1 /* Common subexpression elimination for GNU compiler. 2 Copyright (C) 1987-2017 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "backend.h" 24 #include "target.h" 25 #include "rtl.h" 26 #include "tree.h" 27 #include "cfghooks.h" 28 #include "df.h" 29 #include "memmodel.h" 30 #include "tm_p.h" 31 #include "insn-config.h" 32 #include "regs.h" 33 #include "emit-rtl.h" 34 #include "recog.h" 35 #include "cfgrtl.h" 36 #include "cfganal.h" 37 #include "cfgcleanup.h" 38 #include "alias.h" 39 #include "toplev.h" 40 #include "params.h" 41 #include "rtlhooks-def.h" 42 #include "tree-pass.h" 43 #include "dbgcnt.h" 44 #include "rtl-iter.h" 45 46 /* The basic idea of common subexpression elimination is to go 47 through the code, keeping a record of expressions that would 48 have the same value at the current scan point, and replacing 49 expressions encountered with the cheapest equivalent expression. 50 51 It is too complicated to keep track of the different possibilities 52 when control paths merge in this code; so, at each label, we forget all 53 that is known and start fresh. This can be described as processing each 54 extended basic block separately. We have a separate pass to perform 55 global CSE. 56 57 Note CSE can turn a conditional or computed jump into a nop or 58 an unconditional jump. When this occurs we arrange to run the jump 59 optimizer after CSE to delete the unreachable code. 60 61 We use two data structures to record the equivalent expressions: 62 a hash table for most expressions, and a vector of "quantity 63 numbers" to record equivalent (pseudo) registers. 64 65 The use of the special data structure for registers is desirable 66 because it is faster. It is possible because registers references 67 contain a fairly small number, the register number, taken from 68 a contiguously allocated series, and two register references are 69 identical if they have the same number. General expressions 70 do not have any such thing, so the only way to retrieve the 71 information recorded on an expression other than a register 72 is to keep it in a hash table. 73 74 Registers and "quantity numbers": 75 76 At the start of each basic block, all of the (hardware and pseudo) 77 registers used in the function are given distinct quantity 78 numbers to indicate their contents. During scan, when the code 79 copies one register into another, we copy the quantity number. 80 When a register is loaded in any other way, we allocate a new 81 quantity number to describe the value generated by this operation. 82 `REG_QTY (N)' records what quantity register N is currently thought 83 of as containing. 84 85 All real quantity numbers are greater than or equal to zero. 86 If register N has not been assigned a quantity, `REG_QTY (N)' will 87 equal -N - 1, which is always negative. 88 89 Quantity numbers below zero do not exist and none of the `qty_table' 90 entries should be referenced with a negative index. 91 92 We also maintain a bidirectional chain of registers for each 93 quantity number. The `qty_table` members `first_reg' and `last_reg', 94 and `reg_eqv_table' members `next' and `prev' hold these chains. 95 96 The first register in a chain is the one whose lifespan is least local. 97 Among equals, it is the one that was seen first. 98 We replace any equivalent register with that one. 99 100 If two registers have the same quantity number, it must be true that 101 REG expressions with qty_table `mode' must be in the hash table for both 102 registers and must be in the same class. 103 104 The converse is not true. Since hard registers may be referenced in 105 any mode, two REG expressions might be equivalent in the hash table 106 but not have the same quantity number if the quantity number of one 107 of the registers is not the same mode as those expressions. 108 109 Constants and quantity numbers 110 111 When a quantity has a known constant value, that value is stored 112 in the appropriate qty_table `const_rtx'. This is in addition to 113 putting the constant in the hash table as is usual for non-regs. 114 115 Whether a reg or a constant is preferred is determined by the configuration 116 macro CONST_COSTS and will often depend on the constant value. In any 117 event, expressions containing constants can be simplified, by fold_rtx. 118 119 When a quantity has a known nearly constant value (such as an address 120 of a stack slot), that value is stored in the appropriate qty_table 121 `const_rtx'. 122 123 Integer constants don't have a machine mode. However, cse 124 determines the intended machine mode from the destination 125 of the instruction that moves the constant. The machine mode 126 is recorded in the hash table along with the actual RTL 127 constant expression so that different modes are kept separate. 128 129 Other expressions: 130 131 To record known equivalences among expressions in general 132 we use a hash table called `table'. It has a fixed number of buckets 133 that contain chains of `struct table_elt' elements for expressions. 134 These chains connect the elements whose expressions have the same 135 hash codes. 136 137 Other chains through the same elements connect the elements which 138 currently have equivalent values. 139 140 Register references in an expression are canonicalized before hashing 141 the expression. This is done using `reg_qty' and qty_table `first_reg'. 142 The hash code of a register reference is computed using the quantity 143 number, not the register number. 144 145 When the value of an expression changes, it is necessary to remove from the 146 hash table not just that expression but all expressions whose values 147 could be different as a result. 148 149 1. If the value changing is in memory, except in special cases 150 ANYTHING referring to memory could be changed. That is because 151 nobody knows where a pointer does not point. 152 The function `invalidate_memory' removes what is necessary. 153 154 The special cases are when the address is constant or is 155 a constant plus a fixed register such as the frame pointer 156 or a static chain pointer. When such addresses are stored in, 157 we can tell exactly which other such addresses must be invalidated 158 due to overlap. `invalidate' does this. 159 All expressions that refer to non-constant 160 memory addresses are also invalidated. `invalidate_memory' does this. 161 162 2. If the value changing is a register, all expressions 163 containing references to that register, and only those, 164 must be removed. 165 166 Because searching the entire hash table for expressions that contain 167 a register is very slow, we try to figure out when it isn't necessary. 168 Precisely, this is necessary only when expressions have been 169 entered in the hash table using this register, and then the value has 170 changed, and then another expression wants to be added to refer to 171 the register's new value. This sequence of circumstances is rare 172 within any one basic block. 173 174 `REG_TICK' and `REG_IN_TABLE', accessors for members of 175 cse_reg_info, are used to detect this case. REG_TICK (i) is 176 incremented whenever a value is stored in register i. 177 REG_IN_TABLE (i) holds -1 if no references to register i have been 178 entered in the table; otherwise, it contains the value REG_TICK (i) 179 had when the references were entered. If we want to enter a 180 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and 181 remove old references. Until we want to enter a new entry, the 182 mere fact that the two vectors don't match makes the entries be 183 ignored if anyone tries to match them. 184 185 Registers themselves are entered in the hash table as well as in 186 the equivalent-register chains. However, `REG_TICK' and 187 `REG_IN_TABLE' do not apply to expressions which are simple 188 register references. These expressions are removed from the table 189 immediately when they become invalid, and this can be done even if 190 we do not immediately search for all the expressions that refer to 191 the register. 192 193 A CLOBBER rtx in an instruction invalidates its operand for further 194 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK 195 invalidates everything that resides in memory. 196 197 Related expressions: 198 199 Constant expressions that differ only by an additive integer 200 are called related. When a constant expression is put in 201 the table, the related expression with no constant term 202 is also entered. These are made to point at each other 203 so that it is possible to find out if there exists any 204 register equivalent to an expression related to a given expression. */ 205 206 /* Length of qty_table vector. We know in advance we will not need 207 a quantity number this big. */ 208 209 static int max_qty; 210 211 /* Next quantity number to be allocated. 212 This is 1 + the largest number needed so far. */ 213 214 static int next_qty; 215 216 /* Per-qty information tracking. 217 218 `first_reg' and `last_reg' track the head and tail of the 219 chain of registers which currently contain this quantity. 220 221 `mode' contains the machine mode of this quantity. 222 223 `const_rtx' holds the rtx of the constant value of this 224 quantity, if known. A summations of the frame/arg pointer 225 and a constant can also be entered here. When this holds 226 a known value, `const_insn' is the insn which stored the 227 constant value. 228 229 `comparison_{code,const,qty}' are used to track when a 230 comparison between a quantity and some constant or register has 231 been passed. In such a case, we know the results of the comparison 232 in case we see it again. These members record a comparison that 233 is known to be true. `comparison_code' holds the rtx code of such 234 a comparison, else it is set to UNKNOWN and the other two 235 comparison members are undefined. `comparison_const' holds 236 the constant being compared against, or zero if the comparison 237 is not against a constant. `comparison_qty' holds the quantity 238 being compared against when the result is known. If the comparison 239 is not with a register, `comparison_qty' is -1. */ 240 241 struct qty_table_elem 242 { 243 rtx const_rtx; 244 rtx_insn *const_insn; 245 rtx comparison_const; 246 int comparison_qty; 247 unsigned int first_reg, last_reg; 248 /* The sizes of these fields should match the sizes of the 249 code and mode fields of struct rtx_def (see rtl.h). */ 250 ENUM_BITFIELD(rtx_code) comparison_code : 16; 251 ENUM_BITFIELD(machine_mode) mode : 8; 252 }; 253 254 /* The table of all qtys, indexed by qty number. */ 255 static struct qty_table_elem *qty_table; 256 257 /* For machines that have a CC0, we do not record its value in the hash 258 table since its use is guaranteed to be the insn immediately following 259 its definition and any other insn is presumed to invalidate it. 260 261 Instead, we store below the current and last value assigned to CC0. 262 If it should happen to be a constant, it is stored in preference 263 to the actual assigned value. In case it is a constant, we store 264 the mode in which the constant should be interpreted. */ 265 266 static rtx this_insn_cc0, prev_insn_cc0; 267 static machine_mode this_insn_cc0_mode, prev_insn_cc0_mode; 268 269 /* Insn being scanned. */ 270 271 static rtx_insn *this_insn; 272 static bool optimize_this_for_speed_p; 273 274 /* Index by register number, gives the number of the next (or 275 previous) register in the chain of registers sharing the same 276 value. 277 278 Or -1 if this register is at the end of the chain. 279 280 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */ 281 282 /* Per-register equivalence chain. */ 283 struct reg_eqv_elem 284 { 285 int next, prev; 286 }; 287 288 /* The table of all register equivalence chains. */ 289 static struct reg_eqv_elem *reg_eqv_table; 290 291 struct cse_reg_info 292 { 293 /* The timestamp at which this register is initialized. */ 294 unsigned int timestamp; 295 296 /* The quantity number of the register's current contents. */ 297 int reg_qty; 298 299 /* The number of times the register has been altered in the current 300 basic block. */ 301 int reg_tick; 302 303 /* The REG_TICK value at which rtx's containing this register are 304 valid in the hash table. If this does not equal the current 305 reg_tick value, such expressions existing in the hash table are 306 invalid. */ 307 int reg_in_table; 308 309 /* The SUBREG that was set when REG_TICK was last incremented. Set 310 to -1 if the last store was to the whole register, not a subreg. */ 311 unsigned int subreg_ticked; 312 }; 313 314 /* A table of cse_reg_info indexed by register numbers. */ 315 static struct cse_reg_info *cse_reg_info_table; 316 317 /* The size of the above table. */ 318 static unsigned int cse_reg_info_table_size; 319 320 /* The index of the first entry that has not been initialized. */ 321 static unsigned int cse_reg_info_table_first_uninitialized; 322 323 /* The timestamp at the beginning of the current run of 324 cse_extended_basic_block. We increment this variable at the beginning of 325 the current run of cse_extended_basic_block. The timestamp field of a 326 cse_reg_info entry matches the value of this variable if and only 327 if the entry has been initialized during the current run of 328 cse_extended_basic_block. */ 329 static unsigned int cse_reg_info_timestamp; 330 331 /* A HARD_REG_SET containing all the hard registers for which there is 332 currently a REG expression in the hash table. Note the difference 333 from the above variables, which indicate if the REG is mentioned in some 334 expression in the table. */ 335 336 static HARD_REG_SET hard_regs_in_table; 337 338 /* True if CSE has altered the CFG. */ 339 static bool cse_cfg_altered; 340 341 /* True if CSE has altered conditional jump insns in such a way 342 that jump optimization should be redone. */ 343 static bool cse_jumps_altered; 344 345 /* True if we put a LABEL_REF into the hash table for an INSN 346 without a REG_LABEL_OPERAND, we have to rerun jump after CSE 347 to put in the note. */ 348 static bool recorded_label_ref; 349 350 /* canon_hash stores 1 in do_not_record 351 if it notices a reference to CC0, PC, or some other volatile 352 subexpression. */ 353 354 static int do_not_record; 355 356 /* canon_hash stores 1 in hash_arg_in_memory 357 if it notices a reference to memory within the expression being hashed. */ 358 359 static int hash_arg_in_memory; 360 361 /* The hash table contains buckets which are chains of `struct table_elt's, 362 each recording one expression's information. 363 That expression is in the `exp' field. 364 365 The canon_exp field contains a canonical (from the point of view of 366 alias analysis) version of the `exp' field. 367 368 Those elements with the same hash code are chained in both directions 369 through the `next_same_hash' and `prev_same_hash' fields. 370 371 Each set of expressions with equivalent values 372 are on a two-way chain through the `next_same_value' 373 and `prev_same_value' fields, and all point with 374 the `first_same_value' field at the first element in 375 that chain. The chain is in order of increasing cost. 376 Each element's cost value is in its `cost' field. 377 378 The `in_memory' field is nonzero for elements that 379 involve any reference to memory. These elements are removed 380 whenever a write is done to an unidentified location in memory. 381 To be safe, we assume that a memory address is unidentified unless 382 the address is either a symbol constant or a constant plus 383 the frame pointer or argument pointer. 384 385 The `related_value' field is used to connect related expressions 386 (that differ by adding an integer). 387 The related expressions are chained in a circular fashion. 388 `related_value' is zero for expressions for which this 389 chain is not useful. 390 391 The `cost' field stores the cost of this element's expression. 392 The `regcost' field stores the value returned by approx_reg_cost for 393 this element's expression. 394 395 The `is_const' flag is set if the element is a constant (including 396 a fixed address). 397 398 The `flag' field is used as a temporary during some search routines. 399 400 The `mode' field is usually the same as GET_MODE (`exp'), but 401 if `exp' is a CONST_INT and has no machine mode then the `mode' 402 field is the mode it was being used as. Each constant is 403 recorded separately for each mode it is used with. */ 404 405 struct table_elt 406 { 407 rtx exp; 408 rtx canon_exp; 409 struct table_elt *next_same_hash; 410 struct table_elt *prev_same_hash; 411 struct table_elt *next_same_value; 412 struct table_elt *prev_same_value; 413 struct table_elt *first_same_value; 414 struct table_elt *related_value; 415 int cost; 416 int regcost; 417 /* The size of this field should match the size 418 of the mode field of struct rtx_def (see rtl.h). */ 419 ENUM_BITFIELD(machine_mode) mode : 8; 420 char in_memory; 421 char is_const; 422 char flag; 423 }; 424 425 /* We don't want a lot of buckets, because we rarely have very many 426 things stored in the hash table, and a lot of buckets slows 427 down a lot of loops that happen frequently. */ 428 #define HASH_SHIFT 5 429 #define HASH_SIZE (1 << HASH_SHIFT) 430 #define HASH_MASK (HASH_SIZE - 1) 431 432 /* Compute hash code of X in mode M. Special-case case where X is a pseudo 433 register (hard registers may require `do_not_record' to be set). */ 434 435 #define HASH(X, M) \ 436 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \ 437 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \ 438 : canon_hash (X, M)) & HASH_MASK) 439 440 /* Like HASH, but without side-effects. */ 441 #define SAFE_HASH(X, M) \ 442 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \ 443 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \ 444 : safe_hash (X, M)) & HASH_MASK) 445 446 /* Determine whether register number N is considered a fixed register for the 447 purpose of approximating register costs. 448 It is desirable to replace other regs with fixed regs, to reduce need for 449 non-fixed hard regs. 450 A reg wins if it is either the frame pointer or designated as fixed. */ 451 #define FIXED_REGNO_P(N) \ 452 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \ 453 || fixed_regs[N] || global_regs[N]) 454 455 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed 456 hard registers and pointers into the frame are the cheapest with a cost 457 of 0. Next come pseudos with a cost of one and other hard registers with 458 a cost of 2. Aside from these special cases, call `rtx_cost'. */ 459 460 #define CHEAP_REGNO(N) \ 461 (REGNO_PTR_FRAME_P (N) \ 462 || (HARD_REGISTER_NUM_P (N) \ 463 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS)) 464 465 #define COST(X, MODE) \ 466 (REG_P (X) ? 0 : notreg_cost (X, MODE, SET, 1)) 467 #define COST_IN(X, MODE, OUTER, OPNO) \ 468 (REG_P (X) ? 0 : notreg_cost (X, MODE, OUTER, OPNO)) 469 470 /* Get the number of times this register has been updated in this 471 basic block. */ 472 473 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick) 474 475 /* Get the point at which REG was recorded in the table. */ 476 477 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table) 478 479 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a 480 SUBREG). */ 481 482 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked) 483 484 /* Get the quantity number for REG. */ 485 486 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty) 487 488 /* Determine if the quantity number for register X represents a valid index 489 into the qty_table. */ 490 491 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0) 492 493 /* Compare table_elt X and Y and return true iff X is cheaper than Y. */ 494 495 #define CHEAPER(X, Y) \ 496 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0) 497 498 static struct table_elt *table[HASH_SIZE]; 499 500 /* Chain of `struct table_elt's made so far for this function 501 but currently removed from the table. */ 502 503 static struct table_elt *free_element_chain; 504 505 /* Set to the cost of a constant pool reference if one was found for a 506 symbolic constant. If this was found, it means we should try to 507 convert constants into constant pool entries if they don't fit in 508 the insn. */ 509 510 static int constant_pool_entries_cost; 511 static int constant_pool_entries_regcost; 512 513 /* Trace a patch through the CFG. */ 514 515 struct branch_path 516 { 517 /* The basic block for this path entry. */ 518 basic_block bb; 519 }; 520 521 /* This data describes a block that will be processed by 522 cse_extended_basic_block. */ 523 524 struct cse_basic_block_data 525 { 526 /* Total number of SETs in block. */ 527 int nsets; 528 /* Size of current branch path, if any. */ 529 int path_size; 530 /* Current path, indicating which basic_blocks will be processed. */ 531 struct branch_path *path; 532 }; 533 534 535 /* Pointers to the live in/live out bitmaps for the boundaries of the 536 current EBB. */ 537 static bitmap cse_ebb_live_in, cse_ebb_live_out; 538 539 /* A simple bitmap to track which basic blocks have been visited 540 already as part of an already processed extended basic block. */ 541 static sbitmap cse_visited_basic_blocks; 542 543 static bool fixed_base_plus_p (rtx x); 544 static int notreg_cost (rtx, machine_mode, enum rtx_code, int); 545 static int preferable (int, int, int, int); 546 static void new_basic_block (void); 547 static void make_new_qty (unsigned int, machine_mode); 548 static void make_regs_eqv (unsigned int, unsigned int); 549 static void delete_reg_equiv (unsigned int); 550 static int mention_regs (rtx); 551 static int insert_regs (rtx, struct table_elt *, int); 552 static void remove_from_table (struct table_elt *, unsigned); 553 static void remove_pseudo_from_table (rtx, unsigned); 554 static struct table_elt *lookup (rtx, unsigned, machine_mode); 555 static struct table_elt *lookup_for_remove (rtx, unsigned, machine_mode); 556 static rtx lookup_as_function (rtx, enum rtx_code); 557 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned, 558 machine_mode, int, int); 559 static struct table_elt *insert (rtx, struct table_elt *, unsigned, 560 machine_mode); 561 static void merge_equiv_classes (struct table_elt *, struct table_elt *); 562 static void invalidate (rtx, machine_mode); 563 static void remove_invalid_refs (unsigned int); 564 static void remove_invalid_subreg_refs (unsigned int, unsigned int, 565 machine_mode); 566 static void rehash_using_reg (rtx); 567 static void invalidate_memory (void); 568 static void invalidate_for_call (void); 569 static rtx use_related_value (rtx, struct table_elt *); 570 571 static inline unsigned canon_hash (rtx, machine_mode); 572 static inline unsigned safe_hash (rtx, machine_mode); 573 static inline unsigned hash_rtx_string (const char *); 574 575 static rtx canon_reg (rtx, rtx_insn *); 576 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *, 577 machine_mode *, 578 machine_mode *); 579 static rtx fold_rtx (rtx, rtx_insn *); 580 static rtx equiv_constant (rtx); 581 static void record_jump_equiv (rtx_insn *, bool); 582 static void record_jump_cond (enum rtx_code, machine_mode, rtx, rtx, 583 int); 584 static void cse_insn (rtx_insn *); 585 static void cse_prescan_path (struct cse_basic_block_data *); 586 static void invalidate_from_clobbers (rtx_insn *); 587 static void invalidate_from_sets_and_clobbers (rtx_insn *); 588 static rtx cse_process_notes (rtx, rtx, bool *); 589 static void cse_extended_basic_block (struct cse_basic_block_data *); 590 extern void dump_class (struct table_elt*); 591 static void get_cse_reg_info_1 (unsigned int regno); 592 static struct cse_reg_info * get_cse_reg_info (unsigned int regno); 593 594 static void flush_hash_table (void); 595 static bool insn_live_p (rtx_insn *, int *); 596 static bool set_live_p (rtx, rtx_insn *, int *); 597 static void cse_change_cc_mode_insn (rtx_insn *, rtx); 598 static void cse_change_cc_mode_insns (rtx_insn *, rtx_insn *, rtx); 599 static machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx, 600 bool); 601 602 603 #undef RTL_HOOKS_GEN_LOWPART 604 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible 605 606 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER; 607 608 /* Nonzero if X has the form (PLUS frame-pointer integer). */ 609 610 static bool 611 fixed_base_plus_p (rtx x) 612 { 613 switch (GET_CODE (x)) 614 { 615 case REG: 616 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx) 617 return true; 618 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]) 619 return true; 620 return false; 621 622 case PLUS: 623 if (!CONST_INT_P (XEXP (x, 1))) 624 return false; 625 return fixed_base_plus_p (XEXP (x, 0)); 626 627 default: 628 return false; 629 } 630 } 631 632 /* Dump the expressions in the equivalence class indicated by CLASSP. 633 This function is used only for debugging. */ 634 DEBUG_FUNCTION void 635 dump_class (struct table_elt *classp) 636 { 637 struct table_elt *elt; 638 639 fprintf (stderr, "Equivalence chain for "); 640 print_rtl (stderr, classp->exp); 641 fprintf (stderr, ": \n"); 642 643 for (elt = classp->first_same_value; elt; elt = elt->next_same_value) 644 { 645 print_rtl (stderr, elt->exp); 646 fprintf (stderr, "\n"); 647 } 648 } 649 650 /* Return an estimate of the cost of the registers used in an rtx. 651 This is mostly the number of different REG expressions in the rtx; 652 however for some exceptions like fixed registers we use a cost of 653 0. If any other hard register reference occurs, return MAX_COST. */ 654 655 static int 656 approx_reg_cost (const_rtx x) 657 { 658 int cost = 0; 659 subrtx_iterator::array_type array; 660 FOR_EACH_SUBRTX (iter, array, x, NONCONST) 661 { 662 const_rtx x = *iter; 663 if (REG_P (x)) 664 { 665 unsigned int regno = REGNO (x); 666 if (!CHEAP_REGNO (regno)) 667 { 668 if (regno < FIRST_PSEUDO_REGISTER) 669 { 670 if (targetm.small_register_classes_for_mode_p (GET_MODE (x))) 671 return MAX_COST; 672 cost += 2; 673 } 674 else 675 cost += 1; 676 } 677 } 678 } 679 return cost; 680 } 681 682 /* Return a negative value if an rtx A, whose costs are given by COST_A 683 and REGCOST_A, is more desirable than an rtx B. 684 Return a positive value if A is less desirable, or 0 if the two are 685 equally good. */ 686 static int 687 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b) 688 { 689 /* First, get rid of cases involving expressions that are entirely 690 unwanted. */ 691 if (cost_a != cost_b) 692 { 693 if (cost_a == MAX_COST) 694 return 1; 695 if (cost_b == MAX_COST) 696 return -1; 697 } 698 699 /* Avoid extending lifetimes of hardregs. */ 700 if (regcost_a != regcost_b) 701 { 702 if (regcost_a == MAX_COST) 703 return 1; 704 if (regcost_b == MAX_COST) 705 return -1; 706 } 707 708 /* Normal operation costs take precedence. */ 709 if (cost_a != cost_b) 710 return cost_a - cost_b; 711 /* Only if these are identical consider effects on register pressure. */ 712 if (regcost_a != regcost_b) 713 return regcost_a - regcost_b; 714 return 0; 715 } 716 717 /* Internal function, to compute cost when X is not a register; called 718 from COST macro to keep it simple. */ 719 720 static int 721 notreg_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno) 722 { 723 return ((GET_CODE (x) == SUBREG 724 && REG_P (SUBREG_REG (x)) 725 && GET_MODE_CLASS (mode) == MODE_INT 726 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT 727 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) 728 && subreg_lowpart_p (x) 729 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (SUBREG_REG (x)))) 730 ? 