   for (path_entry = 0; path_entry < data->path_size; path_entry++)
6227     fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6228   fputc ('\n', dump_file);
6229   fflush (f);
6230 }
6231 
6232 
6233 /* Return true if BB has exception handling successor edges.  */
6234 
6235 static bool
6236 have_eh_succ_edges (basic_block bb)
6237 {
6238   edge e;
6239   edge_iterator ei;
6240 
6241   FOR_EACH_EDGE (e, ei, bb->succs)
6242     if (e->flags & EDGE_EH)
6243       return true;
6244 
6245   return false;
6246 }
6247 
6248 
6249 /* Scan to the end of the path described by DATA.  Return an estimate of
6250    the total number of SETs of all insns in the path.  */
6251 
6252 static void
6253 cse_prescan_path (struct cse_basic_block_data *data)
6254 {
6255   int nsets = 0;
6256   int path_size = data->path_size;
6257   int path_entry;
6258 
6259   /* Scan to end of each basic block in the path.  */
6260   for (path_entry = 0; path_entry < path_size; path_entry++)
6261     {
6262       basic_block bb;
6263       rtx insn;
6264 
6265       bb = data->path[path_entry].bb;
6266 
6267       FOR_BB_INSNS (bb, insn)
6268 	{
6269 	  if (!INSN_P (insn))
6270 	    continue;
6271 
6272 	  /* A PARALLEL can have lots of SETs in it,
6273 	     especially if it is really an ASM_OPERANDS.  */
6274 	  if (GET_CODE (PATTERN (insn)) == PARALLEL)
6275 	    nsets += XVECLEN (PATTERN (insn), 0);
6276 	  else
6277 	    nsets += 1;
6278 	}
6279     }
6280 
6281   data->nsets = nsets;
6282 }
6283 
6284 /* Process a single extended basic block described by EBB_DATA.  */
6285 
6286 static void
6287 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6288 {
6289   int path_size = ebb_data->path_size;
6290   int path_entry;
6291   int num_insns = 0;
6292 
6293   /* Allocate the space needed by qty_table.  */
6294   qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6295 
6296   new_basic_block ();
6297   cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6298   cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6299   for (path_entry = 0; path_entry < path_size; path_entry++)
6300     {
6301       basic_block bb;
6302       rtx insn;
6303 
6304       bb = ebb_data->path[path_entry].bb;
6305 
6306       /* Invalidate recorded information for eh regs if there is an EH
6307 	 edge pointing to that bb.  */
6308       if (bb_has_eh_pred (bb))
6309 	{
6310 	  df_ref *def_rec;
6311 
6312 	  for (def_rec = df_get_artificial_defs (bb->index); *def_rec; def_rec++)
6313 	    {
6314 	      df_ref def = *def_rec;
6315 	      if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6316 		invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6317 	    }
6318 	}
6319 
6320       FOR_BB_INSNS (bb, insn)
6321 	{
6322 	  optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6323 	  /* If we have processed 1,000 insns, flush the hash table to
6324 	     avoid extreme quadratic behavior.  We must not include NOTEs
6325 	     in the count since there may be more of them when generating
6326 	     debugging information.  If we clear the table at different
6327 	     times, code generated with -g -O might be different than code
6328 	     generated with -O but not -g.
6329 
6330 	     FIXME: This is a real kludge and needs to be done some other
6331 		    way.  */
6332 	  if (NONDEBUG_INSN_P (insn)
6333 	      && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6334 	    {
6335 	      flush_hash_table ();
6336 	      num_insns = 0;
6337 	    }
6338 
6339 	  if (INSN_P (insn))
6340 	    {
6341 	      /* Process notes first so we have all notes in canonical forms
6342 		 when looking for duplicate operations.  */
6343 	      if (REG_NOTES (insn))
6344 		{
6345 		  bool changed = false;
6346 		  REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6347 						        NULL_RTX, &changed);
6348 		  if (changed)
6349 		    df_notes_rescan (insn);
6350 		}
6351 
6352 	      cse_insn (insn);
6353 
6354 	      /* If we haven't already found an insn where we added a LABEL_REF,
6355 		 check this one.  */
6356 	      if (INSN_P (insn) && !recorded_label_ref
6357 		  && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6358 				   (void *) insn))
6359 		recorded_label_ref = true;
6360 
6361 #ifdef HAVE_cc0
6362 	      if (NONDEBUG_INSN_P (insn))
6363 		{
6364 		  /* If the previous insn sets CC0 and this insn no
6365 		     longer references CC0, delete the previous insn.
