1 /* Common subexpression elimination for GNU compiler. 2 Copyright (C) 1987-2019 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "backend.h" 24 #include "target.h" 25 #include "rtl.h" 26 #include "tree.h" 27 #include "cfghooks.h" 28 #include "df.h" 29 #include "memmodel.h" 30 #include "tm_p.h" 31 #include "insn-config.h" 32 #include "regs.h" 33 #include "emit-rtl.h" 34 #include "recog.h" 35 #include "cfgrtl.h" 36 #include "cfganal.h" 37 #include "cfgcleanup.h" 38 #include "alias.h" 39 #include "toplev.h" 40 #include "params.h" 41 #include "rtlhooks-def.h" 42 #include "tree-pass.h" 43 #include "dbgcnt.h" 44 #include "rtl-iter.h" 45 46 /* The basic idea of common subexpression elimination is to go 47 through the code, keeping a record of expressions that would 48 have the same value at the current scan point, and replacing 49 expressions encountered with the cheapest equivalent expression. 50 51 It is too complicated to keep track of the different possibilities 52 when control paths merge in this code; so, at each label, we forget all 53 that is known and start fresh. This can be described as processing each 54 extended basic block separately. We have a separate pass to perform 55 global CSE. 56 57 Note CSE can turn a conditional or computed jump into a nop or 58 an unconditional jump. When this occurs we arrange to run the jump 59 optimizer after CSE to delete the unreachable code. 60 61 We use two data structures to record the equivalent expressions: 62 a hash table for most expressions, and a vector of "quantity 63 numbers" to record equivalent (pseudo) registers. 64 65 The use of the special data structure for registers is desirable 66 because it is faster. It is possible because registers references 67 contain a fairly small number, the register number, taken from 68 a contiguously allocated series, and two register references are 69 identical if they have the same number. General expressions 70 do not have any such thing, so the only way to retrieve the 71 information recorded on an expression other than a register 72 is to keep it in a hash table. 73 74 Registers and "quantity numbers": 75 76 At the start of each basic block, all of the (hardware and pseudo) 77 registers used in the function are given distinct quantity 78 numbers to indicate their contents. During scan, when the code 79 copies one register into another, we copy the quantity number. 80 When a register is loaded in any other way, we allocate a new 81 quantity number to describe the value generated by this operation. 82 `REG_QTY (N)' records what quantity register N is currently thought 83 of as containing. 84 85 All real quantity numbers are greater than or equal to zero. 86 If register N has not been assigned a quantity, `REG_QTY (N)' will 87 equal -N - 1, which is always negative. 88 89 Quantity numbers below zero do not exist and none of the `qty_table' 90 entries should be referenced with a negative index. 91 92 We also maintain a bidirectional chain of registers for each 93 quantity number. The `qty_table` members `first_reg' and `last_reg', 94 and `reg_eqv_table' members `next' and `prev' hold these chains. 95 96 The first register in a chain is the one whose lifespan is least local. 97 Among equals, it is the one that was seen first. 98 We replace any equivalent register with that one. 99 100 If two registers have the same quantity number, it must be true that 101 REG expressions with qty_table `mode' must be in the hash table for both 102 registers and must be in the same class. 103 104 The converse is not true. Since hard registers may be referenced in 105 any mode, two REG expressions might be equivalent in the hash table 106 but not have the same quantity number if the quantity number of one 107 of the registers is not the same mode as those expressions. 108 109 Constants and quantity numbers 110 111 When a quantity has a known constant value, that value is stored 112 in the appropriate qty_table `const_rtx'. This is in addition to 113 putting the constant in the hash table as is usual for non-regs. 114 115 Whether a reg or a constant is preferred is determined by the configuration 116 macro CONST_COSTS and will often depend on the constant value. In any 117 event, expressions containing constants can be simplified, by fold_rtx. 118 119 When a quantity has a known nearly constant value (such as an address 120 of a stack slot), that value is stored in the appropriate qty_table 121 `const_rtx'. 122 123 Integer constants don't have a machine mode. However, cse 124 determines the intended machine mode from the destination 125 of the instruction that moves the constant. The machine mode 126 is recorded in the hash table along with the actual RTL 127 constant expression so that different modes are kept separate. 128 129 Other expressions: 130 131 To record known equivalences among expressions in general 132 we use a hash table called `table'. It has a fixed number of buckets 133 that contain chains of `struct table_elt' elements for expressions. 134 These chains connect the elements whose expressions have the same 135 hash codes. 136 137 Other chains through the same elements connect the elements which 138 currently have equivalent values. 139 140 Register references in an expression are canonicalized before hashing 141 the expression. This is done using `reg_qty' and qty_table `first_reg'. 142 The hash code of a register reference is computed using the quantity 143 number, not the register number. 144 145 When the value of an expression changes, it is necessary to remove from the 146 hash table not just that expression but all expressions whose values 147 could be different as a result. 148 149 1. If the value changing is in memory, except in special cases 150 ANYTHING referring to memory could be changed. That is because 151 nobody knows where a pointer does not point. 152 The function `invalidate_memory' removes what is necessary. 153 154 The special cases are when the address is constant or is 155 a constant plus a fixed register such as the frame pointer 156 or a static chain pointer. When such addresses are stored in, 157 we can tell exactly which other such addresses must be invalidated 158 due to overlap. `invalidate' does this. 159 All expressions that refer to non-constant 160 memory addresses are also invalidated. `invalidate_memory' does this. 161 162 2. If the value changing is a register, all expressions 163 containing references to that register, and only those, 164 must be removed. 165 166 Because searching the entire hash table for expressions that contain 167 a register is very slow, we try to figure out when it isn't necessary. 168 Precisely, this is necessary only when expressions have been 169 entered in the hash table using this register, and then the value has 170 changed, and then another expression wants to be added to refer to 171 the register's new value. This sequence of circumstances is rare 172 within any one basic block. 173 174 `REG_TICK' and `REG_IN_TABLE', accessors for members of 175 cse_reg_info, are used to detect this case. REG_TICK (i) is 176 incremented whenever a value is stored in register i. 177 REG_IN_TABLE (i) holds -1 if no references to register i have been 178 entered in the table; otherwise, it contains the value REG_TICK (i) 179 had when the references were entered. If we want to enter a 180 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and 181 remove old references. Until we want to enter a new entry, the 182 mere fact that the two vectors don't match makes the entries be 183 ignored if anyone tries to match them. 184 185 Registers themselves are entered in the hash table as well as in 186 the equivalent-register chains. However, `REG_TICK' and 187 `REG_IN_TABLE' do not apply to expressions which are simple 188 register references. These expressions are removed from the table 189 immediately when they become invalid, and this can be done even if 190 we do not immediately search for all the expressions that refer to 191 the register. 192 193 A CLOBBER rtx in an instruction invalidates its operand for further 194 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK 195 invalidates everything that resides in memory. 196 197 Related expressions: 198 199 Constant expressions that differ only by an additive integer 200 are called related. When a constant expression is put in 201 the table, the related expression with no constant term 202 is also entered. These are made to point at each other 203 so that it is possible to find out if there exists any 204 register equivalent to an expression related to a given expression. */ 205 206 /* Length of qty_table vector. We know in advance we will not need 207 a quantity number this big. */ 208 209 static int max_qty; 210 211 /* Next quantity number to be allocated. 212 This is 1 + the largest number needed so far. */ 213 214 static int next_qty; 215 216 /* Per-qty information tracking. 217 218 `first_reg' and `last_reg' track the head and tail of the 219 chain of registers which currently contain this quantity. 220 221 `mode' contains the machine mode of this quantity. 222 223 `const_rtx' holds the rtx of the constant value of this 224 quantity, if known. A summations of the frame/arg pointer 225 and a constant can also be entered here. When this holds 226 a known value, `const_insn' is the insn which stored the 227 constant value. 228 229 `comparison_{code,const,qty}' are used to track when a 230 comparison between a quantity and some constant or register has 231 been passed. In such a case, we know the results of the comparison 232 in case we see it again. These members record a comparison that 233 is known to be true. `comparison_code' holds the rtx code of such 234 a comparison, else it is set to UNKNOWN and the other two 235 comparison members are undefined. `comparison_const' holds 236 the constant being compared against, or zero if the comparison 237 is not against a constant. `comparison_qty' holds the quantity 238 being compared against when the result is known. If the comparison 239 is not with a register, `comparison_qty' is -1. */ 240 241 struct qty_table_elem 242 { 243 rtx const_rtx; 244 rtx_insn *const_insn; 245 rtx comparison_const; 246 int comparison_qty; 247 unsigned int first_reg, last_reg; 248 /* The sizes of these fields should match the sizes of the 249 code and mode fields of struct rtx_def (see rtl.h). */ 250 ENUM_BITFIELD(rtx_code) comparison_code : 16; 251 ENUM_BITFIELD(machine_mode) mode : 8; 252 }; 253 254 /* The table of all qtys, indexed by qty number. */ 255 static struct qty_table_elem *qty_table; 256 257 /* For machines that have a CC0, we do not record its value in the hash 258 table since its use is guaranteed to be the insn immediately following 259 its definition and any other insn is presumed to invalidate it. 260 261 Instead, we store below the current and last value assigned to CC0. 262 If it should happen to be a constant, it is stored in preference 263 to the actual assigned value. In case it is a constant, we store 264 the mode in which the constant should be interpreted. */ 265 266 static rtx this_insn_cc0, prev_insn_cc0; 267 static machine_mode this_insn_cc0_mode, prev_insn_cc0_mode; 268 269 /* Insn being scanned. */ 270 271 static rtx_insn *this_insn; 272 static bool optimize_this_for_speed_p; 273 274 /* Index by register number, gives the number of the next (or 275 previous) register in the chain of registers sharing the same 276 value. 277 278 Or -1 if this register is at the end of the chain. 279 280 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */ 281 282 /* Per-register equivalence chain. */ 283 struct reg_eqv_elem 284 { 285 int next, prev; 286 }; 287 288 /* The table of all register equivalence chains. */ 289 static struct reg_eqv_elem *reg_eqv_table; 290 291 struct cse_reg_info 292 { 293 /* The timestamp at which this register is initialized. */ 294 unsigned int timestamp; 295 296 /* The quantity number of the register's current contents. */ 297 int reg_qty; 298 299 /* The number of times the register has been altered in the current 300 basic block. */ 301 int reg_tick; 302 303 /* The REG_TICK value at which rtx's containing this register are 304 valid in the hash table. If this does not equal the current 305 reg_tick value, such expressions existing in the hash table are 306 invalid. */ 307 int reg_in_table; 308 309 /* The SUBREG that was set when REG_TICK was last incremented. Set 310 to -1 if the last store was to the whole register, not a subreg. */ 311 unsigned int subreg_ticked; 312 }; 313 314 /* A table of cse_reg_info indexed by register numbers. */ 315 static struct cse_reg_info *cse_reg_info_table; 316 317 /* The size of the above table. */ 318 static unsigned int cse_reg_info_table_size; 319 320 /* The index of the first entry that has not been initialized. */ 321 static unsigned int cse_reg_info_table_first_uninitialized; 322 323 /* The timestamp at the beginning of the current run of 324 cse_extended_basic_block. We increment this variable at the beginning of 325 the current run of cse_extended_basic_block. The timestamp field of a 326 cse_reg_info entry matches the value of this variable if and only 327 if the entry has been initialized during the current run of 328 cse_extended_basic_block. */ 329 static unsigned int cse_reg_info_timestamp; 330 331 /* A HARD_REG_SET containing all the hard registers for which there is 332 currently a REG expression in the hash table. Note the difference 333 from the above variables, which indicate if the REG is mentioned in some 334 expression in the table. */ 335 336 static HARD_REG_SET hard_regs_in_table; 337 338 /* True if CSE has altered the CFG. */ 339 static bool cse_cfg_altered; 340 341 /* True if CSE has altered conditional jump insns in such a way 342 that jump optimization should be redone. */ 343 static bool cse_jumps_altered; 344 345 /* True if we put a LABEL_REF into the hash table for an INSN 346 without a REG_LABEL_OPERAND, we have to rerun jump after CSE 347 to put in the note. */ 348 static bool recorded_label_ref; 349 350 /* canon_hash stores 1 in do_not_record 351 if it notices a reference to CC0, PC, or some other volatile 352 subexpression. */ 353 354 static int do_not_record; 355 356 /* canon_hash stores 1 in hash_arg_in_memory 357 if it notices a reference to memory within the expression being hashed. */ 358 359 static int hash_arg_in_memory; 360 361 /* The hash table contains buckets which are chains of `struct table_elt's, 362 each recording one expression's information. 363 That expression is in the `exp' field. 364 365 The canon_exp field contains a canonical (from the point of view of 366 alias analysis) version of the `exp' field. 367 368 Those elements with the same hash code are chained in both directions 369 through the `next_same_hash' and `prev_same_hash' fields. 370 371 Each set of expressions with equivalent values 372 are on a two-way chain through the `next_same_value' 373 and `prev_same_value' fields, and all point with 374 the `first_same_value' field at the first element in 375 that chain. The chain is in order of increasing cost. 376 Each element's cost value is in its `cost' field. 377 378 The `in_memory' field is nonzero for elements that 379 involve any reference to memory. These elements are removed 380 whenever a write is done to an unidentified location in memory. 381 To be safe, we assume that a memory address is unidentified unless 382 the address is either a symbol constant or a constant plus 383 the frame pointer or argument pointer. 384 385 The `related_value' field is used to connect related expressions 386 (that differ by adding an integer). 387 The related expressions are chained in a circular fashion. 388 `related_value' is zero for expressions for which this 389 chain is not useful. 390 391 The `cost' field stores the cost of this element's expression. 392 The `regcost' field stores the value returned by approx_reg_cost for 393 this element's expression. 394 395 The `is_const' flag is set if the element is a constant (including 396 a fixed address). 397 398 The `flag' field is used as a temporary during some search routines. 399 400 The `mode' field is usually the same as GET_MODE (`exp'), but 401 if `exp' is a CONST_INT and has no machine mode then the `mode' 402 field is the mode it was being used as. Each constant is 403 recorded separately for each mode it is used with. */ 404 405 struct table_elt 406 { 407 rtx exp; 408 rtx canon_exp; 409 struct table_elt *next_same_hash; 410 struct table_elt *prev_same_hash; 411 struct table_elt *next_same_value; 412 struct table_elt *prev_same_value; 413 struct table_elt *first_same_value; 414 struct table_elt *related_value; 415 int cost; 416 int regcost; 417 /* The size of this field should match the size 418 of the mode field of struct rtx_def (see rtl.h). */ 419 ENUM_BITFIELD(machine_mode) mode : 8; 420 char in_memory; 421 char is_const; 422 char flag; 423 }; 424 425 /* We don't want a lot of buckets, because we rarely have very many 426 things stored in the hash table, and a lot of buckets slows 427 down a lot of loops that happen frequently. */ 428 #define HASH_SHIFT 5 429 #define HASH_SIZE (1 << HASH_SHIFT) 430 #define HASH_MASK (HASH_SIZE - 1) 431 432 /* Compute hash code of X in mode M. Special-case case where X is a pseudo 433 register (hard registers may require `do_not_record' to be set). */ 434 435 #define HASH(X, M) \ 436 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \ 437 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \ 438 : canon_hash (X, M)) & HASH_MASK) 439 440 /* Like HASH, but without side-effects. */ 441 #define SAFE_HASH(X, M) \ 442 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \ 443 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \ 444 : safe_hash (X, M)) & HASH_MASK) 445 446 /* Determine whether register number N is considered a fixed register for the 447 purpose of approximating register costs. 448 It is desirable to replace other regs with fixed regs, to reduce need for 449 non-fixed hard regs. 450 A reg wins if it is either the frame pointer or designated as fixed. */ 451 #define FIXED_REGNO_P(N) \ 452 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \ 453 || fixed_regs[N] || global_regs[N]) 454 455 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed 456 hard registers and pointers into the frame are the cheapest with a cost 457 of 0. Next come pseudos with a cost of one and other hard registers with 458 a cost of 2. Aside from these special cases, call `rtx_cost'. */ 459 460 #define CHEAP_REGNO(N) \ 461 (REGNO_PTR_FRAME_P (N) \ 462 || (HARD_REGISTER_NUM_P (N) \ 463 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS)) 464 465 #define COST(X, MODE) \ 466 (REG_P (X) ? 0 : notreg_cost (X, MODE, SET, 1)) 467 #define COST_IN(X, MODE, OUTER, OPNO) \ 468 (REG_P (X) ? 0 : notreg_cost (X, MODE, OUTER, OPNO)) 469 470 /* Get the number of times this register has been updated in this 471 basic block. */ 472 473 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick) 474 475 /* Get the point at which REG was recorded in the table. */ 476 477 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table) 478 479 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a 480 SUBREG). */ 481 482 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked) 483 484 /* Get the quantity number for REG. */ 485 486 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty) 487 488 /* Determine if the quantity number for register X represents a valid index 489 into the qty_table. */ 490 491 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0) 492 493 /* Compare table_elt X and Y and return true iff X is cheaper than Y. */ 494 495 #define CHEAPER(X, Y) \ 496 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0) 497 498 static struct table_elt *table[HASH_SIZE]; 499 500 /* Chain of `struct table_elt's made so far for this function 501 but currently removed from the table. */ 502 503 static struct table_elt *free_element_chain; 504 505 /* Set to the cost of a constant pool reference if one was found for a 506 symbolic constant. If this was found, it means we should try to 507 convert constants into constant pool entries if they don't fit in 508 the insn. */ 509 510 static int constant_pool_entries_cost; 511 static int constant_pool_entries_regcost; 512 513 /* Trace a patch through the CFG. */ 514 515 struct branch_path 516 { 517 /* The basic block for this path entry. */ 518 basic_block bb; 519 }; 520 521 /* This data describes a block that will be processed by 522 cse_extended_basic_block. */ 523 524 struct cse_basic_block_data 525 { 526 /* Total number of SETs in block. */ 527 int nsets; 528 /* Size of current branch path, if any. */ 529 int path_size; 530 /* Current path, indicating which basic_blocks will be processed. */ 531 struct branch_path *path; 532 }; 533 534 535 /* Pointers to the live in/live out bitmaps for the boundaries of the 536 current EBB. */ 537 static bitmap cse_ebb_live_in, cse_ebb_live_out; 538 539 /* A simple bitmap to track which basic blocks have been visited 540 already as part of an already processed extended basic block. */ 541 static sbitmap cse_visited_basic_blocks; 542 543 static bool fixed_base_plus_p (rtx x); 544 static int notreg_cost (rtx, machine_mode, enum rtx_code, int); 545 static int preferable (int, int, int, int); 546 static void new_basic_block (void); 547 static void make_new_qty (unsigned int, machine_mode); 548 static void make_regs_eqv (unsigned int, unsigned int); 549 static void delete_reg_equiv (unsigned int); 550 static int mention_regs (rtx); 551 static int insert_regs (rtx, struct table_elt *, int); 552 static void remove_from_table (struct table_elt *, unsigned); 553 static void remove_pseudo_from_table (rtx, unsigned); 554 static struct table_elt *lookup (rtx, unsigned, machine_mode); 555 static struct table_elt *lookup_for_remove (rtx, unsigned, machine_mode); 556 static rtx lookup_as_function (rtx, enum rtx_code); 557 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned, 558 machine_mode, int, int); 559 static struct table_elt *insert (rtx, struct table_elt *, unsigned, 560 machine_mode); 561 static void merge_equiv_classes (struct table_elt *, struct table_elt *); 562 static void invalidate_reg (rtx, bool); 563 static void invalidate (rtx, machine_mode); 564 static void remove_invalid_refs (unsigned int); 565 static void remove_invalid_subreg_refs (unsigned int, poly_uint64, 566 machine_mode); 567 static void rehash_using_reg (rtx); 568 static void invalidate_memory (void); 569 static void invalidate_for_call (void); 570 static rtx use_related_value (rtx, struct table_elt *); 571 572 static inline unsigned canon_hash (rtx, machine_mode); 573 static inline unsigned safe_hash (rtx, machine_mode); 574 static inline unsigned hash_rtx_string (const char *); 575 576 static rtx canon_reg (rtx, rtx_insn *); 577 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *, 578 machine_mode *, 579 machine_mode *); 580 static rtx fold_rtx (rtx, rtx_insn *); 581 static rtx equiv_constant (rtx); 582 static void record_jump_equiv (rtx_insn *, bool); 583 static void record_jump_cond (enum rtx_code, machine_mode, rtx, rtx, 584 int); 585 static void cse_insn (rtx_insn *); 586 static void cse_prescan_path (struct cse_basic_block_data *); 587 static void invalidate_from_clobbers (rtx_insn *); 588 static void invalidate_from_sets_and_clobbers (rtx_insn *); 589 static rtx cse_process_notes (rtx, rtx, bool *); 590 static void cse_extended_basic_block (struct cse_basic_block_data *); 591 extern void dump_class (struct table_elt*); 592 static void get_cse_reg_info_1 (unsigned int regno); 593 static struct cse_reg_info * get_cse_reg_info (unsigned int regno); 594 595 static void flush_hash_table (void); 596 static bool insn_live_p (rtx_insn *, int *); 597 static bool set_live_p (rtx, rtx_insn *, int *); 598 static void cse_change_cc_mode_insn (rtx_insn *, rtx); 599 static void cse_change_cc_mode_insns (rtx_insn *, rtx_insn *, rtx); 600 static machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx, 601 bool); 602 603 604 #undef RTL_HOOKS_GEN_LOWPART 605 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible 606 607 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER; 608 609 /* Nonzero if X has the form (PLUS frame-pointer integer). */ 610 611 static bool 612 fixed_base_plus_p (rtx x) 613 { 614 switch (GET_CODE (x)) 615 { 616 case REG: 617 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx) 618 return true; 619 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]) 620 return true; 621 return false; 622 623 case PLUS: 624 if (!CONST_INT_P (XEXP (x, 1))) 625 return false; 626 return fixed_base_plus_p (XEXP (x, 0)); 627 628 default: 629 return false; 630 } 631 } 632 633 /* Dump the expressions in the equivalence class indicated by CLASSP. 634 This function is used only for debugging. */ 635 DEBUG_FUNCTION void 636 dump_class (struct table_elt *classp) 637 { 638 struct table_elt *elt; 639 640 fprintf (stderr, "Equivalence chain for "); 641 print_rtl (stderr, classp->exp); 642 fprintf (stderr, ": \n"); 643 644 for (elt = classp->first_same_value; elt; elt = elt->next_same_value) 645 { 646 print_rtl (stderr, elt->exp); 647 fprintf (stderr, "\n"); 648 } 649 } 650 651 /* Return an estimate of the cost of the registers used in an rtx. 652 This is mostly the number of different REG expressions in the rtx; 653 however for some exceptions like fixed registers we use a cost of 654 0. If any other hard register reference occurs, return MAX_COST. */ 655 656 static int 657 approx_reg_cost (const_rtx x) 658 { 659 int cost = 0; 660 subrtx_iterator::array_type array; 661 FOR_EACH_SUBRTX (iter, array, x, NONCONST) 662 { 663 const_rtx x = *iter; 664 if (REG_P (x)) 665 { 666 unsigned int regno = REGNO (x); 667 if (!CHEAP_REGNO (regno)) 668 { 669 if (regno < FIRST_PSEUDO_REGISTER) 670 { 671 if (targetm.small_register_classes_for_mode_p (GET_MODE (x))) 672 return MAX_COST; 673 cost += 2; 674 } 675 else 676 cost += 1; 677 } 678 } 679 } 680 return cost; 681 } 682 683 /* Return a negative value if an rtx A, whose costs are given by COST_A 684 and REGCOST_A, is more desirable than an rtx B. 685 Return a positive value if A is less desirable, or 0 if the two are 686 equally good. */ 687 static int 688 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b) 689 { 690 /* First, get rid of cases involving expressions that are entirely 691 unwanted. */ 692 if (cost_a != cost_b) 693 { 694 if (cost_a == MAX_COST) 695 return 1; 696 if (cost_b == MAX_COST) 697 return -1; 698 } 699 700 /* Avoid extending lifetimes of hardregs. */ 701 if (regcost_a != regcost_b) 702 { 703 if (regcost_a == MAX_COST) 704 return 1; 705 if (regcost_b == MAX_COST) 706 return -1; 707 } 708 709 /* Normal operation costs take precedence. */ 710 if (cost_a != cost_b) 711 return cost_a - cost_b; 712 /* Only if these are identical consider effects on register pressure. */ 713 if (regcost_a != regcost_b) 714 return regcost_a - regcost_b; 715 return 0; 716 } 717 718 /* Internal function, to compute cost when X is not a register; called 719 from COST macro to keep it simple. */ 720 721 static int 722 notreg_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno) 723 { 724 scalar_int_mode int_mode, inner_mode; 725 return ((GET_CODE (x) == SUBREG 726 && REG_P (SUBREG_REG (x)) 727 && is_int_mode (mode, &int_mode) 728 && is_int_mode (GET_MODE (SUBREG_REG (x)), &inner_mode) 729 && GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (inner_mode) 730 && subreg_lowpart_p (x) 731 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, inner_mode)) 732 ? 0 733 : rtx_cost (x, mode, outer, opno, optimize_this_for_speed_p) * 2); 734 } 735 736 737 /* Initialize CSE_REG_INFO_TABLE. */ 738 739 static void 740 init_cse_reg_info (unsigned int nregs) 741 { 742 /* Do we need to grow the table? */ 743 if (nregs > cse_reg_info_table_size) 744 { 745 unsigned int new_size; 746 747 if (cse_reg_info_table_size < 2048) 748 { 749 /* Compute a new size that is a power of 2 and no smaller 750 than the large of NREGS and 64. */ 751 new_size = (cse_reg_info_table_size 752 ? cse_reg_info_table_size : 64); 753 754 while (new_size < nregs) 755 new_size *= 2; 756 } 757 else 758 { 759 /* If we need a big table, allocate just enough to hold 760 NREGS registers. */ 761 new_size = nregs; 762 } 763 764 /* Reallocate the table with NEW_SIZE entries. */ 765 free (cse_reg_info_table); 766 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size); 767 cse_reg_info_table_size = new_size; 768 cse_reg_info_table_first_uninitialized = 0; 769 } 770 771 /* Do we have all of the first NREGS entries initialized? */ 772 if (cse_reg_info_table_first_uninitialized < nregs) 773 { 774 unsigned int old_timestamp = cse_reg_info_timestamp - 1; 775 unsigned int i; 776 777 /* Put the old timestamp on newly allocated entries so that they 778 will all be considered out of date. We do not touch those 779 entries beyond the first NREGS entries to be nice to the 780 virtual memory. */ 781 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++) 782 cse_reg_info_table[i].timestamp = old_timestamp; 783 784 cse_reg_info_table_first_uninitialized = nregs; 785 } 786 } 787 788 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */ 789 790 static void 791 get_cse_reg_info_1 (unsigned int regno) 792 { 793 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this 794 entry will be considered to have been initialized. */ 795 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp; 796 797 /* Initialize the rest of the entry. */ 798 cse_reg_info_table[regno].reg_tick = 1; 799 cse_reg_info_table[regno].reg_in_table = -1; 800 cse_reg_info_table[regno].subreg_ticked = -1; 801 cse_reg_info_table[regno].reg_qty = -regno - 1; 802 } 803 804 /* Find a cse_reg_info entry for REGNO. */ 805 806 static inline struct cse_reg_info * 807 get_cse_reg_info (unsigned int regno) 808 { 809 struct cse_reg_info *p = &cse_reg_info_table[regno]; 810 811 /* If this entry has not been initialized, go ahead and initialize 812 it. */ 813 if (p->timestamp != cse_reg_info_timestamp) 814 get_cse_reg_info_1 (regno); 815 816 return p; 817 } 818 819 /* Clear the hash table and initialize each register with its own quantity, 820 for a new basic block. */ 821 822 static void 823 new_basic_block (void) 824 { 825 int i; 826 827 next_qty = 0; 828 829 /* Invalidate cse_reg_info_table. */ 830 cse_reg_info_timestamp++; 831 832 /* Clear out hash table state for this pass. */ 833 CLEAR_HARD_REG_SET (hard_regs_in_table); 834 835 /* The per-quantity values used to be initialized here, but it is 836 much faster to initialize each as it is made in `make_new_qty'. */ 837 838 for (i = 0; i < HASH_SIZE; i++) 839 { 840 struct table_elt *first; 841 842 first = table[i]; 843 if (first != NULL) 844 { 845 struct table_elt *last = first; 846 847 table[i] = NULL; 848 849 while (last->next_same_hash != NULL) 850 last = last->next_same_hash; 851 852 /* Now relink this hash entire chain into 853 the free element list. */ 854 855 last->next_same_hash = free_element_chain; 856 free_element_chain = first; 857 } 858 } 859 860 prev_insn_cc0 = 0; 861 } 862 863 /* Say that register REG contains a quantity in mode MODE not in any 864 register before and initialize that quantity. */ 865 866 static void 867 make_new_qty (unsigned int reg, machine_mode mode) 868 { 869 int q; 870 struct qty_table_elem *ent; 871 struct reg_eqv_elem *eqv; 872 873 gcc_assert (next_qty < max_qty); 874 875 q = REG_QTY (reg) = next_qty++; 876 ent = &qty_table[q]; 877 ent->first_reg = reg; 878 ent->last_reg = reg; 879 ent->mode = mode; 880 ent->const_rtx = ent->const_insn = NULL; 881 ent->comparison_code = UNKNOWN; 882 883 eqv = ®_eqv_table[reg]; 884 eqv->next = eqv->prev = -1; 885 } 886 887 /* Make reg NEW equivalent to reg OLD. 888 OLD is not changing; NEW is. */ 889 890 static void 891 make_regs_eqv (unsigned int new_reg, unsigned int old_reg) 892 { 893 unsigned int lastr, firstr; 894 int q = REG_QTY (old_reg); 895 struct qty_table_elem *ent; 896 897 ent = &qty_table[q]; 898 899 /* Nothing should become eqv until it has a "non-invalid" qty number. */ 900 gcc_assert (REGNO_QTY_VALID_P (old_reg)); 901 902 REG_QTY (new_reg) = q; 903 firstr = ent->first_reg; 904 lastr = ent->last_reg; 905 906 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other 907 hard regs. Among pseudos, if NEW will live longer than any other reg 908 of the same qty, and that is beyond the current basic block, 909 make it the new canonical replacement for this qty. */ 910 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr)) 911 /* Certain fixed registers might be of the class NO_REGS. This means 912 that not only can they not be allocated by the compiler, but 913 they cannot be used in substitutions or canonicalizations 914 either. */ 915 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS) 916 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg)) 917 || (new_reg >= FIRST_PSEUDO_REGISTER 918 && (firstr < FIRST_PSEUDO_REGISTER 919 || (bitmap_bit_p (cse_ebb_live_out, new_reg) 920 && !bitmap_bit_p (cse_ebb_live_out, firstr)) 921 || (bitmap_bit_p (cse_ebb_live_in, new_reg) 922 && !bitmap_bit_p (cse_ebb_live_in, firstr)))))) 923 { 924 reg_eqv_table[firstr].prev = new_reg; 925 reg_eqv_table[new_reg].next = firstr; 926 reg_eqv_table[new_reg].prev = -1; 927 ent->first_reg = new_reg; 928 } 929 else 930 { 931 /* If NEW is a hard reg (known to be non-fixed), insert at end. 932 Otherwise, insert before any non-fixed hard regs that are at the 933 end. Registers of class NO_REGS cannot be used as an 934 equivalent for anything. */ 935 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0 936 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr)) 937 && new_reg >= FIRST_PSEUDO_REGISTER) 938 lastr = reg_eqv_table[lastr].prev; 939 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next; 940 if (reg_eqv_table[lastr].next >= 0) 941 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg; 942 else 943 qty_table[q].last_reg = new_reg; 944 reg_eqv_table[lastr].next = new_reg; 945 reg_eqv_table[new_reg].prev = lastr; 946 } 947 } 948 949 /* Remove REG from its equivalence class. */ 950 951 static void 952 delete_reg_equiv (unsigned int reg) 953 { 954 struct qty_table_elem *ent; 955 int q = REG_QTY (reg); 956 int p, n; 957 958 /* If invalid, do nothing. */ 959 if (! REGNO_QTY_VALID_P (reg)) 960 return; 961 962 ent = &qty_table[q]; 963 964 p = reg_eqv_table[reg].prev; 965 n = reg_eqv_table[reg].next; 966 967 if (n != -1) 968 reg_eqv_table[n].prev = p; 969 else 970 ent->last_reg = p; 971 if (p != -1) 972 reg_eqv_table[p].next = n; 973 else 974 ent->first_reg = n; 975 976 REG_QTY (reg) = -reg - 1; 977 } 978 979 /* Remove any invalid expressions from the hash table 980 that refer to any of the registers contained in expression X. 981 982 Make sure that newly inserted references to those registers 983 as subexpressions will be considered valid. 