0 731 : rtx_cost (x, mode, outer, opno, optimize_this_for_speed_p) * 2); 732 } 733 734 735 /* Initialize CSE_REG_INFO_TABLE. */ 736 737 static void 738 init_cse_reg_info (unsigned int nregs) 739 { 740 /* Do we need to grow the table? */ 741 if (nregs > cse_reg_info_table_size) 742 { 743 unsigned int new_size; 744 745 if (cse_reg_info_table_size < 2048) 746 { 747 /* Compute a new size that is a power of 2 and no smaller 748 than the large of NREGS and 64. */ 749 new_size = (cse_reg_info_table_size 750 ? cse_reg_info_table_size : 64); 751 752 while (new_size < nregs) 753 new_size *= 2; 754 } 755 else 756 { 757 /* If we need a big table, allocate just enough to hold 758 NREGS registers. */ 759 new_size = nregs; 760 } 761 762 /* Reallocate the table with NEW_SIZE entries. */ 763 free (cse_reg_info_table); 764 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size); 765 cse_reg_info_table_size = new_size; 766 cse_reg_info_table_first_uninitialized = 0; 767 } 768 769 /* Do we have all of the first NREGS entries initialized? */ 770 if (cse_reg_info_table_first_uninitialized < nregs) 771 { 772 unsigned int old_timestamp = cse_reg_info_timestamp - 1; 773 unsigned int i; 774 775 /* Put the old timestamp on newly allocated entries so that they 776 will all be considered out of date. We do not touch those 777 entries beyond the first NREGS entries to be nice to the 778 virtual memory. */ 779 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++) 780 cse_reg_info_table[i].timestamp = old_timestamp; 781 782 cse_reg_info_table_first_uninitialized = nregs; 783 } 784 } 785 786 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */ 787 788 static void 789 get_cse_reg_info_1 (unsigned int regno) 790 { 791 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this 792 entry will be considered to have been initialized. */ 793 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp; 794 795 /* Initialize the rest of the entry. */ 796 cse_reg_info_table[regno].reg_tick = 1; 797 cse_reg_info_table[regno].reg_in_table = -1; 798 cse_reg_info_table[regno].subreg_ticked = -1; 799 cse_reg_info_table[regno].reg_qty = -regno - 1; 800 } 801 802 /* Find a cse_reg_info entry for REGNO. */ 803 804 static inline struct cse_reg_info * 805 get_cse_reg_info (unsigned int regno) 806 { 807 struct cse_reg_info *p = &cse_reg_info_table[regno]; 808 809 /* If this entry has not been initialized, go ahead and initialize 810 it. */ 811 if (p->timestamp != cse_reg_info_timestamp) 812 get_cse_reg_info_1 (regno); 813 814 return p; 815 } 816 817 /* Clear the hash table and initialize each register with its own quantity, 818 for a new basic block. */ 819 820 static void 821 new_basic_block (void) 822 { 823 int i; 824 825 next_qty = 0; 826 827 /* Invalidate cse_reg_info_table. */ 828 cse_reg_info_timestamp++; 829 830 /* Clear out hash table state for this pass. */ 831 CLEAR_HARD_REG_SET (hard_regs_in_table); 832 833 /* The per-quantity values used to be initialized here, but it is 834 much faster to initialize each as it is made in `make_new_qty'. */ 835 836 for (i = 0; i < HASH_SIZE; i++) 837 { 838 struct table_elt *first; 839 840 first = table[i]; 841 if (first != NULL) 842 { 843 struct table_elt *last = first; 844 845 table[i] = NULL; 846 847 while (last->next_same_hash != NULL) 848 last = last->next_same_hash; 849 850 /* Now relink this hash entire chain into 851 the free element list. */ 852 853 last->next_same_hash = free_element_chain; 854 free_element_chain = first; 855 } 856 } 857 858 prev_insn_cc0 = 0; 859 } 860 861 /* Say that register REG contains a quantity in mode MODE not in any 862 register before and initialize that quantity. */ 863 864 static void 865 make_new_qty (unsigned int reg, machine_mode mode) 866 { 867 int q; 868 struct qty_table_elem *ent; 869 struct reg_eqv_elem *eqv; 870 871 gcc_assert (next_qty < max_qty); 872 873 q = REG_QTY (reg) = next_qty++; 874 ent = &qty_table[q]; 875 ent->first_reg = reg; 876 ent->last_reg = reg; 877 ent->mode = mode; 878 ent->const_rtx = ent->const_insn = NULL; 879 ent->comparison_code = UNKNOWN; 880 881 eqv = ®_eqv_table[reg]; 882 eqv->next = eqv->prev = -1; 883 } 884 885 /* Make reg NEW equivalent to reg OLD. 886 OLD is not changing; NEW is. */ 887 888 static void 889 make_regs_eqv (unsigned int new_reg, unsigned int old_reg) 890 { 891 unsigned int lastr, firstr; 892 int q = REG_QTY (old_reg); 893 struct qty_table_elem *ent; 894 895 ent = &qty_table[q]; 896 897 /* Nothing should become eqv until it has a "non-invalid" qty number. */ 898 gcc_assert (REGNO_QTY_VALID_P (old_reg)); 899 900 REG_QTY (new_reg) = q; 901 firstr = ent->first_reg; 902 lastr = ent->last_reg; 903 904 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other 905 hard regs. Among pseudos, if NEW will live longer than any other reg 906 of the same qty, and that is beyond the current basic block, 907 make it the new canonical replacement for this qty. */ 908 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr)) 909 /* Certain fixed registers might be of the class NO_REGS. This means 910 that not only can they not be allocated by the compiler, but 911 they cannot be used in substitutions or canonicalizations 912 either. */ 913 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS) 914 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg)) 915 || (new_reg >= FIRST_PSEUDO_REGISTER 916 && (firstr < FIRST_PSEUDO_REGISTER 917 || (bitmap_bit_p (cse_ebb_live_out, new_reg) 918 && !bitmap_bit_p (cse_ebb_live_out, firstr)) 919 || (bitmap_bit_p (cse_ebb_live_in, new_reg) 920 && !bitmap_bit_p (cse_ebb_live_in, firstr)))))) 921 { 922 reg_eqv_table[firstr].prev = new_reg; 923 reg_eqv_table[new_reg].next = firstr; 924 reg_eqv_table[new_reg].prev = -1; 925 ent->first_reg = new_reg; 926 } 927 else 928 { 929 /* If NEW is a hard reg (known to be non-fixed), insert at end. 930 Otherwise, insert before any non-fixed hard regs that are at the 931 end. Registers of class NO_REGS cannot be used as an 932 equivalent for anything. */ 933 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0 934 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr)) 935 && new_reg >= FIRST_PSEUDO_REGISTER) 936 lastr = reg_eqv_table[lastr].prev; 937 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next; 938 if (reg_eqv_table[lastr].next >= 0) 939 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg; 940 else 941 qty_table[q].last_reg = new_reg; 942 reg_eqv_table[lastr].next = new_reg; 943 reg_eqv_table[new_reg].prev = lastr; 944 } 945 } 946 947 /* Remove REG from its equivalence class. */ 948 949 static void 950 delete_reg_equiv (unsigned int reg) 951 { 952 struct qty_table_elem *ent; 953 int q = REG_QTY (reg); 954 int p, n; 955 956 /* If invalid, do nothing. */ 957 if (! REGNO_QTY_VALID_P (reg)) 958 return; 959 960 ent = &qty_table[q]; 961 962 p = reg_eqv_table[reg].prev; 963 n = reg_eqv_table[reg].next; 964 965 if (n != -1) 966 reg_eqv_table[n].prev = p; 967 else 968 ent->last_reg = p; 969 if (p != -1) 970 reg_eqv_table[p].next = n; 971 else 972 ent->first_reg = n; 973 974 REG_QTY (reg) = -reg - 1; 975 } 976 977 /* Remove any invalid expressions from the hash table 978 that refer to any of the registers contained in expression X. 979 980 Make sure that newly inserted references to those registers 981 as subexpressions will be considered valid. 982 983 mention_regs is not called when a register itself 984 is being stored in the table. 985 986 Return 1 if we have done something that may have changed the hash code 987 of X. */ 988 989 static int 990 mention_regs (rtx x) 991 { 992 enum rtx_code code; 993 int i, j; 994 const char *fmt; 995 int changed = 0; 996 997 if (x == 0) 998 return 0; 999 1000 code = GET_CODE (x); 1001 if (code == REG) 1002 { 1003 unsigned int regno = REGNO (x); 1004 unsigned int endregno = END_REGNO (x); 1005 unsigned int i; 1006 1007 for (i = regno; i < endregno; i++) 1008 { 1009 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i)) 1010 remove_invalid_refs (i); 1011 1012 REG_IN_TABLE (i) = REG_TICK (i); 1013 SUBREG_TICKED (i) = -1; 1014 } 1015 1016 return 0; 1017 } 1018 1019 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same 1020 pseudo if they don't use overlapping words. We handle only pseudos 1021 here for simplicity. */ 1022 if (code == SUBREG && REG_P (SUBREG_REG (x)) 1023 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER) 1024 { 1025 unsigned int i = REGNO (SUBREG_REG (x)); 1026 1027 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i)) 1028 { 1029 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and 1030 the last store to this register really stored into this 1031 subreg, then remove the memory of this subreg. 1032 Otherwise, remove any memory of the entire register and 1033 all its subregs from the table. */ 1034 if (REG_TICK (i) - REG_IN_TABLE (i) > 1 1035 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x))) 1036 remove_invalid_refs (i); 1037 else 1038 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x)); 1039 } 1040 1041 REG_IN_TABLE (i) = REG_TICK (i); 1042 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x)); 1043 return 0; 1044 } 1045 1046 /* If X is a comparison or a COMPARE and either operand is a register 1047 that does not have a quantity, give it one. This is so that a later 1048 call to record_jump_equiv won't cause X to be assigned a different 1049 hash code and not found in the table after that call. 1050 1051 It is not necessary to do this here, since rehash_using_reg can 1052 fix up the table later, but doing this here eliminates the need to 1053 call that expensive function in the most common case where the only 1054 use of the register is in the comparison. */ 1055 1056 if (code == COMPARE || COMPARISON_P (x)) 1057 { 1058 if (REG_P (XEXP (x, 0)) 1059 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))) 1060 if (insert_regs (XEXP (x, 0), NULL, 0)) 1061 { 1062 rehash_using_reg (XEXP (x, 0)); 1063 changed = 1; 1064 } 1065 1066 if (REG_P (XEXP (x, 1)) 1067 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1)))) 1068 if (insert_regs (XEXP (x, 1), NULL, 0)) 1069 { 1070 rehash_using_reg (XEXP (x, 1)); 1071 changed = 1; 1072 } 1073 } 1074 1075 fmt = GET_RTX_FORMAT (code); 1076 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 1077 if (fmt[i] == 'e') 1078 changed |= mention_regs (XEXP (x, i)); 1079 else if (fmt[i] == 'E') 1080 for (j = 0; j < XVECLEN (x, i); j++) 1081 changed |= mention_regs (XVECEXP (x, i, j)); 1082 1083 return changed; 1084 } 1085 1086 /* Update the register quantities for inserting X into the hash table 1087 with a value equivalent to CLASSP. 1088 (If the class does not contain a REG, it is irrelevant.) 1089 If MODIFIED is nonzero, X is a destination; it is being modified. 1090 Note that delete_reg_equiv should be called on a register 1091 before insert_regs is done on that register with MODIFIED != 0. 1092 1093 Nonzero value means that elements of reg_qty have changed 1094 so X's hash code may be different. */ 1095 1096 static int 1097 insert_regs (rtx x, struct table_elt *classp, int modified) 1098 { 1099 if (REG_P (x)) 1100 { 1101 unsigned int regno = REGNO (x); 1102 int qty_valid; 1103 1104 /* If REGNO is in the equivalence table already but is of the 1105 wrong mode for that equivalence, don't do anything here. */ 1106 1107 qty_valid = REGNO_QTY_VALID_P (regno); 1108 if (qty_valid) 1109 { 1110 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)]; 1111 1112 if (ent->mode != GET_MODE (x)) 1113 return 0; 1114 } 1115 1116 if (modified || ! qty_valid) 1117 { 1118 if (classp) 1119 for (classp = classp->first_same_value; 1120 classp != 0; 1121 classp = classp->next_same_value) 1122 if (REG_P (classp->exp) 1123 && GET_MODE (classp->exp) == GET_MODE (x)) 1124 { 1125 unsigned c_regno = REGNO (classp->exp); 1126 1127 gcc_assert (REGNO_QTY_VALID_P (c_regno)); 1128 1129 /* Suppose that 5 is hard reg and 100 and 101 are 1130 pseudos. Consider 1131 1132 (set (reg:si 100) (reg:si 5)) 1133 (set (reg:si 5) (reg:si 100)) 1134 (set (reg:di 101) (reg:di 5)) 1135 1136 We would now set REG_QTY (101) = REG_QTY (5), but the 1137 entry for 5 is in SImode. When we use this later in 1138 copy propagation, we get the register in wrong mode. */ 1139 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x)) 1140 continue; 1141 1142 make_regs_eqv (regno, c_regno); 1143 return 1; 1144 } 1145 1146 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger 1147 than REG_IN_TABLE to find out if there was only a single preceding 1148 invalidation - for the SUBREG - or another one, which would be 1149 for the full register. However, if we find here that REG_TICK 1150 indicates that the register is invalid, it means that it has 1151 been invalidated in a separate operation. The SUBREG might be used 1152 now (then this is a recursive call), or we might use the full REG 1153 now and a SUBREG of it later. So bump up REG_TICK so that 1154 mention_regs will do the right thing. */ 1155 if (! modified 1156 && REG_IN_TABLE (regno) >= 0 1157 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1) 1158 REG_TICK (regno)++; 1159 make_new_qty (regno, GET_MODE (x)); 1160 return 1; 1161 } 1162 1163 return 0; 1164 } 1165 1166 /* If X is a SUBREG, we will likely be inserting the inner register in the 1167 table. If that register doesn't have an assigned quantity number at 1168 this point but does later, the insertion that we will be doing now will 1169 not be accessible because its hash code will have changed. So assign 1170 a quantity number now. */ 1171 1172 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)) 1173 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x)))) 1174 { 1175 insert_regs (SUBREG_REG (x), NULL, 0); 1176 mention_regs (x); 1177 return 1; 1178 } 1179 else 1180 return mention_regs (x); 1181 } 1182 1183 1184 /* Compute upper and lower anchors for CST. Also compute the offset of CST 1185 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff 1186 CST is equal to an anchor. */ 1187 1188 static bool 1189 compute_const_anchors (rtx cst, 1190 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs, 1191 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs) 1192 { 1193 HOST_WIDE_INT n = INTVAL (cst); 1194 1195 *lower_base = n & ~(targetm.const_anchor - 1); 1196 if (*lower_base == n) 1197 return false; 1198 1199 *upper_base = 1200 (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1); 1201 *upper_offs = n - *upper_base; 1202 *lower_offs = n - *lower_base; 1203 return true; 1204 } 1205 1206 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */ 1207 1208 static void 1209 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs, 1210 machine_mode mode) 1211 { 1212 struct table_elt *elt; 1213 unsigned hash; 1214 rtx anchor_exp; 1215 rtx exp; 1216 1217 anchor_exp = GEN_INT (anchor); 1218 hash = HASH (anchor_exp, mode); 1219 elt = lookup (anchor_exp, hash, mode); 1220 if (!elt) 1221 elt = insert (anchor_exp, NULL, hash, mode); 1222 1223 exp = plus_constant (mode, reg, offs); 1224 /* REG has just been inserted and the hash codes recomputed. */ 1225 mention_regs (exp); 1226 hash = HASH (exp, mode); 1227 1228 /* Use the cost of the register rather than the whole expression. When 1229 looking up constant anchors we will further offset the corresponding 1230 expression therefore it does not make sense to prefer REGs over 1231 reg-immediate additions. Prefer instead the oldest expression. Also 1232 don't prefer pseudos over hard regs so that we derive constants in 1233 argument registers from other argument registers rather than from the 1234 original pseudo that was used to synthesize the constant. */ 1235 insert_with_costs (exp, elt, hash, mode, COST (reg, mode), 1); 1236 } 1237 1238 /* The constant CST is equivalent to the register REG. Create 1239 equivalences between the two anchors of CST and the corresponding 1240 register-offset expressions using REG. */ 1241 1242 static void 1243 insert_const_anchors (rtx reg, rtx cst, machine_mode mode) 1244 { 1245 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs; 1246 1247 if (!compute_const_anchors (cst, &lower_base, &lower_offs, 1248 &upper_base, &upper_offs)) 1249 return; 1250 1251 /* Ignore anchors of value 0. Constants accessible from zero are 1252 simple. */ 1253 if (lower_base != 0) 1254 insert_const_anchor (lower_base, reg, -lower_offs, mode); 1255 1256 if (upper_base != 0) 1257 insert_const_anchor (upper_base, reg, -upper_offs, mode); 1258 } 1259 1260 /* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of 1261 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a 1262 valid expression. Return the cheapest and oldest of such expressions. In 1263 *OLD, return how old the resulting expression is compared to the other 1264 equivalent expressions. */ 1265 1266 static rtx 1267 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs, 1268 unsigned *old) 1269 { 1270 struct table_elt *elt; 1271 unsigned idx; 1272 struct table_elt *match_elt; 1273 rtx match; 1274 1275 /* Find the cheapest and *oldest* expression to maximize the chance of 1276 reusing the same pseudo. */ 1277 1278 match_elt = NULL; 1279 match = NULL_RTX; 1280 for (elt = anchor_elt->first_same_value, idx = 0; 1281 elt; 1282 elt = elt->next_same_value, idx++) 1283 { 1284 if (match_elt && CHEAPER (match_elt, elt)) 1285 return match; 1286 1287 if (REG_P (elt->exp) 1288 || (GET_CODE (elt->exp) == PLUS 1289 && REG_P (XEXP (elt->exp, 0)) 1290 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT)) 1291 { 1292 rtx x; 1293 1294 /* Ignore expressions that are no longer valid. */ 1295 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false)) 1296 continue; 1297 1298 x = plus_constant (GET_MODE (elt->exp), elt->exp, offs); 1299 if (REG_P (x) 1300 || (GET_CODE (x) == PLUS 1301 && IN_RANGE (INTVAL (XEXP (x, 1)), 1302 -targetm.const_anchor, 1303 targetm.const_anchor - 1))) 1304 { 1305 match = x; 1306 match_elt = elt; 1307 *old = idx; 1308 } 1309 } 1310 } 1311 1312 return match; 1313 } 1314 1315 /* Try to express the constant SRC_CONST using a register+offset expression 1316 derived from a constant anchor. Return it if successful or NULL_RTX, 1317 otherwise. */ 1318 1319 static rtx 1320 try_const_anchors (rtx src_const, machine_mode mode) 1321 { 1322 struct table_elt *lower_elt, *upper_elt; 1323 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs; 1324 rtx lower_anchor_rtx, upper_anchor_rtx; 1325 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX; 1326 unsigned lower_old, upper_old; 1327 1328 /* CONST_INT is used for CC modes, but we should leave those alone. */ 1329 if (GET_MODE_CLASS (mode) == MODE_CC) 1330 return NULL_RTX; 1331 1332 gcc_assert (SCALAR_INT_MODE_P (mode)); 1333 if (!compute_const_anchors (src_const, &lower_base, &lower_offs, 1334 &upper_base, &upper_offs)) 1335 return NULL_RTX; 1336 1337 lower_anchor_rtx = GEN_INT (lower_base); 1338 upper_anchor_rtx = GEN_INT (upper_base); 1339 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode); 1340 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode); 1341 1342 if (lower_elt) 1343 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old); 1344 if (upper_elt) 1345 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old); 1346 1347 if (!lower_exp) 1348 return upper_exp; 1349 if (!upper_exp) 1350 return lower_exp; 1351 1352 /* Return the older expression. */ 1353 return (upper_old > lower_old ? upper_exp : lower_exp); 1354 } 1355 1356 /* Look in or update the hash table. */ 1357 1358 /* Remove table element ELT from use in the table. 1359 HASH is its hash code, made using the HASH macro. 1360 It's an argument because often that is known in advance 1361 and we save much time not recomputing it. */ 1362 1363 static void 1364 remove_from_table (struct table_elt *elt, unsigned int hash) 1365 { 1366 if (elt == 0) 1367 return; 1368 1369 /* Mark this element as removed. See cse_insn. */ 1370 elt->first_same_value = 0; 1371 1372 /* Remove the table element from its equivalence class. */ 1373 1374 { 1375 struct table_elt *prev = elt->prev_same_value; 1376 struct table_elt *next = elt->next_same_value; 1377 1378 if (next) 1379 next->prev_same_value = prev; 1380 1381 if (prev) 1382 prev->next_same_value = next; 1383 else 1384 { 1385 struct table_elt *newfirst = next; 1386 while (next) 1387 { 1388 next->first_same_value = newfirst; 1389 next = next->next_same_value; 1390 } 1391 } 1392 } 1393 1394 /* Remove the table element from its hash bucket. */ 1395 1396 { 1397 struct table_elt *prev = elt->prev_same_hash; 1398 struct table_elt *next = elt->next_same_hash; 1399 1400 if (next) 1401 next->prev_same_hash = prev; 1402 1403 if (prev) 1404 prev->next_same_hash = next; 1405 else if (table[hash] == elt) 1406 table[hash] = next; 1407 else 1408 { 1409 /* This entry is not in the proper hash bucket. This can happen 1410 when two classes were merged by `merge_equiv_classes'. Search 1411 for the hash bucket that it heads. This happens only very 1412 rarely, so the cost is acceptable. */ 1413 for (hash = 0; hash < HASH_SIZE; hash++) 1414 if (table[hash] == elt) 1415 table[hash] = next; 1416 } 1417 } 1418 1419 /* Remove the table element from its related-value circular chain. */ 1420 1421 if (elt->related_value != 0 && elt->related_value != elt) 1422 { 1423 struct table_elt *p = elt->related_value; 1424 1425 while (p->related_value != elt) 1426 p = p->related_value; 1427 p->related_value = elt->related_value; 1428 if (p->related_value == p) 1429 p->related_value = 0; 1430 } 1431 1432 /* Now add it to the free element chain. */ 1433 elt->next_same_hash = free_element_chain; 1434 free_element_chain = elt; 1435 } 1436 1437 /* Same as above, but X is a pseudo-register. */ 1438 1439 static void 1440 remove_pseudo_from_table (rtx x, unsigned int hash) 1441 { 1442 struct table_elt *elt; 1443 1444 /* Because a pseudo-register can be referenced in more than one 1445 mode, we might have to remove more than one table entry. */ 1446 while ((elt = lookup_for_remove (x, hash, VOIDmode))) 1447 remove_from_table (elt, hash); 1448 } 1449 1450 /* Look up X in the hash table and return its table element, 1451 or 0 if X is not in the table. 1452 1453 MODE is the machine-mode of X, or if X is an integer constant 1454 with VOIDmode then MODE is the mode with which X will be used. 1455 1456 Here we are satisfied to find an expression whose tree structure 1457 looks like X. */ 1458 1459 static struct table_elt * 1460 lookup (rtx x, unsigned int hash, machine_mode mode) 1461 { 1462 struct table_elt *p; 1463 1464 for (p = table[hash]; p; p = p->next_same_hash) 1465 if (mode == p->mode && ((x == p->exp && REG_P (x)) 1466 || exp_equiv_p (x, p->exp, !REG_P (x), false))) 1467 return p; 1468 1469 return 0; 1470 } 1471 1472 /* Like `lookup' but don't care whether the table element uses invalid regs. 1473 Also ignore discrepancies in the machine mode of a register. */ 1474 1475 static struct table_elt * 1476 lookup_for_remove (rtx x, unsigned int hash, machine_mode mode) 1477 { 1478 struct table_elt *p; 1479 1480 if (REG_P (x)) 1481 { 1482 unsigned int regno = REGNO (x); 1483 1484 /* Don't check the machine mode when comparing registers; 1485 invalidating (REG:SI 0) also invalidates (REG:DF 0). */ 1486 for (p = table[hash]; p; p = p->next_same_hash) 1487 if (REG_P (p->exp) 1488 && REGNO (p->exp) == regno) 1489 return p; 1490 } 1491 else 1492 { 1493 for (p = table[hash]; p; p = p->next_same_hash) 1494 if (mode == p->mode 1495 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false))) 1496 return p; 1497 } 1498 1499 return 0; 1500 } 1501 1502 /* Look for an expression equivalent to X and with code CODE. 1503 If one is found, return that expression. */ 1504 1505 static rtx 1506 lookup_as_function (rtx x, enum rtx_code code) 1507 { 1508 struct table_elt *p 1509 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x)); 1510 1511 if (p == 0) 1512 return 0; 1513 1514 for (p = p->first_same_value; p; p = p->next_same_value) 1515 if (GET_CODE (p->exp) == code 1516 /* Make sure this is a valid entry in the table. */ 1517 && exp_equiv_p (p->exp, p->exp, 1, false)) 1518 return p->exp; 1519 1520 return 0; 1521 } 1522 1523 /* Insert X in the hash table, assuming HASH is its hash code and 1524 CLASSP is an element of the class it should go in (or 0 if a new 1525 class should be made). COST is the code of X and reg_cost is the 1526 cost of registers in X. It is inserted at the proper position to 1527 keep the class in the order cheapest first. 1528 1529 MODE is the machine-mode of X, or if X is an integer constant 1530 with VOIDmode then MODE is the mode with which X will be used. 1531 1532 For elements of equal cheapness, the most recent one 1533 goes in front, except that the first element in the list 1534 remains first unless a cheaper element is added. The order of 1535 pseudo-registers does not matter, as canon_reg will be called to 1536 find the cheapest when a register is retrieved from the table. 1537 1538 The in_memory field in the hash table element is set to 0. 1539 The caller must set it nonzero if appropriate. 1540 1541 You should call insert_regs (X, CLASSP, MODIFY) before calling here, 1542 and if insert_regs returns a nonzero value 1543 you must then recompute its hash code before calling here. 1544 1545 If necessary, update table showing constant values of quantities. */ 1546 1547 static struct table_elt * 1548 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash, 1549 machine_mode mode, int cost, int reg_cost) 1550 { 1551 struct table_elt *elt; 1552 1553 /* If X is a register and we haven't made a quantity for it, 1554 something is wrong. */ 1555 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x))); 1556 1557 /* If X is a hard register, show it is being put in the table. */ 1558 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER) 1559 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x)); 1560 1561 /* Put an element for X into the right hash bucket. */ 1562 1563 elt = free_element_chain; 1564 if (elt) 1565 free_element_chain = elt->next_same_hash; 1566 else 1567 elt = XNEW (struct table_elt); 1568 1569 elt->exp = x; 1570 elt->canon_exp = NULL_RTX; 1571 elt->cost = cost; 1572 elt->regcost = reg_cost; 1573 elt->next_same_value = 0; 1574 elt->prev_same_value = 0; 1575 elt->next_same_hash = table[hash]; 1576 elt->prev_same_hash = 0; 1577 elt->related_value = 0; 1578 elt->in_memory = 0; 1579 elt->mode = mode; 1580 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x)); 1581 1582 if (table[hash]) 1583 table[hash]->prev_same_hash = elt; 1584 table[hash] = elt; 1585 1586 /* Put it into the proper value-class. */ 1587 if (classp) 1588 { 1589 classp = classp->first_same_value; 1590 if (CHEAPER (elt, classp)) 1591 /* Insert at the head of the class. */ 1592 { 1593 struct table_elt *p; 1594 elt->next_same_value = classp; 1595 classp->prev_same_value = elt; 1596 elt->first_same_value = elt; 1597 1598 for (p = classp; p; p = p->next_same_value) 1599 p->first_same_value = elt; 1600 } 1601 else 1602 { 1603 /* Insert not at head of the class. */ 1604 /* Put it after the last element cheaper than X. */ 1605 struct table_elt *p, *next; 1606 1607 for (p = classp; 1608 (next = p->next_same_value) && CHEAPER (next, elt); 1609 p = next) 1610 ; 1611 1612 /* Put it after P and before NEXT. */ 1613 elt->next_same_value = next; 1614 if (next) 1615 next->prev_same_value = elt; 1616 1617 elt->prev_same_value = p; 1618 p->next_same_value = elt; 1619 elt->first_same_value = classp; 1620 } 1621 } 1622 else 1623 elt->first_same_value = elt; 1624 1625 /* If this is a constant being set equivalent to a register or a register 1626 being set equivalent to a constant, note the constant equivalence. 