6366 		     Here we use fact that nothing expects CC0 to be
6367 		     valid over an insn, which is true until the final
6368 		     pass.  */
6369 		  rtx prev_insn, tem;
6370 
6371 		  prev_insn = prev_nonnote_nondebug_insn (insn);
6372 		  if (prev_insn && NONJUMP_INSN_P (prev_insn)
6373 		      && (tem = single_set (prev_insn)) != NULL_RTX
6374 		      && SET_DEST (tem) == cc0_rtx
6375 		      && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6376 		    delete_insn (prev_insn);
6377 
6378 		  /* If this insn is not the last insn in the basic
6379 		     block, it will be PREV_INSN(insn) in the next
6380 		     iteration.  If we recorded any CC0-related
6381 		     information for this insn, remember it.  */
6382 		  if (insn != BB_END (bb))
6383 		    {
6384 		      prev_insn_cc0 = this_insn_cc0;
6385 		      prev_insn_cc0_mode = this_insn_cc0_mode;
6386 		    }
6387 		}
6388 #endif
6389 	    }
6390 	}
6391 
6392       /* With non-call exceptions, we are not always able to update
6393 	 the CFG properly inside cse_insn.  So clean up possibly
6394 	 redundant EH edges here.  */
6395       if (flag_non_call_exceptions && have_eh_succ_edges (bb))
6396 	cse_cfg_altered |= purge_dead_edges (bb);
6397 
6398       /* If we changed a conditional jump, we may have terminated
6399 	 the path we are following.  Check that by verifying that
6400 	 the edge we would take still exists.  If the edge does
6401 	 not exist anymore, purge the remainder of the path.
6402 	 Note that this will cause us to return to the caller.  */
6403       if (path_entry < path_size - 1)
6404 	{
6405 	  basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6406 	  if (!find_edge (bb, next_bb))
6407 	    {
6408 	      do
6409 		{
6410 		  path_size--;
6411 
6412 		  /* If we truncate the path, we must also reset the
6413 		     visited bit on the remaining blocks in the path,
6414 		     or we will never visit them at all.  */
6415 		  RESET_BIT (cse_visited_basic_blocks,
6416 			     ebb_data->path[path_size].bb->index);
6417 		  ebb_data->path[path_size].bb = NULL;
6418 		}
6419 	      while (path_size - 1 != path_entry);
6420 	      ebb_data->path_size = path_size;
6421 	    }
6422 	}
6423 
6424       /* If this is a conditional jump insn, record any known
6425 	 equivalences due to the condition being tested.  */
6426       insn = BB_END (bb);
6427       if (path_entry < path_size - 1
6428 	  && JUMP_P (insn)
6429 	  && single_set (insn)
6430 	  && any_condjump_p (insn))
6431 	{
6432 	  basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6433 	  bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6434 	  record_jump_equiv (insn, taken);
6435 	}
6436 
6437 #ifdef HAVE_cc0
6438       /* Clear the CC0-tracking related insns, they can't provide
6439 	 useful information across basic block boundaries.  */
6440       prev_insn_cc0 = 0;
6441 #endif
6442     }
6443 
6444   gcc_assert (next_qty <= max_qty);
6445 
6446   free (qty_table);
6447 }
6448 
6449 
6450 /* Perform cse on the instructions of a function.
6451    F is the first instruction.
6452    NREGS is one plus the highest pseudo-reg number used in the instruction.
6453 
6454    Return 2 if jump optimizations should be redone due to simplifications
6455    in conditional jump instructions.
6456    Return 1 if the CFG should be cleaned up because it has been modified.
6457    Return 0 otherwise.  */
6458 
6459 int
6460 cse_main (rtx f ATTRIBUTE_UNUSED, int nregs)
6461 {
6462   struct cse_basic_block_data ebb_data;
6463   basic_block bb;
6464   int *rc_order = XNEWVEC (int, last_basic_block);
6465   int i, n_blocks;
6466 
6467   df_set_flags (DF_LR_RUN_DCE);
6468   df_analyze ();
6469   df_set_flags (DF_DEFER_INSN_RESCAN);
6470 
6471   reg_scan (get_insns (), max_reg_num ());
6472   init_cse_reg_info (nregs);
6473 
6474   ebb_data.path = XNEWVEC (struct branch_path,
6475 			   PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6476 
6477   cse_cfg_altered = false;
6478   cse_jumps_altered = false;
6479   recorded_label_ref = false;
6480   constant_pool_entries_cost = 0;
6481   constant_pool_entries_regcost = 0;
6482   ebb_data.path_size = 0;
6483   ebb_data.nsets = 0;
6484   rtl_hooks = cse_rtl_hooks;
6485 
6486   init_recog ();
6487   init_alias_analysis ();
6488 
6489   reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6490 
6491   /* Set up the table of already visited basic blocks.  */
6492   cse_visited_basic_blocks = sbitmap_alloc (last_basic_block);
6493   sbitmap_zero (cse_visited_basic_blocks);
6494 
6495   /* Loop over basic blocks in reverse completion order (RPO),
6496      excluding the ENTRY and EXIT blocks.  */
6497   n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6498   i = 0;
6499   while (i < n_blocks)
6500     {
6501       /* Find the first block in the RPO queue that we have not yet
6502 	 processed before.  */
6503       do
6504 	{
6505 	  bb = BASIC_BLOCK (rc_order[i++]);
6506 	}
6507       while (TEST_BIT (cse_visited_basic_blocks, bb->index)
6508 	     && i < n_blocks);
6509 
6510       /* Find all paths starting with BB, and process them.  */
6511       while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6512 	{
6513 	  /* Pre-scan the path.  */
6514 	  cse_prescan_path (&ebb_data);
6515 
6516 	  /* If this basic block has no sets, skip it.  */
6517 	  if (ebb_data.nsets == 0)
6518 	    continue;
6519 
6520 	  /* Get a reasonable estimate for the maximum number of qty's
6521 	     needed for this path.  For this, we take the number of sets
6522 	     and multiply that by MAX_RECOG_OPERANDS.  */
6523 	  max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6524 
6525 	  /* Dump the path we're about to process.  */
6526 	  if (dump_file)
6527 	    cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6528 
6529 	  cse_extended_basic_block (&ebb_data);
6530 	}
6531     }
6532 
6533   /* Clean up.  */
6534   end_alias_analysis ();
6535   free (reg_eqv_table);
6536   free (ebb_data.path);
6537   sbitmap_free (cse_visited_basic_blocks);
6538   free (rc_order);
6539   rtl_hooks = general_rtl_hooks;
6540 
6541   if (cse_jumps_altered || recorded_label_ref)
6542     return 2;
6543   else if (cse_cfg_altered)
6544     return 1;
6545   else
6546     return 0;
6547 }
6548 
6549 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for
6550    which there isn't a REG_LABEL_OPERAND note.
