xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/cse.c (revision 53d1339bf7f9c7367b35a9e1ebe693f9b047a47b)
1 /* Common subexpression elimination for GNU compiler.
2    Copyright (C) 1987-2019 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "cfghooks.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35 #include "cfgrtl.h"
36 #include "cfganal.h"
37 #include "cfgcleanup.h"
38 #include "alias.h"
39 #include "toplev.h"
40 #include "params.h"
41 #include "rtlhooks-def.h"
42 #include "tree-pass.h"
43 #include "dbgcnt.h"
44 #include "rtl-iter.h"
45 
46 /* The basic idea of common subexpression elimination is to go
47    through the code, keeping a record of expressions that would
48    have the same value at the current scan point, and replacing
49    expressions encountered with the cheapest equivalent expression.
50 
51    It is too complicated to keep track of the different possibilities
52    when control paths merge in this code; so, at each label, we forget all
53    that is known and start fresh.  This can be described as processing each
54    extended basic block separately.  We have a separate pass to perform
55    global CSE.
56 
57    Note CSE can turn a conditional or computed jump into a nop or
58    an unconditional jump.  When this occurs we arrange to run the jump
59    optimizer after CSE to delete the unreachable code.
60 
61    We use two data structures to record the equivalent expressions:
62    a hash table for most expressions, and a vector of "quantity
63    numbers" to record equivalent (pseudo) registers.
64 
65    The use of the special data structure for registers is desirable
66    because it is faster.  It is possible because registers references
67    contain a fairly small number, the register number, taken from
68    a contiguously allocated series, and two register references are
69    identical if they have the same number.  General expressions
70    do not have any such thing, so the only way to retrieve the
71    information recorded on an expression other than a register
72    is to keep it in a hash table.
73 
74 Registers and "quantity numbers":
75 
76    At the start of each basic block, all of the (hardware and pseudo)
77    registers used in the function are given distinct quantity
78    numbers to indicate their contents.  During scan, when the code
79    copies one register into another, we copy the quantity number.
80    When a register is loaded in any other way, we allocate a new
81    quantity number to describe the value generated by this operation.
82    `REG_QTY (N)' records what quantity register N is currently thought
83    of as containing.
84 
85    All real quantity numbers are greater than or equal to zero.
86    If register N has not been assigned a quantity, `REG_QTY (N)' will
87    equal -N - 1, which is always negative.
88 
89    Quantity numbers below zero do not exist and none of the `qty_table'
90    entries should be referenced with a negative index.
91 
92    We also maintain a bidirectional chain of registers for each
93    quantity number.  The `qty_table` members `first_reg' and `last_reg',
94    and `reg_eqv_table' members `next' and `prev' hold these chains.
95 
96    The first register in a chain is the one whose lifespan is least local.
97    Among equals, it is the one that was seen first.
98    We replace any equivalent register with that one.
99 
100    If two registers have the same quantity number, it must be true that
101    REG expressions with qty_table `mode' must be in the hash table for both
102    registers and must be in the same class.
103 
104    The converse is not true.  Since hard registers may be referenced in
105    any mode, two REG expressions might be equivalent in the hash table
106    but not have the same quantity number if the quantity number of one
107    of the registers is not the same mode as those expressions.
108 
109 Constants and quantity numbers
110 
111    When a quantity has a known constant value, that value is stored
112    in the appropriate qty_table `const_rtx'.  This is in addition to
113    putting the constant in the hash table as is usual for non-regs.
114 
115    Whether a reg or a constant is preferred is determined by the configuration
116    macro CONST_COSTS and will often depend on the constant value.  In any
117    event, expressions containing constants can be simplified, by fold_rtx.
118 
119    When a quantity has a known nearly constant value (such as an address
120    of a stack slot), that value is stored in the appropriate qty_table
121    `const_rtx'.
122 
123    Integer constants don't have a machine mode.  However, cse
124    determines the intended machine mode from the destination
125    of the instruction that moves the constant.  The machine mode
126    is recorded in the hash table along with the actual RTL
127    constant expression so that different modes are kept separate.
128 
129 Other expressions:
130 
131    To record known equivalences among expressions in general
132    we use a hash table called `table'.  It has a fixed number of buckets
133    that contain chains of `struct table_elt' elements for expressions.
134    These chains connect the elements whose expressions have the same
135    hash codes.
136 
137    Other chains through the same elements connect the elements which
138    currently have equivalent values.
139 
140    Register references in an expression are canonicalized before hashing
141    the expression.  This is done using `reg_qty' and qty_table `first_reg'.
142    The hash code of a register reference is computed using the quantity
143    number, not the register number.
144 
145    When the value of an expression changes, it is necessary to remove from the
146    hash table not just that expression but all expressions whose values
147    could be different as a result.
148 
149      1. If the value changing is in memory, except in special cases
150      ANYTHING referring to memory could be changed.  That is because
151      nobody knows where a pointer does not point.
152      The function `invalidate_memory' removes what is necessary.
153 
154      The special cases are when the address is constant or is
155      a constant plus a fixed register such as the frame pointer
156      or a static chain pointer.  When such addresses are stored in,
157      we can tell exactly which other such addresses must be invalidated
158      due to overlap.  `invalidate' does this.
159      All expressions that refer to non-constant
160      memory addresses are also invalidated.  `invalidate_memory' does this.
161 
162      2. If the value changing is a register, all expressions
163      containing references to that register, and only those,
164      must be removed.
165 
166    Because searching the entire hash table for expressions that contain
167    a register is very slow, we try to figure out when it isn't necessary.
168    Precisely, this is necessary only when expressions have been
169    entered in the hash table using this register, and then the value has
170    changed, and then another expression wants to be added to refer to
171    the register's new value.  This sequence of circumstances is rare
172    within any one basic block.
173 
174    `REG_TICK' and `REG_IN_TABLE', accessors for members of
175    cse_reg_info, are used to detect this case.  REG_TICK (i) is
176    incremented whenever a value is stored in register i.
177    REG_IN_TABLE (i) holds -1 if no references to register i have been
178    entered in the table; otherwise, it contains the value REG_TICK (i)
179    had when the references were entered.  If we want to enter a
180    reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
181    remove old references.  Until we want to enter a new entry, the
182    mere fact that the two vectors don't match makes the entries be
183    ignored if anyone tries to match them.
184 
185    Registers themselves are entered in the hash table as well as in
186    the equivalent-register chains.  However, `REG_TICK' and
187    `REG_IN_TABLE' do not apply to expressions which are simple
188    register references.  These expressions are removed from the table
189    immediately when they become invalid, and this can be done even if
190    we do not immediately search for all the expressions that refer to
191    the register.
192 
193    A CLOBBER rtx in an instruction invalidates its operand for further
194    reuse.  A CLOBBER or SET rtx whose operand is a MEM:BLK
195    invalidates everything that resides in memory.
196 
197 Related expressions:
198 
199    Constant expressions that differ only by an additive integer
200    are called related.  When a constant expression is put in
201    the table, the related expression with no constant term
202    is also entered.  These are made to point at each other
203    so that it is possible to find out if there exists any
204    register equivalent to an expression related to a given expression.  */
205 
206 /* Length of qty_table vector.  We know in advance we will not need
207    a quantity number this big.  */
208 
209 static int max_qty;
210 
211 /* Next quantity number to be allocated.
212    This is 1 + the largest number needed so far.  */
213 
214 static int next_qty;
215 
216 /* Per-qty information tracking.
217 
218    `first_reg' and `last_reg' track the head and tail of the
219    chain of registers which currently contain this quantity.
220 
221    `mode' contains the machine mode of this quantity.
222 
223    `const_rtx' holds the rtx of the constant value of this
224    quantity, if known.  A summations of the frame/arg pointer
225    and a constant can also be entered here.  When this holds
226    a known value, `const_insn' is the insn which stored the
227    constant value.
228 
229    `comparison_{code,const,qty}' are used to track when a
230    comparison between a quantity and some constant or register has
231    been passed.  In such a case, we know the results of the comparison
232    in case we see it again.  These members record a comparison that
233    is known to be true.  `comparison_code' holds the rtx code of such
234    a comparison, else it is set to UNKNOWN and the other two
235    comparison members are undefined.  `comparison_const' holds
236    the constant being compared against, or zero if the comparison
237    is not against a constant.  `comparison_qty' holds the quantity
238    being compared against when the result is known.  If the comparison
239    is not with a register, `comparison_qty' is -1.  */
240 
241 struct qty_table_elem
242 {
243   rtx const_rtx;
244   rtx_insn *const_insn;
245   rtx comparison_const;
246   int comparison_qty;
247   unsigned int first_reg, last_reg;
248   /* The sizes of these fields should match the sizes of the
249      code and mode fields of struct rtx_def (see rtl.h).  */
250   ENUM_BITFIELD(rtx_code) comparison_code : 16;
251   ENUM_BITFIELD(machine_mode) mode : 8;
252 };
253 
254 /* The table of all qtys, indexed by qty number.  */
255 static struct qty_table_elem *qty_table;
256 
257 /* For machines that have a CC0, we do not record its value in the hash
258    table since its use is guaranteed to be the insn immediately following
259    its definition and any other insn is presumed to invalidate it.
260 
261    Instead, we store below the current and last value assigned to CC0.
262    If it should happen to be a constant, it is stored in preference
263    to the actual assigned value.  In case it is a constant, we store
264    the mode in which the constant should be interpreted.  */
265 
266 static rtx this_insn_cc0, prev_insn_cc0;
267 static machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
268 
269 /* Insn being scanned.  */
270 
271 static rtx_insn *this_insn;
272 static bool optimize_this_for_speed_p;
273 
274 /* Index by register number, gives the number of the next (or
275    previous) register in the chain of registers sharing the same
276    value.
277 
278    Or -1 if this register is at the end of the chain.
279 
280    If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined.  */
281 
282 /* Per-register equivalence chain.  */
283 struct reg_eqv_elem
284 {
285   int next, prev;
286 };
287 
288 /* The table of all register equivalence chains.  */
289 static struct reg_eqv_elem *reg_eqv_table;
290 
291 struct cse_reg_info
292 {
293   /* The timestamp at which this register is initialized.  */
294   unsigned int timestamp;
295 
296   /* The quantity number of the register's current contents.  */
297   int reg_qty;
298 
299   /* The number of times the register has been altered in the current
300      basic block.  */
301   int reg_tick;
302 
303   /* The REG_TICK value at which rtx's containing this register are
304      valid in the hash table.  If this does not equal the current
305      reg_tick value, such expressions existing in the hash table are
306      invalid.  */
307   int reg_in_table;
308 
309   /* The SUBREG that was set when REG_TICK was last incremented.  Set
310      to -1 if the last store was to the whole register, not a subreg.  */
311   unsigned int subreg_ticked;
312 };
313 
314 /* A table of cse_reg_info indexed by register numbers.  */
315 static struct cse_reg_info *cse_reg_info_table;
316 
317 /* The size of the above table.  */
318 static unsigned int cse_reg_info_table_size;
319 
320 /* The index of the first entry that has not been initialized.  */
321 static unsigned int cse_reg_info_table_first_uninitialized;
322 
323 /* The timestamp at the beginning of the current run of
324    cse_extended_basic_block.  We increment this variable at the beginning of
325    the current run of cse_extended_basic_block.  The timestamp field of a
326    cse_reg_info entry matches the value of this variable if and only
327    if the entry has been initialized during the current run of
328    cse_extended_basic_block.  */
329 static unsigned int cse_reg_info_timestamp;
330 
331 /* A HARD_REG_SET containing all the hard registers for which there is
332    currently a REG expression in the hash table.  Note the difference
333    from the above variables, which indicate if the REG is mentioned in some
334    expression in the table.  */
335 
336 static HARD_REG_SET hard_regs_in_table;
337 
338 /* True if CSE has altered the CFG.  */
339 static bool cse_cfg_altered;
340 
341 /* True if CSE has altered conditional jump insns in such a way
342    that jump optimization should be redone.  */
343 static bool cse_jumps_altered;
344 
345 /* True if we put a LABEL_REF into the hash table for an INSN
346    without a REG_LABEL_OPERAND, we have to rerun jump after CSE
347    to put in the note.  */
348 static bool recorded_label_ref;
349 
350 /* canon_hash stores 1 in do_not_record
351    if it notices a reference to CC0, PC, or some other volatile
352    subexpression.  */
353 
354 static int do_not_record;
355 
356 /* canon_hash stores 1 in hash_arg_in_memory
357    if it notices a reference to memory within the expression being hashed.  */
358 
359 static int hash_arg_in_memory;
360 
361 /* The hash table contains buckets which are chains of `struct table_elt's,
362    each recording one expression's information.
363    That expression is in the `exp' field.
364 
365    The canon_exp field contains a canonical (from the point of view of
366    alias analysis) version of the `exp' field.
367 
368    Those elements with the same hash code are chained in both directions
369    through the `next_same_hash' and `prev_same_hash' fields.
370 
371    Each set of expressions with equivalent values
372    are on a two-way chain through the `next_same_value'
373    and `prev_same_value' fields, and all point with
374    the `first_same_value' field at the first element in
375    that chain.  The chain is in order of increasing cost.
376    Each element's cost value is in its `cost' field.
377 
378    The `in_memory' field is nonzero for elements that
379    involve any reference to memory.  These elements are removed
380    whenever a write is done to an unidentified location in memory.
381    To be safe, we assume that a memory address is unidentified unless
382    the address is either a symbol constant or a constant plus
383    the frame pointer or argument pointer.
384 
385    The `related_value' field is used to connect related expressions
386    (that differ by adding an integer).
387    The related expressions are chained in a circular fashion.
388    `related_value' is zero for expressions for which this
389    chain is not useful.
390 
391    The `cost' field stores the cost of this element's expression.
392    The `regcost' field stores the value returned by approx_reg_cost for
393    this element's expression.
394 
395    The `is_const' flag is set if the element is a constant (including
396    a fixed address).
397 
398    The `flag' field is used as a temporary during some search routines.
399 
400    The `mode' field is usually the same as GET_MODE (`exp'), but
401    if `exp' is a CONST_INT and has no machine mode then the `mode'
402    field is the mode it was being used as.  Each constant is
403    recorded separately for each mode it is used with.  */
404 
405 struct table_elt
406 {
407   rtx exp;
408   rtx canon_exp;
409   struct table_elt *next_same_hash;
410   struct table_elt *prev_same_hash;
411   struct table_elt *next_same_value;
412   struct table_elt *prev_same_value;
413   struct table_elt *first_same_value;
414   struct table_elt *related_value;
415   int cost;
416   int regcost;
417   /* The size of this field should match the size
418      of the mode field of struct rtx_def (see rtl.h).  */
419   ENUM_BITFIELD(machine_mode) mode : 8;
420   char in_memory;
421   char is_const;
422   char flag;
423 };
424 
425 /* We don't want a lot of buckets, because we rarely have very many
426    things stored in the hash table, and a lot of buckets slows
427    down a lot of loops that happen frequently.  */
428 #define HASH_SHIFT	5
429 #define HASH_SIZE	(1 << HASH_SHIFT)
430 #define HASH_MASK	(HASH_SIZE - 1)
431 
432 /* Compute hash code of X in mode M.  Special-case case where X is a pseudo
433    register (hard registers may require `do_not_record' to be set).  */
434 
435 #define HASH(X, M)	\
436  ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER	\
437   ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X)))	\
438   : canon_hash (X, M)) & HASH_MASK)
439 
440 /* Like HASH, but without side-effects.  */
441 #define SAFE_HASH(X, M)	\
442  ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER	\
443   ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X)))	\
444   : safe_hash (X, M)) & HASH_MASK)
445 
446 /* Determine whether register number N is considered a fixed register for the
447    purpose of approximating register costs.
448    It is desirable to replace other regs with fixed regs, to reduce need for
449    non-fixed hard regs.
450    A reg wins if it is either the frame pointer or designated as fixed.  */
451 #define FIXED_REGNO_P(N)  \
452   ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
453    || fixed_regs[N] || global_regs[N])
454 
455 /* Compute cost of X, as stored in the `cost' field of a table_elt.  Fixed
456    hard registers and pointers into the frame are the cheapest with a cost
457    of 0.  Next come pseudos with a cost of one and other hard registers with
458    a cost of 2.  Aside from these special cases, call `rtx_cost'.  */
459 
460 #define CHEAP_REGNO(N)							\
461   (REGNO_PTR_FRAME_P (N)						\
462    || (HARD_REGISTER_NUM_P (N)						\
463        && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
464 
465 #define COST(X, MODE)							\
466   (REG_P (X) ? 0 : notreg_cost (X, MODE, SET, 1))
467 #define COST_IN(X, MODE, OUTER, OPNO)					\
468   (REG_P (X) ? 0 : notreg_cost (X, MODE, OUTER, OPNO))
469 
470 /* Get the number of times this register has been updated in this
471    basic block.  */
472 
473 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
474 
475 /* Get the point at which REG was recorded in the table.  */
476 
477 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
478 
479 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
480    SUBREG).  */
481 
482 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
483 
484 /* Get the quantity number for REG.  */
485 
486 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
487 
488 /* Determine if the quantity number for register X represents a valid index
489    into the qty_table.  */
490 
491 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
492 
493 /* Compare table_elt X and Y and return true iff X is cheaper than Y.  */
494 
495 #define CHEAPER(X, Y) \
496  (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
497 
498 static struct table_elt *table[HASH_SIZE];
499 
500 /* Chain of `struct table_elt's made so far for this function
501    but currently removed from the table.  */
502 
503 static struct table_elt *free_element_chain;
504 
505 /* Set to the cost of a constant pool reference if one was found for a
506    symbolic constant.  If this was found, it means we should try to
507    convert constants into constant pool entries if they don't fit in
508    the insn.  */
509 
510 static int constant_pool_entries_cost;
511 static int constant_pool_entries_regcost;
512 
513 /* Trace a patch through the CFG.  */
514 
515 struct branch_path
516 {
517   /* The basic block for this path entry.  */
518   basic_block bb;
519 };
520 
521 /* This data describes a block that will be processed by
522    cse_extended_basic_block.  */
523 
524 struct cse_basic_block_data
525 {
526   /* Total number of SETs in block.  */
527   int nsets;
528   /* Size of current branch path, if any.  */
529   int path_size;
530   /* Current path, indicating which basic_blocks will be processed.  */
531   struct branch_path *path;
532 };
533 
534 
535 /* Pointers to the live in/live out bitmaps for the boundaries of the
536    current EBB.  */
537 static bitmap cse_ebb_live_in, cse_ebb_live_out;
538 
539 /* A simple bitmap to track which basic blocks have been visited
540    already as part of an already processed extended basic block.  */
541 static sbitmap cse_visited_basic_blocks;
542 
543 static bool fixed_base_plus_p (rtx x);
544 static int notreg_cost (rtx, machine_mode, enum rtx_code, int);
545 static int preferable (int, int, int, int);
546 static void new_basic_block (void);
547 static void make_new_qty (unsigned int, machine_mode);
548 static void make_regs_eqv (unsigned int, unsigned int);
549 static void delete_reg_equiv (unsigned int);
550 static int mention_regs (rtx);
551 static int insert_regs (rtx, struct table_elt *, int);
552 static void remove_from_table (struct table_elt *, unsigned);
553 static void remove_pseudo_from_table (rtx, unsigned);
554 static struct table_elt *lookup (rtx, unsigned, machine_mode);
555 static struct table_elt *lookup_for_remove (rtx, unsigned, machine_mode);
556 static rtx lookup_as_function (rtx, enum rtx_code);
557 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
558 					    machine_mode, int, int);
559 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
560 				 machine_mode);
561 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
562 static void invalidate_reg (rtx, bool);
563 static void invalidate (rtx, machine_mode);
564 static void remove_invalid_refs (unsigned int);
565 static void remove_invalid_subreg_refs (unsigned int, poly_uint64,
566 					machine_mode);
567 static void rehash_using_reg (rtx);
568 static void invalidate_memory (void);
569 static void invalidate_for_call (void);
570 static rtx use_related_value (rtx, struct table_elt *);
571 
572 static inline unsigned canon_hash (rtx, machine_mode);
573 static inline unsigned safe_hash (rtx, machine_mode);
574 static inline unsigned hash_rtx_string (const char *);
575 
576 static rtx canon_reg (rtx, rtx_insn *);
577 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
578 					   machine_mode *,
579 					   machine_mode *);
580 static rtx fold_rtx (rtx, rtx_insn *);
581 static rtx equiv_constant (rtx);
582 static void record_jump_equiv (rtx_insn *, bool);
583 static void record_jump_cond (enum rtx_code, machine_mode, rtx, rtx,
584 			      int);
585 static void cse_insn (rtx_insn *);
586 static void cse_prescan_path (struct cse_basic_block_data *);
587 static void invalidate_from_clobbers (rtx_insn *);
588 static void invalidate_from_sets_and_clobbers (rtx_insn *);
589 static rtx cse_process_notes (rtx, rtx, bool *);
590 static void cse_extended_basic_block (struct cse_basic_block_data *);
591 extern void dump_class (struct table_elt*);
592 static void get_cse_reg_info_1 (unsigned int regno);
593 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
594 
595 static void flush_hash_table (void);
596 static bool insn_live_p (rtx_insn *, int *);
597 static bool set_live_p (rtx, rtx_insn *, int *);
598 static void cse_change_cc_mode_insn (rtx_insn *, rtx);
599 static void cse_change_cc_mode_insns (rtx_insn *, rtx_insn *, rtx);
600 static machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
601 				       bool);
602 
603 
604 #undef RTL_HOOKS_GEN_LOWPART
605 #define RTL_HOOKS_GEN_LOWPART		gen_lowpart_if_possible
606 
607 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
608 
609 /* Nonzero if X has the form (PLUS frame-pointer integer).  */
610 
611 static bool
612 fixed_base_plus_p (rtx x)
613 {
614   switch (GET_CODE (x))
615     {
616     case REG:
617       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
618 	return true;
619       if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
620 	return true;
621       return false;
622 
623     case PLUS:
624       if (!CONST_INT_P (XEXP (x, 1)))
625 	return false;
626       return fixed_base_plus_p (XEXP (x, 0));
627 
628     default:
629       return false;
630     }
631 }
632 
633 /* Dump the expressions in the equivalence class indicated by CLASSP.
634    This function is used only for debugging.  */
635 DEBUG_FUNCTION void
636 dump_class (struct table_elt *classp)
637 {
638   struct table_elt *elt;
639 
640   fprintf (stderr, "Equivalence chain for ");
641   print_rtl (stderr, classp->exp);
642   fprintf (stderr, ": \n");
643 
644   for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
645     {
646       print_rtl (stderr, elt->exp);
647       fprintf (stderr, "\n");
648     }
649 }
650 
651 /* Return an estimate of the cost of the registers used in an rtx.
652    This is mostly the number of different REG expressions in the rtx;
653    however for some exceptions like fixed registers we use a cost of
654    0.  If any other hard register reference occurs, return MAX_COST.  */
655 
656 static int
657 approx_reg_cost (const_rtx x)
658 {
659   int cost = 0;
660   subrtx_iterator::array_type array;
661   FOR_EACH_SUBRTX (iter, array, x, NONCONST)
662     {
663       const_rtx x = *iter;
664       if (REG_P (x))
665 	{
666 	  unsigned int regno = REGNO (x);
667 	  if (!CHEAP_REGNO (regno))
668 	    {
669 	      if (regno < FIRST_PSEUDO_REGISTER)
670 		{
671 		  if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
672 		    return MAX_COST;
673 		  cost += 2;
674 		}
675 	      else
676 		cost += 1;
677 	    }
678 	}
679     }
680   return cost;
681 }
682 
683 /* Return a negative value if an rtx A, whose costs are given by COST_A
684    and REGCOST_A, is more desirable than an rtx B.
685    Return a positive value if A is less desirable, or 0 if the two are
686    equally good.  */
687 static int
688 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
689 {
690   /* First, get rid of cases involving expressions that are entirely
691      unwanted.  */
692   if (cost_a != cost_b)
693     {
694       if (cost_a == MAX_COST)
695 	return 1;
696       if (cost_b == MAX_COST)
697 	return -1;
698     }
699 
700   /* Avoid extending lifetimes of hardregs.  */
701   if (regcost_a != regcost_b)
702     {
703       if (regcost_a == MAX_COST)
704 	return 1;
705       if (regcost_b == MAX_COST)
706 	return -1;
707     }
708 
709   /* Normal operation costs take precedence.  */
710   if (cost_a != cost_b)
711     return cost_a - cost_b;
712   /* Only if these are identical consider effects on register pressure.  */
713   if (regcost_a != regcost_b)
714     return regcost_a - regcost_b;
715   return 0;
716 }
717 
718 /* Internal function, to compute cost when X is not a register; called
719    from COST macro to keep it simple.  */
720 
721 static int
722 notreg_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno)
723 {
724   scalar_int_mode int_mode, inner_mode;
725   return ((GET_CODE (x) == SUBREG
726 	   && REG_P (SUBREG_REG (x))
727 	   && is_int_mode (mode, &int_mode)
728 	   && is_int_mode (GET_MODE (SUBREG_REG (x)), &inner_mode)
729 	   && GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (inner_mode)
730 	   && subreg_lowpart_p (x)
731 	   && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, inner_mode))
732 	  ? 0
733 	  : rtx_cost (x, mode, outer, opno, optimize_this_for_speed_p) * 2);
734 }
735 
736 
737 /* Initialize CSE_REG_INFO_TABLE.  */
738 
739 static void
740 init_cse_reg_info (unsigned int nregs)
741 {
742   /* Do we need to grow the table?  */
743   if (nregs > cse_reg_info_table_size)
744     {
745       unsigned int new_size;
746 
747       if (cse_reg_info_table_size < 2048)
748 	{
749 	  /* Compute a new size that is a power of 2 and no smaller
750 	     than the large of NREGS and 64.  */
751 	  new_size = (cse_reg_info_table_size
752 		      ? cse_reg_info_table_size : 64);
753 
754 	  while (new_size < nregs)
755 	    new_size *= 2;
756 	}
757       else
758 	{
759 	  /* If we need a big table, allocate just enough to hold
760 	     NREGS registers.  */
761 	  new_size = nregs;
762 	}
763 
764       /* Reallocate the table with NEW_SIZE entries.  */
765       free (cse_reg_info_table);
766       cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
767       cse_reg_info_table_size = new_size;
768       cse_reg_info_table_first_uninitialized = 0;
769     }
770 
771   /* Do we have all of the first NREGS entries initialized?  */
772   if (cse_reg_info_table_first_uninitialized < nregs)
773     {
774       unsigned int old_timestamp = cse_reg_info_timestamp - 1;
775       unsigned int i;
776 
777       /* Put the old timestamp on newly allocated entries so that they
778 	 will all be considered out of date.  We do not touch those
779 	 entries beyond the first NREGS entries to be nice to the
780 	 virtual memory.  */
781       for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
782 	cse_reg_info_table[i].timestamp = old_timestamp;
783 
784       cse_reg_info_table_first_uninitialized = nregs;
785     }
786 }
787 
788 /* Given REGNO, initialize the cse_reg_info entry for REGNO.  */
789 
790 static void
791 get_cse_reg_info_1 (unsigned int regno)
792 {
793   /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
794      entry will be considered to have been initialized.  */
795   cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
796 
797   /* Initialize the rest of the entry.  */
798   cse_reg_info_table[regno].reg_tick = 1;
799   cse_reg_info_table[regno].reg_in_table = -1;
800   cse_reg_info_table[regno].subreg_ticked = -1;
801   cse_reg_info_table[regno].reg_qty = -regno - 1;
802 }
803 
804 /* Find a cse_reg_info entry for REGNO.  */
805 
806 static inline struct cse_reg_info *
807 get_cse_reg_info (unsigned int regno)
808 {
809   struct cse_reg_info *p = &cse_reg_info_table[regno];
810 
811   /* If this entry has not been initialized, go ahead and initialize
812      it.  */
813   if (p->timestamp != cse_reg_info_timestamp)
814     get_cse_reg_info_1 (regno);
815 
816   return p;
817 }
818 
819 /* Clear the hash table and initialize each register with its own quantity,
820    for a new basic block.  */
821 
822 static void
823 new_basic_block (void)
824 {
825   int i;
826 
827   next_qty = 0;
828 
829   /* Invalidate cse_reg_info_table.  */
830   cse_reg_info_timestamp++;
831 
832   /* Clear out hash table state for this pass.  */
833   CLEAR_HARD_REG_SET (hard_regs_in_table);
834 
835   /* The per-quantity values used to be initialized here, but it is
836      much faster to initialize each as it is made in `make_new_qty'.  */
837 
838   for (i = 0; i < HASH_SIZE; i++)
839     {
840       struct table_elt *first;
841 
842       first = table[i];
843       if (first != NULL)
844 	{
845 	  struct table_elt *last = first;
846 
847 	  table[i] = NULL;
848 
849 	  while (last->next_same_hash != NULL)
850 	    last = last->next_same_hash;
851 
852 	  /* Now relink this hash entire chain into
853 	     the free element list.  */
854 
855 	  last->next_same_hash = free_element_chain;
856 	  free_element_chain = first;
857 	}
858     }
859 
860   prev_insn_cc0 = 0;
861 }
862 
863 /* Say that register REG contains a quantity in mode MODE not in any
864    register before and initialize that quantity.  */
865 
866 static void
867 make_new_qty (unsigned int reg, machine_mode mode)
868 {
869   int q;
870   struct qty_table_elem *ent;
871   struct reg_eqv_elem *eqv;
872 
873   gcc_assert (next_qty < max_qty);
874 
875   q = REG_QTY (reg) = next_qty++;
876   ent = &qty_table[q];
877   ent->first_reg = reg;
878   ent->last_reg = reg;
879   ent->mode = mode;
880   ent->const_rtx = ent->const_insn = NULL;
881   ent->comparison_code = UNKNOWN;
882 
883   eqv = &reg_eqv_table[reg];
884   eqv->next = eqv->prev = -1;
885 }
886 
887 /* Make reg NEW equivalent to reg OLD.
888    OLD is not changing; NEW is.  */
889 
890 static void
891 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
892 {
893   unsigned int lastr, firstr;
894   int q = REG_QTY (old_reg);
895   struct qty_table_elem *ent;
896 
897   ent = &qty_table[q];
898 
899   /* Nothing should become eqv until it has a "non-invalid" qty number.  */
900   gcc_assert (REGNO_QTY_VALID_P (old_reg));
901 
902   REG_QTY (new_reg) = q;
903   firstr = ent->first_reg;
904   lastr = ent->last_reg;
905 
906   /* Prefer fixed hard registers to anything.  Prefer pseudo regs to other
907      hard regs.  Among pseudos, if NEW will live longer than any other reg
908      of the same qty, and that is beyond the current basic block,
909      make it the new canonical replacement for this qty.  */
910   if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
911       /* Certain fixed registers might be of the class NO_REGS.  This means
912 	 that not only can they not be allocated by the compiler, but
913 	 they cannot be used in substitutions or canonicalizations
914 	 either.  */
915       && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
916       && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
917 	  || (new_reg >= FIRST_PSEUDO_REGISTER
918 	      && (firstr < FIRST_PSEUDO_REGISTER
919 		  || (bitmap_bit_p (cse_ebb_live_out, new_reg)
920 		      && !bitmap_bit_p (cse_ebb_live_out, firstr))
921 		  || (bitmap_bit_p (cse_ebb_live_in, new_reg)
922 		      && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
923     {
924       reg_eqv_table[firstr].prev = new_reg;
925       reg_eqv_table[new_reg].next = firstr;
926       reg_eqv_table[new_reg].prev = -1;
927       ent->first_reg = new_reg;
928     }
929   else
930     {
931       /* If NEW is a hard reg (known to be non-fixed), insert at end.
932 	 Otherwise, insert before any non-fixed hard regs that are at the
933 	 end.  Registers of class NO_REGS cannot be used as an
934 	 equivalent for anything.  */
935       while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
936 	     && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
937 	     && new_reg >= FIRST_PSEUDO_REGISTER)
938 	lastr = reg_eqv_table[lastr].prev;
939       reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
940       if (reg_eqv_table[lastr].next >= 0)
941 	reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
942       else
943 	qty_table[q].last_reg = new_reg;
944       reg_eqv_table[lastr].next = new_reg;
945       reg_eqv_table[new_reg].prev = lastr;
946     }
947 }
948 
949 /* Remove REG from its equivalence class.  */
950 
951 static void
952 delete_reg_equiv (unsigned int reg)
953 {
954   struct qty_table_elem *ent;
955   int q = REG_QTY (reg);
956   int p, n;
957 
958   /* If invalid, do nothing.  */
959   if (! REGNO_QTY_VALID_P (reg))
960     return;
961 
962   ent = &qty_table[q];
963 
964   p = reg_eqv_table[reg].prev;
965   n = reg_eqv_table[reg].next;
966 
967   if (n != -1)
968     reg_eqv_table[n].prev = p;
969   else
970     ent->last_reg = p;
971   if (p != -1)
972     reg_eqv_table[p].next = n;
973   else
974     ent->first_reg = n;
975 
976   REG_QTY (reg) = -reg - 1;
977 }
978 
979 /* Remove any invalid expressions from the hash table
980    that refer to any of the registers contained in expression X.
981 
982    Make sure that newly inserted references to those registers
983    as subexpressions will be considered valid.
984 
985    mention_regs is not called when a register itself
986    is being stored in the table.
987 
988    Return 1 if we have done something that may have changed the hash code
989    of X.  */
990 
991 static int
992 mention_regs (rtx x)
993 {
994   enum rtx_code code;
995   int i, j;
996   const char *fmt;
997   int changed = 0;
998 
999   if (x == 0)
1000     return 0;
1001 
1002   code = GET_CODE (x);
1003   if (code == REG)
1004     {
1005       unsigned int regno = REGNO (x);
1006       unsigned int endregno = END_REGNO (x);
1007       unsigned int i;
1008 
1009       for (i = regno; i < endregno; i++)
1010 	{
1011 	  if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1012 	    remove_invalid_refs (i);
1013 
1014 	  REG_IN_TABLE (i) = REG_TICK (i);
1015 	  SUBREG_TICKED (i) = -1;
1016 	}
1017 
1018       return 0;
1019     }
1020 
1021   /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1022      pseudo if they don't use overlapping words.  We handle only pseudos
1023      here for simplicity.  */
1024   if (code == SUBREG && REG_P (SUBREG_REG (x))
1025       && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1026     {
1027       unsigned int i = REGNO (SUBREG_REG (x));
1028 
1029       if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1030 	{
1031 	  /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1032 	     the last store to this register really stored into this
1033 	     subreg, then remove the memory of this subreg.