984 985 mention_regs is not called when a register itself 986 is being stored in the table. 987 988 Return 1 if we have done something that may have changed the hash code 989 of X. */ 990 991 static int 992 mention_regs (rtx x) 993 { 994 enum rtx_code code; 995 int i, j; 996 const char *fmt; 997 int changed = 0; 998 999 if (x == 0) 1000 return 0; 1001 1002 code = GET_CODE (x); 1003 if (code == REG) 1004 { 1005 unsigned int regno = REGNO (x); 1006 unsigned int endregno = END_REGNO (x); 1007 unsigned int i; 1008 1009 for (i = regno; i < endregno; i++) 1010 { 1011 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i)) 1012 remove_invalid_refs (i); 1013 1014 REG_IN_TABLE (i) = REG_TICK (i); 1015 SUBREG_TICKED (i) = -1; 1016 } 1017 1018 return 0; 1019 } 1020 1021 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same 1022 pseudo if they don't use overlapping words. We handle only pseudos 1023 here for simplicity. */ 1024 if (code == SUBREG && REG_P (SUBREG_REG (x)) 1025 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER) 1026 { 1027 unsigned int i = REGNO (SUBREG_REG (x)); 1028 1029 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i)) 1030 { 1031 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and 1032 the last store to this register really stored into this 1033 subreg, then remove the memory of this subreg. 1034 Otherwise, remove any memory of the entire register and 1035 all its subregs from the table. */ 1036 if (REG_TICK (i) - REG_IN_TABLE (i) > 1 1037 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x))) 1038 remove_invalid_refs (i); 1039 else 1040 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x)); 1041 } 1042 1043 REG_IN_TABLE (i) = REG_TICK (i); 1044 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x)); 1045 return 0; 1046 } 1047 1048 /* If X is a comparison or a COMPARE and either operand is a register 1049 that does not have a quantity, give it one. This is so that a later 1050 call to record_jump_equiv won't cause X to be assigned a different 1051 hash code and not found in the table after that call. 1052 1053 It is not necessary to do this here, since rehash_using_reg can 1054 fix up the table later, but doing this here eliminates the need to 1055 call that expensive function in the most common case where the only 1056 use of the register is in the comparison. */ 1057 1058 if (code == COMPARE || COMPARISON_P (x)) 1059 { 1060 if (REG_P (XEXP (x, 0)) 1061 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))) 1062 if (insert_regs (XEXP (x, 0), NULL, 0)) 1063 { 1064 rehash_using_reg (XEXP (x, 0)); 1065 changed = 1; 1066 } 1067 1068 if (REG_P (XEXP (x, 1)) 1069 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1)))) 1070 if (insert_regs (XEXP (x, 1), NULL, 0)) 1071 { 1072 rehash_using_reg (XEXP (x, 1)); 1073 changed = 1; 1074 } 1075 } 1076 1077 fmt = GET_RTX_FORMAT (code); 1078 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 1079 if (fmt[i] == 'e') 1080 changed |= mention_regs (XEXP (x, i)); 1081 else if (fmt[i] == 'E') 1082 for (j = 0; j < XVECLEN (x, i); j++) 1083 changed |= mention_regs (XVECEXP (x, i, j)); 1084 1085 return changed; 1086 } 1087 1088 /* Update the register quantities for inserting X into the hash table 1089 with a value equivalent to CLASSP. 1090 (If the class does not contain a REG, it is irrelevant.) 1091 If MODIFIED is nonzero, X is a destination; it is being modified. 1092 Note that delete_reg_equiv should be called on a register 1093 before insert_regs is done on that register with MODIFIED != 0. 1094 1095 Nonzero value means that elements of reg_qty have changed 1096 so X's hash code may be different. */ 1097 1098 static int 1099 insert_regs (rtx x, struct table_elt *classp, int modified) 1100 { 1101 if (REG_P (x)) 1102 { 1103 unsigned int regno = REGNO (x); 1104 int qty_valid; 1105 1106 /* If REGNO is in the equivalence table already but is of the 1107 wrong mode for that equivalence, don't do anything here. */ 1108 1109 qty_valid = REGNO_QTY_VALID_P (regno); 1110 if (qty_valid) 1111 { 1112 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)]; 1113 1114 if (ent->mode != GET_MODE (x)) 1115 return 0; 1116 } 1117 1118 if (modified || ! qty_valid) 1119 { 1120 if (classp) 1121 for (classp = classp->first_same_value; 1122 classp != 0; 1123 classp = classp->next_same_value) 1124 if (REG_P (classp->exp) 1125 && GET_MODE (classp->exp) == GET_MODE (x)) 1126 { 1127 unsigned c_regno = REGNO (classp->exp); 1128 1129 gcc_assert (REGNO_QTY_VALID_P (c_regno)); 1130 1131 /* Suppose that 5 is hard reg and 100 and 101 are 1132 pseudos. Consider 1133 1134 (set (reg:si 100) (reg:si 5)) 1135 (set (reg:si 5) (reg:si 100)) 1136 (set (reg:di 101) (reg:di 5)) 1137 1138 We would now set REG_QTY (101) = REG_QTY (5), but the 1139 entry for 5 is in SImode. When we use this later in 1140 copy propagation, we get the register in wrong mode. */ 1141 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x)) 1142 continue; 1143 1144 make_regs_eqv (regno, c_regno); 1145 return 1; 1146 } 1147 1148 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger 1149 than REG_IN_TABLE to find out if there was only a single preceding 1150 invalidation - for the SUBREG - or another one, which would be 1151 for the full register. However, if we find here that REG_TICK 1152 indicates that the register is invalid, it means that it has 1153 been invalidated in a separate operation. The SUBREG might be used 1154 now (then this is a recursive call), or we might use the full REG 1155 now and a SUBREG of it later. So bump up REG_TICK so that 1156 mention_regs will do the right thing. */ 1157 if (! modified 1158 && REG_IN_TABLE (regno) >= 0 1159 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1) 1160 REG_TICK (regno)++; 1161 make_new_qty (regno, GET_MODE (x)); 1162 return 1; 1163 } 1164 1165 return 0; 1166 } 1167 1168 /* If X is a SUBREG, we will likely be inserting the inner register in the 1169 table. If that register doesn't have an assigned quantity number at 1170 this point but does later, the insertion that we will be doing now will 1171 not be accessible because its hash code will have changed. So assign 1172 a quantity number now. */ 1173 1174 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)) 1175 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x)))) 1176 { 1177 insert_regs (SUBREG_REG (x), NULL, 0); 1178 mention_regs (x); 1179 return 1; 1180 } 1181 else 1182 return mention_regs (x); 1183 } 1184 1185 1186 /* Compute upper and lower anchors for CST. Also compute the offset of CST 1187 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff 1188 CST is equal to an anchor. */ 1189 1190 static bool 1191 compute_const_anchors (rtx cst, 1192 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs, 1193 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs) 1194 { 1195 HOST_WIDE_INT n = INTVAL (cst); 1196 1197 *lower_base = n & ~(targetm.const_anchor - 1); 1198 if (*lower_base == n) 1199 return false; 1200 1201 *upper_base = 1202 (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1); 1203 *upper_offs = n - *upper_base; 1204 *lower_offs = n - *lower_base; 1205 return true; 1206 } 1207 1208 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */ 1209 1210 static void 1211 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs, 1212 machine_mode mode) 1213 { 1214 struct table_elt *elt; 1215 unsigned hash; 1216 rtx anchor_exp; 1217 rtx exp; 1218 1219 anchor_exp = GEN_INT (anchor); 1220 hash = HASH (anchor_exp, mode); 1221 elt = lookup (anchor_exp, hash, mode); 1222 if (!elt) 1223 elt = insert (anchor_exp, NULL, hash, mode); 1224 1225 exp = plus_constant (mode, reg, offs); 1226 /* REG has just been inserted and the hash codes recomputed. */ 1227 mention_regs (exp); 1228 hash = HASH (exp, mode); 1229 1230 /* Use the cost of the register rather than the whole expression. When 1231 looking up constant anchors we will further offset the corresponding 1232 expression therefore it does not make sense to prefer REGs over 1233 reg-immediate additions. Prefer instead the oldest expression. Also 1234 don't prefer pseudos over hard regs so that we derive constants in 1235 argument registers from other argument registers rather than from the 1236 original pseudo that was used to synthesize the constant. */ 1237 insert_with_costs (exp, elt, hash, mode, COST (reg, mode), 1); 1238 } 1239 1240 /* The constant CST is equivalent to the register REG. Create 1241 equivalences between the two anchors of CST and the corresponding 1242 register-offset expressions using REG. */ 1243 1244 static void 1245 insert_const_anchors (rtx reg, rtx cst, machine_mode mode) 1246 { 1247 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs; 1248 1249 if (!compute_const_anchors (cst, &lower_base, &lower_offs, 1250 &upper_base, &upper_offs)) 1251 return; 1252 1253 /* Ignore anchors of value 0. Constants accessible from zero are 1254 simple. */ 1255 if (lower_base != 0) 1256 insert_const_anchor (lower_base, reg, -lower_offs, mode); 1257 1258 if (upper_base != 0) 1259 insert_const_anchor (upper_base, reg, -upper_offs, mode); 1260 } 1261 1262 /* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of 1263 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a 1264 valid expression. Return the cheapest and oldest of such expressions. In 1265 *OLD, return how old the resulting expression is compared to the other 1266 equivalent expressions. */ 1267 1268 static rtx 1269 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs, 1270 unsigned *old) 1271 { 1272 struct table_elt *elt; 1273 unsigned idx; 1274 struct table_elt *match_elt; 1275 rtx match; 1276 1277 /* Find the cheapest and *oldest* expression to maximize the chance of 1278 reusing the same pseudo. */ 1279 1280 match_elt = NULL; 1281 match = NULL_RTX; 1282 for (elt = anchor_elt->first_same_value, idx = 0; 1283 elt; 1284 elt = elt->next_same_value, idx++) 1285 { 1286 if (match_elt && CHEAPER (match_elt, elt)) 1287 return match; 1288 1289 if (REG_P (elt->exp) 1290 || (GET_CODE (elt->exp) == PLUS 1291 && REG_P (XEXP (elt->exp, 0)) 1292 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT)) 1293 { 1294 rtx x; 1295 1296 /* Ignore expressions that are no longer valid. */ 1297 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false)) 1298 continue; 1299 1300 x = plus_constant (GET_MODE (elt->exp), elt->exp, offs); 1301 if (REG_P (x) 1302 || (GET_CODE (x) == PLUS 1303 && IN_RANGE (INTVAL (XEXP (x, 1)), 1304 -targetm.const_anchor, 1305 targetm.const_anchor - 1))) 1306 { 1307 match = x; 1308 match_elt = elt; 1309 *old = idx; 1310 } 1311 } 1312 } 1313 1314 return match; 1315 } 1316 1317 /* Try to express the constant SRC_CONST using a register+offset expression 1318 derived from a constant anchor. Return it if successful or NULL_RTX, 1319 otherwise. */ 1320 1321 static rtx 1322 try_const_anchors (rtx src_const, machine_mode mode) 1323 { 1324 struct table_elt *lower_elt, *upper_elt; 1325 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs; 1326 rtx lower_anchor_rtx, upper_anchor_rtx; 1327 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX; 1328 unsigned lower_old, upper_old; 1329 1330 /* CONST_INT is used for CC modes, but we should leave those alone. */ 1331 if (GET_MODE_CLASS (mode) == MODE_CC) 1332 return NULL_RTX; 1333 1334 gcc_assert (SCALAR_INT_MODE_P (mode)); 1335 if (!compute_const_anchors (src_const, &lower_base, &lower_offs, 1336 &upper_base, &upper_offs)) 1337 return NULL_RTX; 1338 1339 lower_anchor_rtx = GEN_INT (lower_base); 1340 upper_anchor_rtx = GEN_INT (upper_base); 1341 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode); 1342 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode); 1343 1344 if (lower_elt) 1345 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old); 1346 if (upper_elt) 1347 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old); 1348 1349 if (!lower_exp) 1350 return upper_exp; 1351 if (!upper_exp) 1352 return lower_exp; 1353 1354 /* Return the older expression. */ 1355 return (upper_old > lower_old ? upper_exp : lower_exp); 1356 } 1357 1358 /* Look in or update the hash table. */ 1359 1360 /* Remove table element ELT from use in the table. 1361 HASH is its hash code, made using the HASH macro. 1362 It's an argument because often that is known in advance 1363 and we save much time not recomputing it. */ 1364 1365 static void 1366 remove_from_table (struct table_elt *elt, unsigned int hash) 1367 { 1368 if (elt == 0) 1369 return; 1370 1371 /* Mark this element as removed. See cse_insn. */ 1372 elt->first_same_value = 0; 1373 1374 /* Remove the table element from its equivalence class. */ 1375 1376 { 1377 struct table_elt *prev = elt->prev_same_value; 1378 struct table_elt *next = elt->next_same_value; 1379 1380 if (next) 1381 next->prev_same_value = prev; 1382 1383 if (prev) 1384 prev->next_same_value = next; 1385 else 1386 { 1387 struct table_elt *newfirst = next; 1388 while (next) 1389 { 1390 next->first_same_value = newfirst; 1391 next = next->next_same_value; 1392 } 1393 } 1394 } 1395 1396 /* Remove the table element from its hash bucket. */ 1397 1398 { 1399 struct table_elt *prev = elt->prev_same_hash; 1400 struct table_elt *next = elt->next_same_hash; 1401 1402 if (next) 1403 next->prev_same_hash = prev; 1404 1405 if (prev) 1406 prev->next_same_hash = next; 1407 else if (table[hash] == elt) 1408 table[hash] = next; 1409 else 1410 { 1411 /* This entry is not in the proper hash bucket. This can happen 1412 when two classes were merged by `merge_equiv_classes'. Search 1413 for the hash bucket that it heads. This happens only very 1414 rarely, so the cost is acceptable. */ 1415 for (hash = 0; hash < HASH_SIZE; hash++) 1416 if (table[hash] == elt) 1417 table[hash] = next; 1418 } 1419 } 1420 1421 /* Remove the table element from its related-value circular chain. */ 1422 1423 if (elt->related_value != 0 && elt->related_value != elt) 1424 { 1425 struct table_elt *p = elt->related_value; 1426 1427 while (p->related_value != elt) 1428 p = p->related_value; 1429 p->related_value = elt->related_value; 1430 if (p->related_value == p) 1431 p->related_value = 0; 1432 } 1433 1434 /* Now add it to the free element chain. */ 1435 elt->next_same_hash = free_element_chain; 1436 free_element_chain = elt; 1437 } 1438 1439 /* Same as above, but X is a pseudo-register. */ 1440 1441 static void 1442 remove_pseudo_from_table (rtx x, unsigned int hash) 1443 { 1444 struct table_elt *elt; 1445 1446 /* Because a pseudo-register can be referenced in more than one 1447 mode, we might have to remove more than one table entry. */ 1448 while ((elt = lookup_for_remove (x, hash, VOIDmode))) 1449 remove_from_table (elt, hash); 1450 } 1451 1452 /* Look up X in the hash table and return its table element, 1453 or 0 if X is not in the table. 1454 1455 MODE is the machine-mode of X, or if X is an integer constant 1456 with VOIDmode then MODE is the mode with which X will be used. 1457 1458 Here we are satisfied to find an expression whose tree structure 1459 looks like X. */ 1460 1461 static struct table_elt * 1462 lookup (rtx x, unsigned int hash, machine_mode mode) 1463 { 1464 struct table_elt *p; 1465 1466 for (p = table[hash]; p; p = p->next_same_hash) 1467 if (mode == p->mode && ((x == p->exp && REG_P (x)) 1468 || exp_equiv_p (x, p->exp, !REG_P (x), false))) 1469 return p; 1470 1471 return 0; 1472 } 1473 1474 /* Like `lookup' but don't care whether the table element uses invalid regs. 1475 Also ignore discrepancies in the machine mode of a register. */ 1476 1477 static struct table_elt * 1478 lookup_for_remove (rtx x, unsigned int hash, machine_mode mode) 1479 { 1480 struct table_elt *p; 1481 1482 if (REG_P (x)) 1483 { 1484 unsigned int regno = REGNO (x); 1485 1486 /* Don't check the machine mode when comparing registers; 1487 invalidating (REG:SI 0) also invalidates (REG:DF 0). */ 1488 for (p = table[hash]; p; p = p->next_same_hash) 1489 if (REG_P (p->exp) 1490 && REGNO (p->exp) == regno) 1491 return p; 1492 } 1493 else 1494 { 1495 for (p = table[hash]; p; p = p->next_same_hash) 1496 if (mode == p->mode 1497 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false))) 1498 return p; 1499 } 1500 1501 return 0; 1502 } 1503 1504 /* Look for an expression equivalent to X and with code CODE. 1505 If one is found, return that expression. */ 1506 1507 static rtx 1508 lookup_as_function (rtx x, enum rtx_code code) 1509 { 1510 struct table_elt *p 1511 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x)); 1512 1513 if (p == 0) 1514 return 0; 1515 1516 for (p = p->first_same_value; p; p = p->next_same_value) 1517 if (GET_CODE (p->exp) == code 1518 /* Make sure this is a valid entry in the table. */ 1519 && exp_equiv_p (p->exp, p->exp, 1, false)) 1520 return p->exp; 1521 1522 return 0; 1523 } 1524 1525 /* Insert X in the hash table, assuming HASH is its hash code and 1526 CLASSP is an element of the class it should go in (or 0 if a new 1527 class should be made). COST is the code of X and reg_cost is the 1528 cost of registers in X. It is inserted at the proper position to 1529 keep the class in the order cheapest first. 1530 1531 MODE is the machine-mode of X, or if X is an integer constant 1532 with VOIDmode then MODE is the mode with which X will be used. 1533 1534 For elements of equal cheapness, the most recent one 1535 goes in front, except that the first element in the list 1536 remains first unless a cheaper element is added. The order of 1537 pseudo-registers does not matter, as canon_reg will be called to 1538 find the cheapest when a register is retrieved from the table. 1539 1540 The in_memory field in the hash table element is set to 0. 1541 The caller must set it nonzero if appropriate. 1542 1543 You should call insert_regs (X, CLASSP, MODIFY) before calling here, 1544 and if insert_regs returns a nonzero value 1545 you must then recompute its hash code before calling here. 1546 1547 If necessary, update table showing constant values of quantities. */ 1548 1549 static struct table_elt * 1550 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash, 1551 machine_mode mode, int cost, int reg_cost) 1552 { 1553 struct table_elt *elt; 1554 1555 /* If X is a register and we haven't made a quantity for it, 1556 something is wrong. */ 1557 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x))); 1558 1559 /* If X is a hard register, show it is being put in the table. */ 1560 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER) 1561 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x)); 1562 1563 /* Put an element for X into the right hash bucket. */ 1564 1565 elt = free_element_chain; 1566 if (elt) 1567 free_element_chain = elt->next_same_hash; 1568 else 1569 elt = XNEW (struct table_elt); 1570 1571 elt->exp = x; 1572 elt->canon_exp = NULL_RTX; 1573 elt->cost = cost; 1574 elt->regcost = reg_cost; 1575 elt->next_same_value = 0; 1576 elt->prev_same_value = 0; 1577 elt->next_same_hash = table[hash]; 1578 elt->prev_same_hash = 0; 1579 elt->related_value = 0; 1580 elt->in_memory = 0; 1581 elt->mode = mode; 1582 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x)); 1583 1584 if (table[hash]) 1585 table[hash]->prev_same_hash = elt; 1586 table[hash] = elt; 1587 1588 /* Put it into the proper value-class. */ 1589 if (classp) 1590 { 1591 classp = classp->first_same_value; 1592 if (CHEAPER (elt, classp)) 1593 /* Insert at the head of the class. */ 1594 { 1595 struct table_elt *p; 1596 elt->next_same_value = classp; 1597 classp->prev_same_value = elt; 1598 elt->first_same_value = elt; 1599 1600 for (p = classp; p; p = p->next_same_value) 1601 p->first_same_value = elt; 1602 } 1603 else 1604 { 1605 /* Insert not at head of the class. */ 1606 /* Put it after the last element cheaper than X. */ 1607 struct table_elt *p, *next; 1608 1609 for (p = classp; 1610 (next = p->next_same_value) && CHEAPER (next, elt); 1611 p = next) 1612 ; 1613 1614 /* Put it after P and before NEXT. */ 1615 elt->next_same_value = next; 1616 if (next) 1617 next->prev_same_value = elt; 1618 1619 elt->prev_same_value = p; 1620 p->next_same_value = elt; 1621 elt->first_same_value = classp; 1622 } 1623 } 1624 else 1625 elt->first_same_value = elt; 1626 1627 /* If this is a constant being set equivalent to a register or a register 1628 being set equivalent to a constant, note the constant equivalence. 1629 1630 If this is a constant, it cannot be equivalent to a different constant, 1631 and a constant is the only thing that can be cheaper than a register. So 1632 we know the register is the head of the class (before the constant was 1633 inserted). 1634 1635 If this is a register that is not already known equivalent to a 1636 constant, we must check the entire class. 1637 1638 If this is a register that is already known equivalent to an insn, 1639 update the qtys `const_insn' to show that `this_insn' is the latest 1640 insn making that quantity equivalent to the constant. */ 1641 1642 if (elt->is_const && classp && REG_P (classp->exp) 1643 && !REG_P (x)) 1644 { 1645 int exp_q = REG_QTY (REGNO (classp->exp)); 1646 struct qty_table_elem *exp_ent = &qty_table[exp_q]; 1647 1648 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x); 1649 exp_ent->const_insn = this_insn; 1650 } 1651 1652 else if (REG_P (x) 1653 && classp 1654 && ! qty_table[REG_QTY (REGNO (x))].const_rtx 1655 && ! elt->is_const) 1656 { 1657 struct table_elt *p; 1658 1659 for (p = classp; p != 0; p = p->next_same_value) 1660 { 1661 if (p->is_const && !REG_P (p->exp)) 1662 { 1663 int x_q = REG_QTY (REGNO (x)); 1664 struct qty_table_elem *x_ent = &qty_table[x_q]; 1665 1666 x_ent->const_rtx 1667 = gen_lowpart (GET_MODE (x), p->exp); 1668 x_ent->const_insn = this_insn; 1669 break; 1670 } 1671 } 1672 } 1673 1674 else if (REG_P (x) 1675 && qty_table[REG_QTY (REGNO (x))].const_rtx 1676 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode) 1677 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn; 1678 1679 /* If this is a constant with symbolic value, 1680 and it has a term with an explicit integer value, 1681 link it up with related expressions. */ 1682 if (GET_CODE (x) == CONST) 1683 { 1684 rtx subexp = get_related_value (x); 1685 unsigned subhash; 1686 struct table_elt *subelt, *subelt_prev; 1687 1688 if (subexp != 0) 1689 { 1690 /* Get the integer-free subexpression in the hash table. */ 1691 subhash = SAFE_HASH (subexp, mode); 1692 subelt = lookup (subexp, subhash, mode); 1693 if (subelt == 0) 1694 subelt = insert (subexp, NULL, subhash, mode); 1695 /* Initialize SUBELT's circular chain if it has none. */ 1696 if (subelt->related_value == 0) 1697 subelt->related_value = subelt; 1698 /* Find the element in the circular chain that precedes SUBELT. */ 1699 subelt_prev = subelt; 1700 while (subelt_prev->related_value != subelt) 1701 subelt_prev = subelt_prev->related_value; 1702 /* Put new ELT into SUBELT's circular chain just before SUBELT. 1703 This way the element that follows SUBELT is the oldest one. */ 1704 elt->related_value = subelt_prev->related_value; 1705 subelt_prev->related_value = elt; 1706 } 1707 } 1708 1709 return elt; 1710 } 1711 1712 /* Wrap insert_with_costs by passing the default costs. */ 1713 1714 static struct table_elt * 1715 insert (rtx x, struct table_elt *classp, unsigned int hash, 1716 machine_mode mode) 1717 { 1718 return insert_with_costs (x, classp, hash, mode, 1719 COST (x, mode), approx_reg_cost (x)); 1720 } 1721 1722 1723 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from 1724 CLASS2 into CLASS1. This is done when we have reached an insn which makes 1725 the two classes equivalent. 1726 1727 CLASS1 will be the surviving class; CLASS2 should not be used after this 1728 call. 1729 1730 Any invalid entries in CLASS2 will not be copied. */ 1731 1732 static void 1733 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2) 1734 { 1735 struct table_elt *elt, *next, *new_elt; 1736 1737 /* Ensure we start with the head of the classes. */ 1738 class1 = class1->first_same_value; 1739 class2 = class2->first_same_value; 1740 1741 /* If they were already equal, forget it. */ 1742 if (class1 == class2) 1743 return; 1744 1745 for (elt = class2; elt; elt = next) 1746 { 1747 unsigned int hash; 1748 rtx exp = elt->exp; 1749 machine_mode mode = elt->mode; 1750 1751 next = elt->next_same_value; 1752 1753 /* Remove old entry, make a new one in CLASS1's class. 1754 Don't do this for invalid entries as we cannot find their 1755 hash code (it also isn't necessary). */ 1756 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false)) 1757 { 1758 bool need_rehash = false; 1759 1760 hash_arg_in_memory = 0; 1761 hash = HASH (exp, mode); 1762 1763 if (REG_P (exp)) 1764 { 1765 need_rehash = REGNO_QTY_VALID_P (REGNO (exp)); 1766 delete_reg_equiv (REGNO (exp)); 1767 } 1768 1769 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER) 1770 remove_pseudo_from_table (exp, hash); 1771 else 1772 remove_from_table (elt, hash); 1773 1774 if (insert_regs (exp, class1, 0) || need_rehash) 1775 { 1776 rehash_using_reg (exp); 1777 hash = HASH (exp, mode); 1778 } 1779 new_elt = insert (exp, class1, hash, mode); 1780 new_elt->in_memory = hash_arg_in_memory; 1781 if (GET_CODE (exp) == ASM_OPERANDS && elt->cost == MAX_COST) 1782 new_elt->cost = MAX_COST; 1783 } 1784 } 1785 } 1786 1787 /* Flush the entire hash table. */ 1788 1789 static void 1790 flush_hash_table (void) 1791 { 1792 int i; 1793 struct table_elt *p; 1794 1795 for (i = 0; i < HASH_SIZE; i++) 1796 for (p = table[i]; p; p = table[i]) 1797 { 1798 /* Note that invalidate can remove elements 1799 after P in the current hash chain. */ 1800 if (REG_P (p->exp)) 1801 invalidate (p->exp, VOIDmode); 1802 else 1803 remove_from_table (p, i); 1804 } 1805 } 1806 1807 /* Check whether an anti dependence exists between X and EXP. MODE and 1808 ADDR are as for canon_anti_dependence. */ 1809 1810 static bool 1811 check_dependence (const_rtx x, rtx exp, machine_mode mode, rtx addr) 1812 { 1813 subrtx_iterator::array_type array; 1814 FOR_EACH_SUBRTX (iter, array, x, NONCONST) 1815 { 1816 const_rtx x = *iter; 1817 if (MEM_P (x) && canon_anti_dependence (x, true, exp, mode, addr)) 1818 return true; 1819 } 1820 return false; 1821 } 1822 1823 /* Remove from the hash table, or mark as invalid, all expressions whose 1824 values could be altered by storing in register X. 1825 1826 CLOBBER_HIGH is set if X was part of a CLOBBER_HIGH expression. */ 1827 1828 static void 1829 invalidate_reg (rtx x, bool clobber_high) 1830 { 1831 gcc_assert (GET_CODE (x) == REG); 1832 1833 /* If X is a register, dependencies on its contents are recorded 1834 through the qty number mechanism. Just change the qty number of 1835 the register, mark it as invalid for expressions that refer to it, 1836 and remove it itself. */ 1837 unsigned int regno = REGNO (x); 1838 unsigned int hash = HASH (x, GET_MODE (x)); 1839 1840 /* Remove REGNO from any quantity list it might be on and indicate 1841 that its value might have changed. If it is a pseudo, remove its 1842 entry from the hash table. 