6551    Return one if so.  DATA is the insn.  */
6552 
6553 static int
6554 check_for_label_ref (rtx *rtl, void *data)
6555 {
6556   rtx insn = (rtx) data;
6557 
6558   /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6559      note for it, we must rerun jump since it needs to place the note.  If
6560      this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6561      don't do this since no REG_LABEL_OPERAND will be added.  */
6562   return (GET_CODE (*rtl) == LABEL_REF
6563 	  && ! LABEL_REF_NONLOCAL_P (*rtl)
6564 	  && (!JUMP_P (insn)
6565 	      || !label_is_jump_target_p (XEXP (*rtl, 0), insn))
6566 	  && LABEL_P (XEXP (*rtl, 0))
6567 	  && INSN_UID (XEXP (*rtl, 0)) != 0
6568 	  && ! find_reg_note (insn, REG_LABEL_OPERAND, XEXP (*rtl, 0)));
6569 }
6570 
6571 /* Count the number of times registers are used (not set) in X.
6572    COUNTS is an array in which we accumulate the count, INCR is how much
6573    we count each register usage.
6574 
6575    Don't count a usage of DEST, which is the SET_DEST of a SET which
6576    contains X in its SET_SRC.  This is because such a SET does not
6577    modify the liveness of DEST.
6578    DEST is set to pc_rtx for a trapping insn, which means that we must count
6579    uses of a SET_DEST regardless because the insn can't be deleted here.  */
6580 
6581 static void
6582 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6583 {
6584   enum rtx_code code;
6585   rtx note;
6586   const char *fmt;
6587   int i, j;
6588 
6589   if (x == 0)
6590     return;
6591 
6592   switch (code = GET_CODE (x))
6593     {
6594     case REG:
6595       if (x != dest)
6596 	counts[REGNO (x)] += incr;
6597       return;
6598 
6599     case PC:
6600     case CC0:
6601     case CONST:
6602     case CONST_INT:
6603     case CONST_DOUBLE:
6604     case CONST_FIXED:
6605     case CONST_VECTOR:
6606     case SYMBOL_REF:
6607     case LABEL_REF:
6608       return;
6609 
6610     case CLOBBER:
6611       /* If we are clobbering a MEM, mark any registers inside the address
6612          as being used.  */
6613       if (MEM_P (XEXP (x, 0)))
6614 	count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6615       return;
6616 
6617     case SET:
6618       /* Unless we are setting a REG, count everything in SET_DEST.  */
6619       if (!REG_P (SET_DEST (x)))
6620 	count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6621       count_reg_usage (SET_SRC (x), counts,
6622 		       dest ? dest : SET_DEST (x),
6623 		       incr);
6624       return;
6625 
6626     case DEBUG_INSN:
6627       return;
6628 
6629     case CALL_INSN:
6630     case INSN:
6631     case JUMP_INSN:
6632       /* We expect dest to be NULL_RTX here.  If the insn may trap, mark
6633          this fact by setting DEST to pc_rtx.  */
6634       if (insn_could_throw_p (x))
6635 	dest = pc_rtx;
6636       if (code == CALL_INSN)
6637 	count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6638       count_reg_usage (PATTERN (x), counts, dest, incr);
6639 
6640       /* Things used in a REG_EQUAL note aren't dead since loop may try to
6641 	 use them.  */
6642 
6643       note = find_reg_equal_equiv_note (x);
6644       if (note)
6645 	{
6646 	  rtx eqv = XEXP (note, 0);
6647 
6648 	  if (GET_CODE (eqv) == EXPR_LIST)
6649 	  /* This REG_EQUAL note describes the result of a function call.