1034 	     Otherwise, remove any memory of the entire register and
1035 	     all its subregs from the table.  */
1036 	  if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1037 	      || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1038 	    remove_invalid_refs (i);
1039 	  else
1040 	    remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1041 	}
1042 
1043       REG_IN_TABLE (i) = REG_TICK (i);
1044       SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1045       return 0;
1046     }
1047 
1048   /* If X is a comparison or a COMPARE and either operand is a register
1049      that does not have a quantity, give it one.  This is so that a later
1050      call to record_jump_equiv won't cause X to be assigned a different
1051      hash code and not found in the table after that call.
1052 
1053      It is not necessary to do this here, since rehash_using_reg can
1054      fix up the table later, but doing this here eliminates the need to
1055      call that expensive function in the most common case where the only
1056      use of the register is in the comparison.  */
1057 
1058   if (code == COMPARE || COMPARISON_P (x))
1059     {
1060       if (REG_P (XEXP (x, 0))
1061 	  && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1062 	if (insert_regs (XEXP (x, 0), NULL, 0))
1063 	  {
1064 	    rehash_using_reg (XEXP (x, 0));
1065 	    changed = 1;
1066 	  }
1067 
1068       if (REG_P (XEXP (x, 1))
1069 	  && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1070 	if (insert_regs (XEXP (x, 1), NULL, 0))
1071 	  {
1072 	    rehash_using_reg (XEXP (x, 1));
1073 	    changed = 1;
1074 	  }
1075     }
1076 
1077   fmt = GET_RTX_FORMAT (code);
1078   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1079     if (fmt[i] == 'e')
1080       changed |= mention_regs (XEXP (x, i));
1081     else if (fmt[i] == 'E')
1082       for (j = 0; j < XVECLEN (x, i); j++)
1083 	changed |= mention_regs (XVECEXP (x, i, j));
1084 
1085   return changed;
1086 }
1087 
1088 /* Update the register quantities for inserting X into the hash table
1089    with a value equivalent to CLASSP.
1090    (If the class does not contain a REG, it is irrelevant.)
1091    If MODIFIED is nonzero, X is a destination; it is being modified.
1092    Note that delete_reg_equiv should be called on a register
1093    before insert_regs is done on that register with MODIFIED != 0.
1094 
1095    Nonzero value means that elements of reg_qty have changed
1096    so X's hash code may be different.  */
1097 
1098 static int
1099 insert_regs (rtx x, struct table_elt *classp, int modified)
1100 {
1101   if (REG_P (x))
1102     {
1103       unsigned int regno = REGNO (x);
1104       int qty_valid;
1105 
1106       /* If REGNO is in the equivalence table already but is of the
1107 	 wrong mode for that equivalence, don't do anything here.  */
1108 
1109       qty_valid = REGNO_QTY_VALID_P (regno);
1110       if (qty_valid)
1111 	{
1112 	  struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1113 
1114 	  if (ent->mode != GET_MODE (x))
1115 	    return 0;
1116 	}
1117 
1118       if (modified || ! qty_valid)
1119 	{
1120 	  if (classp)
1121 	    for (classp = classp->first_same_value;
1122 		 classp != 0;
1123 		 classp = classp->next_same_value)
1124 	      if (REG_P (classp->exp)
1125 		  && GET_MODE (classp->exp) == GET_MODE (x))
1126 		{
1127 		  unsigned c_regno = REGNO (classp->exp);
1128 
1129 		  gcc_assert (REGNO_QTY_VALID_P (c_regno));
1130 
1131 		  /* Suppose that 5 is hard reg and 100 and 101 are
1132 		     pseudos.  Consider
1133 
1134 		     (set (reg:si 100) (reg:si 5))
1135 		     (set (reg:si 5) (reg:si 100))
1136 		     (set (reg:di 101) (reg:di 5))
1137 
1138 		     We would now set REG_QTY (101) = REG_QTY (5), but the
1139 		     entry for 5 is in SImode.  When we use this later in
1140 		     copy propagation, we get the register in wrong mode.  */
1141 		  if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1142 		    continue;
1143 
1144 		  make_regs_eqv (regno, c_regno);
1145 		  return 1;
1146 		}
1147 
1148 	  /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1149 	     than REG_IN_TABLE to find out if there was only a single preceding
1150 	     invalidation - for the SUBREG - or another one, which would be
1151 	     for the full register.  However, if we find here that REG_TICK
1152 	     indicates that the register is invalid, it means that it has
1153 	     been invalidated in a separate operation.  The SUBREG might be used
1154 	     now (then this is a recursive call), or we might use the full REG
1155 	     now and a SUBREG of it later.  So bump up REG_TICK so that
1156 	     mention_regs will do the right thing.  */
1157 	  if (! modified
1158 	      && REG_IN_TABLE (regno) >= 0
1159 	      && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1160 	    REG_TICK (regno)++;
1161 	  make_new_qty (regno, GET_MODE (x));
1162 	  return 1;
1163 	}
1164 
1165       return 0;
1166     }
1167 
1168   /* If X is a SUBREG, we will likely be inserting the inner register in the
1169      table.  If that register doesn't have an assigned quantity number at
1170      this point but does later, the insertion that we will be doing now will
1171      not be accessible because its hash code will have changed.  So assign
1172      a quantity number now.  */
1173 
1174   else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1175 	   && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1176     {
1177       insert_regs (SUBREG_REG (x), NULL, 0);
1178       mention_regs (x);
1179       return 1;
1180     }
1181   else
1182     return mention_regs (x);
1183 }
1184 
1185 
1186 /* Compute upper and lower anchors for CST.  Also compute the offset of CST
1187    from these anchors/bases such that *_BASE + *_OFFS = CST.  Return false iff
1188    CST is equal to an anchor.  */
1189 
1190 static bool
1191 compute_const_anchors (rtx cst,
1192 		       HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1193 		       HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1194 {
1195   HOST_WIDE_INT n = INTVAL (cst);
1196 
1197   *lower_base = n & ~(targetm.const_anchor - 1);
1198   if (*lower_base == n)
1199     return false;
1200 
1201   *upper_base =
1202     (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1203   *upper_offs = n - *upper_base;
1204   *lower_offs = n - *lower_base;
1205   return true;
1206 }
1207 
1208 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE.  */
1209 
1210 static void
1211 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1212 		     machine_mode mode)
1213 {
1214   struct table_elt *elt;
1215   unsigned hash;
1216   rtx anchor_exp;
1217   rtx exp;
1218 
1219   anchor_exp = GEN_INT (anchor);
1220   hash = HASH (anchor_exp, mode);
1221   elt = lookup (anchor_exp, hash, mode);
1222   if (!elt)
1223     elt = insert (anchor_exp, NULL, hash, mode);
1224 
1225   exp = plus_constant (mode, reg, offs);
1226   /* REG has just been inserted and the hash codes recomputed.  */
1227   mention_regs (exp);
1228   hash = HASH (exp, mode);
1229 
1230   /* Use the cost of the register rather than the whole expression.  When
1231      looking up constant anchors we will further offset the corresponding
1232      expression therefore it does not make sense to prefer REGs over
1233      reg-immediate additions.  Prefer instead the oldest expression.  Also
1234      don't prefer pseudos over hard regs so that we derive constants in
1235      argument registers from other argument registers rather than from the
1236      original pseudo that was used to synthesize the constant.  */
1237   insert_with_costs (exp, elt, hash, mode, COST (reg, mode), 1);
1238 }
1239 
1240 /* The constant CST is equivalent to the register REG.  Create
1241    equivalences between the two anchors of CST and the corresponding
1242    register-offset expressions using REG.  */
1243 
1244 static void
1245 insert_const_anchors (rtx reg, rtx cst, machine_mode mode)
1246 {
1247   HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1248 
1249   if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1250 			      &upper_base, &upper_offs))
1251       return;
1252 
1253   /* Ignore anchors of value 0.  Constants accessible from zero are
1254      simple.  */
1255   if (lower_base != 0)
1256     insert_const_anchor (lower_base, reg, -lower_offs, mode);
1257 
1258   if (upper_base != 0)
1259     insert_const_anchor (upper_base, reg, -upper_offs, mode);
1260 }
1261 
1262 /* We need to express ANCHOR_ELT->exp + OFFS.  Walk the equivalence list of
1263    ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1264    valid expression.  Return the cheapest and oldest of such expressions.  In
1265    *OLD, return how old the resulting expression is compared to the other
1266    equivalent expressions.  */
1267 
1268 static rtx
1269 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1270 			   unsigned *old)
1271 {
1272   struct table_elt *elt;
1273   unsigned idx;
1274   struct table_elt *match_elt;
1275   rtx match;
1276 
1277   /* Find the cheapest and *oldest* expression to maximize the chance of
1278      reusing the same pseudo.  */
1279 
1280   match_elt = NULL;
1281   match = NULL_RTX;
1282   for (elt = anchor_elt->first_same_value, idx = 0;
1283        elt;
1284        elt = elt->next_same_value, idx++)
1285     {
1286       if (match_elt && CHEAPER (match_elt, elt))
1287 	return match;
1288 
1289       if (REG_P (elt->exp)
1290 	  || (GET_CODE (elt->exp) == PLUS
1291 	      && REG_P (XEXP (elt->exp, 0))
1292 	      && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1293 	{
1294 	  rtx x;
1295 
1296 	  /* Ignore expressions that are no longer valid.  */
1297 	  if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1298 	    continue;
1299 
1300 	  x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
1301 	  if (REG_P (x)
1302 	      || (GET_CODE (x) == PLUS
1303 		  && IN_RANGE (INTVAL (XEXP (x, 1)),
1304 			       -targetm.const_anchor,
1305 			       targetm.const_anchor - 1)))
1306 	    {
1307 	      match = x;
1308 	      match_elt = elt;
1309 	      *old = idx;
1310 	    }
1311 	}
1312     }
1313 
1314   return match;
1315 }
1316 
1317 /* Try to express the constant SRC_CONST using a register+offset expression
1318    derived from a constant anchor.  Return it if successful or NULL_RTX,
1319    otherwise.  */
1320 
1321 static rtx
1322 try_const_anchors (rtx src_const, machine_mode mode)
1323 {
1324   struct table_elt *lower_elt, *upper_elt;
1325   HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1326   rtx lower_anchor_rtx, upper_anchor_rtx;
1327   rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1328   unsigned lower_old, upper_old;
1329 
1330   /* CONST_INT is used for CC modes, but we should leave those alone.  */
1331   if (GET_MODE_CLASS (mode) == MODE_CC)
1332     return NULL_RTX;
1333 
1334   gcc_assert (SCALAR_INT_MODE_P (mode));
1335   if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1336 			      &upper_base, &upper_offs))
1337     return NULL_RTX;
1338 
1339   lower_anchor_rtx = GEN_INT (lower_base);
1340   upper_anchor_rtx = GEN_INT (upper_base);
1341   lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1342   upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1343 
1344   if (lower_elt)
1345     lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1346   if (upper_elt)
1347     upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1348 
1349   if (!lower_exp)
1350     return upper_exp;
1351   if (!upper_exp)
1352     return lower_exp;
1353 
1354   /* Return the older expression.  */
1355   return (upper_old > lower_old ? upper_exp : lower_exp);
1356 }
1357 
1358 /* Look in or update the hash table.  */
1359 
1360 /* Remove table element ELT from use in the table.
1361    HASH is its hash code, made using the HASH macro.
1362    It's an argument because often that is known in advance
1363    and we save much time not recomputing it.  */
1364 
1365 static void
1366 remove_from_table (struct table_elt *elt, unsigned int hash)
1367 {
1368   if (elt == 0)
1369     return;
1370 
1371   /* Mark this element as removed.  See cse_insn.  */
1372   elt->first_same_value = 0;
1373 
1374   /* Remove the table element from its equivalence class.  */
1375 
1376   {
1377     struct table_elt *prev = elt->prev_same_value;
1378     struct table_elt *next = elt->next_same_value;
1379 
1380     if (next)
1381       next->prev_same_value = prev;
1382 
1383     if (prev)
1384       prev->next_same_value = next;
1385     else
1386       {
1387 	struct table_elt *newfirst = next;
1388 	while (next)
1389 	  {
1390 	    next->first_same_value = newfirst;
1391 	    next = next->next_same_value;
1392 	  }
1393       }
1394   }
1395 
1396   /* Remove the table element from its hash bucket.  */
1397 
1398   {
1399     struct table_elt *prev = elt->prev_same_hash;
1400     struct table_elt *next = elt->next_same_hash;
1401 
1402     if (next)
1403       next->prev_same_hash = prev;
1404 
1405     if (prev)
1406       prev->next_same_hash = next;
1407     else if (table[hash] == elt)
1408       table[hash] = next;
1409     else
1410       {
1411 	/* This entry is not in the proper hash bucket.  This can happen
1412 	   when two classes were merged by `merge_equiv_classes'.  Search
1413 	   for the hash bucket that it heads.  This happens only very
1414 	   rarely, so the cost is acceptable.  */
1415 	for (hash = 0; hash < HASH_SIZE; hash++)
1416 	  if (table[hash] == elt)
1417 	    table[hash] = next;
1418       }
1419   }
1420 
1421   /* Remove the table element from its related-value circular chain.  */
1422 
1423   if (elt->related_value != 0 && elt->related_value != elt)
1424     {
1425       struct table_elt *p = elt->related_value;
1426 
1427       while (p->related_value != elt)
1428 	p = p->related_value;
1429       p->related_value = elt->related_value;
1430       if (p->related_value == p)
1431 	p->related_value = 0;
1432     }
1433 
1434   /* Now add it to the free element chain.  */
1435   elt->next_same_hash = free_element_chain;
1436   free_element_chain = elt;
1437 }
1438 
1439 /* Same as above, but X is a pseudo-register.  */
1440 
1441 static void
1442 remove_pseudo_from_table (rtx x, unsigned int hash)
1443 {
1444   struct table_elt *elt;
1445 
1446   /* Because a pseudo-register can be referenced in more than one
1447      mode, we might have to remove more than one table entry.  */
1448   while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1449     remove_from_table (elt, hash);
1450 }
1451 
1452 /* Look up X in the hash table and return its table element,
1453    or 0 if X is not in the table.
1454 
1455    MODE is the machine-mode of X, or if X is an integer constant
1456    with VOIDmode then MODE is the mode with which X will be used.
1457 
1458    Here we are satisfied to find an expression whose tree structure
1459    looks like X.  */
1460 
1461 static struct table_elt *
1462 lookup (rtx x, unsigned int hash, machine_mode mode)
1463 {
1464   struct table_elt *p;
1465 
1466   for (p = table[hash]; p; p = p->next_same_hash)
1467     if (mode == p->mode && ((x == p->exp && REG_P (x))
1468 			    || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1469       return p;
1470 
1471   return 0;
1472 }
1473 
1474 /* Like `lookup' but don't care whether the table element uses invalid regs.
1475    Also ignore discrepancies in the machine mode of a register.  */
1476 
1477 static struct table_elt *
1478 lookup_for_remove (rtx x, unsigned int hash, machine_mode mode)
1479 {
1480   struct table_elt *p;
1481 
1482   if (REG_P (x))
1483     {
1484       unsigned int regno = REGNO (x);
1485 
1486       /* Don't check the machine mode when comparing registers;
1487 	 invalidating (REG:SI 0) also invalidates (REG:DF 0).  */
1488       for (p = table[hash]; p; p = p->next_same_hash)
1489 	if (REG_P (p->exp)
1490 	    && REGNO (p->exp) == regno)
1491 	  return p;
1492     }
1493   else
1494     {
1495       for (p = table[hash]; p; p = p->next_same_hash)
1496 	if (mode == p->mode
1497 	    && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1498 	  return p;
1499     }
1500 
1501   return 0;
1502 }
1503 
1504 /* Look for an expression equivalent to X and with code CODE.
1505    If one is found, return that expression.  */
1506 
1507 static rtx
1508 lookup_as_function (rtx x, enum rtx_code code)
1509 {
1510   struct table_elt *p
1511     = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1512 
1513   if (p == 0)
1514     return 0;
1515 
1516   for (p = p->first_same_value; p; p = p->next_same_value)
1517     if (GET_CODE (p->exp) == code
1518 	/* Make sure this is a valid entry in the table.  */
1519 	&& exp_equiv_p (p->exp, p->exp, 1, false))
1520       return p->exp;
1521 
1522   return 0;
1523 }
1524 
1525 /* Insert X in the hash table, assuming HASH is its hash code and
1526    CLASSP is an element of the class it should go in (or 0 if a new
1527    class should be made).  COST is the code of X and reg_cost is the
1528    cost of registers in X.  It is inserted at the proper position to
1529    keep the class in the order cheapest first.
1530 
1531    MODE is the machine-mode of X, or if X is an integer constant
1532    with VOIDmode then MODE is the mode with which X will be used.
1533 
1534    For elements of equal cheapness, the most recent one
1535    goes in front, except that the first element in the list
1536    remains first unless a cheaper element is added.  The order of
1537    pseudo-registers does not matter, as canon_reg will be called to
1538    find the cheapest when a register is retrieved from the table.
1539 
1540    The in_memory field in the hash table element is set to 0.
1541    The caller must set it nonzero if appropriate.
1542 
1543    You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1544    and if insert_regs returns a nonzero value
1545    you must then recompute its hash code before calling here.
1546 
1547    If necessary, update table showing constant values of quantities.  */
1548 
1549 static struct table_elt *
1550 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1551 		   machine_mode mode, int cost, int reg_cost)
1552 {
1553   struct table_elt *elt;
1554 
1555   /* If X is a register and we haven't made a quantity for it,
1556      something is wrong.  */
1557   gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1558 
1559   /* If X is a hard register, show it is being put in the table.  */
1560   if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1561     add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1562 
1563   /* Put an element for X into the right hash bucket.  */
1564 
1565   elt = free_element_chain;
1566   if (elt)
1567     free_element_chain = elt->next_same_hash;
1568   else
1569     elt = XNEW (struct table_elt);
1570 
1571   elt->exp = x;
1572   elt->canon_exp = NULL_RTX;
1573   elt->cost = cost;
1574   elt->regcost = reg_cost;
1575   elt->next_same_value = 0;
1576   elt->prev_same_value = 0;
1577   elt->next_same_hash = table[hash];
1578   elt->prev_same_hash = 0;
1579   elt->related_value = 0;
1580   elt->in_memory = 0;
1581   elt->mode = mode;
1582   elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1583 
1584   if (table[hash])
1585     table[hash]->prev_same_hash = elt;
1586   table[hash] = elt;
1587 
1588   /* Put it into the proper value-class.  */
1589   if (classp)
1590     {
1591       classp = classp->first_same_value;
1592       if (CHEAPER (elt, classp))
1593 	/* Insert at the head of the class.  */
1594 	{
1595 	  struct table_elt *p;
1596 	  elt->next_same_value = classp;
1597 	  classp->prev_same_value = elt;
1598 	  elt->first_same_value = elt;
1599 
1600 	  for (p = classp; p; p = p->next_same_value)
1601 	    p->first_same_value = elt;
1602 	}
1603       else
1604 	{
1605 	  /* Insert not at head of the class.  */
1606 	  /* Put it after the last element cheaper than X.  */
1607 	  struct table_elt *p, *next;
1608 
1609 	  for (p = classp;
1610 	       (next = p->next_same_value) && CHEAPER (next, elt);
1611 	       p = next)
1612 	    ;
1613 
1614 	  /* Put it after P and before NEXT.  */
1615 	  elt->next_same_value = next;
1616 	  if (next)
1617 	    next->prev_same_value = elt;
1618 
1619 	  elt->prev_same_value = p;
1620 	  p->next_same_value = elt;
1621 	  elt->first_same_value = classp;
1622 	}
1623     }
1624   else
1625     elt->first_same_value = elt;
1626 
1627   /* If this is a constant being set equivalent to a register or a register
1628      being set equivalent to a constant, note the constant equivalence.
1629 
1630      If this is a constant, it cannot be equivalent to a different constant,
1631      and a constant is the only thing that can be cheaper than a register.  So
1632      we know the register is the head of the class (before the constant was
1633      inserted).
1634 
1635      If this is a register that is not already known equivalent to a
1636      constant, we must check the entire class.
1637 
1638      If this is a register that is already known equivalent to an insn,
1639      update the qtys `const_insn' to show that `this_insn' is the latest
1640      insn making that quantity equivalent to the constant.  */
1641 
1642   if (elt->is_const && classp && REG_P (classp->exp)
1643       && !REG_P (x))
1644     {
1645       int exp_q = REG_QTY (REGNO (classp->exp));
1646       struct qty_table_elem *exp_ent = &qty_table[exp_q];
1647 
1648       exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1649       exp_ent->const_insn = this_insn;
1650     }
1651 
1652   else if (REG_P (x)
1653 	   && classp
1654 	   && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1655 	   && ! elt->is_const)
1656     {
1657       struct table_elt *p;
1658 
1659       for (p = classp; p != 0; p = p->next_same_value)
1660 	{
1661 	  if (p->is_const && !REG_P (p->exp))
1662 	    {
1663 	      int x_q = REG_QTY (REGNO (x));
1664 	      struct qty_table_elem *x_ent = &qty_table[x_q];
1665 
1666 	      x_ent->const_rtx
1667 		= gen_lowpart (GET_MODE (x), p->exp);
1668 	      x_ent->const_insn = this_insn;
1669 	      break;
1670 	    }
1671 	}
1672     }
1673 
1674   else if (REG_P (x)
1675 	   && qty_table[REG_QTY (REGNO (x))].const_rtx
1676 	   && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1677     qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1678 
1679   /* If this is a constant with symbolic value,
1680      and it has a term with an explicit integer value,
1681      link it up with related expressions.  */
1682   if (GET_CODE (x) == CONST)
1683     {
1684       rtx subexp = get_related_value (x);
1685       unsigned subhash;
1686       struct table_elt *subelt, *subelt_prev;
1687 
1688       if (subexp != 0)
1689 	{
1690 	  /* Get the integer-free subexpression in the hash table.  */
1691 	  subhash = SAFE_HASH (subexp, mode);
1692 	  subelt = lookup (subexp, subhash, mode);
1693 	  if (subelt == 0)
1694 	    subelt = insert (subexp, NULL, subhash, mode);
1695 	  /* Initialize SUBELT's circular chain if it has none.  */
1696 	  if (subelt->related_value == 0)
1697 	    subelt->related_value = subelt;
1698 	  /* Find the element in the circular chain that precedes SUBELT.  */
1699 	  subelt_prev = subelt;
1700 	  while (subelt_prev->related_value != subelt)
1701 	    subelt_prev = subelt_prev->related_value;
1702 	  /* Put new ELT into SUBELT's circular chain just before SUBELT.
1703 	     This way the element that follows SUBELT is the oldest one.  */
1704 	  elt->related_value = subelt_prev->related_value;
1705 	  subelt_prev->related_value = elt;
1706 	}
1707     }
1708 
1709   return elt;
1710 }
1711 
1712 /* Wrap insert_with_costs by passing the default costs.  */
1713 
1714 static struct table_elt *
1715 insert (rtx x, struct table_elt *classp, unsigned int hash,
1716 	machine_mode mode)
1717 {
1718   return insert_with_costs (x, classp, hash, mode,
1719 			    COST (x, mode), approx_reg_cost (x));
1720 }
1721 
1722 
1723 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1724    CLASS2 into CLASS1.  This is done when we have reached an insn which makes
1725    the two classes equivalent.
1726 
1727    CLASS1 will be the surviving class; CLASS2 should not be used after this
1728    call.
1729 
1730    Any invalid entries in CLASS2 will not be copied.  */
1731 
1732 static void
1733 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1734 {
1735   struct table_elt *elt, *next, *new_elt;
1736 
1737   /* Ensure we start with the head of the classes.  */
1738   class1 = class1->first_same_value;
1739   class2 = class2->first_same_value;
1740 
1741   /* If they were already equal, forget it.  */
1742   if (class1 == class2)
1743     return;
1744 
1745   for (elt = class2; elt; elt = next)
1746     {
1747       unsigned int hash;
1748       rtx exp = elt->exp;
1749       machine_mode mode = elt->mode;
1750 
1751       next = elt->next_same_value;
1752 
1753       /* Remove old entry, make a new one in CLASS1's class.
1754 	 Don't do this for invalid entries as we cannot find their
1755 	 hash code (it also isn't necessary).  */
1756       if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1757 	{
1758 	  bool need_rehash = false;
1759 
1760 	  hash_arg_in_memory = 0;
1761 	  hash = HASH (exp, mode);
1762 
1763 	  if (REG_P (exp))
1764 	    {
1765 	      need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1766 	      delete_reg_equiv (REGNO (exp));
1767 	    }
1768 
1769 	  if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1770 	    remove_pseudo_from_table (exp, hash);
1771 	  else
1772 	    remove_from_table (elt, hash);
1773 
1774 	  if (insert_regs (exp, class1, 0) || need_rehash)
1775 	    {
1776 	      rehash_using_reg (exp);
1777 	      hash = HASH (exp, mode);
1778 	    }
1779 	  new_elt = insert (exp, class1, hash, mode);
1780 	  new_elt->in_memory = hash_arg_in_memory;
1781 	  if (GET_CODE (exp) == ASM_OPERANDS && elt->cost == MAX_COST)
1782 	    new_elt->cost = MAX_COST;
1783 	}
1784     }
1785 }
1786 
1787 /* Flush the entire hash table.  */
1788 
1789 static void
1790 flush_hash_table (void)
1791 {
1792   int i;
1793   struct table_elt *p;
1794 
1795   for (i = 0; i < HASH_SIZE; i++)
1796     for (p = table[i]; p; p = table[i])
1797       {
1798 	/* Note that invalidate can remove elements
1799 	   after P in the current hash chain.  */
1800 	if (REG_P (p->exp))
1801 	  invalidate (p->exp, VOIDmode);
1802 	else
1803 	  remove_from_table (p, i);
1804       }
1805 }
1806 
1807 /* Check whether an anti dependence exists between X and EXP.  MODE and
1808    ADDR are as for canon_anti_dependence.  */
1809 
1810 static bool
1811 check_dependence (const_rtx x, rtx exp, machine_mode mode, rtx addr)
1812 {
1813   subrtx_iterator::array_type array;
1814   FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1815     {
1816       const_rtx x = *iter;
1817       if (MEM_P (x) && canon_anti_dependence (x, true, exp, mode, addr))
1818 	return true;
1819     }
1820   return false;
1821 }
1822 
1823 /* Remove from the hash table, or mark as invalid, all expressions whose
1824    values could be altered by storing in register X.
1825 
1826    CLOBBER_HIGH is set if X was part of a CLOBBER_HIGH expression.  */
1827 
1828 static void
1829 invalidate_reg (rtx x, bool clobber_high)
1830 {
1831   gcc_assert (GET_CODE (x) == REG);
1832 
1833   /* If X is a register, dependencies on its contents are recorded
1834      through the qty number mechanism.  Just change the qty number of
1835      the register, mark it as invalid for expressions that refer to it,
1836      and remove it itself.  */
1837   unsigned int regno = REGNO (x);
1838   unsigned int hash = HASH (x, GET_MODE (x));
1839 
1840   /* Remove REGNO from any quantity list it might be on and indicate
1841      that its value might have changed.  If it is a pseudo, remove its
1842      entry from the hash table.
1843 
1844      For a hard register, we do the first two actions above for any
1845      additional hard registers corresponding to X.  Then, if any of these
1846      registers are in the table, we must remove any REG entries that
1847      overlap these registers.  */
1848 
1849   delete_reg_equiv (regno);
1850   REG_TICK (regno)++;
1851   SUBREG_TICKED (regno) = -1;
1852 
1853   if (regno >= FIRST_PSEUDO_REGISTER)
1854     {
1855       gcc_assert (!clobber_high);
1856       remove_pseudo_from_table (x, hash);
1857     }
1858   else
1859     {
1860       HOST_WIDE_INT in_table = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1861       unsigned int endregno = END_REGNO (x);
1862       unsigned int rn;
1863       struct table_elt *p, *next;
1864 
1865       CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1866 
1867       for (rn = regno + 1; rn < endregno; rn++)
1868 	{
1869 	  in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1870 	  CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1871 	  delete_reg_equiv (rn);
1872 	  REG_TICK (rn)++;
1873 	  SUBREG_TICKED (rn) = -1;
1874 	}
1875 
1876       if (in_table)
1877 	for (hash = 0; hash < HASH_SIZE; hash++)
1878 	  for (p = table[hash]; p; p = next)
1879 	    {
1880 	      next = p->next_same_hash;
1881 
1882 	      if (!REG_P (p->exp) || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1883 		continue;
1884 
1885 	      if (clobber_high)
1886 		{
1887 		  if (reg_is_clobbered_by_clobber_high (p->exp, x))
1888 		    remove_from_table (p, hash);
1889 		}
1890 	      else
1891 		{
1892 		  unsigned int tregno = REGNO (p->exp);
1893 		  unsigned int tendregno = END_REGNO (p->exp);
1894 		  if (tendregno > regno && tregno < endregno)
1895 		    remove_from_table (p, hash);
1896 		}
1897 	    }
1898     }
1899 }
1900 
1901 /* Remove from the hash table, or mark as invalid, all expressions whose
1902    values could be altered by storing in X.  X is a register, a subreg, or
1903    a memory reference with nonvarying address (because, when a memory
1904    reference with a varying address is stored in, all memory references are
1905    removed by invalidate_memory so specific invalidation is superfluous).
1906    FULL_MODE, if not VOIDmode, indicates that this much should be
1907    invalidated instead of just the amount indicated by the mode of X.  This
1908    is only used for bitfield stores into memory.
1909 
1910    A nonvarying address may be just a register or just a symbol reference,
1911    or it may be either of those plus a numeric offset.  */
1912 
1913 static void
1914 invalidate (rtx x, machine_mode full_mode)
1915 {
1916   int i;
1917   struct table_elt *p;
1918   rtx addr;
1919 
1920   switch (GET_CODE (x))
1921     {
1922     case REG:
1923       invalidate_reg (x, false);
1924       return;
1925 
1926     case SUBREG:
1927       invalidate (SUBREG_REG (x), VOIDmode);
1928       return;
1929 
1930     case PARALLEL:
1931       for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1932 	invalidate (XVECEXP (x, 0, i), VOIDmode);
1933       return;
1934 
1935     case EXPR_LIST:
1936       /* This is part of a disjoint return value; extract the location in
1937 	 question ignoring the offset.  */
1938       invalidate (XEXP (x, 0), VOIDmode);
1939       return;
1940 
1941     case MEM:
1942       addr = canon_rtx (get_addr (XEXP (x, 0)));
1943       /* Calculate the canonical version of X here so that
1944 	 true_dependence doesn't generate new RTL for X on each call.  */
1945       x = canon_rtx (x);
1946 
1947       /* Remove all hash table elements that refer to overlapping pieces of
1948 	 memory.  */
1949       if (full_mode == VOIDmode)
1950 	full_mode = GET_MODE (x);
1951 
1952       for (i = 0; i < HASH_SIZE; i++)
1953 	{
1954 	  struct table_elt *next;
1955 
1956 	  for (p = table[i]; p; p = next)
1957 	    {
1958 	      next = p->next_same_hash;
1959 	      if (p->in_memory)
1960 		{
1961 		  /* Just canonicalize the expression once;
1962 		     otherwise each time we call invalidate
1963 		     true_dependence will canonicalize the
1964 		     expression again.  */
1965 		  if (!p->canon_exp)
1966 		    p->canon_exp = canon_rtx (p->exp);
1967 		  if (check_dependence (p->canon_exp, x, full_mode, addr))
1968 		    remove_from_table (p, i);
1969 		}
1970 	    }
1971 	}
1972       return;
1973 
1974     default:
1975       gcc_unreachable ();
1976     }
1977 }
1978 
1979 /* Invalidate DEST.  Used when DEST is not going to be added
1980    into the hash table for some reason, e.g. do_not_record
1981    flagged on it.  */
1982 
1983 static void
1984 invalidate_dest (rtx dest)
1985 {
1986   if (REG_P (dest)
1987       || GET_CODE (dest) == SUBREG
1988       || MEM_P (dest))
1989     invalidate (dest, VOIDmode);
1990   else if (GET_CODE (dest) == STRICT_LOW_PART
1991 	   || GET_CODE (dest) == ZERO_EXTRACT)
1992     invalidate (XEXP (dest, 0), GET_MODE (dest));
1993 }
1994 
1995 /* Remove all expressions that refer to register REGNO,
1996    since they are already invalid, and we are about to
1997    mark that register valid again and don't want the old
1998    expressions to reappear as valid.  */
1999 
2000 static void
2001 remove_invalid_refs (unsigned int regno)
2002 {
2003   unsigned int i;
2004   struct table_elt *p, *next;
2005 
2006   for (i = 0; i < HASH_SIZE; i++)
2007     for (p = table[i]; p; p = next)
2008       {
2009 	next = p->next_same_hash;
2010 	if (!REG_P (p->exp) && refers_to_regno_p (regno, p->exp))
2011 	  remove_from_table (p, i);
2012       }
2013 }
2014 
2015 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
2016    and mode MODE.  */
2017 static void
2018 remove_invalid_subreg_refs (unsigned int regno, poly_uint64 offset,
2019 			    machine_mode mode)
2020 {
2021   unsigned int i;
2022   struct table_elt *p, *next;
2023 
2024   for (i = 0; i < HASH_SIZE; i++)
2025     for (p = table[i]; p; p = next)
2026       {
2027 	rtx exp = p->exp;
2028 	next = p->next_same_hash;
2029 
2030 	if (!REG_P (exp)
2031 	    && (GET_CODE (exp) != SUBREG
2032 		|| !REG_P (SUBREG_REG (exp))
2033 		|| REGNO (SUBREG_REG (exp)) != regno
2034 		|| ranges_maybe_overlap_p (SUBREG_BYTE (exp),
2035 					   GET_MODE_SIZE (GET_MODE (exp)),
2036 					   offset, GET_MODE_SIZE (mode)))
2037 	    && refers_to_regno_p (regno, p->exp))
2038 	  remove_from_table (p, i);
2039       }
2040 }
2041 
2042 /* Recompute the hash codes of any valid entries in the hash table that
2043    reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2044 
2045    This is called when we make a jump equivalence.  */
2046 
2047 static void
2048 rehash_using_reg (rtx x)
2049 {
2050   unsigned int i;
2051   struct table_elt *p, *next;
2052   unsigned hash;
2053 
2054   if (GET_CODE (x) == SUBREG)
2055     x = SUBREG_REG (x);
2056 
2057   /* If X is not a register or if the register is known not to be in any
2058      valid entries in the table, we have no work to do.  */
2059 
2060   if (!REG_P (x)
2061       || REG_IN_TABLE (REGNO (x)) < 0
2062       || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2063     return;
2064 
2065   /* Scan all hash chains looking for valid entries that mention X.