1843 1844 For a hard register, we do the first two actions above for any 1845 additional hard registers corresponding to X. Then, if any of these 1846 registers are in the table, we must remove any REG entries that 1847 overlap these registers. */ 1848 1849 delete_reg_equiv (regno); 1850 REG_TICK (regno)++; 1851 SUBREG_TICKED (regno) = -1; 1852 1853 if (regno >= FIRST_PSEUDO_REGISTER) 1854 { 1855 gcc_assert (!clobber_high); 1856 remove_pseudo_from_table (x, hash); 1857 } 1858 else 1859 { 1860 HOST_WIDE_INT in_table = TEST_HARD_REG_BIT (hard_regs_in_table, regno); 1861 unsigned int endregno = END_REGNO (x); 1862 unsigned int rn; 1863 struct table_elt *p, *next; 1864 1865 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno); 1866 1867 for (rn = regno + 1; rn < endregno; rn++) 1868 { 1869 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn); 1870 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn); 1871 delete_reg_equiv (rn); 1872 REG_TICK (rn)++; 1873 SUBREG_TICKED (rn) = -1; 1874 } 1875 1876 if (in_table) 1877 for (hash = 0; hash < HASH_SIZE; hash++) 1878 for (p = table[hash]; p; p = next) 1879 { 1880 next = p->next_same_hash; 1881 1882 if (!REG_P (p->exp) || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER) 1883 continue; 1884 1885 if (clobber_high) 1886 { 1887 if (reg_is_clobbered_by_clobber_high (p->exp, x)) 1888 remove_from_table (p, hash); 1889 } 1890 else 1891 { 1892 unsigned int tregno = REGNO (p->exp); 1893 unsigned int tendregno = END_REGNO (p->exp); 1894 if (tendregno > regno && tregno < endregno) 1895 remove_from_table (p, hash); 1896 } 1897 } 1898 } 1899 } 1900 1901 /* Remove from the hash table, or mark as invalid, all expressions whose 1902 values could be altered by storing in X. X is a register, a subreg, or 1903 a memory reference with nonvarying address (because, when a memory 1904 reference with a varying address is stored in, all memory references are 1905 removed by invalidate_memory so specific invalidation is superfluous). 1906 FULL_MODE, if not VOIDmode, indicates that this much should be 1907 invalidated instead of just the amount indicated by the mode of X. This 1908 is only used for bitfield stores into memory. 1909 1910 A nonvarying address may be just a register or just a symbol reference, 1911 or it may be either of those plus a numeric offset. */ 1912 1913 static void 1914 invalidate (rtx x, machine_mode full_mode) 1915 { 1916 int i; 1917 struct table_elt *p; 1918 rtx addr; 1919 1920 switch (GET_CODE (x)) 1921 { 1922 case REG: 1923 invalidate_reg (x, false); 1924 return; 1925 1926 case SUBREG: 1927 invalidate (SUBREG_REG (x), VOIDmode); 1928 return; 1929 1930 case PARALLEL: 1931 for (i = XVECLEN (x, 0) - 1; i >= 0; --i) 1932 invalidate (XVECEXP (x, 0, i), VOIDmode); 1933 return; 1934 1935 case EXPR_LIST: 1936 /* This is part of a disjoint return value; extract the location in 1937 question ignoring the offset. */ 1938 invalidate (XEXP (x, 0), VOIDmode); 1939 return; 1940 1941 case MEM: 1942 addr = canon_rtx (get_addr (XEXP (x, 0))); 1943 /* Calculate the canonical version of X here so that 1944 true_dependence doesn't generate new RTL for X on each call. */ 1945 x = canon_rtx (x); 1946 1947 /* Remove all hash table elements that refer to overlapping pieces of 1948 memory. */ 1949 if (full_mode == VOIDmode) 1950 full_mode = GET_MODE (x); 1951 1952 for (i = 0; i < HASH_SIZE; i++) 1953 { 1954 struct table_elt *next; 1955 1956 for (p = table[i]; p; p = next) 1957 { 1958 next = p->next_same_hash; 1959 if (p->in_memory) 1960 { 1961 /* Just canonicalize the expression once; 1962 otherwise each time we call invalidate 1963 true_dependence will canonicalize the 1964 expression again. */ 1965 if (!p->canon_exp) 1966 p->canon_exp = canon_rtx (p->exp); 1967 if (check_dependence (p->canon_exp, x, full_mode, addr)) 1968 remove_from_table (p, i); 1969 } 1970 } 1971 } 1972 return; 1973 1974 default: 1975 gcc_unreachable (); 1976 } 1977 } 1978 1979 /* Invalidate DEST. Used when DEST is not going to be added 1980 into the hash table for some reason, e.g. do_not_record 1981 flagged on it. */ 1982 1983 static void 1984 invalidate_dest (rtx dest) 1985 { 1986 if (REG_P (dest) 1987 || GET_CODE (dest) == SUBREG 1988 || MEM_P (dest)) 1989 invalidate (dest, VOIDmode); 1990 else if (GET_CODE (dest) == STRICT_LOW_PART 1991 || GET_CODE (dest) == ZERO_EXTRACT) 1992 invalidate (XEXP (dest, 0), GET_MODE (dest)); 1993 } 1994 1995 /* Remove all expressions that refer to register REGNO, 1996 since they are already invalid, and we are about to 1997 mark that register valid again and don't want the old 1998 expressions to reappear as valid. */ 1999 2000 static void 2001 remove_invalid_refs (unsigned int regno) 2002 { 2003 unsigned int i; 2004 struct table_elt *p, *next; 2005 2006 for (i = 0; i < HASH_SIZE; i++) 2007 for (p = table[i]; p; p = next) 2008 { 2009 next = p->next_same_hash; 2010 if (!REG_P (p->exp) && refers_to_regno_p (regno, p->exp)) 2011 remove_from_table (p, i); 2012 } 2013 } 2014 2015 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET, 2016 and mode MODE. */ 2017 static void 2018 remove_invalid_subreg_refs (unsigned int regno, poly_uint64 offset, 2019 machine_mode mode) 2020 { 2021 unsigned int i; 2022 struct table_elt *p, *next; 2023 2024 for (i = 0; i < HASH_SIZE; i++) 2025 for (p = table[i]; p; p = next) 2026 { 2027 rtx exp = p->exp; 2028 next = p->next_same_hash; 2029 2030 if (!REG_P (exp) 2031 && (GET_CODE (exp) != SUBREG 2032 || !REG_P (SUBREG_REG (exp)) 2033 || REGNO (SUBREG_REG (exp)) != regno 2034 || ranges_maybe_overlap_p (SUBREG_BYTE (exp), 2035 GET_MODE_SIZE (GET_MODE (exp)), 2036 offset, GET_MODE_SIZE (mode))) 2037 && refers_to_regno_p (regno, p->exp)) 2038 remove_from_table (p, i); 2039 } 2040 } 2041 2042 /* Recompute the hash codes of any valid entries in the hash table that 2043 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG. 2044 2045 This is called when we make a jump equivalence. */ 2046 2047 static void 2048 rehash_using_reg (rtx x) 2049 { 2050 unsigned int i; 2051 struct table_elt *p, *next; 2052 unsigned hash; 2053 2054 if (GET_CODE (x) == SUBREG) 2055 x = SUBREG_REG (x); 2056 2057 /* If X is not a register or if the register is known not to be in any 2058 valid entries in the table, we have no work to do. */ 2059 2060 if (!REG_P (x) 2061 || REG_IN_TABLE (REGNO (x)) < 0 2062 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x))) 2063 return; 2064 2065 /* Scan all hash chains looking for valid entries that mention X. 2066 If we find one and it is in the wrong hash chain, move it. */ 2067 2068 for (i = 0; i < HASH_SIZE; i++) 2069 for (p = table[i]; p; p = next) 2070 { 2071 next = p->next_same_hash; 2072 if (reg_mentioned_p (x, p->exp) 2073 && exp_equiv_p (p->exp, p->exp, 1, false) 2074 && i != (hash = SAFE_HASH (p->exp, p->mode))) 2075 { 2076 if (p->next_same_hash) 2077 p->next_same_hash->prev_same_hash = p->prev_same_hash; 2078 2079 if (p->prev_same_hash) 2080 p->prev_same_hash->next_same_hash = p->next_same_hash; 2081 else 2082 table[i] = p->next_same_hash; 2083 2084 p->next_same_hash = table[hash]; 2085 p->prev_same_hash = 0; 2086 if (table[hash]) 2087 table[hash]->prev_same_hash = p; 2088 table[hash] = p; 2089 } 2090 } 2091 } 2092 2093 /* Remove from the hash table any expression that is a call-clobbered 2094 register. Also update their TICK values. */ 2095 2096 static void 2097 invalidate_for_call (void) 2098 { 2099 unsigned int regno, endregno; 2100 unsigned int i; 2101 unsigned hash; 2102 struct table_elt *p, *next; 2103 int in_table = 0; 2104 hard_reg_set_iterator hrsi; 2105 2106 /* Go through all the hard registers. For each that is clobbered in 2107 a CALL_INSN, remove the register from quantity chains and update 2108 reg_tick if defined. Also see if any of these registers is currently 2109 in the table. */ 2110 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi) 2111 { 2112 delete_reg_equiv (regno); 2113 if (REG_TICK (regno) >= 0) 2114 { 2115 REG_TICK (regno)++; 2116 SUBREG_TICKED (regno) = -1; 2117 } 2118 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0); 2119 } 2120 2121 /* In the case where we have no call-clobbered hard registers in the 2122 table, we are done. Otherwise, scan the table and remove any 2123 entry that overlaps a call-clobbered register. */ 2124 2125 if (in_table) 2126 for (hash = 0; hash < HASH_SIZE; hash++) 2127 for (p = table[hash]; p; p = next) 2128 { 2129 next = p->next_same_hash; 2130 2131 if (!REG_P (p->exp) 2132 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER) 2133 continue; 2134 2135 regno = REGNO (p->exp); 2136 endregno = END_REGNO (p->exp); 2137 2138 for (i = regno; i < endregno; i++) 2139 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)) 2140 { 2141 remove_from_table (p, hash); 2142 break; 2143 } 2144 } 2145 } 2146 2147 /* Given an expression X of type CONST, 2148 and ELT which is its table entry (or 0 if it 2149 is not in the hash table), 2150 return an alternate expression for X as a register plus integer. 2151 If none can be found, return 0. */ 2152 2153 static rtx 2154 use_related_value (rtx x, struct table_elt *elt) 2155 { 2156 struct table_elt *relt = 0; 2157 struct table_elt *p, *q; 2158 HOST_WIDE_INT offset; 2159 2160 /* First, is there anything related known? 2161 If we have a table element, we can tell from that. 2162 Otherwise, must look it up. */ 2163 2164 if (elt != 0 && elt->related_value != 0) 2165 relt = elt; 2166 else if (elt == 0 && GET_CODE (x) == CONST) 2167 { 2168 rtx subexp = get_related_value (x); 2169 if (subexp != 0) 2170 relt = lookup (subexp, 2171 SAFE_HASH (subexp, GET_MODE (subexp)), 2172 GET_MODE (subexp)); 2173 } 2174 2175 if (relt == 0) 2176 return 0; 2177 2178 /* Search all related table entries for one that has an 2179 equivalent register. */ 2180 2181 p = relt; 2182 while (1) 2183 { 2184 /* This loop is strange in that it is executed in two different cases. 2185 The first is when X is already in the table. Then it is searching 2186 the RELATED_VALUE list of X's class (RELT). The second case is when 2187 X is not in the table. Then RELT points to a class for the related 2188 value. 2189 2190 Ensure that, whatever case we are in, that we ignore classes that have 2191 the same value as X. */ 2192 2193 if (rtx_equal_p (x, p->exp)) 2194 q = 0; 2195 else 2196 for (q = p->first_same_value; q; q = q->next_same_value) 2197 if (REG_P (q->exp)) 2198 break; 2199 2200 if (q) 2201 break; 2202 2203 p = p->related_value; 2204 2205 /* We went all the way around, so there is nothing to be found. 2206 Alternatively, perhaps RELT was in the table for some other reason 2207 and it has no related values recorded. */ 2208 if (p == relt || p == 0) 2209 break; 2210 } 2211 2212 if (q == 0) 2213 return 0; 2214 2215 offset = (get_integer_term (x) - get_integer_term (p->exp)); 2216 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */ 2217 return plus_constant (q->mode, q->exp, offset); 2218 } 2219 2220 2221 /* Hash a string. Just add its bytes up. */ 2222 static inline unsigned 2223 hash_rtx_string (const char *ps) 2224 { 2225 unsigned hash = 0; 2226 const unsigned char *p = (const unsigned char *) ps; 2227 2228 if (p) 2229 while (*p) 2230 hash += *p++; 2231 2232 return hash; 2233 } 2234 2235 /* Same as hash_rtx, but call CB on each rtx if it is not NULL. 2236 When the callback returns true, we continue with the new rtx. */ 2237 2238 unsigned 2239 hash_rtx_cb (const_rtx x, machine_mode mode, 2240 int *do_not_record_p, int *hash_arg_in_memory_p, 2241 bool have_reg_qty, hash_rtx_callback_function cb) 2242 { 2243 int i, j; 2244 unsigned hash = 0; 2245 enum rtx_code code; 2246 const char *fmt; 2247 machine_mode newmode; 2248 rtx newx; 2249 2250 /* Used to turn recursion into iteration. We can't rely on GCC's 2251 tail-recursion elimination since we need to keep accumulating values 2252 in HASH. */ 2253 repeat: 2254 if (x == 0) 2255 return hash; 2256 2257 /* Invoke the callback first. */ 2258 if (cb != NULL 2259 && ((*cb) (x, mode, &newx, &newmode))) 2260 { 2261 hash += hash_rtx_cb (newx, newmode, do_not_record_p, 2262 hash_arg_in_memory_p, have_reg_qty, cb); 2263 return hash; 2264 } 2265 2266 code = GET_CODE (x); 2267 switch (code) 2268 { 2269 case REG: 2270 { 2271 unsigned int regno = REGNO (x); 2272 2273 if (do_not_record_p && !reload_completed) 2274 { 2275 /* On some machines, we can't record any non-fixed hard register, 2276 because extending its life will cause reload problems. We 2277 consider ap, fp, sp, gp to be fixed for this purpose. 2278 2279 We also consider CCmode registers to be fixed for this purpose; 2280 failure to do so leads to failure to simplify 0<100 type of 2281 conditionals. 2282 2283 On all machines, we can't record any global registers. 2284 Nor should we record any register that is in a small 2285 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */ 2286 bool record; 2287 2288 if (regno >= FIRST_PSEUDO_REGISTER) 2289 record = true; 2290 else if (x == frame_pointer_rtx 2291 || x == hard_frame_pointer_rtx 2292 || x == arg_pointer_rtx 2293 || x == stack_pointer_rtx 2294 || x == pic_offset_table_rtx) 2295 record = true; 2296 else if (global_regs[regno]) 2297 record = false; 2298 else if (fixed_regs[regno]) 2299 record = true; 2300 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC) 2301 record = true; 2302 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x))) 2303 record = false; 2304 else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno))) 2305 record = false; 2306 else 2307 record = true; 2308 2309 if (!record) 2310 { 2311 *do_not_record_p = 1; 2312 return 0; 2313 } 2314 } 2315 2316 hash += ((unsigned int) REG << 7); 2317 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno); 2318 return hash; 2319 } 2320 2321 /* We handle SUBREG of a REG specially because the underlying 2322 reg changes its hash value with every value change; we don't 2323 want to have to forget unrelated subregs when one subreg changes. */ 2324 case SUBREG: 2325 { 2326 if (REG_P (SUBREG_REG (x))) 2327 { 2328 hash += (((unsigned int) SUBREG << 7) 2329 + REGNO (SUBREG_REG (x)) 2330 + (constant_lower_bound (SUBREG_BYTE (x)) 2331 / UNITS_PER_WORD)); 2332 return hash; 2333 } 2334 break; 2335 } 2336 2337 case CONST_INT: 2338 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode 2339 + (unsigned int) INTVAL (x)); 2340 return hash; 2341 2342 case CONST_WIDE_INT: 2343 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++) 2344 hash += CONST_WIDE_INT_ELT (x, i); 2345 return hash; 2346 2347 case CONST_POLY_INT: 2348 { 2349 inchash::hash h; 2350 h.add_int (hash); 2351 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) 2352 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]); 2353 return h.end (); 2354 } 2355 2356 case CONST_DOUBLE: 2357 /* This is like the general case, except that it only counts 2358 the integers representing the constant. */ 2359 hash += (unsigned int) code + (unsigned int) GET_MODE (x); 2360 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode) 2361 hash += ((unsigned int) CONST_DOUBLE_LOW (x) 2362 + (unsigned int) CONST_DOUBLE_HIGH (x)); 2363 else 2364 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x)); 2365 return hash; 2366 2367 case CONST_FIXED: 2368 hash += (unsigned int) code + (unsigned int) GET_MODE (x); 2369 hash += fixed_hash (CONST_FIXED_VALUE (x)); 2370 return hash; 2371 2372 case CONST_VECTOR: 2373 { 2374 int units; 2375 rtx elt; 2376 2377 units = const_vector_encoded_nelts (x); 2378 2379 for (i = 0; i < units; ++i) 2380 { 2381 elt = CONST_VECTOR_ENCODED_ELT (x, i); 2382 hash += hash_rtx_cb (elt, GET_MODE (elt), 2383 do_not_record_p, hash_arg_in_memory_p, 2384 have_reg_qty, cb); 2385 } 2386 2387 return hash; 2388 } 2389 2390 /* Assume there is only one rtx object for any given label. */ 2391 case LABEL_REF: 2392 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap 2393 differences and differences between each stage's debugging dumps. */ 2394 hash += (((unsigned int) LABEL_REF << 7) 2395 + CODE_LABEL_NUMBER (label_ref_label (x))); 2396 return hash; 2397 2398 case SYMBOL_REF: 2399 { 2400 /* Don't hash on the symbol's address to avoid bootstrap differences. 2401 Different hash values may cause expressions to be recorded in 2402 different orders and thus different registers to be used in the 2403 final assembler. This also avoids differences in the dump files 2404 between various stages. */ 2405 unsigned int h = 0; 2406 const unsigned char *p = (const unsigned char *) XSTR (x, 0); 2407 2408 while (*p) 2409 h += (h << 7) + *p++; /* ??? revisit */ 2410 2411 hash += ((unsigned int) SYMBOL_REF << 7) + h; 2412 return hash; 2413 } 2414 2415 case MEM: 2416 /* We don't record if marked volatile or if BLKmode since we don't 2417 know the size of the move. */ 2418 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)) 2419 { 2420 *do_not_record_p = 1; 2421 return 0; 2422 } 2423 if (hash_arg_in_memory_p && !MEM_READONLY_P (x)) 2424 *hash_arg_in_memory_p = 1; 2425 2426 /* Now that we have already found this special case, 2427 might as well speed it up as much as possible. */ 2428 hash += (unsigned) MEM; 2429 x = XEXP (x, 0); 2430 goto repeat; 2431 2432 case USE: 2433 /* A USE that mentions non-volatile memory needs special 2434 handling since the MEM may be BLKmode which normally 2435 prevents an entry from being made. Pure calls are 2436 marked by a USE which mentions BLKmode memory. 2437 See calls.c:emit_call_1. */ 2438 if (MEM_P (XEXP (x, 0)) 2439 && ! MEM_VOLATILE_P (XEXP (x, 0))) 2440 { 2441 hash += (unsigned) USE; 2442 x = XEXP (x, 0); 2443 2444 if (hash_arg_in_memory_p && !MEM_READONLY_P (x)) 2445 *hash_arg_in_memory_p = 1; 2446 2447 /* Now that we have already found this special case, 2448 might as well speed it up as much as possible. */ 2449 hash += (unsigned) MEM; 2450 x = XEXP (x, 0); 2451 goto repeat; 2452 } 2453 break; 2454 2455 case PRE_DEC: 2456 case PRE_INC: 2457 case POST_DEC: 2458 case POST_INC: 2459 case PRE_MODIFY: 2460 case POST_MODIFY: 2461 case PC: 2462 case CC0: 2463 case CALL: 2464 case UNSPEC_VOLATILE: 2465 if (do_not_record_p) { 2466 *do_not_record_p = 1; 2467 return 0; 2468 } 2469 else 2470 return hash; 2471 break; 2472 2473 case ASM_OPERANDS: 2474 if (do_not_record_p && MEM_VOLATILE_P (x)) 2475 { 2476 *do_not_record_p = 1; 2477 return 0; 2478 } 2479 else 2480 { 2481 /* We don't want to take the filename and line into account. */ 2482 hash += (unsigned) code + (unsigned) GET_MODE (x) 2483 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x)) 2484 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x)) 2485 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x); 2486 2487 if (ASM_OPERANDS_INPUT_LENGTH (x)) 2488 { 2489 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++) 2490 { 2491 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i), 2492 GET_MODE (ASM_OPERANDS_INPUT (x, i)), 2493 do_not_record_p, hash_arg_in_memory_p, 2494 have_reg_qty, cb) 2495 + hash_rtx_string 2496 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i))); 2497 } 2498 2499 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0)); 2500 x = ASM_OPERANDS_INPUT (x, 0); 2501 mode = GET_MODE (x); 2502 goto repeat; 2503 } 2504 2505 return hash; 2506 } 2507 break; 2508 2509 default: 2510 break; 2511 } 2512 2513 i = GET_RTX_LENGTH (code) - 1; 2514 hash += (unsigned) code + (unsigned) GET_MODE (x); 2515 fmt = GET_RTX_FORMAT (code); 2516 for (; i >= 0; i--) 2517 { 2518 switch (fmt[i]) 2519 { 2520 case 'e': 2521 /* If we are about to do the last recursive call 2522 needed at this level, change it into iteration. 2523 This function is called enough to be worth it. */ 2524 if (i == 0) 2525 { 2526 x = XEXP (x, i); 2527 goto repeat; 2528 } 2529 2530 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p, 2531 hash_arg_in_memory_p, 2532 have_reg_qty, cb); 2533 break; 2534 2535 case 'E': 2536 for (j = 0; j < XVECLEN (x, i); j++) 2537 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p, 2538 hash_arg_in_memory_p, 2539 have_reg_qty, cb); 2540 break; 2541 2542 case 's': 2543 hash += hash_rtx_string (XSTR (x, i)); 2544 break; 2545 2546 case 'i': 2547 hash += (unsigned int) XINT (x, i); 2548 break; 2549 2550 case 'p': 2551 hash += constant_lower_bound (SUBREG_BYTE (x)); 2552 break; 2553 2554 case '0': case 't': 2555 /* Unused. */ 2556 break; 2557 2558 default: 2559 gcc_unreachable (); 2560 } 2561 } 2562 2563 return hash; 2564 } 2565 2566 /* Hash an rtx. We are careful to make sure the value is never negative. 2567 Equivalent registers hash identically. 2568 MODE is used in hashing for CONST_INTs only; 2569 otherwise the mode of X is used. 2570 2571 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile. 2572 2573 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains 2574 a MEM rtx which does not have the MEM_READONLY_P flag set. 2575 2576 Note that cse_insn knows that the hash code of a MEM expression 2577 is just (int) MEM plus the hash code of the address. */ 2578 2579 unsigned 2580 hash_rtx (const_rtx x, machine_mode mode, int *do_not_record_p, 2581 int *hash_arg_in_memory_p, bool have_reg_qty) 2582 { 2583 return hash_rtx_cb (x, mode, do_not_record_p, 2584 hash_arg_in_memory_p, have_reg_qty, NULL); 2585 } 2586 2587 /* Hash an rtx X for cse via hash_rtx. 2588 Stores 1 in do_not_record if any subexpression is volatile. 2589 Stores 1 in hash_arg_in_memory if X contains a mem rtx which 2590 does not have the MEM_READONLY_P flag set. */ 2591 2592 static inline unsigned 2593 canon_hash (rtx x, machine_mode mode) 2594 { 2595 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true); 2596 } 2597 2598 /* Like canon_hash but with no side effects, i.e. do_not_record 2599 and hash_arg_in_memory are not changed. */ 2600 2601 static inline unsigned 2602 safe_hash (rtx x, machine_mode mode) 2603 { 2604 int dummy_do_not_record; 2605 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true); 2606 } 2607 2608 /* Return 1 iff X and Y would canonicalize into the same thing, 2609 without actually constructing the canonicalization of either one. 2610 If VALIDATE is nonzero, 2611 we assume X is an expression being processed from the rtl 2612 and Y was found in the hash table. We check register refs 2613 in Y for being marked as valid. 2614 2615 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */ 2616 2617 int 2618 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse) 2619 { 2620 int i, j; 2621 enum rtx_code code; 2622 const char *fmt; 2623 2624 /* Note: it is incorrect to assume an expression is equivalent to itself 2625 if VALIDATE is nonzero. */ 2626 if (x == y && !validate) 2627 return 1; 2628 2629 if (x == 0 || y == 0) 2630 return x == y; 2631 2632 code = GET_CODE (x); 2633 if (code != GET_CODE (y)) 2634 return 0; 2635 2636 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */ 2637 if (GET_MODE (x) != GET_MODE (y)) 2638 return 0; 2639 2640 /* MEMs referring to different address space are not equivalent. */ 2641 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y)) 2642 return 0; 2643 2644 switch (code) 2645 { 2646 case PC: 2647 case CC0: 2648 CASE_CONST_UNIQUE: 2649 return x == y; 2650 2651 case LABEL_REF: 2652 return label_ref_label (x) == label_ref_label (y); 2653 2654 case SYMBOL_REF: 2655 return XSTR (x, 0) == XSTR (y, 0); 2656 2657 case REG: 2658 if (for_gcse) 2659 return REGNO (x) == REGNO (y); 2660 else 2661 { 2662 unsigned int regno = REGNO (y); 2663 unsigned int i; 2664 unsigned int endregno = END_REGNO (y); 2665 2666 /* If the quantities are not the same, the expressions are not 2667 equivalent. If there are and we are not to validate, they 2668 are equivalent. Otherwise, ensure all regs are up-to-date. */ 2669 2670 if (REG_QTY (REGNO (x)) != REG_QTY (regno)) 2671 return 0; 2672 2673 if (! validate) 2674 return 1; 2675 2676 for (i = regno; i < endregno; i++) 2677 if (REG_IN_TABLE (i) != REG_TICK (i)) 2678 return 0; 2679 2680 return 1; 2681 } 2682 2683 case MEM: 2684 if (for_gcse) 2685 { 2686 /* A volatile mem should not be considered equivalent to any 2687 other. */ 2688 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y)) 2689 return 0; 2690 2691 /* Can't merge two expressions in different alias sets, since we 2692 can decide that the expression is transparent in a block when 2693 it isn't, due to it being set with the different alias set. 2694 2695 Also, can't merge two expressions with different MEM_ATTRS. 2696 They could e.g. be two different entities allocated into the 2697 same space on the stack (see e.g. PR25130). In that case, the 2698 MEM addresses can be the same, even though the two MEMs are 2699 absolutely not equivalent. 2700 2701 But because really all MEM attributes should be the same for 2702 equivalent MEMs, we just use the invariant that MEMs that have 2703 the same attributes share the same mem_attrs data structure. */ 2704 if (!mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y))) 2705 return 0; 2706 2707 /* If we are handling exceptions, we cannot consider two expressions 2708 with different trapping status as equivalent, because simple_mem 2709 might accept one and reject the other. */ 2710 if (cfun->can_throw_non_call_exceptions 2711 && (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y))) 2712 return 0; 2713 } 2714 break; 2715 2716 /* For commutative operations, check both orders. */ 2717 case PLUS: 2718 case MULT: 2719 case AND: 2720 case IOR: 2721 case XOR: 2722 case NE: 2723 case EQ: 2724 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0), 2725 validate, for_gcse) 2726 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1), 2727 validate, for_gcse)) 2728 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1), 2729 validate, for_gcse) 2730 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0), 2731 validate, for_gcse))); 2732 2733 case ASM_OPERANDS: 2734 /* We don't use the generic code below because we want to 2735 disregard filename and line numbers. */ 2736 2737 /* A volatile asm isn't equivalent to any other. */ 2738 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y)) 2739 return 0; 2740 2741 if (GET_MODE (x) != GET_MODE (y) 2742 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y)) 2743 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x), 2744 ASM_OPERANDS_OUTPUT_CONSTRAINT (y)) 2745 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y) 2746 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y)) 2747 return 0; 2748 2749 if (ASM_OPERANDS_INPUT_LENGTH (x)) 2750 { 2751 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--) 2752 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i), 2753 ASM_OPERANDS_INPUT (y, i), 2754 validate, for_gcse) 2755 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i), 2756 ASM_OPERANDS_INPUT_CONSTRAINT (y, i))) 2757 return 0; 2758 } 2759 2760 return 1; 2761 2762 default: 2763 break; 2764 } 2765 2766 /* Compare the elements. If any pair of corresponding elements 2767 fail to match, return 0 for the whole thing. */ 2768 2769 fmt = GET_RTX_FORMAT (code); 2770 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 2771 { 2772 switch (fmt[i]) 2773 { 2774 case 'e': 2775 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i), 2776 validate, for_gcse)) 2777 return 0; 2778 break; 2779 2780 case 'E': 2781 if (XVECLEN (x, i) != XVECLEN (y, i)) 2782 return 0; 2783 for (j = 0; j < XVECLEN (x, i); j++) 2784 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j), 2785 validate, for_gcse)) 2786 return 0; 2787 break; 2788 2789 case 's': 2790 if (strcmp (XSTR (x, i), XSTR (y, i))) 2791 return 0; 2792 break; 2793 2794 case 'i': 2795 if (XINT (x, i) != XINT (y, i)) 2796 return 0; 2797 break; 2798 2799 case 'w': 2800 if (XWINT (x, i) != XWINT (y, i)) 2801 return 0; 2802 break; 2803 2804 case 'p': 2805 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y))) 2806 return 0; 2807 break; 2808 2809 case '0': 2810 case 't': 2811 break; 2812 2813 default: 2814 gcc_unreachable (); 2815 } 2816 } 2817 2818 return 1; 2819 } 2820 2821 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate 2822 the result if necessary. INSN is as for canon_reg. */ 2823 2824 static void 2825 validate_canon_reg (rtx *xloc, rtx_insn *insn) 2826 { 2827 if (*xloc) 2828 { 2829 rtx new_rtx = canon_reg (*xloc, insn); 2830 2831 /* If replacing pseudo with hard reg or vice versa, ensure the 2832 insn remains valid. Likewise if the insn has MATCH_DUPs. */ 2833 gcc_assert (insn && new_rtx); 2834 validate_change (insn, xloc, new_rtx, 1); 2835 } 2836 } 2837 2838 /* Canonicalize an expression: 2839 replace each register reference inside it 2840 with the "oldest" equivalent register. 2841 2842 If INSN is nonzero validate_change is used to ensure that INSN remains valid 2843 after we make our substitution. The calls are made with IN_GROUP nonzero 2844 so apply_change_group must be called upon the outermost return from this 2845 function (unless INSN is zero). The result of apply_change_group can 2846 generally be discarded since the changes we are making are optional. */ 2847 2848 static rtx 2849 canon_reg (rtx x, rtx_insn *insn) 2850 { 2851 int i; 2852 enum rtx_code code; 2853 const char *fmt; 2854 2855 if (x == 0) 2856 return x; 2857 2858 code = GET_CODE (x); 2859 switch (code) 2860 { 2861 case PC: 2862 case CC0: 2863 case CONST: 2864 CASE_CONST_ANY: 2865 case SYMBOL_REF: 2866 case LABEL_REF: 2867 case ADDR_VEC: 2868 case ADDR_DIFF_VEC: 2869 return x; 2870 2871 case REG: 2872 { 2873 int first; 2874 int q; 2875 struct qty_table_elem *ent; 2876 2877 /* Never replace a hard reg, because hard regs can appear 2878 in more than one machine mode, and we must preserve the mode 2879 of each occurrence. Also, some hard regs appear in 2880 MEMs that are shared and mustn't be altered. Don't try to 2881 replace any reg that maps to a reg of class NO_REGS. */ 2882 if (REGNO (x) < FIRST_PSEUDO_REGISTER 2883 || ! REGNO_QTY_VALID_P (REGNO (x))) 2884 return x; 2885 2886 q = REG_QTY (REGNO (x)); 2887 ent = &qty_table[q]; 2888 first = ent->first_reg; 2889 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first] 2890 : REGNO_REG_CLASS (first) == NO_REGS ? x 2891 : gen_rtx_REG (ent->mode, first)); 2892 } 2893 2894 default: 2895 break; 2896 } 2897 2898 fmt = GET_RTX_FORMAT (code); 2899 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 2900 { 2901 int j; 2902 2903 if (fmt[i] == 'e') 2904 validate_canon_reg (&XEXP (x, i), insn); 2905 else if (fmt[i] == 'E') 2906 for (j = 0; j < XVECLEN (x, i); j++) 2907 validate_canon_reg (&XVECEXP (x, i, j), insn); 2908 } 2909 2910 return x; 2911 } 2912 2913 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison 2914 operation (EQ, NE, GT, etc.), follow it back through the hash table and 2915 what values are being compared. 2916 2917 *PARG1 and *PARG2 are updated to contain the rtx representing the values 2918 actually being compared. For example, if *PARG1 was (cc0) and *PARG2 2919 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were 2920 compared to produce cc0. 