6650 	     Process all the arguments.  */
6651 	    do
6652 	      {
6653 		count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6654 		eqv = XEXP (eqv, 1);
6655 	      }
6656 	    while (eqv && GET_CODE (eqv) == EXPR_LIST);
6657 	  else
6658 	    count_reg_usage (eqv, counts, dest, incr);
6659 	}
6660       return;
6661 
6662     case EXPR_LIST:
6663       if (REG_NOTE_KIND (x) == REG_EQUAL
6664 	  || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6665 	  /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6666 	     involving registers in the address.  */
6667 	  || GET_CODE (XEXP (x, 0)) == CLOBBER)
6668 	count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6669 
6670       count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6671       return;
6672 
6673     case ASM_OPERANDS:
6674       /* If the asm is volatile, then this insn cannot be deleted,
6675 	 and so the inputs *must* be live.  */
6676       if (MEM_VOLATILE_P (x))
6677 	dest = NULL_RTX;
6678       /* Iterate over just the inputs, not the constraints as well.  */
6679       for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6680 	count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6681       return;
6682 
6683     case INSN_LIST:
6684       gcc_unreachable ();
6685 
6686     default:
6687       break;
6688     }
6689 
6690   fmt = GET_RTX_FORMAT (code);
6691   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6692     {
6693       if (fmt[i] == 'e')
6694 	count_reg_usage (XEXP (x, i), counts, dest, incr);
6695       else if (fmt[i] == 'E')
6696 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6697 	  count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6698     }
6699 }
6700 
6701 /* Return true if a register is dead.  Can be used in for_each_rtx.  */
6702 
6703 static int
6704 is_dead_reg (rtx *loc, void *data)
6705 {
6706   rtx x = *loc;
6707   int *counts = (int *)data;
6708 
6709   return (REG_P (x)
6710 	  && REGNO (x) >= FIRST_PSEUDO_REGISTER
6711 	  && counts[REGNO (x)] == 0);
6712 }
6713 
6714 /* Return true if set is live.  */
6715 static bool
6716 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0.  */
6717 	    int *counts)
6718 {
6719 #ifdef HAVE_cc0
6720   rtx tem;
6721 #endif
6722 
6723   if (set_noop_p (set))
6724     ;
6725 
6726 #ifdef HAVE_cc0
6727   else if (GET_CODE (SET_DEST (set)) == CC0
6728 	   && !side_effects_p (SET_SRC (set))
6729 	   && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
6730 	       || !INSN_P (tem)
6731 	       || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6732     return false;
6733 #endif
6734   else if (!is_dead_reg (&SET_DEST (set), counts)
6735 	   || side_effects_p (SET_SRC (set)))
6736     return true;
6737   return false;
6738 }
6739 
6740 /* Return true if insn is live.  */
6741 
6742 static bool
6743 insn_live_p (rtx insn, int *counts)
6744 {
6745   int i;
6746   if (insn_could_throw_p (insn))
6747     return true;
6748   else if (GET_CODE (PATTERN (insn)) == SET)
6749     return set_live_p (PATTERN (insn), insn, counts);
6750   else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6751     {
6752       for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6753 	{
6754 	  rtx elt = XVECEXP (PATTERN (insn), 0, i);
6755 
6756 	  if (GET_CODE (elt) == SET)
6757 	    {
6758 	      if (set_live_p (elt, insn, counts))
6759 		return true;
6760 	    }
6761 	  else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6762 	    return true;
6763 	}
6764       return false;
6765     }
6766   else if (DEBUG_INSN_P (insn))
6767     {
6768       rtx next;
6769 
6770       for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
6771 	if (NOTE_P (next))
6772 	  continue;
6773 	else if (!DEBUG_INSN_P (next))
6774 	  return true;
6775 	else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
6776 	  return false;
6777 
6778       /* If this debug insn references a dead register, drop the
6779 	 location expression for now.  ??? We could try to find the
6780 	 def and see if propagation is possible.  */
6781       if (for_each_rtx (&INSN_VAR_LOCATION_LOC (insn), is_dead_reg, counts))
6782 	{
6783 	  INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
6784 	  df_insn_rescan (insn);
6785 	}
6786 
6787       return true;
6788     }
6789   else
6790     return true;
6791 }
6792 
6793 /* Scan all the insns and delete any that are dead; i.e., they store a register
6794    that is never used or they copy a register to itself.
6795 
6796    This is used to remove insns made obviously dead by cse, loop or other
6797    optimizations.  It improves the heuristics in loop since it won't try to
6798    move dead invariants out of loops or make givs for dead quantities.  The
6799    remaining passes of the compilation are also sped up.  */
6800 
6801 int
6802 delete_trivially_dead_insns (rtx insns, int nreg)
6803 {
6804   int *counts;
6805   rtx insn, prev;
6806   int ndead = 0;
6807 
6808   timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6809   /* First count the number of times each register is used.  */
6810   counts = XCNEWVEC (int, nreg);
6811   for (insn = insns; insn; insn = NEXT_INSN (insn))
6812     if (INSN_P (insn))
6813       count_reg_usage (insn, counts, NULL_RTX, 1);
6814 
6815   /* Go from the last insn to the first and delete insns that only set unused
6816      registers or copy a register to itself.  As we delete an insn, remove
6817      usage counts for registers it uses.