2066      If we find one and it is in the wrong hash chain, move it.  */
2067 
2068   for (i = 0; i < HASH_SIZE; i++)
2069     for (p = table[i]; p; p = next)
2070       {
2071 	next = p->next_same_hash;
2072 	if (reg_mentioned_p (x, p->exp)
2073 	    && exp_equiv_p (p->exp, p->exp, 1, false)
2074 	    && i != (hash = SAFE_HASH (p->exp, p->mode)))
2075 	  {
2076 	    if (p->next_same_hash)
2077 	      p->next_same_hash->prev_same_hash = p->prev_same_hash;
2078 
2079 	    if (p->prev_same_hash)
2080 	      p->prev_same_hash->next_same_hash = p->next_same_hash;
2081 	    else
2082 	      table[i] = p->next_same_hash;
2083 
2084 	    p->next_same_hash = table[hash];
2085 	    p->prev_same_hash = 0;
2086 	    if (table[hash])
2087 	      table[hash]->prev_same_hash = p;
2088 	    table[hash] = p;
2089 	  }
2090       }
2091 }
2092 
2093 /* Remove from the hash table any expression that is a call-clobbered
2094    register.  Also update their TICK values.  */
2095 
2096 static void
2097 invalidate_for_call (void)
2098 {
2099   unsigned int regno, endregno;
2100   unsigned int i;
2101   unsigned hash;
2102   struct table_elt *p, *next;
2103   int in_table = 0;
2104   hard_reg_set_iterator hrsi;
2105 
2106   /* Go through all the hard registers.  For each that is clobbered in
2107      a CALL_INSN, remove the register from quantity chains and update
2108      reg_tick if defined.  Also see if any of these registers is currently
2109      in the table.  */
2110   EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
2111     {
2112       delete_reg_equiv (regno);
2113       if (REG_TICK (regno) >= 0)
2114 	{
2115 	  REG_TICK (regno)++;
2116 	  SUBREG_TICKED (regno) = -1;
2117 	}
2118       in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2119     }
2120 
2121   /* In the case where we have no call-clobbered hard registers in the
2122      table, we are done.  Otherwise, scan the table and remove any
2123      entry that overlaps a call-clobbered register.  */
2124 
2125   if (in_table)
2126     for (hash = 0; hash < HASH_SIZE; hash++)
2127       for (p = table[hash]; p; p = next)
2128 	{
2129 	  next = p->next_same_hash;
2130 
2131 	  if (!REG_P (p->exp)
2132 	      || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2133 	    continue;
2134 
2135 	  regno = REGNO (p->exp);
2136 	  endregno = END_REGNO (p->exp);
2137 
2138 	  for (i = regno; i < endregno; i++)
2139 	    if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2140 	      {
2141 		remove_from_table (p, hash);
2142 		break;
2143 	      }
2144 	}
2145 }
2146 
2147 /* Given an expression X of type CONST,
2148    and ELT which is its table entry (or 0 if it
2149    is not in the hash table),
2150    return an alternate expression for X as a register plus integer.
2151    If none can be found, return 0.  */
2152 
2153 static rtx
2154 use_related_value (rtx x, struct table_elt *elt)
2155 {
2156   struct table_elt *relt = 0;
2157   struct table_elt *p, *q;
2158   HOST_WIDE_INT offset;
2159 
2160   /* First, is there anything related known?
2161      If we have a table element, we can tell from that.
2162      Otherwise, must look it up.  */
2163 
2164   if (elt != 0 && elt->related_value != 0)
2165     relt = elt;
2166   else if (elt == 0 && GET_CODE (x) == CONST)
2167     {
2168       rtx subexp = get_related_value (x);
2169       if (subexp != 0)
2170 	relt = lookup (subexp,
2171 		       SAFE_HASH (subexp, GET_MODE (subexp)),
2172 		       GET_MODE (subexp));
2173     }
2174 
2175   if (relt == 0)
2176     return 0;
2177 
2178   /* Search all related table entries for one that has an
2179      equivalent register.  */
2180 
2181   p = relt;
2182   while (1)
2183     {
2184       /* This loop is strange in that it is executed in two different cases.
2185 	 The first is when X is already in the table.  Then it is searching
2186 	 the RELATED_VALUE list of X's class (RELT).  The second case is when
2187 	 X is not in the table.  Then RELT points to a class for the related
2188 	 value.
2189 
2190 	 Ensure that, whatever case we are in, that we ignore classes that have
2191 	 the same value as X.  */
2192 
2193       if (rtx_equal_p (x, p->exp))
2194 	q = 0;
2195       else
2196 	for (q = p->first_same_value; q; q = q->next_same_value)
2197 	  if (REG_P (q->exp))
2198 	    break;
2199 
2200       if (q)
2201 	break;
2202 
2203       p = p->related_value;
2204 
2205       /* We went all the way around, so there is nothing to be found.
2206 	 Alternatively, perhaps RELT was in the table for some other reason
2207 	 and it has no related values recorded.  */
2208       if (p == relt || p == 0)
2209 	break;
2210     }
2211 
2212   if (q == 0)
2213     return 0;
2214 
2215   offset = (get_integer_term (x) - get_integer_term (p->exp));
2216   /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity.  */
2217   return plus_constant (q->mode, q->exp, offset);
2218 }
2219 
2220 
2221 /* Hash a string.  Just add its bytes up.  */
2222 static inline unsigned
2223 hash_rtx_string (const char *ps)
2224 {
2225   unsigned hash = 0;
2226   const unsigned char *p = (const unsigned char *) ps;
2227 
2228   if (p)
2229     while (*p)
2230       hash += *p++;
2231 
2232   return hash;
2233 }
2234 
2235 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2236    When the callback returns true, we continue with the new rtx.  */
2237 
2238 unsigned
2239 hash_rtx_cb (const_rtx x, machine_mode mode,
2240              int *do_not_record_p, int *hash_arg_in_memory_p,
2241              bool have_reg_qty, hash_rtx_callback_function cb)
2242 {
2243   int i, j;
2244   unsigned hash = 0;
2245   enum rtx_code code;
2246   const char *fmt;
2247   machine_mode newmode;
2248   rtx newx;
2249 
2250   /* Used to turn recursion into iteration.  We can't rely on GCC's
2251      tail-recursion elimination since we need to keep accumulating values
2252      in HASH.  */
2253  repeat:
2254   if (x == 0)
2255     return hash;
2256 
2257   /* Invoke the callback first.  */
2258   if (cb != NULL
2259       && ((*cb) (x, mode, &newx, &newmode)))
2260     {
2261       hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2262                            hash_arg_in_memory_p, have_reg_qty, cb);
2263       return hash;
2264     }
2265 
2266   code = GET_CODE (x);
2267   switch (code)
2268     {
2269     case REG:
2270       {
2271 	unsigned int regno = REGNO (x);
2272 
2273 	if (do_not_record_p && !reload_completed)
2274 	  {
2275 	    /* On some machines, we can't record any non-fixed hard register,
2276 	       because extending its life will cause reload problems.  We
2277 	       consider ap, fp, sp, gp to be fixed for this purpose.
2278 
2279 	       We also consider CCmode registers to be fixed for this purpose;
2280 	       failure to do so leads to failure to simplify 0<100 type of
2281 	       conditionals.
2282 
2283 	       On all machines, we can't record any global registers.
2284 	       Nor should we record any register that is in a small
2285 	       class, as defined by TARGET_CLASS_LIKELY_SPILLED_P.  */
2286 	    bool record;
2287 
2288 	    if (regno >= FIRST_PSEUDO_REGISTER)
2289 	      record = true;
2290 	    else if (x == frame_pointer_rtx
2291 		     || x == hard_frame_pointer_rtx
2292 		     || x == arg_pointer_rtx
2293 		     || x == stack_pointer_rtx
2294 		     || x == pic_offset_table_rtx)
2295 	      record = true;
2296 	    else if (global_regs[regno])
2297 	      record = false;
2298 	    else if (fixed_regs[regno])
2299 	      record = true;
2300 	    else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2301 	      record = true;
2302 	    else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
2303 	      record = false;
2304 	    else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
2305 	      record = false;
2306 	    else
2307 	      record = true;
2308 
2309 	    if (!record)
2310 	      {
2311 		*do_not_record_p = 1;
2312 		return 0;
2313 	      }
2314 	  }
2315 
2316 	hash += ((unsigned int) REG << 7);
2317         hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2318 	return hash;
2319       }
2320 
2321     /* We handle SUBREG of a REG specially because the underlying
2322        reg changes its hash value with every value change; we don't
2323        want to have to forget unrelated subregs when one subreg changes.  */
2324     case SUBREG:
2325       {
2326 	if (REG_P (SUBREG_REG (x)))
2327 	  {
2328 	    hash += (((unsigned int) SUBREG << 7)
2329 		     + REGNO (SUBREG_REG (x))
2330 		     + (constant_lower_bound (SUBREG_BYTE (x))
2331 			/ UNITS_PER_WORD));
2332 	    return hash;
2333 	  }
2334 	break;
2335       }
2336 
2337     case CONST_INT:
2338       hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2339                + (unsigned int) INTVAL (x));
2340       return hash;
2341 
2342     case CONST_WIDE_INT:
2343       for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
2344 	hash += CONST_WIDE_INT_ELT (x, i);
2345       return hash;
2346 
2347     case CONST_POLY_INT:
2348       {
2349 	inchash::hash h;
2350 	h.add_int (hash);
2351 	for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2352 	  h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
2353 	return h.end ();
2354       }
2355 
2356     case CONST_DOUBLE:
2357       /* This is like the general case, except that it only counts
2358 	 the integers representing the constant.  */
2359       hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2360       if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
2361 	hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2362 		 + (unsigned int) CONST_DOUBLE_HIGH (x));
2363       else
2364 	hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2365       return hash;
2366 
2367     case CONST_FIXED:
2368       hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2369       hash += fixed_hash (CONST_FIXED_VALUE (x));
2370       return hash;
2371 
2372     case CONST_VECTOR:
2373       {
2374 	int units;
2375 	rtx elt;
2376 
2377 	units = const_vector_encoded_nelts (x);
2378 
2379 	for (i = 0; i < units; ++i)
2380 	  {
2381 	    elt = CONST_VECTOR_ENCODED_ELT (x, i);
2382 	    hash += hash_rtx_cb (elt, GET_MODE (elt),
2383                                  do_not_record_p, hash_arg_in_memory_p,
2384                                  have_reg_qty, cb);
2385 	  }
2386 
2387 	return hash;
2388       }
2389 
2390       /* Assume there is only one rtx object for any given label.  */
2391     case LABEL_REF:
2392       /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2393 	 differences and differences between each stage's debugging dumps.  */
2394 	 hash += (((unsigned int) LABEL_REF << 7)
2395 		  + CODE_LABEL_NUMBER (label_ref_label (x)));
2396       return hash;
2397 
2398     case SYMBOL_REF:
2399       {
2400 	/* Don't hash on the symbol's address to avoid bootstrap differences.
2401 	   Different hash values may cause expressions to be recorded in
2402 	   different orders and thus different registers to be used in the
2403 	   final assembler.  This also avoids differences in the dump files
2404 	   between various stages.  */
2405 	unsigned int h = 0;
2406 	const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2407 
2408 	while (*p)
2409 	  h += (h << 7) + *p++; /* ??? revisit */
2410 
2411 	hash += ((unsigned int) SYMBOL_REF << 7) + h;
2412 	return hash;
2413       }
2414 
2415     case MEM:
2416       /* We don't record if marked volatile or if BLKmode since we don't
2417 	 know the size of the move.  */
2418       if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2419 	{
2420 	  *do_not_record_p = 1;
2421 	  return 0;
2422 	}
2423       if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2424 	*hash_arg_in_memory_p = 1;
2425 
2426       /* Now that we have already found this special case,
2427 	 might as well speed it up as much as possible.  */
2428       hash += (unsigned) MEM;
2429       x = XEXP (x, 0);
2430       goto repeat;
2431 
2432     case USE:
2433       /* A USE that mentions non-volatile memory needs special
2434 	 handling since the MEM may be BLKmode which normally
2435 	 prevents an entry from being made.  Pure calls are
2436 	 marked by a USE which mentions BLKmode memory.
2437 	 See calls.c:emit_call_1.  */
2438       if (MEM_P (XEXP (x, 0))
2439 	  && ! MEM_VOLATILE_P (XEXP (x, 0)))
2440 	{
2441 	  hash += (unsigned) USE;
2442 	  x = XEXP (x, 0);
2443 
2444 	  if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2445 	    *hash_arg_in_memory_p = 1;
2446 
2447 	  /* Now that we have already found this special case,
2448 	     might as well speed it up as much as possible.  */
2449 	  hash += (unsigned) MEM;
2450 	  x = XEXP (x, 0);
2451 	  goto repeat;
2452 	}
2453       break;
2454 
2455     case PRE_DEC:
2456     case PRE_INC:
2457     case POST_DEC:
2458     case POST_INC:
2459     case PRE_MODIFY:
2460     case POST_MODIFY:
2461     case PC:
2462     case CC0:
2463     case CALL:
2464     case UNSPEC_VOLATILE:
2465       if (do_not_record_p) {
2466         *do_not_record_p = 1;
2467         return 0;
2468       }
2469       else
2470         return hash;
2471       break;
2472 
2473     case ASM_OPERANDS:
2474       if (do_not_record_p && MEM_VOLATILE_P (x))
2475 	{
2476 	  *do_not_record_p = 1;
2477 	  return 0;
2478 	}
2479       else
2480 	{
2481 	  /* We don't want to take the filename and line into account.  */
2482 	  hash += (unsigned) code + (unsigned) GET_MODE (x)
2483 	    + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2484 	    + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2485 	    + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2486 
2487 	  if (ASM_OPERANDS_INPUT_LENGTH (x))
2488 	    {
2489 	      for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2490 		{
2491 		  hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2492                                         GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2493                                         do_not_record_p, hash_arg_in_memory_p,
2494                                         have_reg_qty, cb)
2495 			   + hash_rtx_string
2496                            (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2497 		}
2498 
2499 	      hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2500 	      x = ASM_OPERANDS_INPUT (x, 0);
2501 	      mode = GET_MODE (x);
2502 	      goto repeat;
2503 	    }
2504 
2505 	  return hash;
2506 	}
2507       break;
2508 
2509     default:
2510       break;
2511     }
2512 
2513   i = GET_RTX_LENGTH (code) - 1;
2514   hash += (unsigned) code + (unsigned) GET_MODE (x);
2515   fmt = GET_RTX_FORMAT (code);
2516   for (; i >= 0; i--)
2517     {
2518       switch (fmt[i])
2519 	{
2520 	case 'e':
2521 	  /* If we are about to do the last recursive call
2522 	     needed at this level, change it into iteration.
2523 	     This function  is called enough to be worth it.  */
2524 	  if (i == 0)
2525 	    {
2526 	      x = XEXP (x, i);
2527 	      goto repeat;
2528 	    }
2529 
2530 	  hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2531                                hash_arg_in_memory_p,
2532                                have_reg_qty, cb);
2533 	  break;
2534 
2535 	case 'E':
2536 	  for (j = 0; j < XVECLEN (x, i); j++)
2537 	    hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2538                                  hash_arg_in_memory_p,
2539                                  have_reg_qty, cb);
2540 	  break;
2541 
2542 	case 's':
2543 	  hash += hash_rtx_string (XSTR (x, i));
2544 	  break;
2545 
2546 	case 'i':
2547 	  hash += (unsigned int) XINT (x, i);
2548 	  break;
2549 
2550 	case 'p':
2551 	  hash += constant_lower_bound (SUBREG_BYTE (x));
2552 	  break;
2553 
2554 	case '0': case 't':
2555 	  /* Unused.  */
2556 	  break;
2557 
2558 	default:
2559 	  gcc_unreachable ();
2560 	}
2561     }
2562 
2563   return hash;
2564 }
2565 
2566 /* Hash an rtx.  We are careful to make sure the value is never negative.
2567    Equivalent registers hash identically.
2568    MODE is used in hashing for CONST_INTs only;
2569    otherwise the mode of X is used.
2570 
2571    Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2572 
2573    If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2574    a MEM rtx which does not have the MEM_READONLY_P flag set.
2575 
2576    Note that cse_insn knows that the hash code of a MEM expression
2577    is just (int) MEM plus the hash code of the address.  */
2578 
2579 unsigned
2580 hash_rtx (const_rtx x, machine_mode mode, int *do_not_record_p,
2581 	  int *hash_arg_in_memory_p, bool have_reg_qty)
2582 {
2583   return hash_rtx_cb (x, mode, do_not_record_p,
2584                       hash_arg_in_memory_p, have_reg_qty, NULL);
2585 }
2586 
2587 /* Hash an rtx X for cse via hash_rtx.
2588    Stores 1 in do_not_record if any subexpression is volatile.
2589    Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2590    does not have the MEM_READONLY_P flag set.  */
2591 
2592 static inline unsigned
2593 canon_hash (rtx x, machine_mode mode)
2594 {
2595   return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2596 }
2597 
2598 /* Like canon_hash but with no side effects, i.e. do_not_record
2599    and hash_arg_in_memory are not changed.  */
2600 
2601 static inline unsigned
2602 safe_hash (rtx x, machine_mode mode)
2603 {
2604   int dummy_do_not_record;
2605   return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2606 }
2607 
2608 /* Return 1 iff X and Y would canonicalize into the same thing,
2609    without actually constructing the canonicalization of either one.
2610    If VALIDATE is nonzero,
2611    we assume X is an expression being processed from the rtl
2612    and Y was found in the hash table.  We check register refs
2613    in Y for being marked as valid.
2614 
2615    If FOR_GCSE is true, we compare X and Y for equivalence for GCSE.  */
2616 
2617 int
2618 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2619 {
2620   int i, j;
2621   enum rtx_code code;
2622   const char *fmt;
2623 
2624   /* Note: it is incorrect to assume an expression is equivalent to itself
2625      if VALIDATE is nonzero.  */
2626   if (x == y && !validate)
2627     return 1;
2628 
2629   if (x == 0 || y == 0)
2630     return x == y;
2631 
2632   code = GET_CODE (x);
2633   if (code != GET_CODE (y))
2634     return 0;
2635 
2636   /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
2637   if (GET_MODE (x) != GET_MODE (y))
2638     return 0;
2639 
2640   /* MEMs referring to different address space are not equivalent.  */
2641   if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2642     return 0;
2643 
2644   switch (code)
2645     {
2646     case PC:
2647     case CC0:
2648     CASE_CONST_UNIQUE:
2649       return x == y;
2650 
2651     case LABEL_REF:
2652       return label_ref_label (x) == label_ref_label (y);
2653 
2654     case SYMBOL_REF:
2655       return XSTR (x, 0) == XSTR (y, 0);
2656 
2657     case REG:
2658       if (for_gcse)
2659 	return REGNO (x) == REGNO (y);
2660       else
2661 	{
2662 	  unsigned int regno = REGNO (y);
2663 	  unsigned int i;
2664 	  unsigned int endregno = END_REGNO (y);
2665 
2666 	  /* If the quantities are not the same, the expressions are not
2667 	     equivalent.  If there are and we are not to validate, they
2668 	     are equivalent.  Otherwise, ensure all regs are up-to-date.  */
2669 
2670 	  if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2671 	    return 0;
2672 
2673 	  if (! validate)
2674 	    return 1;
2675 
2676 	  for (i = regno; i < endregno; i++)
2677 	    if (REG_IN_TABLE (i) != REG_TICK (i))
2678 	      return 0;
2679 
2680 	  return 1;
2681 	}
2682 
2683     case MEM:
2684       if (for_gcse)
2685 	{
2686 	  /* A volatile mem should not be considered equivalent to any
2687 	     other.  */
2688 	  if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2689 	    return 0;
2690 
2691 	  /* Can't merge two expressions in different alias sets, since we
2692 	     can decide that the expression is transparent in a block when
2693 	     it isn't, due to it being set with the different alias set.
2694 
2695 	     Also, can't merge two expressions with different MEM_ATTRS.
2696 	     They could e.g. be two different entities allocated into the
2697 	     same space on the stack (see e.g. PR25130).  In that case, the
2698 	     MEM addresses can be the same, even though the two MEMs are
2699 	     absolutely not equivalent.
2700 
2701 	     But because really all MEM attributes should be the same for
2702 	     equivalent MEMs, we just use the invariant that MEMs that have
2703 	     the same attributes share the same mem_attrs data structure.  */
2704 	  if (!mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
2705 	    return 0;
2706 
2707 	  /* If we are handling exceptions, we cannot consider two expressions
2708 	     with different trapping status as equivalent, because simple_mem
2709 	     might accept one and reject the other.  */
2710 	  if (cfun->can_throw_non_call_exceptions
2711 	      && (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y)))
2712 	    return 0;
2713 	}
2714       break;
2715 
2716     /*  For commutative operations, check both orders.  */
2717     case PLUS:
2718     case MULT:
2719     case AND:
2720     case IOR:
2721     case XOR:
2722     case NE:
2723     case EQ:
2724       return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2725 			     validate, for_gcse)
2726 	       && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2727 				validate, for_gcse))
2728 	      || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2729 				validate, for_gcse)
2730 		  && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2731 				   validate, for_gcse)));
2732 
2733     case ASM_OPERANDS:
2734       /* We don't use the generic code below because we want to
2735 	 disregard filename and line numbers.  */
2736 
2737       /* A volatile asm isn't equivalent to any other.  */
2738       if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2739 	return 0;
2740 
2741       if (GET_MODE (x) != GET_MODE (y)
2742 	  || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2743 	  || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2744 		     ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2745 	  || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2746 	  || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2747 	return 0;
2748 
2749       if (ASM_OPERANDS_INPUT_LENGTH (x))
2750 	{
2751 	  for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2752 	    if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2753 			       ASM_OPERANDS_INPUT (y, i),
2754 			       validate, for_gcse)
2755 		|| strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2756 			   ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2757 	      return 0;
2758 	}
2759 
2760       return 1;
2761 
2762     default:
2763       break;
2764     }
2765 
2766   /* Compare the elements.  If any pair of corresponding elements
2767      fail to match, return 0 for the whole thing.  */
2768 
2769   fmt = GET_RTX_FORMAT (code);
2770   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2771     {
2772       switch (fmt[i])
2773 	{
2774 	case 'e':
2775 	  if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2776 			      validate, for_gcse))
2777 	    return 0;
2778 	  break;
2779 
2780 	case 'E':
2781 	  if (XVECLEN (x, i) != XVECLEN (y, i))
2782 	    return 0;
2783 	  for (j = 0; j < XVECLEN (x, i); j++)
2784 	    if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2785 				validate, for_gcse))
2786 	      return 0;
2787 	  break;
2788 
2789 	case 's':
2790 	  if (strcmp (XSTR (x, i), XSTR (y, i)))
2791 	    return 0;
2792 	  break;
2793 
2794 	case 'i':
2795 	  if (XINT (x, i) != XINT (y, i))
2796 	    return 0;
2797 	  break;
2798 
2799 	case 'w':
2800 	  if (XWINT (x, i) != XWINT (y, i))
2801 	    return 0;
2802 	  break;
2803 
2804 	case 'p':
2805 	  if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
2806 	    return 0;
2807 	  break;
2808 
2809 	case '0':
2810 	case 't':
2811 	  break;
2812 
2813 	default:
2814 	  gcc_unreachable ();
2815 	}
2816     }
2817 
2818   return 1;
2819 }
2820 
2821 /* Subroutine of canon_reg.  Pass *XLOC through canon_reg, and validate
2822    the result if necessary.  INSN is as for canon_reg.  */
2823 
2824 static void
2825 validate_canon_reg (rtx *xloc, rtx_insn *insn)
2826 {
2827   if (*xloc)
2828     {
2829       rtx new_rtx = canon_reg (*xloc, insn);
2830 
2831       /* If replacing pseudo with hard reg or vice versa, ensure the
2832          insn remains valid.  Likewise if the insn has MATCH_DUPs.  */
2833       gcc_assert (insn && new_rtx);
2834       validate_change (insn, xloc, new_rtx, 1);
2835     }
2836 }
2837 
2838 /* Canonicalize an expression:
2839    replace each register reference inside it
2840    with the "oldest" equivalent register.
2841 
2842    If INSN is nonzero validate_change is used to ensure that INSN remains valid
2843    after we make our substitution.  The calls are made with IN_GROUP nonzero
2844    so apply_change_group must be called upon the outermost return from this
2845    function (unless INSN is zero).  The result of apply_change_group can
2846    generally be discarded since the changes we are making are optional.  */
2847 
2848 static rtx
2849 canon_reg (rtx x, rtx_insn *insn)
2850 {
2851   int i;
2852   enum rtx_code code;
2853   const char *fmt;
2854 
2855   if (x == 0)
2856     return x;
2857 
2858   code = GET_CODE (x);
2859   switch (code)
2860     {
2861     case PC:
2862     case CC0:
2863     case CONST:
2864     CASE_CONST_ANY:
2865     case SYMBOL_REF:
2866     case LABEL_REF:
2867     case ADDR_VEC:
2868     case ADDR_DIFF_VEC:
2869       return x;
2870 
2871     case REG:
2872       {
2873 	int first;
2874 	int q;
2875 	struct qty_table_elem *ent;
2876 
2877 	/* Never replace a hard reg, because hard regs can appear
2878 	   in more than one machine mode, and we must preserve the mode
2879 	   of each occurrence.  Also, some hard regs appear in
2880 	   MEMs that are shared and mustn't be altered.  Don't try to
2881 	   replace any reg that maps to a reg of class NO_REGS.  */
2882 	if (REGNO (x) < FIRST_PSEUDO_REGISTER
2883 	    || ! REGNO_QTY_VALID_P (REGNO (x)))
2884 	  return x;
2885 
2886 	q = REG_QTY (REGNO (x));
2887 	ent = &qty_table[q];
2888 	first = ent->first_reg;
2889 	return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2890 		: REGNO_REG_CLASS (first) == NO_REGS ? x
2891 		: gen_rtx_REG (ent->mode, first));
2892       }
2893 
2894     default:
2895       break;
2896     }
2897 
2898   fmt = GET_RTX_FORMAT (code);
2899   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2900     {
2901       int j;
2902 
2903       if (fmt[i] == 'e')
2904 	validate_canon_reg (&XEXP (x, i), insn);
2905       else if (fmt[i] == 'E')
2906 	for (j = 0; j < XVECLEN (x, i); j++)
2907 	  validate_canon_reg (&XVECEXP (x, i, j), insn);
2908     }
2909 
2910   return x;
2911 }
2912 
2913 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2914    operation (EQ, NE, GT, etc.), follow it back through the hash table and
2915    what values are being compared.
2916 
2917    *PARG1 and *PARG2 are updated to contain the rtx representing the values
2918    actually being compared.  For example, if *PARG1 was (cc0) and *PARG2
2919    was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2920    compared to produce cc0.
2921 
2922    The return value is the comparison operator and is either the code of
2923    A or the code corresponding to the inverse of the comparison.  */
2924 
2925 static enum rtx_code
2926 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2927 		      machine_mode *pmode1, machine_mode *pmode2)
2928 {
2929   rtx arg1, arg2;
2930   hash_set<rtx> *visited = NULL;
2931   /* Set nonzero when we find something of interest.  */
2932   rtx x = NULL;
2933 
2934   arg1 = *parg1, arg2 = *parg2;
2935 
2936   /* If ARG2 is const0_rtx, see what ARG1 is equivalent to.  */
2937 
2938   while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2939     {
2940       int reverse_code = 0;
2941       struct table_elt *p = 0;
2942 
2943       /* Remember state from previous iteration.  */
2944       if (x)
2945 	{
2946 	  if (!visited)
2947 	    visited = new hash_set<rtx>;
2948 	  visited->add (x);
2949 	  x = 0;
2950 	}
2951 
2952       /* If arg1 is a COMPARE, extract the comparison arguments from it.
2953 	 On machines with CC0, this is the only case that can occur, since
2954 	 fold_rtx will return the COMPARE or item being compared with zero
2955 	 when given CC0.  */
2956 
2957       if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2958 	x = arg1;
2959 
2960       /* If ARG1 is a comparison operator and CODE is testing for
2961 	 STORE_FLAG_VALUE, get the inner arguments.  */
2962 
2963       else if (COMPARISON_P (arg1))
2964 	{
2965 #ifdef FLOAT_STORE_FLAG_VALUE
2966 	  REAL_VALUE_TYPE fsfv;
2967 #endif
2968 
2969 	  if (code == NE
2970 	      || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2971 		  && code == LT && STORE_FLAG_VALUE == -1)
2972 #ifdef FLOAT_STORE_FLAG_VALUE
2973 	      || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2974 		  && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2975 		      REAL_VALUE_NEGATIVE (fsfv)))
2976 #endif
2977 	      )
2978 	    x = arg1;
2979 	  else if (code == EQ
2980 		   || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2981 		       && code == GE && STORE_FLAG_VALUE == -1)
2982 #ifdef FLOAT_STORE_FLAG_VALUE
2983 		   || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2984 		       && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2985 			   REAL_VALUE_NEGATIVE (fsfv)))
2986 #endif
2987 		   )
2988 	    x = arg1, reverse_code = 1;
2989 	}
2990 
2991       /* ??? We could also check for
2992 
2993 	 (ne (and (eq (...) (const_int 1))) (const_int 0))
2994 
2995 	 and related forms, but let's wait until we see them occurring.  */
2996 
2997       if (x == 0)
2998 	/* Look up ARG1 in the hash table and see if it has an equivalence
2999 	   that lets us see what is being compared.  */
3000 	p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
3001       if (p)
3002 	{
3003 	  p = p->first_same_value;
3004 
3005 	  /* If what we compare is already known to be constant, that is as
3006 	     good as it gets.
3007 	     We need to break the loop in this case, because otherwise we
3008 	     can have an infinite loop when looking at a reg that is known
3009 	     to be a constant which is the same as a comparison of a reg
3010 	     against zero which appears later in the insn stream, which in
3011 	     turn is constant and the same as the comparison of the first reg
3012 	     against zero...  */
3013 	  if (p->is_const)
3014 	    break;
3015 	}
3016 
3017       for (; p; p = p->next_same_value)
3018 	{
3019 	  machine_mode inner_mode = GET_MODE (p->exp);
3020 #ifdef FLOAT_STORE_FLAG_VALUE
3021 	  REAL_VALUE_TYPE fsfv;
3022 #endif
3023 
3024 	  /* If the entry isn't valid, skip it.  */
3025 	  if (! exp_equiv_p (p->exp, p->exp, 1, false))
3026 	    continue;
3027 
3028 	  /* If it's a comparison we've used before, skip it.  */
3029 	  if (visited && visited->contains (p->exp))
3030 	    continue;
3031 
3032 	  if (GET_CODE (p->exp) == COMPARE
3033 	      /* Another possibility is that this machine has a compare insn
3034 		 that includes the comparison code.  In that case, ARG1 would
3035 		 be equivalent to a comparison operation that would set ARG1 to
3036 		 either STORE_FLAG_VALUE or zero.  If this is an NE operation,
3037 		 ORIG_CODE is the actual comparison being done; if it is an EQ,
3038 		 we must reverse ORIG_CODE.  On machine with a negative value
3039 		 for STORE_FLAG_VALUE, also look at LT and GE operations.  */
3040 	      || ((code == NE
3041 		   || (code == LT
3042 		       && val_signbit_known_set_p (inner_mode,
3043 						   STORE_FLAG_VALUE))
3044 #ifdef FLOAT_STORE_FLAG_VALUE
3045 		   || (code == LT
3046 		       && SCALAR_FLOAT_MODE_P (inner_mode)
3047 		       && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3048 			   REAL_VALUE_NEGATIVE (fsfv)))
3049 #endif
3050 		   )
3051 		  && COMPARISON_P (p->exp)))
3052 	    {
3053 	      x = p->exp;
3054 	      break;
3055 	    }
3056 	  else if ((code == EQ
3057 		    || (code == GE
3058 			&& val_signbit_known_set_p (inner_mode,
3059 						    STORE_FLAG_VALUE))
3060 #ifdef FLOAT_STORE_FLAG_VALUE
3061 		    || (code == GE
3062 			&& SCALAR_FLOAT_MODE_P (inner_mode)
3063 			&& (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3064 			    REAL_VALUE_NEGATIVE (fsfv)))
3065 #endif
3066 		    )
3067 		   && COMPARISON_P (p->exp))
3068 	    {
3069 	      reverse_code = 1;
3070 	      x = p->exp;
3071 	      break;
3072 	    }
3073 
3074 	  /* If this non-trapping address, e.g. fp + constant, the
3075 	     equivalent is a better operand since it may let us predict
3076 	     the value of the comparison.  */
3077 	  else if (!rtx_addr_can_trap_p (p->exp))
3078 	    {
3079 	      arg1 = p->exp;
3080 	      continue;
3081 	    }
3082 	}
3083 
3084       /* If we didn't find a useful equivalence for ARG1, we are done.
3085 	 Otherwise, set up for the next iteration.  */
3086       if (x == 0)
3087 	break;
3088 
3089       /* If we need to reverse the comparison, make sure that is
3090 	 possible -- we can't necessarily infer the value of GE from LT
3091 	 with floating-point operands.  */
3092       if (reverse_code)
3093 	{
3094 	  enum rtx_code reversed = reversed_comparison_code (x, NULL);
3095 	  if (reversed == UNKNOWN)
3096 	    break;
3097 	  else
3098 	    code = reversed;
3099 	}
3100       else if (COMPARISON_P (x))
3101 	code = GET_CODE (x);
3102       arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3103     }
3104 
3105   /* Return our results.  Return the modes from before fold_rtx
3106      because fold_rtx might produce const_int, and then it's too late.  */
3107   *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3108   *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3109 
3110   if (visited)
3111     delete visited;
3112   return code;
3113 }
3114 
3115 /* If X is a nontrivial arithmetic operation on an argument for which
3116    a constant value can be determined, return the result of operating
3117    on that value, as a constant.  Otherwise, return X, possibly with
3118    one or more operands changed to a forward-propagated constant.
3119 
3120    If X is a register whose contents are known, we do NOT return
3121    those contents here; equiv_constant is called to perform that task.