1627 1628 If this is a constant, it cannot be equivalent to a different constant, 1629 and a constant is the only thing that can be cheaper than a register. So 1630 we know the register is the head of the class (before the constant was 1631 inserted). 1632 1633 If this is a register that is not already known equivalent to a 1634 constant, we must check the entire class. 1635 1636 If this is a register that is already known equivalent to an insn, 1637 update the qtys `const_insn' to show that `this_insn' is the latest 1638 insn making that quantity equivalent to the constant. */ 1639 1640 if (elt->is_const && classp && REG_P (classp->exp) 1641 && !REG_P (x)) 1642 { 1643 int exp_q = REG_QTY (REGNO (classp->exp)); 1644 struct qty_table_elem *exp_ent = &qty_table[exp_q]; 1645 1646 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x); 1647 exp_ent->const_insn = this_insn; 1648 } 1649 1650 else if (REG_P (x) 1651 && classp 1652 && ! qty_table[REG_QTY (REGNO (x))].const_rtx 1653 && ! elt->is_const) 1654 { 1655 struct table_elt *p; 1656 1657 for (p = classp; p != 0; p = p->next_same_value) 1658 { 1659 if (p->is_const && !REG_P (p->exp)) 1660 { 1661 int x_q = REG_QTY (REGNO (x)); 1662 struct qty_table_elem *x_ent = &qty_table[x_q]; 1663 1664 x_ent->const_rtx 1665 = gen_lowpart (GET_MODE (x), p->exp); 1666 x_ent->const_insn = this_insn; 1667 break; 1668 } 1669 } 1670 } 1671 1672 else if (REG_P (x) 1673 && qty_table[REG_QTY (REGNO (x))].const_rtx 1674 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode) 1675 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn; 1676 1677 /* If this is a constant with symbolic value, 1678 and it has a term with an explicit integer value, 1679 link it up with related expressions. */ 1680 if (GET_CODE (x) == CONST) 1681 { 1682 rtx subexp = get_related_value (x); 1683 unsigned subhash; 1684 struct table_elt *subelt, *subelt_prev; 1685 1686 if (subexp != 0) 1687 { 1688 /* Get the integer-free subexpression in the hash table. */ 1689 subhash = SAFE_HASH (subexp, mode); 1690 subelt = lookup (subexp, subhash, mode); 1691 if (subelt == 0) 1692 subelt = insert (subexp, NULL, subhash, mode); 1693 /* Initialize SUBELT's circular chain if it has none. */ 1694 if (subelt->related_value == 0) 1695 subelt->related_value = subelt; 1696 /* Find the element in the circular chain that precedes SUBELT. */ 1697 subelt_prev = subelt; 1698 while (subelt_prev->related_value != subelt) 1699 subelt_prev = subelt_prev->related_value; 1700 /* Put new ELT into SUBELT's circular chain just before SUBELT. 1701 This way the element that follows SUBELT is the oldest one. */ 1702 elt->related_value = subelt_prev->related_value; 1703 subelt_prev->related_value = elt; 1704 } 1705 } 1706 1707 return elt; 1708 } 1709 1710 /* Wrap insert_with_costs by passing the default costs. */ 1711 1712 static struct table_elt * 1713 insert (rtx x, struct table_elt *classp, unsigned int hash, 1714 machine_mode mode) 1715 { 1716 return insert_with_costs (x, classp, hash, mode, 1717 COST (x, mode), approx_reg_cost (x)); 1718 } 1719 1720 1721 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from 1722 CLASS2 into CLASS1. This is done when we have reached an insn which makes 1723 the two classes equivalent. 1724 1725 CLASS1 will be the surviving class; CLASS2 should not be used after this 1726 call. 1727 1728 Any invalid entries in CLASS2 will not be copied. */ 1729 1730 static void 1731 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2) 1732 { 1733 struct table_elt *elt, *next, *new_elt; 1734 1735 /* Ensure we start with the head of the classes. */ 1736 class1 = class1->first_same_value; 1737 class2 = class2->first_same_value; 1738 1739 /* If they were already equal, forget it. */ 1740 if (class1 == class2) 1741 return; 1742 1743 for (elt = class2; elt; elt = next) 1744 { 1745 unsigned int hash; 1746 rtx exp = elt->exp; 1747 machine_mode mode = elt->mode; 1748 1749 next = elt->next_same_value; 1750 1751 /* Remove old entry, make a new one in CLASS1's class. 1752 Don't do this for invalid entries as we cannot find their 1753 hash code (it also isn't necessary). */ 1754 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false)) 1755 { 1756 bool need_rehash = false; 1757 1758 hash_arg_in_memory = 0; 1759 hash = HASH (exp, mode); 1760 1761 if (REG_P (exp)) 1762 { 1763 need_rehash = REGNO_QTY_VALID_P (REGNO (exp)); 1764 delete_reg_equiv (REGNO (exp)); 1765 } 1766 1767 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER) 1768 remove_pseudo_from_table (exp, hash); 1769 else 1770 remove_from_table (elt, hash); 1771 1772 if (insert_regs (exp, class1, 0) || need_rehash) 1773 { 1774 rehash_using_reg (exp); 1775 hash = HASH (exp, mode); 1776 } 1777 new_elt = insert (exp, class1, hash, mode); 1778 new_elt->in_memory = hash_arg_in_memory; 1779 if (GET_CODE (exp) == ASM_OPERANDS && elt->cost == MAX_COST) 1780 new_elt->cost = MAX_COST; 1781 } 1782 } 1783 } 1784 1785 /* Flush the entire hash table. */ 1786 1787 static void 1788 flush_hash_table (void) 1789 { 1790 int i; 1791 struct table_elt *p; 1792 1793 for (i = 0; i < HASH_SIZE; i++) 1794 for (p = table[i]; p; p = table[i]) 1795 { 1796 /* Note that invalidate can remove elements 1797 after P in the current hash chain. */ 1798 if (REG_P (p->exp)) 1799 invalidate (p->exp, VOIDmode); 1800 else 1801 remove_from_table (p, i); 1802 } 1803 } 1804 1805 /* Check whether an anti dependence exists between X and EXP. MODE and 1806 ADDR are as for canon_anti_dependence. */ 1807 1808 static bool 1809 check_dependence (const_rtx x, rtx exp, machine_mode mode, rtx addr) 1810 { 1811 subrtx_iterator::array_type array; 1812 FOR_EACH_SUBRTX (iter, array, x, NONCONST) 1813 { 1814 const_rtx x = *iter; 1815 if (MEM_P (x) && canon_anti_dependence (x, true, exp, mode, addr)) 1816 return true; 1817 } 1818 return false; 1819 } 1820 1821 /* Remove from the hash table, or mark as invalid, all expressions whose 1822 values could be altered by storing in X. X is a register, a subreg, or 1823 a memory reference with nonvarying address (because, when a memory 1824 reference with a varying address is stored in, all memory references are 1825 removed by invalidate_memory so specific invalidation is superfluous). 1826 FULL_MODE, if not VOIDmode, indicates that this much should be 1827 invalidated instead of just the amount indicated by the mode of X. This 1828 is only used for bitfield stores into memory. 1829 1830 A nonvarying address may be just a register or just a symbol reference, 1831 or it may be either of those plus a numeric offset. */ 1832 1833 static void 1834 invalidate (rtx x, machine_mode full_mode) 1835 { 1836 int i; 1837 struct table_elt *p; 1838 rtx addr; 1839 1840 switch (GET_CODE (x)) 1841 { 1842 case REG: 1843 { 1844 /* If X is a register, dependencies on its contents are recorded 1845 through the qty number mechanism. Just change the qty number of 1846 the register, mark it as invalid for expressions that refer to it, 1847 and remove it itself. */ 1848 unsigned int regno = REGNO (x); 1849 unsigned int hash = HASH (x, GET_MODE (x)); 1850 1851 /* Remove REGNO from any quantity list it might be on and indicate 1852 that its value might have changed. If it is a pseudo, remove its 1853 entry from the hash table. 1854 1855 For a hard register, we do the first two actions above for any 1856 additional hard registers corresponding to X. Then, if any of these 1857 registers are in the table, we must remove any REG entries that 1858 overlap these registers. */ 1859 1860 delete_reg_equiv (regno); 1861 REG_TICK (regno)++; 1862 SUBREG_TICKED (regno) = -1; 1863 1864 if (regno >= FIRST_PSEUDO_REGISTER) 1865 remove_pseudo_from_table (x, hash); 1866 else 1867 { 1868 HOST_WIDE_INT in_table 1869 = TEST_HARD_REG_BIT (hard_regs_in_table, regno); 1870 unsigned int endregno = END_REGNO (x); 1871 unsigned int tregno, tendregno, rn; 1872 struct table_elt *p, *next; 1873 1874 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno); 1875 1876 for (rn = regno + 1; rn < endregno; rn++) 1877 { 1878 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn); 1879 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn); 1880 delete_reg_equiv (rn); 1881 REG_TICK (rn)++; 1882 SUBREG_TICKED (rn) = -1; 1883 } 1884 1885 if (in_table) 1886 for (hash = 0; hash < HASH_SIZE; hash++) 1887 for (p = table[hash]; p; p = next) 1888 { 1889 next = p->next_same_hash; 1890 1891 if (!REG_P (p->exp) 1892 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER) 1893 continue; 1894 1895 tregno = REGNO (p->exp); 1896 tendregno = END_REGNO (p->exp); 1897 if (tendregno > regno && tregno < endregno) 1898 remove_from_table (p, hash); 1899 } 1900 } 1901 } 1902 return; 1903 1904 case SUBREG: 1905 invalidate (SUBREG_REG (x), VOIDmode); 1906 return; 1907 1908 case PARALLEL: 1909 for (i = XVECLEN (x, 0) - 1; i >= 0; --i) 1910 invalidate (XVECEXP (x, 0, i), VOIDmode); 1911 return; 1912 1913 case EXPR_LIST: 1914 /* This is part of a disjoint return value; extract the location in 1915 question ignoring the offset. */ 1916 invalidate (XEXP (x, 0), VOIDmode); 1917 return; 1918 1919 case MEM: 1920 addr = canon_rtx (get_addr (XEXP (x, 0))); 1921 /* Calculate the canonical version of X here so that 1922 true_dependence doesn't generate new RTL for X on each call. */ 1923 x = canon_rtx (x); 1924 1925 /* Remove all hash table elements that refer to overlapping pieces of 1926 memory. */ 1927 if (full_mode == VOIDmode) 1928 full_mode = GET_MODE (x); 1929 1930 for (i = 0; i < HASH_SIZE; i++) 1931 { 1932 struct table_elt *next; 1933 1934 for (p = table[i]; p; p = next) 1935 { 1936 next = p->next_same_hash; 1937 if (p->in_memory) 1938 { 1939 /* Just canonicalize the expression once; 1940 otherwise each time we call invalidate 1941 true_dependence will canonicalize the 1942 expression again. */ 1943 if (!p->canon_exp) 1944 p->canon_exp = canon_rtx (p->exp); 1945 if (check_dependence (p->canon_exp, x, full_mode, addr)) 1946 remove_from_table (p, i); 1947 } 1948 } 1949 } 1950 return; 1951 1952 default: 1953 gcc_unreachable (); 1954 } 1955 } 1956 1957 /* Invalidate DEST. Used when DEST is not going to be added 1958 into the hash table for some reason, e.g. do_not_record 1959 flagged on it. */ 1960 1961 static void 1962 invalidate_dest (rtx dest) 1963 { 1964 if (REG_P (dest) 1965 || GET_CODE (dest) == SUBREG 1966 || MEM_P (dest)) 1967 invalidate (dest, VOIDmode); 1968 else if (GET_CODE (dest) == STRICT_LOW_PART 1969 || GET_CODE (dest) == ZERO_EXTRACT) 1970 invalidate (XEXP (dest, 0), GET_MODE (dest)); 1971 } 1972 1973 /* Remove all expressions that refer to register REGNO, 1974 since they are already invalid, and we are about to 1975 mark that register valid again and don't want the old 1976 expressions to reappear as valid. */ 1977 1978 static void 1979 remove_invalid_refs (unsigned int regno) 1980 { 1981 unsigned int i; 1982 struct table_elt *p, *next; 1983 1984 for (i = 0; i < HASH_SIZE; i++) 1985 for (p = table[i]; p; p = next) 1986 { 1987 next = p->next_same_hash; 1988 if (!REG_P (p->exp) && refers_to_regno_p (regno, p->exp)) 1989 remove_from_table (p, i); 1990 } 1991 } 1992 1993 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET, 1994 and mode MODE. */ 1995 static void 1996 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset, 1997 machine_mode mode) 1998 { 1999 unsigned int i; 2000 struct table_elt *p, *next; 2001 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1); 2002 2003 for (i = 0; i < HASH_SIZE; i++) 2004 for (p = table[i]; p; p = next) 2005 { 2006 rtx exp = p->exp; 2007 next = p->next_same_hash; 2008 2009 if (!REG_P (exp) 2010 && (GET_CODE (exp) != SUBREG 2011 || !REG_P (SUBREG_REG (exp)) 2012 || REGNO (SUBREG_REG (exp)) != regno 2013 || (((SUBREG_BYTE (exp) 2014 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset) 2015 && SUBREG_BYTE (exp) <= end)) 2016 && refers_to_regno_p (regno, p->exp)) 2017 remove_from_table (p, i); 2018 } 2019 } 2020 2021 /* Recompute the hash codes of any valid entries in the hash table that 2022 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG. 2023 2024 This is called when we make a jump equivalence. */ 2025 2026 static void 2027 rehash_using_reg (rtx x) 2028 { 2029 unsigned int i; 2030 struct table_elt *p, *next; 2031 unsigned hash; 2032 2033 if (GET_CODE (x) == SUBREG) 2034 x = SUBREG_REG (x); 2035 2036 /* If X is not a register or if the register is known not to be in any 2037 valid entries in the table, we have no work to do. */ 2038 2039 if (!REG_P (x) 2040 || REG_IN_TABLE (REGNO (x)) < 0 2041 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x))) 2042 return; 2043 2044 /* Scan all hash chains looking for valid entries that mention X. 2045 If we find one and it is in the wrong hash chain, move it. */ 2046 2047 for (i = 0; i < HASH_SIZE; i++) 2048 for (p = table[i]; p; p = next) 2049 { 2050 next = p->next_same_hash; 2051 if (reg_mentioned_p (x, p->exp) 2052 && exp_equiv_p (p->exp, p->exp, 1, false) 2053 && i != (hash = SAFE_HASH (p->exp, p->mode))) 2054 { 2055 if (p->next_same_hash) 2056 p->next_same_hash->prev_same_hash = p->prev_same_hash; 2057 2058 if (p->prev_same_hash) 2059 p->prev_same_hash->next_same_hash = p->next_same_hash; 2060 else 2061 table[i] = p->next_same_hash; 2062 2063 p->next_same_hash = table[hash]; 2064 p->prev_same_hash = 0; 2065 if (table[hash]) 2066 table[hash]->prev_same_hash = p; 2067 table[hash] = p; 2068 } 2069 } 2070 } 2071 2072 /* Remove from the hash table any expression that is a call-clobbered 2073 register. Also update their TICK values. */ 2074 2075 static void 2076 invalidate_for_call (void) 2077 { 2078 unsigned int regno, endregno; 2079 unsigned int i; 2080 unsigned hash; 2081 struct table_elt *p, *next; 2082 int in_table = 0; 2083 hard_reg_set_iterator hrsi; 2084 2085 /* Go through all the hard registers. For each that is clobbered in 2086 a CALL_INSN, remove the register from quantity chains and update 2087 reg_tick if defined. Also see if any of these registers is currently 2088 in the table. */ 2089 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi) 2090 { 2091 delete_reg_equiv (regno); 2092 if (REG_TICK (regno) >= 0) 2093 { 2094 REG_TICK (regno)++; 2095 SUBREG_TICKED (regno) = -1; 2096 } 2097 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0); 2098 } 2099 2100 /* In the case where we have no call-clobbered hard registers in the 2101 table, we are done. Otherwise, scan the table and remove any 2102 entry that overlaps a call-clobbered register. */ 2103 2104 if (in_table) 2105 for (hash = 0; hash < HASH_SIZE; hash++) 2106 for (p = table[hash]; p; p = next) 2107 { 2108 next = p->next_same_hash; 2109 2110 if (!REG_P (p->exp) 2111 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER) 2112 continue; 2113 2114 regno = REGNO (p->exp); 2115 endregno = END_REGNO (p->exp); 2116 2117 for (i = regno; i < endregno; i++) 2118 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)) 2119 { 2120 remove_from_table (p, hash); 2121 break; 2122 } 2123 } 2124 } 2125 2126 /* Given an expression X of type CONST, 2127 and ELT which is its table entry (or 0 if it 2128 is not in the hash table), 2129 return an alternate expression for X as a register plus integer. 2130 If none can be found, return 0. */ 2131 2132 static rtx 2133 use_related_value (rtx x, struct table_elt *elt) 2134 { 2135 struct table_elt *relt = 0; 2136 struct table_elt *p, *q; 2137 HOST_WIDE_INT offset; 2138 2139 /* First, is there anything related known? 2140 If we have a table element, we can tell from that. 2141 Otherwise, must look it up. */ 2142 2143 if (elt != 0 && elt->related_value != 0) 2144 relt = elt; 2145 else if (elt == 0 && GET_CODE (x) == CONST) 2146 { 2147 rtx subexp = get_related_value (x); 2148 if (subexp != 0) 2149 relt = lookup (subexp, 2150 SAFE_HASH (subexp, GET_MODE (subexp)), 2151 GET_MODE (subexp)); 2152 } 2153 2154 if (relt == 0) 2155 return 0; 2156 2157 /* Search all related table entries for one that has an 2158 equivalent register. */ 2159 2160 p = relt; 2161 while (1) 2162 { 2163 /* This loop is strange in that it is executed in two different cases. 2164 The first is when X is already in the table. Then it is searching 2165 the RELATED_VALUE list of X's class (RELT). The second case is when 2166 X is not in the table. Then RELT points to a class for the related 2167 value. 2168 2169 Ensure that, whatever case we are in, that we ignore classes that have 2170 the same value as X. */ 2171 2172 if (rtx_equal_p (x, p->exp)) 2173 q = 0; 2174 else 2175 for (q = p->first_same_value; q; q = q->next_same_value) 2176 if (REG_P (q->exp)) 2177 break; 2178 2179 if (q) 2180 break; 2181 2182 p = p->related_value; 2183 2184 /* We went all the way around, so there is nothing to be found. 2185 Alternatively, perhaps RELT was in the table for some other reason 2186 and it has no related values recorded. */ 2187 if (p == relt || p == 0) 2188 break; 2189 } 2190 2191 if (q == 0) 2192 return 0; 2193 2194 offset = (get_integer_term (x) - get_integer_term (p->exp)); 2195 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */ 2196 return plus_constant (q->mode, q->exp, offset); 2197 } 2198 2199 2200 /* Hash a string. Just add its bytes up. */ 2201 static inline unsigned 2202 hash_rtx_string (const char *ps) 2203 { 2204 unsigned hash = 0; 2205 const unsigned char *p = (const unsigned char *) ps; 2206 2207 if (p) 2208 while (*p) 2209 hash += *p++; 2210 2211 return hash; 2212 } 2213 2214 /* Same as hash_rtx, but call CB on each rtx if it is not NULL. 2215 When the callback returns true, we continue with the new rtx. */ 2216 2217 unsigned 2218 hash_rtx_cb (const_rtx x, machine_mode mode, 2219 int *do_not_record_p, int *hash_arg_in_memory_p, 2220 bool have_reg_qty, hash_rtx_callback_function cb) 2221 { 2222 int i, j; 2223 unsigned hash = 0; 2224 enum rtx_code code; 2225 const char *fmt; 2226 machine_mode newmode; 2227 rtx newx; 2228 2229 /* Used to turn recursion into iteration. We can't rely on GCC's 2230 tail-recursion elimination since we need to keep accumulating values 2231 in HASH. */ 2232 repeat: 2233 if (x == 0) 2234 return hash; 2235 2236 /* Invoke the callback first. */ 2237 if (cb != NULL 2238 && ((*cb) (x, mode, &newx, &newmode))) 2239 { 2240 hash += hash_rtx_cb (newx, newmode, do_not_record_p, 2241 hash_arg_in_memory_p, have_reg_qty, cb); 2242 return hash; 2243 } 2244 2245 code = GET_CODE (x); 2246 switch (code) 2247 { 2248 case REG: 2249 { 2250 unsigned int regno = REGNO (x); 2251 2252 if (do_not_record_p && !reload_completed) 2253 { 2254 /* On some machines, we can't record any non-fixed hard register, 2255 because extending its life will cause reload problems. We 2256 consider ap, fp, sp, gp to be fixed for this purpose. 2257 2258 We also consider CCmode registers to be fixed for this purpose; 2259 failure to do so leads to failure to simplify 0<100 type of 2260 conditionals. 2261 2262 On all machines, we can't record any global registers. 2263 Nor should we record any register that is in a small 2264 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */ 2265 bool record; 2266 2267 if (regno >= FIRST_PSEUDO_REGISTER) 2268 record = true; 2269 else if (x == frame_pointer_rtx 2270 || x == hard_frame_pointer_rtx 2271 || x == arg_pointer_rtx 2272 || x == stack_pointer_rtx 2273 || x == pic_offset_table_rtx) 2274 record = true; 2275 else if (global_regs[regno]) 2276 record = false; 2277 else if (fixed_regs[regno]) 2278 record = true; 2279 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC) 2280 record = true; 2281 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x))) 2282 record = false; 2283 else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno))) 2284 record = false; 2285 else 2286 record = true; 2287 2288 if (!record) 2289 { 2290 *do_not_record_p = 1; 2291 return 0; 2292 } 2293 } 2294 2295 hash += ((unsigned int) REG << 7); 2296 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno); 2297 return hash; 2298 } 2299 2300 /* We handle SUBREG of a REG specially because the underlying 2301 reg changes its hash value with every value change; we don't 2302 want to have to forget unrelated subregs when one subreg changes. */ 2303 case SUBREG: 2304 { 2305 if (REG_P (SUBREG_REG (x))) 2306 { 2307 hash += (((unsigned int) SUBREG << 7) 2308 + REGNO (SUBREG_REG (x)) 2309 + (SUBREG_BYTE (x) / UNITS_PER_WORD)); 2310 return hash; 2311 } 2312 break; 2313 } 2314 2315 case CONST_INT: 2316 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode 2317 + (unsigned int) INTVAL (x)); 2318 return hash; 2319 2320 case CONST_WIDE_INT: 2321 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++) 2322 hash += CONST_WIDE_INT_ELT (x, i); 2323 return hash; 2324 2325 case CONST_DOUBLE: 2326 /* This is like the general case, except that it only counts 2327 the integers representing the constant. */ 2328 hash += (unsigned int) code + (unsigned int) GET_MODE (x); 2329 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode) 2330 hash += ((unsigned int) CONST_DOUBLE_LOW (x) 2331 + (unsigned int) CONST_DOUBLE_HIGH (x)); 2332 else 2333 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x)); 2334 return hash; 2335 2336 case CONST_FIXED: 2337 hash += (unsigned int) code + (unsigned int) GET_MODE (x); 2338 hash += fixed_hash (CONST_FIXED_VALUE (x)); 2339 return hash; 2340 2341 case CONST_VECTOR: 2342 { 2343 int units; 2344 rtx elt; 2345 2346 units = CONST_VECTOR_NUNITS (x); 2347 2348 for (i = 0; i < units; ++i) 2349 { 2350 elt = CONST_VECTOR_ELT (x, i); 2351 hash += hash_rtx_cb (elt, GET_MODE (elt), 2352 do_not_record_p, hash_arg_in_memory_p, 2353 have_reg_qty, cb); 2354 } 2355 2356 return hash; 2357 } 2358 2359 /* Assume there is only one rtx object for any given label. */ 2360 case LABEL_REF: 2361 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap 2362 differences and differences between each stage's debugging dumps. */ 2363 hash += (((unsigned int) LABEL_REF << 7) 2364 + CODE_LABEL_NUMBER (label_ref_label (x))); 2365 return hash; 2366 2367 case SYMBOL_REF: 2368 { 2369 /* Don't hash on the symbol's address to avoid bootstrap differences. 2370 Different hash values may cause expressions to be recorded in 2371 different orders and thus different registers to be used in the 2372 final assembler. This also avoids differences in the dump files 2373 between various stages. */ 2374 unsigned int h = 0; 2375 const unsigned char *p = (const unsigned char *) XSTR (x, 0); 2376 2377 while (*p) 2378 h += (h << 7) + *p++; /* ??? revisit */ 2379 2380 hash += ((unsigned int) SYMBOL_REF << 7) + h; 2381 return hash; 2382 } 2383 2384 case MEM: 2385 /* We don't record if marked volatile or if BLKmode since we don't 2386 know the size of the move. */ 2387 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)) 2388 { 2389 *do_not_record_p = 1; 2390 return 0; 2391 } 2392 if (hash_arg_in_memory_p && !MEM_READONLY_P (x)) 2393 *hash_arg_in_memory_p = 1; 2394 2395 /* Now that we have already found this special case, 2396 might as well speed it up as much as possible. */ 2397 hash += (unsigned) MEM; 2398 x = XEXP (x, 0); 2399 goto repeat; 2400 2401 case USE: 2402 /* A USE that mentions non-volatile memory needs special 2403 handling since the MEM may be BLKmode which normally 2404 prevents an entry from being made. Pure calls are 2405 marked by a USE which mentions BLKmode memory. 2406 See calls.c:emit_call_1. */ 2407 if (MEM_P (XEXP (x, 0)) 2408 && ! MEM_VOLATILE_P (XEXP (x, 0))) 2409 { 2410 hash += (unsigned) USE; 2411 x = XEXP (x, 0); 2412 2413 if (hash_arg_in_memory_p && !MEM_READONLY_P (x)) 2414 *hash_arg_in_memory_p = 1; 2415 2416 /* Now that we have already found this special case, 2417 might as well speed it up as much as possible. */ 2418 hash += (unsigned) MEM; 2419 x = XEXP (x, 0); 2420 goto repeat; 2421 } 2422 break; 2423 2424 case PRE_DEC: 2425 case PRE_INC: 2426 case POST_DEC: 2427 case POST_INC: 2428 case PRE_MODIFY: 2429 case POST_MODIFY: 2430 case PC: 2431 case CC0: 2432 case CALL: 2433 case UNSPEC_VOLATILE: 2434 if (do_not_record_p) { 2435 *do_not_record_p = 1; 2436 return 0; 2437 } 2438 else 2439 return hash; 2440 break; 2441 2442 case ASM_OPERANDS: 2443 if (do_not_record_p && MEM_VOLATILE_P (x)) 2444 { 2445 *do_not_record_p = 1; 2446 return 0; 2447 } 2448 else 2449 { 2450 /* We don't want to take the filename and line into account. */ 2451 hash += (unsigned) code + (unsigned) GET_MODE (x) 2452 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x)) 2453 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x)) 2454 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x); 2455 2456 if (ASM_OPERANDS_INPUT_LENGTH (x)) 2457 { 2458 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++) 2459 { 2460 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i), 2461 GET_MODE (ASM_OPERANDS_INPUT (x, i)), 2462 do_not_record_p, hash_arg_in_memory_p, 2463 have_reg_qty, cb) 2464 + hash_rtx_string 2465 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i))); 2466 } 2467 2468 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0)); 2469 x = ASM_OPERANDS_INPUT (x, 0); 2470 mode = GET_MODE (x); 2471 goto repeat; 2472 } 2473 2474 return hash; 2475 } 2476 break; 2477 2478 default: 2479 break; 2480 } 2481 2482 i = GET_RTX_LENGTH (code) - 1; 2483 hash += (unsigned) code + (unsigned) GET_MODE (x); 2484 fmt = GET_RTX_FORMAT (code); 2485 for (; i >= 0; i--) 2486 { 2487 switch (fmt[i]) 2488 { 2489 case 'e': 2490 /* If we are about to do the last recursive call 2491 needed at this level, change it into iteration. 2492 This function is called enough to be worth it. */ 2493 if (i == 0) 2494 { 2495 x = XEXP (x, i); 2496 goto repeat; 2497 } 2498 2499 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p, 2500 hash_arg_in_memory_p, 2501 have_reg_qty, cb); 2502 break; 2503 2504 case 'E': 2505 for (j = 0; j < XVECLEN (x, i); j++) 2506 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p, 2507 hash_arg_in_memory_p, 2508 have_reg_qty, cb); 2509 break; 2510 2511 case 's': 2512 hash += hash_rtx_string (XSTR (x, i)); 2513 break; 2514 2515 case 'i': 2516 hash += (unsigned int) XINT (x, i); 2517 break; 2518 2519 case '0': case 't': 2520 /* Unused. */ 2521 break; 2522 2523 default: 2524 gcc_unreachable (); 2525 } 2526 } 2527 2528 return hash; 2529 } 2530 2531 /* Hash an rtx. We are careful to make sure the value is never negative. 2532 Equivalent registers hash identically. 2533 MODE is used in hashing for CONST_INTs only; 2534 otherwise the mode of X is used. 2535 2536 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile. 2537 2538 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains 2539 a MEM rtx which does not have the MEM_READONLY_P flag set. 2540 2541 Note that cse_insn knows that the hash code of a MEM expression 2542 is just (int) MEM plus the hash code of the address. */ 2543 2544 unsigned 2545 hash_rtx (const_rtx x, machine_mode mode, int *do_not_record_p, 2546 int *hash_arg_in_memory_p, bool have_reg_qty) 2547 { 2548 return hash_rtx_cb (x, mode, do_not_record_p, 2549 hash_arg_in_memory_p, have_reg_qty, NULL); 2550 } 2551 2552 /* Hash an rtx X for cse via hash_rtx. 2553 Stores 1 in do_not_record if any subexpression is volatile. 