6818 
6819      The first jump optimization pass may leave a real insn as the last
6820      insn in the function.   We must not skip that insn or we may end
6821      up deleting code that is not really dead.  */
6822   for (insn = get_last_insn (); insn; insn = prev)
6823     {
6824       int live_insn = 0;
6825 
6826       prev = PREV_INSN (insn);
6827       if (!INSN_P (insn))
6828 	continue;
6829 
6830       live_insn = insn_live_p (insn, counts);
6831 
6832       /* If this is a dead insn, delete it and show registers in it aren't
6833 	 being used.  */
6834 
6835       if (! live_insn && dbg_cnt (delete_trivial_dead))
6836 	{
6837 	  count_reg_usage (insn, counts, NULL_RTX, -1);
6838 	  delete_insn_and_edges (insn);
6839 	  ndead++;
6840 	}
6841     }
6842 
6843   if (dump_file && ndead)
6844     fprintf (dump_file, "Deleted %i trivially dead insns\n",
6845 	     ndead);
6846   /* Clean up.  */
6847   free (counts);
6848   timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
6849   return ndead;
6850 }
6851 
6852 /* This function is called via for_each_rtx.  The argument, NEWREG, is
6853    a condition code register with the desired mode.  If we are looking
6854    at the same register in a different mode, replace it with
6855    NEWREG.  */
6856 
6857 static int
6858 cse_change_cc_mode (rtx *loc, void *data)
6859 {
6860   struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
6861 
6862   if (*loc
6863       && REG_P (*loc)
6864       && REGNO (*loc) == REGNO (args->newreg)
6865       && GET_MODE (*loc) != GET_MODE (args->newreg))
6866     {
6867       validate_change (args->insn, loc, args->newreg, 1);
6868 
6869       return -1;
6870     }
6871   return 0;
6872 }
6873 
6874 /* Change the mode of any reference to the register REGNO (NEWREG) to
6875    GET_MODE (NEWREG) in INSN.  */
6876 
6877 static void
6878 cse_change_cc_mode_insn (rtx insn, rtx newreg)
6879 {
6880   struct change_cc_mode_args args;
6881   int success;
6882 
6883   if (!INSN_P (insn))
6884     return;
6885 
6886   args.insn = insn;
6887   args.newreg = newreg;
6888 
6889   for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
6890   for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
6891 
6892   /* If the following assertion was triggered, there is most probably
6893      something wrong with the cc_modes_compatible back end function.
6894      CC modes only can be considered compatible if the insn - with the mode
6895      replaced by any of the compatible modes - can still be recognized.  */
6896   success = apply_change_group ();
6897   gcc_assert (success);
6898 }
6899 
6900 /* Change the mode of any reference to the register REGNO (NEWREG) to
6901    GET_MODE (NEWREG), starting at START.  Stop before END.  Stop at
6902    any instruction which modifies NEWREG.  */
6903 
6904 static void
6905 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
6906 {
6907   rtx insn;
6908 
6909   for (insn = start; insn != end; insn = NEXT_INSN (insn))
6910     {
6911       if (! INSN_P (insn))
6912 	continue;
6913 
6914       if (reg_set_p (newreg, insn))
6915 	return;
6916 
6917       cse_change_cc_mode_insn (insn, newreg);
6918     }
6919 }
6920 
6921 /* BB is a basic block which finishes with CC_REG as a condition code
6922    register which is set to CC_SRC.  Look through the successors of BB
6923    to find blocks which have a single predecessor (i.e., this one),
6924    and look through those blocks for an assignment to CC_REG which is
6925    equivalent to CC_SRC.  CAN_CHANGE_MODE indicates whether we are
6926    permitted to change the mode of CC_SRC to a compatible mode.  This
6927    returns VOIDmode if no equivalent assignments were found.
6928    Otherwise it returns the mode which CC_SRC should wind up with.
6929    ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
6930    but is passed unmodified down to recursive calls in order to prevent
6931    endless recursion.