3122    For SUBREGs and MEMs, we do that both here and in equiv_constant.
3123 
3124    INSN is the insn that we may be modifying.  If it is 0, make a copy
3125    of X before modifying it.  */
3126 
3127 static rtx
3128 fold_rtx (rtx x, rtx_insn *insn)
3129 {
3130   enum rtx_code code;
3131   machine_mode mode;
3132   const char *fmt;
3133   int i;
3134   rtx new_rtx = 0;
3135   int changed = 0;
3136   poly_int64 xval;
3137 
3138   /* Operands of X.  */
3139   /* Workaround -Wmaybe-uninitialized false positive during
3140      profiledbootstrap by initializing them.  */
3141   rtx folded_arg0 = NULL_RTX;
3142   rtx folded_arg1 = NULL_RTX;
3143 
3144   /* Constant equivalents of first three operands of X;
3145      0 when no such equivalent is known.  */
3146   rtx const_arg0;
3147   rtx const_arg1;
3148   rtx const_arg2;
3149 
3150   /* The mode of the first operand of X.  We need this for sign and zero
3151      extends.  */
3152   machine_mode mode_arg0;
3153 
3154   if (x == 0)
3155     return x;
3156 
3157   /* Try to perform some initial simplifications on X.  */
3158   code = GET_CODE (x);
3159   switch (code)
3160     {
3161     case MEM:
3162     case SUBREG:
3163     /* The first operand of a SIGN/ZERO_EXTRACT has a different meaning
3164        than it would in other contexts.  Basically its mode does not
3165        signify the size of the object read.  That information is carried
3166        by size operand.    If we happen to have a MEM of the appropriate
3167        mode in our tables with a constant value we could simplify the
3168        extraction incorrectly if we allowed substitution of that value
3169        for the MEM.   */
3170     case ZERO_EXTRACT:
3171     case SIGN_EXTRACT:
3172       if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3173         return new_rtx;
3174       return x;
3175 
3176     case CONST:
3177     CASE_CONST_ANY:
3178     case SYMBOL_REF:
3179     case LABEL_REF:
3180     case REG:
3181     case PC:
3182       /* No use simplifying an EXPR_LIST
3183 	 since they are used only for lists of args
3184 	 in a function call's REG_EQUAL note.  */
3185     case EXPR_LIST:
3186       return x;
3187 
3188     case CC0:
3189       return prev_insn_cc0;
3190 
3191     case ASM_OPERANDS:
3192       if (insn)
3193 	{
3194 	  for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3195 	    validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3196 			     fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3197 	}
3198       return x;
3199 
3200     case CALL:
3201       if (NO_FUNCTION_CSE && CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3202 	return x;
3203       break;
3204 
3205     /* Anything else goes through the loop below.  */
3206     default:
3207       break;
3208     }
3209 
3210   mode = GET_MODE (x);
3211   const_arg0 = 0;
3212   const_arg1 = 0;
3213   const_arg2 = 0;
3214   mode_arg0 = VOIDmode;
3215 
3216   /* Try folding our operands.
3217      Then see which ones have constant values known.  */
3218 
3219   fmt = GET_RTX_FORMAT (code);
3220   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3221     if (fmt[i] == 'e')
3222       {
3223 	rtx folded_arg = XEXP (x, i), const_arg;
3224 	machine_mode mode_arg = GET_MODE (folded_arg);
3225 
3226 	switch (GET_CODE (folded_arg))
3227 	  {
3228 	  case MEM:
3229 	  case REG:
3230 	  case SUBREG:
3231 	    const_arg = equiv_constant (folded_arg);
3232 	    break;
3233 
3234 	  case CONST:
3235 	  CASE_CONST_ANY:
3236 	  case SYMBOL_REF:
3237 	  case LABEL_REF:
3238 	    const_arg = folded_arg;
3239 	    break;
3240 
3241 	  case CC0:
3242 	    /* The cc0-user and cc0-setter may be in different blocks if
3243 	       the cc0-setter potentially traps.  In that case PREV_INSN_CC0
3244 	       will have been cleared as we exited the block with the
3245 	       setter.
3246 
3247 	       While we could potentially track cc0 in this case, it just
3248 	       doesn't seem to be worth it given that cc0 targets are not
3249 	       terribly common or important these days and trapping math
3250 	       is rarely used.  The combination of those two conditions
3251 	       necessary to trip this situation is exceedingly rare in the
3252 	       real world.  */
3253 	    if (!prev_insn_cc0)
3254 	      {
3255 		const_arg = NULL_RTX;
3256 	      }
3257 	    else
3258 	      {
3259 		folded_arg = prev_insn_cc0;
3260 		mode_arg = prev_insn_cc0_mode;
3261 		const_arg = equiv_constant (folded_arg);
3262 	      }
3263 	    break;
3264 
3265 	  default:
3266 	    folded_arg = fold_rtx (folded_arg, insn);
3267 	    const_arg = equiv_constant (folded_arg);
3268 	    break;
3269 	  }
3270 
3271 	/* For the first three operands, see if the operand
3272 	   is constant or equivalent to a constant.  */
3273 	switch (i)
3274 	  {
3275 	  case 0:
3276 	    folded_arg0 = folded_arg;
3277 	    const_arg0 = const_arg;
3278 	    mode_arg0 = mode_arg;
3279 	    break;
3280 	  case 1:
3281 	    folded_arg1 = folded_arg;
3282 	    const_arg1 = const_arg;
3283 	    break;
3284 	  case 2:
3285 	    const_arg2 = const_arg;
3286 	    break;
3287 	  }
3288 
3289 	/* Pick the least expensive of the argument and an equivalent constant
3290 	   argument.  */
3291 	if (const_arg != 0
3292 	    && const_arg != folded_arg
3293 	    && (COST_IN (const_arg, mode_arg, code, i)
3294 		<= COST_IN (folded_arg, mode_arg, code, i))
3295 
3296 	    /* It's not safe to substitute the operand of a conversion
3297 	       operator with a constant, as the conversion's identity
3298 	       depends upon the mode of its operand.  This optimization
3299 	       is handled by the call to simplify_unary_operation.  */
3300 	    && (GET_RTX_CLASS (code) != RTX_UNARY
3301 		|| GET_MODE (const_arg) == mode_arg0
3302 		|| (code != ZERO_EXTEND
3303 		    && code != SIGN_EXTEND
3304 		    && code != TRUNCATE
3305 		    && code != FLOAT_TRUNCATE
3306 		    && code != FLOAT_EXTEND
3307 		    && code != FLOAT
3308 		    && code != FIX
3309 		    && code != UNSIGNED_FLOAT
3310 		    && code != UNSIGNED_FIX)))
3311 	  folded_arg = const_arg;
3312 
3313 	if (folded_arg == XEXP (x, i))
3314 	  continue;
3315 
3316 	if (insn == NULL_RTX && !changed)
3317 	  x = copy_rtx (x);
3318 	changed = 1;
3319 	validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3320       }
3321 
3322   if (changed)
3323     {
3324       /* Canonicalize X if necessary, and keep const_argN and folded_argN
3325 	 consistent with the order in X.  */
3326       if (canonicalize_change_group (insn, x))
3327 	{
3328 	  std::swap (const_arg0, const_arg1);
3329 	  std::swap (folded_arg0, folded_arg1);
3330 	}
3331 
3332       apply_change_group ();
3333     }
3334 
3335   /* If X is an arithmetic operation, see if we can simplify it.  */
3336 
3337   switch (GET_RTX_CLASS (code))
3338     {
3339     case RTX_UNARY:
3340       {
3341 	/* We can't simplify extension ops unless we know the
3342 	   original mode.  */
3343 	if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3344 	    && mode_arg0 == VOIDmode)
3345 	  break;
3346 
3347 	new_rtx = simplify_unary_operation (code, mode,
3348 					    const_arg0 ? const_arg0 : folded_arg0,
3349 					    mode_arg0);
3350       }
3351       break;
3352 
3353     case RTX_COMPARE:
3354     case RTX_COMM_COMPARE:
3355       /* See what items are actually being compared and set FOLDED_ARG[01]
3356 	 to those values and CODE to the actual comparison code.  If any are
3357 	 constant, set CONST_ARG0 and CONST_ARG1 appropriately.  We needn't
3358 	 do anything if both operands are already known to be constant.  */
3359 
3360       /* ??? Vector mode comparisons are not supported yet.  */
3361       if (VECTOR_MODE_P (mode))
3362 	break;
3363 
3364       if (const_arg0 == 0 || const_arg1 == 0)
3365 	{
3366 	  struct table_elt *p0, *p1;
3367 	  rtx true_rtx, false_rtx;
3368 	  machine_mode mode_arg1;
3369 
3370 	  if (SCALAR_FLOAT_MODE_P (mode))
3371 	    {
3372 #ifdef FLOAT_STORE_FLAG_VALUE
3373 	      true_rtx = (const_double_from_real_value
3374 			  (FLOAT_STORE_FLAG_VALUE (mode), mode));
3375 #else
3376 	      true_rtx = NULL_RTX;
3377 #endif
3378 	      false_rtx = CONST0_RTX (mode);
3379 	    }
3380 	  else
3381 	    {
3382 	      true_rtx = const_true_rtx;
3383 	      false_rtx = const0_rtx;
3384 	    }
3385 
3386 	  code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3387 				       &mode_arg0, &mode_arg1);
3388 
3389 	  /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3390 	     what kinds of things are being compared, so we can't do
3391 	     anything with this comparison.  */
3392 
3393 	  if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3394 	    break;
3395 
3396 	  const_arg0 = equiv_constant (folded_arg0);
3397 	  const_arg1 = equiv_constant (folded_arg1);
3398 
3399 	  /* If we do not now have two constants being compared, see
3400 	     if we can nevertheless deduce some things about the
3401 	     comparison.  */
3402 	  if (const_arg0 == 0 || const_arg1 == 0)
3403 	    {
3404 	      if (const_arg1 != NULL)
3405 		{
3406 		  rtx cheapest_simplification;
3407 		  int cheapest_cost;
3408 		  rtx simp_result;
3409 		  struct table_elt *p;
3410 
3411 		  /* See if we can find an equivalent of folded_arg0
3412 		     that gets us a cheaper expression, possibly a
3413 		     constant through simplifications.  */
3414 		  p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3415 			      mode_arg0);
3416 
3417 		  if (p != NULL)
3418 		    {
3419 		      cheapest_simplification = x;
3420 		      cheapest_cost = COST (x, mode);
3421 
3422 		      for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3423 			{
3424 			  int cost;
3425 
3426 			  /* If the entry isn't valid, skip it.  */
3427 			  if (! exp_equiv_p (p->exp, p->exp, 1, false))
3428 			    continue;
3429 
3430 			  /* Try to simplify using this equivalence.  */
3431 			  simp_result
3432 			    = simplify_relational_operation (code, mode,
3433 							     mode_arg0,
3434 							     p->exp,
3435 							     const_arg1);
3436 
3437 			  if (simp_result == NULL)
3438 			    continue;
3439 
3440 			  cost = COST (simp_result, mode);
3441 			  if (cost < cheapest_cost)
3442 			    {
3443 			      cheapest_cost = cost;
3444 			      cheapest_simplification = simp_result;
3445 			    }
3446 			}
3447 
3448 		      /* If we have a cheaper expression now, use that
3449 			 and try folding it further, from the top.  */
3450 		      if (cheapest_simplification != x)
3451 			return fold_rtx (copy_rtx (cheapest_simplification),
3452 					 insn);
3453 		    }
3454 		}
3455 
3456 	      /* See if the two operands are the same.  */
3457 
3458 	      if ((REG_P (folded_arg0)
3459 		   && REG_P (folded_arg1)
3460 		   && (REG_QTY (REGNO (folded_arg0))
3461 		       == REG_QTY (REGNO (folded_arg1))))
3462 		  || ((p0 = lookup (folded_arg0,
3463 				    SAFE_HASH (folded_arg0, mode_arg0),
3464 				    mode_arg0))
3465 		      && (p1 = lookup (folded_arg1,
3466 				       SAFE_HASH (folded_arg1, mode_arg0),
3467 				       mode_arg0))
3468 		      && p0->first_same_value == p1->first_same_value))
3469 		folded_arg1 = folded_arg0;
3470 
3471 	      /* If FOLDED_ARG0 is a register, see if the comparison we are
3472 		 doing now is either the same as we did before or the reverse
3473 		 (we only check the reverse if not floating-point).  */
3474 	      else if (REG_P (folded_arg0))
3475 		{
3476 		  int qty = REG_QTY (REGNO (folded_arg0));
3477 
3478 		  if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3479 		    {
3480 		      struct qty_table_elem *ent = &qty_table[qty];
3481 
3482 		      if ((comparison_dominates_p (ent->comparison_code, code)
3483 			   || (! FLOAT_MODE_P (mode_arg0)
3484 			       && comparison_dominates_p (ent->comparison_code,
3485 						          reverse_condition (code))))
3486 			  && (rtx_equal_p (ent->comparison_const, folded_arg1)
3487 			      || (const_arg1
3488 				  && rtx_equal_p (ent->comparison_const,
3489 						  const_arg1))
3490 			      || (REG_P (folded_arg1)
3491 				  && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3492 			{
3493 			  if (comparison_dominates_p (ent->comparison_code, code))
3494 			    {
3495 			      if (true_rtx)
3496 				return true_rtx;
3497 			      else
3498 				break;
3499 			    }
3500 			  else
3501 			    return false_rtx;
3502 			}
3503 		    }
3504 		}
3505 	    }
3506 	}
3507 
3508       /* If we are comparing against zero, see if the first operand is
3509 	 equivalent to an IOR with a constant.  If so, we may be able to
3510 	 determine the result of this comparison.  */
3511       if (const_arg1 == const0_rtx && !const_arg0)
3512 	{
3513 	  rtx y = lookup_as_function (folded_arg0, IOR);
3514 	  rtx inner_const;
3515 
3516 	  if (y != 0
3517 	      && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3518 	      && CONST_INT_P (inner_const)
3519 	      && INTVAL (inner_const) != 0)
3520 	    folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3521 	}
3522 
3523       {
3524 	rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0);
3525 	rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1);
3526 	new_rtx = simplify_relational_operation (code, mode, mode_arg0,
3527 						 op0, op1);
3528       }
3529       break;
3530 
3531     case RTX_BIN_ARITH:
3532     case RTX_COMM_ARITH:
3533       switch (code)
3534 	{
3535 	case PLUS:
3536 	  /* If the second operand is a LABEL_REF, see if the first is a MINUS
3537 	     with that LABEL_REF as its second operand.  If so, the result is
3538 	     the first operand of that MINUS.  This handles switches with an
3539 	     ADDR_DIFF_VEC table.  */
3540 	  if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3541 	    {
3542 	      rtx y
3543 		= GET_CODE (folded_arg0) == MINUS ? folded_arg0
3544 		: lookup_as_function (folded_arg0, MINUS);
3545 
3546 	      if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3547 		  && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg1))
3548 		return XEXP (y, 0);
3549 
3550 	      /* Now try for a CONST of a MINUS like the above.  */
3551 	      if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3552 			: lookup_as_function (folded_arg0, CONST))) != 0
3553 		  && GET_CODE (XEXP (y, 0)) == MINUS
3554 		  && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3555 		  && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg1))
3556 		return XEXP (XEXP (y, 0), 0);
3557 	    }
3558 
3559 	  /* Likewise if the operands are in the other order.  */
3560 	  if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3561 	    {
3562 	      rtx y
3563 		= GET_CODE (folded_arg1) == MINUS ? folded_arg1
3564 		: lookup_as_function (folded_arg1, MINUS);
3565 
3566 	      if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3567 		  && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg0))
3568 		return XEXP (y, 0);
3569 
3570 	      /* Now try for a CONST of a MINUS like the above.  */
3571 	      if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3572 			: lookup_as_function (folded_arg1, CONST))) != 0
3573 		  && GET_CODE (XEXP (y, 0)) == MINUS
3574 		  && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3575 		  && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg0))
3576 		return XEXP (XEXP (y, 0), 0);
3577 	    }
3578 
3579 	  /* If second operand is a register equivalent to a negative
3580 	     CONST_INT, see if we can find a register equivalent to the
3581 	     positive constant.  Make a MINUS if so.  Don't do this for
3582 	     a non-negative constant since we might then alternate between
3583 	     choosing positive and negative constants.  Having the positive
3584 	     constant previously-used is the more common case.  Be sure
3585 	     the resulting constant is non-negative; if const_arg1 were
3586 	     the smallest negative number this would overflow: depending
3587 	     on the mode, this would either just be the same value (and
3588 	     hence not save anything) or be incorrect.  */
3589 	  if (const_arg1 != 0 && CONST_INT_P (const_arg1)
3590 	      && INTVAL (const_arg1) < 0
3591 	      /* This used to test
3592 
3593 	         -INTVAL (const_arg1) >= 0
3594 
3595 		 But The Sun V5.0 compilers mis-compiled that test.  So
3596 		 instead we test for the problematic value in a more direct
3597 		 manner and hope the Sun compilers get it correct.  */
3598 	      && INTVAL (const_arg1) !=
3599 	        (HOST_WIDE_INT_1 << (HOST_BITS_PER_WIDE_INT - 1))
3600 	      && REG_P (folded_arg1))
3601 	    {
3602 	      rtx new_const = GEN_INT (-INTVAL (const_arg1));
3603 	      struct table_elt *p
3604 		= lookup (new_const, SAFE_HASH (new_const, mode), mode);
3605 
3606 	      if (p)
3607 		for (p = p->first_same_value; p; p = p->next_same_value)
3608 		  if (REG_P (p->exp))
3609 		    return simplify_gen_binary (MINUS, mode, folded_arg0,
3610 						canon_reg (p->exp, NULL));
3611 	    }
3612 	  goto from_plus;
3613 
3614 	case MINUS:
3615 	  /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3616 	     If so, produce (PLUS Z C2-C).  */
3617 	  if (const_arg1 != 0 && poly_int_rtx_p (const_arg1, &xval))
3618 	    {
3619 	      rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3620 	      if (y && poly_int_rtx_p (XEXP (y, 1)))
3621 		return fold_rtx (plus_constant (mode, copy_rtx (y), -xval),
3622 				 NULL);
3623 	    }
3624 
3625 	  /* Fall through.  */
3626 
3627 	from_plus:
3628 	case SMIN:    case SMAX:      case UMIN:    case UMAX:
3629 	case IOR:     case AND:       case XOR:
3630 	case MULT:
3631 	case ASHIFT:  case LSHIFTRT:  case ASHIFTRT:
3632 	  /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3633 	     is known to be of similar form, we may be able to replace the
3634 	     operation with a combined operation.  This may eliminate the
3635 	     intermediate operation if every use is simplified in this way.
3636 	     Note that the similar optimization done by combine.c only works
3637 	     if the intermediate operation's result has only one reference.  */
3638 
3639 	  if (REG_P (folded_arg0)
3640 	      && const_arg1 && CONST_INT_P (const_arg1))
3641 	    {
3642 	      int is_shift
3643 		= (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3644 	      rtx y, inner_const, new_const;
3645 	      rtx canon_const_arg1 = const_arg1;
3646 	      enum rtx_code associate_code;
3647 
3648 	      if (is_shift
3649 		  && (INTVAL (const_arg1) >= GET_MODE_UNIT_PRECISION (mode)
3650 		      || INTVAL (const_arg1) < 0))
3651 		{
3652 		  if (SHIFT_COUNT_TRUNCATED)
3653 		    canon_const_arg1 = gen_int_shift_amount
3654 		      (mode, (INTVAL (const_arg1)
3655 			      & (GET_MODE_UNIT_BITSIZE (mode) - 1)));
3656 		  else
3657 		    break;
3658 		}
3659 
3660 	      y = lookup_as_function (folded_arg0, code);
3661 	      if (y == 0)
3662 		break;
3663 
3664 	      /* If we have compiled a statement like
3665 		 "if (x == (x & mask1))", and now are looking at
3666 		 "x & mask2", we will have a case where the first operand
3667 		 of Y is the same as our first operand.  Unless we detect
3668 		 this case, an infinite loop will result.  */
3669 	      if (XEXP (y, 0) == folded_arg0)
3670 		break;
3671 
3672 	      inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3673 	      if (!inner_const || !CONST_INT_P (inner_const))
3674 		break;
3675 
3676 	      /* Don't associate these operations if they are a PLUS with the
3677 		 same constant and it is a power of two.  These might be doable
3678 		 with a pre- or post-increment.  Similarly for two subtracts of
3679 		 identical powers of two with post decrement.  */
3680 
3681 	      if (code == PLUS && const_arg1 == inner_const
3682 		  && ((HAVE_PRE_INCREMENT
3683 			  && pow2p_hwi (INTVAL (const_arg1)))
3684 		      || (HAVE_POST_INCREMENT
3685 			  && pow2p_hwi (INTVAL (const_arg1)))
3686 		      || (HAVE_PRE_DECREMENT
3687 			  && pow2p_hwi (- INTVAL (const_arg1)))
3688 		      || (HAVE_POST_DECREMENT
3689 			  && pow2p_hwi (- INTVAL (const_arg1)))))
3690 		break;
3691 
3692 	      /* ??? Vector mode shifts by scalar
3693 		 shift operand are not supported yet.  */
3694 	      if (is_shift && VECTOR_MODE_P (mode))
3695                 break;
3696 
3697 	      if (is_shift
3698 		  && (INTVAL (inner_const) >= GET_MODE_UNIT_PRECISION (mode)
3699 		      || INTVAL (inner_const) < 0))
3700 		{
3701 		  if (SHIFT_COUNT_TRUNCATED)
3702 		    inner_const = gen_int_shift_amount
3703 		      (mode, (INTVAL (inner_const)
3704 			      & (GET_MODE_UNIT_BITSIZE (mode) - 1)));
3705 		  else
3706 		    break;
3707 		}
3708 
3709 	      /* Compute the code used to compose the constants.  For example,
3710 		 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS.  */
3711 
3712 	      associate_code = (is_shift || code == MINUS ? PLUS : code);
3713 
3714 	      new_const = simplify_binary_operation (associate_code, mode,
3715 						     canon_const_arg1,
3716 						     inner_const);
3717 
3718 	      if (new_const == 0)
3719 		break;
3720 
3721 	      /* If we are associating shift operations, don't let this
3722 		 produce a shift of the size of the object or larger.
3723 		 This could occur when we follow a sign-extend by a right
3724 		 shift on a machine that does a sign-extend as a pair
3725 		 of shifts.  */
3726 
3727 	      if (is_shift
3728 		  && CONST_INT_P (new_const)
3729 		  && INTVAL (new_const) >= GET_MODE_UNIT_PRECISION (mode))
3730 		{
3731 		  /* As an exception, we can turn an ASHIFTRT of this
3732 		     form into a shift of the number of bits - 1.  */
3733 		  if (code == ASHIFTRT)
3734 		    new_const = gen_int_shift_amount
3735 		      (mode, GET_MODE_UNIT_BITSIZE (mode) - 1);
3736 		  else if (!side_effects_p (XEXP (y, 0)))
3737 		    return CONST0_RTX (mode);
3738 		  else
3739 		    break;
3740 		}
3741 
3742 	      y = copy_rtx (XEXP (y, 0));
3743 
3744 	      /* If Y contains our first operand (the most common way this
3745 		 can happen is if Y is a MEM), we would do into an infinite
3746 		 loop if we tried to fold it.  So don't in that case.  */
3747 
3748 	      if (! reg_mentioned_p (folded_arg0, y))
3749 		y = fold_rtx (y, insn);
3750 
3751 	      return simplify_gen_binary (code, mode, y, new_const);
3752 	    }
3753 	  break;
3754 
3755 	case DIV:       case UDIV:
3756 	  /* ??? The associative optimization performed immediately above is
3757 	     also possible for DIV and UDIV using associate_code of MULT.
3758 	     However, we would need extra code to verify that the
3759 	     multiplication does not overflow, that is, there is no overflow
3760 	     in the calculation of new_const.  */
3761 	  break;
3762 
3763 	default:
3764 	  break;
3765 	}
3766 
3767       new_rtx = simplify_binary_operation (code, mode,
3768 				       const_arg0 ? const_arg0 : folded_arg0,
3769 				       const_arg1 ? const_arg1 : folded_arg1);
3770       break;
3771 
3772     case RTX_OBJ:
3773       /* (lo_sum (high X) X) is simply X.  */
3774       if (code == LO_SUM && const_arg0 != 0
3775 	  && GET_CODE (const_arg0) == HIGH
3776 	  && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3777 	return const_arg1;
3778       break;
3779 
3780     case RTX_TERNARY:
3781     case RTX_BITFIELD_OPS:
3782       new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3783 					const_arg0 ? const_arg0 : folded_arg0,
3784 					const_arg1 ? const_arg1 : folded_arg1,
3785 					const_arg2 ? const_arg2 : XEXP (x, 2));
3786       break;
3787 
3788     default:
3789       break;
3790     }
3791 
3792   return new_rtx ? new_rtx : x;
3793 }
3794 
3795 /* Return a constant value currently equivalent to X.
3796    Return 0 if we don't know one.  */
3797 
3798 static rtx
3799 equiv_constant (rtx x)
3800 {
3801   if (REG_P (x)
3802       && REGNO_QTY_VALID_P (REGNO (x)))
3803     {
3804       int x_q = REG_QTY (REGNO (x));
3805       struct qty_table_elem *x_ent = &qty_table[x_q];
3806 
3807       if (x_ent->const_rtx)
3808 	x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3809     }
3810 
3811   if (x == 0 || CONSTANT_P (x))
3812     return x;
3813 
3814   if (GET_CODE (x) == SUBREG)
3815     {
3816       machine_mode mode = GET_MODE (x);
3817       machine_mode imode = GET_MODE (SUBREG_REG (x));
3818       rtx new_rtx;
3819 
3820       /* See if we previously assigned a constant value to this SUBREG.  */
3821       if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3822 	  || (new_rtx = lookup_as_function (x, CONST_WIDE_INT)) != 0
3823 	  || (NUM_POLY_INT_COEFFS > 1
3824 	      && (new_rtx = lookup_as_function (x, CONST_POLY_INT)) != 0)
3825           || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3826           || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3827         return new_rtx;
3828 
3829       /* If we didn't and if doing so makes sense, see if we previously
3830 	 assigned a constant value to the enclosing word mode SUBREG.  */
3831       if (known_lt (GET_MODE_SIZE (mode), UNITS_PER_WORD)
3832 	  && known_lt (UNITS_PER_WORD, GET_MODE_SIZE (imode)))
3833 	{
3834 	  poly_int64 byte = (SUBREG_BYTE (x)
3835 			     - subreg_lowpart_offset (mode, word_mode));
3836 	  if (known_ge (byte, 0) && multiple_p (byte, UNITS_PER_WORD))
3837 	    {
3838 	      rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3839 	      new_rtx = lookup_as_function (y, CONST_INT);
3840 	      if (new_rtx)
3841 		return gen_lowpart (mode, new_rtx);
3842 	    }
3843 	}
3844 
3845       /* Otherwise see if we already have a constant for the inner REG,
3846 	 and if that is enough to calculate an equivalent constant for
3847 	 the subreg.  Note that the upper bits of paradoxical subregs
3848 	 are undefined, so they cannot be said to equal anything.  */
3849       if (REG_P (SUBREG_REG (x))
3850 	  && !paradoxical_subreg_p (x)
3851 	  && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3852         return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3853 
3854       return 0;
3855     }
3856 
3857   /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3858      the hash table in case its value was seen before.  */
3859 
3860   if (MEM_P (x))
3861     {
3862       struct table_elt *elt;
3863 
3864       x = avoid_constant_pool_reference (x);
3865       if (CONSTANT_P (x))
3866 	return x;
3867 
3868       elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3869       if (elt == 0)
3870 	return 0;
3871 
3872       for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3873 	if (elt->is_const && CONSTANT_P (elt->exp))
3874 	  return elt->exp;
3875     }
3876 
3877   return 0;
3878 }
3879 
3880 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3881    "taken" branch.
3882 
3883    In certain cases, this can cause us to add an equivalence.  For example,
3884    if we are following the taken case of
3885 	if (i == 2)
3886    we can add the fact that `i' and '2' are now equivalent.
3887 
3888    In any case, we can record that this comparison was passed.  If the same
3889    comparison is seen later, we will know its value.  */
3890 
3891 static void
3892 record_jump_equiv (rtx_insn *insn, bool taken)
3893 {
3894   int cond_known_true;
3895   rtx op0, op1;
3896   rtx set;
3897   machine_mode mode, mode0, mode1;
3898   int reversed_nonequality = 0;
3899   enum rtx_code code;
3900 
3901   /* Ensure this is the right kind of insn.  */
3902   gcc_assert (any_condjump_p (insn));
3903 
3904   set = pc_set (insn);
3905 
3906   /* See if this jump condition is known true or false.  */
3907   if (taken)
3908     cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3909   else
3910     cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3911 
3912   /* Get the type of comparison being done and the operands being compared.
3913      If we had to reverse a non-equality condition, record that fact so we
3914      know that it isn't valid for floating-point.  */
3915   code = GET_CODE (XEXP (SET_SRC (set), 0));
3916   op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3917   op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3918 
3919   /* On a cc0 target the cc0-setter and cc0-user may end up in different
3920      blocks.  When that happens the tracking of the cc0-setter via
3921      PREV_INSN_CC0 is spoiled.  That means that fold_rtx may return
3922      NULL_RTX.  In those cases, there's nothing to record.  */
3923   if (op0 == NULL_RTX || op1 == NULL_RTX)
3924     return;
3925 
3926   code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3927   if (! cond_known_true)
3928     {
3929       code = reversed_comparison_code_parts (code, op0, op1, insn);
3930 
3931       /* Don't remember if we can't find the inverse.  */
3932       if (code == UNKNOWN)
3933 	return;
3934     }
3935 
3936   /* The mode is the mode of the non-constant.  */
3937   mode = mode0;
3938   if (mode1 != VOIDmode)
3939     mode = mode1;
3940 
3941   record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3942 }
3943 
3944 /* Yet another form of subreg creation.  In this case, we want something in
3945    MODE, and we should assume OP has MODE iff it is naturally modeless.  */
3946 
3947 static rtx
3948 record_jump_cond_subreg (machine_mode mode, rtx op)
3949 {
3950   machine_mode op_mode = GET_MODE (op);
3951   if (op_mode == mode || op_mode == VOIDmode)
3952     return op;
3953   return lowpart_subreg (mode, op, op_mode);
3954 }
3955 
3956 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3957    REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3958    Make any useful entries we can with that information.  Called from
3959    above function and called recursively.  */
3960 
3961 static void
3962 record_jump_cond (enum rtx_code code, machine_mode mode, rtx op0,
3963 		  rtx op1, int reversed_nonequality)
3964 {
3965   unsigned op0_hash, op1_hash;
3966   int op0_in_memory, op1_in_memory;
3967   struct table_elt *op0_elt, *op1_elt;
3968 
3969   /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3970      we know that they are also equal in the smaller mode (this is also
3971      true for all smaller modes whether or not there is a SUBREG, but
3972      is not worth testing for with no SUBREG).  */
3973 
3974   /* Note that GET_MODE (op0) may not equal MODE.  */
3975   if (code == EQ && paradoxical_subreg_p (op0))
3976     {
3977       machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3978       rtx tem = record_jump_cond_subreg (inner_mode, op1);
3979       if (tem)
3980 	record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3981 			  reversed_nonequality);
3982     }
3983 
3984   if (code == EQ && paradoxical_subreg_p (op1))
3985     {
3986       machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3987       rtx tem = record_jump_cond_subreg (inner_mode, op0);
3988       if (tem)
3989 	record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3990 			  reversed_nonequality);
3991     }
3992 
3993   /* Similarly, if this is an NE comparison, and either is a SUBREG
3994      making a smaller mode, we know the whole thing is also NE.  */
3995 
3996   /* Note that GET_MODE (op0) may not equal MODE;
3997      if we test MODE instead, we can get an infinite recursion
3998      alternating between two modes each wider than MODE.  */
3999 
4000   if (code == NE
4001       && partial_subreg_p (op0)
4002       && subreg_lowpart_p (op0))
4003     {
4004       machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4005       rtx tem = record_jump_cond_subreg (inner_mode, op1);
4006       if (tem)
4007 	record_jump_cond (code, mode, SUBREG_REG (op0), tem,
4008 			  reversed_nonequality);
4009     }
4010 
4011   if (code == NE
4012       && partial_subreg_p (op1)
4013       && subreg_lowpart_p (op1))
4014     {
4015       machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4016       rtx tem = record_jump_cond_subreg (inner_mode, op0);
4017       if (tem)
4018 	record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4019 			  reversed_nonequality);
4020     }
4021 
4022   /* Hash both operands.  */
4023 
4024   do_not_record = 0;
4025   hash_arg_in_memory = 0;
4026   op0_hash = HASH (op0, mode);
4027   op0_in_memory = hash_arg_in_memory;
4028 
4029   if (do_not_record)
4030     return;
4031 
4032   do_not_record = 0;
4033   hash_arg_in_memory = 0;
4034   op1_hash = HASH (op1, mode);
4035   op1_in_memory = hash_arg_in_memory;
4036 
4037   if (do_not_record)
4038     return;
4039 
4040   /* Look up both operands.  */
4041   op0_elt = lookup (op0, op0_hash, mode);
4042   op1_elt = lookup (op1, op1_hash, mode);
4043 
4044   /* If both operands are already equivalent or if they are not in the
4045      table but are identical, do nothing.  */
4046   if ((op0_elt != 0 && op1_elt != 0
4047        && op0_elt->first_same_value == op1_elt->first_same_value)
4048       || op0 == op1 || rtx_equal_p (op0, op1))
4049     return;
4050 
4051   /* If we aren't setting two things equal all we can do is save this
4052      comparison.   Similarly if this is floating-point.  In the latter
4053      case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4054      If we record the equality, we might inadvertently delete code
4055      whose intent was to change -0 to +0.  */
4056 
4057   if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4058     {
4059       struct qty_table_elem *ent;
4060       int qty;
4061 
4062       /* If we reversed a floating-point comparison, if OP0 is not a
4063 	 register, or if OP1 is neither a register or constant, we can't
4064 	 do anything.  */
4065 
4066       if (!REG_P (op1))
4067 	op1 = equiv_constant (op1);
4068 
4069       if ((reversed_nonequality && FLOAT_MODE_P (mode))
4070 	  || !REG_P (op0) || op1 == 0)
4071 	return;
4072 
4073       /* Put OP0 in the hash table if it isn't already.  This gives it a
4074 	 new quantity number.  */
4075       if (op0_elt == 0)
4076 	{
4077 	  if (insert_regs (op0, NULL, 0))
4078 	    {
4079 	      rehash_using_reg (op0);
4080 	      op0_hash = HASH (op0, mode);
4081 
4082 	      /* If OP0 is contained in OP1, this changes its hash code
4083 		 as well.  Faster to rehash than to check, except
4084 		 for the simple case of a constant.  */
4085 	      if (! CONSTANT_P (op1))
4086 		op1_hash = HASH (op1,mode);
4087 	    }
4088 
4089 	  op0_elt = insert (op0, NULL, op0_hash, mode);
4090 	  op0_elt->in_memory = op0_in_memory;
4091 	}
4092 
4093       qty = REG_QTY (REGNO (op0));
4094       ent = &qty_table[qty];
4095 
4096       ent->comparison_code = code;
4097       if (REG_P (op1))
4098 	{
4099 	  /* Look it up again--in case op0 and op1 are the same.  */
4100 	  op1_elt = lookup (op1, op1_hash, mode);
4101 
4102 	  /* Put OP1 in the hash table so it gets a new quantity number.  */
4103 	  if (op1_elt == 0)
4104 	    {
4105 	      if (insert_regs (op1, NULL, 0))
4106 		{
4107 		  rehash_using_reg (op1);
4108 		  op1_hash = HASH (op1, mode);
4109 		}
4110 
4111 	      op1_elt = insert (op1, NULL, op1_hash, mode);
4112 	      op1_elt->in_memory = op1_in_memory;
4113 	    }
4114 
4115 	  ent->comparison_const = NULL_RTX;
4116 	  ent->comparison_qty = REG_QTY (REGNO (op1));
4117 	}
4118       else
4119 	{
4120 	  ent->comparison_const = op1;
4121 	  ent->comparison_qty = -1;
4122 	}
4123 
4124       return;
4125     }
4126 
4127   /* If either side is still missing an equivalence, make it now,
4128      then merge the equivalences.  */
4129 
4130   if (op0_elt == 0)
4131     {
4132       if (insert_regs (op0, NULL, 0))
4133 	{
4134 	  rehash_using_reg (op0);
4135 	  op0_hash = HASH (op0, mode);
4136 	}
4137 
4138       op0_elt = insert (op0, NULL, op0_hash, mode);
4139       op0_elt->in_memory = op0_in_memory;
4140     }
4141 
4142   if (op1_elt == 0)
4143     {
4144       if (insert_regs (op1, NULL, 0))
4145 	{
4146 	  rehash_using_reg (op1);
4147 	  op1_hash = HASH (op1, mode);
4148 	}
4149 
4150       op1_elt = insert (op1, NULL, op1_hash, mode);
4151       op1_elt->in_memory = op1_in_memory;
4152     }
4153 
4154   merge_equiv_classes (op0_elt, op1_elt);
4155 }
4156 
4157 /* CSE processing for one instruction.