2921 2922 The return value is the comparison operator and is either the code of 2923 A or the code corresponding to the inverse of the comparison. */ 2924 2925 static enum rtx_code 2926 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2, 2927 machine_mode *pmode1, machine_mode *pmode2) 2928 { 2929 rtx arg1, arg2; 2930 hash_set<rtx> *visited = NULL; 2931 /* Set nonzero when we find something of interest. */ 2932 rtx x = NULL; 2933 2934 arg1 = *parg1, arg2 = *parg2; 2935 2936 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */ 2937 2938 while (arg2 == CONST0_RTX (GET_MODE (arg1))) 2939 { 2940 int reverse_code = 0; 2941 struct table_elt *p = 0; 2942 2943 /* Remember state from previous iteration. */ 2944 if (x) 2945 { 2946 if (!visited) 2947 visited = new hash_set<rtx>; 2948 visited->add (x); 2949 x = 0; 2950 } 2951 2952 /* If arg1 is a COMPARE, extract the comparison arguments from it. 2953 On machines with CC0, this is the only case that can occur, since 2954 fold_rtx will return the COMPARE or item being compared with zero 2955 when given CC0. */ 2956 2957 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx) 2958 x = arg1; 2959 2960 /* If ARG1 is a comparison operator and CODE is testing for 2961 STORE_FLAG_VALUE, get the inner arguments. */ 2962 2963 else if (COMPARISON_P (arg1)) 2964 { 2965 #ifdef FLOAT_STORE_FLAG_VALUE 2966 REAL_VALUE_TYPE fsfv; 2967 #endif 2968 2969 if (code == NE 2970 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT 2971 && code == LT && STORE_FLAG_VALUE == -1) 2972 #ifdef FLOAT_STORE_FLAG_VALUE 2973 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1)) 2974 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)), 2975 REAL_VALUE_NEGATIVE (fsfv))) 2976 #endif 2977 ) 2978 x = arg1; 2979 else if (code == EQ 2980 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT 2981 && code == GE && STORE_FLAG_VALUE == -1) 2982 #ifdef FLOAT_STORE_FLAG_VALUE 2983 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1)) 2984 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)), 2985 REAL_VALUE_NEGATIVE (fsfv))) 2986 #endif 2987 ) 2988 x = arg1, reverse_code = 1; 2989 } 2990 2991 /* ??? We could also check for 2992 2993 (ne (and (eq (...) (const_int 1))) (const_int 0)) 2994 2995 and related forms, but let's wait until we see them occurring. */ 2996 2997 if (x == 0) 2998 /* Look up ARG1 in the hash table and see if it has an equivalence 2999 that lets us see what is being compared. */ 3000 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1)); 3001 if (p) 3002 { 3003 p = p->first_same_value; 3004 3005 /* If what we compare is already known to be constant, that is as 3006 good as it gets. 3007 We need to break the loop in this case, because otherwise we 3008 can have an infinite loop when looking at a reg that is known 3009 to be a constant which is the same as a comparison of a reg 3010 against zero which appears later in the insn stream, which in 3011 turn is constant and the same as the comparison of the first reg 3012 against zero... */ 3013 if (p->is_const) 3014 break; 3015 } 3016 3017 for (; p; p = p->next_same_value) 3018 { 3019 machine_mode inner_mode = GET_MODE (p->exp); 3020 #ifdef FLOAT_STORE_FLAG_VALUE 3021 REAL_VALUE_TYPE fsfv; 3022 #endif 3023 3024 /* If the entry isn't valid, skip it. */ 3025 if (! exp_equiv_p (p->exp, p->exp, 1, false)) 3026 continue; 3027 3028 /* If it's a comparison we've used before, skip it. */ 3029 if (visited && visited->contains (p->exp)) 3030 continue; 3031 3032 if (GET_CODE (p->exp) == COMPARE 3033 /* Another possibility is that this machine has a compare insn 3034 that includes the comparison code. In that case, ARG1 would 3035 be equivalent to a comparison operation that would set ARG1 to 3036 either STORE_FLAG_VALUE or zero. If this is an NE operation, 3037 ORIG_CODE is the actual comparison being done; if it is an EQ, 3038 we must reverse ORIG_CODE. On machine with a negative value 3039 for STORE_FLAG_VALUE, also look at LT and GE operations. */ 3040 || ((code == NE 3041 || (code == LT 3042 && val_signbit_known_set_p (inner_mode, 3043 STORE_FLAG_VALUE)) 3044 #ifdef FLOAT_STORE_FLAG_VALUE 3045 || (code == LT 3046 && SCALAR_FLOAT_MODE_P (inner_mode) 3047 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)), 3048 REAL_VALUE_NEGATIVE (fsfv))) 3049 #endif 3050 ) 3051 && COMPARISON_P (p->exp))) 3052 { 3053 x = p->exp; 3054 break; 3055 } 3056 else if ((code == EQ 3057 || (code == GE 3058 && val_signbit_known_set_p (inner_mode, 3059 STORE_FLAG_VALUE)) 3060 #ifdef FLOAT_STORE_FLAG_VALUE 3061 || (code == GE 3062 && SCALAR_FLOAT_MODE_P (inner_mode) 3063 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)), 3064 REAL_VALUE_NEGATIVE (fsfv))) 3065 #endif 3066 ) 3067 && COMPARISON_P (p->exp)) 3068 { 3069 reverse_code = 1; 3070 x = p->exp; 3071 break; 3072 } 3073 3074 /* If this non-trapping address, e.g. fp + constant, the 3075 equivalent is a better operand since it may let us predict 3076 the value of the comparison. */ 3077 else if (!rtx_addr_can_trap_p (p->exp)) 3078 { 3079 arg1 = p->exp; 3080 continue; 3081 } 3082 } 3083 3084 /* If we didn't find a useful equivalence for ARG1, we are done. 3085 Otherwise, set up for the next iteration. */ 3086 if (x == 0) 3087 break; 3088 3089 /* If we need to reverse the comparison, make sure that is 3090 possible -- we can't necessarily infer the value of GE from LT 3091 with floating-point operands. */ 3092 if (reverse_code) 3093 { 3094 enum rtx_code reversed = reversed_comparison_code (x, NULL); 3095 if (reversed == UNKNOWN) 3096 break; 3097 else 3098 code = reversed; 3099 } 3100 else if (COMPARISON_P (x)) 3101 code = GET_CODE (x); 3102 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1); 3103 } 3104 3105 /* Return our results. Return the modes from before fold_rtx 3106 because fold_rtx might produce const_int, and then it's too late. */ 3107 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2); 3108 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0); 3109 3110 if (visited) 3111 delete visited; 3112 return code; 3113 } 3114 3115 /* If X is a nontrivial arithmetic operation on an argument for which 3116 a constant value can be determined, return the result of operating 3117 on that value, as a constant. Otherwise, return X, possibly with 3118 one or more operands changed to a forward-propagated constant. 3119 3120 If X is a register whose contents are known, we do NOT return 3121 those contents here; equiv_constant is called to perform that task. 3122 For SUBREGs and MEMs, we do that both here and in equiv_constant. 3123 3124 INSN is the insn that we may be modifying. If it is 0, make a copy 3125 of X before modifying it. */ 3126 3127 static rtx 3128 fold_rtx (rtx x, rtx_insn *insn) 3129 { 3130 enum rtx_code code; 3131 machine_mode mode; 3132 const char *fmt; 3133 int i; 3134 rtx new_rtx = 0; 3135 int changed = 0; 3136 poly_int64 xval; 3137 3138 /* Operands of X. */ 3139 /* Workaround -Wmaybe-uninitialized false positive during 3140 profiledbootstrap by initializing them. */ 3141 rtx folded_arg0 = NULL_RTX; 3142 rtx folded_arg1 = NULL_RTX; 3143 3144 /* Constant equivalents of first three operands of X; 3145 0 when no such equivalent is known. */ 3146 rtx const_arg0; 3147 rtx const_arg1; 3148 rtx const_arg2; 3149 3150 /* The mode of the first operand of X. We need this for sign and zero 3151 extends. */ 3152 machine_mode mode_arg0; 3153 3154 if (x == 0) 3155 return x; 3156 3157 /* Try to perform some initial simplifications on X. */ 3158 code = GET_CODE (x); 3159 switch (code) 3160 { 3161 case MEM: 3162 case SUBREG: 3163 /* The first operand of a SIGN/ZERO_EXTRACT has a different meaning 3164 than it would in other contexts. Basically its mode does not 3165 signify the size of the object read. That information is carried 3166 by size operand. If we happen to have a MEM of the appropriate 3167 mode in our tables with a constant value we could simplify the 3168 extraction incorrectly if we allowed substitution of that value 3169 for the MEM. */ 3170 case ZERO_EXTRACT: 3171 case SIGN_EXTRACT: 3172 if ((new_rtx = equiv_constant (x)) != NULL_RTX) 3173 return new_rtx; 3174 return x; 3175 3176 case CONST: 3177 CASE_CONST_ANY: 3178 case SYMBOL_REF: 3179 case LABEL_REF: 3180 case REG: 3181 case PC: 3182 /* No use simplifying an EXPR_LIST 3183 since they are used only for lists of args 3184 in a function call's REG_EQUAL note. */ 3185 case EXPR_LIST: 3186 return x; 3187 3188 case CC0: 3189 return prev_insn_cc0; 3190 3191 case ASM_OPERANDS: 3192 if (insn) 3193 { 3194 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--) 3195 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), 3196 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0); 3197 } 3198 return x; 3199 3200 case CALL: 3201 if (NO_FUNCTION_CSE && CONSTANT_P (XEXP (XEXP (x, 0), 0))) 3202 return x; 3203 break; 3204 3205 /* Anything else goes through the loop below. */ 3206 default: 3207 break; 3208 } 3209 3210 mode = GET_MODE (x); 3211 const_arg0 = 0; 3212 const_arg1 = 0; 3213 const_arg2 = 0; 3214 mode_arg0 = VOIDmode; 3215 3216 /* Try folding our operands. 3217 Then see which ones have constant values known. */ 3218 3219 fmt = GET_RTX_FORMAT (code); 3220 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 3221 if (fmt[i] == 'e') 3222 { 3223 rtx folded_arg = XEXP (x, i), const_arg; 3224 machine_mode mode_arg = GET_MODE (folded_arg); 3225 3226 switch (GET_CODE (folded_arg)) 3227 { 3228 case MEM: 3229 case REG: 3230 case SUBREG: 3231 const_arg = equiv_constant (folded_arg); 3232 break; 3233 3234 case CONST: 3235 CASE_CONST_ANY: 3236 case SYMBOL_REF: 3237 case LABEL_REF: 3238 const_arg = folded_arg; 3239 break; 3240 3241 case CC0: 3242 /* The cc0-user and cc0-setter may be in different blocks if 3243 the cc0-setter potentially traps. In that case PREV_INSN_CC0 3244 will have been cleared as we exited the block with the 3245 setter. 3246 3247 While we could potentially track cc0 in this case, it just 3248 doesn't seem to be worth it given that cc0 targets are not 3249 terribly common or important these days and trapping math 3250 is rarely used. The combination of those two conditions 3251 necessary to trip this situation is exceedingly rare in the 3252 real world. */ 3253 if (!prev_insn_cc0) 3254 { 3255 const_arg = NULL_RTX; 3256 } 3257 else 3258 { 3259 folded_arg = prev_insn_cc0; 3260 mode_arg = prev_insn_cc0_mode; 3261 const_arg = equiv_constant (folded_arg); 3262 } 3263 break; 3264 3265 default: 3266 folded_arg = fold_rtx (folded_arg, insn); 3267 const_arg = equiv_constant (folded_arg); 3268 break; 3269 } 3270 3271 /* For the first three operands, see if the operand 3272 is constant or equivalent to a constant. */ 3273 switch (i) 3274 { 3275 case 0: 3276 folded_arg0 = folded_arg; 3277 const_arg0 = const_arg; 3278 mode_arg0 = mode_arg; 3279 break; 3280 case 1: 3281 folded_arg1 = folded_arg; 3282 const_arg1 = const_arg; 3283 break; 3284 case 2: 3285 const_arg2 = const_arg; 3286 break; 3287 } 3288 3289 /* Pick the least expensive of the argument and an equivalent constant 3290 argument. */ 3291 if (const_arg != 0 3292 && const_arg != folded_arg 3293 && (COST_IN (const_arg, mode_arg, code, i) 3294 <= COST_IN (folded_arg, mode_arg, code, i)) 3295 3296 /* It's not safe to substitute the operand of a conversion 3297 operator with a constant, as the conversion's identity 3298 depends upon the mode of its operand. This optimization 3299 is handled by the call to simplify_unary_operation. */ 3300 && (GET_RTX_CLASS (code) != RTX_UNARY 3301 || GET_MODE (const_arg) == mode_arg0 3302 || (code != ZERO_EXTEND 3303 && code != SIGN_EXTEND 3304 && code != TRUNCATE 3305 && code != FLOAT_TRUNCATE 3306 && code != FLOAT_EXTEND 3307 && code != FLOAT 3308 && code != FIX 3309 && code != UNSIGNED_FLOAT 3310 && code != UNSIGNED_FIX))) 3311 folded_arg = const_arg; 3312 3313 if (folded_arg == XEXP (x, i)) 3314 continue; 3315 3316 if (insn == NULL_RTX && !changed) 3317 x = copy_rtx (x); 3318 changed = 1; 3319 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1); 3320 } 3321 3322 if (changed) 3323 { 3324 /* Canonicalize X if necessary, and keep const_argN and folded_argN 3325 consistent with the order in X. */ 3326 if (canonicalize_change_group (insn, x)) 3327 { 3328 std::swap (const_arg0, const_arg1); 3329 std::swap (folded_arg0, folded_arg1); 3330 } 3331 3332 apply_change_group (); 3333 } 3334 3335 /* If X is an arithmetic operation, see if we can simplify it. */ 3336 3337 switch (GET_RTX_CLASS (code)) 3338 { 3339 case RTX_UNARY: 3340 { 3341 /* We can't simplify extension ops unless we know the 3342 original mode. */ 3343 if ((code == ZERO_EXTEND || code == SIGN_EXTEND) 3344 && mode_arg0 == VOIDmode) 3345 break; 3346 3347 new_rtx = simplify_unary_operation (code, mode, 3348 const_arg0 ? const_arg0 : folded_arg0, 3349 mode_arg0); 3350 } 3351 break; 3352 3353 case RTX_COMPARE: 3354 case RTX_COMM_COMPARE: 3355 /* See what items are actually being compared and set FOLDED_ARG[01] 3356 to those values and CODE to the actual comparison code. If any are 3357 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't 3358 do anything if both operands are already known to be constant. */ 3359 3360 /* ??? Vector mode comparisons are not supported yet. */ 3361 if (VECTOR_MODE_P (mode)) 3362 break; 3363 3364 if (const_arg0 == 0 || const_arg1 == 0) 3365 { 3366 struct table_elt *p0, *p1; 3367 rtx true_rtx, false_rtx; 3368 machine_mode mode_arg1; 3369 3370 if (SCALAR_FLOAT_MODE_P (mode)) 3371 { 3372 #ifdef FLOAT_STORE_FLAG_VALUE 3373 true_rtx = (const_double_from_real_value 3374 (FLOAT_STORE_FLAG_VALUE (mode), mode)); 3375 #else 3376 true_rtx = NULL_RTX; 3377 #endif 3378 false_rtx = CONST0_RTX (mode); 3379 } 3380 else 3381 { 3382 true_rtx = const_true_rtx; 3383 false_rtx = const0_rtx; 3384 } 3385 3386 code = find_comparison_args (code, &folded_arg0, &folded_arg1, 3387 &mode_arg0, &mode_arg1); 3388 3389 /* If the mode is VOIDmode or a MODE_CC mode, we don't know 3390 what kinds of things are being compared, so we can't do 3391 anything with this comparison. */ 3392 3393 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC) 3394 break; 3395 3396 const_arg0 = equiv_constant (folded_arg0); 3397 const_arg1 = equiv_constant (folded_arg1); 3398 3399 /* If we do not now have two constants being compared, see 3400 if we can nevertheless deduce some things about the 3401 comparison. */ 3402 if (const_arg0 == 0 || const_arg1 == 0) 3403 { 3404 if (const_arg1 != NULL) 3405 { 3406 rtx cheapest_simplification; 3407 int cheapest_cost; 3408 rtx simp_result; 3409 struct table_elt *p; 3410 3411 /* See if we can find an equivalent of folded_arg0 3412 that gets us a cheaper expression, possibly a 3413 constant through simplifications. */ 3414 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0), 3415 mode_arg0); 3416 3417 if (p != NULL) 3418 { 3419 cheapest_simplification = x; 3420 cheapest_cost = COST (x, mode); 3421 3422 for (p = p->first_same_value; p != NULL; p = p->next_same_value) 3423 { 3424 int cost; 3425 3426 /* If the entry isn't valid, skip it. */ 3427 if (! exp_equiv_p (p->exp, p->exp, 1, false)) 3428 continue; 3429 3430 /* Try to simplify using this equivalence. */ 3431 simp_result 3432 = simplify_relational_operation (code, mode, 3433 mode_arg0, 3434 p->exp, 3435 const_arg1); 3436 3437 if (simp_result == NULL) 3438 continue; 3439 3440 cost = COST (simp_result, mode); 3441 if (cost < cheapest_cost) 3442 { 3443 cheapest_cost = cost; 3444 cheapest_simplification = simp_result; 3445 } 3446 } 3447 3448 /* If we have a cheaper expression now, use that 3449 and try folding it further, from the top. */ 3450 if (cheapest_simplification != x) 3451 return fold_rtx (copy_rtx (cheapest_simplification), 3452 insn); 3453 } 3454 } 3455 3456 /* See if the two operands are the same. */ 3457 3458 if ((REG_P (folded_arg0) 3459 && REG_P (folded_arg1) 3460 && (REG_QTY (REGNO (folded_arg0)) 3461 == REG_QTY (REGNO (folded_arg1)))) 3462 || ((p0 = lookup (folded_arg0, 3463 SAFE_HASH (folded_arg0, mode_arg0), 3464 mode_arg0)) 3465 && (p1 = lookup (folded_arg1, 3466 SAFE_HASH (folded_arg1, mode_arg0), 3467 mode_arg0)) 3468 && p0->first_same_value == p1->first_same_value)) 3469 folded_arg1 = folded_arg0; 3470 3471 /* If FOLDED_ARG0 is a register, see if the comparison we are 3472 doing now is either the same as we did before or the reverse 3473 (we only check the reverse if not floating-point). */ 3474 else if (REG_P (folded_arg0)) 3475 { 3476 int qty = REG_QTY (REGNO (folded_arg0)); 3477 3478 if (REGNO_QTY_VALID_P (REGNO (folded_arg0))) 3479 { 3480 struct qty_table_elem *ent = &qty_table[qty]; 3481 3482 if ((comparison_dominates_p (ent->comparison_code, code) 3483 || (! FLOAT_MODE_P (mode_arg0) 3484 && comparison_dominates_p (ent->comparison_code, 3485 reverse_condition (code)))) 3486 && (rtx_equal_p (ent->comparison_const, folded_arg1) 3487 || (const_arg1 3488 && rtx_equal_p (ent->comparison_const, 3489 const_arg1)) 3490 || (REG_P (folded_arg1) 3491 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty)))) 3492 { 3493 if (comparison_dominates_p (ent->comparison_code, code)) 3494 { 3495 if (true_rtx) 3496 return true_rtx; 3497 else 3498 break; 3499 } 3500 else 3501 return false_rtx; 3502 } 3503 } 3504 } 3505 } 3506 } 3507 3508 /* If we are comparing against zero, see if the first operand is 3509 equivalent to an IOR with a constant. If so, we may be able to 3510 determine the result of this comparison. */ 3511 if (const_arg1 == const0_rtx && !const_arg0) 3512 { 3513 rtx y = lookup_as_function (folded_arg0, IOR); 3514 rtx inner_const; 3515 3516 if (y != 0 3517 && (inner_const = equiv_constant (XEXP (y, 1))) != 0 3518 && CONST_INT_P (inner_const) 3519 && INTVAL (inner_const) != 0) 3520 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const); 3521 } 3522 3523 { 3524 rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0); 3525 rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1); 3526 new_rtx = simplify_relational_operation (code, mode, mode_arg0, 3527 op0, op1); 3528 } 3529 break; 3530 3531 case RTX_BIN_ARITH: 3532 case RTX_COMM_ARITH: 3533 switch (code) 3534 { 3535 case PLUS: 3536 /* If the second operand is a LABEL_REF, see if the first is a MINUS 3537 with that LABEL_REF as its second operand. If so, the result is 3538 the first operand of that MINUS. This handles switches with an 3539 ADDR_DIFF_VEC table. */ 3540 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF) 3541 { 3542 rtx y 3543 = GET_CODE (folded_arg0) == MINUS ? folded_arg0 3544 : lookup_as_function (folded_arg0, MINUS); 3545 3546 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF 3547 && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg1)) 3548 return XEXP (y, 0); 3549 3550 /* Now try for a CONST of a MINUS like the above. */ 3551 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0 3552 : lookup_as_function (folded_arg0, CONST))) != 0 3553 && GET_CODE (XEXP (y, 0)) == MINUS 3554 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF 3555 && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg1)) 3556 return XEXP (XEXP (y, 0), 0); 3557 } 3558 3559 /* Likewise if the operands are in the other order. */ 3560 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF) 3561 { 3562 rtx y 3563 = GET_CODE (folded_arg1) == MINUS ? folded_arg1 3564 : lookup_as_function (folded_arg1, MINUS); 3565 3566 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF 3567 && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg0)) 3568 return XEXP (y, 0); 3569 3570 /* Now try for a CONST of a MINUS like the above. */ 3571 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1 3572 : lookup_as_function (folded_arg1, CONST))) != 0 3573 && GET_CODE (XEXP (y, 0)) == MINUS 3574 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF 3575 && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg0)) 3576 return XEXP (XEXP (y, 0), 0); 3577 } 3578 3579 /* If second operand is a register equivalent to a negative 3580 CONST_INT, see if we can find a register equivalent to the 3581 positive constant. Make a MINUS if so. Don't do this for 3582 a non-negative constant since we might then alternate between 3583 choosing positive and negative constants. Having the positive 3584 constant previously-used is the more common case. Be sure 3585 the resulting constant is non-negative; if const_arg1 were 3586 the smallest negative number this would overflow: depending 3587 on the mode, this would either just be the same value (and 3588 hence not save anything) or be incorrect. */ 3589 if (const_arg1 != 0 && CONST_INT_P (const_arg1) 3590 && INTVAL (const_arg1) < 0 3591 /* This used to test 3592 3593 -INTVAL (const_arg1) >= 0 3594 3595 But The Sun V5.0 compilers mis-compiled that test. So 3596 instead we test for the problematic value in a more direct 3597 manner and hope the Sun compilers get it correct. */ 3598 && INTVAL (const_arg1) != 3599 (HOST_WIDE_INT_1 << (HOST_BITS_PER_WIDE_INT - 1)) 3600 && REG_P (folded_arg1)) 3601 { 3602 rtx new_const = GEN_INT (-INTVAL (const_arg1)); 3603 struct table_elt *p 3604 = lookup (new_const, SAFE_HASH (new_const, mode), mode); 3605 3606 if (p) 3607 for (p = p->first_same_value; p; p = p->next_same_value) 3608 if (REG_P (p->exp)) 3609 return simplify_gen_binary (MINUS, mode, folded_arg0, 3610 canon_reg (p->exp, NULL)); 3611 } 3612 goto from_plus; 3613 3614 case MINUS: 3615 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2). 3616 If so, produce (PLUS Z C2-C). */ 3617 if (const_arg1 != 0 && poly_int_rtx_p (const_arg1, &xval)) 3618 { 3619 rtx y = lookup_as_function (XEXP (x, 0), PLUS); 3620 if (y && poly_int_rtx_p (XEXP (y, 1))) 3621 return fold_rtx (plus_constant (mode, copy_rtx (y), -xval), 3622 NULL); 3623 } 3624 3625 /* Fall through. */ 3626 3627 from_plus: 3628 case SMIN: case SMAX: case UMIN: case UMAX: 3629 case IOR: case AND: case XOR: 3630 case MULT: 3631 case ASHIFT: case LSHIFTRT: case ASHIFTRT: 3632 /* If we have (<op> <reg> <const_int>) for an associative OP and REG 3633 is known to be of similar form, we may be able to replace the 3634 operation with a combined operation. This may eliminate the 3635 intermediate operation if every use is simplified in this way. 3636 Note that the similar optimization done by combine.c only works 3637 if the intermediate operation's result has only one reference. */ 3638 3639 if (REG_P (folded_arg0) 3640 && const_arg1 && CONST_INT_P (const_arg1)) 3641 { 3642 int is_shift 3643 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT); 3644 rtx y, inner_const, new_const; 3645 rtx canon_const_arg1 = const_arg1; 3646 enum rtx_code associate_code; 3647 3648 if (is_shift 3649 && (INTVAL (const_arg1) >= GET_MODE_UNIT_PRECISION (mode) 3650 || INTVAL (const_arg1) < 0)) 3651 { 3652 if (SHIFT_COUNT_TRUNCATED) 3653 canon_const_arg1 = gen_int_shift_amount 3654 (mode, (INTVAL (const_arg1) 3655 & (GET_MODE_UNIT_BITSIZE (mode) - 1))); 3656 else 3657 break; 3658 } 3659 3660 y = lookup_as_function (folded_arg0, code); 3661 if (y == 0) 3662 break; 3663 3664 /* If we have compiled a statement like 3665 "if (x == (x & mask1))", and now are looking at 3666 "x & mask2", we will have a case where the first operand 3667 of Y is the same as our first operand. Unless we detect 3668 this case, an infinite loop will result. */ 3669 if (XEXP (y, 0) == folded_arg0) 3670 break; 3671 3672 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0)); 3673 if (!inner_const || !CONST_INT_P (inner_const)) 3674 break; 3675 3676 /* Don't associate these operations if they are a PLUS with the 3677 same constant and it is a power of two. These might be doable 3678 with a pre- or post-increment. Similarly for two subtracts of 3679 identical powers of two with post decrement. */ 3680 3681 if (code == PLUS && const_arg1 == inner_const 3682 && ((HAVE_PRE_INCREMENT 3683 && pow2p_hwi (INTVAL (const_arg1))) 3684 || (HAVE_POST_INCREMENT 3685 && pow2p_hwi (INTVAL (const_arg1))) 3686 || (HAVE_PRE_DECREMENT 3687 && pow2p_hwi (- INTVAL (const_arg1))) 3688 || (HAVE_POST_DECREMENT 3689 && pow2p_hwi (- INTVAL (const_arg1))))) 3690 break; 3691 3692 /* ??? Vector mode shifts by scalar 3693 shift operand are not supported yet. */ 3694 if (is_shift && VECTOR_MODE_P (mode)) 3695 break; 3696 3697 if (is_shift 3698 && (INTVAL (inner_const) >= GET_MODE_UNIT_PRECISION (mode) 3699 || INTVAL (inner_const) < 0)) 3700 { 3701 if (SHIFT_COUNT_TRUNCATED) 3702 inner_const = gen_int_shift_amount 3703 (mode, (INTVAL (inner_const) 3704 & (GET_MODE_UNIT_BITSIZE (mode) - 1))); 3705 else 3706 break; 3707 } 3708 3709 /* Compute the code used to compose the constants. For example, 3710 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */ 3711 3712 associate_code = (is_shift || code == MINUS ? PLUS : code); 3713 3714 new_const = simplify_binary_operation (associate_code, mode, 3715 canon_const_arg1, 3716 inner_const); 3717 3718 if (new_const == 0) 3719 break; 3720 3721 /* If we are associating shift operations, don't let this 3722 produce a shift of the size of the object or larger. 3723 This could occur when we follow a sign-extend by a right 3724 shift on a machine that does a sign-extend as a pair 3725 of shifts. */ 3726 3727 if (is_shift 3728 && CONST_INT_P (new_const) 3729 && INTVAL (new_const) >= GET_MODE_UNIT_PRECISION (mode)) 3730 { 3731 /* As an exception, we can turn an ASHIFTRT of this 3732 form into a shift of the number of bits - 1. */ 3733 if (code == ASHIFTRT) 3734 new_const = gen_int_shift_amount 3735 (mode, GET_MODE_UNIT_BITSIZE (mode) - 1); 3736 else if (!side_effects_p (XEXP (y, 0))) 3737 return CONST0_RTX (mode); 3738 else 3739 break; 3740 } 3741 3742 y = copy_rtx (XEXP (y, 0)); 3743 3744 /* If Y contains our first operand (the most common way this 3745 can happen is if Y is a MEM), we would do into an infinite 3746 loop if we tried to fold it. So don't in that case. */ 3747 3748 if (! reg_mentioned_p (folded_arg0, y)) 3749 y = fold_rtx (y, insn); 3750 3751 return simplify_gen_binary (code, mode, y, new_const); 3752 } 3753 break; 3754 3755 case DIV: case UDIV: 3756 /* ??? The associative optimization performed immediately above is 3757 also possible for DIV and UDIV using associate_code of MULT. 3758 However, we would need extra code to verify that the 3759 multiplication does not overflow, that is, there is no overflow 3760 in the calculation of new_const. */ 3761 break; 3762 3763 default: 3764 break; 3765 } 3766 3767 new_rtx = simplify_binary_operation (code, mode, 3768 const_arg0 ? const_arg0 : folded_arg0, 3769 const_arg1 ? const_arg1 : folded_arg1); 3770 break; 3771 3772 case RTX_OBJ: 3773 /* (lo_sum (high X) X) is simply X. */ 3774 if (code == LO_SUM && const_arg0 != 0 3775 && GET_CODE (const_arg0) == HIGH 3776 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1)) 3777 return const_arg1; 3778 break; 3779 3780 case RTX_TERNARY: 3781 case RTX_BITFIELD_OPS: 3782 new_rtx = simplify_ternary_operation (code, mode, mode_arg0, 3783 const_arg0 ? const_arg0 : folded_arg0, 3784 const_arg1 ? const_arg1 : folded_arg1, 3785 const_arg2 ? const_arg2 : XEXP (x, 2)); 3786 break; 3787 3788 default: 3789 break; 3790 } 3791 3792 return new_rtx ? new_rtx : x; 3793 } 3794 3795 /* Return a constant value currently equivalent to X. 3796 Return 0 if we don't know one. */ 3797 3798 static rtx 3799 equiv_constant (rtx x) 3800 { 3801 if (REG_P (x) 3802 && REGNO_QTY_VALID_P (REGNO (x))) 3803 { 3804 int x_q = REG_QTY (REGNO (x)); 3805 struct qty_table_elem *x_ent = &qty_table[x_q]; 3806 3807 if (x_ent->const_rtx) 3808 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx); 3809 } 3810 3811 if (x == 0 || CONSTANT_P (x)) 3812 return x; 3813 3814 if (GET_CODE (x) == SUBREG) 3815 { 3816 machine_mode mode = GET_MODE (x); 3817 machine_mode imode = GET_MODE (SUBREG_REG (x)); 3818 rtx new_rtx; 3819 3820 /* See if we previously assigned a constant value to this SUBREG. */ 3821 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0 3822 || (new_rtx = lookup_as_function (x, CONST_WIDE_INT)) != 0 3823 || (NUM_POLY_INT_COEFFS > 1 3824 && (new_rtx = lookup_as_function (x, CONST_POLY_INT)) != 0) 3825 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0 3826 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0) 3827 return new_rtx; 3828 3829 /* If we didn't and if doing so makes sense, see if we previously 3830 assigned a constant value to the enclosing word mode SUBREG. */ 3831 if (known_lt (GET_MODE_SIZE (mode), UNITS_PER_WORD) 3832 && known_lt (UNITS_PER_WORD, GET_MODE_SIZE (imode))) 3833 { 3834 poly_int64 byte = (SUBREG_BYTE (x) 3835 - subreg_lowpart_offset (mode, word_mode)); 3836 if (known_ge (byte, 0) && multiple_p (byte, UNITS_PER_WORD)) 3837 { 3838 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte); 3839 new_rtx = lookup_as_function (y, CONST_INT); 3840 if (new_rtx) 3841 return gen_lowpart (mode, new_rtx); 3842 } 3843 } 3844 3845 /* Otherwise see if we already have a constant for the inner REG, 3846 and if that is enough to calculate an equivalent constant for 3847 the subreg. Note that the upper bits of paradoxical subregs 3848 are undefined, so they cannot be said to equal anything. */ 3849 if (REG_P (SUBREG_REG (x)) 3850 && !paradoxical_subreg_p (x) 3851 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0) 3852 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x)); 3853 3854 return 0; 3855 } 3856 3857 /* If X is a MEM, see if it is a constant-pool reference, or look it up in 3858 the hash table in case its value was seen before. */ 3859 3860 if (MEM_P (x)) 3861 { 3862 struct table_elt *elt; 3863 3864 x = avoid_constant_pool_reference (x); 3865 if (CONSTANT_P (x)) 3866 return x; 3867 3868 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x)); 3869 if (elt == 0) 3870 return 0; 3871 3872 for (elt = elt->first_same_value; elt; elt = elt->next_same_value) 3873 if (elt->is_const && CONSTANT_P (elt->exp)) 3874 return elt->exp; 3875 } 3876 3877 return 0; 3878 } 3879 3880 /* Given INSN, a jump insn, TAKEN indicates if we are following the 3881 "taken" branch. 3882 3883 In certain cases, this can cause us to add an equivalence. For example, 3884 if we are following the taken case of 3885 if (i == 2) 3886 we can add the fact that `i' and '2' are now equivalent. 3887 3888 In any case, we can record that this comparison was passed. If the same 3889 comparison is seen later, we will know its value. */ 3890 3891 static void 3892 record_jump_equiv (rtx_insn *insn, bool taken) 3893 { 3894 int cond_known_true; 3895 rtx op0, op1; 3896 rtx set; 3897 machine_mode mode, mode0, mode1; 3898 int reversed_nonequality = 0; 3899 enum rtx_code code; 3900 3901 /* Ensure this is the right kind of insn. */ 3902 gcc_assert (any_condjump_p (insn)); 3903 3904 set = pc_set (insn); 3905 3906 /* See if this jump condition is known true or false. */ 3907 if (taken) 3908 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx); 3909 else 3910 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx); 3911 3912 /* Get the type of comparison being done and the operands being compared. 