6932 
6933    The main complexity in this function is handling the mode issues.
6934    We may have more than one duplicate which we can eliminate, and we
6935    try to find a mode which will work for multiple duplicates.  */
6936 
6937 static enum machine_mode
6938 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
6939 	      bool can_change_mode)
6940 {
6941   bool found_equiv;
6942   enum machine_mode mode;
6943   unsigned int insn_count;
6944   edge e;
6945   rtx insns[2];
6946   enum machine_mode modes[2];
6947   rtx last_insns[2];
6948   unsigned int i;
6949   rtx newreg;
6950   edge_iterator ei;
6951 
6952   /* We expect to have two successors.  Look at both before picking
6953      the final mode for the comparison.  If we have more successors
6954      (i.e., some sort of table jump, although that seems unlikely),
6955      then we require all beyond the first two to use the same
6956      mode.  */
6957 
6958   found_equiv = false;
6959   mode = GET_MODE (cc_src);
6960   insn_count = 0;
6961   FOR_EACH_EDGE (e, ei, bb->succs)
6962     {
6963       rtx insn;
6964       rtx end;
6965 
6966       if (e->flags & EDGE_COMPLEX)
6967 	continue;
6968 
6969       if (EDGE_COUNT (e->dest->preds) != 1
6970 	  || e->dest == EXIT_BLOCK_PTR
6971 	  /* Avoid endless recursion on unreachable blocks.  */
6972 	  || e->dest == orig_bb)
6973 	continue;
6974 
6975       end = NEXT_INSN (BB_END (e->dest));
6976       for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
6977 	{
6978 	  rtx set;
6979 
6980 	  if (! INSN_P (insn))
6981 	    continue;
6982 
6983 	  /* If CC_SRC is modified, we have to stop looking for
6984 	     something which uses it.  */
6985 	  if (modified_in_p (cc_src, insn))
6986 	    break;
6987 
6988 	  /* Check whether INSN sets CC_REG to CC_SRC.  */
6989 	  set = single_set (insn);
6990 	  if (set
6991 	      && REG_P (SET_DEST (set))
6992 	      && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6993 	    {
6994 	      bool found;
6995 	      enum machine_mode set_mode;
6996 	      enum machine_mode comp_mode;
6997 
6998 	      found = false;
6999 	      set_mode = GET_MODE (SET_SRC (set));
7000 	      comp_mode = set_mode;
7001 	      if (rtx_equal_p (cc_src, SET_SRC (set)))
7002 		found = true;
7003 	      else if (GET_CODE (cc_src) == COMPARE
7004 		       && GET_CODE (SET_SRC (set)) == COMPARE
7005 		       && mode != set_mode
7006 		       && rtx_equal_p (XEXP (cc_src, 0),
7007 				       XEXP (SET_SRC (set), 0))
7008 		       && rtx_equal_p (XEXP (cc_src, 1),
7009 				       XEXP (SET_SRC (set), 1)))
7010 
7011 		{
7012 		  comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7013 		  if (comp_mode != VOIDmode
7014 		      && (can_change_mode || comp_mode == mode))
7015 		    found = true;
7016 		}
7017 
7018 	      if (found)
7019 		{
7020 		  found_equiv = true;
7021 		  if (insn_count < ARRAY_SIZE (insns))
7022 		    {
7023 		      insns[insn_count] = insn;
7024 		      modes[insn_count] = set_mode;
7025 		      last_insns[insn_count] = end;
7026 		      ++insn_count;
7027 
7028 		      if (mode != comp_mode)
7029 			{
7030 			  gcc_assert (can_change_mode);
7031 			  mode = comp_mode;
7032 
7033 			  /* The modified insn will be re-recognized later.  */
7034 			  PUT_MODE (cc_src, mode);
7035 			}
7036 		    }
7037 		  else
7038 		    {
7039 		      if (set_mode != mode)
7040 			{
7041 			  /* We found a matching expression in the
7042 			     wrong mode, but we don't have room to
7043 			     store it in the array.  Punt.  This case
7044 			     should be rare.  */
7045 			  break;
7046 			}
7047 		      /* INSN sets CC_REG to a value equal to CC_SRC
7048 			 with the right mode.  We can simply delete
7049 			 it.  */
7050 		      delete_insn (insn);
7051 		    }
7052 
7053 		  /* We found an instruction to delete.  Keep looking,
7054 		     in the hopes of finding a three-way jump.  */
7055 		  continue;
7056 		}
7057 
7058 	      /* We found an instruction which sets the condition
7059 		 code, so don't look any farther.  */
7060 	      break;
7061 	    }
7062 
7063 	  /* If INSN sets CC_REG in some other way, don't look any
7064 	     farther.  */
7065 	  if (reg_set_p (cc_reg, insn))
7066 	    break;
7067 	}
7068 
7069       /* If we fell off the bottom of the block, we can keep looking
7070 	 through successors.  We pass CAN_CHANGE_MODE as false because
7071 	 we aren't prepared to handle compatibility between the
7072 	 further blocks and this block.  */
7073       if (insn == end)
7074 	{
7075 	  enum machine_mode submode;
7076 
7077 	  submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
7078 	  if (submode != VOIDmode)
7079 	    {
7080 	      gcc_assert (submode == mode);
7081 	      found_equiv = true;
7082 	      can_change_mode = false;
7083 	    }
7084 	}
7085     }
7086 
7087   if (! found_equiv)
7088     return VOIDmode;
7089 
7090   /* Now INSN_COUNT is the number of instructions we found which set
7091      CC_REG to a value equivalent to CC_SRC.  The instructions are in
7092      INSNS.  The modes used by those instructions are in MODES.  */