4158 
4159    Most "true" common subexpressions are mostly optimized away in GIMPLE,
4160    but the few that "leak through" are cleaned up by cse_insn, and complex
4161    addressing modes are often formed here.
4162 
4163    The main function is cse_insn, and between here and that function
4164    a couple of helper functions is defined to keep the size of cse_insn
4165    within reasonable proportions.
4166 
4167    Data is shared between the main and helper functions via STRUCT SET,
4168    that contains all data related for every set in the instruction that
4169    is being processed.
4170 
4171    Note that cse_main processes all sets in the instruction.  Most
4172    passes in GCC only process simple SET insns or single_set insns, but
4173    CSE processes insns with multiple sets as well.  */
4174 
4175 /* Data on one SET contained in the instruction.  */
4176 
4177 struct set
4178 {
4179   /* The SET rtx itself.  */
4180   rtx rtl;
4181   /* The SET_SRC of the rtx (the original value, if it is changing).  */
4182   rtx src;
4183   /* The hash-table element for the SET_SRC of the SET.  */
4184   struct table_elt *src_elt;
4185   /* Hash value for the SET_SRC.  */
4186   unsigned src_hash;
4187   /* Hash value for the SET_DEST.  */
4188   unsigned dest_hash;
4189   /* The SET_DEST, with SUBREG, etc., stripped.  */
4190   rtx inner_dest;
4191   /* Nonzero if the SET_SRC is in memory.  */
4192   char src_in_memory;
4193   /* Nonzero if the SET_SRC contains something
4194      whose value cannot be predicted and understood.  */
4195   char src_volatile;
4196   /* Original machine mode, in case it becomes a CONST_INT.
4197      The size of this field should match the size of the mode
4198      field of struct rtx_def (see rtl.h).  */
4199   ENUM_BITFIELD(machine_mode) mode : 8;
4200   /* Hash value of constant equivalent for SET_SRC.  */
4201   unsigned src_const_hash;
4202   /* A constant equivalent for SET_SRC, if any.  */
4203   rtx src_const;
4204   /* Table entry for constant equivalent for SET_SRC, if any.  */
4205   struct table_elt *src_const_elt;
4206   /* Table entry for the destination address.  */
4207   struct table_elt *dest_addr_elt;
4208 };
4209 
4210 /* Special handling for (set REG0 REG1) where REG0 is the
4211    "cheapest", cheaper than REG1.  After cse, REG1 will probably not
4212    be used in the sequel, so (if easily done) change this insn to
4213    (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4214    that computed their value.  Then REG1 will become a dead store
4215    and won't cloud the situation for later optimizations.
4216 
4217    Do not make this change if REG1 is a hard register, because it will
4218    then be used in the sequel and we may be changing a two-operand insn
4219    into a three-operand insn.
4220 
4221    This is the last transformation that cse_insn will try to do.  */
4222 
4223 static void
4224 try_back_substitute_reg (rtx set, rtx_insn *insn)
4225 {
4226   rtx dest = SET_DEST (set);
4227   rtx src = SET_SRC (set);
4228 
4229   if (REG_P (dest)
4230       && REG_P (src) && ! HARD_REGISTER_P (src)
4231       && REGNO_QTY_VALID_P (REGNO (src)))
4232     {
4233       int src_q = REG_QTY (REGNO (src));
4234       struct qty_table_elem *src_ent = &qty_table[src_q];
4235 
4236       if (src_ent->first_reg == REGNO (dest))
4237 	{
4238 	  /* Scan for the previous nonnote insn, but stop at a basic
4239 	     block boundary.  */
4240 	  rtx_insn *prev = insn;
4241 	  rtx_insn *bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
4242 	  do
4243 	    {
4244 	      prev = PREV_INSN (prev);
4245 	    }
4246 	  while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
4247 
4248 	  /* Do not swap the registers around if the previous instruction
4249 	     attaches a REG_EQUIV note to REG1.
4250 
4251 	     ??? It's not entirely clear whether we can transfer a REG_EQUIV
4252 	     from the pseudo that originally shadowed an incoming argument
4253 	     to another register.  Some uses of REG_EQUIV might rely on it
4254 	     being attached to REG1 rather than REG2.
4255 
4256 	     This section previously turned the REG_EQUIV into a REG_EQUAL
4257 	     note.  We cannot do that because REG_EQUIV may provide an
4258 	     uninitialized stack slot when REG_PARM_STACK_SPACE is used.  */
4259 	  if (NONJUMP_INSN_P (prev)
4260 	      && GET_CODE (PATTERN (prev)) == SET
4261 	      && SET_DEST (PATTERN (prev)) == src
4262 	      && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4263 	    {
4264 	      rtx note;
4265 
4266 	      validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4267 	      validate_change (insn, &SET_DEST (set), src, 1);
4268 	      validate_change (insn, &SET_SRC (set), dest, 1);
4269 	      apply_change_group ();
4270 
4271 	      /* If INSN has a REG_EQUAL note, and this note mentions
4272 		 REG0, then we must delete it, because the value in
4273 		 REG0 has changed.  If the note's value is REG1, we must
4274 		 also delete it because that is now this insn's dest.  */
4275 	      note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4276 	      if (note != 0
4277 		  && (reg_mentioned_p (dest, XEXP (note, 0))
4278 		      || rtx_equal_p (src, XEXP (note, 0))))
4279 		remove_note (insn, note);
4280 
4281 	      /* If INSN has a REG_ARGS_SIZE note, move it to PREV.  */
4282 	      note = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4283 	      if (note != 0)
4284 		{
4285 		  remove_note (insn, note);
4286 		  gcc_assert (!find_reg_note (prev, REG_ARGS_SIZE, NULL_RTX));
4287 		  set_unique_reg_note (prev, REG_ARGS_SIZE, XEXP (note, 0));
4288 		}
4289 	    }
4290 	}
4291     }
4292 }
4293 
4294 /* Record all the SETs in this instruction into SETS_PTR,
4295    and return the number of recorded sets.  */
4296 static int
4297 find_sets_in_insn (rtx_insn *insn, struct set **psets)
4298 {
4299   struct set *sets = *psets;
4300   int n_sets = 0;
4301   rtx x = PATTERN (insn);
4302 
4303   if (GET_CODE (x) == SET)
4304     {
4305       /* Ignore SETs that are unconditional jumps.
4306 	 They never need cse processing, so this does not hurt.
4307 	 The reason is not efficiency but rather
4308 	 so that we can test at the end for instructions
4309 	 that have been simplified to unconditional jumps
4310 	 and not be misled by unchanged instructions
4311 	 that were unconditional jumps to begin with.  */
4312       if (SET_DEST (x) == pc_rtx
4313 	  && GET_CODE (SET_SRC (x)) == LABEL_REF)
4314 	;
4315       /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4316 	 The hard function value register is used only once, to copy to
4317 	 someplace else, so it isn't worth cse'ing.  */
4318       else if (GET_CODE (SET_SRC (x)) == CALL)
4319 	;
4320       else
4321 	sets[n_sets++].rtl = x;
4322     }
4323   else if (GET_CODE (x) == PARALLEL)
4324     {
4325       int i, lim = XVECLEN (x, 0);
4326 
4327       /* Go over the expressions of the PARALLEL in forward order, to
4328 	 put them in the same order in the SETS array.  */
4329       for (i = 0; i < lim; i++)
4330 	{
4331 	  rtx y = XVECEXP (x, 0, i);
4332 	  if (GET_CODE (y) == SET)
4333 	    {
4334 	      /* As above, we ignore unconditional jumps and call-insns and
4335 		 ignore the result of apply_change_group.  */
4336 	      if (SET_DEST (y) == pc_rtx
4337 		  && GET_CODE (SET_SRC (y)) == LABEL_REF)
4338 		;
4339 	      else if (GET_CODE (SET_SRC (y)) == CALL)
4340 		;
4341 	      else
4342 		sets[n_sets++].rtl = y;
4343 	    }
4344 	}
4345     }
4346 
4347   return n_sets;
4348 }
4349 
4350 /* Subroutine of canonicalize_insn.  X is an ASM_OPERANDS in INSN.  */
4351 
4352 static void
4353 canon_asm_operands (rtx x, rtx_insn *insn)
4354 {
4355   for (int i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4356     {
4357       rtx input = ASM_OPERANDS_INPUT (x, i);
4358       if (!(REG_P (input) && HARD_REGISTER_P (input)))
4359 	{
4360 	  input = canon_reg (input, insn);
4361 	  validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4362 	}
4363     }
4364 }
4365 
4366 /* Where possible, substitute every register reference in the N_SETS
4367    number of SETS in INSN with the canonical register.
4368 
4369    Register canonicalization propagatest the earliest register (i.e.
4370    one that is set before INSN) with the same value.  This is a very
4371    useful, simple form of CSE, to clean up warts from expanding GIMPLE
4372    to RTL.  For instance, a CONST for an address is usually expanded
4373    multiple times to loads into different registers, thus creating many
4374    subexpressions of the form:
4375 
4376    (set (reg1) (some_const))
4377    (set (mem (... reg1 ...) (thing)))
4378    (set (reg2) (some_const))
4379    (set (mem (... reg2 ...) (thing)))
4380 
4381    After canonicalizing, the code takes the following form:
4382 
4383    (set (reg1) (some_const))
4384    (set (mem (... reg1 ...) (thing)))
4385    (set (reg2) (some_const))
4386    (set (mem (... reg1 ...) (thing)))
4387 
4388    The set to reg2 is now trivially dead, and the memory reference (or
4389    address, or whatever) may be a candidate for further CSEing.
4390 
4391    In this function, the result of apply_change_group can be ignored;
4392    see canon_reg.  */
4393 
4394 static void
4395 canonicalize_insn (rtx_insn *insn, struct set **psets, int n_sets)
4396 {
4397   struct set *sets = *psets;
4398   rtx tem;
4399   rtx x = PATTERN (insn);
4400   int i;
4401 
4402   if (CALL_P (insn))
4403     {
4404       for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4405 	if (GET_CODE (XEXP (tem, 0)) != SET)
4406 	  XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4407     }
4408 
4409   if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4410     {
4411       canon_reg (SET_SRC (x), insn);
4412       apply_change_group ();
4413       fold_rtx (SET_SRC (x), insn);
4414     }
4415   else if (GET_CODE (x) == CLOBBER)
4416     {
4417       /* If we clobber memory, canon the address.
4418 	 This does nothing when a register is clobbered
4419 	 because we have already invalidated the reg.  */
4420       if (MEM_P (XEXP (x, 0)))
4421 	canon_reg (XEXP (x, 0), insn);
4422     }
4423   else if (GET_CODE (x) == CLOBBER_HIGH)
4424     gcc_assert (REG_P (XEXP (x, 0)));
4425   else if (GET_CODE (x) == USE
4426 	   && ! (REG_P (XEXP (x, 0))
4427 		 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4428     /* Canonicalize a USE of a pseudo register or memory location.  */
4429     canon_reg (x, insn);
4430   else if (GET_CODE (x) == ASM_OPERANDS)
4431     canon_asm_operands (x, insn);
4432   else if (GET_CODE (x) == CALL)
4433     {
4434       canon_reg (x, insn);
4435       apply_change_group ();
4436       fold_rtx (x, insn);
4437     }
4438   else if (DEBUG_INSN_P (insn))
4439     canon_reg (PATTERN (insn), insn);
4440   else if (GET_CODE (x) == PARALLEL)
4441     {
4442       for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4443 	{
4444 	  rtx y = XVECEXP (x, 0, i);
4445 	  if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4446 	    {
4447 	      canon_reg (SET_SRC (y), insn);
4448 	      apply_change_group ();
4449 	      fold_rtx (SET_SRC (y), insn);
4450 	    }
4451 	  else if (GET_CODE (y) == CLOBBER)
4452 	    {
4453 	      if (MEM_P (XEXP (y, 0)))
4454 		canon_reg (XEXP (y, 0), insn);
4455 	    }
4456 	  else if (GET_CODE (y) == CLOBBER_HIGH)
4457 	    gcc_assert (REG_P (XEXP (y, 0)));
4458 	  else if (GET_CODE (y) == USE
4459 		   && ! (REG_P (XEXP (y, 0))
4460 			 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4461 	    canon_reg (y, insn);
4462 	  else if (GET_CODE (y) == ASM_OPERANDS)
4463 	    canon_asm_operands (y, insn);
4464 	  else if (GET_CODE (y) == CALL)
4465 	    {
4466 	      canon_reg (y, insn);
4467 	      apply_change_group ();
4468 	      fold_rtx (y, insn);
4469 	    }
4470 	}
4471     }
4472 
4473   if (n_sets == 1 && REG_NOTES (insn) != 0
4474       && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4475     {
4476       /* We potentially will process this insn many times.  Therefore,
4477 	 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4478 	 unique set in INSN.
4479 
4480 	 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4481 	 because cse_insn handles those specially.  */
4482       if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4483 	  && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4484 	remove_note (insn, tem);
4485       else
4486 	{
4487 	  canon_reg (XEXP (tem, 0), insn);
4488 	  apply_change_group ();
4489 	  XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4490 	  df_notes_rescan (insn);
4491 	}
4492     }
4493 
4494   /* Canonicalize sources and addresses of destinations.
4495      We do this in a separate pass to avoid problems when a MATCH_DUP is
4496      present in the insn pattern.  In that case, we want to ensure that
4497      we don't break the duplicate nature of the pattern.  So we will replace
4498      both operands at the same time.  Otherwise, we would fail to find an
4499      equivalent substitution in the loop calling validate_change below.
4500 
4501      We used to suppress canonicalization of DEST if it appears in SRC,
4502      but we don't do this any more.  */
4503 
4504   for (i = 0; i < n_sets; i++)
4505     {
4506       rtx dest = SET_DEST (sets[i].rtl);
4507       rtx src = SET_SRC (sets[i].rtl);
4508       rtx new_rtx = canon_reg (src, insn);
4509 
4510       validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4511 
4512       if (GET_CODE (dest) == ZERO_EXTRACT)
4513 	{
4514 	  validate_change (insn, &XEXP (dest, 1),
4515 			   canon_reg (XEXP (dest, 1), insn), 1);
4516 	  validate_change (insn, &XEXP (dest, 2),
4517 			   canon_reg (XEXP (dest, 2), insn), 1);
4518 	}
4519 
4520       while (GET_CODE (dest) == SUBREG
4521 	     || GET_CODE (dest) == ZERO_EXTRACT
4522 	     || GET_CODE (dest) == STRICT_LOW_PART)
4523 	dest = XEXP (dest, 0);
4524 
4525       if (MEM_P (dest))
4526 	canon_reg (dest, insn);
4527     }
4528 
4529   /* Now that we have done all the replacements, we can apply the change
4530      group and see if they all work.  Note that this will cause some
4531      canonicalizations that would have worked individually not to be applied
4532      because some other canonicalization didn't work, but this should not
4533      occur often.
4534 
4535      The result of apply_change_group can be ignored; see canon_reg.  */
4536 
4537   apply_change_group ();
4538 }
4539 
4540 /* Main function of CSE.
4541    First simplify sources and addresses of all assignments
4542    in the instruction, using previously-computed equivalents values.
4543    Then install the new sources and destinations in the table
4544    of available values.  */
4545 
4546 static void
4547 cse_insn (rtx_insn *insn)
4548 {
4549   rtx x = PATTERN (insn);
4550   int i;
4551   rtx tem;
4552   int n_sets = 0;
4553 
4554   rtx src_eqv = 0;
4555   struct table_elt *src_eqv_elt = 0;
4556   int src_eqv_volatile = 0;
4557   int src_eqv_in_memory = 0;
4558   unsigned src_eqv_hash = 0;
4559 
4560   struct set *sets = (struct set *) 0;
4561 
4562   if (GET_CODE (x) == SET)
4563     sets = XALLOCA (struct set);
4564   else if (GET_CODE (x) == PARALLEL)
4565     sets = XALLOCAVEC (struct set, XVECLEN (x, 0));
4566 
4567   this_insn = insn;
4568   /* Records what this insn does to set CC0.  */
4569   this_insn_cc0 = 0;
4570   this_insn_cc0_mode = VOIDmode;
4571 
4572   /* Find all regs explicitly clobbered in this insn,
4573      to ensure they are not replaced with any other regs
4574      elsewhere in this insn.  */
4575   invalidate_from_sets_and_clobbers (insn);
4576 
4577   /* Record all the SETs in this instruction.  */
4578   n_sets = find_sets_in_insn (insn, &sets);
4579 
4580   /* Substitute the canonical register where possible.  */
4581   canonicalize_insn (insn, &sets, n_sets);
4582 
4583   /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
4584      if different, or if the DEST is a STRICT_LOW_PART/ZERO_EXTRACT.  The
4585      latter condition is necessary because SRC_EQV is handled specially for
4586      this case, and if it isn't set, then there will be no equivalence
4587      for the destination.  */
4588   if (n_sets == 1 && REG_NOTES (insn) != 0
4589       && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4590     {
4591 
4592       if (GET_CODE (SET_DEST (sets[0].rtl)) != ZERO_EXTRACT
4593 	  && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4594 	      || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4595 	src_eqv = copy_rtx (XEXP (tem, 0));
4596       /* If DEST is of the form ZERO_EXTACT, as in:
4597 	 (set (zero_extract:SI (reg:SI 119)
4598 		  (const_int 16 [0x10])
4599 		  (const_int 16 [0x10]))
4600 	      (const_int 51154 [0xc7d2]))
4601 	 REG_EQUAL note will specify the value of register (reg:SI 119) at this
4602 	 point.  Note that this is different from SRC_EQV. We can however
4603 	 calculate SRC_EQV with the position and width of ZERO_EXTRACT.  */
4604       else if (GET_CODE (SET_DEST (sets[0].rtl)) == ZERO_EXTRACT
4605 	       && CONST_INT_P (XEXP (tem, 0))
4606 	       && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 1))
4607 	       && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 2)))
4608 	{
4609 	  rtx dest_reg = XEXP (SET_DEST (sets[0].rtl), 0);
4610 	  /* This is the mode of XEXP (tem, 0) as well.  */
4611 	  scalar_int_mode dest_mode
4612 	    = as_a <scalar_int_mode> (GET_MODE (dest_reg));
4613 	  rtx width = XEXP (SET_DEST (sets[0].rtl), 1);
4614 	  rtx pos = XEXP (SET_DEST (sets[0].rtl), 2);
4615 	  HOST_WIDE_INT val = INTVAL (XEXP (tem, 0));
4616 	  HOST_WIDE_INT mask;
4617 	  unsigned int shift;
4618 	  if (BITS_BIG_ENDIAN)
4619 	    shift = (GET_MODE_PRECISION (dest_mode)
4620 		     - INTVAL (pos) - INTVAL (width));
4621 	  else
4622 	    shift = INTVAL (pos);
4623 	  if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
4624 	    mask = HOST_WIDE_INT_M1;
4625 	  else
4626 	    mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1;
4627 	  val = (val >> shift) & mask;
4628 	  src_eqv = GEN_INT (val);
4629 	}
4630     }
4631 
4632   /* Set sets[i].src_elt to the class each source belongs to.
4633      Detect assignments from or to volatile things
4634      and set set[i] to zero so they will be ignored
4635      in the rest of this function.
4636 
4637      Nothing in this loop changes the hash table or the register chains.  */
4638 
4639   for (i = 0; i < n_sets; i++)
4640     {
4641       bool repeat = false;
4642       bool mem_noop_insn = false;
4643       rtx src, dest;
4644       rtx src_folded;
4645       struct table_elt *elt = 0, *p;
4646       machine_mode mode;
4647       rtx src_eqv_here;
4648       rtx src_const = 0;
4649       rtx src_related = 0;
4650       bool src_related_is_const_anchor = false;
4651       struct table_elt *src_const_elt = 0;
4652       int src_cost = MAX_COST;
4653       int src_eqv_cost = MAX_COST;
4654       int src_folded_cost = MAX_COST;
4655       int src_related_cost = MAX_COST;
4656       int src_elt_cost = MAX_COST;
4657       int src_regcost = MAX_COST;
4658       int src_eqv_regcost = MAX_COST;
4659       int src_folded_regcost = MAX_COST;
4660       int src_related_regcost = MAX_COST;
4661       int src_elt_regcost = MAX_COST;
4662       /* Set nonzero if we need to call force_const_mem on with the
4663 	 contents of src_folded before using it.  */
4664       int src_folded_force_flag = 0;
4665       scalar_int_mode int_mode;
4666 
4667       dest = SET_DEST (sets[i].rtl);
4668       src = SET_SRC (sets[i].rtl);
4669 
4670       /* If SRC is a constant that has no machine mode,
4671 	 hash it with the destination's machine mode.
4672 	 This way we can keep different modes separate.  */
4673 
4674       mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4675       sets[i].mode = mode;
4676 
4677       if (src_eqv)
4678 	{
4679 	  machine_mode eqvmode = mode;
4680 	  if (GET_CODE (dest) == STRICT_LOW_PART)
4681 	    eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4682 	  do_not_record = 0;
4683 	  hash_arg_in_memory = 0;
4684 	  src_eqv_hash = HASH (src_eqv, eqvmode);
4685 
4686 	  /* Find the equivalence class for the equivalent expression.  */
4687 
4688 	  if (!do_not_record)
4689 	    src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4690 
4691 	  src_eqv_volatile = do_not_record;
4692 	  src_eqv_in_memory = hash_arg_in_memory;
4693 	}
4694 
4695       /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4696 	 value of the INNER register, not the destination.  So it is not
4697 	 a valid substitution for the source.  But save it for later.  */
4698       if (GET_CODE (dest) == STRICT_LOW_PART)
4699 	src_eqv_here = 0;
4700       else
4701 	src_eqv_here = src_eqv;
4702 
4703       /* Simplify and foldable subexpressions in SRC.  Then get the fully-
4704 	 simplified result, which may not necessarily be valid.  */
4705       src_folded = fold_rtx (src, NULL);
4706 
4707 #if 0
4708       /* ??? This caused bad code to be generated for the m68k port with -O2.
4709 	 Suppose src is (CONST_INT -1), and that after truncation src_folded
4710 	 is (CONST_INT 3).  Suppose src_folded is then used for src_const.
4711 	 At the end we will add src and src_const to the same equivalence
4712 	 class.  We now have 3 and -1 on the same equivalence class.  This
4713 	 causes later instructions to be mis-optimized.  */
4714       /* If storing a constant in a bitfield, pre-truncate the constant
4715 	 so we will be able to record it later.  */
4716       if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4717 	{
4718 	  rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4719 
4720 	  if (CONST_INT_P (src)
4721 	      && CONST_INT_P (width)
4722 	      && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4723 	      && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4724 	    src_folded
4725 	      = GEN_INT (INTVAL (src) & ((HOST_WIDE_INT_1
4726 					  << INTVAL (width)) - 1));
4727 	}
4728 #endif
4729 
4730       /* Compute SRC's hash code, and also notice if it
4731 	 should not be recorded at all.  In that case,
4732 	 prevent any further processing of this assignment.  */
4733       do_not_record = 0;
4734       hash_arg_in_memory = 0;
4735 
4736       sets[i].src = src;
4737       sets[i].src_hash = HASH (src, mode);
4738       sets[i].src_volatile = do_not_record;
4739       sets[i].src_in_memory = hash_arg_in_memory;
4740 
4741       /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4742 	 a pseudo, do not record SRC.  Using SRC as a replacement for
4743 	 anything else will be incorrect in that situation.  Note that
4744 	 this usually occurs only for stack slots, in which case all the
4745 	 RTL would be referring to SRC, so we don't lose any optimization
4746 	 opportunities by not having SRC in the hash table.  */
4747 
4748       if (MEM_P (src)
4749 	  && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4750 	  && REG_P (dest)
4751 	  && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4752 	sets[i].src_volatile = 1;
4753 
4754       else if (GET_CODE (src) == ASM_OPERANDS
4755 	       && GET_CODE (x) == PARALLEL)
4756 	{
4757 	  /* Do not record result of a non-volatile inline asm with
4758 	     more than one result.  */
4759 	  if (n_sets > 1)
4760 	    sets[i].src_volatile = 1;
4761 
4762 	  int j, lim = XVECLEN (x, 0);
4763 	  for (j = 0; j < lim; j++)
4764 	    {
4765 	      rtx y = XVECEXP (x, 0, j);
4766 	      /* And do not record result of a non-volatile inline asm
4767 		 with "memory" clobber.  */
4768 	      if (GET_CODE (y) == CLOBBER && MEM_P (XEXP (y, 0)))
4769 		{
4770 		  sets[i].src_volatile = 1;
4771 		  break;
4772 		}
4773 	    }
4774 	}
4775 
4776 #if 0
4777       /* It is no longer clear why we used to do this, but it doesn't
4778 	 appear to still be needed.  So let's try without it since this
4779 	 code hurts cse'ing widened ops.  */
4780       /* If source is a paradoxical subreg (such as QI treated as an SI),
4781 	 treat it as volatile.  It may do the work of an SI in one context
4782 	 where the extra bits are not being used, but cannot replace an SI
4783 	 in general.  */
4784       if (paradoxical_subreg_p (src))
4785 	sets[i].src_volatile = 1;
4786 #endif
4787 
4788       /* Locate all possible equivalent forms for SRC.  Try to replace
4789          SRC in the insn with each cheaper equivalent.
4790 
4791          We have the following types of equivalents: SRC itself, a folded
4792          version, a value given in a REG_EQUAL note, or a value related
4793 	 to a constant.
4794 
4795          Each of these equivalents may be part of an additional class
4796          of equivalents (if more than one is in the table, they must be in
4797          the same class; we check for this).
4798 
4799 	 If the source is volatile, we don't do any table lookups.
4800 
4801          We note any constant equivalent for possible later use in a
4802          REG_NOTE.  */
4803 
4804       if (!sets[i].src_volatile)
4805 	elt = lookup (src, sets[i].src_hash, mode);
4806 
4807       sets[i].src_elt = elt;
4808 
4809       if (elt && src_eqv_here && src_eqv_elt)
4810 	{
4811 	  if (elt->first_same_value != src_eqv_elt->first_same_value)
4812 	    {
4813 	      /* The REG_EQUAL is indicating that two formerly distinct
4814 		 classes are now equivalent.  So merge them.  */
4815 	      merge_equiv_classes (elt, src_eqv_elt);
4816 	      src_eqv_hash = HASH (src_eqv, elt->mode);
4817 	      src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4818 	    }
4819 
4820 	  src_eqv_here = 0;
4821 	}
4822 
4823       else if (src_eqv_elt)
4824 	elt = src_eqv_elt;
4825 
4826       /* Try to find a constant somewhere and record it in `src_const'.
4827 	 Record its table element, if any, in `src_const_elt'.  Look in
4828 	 any known equivalences first.  (If the constant is not in the
4829 	 table, also set `sets[i].src_const_hash').  */
4830       if (elt)
4831 	for (p = elt->first_same_value; p; p = p->next_same_value)
4832 	  if (p->is_const)
4833 	    {
4834 	      src_const = p->exp;
4835 	      src_const_elt = elt;
4836 	      break;
4837 	    }
4838 
4839       if (src_const == 0
4840 	  && (CONSTANT_P (src_folded)
4841 	      /* Consider (minus (label_ref L1) (label_ref L2)) as
4842 		 "constant" here so we will record it. This allows us
4843 		 to fold switch statements when an ADDR_DIFF_VEC is used.  */
4844 	      || (GET_CODE (src_folded) == MINUS
4845 		  && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4846 		  && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4847 	src_const = src_folded, src_const_elt = elt;
4848       else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4849 	src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4850 
4851       /* If we don't know if the constant is in the table, get its
4852 	 hash code and look it up.  */
4853       if (src_const && src_const_elt == 0)
4854 	{
4855 	  sets[i].src_const_hash = HASH (src_const, mode);
4856 	  src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4857 	}
4858 
4859       sets[i].src_const = src_const;
4860       sets[i].src_const_elt = src_const_elt;
4861 
4862       /* If the constant and our source are both in the table, mark them as
4863 	 equivalent.  Otherwise, if a constant is in the table but the source
4864 	 isn't, set ELT to it.  */
4865       if (src_const_elt && elt
4866 	  && src_const_elt->first_same_value != elt->first_same_value)
4867 	merge_equiv_classes (elt, src_const_elt);
4868       else if (src_const_elt && elt == 0)
4869 	elt = src_const_elt;
4870 
4871       /* See if there is a register linearly related to a constant
4872          equivalent of SRC.  */
4873       if (src_const
4874 	  && (GET_CODE (src_const) == CONST
4875 	      || (src_const_elt && src_const_elt->related_value != 0)))
4876 	{
4877 	  src_related = use_related_value (src_const, src_const_elt);
4878 	  if (src_related)
4879 	    {
4880 	      struct table_elt *src_related_elt
4881 		= lookup (src_related, HASH (src_related, mode), mode);
4882 	      if (src_related_elt && elt)
4883 		{
4884 		  if (elt->first_same_value
4885 		      != src_related_elt->first_same_value)
4886 		    /* This can occur when we previously saw a CONST
4887 		       involving a SYMBOL_REF and then see the SYMBOL_REF
4888 		       twice.  Merge the involved classes.  */
4889 		    merge_equiv_classes (elt, src_related_elt);
4890 
4891 		  src_related = 0;
4892 		  src_related_elt = 0;
4893 		}
4894 	      else if (src_related_elt && elt == 0)
4895 		elt = src_related_elt;
4896 	    }
4897 	}
4898 
4899       /* See if we have a CONST_INT that is already in a register in a
4900 	 wider mode.  */
4901 
4902       if (src_const && src_related == 0 && CONST_INT_P (src_const)
4903 	  && is_int_mode (mode, &int_mode)
4904 	  && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
4905 	{
4906 	  opt_scalar_int_mode wider_mode_iter;
4907 	  FOR_EACH_WIDER_MODE (wider_mode_iter, int_mode)
4908 	    {
4909 	      scalar_int_mode wider_mode = wider_mode_iter.require ();
4910 	      if (GET_MODE_PRECISION (wider_mode) > BITS_PER_WORD)
4911 		break;
4912 
4913 	      struct table_elt *const_elt
4914 		= lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4915 
4916 	      if (const_elt == 0)
4917 		continue;
4918 
4919 	      for (const_elt = const_elt->first_same_value;
4920 		   const_elt; const_elt = const_elt->next_same_value)
4921 		if (REG_P (const_elt->exp))
4922 		  {
4923 		    src_related = gen_lowpart (int_mode, const_elt->exp);
4924 		    break;
4925 		  }
4926 
4927 	      if (src_related != 0)
4928 		break;
4929 	    }
4930 	}
4931 
4932       /* Another possibility is that we have an AND with a constant in
4933 	 a mode narrower than a word.  If so, it might have been generated
4934 	 as part of an "if" which would narrow the AND.  If we already
4935 	 have done the AND in a wider mode, we can use a SUBREG of that
4936 	 value.  */
4937 
4938       if (flag_expensive_optimizations && ! src_related
4939 	  && is_a <scalar_int_mode> (mode, &int_mode)
4940 	  && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
4941 	  && GET_MODE_SIZE (int_mode) < UNITS_PER_WORD)
4942 	{
4943 	  opt_scalar_int_mode tmode_iter;
4944 	  rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4945 
4946 	  FOR_EACH_WIDER_MODE (tmode_iter, int_mode)
4947 	    {
4948 	      scalar_int_mode tmode = tmode_iter.require ();
4949 	      if (GET_MODE_SIZE (tmode) > UNITS_PER_WORD)
4950 		break;
4951 
4952 	      rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4953 	      struct table_elt *larger_elt;
4954 
4955 	      if (inner)
4956 		{
4957 		  PUT_MODE (new_and, tmode);
4958 		  XEXP (new_and, 0) = inner;
4959 		  larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4960 		  if (larger_elt == 0)
4961 		    continue;
4962 
4963 		  for (larger_elt = larger_elt->first_same_value;
4964 		       larger_elt; larger_elt = larger_elt->next_same_value)
4965 		    if (REG_P (larger_elt->exp))
4966 		      {
4967 			src_related
4968 			  = gen_lowpart (int_mode, larger_elt->exp);
4969 			break;
4970 		      }
4971 
4972 		  if (src_related)
4973 		    break;
4974 		}
4975 	    }
4976 	}
4977 
4978       /* See if a MEM has already been loaded with a widening operation;
4979 	 if it has, we can use a subreg of that.  Many CISC machines
4980 	 also have such operations, but this is only likely to be
4981 	 beneficial on these machines.  */
4982 
4983       rtx_code extend_op;
4984       if (flag_expensive_optimizations && src_related == 0
4985 	  && MEM_P (src) && ! do_not_record
4986 	  && is_a <scalar_int_mode> (mode, &int_mode)
4987 	  && (extend_op = load_extend_op (int_mode)) != UNKNOWN)
4988 	{
4989 	  struct rtx_def memory_extend_buf;
4990 	  rtx memory_extend_rtx = &memory_extend_buf;
4991 
4992 	  /* Set what we are trying to extend and the operation it might
4993 	     have been extended with.  */
4994 	  memset (memory_extend_rtx, 0, sizeof (*memory_extend_rtx));
4995 	  PUT_CODE (memory_extend_rtx, extend_op);
4996 	  XEXP (memory_extend_rtx, 0) = src;
4997 
4998 	  opt_scalar_int_mode tmode_iter;
4999 	  FOR_EACH_WIDER_MODE (tmode_iter, int_mode)
5000 	    {
5001 	      struct table_elt *larger_elt;
5002 
5003 	      scalar_int_mode tmode = tmode_iter.require ();
5004 	      if (GET_MODE_SIZE (tmode) > UNITS_PER_WORD)
5005 		break;
5006 
5007 	      PUT_MODE (memory_extend_rtx, tmode);
5008 	      larger_elt = lookup (memory_extend_rtx,
5009 				   HASH (memory_extend_rtx, tmode), tmode);
5010 	      if (larger_elt == 0)
5011 		continue;
5012 
5013 	      for (larger_elt = larger_elt->first_same_value;
5014 		   larger_elt; larger_elt = larger_elt->next_same_value)
5015 		if (REG_P (larger_elt->exp))
5016 		  {
5017 		    src_related = gen_lowpart (int_mode, larger_elt->exp);
5018 		    break;
5019 		  }
5020 
5021 	      if (src_related)
5022 		break;
5023 	    }
5024 	}
5025 
5026       /* Try to express the constant using a register+offset expression
5027 	 derived from a constant anchor.  */
5028 
5029       if (targetm.const_anchor
5030 	  && !src_related
5031 	  && src_const
5032 	  && GET_CODE (src_const) == CONST_INT)
5033 	{
5034 	  src_related = try_const_anchors (src_const, mode);
5035 	  src_related_is_const_anchor = src_related != NULL_RTX;
5036 	}
5037 
5038 
5039       if (src == src_folded)
5040 	src_folded = 0;
5041 
5042       /* At this point, ELT, if nonzero, points to a class of expressions
5043          equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
5044 	 and SRC_RELATED, if nonzero, each contain additional equivalent
5045 	 expressions.  Prune these latter expressions by deleting expressions
5046 	 already in the equivalence class.