3913 If we had to reverse a non-equality condition, record that fact so we 3914 know that it isn't valid for floating-point. */ 3915 code = GET_CODE (XEXP (SET_SRC (set), 0)); 3916 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn); 3917 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn); 3918 3919 /* On a cc0 target the cc0-setter and cc0-user may end up in different 3920 blocks. When that happens the tracking of the cc0-setter via 3921 PREV_INSN_CC0 is spoiled. That means that fold_rtx may return 3922 NULL_RTX. In those cases, there's nothing to record. */ 3923 if (op0 == NULL_RTX || op1 == NULL_RTX) 3924 return; 3925 3926 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1); 3927 if (! cond_known_true) 3928 { 3929 code = reversed_comparison_code_parts (code, op0, op1, insn); 3930 3931 /* Don't remember if we can't find the inverse. */ 3932 if (code == UNKNOWN) 3933 return; 3934 } 3935 3936 /* The mode is the mode of the non-constant. */ 3937 mode = mode0; 3938 if (mode1 != VOIDmode) 3939 mode = mode1; 3940 3941 record_jump_cond (code, mode, op0, op1, reversed_nonequality); 3942 } 3943 3944 /* Yet another form of subreg creation. In this case, we want something in 3945 MODE, and we should assume OP has MODE iff it is naturally modeless. */ 3946 3947 static rtx 3948 record_jump_cond_subreg (machine_mode mode, rtx op) 3949 { 3950 machine_mode op_mode = GET_MODE (op); 3951 if (op_mode == mode || op_mode == VOIDmode) 3952 return op; 3953 return lowpart_subreg (mode, op, op_mode); 3954 } 3955 3956 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true. 3957 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped. 3958 Make any useful entries we can with that information. Called from 3959 above function and called recursively. */ 3960 3961 static void 3962 record_jump_cond (enum rtx_code code, machine_mode mode, rtx op0, 3963 rtx op1, int reversed_nonequality) 3964 { 3965 unsigned op0_hash, op1_hash; 3966 int op0_in_memory, op1_in_memory; 3967 struct table_elt *op0_elt, *op1_elt; 3968 3969 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG, 3970 we know that they are also equal in the smaller mode (this is also 3971 true for all smaller modes whether or not there is a SUBREG, but 3972 is not worth testing for with no SUBREG). */ 3973 3974 /* Note that GET_MODE (op0) may not equal MODE. */ 3975 if (code == EQ && paradoxical_subreg_p (op0)) 3976 { 3977 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0)); 3978 rtx tem = record_jump_cond_subreg (inner_mode, op1); 3979 if (tem) 3980 record_jump_cond (code, mode, SUBREG_REG (op0), tem, 3981 reversed_nonequality); 3982 } 3983 3984 if (code == EQ && paradoxical_subreg_p (op1)) 3985 { 3986 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1)); 3987 rtx tem = record_jump_cond_subreg (inner_mode, op0); 3988 if (tem) 3989 record_jump_cond (code, mode, SUBREG_REG (op1), tem, 3990 reversed_nonequality); 3991 } 3992 3993 /* Similarly, if this is an NE comparison, and either is a SUBREG 3994 making a smaller mode, we know the whole thing is also NE. */ 3995 3996 /* Note that GET_MODE (op0) may not equal MODE; 3997 if we test MODE instead, we can get an infinite recursion 3998 alternating between two modes each wider than MODE. */ 3999 4000 if (code == NE 4001 && partial_subreg_p (op0) 4002 && subreg_lowpart_p (op0)) 4003 { 4004 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0)); 4005 rtx tem = record_jump_cond_subreg (inner_mode, op1); 4006 if (tem) 4007 record_jump_cond (code, mode, SUBREG_REG (op0), tem, 4008 reversed_nonequality); 4009 } 4010 4011 if (code == NE 4012 && partial_subreg_p (op1) 4013 && subreg_lowpart_p (op1)) 4014 { 4015 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1)); 4016 rtx tem = record_jump_cond_subreg (inner_mode, op0); 4017 if (tem) 4018 record_jump_cond (code, mode, SUBREG_REG (op1), tem, 4019 reversed_nonequality); 4020 } 4021 4022 /* Hash both operands. */ 4023 4024 do_not_record = 0; 4025 hash_arg_in_memory = 0; 4026 op0_hash = HASH (op0, mode); 4027 op0_in_memory = hash_arg_in_memory; 4028 4029 if (do_not_record) 4030 return; 4031 4032 do_not_record = 0; 4033 hash_arg_in_memory = 0; 4034 op1_hash = HASH (op1, mode); 4035 op1_in_memory = hash_arg_in_memory; 4036 4037 if (do_not_record) 4038 return; 4039 4040 /* Look up both operands. */ 4041 op0_elt = lookup (op0, op0_hash, mode); 4042 op1_elt = lookup (op1, op1_hash, mode); 4043 4044 /* If both operands are already equivalent or if they are not in the 4045 table but are identical, do nothing. */ 4046 if ((op0_elt != 0 && op1_elt != 0 4047 && op0_elt->first_same_value == op1_elt->first_same_value) 4048 || op0 == op1 || rtx_equal_p (op0, op1)) 4049 return; 4050 4051 /* If we aren't setting two things equal all we can do is save this 4052 comparison. Similarly if this is floating-point. In the latter 4053 case, OP1 might be zero and both -0.0 and 0.0 are equal to it. 4054 If we record the equality, we might inadvertently delete code 4055 whose intent was to change -0 to +0. */ 4056 4057 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0))) 4058 { 4059 struct qty_table_elem *ent; 4060 int qty; 4061 4062 /* If we reversed a floating-point comparison, if OP0 is not a 4063 register, or if OP1 is neither a register or constant, we can't 4064 do anything. */ 4065 4066 if (!REG_P (op1)) 4067 op1 = equiv_constant (op1); 4068 4069 if ((reversed_nonequality && FLOAT_MODE_P (mode)) 4070 || !REG_P (op0) || op1 == 0) 4071 return; 4072 4073 /* Put OP0 in the hash table if it isn't already. This gives it a 4074 new quantity number. */ 4075 if (op0_elt == 0) 4076 { 4077 if (insert_regs (op0, NULL, 0)) 4078 { 4079 rehash_using_reg (op0); 4080 op0_hash = HASH (op0, mode); 4081 4082 /* If OP0 is contained in OP1, this changes its hash code 4083 as well. Faster to rehash than to check, except 4084 for the simple case of a constant. */ 4085 if (! CONSTANT_P (op1)) 4086 op1_hash = HASH (op1,mode); 4087 } 4088 4089 op0_elt = insert (op0, NULL, op0_hash, mode); 4090 op0_elt->in_memory = op0_in_memory; 4091 } 4092 4093 qty = REG_QTY (REGNO (op0)); 4094 ent = &qty_table[qty]; 4095 4096 ent->comparison_code = code; 4097 if (REG_P (op1)) 4098 { 4099 /* Look it up again--in case op0 and op1 are the same. */ 4100 op1_elt = lookup (op1, op1_hash, mode); 4101 4102 /* Put OP1 in the hash table so it gets a new quantity number. */ 4103 if (op1_elt == 0) 4104 { 4105 if (insert_regs (op1, NULL, 0)) 4106 { 4107 rehash_using_reg (op1); 4108 op1_hash = HASH (op1, mode); 4109 } 4110 4111 op1_elt = insert (op1, NULL, op1_hash, mode); 4112 op1_elt->in_memory = op1_in_memory; 4113 } 4114 4115 ent->comparison_const = NULL_RTX; 4116 ent->comparison_qty = REG_QTY (REGNO (op1)); 4117 } 4118 else 4119 { 4120 ent->comparison_const = op1; 4121 ent->comparison_qty = -1; 4122 } 4123 4124 return; 4125 } 4126 4127 /* If either side is still missing an equivalence, make it now, 4128 then merge the equivalences. */ 4129 4130 if (op0_elt == 0) 4131 { 4132 if (insert_regs (op0, NULL, 0)) 4133 { 4134 rehash_using_reg (op0); 4135 op0_hash = HASH (op0, mode); 4136 } 4137 4138 op0_elt = insert (op0, NULL, op0_hash, mode); 4139 op0_elt->in_memory = op0_in_memory; 4140 } 4141 4142 if (op1_elt == 0) 4143 { 4144 if (insert_regs (op1, NULL, 0)) 4145 { 4146 rehash_using_reg (op1); 4147 op1_hash = HASH (op1, mode); 4148 } 4149 4150 op1_elt = insert (op1, NULL, op1_hash, mode); 4151 op1_elt->in_memory = op1_in_memory; 4152 } 4153 4154 merge_equiv_classes (op0_elt, op1_elt); 4155 } 4156 4157 /* CSE processing for one instruction. 4158 4159 Most "true" common subexpressions are mostly optimized away in GIMPLE, 4160 but the few that "leak through" are cleaned up by cse_insn, and complex 4161 addressing modes are often formed here. 4162 4163 The main function is cse_insn, and between here and that function 4164 a couple of helper functions is defined to keep the size of cse_insn 4165 within reasonable proportions. 4166 4167 Data is shared between the main and helper functions via STRUCT SET, 4168 that contains all data related for every set in the instruction that 4169 is being processed. 4170 4171 Note that cse_main processes all sets in the instruction. Most 4172 passes in GCC only process simple SET insns or single_set insns, but 4173 CSE processes insns with multiple sets as well. */ 4174 4175 /* Data on one SET contained in the instruction. */ 4176 4177 struct set 4178 { 4179 /* The SET rtx itself. */ 4180 rtx rtl; 4181 /* The SET_SRC of the rtx (the original value, if it is changing). */ 4182 rtx src; 4183 /* The hash-table element for the SET_SRC of the SET. */ 4184 struct table_elt *src_elt; 4185 /* Hash value for the SET_SRC. */ 4186 unsigned src_hash; 4187 /* Hash value for the SET_DEST. */ 4188 unsigned dest_hash; 4189 /* The SET_DEST, with SUBREG, etc., stripped. */ 4190 rtx inner_dest; 4191 /* Nonzero if the SET_SRC is in memory. */ 4192 char src_in_memory; 4193 /* Nonzero if the SET_SRC contains something 4194 whose value cannot be predicted and understood. */ 4195 char src_volatile; 4196 /* Original machine mode, in case it becomes a CONST_INT. 4197 The size of this field should match the size of the mode 4198 field of struct rtx_def (see rtl.h). */ 4199 ENUM_BITFIELD(machine_mode) mode : 8; 4200 /* Hash value of constant equivalent for SET_SRC. */ 4201 unsigned src_const_hash; 4202 /* A constant equivalent for SET_SRC, if any. */ 4203 rtx src_const; 4204 /* Table entry for constant equivalent for SET_SRC, if any. */ 4205 struct table_elt *src_const_elt; 4206 /* Table entry for the destination address. */ 4207 struct table_elt *dest_addr_elt; 4208 }; 4209 4210 /* Special handling for (set REG0 REG1) where REG0 is the 4211 "cheapest", cheaper than REG1. After cse, REG1 will probably not 4212 be used in the sequel, so (if easily done) change this insn to 4213 (set REG1 REG0) and replace REG1 with REG0 in the previous insn 4214 that computed their value. Then REG1 will become a dead store 4215 and won't cloud the situation for later optimizations. 4216 4217 Do not make this change if REG1 is a hard register, because it will 4218 then be used in the sequel and we may be changing a two-operand insn 4219 into a three-operand insn. 4220 4221 This is the last transformation that cse_insn will try to do. */ 4222 4223 static void 4224 try_back_substitute_reg (rtx set, rtx_insn *insn) 4225 { 4226 rtx dest = SET_DEST (set); 4227 rtx src = SET_SRC (set); 4228 4229 if (REG_P (dest) 4230 && REG_P (src) && ! HARD_REGISTER_P (src) 4231 && REGNO_QTY_VALID_P (REGNO (src))) 4232 { 4233 int src_q = REG_QTY (REGNO (src)); 4234 struct qty_table_elem *src_ent = &qty_table[src_q]; 4235 4236 if (src_ent->first_reg == REGNO (dest)) 4237 { 4238 /* Scan for the previous nonnote insn, but stop at a basic 4239 block boundary. */ 4240 rtx_insn *prev = insn; 4241 rtx_insn *bb_head = BB_HEAD (BLOCK_FOR_INSN (insn)); 4242 do 4243 { 4244 prev = PREV_INSN (prev); 4245 } 4246 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev))); 4247 4248 /* Do not swap the registers around if the previous instruction 4249 attaches a REG_EQUIV note to REG1. 4250 4251 ??? It's not entirely clear whether we can transfer a REG_EQUIV 4252 from the pseudo that originally shadowed an incoming argument 4253 to another register. Some uses of REG_EQUIV might rely on it 4254 being attached to REG1 rather than REG2. 4255 4256 This section previously turned the REG_EQUIV into a REG_EQUAL 4257 note. We cannot do that because REG_EQUIV may provide an 4258 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */ 4259 if (NONJUMP_INSN_P (prev) 4260 && GET_CODE (PATTERN (prev)) == SET 4261 && SET_DEST (PATTERN (prev)) == src 4262 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX)) 4263 { 4264 rtx note; 4265 4266 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1); 4267 validate_change (insn, &SET_DEST (set), src, 1); 4268 validate_change (insn, &SET_SRC (set), dest, 1); 4269 apply_change_group (); 4270 4271 /* If INSN has a REG_EQUAL note, and this note mentions 4272 REG0, then we must delete it, because the value in 4273 REG0 has changed. If the note's value is REG1, we must 4274 also delete it because that is now this insn's dest. */ 4275 note = find_reg_note (insn, REG_EQUAL, NULL_RTX); 4276 if (note != 0 4277 && (reg_mentioned_p (dest, XEXP (note, 0)) 4278 || rtx_equal_p (src, XEXP (note, 0)))) 4279 remove_note (insn, note); 4280 4281 /* If INSN has a REG_ARGS_SIZE note, move it to PREV. */ 4282 note = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX); 4283 if (note != 0) 4284 { 4285 remove_note (insn, note); 4286 gcc_assert (!find_reg_note (prev, REG_ARGS_SIZE, NULL_RTX)); 4287 set_unique_reg_note (prev, REG_ARGS_SIZE, XEXP (note, 0)); 4288 } 4289 } 4290 } 4291 } 4292 } 4293 4294 /* Record all the SETs in this instruction into SETS_PTR, 4295 and return the number of recorded sets. */ 4296 static int 4297 find_sets_in_insn (rtx_insn *insn, struct set **psets) 4298 { 4299 struct set *sets = *psets; 4300 int n_sets = 0; 4301 rtx x = PATTERN (insn); 4302 4303 if (GET_CODE (x) == SET) 4304 { 4305 /* Ignore SETs that are unconditional jumps. 4306 They never need cse processing, so this does not hurt. 4307 The reason is not efficiency but rather 4308 so that we can test at the end for instructions 4309 that have been simplified to unconditional jumps 4310 and not be misled by unchanged instructions 4311 that were unconditional jumps to begin with. */ 4312 if (SET_DEST (x) == pc_rtx 4313 && GET_CODE (SET_SRC (x)) == LABEL_REF) 4314 ; 4315 /* Don't count call-insns, (set (reg 0) (call ...)), as a set. 4316 The hard function value register is used only once, to copy to 4317 someplace else, so it isn't worth cse'ing. */ 4318 else if (GET_CODE (SET_SRC (x)) == CALL) 4319 ; 4320 else 4321 sets[n_sets++].rtl = x; 4322 } 4323 else if (GET_CODE (x) == PARALLEL) 4324 { 4325 int i, lim = XVECLEN (x, 0); 4326 4327 /* Go over the expressions of the PARALLEL in forward order, to 4328 put them in the same order in the SETS array. */ 4329 for (i = 0; i < lim; i++) 4330 { 4331 rtx y = XVECEXP (x, 0, i); 4332 if (GET_CODE (y) == SET) 4333 { 4334 /* As above, we ignore unconditional jumps and call-insns and 4335 ignore the result of apply_change_group. */ 4336 if (SET_DEST (y) == pc_rtx 4337 && GET_CODE (SET_SRC (y)) == LABEL_REF) 4338 ; 4339 else if (GET_CODE (SET_SRC (y)) == CALL) 4340 ; 4341 else 4342 sets[n_sets++].rtl = y; 4343 } 4344 } 4345 } 4346 4347 return n_sets; 4348 } 4349 4350 /* Subroutine of canonicalize_insn. X is an ASM_OPERANDS in INSN. */ 4351 4352 static void 4353 canon_asm_operands (rtx x, rtx_insn *insn) 4354 { 4355 for (int i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--) 4356 { 4357 rtx input = ASM_OPERANDS_INPUT (x, i); 4358 if (!(REG_P (input) && HARD_REGISTER_P (input))) 4359 { 4360 input = canon_reg (input, insn); 4361 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1); 4362 } 4363 } 4364 } 4365 4366 /* Where possible, substitute every register reference in the N_SETS 4367 number of SETS in INSN with the canonical register. 4368 4369 Register canonicalization propagatest the earliest register (i.e. 4370 one that is set before INSN) with the same value. This is a very 4371 useful, simple form of CSE, to clean up warts from expanding GIMPLE 4372 to RTL. For instance, a CONST for an address is usually expanded 4373 multiple times to loads into different registers, thus creating many 4374 subexpressions of the form: 4375 4376 (set (reg1) (some_const)) 4377 (set (mem (... reg1 ...) (thing))) 4378 (set (reg2) (some_const)) 4379 (set (mem (... reg2 ...) (thing))) 4380 4381 After canonicalizing, the code takes the following form: 4382 4383 (set (reg1) (some_const)) 4384 (set (mem (... reg1 ...) (thing))) 4385 (set (reg2) (some_const)) 4386 (set (mem (... reg1 ...) (thing))) 4387 4388 The set to reg2 is now trivially dead, and the memory reference (or 4389 address, or whatever) may be a candidate for further CSEing. 4390 4391 In this function, the result of apply_change_group can be ignored; 4392 see canon_reg. */ 4393 4394 static void 4395 canonicalize_insn (rtx_insn *insn, struct set **psets, int n_sets) 4396 { 4397 struct set *sets = *psets; 4398 rtx tem; 4399 rtx x = PATTERN (insn); 4400 int i; 4401 4402 if (CALL_P (insn)) 4403 { 4404 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1)) 4405 if (GET_CODE (XEXP (tem, 0)) != SET) 4406 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn); 4407 } 4408 4409 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL) 4410 { 4411 canon_reg (SET_SRC (x), insn); 4412 apply_change_group (); 4413 fold_rtx (SET_SRC (x), insn); 4414 } 4415 else if (GET_CODE (x) == CLOBBER) 4416 { 4417 /* If we clobber memory, canon the address. 4418 This does nothing when a register is clobbered 4419 because we have already invalidated the reg. */ 4420 if (MEM_P (XEXP (x, 0))) 4421 canon_reg (XEXP (x, 0), insn); 4422 } 4423 else if (GET_CODE (x) == CLOBBER_HIGH) 4424 gcc_assert (REG_P (XEXP (x, 0))); 4425 else if (GET_CODE (x) == USE 4426 && ! (REG_P (XEXP (x, 0)) 4427 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)) 4428 /* Canonicalize a USE of a pseudo register or memory location. */ 4429 canon_reg (x, insn); 4430 else if (GET_CODE (x) == ASM_OPERANDS) 4431 canon_asm_operands (x, insn); 4432 else if (GET_CODE (x) == CALL) 4433 { 4434 canon_reg (x, insn); 4435 apply_change_group (); 4436 fold_rtx (x, insn); 4437 } 4438 else if (DEBUG_INSN_P (insn)) 4439 canon_reg (PATTERN (insn), insn); 4440 else if (GET_CODE (x) == PARALLEL) 4441 { 4442 for (i = XVECLEN (x, 0) - 1; i >= 0; i--) 4443 { 4444 rtx y = XVECEXP (x, 0, i); 4445 if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL) 4446 { 4447 canon_reg (SET_SRC (y), insn); 4448 apply_change_group (); 4449 fold_rtx (SET_SRC (y), insn); 4450 } 4451 else if (GET_CODE (y) == CLOBBER) 4452 { 4453 if (MEM_P (XEXP (y, 0))) 4454 canon_reg (XEXP (y, 0), insn); 4455 } 4456 else if (GET_CODE (y) == CLOBBER_HIGH) 4457 gcc_assert (REG_P (XEXP (y, 0))); 4458 else if (GET_CODE (y) == USE 4459 && ! (REG_P (XEXP (y, 0)) 4460 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER)) 4461 canon_reg (y, insn); 4462 else if (GET_CODE (y) == ASM_OPERANDS) 4463 canon_asm_operands (y, insn); 4464 else if (GET_CODE (y) == CALL) 4465 { 4466 canon_reg (y, insn); 4467 apply_change_group (); 4468 fold_rtx (y, insn); 4469 } 4470 } 4471 } 4472 4473 if (n_sets == 1 && REG_NOTES (insn) != 0 4474 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0) 4475 { 4476 /* We potentially will process this insn many times. Therefore, 4477 drop the REG_EQUAL note if it is equal to the SET_SRC of the 4478 unique set in INSN. 4479 4480 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART, 4481 because cse_insn handles those specially. */ 4482 if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART 4483 && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))) 4484 remove_note (insn, tem); 4485 else 4486 { 4487 canon_reg (XEXP (tem, 0), insn); 4488 apply_change_group (); 4489 XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn); 4490 df_notes_rescan (insn); 4491 } 4492 } 4493 4494 /* Canonicalize sources and addresses of destinations. 4495 We do this in a separate pass to avoid problems when a MATCH_DUP is 4496 present in the insn pattern. In that case, we want to ensure that 4497 we don't break the duplicate nature of the pattern. So we will replace 4498 both operands at the same time. Otherwise, we would fail to find an 4499 equivalent substitution in the loop calling validate_change below. 4500 4501 We used to suppress canonicalization of DEST if it appears in SRC, 4502 but we don't do this any more. */ 4503 4504 for (i = 0; i < n_sets; i++) 4505 { 4506 rtx dest = SET_DEST (sets[i].rtl); 4507 rtx src = SET_SRC (sets[i].rtl); 4508 rtx new_rtx = canon_reg (src, insn); 4509 4510 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1); 4511 4512 if (GET_CODE (dest) == ZERO_EXTRACT) 4513 { 4514 validate_change (insn, &XEXP (dest, 1), 4515 canon_reg (XEXP (dest, 1), insn), 1); 4516 validate_change (insn, &XEXP (dest, 2), 4517 canon_reg (XEXP (dest, 2), insn), 1); 4518 } 4519 4520 while (GET_CODE (dest) == SUBREG 4521 || GET_CODE (dest) == ZERO_EXTRACT 4522 || GET_CODE (dest) == STRICT_LOW_PART) 4523 dest = XEXP (dest, 0); 4524 4525 if (MEM_P (dest)) 4526 canon_reg (dest, insn); 4527 } 4528 4529 /* Now that we have done all the replacements, we can apply the change 4530 group and see if they all work. Note that this will cause some 4531 canonicalizations that would have worked individually not to be applied 4532 because some other canonicalization didn't work, but this should not 4533 occur often. 4534 4535 The result of apply_change_group can be ignored; see canon_reg. */ 4536 4537 apply_change_group (); 4538 } 4539 4540 /* Main function of CSE. 4541 First simplify sources and addresses of all assignments 4542 in the instruction, using previously-computed equivalents values. 4543 Then install the new sources and destinations in the table 4544 of available values. */ 4545 4546 static void 4547 cse_insn (rtx_insn *insn) 4548 { 4549 rtx x = PATTERN (insn); 4550 int i; 4551 rtx tem; 4552 int n_sets = 0; 4553 4554 rtx src_eqv = 0; 4555 struct table_elt *src_eqv_elt = 0; 4556 int src_eqv_volatile = 0; 4557 int src_eqv_in_memory = 0; 4558 unsigned src_eqv_hash = 0; 4559 4560 struct set *sets = (struct set *) 0; 4561 4562 if (GET_CODE (x) == SET) 4563 sets = XALLOCA (struct set); 4564 else if (GET_CODE (x) == PARALLEL) 4565 sets = XALLOCAVEC (struct set, XVECLEN (x, 0)); 4566 4567 this_insn = insn; 4568 /* Records what this insn does to set CC0. */ 4569 this_insn_cc0 = 0; 4570 this_insn_cc0_mode = VOIDmode; 4571 4572 /* Find all regs explicitly clobbered in this insn, 4573 to ensure they are not replaced with any other regs 4574 elsewhere in this insn. */ 4575 invalidate_from_sets_and_clobbers (insn); 4576 4577 /* Record all the SETs in this instruction. */ 4578 n_sets = find_sets_in_insn (insn, &sets); 4579 4580 /* Substitute the canonical register where possible. */ 4581 canonicalize_insn (insn, &sets, n_sets); 4582 4583 /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV, 4584 if different, or if the DEST is a STRICT_LOW_PART/ZERO_EXTRACT. The 4585 latter condition is necessary because SRC_EQV is handled specially for 4586 this case, and if it isn't set, then there will be no equivalence 4587 for the destination. */ 4588 if (n_sets == 1 && REG_NOTES (insn) != 0 4589 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0) 4590 { 4591 4592 if (GET_CODE (SET_DEST (sets[0].rtl)) != ZERO_EXTRACT 4593 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)) 4594 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART)) 4595 src_eqv = copy_rtx (XEXP (tem, 0)); 4596 /* If DEST is of the form ZERO_EXTACT, as in: 4597 (set (zero_extract:SI (reg:SI 119) 4598 (const_int 16 [0x10]) 4599 (const_int 16 [0x10])) 4600 (const_int 51154 [0xc7d2])) 4601 REG_EQUAL note will specify the value of register (reg:SI 119) at this 4602 point. Note that this is different from SRC_EQV. We can however 4603 calculate SRC_EQV with the position and width of ZERO_EXTRACT. */ 4604 else if (GET_CODE (SET_DEST (sets[0].rtl)) == ZERO_EXTRACT 4605 && CONST_INT_P (XEXP (tem, 0)) 4606 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 1)) 4607 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 2))) 4608 { 4609 rtx dest_reg = XEXP (SET_DEST (sets[0].rtl), 0); 4610 /* This is the mode of XEXP (tem, 0) as well. */ 4611 scalar_int_mode dest_mode 4612 = as_a <scalar_int_mode> (GET_MODE (dest_reg)); 4613 rtx width = XEXP (SET_DEST (sets[0].rtl), 1); 4614 rtx pos = XEXP (SET_DEST (sets[0].rtl), 2); 4615 HOST_WIDE_INT val = INTVAL (XEXP (tem, 0)); 4616 HOST_WIDE_INT mask; 4617 unsigned int shift; 4618 if (BITS_BIG_ENDIAN) 4619 shift = (GET_MODE_PRECISION (dest_mode) 4620 - INTVAL (pos) - INTVAL (width)); 4621 else 4622 shift = INTVAL (pos); 4623 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT) 4624 mask = HOST_WIDE_INT_M1; 4625 else 4626 mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1; 4627 val = (val >> shift) & mask; 4628 src_eqv = GEN_INT (val); 4629 } 4630 } 4631 4632 /* Set sets[i].src_elt to the class each source belongs to. 4633 Detect assignments from or to volatile things 4634 and set set[i] to zero so they will be ignored 4635 in the rest of this function. 4636 4637 Nothing in this loop changes the hash table or the register chains. */ 4638 4639 for (i = 0; i < n_sets; i++) 4640 { 4641 bool repeat = false; 4642 bool mem_noop_insn = false; 4643 rtx src, dest; 4644 rtx src_folded; 4645 struct table_elt *elt = 0, *p; 4646 machine_mode mode; 4647 rtx src_eqv_here; 4648 rtx src_const = 0; 4649 rtx src_related = 0; 4650 bool src_related_is_const_anchor = false; 4651 struct table_elt *src_const_elt = 0; 4652 int src_cost = MAX_COST; 4653 int src_eqv_cost = MAX_COST; 4654 int src_folded_cost = MAX_COST; 4655 int src_related_cost = MAX_COST; 4656 int src_elt_cost = MAX_COST; 4657 int src_regcost = MAX_COST; 4658 int src_eqv_regcost = MAX_COST; 4659 int src_folded_regcost = MAX_COST; 4660 int src_related_regcost = MAX_COST; 4661 int src_elt_regcost = MAX_COST; 4662 /* Set nonzero if we need to call force_const_mem on with the 4663 contents of src_folded before using it. */ 4664 int src_folded_force_flag = 0; 4665 scalar_int_mode int_mode; 4666 4667 dest = SET_DEST (sets[i].rtl); 4668 src = SET_SRC (sets[i].rtl); 4669 4670 /* If SRC is a constant that has no machine mode, 4671 hash it with the destination's machine mode. 4672 This way we can keep different modes separate. */ 4673 4674 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src); 4675 sets[i].mode = mode; 4676 4677 if (src_eqv) 4678 { 4679 machine_mode eqvmode = mode; 4680 if (GET_CODE (dest) == STRICT_LOW_PART) 4681 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0))); 4682 do_not_record = 0; 4683 hash_arg_in_memory = 0; 4684 src_eqv_hash = HASH (src_eqv, eqvmode); 4685 4686 /* Find the equivalence class for the equivalent expression. */ 4687 4688 if (!do_not_record) 4689 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode); 4690 4691 src_eqv_volatile = do_not_record; 4692 src_eqv_in_memory = hash_arg_in_memory; 4693 } 4694 4695 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the 4696 value of the INNER register, not the destination. So it is not 4697 a valid substitution for the source. But save it for later. */ 4698 if (GET_CODE (dest) == STRICT_LOW_PART) 4699 src_eqv_here = 0; 4700 else 4701 src_eqv_here = src_eqv; 4702 4703 /* Simplify and foldable subexpressions in SRC. Then get the fully- 4704 simplified result, which may not necessarily be valid. */ 4705 src_folded = fold_rtx (src, NULL); 4706 4707 #if 0 4708 /* ??? This caused bad code to be generated for the m68k port with -O2. 4709 Suppose src is (CONST_INT -1), and that after truncation src_folded 4710 is (CONST_INT 3). Suppose src_folded is then used for src_const. 4711 At the end we will add src and src_const to the same equivalence 4712 class. We now have 3 and -1 on the same equivalence class. This 4713 causes later instructions to be mis-optimized. */ 4714 /* If storing a constant in a bitfield, pre-truncate the constant 4715 so we will be able to record it later. */ 4716 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT) 4717 { 4718 rtx width = XEXP (SET_DEST (sets[i].rtl), 1); 4719 4720 if (CONST_INT_P (src) 4721 && CONST_INT_P (width) 4722 && INTVAL (width) < HOST_BITS_PER_WIDE_INT 4723 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width)))) 4724 src_folded 4725 = GEN_INT (INTVAL (src) & ((HOST_WIDE_INT_1 4726 << INTVAL (width)) - 1)); 4727 } 4728 #endif 4729 4730 /* Compute SRC's hash code, and also notice if it 4731 should not be recorded at all. In that case, 4732 prevent any further processing of this assignment. */ 4733 do_not_record = 0; 4734 hash_arg_in_memory = 0; 4735 4736 sets[i].src = src; 4737 sets[i].src_hash = HASH (src, mode); 4738 sets[i].src_volatile = do_not_record; 4739 sets[i].src_in_memory = hash_arg_in_memory; 4740 4741 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is 4742 a pseudo, do not record SRC. Using SRC as a replacement for 4743 anything else will be incorrect in that situation. Note that 4744 this usually occurs only for stack slots, in which case all the 4745 RTL would be referring to SRC, so we don't lose any optimization 4746 opportunities by not having SRC in the hash table. */ 4747 4748 if (MEM_P (src) 4749 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0 4750 && REG_P (dest) 4751 && REGNO (dest) >= FIRST_PSEUDO_REGISTER) 4752 sets[i].src_volatile = 1; 4753 4754 else if (GET_CODE (src) == ASM_OPERANDS 4755 && GET_CODE (x) == PARALLEL) 4756 { 4757 /* Do not record result of a non-volatile inline asm with 4758 more than one result. */ 4759 if (n_sets > 1) 4760 sets[i].src_volatile = 1; 4761 4762 int j, lim = XVECLEN (x, 0); 4763 for (j = 0; j < lim; j++) 4764 { 4765 rtx y = XVECEXP (x, 0, j); 4766 /* And do not record result of a non-volatile inline asm 4767 with "memory" clobber. */ 4768 if (GET_CODE (y) == CLOBBER && MEM_P (XEXP (y, 0))) 4769 { 4770 sets[i].src_volatile = 1; 4771 break; 4772 } 4773 } 4774 } 4775 4776 #if 0 4777 /* It is no longer clear why we used to do this, but it doesn't 4778 appear to still be needed. So let's try without it since this 4779 code hurts cse'ing widened ops. */ 4780 /* If source is a paradoxical subreg (such as QI treated as an SI), 4781 treat it as volatile. It may do the work of an SI in one context 4782 where the extra bits are not being used, but cannot replace an SI 4783 in general. */ 4784 if (paradoxical_subreg_p (src)) 4785 sets[i].src_volatile = 1; 4786 #endif 4787 4788 /* Locate all possible equivalent forms for SRC. Try to replace 4789 SRC in the insn with each cheaper equivalent. 4790 4791 We have the following types of equivalents: SRC itself, a folded 4792 version, a value given in a REG_EQUAL note, or a value related 4793 to a constant. 4794 4795 Each of these equivalents may be part of an additional class 4796 of equivalents (if more than one is in the table, they must be in 4797 the same class; we check for this). 4798 4799 If the source is volatile, we don't do any table lookups. 4800 4801 We note any constant equivalent for possible later use in a 4802 REG_NOTE. */ 4803 4804 if (!sets[i].src_volatile) 4805 elt = lookup (src, sets[i].src_hash, mode); 4806 4807 sets[i].src_elt = elt; 4808 4809 if (elt && src_eqv_here && src_eqv_elt) 4810 { 4811 if (elt->first_same_value != src_eqv_elt->first_same_value) 4812 { 4813 /* The REG_EQUAL is indicating that two formerly distinct 4814 classes are now equivalent. So merge them. */ 4815 merge_equiv_classes (elt, src_eqv_elt); 4816 src_eqv_hash = HASH (src_eqv, elt->mode); 4817 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode); 4818 } 4819 4820 src_eqv_here = 0; 4821 } 4822 4823 else if (src_eqv_elt) 4824 elt = src_eqv_elt; 4825 4826 /* Try to find a constant somewhere and record it in `src_const'. 