7093 
7094   newreg = NULL_RTX;
7095   for (i = 0; i < insn_count; ++i)
7096     {
7097       if (modes[i] != mode)
7098 	{
7099 	  /* We need to change the mode of CC_REG in INSNS[i] and
7100 	     subsequent instructions.  */
7101 	  if (! newreg)
7102 	    {
7103 	      if (GET_MODE (cc_reg) == mode)
7104 		newreg = cc_reg;
7105 	      else
7106 		newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7107 	    }
7108 	  cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7109 				    newreg);
7110 	}
7111 
7112       delete_insn_and_edges (insns[i]);
7113     }
7114 
7115   return mode;
7116 }
7117 
7118 /* If we have a fixed condition code register (or two), walk through
7119    the instructions and try to eliminate duplicate assignments.  */
7120 
7121 static void
7122 cse_condition_code_reg (void)
7123 {
7124   unsigned int cc_regno_1;
7125   unsigned int cc_regno_2;
7126   rtx cc_reg_1;
7127   rtx cc_reg_2;
7128   basic_block bb;
7129 
7130   if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7131     return;
7132 
7133   cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7134   if (cc_regno_2 != INVALID_REGNUM)
7135     cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7136   else
7137     cc_reg_2 = NULL_RTX;
7138 
7139   FOR_EACH_BB (bb)
7140     {
7141       rtx last_insn;
7142       rtx cc_reg;
7143       rtx insn;
7144       rtx cc_src_insn;
7145       rtx cc_src;
7146       enum machine_mode mode;
7147       enum machine_mode orig_mode;
7148 
7149       /* Look for blocks which end with a conditional jump based on a
7150 	 condition code register.  Then look for the instruction which
7151 	 sets the condition code register.  Then look through the
7152 	 successor blocks for instructions which set the condition
7153 	 code register to the same value.  There are other possible
7154 	 uses of the condition code register, but these are by far the
7155 	 most common and the ones which we are most likely to be able
7156 	 to optimize.  */
7157 
7158       last_insn = BB_END (bb);
7159       if (!JUMP_P (last_insn))
7160 	continue;
7161 
7162       if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7163 	cc_reg = cc_reg_1;
7164       else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7165 	cc_reg = cc_reg_2;
7166       else
7167 	continue;
7168 
7169       cc_src_insn = NULL_RTX;
7170       cc_src = NULL_RTX;
7171       for (insn = PREV_INSN (last_insn);
7172 	   insn && insn != PREV_INSN (BB_HEAD (bb));
7173 	   insn = PREV_INSN (insn))
7174 	{
7175 	  rtx set;
7176 
7177 	  if (! INSN_P (insn))
7178 	    continue;
7179 	  set = single_set (insn);
7180 	  if (set
7181 	      && REG_P (SET_DEST (set))
7182 	      && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7183 	    {
7184 	      cc_src_insn = insn;
7185 	      cc_src = SET_SRC (set);
7186 	      break;
7187 	    }
7188 	  else if (reg_set_p (cc_reg, insn))
7189 	    break;
7190 	}
7191 
7192       if (! cc_src_insn)
7193 	continue;
7194 
7195       if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7196 	continue;
7197 
7198       /* Now CC_REG is a condition code register used for a
7199 	 conditional jump at the end of the block, and CC_SRC, in
7200 	 CC_SRC_INSN, is the value to which that condition code
7201 	 register is set, and CC_SRC is still meaningful at the end of
7202 	 the basic block.  */
7203 
7204       orig_mode = GET_MODE (cc_src);
7205       mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
7206       if (mode != VOIDmode)
7207 	{
7208 	  gcc_assert (mode == GET_MODE (cc_src));
7209 	  if (mode != orig_mode)
7210 	    {
7211 	      rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7212 
7213 	      cse_change_cc_mode_insn (cc_src_insn, newreg);
7214 
7215 	      /* Do the same in the following insns that use the
7216 		 current value of CC_REG within BB.  */
7217 	      cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7218 					NEXT_INSN (last_insn),
7219 					newreg);
7220 	    }
7221 	}
7222     }
7223 }
7224 
7225 
7226 /* Perform common subexpression elimination.  Nonzero value from
7227    `cse_main' means that jumps were simplified and some code may now
7228    be unreachable, so do jump optimization again.  */
7229 static bool
7230 gate_handle_cse (void)
7231 {
7232   return optimize > 0;
7233 }
7234 
7235 static unsigned int
7236 rest_of_handle_cse (void)
7237 {
7238   int tem;
7239 
7240   if (dump_file)
7241     dump_flow_info (dump_file, dump_flags);
7242 
7243   tem = cse_main (get_insns (), max_reg_num ());
7244 
7245   /* If we are not running more CSE passes, then we are no longer
7246      expecting CSE to be run.  But always rerun it in a cheap mode.  */
7247   cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7248 
7249   if (tem == 2)
7250     {
7251       timevar_push (TV_JUMP);
7252       rebuild_jump_labels (get_insns ());
7253       cleanup_cfg (0);
7254       timevar_pop (TV_JUMP);
7255     }
7256   else if (tem == 1 || optimize > 1)
7257     cleanup_cfg (0);
7258 
7259   return 0;