2554 Stores 1 in hash_arg_in_memory if X contains a mem rtx which 2555 does not have the MEM_READONLY_P flag set. */ 2556 2557 static inline unsigned 2558 canon_hash (rtx x, machine_mode mode) 2559 { 2560 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true); 2561 } 2562 2563 /* Like canon_hash but with no side effects, i.e. do_not_record 2564 and hash_arg_in_memory are not changed. */ 2565 2566 static inline unsigned 2567 safe_hash (rtx x, machine_mode mode) 2568 { 2569 int dummy_do_not_record; 2570 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true); 2571 } 2572 2573 /* Return 1 iff X and Y would canonicalize into the same thing, 2574 without actually constructing the canonicalization of either one. 2575 If VALIDATE is nonzero, 2576 we assume X is an expression being processed from the rtl 2577 and Y was found in the hash table. We check register refs 2578 in Y for being marked as valid. 2579 2580 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */ 2581 2582 int 2583 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse) 2584 { 2585 int i, j; 2586 enum rtx_code code; 2587 const char *fmt; 2588 2589 /* Note: it is incorrect to assume an expression is equivalent to itself 2590 if VALIDATE is nonzero. */ 2591 if (x == y && !validate) 2592 return 1; 2593 2594 if (x == 0 || y == 0) 2595 return x == y; 2596 2597 code = GET_CODE (x); 2598 if (code != GET_CODE (y)) 2599 return 0; 2600 2601 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */ 2602 if (GET_MODE (x) != GET_MODE (y)) 2603 return 0; 2604 2605 /* MEMs referring to different address space are not equivalent. */ 2606 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y)) 2607 return 0; 2608 2609 switch (code) 2610 { 2611 case PC: 2612 case CC0: 2613 CASE_CONST_UNIQUE: 2614 return x == y; 2615 2616 case LABEL_REF: 2617 return label_ref_label (x) == label_ref_label (y); 2618 2619 case SYMBOL_REF: 2620 return XSTR (x, 0) == XSTR (y, 0); 2621 2622 case REG: 2623 if (for_gcse) 2624 return REGNO (x) == REGNO (y); 2625 else 2626 { 2627 unsigned int regno = REGNO (y); 2628 unsigned int i; 2629 unsigned int endregno = END_REGNO (y); 2630 2631 /* If the quantities are not the same, the expressions are not 2632 equivalent. If there are and we are not to validate, they 2633 are equivalent. Otherwise, ensure all regs are up-to-date. */ 2634 2635 if (REG_QTY (REGNO (x)) != REG_QTY (regno)) 2636 return 0; 2637 2638 if (! validate) 2639 return 1; 2640 2641 for (i = regno; i < endregno; i++) 2642 if (REG_IN_TABLE (i) != REG_TICK (i)) 2643 return 0; 2644 2645 return 1; 2646 } 2647 2648 case MEM: 2649 if (for_gcse) 2650 { 2651 /* A volatile mem should not be considered equivalent to any 2652 other. */ 2653 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y)) 2654 return 0; 2655 2656 /* Can't merge two expressions in different alias sets, since we 2657 can decide that the expression is transparent in a block when 2658 it isn't, due to it being set with the different alias set. 2659 2660 Also, can't merge two expressions with different MEM_ATTRS. 2661 They could e.g. be two different entities allocated into the 2662 same space on the stack (see e.g. PR25130). In that case, the 2663 MEM addresses can be the same, even though the two MEMs are 2664 absolutely not equivalent. 2665 2666 But because really all MEM attributes should be the same for 2667 equivalent MEMs, we just use the invariant that MEMs that have 2668 the same attributes share the same mem_attrs data structure. */ 2669 if (!mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y))) 2670 return 0; 2671 2672 /* If we are handling exceptions, we cannot consider two expressions 2673 with different trapping status as equivalent, because simple_mem 2674 might accept one and reject the other. */ 2675 if (cfun->can_throw_non_call_exceptions 2676 && (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y))) 2677 return 0; 2678 } 2679 break; 2680 2681 /* For commutative operations, check both orders. */ 2682 case PLUS: 2683 case MULT: 2684 case AND: 2685 case IOR: 2686 case XOR: 2687 case NE: 2688 case EQ: 2689 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0), 2690 validate, for_gcse) 2691 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1), 2692 validate, for_gcse)) 2693 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1), 2694 validate, for_gcse) 2695 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0), 2696 validate, for_gcse))); 2697 2698 case ASM_OPERANDS: 2699 /* We don't use the generic code below because we want to 2700 disregard filename and line numbers. */ 2701 2702 /* A volatile asm isn't equivalent to any other. */ 2703 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y)) 2704 return 0; 2705 2706 if (GET_MODE (x) != GET_MODE (y) 2707 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y)) 2708 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x), 2709 ASM_OPERANDS_OUTPUT_CONSTRAINT (y)) 2710 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y) 2711 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y)) 2712 return 0; 2713 2714 if (ASM_OPERANDS_INPUT_LENGTH (x)) 2715 { 2716 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--) 2717 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i), 2718 ASM_OPERANDS_INPUT (y, i), 2719 validate, for_gcse) 2720 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i), 2721 ASM_OPERANDS_INPUT_CONSTRAINT (y, i))) 2722 return 0; 2723 } 2724 2725 return 1; 2726 2727 default: 2728 break; 2729 } 2730 2731 /* Compare the elements. If any pair of corresponding elements 2732 fail to match, return 0 for the whole thing. */ 2733 2734 fmt = GET_RTX_FORMAT (code); 2735 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 2736 { 2737 switch (fmt[i]) 2738 { 2739 case 'e': 2740 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i), 2741 validate, for_gcse)) 2742 return 0; 2743 break; 2744 2745 case 'E': 2746 if (XVECLEN (x, i) != XVECLEN (y, i)) 2747 return 0; 2748 for (j = 0; j < XVECLEN (x, i); j++) 2749 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j), 2750 validate, for_gcse)) 2751 return 0; 2752 break; 2753 2754 case 's': 2755 if (strcmp (XSTR (x, i), XSTR (y, i))) 2756 return 0; 2757 break; 2758 2759 case 'i': 2760 if (XINT (x, i) != XINT (y, i)) 2761 return 0; 2762 break; 2763 2764 case 'w': 2765 if (XWINT (x, i) != XWINT (y, i)) 2766 return 0; 2767 break; 2768 2769 case '0': 2770 case 't': 2771 break; 2772 2773 default: 2774 gcc_unreachable (); 2775 } 2776 } 2777 2778 return 1; 2779 } 2780 2781 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate 2782 the result if necessary. INSN is as for canon_reg. */ 2783 2784 static void 2785 validate_canon_reg (rtx *xloc, rtx_insn *insn) 2786 { 2787 if (*xloc) 2788 { 2789 rtx new_rtx = canon_reg (*xloc, insn); 2790 2791 /* If replacing pseudo with hard reg or vice versa, ensure the 2792 insn remains valid. Likewise if the insn has MATCH_DUPs. */ 2793 gcc_assert (insn && new_rtx); 2794 validate_change (insn, xloc, new_rtx, 1); 2795 } 2796 } 2797 2798 /* Canonicalize an expression: 2799 replace each register reference inside it 2800 with the "oldest" equivalent register. 2801 2802 If INSN is nonzero validate_change is used to ensure that INSN remains valid 2803 after we make our substitution. The calls are made with IN_GROUP nonzero 2804 so apply_change_group must be called upon the outermost return from this 2805 function (unless INSN is zero). The result of apply_change_group can 2806 generally be discarded since the changes we are making are optional. */ 2807 2808 static rtx 2809 canon_reg (rtx x, rtx_insn *insn) 2810 { 2811 int i; 2812 enum rtx_code code; 2813 const char *fmt; 2814 2815 if (x == 0) 2816 return x; 2817 2818 code = GET_CODE (x); 2819 switch (code) 2820 { 2821 case PC: 2822 case CC0: 2823 case CONST: 2824 CASE_CONST_ANY: 2825 case SYMBOL_REF: 2826 case LABEL_REF: 2827 case ADDR_VEC: 2828 case ADDR_DIFF_VEC: 2829 return x; 2830 2831 case REG: 2832 { 2833 int first; 2834 int q; 2835 struct qty_table_elem *ent; 2836 2837 /* Never replace a hard reg, because hard regs can appear 2838 in more than one machine mode, and we must preserve the mode 2839 of each occurrence. Also, some hard regs appear in 2840 MEMs that are shared and mustn't be altered. Don't try to 2841 replace any reg that maps to a reg of class NO_REGS. */ 2842 if (REGNO (x) < FIRST_PSEUDO_REGISTER 2843 || ! REGNO_QTY_VALID_P (REGNO (x))) 2844 return x; 2845 2846 q = REG_QTY (REGNO (x)); 2847 ent = &qty_table[q]; 2848 first = ent->first_reg; 2849 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first] 2850 : REGNO_REG_CLASS (first) == NO_REGS ? x 2851 : gen_rtx_REG (ent->mode, first)); 2852 } 2853 2854 default: 2855 break; 2856 } 2857 2858 fmt = GET_RTX_FORMAT (code); 2859 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 2860 { 2861 int j; 2862 2863 if (fmt[i] == 'e') 2864 validate_canon_reg (&XEXP (x, i), insn); 2865 else if (fmt[i] == 'E') 2866 for (j = 0; j < XVECLEN (x, i); j++) 2867 validate_canon_reg (&XVECEXP (x, i, j), insn); 2868 } 2869 2870 return x; 2871 } 2872 2873 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison 2874 operation (EQ, NE, GT, etc.), follow it back through the hash table and 2875 what values are being compared. 2876 2877 *PARG1 and *PARG2 are updated to contain the rtx representing the values 2878 actually being compared. For example, if *PARG1 was (cc0) and *PARG2 2879 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were 2880 compared to produce cc0. 2881 2882 The return value is the comparison operator and is either the code of 2883 A or the code corresponding to the inverse of the comparison. */ 2884 2885 static enum rtx_code 2886 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2, 2887 machine_mode *pmode1, machine_mode *pmode2) 2888 { 2889 rtx arg1, arg2; 2890 hash_set<rtx> *visited = NULL; 2891 /* Set nonzero when we find something of interest. */ 2892 rtx x = NULL; 2893 2894 arg1 = *parg1, arg2 = *parg2; 2895 2896 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */ 2897 2898 while (arg2 == CONST0_RTX (GET_MODE (arg1))) 2899 { 2900 int reverse_code = 0; 2901 struct table_elt *p = 0; 2902 2903 /* Remember state from previous iteration. */ 2904 if (x) 2905 { 2906 if (!visited) 2907 visited = new hash_set<rtx>; 2908 visited->add (x); 2909 x = 0; 2910 } 2911 2912 /* If arg1 is a COMPARE, extract the comparison arguments from it. 2913 On machines with CC0, this is the only case that can occur, since 2914 fold_rtx will return the COMPARE or item being compared with zero 2915 when given CC0. */ 2916 2917 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx) 2918 x = arg1; 2919 2920 /* If ARG1 is a comparison operator and CODE is testing for 2921 STORE_FLAG_VALUE, get the inner arguments. */ 2922 2923 else if (COMPARISON_P (arg1)) 2924 { 2925 #ifdef FLOAT_STORE_FLAG_VALUE 2926 REAL_VALUE_TYPE fsfv; 2927 #endif 2928 2929 if (code == NE 2930 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT 2931 && code == LT && STORE_FLAG_VALUE == -1) 2932 #ifdef FLOAT_STORE_FLAG_VALUE 2933 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1)) 2934 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)), 2935 REAL_VALUE_NEGATIVE (fsfv))) 2936 #endif 2937 ) 2938 x = arg1; 2939 else if (code == EQ 2940 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT 2941 && code == GE && STORE_FLAG_VALUE == -1) 2942 #ifdef FLOAT_STORE_FLAG_VALUE 2943 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1)) 2944 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)), 2945 REAL_VALUE_NEGATIVE (fsfv))) 2946 #endif 2947 ) 2948 x = arg1, reverse_code = 1; 2949 } 2950 2951 /* ??? We could also check for 2952 2953 (ne (and (eq (...) (const_int 1))) (const_int 0)) 2954 2955 and related forms, but let's wait until we see them occurring. */ 2956 2957 if (x == 0) 2958 /* Look up ARG1 in the hash table and see if it has an equivalence 2959 that lets us see what is being compared. */ 2960 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1)); 2961 if (p) 2962 { 2963 p = p->first_same_value; 2964 2965 /* If what we compare is already known to be constant, that is as 2966 good as it gets. 2967 We need to break the loop in this case, because otherwise we 2968 can have an infinite loop when looking at a reg that is known 2969 to be a constant which is the same as a comparison of a reg 2970 against zero which appears later in the insn stream, which in 2971 turn is constant and the same as the comparison of the first reg 2972 against zero... */ 2973 if (p->is_const) 2974 break; 2975 } 2976 2977 for (; p; p = p->next_same_value) 2978 { 2979 machine_mode inner_mode = GET_MODE (p->exp); 2980 #ifdef FLOAT_STORE_FLAG_VALUE 2981 REAL_VALUE_TYPE fsfv; 2982 #endif 2983 2984 /* If the entry isn't valid, skip it. */ 2985 if (! exp_equiv_p (p->exp, p->exp, 1, false)) 2986 continue; 2987 2988 /* If it's a comparison we've used before, skip it. */ 2989 if (visited && visited->contains (p->exp)) 2990 continue; 2991 2992 if (GET_CODE (p->exp) == COMPARE 2993 /* Another possibility is that this machine has a compare insn 2994 that includes the comparison code. In that case, ARG1 would 2995 be equivalent to a comparison operation that would set ARG1 to 2996 either STORE_FLAG_VALUE or zero. If this is an NE operation, 2997 ORIG_CODE is the actual comparison being done; if it is an EQ, 2998 we must reverse ORIG_CODE. On machine with a negative value 2999 for STORE_FLAG_VALUE, also look at LT and GE operations. */ 3000 || ((code == NE 3001 || (code == LT 3002 && val_signbit_known_set_p (inner_mode, 3003 STORE_FLAG_VALUE)) 3004 #ifdef FLOAT_STORE_FLAG_VALUE 3005 || (code == LT 3006 && SCALAR_FLOAT_MODE_P (inner_mode) 3007 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)), 3008 REAL_VALUE_NEGATIVE (fsfv))) 3009 #endif 3010 ) 3011 && COMPARISON_P (p->exp))) 3012 { 3013 x = p->exp; 3014 break; 3015 } 3016 else if ((code == EQ 3017 || (code == GE 3018 && val_signbit_known_set_p (inner_mode, 3019 STORE_FLAG_VALUE)) 3020 #ifdef FLOAT_STORE_FLAG_VALUE 3021 || (code == GE 3022 && SCALAR_FLOAT_MODE_P (inner_mode) 3023 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)), 3024 REAL_VALUE_NEGATIVE (fsfv))) 3025 #endif 3026 ) 3027 && COMPARISON_P (p->exp)) 3028 { 3029 reverse_code = 1; 3030 x = p->exp; 3031 break; 3032 } 3033 3034 /* If this non-trapping address, e.g. fp + constant, the 3035 equivalent is a better operand since it may let us predict 3036 the value of the comparison. */ 3037 else if (!rtx_addr_can_trap_p (p->exp)) 3038 { 3039 arg1 = p->exp; 3040 continue; 3041 } 3042 } 3043 3044 /* If we didn't find a useful equivalence for ARG1, we are done. 3045 Otherwise, set up for the next iteration. */ 3046 if (x == 0) 3047 break; 3048 3049 /* If we need to reverse the comparison, make sure that is 3050 possible -- we can't necessarily infer the value of GE from LT 3051 with floating-point operands. */ 3052 if (reverse_code) 3053 { 3054 enum rtx_code reversed = reversed_comparison_code (x, NULL); 3055 if (reversed == UNKNOWN) 3056 break; 3057 else 3058 code = reversed; 3059 } 3060 else if (COMPARISON_P (x)) 3061 code = GET_CODE (x); 3062 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1); 3063 } 3064 3065 /* Return our results. Return the modes from before fold_rtx 3066 because fold_rtx might produce const_int, and then it's too late. */ 3067 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2); 3068 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0); 3069 3070 if (visited) 3071 delete visited; 3072 return code; 3073 } 3074 3075 /* If X is a nontrivial arithmetic operation on an argument for which 3076 a constant value can be determined, return the result of operating 3077 on that value, as a constant. Otherwise, return X, possibly with 3078 one or more operands changed to a forward-propagated constant. 3079 3080 If X is a register whose contents are known, we do NOT return 3081 those contents here; equiv_constant is called to perform that task. 3082 For SUBREGs and MEMs, we do that both here and in equiv_constant. 3083 3084 INSN is the insn that we may be modifying. If it is 0, make a copy 3085 of X before modifying it. */ 3086 3087 static rtx 3088 fold_rtx (rtx x, rtx_insn *insn) 3089 { 3090 enum rtx_code code; 3091 machine_mode mode; 3092 const char *fmt; 3093 int i; 3094 rtx new_rtx = 0; 3095 int changed = 0; 3096 3097 /* Operands of X. */ 3098 /* Workaround -Wmaybe-uninitialized false positive during 3099 profiledbootstrap by initializing them. */ 3100 rtx folded_arg0 = NULL_RTX; 3101 rtx folded_arg1 = NULL_RTX; 3102 3103 /* Constant equivalents of first three operands of X; 3104 0 when no such equivalent is known. */ 3105 rtx const_arg0; 3106 rtx const_arg1; 3107 rtx const_arg2; 3108 3109 /* The mode of the first operand of X. We need this for sign and zero 3110 extends. */ 3111 machine_mode mode_arg0; 3112 3113 if (x == 0) 3114 return x; 3115 3116 /* Try to perform some initial simplifications on X. */ 3117 code = GET_CODE (x); 3118 switch (code) 3119 { 3120 case MEM: 3121 case SUBREG: 3122 /* The first operand of a SIGN/ZERO_EXTRACT has a different meaning 3123 than it would in other contexts. Basically its mode does not 3124 signify the size of the object read. That information is carried 3125 by size operand. If we happen to have a MEM of the appropriate 3126 mode in our tables with a constant value we could simplify the 3127 extraction incorrectly if we allowed substitution of that value 3128 for the MEM. */ 3129 case ZERO_EXTRACT: 3130 case SIGN_EXTRACT: 3131 if ((new_rtx = equiv_constant (x)) != NULL_RTX) 3132 return new_rtx; 3133 return x; 3134 3135 case CONST: 3136 CASE_CONST_ANY: 3137 case SYMBOL_REF: 3138 case LABEL_REF: 3139 case REG: 3140 case PC: 3141 /* No use simplifying an EXPR_LIST 3142 since they are used only for lists of args 3143 in a function call's REG_EQUAL note. */ 3144 case EXPR_LIST: 3145 return x; 3146 3147 case CC0: 3148 return prev_insn_cc0; 3149 3150 case ASM_OPERANDS: 3151 if (insn) 3152 { 3153 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--) 3154 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), 3155 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0); 3156 } 3157 return x; 3158 3159 case CALL: 3160 if (NO_FUNCTION_CSE && CONSTANT_P (XEXP (XEXP (x, 0), 0))) 3161 return x; 3162 break; 3163 3164 /* Anything else goes through the loop below. */ 3165 default: 3166 break; 3167 } 3168 3169 mode = GET_MODE (x); 3170 const_arg0 = 0; 3171 const_arg1 = 0; 3172 const_arg2 = 0; 3173 mode_arg0 = VOIDmode; 3174 3175 /* Try folding our operands. 3176 Then see which ones have constant values known. */ 3177 3178 fmt = GET_RTX_FORMAT (code); 3179 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 3180 if (fmt[i] == 'e') 3181 { 3182 rtx folded_arg = XEXP (x, i), const_arg; 3183 machine_mode mode_arg = GET_MODE (folded_arg); 3184 3185 switch (GET_CODE (folded_arg)) 3186 { 3187 case MEM: 3188 case REG: 3189 case SUBREG: 3190 const_arg = equiv_constant (folded_arg); 3191 break; 3192 3193 case CONST: 3194 CASE_CONST_ANY: 3195 case SYMBOL_REF: 3196 case LABEL_REF: 3197 const_arg = folded_arg; 3198 break; 3199 3200 case CC0: 3201 /* The cc0-user and cc0-setter may be in different blocks if 3202 the cc0-setter potentially traps. In that case PREV_INSN_CC0 3203 will have been cleared as we exited the block with the 3204 setter. 3205 3206 While we could potentially track cc0 in this case, it just 3207 doesn't seem to be worth it given that cc0 targets are not 3208 terribly common or important these days and trapping math 3209 is rarely used. The combination of those two conditions 3210 necessary to trip this situation is exceedingly rare in the 3211 real world. */ 3212 if (!prev_insn_cc0) 3213 { 3214 const_arg = NULL_RTX; 3215 } 3216 else 3217 { 3218 folded_arg = prev_insn_cc0; 3219 mode_arg = prev_insn_cc0_mode; 3220 const_arg = equiv_constant (folded_arg); 3221 } 3222 break; 3223 3224 default: 3225 folded_arg = fold_rtx (folded_arg, insn); 3226 const_arg = equiv_constant (folded_arg); 3227 break; 3228 } 3229 3230 /* For the first three operands, see if the operand 3231 is constant or equivalent to a constant. */ 3232 switch (i) 3233 { 3234 case 0: 3235 folded_arg0 = folded_arg; 3236 const_arg0 = const_arg; 3237 mode_arg0 = mode_arg; 3238 break; 3239 case 1: 3240 folded_arg1 = folded_arg; 3241 const_arg1 = const_arg; 3242 break; 3243 case 2: 3244 const_arg2 = const_arg; 3245 break; 3246 } 3247 3248 /* Pick the least expensive of the argument and an equivalent constant 3249 argument. */ 3250 if (const_arg != 0 3251 && const_arg != folded_arg 3252 && (COST_IN (const_arg, mode_arg, code, i) 3253 <= COST_IN (folded_arg, mode_arg, code, i)) 3254 3255 /* It's not safe to substitute the operand of a conversion 3256 operator with a constant, as the conversion's identity 3257 depends upon the mode of its operand. This optimization 3258 is handled by the call to simplify_unary_operation. */ 3259 && (GET_RTX_CLASS (code) != RTX_UNARY 3260 || GET_MODE (const_arg) == mode_arg0 3261 || (code != ZERO_EXTEND 3262 && code != SIGN_EXTEND 3263 && code != TRUNCATE 3264 && code != FLOAT_TRUNCATE 3265 && code != FLOAT_EXTEND 3266 && code != FLOAT 3267 && code != FIX 3268 && code != UNSIGNED_FLOAT 3269 && code != UNSIGNED_FIX))) 3270 folded_arg = const_arg; 3271 3272 if (folded_arg == XEXP (x, i)) 3273 continue; 3274 3275 if (insn == NULL_RTX && !changed) 3276 x = copy_rtx (x); 3277 changed = 1; 3278 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1); 3279 } 3280 3281 if (changed) 3282 { 3283 /* Canonicalize X if necessary, and keep const_argN and folded_argN 3284 consistent with the order in X. */ 3285 if (canonicalize_change_group (insn, x)) 3286 { 3287 std::swap (const_arg0, const_arg1); 3288 std::swap (folded_arg0, folded_arg1); 3289 } 3290 3291 apply_change_group (); 3292 } 3293 3294 /* If X is an arithmetic operation, see if we can simplify it. */ 3295 3296 switch (GET_RTX_CLASS (code)) 3297 { 3298 case RTX_UNARY: 3299 { 3300 /* We can't simplify extension ops unless we know the 3301 original mode. */ 3302 if ((code == ZERO_EXTEND || code == SIGN_EXTEND) 3303 && mode_arg0 == VOIDmode) 3304 break; 3305 3306 new_rtx = simplify_unary_operation (code, mode, 3307 const_arg0 ? const_arg0 : folded_arg0, 3308 mode_arg0); 3309 } 3310 break; 3311 3312 case RTX_COMPARE: 3313 case RTX_COMM_COMPARE: 3314 /* See what items are actually being compared and set FOLDED_ARG[01] 3315 to those values and CODE to the actual comparison code. If any are 3316 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't 3317 do anything if both operands are already known to be constant. */ 3318 3319 /* ??? Vector mode comparisons are not supported yet. */ 3320 if (VECTOR_MODE_P (mode)) 3321 break; 3322 3323 if (const_arg0 == 0 || const_arg1 == 0) 3324 { 3325 struct table_elt *p0, *p1; 3326 rtx true_rtx, false_rtx; 3327 machine_mode mode_arg1; 3328 3329 if (SCALAR_FLOAT_MODE_P (mode)) 3330 { 3331 #ifdef FLOAT_STORE_FLAG_VALUE 3332 true_rtx = (const_double_from_real_value 3333 (FLOAT_STORE_FLAG_VALUE (mode), mode)); 3334 #else 3335 true_rtx = NULL_RTX; 3336 #endif 3337 false_rtx = CONST0_RTX (mode); 3338 } 3339 else 3340 { 3341 true_rtx = const_true_rtx; 3342 false_rtx = const0_rtx; 3343 } 3344 3345 code = find_comparison_args (code, &folded_arg0, &folded_arg1, 3346 &mode_arg0, &mode_arg1); 3347 3348 /* If the mode is VOIDmode or a MODE_CC mode, we don't know 3349 what kinds of things are being compared, so we can't do 3350 anything with this comparison. */ 3351 3352 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC) 3353 break; 3354 3355 const_arg0 = equiv_constant (folded_arg0); 3356 const_arg1 = equiv_constant (folded_arg1); 3357 3358 /* If we do not now have two constants being compared, see 3359 if we can nevertheless deduce some things about the 3360 comparison. */ 3361 if (const_arg0 == 0 || const_arg1 == 0) 3362 { 3363 if (const_arg1 != NULL) 3364 { 3365 rtx cheapest_simplification; 3366 int cheapest_cost; 3367 rtx simp_result; 3368 struct table_elt *p; 3369 3370 /* See if we can find an equivalent of folded_arg0 3371 that gets us a cheaper expression, possibly a 3372 constant through simplifications. */ 3373 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0), 3374 mode_arg0); 3375 3376 if (p != NULL) 3377 { 3378 cheapest_simplification = x; 3379 cheapest_cost = COST (x, mode); 3380 3381 for (p = p->first_same_value; p != NULL; p = p->next_same_value) 3382 { 3383 int cost; 3384 3385 /* If the entry isn't valid, skip it. */ 3386 if (! exp_equiv_p (p->exp, p->exp, 1, false)) 3387 continue; 3388 3389 /* Try to simplify using this equivalence. */ 3390 simp_result 3391 = simplify_relational_operation (code, mode, 3392 mode_arg0, 3393 p->exp, 3394 const_arg1); 3395 3396 if (simp_result == NULL) 3397 continue; 3398 3399 cost = COST (simp_result, mode); 3400 if (cost < cheapest_cost) 3401 { 3402 cheapest_cost = cost; 3403 cheapest_simplification = simp_result; 3404 } 3405 } 3406 3407 /* If we have a cheaper expression now, use that 3408 and try folding it further, from the top. */ 3409 if (cheapest_simplification != x) 3410 return fold_rtx (copy_rtx (cheapest_simplification), 3411 insn); 3412 } 3413 } 3414 3415 /* See if the two operands are the same. */ 3416 3417 if ((REG_P (folded_arg0) 3418 && REG_P (folded_arg1) 3419 && (REG_QTY (REGNO (folded_arg0)) 3420 == REG_QTY (REGNO (folded_arg1)))) 3421 || ((p0 = lookup (folded_arg0, 3422 SAFE_HASH (folded_arg0, mode_arg0), 3423 mode_arg0)) 3424 && (p1 = lookup (folded_arg1, 3425 SAFE_HASH (folded_arg1, mode_arg0), 3426 mode_arg0)) 3427 && p0->first_same_value == p1->first_same_value)) 3428 folded_arg1 = folded_arg0; 3429 3430 /* If FOLDED_ARG0 is a register, see if the comparison we are 3431 doing now is either the same as we did before or the reverse 3432 (we only check the reverse if not floating-point). */ 3433 else if (REG_P (folded_arg0)) 3434 { 3435 int qty = REG_QTY (REGNO (folded_arg0)); 3436 3437 if (REGNO_QTY_VALID_P (REGNO (folded_arg0))) 3438 { 3439 struct qty_table_elem *ent = &qty_table[qty]; 3440 3441 if ((comparison_dominates_p (ent->comparison_code, code) 3442 || (! FLOAT_MODE_P (mode_arg0) 3443 && comparison_dominates_p (ent->comparison_code, 3444 reverse_condition (code)))) 3445 && (rtx_equal_p (ent->comparison_const, folded_arg1) 3446 || (const_arg1 3447 && rtx_equal_p (ent->comparison_const, 3448 const_arg1)) 3449 || (REG_P (folded_arg1) 3450 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty)))) 3451 { 3452 if (comparison_dominates_p (ent->comparison_code, code)) 3453 { 3454 if (true_rtx) 3455 return true_rtx; 3456 else 3457 break; 3458 } 3459 else 3460 return false_rtx; 3461 } 3462 } 3463 } 3464 } 3465 } 3466 3467 /* If we are comparing against zero, see if the first operand is 3468 equivalent to an IOR with a constant. If so, we may be able to 3469 determine the result of this comparison. */ 3470 if (const_arg1 == const0_rtx && !const_arg0) 3471 { 3472 rtx y = lookup_as_function (folded_arg0, IOR); 3473 rtx inner_const; 3474 3475 if (y != 0 3476 && (inner_const = equiv_constant (XEXP (y, 1))) != 0 3477 && CONST_INT_P (inner_const) 3478 && INTVAL (inner_const) != 0) 3479 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const); 3480 } 3481 3482 { 3483 rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0); 3484 rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1); 3485 new_rtx = simplify_relational_operation (code, mode, mode_arg0, 3486 op0, op1); 3487 } 3488 break; 3489 3490 case RTX_BIN_ARITH: 3491 case RTX_COMM_ARITH: 3492 switch (code) 3493 { 3494 case PLUS: 3495 /* If the second operand is a LABEL_REF, see if the first is a MINUS 3496 with that LABEL_REF as its second operand. If so, the result is 3497 the first operand of that MINUS. This handles switches with an 3498 ADDR_DIFF_VEC table. */ 3499 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF) 3500 { 3501 rtx y 3502 = GET_CODE (folded_arg0) == MINUS ? folded_arg0 3503 : lookup_as_function (folded_arg0, MINUS); 3504 3505 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF 3506 && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg1)) 3507 return XEXP (y, 0); 3508 3509 /* Now try for a CONST of a MINUS like the above. */ 3510 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0 3511 : lookup_as_function (folded_arg0, CONST))) != 0 3512 && GET_CODE (XEXP (y, 0)) == MINUS 3513 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF 3514 && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg1)) 3515 return XEXP (XEXP (y, 0), 0); 3516 } 3517 3518 /* Likewise if the operands are in the other order. */ 3519 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF) 3520 { 3521 rtx y 3522 = GET_CODE (folded_arg1) == MINUS ? folded_arg1 3523 : lookup_as_function (folded_arg1, MINUS); 3524 3525 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF 3526 && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg0)) 3527 return XEXP (y, 0); 3528 3529 /* Now try for a CONST of a MINUS like the above. */ 3530 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1 3531 : lookup_as_function (folded_arg1, CONST))) != 0 3532 && GET_CODE (XEXP (y, 0)) == MINUS 3533 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF 3534 && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg0)) 3535 return XEXP (XEXP (y, 0), 0); 3536 } 3537 3538 /* If second operand is a register equivalent to a negative 3539 CONST_INT, see if we can find a register equivalent to the 3540 positive constant. Make a MINUS if so. Don't do this for 3541 a non-negative constant since we might then alternate between 3542 choosing positive and negative constants. Having the positive 3543 constant previously-used is the more common case. Be sure 3544 the resulting constant is non-negative; if const_arg1 were 3545 the smallest negative number this would overflow: depending 3546 on the mode, this would either just be the same value (and 3547 hence not save anything) or be incorrect. */ 3548 if (const_arg1 != 0 && CONST_INT_P (const_arg1) 3549 && INTVAL (const_arg1) < 0 3550 /* This used to test 3551 3552 -INTVAL (const_arg1) >= 0 3553 3554 But The Sun V5.0 compilers mis-compiled that test. So 3555 instead we test for the problematic value in a more direct 3556 manner and hope the Sun compilers get it correct. */ 3557 && INTVAL (const_arg1) != 3558 (HOST_WIDE_INT_1 << (HOST_BITS_PER_WIDE_INT - 1)) 3559 && REG_P (folded_arg1)) 3560 { 3561 rtx new_const = GEN_INT (-INTVAL (const_arg1)); 3562 struct table_elt *p 3563 = lookup (new_const, SAFE_HASH (new_const, mode), mode); 3564 3565 if (p) 3566 for (p = p->first_same_value; p; p = p->next_same_value) 3567 if (REG_P (p->exp)) 3568 return simplify_gen_binary (MINUS, mode, folded_arg0, 3569 canon_reg (p->exp, NULL)); 3570 } 3571 goto from_plus; 3572 3573 case MINUS: 3574 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2). 