4827 Record its table element, if any, in `src_const_elt'. Look in 4828 any known equivalences first. (If the constant is not in the 4829 table, also set `sets[i].src_const_hash'). */ 4830 if (elt) 4831 for (p = elt->first_same_value; p; p = p->next_same_value) 4832 if (p->is_const) 4833 { 4834 src_const = p->exp; 4835 src_const_elt = elt; 4836 break; 4837 } 4838 4839 if (src_const == 0 4840 && (CONSTANT_P (src_folded) 4841 /* Consider (minus (label_ref L1) (label_ref L2)) as 4842 "constant" here so we will record it. This allows us 4843 to fold switch statements when an ADDR_DIFF_VEC is used. */ 4844 || (GET_CODE (src_folded) == MINUS 4845 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF 4846 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF))) 4847 src_const = src_folded, src_const_elt = elt; 4848 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here)) 4849 src_const = src_eqv_here, src_const_elt = src_eqv_elt; 4850 4851 /* If we don't know if the constant is in the table, get its 4852 hash code and look it up. */ 4853 if (src_const && src_const_elt == 0) 4854 { 4855 sets[i].src_const_hash = HASH (src_const, mode); 4856 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode); 4857 } 4858 4859 sets[i].src_const = src_const; 4860 sets[i].src_const_elt = src_const_elt; 4861 4862 /* If the constant and our source are both in the table, mark them as 4863 equivalent. Otherwise, if a constant is in the table but the source 4864 isn't, set ELT to it. */ 4865 if (src_const_elt && elt 4866 && src_const_elt->first_same_value != elt->first_same_value) 4867 merge_equiv_classes (elt, src_const_elt); 4868 else if (src_const_elt && elt == 0) 4869 elt = src_const_elt; 4870 4871 /* See if there is a register linearly related to a constant 4872 equivalent of SRC. */ 4873 if (src_const 4874 && (GET_CODE (src_const) == CONST 4875 || (src_const_elt && src_const_elt->related_value != 0))) 4876 { 4877 src_related = use_related_value (src_const, src_const_elt); 4878 if (src_related) 4879 { 4880 struct table_elt *src_related_elt 4881 = lookup (src_related, HASH (src_related, mode), mode); 4882 if (src_related_elt && elt) 4883 { 4884 if (elt->first_same_value 4885 != src_related_elt->first_same_value) 4886 /* This can occur when we previously saw a CONST 4887 involving a SYMBOL_REF and then see the SYMBOL_REF 4888 twice. Merge the involved classes. */ 4889 merge_equiv_classes (elt, src_related_elt); 4890 4891 src_related = 0; 4892 src_related_elt = 0; 4893 } 4894 else if (src_related_elt && elt == 0) 4895 elt = src_related_elt; 4896 } 4897 } 4898 4899 /* See if we have a CONST_INT that is already in a register in a 4900 wider mode. */ 4901 4902 if (src_const && src_related == 0 && CONST_INT_P (src_const) 4903 && is_int_mode (mode, &int_mode) 4904 && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD) 4905 { 4906 opt_scalar_int_mode wider_mode_iter; 4907 FOR_EACH_WIDER_MODE (wider_mode_iter, int_mode) 4908 { 4909 scalar_int_mode wider_mode = wider_mode_iter.require (); 4910 if (GET_MODE_PRECISION (wider_mode) > BITS_PER_WORD) 4911 break; 4912 4913 struct table_elt *const_elt 4914 = lookup (src_const, HASH (src_const, wider_mode), wider_mode); 4915 4916 if (const_elt == 0) 4917 continue; 4918 4919 for (const_elt = const_elt->first_same_value; 4920 const_elt; const_elt = const_elt->next_same_value) 4921 if (REG_P (const_elt->exp)) 4922 { 4923 src_related = gen_lowpart (int_mode, const_elt->exp); 4924 break; 4925 } 4926 4927 if (src_related != 0) 4928 break; 4929 } 4930 } 4931 4932 /* Another possibility is that we have an AND with a constant in 4933 a mode narrower than a word. If so, it might have been generated 4934 as part of an "if" which would narrow the AND. If we already 4935 have done the AND in a wider mode, we can use a SUBREG of that 4936 value. */ 4937 4938 if (flag_expensive_optimizations && ! src_related 4939 && is_a <scalar_int_mode> (mode, &int_mode) 4940 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1)) 4941 && GET_MODE_SIZE (int_mode) < UNITS_PER_WORD) 4942 { 4943 opt_scalar_int_mode tmode_iter; 4944 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1)); 4945 4946 FOR_EACH_WIDER_MODE (tmode_iter, int_mode) 4947 { 4948 scalar_int_mode tmode = tmode_iter.require (); 4949 if (GET_MODE_SIZE (tmode) > UNITS_PER_WORD) 4950 break; 4951 4952 rtx inner = gen_lowpart (tmode, XEXP (src, 0)); 4953 struct table_elt *larger_elt; 4954 4955 if (inner) 4956 { 4957 PUT_MODE (new_and, tmode); 4958 XEXP (new_and, 0) = inner; 4959 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode); 4960 if (larger_elt == 0) 4961 continue; 4962 4963 for (larger_elt = larger_elt->first_same_value; 4964 larger_elt; larger_elt = larger_elt->next_same_value) 4965 if (REG_P (larger_elt->exp)) 4966 { 4967 src_related 4968 = gen_lowpart (int_mode, larger_elt->exp); 4969 break; 4970 } 4971 4972 if (src_related) 4973 break; 4974 } 4975 } 4976 } 4977 4978 /* See if a MEM has already been loaded with a widening operation; 4979 if it has, we can use a subreg of that. Many CISC machines 4980 also have such operations, but this is only likely to be 4981 beneficial on these machines. */ 4982 4983 rtx_code extend_op; 4984 if (flag_expensive_optimizations && src_related == 0 4985 && MEM_P (src) && ! do_not_record 4986 && is_a <scalar_int_mode> (mode, &int_mode) 4987 && (extend_op = load_extend_op (int_mode)) != UNKNOWN) 4988 { 4989 struct rtx_def memory_extend_buf; 4990 rtx memory_extend_rtx = &memory_extend_buf; 4991 4992 /* Set what we are trying to extend and the operation it might 4993 have been extended with. */ 4994 memset (memory_extend_rtx, 0, sizeof (*memory_extend_rtx)); 4995 PUT_CODE (memory_extend_rtx, extend_op); 4996 XEXP (memory_extend_rtx, 0) = src; 4997 4998 opt_scalar_int_mode tmode_iter; 4999 FOR_EACH_WIDER_MODE (tmode_iter, int_mode) 5000 { 5001 struct table_elt *larger_elt; 5002 5003 scalar_int_mode tmode = tmode_iter.require (); 5004 if (GET_MODE_SIZE (tmode) > UNITS_PER_WORD) 5005 break; 5006 5007 PUT_MODE (memory_extend_rtx, tmode); 5008 larger_elt = lookup (memory_extend_rtx, 5009 HASH (memory_extend_rtx, tmode), tmode); 5010 if (larger_elt == 0) 5011 continue; 5012 5013 for (larger_elt = larger_elt->first_same_value; 5014 larger_elt; larger_elt = larger_elt->next_same_value) 5015 if (REG_P (larger_elt->exp)) 5016 { 5017 src_related = gen_lowpart (int_mode, larger_elt->exp); 5018 break; 5019 } 5020 5021 if (src_related) 5022 break; 5023 } 5024 } 5025 5026 /* Try to express the constant using a register+offset expression 5027 derived from a constant anchor. */ 5028 5029 if (targetm.const_anchor 5030 && !src_related 5031 && src_const 5032 && GET_CODE (src_const) == CONST_INT) 5033 { 5034 src_related = try_const_anchors (src_const, mode); 5035 src_related_is_const_anchor = src_related != NULL_RTX; 5036 } 5037 5038 5039 if (src == src_folded) 5040 src_folded = 0; 5041 5042 /* At this point, ELT, if nonzero, points to a class of expressions 5043 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED, 5044 and SRC_RELATED, if nonzero, each contain additional equivalent 5045 expressions. Prune these latter expressions by deleting expressions 5046 already in the equivalence class. 5047 5048 Check for an equivalent identical to the destination. If found, 5049 this is the preferred equivalent since it will likely lead to 5050 elimination of the insn. Indicate this by placing it in 5051 `src_related'. */ 5052 5053 if (elt) 5054 elt = elt->first_same_value; 5055 for (p = elt; p; p = p->next_same_value) 5056 { 5057 enum rtx_code code = GET_CODE (p->exp); 5058 5059 /* If the expression is not valid, ignore it. Then we do not 5060 have to check for validity below. In most cases, we can use 5061 `rtx_equal_p', since canonicalization has already been done. */ 5062 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false)) 5063 continue; 5064 5065 /* Also skip paradoxical subregs, unless that's what we're 5066 looking for. */ 5067 if (paradoxical_subreg_p (p->exp) 5068 && ! (src != 0 5069 && GET_CODE (src) == SUBREG 5070 && GET_MODE (src) == GET_MODE (p->exp) 5071 && partial_subreg_p (GET_MODE (SUBREG_REG (src)), 5072 GET_MODE (SUBREG_REG (p->exp))))) 5073 continue; 5074 5075 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp)) 5076 src = 0; 5077 else if (src_folded && GET_CODE (src_folded) == code 5078 && rtx_equal_p (src_folded, p->exp)) 5079 src_folded = 0; 5080 else if (src_eqv_here && GET_CODE (src_eqv_here) == code 5081 && rtx_equal_p (src_eqv_here, p->exp)) 5082 src_eqv_here = 0; 5083 else if (src_related && GET_CODE (src_related) == code 5084 && rtx_equal_p (src_related, p->exp)) 5085 src_related = 0; 5086 5087 /* This is the same as the destination of the insns, we want 5088 to prefer it. Copy it to src_related. The code below will 5089 then give it a negative cost. */ 5090 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest)) 5091 src_related = dest; 5092 } 5093 5094 /* Find the cheapest valid equivalent, trying all the available 5095 possibilities. Prefer items not in the hash table to ones 5096 that are when they are equal cost. Note that we can never 5097 worsen an insn as the current contents will also succeed. 5098 If we find an equivalent identical to the destination, use it as best, 5099 since this insn will probably be eliminated in that case. */ 5100 if (src) 5101 { 5102 if (rtx_equal_p (src, dest)) 5103 src_cost = src_regcost = -1; 5104 else 5105 { 5106 src_cost = COST (src, mode); 5107 src_regcost = approx_reg_cost (src); 5108 } 5109 } 5110 5111 if (src_eqv_here) 5112 { 5113 if (rtx_equal_p (src_eqv_here, dest)) 5114 src_eqv_cost = src_eqv_regcost = -1; 5115 else 5116 { 5117 src_eqv_cost = COST (src_eqv_here, mode); 5118 src_eqv_regcost = approx_reg_cost (src_eqv_here); 5119 } 5120 } 5121 5122 if (src_folded) 5123 { 5124 if (rtx_equal_p (src_folded, dest)) 5125 src_folded_cost = src_folded_regcost = -1; 5126 else 5127 { 5128 src_folded_cost = COST (src_folded, mode); 5129 src_folded_regcost = approx_reg_cost (src_folded); 5130 } 5131 } 5132 5133 if (src_related) 5134 { 5135 if (rtx_equal_p (src_related, dest)) 5136 src_related_cost = src_related_regcost = -1; 5137 else 5138 { 5139 src_related_cost = COST (src_related, mode); 5140 src_related_regcost = approx_reg_cost (src_related); 5141 5142 /* If a const-anchor is used to synthesize a constant that 5143 normally requires multiple instructions then slightly prefer 5144 it over the original sequence. These instructions are likely 5145 to become redundant now. We can't compare against the cost 5146 of src_eqv_here because, on MIPS for example, multi-insn 5147 constants have zero cost; they are assumed to be hoisted from 5148 loops. */ 5149 if (src_related_is_const_anchor 5150 && src_related_cost == src_cost 5151 && src_eqv_here) 5152 src_related_cost--; 5153 } 5154 } 5155 5156 /* If this was an indirect jump insn, a known label will really be 5157 cheaper even though it looks more expensive. */ 5158 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF) 5159 src_folded = src_const, src_folded_cost = src_folded_regcost = -1; 5160 5161 /* Terminate loop when replacement made. This must terminate since 5162 the current contents will be tested and will always be valid. */ 5163 while (1) 5164 { 5165 rtx trial; 5166 5167 /* Skip invalid entries. */ 5168 while (elt && !REG_P (elt->exp) 5169 && ! exp_equiv_p (elt->exp, elt->exp, 1, false)) 5170 elt = elt->next_same_value; 5171 5172 /* A paradoxical subreg would be bad here: it'll be the right 5173 size, but later may be adjusted so that the upper bits aren't 5174 what we want. So reject it. */ 5175 if (elt != 0 5176 && paradoxical_subreg_p (elt->exp) 5177 /* It is okay, though, if the rtx we're trying to match 5178 will ignore any of the bits we can't predict. */ 5179 && ! (src != 0 5180 && GET_CODE (src) == SUBREG 5181 && GET_MODE (src) == GET_MODE (elt->exp) 5182 && partial_subreg_p (GET_MODE (SUBREG_REG (src)), 5183 GET_MODE (SUBREG_REG (elt->exp))))) 5184 { 5185 elt = elt->next_same_value; 5186 continue; 5187 } 5188 5189 if (elt) 5190 { 5191 src_elt_cost = elt->cost; 5192 src_elt_regcost = elt->regcost; 5193 } 5194 5195 /* Find cheapest and skip it for the next time. For items 5196 of equal cost, use this order: 5197 src_folded, src, src_eqv, src_related and hash table entry. */ 5198 if (src_folded 5199 && preferable (src_folded_cost, src_folded_regcost, 5200 src_cost, src_regcost) <= 0 5201 && preferable (src_folded_cost, src_folded_regcost, 5202 src_eqv_cost, src_eqv_regcost) <= 0 5203 && preferable (src_folded_cost, src_folded_regcost, 5204 src_related_cost, src_related_regcost) <= 0 5205 && preferable (src_folded_cost, src_folded_regcost, 5206 src_elt_cost, src_elt_regcost) <= 0) 5207 { 5208 trial = src_folded, src_folded_cost = MAX_COST; 5209 if (src_folded_force_flag) 5210 { 5211 rtx forced = force_const_mem (mode, trial); 5212 if (forced) 5213 trial = forced; 5214 } 5215 } 5216 else if (src 5217 && preferable (src_cost, src_regcost, 5218 src_eqv_cost, src_eqv_regcost) <= 0 5219 && preferable (src_cost, src_regcost, 5220 src_related_cost, src_related_regcost) <= 0 5221 && preferable (src_cost, src_regcost, 5222 src_elt_cost, src_elt_regcost) <= 0) 5223 trial = src, src_cost = MAX_COST; 5224 else if (src_eqv_here 5225 && preferable (src_eqv_cost, src_eqv_regcost, 5226 src_related_cost, src_related_regcost) <= 0 5227 && preferable (src_eqv_cost, src_eqv_regcost, 5228 src_elt_cost, src_elt_regcost) <= 0) 5229 trial = src_eqv_here, src_eqv_cost = MAX_COST; 5230 else if (src_related 5231 && preferable (src_related_cost, src_related_regcost, 5232 src_elt_cost, src_elt_regcost) <= 0) 5233 trial = src_related, src_related_cost = MAX_COST; 5234 else 5235 { 5236 trial = elt->exp; 5237 elt = elt->next_same_value; 5238 src_elt_cost = MAX_COST; 5239 } 5240 5241 /* Avoid creation of overlapping memory moves. */ 5242 if (MEM_P (trial) && MEM_P (dest) && !rtx_equal_p (trial, dest)) 5243 { 5244 rtx src, dest; 5245 5246 /* BLKmode moves are not handled by cse anyway. */ 5247 if (GET_MODE (trial) == BLKmode) 5248 break; 5249 5250 src = canon_rtx (trial); 5251 dest = canon_rtx (SET_DEST (sets[i].rtl)); 5252 5253 if (!MEM_P (src) || !MEM_P (dest) 5254 || !nonoverlapping_memrefs_p (src, dest, false)) 5255 break; 5256 } 5257 5258 /* Try to optimize 5259 (set (reg:M N) (const_int A)) 5260 (set (reg:M2 O) (const_int B)) 5261 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D)) 5262 (reg:M2 O)). */ 5263 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT 5264 && CONST_INT_P (trial) 5265 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1)) 5266 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2)) 5267 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0)) 5268 && (known_ge 5269 (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl))), 5270 INTVAL (XEXP (SET_DEST (sets[i].rtl), 1)))) 5271 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1)) 5272 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2)) 5273 <= HOST_BITS_PER_WIDE_INT)) 5274 { 5275 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0); 5276 rtx width = XEXP (SET_DEST (sets[i].rtl), 1); 5277 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2); 5278 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg)); 5279 struct table_elt *dest_elt 5280 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg)); 5281 rtx dest_cst = NULL; 5282 5283 if (dest_elt) 5284 for (p = dest_elt->first_same_value; p; p = p->next_same_value) 5285 if (p->is_const && CONST_INT_P (p->exp)) 5286 { 5287 dest_cst = p->exp; 5288 break; 5289 } 5290 if (dest_cst) 5291 { 5292 HOST_WIDE_INT val = INTVAL (dest_cst); 5293 HOST_WIDE_INT mask; 5294 unsigned int shift; 5295 /* This is the mode of DEST_CST as well. */ 5296 scalar_int_mode dest_mode 5297 = as_a <scalar_int_mode> (GET_MODE (dest_reg)); 5298 if (BITS_BIG_ENDIAN) 5299 shift = GET_MODE_PRECISION (dest_mode) 5300 - INTVAL (pos) - INTVAL (width); 5301 else 5302 shift = INTVAL (pos); 5303 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT) 5304 mask = HOST_WIDE_INT_M1; 5305 else 5306 mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1; 5307 val &= ~(mask << shift); 5308 val |= (INTVAL (trial) & mask) << shift; 5309 val = trunc_int_for_mode (val, dest_mode); 5310 validate_unshare_change (insn, &SET_DEST (sets[i].rtl), 5311 dest_reg, 1); 5312 validate_unshare_change (insn, &SET_SRC (sets[i].rtl), 5313 GEN_INT (val), 1); 5314 if (apply_change_group ()) 5315 { 5316 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX); 5317 if (note) 5318 { 5319 remove_note (insn, note); 5320 df_notes_rescan (insn); 5321 } 5322 src_eqv = NULL_RTX; 5323 src_eqv_elt = NULL; 5324 src_eqv_volatile = 0; 5325 src_eqv_in_memory = 0; 5326 src_eqv_hash = 0; 5327 repeat = true; 5328 break; 5329 } 5330 } 5331 } 5332 5333 /* We don't normally have an insn matching (set (pc) (pc)), so 5334 check for this separately here. We will delete such an 5335 insn below. 5336 5337 For other cases such as a table jump or conditional jump 5338 where we know the ultimate target, go ahead and replace the 5339 operand. While that may not make a valid insn, we will 5340 reemit the jump below (and also insert any necessary 5341 barriers). */ 5342 if (n_sets == 1 && dest == pc_rtx 5343 && (trial == pc_rtx 5344 || (GET_CODE (trial) == LABEL_REF 5345 && ! condjump_p (insn)))) 5346 { 5347 /* Don't substitute non-local labels, this confuses CFG. */ 5348 if (GET_CODE (trial) == LABEL_REF 5349 && LABEL_REF_NONLOCAL_P (trial)) 5350 continue; 5351 5352 SET_SRC (sets[i].rtl) = trial; 5353 cse_jumps_altered = true; 5354 break; 5355 } 5356 5357 /* Similarly, lots of targets don't allow no-op 5358 (set (mem x) (mem x)) moves. */ 5359 else if (n_sets == 1 5360 && MEM_P (trial) 5361 && MEM_P (dest) 5362 && rtx_equal_p (trial, dest) 5363 && !side_effects_p (dest) 5364 && (cfun->can_delete_dead_exceptions 5365 || insn_nothrow_p (insn))) 5366 { 5367 SET_SRC (sets[i].rtl) = trial; 5368 mem_noop_insn = true; 5369 break; 5370 } 5371 5372 /* Reject certain invalid forms of CONST that we create. */ 5373 else if (CONSTANT_P (trial) 5374 && GET_CODE (trial) == CONST 5375 /* Reject cases that will cause decode_rtx_const to 5376 die. On the alpha when simplifying a switch, we 5377 get (const (truncate (minus (label_ref) 5378 (label_ref)))). */ 5379 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE 5380 /* Likewise on IA-64, except without the 5381 truncate. */ 5382 || (GET_CODE (XEXP (trial, 0)) == MINUS 5383 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF 5384 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF))) 5385 /* Do nothing for this case. */ 5386 ; 5387 5388 /* Look for a substitution that makes a valid insn. */ 5389 else if (validate_unshare_change (insn, &SET_SRC (sets[i].rtl), 5390 trial, 0)) 5391 { 5392 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn); 5393 5394 /* The result of apply_change_group can be ignored; see 5395 canon_reg. */ 5396 5397 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1); 5398 apply_change_group (); 5399 5400 break; 5401 } 5402 5403 /* If we previously found constant pool entries for 5404 constants and this is a constant, try making a 5405 pool entry. Put it in src_folded unless we already have done 5406 this since that is where it likely came from. */ 5407 5408 else if (constant_pool_entries_cost 5409 && CONSTANT_P (trial) 5410 && (src_folded == 0 5411 || (!MEM_P (src_folded) 5412 && ! src_folded_force_flag)) 5413 && GET_MODE_CLASS (mode) != MODE_CC 5414 && mode != VOIDmode) 5415 { 5416 src_folded_force_flag = 1; 5417 src_folded = trial; 5418 src_folded_cost = constant_pool_entries_cost; 5419 src_folded_regcost = constant_pool_entries_regcost; 5420 } 5421 } 5422 5423 /* If we changed the insn too much, handle this set from scratch. */ 5424 if (repeat) 5425 { 5426 i--; 5427 continue; 5428 } 5429 5430 src = SET_SRC (sets[i].rtl); 5431 5432 /* In general, it is good to have a SET with SET_SRC == SET_DEST. 5433 However, there is an important exception: If both are registers 5434 that are not the head of their equivalence class, replace SET_SRC 5435 with the head of the class. If we do not do this, we will have 5436 both registers live over a portion of the basic block. This way, 5437 their lifetimes will likely abut instead of overlapping. */ 5438 if (REG_P (dest) 5439 && REGNO_QTY_VALID_P (REGNO (dest))) 5440 { 5441 int dest_q = REG_QTY (REGNO (dest)); 5442 struct qty_table_elem *dest_ent = &qty_table[dest_q]; 5443 5444 if (dest_ent->mode == GET_MODE (dest) 5445 && dest_ent->first_reg != REGNO (dest) 5446 && REG_P (src) && REGNO (src) == REGNO (dest) 5447 /* Don't do this if the original insn had a hard reg as 5448 SET_SRC or SET_DEST. */ 5449 && (!REG_P (sets[i].src) 5450 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER) 5451 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)) 5452 /* We can't call canon_reg here because it won't do anything if 5453 SRC is a hard register. */ 5454 { 5455 int src_q = REG_QTY (REGNO (src)); 5456 struct qty_table_elem *src_ent = &qty_table[src_q]; 5457 int first = src_ent->first_reg; 5458 rtx new_src 5459 = (first >= FIRST_PSEUDO_REGISTER 5460 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first)); 5461 5462 /* We must use validate-change even for this, because this 5463 might be a special no-op instruction, suitable only to 5464 tag notes onto. */ 5465 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0)) 5466 { 5467 src = new_src; 5468 /* If we had a constant that is cheaper than what we are now 5469 setting SRC to, use that constant. We ignored it when we 5470 thought we could make this into a no-op. */ 5471 if (src_const && COST (src_const, mode) < COST (src, mode) 5472 && validate_change (insn, &SET_SRC (sets[i].rtl), 5473 src_const, 0)) 5474 src = src_const; 5475 } 5476 } 5477 } 5478 5479 /* If we made a change, recompute SRC values. */ 5480 if (src != sets[i].src) 5481 { 5482 do_not_record = 0; 5483 hash_arg_in_memory = 0; 5484 sets[i].src = src; 5485 sets[i].src_hash = HASH (src, mode); 5486 sets[i].src_volatile = do_not_record; 5487 sets[i].src_in_memory = hash_arg_in_memory; 5488 sets[i].src_elt = lookup (src, sets[i].src_hash, mode); 5489 } 5490 5491 /* If this is a single SET, we are setting a register, and we have an 5492 equivalent constant, we want to add a REG_EQUAL note if the constant 5493 is different from the source. We don't want to do it for a constant 5494 pseudo since verifying that this pseudo hasn't been eliminated is a 5495 pain; moreover such a note won't help anything. 5496 5497 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF))) 5498 which can be created for a reference to a compile time computable 5499 entry in a jump table. */ 5500 if (n_sets == 1 5501 && REG_P (dest) 5502 && src_const 5503 && !REG_P (src_const) 5504 && !(GET_CODE (src_const) == SUBREG 5505 && REG_P (SUBREG_REG (src_const))) 5506 && !(GET_CODE (src_const) == CONST 5507 && GET_CODE (XEXP (src_const, 0)) == MINUS 5508 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF 5509 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF) 5510 && !rtx_equal_p (src, src_const)) 5511 { 5512 /* Make sure that the rtx is not shared. */ 5513 src_const = copy_rtx (src_const); 5514 5515 /* Record the actual constant value in a REG_EQUAL note, 5516 making a new one if one does not already exist. */ 5517 set_unique_reg_note (insn, REG_EQUAL, src_const); 5518 df_notes_rescan (insn); 5519 } 5520 5521 /* Now deal with the destination. */ 5522 do_not_record = 0; 5523 5524 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */ 5525 while (GET_CODE (dest) == SUBREG 5526 || GET_CODE (dest) == ZERO_EXTRACT 5527 || GET_CODE (dest) == STRICT_LOW_PART) 5528 dest = XEXP (dest, 0); 5529 5530 sets[i].inner_dest = dest; 5531 5532 if (MEM_P (dest)) 5533 { 5534 #ifdef PUSH_ROUNDING 5535 /* Stack pushes invalidate the stack pointer. */ 5536 rtx addr = XEXP (dest, 0); 5537 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC 5538 && XEXP (addr, 0) == stack_pointer_rtx) 5539 invalidate (stack_pointer_rtx, VOIDmode); 5540 #endif 5541 dest = fold_rtx (dest, insn); 5542 } 5543 5544 /* Compute the hash code of the destination now, 5545 before the effects of this instruction are recorded, 5546 since the register values used in the address computation 5547 are those before this instruction. */ 5548 sets[i].dest_hash = HASH (dest, mode); 5549 5550 /* Don't enter a bit-field in the hash table 5551 because the value in it after the store 5552 may not equal what was stored, due to truncation. */ 5553 5554 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT) 5555 { 5556 rtx width = XEXP (SET_DEST (sets[i].rtl), 1); 5557 5558 if (src_const != 0 && CONST_INT_P (src_const) 5559 && CONST_INT_P (width) 5560 && INTVAL (width) < HOST_BITS_PER_WIDE_INT 5561 && ! (INTVAL (src_const) 5562 & (HOST_WIDE_INT_M1U << INTVAL (width)))) 5563 /* Exception: if the value is constant, 5564 and it won't be truncated, record it. */ 5565 ; 5566 else 5567 { 5568 /* This is chosen so that the destination will be invalidated 5569 but no new value will be recorded. 5570 We must invalidate because sometimes constant 5571 values can be recorded for bitfields. */ 5572 sets[i].src_elt = 0; 5573 sets[i].src_volatile = 1; 5574 src_eqv = 0; 5575 src_eqv_elt = 0; 5576 } 5577 } 5578 5579 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete 5580 the insn. */ 5581 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx) 5582 { 5583 /* One less use of the label this insn used to jump to. */ 5584 cse_cfg_altered |= delete_insn_and_edges (insn); 5585 cse_jumps_altered = true; 5586 /* No more processing for this set. */ 5587 sets[i].rtl = 0; 5588 } 5589 5590 /* Similarly for no-op MEM moves. */ 5591 else if (mem_noop_insn) 5592 { 5593 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn)) 5594 cse_cfg_altered = true; 5595 cse_cfg_altered |= delete_insn_and_edges (insn); 5596 /* No more processing for this set. */ 5597 sets[i].rtl = 0; 5598 } 5599 5600 /* If this SET is now setting PC to a label, we know it used to 5601 be a conditional or computed branch. */ 5602 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF 5603 && !LABEL_REF_NONLOCAL_P (src)) 5604 { 5605 /* We reemit the jump in as many cases as possible just in 5606 case the form of an unconditional jump is significantly 5607 different than a computed jump or conditional jump. 5608 5609 If this insn has multiple sets, then reemitting the 5610 jump is nontrivial. So instead we just force rerecognition 5611 and hope for the best. */ 5612 if (n_sets == 1) 5613 { 5614 rtx_jump_insn *new_rtx; 5615 rtx note; 5616 5617 rtx_insn *seq = targetm.gen_jump (XEXP (src, 0)); 5618 new_rtx = emit_jump_insn_before (seq, insn); 5619 JUMP_LABEL (new_rtx) = XEXP (src, 0); 5620 LABEL_NUSES (XEXP (src, 0))++; 5621 5622 /* Make sure to copy over REG_NON_LOCAL_GOTO. */ 5623 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0); 5624 if (note) 5625 { 5626 XEXP (note, 1) = NULL_RTX; 5627 REG_NOTES (new_rtx) = note; 5628 } 5629 5630 cse_cfg_altered |= delete_insn_and_edges (insn); 5631 insn = new_rtx; 5632 } 5633 else 5634 INSN_CODE (insn) = -1; 5635 5636 /* Do not bother deleting any unreachable code, let jump do it. */ 5637 cse_jumps_altered = true; 5638 sets[i].rtl = 0; 5639 } 5640 5641 /* If destination is volatile, invalidate it and then do no further 5642 processing for this assignment. */ 5643 5644 else if (do_not_record) 5645 { 5646 invalidate_dest (dest); 5647 sets[i].rtl = 0; 5648 } 5649 5650 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl)) 5651 { 5652 do_not_record = 0; 5653 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode); 5654 if (do_not_record) 5655 { 5656 invalidate_dest (SET_DEST (sets[i].rtl)); 5657 sets[i].rtl = 0; 5658 } 5659 } 5660 5661 /* If setting CC0, record what it was set to, or a constant, if it 5662 is equivalent to a constant. If it is being set to a floating-point 5663 value, make a COMPARE with the appropriate constant of 0. If we 5664 don't do this, later code can interpret this as a test against 5665 const0_rtx, which can cause problems if we try to put it into an 5666 insn as a floating-point operand. */ 5667 if (dest == cc0_rtx) 5668 { 5669 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src; 5670 this_insn_cc0_mode = mode; 5671 if (FLOAT_MODE_P (mode)) 5672 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0, 5673 CONST0_RTX (mode)); 5674 } 5675 } 5676 5677 /* Now enter all non-volatile source expressions in the hash table 5678 if they are not already present. 5679 Record their equivalence classes in src_elt. 5680 This way we can insert the corresponding destinations into 5681 the same classes even if the actual sources are no longer in them 5682 (having been invalidated). */ 5683 5684 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile 5685 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl))) 5686 { 5687 struct table_elt *elt; 5688 struct table_elt *classp = sets[0].src_elt; 5689 rtx dest = SET_DEST (sets[0].rtl); 5690 machine_mode eqvmode = GET_MODE (dest); 5691 5692 if (GET_CODE (dest) == STRICT_LOW_PART) 5693 { 5694 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0))); 5695 classp = 0; 5696 } 5697 if (insert_regs (src_eqv, classp, 0)) 5698 { 5699 rehash_using_reg (src_eqv); 5700 src_eqv_hash = HASH (src_eqv, eqvmode); 5701 } 5702 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode); 5703 elt->in_memory = src_eqv_in_memory; 5704 src_eqv_elt = elt; 5705 5706 /* Check to see if src_eqv_elt is the same as a set source which 5707 does not yet have an elt, and if so set the elt of the set source 5708 to src_eqv_elt. */ 5709 for (i = 0; i < n_sets; i++) 5710 if (sets[i].rtl && sets[i].src_elt == 0 5711 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv)) 5712 sets[i].src_elt = src_eqv_elt; 5713 } 5714 5715 for (i = 0; i < n_sets; i++) 5716 if (sets[i].rtl && ! sets[i].src_volatile 5717 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl))) 5718 { 5719 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART) 5720 { 5721 /* REG_EQUAL in setting a STRICT_LOW_PART 5722 gives an equivalent for the entire destination register, 5723 not just for the subreg being stored in now. 5724 This is a more interesting equivalence, so we arrange later 5725 to treat the entire reg as the destination. */ 5726 sets[i].src_elt = src_eqv_elt; 5727 sets[i].src_hash = src_eqv_hash; 5728 } 5729 else 5730 { 5731 /* Insert source and constant equivalent into hash table, if not 5732 already present. */ 5733 struct table_elt *classp = src_eqv_elt; 5734 rtx src = sets[i].src; 5735 rtx dest = SET_DEST (sets[i].rtl); 5736 machine_mode mode 5737 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src); 5738 5739 /* It's possible that we have a source value known to be 5740 constant but don't have a REG_EQUAL note on the insn. 5741 Lack of a note will mean src_eqv_elt will be NULL. This 5742 can happen where we've generated a SUBREG to access a 5743 CONST_INT that is already in a register in a wider mode. 5744 Ensure that the source expression is put in the proper 5745 constant class. */ 5746 if (!classp) 5747 classp = sets[i].src_const_elt; 5748 5749 if (sets[i].src_elt == 0) 5750 { 5751 struct table_elt *elt; 5752 5753 /* Note that these insert_regs calls cannot remove 5754 any of the src_elt's, because they would have failed to 5755 match if not still valid. */ 5756 if (insert_regs (src, classp, 0)) 5757 { 5758 rehash_using_reg (src); 5759 sets[i].src_hash = HASH (src, mode); 5760 } 5761 elt = insert (src, classp, sets[i].src_hash, mode); 5762 elt->in_memory = sets[i].src_in_memory; 5763 /* If inline asm has any clobbers, ensure we only reuse 5764 existing inline asms and never try to put the ASM_OPERANDS 5765 into an insn that isn't inline asm. */ 5766 if (GET_CODE (src) == ASM_OPERANDS 5767 && GET_CODE (x) == PARALLEL) 5768 elt->cost = MAX_COST; 5769 sets[i].src_elt = classp = elt; 5770 } 5771 if (sets[i].src_const && sets[i].src_const_elt == 0 5772 && src != sets[i].src_const 5773 && ! rtx_equal_p (sets[i].src_const, src)) 5774 sets[i].src_elt = insert (sets[i].src_const, classp, 5775 sets[i].src_const_hash, mode); 5776 } 5777 } 5778 else if (sets[i].src_elt == 0) 5779 /* If we did not insert the source into the hash table (e.g., it was 5780 volatile), note the equivalence class for the REG_EQUAL value, if any, 5781 so that the destination goes into that class. */ 5782 sets[i].src_elt = src_eqv_elt; 5783 5784 /* Record destination addresses in the hash table. This allows us to 5785 check if they are invalidated by other sets. */ 5786 for (i = 0; i < n_sets; i++) 5787 { 5788 if (sets[i].rtl) 5789 { 5790 rtx x = sets[i].inner_dest; 5791 struct table_elt *elt; 5792 machine_mode mode; 5793 unsigned hash; 5794 5795 if (MEM_P (x)) 5796 { 5797 x = XEXP (x, 0); 5798 mode = GET_MODE (x); 5799 hash = HASH (x, mode); 5800 elt = lookup (x, hash, mode); 5801 if (!elt) 5802 { 5803 if (insert_regs (x, NULL, 0)) 5804 { 5805 rtx dest = SET_DEST (sets[i].rtl); 5806 5807 rehash_using_reg (x); 5808 hash = HASH (x, mode); 5809 sets[i].dest_hash = HASH (dest, GET_MODE (dest)); 5810 } 5811 elt = insert (x, NULL, hash, mode); 5812 } 5813 5814 sets[i].dest_addr_elt = elt; 5815 } 5816 else 5817 sets[i].dest_addr_elt = NULL; 5818 } 5819 } 5820 5821 invalidate_from_clobbers (insn); 5822 5823 /* Some registers are invalidated by subroutine calls. Memory is 5824 invalidated by non-constant calls. */ 5825 5826 if (CALL_P (insn)) 5827 { 5828 if (!