5047 
5048 	 Check for an equivalent identical to the destination.  If found,
5049 	 this is the preferred equivalent since it will likely lead to
5050 	 elimination of the insn.  Indicate this by placing it in
5051 	 `src_related'.  */
5052 
5053       if (elt)
5054 	elt = elt->first_same_value;
5055       for (p = elt; p; p = p->next_same_value)
5056 	{
5057 	  enum rtx_code code = GET_CODE (p->exp);
5058 
5059 	  /* If the expression is not valid, ignore it.  Then we do not
5060 	     have to check for validity below.  In most cases, we can use
5061 	     `rtx_equal_p', since canonicalization has already been done.  */
5062 	  if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
5063 	    continue;
5064 
5065 	  /* Also skip paradoxical subregs, unless that's what we're
5066 	     looking for.  */
5067 	  if (paradoxical_subreg_p (p->exp)
5068 	      && ! (src != 0
5069 		    && GET_CODE (src) == SUBREG
5070 		    && GET_MODE (src) == GET_MODE (p->exp)
5071 		    && partial_subreg_p (GET_MODE (SUBREG_REG (src)),
5072 					 GET_MODE (SUBREG_REG (p->exp)))))
5073 	    continue;
5074 
5075 	  if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
5076 	    src = 0;
5077 	  else if (src_folded && GET_CODE (src_folded) == code
5078 		   && rtx_equal_p (src_folded, p->exp))
5079 	    src_folded = 0;
5080 	  else if (src_eqv_here && GET_CODE (src_eqv_here) == code
5081 		   && rtx_equal_p (src_eqv_here, p->exp))
5082 	    src_eqv_here = 0;
5083 	  else if (src_related && GET_CODE (src_related) == code
5084 		   && rtx_equal_p (src_related, p->exp))
5085 	    src_related = 0;
5086 
5087 	  /* This is the same as the destination of the insns, we want
5088 	     to prefer it.  Copy it to src_related.  The code below will
5089 	     then give it a negative cost.  */
5090 	  if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5091 	    src_related = dest;
5092 	}
5093 
5094       /* Find the cheapest valid equivalent, trying all the available
5095          possibilities.  Prefer items not in the hash table to ones
5096          that are when they are equal cost.  Note that we can never
5097          worsen an insn as the current contents will also succeed.
5098 	 If we find an equivalent identical to the destination, use it as best,
5099 	 since this insn will probably be eliminated in that case.  */
5100       if (src)
5101 	{
5102 	  if (rtx_equal_p (src, dest))
5103 	    src_cost = src_regcost = -1;
5104 	  else
5105 	    {
5106 	      src_cost = COST (src, mode);
5107 	      src_regcost = approx_reg_cost (src);
5108 	    }
5109 	}
5110 
5111       if (src_eqv_here)
5112 	{
5113 	  if (rtx_equal_p (src_eqv_here, dest))
5114 	    src_eqv_cost = src_eqv_regcost = -1;
5115 	  else
5116 	    {
5117 	      src_eqv_cost = COST (src_eqv_here, mode);
5118 	      src_eqv_regcost = approx_reg_cost (src_eqv_here);
5119 	    }
5120 	}
5121 
5122       if (src_folded)
5123 	{
5124 	  if (rtx_equal_p (src_folded, dest))
5125 	    src_folded_cost = src_folded_regcost = -1;
5126 	  else
5127 	    {
5128 	      src_folded_cost = COST (src_folded, mode);
5129 	      src_folded_regcost = approx_reg_cost (src_folded);
5130 	    }
5131 	}
5132 
5133       if (src_related)
5134 	{
5135 	  if (rtx_equal_p (src_related, dest))
5136 	    src_related_cost = src_related_regcost = -1;
5137 	  else
5138 	    {
5139 	      src_related_cost = COST (src_related, mode);
5140 	      src_related_regcost = approx_reg_cost (src_related);
5141 
5142 	      /* If a const-anchor is used to synthesize a constant that
5143 		 normally requires multiple instructions then slightly prefer
5144 		 it over the original sequence.  These instructions are likely
5145 		 to become redundant now.  We can't compare against the cost
5146 		 of src_eqv_here because, on MIPS for example, multi-insn
5147 		 constants have zero cost; they are assumed to be hoisted from
5148 		 loops.  */
5149 	      if (src_related_is_const_anchor
5150 		  && src_related_cost == src_cost
5151 		  && src_eqv_here)
5152 		src_related_cost--;
5153 	    }
5154 	}
5155 
5156       /* If this was an indirect jump insn, a known label will really be
5157 	 cheaper even though it looks more expensive.  */
5158       if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5159 	src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5160 
5161       /* Terminate loop when replacement made.  This must terminate since
5162          the current contents will be tested and will always be valid.  */
5163       while (1)
5164 	{
5165 	  rtx trial;
5166 
5167 	  /* Skip invalid entries.  */
5168 	  while (elt && !REG_P (elt->exp)
5169 		 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5170 	    elt = elt->next_same_value;
5171 
5172 	  /* A paradoxical subreg would be bad here: it'll be the right
5173 	     size, but later may be adjusted so that the upper bits aren't
5174 	     what we want.  So reject it.  */
5175 	  if (elt != 0
5176 	      && paradoxical_subreg_p (elt->exp)
5177 	      /* It is okay, though, if the rtx we're trying to match
5178 		 will ignore any of the bits we can't predict.  */
5179 	      && ! (src != 0
5180 		    && GET_CODE (src) == SUBREG
5181 		    && GET_MODE (src) == GET_MODE (elt->exp)
5182 		    && partial_subreg_p (GET_MODE (SUBREG_REG (src)),
5183 					 GET_MODE (SUBREG_REG (elt->exp)))))
5184 	    {
5185 	      elt = elt->next_same_value;
5186 	      continue;
5187 	    }
5188 
5189 	  if (elt)
5190 	    {
5191 	      src_elt_cost = elt->cost;
5192 	      src_elt_regcost = elt->regcost;
5193 	    }
5194 
5195 	  /* Find cheapest and skip it for the next time.   For items
5196 	     of equal cost, use this order:
5197 	     src_folded, src, src_eqv, src_related and hash table entry.  */
5198 	  if (src_folded
5199 	      && preferable (src_folded_cost, src_folded_regcost,
5200 			     src_cost, src_regcost) <= 0
5201 	      && preferable (src_folded_cost, src_folded_regcost,
5202 			     src_eqv_cost, src_eqv_regcost) <= 0
5203 	      && preferable (src_folded_cost, src_folded_regcost,
5204 			     src_related_cost, src_related_regcost) <= 0
5205 	      && preferable (src_folded_cost, src_folded_regcost,
5206 			     src_elt_cost, src_elt_regcost) <= 0)
5207 	    {
5208 	      trial = src_folded, src_folded_cost = MAX_COST;
5209 	      if (src_folded_force_flag)
5210 		{
5211 		  rtx forced = force_const_mem (mode, trial);
5212 		  if (forced)
5213 		    trial = forced;
5214 		}
5215 	    }
5216 	  else if (src
5217 		   && preferable (src_cost, src_regcost,
5218 				  src_eqv_cost, src_eqv_regcost) <= 0
5219 		   && preferable (src_cost, src_regcost,
5220 				  src_related_cost, src_related_regcost) <= 0
5221 		   && preferable (src_cost, src_regcost,
5222 				  src_elt_cost, src_elt_regcost) <= 0)
5223 	    trial = src, src_cost = MAX_COST;
5224 	  else if (src_eqv_here
5225 		   && preferable (src_eqv_cost, src_eqv_regcost,
5226 				  src_related_cost, src_related_regcost) <= 0
5227 		   && preferable (src_eqv_cost, src_eqv_regcost,
5228 				  src_elt_cost, src_elt_regcost) <= 0)
5229 	    trial = src_eqv_here, src_eqv_cost = MAX_COST;
5230 	  else if (src_related
5231 		   && preferable (src_related_cost, src_related_regcost,
5232 				  src_elt_cost, src_elt_regcost) <= 0)
5233 	    trial = src_related, src_related_cost = MAX_COST;
5234 	  else
5235 	    {
5236 	      trial = elt->exp;
5237 	      elt = elt->next_same_value;
5238 	      src_elt_cost = MAX_COST;
5239 	    }
5240 
5241 	  /* Avoid creation of overlapping memory moves.  */
5242 	  if (MEM_P (trial) && MEM_P (dest) && !rtx_equal_p (trial, dest))
5243 	    {
5244 	      rtx src, dest;
5245 
5246 	      /* BLKmode moves are not handled by cse anyway.  */
5247 	      if (GET_MODE (trial) == BLKmode)
5248 		break;
5249 
5250 	      src = canon_rtx (trial);
5251 	      dest = canon_rtx (SET_DEST (sets[i].rtl));
5252 
5253 	      if (!MEM_P (src) || !MEM_P (dest)
5254 		  || !nonoverlapping_memrefs_p (src, dest, false))
5255 		break;
5256 	    }
5257 
5258 	  /* Try to optimize
5259 	     (set (reg:M N) (const_int A))
5260 	     (set (reg:M2 O) (const_int B))
5261 	     (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5262 		  (reg:M2 O)).  */
5263 	  if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5264 	      && CONST_INT_P (trial)
5265 	      && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5266 	      && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5267 	      && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
5268 	      && (known_ge
5269 		  (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl))),
5270 		   INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))))
5271 	      && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5272 		  + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5273 		  <= HOST_BITS_PER_WIDE_INT))
5274 	    {
5275 	      rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5276 	      rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5277 	      rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5278 	      unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5279 	      struct table_elt *dest_elt
5280 		= lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5281 	      rtx dest_cst = NULL;
5282 
5283 	      if (dest_elt)
5284 		for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5285 		  if (p->is_const && CONST_INT_P (p->exp))
5286 		    {
5287 		      dest_cst = p->exp;
5288 		      break;
5289 		    }
5290 	      if (dest_cst)
5291 		{
5292 		  HOST_WIDE_INT val = INTVAL (dest_cst);
5293 		  HOST_WIDE_INT mask;
5294 		  unsigned int shift;
5295 		  /* This is the mode of DEST_CST as well.  */
5296 		  scalar_int_mode dest_mode
5297 		    = as_a <scalar_int_mode> (GET_MODE (dest_reg));
5298 		  if (BITS_BIG_ENDIAN)
5299 		    shift = GET_MODE_PRECISION (dest_mode)
5300 			    - INTVAL (pos) - INTVAL (width);
5301 		  else
5302 		    shift = INTVAL (pos);
5303 		  if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5304 		    mask = HOST_WIDE_INT_M1;
5305 		  else
5306 		    mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1;
5307 		  val &= ~(mask << shift);
5308 		  val |= (INTVAL (trial) & mask) << shift;
5309 		  val = trunc_int_for_mode (val, dest_mode);
5310 		  validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5311 					   dest_reg, 1);
5312 		  validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5313 					   GEN_INT (val), 1);
5314 		  if (apply_change_group ())
5315 		    {
5316 		      rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5317 		      if (note)
5318 			{
5319 			  remove_note (insn, note);
5320 			  df_notes_rescan (insn);
5321 			}
5322 		      src_eqv = NULL_RTX;
5323 		      src_eqv_elt = NULL;
5324 		      src_eqv_volatile = 0;
5325 		      src_eqv_in_memory = 0;
5326 		      src_eqv_hash = 0;
5327 		      repeat = true;
5328 		      break;
5329 		    }
5330 		}
5331 	    }
5332 
5333 	  /* We don't normally have an insn matching (set (pc) (pc)), so
5334 	     check for this separately here.  We will delete such an
5335 	     insn below.
5336 
5337 	     For other cases such as a table jump or conditional jump
5338 	     where we know the ultimate target, go ahead and replace the
5339 	     operand.  While that may not make a valid insn, we will
5340 	     reemit the jump below (and also insert any necessary
5341 	     barriers).  */
5342 	  if (n_sets == 1 && dest == pc_rtx
5343 	      && (trial == pc_rtx
5344 		  || (GET_CODE (trial) == LABEL_REF
5345 		      && ! condjump_p (insn))))
5346 	    {
5347 	      /* Don't substitute non-local labels, this confuses CFG.  */
5348 	      if (GET_CODE (trial) == LABEL_REF
5349 		  && LABEL_REF_NONLOCAL_P (trial))
5350 		continue;
5351 
5352 	      SET_SRC (sets[i].rtl) = trial;
5353 	      cse_jumps_altered = true;
5354 	      break;
5355 	    }
5356 
5357 	  /* Similarly, lots of targets don't allow no-op
5358 	     (set (mem x) (mem x)) moves.  */
5359 	  else if (n_sets == 1
5360 		   && MEM_P (trial)
5361 		   && MEM_P (dest)
5362 		   && rtx_equal_p (trial, dest)
5363 		   && !side_effects_p (dest)
5364 		   && (cfun->can_delete_dead_exceptions
5365 		       || insn_nothrow_p (insn)))
5366 	    {
5367 	      SET_SRC (sets[i].rtl) = trial;
5368 	      mem_noop_insn = true;
5369 	      break;
5370 	    }
5371 
5372 	  /* Reject certain invalid forms of CONST that we create.  */
5373 	  else if (CONSTANT_P (trial)
5374 		   && GET_CODE (trial) == CONST
5375 		   /* Reject cases that will cause decode_rtx_const to
5376 		      die.  On the alpha when simplifying a switch, we
5377 		      get (const (truncate (minus (label_ref)
5378 		      (label_ref)))).  */
5379 		   && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5380 		       /* Likewise on IA-64, except without the
5381 			  truncate.  */
5382 		       || (GET_CODE (XEXP (trial, 0)) == MINUS
5383 			   && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5384 			   && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5385 	    /* Do nothing for this case.  */
5386 	    ;
5387 
5388 	  /* Look for a substitution that makes a valid insn.  */
5389 	  else if (validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5390 					    trial, 0))
5391 	    {
5392 	      rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
5393 
5394 	      /* The result of apply_change_group can be ignored; see
5395 		 canon_reg.  */
5396 
5397 	      validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
5398 	      apply_change_group ();
5399 
5400 	      break;
5401 	    }
5402 
5403 	  /* If we previously found constant pool entries for
5404 	     constants and this is a constant, try making a
5405 	     pool entry.  Put it in src_folded unless we already have done
5406 	     this since that is where it likely came from.  */
5407 
5408 	  else if (constant_pool_entries_cost
5409 		   && CONSTANT_P (trial)
5410 		   && (src_folded == 0
5411 		       || (!MEM_P (src_folded)
5412 			   && ! src_folded_force_flag))
5413 		   && GET_MODE_CLASS (mode) != MODE_CC
5414 		   && mode != VOIDmode)
5415 	    {
5416 	      src_folded_force_flag = 1;
5417 	      src_folded = trial;
5418 	      src_folded_cost = constant_pool_entries_cost;
5419 	      src_folded_regcost = constant_pool_entries_regcost;
5420 	    }
5421 	}
5422 
5423       /* If we changed the insn too much, handle this set from scratch.  */
5424       if (repeat)
5425 	{
5426 	  i--;
5427 	  continue;
5428 	}
5429 
5430       src = SET_SRC (sets[i].rtl);
5431 
5432       /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5433 	 However, there is an important exception:  If both are registers
5434 	 that are not the head of their equivalence class, replace SET_SRC
5435 	 with the head of the class.  If we do not do this, we will have
5436 	 both registers live over a portion of the basic block.  This way,
5437 	 their lifetimes will likely abut instead of overlapping.  */
5438       if (REG_P (dest)
5439 	  && REGNO_QTY_VALID_P (REGNO (dest)))
5440 	{
5441 	  int dest_q = REG_QTY (REGNO (dest));
5442 	  struct qty_table_elem *dest_ent = &qty_table[dest_q];
5443 
5444 	  if (dest_ent->mode == GET_MODE (dest)
5445 	      && dest_ent->first_reg != REGNO (dest)
5446 	      && REG_P (src) && REGNO (src) == REGNO (dest)
5447 	      /* Don't do this if the original insn had a hard reg as
5448 		 SET_SRC or SET_DEST.  */
5449 	      && (!REG_P (sets[i].src)
5450 		  || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5451 	      && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5452 	    /* We can't call canon_reg here because it won't do anything if
5453 	       SRC is a hard register.  */
5454 	    {
5455 	      int src_q = REG_QTY (REGNO (src));
5456 	      struct qty_table_elem *src_ent = &qty_table[src_q];
5457 	      int first = src_ent->first_reg;
5458 	      rtx new_src
5459 		= (first >= FIRST_PSEUDO_REGISTER
5460 		   ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5461 
5462 	      /* We must use validate-change even for this, because this
5463 		 might be a special no-op instruction, suitable only to
5464 		 tag notes onto.  */
5465 	      if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5466 		{
5467 		  src = new_src;
5468 		  /* If we had a constant that is cheaper than what we are now
5469 		     setting SRC to, use that constant.  We ignored it when we
5470 		     thought we could make this into a no-op.  */
5471 		  if (src_const && COST (src_const, mode) < COST (src, mode)
5472 		      && validate_change (insn, &SET_SRC (sets[i].rtl),
5473 					  src_const, 0))
5474 		    src = src_const;
5475 		}
5476 	    }
5477 	}
5478 
5479       /* If we made a change, recompute SRC values.  */
5480       if (src != sets[i].src)
5481 	{
5482 	  do_not_record = 0;
5483 	  hash_arg_in_memory = 0;
5484 	  sets[i].src = src;
5485 	  sets[i].src_hash = HASH (src, mode);
5486 	  sets[i].src_volatile = do_not_record;
5487 	  sets[i].src_in_memory = hash_arg_in_memory;
5488 	  sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5489 	}
5490 
5491       /* If this is a single SET, we are setting a register, and we have an
5492 	 equivalent constant, we want to add a REG_EQUAL note if the constant
5493 	 is different from the source.  We don't want to do it for a constant
5494 	 pseudo since verifying that this pseudo hasn't been eliminated is a
5495 	 pain; moreover such a note won't help anything.
5496 
5497 	 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5498 	 which can be created for a reference to a compile time computable
5499 	 entry in a jump table.  */
5500       if (n_sets == 1
5501 	  && REG_P (dest)
5502 	  && src_const
5503 	  && !REG_P (src_const)
5504 	  && !(GET_CODE (src_const) == SUBREG
5505 	       && REG_P (SUBREG_REG (src_const)))
5506 	  && !(GET_CODE (src_const) == CONST
5507 	       && GET_CODE (XEXP (src_const, 0)) == MINUS
5508 	       && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5509 	       && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF)
5510 	  && !rtx_equal_p (src, src_const))
5511 	{
5512 	  /* Make sure that the rtx is not shared.  */
5513 	  src_const = copy_rtx (src_const);
5514 
5515 	  /* Record the actual constant value in a REG_EQUAL note,
5516 	     making a new one if one does not already exist.  */
5517 	  set_unique_reg_note (insn, REG_EQUAL, src_const);
5518 	  df_notes_rescan (insn);
5519 	}
5520 
5521       /* Now deal with the destination.  */
5522       do_not_record = 0;
5523 
5524       /* Look within any ZERO_EXTRACT to the MEM or REG within it.  */
5525       while (GET_CODE (dest) == SUBREG
5526 	     || GET_CODE (dest) == ZERO_EXTRACT
5527 	     || GET_CODE (dest) == STRICT_LOW_PART)
5528 	dest = XEXP (dest, 0);
5529 
5530       sets[i].inner_dest = dest;
5531 
5532       if (MEM_P (dest))
5533 	{
5534 #ifdef PUSH_ROUNDING
5535 	  /* Stack pushes invalidate the stack pointer.  */
5536 	  rtx addr = XEXP (dest, 0);
5537 	  if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5538 	      && XEXP (addr, 0) == stack_pointer_rtx)
5539 	    invalidate (stack_pointer_rtx, VOIDmode);
5540 #endif
5541 	  dest = fold_rtx (dest, insn);
5542 	}
5543 
5544       /* Compute the hash code of the destination now,
5545 	 before the effects of this instruction are recorded,
5546 	 since the register values used in the address computation
5547 	 are those before this instruction.  */
5548       sets[i].dest_hash = HASH (dest, mode);
5549 
5550       /* Don't enter a bit-field in the hash table
5551 	 because the value in it after the store
5552 	 may not equal what was stored, due to truncation.  */
5553 
5554       if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5555 	{
5556 	  rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5557 
5558 	  if (src_const != 0 && CONST_INT_P (src_const)
5559 	      && CONST_INT_P (width)
5560 	      && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5561 	      && ! (INTVAL (src_const)
5562 		    & (HOST_WIDE_INT_M1U << INTVAL (width))))
5563 	    /* Exception: if the value is constant,
5564 	       and it won't be truncated, record it.  */
5565 	    ;
5566 	  else
5567 	    {
5568 	      /* This is chosen so that the destination will be invalidated
5569 		 but no new value will be recorded.
5570 		 We must invalidate because sometimes constant
5571 		 values can be recorded for bitfields.  */
5572 	      sets[i].src_elt = 0;
5573 	      sets[i].src_volatile = 1;
5574 	      src_eqv = 0;
5575 	      src_eqv_elt = 0;
5576 	    }
5577 	}
5578 
5579       /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5580 	 the insn.  */
5581       else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5582 	{
5583 	  /* One less use of the label this insn used to jump to.  */
5584 	  cse_cfg_altered |= delete_insn_and_edges (insn);
5585 	  cse_jumps_altered = true;
5586 	  /* No more processing for this set.  */
5587 	  sets[i].rtl = 0;
5588 	}
5589 
5590       /* Similarly for no-op MEM moves.  */
5591       else if (mem_noop_insn)
5592 	{
5593 	  if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5594 	    cse_cfg_altered = true;
5595 	  cse_cfg_altered |= delete_insn_and_edges (insn);
5596 	  /* No more processing for this set.  */
5597 	  sets[i].rtl = 0;
5598 	}
5599 
5600       /* If this SET is now setting PC to a label, we know it used to
5601 	 be a conditional or computed branch.  */
5602       else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5603 	       && !LABEL_REF_NONLOCAL_P (src))
5604 	{
5605 	  /* We reemit the jump in as many cases as possible just in
5606 	     case the form of an unconditional jump is significantly
5607 	     different than a computed jump or conditional jump.
5608 
5609 	     If this insn has multiple sets, then reemitting the
5610 	     jump is nontrivial.  So instead we just force rerecognition
5611 	     and hope for the best.  */
5612 	  if (n_sets == 1)
5613 	    {
5614 	      rtx_jump_insn *new_rtx;
5615 	      rtx note;
5616 
5617 	      rtx_insn *seq = targetm.gen_jump (XEXP (src, 0));
5618 	      new_rtx = emit_jump_insn_before (seq, insn);
5619 	      JUMP_LABEL (new_rtx) = XEXP (src, 0);
5620 	      LABEL_NUSES (XEXP (src, 0))++;
5621 
5622 	      /* Make sure to copy over REG_NON_LOCAL_GOTO.  */
5623 	      note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5624 	      if (note)
5625 		{
5626 		  XEXP (note, 1) = NULL_RTX;
5627 		  REG_NOTES (new_rtx) = note;
5628 		}
5629 
5630 	      cse_cfg_altered |= delete_insn_and_edges (insn);
5631 	      insn = new_rtx;
5632 	    }
5633 	  else
5634 	    INSN_CODE (insn) = -1;
5635 
5636 	  /* Do not bother deleting any unreachable code, let jump do it.  */
5637 	  cse_jumps_altered = true;
5638 	  sets[i].rtl = 0;
5639 	}
5640 
5641       /* If destination is volatile, invalidate it and then do no further
5642 	 processing for this assignment.  */
5643 
5644       else if (do_not_record)
5645 	{
5646 	  invalidate_dest (dest);
5647 	  sets[i].rtl = 0;
5648 	}
5649 
5650       if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5651 	{
5652 	  do_not_record = 0;
5653 	  sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5654 	  if (do_not_record)
5655 	    {
5656 	      invalidate_dest (SET_DEST (sets[i].rtl));
5657 	      sets[i].rtl = 0;
5658 	    }
5659 	}
5660 
5661       /* If setting CC0, record what it was set to, or a constant, if it
5662 	 is equivalent to a constant.  If it is being set to a floating-point
5663 	 value, make a COMPARE with the appropriate constant of 0.  If we
5664 	 don't do this, later code can interpret this as a test against
5665 	 const0_rtx, which can cause problems if we try to put it into an
5666 	 insn as a floating-point operand.  */
5667       if (dest == cc0_rtx)
5668 	{
5669 	  this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5670 	  this_insn_cc0_mode = mode;
5671 	  if (FLOAT_MODE_P (mode))
5672 	    this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5673 					     CONST0_RTX (mode));
5674 	}
5675     }
5676 
5677   /* Now enter all non-volatile source expressions in the hash table
5678      if they are not already present.
5679      Record their equivalence classes in src_elt.
5680      This way we can insert the corresponding destinations into
5681      the same classes even if the actual sources are no longer in them
5682      (having been invalidated).  */
5683 
5684   if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5685       && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5686     {
5687       struct table_elt *elt;
5688       struct table_elt *classp = sets[0].src_elt;
5689       rtx dest = SET_DEST (sets[0].rtl);
5690       machine_mode eqvmode = GET_MODE (dest);
5691 
5692       if (GET_CODE (dest) == STRICT_LOW_PART)
5693 	{
5694 	  eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5695 	  classp = 0;
5696 	}
5697       if (insert_regs (src_eqv, classp, 0))
5698 	{
5699 	  rehash_using_reg (src_eqv);
5700 	  src_eqv_hash = HASH (src_eqv, eqvmode);
5701 	}
5702       elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5703       elt->in_memory = src_eqv_in_memory;
5704       src_eqv_elt = elt;
5705 
5706       /* Check to see if src_eqv_elt is the same as a set source which
5707 	 does not yet have an elt, and if so set the elt of the set source
5708 	 to src_eqv_elt.  */
5709       for (i = 0; i < n_sets; i++)
5710 	if (sets[i].rtl && sets[i].src_elt == 0
5711 	    && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5712 	  sets[i].src_elt = src_eqv_elt;
5713     }
5714 
5715   for (i = 0; i < n_sets; i++)
5716     if (sets[i].rtl && ! sets[i].src_volatile
5717 	&& ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5718       {
5719 	if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5720 	  {
5721 	    /* REG_EQUAL in setting a STRICT_LOW_PART
5722 	       gives an equivalent for the entire destination register,
5723 	       not just for the subreg being stored in now.
5724 	       This is a more interesting equivalence, so we arrange later
5725 	       to treat the entire reg as the destination.  */
5726 	    sets[i].src_elt = src_eqv_elt;
5727 	    sets[i].src_hash = src_eqv_hash;
5728 	  }
5729 	else
5730 	  {
5731 	    /* Insert source and constant equivalent into hash table, if not
5732 	       already present.  */
5733 	    struct table_elt *classp = src_eqv_elt;
5734 	    rtx src = sets[i].src;
5735 	    rtx dest = SET_DEST (sets[i].rtl);
5736 	    machine_mode mode
5737 	      = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5738 
5739 	    /* It's possible that we have a source value known to be
5740 	       constant but don't have a REG_EQUAL note on the insn.
5741 	       Lack of a note will mean src_eqv_elt will be NULL.  This
5742 	       can happen where we've generated a SUBREG to access a
5743 	       CONST_INT that is already in a register in a wider mode.
5744 	       Ensure that the source expression is put in the proper
5745 	       constant class.  */
5746 	    if (!classp)
5747 	      classp = sets[i].src_const_elt;
5748 
5749 	    if (sets[i].src_elt == 0)
5750 	      {
5751 		struct table_elt *elt;
5752 
5753 		/* Note that these insert_regs calls cannot remove
5754 		   any of the src_elt's, because they would have failed to
5755 		   match if not still valid.  */
5756 		if (insert_regs (src, classp, 0))
5757 		  {
5758 		    rehash_using_reg (src);
5759 		    sets[i].src_hash = HASH (src, mode);
5760 		  }
5761 		elt = insert (src, classp, sets[i].src_hash, mode);
5762 		elt->in_memory = sets[i].src_in_memory;
5763 		/* If inline asm has any clobbers, ensure we only reuse
5764 		   existing inline asms and never try to put the ASM_OPERANDS
5765 		   into an insn that isn't inline asm.  */
5766 		if (GET_CODE (src) == ASM_OPERANDS
5767 		    && GET_CODE (x) == PARALLEL)
5768 		  elt->cost = MAX_COST;
5769 		sets[i].src_elt = classp = elt;
5770 	      }
5771 	    if (sets[i].src_const && sets[i].src_const_elt == 0
5772 		&& src != sets[i].src_const
5773 		&& ! rtx_equal_p (sets[i].src_const, src))
5774 	      sets[i].src_elt = insert (sets[i].src_const, classp,
5775 					sets[i].src_const_hash, mode);
5776 	  }
5777       }
5778     else if (sets[i].src_elt == 0)
5779       /* If we did not insert the source into the hash table (e.g., it was
5780 	 volatile), note the equivalence class for the REG_EQUAL value, if any,
5781 	 so that the destination goes into that class.  */
5782       sets[i].src_elt = src_eqv_elt;
5783 
5784   /* Record destination addresses in the hash table.  This allows us to
5785      check if they are invalidated by other sets.  */
5786   for (i = 0; i < n_sets; i++)
5787     {
5788       if (sets[i].rtl)
5789 	{
5790 	  rtx x = sets[i].inner_dest;
5791 	  struct table_elt *elt;
5792 	  machine_mode mode;
5793 	  unsigned hash;
5794 
5795 	  if (MEM_P (x))
5796 	    {
5797 	      x = XEXP (x, 0);
5798 	      mode = GET_MODE (x);
5799 	      hash = HASH (x, mode);
5800 	      elt = lookup (x, hash, mode);
5801 	      if (!elt)
5802 		{
5803 		  if (insert_regs (x, NULL, 0))
5804 		    {
5805 		      rtx dest = SET_DEST (sets[i].rtl);
5806 
5807 		      rehash_using_reg (x);
5808 		      hash = HASH (x, mode);
5809 		      sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5810 		    }
5811 		  elt = insert (x, NULL, hash, mode);
5812 		}
5813 
5814 	      sets[i].dest_addr_elt = elt;
5815 	    }
5816 	  else
5817 	    sets[i].dest_addr_elt = NULL;
5818 	}
5819     }
5820 
5821   invalidate_from_clobbers (insn);
5822 
5823   /* Some registers are invalidated by subroutine calls.  Memory is
5824      invalidated by non-constant calls.  */
5825 
5826   if (CALL_P (insn))
5827     {
5828       if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5829 	invalidate_memory ();
5830       else
5831 	/* For const/pure calls, invalidate any argument slots, because
5832 	   those are owned by the callee.  */
5833 	for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
5834 	  if (GET_CODE (XEXP (tem, 0)) == USE
5835 	      && MEM_P (XEXP (XEXP (tem, 0), 0)))
5836 	    invalidate (XEXP (XEXP (tem, 0), 0), VOIDmode);
5837       invalidate_for_call ();
5838     }
5839 
5840   /* Now invalidate everything set by this instruction.
5841      If a SUBREG or other funny destination is being set,
5842      sets[i].rtl is still nonzero, so here we invalidate the reg
5843      a part of which is being set.  */
5844 
5845   for (i = 0; i < n_sets; i++)
5846     if (sets[i].rtl)
5847       {
5848 	/* We can't use the inner dest, because the mode associated with
5849 	   a ZERO_EXTRACT is significant.  */
5850 	rtx dest = SET_DEST (sets[i].rtl);
5851 
5852 	/* Needed for registers to remove the register from its
5853 	   previous quantity's chain.
5854 	   Needed for memory if this is a nonvarying address, unless
5855 	   we have just done an invalidate_memory that covers even those.  */
5856 	if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5857 	  invalidate (dest, VOIDmode);
5858 	else if (MEM_P (dest))
5859 	  invalidate (dest, VOIDmode);
5860 	else if (GET_CODE (dest) == STRICT_LOW_PART
5861 		 || GET_CODE (dest) == ZERO_EXTRACT)
5862 	  invalidate (XEXP (dest, 0), GET_MODE (dest));
5863       }
5864 
5865   /* Don't cse over a call to setjmp; on some machines (eg VAX)
5866      the regs restored by the longjmp come from a later time
5867      than the setjmp.  */
5868   if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5869     {
5870       flush_hash_table ();
5871       goto done;
5872     }
5873 
5874   /* Make sure registers mentioned in destinations
5875      are safe for use in an expression to be inserted.
5876      This removes from the hash table
5877      any invalid entry that refers to one of these registers.