3575 If so, produce (PLUS Z C2-C). */ 3576 if (const_arg1 != 0 && CONST_INT_P (const_arg1)) 3577 { 3578 rtx y = lookup_as_function (XEXP (x, 0), PLUS); 3579 if (y && CONST_INT_P (XEXP (y, 1))) 3580 return fold_rtx (plus_constant (mode, copy_rtx (y), 3581 -INTVAL (const_arg1)), 3582 NULL); 3583 } 3584 3585 /* Fall through. */ 3586 3587 from_plus: 3588 case SMIN: case SMAX: case UMIN: case UMAX: 3589 case IOR: case AND: case XOR: 3590 case MULT: 3591 case ASHIFT: case LSHIFTRT: case ASHIFTRT: 3592 /* If we have (<op> <reg> <const_int>) for an associative OP and REG 3593 is known to be of similar form, we may be able to replace the 3594 operation with a combined operation. This may eliminate the 3595 intermediate operation if every use is simplified in this way. 3596 Note that the similar optimization done by combine.c only works 3597 if the intermediate operation's result has only one reference. */ 3598 3599 if (REG_P (folded_arg0) 3600 && const_arg1 && CONST_INT_P (const_arg1)) 3601 { 3602 int is_shift 3603 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT); 3604 rtx y, inner_const, new_const; 3605 rtx canon_const_arg1 = const_arg1; 3606 enum rtx_code associate_code; 3607 3608 if (is_shift 3609 && (INTVAL (const_arg1) >= GET_MODE_PRECISION (mode) 3610 || INTVAL (const_arg1) < 0)) 3611 { 3612 if (SHIFT_COUNT_TRUNCATED) 3613 canon_const_arg1 = GEN_INT (INTVAL (const_arg1) 3614 & (GET_MODE_BITSIZE (mode) 3615 - 1)); 3616 else 3617 break; 3618 } 3619 3620 y = lookup_as_function (folded_arg0, code); 3621 if (y == 0) 3622 break; 3623 3624 /* If we have compiled a statement like 3625 "if (x == (x & mask1))", and now are looking at 3626 "x & mask2", we will have a case where the first operand 3627 of Y is the same as our first operand. Unless we detect 3628 this case, an infinite loop will result. */ 3629 if (XEXP (y, 0) == folded_arg0) 3630 break; 3631 3632 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0)); 3633 if (!inner_const || !CONST_INT_P (inner_const)) 3634 break; 3635 3636 /* Don't associate these operations if they are a PLUS with the 3637 same constant and it is a power of two. These might be doable 3638 with a pre- or post-increment. Similarly for two subtracts of 3639 identical powers of two with post decrement. */ 3640 3641 if (code == PLUS && const_arg1 == inner_const 3642 && ((HAVE_PRE_INCREMENT 3643 && pow2p_hwi (INTVAL (const_arg1))) 3644 || (HAVE_POST_INCREMENT 3645 && pow2p_hwi (INTVAL (const_arg1))) 3646 || (HAVE_PRE_DECREMENT 3647 && pow2p_hwi (- INTVAL (const_arg1))) 3648 || (HAVE_POST_DECREMENT 3649 && pow2p_hwi (- INTVAL (const_arg1))))) 3650 break; 3651 3652 /* ??? Vector mode shifts by scalar 3653 shift operand are not supported yet. */ 3654 if (is_shift && VECTOR_MODE_P (mode)) 3655 break; 3656 3657 if (is_shift 3658 && (INTVAL (inner_const) >= GET_MODE_PRECISION (mode) 3659 || INTVAL (inner_const) < 0)) 3660 { 3661 if (SHIFT_COUNT_TRUNCATED) 3662 inner_const = GEN_INT (INTVAL (inner_const) 3663 & (GET_MODE_BITSIZE (mode) - 1)); 3664 else 3665 break; 3666 } 3667 3668 /* Compute the code used to compose the constants. For example, 3669 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */ 3670 3671 associate_code = (is_shift || code == MINUS ? PLUS : code); 3672 3673 new_const = simplify_binary_operation (associate_code, mode, 3674 canon_const_arg1, 3675 inner_const); 3676 3677 if (new_const == 0) 3678 break; 3679 3680 /* If we are associating shift operations, don't let this 3681 produce a shift of the size of the object or larger. 3682 This could occur when we follow a sign-extend by a right 3683 shift on a machine that does a sign-extend as a pair 3684 of shifts. */ 3685 3686 if (is_shift 3687 && CONST_INT_P (new_const) 3688 && INTVAL (new_const) >= GET_MODE_PRECISION (mode)) 3689 { 3690 /* As an exception, we can turn an ASHIFTRT of this 3691 form into a shift of the number of bits - 1. */ 3692 if (code == ASHIFTRT) 3693 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1); 3694 else if (!side_effects_p (XEXP (y, 0))) 3695 return CONST0_RTX (mode); 3696 else 3697 break; 3698 } 3699 3700 y = copy_rtx (XEXP (y, 0)); 3701 3702 /* If Y contains our first operand (the most common way this 3703 can happen is if Y is a MEM), we would do into an infinite 3704 loop if we tried to fold it. So don't in that case. */ 3705 3706 if (! reg_mentioned_p (folded_arg0, y)) 3707 y = fold_rtx (y, insn); 3708 3709 return simplify_gen_binary (code, mode, y, new_const); 3710 } 3711 break; 3712 3713 case DIV: case UDIV: 3714 /* ??? The associative optimization performed immediately above is 3715 also possible for DIV and UDIV using associate_code of MULT. 3716 However, we would need extra code to verify that the 3717 multiplication does not overflow, that is, there is no overflow 3718 in the calculation of new_const. */ 3719 break; 3720 3721 default: 3722 break; 3723 } 3724 3725 new_rtx = simplify_binary_operation (code, mode, 3726 const_arg0 ? const_arg0 : folded_arg0, 3727 const_arg1 ? const_arg1 : folded_arg1); 3728 break; 3729 3730 case RTX_OBJ: 3731 /* (lo_sum (high X) X) is simply X. */ 3732 if (code == LO_SUM && const_arg0 != 0 3733 && GET_CODE (const_arg0) == HIGH 3734 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1)) 3735 return const_arg1; 3736 break; 3737 3738 case RTX_TERNARY: 3739 case RTX_BITFIELD_OPS: 3740 new_rtx = simplify_ternary_operation (code, mode, mode_arg0, 3741 const_arg0 ? const_arg0 : folded_arg0, 3742 const_arg1 ? const_arg1 : folded_arg1, 3743 const_arg2 ? const_arg2 : XEXP (x, 2)); 3744 break; 3745 3746 default: 3747 break; 3748 } 3749 3750 return new_rtx ? new_rtx : x; 3751 } 3752 3753 /* Return a constant value currently equivalent to X. 3754 Return 0 if we don't know one. */ 3755 3756 static rtx 3757 equiv_constant (rtx x) 3758 { 3759 if (REG_P (x) 3760 && REGNO_QTY_VALID_P (REGNO (x))) 3761 { 3762 int x_q = REG_QTY (REGNO (x)); 3763 struct qty_table_elem *x_ent = &qty_table[x_q]; 3764 3765 if (x_ent->const_rtx) 3766 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx); 3767 } 3768 3769 if (x == 0 || CONSTANT_P (x)) 3770 return x; 3771 3772 if (GET_CODE (x) == SUBREG) 3773 { 3774 machine_mode mode = GET_MODE (x); 3775 machine_mode imode = GET_MODE (SUBREG_REG (x)); 3776 rtx new_rtx; 3777 3778 /* See if we previously assigned a constant value to this SUBREG. */ 3779 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0 3780 || (new_rtx = lookup_as_function (x, CONST_WIDE_INT)) != 0 3781 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0 3782 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0) 3783 return new_rtx; 3784 3785 /* If we didn't and if doing so makes sense, see if we previously 3786 assigned a constant value to the enclosing word mode SUBREG. */ 3787 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode) 3788 && GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode)) 3789 { 3790 int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode); 3791 if (byte >= 0 && (byte % UNITS_PER_WORD) == 0) 3792 { 3793 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte); 3794 new_rtx = lookup_as_function (y, CONST_INT); 3795 if (new_rtx) 3796 return gen_lowpart (mode, new_rtx); 3797 } 3798 } 3799 3800 /* Otherwise see if we already have a constant for the inner REG, 3801 and if that is enough to calculate an equivalent constant for 3802 the subreg. Note that the upper bits of paradoxical subregs 3803 are undefined, so they cannot be said to equal anything. */ 3804 if (REG_P (SUBREG_REG (x)) 3805 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (imode) 3806 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0) 3807 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x)); 3808 3809 return 0; 3810 } 3811 3812 /* If X is a MEM, see if it is a constant-pool reference, or look it up in 3813 the hash table in case its value was seen before. */ 3814 3815 if (MEM_P (x)) 3816 { 3817 struct table_elt *elt; 3818 3819 x = avoid_constant_pool_reference (x); 3820 if (CONSTANT_P (x)) 3821 return x; 3822 3823 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x)); 3824 if (elt == 0) 3825 return 0; 3826 3827 for (elt = elt->first_same_value; elt; elt = elt->next_same_value) 3828 if (elt->is_const && CONSTANT_P (elt->exp)) 3829 return elt->exp; 3830 } 3831 3832 return 0; 3833 } 3834 3835 /* Given INSN, a jump insn, TAKEN indicates if we are following the 3836 "taken" branch. 3837 3838 In certain cases, this can cause us to add an equivalence. For example, 3839 if we are following the taken case of 3840 if (i == 2) 3841 we can add the fact that `i' and '2' are now equivalent. 3842 3843 In any case, we can record that this comparison was passed. If the same 3844 comparison is seen later, we will know its value. */ 3845 3846 static void 3847 record_jump_equiv (rtx_insn *insn, bool taken) 3848 { 3849 int cond_known_true; 3850 rtx op0, op1; 3851 rtx set; 3852 machine_mode mode, mode0, mode1; 3853 int reversed_nonequality = 0; 3854 enum rtx_code code; 3855 3856 /* Ensure this is the right kind of insn. */ 3857 gcc_assert (any_condjump_p (insn)); 3858 3859 set = pc_set (insn); 3860 3861 /* See if this jump condition is known true or false. */ 3862 if (taken) 3863 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx); 3864 else 3865 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx); 3866 3867 /* Get the type of comparison being done and the operands being compared. 3868 If we had to reverse a non-equality condition, record that fact so we 3869 know that it isn't valid for floating-point. */ 3870 code = GET_CODE (XEXP (SET_SRC (set), 0)); 3871 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn); 3872 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn); 3873 3874 /* On a cc0 target the cc0-setter and cc0-user may end up in different 3875 blocks. When that happens the tracking of the cc0-setter via 3876 PREV_INSN_CC0 is spoiled. That means that fold_rtx may return 3877 NULL_RTX. In those cases, there's nothing to record. */ 3878 if (op0 == NULL_RTX || op1 == NULL_RTX) 3879 return; 3880 3881 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1); 3882 if (! cond_known_true) 3883 { 3884 code = reversed_comparison_code_parts (code, op0, op1, insn); 3885 3886 /* Don't remember if we can't find the inverse. */ 3887 if (code == UNKNOWN) 3888 return; 3889 } 3890 3891 /* The mode is the mode of the non-constant. */ 3892 mode = mode0; 3893 if (mode1 != VOIDmode) 3894 mode = mode1; 3895 3896 record_jump_cond (code, mode, op0, op1, reversed_nonequality); 3897 } 3898 3899 /* Yet another form of subreg creation. In this case, we want something in 3900 MODE, and we should assume OP has MODE iff it is naturally modeless. */ 3901 3902 static rtx 3903 record_jump_cond_subreg (machine_mode mode, rtx op) 3904 { 3905 machine_mode op_mode = GET_MODE (op); 3906 if (op_mode == mode || op_mode == VOIDmode) 3907 return op; 3908 return lowpart_subreg (mode, op, op_mode); 3909 } 3910 3911 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true. 3912 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped. 3913 Make any useful entries we can with that information. Called from 3914 above function and called recursively. */ 3915 3916 static void 3917 record_jump_cond (enum rtx_code code, machine_mode mode, rtx op0, 3918 rtx op1, int reversed_nonequality) 3919 { 3920 unsigned op0_hash, op1_hash; 3921 int op0_in_memory, op1_in_memory; 3922 struct table_elt *op0_elt, *op1_elt; 3923 3924 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG, 3925 we know that they are also equal in the smaller mode (this is also 3926 true for all smaller modes whether or not there is a SUBREG, but 3927 is not worth testing for with no SUBREG). */ 3928 3929 /* Note that GET_MODE (op0) may not equal MODE. */ 3930 if (code == EQ && paradoxical_subreg_p (op0)) 3931 { 3932 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0)); 3933 rtx tem = record_jump_cond_subreg (inner_mode, op1); 3934 if (tem) 3935 record_jump_cond (code, mode, SUBREG_REG (op0), tem, 3936 reversed_nonequality); 3937 } 3938 3939 if (code == EQ && paradoxical_subreg_p (op1)) 3940 { 3941 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1)); 3942 rtx tem = record_jump_cond_subreg (inner_mode, op0); 3943 if (tem) 3944 record_jump_cond (code, mode, SUBREG_REG (op1), tem, 3945 reversed_nonequality); 3946 } 3947 3948 /* Similarly, if this is an NE comparison, and either is a SUBREG 3949 making a smaller mode, we know the whole thing is also NE. */ 3950 3951 /* Note that GET_MODE (op0) may not equal MODE; 3952 if we test MODE instead, we can get an infinite recursion 3953 alternating between two modes each wider than MODE. */ 3954 3955 if (code == NE && GET_CODE (op0) == SUBREG 3956 && subreg_lowpart_p (op0) 3957 && (GET_MODE_SIZE (GET_MODE (op0)) 3958 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))) 3959 { 3960 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0)); 3961 rtx tem = record_jump_cond_subreg (inner_mode, op1); 3962 if (tem) 3963 record_jump_cond (code, mode, SUBREG_REG (op0), tem, 3964 reversed_nonequality); 3965 } 3966 3967 if (code == NE && GET_CODE (op1) == SUBREG 3968 && subreg_lowpart_p (op1) 3969 && (GET_MODE_SIZE (GET_MODE (op1)) 3970 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1))))) 3971 { 3972 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1)); 3973 rtx tem = record_jump_cond_subreg (inner_mode, op0); 3974 if (tem) 3975 record_jump_cond (code, mode, SUBREG_REG (op1), tem, 3976 reversed_nonequality); 3977 } 3978 3979 /* Hash both operands. */ 3980 3981 do_not_record = 0; 3982 hash_arg_in_memory = 0; 3983 op0_hash = HASH (op0, mode); 3984 op0_in_memory = hash_arg_in_memory; 3985 3986 if (do_not_record) 3987 return; 3988 3989 do_not_record = 0; 3990 hash_arg_in_memory = 0; 3991 op1_hash = HASH (op1, mode); 3992 op1_in_memory = hash_arg_in_memory; 3993 3994 if (do_not_record) 3995 return; 3996 3997 /* Look up both operands. */ 3998 op0_elt = lookup (op0, op0_hash, mode); 3999 op1_elt = lookup (op1, op1_hash, mode); 4000 4001 /* If both operands are already equivalent or if they are not in the 4002 table but are identical, do nothing. */ 4003 if ((op0_elt != 0 && op1_elt != 0 4004 && op0_elt->first_same_value == op1_elt->first_same_value) 4005 || op0 == op1 || rtx_equal_p (op0, op1)) 4006 return; 4007 4008 /* If we aren't setting two things equal all we can do is save this 4009 comparison. Similarly if this is floating-point. In the latter 4010 case, OP1 might be zero and both -0.0 and 0.0 are equal to it. 4011 If we record the equality, we might inadvertently delete code 4012 whose intent was to change -0 to +0. */ 4013 4014 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0))) 4015 { 4016 struct qty_table_elem *ent; 4017 int qty; 4018 4019 /* If we reversed a floating-point comparison, if OP0 is not a 4020 register, or if OP1 is neither a register or constant, we can't 4021 do anything. */ 4022 4023 if (!REG_P (op1)) 4024 op1 = equiv_constant (op1); 4025 4026 if ((reversed_nonequality && FLOAT_MODE_P (mode)) 4027 || !REG_P (op0) || op1 == 0) 4028 return; 4029 4030 /* Put OP0 in the hash table if it isn't already. This gives it a 4031 new quantity number. */ 4032 if (op0_elt == 0) 4033 { 4034 if (insert_regs (op0, NULL, 0)) 4035 { 4036 rehash_using_reg (op0); 4037 op0_hash = HASH (op0, mode); 4038 4039 /* If OP0 is contained in OP1, this changes its hash code 4040 as well. Faster to rehash than to check, except 4041 for the simple case of a constant. */ 4042 if (! CONSTANT_P (op1)) 4043 op1_hash = HASH (op1,mode); 4044 } 4045 4046 op0_elt = insert (op0, NULL, op0_hash, mode); 4047 op0_elt->in_memory = op0_in_memory; 4048 } 4049 4050 qty = REG_QTY (REGNO (op0)); 4051 ent = &qty_table[qty]; 4052 4053 ent->comparison_code = code; 4054 if (REG_P (op1)) 4055 { 4056 /* Look it up again--in case op0 and op1 are the same. */ 4057 op1_elt = lookup (op1, op1_hash, mode); 4058 4059 /* Put OP1 in the hash table so it gets a new quantity number. */ 4060 if (op1_elt == 0) 4061 { 4062 if (insert_regs (op1, NULL, 0)) 4063 { 4064 rehash_using_reg (op1); 4065 op1_hash = HASH (op1, mode); 4066 } 4067 4068 op1_elt = insert (op1, NULL, op1_hash, mode); 4069 op1_elt->in_memory = op1_in_memory; 4070 } 4071 4072 ent->comparison_const = NULL_RTX; 4073 ent->comparison_qty = REG_QTY (REGNO (op1)); 4074 } 4075 else 4076 { 4077 ent->comparison_const = op1; 4078 ent->comparison_qty = -1; 4079 } 4080 4081 return; 4082 } 4083 4084 /* If either side is still missing an equivalence, make it now, 4085 then merge the equivalences. */ 4086 4087 if (op0_elt == 0) 4088 { 4089 if (insert_regs (op0, NULL, 0)) 4090 { 4091 rehash_using_reg (op0); 4092 op0_hash = HASH (op0, mode); 4093 } 4094 4095 op0_elt = insert (op0, NULL, op0_hash, mode); 4096 op0_elt->in_memory = op0_in_memory; 4097 } 4098 4099 if (op1_elt == 0) 4100 { 4101 if (insert_regs (op1, NULL, 0)) 4102 { 4103 rehash_using_reg (op1); 4104 op1_hash = HASH (op1, mode); 4105 } 4106 4107 op1_elt = insert (op1, NULL, op1_hash, mode); 4108 op1_elt->in_memory = op1_in_memory; 4109 } 4110 4111 merge_equiv_classes (op0_elt, op1_elt); 4112 } 4113 4114 /* CSE processing for one instruction. 4115 4116 Most "true" common subexpressions are mostly optimized away in GIMPLE, 4117 but the few that "leak through" are cleaned up by cse_insn, and complex 4118 addressing modes are often formed here. 4119 4120 The main function is cse_insn, and between here and that function 4121 a couple of helper functions is defined to keep the size of cse_insn 4122 within reasonable proportions. 4123 4124 Data is shared between the main and helper functions via STRUCT SET, 4125 that contains all data related for every set in the instruction that 4126 is being processed. 4127 4128 Note that cse_main processes all sets in the instruction. Most 4129 passes in GCC only process simple SET insns or single_set insns, but 4130 CSE processes insns with multiple sets as well. */ 4131 4132 /* Data on one SET contained in the instruction. */ 4133 4134 struct set 4135 { 4136 /* The SET rtx itself. */ 4137 rtx rtl; 4138 /* The SET_SRC of the rtx (the original value, if it is changing). */ 4139 rtx src; 4140 /* The hash-table element for the SET_SRC of the SET. */ 4141 struct table_elt *src_elt; 4142 /* Hash value for the SET_SRC. */ 4143 unsigned src_hash; 4144 /* Hash value for the SET_DEST. */ 4145 unsigned dest_hash; 4146 /* The SET_DEST, with SUBREG, etc., stripped. */ 4147 rtx inner_dest; 4148 /* Nonzero if the SET_SRC is in memory. */ 4149 char src_in_memory; 4150 /* Nonzero if the SET_SRC contains something 4151 whose value cannot be predicted and understood. */ 4152 char src_volatile; 4153 /* Original machine mode, in case it becomes a CONST_INT. 4154 The size of this field should match the size of the mode 4155 field of struct rtx_def (see rtl.h). */ 4156 ENUM_BITFIELD(machine_mode) mode : 8; 4157 /* Hash value of constant equivalent for SET_SRC. */ 4158 unsigned src_const_hash; 4159 /* A constant equivalent for SET_SRC, if any. */ 4160 rtx src_const; 4161 /* Table entry for constant equivalent for SET_SRC, if any. */ 4162 struct table_elt *src_const_elt; 4163 /* Table entry for the destination address. */ 4164 struct table_elt *dest_addr_elt; 4165 }; 4166 4167 /* Special handling for (set REG0 REG1) where REG0 is the 4168 "cheapest", cheaper than REG1. After cse, REG1 will probably not 4169 be used in the sequel, so (if easily done) change this insn to 4170 (set REG1 REG0) and replace REG1 with REG0 in the previous insn 4171 that computed their value. Then REG1 will become a dead store 4172 and won't cloud the situation for later optimizations. 4173 4174 Do not make this change if REG1 is a hard register, because it will 4175 then be used in the sequel and we may be changing a two-operand insn 4176 into a three-operand insn. 4177 4178 This is the last transformation that cse_insn will try to do. */ 4179 4180 static void 4181 try_back_substitute_reg (rtx set, rtx_insn *insn) 4182 { 4183 rtx dest = SET_DEST (set); 4184 rtx src = SET_SRC (set); 4185 4186 if (REG_P (dest) 4187 && REG_P (src) && ! HARD_REGISTER_P (src) 4188 && REGNO_QTY_VALID_P (REGNO (src))) 4189 { 4190 int src_q = REG_QTY (REGNO (src)); 4191 struct qty_table_elem *src_ent = &qty_table[src_q]; 4192 4193 if (src_ent->first_reg == REGNO (dest)) 4194 { 4195 /* Scan for the previous nonnote insn, but stop at a basic 4196 block boundary. */ 4197 rtx_insn *prev = insn; 4198 rtx_insn *bb_head = BB_HEAD (BLOCK_FOR_INSN (insn)); 4199 do 4200 { 4201 prev = PREV_INSN (prev); 4202 } 4203 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev))); 4204 4205 /* Do not swap the registers around if the previous instruction 4206 attaches a REG_EQUIV note to REG1. 4207 4208 ??? It's not entirely clear whether we can transfer a REG_EQUIV 4209 from the pseudo that originally shadowed an incoming argument 4210 to another register. Some uses of REG_EQUIV might rely on it 4211 being attached to REG1 rather than REG2. 4212 4213 This section previously turned the REG_EQUIV into a REG_EQUAL 4214 note. We cannot do that because REG_EQUIV may provide an 4215 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */ 4216 if (NONJUMP_INSN_P (prev) 4217 && GET_CODE (PATTERN (prev)) == SET 4218 && SET_DEST (PATTERN (prev)) == src 4219 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX)) 4220 { 4221 rtx note; 4222 4223 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1); 4224 validate_change (insn, &SET_DEST (set), src, 1); 4225 validate_change (insn, &SET_SRC (set), dest, 1); 4226 apply_change_group (); 4227 4228 /* If INSN has a REG_EQUAL note, and this note mentions 4229 REG0, then we must delete it, because the value in 4230 REG0 has changed. If the note's value is REG1, we must 4231 also delete it because that is now this insn's dest. */ 4232 note = find_reg_note (insn, REG_EQUAL, NULL_RTX); 4233 if (note != 0 4234 && (reg_mentioned_p (dest, XEXP (note, 0)) 4235 || rtx_equal_p (src, XEXP (note, 0)))) 4236 remove_note (insn, note); 4237 } 4238 } 4239 } 4240 } 4241 4242 /* Record all the SETs in this instruction into SETS_PTR, 4243 and return the number of recorded sets. */ 4244 static int 4245 find_sets_in_insn (rtx_insn *insn, struct set **psets) 4246 { 4247 struct set *sets = *psets; 4248 int n_sets = 0; 4249 rtx x = PATTERN (insn); 4250 4251 if (GET_CODE (x) == SET) 4252 { 4253 /* Ignore SETs that are unconditional jumps. 4254 They never need cse processing, so this does not hurt. 4255 The reason is not efficiency but rather 4256 so that we can test at the end for instructions 4257 that have been simplified to unconditional jumps 4258 and not be misled by unchanged instructions 4259 that were unconditional jumps to begin with. */ 4260 if (SET_DEST (x) == pc_rtx 4261 && GET_CODE (SET_SRC (x)) == LABEL_REF) 4262 ; 4263 /* Don't count call-insns, (set (reg 0) (call ...)), as a set. 4264 The hard function value register is used only once, to copy to 4265 someplace else, so it isn't worth cse'ing. */ 4266 else if (GET_CODE (SET_SRC (x)) == CALL) 4267 ; 4268 else 4269 sets[n_sets++].rtl = x; 4270 } 4271 else if (GET_CODE (x) == PARALLEL) 4272 { 4273 int i, lim = XVECLEN (x, 0); 4274 4275 /* Go over the expressions of the PARALLEL in forward order, to 4276 put them in the same order in the SETS array. */ 4277 for (i = 0; i < lim; i++) 4278 { 4279 rtx y = XVECEXP (x, 0, i); 4280 if (GET_CODE (y) == SET) 4281 { 4282 /* As above, we ignore unconditional jumps and call-insns and 4283 ignore the result of apply_change_group. */ 4284 if (SET_DEST (y) == pc_rtx 4285 && GET_CODE (SET_SRC (y)) == LABEL_REF) 4286 ; 4287 else if (GET_CODE (SET_SRC (y)) == CALL) 4288 ; 4289 else 4290 sets[n_sets++].rtl = y; 4291 } 4292 } 4293 } 4294 4295 return n_sets; 4296 } 4297 4298 /* Subroutine of canonicalize_insn. X is an ASM_OPERANDS in INSN. */ 4299 4300 static void 4301 canon_asm_operands (rtx x, rtx_insn *insn) 4302 { 4303 for (int i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--) 4304 { 4305 rtx input = ASM_OPERANDS_INPUT (x, i); 4306 if (!