(RTL_CONST_OR_PURE_CALL_P (insn))) 5829 invalidate_memory (); 5830 else 5831 /* For const/pure calls, invalidate any argument slots, because 5832 those are owned by the callee. */ 5833 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1)) 5834 if (GET_CODE (XEXP (tem, 0)) == USE 5835 && MEM_P (XEXP (XEXP (tem, 0), 0))) 5836 invalidate (XEXP (XEXP (tem, 0), 0), VOIDmode); 5837 invalidate_for_call (); 5838 } 5839 5840 /* Now invalidate everything set by this instruction. 5841 If a SUBREG or other funny destination is being set, 5842 sets[i].rtl is still nonzero, so here we invalidate the reg 5843 a part of which is being set. */ 5844 5845 for (i = 0; i < n_sets; i++) 5846 if (sets[i].rtl) 5847 { 5848 /* We can't use the inner dest, because the mode associated with 5849 a ZERO_EXTRACT is significant. */ 5850 rtx dest = SET_DEST (sets[i].rtl); 5851 5852 /* Needed for registers to remove the register from its 5853 previous quantity's chain. 5854 Needed for memory if this is a nonvarying address, unless 5855 we have just done an invalidate_memory that covers even those. */ 5856 if (REG_P (dest) || GET_CODE (dest) == SUBREG) 5857 invalidate (dest, VOIDmode); 5858 else if (MEM_P (dest)) 5859 invalidate (dest, VOIDmode); 5860 else if (GET_CODE (dest) == STRICT_LOW_PART 5861 || GET_CODE (dest) == ZERO_EXTRACT) 5862 invalidate (XEXP (dest, 0), GET_MODE (dest)); 5863 } 5864 5865 /* Don't cse over a call to setjmp; on some machines (eg VAX) 5866 the regs restored by the longjmp come from a later time 5867 than the setjmp. */ 5868 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL)) 5869 { 5870 flush_hash_table (); 5871 goto done; 5872 } 5873 5874 /* Make sure registers mentioned in destinations 5875 are safe for use in an expression to be inserted. 5876 This removes from the hash table 5877 any invalid entry that refers to one of these registers. 5878 5879 We don't care about the return value from mention_regs because 5880 we are going to hash the SET_DEST values unconditionally. */ 5881 5882 for (i = 0; i < n_sets; i++) 5883 { 5884 if (sets[i].rtl) 5885 { 5886 rtx x = SET_DEST (sets[i].rtl); 5887 5888 if (!REG_P (x)) 5889 mention_regs (x); 5890 else 5891 { 5892 /* We used to rely on all references to a register becoming 5893 inaccessible when a register changes to a new quantity, 5894 since that changes the hash code. However, that is not 5895 safe, since after HASH_SIZE new quantities we get a 5896 hash 'collision' of a register with its own invalid 5897 entries. And since SUBREGs have been changed not to 5898 change their hash code with the hash code of the register, 5899 it wouldn't work any longer at all. So we have to check 5900 for any invalid references lying around now. 5901 This code is similar to the REG case in mention_regs, 5902 but it knows that reg_tick has been incremented, and 5903 it leaves reg_in_table as -1 . */ 5904 unsigned int regno = REGNO (x); 5905 unsigned int endregno = END_REGNO (x); 5906 unsigned int i; 5907 5908 for (i = regno; i < endregno; i++) 5909 { 5910 if (REG_IN_TABLE (i) >= 0) 5911 { 5912 remove_invalid_refs (i); 5913 REG_IN_TABLE (i) = -1; 5914 } 5915 } 5916 } 5917 } 5918 } 5919 5920 /* We may have just removed some of the src_elt's from the hash table. 5921 So replace each one with the current head of the same class. 5922 Also check if destination addresses have been removed. */ 5923 5924 for (i = 0; i < n_sets; i++) 5925 if (sets[i].rtl) 5926 { 5927 if (sets[i].dest_addr_elt 5928 && sets[i].dest_addr_elt->first_same_value == 0) 5929 { 5930 /* The elt was removed, which means this destination is not 5931 valid after this instruction. */ 5932 sets[i].rtl = NULL_RTX; 5933 } 5934 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0) 5935 /* If elt was removed, find current head of same class, 5936 or 0 if nothing remains of that class. */ 5937 { 5938 struct table_elt *elt = sets[i].src_elt; 5939 5940 while (elt && elt->prev_same_value) 5941 elt = elt->prev_same_value; 5942 5943 while (elt && elt->first_same_value == 0) 5944 elt = elt->next_same_value; 5945 sets[i].src_elt = elt ? elt->first_same_value : 0; 5946 } 5947 } 5948 5949 /* Now insert the destinations into their equivalence classes. */ 5950 5951 for (i = 0; i < n_sets; i++) 5952 if (sets[i].rtl) 5953 { 5954 rtx dest = SET_DEST (sets[i].rtl); 5955 struct table_elt *elt; 5956 5957 /* Don't record value if we are not supposed to risk allocating 5958 floating-point values in registers that might be wider than 5959 memory. */ 5960 if ((flag_float_store 5961 && MEM_P (dest) 5962 && FLOAT_MODE_P (GET_MODE (dest))) 5963 /* Don't record BLKmode values, because we don't know the 5964 size of it, and can't be sure that other BLKmode values 5965 have the same or smaller size. */ 5966 || GET_MODE (dest) == BLKmode 5967 /* If we didn't put a REG_EQUAL value or a source into the hash 5968 table, there is no point is recording DEST. */ 5969 || sets[i].src_elt == 0) 5970 continue; 5971 5972 /* STRICT_LOW_PART isn't part of the value BEING set, 5973 and neither is the SUBREG inside it. 5974 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */ 5975 if (GET_CODE (dest) == STRICT_LOW_PART) 5976 dest = SUBREG_REG (XEXP (dest, 0)); 5977 5978 if (REG_P (dest) || GET_CODE (dest) == SUBREG) 5979 /* Registers must also be inserted into chains for quantities. */ 5980 if (insert_regs (dest, sets[i].src_elt, 1)) 5981 { 5982 /* If `insert_regs' changes something, the hash code must be 5983 recalculated. */ 5984 rehash_using_reg (dest); 5985 sets[i].dest_hash = HASH (dest, GET_MODE (dest)); 5986 } 5987 5988 /* If DEST is a paradoxical SUBREG, don't record DEST since the bits 5989 outside the mode of GET_MODE (SUBREG_REG (dest)) are undefined. */ 5990 if (paradoxical_subreg_p (dest)) 5991 continue; 5992 5993 elt = insert (dest, sets[i].src_elt, 5994 sets[i].dest_hash, GET_MODE (dest)); 5995 5996 /* If this is a constant, insert the constant anchors with the 5997 equivalent register-offset expressions using register DEST. */ 5998 if (targetm.const_anchor 5999 && REG_P (dest) 6000 && SCALAR_INT_MODE_P (GET_MODE (dest)) 6001 && GET_CODE (sets[i].src_elt->exp) == CONST_INT) 6002 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest)); 6003 6004 elt->in_memory = (MEM_P (sets[i].inner_dest) 6005 && !MEM_READONLY_P (sets[i].inner_dest)); 6006 6007 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no 6008 narrower than M2, and both M1 and M2 are the same number of words, 6009 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so 6010 make that equivalence as well. 6011 6012 However, BAR may have equivalences for which gen_lowpart 6013 will produce a simpler value than gen_lowpart applied to 6014 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all 6015 BAR's equivalences. If we don't get a simplified form, make 6016 the SUBREG. It will not be used in an equivalence, but will 6017 cause two similar assignments to be detected. 6018 6019 Note the loop below will find SUBREG_REG (DEST) since we have 6020 already entered SRC and DEST of the SET in the table. */ 6021 6022 if (GET_CODE (dest) == SUBREG 6023 && (known_equal_after_align_down 6024 (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1, 6025 GET_MODE_SIZE (GET_MODE (dest)) - 1, 6026 UNITS_PER_WORD)) 6027 && !partial_subreg_p (dest) 6028 && sets[i].src_elt != 0) 6029 { 6030 machine_mode new_mode = GET_MODE (SUBREG_REG (dest)); 6031 struct table_elt *elt, *classp = 0; 6032 6033 for (elt = sets[i].src_elt->first_same_value; elt; 6034 elt = elt->next_same_value) 6035 { 6036 rtx new_src = 0; 6037 unsigned src_hash; 6038 struct table_elt *src_elt; 6039 6040 /* Ignore invalid entries. */ 6041 if (!REG_P (elt->exp) 6042 && ! exp_equiv_p (elt->exp, elt->exp, 1, false)) 6043 continue; 6044 6045 /* We may have already been playing subreg games. If the 6046 mode is already correct for the destination, use it. */ 6047 if (GET_MODE (elt->exp) == new_mode) 6048 new_src = elt->exp; 6049 else 6050 { 6051 poly_uint64 byte 6052 = subreg_lowpart_offset (new_mode, GET_MODE (dest)); 6053 new_src = simplify_gen_subreg (new_mode, elt->exp, 6054 GET_MODE (dest), byte); 6055 } 6056 6057 /* The call to simplify_gen_subreg fails if the value 6058 is VOIDmode, yet we can't do any simplification, e.g. 6059 for EXPR_LISTs denoting function call results. 6060 It is invalid to construct a SUBREG with a VOIDmode 6061 SUBREG_REG, hence a zero new_src means we can't do 6062 this substitution. */ 6063 if (! new_src) 6064 continue; 6065 6066 src_hash = HASH (new_src, new_mode); 6067 src_elt = lookup (new_src, src_hash, new_mode); 6068 6069 /* Put the new source in the hash table is if isn't 6070 already. */ 6071 if (src_elt == 0) 6072 { 6073 if (insert_regs (new_src, classp, 0)) 6074 { 6075 rehash_using_reg (new_src); 6076 src_hash = HASH (new_src, new_mode); 6077 } 6078 src_elt = insert (new_src, classp, src_hash, new_mode); 6079 src_elt->in_memory = elt->in_memory; 6080 if (GET_CODE (new_src) == ASM_OPERANDS 6081 && elt->cost == MAX_COST) 6082 src_elt->cost = MAX_COST; 6083 } 6084 else if (classp && classp != src_elt->first_same_value) 6085 /* Show that two things that we've seen before are 6086 actually the same. */ 6087 merge_equiv_classes (src_elt, classp); 6088 6089 classp = src_elt->first_same_value; 6090 /* Ignore invalid entries. */ 6091 while (classp 6092 && !REG_P (classp->exp) 6093 && ! exp_equiv_p (classp->exp, classp->exp, 1, false)) 6094 classp = classp->next_same_value; 6095 } 6096 } 6097 } 6098 6099 /* Special handling for (set REG0 REG1) where REG0 is the 6100 "cheapest", cheaper than REG1. After cse, REG1 will probably not 6101 be used in the sequel, so (if easily done) change this insn to 6102 (set REG1 REG0) and replace REG1 with REG0 in the previous insn 6103 that computed their value. Then REG1 will become a dead store 6104 and won't cloud the situation for later optimizations. 6105 6106 Do not make this change if REG1 is a hard register, because it will 6107 then be used in the sequel and we may be changing a two-operand insn 6108 into a three-operand insn. 6109 6110 Also do not do this if we are operating on a copy of INSN. */ 6111 6112 if (n_sets == 1 && sets[0].rtl) 6113 try_back_substitute_reg (sets[0].rtl, insn); 6114 6115 done:; 6116 } 6117 6118 /* Remove from the hash table all expressions that reference memory. */ 6119 6120 static void 6121 invalidate_memory (void) 6122 { 6123 int i; 6124 struct table_elt *p, *next; 6125 6126 for (i = 0; i < HASH_SIZE; i++) 6127 for (p = table[i]; p; p = next) 6128 { 6129 next = p->next_same_hash; 6130 if (p->in_memory) 6131 remove_from_table (p, i); 6132 } 6133 } 6134 6135 /* Perform invalidation on the basis of everything about INSN, 6136 except for invalidating the actual places that are SET in it. 6137 This includes the places CLOBBERed, and anything that might 6138 alias with something that is SET or CLOBBERed. */ 6139 6140 static void 6141 invalidate_from_clobbers (rtx_insn *insn) 6142 { 6143 rtx x = PATTERN (insn); 6144 6145 if (GET_CODE (x) == CLOBBER) 6146 { 6147 rtx ref = XEXP (x, 0); 6148 if (ref) 6149 { 6150 if (REG_P (ref) || GET_CODE (ref) == SUBREG 6151 || MEM_P (ref)) 6152 invalidate (ref, VOIDmode); 6153 else if (GET_CODE (ref) == STRICT_LOW_PART 6154 || GET_CODE (ref) == ZERO_EXTRACT) 6155 invalidate (XEXP (ref, 0), GET_MODE (ref)); 6156 } 6157 } 6158 if (GET_CODE (x) == CLOBBER_HIGH) 6159 { 6160 rtx ref = XEXP (x, 0); 6161 gcc_assert (REG_P (ref)); 6162 invalidate_reg (ref, true); 6163 } 6164 else if (GET_CODE (x) == PARALLEL) 6165 { 6166 int i; 6167 for (i = XVECLEN (x, 0) - 1; i >= 0; i--) 6168 { 6169 rtx y = XVECEXP (x, 0, i); 6170 if (GET_CODE (y) == CLOBBER) 6171 { 6172 rtx ref = XEXP (y, 0); 6173 if (REG_P (ref) || GET_CODE (ref) == SUBREG 6174 || MEM_P (ref)) 6175 invalidate (ref, VOIDmode); 6176 else if (GET_CODE (ref) == STRICT_LOW_PART 6177 || GET_CODE (ref) == ZERO_EXTRACT) 6178 invalidate (XEXP (ref, 0), GET_MODE (ref)); 6179 } 6180 else if (GET_CODE (y) == CLOBBER_HIGH) 6181 { 6182 rtx ref = XEXP (y, 0); 6183 gcc_assert (REG_P (ref)); 6184 invalidate_reg (ref, true); 6185 } 6186 } 6187 } 6188 } 6189 6190 /* Perform invalidation on the basis of everything about INSN. 6191 This includes the places CLOBBERed, and anything that might 6192 alias with something that is SET or CLOBBERed. */ 6193 6194 static void 6195 invalidate_from_sets_and_clobbers (rtx_insn *insn) 6196 { 6197 rtx tem; 6198 rtx x = PATTERN (insn); 6199 6200 if (CALL_P (insn)) 6201 { 6202 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1)) 6203 { 6204 rtx temx = XEXP (tem, 0); 6205 if (GET_CODE (temx) == CLOBBER) 6206 invalidate (SET_DEST (temx), VOIDmode); 6207 else if (GET_CODE (temx) == CLOBBER_HIGH) 6208 { 6209 rtx temref = XEXP (temx, 0); 6210 gcc_assert (REG_P (temref)); 6211 invalidate_reg (temref, true); 6212 } 6213 } 6214 } 6215 6216 /* Ensure we invalidate the destination register of a CALL insn. 6217 This is necessary for machines where this register is a fixed_reg, 6218 because no other code would invalidate it. */ 6219 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL) 6220 invalidate (SET_DEST (x), VOIDmode); 6221 6222 else if (GET_CODE (x) == PARALLEL) 6223 { 6224 int i; 6225 6226 for (i = XVECLEN (x, 0) - 1; i >= 0; i--) 6227 { 6228 rtx y = XVECEXP (x, 0, i); 6229 if (GET_CODE (y) == CLOBBER) 6230 { 6231 rtx clobbered = XEXP (y, 0); 6232 6233 if (REG_P (clobbered) 6234 || GET_CODE (clobbered) == SUBREG) 6235 invalidate (clobbered, VOIDmode); 6236 else if (GET_CODE (clobbered) == STRICT_LOW_PART 6237 || GET_CODE (clobbered) == ZERO_EXTRACT) 6238 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered)); 6239 } 6240 else if (GET_CODE (y) == CLOBBER_HIGH) 6241 { 6242 rtx ref = XEXP (y, 0); 6243 gcc_assert (REG_P (ref)); 6244 invalidate_reg (ref, true); 6245 } 6246 else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL) 6247 invalidate (SET_DEST (y), VOIDmode); 6248 } 6249 } 6250 } 6251 6252 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes 6253 and replace any registers in them with either an equivalent constant 6254 or the canonical form of the register. If we are inside an address, 6255 only do this if the address remains valid. 6256 6257 OBJECT is 0 except when within a MEM in which case it is the MEM. 6258 6259 Return the replacement for X. */ 6260 6261 static rtx 6262 cse_process_notes_1 (rtx x, rtx object, bool *changed) 6263 { 6264 enum rtx_code code = GET_CODE (x); 6265 const char *fmt = GET_RTX_FORMAT (code); 6266 int i; 6267 6268 switch (code) 6269 { 6270 case CONST: 6271 case SYMBOL_REF: 6272 case LABEL_REF: 6273 CASE_CONST_ANY: 6274 case PC: 6275 case CC0: 6276 case LO_SUM: 6277 return x; 6278 6279 case MEM: 6280 validate_change (x, &XEXP (x, 0), 6281 cse_process_notes (XEXP (x, 0), x, changed), 0); 6282 return x; 6283 6284 case EXPR_LIST: 6285 if (REG_NOTE_KIND (x) == REG_EQUAL) 6286 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed); 6287 /* Fall through. */ 6288 6289 case INSN_LIST: 6290 case INT_LIST: 6291 if (XEXP (x, 1)) 6292 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed); 6293 return x; 6294 6295 case SIGN_EXTEND: 6296 case ZERO_EXTEND: 6297 case SUBREG: 6298 { 6299 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed); 6300 /* We don't substitute VOIDmode constants into these rtx, 6301 since they would impede folding. */ 6302 if (GET_MODE (new_rtx) != VOIDmode) 6303 validate_change (object, &XEXP (x, 0), new_rtx, 0); 6304 return x; 6305 } 6306 6307 case UNSIGNED_FLOAT: 6308 { 6309 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed); 6310 /* We don't substitute negative VOIDmode constants into these rtx, 6311 since they would impede folding. */ 6312 if (GET_MODE (new_rtx) != VOIDmode 6313 || (CONST_INT_P (new_rtx) && INTVAL (new_rtx) >= 0) 6314 || (CONST_DOUBLE_P (new_rtx) && CONST_DOUBLE_HIGH (new_rtx) >= 0)) 6315 validate_change (object, &XEXP (x, 0), new_rtx, 0); 6316 return x; 6317 } 6318 6319 case REG: 6320 i = REG_QTY (REGNO (x)); 6321 6322 /* Return a constant or a constant register. */ 6323 if (REGNO_QTY_VALID_P (REGNO (x))) 6324 { 6325 struct qty_table_elem *ent = &qty_table[i]; 6326 6327 if (ent->const_rtx != NULL_RTX 6328 && (CONSTANT_P (ent->const_rtx) 6329 || REG_P (ent->const_rtx))) 6330 { 6331 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx); 6332 if (new_rtx) 6333 return copy_rtx (new_rtx); 6334 } 6335 } 6336 6337 /* Otherwise, canonicalize this register. */ 6338 return canon_reg (x, NULL); 6339 6340 default: 6341 break; 6342 } 6343 6344 for (i = 0; i < GET_RTX_LENGTH (code); i++) 6345 if (fmt[i] == 'e') 6346 validate_change (object, &XEXP (x, i), 6347 cse_process_notes (XEXP (x, i), object, changed), 0); 6348 6349 return x; 6350 } 6351 6352 static rtx 6353 cse_process_notes (rtx x, rtx object, bool *changed) 6354 { 6355 rtx new_rtx = cse_process_notes_1 (x, object, changed); 6356 if (new_rtx != x) 6357 *changed = true; 6358 return new_rtx; 6359 } 6360 6361 6362 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on. 6363 6364 DATA is a pointer to a struct cse_basic_block_data, that is used to 6365 describe the path. 6366 It is filled with a queue of basic blocks, starting with FIRST_BB 6367 and following a trace through the CFG. 6368 6369 If all paths starting at FIRST_BB have been followed, or no new path 6370 starting at FIRST_BB can be constructed, this function returns FALSE. 6371 Otherwise, DATA->path is filled and the function returns TRUE indicating 6372 that a path to follow was found. 6373 6374 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only 6375 block in the path will be FIRST_BB. */ 6376 6377 static bool 6378 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data, 6379 int follow_jumps) 6380 { 6381 basic_block bb; 6382 edge e; 6383 int path_size; 6384 6385 bitmap_set_bit (cse_visited_basic_blocks, first_bb->index); 6386 6387 /* See if there is a previous path. */ 6388 path_size = data->path_size; 6389 6390 /* There is a previous path. Make sure it started with FIRST_BB. */ 6391 if (path_size) 6392 gcc_assert (data->path[0].bb == first_bb); 6393 6394 /* There was only one basic block in the last path. Clear the path and 6395 return, so that paths starting at another basic block can be tried. */ 6396 if (path_size == 1) 6397 { 6398 path_size = 0; 6399 goto done; 6400 } 6401 6402 /* If the path was empty from the beginning, construct a new path. */ 6403 if (path_size == 0) 6404 data->path[path_size++].bb = first_bb; 6405 else 6406 { 6407 /* Otherwise, path_size must be equal to or greater than 2, because 6408 a previous path exists that is at least two basic blocks long. 6409 6410 Update the previous branch path, if any. If the last branch was 6411 previously along the branch edge, take the fallthrough edge now. */ 6412 while (path_size >= 2) 6413 { 6414 basic_block last_bb_in_path, previous_bb_in_path; 6415 edge e; 6416 6417 --path_size; 6418 last_bb_in_path = data->path[path_size].bb; 6419 previous_bb_in_path = data->path[path_size - 1].bb; 6420 6421 /* If we previously followed a path along the branch edge, try 6422 the fallthru edge now. */ 6423 if (EDGE_COUNT (previous_bb_in_path->succs) == 2 6424 && any_condjump_p (BB_END (previous_bb_in_path)) 6425 && (e = find_edge (previous_bb_in_path, last_bb_in_path)) 6426 && e == BRANCH_EDGE (previous_bb_in_path)) 6427 { 6428 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest; 6429 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun) 6430 && single_pred_p (bb) 6431 /* We used to assert here that we would only see blocks 6432 that we have not visited yet. But we may end up 6433 visiting basic blocks twice if the CFG has changed 6434 in this run of cse_main, because when the CFG changes 6435 the topological sort of the CFG also changes. A basic 6436 blocks that previously had more than two predecessors 6437 may now have a single predecessor, and become part of 6438 a path that starts at another basic block. 6439 6440 We still want to visit each basic block only once, so 6441 halt the path here if we have already visited BB. */ 6442 && !bitmap_bit_p (cse_visited_basic_blocks, bb->index)) 6443 { 6444 bitmap_set_bit (cse_visited_basic_blocks, bb->index); 6445 data->path[path_size++].bb = bb; 6446 break; 6447 } 6448 } 6449 6450 data->path[path_size].bb = NULL; 6451 } 6452 6453 /* If only one block remains in the path, bail. */ 6454 if (path_size == 1) 6455 { 6456 path_size = 0; 6457 goto done; 6458 } 6459 } 6460 6461 /* Extend the path if possible. */ 6462 if (follow_jumps) 6463 { 6464 bb = data->path[path_size - 1].bb; 6465 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH)) 6466 { 6467 if (single_succ_p (bb)) 6468 e = single_succ_edge (bb); 6469 else if (EDGE_COUNT (bb->succs) == 2 6470 && any_condjump_p (BB_END (bb))) 6471 { 6472 /* First try to follow the branch. If that doesn't lead 6473 to a useful path, follow the fallthru edge. */ 6474 e = BRANCH_EDGE (bb); 6475 if (!single_pred_p (e->dest)) 6476 e = FALLTHRU_EDGE (bb); 6477 } 6478 else 6479 e = NULL; 6480 6481 if (e 6482 && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label) 6483 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) 6484 && single_pred_p (e->dest) 6485 /* Avoid visiting basic blocks twice. The large comment 6486 above explains why this can happen. */ 6487 && !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index)) 6488 { 6489 basic_block bb2 = e->dest; 6490 bitmap_set_bit (cse_visited_basic_blocks, bb2->index); 6491 data->path[path_size++].bb = bb2; 6492 bb = bb2; 6493 } 6494 else 6495 bb = NULL; 6496 } 6497 } 6498 6499 done: 6500 data->path_size = path_size; 6501 return path_size != 0; 6502 } 6503 6504 /* Dump the path in DATA to file F. NSETS is the number of sets 6505 in the path. */ 6506 6507 static void 6508 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f) 6509 { 6510 int path_entry; 6511 6512 fprintf (f, ";; Following path with %d sets: ", nsets); 6513 for (path_entry = 0; path_entry < data->path_size; path_entry++) 6514 fprintf (f, "%d ", (data->path[path_entry].bb)->index); 6515 fputc ('\n', dump_file); 6516 fflush (f); 6517 } 6518 6519 6520 /* Return true if BB has exception handling successor edges. */ 6521 6522 static bool 6523 have_eh_succ_edges (basic_block bb) 6524 { 6525 edge e; 6526 edge_iterator ei; 6527 6528 FOR_EACH_EDGE (e, ei, bb->succs) 6529 if (e->flags & EDGE_EH) 6530 return true; 6531 6532 return false; 6533 } 6534 6535 6536 /* Scan to the end of the path described by DATA. Return an estimate of 6537 the total number of SETs of all insns in the path. */ 6538 6539 static void 6540 cse_prescan_path (struct cse_basic_block_data *data) 6541 { 6542 int nsets = 0; 6543 int path_size = data->path_size; 6544 int path_entry; 6545 6546 /* Scan to end of each basic block in the path. */ 6547 for (path_entry = 0; path_entry < path_size; path_entry++) 6548 { 6549 basic_block bb; 6550 rtx_insn *insn; 6551 6552 bb = data->path[path_entry].bb; 6553 6554 FOR_BB_INSNS (bb, insn) 6555 { 6556 if (!INSN_P (insn)) 6557 continue; 6558 6559 /* A PARALLEL can have lots of SETs in it, 6560 especially if it is really an ASM_OPERANDS. */ 6561 if (GET_CODE (PATTERN (insn)) == PARALLEL) 6562 nsets += XVECLEN (PATTERN (insn), 0); 6563 else 6564 nsets += 1; 6565 } 6566 } 6567 6568 data->nsets = nsets; 6569 } 6570 6571 /* Return true if the pattern of INSN uses a LABEL_REF for which 6572 there isn't a REG_LABEL_OPERAND note. */ 6573 6574 static bool 6575 check_for_label_ref (rtx_insn *insn) 6576 { 6577 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND 6578 note for it, we must rerun jump since it needs to place the note. If 6579 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain, 6580 don't do this since no REG_LABEL_OPERAND will be added. */ 6581 subrtx_iterator::array_type array; 6582 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL) 6583 { 6584 const_rtx x = *iter; 6585 if (GET_CODE (x) == LABEL_REF 6586 && !LABEL_REF_NONLOCAL_P (x) 6587 && (!JUMP_P (insn) 6588 || !label_is_jump_target_p (label_ref_label (x), insn)) 6589 && LABEL_P (label_ref_label (x)) 6590 && INSN_UID (label_ref_label (x)) != 0 6591 && !find_reg_note (insn, REG_LABEL_OPERAND, label_ref_label (x))) 6592 return true; 6593 } 6594 return false; 6595 } 6596 6597 /* Process a single extended basic block described by EBB_DATA. */ 6598 6599 static void 6600 cse_extended_basic_block (struct cse_basic_block_data *ebb_data) 6601 { 6602 int path_size = ebb_data->path_size; 6603 int path_entry; 6604 int num_insns = 0; 6605 6606 /* Allocate the space needed by qty_table. */ 6607 qty_table = XNEWVEC (struct qty_table_elem, max_qty); 6608 6609 new_basic_block (); 6610 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb); 6611 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb); 6612 for (path_entry = 0; path_entry < path_size; path_entry++) 6613 { 6614 basic_block bb; 6615 rtx_insn *insn; 6616 6617 bb = ebb_data->path[path_entry].bb; 6618 6619 /* Invalidate recorded information for eh regs if there is an EH 6620 edge pointing to that bb. */ 6621 if (bb_has_eh_pred (bb)) 6622 { 6623 df_ref def; 6624 6625 FOR_EACH_ARTIFICIAL_DEF (def, bb->index) 6626 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP) 6627 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def))); 6628 } 6629 6630 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb); 6631 FOR_BB_INSNS (bb, insn) 6632 { 6633 /* If we have processed 1,000 insns, flush the hash table to 6634 avoid extreme quadratic behavior. We must not include NOTEs 6635 in the count since there may be more of them when generating 6636 debugging information. If we clear the table at different 6637 times, code generated with -g -O might be different than code 6638 generated with -O but not -g. 6639 6640 FIXME: This is a real kludge and needs to be done some other 6641 way. */ 6642 if (NONDEBUG_INSN_P (insn) 6643 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS)) 6644 { 6645 flush_hash_table (); 6646 num_insns = 0; 6647 } 6648 6649 if (INSN_P (insn)) 6650 { 6651 /* Process notes first so we have all notes in canonical forms 6652 when looking for duplicate operations. */ 6653 if (REG_NOTES (insn)) 6654 { 6655 bool changed = false; 6656 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), 6657 NULL_RTX, &changed); 6658 if (changed) 6659 df_notes_rescan (insn); 6660 } 6661 6662 cse_insn (insn); 6663 6664 /* If we haven't already found an insn where we added a LABEL_REF, 6665 check this one. */ 6666 if (INSN_P (insn) && !recorded_label_ref 6667 && check_for_label_ref (insn)) 6668 recorded_label_ref = true; 6669 6670 if (HAVE_cc0 && NONDEBUG_INSN_P (insn)) 6671 { 6672 /* If the previous insn sets CC0 and this insn no 6673 longer references CC0, delete the previous insn. 6674 Here we use fact that nothing expects CC0 to be 6675 valid over an insn, which is true until the final 6676 pass. */ 6677 rtx_insn *prev_insn; 6678 rtx tem; 6679 6680 prev_insn = prev_nonnote_nondebug_insn (insn); 6681 if (prev_insn && NONJUMP_INSN_P (prev_insn) 6682 && (tem = single_set (prev_insn)) != NULL_RTX 6683 && SET_DEST (tem) == cc0_rtx 6684 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn))) 6685 delete_insn (prev_insn); 6686 6687 /* If this insn is not the last insn in the basic 6688 block, it will be PREV_INSN(insn) in the next 6689 iteration. If we recorded any CC0-related 6690 information for this insn, remember it. */ 6691 if (insn != BB_END (bb)) 6692 { 6693 prev_insn_cc0 = this_insn_cc0; 6694 prev_insn_cc0_mode = this_insn_cc0_mode; 6695 } 6696 } 6697 } 6698 } 6699 6700 /* With non-call exceptions, we are not always able to update 6701 the CFG properly inside cse_insn. So clean up possibly 6702 redundant EH edges here. */ 6703 if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb)) 6704 cse_cfg_altered |= purge_dead_edges (bb); 6705 6706 /* If we changed a conditional jump, we may have terminated 6707 the path we are following. Check that by verifying that 6708 the edge we would take still exists. If the edge does 6709 not exist anymore, purge the remainder of the path. 6710 Note that this will cause us to return to the caller. */ 6711 if (path_entry < path_size - 1) 6712 { 6713 basic_block next_bb = ebb_data->path[path_entry + 1].bb; 6714 if (!find_edge (bb, next_bb)) 6715 { 6716 do 6717 { 6718 path_size--; 6719 6720 /* If we truncate the path, we must also reset the 6721 visited bit on the remaining blocks in the path, 6722 or we will never visit them at all. */ 6723 bitmap_clear_bit (cse_visited_basic_blocks, 6724 ebb_data->path[path_size].bb->index); 6725 ebb_data->path[path_size].bb = NULL; 6726 } 6727 while (path_size - 1 != path_entry); 6728 ebb_data->path_size = path_size; 6729 } 6730 } 6731 6732 /* If this is a conditional jump insn, record any known 6733 equivalences due to the condition being tested. */ 6734 insn = BB_END (bb); 6735 if (path_entry < path_size - 1 6736 && EDGE_COUNT (bb->succs) == 2 6737 && JUMP_P (insn) 6738 && single_set (insn) 6739 && any_condjump_p (insn)) 6740 { 6741 basic_block next_bb = ebb_data->path[path_entry + 1].bb; 6742 bool taken = (next_bb == BRANCH_EDGE (bb)->dest); 6743 record_jump_equiv (insn, taken); 6744 } 6745 6746 /* Clear the CC0-tracking related insns, they can't provide 6747 useful information across basic block boundaries. */ 6748 prev_insn_cc0 = 0; 6749 } 6750 6751 gcc_assert (next_qty <= max_qty); 6752 6753 free (qty_table); 6754 } 6755 6756 6757 /* Perform cse on the instructions of a function. 6758 F is the first instruction. 6759 NREGS is one plus the highest pseudo-reg number used in the instruction. 6760 6761 Return 2 if jump optimizations should be redone due to simplifications 6762 in conditional jump instructions. 6763 Return 1 if the CFG should be cleaned up because it has been modified. 