5878 
5879      We don't care about the return value from mention_regs because
5880      we are going to hash the SET_DEST values unconditionally.  */
5881 
5882   for (i = 0; i < n_sets; i++)
5883     {
5884       if (sets[i].rtl)
5885 	{
5886 	  rtx x = SET_DEST (sets[i].rtl);
5887 
5888 	  if (!REG_P (x))
5889 	    mention_regs (x);
5890 	  else
5891 	    {
5892 	      /* We used to rely on all references to a register becoming
5893 		 inaccessible when a register changes to a new quantity,
5894 		 since that changes the hash code.  However, that is not
5895 		 safe, since after HASH_SIZE new quantities we get a
5896 		 hash 'collision' of a register with its own invalid
5897 		 entries.  And since SUBREGs have been changed not to
5898 		 change their hash code with the hash code of the register,
5899 		 it wouldn't work any longer at all.  So we have to check
5900 		 for any invalid references lying around now.
5901 		 This code is similar to the REG case in mention_regs,
5902 		 but it knows that reg_tick has been incremented, and
5903 		 it leaves reg_in_table as -1 .  */
5904 	      unsigned int regno = REGNO (x);
5905 	      unsigned int endregno = END_REGNO (x);
5906 	      unsigned int i;
5907 
5908 	      for (i = regno; i < endregno; i++)
5909 		{
5910 		  if (REG_IN_TABLE (i) >= 0)
5911 		    {
5912 		      remove_invalid_refs (i);
5913 		      REG_IN_TABLE (i) = -1;
5914 		    }
5915 		}
5916 	    }
5917 	}
5918     }
5919 
5920   /* We may have just removed some of the src_elt's from the hash table.
5921      So replace each one with the current head of the same class.
5922      Also check if destination addresses have been removed.  */
5923 
5924   for (i = 0; i < n_sets; i++)
5925     if (sets[i].rtl)
5926       {
5927 	if (sets[i].dest_addr_elt
5928 	    && sets[i].dest_addr_elt->first_same_value == 0)
5929 	  {
5930 	    /* The elt was removed, which means this destination is not
5931 	       valid after this instruction.  */
5932 	    sets[i].rtl = NULL_RTX;
5933 	  }
5934 	else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5935 	  /* If elt was removed, find current head of same class,
5936 	     or 0 if nothing remains of that class.  */
5937 	  {
5938 	    struct table_elt *elt = sets[i].src_elt;
5939 
5940 	    while (elt && elt->prev_same_value)
5941 	      elt = elt->prev_same_value;
5942 
5943 	    while (elt && elt->first_same_value == 0)
5944 	      elt = elt->next_same_value;
5945 	    sets[i].src_elt = elt ? elt->first_same_value : 0;
5946 	  }
5947       }
5948 
5949   /* Now insert the destinations into their equivalence classes.  */
5950 
5951   for (i = 0; i < n_sets; i++)
5952     if (sets[i].rtl)
5953       {
5954 	rtx dest = SET_DEST (sets[i].rtl);
5955 	struct table_elt *elt;
5956 
5957 	/* Don't record value if we are not supposed to risk allocating
5958 	   floating-point values in registers that might be wider than
5959 	   memory.  */
5960 	if ((flag_float_store
5961 	     && MEM_P (dest)
5962 	     && FLOAT_MODE_P (GET_MODE (dest)))
5963 	    /* Don't record BLKmode values, because we don't know the
5964 	       size of it, and can't be sure that other BLKmode values
5965 	       have the same or smaller size.  */
5966 	    || GET_MODE (dest) == BLKmode
5967 	    /* If we didn't put a REG_EQUAL value or a source into the hash
5968 	       table, there is no point is recording DEST.  */
5969 	    || sets[i].src_elt == 0)
5970 	  continue;
5971 
5972 	/* STRICT_LOW_PART isn't part of the value BEING set,
5973 	   and neither is the SUBREG inside it.
5974 	   Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT.  */
5975 	if (GET_CODE (dest) == STRICT_LOW_PART)
5976 	  dest = SUBREG_REG (XEXP (dest, 0));
5977 
5978 	if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5979 	  /* Registers must also be inserted into chains for quantities.  */
5980 	  if (insert_regs (dest, sets[i].src_elt, 1))
5981 	    {
5982 	      /* If `insert_regs' changes something, the hash code must be
5983 		 recalculated.  */
5984 	      rehash_using_reg (dest);
5985 	      sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5986 	    }
5987 
5988 	/* If DEST is a paradoxical SUBREG, don't record DEST since the bits
5989 	   outside the mode of GET_MODE (SUBREG_REG (dest)) are undefined.  */
5990 	if (paradoxical_subreg_p (dest))
5991 	  continue;
5992 
5993 	elt = insert (dest, sets[i].src_elt,
5994 		      sets[i].dest_hash, GET_MODE (dest));
5995 
5996 	/* If this is a constant, insert the constant anchors with the
5997 	   equivalent register-offset expressions using register DEST.  */
5998 	if (targetm.const_anchor
5999 	    && REG_P (dest)
6000 	    && SCALAR_INT_MODE_P (GET_MODE (dest))
6001 	    && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
6002 	  insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
6003 
6004 	elt->in_memory = (MEM_P (sets[i].inner_dest)
6005 			  && !MEM_READONLY_P (sets[i].inner_dest));
6006 
6007 	/* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
6008 	   narrower than M2, and both M1 and M2 are the same number of words,
6009 	   we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
6010 	   make that equivalence as well.
6011 
6012 	   However, BAR may have equivalences for which gen_lowpart
6013 	   will produce a simpler value than gen_lowpart applied to
6014 	   BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
6015 	   BAR's equivalences.  If we don't get a simplified form, make
6016 	   the SUBREG.  It will not be used in an equivalence, but will
6017 	   cause two similar assignments to be detected.
6018 
6019 	   Note the loop below will find SUBREG_REG (DEST) since we have
6020 	   already entered SRC and DEST of the SET in the table.  */
6021 
6022 	if (GET_CODE (dest) == SUBREG
6023 	    && (known_equal_after_align_down
6024 		(GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1,
6025 		 GET_MODE_SIZE (GET_MODE (dest)) - 1,
6026 		 UNITS_PER_WORD))
6027 	    && !partial_subreg_p (dest)
6028 	    && sets[i].src_elt != 0)
6029 	  {
6030 	    machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
6031 	    struct table_elt *elt, *classp = 0;
6032 
6033 	    for (elt = sets[i].src_elt->first_same_value; elt;
6034 		 elt = elt->next_same_value)
6035 	      {
6036 		rtx new_src = 0;
6037 		unsigned src_hash;
6038 		struct table_elt *src_elt;
6039 
6040 		/* Ignore invalid entries.  */
6041 		if (!REG_P (elt->exp)
6042 		    && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
6043 		  continue;
6044 
6045 		/* We may have already been playing subreg games.  If the
6046 		   mode is already correct for the destination, use it.  */
6047 		if (GET_MODE (elt->exp) == new_mode)
6048 		  new_src = elt->exp;
6049 		else
6050 		  {
6051 		    poly_uint64 byte
6052 		      = subreg_lowpart_offset (new_mode, GET_MODE (dest));
6053 		    new_src = simplify_gen_subreg (new_mode, elt->exp,
6054 					           GET_MODE (dest), byte);
6055 		  }
6056 
6057 		/* The call to simplify_gen_subreg fails if the value
6058 		   is VOIDmode, yet we can't do any simplification, e.g.
6059 		   for EXPR_LISTs denoting function call results.
6060 		   It is invalid to construct a SUBREG with a VOIDmode
6061 		   SUBREG_REG, hence a zero new_src means we can't do
6062 		   this substitution.  */
6063 		if (! new_src)
6064 		  continue;
6065 
6066 		src_hash = HASH (new_src, new_mode);
6067 		src_elt = lookup (new_src, src_hash, new_mode);
6068 
6069 		/* Put the new source in the hash table is if isn't
6070 		   already.  */
6071 		if (src_elt == 0)
6072 		  {
6073 		    if (insert_regs (new_src, classp, 0))
6074 		      {
6075 			rehash_using_reg (new_src);
6076 			src_hash = HASH (new_src, new_mode);
6077 		      }
6078 		    src_elt = insert (new_src, classp, src_hash, new_mode);
6079 		    src_elt->in_memory = elt->in_memory;
6080 		    if (GET_CODE (new_src) == ASM_OPERANDS
6081 			&& elt->cost == MAX_COST)
6082 		      src_elt->cost = MAX_COST;
6083 		  }
6084 		else if (classp && classp != src_elt->first_same_value)
6085 		  /* Show that two things that we've seen before are
6086 		     actually the same.  */
6087 		  merge_equiv_classes (src_elt, classp);
6088 
6089 		classp = src_elt->first_same_value;
6090 		/* Ignore invalid entries.  */
6091 		while (classp
6092 		       && !REG_P (classp->exp)
6093 		       && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
6094 		  classp = classp->next_same_value;
6095 	      }
6096 	  }
6097       }
6098 
6099   /* Special handling for (set REG0 REG1) where REG0 is the
6100      "cheapest", cheaper than REG1.  After cse, REG1 will probably not
6101      be used in the sequel, so (if easily done) change this insn to
6102      (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6103      that computed their value.  Then REG1 will become a dead store
6104      and won't cloud the situation for later optimizations.
6105 
6106      Do not make this change if REG1 is a hard register, because it will
6107      then be used in the sequel and we may be changing a two-operand insn
6108      into a three-operand insn.
6109 
6110      Also do not do this if we are operating on a copy of INSN.  */
6111 
6112   if (n_sets == 1 && sets[0].rtl)
6113     try_back_substitute_reg (sets[0].rtl, insn);
6114 
6115 done:;
6116 }
6117 
6118 /* Remove from the hash table all expressions that reference memory.  */
6119 
6120 static void
6121 invalidate_memory (void)
6122 {
6123   int i;
6124   struct table_elt *p, *next;
6125 
6126   for (i = 0; i < HASH_SIZE; i++)
6127     for (p = table[i]; p; p = next)
6128       {
6129 	next = p->next_same_hash;
6130 	if (p->in_memory)
6131 	  remove_from_table (p, i);
6132       }
6133 }
6134 
6135 /* Perform invalidation on the basis of everything about INSN,
6136    except for invalidating the actual places that are SET in it.
6137    This includes the places CLOBBERed, and anything that might
6138    alias with something that is SET or CLOBBERed.  */
6139 
6140 static void
6141 invalidate_from_clobbers (rtx_insn *insn)
6142 {
6143   rtx x = PATTERN (insn);
6144 
6145   if (GET_CODE (x) == CLOBBER)
6146     {
6147       rtx ref = XEXP (x, 0);
6148       if (ref)
6149 	{
6150 	  if (REG_P (ref) || GET_CODE (ref) == SUBREG
6151 	      || MEM_P (ref))
6152 	    invalidate (ref, VOIDmode);
6153 	  else if (GET_CODE (ref) == STRICT_LOW_PART
6154 		   || GET_CODE (ref) == ZERO_EXTRACT)
6155 	    invalidate (XEXP (ref, 0), GET_MODE (ref));
6156 	}
6157     }
6158   if (GET_CODE (x) == CLOBBER_HIGH)
6159     {
6160       rtx ref = XEXP (x, 0);
6161       gcc_assert (REG_P (ref));
6162       invalidate_reg (ref, true);
6163     }
6164   else if (GET_CODE (x) == PARALLEL)
6165     {
6166       int i;
6167       for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6168 	{
6169 	  rtx y = XVECEXP (x, 0, i);
6170 	  if (GET_CODE (y) == CLOBBER)
6171 	    {
6172 	      rtx ref = XEXP (y, 0);
6173 	      if (REG_P (ref) || GET_CODE (ref) == SUBREG
6174 		  || MEM_P (ref))
6175 		invalidate (ref, VOIDmode);
6176 	      else if (GET_CODE (ref) == STRICT_LOW_PART
6177 		       || GET_CODE (ref) == ZERO_EXTRACT)
6178 		invalidate (XEXP (ref, 0), GET_MODE (ref));
6179 	    }
6180 	  else if (GET_CODE (y) == CLOBBER_HIGH)
6181 	    {
6182 	      rtx ref = XEXP (y, 0);
6183 	      gcc_assert (REG_P (ref));
6184 	      invalidate_reg (ref, true);
6185 	    }
6186 	}
6187     }
6188 }
6189 
6190 /* Perform invalidation on the basis of everything about INSN.
6191    This includes the places CLOBBERed, and anything that might
6192    alias with something that is SET or CLOBBERed.  */
6193 
6194 static void
6195 invalidate_from_sets_and_clobbers (rtx_insn *insn)
6196 {
6197   rtx tem;
6198   rtx x = PATTERN (insn);
6199 
6200   if (CALL_P (insn))
6201     {
6202       for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
6203 	{
6204 	  rtx temx = XEXP (tem, 0);
6205 	  if (GET_CODE (temx) == CLOBBER)
6206 	    invalidate (SET_DEST (temx), VOIDmode);
6207 	  else if (GET_CODE (temx) == CLOBBER_HIGH)
6208 	    {
6209 	      rtx temref = XEXP (temx, 0);
6210 	      gcc_assert (REG_P (temref));
6211 	      invalidate_reg (temref, true);
6212 	    }
6213 	}
6214     }
6215 
6216   /* Ensure we invalidate the destination register of a CALL insn.
6217      This is necessary for machines where this register is a fixed_reg,
6218      because no other code would invalidate it.  */
6219   if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6220     invalidate (SET_DEST (x), VOIDmode);
6221 
6222   else if (GET_CODE (x) == PARALLEL)
6223     {
6224       int i;
6225 
6226       for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6227 	{
6228 	  rtx y = XVECEXP (x, 0, i);
6229 	  if (GET_CODE (y) == CLOBBER)
6230 	    {
6231 	      rtx clobbered = XEXP (y, 0);
6232 
6233 	      if (REG_P (clobbered)
6234 		  || GET_CODE (clobbered) == SUBREG)
6235 		invalidate (clobbered, VOIDmode);
6236 	      else if (GET_CODE (clobbered) == STRICT_LOW_PART
6237 		       || GET_CODE (clobbered) == ZERO_EXTRACT)
6238 		invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6239 	    }
6240 	  else if (GET_CODE (y) == CLOBBER_HIGH)
6241 	    {
6242 	      rtx ref = XEXP (y, 0);
6243 	      gcc_assert (REG_P (ref));
6244 	      invalidate_reg (ref, true);
6245 	    }
6246 	  else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6247 	    invalidate (SET_DEST (y), VOIDmode);
6248 	}
6249     }
6250 }
6251 
6252 /* Process X, part of the REG_NOTES of an insn.  Look at any REG_EQUAL notes
6253    and replace any registers in them with either an equivalent constant
6254    or the canonical form of the register.  If we are inside an address,
6255    only do this if the address remains valid.
6256 
6257    OBJECT is 0 except when within a MEM in which case it is the MEM.
6258 
6259    Return the replacement for X.  */
6260 
6261 static rtx
6262 cse_process_notes_1 (rtx x, rtx object, bool *changed)
6263 {
6264   enum rtx_code code = GET_CODE (x);
6265   const char *fmt = GET_RTX_FORMAT (code);
6266   int i;
6267 
6268   switch (code)
6269     {
6270     case CONST:
6271     case SYMBOL_REF:
6272     case LABEL_REF:
6273     CASE_CONST_ANY:
6274     case PC:
6275     case CC0:
6276     case LO_SUM:
6277       return x;
6278 
6279     case MEM:
6280       validate_change (x, &XEXP (x, 0),
6281 		       cse_process_notes (XEXP (x, 0), x, changed), 0);
6282       return x;
6283 
6284     case EXPR_LIST:
6285       if (REG_NOTE_KIND (x) == REG_EQUAL)
6286 	XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
6287       /* Fall through.  */
6288 
6289     case INSN_LIST:
6290     case INT_LIST:
6291       if (XEXP (x, 1))
6292 	XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
6293       return x;
6294 
6295     case SIGN_EXTEND:
6296     case ZERO_EXTEND:
6297     case SUBREG:
6298       {
6299 	rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6300 	/* We don't substitute VOIDmode constants into these rtx,
6301 	   since they would impede folding.  */
6302 	if (GET_MODE (new_rtx) != VOIDmode)
6303 	  validate_change (object, &XEXP (x, 0), new_rtx, 0);
6304 	return x;
6305       }
6306 
6307     case UNSIGNED_FLOAT:
6308       {
6309 	rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6310 	/* We don't substitute negative VOIDmode constants into these rtx,
6311 	   since they would impede folding.  */
6312 	if (GET_MODE (new_rtx) != VOIDmode
6313 	    || (CONST_INT_P (new_rtx) && INTVAL (new_rtx) >= 0)
6314 	    || (CONST_DOUBLE_P (new_rtx) && CONST_DOUBLE_HIGH (new_rtx) >= 0))
6315 	  validate_change (object, &XEXP (x, 0), new_rtx, 0);
6316 	return x;
6317       }
6318 
6319     case REG:
6320       i = REG_QTY (REGNO (x));
6321 
6322       /* Return a constant or a constant register.  */
6323       if (REGNO_QTY_VALID_P (REGNO (x)))
6324 	{
6325 	  struct qty_table_elem *ent = &qty_table[i];
6326 
6327 	  if (ent->const_rtx != NULL_RTX
6328 	      && (CONSTANT_P (ent->const_rtx)
6329 		  || REG_P (ent->const_rtx)))
6330 	    {
6331 	      rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6332 	      if (new_rtx)
6333 		return copy_rtx (new_rtx);
6334 	    }
6335 	}
6336 
6337       /* Otherwise, canonicalize this register.  */
6338       return canon_reg (x, NULL);
6339 
6340     default:
6341       break;
6342     }
6343 
6344   for (i = 0; i < GET_RTX_LENGTH (code); i++)
6345     if (fmt[i] == 'e')
6346       validate_change (object, &XEXP (x, i),
6347 		       cse_process_notes (XEXP (x, i), object, changed), 0);
6348 
6349   return x;
6350 }
6351 
6352 static rtx
6353 cse_process_notes (rtx x, rtx object, bool *changed)
6354 {
6355   rtx new_rtx = cse_process_notes_1 (x, object, changed);
6356   if (new_rtx != x)
6357     *changed = true;
6358   return new_rtx;
6359 }
6360 
6361 
6362 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6363 
6364    DATA is a pointer to a struct cse_basic_block_data, that is used to
6365    describe the path.
6366    It is filled with a queue of basic blocks, starting with FIRST_BB
6367    and following a trace through the CFG.
6368 
6369    If all paths starting at FIRST_BB have been followed, or no new path
6370    starting at FIRST_BB can be constructed, this function returns FALSE.
6371    Otherwise, DATA->path is filled and the function returns TRUE indicating
6372    that a path to follow was found.
6373 
6374    If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6375    block in the path will be FIRST_BB.  */
6376 
6377 static bool
6378 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6379 	       int follow_jumps)
6380 {
6381   basic_block bb;
6382   edge e;
6383   int path_size;
6384 
6385   bitmap_set_bit (cse_visited_basic_blocks, first_bb->index);
6386 
6387   /* See if there is a previous path.  */
6388   path_size = data->path_size;
6389 
6390   /* There is a previous path.  Make sure it started with FIRST_BB.  */
6391   if (path_size)
6392     gcc_assert (data->path[0].bb == first_bb);
6393 
6394   /* There was only one basic block in the last path.  Clear the path and
6395      return, so that paths starting at another basic block can be tried.  */
6396   if (path_size == 1)
6397     {
6398       path_size = 0;
6399       goto done;
6400     }
6401 
6402   /* If the path was empty from the beginning, construct a new path.  */
6403   if (path_size == 0)
6404     data->path[path_size++].bb = first_bb;
6405   else
6406     {
6407       /* Otherwise, path_size must be equal to or greater than 2, because
6408 	 a previous path exists that is at least two basic blocks long.
6409 
6410 	 Update the previous branch path, if any.  If the last branch was
6411 	 previously along the branch edge, take the fallthrough edge now.  */
6412       while (path_size >= 2)
6413 	{
6414 	  basic_block last_bb_in_path, previous_bb_in_path;
6415 	  edge e;
6416 
6417 	  --path_size;
6418 	  last_bb_in_path = data->path[path_size].bb;
6419 	  previous_bb_in_path = data->path[path_size - 1].bb;
6420 
6421 	  /* If we previously followed a path along the branch edge, try
6422 	     the fallthru edge now.  */
6423 	  if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6424 	      && any_condjump_p (BB_END (previous_bb_in_path))
6425 	      && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6426 	      && e == BRANCH_EDGE (previous_bb_in_path))
6427 	    {
6428 	      bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6429 	      if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
6430 		  && single_pred_p (bb)
6431 		  /* We used to assert here that we would only see blocks
6432 		     that we have not visited yet.  But we may end up
6433 		     visiting basic blocks twice if the CFG has changed
6434 		     in this run of cse_main, because when the CFG changes
6435 		     the topological sort of the CFG also changes.  A basic
6436 		     blocks that previously had more than two predecessors
6437 		     may now have a single predecessor, and become part of
6438 		     a path that starts at another basic block.
6439 
6440 		     We still want to visit each basic block only once, so
6441 		     halt the path here if we have already visited BB.  */
6442 		  && !bitmap_bit_p (cse_visited_basic_blocks, bb->index))
6443 		{
6444 		  bitmap_set_bit (cse_visited_basic_blocks, bb->index);
6445 		  data->path[path_size++].bb = bb;
6446 		  break;
6447 		}
6448 	    }
6449 
6450 	  data->path[path_size].bb = NULL;
6451 	}
6452 
6453       /* If only one block remains in the path, bail.  */
6454       if (path_size == 1)
6455 	{
6456 	  path_size = 0;
6457 	  goto done;
6458 	}
6459     }
6460 
6461   /* Extend the path if possible.  */
6462   if (follow_jumps)
6463     {
6464       bb = data->path[path_size - 1].bb;
6465       while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6466 	{
6467 	  if (single_succ_p (bb))
6468 	    e = single_succ_edge (bb);
6469 	  else if (EDGE_COUNT (bb->succs) == 2
6470 		   && any_condjump_p (BB_END (bb)))
6471 	    {
6472 	      /* First try to follow the branch.  If that doesn't lead
6473 		 to a useful path, follow the fallthru edge.  */
6474 	      e = BRANCH_EDGE (bb);
6475 	      if (!single_pred_p (e->dest))
6476 		e = FALLTHRU_EDGE (bb);
6477 	    }
6478 	  else
6479 	    e = NULL;
6480 
6481 	  if (e
6482 	      && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
6483 	      && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
6484 	      && single_pred_p (e->dest)
6485 	      /* Avoid visiting basic blocks twice.  The large comment
6486 		 above explains why this can happen.  */
6487 	      && !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index))
6488 	    {
6489 	      basic_block bb2 = e->dest;
6490 	      bitmap_set_bit (cse_visited_basic_blocks, bb2->index);
6491 	      data->path[path_size++].bb = bb2;
6492 	      bb = bb2;
6493 	    }
6494 	  else
6495 	    bb = NULL;
6496 	}
6497     }
6498 
6499 done:
6500   data->path_size = path_size;
6501   return path_size != 0;
6502 }
6503 
6504 /* Dump the path in DATA to file F.  NSETS is the number of sets
6505    in the path.  */
6506 
6507 static void
6508 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6509 {
6510   int path_entry;
6511 
6512   fprintf (f, ";; Following path with %d sets: ", nsets);
6513   for (path_entry = 0; path_entry < data->path_size; path_entry++)
6514     fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6515   fputc ('\n', dump_file);
6516   fflush (f);
6517 }
6518 
6519 
6520 /* Return true if BB has exception handling successor edges.  */
6521 
6522 static bool
6523 have_eh_succ_edges (basic_block bb)
6524 {
6525   edge e;
6526   edge_iterator ei;
6527 
6528   FOR_EACH_EDGE (e, ei, bb->succs)
6529     if (e->flags & EDGE_EH)
6530       return true;
6531 
6532   return false;
6533 }
6534 
6535 
6536 /* Scan to the end of the path described by DATA.  Return an estimate of
6537    the total number of SETs of all insns in the path.  */
6538 
6539 static void
6540 cse_prescan_path (struct cse_basic_block_data *data)
6541 {
6542   int nsets = 0;
6543   int path_size = data->path_size;
6544   int path_entry;
6545 
6546   /* Scan to end of each basic block in the path.  */
6547   for (path_entry = 0; path_entry < path_size; path_entry++)
6548     {
6549       basic_block bb;
6550       rtx_insn *insn;
6551 
6552       bb = data->path[path_entry].bb;
6553 
6554       FOR_BB_INSNS (bb, insn)
6555 	{
6556 	  if (!INSN_P (insn))
6557 	    continue;
6558 
6559 	  /* A PARALLEL can have lots of SETs in it,
6560 	     especially if it is really an ASM_OPERANDS.  */
6561 	  if (GET_CODE (PATTERN (insn)) == PARALLEL)
6562 	    nsets += XVECLEN (PATTERN (insn), 0);
6563 	  else
6564 	    nsets += 1;
6565 	}
6566     }
6567 
6568   data->nsets = nsets;
6569 }
6570 
6571 /* Return true if the pattern of INSN uses a LABEL_REF for which
6572    there isn't a REG_LABEL_OPERAND note.  */
6573 
6574 static bool
6575 check_for_label_ref (rtx_insn *insn)
6576 {
6577   /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6578      note for it, we must rerun jump since it needs to place the note.  If
6579      this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6580      don't do this since no REG_LABEL_OPERAND will be added.  */
6581   subrtx_iterator::array_type array;
6582   FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
6583     {
6584       const_rtx x = *iter;
6585       if (GET_CODE (x) == LABEL_REF
6586 	  && !LABEL_REF_NONLOCAL_P (x)
6587 	  && (!JUMP_P (insn)
6588 	      || !label_is_jump_target_p (label_ref_label (x), insn))
6589 	  && LABEL_P (label_ref_label (x))
6590 	  && INSN_UID (label_ref_label (x)) != 0
6591 	  && !find_reg_note (insn, REG_LABEL_OPERAND, label_ref_label (x)))
6592 	return true;
6593     }
6594   return false;
6595 }
6596 
6597 /* Process a single extended basic block described by EBB_DATA.  */
6598 
6599 static void
6600 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6601 {
6602   int path_size = ebb_data->path_size;
6603   int path_entry;
6604   int num_insns = 0;
6605 
6606   /* Allocate the space needed by qty_table.  */
6607   qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6608 
6609   new_basic_block ();
6610   cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6611   cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6612   for (path_entry = 0; path_entry < path_size; path_entry++)
6613     {
6614       basic_block bb;
6615       rtx_insn *insn;
6616 
6617       bb = ebb_data->path[path_entry].bb;
6618 
6619       /* Invalidate recorded information for eh regs if there is an EH
6620 	 edge pointing to that bb.  */
6621       if (bb_has_eh_pred (bb))
6622 	{
6623 	  df_ref def;
6624 
6625 	  FOR_EACH_ARTIFICIAL_DEF (def, bb->index)
6626 	    if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6627 	      invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6628 	}
6629 
6630       optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6631       FOR_BB_INSNS (bb, insn)
6632 	{
6633 	  /* If we have processed 1,000 insns, flush the hash table to
6634 	     avoid extreme quadratic behavior.  We must not include NOTEs
6635 	     in the count since there may be more of them when generating
6636 	     debugging information.  If we clear the table at different
6637 	     times, code generated with -g -O might be different than code
6638 	     generated with -O but not -g.
6639 
6640 	     FIXME: This is a real kludge and needs to be done some other
6641 		    way.  */
6642 	  if (NONDEBUG_INSN_P (insn)
6643 	      && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6644 	    {
6645 	      flush_hash_table ();
6646 	      num_insns = 0;
6647 	    }
6648 
6649 	  if (INSN_P (insn))
6650 	    {
6651 	      /* Process notes first so we have all notes in canonical forms
6652 		 when looking for duplicate operations.  */
6653 	      if (REG_NOTES (insn))
6654 		{
6655 		  bool changed = false;
6656 		  REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6657 						        NULL_RTX, &changed);
6658 		  if (changed)
6659 		    df_notes_rescan (insn);
6660 		}
6661 
6662 	      cse_insn (insn);
6663 
6664 	      /* If we haven't already found an insn where we added a LABEL_REF,
6665 		 check this one.  */
6666 	      if (INSN_P (insn) && !recorded_label_ref
6667 		  && check_for_label_ref (insn))
6668 		recorded_label_ref = true;
6669 
6670 	      if (HAVE_cc0 && NONDEBUG_INSN_P (insn))
6671 		{
6672 		  /* If the previous insn sets CC0 and this insn no
6673 		     longer references CC0, delete the previous insn.
6674 		     Here we use fact that nothing expects CC0 to be
6675 		     valid over an insn, which is true until the final
6676 		     pass.  */
6677 		  rtx_insn *prev_insn;
6678 		  rtx tem;
6679 
6680 		  prev_insn = prev_nonnote_nondebug_insn (insn);
6681 		  if (prev_insn && NONJUMP_INSN_P (prev_insn)
6682 		      && (tem = single_set (prev_insn)) != NULL_RTX
6683 		      && SET_DEST (tem) == cc0_rtx
6684 		      && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6685 		    delete_insn (prev_insn);
6686 
6687 		  /* If this insn is not the last insn in the basic
6688 		     block, it will be PREV_INSN(insn) in the next
6689 		     iteration.  If we recorded any CC0-related
6690 		     information for this insn, remember it.  */
6691 		  if (insn != BB_END (bb))
6692 		    {
6693 		      prev_insn_cc0 = this_insn_cc0;
6694 		      prev_insn_cc0_mode = this_insn_cc0_mode;
6695 		    }
6696 		}
6697 	    }
6698 	}
6699 
6700       /* With non-call exceptions, we are not always able to update
6701 	 the CFG properly inside cse_insn.  So clean up possibly
6702 	 redundant EH edges here.  */
6703       if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
6704 	cse_cfg_altered |= purge_dead_edges (bb);
6705 
6706       /* If we changed a conditional jump, we may have terminated
6707 	 the path we are following.  Check that by verifying that
6708 	 the edge we would take still exists.  If the edge does
6709 	 not exist anymore, purge the remainder of the path.
6710 	 Note that this will cause us to return to the caller.  */
6711       if (path_entry < path_size - 1)
6712 	{
6713 	  basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6714 	  if (!find_edge (bb, next_bb))
6715 	    {
6716 	      do
6717 		{
6718 		  path_size--;
6719 
6720 		  /* If we truncate the path, we must also reset the
6721 		     visited bit on the remaining blocks in the path,
6722 		     or we will never visit them at all.  */
6723 		  bitmap_clear_bit (cse_visited_basic_blocks,
6724 			     ebb_data->path[path_size].bb->index);
6725 		  ebb_data->path[path_size].bb = NULL;
6726 		}
6727 	      while (path_size - 1 != path_entry);
6728 	      ebb_data->path_size = path_size;
6729 	    }
6730 	}
6731 
6732       /* If this is a conditional jump insn, record any known
6733 	 equivalences due to the condition being tested.  */
6734       insn = BB_END (bb);
6735       if (path_entry < path_size - 1
6736 	  && EDGE_COUNT (bb->succs) == 2
6737 	  && JUMP_P (insn)
6738 	  && single_set (insn)
6739 	  && any_condjump_p (insn))
6740 	{
6741 	  basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6742 	  bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6743 	  record_jump_equiv (insn, taken);
6744 	}
6745 
6746       /* Clear the CC0-tracking related insns, they can't provide
6747 	 useful information across basic block boundaries.  */
6748       prev_insn_cc0 = 0;
6749     }
6750 
6751   gcc_assert (next_qty <= max_qty);
6752 
6753   free (qty_table);
6754 }
6755 
6756 
6757 /* Perform cse on the instructions of a function.
6758    F is the first instruction.
6759    NREGS is one plus the highest pseudo-reg number used in the instruction.
6760 
6761    Return 2 if jump optimizations should be redone due to simplifications
6762    in conditional jump instructions.
6763    Return 1 if the CFG should be cleaned up because it has been modified.
6764    Return 0 otherwise.  */
6765 
6766 static int
6767 cse_main (rtx_insn *f ATTRIBUTE_UNUSED, int nregs)
6768 {
6769   struct cse_basic_block_data ebb_data;
6770   basic_block bb;
6771   int *rc_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6772   int i, n_blocks;
6773 
6774   /* CSE doesn't use dominane info but can invalidate it in different ways.
6775      For simplicity free dominance info here.  */
6776   free_dominance_info (CDI_DOMINATORS);
6777 
6778   df_set_flags (DF_LR_RUN_DCE);
6779   df_note_add_problem ();
6780   df_analyze ();
6781   df_set_flags (DF_DEFER_INSN_RESCAN);
6782 
6783   reg_scan (get_insns (), max_reg_num ());
6784   init_cse_reg_info (nregs);
6785 
6786   ebb_data.path = XNEWVEC (struct branch_path,
6787 			   PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6788 
6789   cse_cfg_altered = false;
6790   cse_jumps_altered = false;
6791   recorded_label_ref = false;
6792   constant_pool_entries_cost = 0;
6793   constant_pool_entries_regcost = 0;
6794   ebb_data.path_size = 0;
6795   ebb_data.nsets = 0;
6796   rtl_hooks = cse_rtl_hooks;
6797 
6798   init_recog ();
6799   init_alias_analysis ();
6800 
6801   reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6802 
6803   /* Set up the table of already visited basic blocks.  */
6804   cse_visited_basic_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6805   bitmap_clear (cse_visited_basic_blocks);
6806 
6807   /* Loop over basic blocks in reverse completion order (RPO),
6808      excluding the ENTRY and EXIT blocks.  */
6809   n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6810   i = 0;
6811   while (i < n_blocks)
6812     {
6813       /* Find the first block in the RPO queue that we have not yet
6814 	 processed before.  */
6815       do
6816 	{
6817 	  bb = BASIC_BLOCK_FOR_FN (cfun, rc_order[i++]);
6818 	}
6819       while (bitmap_bit_p (cse_visited_basic_blocks, bb->index)
6820 	     && i < n_blocks);
6821 
6822       /* Find all paths starting with BB, and process them.  */
6823       while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6824 	{
6825 	  /* Pre-scan the path.  */
6826 	  cse_prescan_path (&ebb_data);
6827 
6828 	  /* If this basic block has no sets, skip it.  */
6829 	  if (ebb_data.nsets == 0)
6830 	    continue;
6831 
6832 	  /* Get a reasonable estimate for the maximum number of qty's
6833 	     needed for this path.  For this, we take the number of sets
6834 	     and multiply that by MAX_RECOG_OPERANDS.  */
6835 	  max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6836 
6837 	  /* Dump the path we're about to process.  */
6838 	  if (dump_file)
6839 	    cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6840 
6841 	  cse_extended_basic_block (&ebb_data);
6842 	}
6843     }
6844 
6845   /* Clean up.  */
6846   end_alias_analysis ();
6847   free (reg_eqv_table);
6848   free (ebb_data.path);
6849   sbitmap_free (cse_visited_basic_blocks);
6850   free (rc_order);
6851   rtl_hooks = general_rtl_hooks;
6852 
6853   if (cse_jumps_altered || recorded_label_ref)
6854     return 2;
6855   else if (cse_cfg_altered)
6856     return 1;
6857   else
6858     return 0;
6859 }
6860 
6861 /* Count the number of times registers are used (not set) in X.