(REG_P (input) && HARD_REGISTER_P (input))) 4307 { 4308 input = canon_reg (input, insn); 4309 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1); 4310 } 4311 } 4312 } 4313 4314 /* Where possible, substitute every register reference in the N_SETS 4315 number of SETS in INSN with the canonical register. 4316 4317 Register canonicalization propagatest the earliest register (i.e. 4318 one that is set before INSN) with the same value. This is a very 4319 useful, simple form of CSE, to clean up warts from expanding GIMPLE 4320 to RTL. For instance, a CONST for an address is usually expanded 4321 multiple times to loads into different registers, thus creating many 4322 subexpressions of the form: 4323 4324 (set (reg1) (some_const)) 4325 (set (mem (... reg1 ...) (thing))) 4326 (set (reg2) (some_const)) 4327 (set (mem (... reg2 ...) (thing))) 4328 4329 After canonicalizing, the code takes the following form: 4330 4331 (set (reg1) (some_const)) 4332 (set (mem (... reg1 ...) (thing))) 4333 (set (reg2) (some_const)) 4334 (set (mem (... reg1 ...) (thing))) 4335 4336 The set to reg2 is now trivially dead, and the memory reference (or 4337 address, or whatever) may be a candidate for further CSEing. 4338 4339 In this function, the result of apply_change_group can be ignored; 4340 see canon_reg. */ 4341 4342 static void 4343 canonicalize_insn (rtx_insn *insn, struct set **psets, int n_sets) 4344 { 4345 struct set *sets = *psets; 4346 rtx tem; 4347 rtx x = PATTERN (insn); 4348 int i; 4349 4350 if (CALL_P (insn)) 4351 { 4352 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1)) 4353 if (GET_CODE (XEXP (tem, 0)) != SET) 4354 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn); 4355 } 4356 4357 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL) 4358 { 4359 canon_reg (SET_SRC (x), insn); 4360 apply_change_group (); 4361 fold_rtx (SET_SRC (x), insn); 4362 } 4363 else if (GET_CODE (x) == CLOBBER) 4364 { 4365 /* If we clobber memory, canon the address. 4366 This does nothing when a register is clobbered 4367 because we have already invalidated the reg. */ 4368 if (MEM_P (XEXP (x, 0))) 4369 canon_reg (XEXP (x, 0), insn); 4370 } 4371 else if (GET_CODE (x) == USE 4372 && ! (REG_P (XEXP (x, 0)) 4373 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)) 4374 /* Canonicalize a USE of a pseudo register or memory location. */ 4375 canon_reg (x, insn); 4376 else if (GET_CODE (x) == ASM_OPERANDS) 4377 canon_asm_operands (x, insn); 4378 else if (GET_CODE (x) == CALL) 4379 { 4380 canon_reg (x, insn); 4381 apply_change_group (); 4382 fold_rtx (x, insn); 4383 } 4384 else if (DEBUG_INSN_P (insn)) 4385 canon_reg (PATTERN (insn), insn); 4386 else if (GET_CODE (x) == PARALLEL) 4387 { 4388 for (i = XVECLEN (x, 0) - 1; i >= 0; i--) 4389 { 4390 rtx y = XVECEXP (x, 0, i); 4391 if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL) 4392 { 4393 canon_reg (SET_SRC (y), insn); 4394 apply_change_group (); 4395 fold_rtx (SET_SRC (y), insn); 4396 } 4397 else if (GET_CODE (y) == CLOBBER) 4398 { 4399 if (MEM_P (XEXP (y, 0))) 4400 canon_reg (XEXP (y, 0), insn); 4401 } 4402 else if (GET_CODE (y) == USE 4403 && ! (REG_P (XEXP (y, 0)) 4404 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER)) 4405 canon_reg (y, insn); 4406 else if (GET_CODE (y) == ASM_OPERANDS) 4407 canon_asm_operands (y, insn); 4408 else if (GET_CODE (y) == CALL) 4409 { 4410 canon_reg (y, insn); 4411 apply_change_group (); 4412 fold_rtx (y, insn); 4413 } 4414 } 4415 } 4416 4417 if (n_sets == 1 && REG_NOTES (insn) != 0 4418 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0) 4419 { 4420 /* We potentially will process this insn many times. Therefore, 4421 drop the REG_EQUAL note if it is equal to the SET_SRC of the 4422 unique set in INSN. 4423 4424 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART, 4425 because cse_insn handles those specially. */ 4426 if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART 4427 && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))) 4428 remove_note (insn, tem); 4429 else 4430 { 4431 canon_reg (XEXP (tem, 0), insn); 4432 apply_change_group (); 4433 XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn); 4434 df_notes_rescan (insn); 4435 } 4436 } 4437 4438 /* Canonicalize sources and addresses of destinations. 4439 We do this in a separate pass to avoid problems when a MATCH_DUP is 4440 present in the insn pattern. In that case, we want to ensure that 4441 we don't break the duplicate nature of the pattern. So we will replace 4442 both operands at the same time. Otherwise, we would fail to find an 4443 equivalent substitution in the loop calling validate_change below. 4444 4445 We used to suppress canonicalization of DEST if it appears in SRC, 4446 but we don't do this any more. */ 4447 4448 for (i = 0; i < n_sets; i++) 4449 { 4450 rtx dest = SET_DEST (sets[i].rtl); 4451 rtx src = SET_SRC (sets[i].rtl); 4452 rtx new_rtx = canon_reg (src, insn); 4453 4454 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1); 4455 4456 if (GET_CODE (dest) == ZERO_EXTRACT) 4457 { 4458 validate_change (insn, &XEXP (dest, 1), 4459 canon_reg (XEXP (dest, 1), insn), 1); 4460 validate_change (insn, &XEXP (dest, 2), 4461 canon_reg (XEXP (dest, 2), insn), 1); 4462 } 4463 4464 while (GET_CODE (dest) == SUBREG 4465 || GET_CODE (dest) == ZERO_EXTRACT 4466 || GET_CODE (dest) == STRICT_LOW_PART) 4467 dest = XEXP (dest, 0); 4468 4469 if (MEM_P (dest)) 4470 canon_reg (dest, insn); 4471 } 4472 4473 /* Now that we have done all the replacements, we can apply the change 4474 group and see if they all work. Note that this will cause some 4475 canonicalizations that would have worked individually not to be applied 4476 because some other canonicalization didn't work, but this should not 4477 occur often. 4478 4479 The result of apply_change_group can be ignored; see canon_reg. */ 4480 4481 apply_change_group (); 4482 } 4483 4484 /* Main function of CSE. 4485 First simplify sources and addresses of all assignments 4486 in the instruction, using previously-computed equivalents values. 4487 Then install the new sources and destinations in the table 4488 of available values. */ 4489 4490 static void 4491 cse_insn (rtx_insn *insn) 4492 { 4493 rtx x = PATTERN (insn); 4494 int i; 4495 rtx tem; 4496 int n_sets = 0; 4497 4498 rtx src_eqv = 0; 4499 struct table_elt *src_eqv_elt = 0; 4500 int src_eqv_volatile = 0; 4501 int src_eqv_in_memory = 0; 4502 unsigned src_eqv_hash = 0; 4503 4504 struct set *sets = (struct set *) 0; 4505 4506 if (GET_CODE (x) == SET) 4507 sets = XALLOCA (struct set); 4508 else if (GET_CODE (x) == PARALLEL) 4509 sets = XALLOCAVEC (struct set, XVECLEN (x, 0)); 4510 4511 this_insn = insn; 4512 /* Records what this insn does to set CC0. */ 4513 this_insn_cc0 = 0; 4514 this_insn_cc0_mode = VOIDmode; 4515 4516 /* Find all regs explicitly clobbered in this insn, 4517 to ensure they are not replaced with any other regs 4518 elsewhere in this insn. */ 4519 invalidate_from_sets_and_clobbers (insn); 4520 4521 /* Record all the SETs in this instruction. */ 4522 n_sets = find_sets_in_insn (insn, &sets); 4523 4524 /* Substitute the canonical register where possible. */ 4525 canonicalize_insn (insn, &sets, n_sets); 4526 4527 /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV, 4528 if different, or if the DEST is a STRICT_LOW_PART/ZERO_EXTRACT. The 4529 latter condition is necessary because SRC_EQV is handled specially for 4530 this case, and if it isn't set, then there will be no equivalence 4531 for the destination. */ 4532 if (n_sets == 1 && REG_NOTES (insn) != 0 4533 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0) 4534 { 4535 4536 if (GET_CODE (SET_DEST (sets[0].rtl)) != ZERO_EXTRACT 4537 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)) 4538 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART)) 4539 src_eqv = copy_rtx (XEXP (tem, 0)); 4540 /* If DEST is of the form ZERO_EXTACT, as in: 4541 (set (zero_extract:SI (reg:SI 119) 4542 (const_int 16 [0x10]) 4543 (const_int 16 [0x10])) 4544 (const_int 51154 [0xc7d2])) 4545 REG_EQUAL note will specify the value of register (reg:SI 119) at this 4546 point. Note that this is different from SRC_EQV. We can however 4547 calculate SRC_EQV with the position and width of ZERO_EXTRACT. */ 4548 else if (GET_CODE (SET_DEST (sets[0].rtl)) == ZERO_EXTRACT 4549 && CONST_INT_P (XEXP (tem, 0)) 4550 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 1)) 4551 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 2))) 4552 { 4553 rtx dest_reg = XEXP (SET_DEST (sets[0].rtl), 0); 4554 rtx width = XEXP (SET_DEST (sets[0].rtl), 1); 4555 rtx pos = XEXP (SET_DEST (sets[0].rtl), 2); 4556 HOST_WIDE_INT val = INTVAL (XEXP (tem, 0)); 4557 HOST_WIDE_INT mask; 4558 unsigned int shift; 4559 if (BITS_BIG_ENDIAN) 4560 shift = GET_MODE_PRECISION (GET_MODE (dest_reg)) 4561 - INTVAL (pos) - INTVAL (width); 4562 else 4563 shift = INTVAL (pos); 4564 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT) 4565 mask = HOST_WIDE_INT_M1; 4566 else 4567 mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1; 4568 val = (val >> shift) & mask; 4569 src_eqv = GEN_INT (val); 4570 } 4571 } 4572 4573 /* Set sets[i].src_elt to the class each source belongs to. 4574 Detect assignments from or to volatile things 4575 and set set[i] to zero so they will be ignored 4576 in the rest of this function. 4577 4578 Nothing in this loop changes the hash table or the register chains. */ 4579 4580 for (i = 0; i < n_sets; i++) 4581 { 4582 bool repeat = false; 4583 bool mem_noop_insn = false; 4584 rtx src, dest; 4585 rtx src_folded; 4586 struct table_elt *elt = 0, *p; 4587 machine_mode mode; 4588 rtx src_eqv_here; 4589 rtx src_const = 0; 4590 rtx src_related = 0; 4591 bool src_related_is_const_anchor = false; 4592 struct table_elt *src_const_elt = 0; 4593 int src_cost = MAX_COST; 4594 int src_eqv_cost = MAX_COST; 4595 int src_folded_cost = MAX_COST; 4596 int src_related_cost = MAX_COST; 4597 int src_elt_cost = MAX_COST; 4598 int src_regcost = MAX_COST; 4599 int src_eqv_regcost = MAX_COST; 4600 int src_folded_regcost = MAX_COST; 4601 int src_related_regcost = MAX_COST; 4602 int src_elt_regcost = MAX_COST; 4603 /* Set nonzero if we need to call force_const_mem on with the 4604 contents of src_folded before using it. */ 4605 int src_folded_force_flag = 0; 4606 4607 dest = SET_DEST (sets[i].rtl); 4608 src = SET_SRC (sets[i].rtl); 4609 4610 /* If SRC is a constant that has no machine mode, 4611 hash it with the destination's machine mode. 4612 This way we can keep different modes separate. */ 4613 4614 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src); 4615 sets[i].mode = mode; 4616 4617 if (src_eqv) 4618 { 4619 machine_mode eqvmode = mode; 4620 if (GET_CODE (dest) == STRICT_LOW_PART) 4621 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0))); 4622 do_not_record = 0; 4623 hash_arg_in_memory = 0; 4624 src_eqv_hash = HASH (src_eqv, eqvmode); 4625 4626 /* Find the equivalence class for the equivalent expression. */ 4627 4628 if (!do_not_record) 4629 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode); 4630 4631 src_eqv_volatile = do_not_record; 4632 src_eqv_in_memory = hash_arg_in_memory; 4633 } 4634 4635 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the 4636 value of the INNER register, not the destination. So it is not 4637 a valid substitution for the source. But save it for later. */ 4638 if (GET_CODE (dest) == STRICT_LOW_PART) 4639 src_eqv_here = 0; 4640 else 4641 src_eqv_here = src_eqv; 4642 4643 /* Simplify and foldable subexpressions in SRC. Then get the fully- 4644 simplified result, which may not necessarily be valid. */ 4645 src_folded = fold_rtx (src, NULL); 4646 4647 #if 0 4648 /* ??? This caused bad code to be generated for the m68k port with -O2. 4649 Suppose src is (CONST_INT -1), and that after truncation src_folded 4650 is (CONST_INT 3). Suppose src_folded is then used for src_const. 4651 At the end we will add src and src_const to the same equivalence 4652 class. We now have 3 and -1 on the same equivalence class. This 4653 causes later instructions to be mis-optimized. */ 4654 /* If storing a constant in a bitfield, pre-truncate the constant 4655 so we will be able to record it later. */ 4656 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT) 4657 { 4658 rtx width = XEXP (SET_DEST (sets[i].rtl), 1); 4659 4660 if (CONST_INT_P (src) 4661 && CONST_INT_P (width) 4662 && INTVAL (width) < HOST_BITS_PER_WIDE_INT 4663 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width)))) 4664 src_folded 4665 = GEN_INT (INTVAL (src) & ((HOST_WIDE_INT_1 4666 << INTVAL (width)) - 1)); 4667 } 4668 #endif 4669 4670 /* Compute SRC's hash code, and also notice if it 4671 should not be recorded at all. In that case, 4672 prevent any further processing of this assignment. */ 4673 do_not_record = 0; 4674 hash_arg_in_memory = 0; 4675 4676 sets[i].src = src; 4677 sets[i].src_hash = HASH (src, mode); 4678 sets[i].src_volatile = do_not_record; 4679 sets[i].src_in_memory = hash_arg_in_memory; 4680 4681 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is 4682 a pseudo, do not record SRC. Using SRC as a replacement for 4683 anything else will be incorrect in that situation. Note that 4684 this usually occurs only for stack slots, in which case all the 4685 RTL would be referring to SRC, so we don't lose any optimization 4686 opportunities by not having SRC in the hash table. */ 4687 4688 if (MEM_P (src) 4689 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0 4690 && REG_P (dest) 4691 && REGNO (dest) >= FIRST_PSEUDO_REGISTER) 4692 sets[i].src_volatile = 1; 4693 4694 else if (GET_CODE (src) == ASM_OPERANDS 4695 && GET_CODE (x) == PARALLEL) 4696 { 4697 /* Do not record result of a non-volatile inline asm with 4698 more than one result. */ 4699 if (n_sets > 1) 4700 sets[i].src_volatile = 1; 4701 4702 int j, lim = XVECLEN (x, 0); 4703 for (j = 0; j < lim; j++) 4704 { 4705 rtx y = XVECEXP (x, 0, j); 4706 /* And do not record result of a non-volatile inline asm 4707 with "memory" clobber. */ 4708 if (GET_CODE (y) == CLOBBER && MEM_P (XEXP (y, 0))) 4709 { 4710 sets[i].src_volatile = 1; 4711 break; 4712 } 4713 } 4714 } 4715 4716 #if 0 4717 /* It is no longer clear why we used to do this, but it doesn't 4718 appear to still be needed. So let's try without it since this 4719 code hurts cse'ing widened ops. */ 4720 /* If source is a paradoxical subreg (such as QI treated as an SI), 4721 treat it as volatile. It may do the work of an SI in one context 4722 where the extra bits are not being used, but cannot replace an SI 4723 in general. */ 4724 if (paradoxical_subreg_p (src)) 4725 sets[i].src_volatile = 1; 4726 #endif 4727 4728 /* Locate all possible equivalent forms for SRC. Try to replace 4729 SRC in the insn with each cheaper equivalent. 4730 4731 We have the following types of equivalents: SRC itself, a folded 4732 version, a value given in a REG_EQUAL note, or a value related 4733 to a constant. 4734 4735 Each of these equivalents may be part of an additional class 4736 of equivalents (if more than one is in the table, they must be in 4737 the same class; we check for this). 4738 4739 If the source is volatile, we don't do any table lookups. 4740 4741 We note any constant equivalent for possible later use in a 4742 REG_NOTE. */ 4743 4744 if (!sets[i].src_volatile) 4745 elt = lookup (src, sets[i].src_hash, mode); 4746 4747 sets[i].src_elt = elt; 4748 4749 if (elt && src_eqv_here && src_eqv_elt) 4750 { 4751 if (elt->first_same_value != src_eqv_elt->first_same_value) 4752 { 4753 /* The REG_EQUAL is indicating that two formerly distinct 4754 classes are now equivalent. So merge them. */ 4755 merge_equiv_classes (elt, src_eqv_elt); 4756 src_eqv_hash = HASH (src_eqv, elt->mode); 4757 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode); 4758 } 4759 4760 src_eqv_here = 0; 4761 } 4762 4763 else if (src_eqv_elt) 4764 elt = src_eqv_elt; 4765 4766 /* Try to find a constant somewhere and record it in `src_const'. 4767 Record its table element, if any, in `src_const_elt'. Look in 4768 any known equivalences first. (If the constant is not in the 4769 table, also set `sets[i].src_const_hash'). */ 4770 if (elt) 4771 for (p = elt->first_same_value; p; p = p->next_same_value) 4772 if (p->is_const) 4773 { 4774 src_const = p->exp; 4775 src_const_elt = elt; 4776 break; 4777 } 4778 4779 if (src_const == 0 4780 && (CONSTANT_P (src_folded) 4781 /* Consider (minus (label_ref L1) (label_ref L2)) as 4782 "constant" here so we will record it. This allows us 4783 to fold switch statements when an ADDR_DIFF_VEC is used. */ 4784 || (GET_CODE (src_folded) == MINUS 4785 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF 4786 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF))) 4787 src_const = src_folded, src_const_elt = elt; 4788 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here)) 4789 src_const = src_eqv_here, src_const_elt = src_eqv_elt; 4790 4791 /* If we don't know if the constant is in the table, get its 4792 hash code and look it up. */ 4793 if (src_const && src_const_elt == 0) 4794 { 4795 sets[i].src_const_hash = HASH (src_const, mode); 4796 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode); 4797 } 4798 4799 sets[i].src_const = src_const; 4800 sets[i].src_const_elt = src_const_elt; 4801 4802 /* If the constant and our source are both in the table, mark them as 4803 equivalent. Otherwise, if a constant is in the table but the source 4804 isn't, set ELT to it. */ 4805 if (src_const_elt && elt 4806 && src_const_elt->first_same_value != elt->first_same_value) 4807 merge_equiv_classes (elt, src_const_elt); 4808 else if (src_const_elt && elt == 0) 4809 elt = src_const_elt; 4810 4811 /* See if there is a register linearly related to a constant 4812 equivalent of SRC. */ 4813 if (src_const 4814 && (GET_CODE (src_const) == CONST 4815 || (src_const_elt && src_const_elt->related_value != 0))) 4816 { 4817 src_related = use_related_value (src_const, src_const_elt); 4818 if (src_related) 4819 { 4820 struct table_elt *src_related_elt 4821 = lookup (src_related, HASH (src_related, mode), mode); 4822 if (src_related_elt && elt) 4823 { 4824 if (elt->first_same_value 4825 != src_related_elt->first_same_value) 4826 /* This can occur when we previously saw a CONST 4827 involving a SYMBOL_REF and then see the SYMBOL_REF 4828 twice. Merge the involved classes. */ 4829 merge_equiv_classes (elt, src_related_elt); 4830 4831 src_related = 0; 4832 src_related_elt = 0; 4833 } 4834 else if (src_related_elt && elt == 0) 4835 elt = src_related_elt; 4836 } 4837 } 4838 4839 /* See if we have a CONST_INT that is already in a register in a 4840 wider mode. */ 4841 4842 if (src_const && src_related == 0 && CONST_INT_P (src_const) 4843 && GET_MODE_CLASS (mode) == MODE_INT 4844 && GET_MODE_PRECISION (mode) < BITS_PER_WORD) 4845 { 4846 machine_mode wider_mode; 4847 4848 for (wider_mode = GET_MODE_WIDER_MODE (mode); 4849 wider_mode != VOIDmode 4850 && GET_MODE_PRECISION (wider_mode) <= BITS_PER_WORD 4851 && src_related == 0; 4852 wider_mode = GET_MODE_WIDER_MODE (wider_mode)) 4853 { 4854 struct table_elt *const_elt 4855 = lookup (src_const, HASH (src_const, wider_mode), wider_mode); 4856 4857 if (const_elt == 0) 4858 continue; 4859 4860 for (const_elt = const_elt->first_same_value; 4861 const_elt; const_elt = const_elt->next_same_value) 4862 if (REG_P (const_elt->exp)) 4863 { 4864 src_related = gen_lowpart (mode, const_elt->exp); 4865 break; 4866 } 4867 } 4868 } 4869 4870 /* Another possibility is that we have an AND with a constant in 4871 a mode narrower than a word. If so, it might have been generated 4872 as part of an "if" which would narrow the AND. If we already 4873 have done the AND in a wider mode, we can use a SUBREG of that 4874 value. */ 4875 4876 if (flag_expensive_optimizations && ! src_related 4877 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1)) 4878 && GET_MODE_SIZE (mode) < UNITS_PER_WORD) 4879 { 4880 machine_mode tmode; 4881 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1)); 4882 4883 for (tmode = GET_MODE_WIDER_MODE (mode); 4884 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD; 4885 tmode = GET_MODE_WIDER_MODE (tmode)) 4886 { 4887 rtx inner = gen_lowpart (tmode, XEXP (src, 0)); 4888 struct table_elt *larger_elt; 4889 4890 if (inner) 4891 { 4892 PUT_MODE (new_and, tmode); 4893 XEXP (new_and, 0) = inner; 4894 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode); 4895 if (larger_elt == 0) 4896 continue; 4897 4898 for (larger_elt = larger_elt->first_same_value; 4899 larger_elt; larger_elt = larger_elt->next_same_value) 4900 if (REG_P (larger_elt->exp)) 4901 { 4902 src_related 4903 = gen_lowpart (mode, larger_elt->exp); 4904 break; 4905 } 4906 4907 if (src_related) 4908 break; 4909 } 4910 } 4911 } 4912 4913 /* See if a MEM has already been loaded with a widening operation; 4914 if it has, we can use a subreg of that. Many CISC machines 4915 also have such operations, but this is only likely to be 4916 beneficial on these machines. */ 4917 4918 rtx_code extend_op; 4919 if (flag_expensive_optimizations && src_related == 0 4920 && MEM_P (src) && ! do_not_record 4921 && (extend_op = load_extend_op (mode)) != UNKNOWN) 4922 { 4923 struct rtx_def memory_extend_buf; 4924 rtx memory_extend_rtx = &memory_extend_buf; 4925 machine_mode tmode; 4926 4927 /* Set what we are trying to extend and the operation it might 4928 have been extended with. */ 4929 memset (memory_extend_rtx, 0, sizeof (*memory_extend_rtx)); 4930 PUT_CODE (memory_extend_rtx, extend_op); 4931 XEXP (memory_extend_rtx, 0) = src; 4932 4933 for (tmode = GET_MODE_WIDER_MODE (mode); 4934 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD; 4935 tmode = GET_MODE_WIDER_MODE (tmode)) 4936 { 4937 struct table_elt *larger_elt; 4938 4939 PUT_MODE (memory_extend_rtx, tmode); 4940 larger_elt = lookup (memory_extend_rtx, 4941 HASH (memory_extend_rtx, tmode), tmode); 4942 if (larger_elt == 0) 4943 continue; 4944 4945 for (larger_elt = larger_elt->first_same_value; 4946 larger_elt; larger_elt = larger_elt->next_same_value) 4947 if (REG_P (larger_elt->exp)) 4948 { 4949 src_related = gen_lowpart (mode, larger_elt->exp); 4950 break; 4951 } 4952 4953 if (src_related) 4954 break; 4955 } 4956 } 4957 4958 /* Try to express the constant using a register+offset expression 4959 derived from a constant anchor. */ 4960 4961 if (targetm.const_anchor 4962 && !src_related 4963 && src_const 4964 && GET_CODE (src_const) == CONST_INT) 4965 { 4966 src_related = try_const_anchors (src_const, mode); 4967 src_related_is_const_anchor = src_related != NULL_RTX; 4968 } 4969 4970 4971 if (src == src_folded) 4972 src_folded = 0; 4973 4974 /* At this point, ELT, if nonzero, points to a class of expressions 4975 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED, 4976 and SRC_RELATED, if nonzero, each contain additional equivalent 4977 expressions. Prune these latter expressions by deleting expressions 4978 already in the equivalence class. 4979 4980 Check for an equivalent identical to the destination. If found, 4981 this is the preferred equivalent since it will likely lead to 4982 elimination of the insn. Indicate this by placing it in 4983 `src_related'. */ 4984 4985 if (elt) 4986 elt = elt->first_same_value; 4987 for (p = elt; p; p = p->next_same_value) 4988 { 4989 enum rtx_code code = GET_CODE (p->exp); 4990 4991 /* If the expression is not valid, ignore it. Then we do not 4992 have to check for validity below. In most cases, we can use 4993 `rtx_equal_p', since canonicalization has already been done. */ 4994 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false)) 4995 continue; 4996 4997 /* Also skip paradoxical subregs, unless that's what we're 4998 looking for. */ 4999 if (paradoxical_subreg_p (p->exp) 5000 && ! (src != 0 5001 && GET_CODE (src) == SUBREG 5002 && GET_MODE (src) == GET_MODE (p->exp) 5003 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))) 5004 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp)))))) 5005 continue; 5006 5007 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp)) 5008 src = 0; 5009 else if (src_folded && GET_CODE (src_folded) == code 5010 && rtx_equal_p (src_folded, p->exp)) 5011 src_folded = 0; 5012 else if (src_eqv_here && GET_CODE (src_eqv_here) == code 5013 && rtx_equal_p (src_eqv_here, p->exp)) 5014 src_eqv_here = 0; 5015 else if (src_related && GET_CODE (src_related) == code 5016 && rtx_equal_p (src_related, p->exp)) 5017 src_related = 0; 5018 5019 /* This is the same as the destination of the insns, we want 5020 to prefer it. Copy it to src_related. The code below will 5021 then give it a negative cost. */ 5022 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest)) 5023 src_related = dest; 5024 } 5025 5026 /* Find the cheapest valid equivalent, trying all the available 5027 possibilities. Prefer items not in the hash table to ones 5028 that are when they are equal cost. Note that we can never 5029 worsen an insn as the current contents will also succeed. 