6764 Return 0 otherwise. */ 6765 6766 static int 6767 cse_main (rtx_insn *f ATTRIBUTE_UNUSED, int nregs) 6768 { 6769 struct cse_basic_block_data ebb_data; 6770 basic_block bb; 6771 int *rc_order = XNEWVEC (int, last_basic_block_for_fn (cfun)); 6772 int i, n_blocks; 6773 6774 /* CSE doesn't use dominane info but can invalidate it in different ways. 6775 For simplicity free dominance info here. */ 6776 free_dominance_info (CDI_DOMINATORS); 6777 6778 df_set_flags (DF_LR_RUN_DCE); 6779 df_note_add_problem (); 6780 df_analyze (); 6781 df_set_flags (DF_DEFER_INSN_RESCAN); 6782 6783 reg_scan (get_insns (), max_reg_num ()); 6784 init_cse_reg_info (nregs); 6785 6786 ebb_data.path = XNEWVEC (struct branch_path, 6787 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH)); 6788 6789 cse_cfg_altered = false; 6790 cse_jumps_altered = false; 6791 recorded_label_ref = false; 6792 constant_pool_entries_cost = 0; 6793 constant_pool_entries_regcost = 0; 6794 ebb_data.path_size = 0; 6795 ebb_data.nsets = 0; 6796 rtl_hooks = cse_rtl_hooks; 6797 6798 init_recog (); 6799 init_alias_analysis (); 6800 6801 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs); 6802 6803 /* Set up the table of already visited basic blocks. */ 6804 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun)); 6805 bitmap_clear (cse_visited_basic_blocks); 6806 6807 /* Loop over basic blocks in reverse completion order (RPO), 6808 excluding the ENTRY and EXIT blocks. */ 6809 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false); 6810 i = 0; 6811 while (i < n_blocks) 6812 { 6813 /* Find the first block in the RPO queue that we have not yet 6814 processed before. */ 6815 do 6816 { 6817 bb = BASIC_BLOCK_FOR_FN (cfun, rc_order[i++]); 6818 } 6819 while (bitmap_bit_p (cse_visited_basic_blocks, bb->index) 6820 && i < n_blocks); 6821 6822 /* Find all paths starting with BB, and process them. */ 6823 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps)) 6824 { 6825 /* Pre-scan the path. */ 6826 cse_prescan_path (&ebb_data); 6827 6828 /* If this basic block has no sets, skip it. */ 6829 if (ebb_data.nsets == 0) 6830 continue; 6831 6832 /* Get a reasonable estimate for the maximum number of qty's 6833 needed for this path. For this, we take the number of sets 6834 and multiply that by MAX_RECOG_OPERANDS. */ 6835 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS; 6836 6837 /* Dump the path we're about to process. */ 6838 if (dump_file) 6839 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file); 6840 6841 cse_extended_basic_block (&ebb_data); 6842 } 6843 } 6844 6845 /* Clean up. */ 6846 end_alias_analysis (); 6847 free (reg_eqv_table); 6848 free (ebb_data.path); 6849 sbitmap_free (cse_visited_basic_blocks); 6850 free (rc_order); 6851 rtl_hooks = general_rtl_hooks; 6852 6853 if (cse_jumps_altered || recorded_label_ref) 6854 return 2; 6855 else if (cse_cfg_altered) 6856 return 1; 6857 else 6858 return 0; 6859 } 6860 6861 /* Count the number of times registers are used (not set) in X. 6862 COUNTS is an array in which we accumulate the count, INCR is how much 6863 we count each register usage. 6864 6865 Don't count a usage of DEST, which is the SET_DEST of a SET which 6866 contains X in its SET_SRC. This is because such a SET does not 6867 modify the liveness of DEST. 6868 DEST is set to pc_rtx for a trapping insn, or for an insn with side effects. 6869 We must then count uses of a SET_DEST regardless, because the insn can't be 6870 deleted here. */ 6871 6872 static void 6873 count_reg_usage (rtx x, int *counts, rtx dest, int incr) 6874 { 6875 enum rtx_code code; 6876 rtx note; 6877 const char *fmt; 6878 int i, j; 6879 6880 if (x == 0) 6881 return; 6882 6883 switch (code = GET_CODE (x)) 6884 { 6885 case REG: 6886 if (x != dest) 6887 counts[REGNO (x)] += incr; 6888 return; 6889 6890 case PC: 6891 case CC0: 6892 case CONST: 6893 CASE_CONST_ANY: 6894 case SYMBOL_REF: 6895 case LABEL_REF: 6896 return; 6897 6898 case CLOBBER: 6899 /* If we are clobbering a MEM, mark any registers inside the address 6900 as being used. */ 6901 if (MEM_P (XEXP (x, 0))) 6902 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr); 6903 return; 6904 6905 case CLOBBER_HIGH: 6906 gcc_assert (REG_P ((XEXP (x, 0)))); 6907 return; 6908 6909 case SET: 6910 /* Unless we are setting a REG, count everything in SET_DEST. */ 6911 if (!REG_P (SET_DEST (x))) 6912 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr); 6913 count_reg_usage (SET_SRC (x), counts, 6914 dest ? dest : SET_DEST (x), 6915 incr); 6916 return; 6917 6918 case DEBUG_INSN: 6919 return; 6920 6921 case CALL_INSN: 6922 case INSN: 6923 case JUMP_INSN: 6924 /* We expect dest to be NULL_RTX here. If the insn may throw, 6925 or if it cannot be deleted due to side-effects, mark this fact 6926 by setting DEST to pc_rtx. */ 6927 if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x)) 6928 || side_effects_p (PATTERN (x))) 6929 dest = pc_rtx; 6930 if (code == CALL_INSN) 6931 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr); 6932 count_reg_usage (PATTERN (x), counts, dest, incr); 6933 6934 /* Things used in a REG_EQUAL note aren't dead since loop may try to 6935 use them. */ 6936 6937 note = find_reg_equal_equiv_note (x); 6938 if (note) 6939 { 6940 rtx eqv = XEXP (note, 0); 6941 6942 if (GET_CODE (eqv) == EXPR_LIST) 6943 /* This REG_EQUAL note describes the result of a function call. 6944 Process all the arguments. */ 6945 do 6946 { 6947 count_reg_usage (XEXP (eqv, 0), counts, dest, incr); 6948 eqv = XEXP (eqv, 1); 6949 } 6950 while (eqv && GET_CODE (eqv) == EXPR_LIST); 6951 else 6952 count_reg_usage (eqv, counts, dest, incr); 6953 } 6954 return; 6955 6956 case EXPR_LIST: 6957 if (REG_NOTE_KIND (x) == REG_EQUAL 6958 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE) 6959 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)), 6960 involving registers in the address. */ 6961 || GET_CODE (XEXP (x, 0)) == CLOBBER 6962 || GET_CODE (XEXP (x, 0)) == CLOBBER_HIGH) 6963 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr); 6964 6965 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr); 6966 return; 6967 6968 case ASM_OPERANDS: 6969 /* Iterate over just the inputs, not the constraints as well. */ 6970 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--) 6971 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr); 6972 return; 6973 6974 case INSN_LIST: 6975 case INT_LIST: 6976 gcc_unreachable (); 6977 6978 default: 6979 break; 6980 } 6981 6982 fmt = GET_RTX_FORMAT (code); 6983 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 6984 { 6985 if (fmt[i] == 'e') 6986 count_reg_usage (XEXP (x, i), counts, dest, incr); 6987 else if (fmt[i] == 'E') 6988 for (j = XVECLEN (x, i) - 1; j >= 0; j--) 6989 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr); 6990 } 6991 } 6992 6993 /* Return true if X is a dead register. */ 6994 6995 static inline int 6996 is_dead_reg (const_rtx x, int *counts) 6997 { 6998 return (REG_P (x) 6999 && REGNO (x) >= FIRST_PSEUDO_REGISTER 7000 && counts[REGNO (x)] == 0); 7001 } 7002 7003 /* Return true if set is live. */ 7004 static bool 7005 set_live_p (rtx set, rtx_insn *insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */ 7006 int *counts) 7007 { 7008 rtx_insn *tem; 7009 7010 if (set_noop_p (set)) 7011 ; 7012 7013 else if (GET_CODE (SET_DEST (set)) == CC0 7014 && !side_effects_p (SET_SRC (set)) 7015 && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX 7016 || !INSN_P (tem) 7017 || !reg_referenced_p (cc0_rtx, PATTERN (tem)))) 7018 return false; 7019 else if (!is_dead_reg (SET_DEST (set), counts) 7020 || side_effects_p (SET_SRC (set))) 7021 return true; 7022 return false; 7023 } 7024 7025 /* Return true if insn is live. */ 7026 7027 static bool 7028 insn_live_p (rtx_insn *insn, int *counts) 7029 { 7030 int i; 7031 if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn)) 7032 return true; 7033 else if (GET_CODE (PATTERN (insn)) == SET) 7034 return set_live_p (PATTERN (insn), insn, counts); 7035 else if (GET_CODE (PATTERN (insn)) == PARALLEL) 7036 { 7037 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--) 7038 { 7039 rtx elt = XVECEXP (PATTERN (insn), 0, i); 7040 7041 if (GET_CODE (elt) == SET) 7042 { 7043 if (set_live_p (elt, insn, counts)) 7044 return true; 7045 } 7046 else if (GET_CODE (elt) != CLOBBER 7047 && GET_CODE (elt) != CLOBBER_HIGH 7048 && GET_CODE (elt) != USE) 7049 return true; 7050 } 7051 return false; 7052 } 7053 else if (DEBUG_INSN_P (insn)) 7054 { 7055 rtx_insn *next; 7056 7057 if (DEBUG_MARKER_INSN_P (insn)) 7058 return true; 7059 7060 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next)) 7061 if (NOTE_P (next)) 7062 continue; 7063 else if (!DEBUG_INSN_P (next)) 7064 return true; 7065 /* If we find an inspection point, such as a debug begin stmt, 7066 we want to keep the earlier debug insn. */ 7067 else if (DEBUG_MARKER_INSN_P (next)) 7068 return true; 7069 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next)) 7070 return false; 7071 7072 return true; 7073 } 7074 else 7075 return true; 7076 } 7077 7078 /* Count the number of stores into pseudo. Callback for note_stores. */ 7079 7080 static void 7081 count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data) 7082 { 7083 int *counts = (int *) data; 7084 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER) 7085 counts[REGNO (x)]++; 7086 } 7087 7088 /* Return if DEBUG_INSN pattern PAT needs to be reset because some dead 7089 pseudo doesn't have a replacement. COUNTS[X] is zero if register X 7090 is dead and REPLACEMENTS[X] is null if it has no replacemenet. 7091 Set *SEEN_REPL to true if we see a dead register that does have 7092 a replacement. */ 7093 7094 static bool 7095 is_dead_debug_insn (const_rtx pat, int *counts, rtx *replacements, 7096 bool *seen_repl) 7097 { 7098 subrtx_iterator::array_type array; 7099 FOR_EACH_SUBRTX (iter, array, pat, NONCONST) 7100 { 7101 const_rtx x = *iter; 7102 if (is_dead_reg (x, counts)) 7103 { 7104 if (replacements && replacements[REGNO (x)] != NULL_RTX) 7105 *seen_repl = true; 7106 else 7107 return true; 7108 } 7109 } 7110 return false; 7111 } 7112 7113 /* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR. 7114 Callback for simplify_replace_fn_rtx. */ 7115 7116 static rtx 7117 replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data) 7118 { 7119 rtx *replacements = (rtx *) data; 7120 7121 if (REG_P (x) 7122 && REGNO (x) >= FIRST_PSEUDO_REGISTER 7123 && replacements[REGNO (x)] != NULL_RTX) 7124 { 7125 if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)])) 7126 return replacements[REGNO (x)]; 7127 return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)], 7128 GET_MODE (replacements[REGNO (x)])); 7129 } 7130 return NULL_RTX; 7131 } 7132 7133 /* Scan all the insns and delete any that are dead; i.e., they store a register 7134 that is never used or they copy a register to itself. 7135 7136 This is used to remove insns made obviously dead by cse, loop or other 7137 optimizations. It improves the heuristics in loop since it won't try to 7138 move dead invariants out of loops or make givs for dead quantities. The 7139 remaining passes of the compilation are also sped up. */ 7140 7141 int 7142 delete_trivially_dead_insns (rtx_insn *insns, int nreg) 7143 { 7144 int *counts; 7145 rtx_insn *insn, *prev; 7146 rtx *replacements = NULL; 7147 int ndead = 0; 7148 7149 timevar_push (TV_DELETE_TRIVIALLY_DEAD); 7150 /* First count the number of times each register is used. */ 7151 if (MAY_HAVE_DEBUG_BIND_INSNS) 7152 { 7153 counts = XCNEWVEC (int, nreg * 3); 7154 for (insn = insns; insn; insn = NEXT_INSN (insn)) 7155 if (DEBUG_BIND_INSN_P (insn)) 7156 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg, 7157 NULL_RTX, 1); 7158 else if (INSN_P (insn)) 7159 { 7160 count_reg_usage (insn, counts, NULL_RTX, 1); 7161 note_stores (PATTERN (insn), count_stores, counts + nreg * 2); 7162 } 7163 /* If there can be debug insns, COUNTS are 3 consecutive arrays. 7164 First one counts how many times each pseudo is used outside 7165 of debug insns, second counts how many times each pseudo is 7166 used in debug insns and third counts how many times a pseudo 7167 is stored. */ 7168 } 7169 else 7170 { 7171 counts = XCNEWVEC (int, nreg); 7172 for (insn = insns; insn; insn = NEXT_INSN (insn)) 7173 if (INSN_P (insn)) 7174 count_reg_usage (insn, counts, NULL_RTX, 1); 7175 /* If no debug insns can be present, COUNTS is just an array 7176 which counts how many times each pseudo is used. */ 7177 } 7178 /* Pseudo PIC register should be considered as used due to possible 7179 new usages generated. */ 7180 if (!reload_completed 7181 && pic_offset_table_rtx 7182 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER) 7183 counts[REGNO (pic_offset_table_rtx)]++; 7184 /* Go from the last insn to the first and delete insns that only set unused 7185 registers or copy a register to itself. As we delete an insn, remove 7186 usage counts for registers it uses. 7187 7188 The first jump optimization pass may leave a real insn as the last 7189 insn in the function. We must not skip that insn or we may end 7190 up deleting code that is not really dead. 7191 7192 If some otherwise unused register is only used in DEBUG_INSNs, 7193 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before 7194 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR 7195 has been created for the unused register, replace it with 7196 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */ 7197 for (insn = get_last_insn (); insn; insn = prev) 7198 { 7199 int live_insn = 0; 7200 7201 prev = PREV_INSN (insn); 7202 if (!INSN_P (insn)) 7203 continue; 7204 7205 live_insn = insn_live_p (insn, counts); 7206 7207 /* If this is a dead insn, delete it and show registers in it aren't 7208 being used. */ 7209 7210 if (! live_insn && dbg_cnt (delete_trivial_dead)) 7211 { 7212 if (DEBUG_INSN_P (insn)) 7213 { 7214 if (DEBUG_BIND_INSN_P (insn)) 7215 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg, 7216 NULL_RTX, -1); 7217 } 7218 else 7219 { 7220 rtx set; 7221 if (MAY_HAVE_DEBUG_BIND_INSNS 7222 && (set = single_set (insn)) != NULL_RTX 7223 && is_dead_reg (SET_DEST (set), counts) 7224 /* Used at least once in some DEBUG_INSN. */ 7225 && counts[REGNO (SET_DEST (set)) + nreg] > 0 7226 /* And set exactly once. */ 7227 && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1 7228 && !side_effects_p (SET_SRC (set)) 7229 && asm_noperands (PATTERN (insn)) < 0) 7230 { 7231 rtx dval, bind_var_loc; 7232 rtx_insn *bind; 7233 7234 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */ 7235 dval = make_debug_expr_from_rtl (SET_DEST (set)); 7236 7237 /* Emit a debug bind insn before the insn in which 7238 reg dies. */ 7239 bind_var_loc = 7240 gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)), 7241 DEBUG_EXPR_TREE_DECL (dval), 7242 SET_SRC (set), 7243 VAR_INIT_STATUS_INITIALIZED); 7244 count_reg_usage (bind_var_loc, counts + nreg, NULL_RTX, 1); 7245 7246 bind = emit_debug_insn_before (bind_var_loc, insn); 7247 df_insn_rescan (bind); 7248 7249 if (replacements == NULL) 7250 replacements = XCNEWVEC (rtx, nreg); 7251 replacements[REGNO (SET_DEST (set))] = dval; 7252 } 7253 7254 count_reg_usage (insn, counts, NULL_RTX, -1); 7255 ndead++; 7256 } 7257 cse_cfg_altered |= delete_insn_and_edges (insn); 7258 } 7259 } 7260 7261 if (MAY_HAVE_DEBUG_BIND_INSNS) 7262 { 7263 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn)) 7264 if (DEBUG_BIND_INSN_P (insn)) 7265 { 7266 /* If this debug insn references a dead register that wasn't replaced 7267 with an DEBUG_EXPR, reset the DEBUG_INSN. */ 7268 bool seen_repl = false; 7269 if (is_dead_debug_insn (INSN_VAR_LOCATION_LOC (insn), 7270 counts, replacements, &seen_repl)) 7271 { 7272 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC (); 7273 df_insn_rescan (insn); 7274 } 7275 else if (seen_repl) 7276 { 7277 INSN_VAR_LOCATION_LOC (insn) 7278 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn), 7279 NULL_RTX, replace_dead_reg, 7280 replacements); 7281 df_insn_rescan (insn); 7282 } 7283 } 7284 free (replacements); 7285 } 7286 7287 if (dump_file && ndead) 7288 fprintf (dump_file, "Deleted %i trivially dead insns\n", 7289 ndead); 7290 /* Clean up. */ 7291 free (counts); 7292 timevar_pop (TV_DELETE_TRIVIALLY_DEAD); 7293 return ndead; 7294 } 7295 7296 /* If LOC contains references to NEWREG in a different mode, change them 7297 to use NEWREG instead. */ 7298 7299 static void 7300 cse_change_cc_mode (subrtx_ptr_iterator::array_type &array, 7301 rtx *loc, rtx_insn *insn, rtx newreg) 7302 { 7303 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST) 7304 { 7305 rtx *loc = *iter; 7306 rtx x = *loc; 7307 if (x 7308 && REG_P (x) 7309 && REGNO (x) == REGNO (newreg) 7310 && GET_MODE (x) != GET_MODE (newreg)) 7311 { 7312 validate_change (insn, loc, newreg, 1); 7313 iter.skip_subrtxes (); 7314 } 7315 } 7316 } 7317 7318 /* Change the mode of any reference to the register REGNO (NEWREG) to 7319 GET_MODE (NEWREG) in INSN. */ 7320 7321 static void 7322 cse_change_cc_mode_insn (rtx_insn *insn, rtx newreg) 7323 { 7324 int success; 7325 7326 if (!INSN_P (insn)) 7327 return; 7328 7329 subrtx_ptr_iterator::array_type array; 7330 cse_change_cc_mode (array, &PATTERN (insn), insn, newreg); 7331 cse_change_cc_mode (array, ®_NOTES (insn), insn, newreg); 7332 7333 /* If the following assertion was triggered, there is most probably 7334 something wrong with the cc_modes_compatible back end function. 7335 CC modes only can be considered compatible if the insn - with the mode 7336 replaced by any of the compatible modes - can still be recognized. */ 7337 success = apply_change_group (); 7338 gcc_assert (success); 7339 } 7340 7341 /* Change the mode of any reference to the register REGNO (NEWREG) to 7342 GET_MODE (NEWREG), starting at START. Stop before END. Stop at 7343 any instruction which modifies NEWREG. */ 7344 7345 static void 7346 cse_change_cc_mode_insns (rtx_insn *start, rtx_insn *end, rtx newreg) 7347 { 7348 rtx_insn *insn; 7349 7350 for (insn = start; insn != end; insn = NEXT_INSN (insn)) 7351 { 7352 if (! INSN_P (insn)) 7353 continue; 7354 7355 if (reg_set_p (newreg, insn)) 7356 return; 7357 7358 cse_change_cc_mode_insn (insn, newreg); 7359 } 7360 } 7361 7362 /* BB is a basic block which finishes with CC_REG as a condition code 7363 register which is set to CC_SRC. Look through the successors of BB 7364 to find blocks which have a single predecessor (i.e., this one), 7365 and look through those blocks for an assignment to CC_REG which is 7366 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are 7367 permitted to change the mode of CC_SRC to a compatible mode. This 7368 returns VOIDmode if no equivalent assignments were found. 7369 Otherwise it returns the mode which CC_SRC should wind up with. 7370 ORIG_BB should be the same as BB in the outermost cse_cc_succs call, 7371 but is passed unmodified down to recursive calls in order to prevent 7372 endless recursion. 7373 7374 The main complexity in this function is handling the mode issues. 7375 We may have more than one duplicate which we can eliminate, and we 7376 try to find a mode which will work for multiple duplicates. */ 7377 7378 static machine_mode 7379 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src, 7380 bool can_change_mode) 7381 { 7382 bool found_equiv; 7383 machine_mode mode; 7384 unsigned int insn_count; 7385 edge e; 7386 rtx_insn *insns[2]; 7387 machine_mode modes[2]; 7388 rtx_insn *last_insns[2]; 7389 unsigned int i; 7390 rtx newreg; 7391 edge_iterator ei; 7392 7393 /* We expect to have two successors. Look at both before picking 7394 the final mode for the comparison. If we have more successors 7395 (i.e., some sort of table jump, although that seems unlikely), 7396 then we require all beyond the first two to use the same 7397 mode. */ 7398 7399 found_equiv = false; 7400 mode = GET_MODE (cc_src); 7401 insn_count = 0; 7402 FOR_EACH_EDGE (e, ei, bb->succs) 7403 { 7404 rtx_insn *insn; 7405 rtx_insn *end; 7406 7407 if (e->flags & EDGE_COMPLEX) 7408 continue; 7409 7410 if (EDGE_COUNT (e->dest->preds) != 1 7411 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun) 7412 /* Avoid endless recursion on unreachable blocks. */ 7413 || e->dest == orig_bb) 7414 continue; 7415 7416 end = NEXT_INSN (BB_END (e->dest)); 7417 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn)) 7418 { 7419 rtx set; 7420 7421 if (! INSN_P (insn)) 7422 continue; 7423 7424 /* If CC_SRC is modified, we have to stop looking for 7425 something which uses it. */ 7426 if (modified_in_p (cc_src, insn)) 7427 break; 7428 7429 /* Check whether INSN sets CC_REG to CC_SRC. */ 7430 set = single_set (insn); 7431 if (set 7432 && REG_P (SET_DEST (set)) 7433 && REGNO (SET_DEST (set)) == REGNO (cc_reg)) 7434 { 7435 bool found; 7436 machine_mode set_mode; 7437 machine_mode comp_mode; 7438 7439 found = false; 7440 set_mode = GET_MODE (SET_SRC (set)); 7441 comp_mode = set_mode; 7442 if (rtx_equal_p (cc_src, SET_SRC (set))) 7443 found = true; 7444 else if (GET_CODE (cc_src) == COMPARE 7445 && GET_CODE (SET_SRC (set)) == COMPARE 7446 && mode != set_mode 7447 && rtx_equal_p (XEXP (cc_src, 0), 7448 XEXP (SET_SRC (set), 0)) 7449 && rtx_equal_p (XEXP (cc_src, 1), 7450 XEXP (SET_SRC (set), 1))) 7451 7452 { 7453 comp_mode = targetm.cc_modes_compatible (mode, set_mode); 7454 if (comp_mode != VOIDmode 7455 && (can_change_mode || comp_mode == mode)) 7456 found = true; 7457 } 7458 7459 if (found) 7460 { 7461 found_equiv = true; 7462 if (insn_count < ARRAY_SIZE (insns)) 7463 { 7464 insns[insn_count] = insn; 7465 modes[insn_count] = set_mode; 7466 last_insns[insn_count] = end; 7467 ++insn_count; 7468 7469 if (mode != comp_mode) 7470 { 7471 gcc_assert (can_change_mode); 7472 mode = comp_mode; 7473 7474 /* The modified insn will be re-recognized later. */ 7475 PUT_MODE (cc_src, mode); 7476 } 7477 } 7478 else 7479 { 7480 if (set_mode != mode) 7481 { 7482 /* We found a matching expression in the 7483 wrong mode, but we don't have room to 7484 store it in the array. Punt. This case 7485 should be rare. */ 7486 break; 7487 } 7488 /* INSN sets CC_REG to a value equal to CC_SRC 7489 with the right mode. We can simply delete 7490 it. */ 7491 delete_insn (insn); 7492 } 7493 7494 /* We found an instruction to delete. Keep looking, 7495 in the hopes of finding a three-way jump. */ 7496 continue; 7497 } 7498 7499 /* We found an instruction which sets the condition 7500 code, so don't look any farther. */ 7501 break; 7502 } 7503 7504 /* If INSN sets CC_REG in some other way, don't look any 7505 farther. */ 7506 if (reg_set_p (cc_reg, insn)) 7507 break; 7508 } 7509 7510 /* If we fell off the bottom of the block, we can keep looking 7511 through successors. We pass CAN_CHANGE_MODE as false because 7512 we aren't prepared to handle compatibility between the 7513 further blocks and this block. */ 7514 if (insn == end) 7515 { 7516 machine_mode submode; 7517 7518 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false); 7519 if (submode != VOIDmode) 7520 { 7521 gcc_assert (submode == mode); 7522 found_equiv = true; 7523 can_change_mode = false; 7524 } 7525 } 7526 } 7527 7528 if (! found_equiv) 7529 return VOIDmode; 7530 7531 /* Now INSN_COUNT is the number of instructions we found which set 7532 CC_REG to a value equivalent to CC_SRC. The instructions are in 7533 INSNS. The modes used by those instructions are in MODES. */ 7534 7535 newreg = NULL_RTX; 7536 for (i = 0; i < insn_count; ++i) 7537 { 7538 if (modes[i] != mode) 7539 { 7540 /* We need to change the mode of CC_REG in INSNS[i] and 7541 subsequent instructions. */ 7542 if (! newreg) 7543 { 7544 if (GET_MODE (cc_reg) == mode) 7545 newreg = cc_reg; 7546 else 7547 newreg = gen_rtx_REG (mode, REGNO (cc_reg)); 7548 } 7549 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i], 7550 newreg); 7551 } 7552 7553 cse_cfg_altered |= delete_insn_and_edges (insns[i]); 7554 } 7555 7556 return mode; 7557 } 7558 7559 /* If we have a fixed condition code register (or two), walk through 7560 the instructions and try to eliminate duplicate assignments. */ 7561 7562 static void 7563 cse_condition_code_reg (void) 7564 { 7565 unsigned int cc_regno_1; 7566 unsigned int cc_regno_2; 7567 rtx cc_reg_1; 7568 rtx cc_reg_2; 7569 basic_block bb; 7570 7571 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2)) 7572 return; 7573 7574 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1); 7575 if (cc_regno_2 != INVALID_REGNUM) 7576 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2); 7577 else 7578 cc_reg_2 = NULL_RTX; 7579 7580 FOR_EACH_BB_FN (bb, cfun) 7581 { 7582 rtx_insn *last_insn; 7583 rtx cc_reg; 7584 rtx_insn *insn; 7585 rtx_insn *cc_src_insn; 7586 rtx cc_src; 7587 machine_mode mode; 7588 machine_mode orig_mode; 7589 7590 /* Look for blocks which end with a conditional jump based on a 7591 condition code register. Then look for the instruction which 7592 sets the condition code register. Then look through the 7593 successor blocks for instructions which set the condition 7594 code register to the same value. There are other possible 7595 uses of the condition code register, but these are by far the 7596 most common and the ones which we are most likely to be able 7597 to optimize. */ 7598 7599 last_insn = BB_END (bb); 7600 if (!JUMP_P (last_insn)) 7601 continue; 7602 7603 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn))) 7604 cc_reg = cc_reg_1; 7605 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn))) 7606 cc_reg = cc_reg_2; 7607 else 7608 continue; 7609 7610 cc_src_insn = NULL; 7611 cc_src = NULL_RTX; 7612 for (insn = PREV_INSN (last_insn); 7613 insn && insn != PREV_INSN (BB_HEAD (bb)); 7614 insn = PREV_INSN (insn)) 7615 { 7616 rtx set; 7617 7618 if (! INSN_P (insn)) 7619 continue; 7620 set = single_set (insn); 7621 if (set 7622 && REG_P (SET_DEST (set)) 7623 && REGNO (SET_DEST (set)) == REGNO (cc_reg)) 7624 { 7625 cc_src_insn = insn; 7626 cc_src = SET_SRC (set); 7627 break; 7628 } 7629 else if (reg_set_p (cc_reg, insn)) 7630 break; 7631 } 7632 7633 if (! cc_src_insn) 7634 continue; 7635 7636 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn))) 7637 continue; 7638 7639 /* Now CC_REG is a condition code register used for a 7640 conditional jump at the end of the block, and CC_SRC, in 7641 CC_SRC_INSN, is the value to which that condition code 7642 register is set, and CC_SRC is still meaningful at the end of 7643 the basic block. */ 7644 7645 orig_mode = GET_MODE (cc_src); 7646 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true); 7647 if (mode != VOIDmode) 7648 { 7649 gcc_assert (mode == GET_MODE (cc_src)); 7650 if (mode != orig_mode) 7651 { 7652 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg)); 7653 7654 cse_change_cc_mode_insn (cc_src_insn, newreg); 7655 7656 /* Do the same in the following insns that use the 7657 current value of CC_REG within BB. */ 7658 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn), 7659 NEXT_INSN (last_insn), 7660 newreg); 7661 } 7662 } 7663 } 7664 } 7665 7666 7667 /* Perform common subexpression elimination. Nonzero value from 7668 `cse_main' means that jumps were simplified and some code may now 7669 be unreachable, so do jump optimization again. */ 7670 static unsigned int 7671 rest_of_handle_cse (void) 7672 { 7673 int tem; 7674 7675 if (dump_file) 7676 dump_flow_info (dump_file, dump_flags); 7677 7678 tem = cse_main (get_insns (), max_reg_num ()); 7679 7680 /* If we are not running more CSE passes, then we are no longer 7681 expecting CSE to be run. But always rerun it in a cheap mode. */ 7682 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse; 7683 7684 if (tem == 2) 7685 { 7686 timevar_push (TV_JUMP); 7687 rebuild_jump_labels (get_insns ()); 7688 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED); 7689 timevar_pop (TV_JUMP); 7690 } 7691 else if (tem == 1 || optimize > 1) 7692 cse_cfg_altered |= cleanup_cfg (0); 7693 7694 return 0; 7695 } 7696 7697 namespace { 7698 7699 const pass_data pass_data_cse = 7700 { 7701 RTL_PASS, /* type */ 7702 "cse1", /* name */ 7703 OPTGROUP_NONE, /* optinfo_flags */ 7704 TV_CSE, /* tv_id */ 7705 0, /* properties_required */ 7706 0, /* properties_provided */ 7707 0, /* properties_destroyed */ 7708 0, /* todo_flags_start */ 7709 TODO_df_finish, /* todo_flags_finish */ 7710 }; 7711 7712 class pass_cse : public rtl_opt_pass 7713 { 7714 public: 7715 pass_cse (gcc::context *ctxt) 7716 : rtl_opt_pass (pass_data_cse, ctxt) 7717 {} 7718 7719 /* opt_pass methods: */ 7720 virtual bool gate (function *) { return optimize > 0; } 7721 virtual unsigned int execute (function *) { return rest_of_handle_cse (); } 7722 7723 }; // class pass_cse 7724 7725 } // anon namespace 7726 7727 rtl_opt_pass * 7728 make_pass_cse (gcc::context *ctxt) 7729 { 7730 return new pass_cse (ctxt); 7731 } 7732 7733 7734 /* Run second CSE pass after loop optimizations. */ 7735 static unsigned int 7736 rest_of_handle_cse2 (void) 7737 { 7738 int tem; 7739 7740 if (dump_file) 7741 dump_flow_info (dump_file, dump_flags); 7742 7743 tem = cse_main (get_insns (), max_reg_num ()); 7744 7745 /* Run a pass to eliminate duplicated assignments to condition code 7746 registers. We have to run this after bypass_jumps, because it 7747 makes it harder for that pass to determine whether a jump can be 7748 bypassed safely. */ 7749 cse_condition_code_reg (); 7750 7751 delete_trivially_dead_insns (get_insns (), max_reg_num ()); 7752 7753 if (tem == 2) 7754 { 7755 timevar_push (TV_JUMP); 7756 rebuild_jump_labels (get_insns ()); 7757 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED); 7758 timevar_pop (TV_JUMP); 7759 } 7760 else if (tem == 1) 7761 cse_cfg_altered |= cleanup_cfg (0); 7762 7763 cse_not_expected = 1; 7764 return 0; 7765 } 7766 7767 7768 namespace { 7769 7770 const pass_data pass_data_cse2 = 7771 { 7772 RTL_PASS, /* type */ 7773 "cse2", /* name */ 7774 OPTGROUP_NONE, /* optinfo_flags */ 7775 TV_CSE2, /* tv_id */ 7776 0, /* properties_required */ 7777 0, /* properties_provided */ 7778 0, /* properties_destroyed */ 7779 0, /* todo_flags_start */ 7780 TODO_df_finish, /* todo_flags_finish */ 7781 }; 7782 7783 class pass_cse2 : public rtl_opt_pass 7784 { 7785 public: 7786 pass_cse2 (gcc::context *ctxt) 7787 : rtl_opt_pass (pass_data_cse2, ctxt) 7788 {} 7789 7790 /* opt_pass methods: */ 7791 virtual bool gate (function *) 7792 { 7793 return optimize > 0 && flag_rerun_cse_after_loop; 7794 } 7795 7796 virtual unsigned int execute (function *) { return rest_of_handle_cse2 (); } 7797 7798 }; // class pass_cse2 7799 7800 } // anon namespace 7801 7802 rtl_opt_pass * 7803 make_pass_cse2 (gcc::context *ctxt) 7804 { 7805 return new pass_cse2 (ctxt); 7806 } 7807 7808 /* Run second CSE pass after loop optimizations. */ 7809 static unsigned int 7810 rest_of_handle_cse_after_global_opts (void) 7811 { 7812 int save_cfj; 7813 int tem; 7814 7815 /* We only want to do local CSE, so don't follow jumps. */ 7816 save_cfj = flag_cse_follow_jumps; 7817 flag_cse_follow_jumps = 0; 7818 7819 rebuild_jump_labels (get_insns ()); 7820 tem = cse_main (get_insns (), max_reg_num ()); 7821 cse_cfg_altered |= purge_all_dead_edges (); 7822 delete_trivially_dead_insns (get_insns (), max_reg_num ()); 7823 7824 cse_not_expected = !flag_rerun_cse_after_loop; 7825 7826 /* If cse altered any jumps, rerun jump opts to clean things up. */ 7827 if (tem == 2) 7828 { 7829 timevar_push (TV_JUMP); 7830 rebuild_jump_labels (get_insns ()); 7831 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED); 7832 timevar_pop (TV_JUMP); 7833 } 7834 else if (tem == 1) 7835 cse_cfg_altered |= cleanup_cfg (0); 7836 7837 flag_cse_follow_jumps = save_cfj; 7838 return 0; 7839 } 7840 7841 namespace { 7842 7843 const pass_data pass_data_cse_after_global_opts = 7844 { 7845 RTL_PASS, /* type */ 7846 "cse_local", /* name */ 7847 OPTGROUP_NONE, /* optinfo_flags */ 7848 TV_CSE, /* tv_id */ 7849 0, /* properties_required */ 7850 0, /* properties_provided */ 7851 0, /* properties_destroyed */ 7852 0, /* todo_flags_start */ 7853 TODO_df_finish, /* todo_flags_finish */ 7854 }; 7855 7856 class pass_cse_after_global_opts : public rtl_opt_pass 7857 { 7858 public: 7859 pass_cse_after_global_opts (gcc::context *ctxt) 7860 : rtl_opt_pass (pass_data_cse_after_global_opts, ctxt) 7861 {} 7862 7863 /* opt_pass methods: */ 7864 virtual bool gate (function *) 7865 { 7866 return optimize > 0 && flag_rerun_cse_after_global_opts; 7867 } 7868 7869 virtual unsigned int execute (function *) 7870 { 7871 return rest_of_handle_cse_after_global_opts (); 7872 } 7873 7874 }; // class pass_cse_after_global_opts 7875 7876 } // anon namespace 7877 7878 rtl_opt_pass * 7879 make_pass_cse_after_global_opts (gcc::context *ctxt) 7880 { 7881 return new pass_cse_after_global_opts (ctxt); 7882 } 7883