6862    COUNTS is an array in which we accumulate the count, INCR is how much
6863    we count each register usage.
6864 
6865    Don't count a usage of DEST, which is the SET_DEST of a SET which
6866    contains X in its SET_SRC.  This is because such a SET does not
6867    modify the liveness of DEST.
6868    DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6869    We must then count uses of a SET_DEST regardless, because the insn can't be
6870    deleted here.  */
6871 
6872 static void
6873 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6874 {
6875   enum rtx_code code;
6876   rtx note;
6877   const char *fmt;
6878   int i, j;
6879 
6880   if (x == 0)
6881     return;
6882 
6883   switch (code = GET_CODE (x))
6884     {
6885     case REG:
6886       if (x != dest)
6887 	counts[REGNO (x)] += incr;
6888       return;
6889 
6890     case PC:
6891     case CC0:
6892     case CONST:
6893     CASE_CONST_ANY:
6894     case SYMBOL_REF:
6895     case LABEL_REF:
6896       return;
6897 
6898     case CLOBBER:
6899       /* If we are clobbering a MEM, mark any registers inside the address
6900          as being used.  */
6901       if (MEM_P (XEXP (x, 0)))
6902 	count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6903       return;
6904 
6905     case CLOBBER_HIGH:
6906       gcc_assert (REG_P ((XEXP (x, 0))));
6907       return;
6908 
6909     case SET:
6910       /* Unless we are setting a REG, count everything in SET_DEST.  */
6911       if (!REG_P (SET_DEST (x)))
6912 	count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6913       count_reg_usage (SET_SRC (x), counts,
6914 		       dest ? dest : SET_DEST (x),
6915 		       incr);
6916       return;
6917 
6918     case DEBUG_INSN:
6919       return;
6920 
6921     case CALL_INSN:
6922     case INSN:
6923     case JUMP_INSN:
6924       /* We expect dest to be NULL_RTX here.  If the insn may throw,
6925 	 or if it cannot be deleted due to side-effects, mark this fact
6926 	 by setting DEST to pc_rtx.  */
6927       if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6928 	  || side_effects_p (PATTERN (x)))
6929 	dest = pc_rtx;
6930       if (code == CALL_INSN)
6931 	count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6932       count_reg_usage (PATTERN (x), counts, dest, incr);
6933 
6934       /* Things used in a REG_EQUAL note aren't dead since loop may try to
6935 	 use them.  */
6936 
6937       note = find_reg_equal_equiv_note (x);
6938       if (note)
6939 	{
6940 	  rtx eqv = XEXP (note, 0);
6941 
6942 	  if (GET_CODE (eqv) == EXPR_LIST)
6943 	  /* This REG_EQUAL note describes the result of a function call.
6944 	     Process all the arguments.  */
6945 	    do
6946 	      {
6947 		count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6948 		eqv = XEXP (eqv, 1);
6949 	      }
6950 	    while (eqv && GET_CODE (eqv) == EXPR_LIST);
6951 	  else
6952 	    count_reg_usage (eqv, counts, dest, incr);
6953 	}
6954       return;
6955 
6956     case EXPR_LIST:
6957       if (REG_NOTE_KIND (x) == REG_EQUAL
6958 	  || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6959 	  /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6960 	     involving registers in the address.  */
6961 	  || GET_CODE (XEXP (x, 0)) == CLOBBER
6962 	  || GET_CODE (XEXP (x, 0)) == CLOBBER_HIGH)
6963 	count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6964 
6965       count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6966       return;
6967 
6968     case ASM_OPERANDS:
6969       /* Iterate over just the inputs, not the constraints as well.  */
6970       for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6971 	count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6972       return;
6973 
6974     case INSN_LIST:
6975     case INT_LIST:
6976       gcc_unreachable ();
6977 
6978     default:
6979       break;
6980     }
6981 
6982   fmt = GET_RTX_FORMAT (code);
6983   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6984     {
6985       if (fmt[i] == 'e')
6986 	count_reg_usage (XEXP (x, i), counts, dest, incr);
6987       else if (fmt[i] == 'E')
6988 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6989 	  count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6990     }
6991 }
6992 
6993 /* Return true if X is a dead register.  */
6994 
6995 static inline int
6996 is_dead_reg (const_rtx x, int *counts)
6997 {
6998   return (REG_P (x)
6999 	  && REGNO (x) >= FIRST_PSEUDO_REGISTER
7000 	  && counts[REGNO (x)] == 0);
7001 }
7002 
7003 /* Return true if set is live.  */
7004 static bool
7005 set_live_p (rtx set, rtx_insn *insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0.  */
7006 	    int *counts)
7007 {
7008   rtx_insn *tem;
7009 
7010   if (set_noop_p (set))
7011     ;
7012 
7013   else if (GET_CODE (SET_DEST (set)) == CC0
7014 	   && !side_effects_p (SET_SRC (set))
7015 	   && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
7016 	       || !INSN_P (tem)
7017 	       || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
7018     return false;
7019   else if (!is_dead_reg (SET_DEST (set), counts)
7020 	   || side_effects_p (SET_SRC (set)))
7021     return true;
7022   return false;
7023 }
7024 
7025 /* Return true if insn is live.  */
7026 
7027 static bool
7028 insn_live_p (rtx_insn *insn, int *counts)
7029 {
7030   int i;
7031   if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
7032     return true;
7033   else if (GET_CODE (PATTERN (insn)) == SET)
7034     return set_live_p (PATTERN (insn), insn, counts);
7035   else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7036     {
7037       for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7038 	{
7039 	  rtx elt = XVECEXP (PATTERN (insn), 0, i);
7040 
7041 	  if (GET_CODE (elt) == SET)
7042 	    {
7043 	      if (set_live_p (elt, insn, counts))
7044 		return true;
7045 	    }
7046 	  else if (GET_CODE (elt) != CLOBBER
7047 		   && GET_CODE (elt) != CLOBBER_HIGH
7048 		   && GET_CODE (elt) != USE)
7049 	    return true;
7050 	}
7051       return false;
7052     }
7053   else if (DEBUG_INSN_P (insn))
7054     {
7055       rtx_insn *next;
7056 
7057       if (DEBUG_MARKER_INSN_P (insn))
7058 	return true;
7059 
7060       for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
7061 	if (NOTE_P (next))
7062 	  continue;
7063 	else if (!DEBUG_INSN_P (next))
7064 	  return true;
7065 	/* If we find an inspection point, such as a debug begin stmt,
7066 	   we want to keep the earlier debug insn.  */
7067 	else if (DEBUG_MARKER_INSN_P (next))
7068 	  return true;
7069 	else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
7070 	  return false;
7071 
7072       return true;
7073     }
7074   else
7075     return true;
7076 }
7077 
7078 /* Count the number of stores into pseudo.  Callback for note_stores.  */
7079 
7080 static void
7081 count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
7082 {
7083   int *counts = (int *) data;
7084   if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
7085     counts[REGNO (x)]++;
7086 }
7087 
7088 /* Return if DEBUG_INSN pattern PAT needs to be reset because some dead
7089    pseudo doesn't have a replacement.  COUNTS[X] is zero if register X
7090    is dead and REPLACEMENTS[X] is null if it has no replacemenet.
7091    Set *SEEN_REPL to true if we see a dead register that does have
7092    a replacement.  */
7093 
7094 static bool
7095 is_dead_debug_insn (const_rtx pat, int *counts, rtx *replacements,
7096 		    bool *seen_repl)
7097 {
7098   subrtx_iterator::array_type array;
7099   FOR_EACH_SUBRTX (iter, array, pat, NONCONST)
7100     {
7101       const_rtx x = *iter;
7102       if (is_dead_reg (x, counts))
7103 	{
7104 	  if (replacements && replacements[REGNO (x)] != NULL_RTX)
7105 	    *seen_repl = true;
7106 	  else
7107 	    return true;
7108 	}
7109     }
7110   return false;
7111 }
7112 
7113 /* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
7114    Callback for simplify_replace_fn_rtx.  */
7115 
7116 static rtx
7117 replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
7118 {
7119   rtx *replacements = (rtx *) data;
7120 
7121   if (REG_P (x)
7122       && REGNO (x) >= FIRST_PSEUDO_REGISTER
7123       && replacements[REGNO (x)] != NULL_RTX)
7124     {
7125       if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
7126 	return replacements[REGNO (x)];
7127       return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
7128 			     GET_MODE (replacements[REGNO (x)]));
7129     }
7130   return NULL_RTX;
7131 }
7132 
7133 /* Scan all the insns and delete any that are dead; i.e., they store a register
7134    that is never used or they copy a register to itself.
7135 
7136    This is used to remove insns made obviously dead by cse, loop or other
7137    optimizations.  It improves the heuristics in loop since it won't try to
7138    move dead invariants out of loops or make givs for dead quantities.  The
7139    remaining passes of the compilation are also sped up.  */
7140 
7141 int
7142 delete_trivially_dead_insns (rtx_insn *insns, int nreg)
7143 {
7144   int *counts;
7145   rtx_insn *insn, *prev;
7146   rtx *replacements = NULL;
7147   int ndead = 0;
7148 
7149   timevar_push (TV_DELETE_TRIVIALLY_DEAD);
7150   /* First count the number of times each register is used.  */
7151   if (MAY_HAVE_DEBUG_BIND_INSNS)
7152     {
7153       counts = XCNEWVEC (int, nreg * 3);
7154       for (insn = insns; insn; insn = NEXT_INSN (insn))
7155 	if (DEBUG_BIND_INSN_P (insn))
7156 	  count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7157 			   NULL_RTX, 1);
7158 	else if (INSN_P (insn))
7159 	  {
7160 	    count_reg_usage (insn, counts, NULL_RTX, 1);
7161 	    note_stores (PATTERN (insn), count_stores, counts + nreg * 2);
7162 	  }
7163       /* If there can be debug insns, COUNTS are 3 consecutive arrays.
7164 	 First one counts how many times each pseudo is used outside
7165 	 of debug insns, second counts how many times each pseudo is
7166 	 used in debug insns and third counts how many times a pseudo
7167 	 is stored.  */
7168     }
7169   else
7170     {
7171       counts = XCNEWVEC (int, nreg);
7172       for (insn = insns; insn; insn = NEXT_INSN (insn))
7173 	if (INSN_P (insn))
7174 	  count_reg_usage (insn, counts, NULL_RTX, 1);
7175       /* If no debug insns can be present, COUNTS is just an array
7176 	 which counts how many times each pseudo is used.  */
7177     }
7178   /* Pseudo PIC register should be considered as used due to possible
7179      new usages generated.  */
7180   if (!reload_completed
7181       && pic_offset_table_rtx
7182       && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
7183     counts[REGNO (pic_offset_table_rtx)]++;
7184   /* Go from the last insn to the first and delete insns that only set unused
7185      registers or copy a register to itself.  As we delete an insn, remove
7186      usage counts for registers it uses.
7187 
7188      The first jump optimization pass may leave a real insn as the last
7189      insn in the function.   We must not skip that insn or we may end
7190      up deleting code that is not really dead.
7191 
7192      If some otherwise unused register is only used in DEBUG_INSNs,
7193      try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
7194      the setter.  Then go through DEBUG_INSNs and if a DEBUG_EXPR
7195      has been created for the unused register, replace it with
7196      the DEBUG_EXPR, otherwise reset the DEBUG_INSN.  */
7197   for (insn = get_last_insn (); insn; insn = prev)
7198     {
7199       int live_insn = 0;
7200 
7201       prev = PREV_INSN (insn);
7202       if (!INSN_P (insn))
7203 	continue;
7204 
7205       live_insn = insn_live_p (insn, counts);
7206 
7207       /* If this is a dead insn, delete it and show registers in it aren't
7208 	 being used.  */
7209 
7210       if (! live_insn && dbg_cnt (delete_trivial_dead))
7211 	{
7212 	  if (DEBUG_INSN_P (insn))
7213 	    {
7214 	      if (DEBUG_BIND_INSN_P (insn))
7215 		count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7216 				 NULL_RTX, -1);
7217 	    }
7218 	  else
7219 	    {
7220 	      rtx set;
7221 	      if (MAY_HAVE_DEBUG_BIND_INSNS
7222 		  && (set = single_set (insn)) != NULL_RTX
7223 		  && is_dead_reg (SET_DEST (set), counts)
7224 		  /* Used at least once in some DEBUG_INSN.  */
7225 		  && counts[REGNO (SET_DEST (set)) + nreg] > 0
7226 		  /* And set exactly once.  */
7227 		  && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
7228 		  && !side_effects_p (SET_SRC (set))
7229 		  && asm_noperands (PATTERN (insn)) < 0)
7230 		{
7231 		  rtx dval, bind_var_loc;
7232 		  rtx_insn *bind;
7233 
7234 		  /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL).  */
7235 		  dval = make_debug_expr_from_rtl (SET_DEST (set));
7236 
7237 		  /* Emit a debug bind insn before the insn in which
7238 		     reg dies.  */
7239 		  bind_var_loc =
7240 		    gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
7241 					  DEBUG_EXPR_TREE_DECL (dval),
7242 					  SET_SRC (set),
7243 					  VAR_INIT_STATUS_INITIALIZED);
7244 		  count_reg_usage (bind_var_loc, counts + nreg, NULL_RTX, 1);
7245 
7246 		  bind = emit_debug_insn_before (bind_var_loc, insn);
7247 		  df_insn_rescan (bind);
7248 
7249 		  if (replacements == NULL)
7250 		    replacements = XCNEWVEC (rtx, nreg);
7251 		  replacements[REGNO (SET_DEST (set))] = dval;
7252 		}
7253 
7254 	      count_reg_usage (insn, counts, NULL_RTX, -1);
7255 	      ndead++;
7256 	    }
7257 	  cse_cfg_altered |= delete_insn_and_edges (insn);
7258 	}
7259     }
7260 
7261   if (MAY_HAVE_DEBUG_BIND_INSNS)
7262     {
7263       for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7264 	if (DEBUG_BIND_INSN_P (insn))
7265 	  {
7266 	    /* If this debug insn references a dead register that wasn't replaced
7267 	       with an DEBUG_EXPR, reset the DEBUG_INSN.  */
7268 	    bool seen_repl = false;
7269 	    if (is_dead_debug_insn (INSN_VAR_LOCATION_LOC (insn),
7270 				    counts, replacements, &seen_repl))
7271 	      {
7272 		INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7273 		df_insn_rescan (insn);
7274 	      }
7275 	    else if (seen_repl)
7276 	      {
7277 		INSN_VAR_LOCATION_LOC (insn)
7278 		  = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7279 					     NULL_RTX, replace_dead_reg,
7280 					     replacements);
7281 		df_insn_rescan (insn);
7282 	      }
7283 	  }
7284       free (replacements);
7285     }
7286 
7287   if (dump_file && ndead)
7288     fprintf (dump_file, "Deleted %i trivially dead insns\n",
7289 	     ndead);
7290   /* Clean up.  */
7291   free (counts);
7292   timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7293   return ndead;
7294 }
7295 
7296 /* If LOC contains references to NEWREG in a different mode, change them
7297    to use NEWREG instead.  */
7298 
7299 static void
7300 cse_change_cc_mode (subrtx_ptr_iterator::array_type &array,
7301 		    rtx *loc, rtx_insn *insn, rtx newreg)
7302 {
7303   FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
7304     {
7305       rtx *loc = *iter;
7306       rtx x = *loc;
7307       if (x
7308 	  && REG_P (x)
7309 	  && REGNO (x) == REGNO (newreg)
7310 	  && GET_MODE (x) != GET_MODE (newreg))
7311 	{
7312 	  validate_change (insn, loc, newreg, 1);
7313 	  iter.skip_subrtxes ();
7314 	}
7315     }
7316 }
7317 
7318 /* Change the mode of any reference to the register REGNO (NEWREG) to
7319    GET_MODE (NEWREG) in INSN.  */
7320 
7321 static void
7322 cse_change_cc_mode_insn (rtx_insn *insn, rtx newreg)
7323 {
7324   int success;
7325 
7326   if (!INSN_P (insn))
7327     return;
7328 
7329   subrtx_ptr_iterator::array_type array;
7330   cse_change_cc_mode (array, &PATTERN (insn), insn, newreg);
7331   cse_change_cc_mode (array, &REG_NOTES (insn), insn, newreg);
7332 
7333   /* If the following assertion was triggered, there is most probably
7334      something wrong with the cc_modes_compatible back end function.
7335      CC modes only can be considered compatible if the insn - with the mode
7336      replaced by any of the compatible modes - can still be recognized.  */
7337   success = apply_change_group ();
7338   gcc_assert (success);
7339 }
7340 
7341 /* Change the mode of any reference to the register REGNO (NEWREG) to
7342    GET_MODE (NEWREG), starting at START.  Stop before END.  Stop at
7343    any instruction which modifies NEWREG.  */
7344 
7345 static void
7346 cse_change_cc_mode_insns (rtx_insn *start, rtx_insn *end, rtx newreg)
7347 {
7348   rtx_insn *insn;
7349 
7350   for (insn = start; insn != end; insn = NEXT_INSN (insn))
7351     {
7352       if (! INSN_P (insn))
7353 	continue;
7354 
7355       if (reg_set_p (newreg, insn))
7356 	return;
7357 
7358       cse_change_cc_mode_insn (insn, newreg);
7359     }
7360 }
7361 
7362 /* BB is a basic block which finishes with CC_REG as a condition code
7363    register which is set to CC_SRC.  Look through the successors of BB
7364    to find blocks which have a single predecessor (i.e., this one),
7365    and look through those blocks for an assignment to CC_REG which is
7366    equivalent to CC_SRC.  CAN_CHANGE_MODE indicates whether we are
7367    permitted to change the mode of CC_SRC to a compatible mode.  This
7368    returns VOIDmode if no equivalent assignments were found.
7369    Otherwise it returns the mode which CC_SRC should wind up with.
7370    ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7371    but is passed unmodified down to recursive calls in order to prevent
7372    endless recursion.
7373 
7374    The main complexity in this function is handling the mode issues.
7375    We may have more than one duplicate which we can eliminate, and we
7376    try to find a mode which will work for multiple duplicates.  */
7377 
7378 static machine_mode
7379 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7380 	      bool can_change_mode)
7381 {
7382   bool found_equiv;
7383   machine_mode mode;
7384   unsigned int insn_count;
7385   edge e;
7386   rtx_insn *insns[2];
7387   machine_mode modes[2];
7388   rtx_insn *last_insns[2];
7389   unsigned int i;
7390   rtx newreg;
7391   edge_iterator ei;
7392 
7393   /* We expect to have two successors.  Look at both before picking
7394      the final mode for the comparison.  If we have more successors
7395      (i.e., some sort of table jump, although that seems unlikely),
7396      then we require all beyond the first two to use the same
7397      mode.  */
7398 
7399   found_equiv = false;
7400   mode = GET_MODE (cc_src);
7401   insn_count = 0;
7402   FOR_EACH_EDGE (e, ei, bb->succs)
7403     {
7404       rtx_insn *insn;
7405       rtx_insn *end;
7406 
7407       if (e->flags & EDGE_COMPLEX)
7408 	continue;
7409 
7410       if (EDGE_COUNT (e->dest->preds) != 1
7411 	  || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
7412 	  /* Avoid endless recursion on unreachable blocks.  */
7413 	  || e->dest == orig_bb)
7414 	continue;
7415 
7416       end = NEXT_INSN (BB_END (e->dest));
7417       for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7418 	{
7419 	  rtx set;
7420 
7421 	  if (! INSN_P (insn))
7422 	    continue;
7423 
7424 	  /* If CC_SRC is modified, we have to stop looking for
7425 	     something which uses it.  */
7426 	  if (modified_in_p (cc_src, insn))
7427 	    break;
7428 
7429 	  /* Check whether INSN sets CC_REG to CC_SRC.  */
7430 	  set = single_set (insn);
7431 	  if (set
7432 	      && REG_P (SET_DEST (set))
7433 	      && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7434 	    {
7435 	      bool found;
7436 	      machine_mode set_mode;
7437 	      machine_mode comp_mode;
7438 
7439 	      found = false;
7440 	      set_mode = GET_MODE (SET_SRC (set));
7441 	      comp_mode = set_mode;
7442 	      if (rtx_equal_p (cc_src, SET_SRC (set)))
7443 		found = true;
7444 	      else if (GET_CODE (cc_src) == COMPARE
7445 		       && GET_CODE (SET_SRC (set)) == COMPARE
7446 		       && mode != set_mode
7447 		       && rtx_equal_p (XEXP (cc_src, 0),
7448 				       XEXP (SET_SRC (set), 0))
7449 		       && rtx_equal_p (XEXP (cc_src, 1),
7450 				       XEXP (SET_SRC (set), 1)))
7451 
7452 		{
7453 		  comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7454 		  if (comp_mode != VOIDmode
7455 		      && (can_change_mode || comp_mode == mode))
7456 		    found = true;
7457 		}
7458 
7459 	      if (found)
7460 		{
7461 		  found_equiv = true;
7462 		  if (insn_count < ARRAY_SIZE (insns))
7463 		    {
7464 		      insns[insn_count] = insn;
7465 		      modes[insn_count] = set_mode;
7466 		      last_insns[insn_count] = end;
7467 		      ++insn_count;
7468 
7469 		      if (mode != comp_mode)
7470 			{
7471 			  gcc_assert (can_change_mode);
7472 			  mode = comp_mode;
7473 
7474 			  /* The modified insn will be re-recognized later.  */
7475 			  PUT_MODE (cc_src, mode);
7476 			}
7477 		    }
7478 		  else
7479 		    {
7480 		      if (set_mode != mode)
7481 			{
7482 			  /* We found a matching expression in the
7483 			     wrong mode, but we don't have room to
7484 			     store it in the array.  Punt.  This case
7485 			     should be rare.  */
7486 			  break;
7487 			}
7488 		      /* INSN sets CC_REG to a value equal to CC_SRC
7489 			 with the right mode.  We can simply delete
7490 			 it.  */
7491 		      delete_insn (insn);
7492 		    }
7493 
7494 		  /* We found an instruction to delete.  Keep looking,
7495 		     in the hopes of finding a three-way jump.  */
7496 		  continue;
7497 		}
7498 
7499 	      /* We found an instruction which sets the condition
7500 		 code, so don't look any farther.  */
7501 	      break;
7502 	    }
7503 
7504 	  /* If INSN sets CC_REG in some other way, don't look any
7505 	     farther.  */
7506 	  if (reg_set_p (cc_reg, insn))
7507 	    break;
7508 	}
7509 
7510       /* If we fell off the bottom of the block, we can keep looking
7511 	 through successors.  We pass CAN_CHANGE_MODE as false because
7512 	 we aren't prepared to handle compatibility between the
7513 	 further blocks and this block.  */
7514       if (insn == end)
7515 	{
7516 	  machine_mode submode;
7517 
7518 	  submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
7519 	  if (submode != VOIDmode)
7520 	    {
7521 	      gcc_assert (submode == mode);
7522 	      found_equiv = true;
7523 	      can_change_mode = false;
7524 	    }
7525 	}
7526     }
7527 
7528   if (! found_equiv)
7529     return VOIDmode;
7530 
7531   /* Now INSN_COUNT is the number of instructions we found which set
7532      CC_REG to a value equivalent to CC_SRC.  The instructions are in
7533      INSNS.  The modes used by those instructions are in MODES.  */
7534 
7535   newreg = NULL_RTX;
7536   for (i = 0; i < insn_count; ++i)
7537     {
7538       if (modes[i] != mode)
7539 	{
7540 	  /* We need to change the mode of CC_REG in INSNS[i] and
7541 	     subsequent instructions.  */
7542 	  if (! newreg)
7543 	    {
7544 	      if (GET_MODE (cc_reg) == mode)
7545 		newreg = cc_reg;
7546 	      else
7547 		newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7548 	    }
7549 	  cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7550 				    newreg);
7551 	}
7552 
7553       cse_cfg_altered |= delete_insn_and_edges (insns[i]);
7554     }
7555 
7556   return mode;
7557 }
7558 
7559 /* If we have a fixed condition code register (or two), walk through
7560    the instructions and try to eliminate duplicate assignments.  */
7561 
7562 static void
7563 cse_condition_code_reg (void)
7564 {
7565   unsigned int cc_regno_1;
7566   unsigned int cc_regno_2;
7567   rtx cc_reg_1;
7568   rtx cc_reg_2;
7569   basic_block bb;
7570 
7571   if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7572     return;
7573 
7574   cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7575   if (cc_regno_2 != INVALID_REGNUM)
7576     cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7577   else
7578     cc_reg_2 = NULL_RTX;
7579 
7580   FOR_EACH_BB_FN (bb, cfun)
7581     {
7582       rtx_insn *last_insn;
7583       rtx cc_reg;
7584       rtx_insn *insn;
7585       rtx_insn *cc_src_insn;
7586       rtx cc_src;
7587       machine_mode mode;
7588       machine_mode orig_mode;
7589 
7590       /* Look for blocks which end with a conditional jump based on a
7591 	 condition code register.  Then look for the instruction which
7592 	 sets the condition code register.  Then look through the
7593 	 successor blocks for instructions which set the condition
7594 	 code register to the same value.  There are other possible
7595 	 uses of the condition code register, but these are by far the
7596 	 most common and the ones which we are most likely to be able
7597 	 to optimize.  */
7598 
7599       last_insn = BB_END (bb);
7600       if (!JUMP_P (last_insn))
7601 	continue;
7602 
7603       if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7604 	cc_reg = cc_reg_1;
7605       else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7606 	cc_reg = cc_reg_2;
7607       else
7608 	continue;
7609 
7610       cc_src_insn = NULL;
7611       cc_src = NULL_RTX;
7612       for (insn = PREV_INSN (last_insn);
7613 	   insn && insn != PREV_INSN (BB_HEAD (bb));
7614 	   insn = PREV_INSN (insn))
7615 	{
7616 	  rtx set;
7617 
7618 	  if (! INSN_P (insn))
7619 	    continue;
7620 	  set = single_set (insn);
7621 	  if (set
7622 	      && REG_P (SET_DEST (set))
7623 	      && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7624 	    {
7625 	      cc_src_insn = insn;
7626 	      cc_src = SET_SRC (set);
7627 	      break;
7628 	    }
7629 	  else if (reg_set_p (cc_reg, insn))
7630 	    break;
7631 	}
7632 
7633       if (! cc_src_insn)
7634 	continue;
7635 
7636       if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7637 	continue;
7638 
7639       /* Now CC_REG is a condition code register used for a
7640 	 conditional jump at the end of the block, and CC_SRC, in
7641 	 CC_SRC_INSN, is the value to which that condition code
7642 	 register is set, and CC_SRC is still meaningful at the end of
7643 	 the basic block.  */
7644 
7645       orig_mode = GET_MODE (cc_src);
7646       mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
7647       if (mode != VOIDmode)
7648 	{
7649 	  gcc_assert (mode == GET_MODE (cc_src));
7650 	  if (mode != orig_mode)
7651 	    {
7652 	      rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7653 
7654 	      cse_change_cc_mode_insn (cc_src_insn, newreg);
7655 
7656 	      /* Do the same in the following insns that use the
7657 		 current value of CC_REG within BB.  */
7658 	      cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7659 					NEXT_INSN (last_insn),
7660 					newreg);
7661 	    }
7662 	}
7663     }
7664 }
7665 
7666 
7667 /* Perform common subexpression elimination.  Nonzero value from
7668    `cse_main' means that jumps were simplified and some code may now
7669    be unreachable, so do jump optimization again.  */
7670 static unsigned int
7671 rest_of_handle_cse (void)
7672 {
7673   int tem;
7674 
7675   if (dump_file)
7676     dump_flow_info (dump_file, dump_flags);
7677 
7678   tem = cse_main (get_insns (), max_reg_num ());
7679 
7680   /* If we are not running more CSE passes, then we are no longer
7681      expecting CSE to be run.  But always rerun it in a cheap mode.  */
7682   cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7683 
7684   if (tem == 2)
7685     {
7686       timevar_push (TV_JUMP);
7687       rebuild_jump_labels (get_insns ());
7688       cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7689       timevar_pop (TV_JUMP);
7690     }
7691   else if (tem == 1 || optimize > 1)
7692     cse_cfg_altered |= cleanup_cfg (0);
7693 
7694   return 0;
7695 }
7696 
7697 namespace {
7698 
7699 const pass_data pass_data_cse =
7700 {
7701   RTL_PASS, /* type */
7702   "cse1", /* name */
7703   OPTGROUP_NONE, /* optinfo_flags */
7704   TV_CSE, /* tv_id */
7705   0, /* properties_required */
7706   0, /* properties_provided */
7707   0, /* properties_destroyed */
7708   0, /* todo_flags_start */
7709   TODO_df_finish, /* todo_flags_finish */
7710 };
7711 
7712 class pass_cse : public rtl_opt_pass
7713 {
7714 public:
7715   pass_cse (gcc::context *ctxt)
7716     : rtl_opt_pass (pass_data_cse, ctxt)
7717   {}
7718 
7719   /* opt_pass methods: */
7720   virtual bool gate (function *) { return optimize > 0; }
7721   virtual unsigned int execute (function *) { return rest_of_handle_cse (); }
7722 
7723 }; // class pass_cse
7724 
7725 } // anon namespace
7726 
7727 rtl_opt_pass *
7728 make_pass_cse (gcc::context *ctxt)
7729 {
7730   return new pass_cse (ctxt);
7731 }
7732 
7733 
7734 /* Run second CSE pass after loop optimizations.  */
7735 static unsigned int
7736 rest_of_handle_cse2 (void)
7737 {
7738   int tem;
7739 
7740   if (dump_file)
7741     dump_flow_info (dump_file, dump_flags);
7742 
7743   tem = cse_main (get_insns (), max_reg_num ());
7744 
7745   /* Run a pass to eliminate duplicated assignments to condition code
7746      registers.  We have to run this after bypass_jumps, because it
7747      makes it harder for that pass to determine whether a jump can be
7748      bypassed safely.  */
7749   cse_condition_code_reg ();
7750 
7751   delete_trivially_dead_insns (get_insns (), max_reg_num ());
7752 
7753   if (tem == 2)
7754     {
7755       timevar_push (TV_JUMP);
7756       rebuild_jump_labels (get_insns ());
7757       cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7758       timevar_pop (TV_JUMP);
7759     }
7760   else if (tem == 1)
7761     cse_cfg_altered |= cleanup_cfg (0);
7762 
7763   cse_not_expected = 1;
7764   return 0;
7765 }
7766 
7767 
7768 namespace {
7769 
7770 const pass_data pass_data_cse2 =
7771 {
7772   RTL_PASS, /* type */
7773   "cse2", /* name */
7774   OPTGROUP_NONE, /* optinfo_flags */
7775   TV_CSE2, /* tv_id */
7776   0, /* properties_required */
7777   0, /* properties_provided */
7778   0, /* properties_destroyed */
7779   0, /* todo_flags_start */
7780   TODO_df_finish, /* todo_flags_finish */
7781 };
7782 
7783 class pass_cse2 : public rtl_opt_pass
7784 {
7785 public:
7786   pass_cse2 (gcc::context *ctxt)
7787     : rtl_opt_pass (pass_data_cse2, ctxt)
7788   {}
7789 
7790   /* opt_pass methods: */
7791   virtual bool gate (function *)
7792     {
7793       return optimize > 0 && flag_rerun_cse_after_loop;
7794     }
7795 
7796   virtual unsigned int execute (function *) { return rest_of_handle_cse2 (); }
7797 
7798 }; // class pass_cse2
7799 
7800 } // anon namespace
7801 
7802 rtl_opt_pass *
7803 make_pass_cse2 (gcc::context *ctxt)
7804 {
7805   return new pass_cse2 (ctxt);
7806 }
7807 
7808 /* Run second CSE pass after loop optimizations.  */
7809 static unsigned int
7810 rest_of_handle_cse_after_global_opts (void)
7811 {
7812   int save_cfj;
7813   int tem;
7814 
7815   /* We only want to do local CSE, so don't follow jumps.  */
7816   save_cfj = flag_cse_follow_jumps;
7817   flag_cse_follow_jumps = 0;
7818 
7819   rebuild_jump_labels (get_insns ());
7820   tem = cse_main (get_insns (), max_reg_num ());
7821   cse_cfg_altered |= purge_all_dead_edges ();
7822   delete_trivially_dead_insns (get_insns (), max_reg_num ());
7823 
7824   cse_not_expected = !flag_rerun_cse_after_loop;
7825 
7826   /* If cse altered any jumps, rerun jump opts to clean things up.  */
7827   if (tem == 2)
7828     {
7829       timevar_push (TV_JUMP);
7830       rebuild_jump_labels (get_insns ());
7831       cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7832       timevar_pop (TV_JUMP);
7833     }
7834   else if (tem == 1)
7835     cse_cfg_altered |= cleanup_cfg (0);
7836 
7837   flag_cse_follow_jumps = save_cfj;
7838   return 0;
7839 }
7840 
7841 namespace {
7842 
7843 const pass_data pass_data_cse_after_global_opts =
7844 {
7845   RTL_PASS, /* type */
7846   "cse_local", /* name */
7847   OPTGROUP_NONE, /* optinfo_flags */
7848   TV_CSE, /* tv_id */
7849   0, /* properties_required */
7850   0, /* properties_provided */
7851   0, /* properties_destroyed */
7852   0, /* todo_flags_start */
7853   TODO_df_finish, /* todo_flags_finish */
7854 };
7855 
7856 class pass_cse_after_global_opts : public rtl_opt_pass
7857 {
7858 public:
7859   pass_cse_after_global_opts (gcc::context *ctxt)
7860     : rtl_opt_pass (pass_data_cse_after_global_opts, ctxt)
7861   {}
7862 
7863   /* opt_pass methods: */
7864   virtual bool gate (function *)
7865     {
7866       return optimize > 0 && flag_rerun_cse_after_global_opts;
7867     }
7868 
7869   virtual unsigned int execute (function *)
7870     {
7871       return rest_of_handle_cse_after_global_opts ();
7872     }
7873 
7874 }; // class pass_cse_after_global_opts
7875 
7876 } // anon namespace
7877 
7878 rtl_opt_pass *
7879 make_pass_cse_after_global_opts (gcc::context *ctxt)
7880 {
7881   return new pass_cse_after_global_opts (ctxt);
7882 }
7883