5030 If we find an equivalent identical to the destination, use it as best, 5031 since this insn will probably be eliminated in that case. */ 5032 if (src) 5033 { 5034 if (rtx_equal_p (src, dest)) 5035 src_cost = src_regcost = -1; 5036 else 5037 { 5038 src_cost = COST (src, mode); 5039 src_regcost = approx_reg_cost (src); 5040 } 5041 } 5042 5043 if (src_eqv_here) 5044 { 5045 if (rtx_equal_p (src_eqv_here, dest)) 5046 src_eqv_cost = src_eqv_regcost = -1; 5047 else 5048 { 5049 src_eqv_cost = COST (src_eqv_here, mode); 5050 src_eqv_regcost = approx_reg_cost (src_eqv_here); 5051 } 5052 } 5053 5054 if (src_folded) 5055 { 5056 if (rtx_equal_p (src_folded, dest)) 5057 src_folded_cost = src_folded_regcost = -1; 5058 else 5059 { 5060 src_folded_cost = COST (src_folded, mode); 5061 src_folded_regcost = approx_reg_cost (src_folded); 5062 } 5063 } 5064 5065 if (src_related) 5066 { 5067 if (rtx_equal_p (src_related, dest)) 5068 src_related_cost = src_related_regcost = -1; 5069 else 5070 { 5071 src_related_cost = COST (src_related, mode); 5072 src_related_regcost = approx_reg_cost (src_related); 5073 5074 /* If a const-anchor is used to synthesize a constant that 5075 normally requires multiple instructions then slightly prefer 5076 it over the original sequence. These instructions are likely 5077 to become redundant now. We can't compare against the cost 5078 of src_eqv_here because, on MIPS for example, multi-insn 5079 constants have zero cost; they are assumed to be hoisted from 5080 loops. */ 5081 if (src_related_is_const_anchor 5082 && src_related_cost == src_cost 5083 && src_eqv_here) 5084 src_related_cost--; 5085 } 5086 } 5087 5088 /* If this was an indirect jump insn, a known label will really be 5089 cheaper even though it looks more expensive. */ 5090 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF) 5091 src_folded = src_const, src_folded_cost = src_folded_regcost = -1; 5092 5093 /* Terminate loop when replacement made. This must terminate since 5094 the current contents will be tested and will always be valid. */ 5095 while (1) 5096 { 5097 rtx trial; 5098 5099 /* Skip invalid entries. */ 5100 while (elt && !REG_P (elt->exp) 5101 && ! exp_equiv_p (elt->exp, elt->exp, 1, false)) 5102 elt = elt->next_same_value; 5103 5104 /* A paradoxical subreg would be bad here: it'll be the right 5105 size, but later may be adjusted so that the upper bits aren't 5106 what we want. So reject it. */ 5107 if (elt != 0 5108 && paradoxical_subreg_p (elt->exp) 5109 /* It is okay, though, if the rtx we're trying to match 5110 will ignore any of the bits we can't predict. */ 5111 && ! (src != 0 5112 && GET_CODE (src) == SUBREG 5113 && GET_MODE (src) == GET_MODE (elt->exp) 5114 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))) 5115 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp)))))) 5116 { 5117 elt = elt->next_same_value; 5118 continue; 5119 } 5120 5121 if (elt) 5122 { 5123 src_elt_cost = elt->cost; 5124 src_elt_regcost = elt->regcost; 5125 } 5126 5127 /* Find cheapest and skip it for the next time. For items 5128 of equal cost, use this order: 5129 src_folded, src, src_eqv, src_related and hash table entry. */ 5130 if (src_folded 5131 && preferable (src_folded_cost, src_folded_regcost, 5132 src_cost, src_regcost) <= 0 5133 && preferable (src_folded_cost, src_folded_regcost, 5134 src_eqv_cost, src_eqv_regcost) <= 0 5135 && preferable (src_folded_cost, src_folded_regcost, 5136 src_related_cost, src_related_regcost) <= 0 5137 && preferable (src_folded_cost, src_folded_regcost, 5138 src_elt_cost, src_elt_regcost) <= 0) 5139 { 5140 trial = src_folded, src_folded_cost = MAX_COST; 5141 if (src_folded_force_flag) 5142 { 5143 rtx forced = force_const_mem (mode, trial); 5144 if (forced) 5145 trial = forced; 5146 } 5147 } 5148 else if (src 5149 && preferable (src_cost, src_regcost, 5150 src_eqv_cost, src_eqv_regcost) <= 0 5151 && preferable (src_cost, src_regcost, 5152 src_related_cost, src_related_regcost) <= 0 5153 && preferable (src_cost, src_regcost, 5154 src_elt_cost, src_elt_regcost) <= 0) 5155 trial = src, src_cost = MAX_COST; 5156 else if (src_eqv_here 5157 && preferable (src_eqv_cost, src_eqv_regcost, 5158 src_related_cost, src_related_regcost) <= 0 5159 && preferable (src_eqv_cost, src_eqv_regcost, 5160 src_elt_cost, src_elt_regcost) <= 0) 5161 trial = src_eqv_here, src_eqv_cost = MAX_COST; 5162 else if (src_related 5163 && preferable (src_related_cost, src_related_regcost, 5164 src_elt_cost, src_elt_regcost) <= 0) 5165 trial = src_related, src_related_cost = MAX_COST; 5166 else 5167 { 5168 trial = elt->exp; 5169 elt = elt->next_same_value; 5170 src_elt_cost = MAX_COST; 5171 } 5172 5173 /* Avoid creation of overlapping memory moves. */ 5174 if (MEM_P (trial) && MEM_P (dest) && !rtx_equal_p (trial, dest)) 5175 { 5176 rtx src, dest; 5177 5178 /* BLKmode moves are not handled by cse anyway. */ 5179 if (GET_MODE (trial) == BLKmode) 5180 break; 5181 5182 src = canon_rtx (trial); 5183 dest = canon_rtx (SET_DEST (sets[i].rtl)); 5184 5185 if (!MEM_P (src) || !MEM_P (dest) 5186 || !nonoverlapping_memrefs_p (src, dest, false)) 5187 break; 5188 } 5189 5190 /* Try to optimize 5191 (set (reg:M N) (const_int A)) 5192 (set (reg:M2 O) (const_int B)) 5193 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D)) 5194 (reg:M2 O)). */ 5195 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT 5196 && CONST_INT_P (trial) 5197 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1)) 5198 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2)) 5199 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0)) 5200 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl))) 5201 >= INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))) 5202 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1)) 5203 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2)) 5204 <= HOST_BITS_PER_WIDE_INT)) 5205 { 5206 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0); 5207 rtx width = XEXP (SET_DEST (sets[i].rtl), 1); 5208 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2); 5209 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg)); 5210 struct table_elt *dest_elt 5211 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg)); 5212 rtx dest_cst = NULL; 5213 5214 if (dest_elt) 5215 for (p = dest_elt->first_same_value; p; p = p->next_same_value) 5216 if (p->is_const && CONST_INT_P (p->exp)) 5217 { 5218 dest_cst = p->exp; 5219 break; 5220 } 5221 if (dest_cst) 5222 { 5223 HOST_WIDE_INT val = INTVAL (dest_cst); 5224 HOST_WIDE_INT mask; 5225 unsigned int shift; 5226 if (BITS_BIG_ENDIAN) 5227 shift = GET_MODE_PRECISION (GET_MODE (dest_reg)) 5228 - INTVAL (pos) - INTVAL (width); 5229 else 5230 shift = INTVAL (pos); 5231 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT) 5232 mask = HOST_WIDE_INT_M1; 5233 else 5234 mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1; 5235 val &= ~(mask << shift); 5236 val |= (INTVAL (trial) & mask) << shift; 5237 val = trunc_int_for_mode (val, GET_MODE (dest_reg)); 5238 validate_unshare_change (insn, &SET_DEST (sets[i].rtl), 5239 dest_reg, 1); 5240 validate_unshare_change (insn, &SET_SRC (sets[i].rtl), 5241 GEN_INT (val), 1); 5242 if (apply_change_group ()) 5243 { 5244 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX); 5245 if (note) 5246 { 5247 remove_note (insn, note); 5248 df_notes_rescan (insn); 5249 } 5250 src_eqv = NULL_RTX; 5251 src_eqv_elt = NULL; 5252 src_eqv_volatile = 0; 5253 src_eqv_in_memory = 0; 5254 src_eqv_hash = 0; 5255 repeat = true; 5256 break; 5257 } 5258 } 5259 } 5260 5261 /* We don't normally have an insn matching (set (pc) (pc)), so 5262 check for this separately here. We will delete such an 5263 insn below. 5264 5265 For other cases such as a table jump or conditional jump 5266 where we know the ultimate target, go ahead and replace the 5267 operand. While that may not make a valid insn, we will 5268 reemit the jump below (and also insert any necessary 5269 barriers). */ 5270 if (n_sets == 1 && dest == pc_rtx 5271 && (trial == pc_rtx 5272 || (GET_CODE (trial) == LABEL_REF 5273 && ! condjump_p (insn)))) 5274 { 5275 /* Don't substitute non-local labels, this confuses CFG. */ 5276 if (GET_CODE (trial) == LABEL_REF 5277 && LABEL_REF_NONLOCAL_P (trial)) 5278 continue; 5279 5280 SET_SRC (sets[i].rtl) = trial; 5281 cse_jumps_altered = true; 5282 break; 5283 } 5284 5285 /* Similarly, lots of targets don't allow no-op 5286 (set (mem x) (mem x)) moves. */ 5287 else if (n_sets == 1 5288 && MEM_P (trial) 5289 && MEM_P (dest) 5290 && rtx_equal_p (trial, dest) 5291 && !side_effects_p (dest) 5292 && (cfun->can_delete_dead_exceptions 5293 || insn_nothrow_p (insn))) 5294 { 5295 SET_SRC (sets[i].rtl) = trial; 5296 mem_noop_insn = true; 5297 break; 5298 } 5299 5300 /* Reject certain invalid forms of CONST that we create. */ 5301 else if (CONSTANT_P (trial) 5302 && GET_CODE (trial) == CONST 5303 /* Reject cases that will cause decode_rtx_const to 5304 die. On the alpha when simplifying a switch, we 5305 get (const (truncate (minus (label_ref) 5306 (label_ref)))). */ 5307 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE 5308 /* Likewise on IA-64, except without the 5309 truncate. */ 5310 || (GET_CODE (XEXP (trial, 0)) == MINUS 5311 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF 5312 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF))) 5313 /* Do nothing for this case. */ 5314 ; 5315 5316 /* Look for a substitution that makes a valid insn. */ 5317 else if (validate_unshare_change (insn, &SET_SRC (sets[i].rtl), 5318 trial, 0)) 5319 { 5320 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn); 5321 5322 /* The result of apply_change_group can be ignored; see 5323 canon_reg. */ 5324 5325 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1); 5326 apply_change_group (); 5327 5328 break; 5329 } 5330 5331 /* If we previously found constant pool entries for 5332 constants and this is a constant, try making a 5333 pool entry. Put it in src_folded unless we already have done 5334 this since that is where it likely came from. */ 5335 5336 else if (constant_pool_entries_cost 5337 && CONSTANT_P (trial) 5338 && (src_folded == 0 5339 || (!MEM_P (src_folded) 5340 && ! src_folded_force_flag)) 5341 && GET_MODE_CLASS (mode) != MODE_CC 5342 && mode != VOIDmode) 5343 { 5344 src_folded_force_flag = 1; 5345 src_folded = trial; 5346 src_folded_cost = constant_pool_entries_cost; 5347 src_folded_regcost = constant_pool_entries_regcost; 5348 } 5349 } 5350 5351 /* If we changed the insn too much, handle this set from scratch. */ 5352 if (repeat) 5353 { 5354 i--; 5355 continue; 5356 } 5357 5358 src = SET_SRC (sets[i].rtl); 5359 5360 /* In general, it is good to have a SET with SET_SRC == SET_DEST. 5361 However, there is an important exception: If both are registers 5362 that are not the head of their equivalence class, replace SET_SRC 5363 with the head of the class. If we do not do this, we will have 5364 both registers live over a portion of the basic block. This way, 5365 their lifetimes will likely abut instead of overlapping. */ 5366 if (REG_P (dest) 5367 && REGNO_QTY_VALID_P (REGNO (dest))) 5368 { 5369 int dest_q = REG_QTY (REGNO (dest)); 5370 struct qty_table_elem *dest_ent = &qty_table[dest_q]; 5371 5372 if (dest_ent->mode == GET_MODE (dest) 5373 && dest_ent->first_reg != REGNO (dest) 5374 && REG_P (src) && REGNO (src) == REGNO (dest) 5375 /* Don't do this if the original insn had a hard reg as 5376 SET_SRC or SET_DEST. */ 5377 && (!REG_P (sets[i].src) 5378 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER) 5379 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)) 5380 /* We can't call canon_reg here because it won't do anything if 5381 SRC is a hard register. */ 5382 { 5383 int src_q = REG_QTY (REGNO (src)); 5384 struct qty_table_elem *src_ent = &qty_table[src_q]; 5385 int first = src_ent->first_reg; 5386 rtx new_src 5387 = (first >= FIRST_PSEUDO_REGISTER 5388 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first)); 5389 5390 /* We must use validate-change even for this, because this 5391 might be a special no-op instruction, suitable only to 5392 tag notes onto. */ 5393 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0)) 5394 { 5395 src = new_src; 5396 /* If we had a constant that is cheaper than what we are now 5397 setting SRC to, use that constant. We ignored it when we 5398 thought we could make this into a no-op. */ 5399 if (src_const && COST (src_const, mode) < COST (src, mode) 5400 && validate_change (insn, &SET_SRC (sets[i].rtl), 5401 src_const, 0)) 5402 src = src_const; 5403 } 5404 } 5405 } 5406 5407 /* If we made a change, recompute SRC values. */ 5408 if (src != sets[i].src) 5409 { 5410 do_not_record = 0; 5411 hash_arg_in_memory = 0; 5412 sets[i].src = src; 5413 sets[i].src_hash = HASH (src, mode); 5414 sets[i].src_volatile = do_not_record; 5415 sets[i].src_in_memory = hash_arg_in_memory; 5416 sets[i].src_elt = lookup (src, sets[i].src_hash, mode); 5417 } 5418 5419 /* If this is a single SET, we are setting a register, and we have an 5420 equivalent constant, we want to add a REG_EQUAL note if the constant 5421 is different from the source. We don't want to do it for a constant 5422 pseudo since verifying that this pseudo hasn't been eliminated is a 5423 pain; moreover such a note won't help anything. 5424 5425 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF))) 5426 which can be created for a reference to a compile time computable 5427 entry in a jump table. */ 5428 if (n_sets == 1 5429 && REG_P (dest) 5430 && src_const 5431 && !REG_P (src_const) 5432 && !(GET_CODE (src_const) == SUBREG 5433 && REG_P (SUBREG_REG (src_const))) 5434 && !(GET_CODE (src_const) == CONST 5435 && GET_CODE (XEXP (src_const, 0)) == MINUS 5436 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF 5437 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF) 5438 && !rtx_equal_p (src, src_const)) 5439 { 5440 /* Make sure that the rtx is not shared. */ 5441 src_const = copy_rtx (src_const); 5442 5443 /* Record the actual constant value in a REG_EQUAL note, 5444 making a new one if one does not already exist. */ 5445 set_unique_reg_note (insn, REG_EQUAL, src_const); 5446 df_notes_rescan (insn); 5447 } 5448 5449 /* Now deal with the destination. */ 5450 do_not_record = 0; 5451 5452 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */ 5453 while (GET_CODE (dest) == SUBREG 5454 || GET_CODE (dest) == ZERO_EXTRACT 5455 || GET_CODE (dest) == STRICT_LOW_PART) 5456 dest = XEXP (dest, 0); 5457 5458 sets[i].inner_dest = dest; 5459 5460 if (MEM_P (dest)) 5461 { 5462 #ifdef PUSH_ROUNDING 5463 /* Stack pushes invalidate the stack pointer. */ 5464 rtx addr = XEXP (dest, 0); 5465 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC 5466 && XEXP (addr, 0) == stack_pointer_rtx) 5467 invalidate (stack_pointer_rtx, VOIDmode); 5468 #endif 5469 dest = fold_rtx (dest, insn); 5470 } 5471 5472 /* Compute the hash code of the destination now, 5473 before the effects of this instruction are recorded, 5474 since the register values used in the address computation 5475 are those before this instruction. */ 5476 sets[i].dest_hash = HASH (dest, mode); 5477 5478 /* Don't enter a bit-field in the hash table 5479 because the value in it after the store 5480 may not equal what was stored, due to truncation. */ 5481 5482 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT) 5483 { 5484 rtx width = XEXP (SET_DEST (sets[i].rtl), 1); 5485 5486 if (src_const != 0 && CONST_INT_P (src_const) 5487 && CONST_INT_P (width) 5488 && INTVAL (width) < HOST_BITS_PER_WIDE_INT 5489 && ! (INTVAL (src_const) 5490 & (HOST_WIDE_INT_M1U << INTVAL (width)))) 5491 /* Exception: if the value is constant, 5492 and it won't be truncated, record it. */ 5493 ; 5494 else 5495 { 5496 /* This is chosen so that the destination will be invalidated 5497 but no new value will be recorded. 5498 We must invalidate because sometimes constant 5499 values can be recorded for bitfields. */ 5500 sets[i].src_elt = 0; 5501 sets[i].src_volatile = 1; 5502 src_eqv = 0; 5503 src_eqv_elt = 0; 5504 } 5505 } 5506 5507 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete 5508 the insn. */ 5509 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx) 5510 { 5511 /* One less use of the label this insn used to jump to. */ 5512 cse_cfg_altered |= delete_insn_and_edges (insn); 5513 cse_jumps_altered = true; 5514 /* No more processing for this set. */ 5515 sets[i].rtl = 0; 5516 } 5517 5518 /* Similarly for no-op MEM moves. */ 5519 else if (mem_noop_insn) 5520 { 5521 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn)) 5522 cse_cfg_altered = true; 5523 cse_cfg_altered |= delete_insn_and_edges (insn); 5524 /* No more processing for this set. */ 5525 sets[i].rtl = 0; 5526 } 5527 5528 /* If this SET is now setting PC to a label, we know it used to 5529 be a conditional or computed branch. */ 5530 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF 5531 && !LABEL_REF_NONLOCAL_P (src)) 5532 { 5533 /* We reemit the jump in as many cases as possible just in 5534 case the form of an unconditional jump is significantly 5535 different than a computed jump or conditional jump. 5536 5537 If this insn has multiple sets, then reemitting the 5538 jump is nontrivial. So instead we just force rerecognition 5539 and hope for the best. */ 5540 if (n_sets == 1) 5541 { 5542 rtx_jump_insn *new_rtx; 5543 rtx note; 5544 5545 rtx_insn *seq = targetm.gen_jump (XEXP (src, 0)); 5546 new_rtx = emit_jump_insn_before (seq, insn); 5547 JUMP_LABEL (new_rtx) = XEXP (src, 0); 5548 LABEL_NUSES (XEXP (src, 0))++; 5549 5550 /* Make sure to copy over REG_NON_LOCAL_GOTO. */ 5551 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0); 5552 if (note) 5553 { 5554 XEXP (note, 1) = NULL_RTX; 5555 REG_NOTES (new_rtx) = note; 5556 } 5557 5558 cse_cfg_altered |= delete_insn_and_edges (insn); 5559 insn = new_rtx; 5560 } 5561 else 5562 INSN_CODE (insn) = -1; 5563 5564 /* Do not bother deleting any unreachable code, let jump do it. */ 5565 cse_jumps_altered = true; 5566 sets[i].rtl = 0; 5567 } 5568 5569 /* If destination is volatile, invalidate it and then do no further 5570 processing for this assignment. */ 5571 5572 else if (do_not_record) 5573 { 5574 invalidate_dest (dest); 5575 sets[i].rtl = 0; 5576 } 5577 5578 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl)) 5579 { 5580 do_not_record = 0; 5581 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode); 5582 if (do_not_record) 5583 { 5584 invalidate_dest (SET_DEST (sets[i].rtl)); 5585 sets[i].rtl = 0; 5586 } 5587 } 5588 5589 /* If setting CC0, record what it was set to, or a constant, if it 5590 is equivalent to a constant. If it is being set to a floating-point 5591 value, make a COMPARE with the appropriate constant of 0. If we 5592 don't do this, later code can interpret this as a test against 5593 const0_rtx, which can cause problems if we try to put it into an 5594 insn as a floating-point operand. */ 5595 if (dest == cc0_rtx) 5596 { 5597 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src; 5598 this_insn_cc0_mode = mode; 5599 if (FLOAT_MODE_P (mode)) 5600 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0, 5601 CONST0_RTX (mode)); 5602 } 5603 } 5604 5605 /* Now enter all non-volatile source expressions in the hash table 5606 if they are not already present. 5607 Record their equivalence classes in src_elt. 5608 This way we can insert the corresponding destinations into 5609 the same classes even if the actual sources are no longer in them 5610 (having been invalidated). */ 5611 5612 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile 5613 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl))) 5614 { 5615 struct table_elt *elt; 5616 struct table_elt *classp = sets[0].src_elt; 5617 rtx dest = SET_DEST (sets[0].rtl); 5618 machine_mode eqvmode = GET_MODE (dest); 5619 5620 if (GET_CODE (dest) == STRICT_LOW_PART) 5621 { 5622 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0))); 5623 classp = 0; 5624 } 5625 if (insert_regs (src_eqv, classp, 0)) 5626 { 5627 rehash_using_reg (src_eqv); 5628 src_eqv_hash = HASH (src_eqv, eqvmode); 5629 } 5630 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode); 5631 elt->in_memory = src_eqv_in_memory; 5632 src_eqv_elt = elt; 5633 5634 /* Check to see if src_eqv_elt is the same as a set source which 5635 does not yet have an elt, and if so set the elt of the set source 5636 to src_eqv_elt. */ 5637 for (i = 0; i < n_sets; i++) 5638 if (sets[i].rtl && sets[i].src_elt == 0 5639 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv)) 5640 sets[i].src_elt = src_eqv_elt; 5641 } 5642 5643 for (i = 0; i < n_sets; i++) 5644 if (sets[i].rtl && ! sets[i].src_volatile 5645 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl))) 5646 { 5647 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART) 5648 { 5649 /* REG_EQUAL in setting a STRICT_LOW_PART 5650 gives an equivalent for the entire destination register, 5651 not just for the subreg being stored in now. 5652 This is a more interesting equivalence, so we arrange later 5653 to treat the entire reg as the destination. */ 5654 sets[i].src_elt = src_eqv_elt; 5655 sets[i].src_hash = src_eqv_hash; 5656 } 5657 else 5658 { 5659 /* Insert source and constant equivalent into hash table, if not 5660 already present. */ 5661 struct table_elt *classp = src_eqv_elt; 5662 rtx src = sets[i].src; 5663 rtx dest = SET_DEST (sets[i].rtl); 5664 machine_mode mode 5665 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src); 5666 5667 /* It's possible that we have a source value known to be 5668 constant but don't have a REG_EQUAL note on the insn. 5669 Lack of a note will mean src_eqv_elt will be NULL. This 5670 can happen where we've generated a SUBREG to access a 5671 CONST_INT that is already in a register in a wider mode. 5672 Ensure that the source expression is put in the proper 5673 constant class. */ 5674 if (!classp) 5675 classp = sets[i].src_const_elt; 5676 5677 if (sets[i].src_elt == 0) 5678 { 5679 struct table_elt *elt; 5680 5681 /* Note that these insert_regs calls cannot remove 5682 any of the src_elt's, because they would have failed to 5683 match if not still valid. */ 5684 if (insert_regs (src, classp, 0)) 5685 { 5686 rehash_using_reg (src); 5687 sets[i].src_hash = HASH (src, mode); 5688 } 5689 elt = insert (src, classp, sets[i].src_hash, mode); 5690 elt->in_memory = sets[i].src_in_memory; 5691 /* If inline asm has any clobbers, ensure we only reuse 5692 existing inline asms and never try to put the ASM_OPERANDS 5693 into an insn that isn't inline asm. */ 5694 if (GET_CODE (src) == ASM_OPERANDS 5695 && GET_CODE (x) == PARALLEL) 5696 elt->cost = MAX_COST; 5697 sets[i].src_elt = classp = elt; 5698 } 5699 if (sets[i].src_const && sets[i].src_const_elt == 0 5700 && src != sets[i].src_const 5701 && ! rtx_equal_p (sets[i].src_const, src)) 5702 sets[i].src_elt = insert (sets[i].src_const, classp, 5703 sets[i].src_const_hash, mode); 5704 } 5705 } 5706 else if (sets[i].src_elt == 0) 5707 /* If we did not insert the source into the hash table (e.g., it was 5708 volatile), note the equivalence class for the REG_EQUAL value, if any, 5709 so that the destination goes into that class. */ 5710 sets[i].src_elt = src_eqv_elt; 5711 5712 /* Record destination addresses in the hash table. This allows us to 5713 check if they are invalidated by other sets. */ 5714 for (i = 0; i < n_sets; i++) 5715 { 5716 if (sets[i].rtl) 5717 { 5718 rtx x = sets[i].inner_dest; 5719 struct table_elt *elt; 5720 machine_mode mode; 5721 unsigned hash; 5722 5723 if (MEM_P (x)) 5724 { 5725 x = XEXP (x, 0); 5726 mode = GET_MODE (x); 5727 hash = HASH (x, mode); 5728 elt = lookup (x, hash, mode); 5729 if (!elt) 5730 { 5731 if (insert_regs (x, NULL, 0)) 5732 { 5733 rtx dest = SET_DEST (sets[i].rtl); 5734 5735 rehash_using_reg (x); 5736 hash = HASH (x, mode); 5737 sets[i].dest_hash = HASH (dest, GET_MODE (dest)); 5738 } 5739 elt = insert (x, NULL, hash, mode); 5740 } 5741 5742 sets[i].dest_addr_elt = elt; 5743 } 5744 else 5745 sets[i].dest_addr_elt = NULL; 5746 } 5747 } 5748 5749 invalidate_from_clobbers (insn); 5750 5751 /* Some registers are invalidated by subroutine calls. Memory is 5752 invalidated by non-constant calls. */ 5753 5754 if (CALL_P (insn)) 5755 { 5756 if (!(RTL_CONST_OR_PURE_CALL_P (insn))) 5757 invalidate_memory (); 5758 else 5759 /* For const/pure calls, invalidate any argument slots, because 5760 those are owned by the callee. */ 5761 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1)) 5762 if (GET_CODE (XEXP (tem, 0)) == USE 5763 && MEM_P (XEXP (XEXP (tem, 0), 0))) 5764 invalidate (XEXP (XEXP (tem, 0), 0), VOIDmode); 5765 invalidate_for_call (); 5766 } 5767 5768 /* Now invalidate everything set by this instruction. 5769 If a SUBREG or other funny destination is being set, 5770 sets[i].rtl is still nonzero, so here we invalidate the reg 5771 a part of which is being set. */ 5772 5773 for (i = 0; i < n_sets; i++) 5774 if (sets[i].rtl) 5775 { 5776 /* We can't use the inner dest, because the mode associated with 5777 a ZERO_EXTRACT is significant. */ 5778 rtx dest = SET_DEST (sets[i].rtl); 5779 5780 /* Needed for registers to remove the register from its 5781 previous quantity's chain. 5782 Needed for memory if this is a nonvarying address, unless 5783 we have just done an invalidate_memory that covers even those. */ 5784 if (REG_P (dest) || GET_CODE (dest) == SUBREG) 5785 invalidate (dest, VOIDmode); 5786 else if (MEM_P (dest)) 5787 invalidate (dest, VOIDmode); 5788 else if (GET_CODE (dest) == STRICT_LOW_PART 5789 || GET_CODE (dest) == ZERO_EXTRACT) 5790 invalidate (XEXP (dest, 0), GET_MODE (dest)); 5791 } 5792 5793 /* Don't cse over a call to setjmp; on some machines (eg VAX) 5794 the regs restored by the longjmp come from a later time 5795 than the setjmp. */ 5796 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL)) 5797 { 5798 flush_hash_table (); 5799 goto done; 5800 } 5801 5802 /* Make sure registers mentioned in destinations 5803 are safe for use in an expression to be inserted. 5804 This removes from the hash table 5805 any invalid entry that refers to one of these registers. 5806 5807 We don't care about the return value from mention_regs because 5808 we are going to hash the SET_DEST values unconditionally. */ 5809 5810 for (i = 0; i < n_sets; i++) 5811 { 5812 if (sets[i].rtl) 5813 { 5814 rtx x = SET_DEST (sets[i].rtl); 5815 5816 if (!REG_P (x)) 5817 mention_regs (x); 5818 else 5819 { 5820 /* We used to rely on all references to a register becoming 5821 inaccessible when a register changes to a new quantity, 5822 since that changes the hash code. However, that is not 5823 safe, since after HASH_SIZE new quantities we get a 5824 hash 'collision' of a register with its own invalid 5825 entries. And since SUBREGs have been changed not to 5826 change their hash code with the hash code of the register, 5827 it wouldn't work any longer at all. So we have to check 5828 for any invalid references lying around now. 5829 This code is similar to the REG case in mention_regs, 5830 but it knows that reg_tick has been incremented, and 5831 it leaves reg_in_table as -1 . */ 5832 unsigned int regno = REGNO (x); 5833 unsigned int endregno = END_REGNO (x); 5834 unsigned int i; 5835 5836 for (i = regno; i < endregno; i++) 5837 { 5838 if (REG_IN_TABLE (i) >= 0) 5839 { 5840 remove_invalid_refs (i); 5841 REG_IN_TABLE (i) = -1; 5842 } 5843 } 5844 } 5845 } 5846 } 5847 5848 /* We may have just removed some of the src_elt's from the hash table. 5849 So replace each one with the current head of the same class. 