7260 }
7261 
7262 struct rtl_opt_pass pass_cse =
7263 {
7264  {
7265   RTL_PASS,
7266   "cse1",                               /* name */
7267   gate_handle_cse,                      /* gate */
7268   rest_of_handle_cse,			/* execute */
7269   NULL,                                 /* sub */
7270   NULL,                                 /* next */
7271   0,                                    /* static_pass_number */
7272   TV_CSE,                               /* tv_id */
7273   0,                                    /* properties_required */
7274   0,                                    /* properties_provided */
7275   0,                                    /* properties_destroyed */
7276   0,                                    /* todo_flags_start */
7277   TODO_df_finish | TODO_verify_rtl_sharing |
7278   TODO_dump_func |
7279   TODO_ggc_collect |
7280   TODO_verify_flow,                     /* todo_flags_finish */
7281  }
7282 };
7283 
7284 
7285 static bool
7286 gate_handle_cse2 (void)
7287 {
7288   return optimize > 0 && flag_rerun_cse_after_loop;
7289 }
7290 
7291 /* Run second CSE pass after loop optimizations.  */
7292 static unsigned int
7293 rest_of_handle_cse2 (void)
7294 {
7295   int tem;
7296 
7297   if (dump_file)
7298     dump_flow_info (dump_file, dump_flags);
7299 
7300   tem = cse_main (get_insns (), max_reg_num ());
7301 
7302   /* Run a pass to eliminate duplicated assignments to condition code
7303      registers.  We have to run this after bypass_jumps, because it
7304      makes it harder for that pass to determine whether a jump can be
7305      bypassed safely.  */
7306   cse_condition_code_reg ();
7307 
7308   delete_trivially_dead_insns (get_insns (), max_reg_num ());
7309 
7310   if (tem == 2)
7311     {
7312       timevar_push (TV_JUMP);
7313       rebuild_jump_labels (get_insns ());
7314       cleanup_cfg (0);
7315       timevar_pop (TV_JUMP);
7316     }
7317   else if (tem == 1)
7318     cleanup_cfg (0);
7319 
7320   cse_not_expected = 1;
7321   return 0;
7322 }
7323 
7324 
7325 struct rtl_opt_pass pass_cse2 =
7326 {
7327  {
7328   RTL_PASS,
7329   "cse2",                               /* name */
7330   gate_handle_cse2,                     /* gate */
7331   rest_of_handle_cse2,			/* execute */
7332   NULL,                                 /* sub */
7333   NULL,                                 /* next */
7334   0,                                    /* static_pass_number */
7335   TV_CSE2,                              /* tv_id */
7336   0,                                    /* properties_required */
7337   0,                                    /* properties_provided */
7338   0,                                    /* properties_destroyed */
7339   0,                                    /* todo_flags_start */
7340   TODO_df_finish | TODO_verify_rtl_sharing |
7341   TODO_dump_func |
7342   TODO_ggc_collect |
7343   TODO_verify_flow                      /* todo_flags_finish */
7344  }
7345 };
7346 
7347 static bool
7348 gate_handle_cse_after_global_opts (void)
7349 {
7350   return optimize > 0 && flag_rerun_cse_after_global_opts;
7351 }
7352 
7353 /* Run second CSE pass after loop optimizations.  */
7354 static unsigned int
7355 rest_of_handle_cse_after_global_opts (void)
7356 {
7357   int save_cfj;
7358   int tem;
7359 
7360   /* We only want to do local CSE, so don't follow jumps.  */
7361   save_cfj = flag_cse_follow_jumps;
7362   flag_cse_follow_jumps = 0;
7363 
7364   rebuild_jump_labels (get_insns ());
7365   tem = cse_main (get_insns (), max_reg_num ());
7366   purge_all_dead_edges ();
7367   delete_trivially_dead_insns (get_insns (), max_reg_num ());
7368 
7369   cse_not_expected = !flag_rerun_cse_after_loop;
7370 
7371   /* If cse altered any jumps, rerun jump opts to clean things up.  */
7372   if (tem == 2)
7373     {
7374       timevar_push (TV_JUMP);
7375       rebuild_jump_labels (get_insns ());
7376       cleanup_cfg (0);
7377       timevar_pop (TV_JUMP);
7378     }
7379   else if (tem == 1)
7380     cleanup_cfg (0);
7381 
7382   flag_cse_follow_jumps = save_cfj;
7383   return 0;
7384 }
7385 
7386 struct rtl_opt_pass pass_cse_after_global_opts =
7387 {
7388  {
7389   RTL_PASS,
7390   "cse_local",                          /* name */
7391   gate_handle_cse_after_global_opts,    /* gate */
7392   rest_of_handle_cse_after_global_opts, /* execute */
7393   NULL,                                 /* sub */
7394   NULL,                                 /* next */
7395   0,                                    /* static_pass_number */
7396   TV_CSE,                               /* tv_id */
7397   0,                                    /* properties_required */
7398   0,                                    /* properties_provided */
7399   0,                                    /* properties_destroyed */
7400   0,                                    /* todo_flags_start */
7401   TODO_df_finish | TODO_verify_rtl_sharing |
7402   TODO_dump_func |
7403   TODO_ggc_collect |
7404   TODO_verify_flow                      /* todo_flags_finish */
7405  }
7406 };
7407