5850 Also check if destination addresses have been removed. */ 5851 5852 for (i = 0; i < n_sets; i++) 5853 if (sets[i].rtl) 5854 { 5855 if (sets[i].dest_addr_elt 5856 && sets[i].dest_addr_elt->first_same_value == 0) 5857 { 5858 /* The elt was removed, which means this destination is not 5859 valid after this instruction. */ 5860 sets[i].rtl = NULL_RTX; 5861 } 5862 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0) 5863 /* If elt was removed, find current head of same class, 5864 or 0 if nothing remains of that class. */ 5865 { 5866 struct table_elt *elt = sets[i].src_elt; 5867 5868 while (elt && elt->prev_same_value) 5869 elt = elt->prev_same_value; 5870 5871 while (elt && elt->first_same_value == 0) 5872 elt = elt->next_same_value; 5873 sets[i].src_elt = elt ? elt->first_same_value : 0; 5874 } 5875 } 5876 5877 /* Now insert the destinations into their equivalence classes. */ 5878 5879 for (i = 0; i < n_sets; i++) 5880 if (sets[i].rtl) 5881 { 5882 rtx dest = SET_DEST (sets[i].rtl); 5883 struct table_elt *elt; 5884 5885 /* Don't record value if we are not supposed to risk allocating 5886 floating-point values in registers that might be wider than 5887 memory. */ 5888 if ((flag_float_store 5889 && MEM_P (dest) 5890 && FLOAT_MODE_P (GET_MODE (dest))) 5891 /* Don't record BLKmode values, because we don't know the 5892 size of it, and can't be sure that other BLKmode values 5893 have the same or smaller size. */ 5894 || GET_MODE (dest) == BLKmode 5895 /* If we didn't put a REG_EQUAL value or a source into the hash 5896 table, there is no point is recording DEST. */ 5897 || sets[i].src_elt == 0) 5898 continue; 5899 5900 /* STRICT_LOW_PART isn't part of the value BEING set, 5901 and neither is the SUBREG inside it. 5902 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */ 5903 if (GET_CODE (dest) == STRICT_LOW_PART) 5904 dest = SUBREG_REG (XEXP (dest, 0)); 5905 5906 if (REG_P (dest) || GET_CODE (dest) == SUBREG) 5907 /* Registers must also be inserted into chains for quantities. */ 5908 if (insert_regs (dest, sets[i].src_elt, 1)) 5909 { 5910 /* If `insert_regs' changes something, the hash code must be 5911 recalculated. */ 5912 rehash_using_reg (dest); 5913 sets[i].dest_hash = HASH (dest, GET_MODE (dest)); 5914 } 5915 5916 /* If DEST is a paradoxical SUBREG, don't record DEST since the bits 5917 outside the mode of GET_MODE (SUBREG_REG (dest)) are undefined. */ 5918 if (paradoxical_subreg_p (dest)) 5919 continue; 5920 5921 elt = insert (dest, sets[i].src_elt, 5922 sets[i].dest_hash, GET_MODE (dest)); 5923 5924 /* If this is a constant, insert the constant anchors with the 5925 equivalent register-offset expressions using register DEST. */ 5926 if (targetm.const_anchor 5927 && REG_P (dest) 5928 && SCALAR_INT_MODE_P (GET_MODE (dest)) 5929 && GET_CODE (sets[i].src_elt->exp) == CONST_INT) 5930 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest)); 5931 5932 elt->in_memory = (MEM_P (sets[i].inner_dest) 5933 && !MEM_READONLY_P (sets[i].inner_dest)); 5934 5935 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no 5936 narrower than M2, and both M1 and M2 are the same number of words, 5937 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so 5938 make that equivalence as well. 5939 5940 However, BAR may have equivalences for which gen_lowpart 5941 will produce a simpler value than gen_lowpart applied to 5942 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all 5943 BAR's equivalences. If we don't get a simplified form, make 5944 the SUBREG. It will not be used in an equivalence, but will 5945 cause two similar assignments to be detected. 5946 5947 Note the loop below will find SUBREG_REG (DEST) since we have 5948 already entered SRC and DEST of the SET in the table. */ 5949 5950 if (GET_CODE (dest) == SUBREG 5951 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1) 5952 / UNITS_PER_WORD) 5953 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD) 5954 && (GET_MODE_SIZE (GET_MODE (dest)) 5955 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))) 5956 && sets[i].src_elt != 0) 5957 { 5958 machine_mode new_mode = GET_MODE (SUBREG_REG (dest)); 5959 struct table_elt *elt, *classp = 0; 5960 5961 for (elt = sets[i].src_elt->first_same_value; elt; 5962 elt = elt->next_same_value) 5963 { 5964 rtx new_src = 0; 5965 unsigned src_hash; 5966 struct table_elt *src_elt; 5967 int byte = 0; 5968 5969 /* Ignore invalid entries. */ 5970 if (!REG_P (elt->exp) 5971 && ! exp_equiv_p (elt->exp, elt->exp, 1, false)) 5972 continue; 5973 5974 /* We may have already been playing subreg games. If the 5975 mode is already correct for the destination, use it. */ 5976 if (GET_MODE (elt->exp) == new_mode) 5977 new_src = elt->exp; 5978 else 5979 { 5980 /* Calculate big endian correction for the SUBREG_BYTE. 5981 We have already checked that M1 (GET_MODE (dest)) 5982 is not narrower than M2 (new_mode). */ 5983 if (BYTES_BIG_ENDIAN) 5984 byte = (GET_MODE_SIZE (GET_MODE (dest)) 5985 - GET_MODE_SIZE (new_mode)); 5986 5987 new_src = simplify_gen_subreg (new_mode, elt->exp, 5988 GET_MODE (dest), byte); 5989 } 5990 5991 /* The call to simplify_gen_subreg fails if the value 5992 is VOIDmode, yet we can't do any simplification, e.g. 5993 for EXPR_LISTs denoting function call results. 5994 It is invalid to construct a SUBREG with a VOIDmode 5995 SUBREG_REG, hence a zero new_src means we can't do 5996 this substitution. */ 5997 if (! new_src) 5998 continue; 5999 6000 src_hash = HASH (new_src, new_mode); 6001 src_elt = lookup (new_src, src_hash, new_mode); 6002 6003 /* Put the new source in the hash table is if isn't 6004 already. */ 6005 if (src_elt == 0) 6006 { 6007 if (insert_regs (new_src, classp, 0)) 6008 { 6009 rehash_using_reg (new_src); 6010 src_hash = HASH (new_src, new_mode); 6011 } 6012 src_elt = insert (new_src, classp, src_hash, new_mode); 6013 src_elt->in_memory = elt->in_memory; 6014 if (GET_CODE (new_src) == ASM_OPERANDS 6015 && elt->cost == MAX_COST) 6016 src_elt->cost = MAX_COST; 6017 } 6018 else if (classp && classp != src_elt->first_same_value) 6019 /* Show that two things that we've seen before are 6020 actually the same. */ 6021 merge_equiv_classes (src_elt, classp); 6022 6023 classp = src_elt->first_same_value; 6024 /* Ignore invalid entries. */ 6025 while (classp 6026 && !REG_P (classp->exp) 6027 && ! exp_equiv_p (classp->exp, classp->exp, 1, false)) 6028 classp = classp->next_same_value; 6029 } 6030 } 6031 } 6032 6033 /* Special handling for (set REG0 REG1) where REG0 is the 6034 "cheapest", cheaper than REG1. After cse, REG1 will probably not 6035 be used in the sequel, so (if easily done) change this insn to 6036 (set REG1 REG0) and replace REG1 with REG0 in the previous insn 6037 that computed their value. Then REG1 will become a dead store 6038 and won't cloud the situation for later optimizations. 6039 6040 Do not make this change if REG1 is a hard register, because it will 6041 then be used in the sequel and we may be changing a two-operand insn 6042 into a three-operand insn. 6043 6044 Also do not do this if we are operating on a copy of INSN. */ 6045 6046 if (n_sets == 1 && sets[0].rtl) 6047 try_back_substitute_reg (sets[0].rtl, insn); 6048 6049 done:; 6050 } 6051 6052 /* Remove from the hash table all expressions that reference memory. */ 6053 6054 static void 6055 invalidate_memory (void) 6056 { 6057 int i; 6058 struct table_elt *p, *next; 6059 6060 for (i = 0; i < HASH_SIZE; i++) 6061 for (p = table[i]; p; p = next) 6062 { 6063 next = p->next_same_hash; 6064 if (p->in_memory) 6065 remove_from_table (p, i); 6066 } 6067 } 6068 6069 /* Perform invalidation on the basis of everything about INSN, 6070 except for invalidating the actual places that are SET in it. 6071 This includes the places CLOBBERed, and anything that might 6072 alias with something that is SET or CLOBBERed. */ 6073 6074 static void 6075 invalidate_from_clobbers (rtx_insn *insn) 6076 { 6077 rtx x = PATTERN (insn); 6078 6079 if (GET_CODE (x) == CLOBBER) 6080 { 6081 rtx ref = XEXP (x, 0); 6082 if (ref) 6083 { 6084 if (REG_P (ref) || GET_CODE (ref) == SUBREG 6085 || MEM_P (ref)) 6086 invalidate (ref, VOIDmode); 6087 else if (GET_CODE (ref) == STRICT_LOW_PART 6088 || GET_CODE (ref) == ZERO_EXTRACT) 6089 invalidate (XEXP (ref, 0), GET_MODE (ref)); 6090 } 6091 } 6092 else if (GET_CODE (x) == PARALLEL) 6093 { 6094 int i; 6095 for (i = XVECLEN (x, 0) - 1; i >= 0; i--) 6096 { 6097 rtx y = XVECEXP (x, 0, i); 6098 if (GET_CODE (y) == CLOBBER) 6099 { 6100 rtx ref = XEXP (y, 0); 6101 if (REG_P (ref) || GET_CODE (ref) == SUBREG 6102 || MEM_P (ref)) 6103 invalidate (ref, VOIDmode); 6104 else if (GET_CODE (ref) == STRICT_LOW_PART 6105 || GET_CODE (ref) == ZERO_EXTRACT) 6106 invalidate (XEXP (ref, 0), GET_MODE (ref)); 6107 } 6108 } 6109 } 6110 } 6111 6112 /* Perform invalidation on the basis of everything about INSN. 6113 This includes the places CLOBBERed, and anything that might 6114 alias with something that is SET or CLOBBERed. */ 6115 6116 static void 6117 invalidate_from_sets_and_clobbers (rtx_insn *insn) 6118 { 6119 rtx tem; 6120 rtx x = PATTERN (insn); 6121 6122 if (CALL_P (insn)) 6123 { 6124 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1)) 6125 if (GET_CODE (XEXP (tem, 0)) == CLOBBER) 6126 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode); 6127 } 6128 6129 /* Ensure we invalidate the destination register of a CALL insn. 6130 This is necessary for machines where this register is a fixed_reg, 6131 because no other code would invalidate it. */ 6132 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL) 6133 invalidate (SET_DEST (x), VOIDmode); 6134 6135 else if (GET_CODE (x) == PARALLEL) 6136 { 6137 int i; 6138 6139 for (i = XVECLEN (x, 0) - 1; i >= 0; i--) 6140 { 6141 rtx y = XVECEXP (x, 0, i); 6142 if (GET_CODE (y) == CLOBBER) 6143 { 6144 rtx clobbered = XEXP (y, 0); 6145 6146 if (REG_P (clobbered) 6147 || GET_CODE (clobbered) == SUBREG) 6148 invalidate (clobbered, VOIDmode); 6149 else if (GET_CODE (clobbered) == STRICT_LOW_PART 6150 || GET_CODE (clobbered) == ZERO_EXTRACT) 6151 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered)); 6152 } 6153 else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL) 6154 invalidate (SET_DEST (y), VOIDmode); 6155 } 6156 } 6157 } 6158 6159 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes 6160 and replace any registers in them with either an equivalent constant 6161 or the canonical form of the register. If we are inside an address, 6162 only do this if the address remains valid. 6163 6164 OBJECT is 0 except when within a MEM in which case it is the MEM. 6165 6166 Return the replacement for X. */ 6167 6168 static rtx 6169 cse_process_notes_1 (rtx x, rtx object, bool *changed) 6170 { 6171 enum rtx_code code = GET_CODE (x); 6172 const char *fmt = GET_RTX_FORMAT (code); 6173 int i; 6174 6175 switch (code) 6176 { 6177 case CONST: 6178 case SYMBOL_REF: 6179 case LABEL_REF: 6180 CASE_CONST_ANY: 6181 case PC: 6182 case CC0: 6183 case LO_SUM: 6184 return x; 6185 6186 case MEM: 6187 validate_change (x, &XEXP (x, 0), 6188 cse_process_notes (XEXP (x, 0), x, changed), 0); 6189 return x; 6190 6191 case EXPR_LIST: 6192 if (REG_NOTE_KIND (x) == REG_EQUAL) 6193 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed); 6194 /* Fall through. */ 6195 6196 case INSN_LIST: 6197 case INT_LIST: 6198 if (XEXP (x, 1)) 6199 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed); 6200 return x; 6201 6202 case SIGN_EXTEND: 6203 case ZERO_EXTEND: 6204 case SUBREG: 6205 { 6206 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed); 6207 /* We don't substitute VOIDmode constants into these rtx, 6208 since they would impede folding. */ 6209 if (GET_MODE (new_rtx) != VOIDmode) 6210 validate_change (object, &XEXP (x, 0), new_rtx, 0); 6211 return x; 6212 } 6213 6214 case UNSIGNED_FLOAT: 6215 { 6216 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed); 6217 /* We don't substitute negative VOIDmode constants into these rtx, 6218 since they would impede folding. */ 6219 if (GET_MODE (new_rtx) != VOIDmode 6220 || (CONST_INT_P (new_rtx) && INTVAL (new_rtx) >= 0) 6221 || (CONST_DOUBLE_P (new_rtx) && CONST_DOUBLE_HIGH (new_rtx) >= 0)) 6222 validate_change (object, &XEXP (x, 0), new_rtx, 0); 6223 return x; 6224 } 6225 6226 case REG: 6227 i = REG_QTY (REGNO (x)); 6228 6229 /* Return a constant or a constant register. */ 6230 if (REGNO_QTY_VALID_P (REGNO (x))) 6231 { 6232 struct qty_table_elem *ent = &qty_table[i]; 6233 6234 if (ent->const_rtx != NULL_RTX 6235 && (CONSTANT_P (ent->const_rtx) 6236 || REG_P (ent->const_rtx))) 6237 { 6238 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx); 6239 if (new_rtx) 6240 return copy_rtx (new_rtx); 6241 } 6242 } 6243 6244 /* Otherwise, canonicalize this register. */ 6245 return canon_reg (x, NULL); 6246 6247 default: 6248 break; 6249 } 6250 6251 for (i = 0; i < GET_RTX_LENGTH (code); i++) 6252 if (fmt[i] == 'e') 6253 validate_change (object, &XEXP (x, i), 6254 cse_process_notes (XEXP (x, i), object, changed), 0); 6255 6256 return x; 6257 } 6258 6259 static rtx 6260 cse_process_notes (rtx x, rtx object, bool *changed) 6261 { 6262 rtx new_rtx = cse_process_notes_1 (x, object, changed); 6263 if (new_rtx != x) 6264 *changed = true; 6265 return new_rtx; 6266 } 6267 6268 6269 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on. 6270 6271 DATA is a pointer to a struct cse_basic_block_data, that is used to 6272 describe the path. 6273 It is filled with a queue of basic blocks, starting with FIRST_BB 6274 and following a trace through the CFG. 6275 6276 If all paths starting at FIRST_BB have been followed, or no new path 6277 starting at FIRST_BB can be constructed, this function returns FALSE. 6278 Otherwise, DATA->path is filled and the function returns TRUE indicating 6279 that a path to follow was found. 6280 6281 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only 6282 block in the path will be FIRST_BB. */ 6283 6284 static bool 6285 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data, 6286 int follow_jumps) 6287 { 6288 basic_block bb; 6289 edge e; 6290 int path_size; 6291 6292 bitmap_set_bit (cse_visited_basic_blocks, first_bb->index); 6293 6294 /* See if there is a previous path. */ 6295 path_size = data->path_size; 6296 6297 /* There is a previous path. Make sure it started with FIRST_BB. */ 6298 if (path_size) 6299 gcc_assert (data->path[0].bb == first_bb); 6300 6301 /* There was only one basic block in the last path. Clear the path and 6302 return, so that paths starting at another basic block can be tried. */ 6303 if (path_size == 1) 6304 { 6305 path_size = 0; 6306 goto done; 6307 } 6308 6309 /* If the path was empty from the beginning, construct a new path. */ 6310 if (path_size == 0) 6311 data->path[path_size++].bb = first_bb; 6312 else 6313 { 6314 /* Otherwise, path_size must be equal to or greater than 2, because 6315 a previous path exists that is at least two basic blocks long. 6316 6317 Update the previous branch path, if any. If the last branch was 6318 previously along the branch edge, take the fallthrough edge now. */ 6319 while (path_size >= 2) 6320 { 6321 basic_block last_bb_in_path, previous_bb_in_path; 6322 edge e; 6323 6324 --path_size; 6325 last_bb_in_path = data->path[path_size].bb; 6326 previous_bb_in_path = data->path[path_size - 1].bb; 6327 6328 /* If we previously followed a path along the branch edge, try 6329 the fallthru edge now. */ 6330 if (EDGE_COUNT (previous_bb_in_path->succs) == 2 6331 && any_condjump_p (BB_END (previous_bb_in_path)) 6332 && (e = find_edge (previous_bb_in_path, last_bb_in_path)) 6333 && e == BRANCH_EDGE (previous_bb_in_path)) 6334 { 6335 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest; 6336 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun) 6337 && single_pred_p (bb) 6338 /* We used to assert here that we would only see blocks 6339 that we have not visited yet. But we may end up 6340 visiting basic blocks twice if the CFG has changed 6341 in this run of cse_main, because when the CFG changes 6342 the topological sort of the CFG also changes. A basic 6343 blocks that previously had more than two predecessors 6344 may now have a single predecessor, and become part of 6345 a path that starts at another basic block. 6346 6347 We still want to visit each basic block only once, so 6348 halt the path here if we have already visited BB. */ 6349 && !bitmap_bit_p (cse_visited_basic_blocks, bb->index)) 6350 { 6351 bitmap_set_bit (cse_visited_basic_blocks, bb->index); 6352 data->path[path_size++].bb = bb; 6353 break; 6354 } 6355 } 6356 6357 data->path[path_size].bb = NULL; 6358 } 6359 6360 /* If only one block remains in the path, bail. */ 6361 if (path_size == 1) 6362 { 6363 path_size = 0; 6364 goto done; 6365 } 6366 } 6367 6368 /* Extend the path if possible. */ 6369 if (follow_jumps) 6370 { 6371 bb = data->path[path_size - 1].bb; 6372 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH)) 6373 { 6374 if (single_succ_p (bb)) 6375 e = single_succ_edge (bb); 6376 else if (EDGE_COUNT (bb->succs) == 2 6377 && any_condjump_p (BB_END (bb))) 6378 { 6379 /* First try to follow the branch. If that doesn't lead 6380 to a useful path, follow the fallthru edge. */ 6381 e = BRANCH_EDGE (bb); 6382 if (!single_pred_p (e->dest)) 6383 e = FALLTHRU_EDGE (bb); 6384 } 6385 else 6386 e = NULL; 6387 6388 if (e 6389 && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label) 6390 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) 6391 && single_pred_p (e->dest) 6392 /* Avoid visiting basic blocks twice. The large comment 6393 above explains why this can happen. */ 6394 && !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index)) 6395 { 6396 basic_block bb2 = e->dest; 6397 bitmap_set_bit (cse_visited_basic_blocks, bb2->index); 6398 data->path[path_size++].bb = bb2; 6399 bb = bb2; 6400 } 6401 else 6402 bb = NULL; 6403 } 6404 } 6405 6406 done: 6407 data->path_size = path_size; 6408 return path_size != 0; 6409 } 6410 6411 /* Dump the path in DATA to file F. NSETS is the number of sets 6412 in the path. */ 6413 6414 static void 6415 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f) 6416 { 6417 int path_entry; 6418 6419 fprintf (f, ";; Following path with %d sets: ", nsets); 6420 for (path_entry = 0; path_entry < data->path_size; path_entry++) 6421 fprintf (f, "%d ", (data->path[path_entry].bb)->index); 6422 fputc ('\n', dump_file); 6423 fflush (f); 6424 } 6425 6426 6427 /* Return true if BB has exception handling successor edges. */ 6428 6429 static bool 6430 have_eh_succ_edges (basic_block bb) 6431 { 6432 edge e; 6433 edge_iterator ei; 6434 6435 FOR_EACH_EDGE (e, ei, bb->succs) 6436 if (e->flags & EDGE_EH) 6437 return true; 6438 6439 return false; 6440 } 6441 6442 6443 /* Scan to the end of the path described by DATA. Return an estimate of 6444 the total number of SETs of all insns in the path. */ 6445 6446 static void 6447 cse_prescan_path (struct cse_basic_block_data *data) 6448 { 6449 int nsets = 0; 6450 int path_size = data->path_size; 6451 int path_entry; 6452 6453 /* Scan to end of each basic block in the path. */ 6454 for (path_entry = 0; path_entry < path_size; path_entry++) 6455 { 6456 basic_block bb; 6457 rtx_insn *insn; 6458 6459 bb = data->path[path_entry].bb; 6460 6461 FOR_BB_INSNS (bb, insn) 6462 { 6463 if (!INSN_P (insn)) 6464 continue; 6465 6466 /* A PARALLEL can have lots of SETs in it, 6467 especially if it is really an ASM_OPERANDS. */ 6468 if (GET_CODE (PATTERN (insn)) == PARALLEL) 6469 nsets += XVECLEN (PATTERN (insn), 0); 6470 else 6471 nsets += 1; 6472 } 6473 } 6474 6475 data->nsets = nsets; 6476 } 6477 6478 /* Return true if the pattern of INSN uses a LABEL_REF for which 6479 there isn't a REG_LABEL_OPERAND note. */ 6480 6481 static bool 6482 check_for_label_ref (rtx_insn *insn) 6483 { 6484 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND 6485 note for it, we must rerun jump since it needs to place the note. If 6486 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain, 6487 don't do this since no REG_LABEL_OPERAND will be added. */ 6488 subrtx_iterator::array_type array; 6489 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL) 6490 { 6491 const_rtx x = *iter; 6492 if (GET_CODE (x) == LABEL_REF 6493 && !LABEL_REF_NONLOCAL_P (x) 6494 && (!JUMP_P (insn) 6495 || !label_is_jump_target_p (label_ref_label (x), insn)) 6496 && LABEL_P (label_ref_label (x)) 6497 && INSN_UID (label_ref_label (x)) != 0 6498 && !find_reg_note (insn, REG_LABEL_OPERAND, label_ref_label (x))) 6499 return true; 6500 } 6501 return false; 6502 } 6503 6504 /* Process a single extended basic block described by EBB_DATA. */ 6505 6506 static void 6507 cse_extended_basic_block (struct cse_basic_block_data *ebb_data) 6508 { 6509 int path_size = ebb_data->path_size; 6510 int path_entry; 6511 int num_insns = 0; 6512 6513 /* Allocate the space needed by qty_table. */ 6514 qty_table = XNEWVEC (struct qty_table_elem, max_qty); 6515 6516 new_basic_block (); 6517 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb); 6518 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb); 6519 for (path_entry = 0; path_entry < path_size; path_entry++) 6520 { 6521 basic_block bb; 6522 rtx_insn *insn; 6523 6524 bb = ebb_data->path[path_entry].bb; 6525 6526 /* Invalidate recorded information for eh regs if there is an EH 6527 edge pointing to that bb. */ 6528 if (bb_has_eh_pred (bb)) 6529 { 6530 df_ref def; 6531 6532 FOR_EACH_ARTIFICIAL_DEF (def, bb->index) 6533 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP) 6534 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def))); 6535 } 6536 6537 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb); 6538 FOR_BB_INSNS (bb, insn) 6539 { 6540 /* If we have processed 1,000 insns, flush the hash table to 6541 avoid extreme quadratic behavior. We must not include NOTEs 6542 in the count since there may be more of them when generating 6543 debugging information. If we clear the table at different 6544 times, code generated with -g -O might be different than code 6545 generated with -O but not -g. 6546 6547 FIXME: This is a real kludge and needs to be done some other 6548 way. */ 6549 if (NONDEBUG_INSN_P (insn) 6550 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS)) 6551 { 6552 flush_hash_table (); 6553 num_insns = 0; 6554 } 6555 6556 if (INSN_P (insn)) 6557 { 6558 /* Process notes first so we have all notes in canonical forms 6559 when looking for duplicate operations. */ 6560 if (REG_NOTES (insn)) 6561 { 6562 bool changed = false; 6563 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), 6564 NULL_RTX, &changed); 6565 if (changed) 6566 df_notes_rescan (insn); 6567 } 6568 6569 cse_insn (insn); 6570 6571 /* If we haven't already found an insn where we added a LABEL_REF, 6572 check this one. */ 6573 if (INSN_P (insn) && !recorded_label_ref 6574 && check_for_label_ref (insn)) 6575 recorded_label_ref = true; 6576 6577 if (HAVE_cc0 && NONDEBUG_INSN_P (insn)) 6578 { 6579 /* If the previous insn sets CC0 and this insn no 6580 longer references CC0, delete the previous insn. 6581 Here we use fact that nothing expects CC0 to be 6582 valid over an insn, which is true until the final 6583 pass. */ 6584 rtx_insn *prev_insn; 6585 rtx tem; 6586 6587 prev_insn = prev_nonnote_nondebug_insn (insn); 6588 if (prev_insn && NONJUMP_INSN_P (prev_insn) 6589 && (tem = single_set (prev_insn)) != NULL_RTX 6590 && SET_DEST (tem) == cc0_rtx 6591 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn))) 6592 delete_insn (prev_insn); 6593 6594 /* If this insn is not the last insn in the basic 6595 block, it will be PREV_INSN(insn) in the next 6596 iteration. If we recorded any CC0-related 6597 information for this insn, remember it. */ 6598 if (insn != BB_END (bb)) 6599 { 6600 prev_insn_cc0 = this_insn_cc0; 6601 prev_insn_cc0_mode = this_insn_cc0_mode; 6602 } 6603 } 6604 } 6605 } 6606 6607 /* With non-call exceptions, we are not always able to update 6608 the CFG properly inside cse_insn. So clean up possibly 6609 redundant EH edges here. */ 6610 if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb)) 6611 cse_cfg_altered |= purge_dead_edges (bb); 6612 6613 /* If we changed a conditional jump, we may have terminated 6614 the path we are following. Check that by verifying that 6615 the edge we would take still exists. If the edge does 6616 not exist anymore, purge the remainder of the path. 6617 Note that this will cause us to return to the caller. */ 6618 if (path_entry < path_size - 1) 6619 { 6620 basic_block next_bb = ebb_data->path[path_entry + 1].bb; 6621 if (!find_edge (bb, next_bb)) 6622 { 6623 do 6624 { 6625 path_size--; 6626 6627 /* If we truncate the path, we must also reset the 6628 visited bit on the remaining blocks in the path, 6629 or we will never visit them at all. */ 6630 bitmap_clear_bit (cse_visited_basic_blocks, 6631 ebb_data->path[path_size].bb->index); 6632 ebb_data->path[path_size].bb = NULL; 6633 } 6634 while (path_size - 1 != path_entry); 6635 ebb_data->path_size = path_size; 6636 } 6637 } 6638 6639 /* If this is a conditional jump insn, record any known 6640 equivalences due to the condition being tested. */ 6641 insn = BB_END (bb); 6642 if (path_entry < path_size - 1 6643 && JUMP_P (insn) 6644 && single_set (insn) 6645 && any_condjump_p (insn)) 6646 { 6647 basic_block next_bb = ebb_data->path[path_entry + 1].bb; 6648 bool taken = (next_bb == BRANCH_EDGE (bb)->dest); 6649 record_jump_equiv (insn, taken); 6650 } 6651 6652 /* Clear the CC0-tracking related insns, they can't provide 6653 useful information across basic block boundaries. */ 6654 prev_insn_cc0 = 0; 6655 } 6656 6657 gcc_assert (next_qty <= max_qty); 6658 6659 free (qty_table); 6660 } 6661 6662 6663 /* Perform cse on the instructions of a function. 6664 F is the first instruction. 6665 NREGS is one plus the highest pseudo-reg number used in the instruction. 6666 6667 Return 2 if jump optimizations should be redone due to simplifications 6668 in conditional jump instructions. 6669 Return 1 if the CFG should be cleaned up because it has been modified. 6670 Return 0 otherwise. */ 6671 6672 static int 6673 cse_main (rtx_insn *f ATTRIBUTE_UNUSED, int nregs) 6674 { 6675 struct cse_basic_block_data ebb_data; 6676 basic_block bb; 6677 int *rc_order = XNEWVEC (int, last_basic_block_for_fn (cfun)); 6678 int i, n_blocks; 6679 6680 /* CSE doesn't use dominane info but can invalidate it in different ways. 6681 For simplicity free dominance info here. */ 6682 free_dominance_info (CDI_DOMINATORS); 6683 6684 df_set_flags (DF_LR_RUN_DCE); 6685 df_note_add_problem (); 6686 df_analyze (); 6687 df_set_flags (DF_DEFER_INSN_RESCAN); 6688 6689 reg_scan (get_insns (), max_reg_num ()); 6690 init_cse_reg_info (nregs); 6691 6692 ebb_data.path = XNEWVEC (struct branch_path, 6693 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH)); 6694 6695 cse_cfg_altered = false; 6696 cse_jumps_altered = false; 6697 recorded_label_ref = false; 6698 constant_pool_entries_cost = 0; 6699 constant_pool_entries_regcost = 0; 6700 ebb_data.path_size = 0; 6701 ebb_data.nsets = 0; 6702 rtl_hooks = cse_rtl_hooks; 6703 6704 init_recog (); 6705 init_alias_analysis (); 6706 6707 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs); 6708 6709 /* Set up the table of already visited basic blocks. */ 6710 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun)); 6711 bitmap_clear (cse_visited_basic_blocks); 6712 6713 /* Loop over basic blocks in reverse completion order (RPO), 6714 excluding the ENTRY and EXIT blocks. */ 6715 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false); 6716 i = 0; 6717 while (i < n_blocks) 6718 { 6719 /* Find the first block in the RPO queue that we have not yet 6720 processed before. */ 6721 do 6722 { 6723 bb = BASIC_BLOCK_FOR_FN (cfun, rc_order[i++]); 6724 } 6725 while (bitmap_bit_p (cse_visited_basic_blocks, bb->index) 6726 && i < n_blocks); 6727 6728 /* Find all paths starting with BB, and process them. */ 6729 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps)) 6730 { 6731 /* Pre-scan the path. */ 6732 cse_prescan_path (&ebb_data); 6733 6734 /* If this basic block has no sets, skip it. */ 6735 if (ebb_data.nsets == 0) 6736 continue; 6737 6738 /* Get a reasonable estimate for the maximum number of qty's 6739 needed for this path. For this, we take the number of sets 6740 and multiply that by MAX_RECOG_OPERANDS. */ 6741 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS; 6742 6743 /* Dump the path we're about to process. */ 6744 if (dump_file) 6745 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file); 6746 6747 cse_extended_basic_block (&ebb_data); 6748 } 6749 } 6750 6751 /* Clean up. */ 6752 end_alias_analysis (); 6753 free (reg_eqv_table); 6754 free (ebb_data.path); 6755 sbitmap_free (cse_visited_basic_blocks); 6756 free (rc_order); 6757 rtl_hooks = general_rtl_hooks; 6758 6759 if (cse_jumps_altered || recorded_label_ref) 6760 return 2; 6761 else if (cse_cfg_altered) 6762 return 1; 6763 else 6764 return 0; 6765 } 6766 6767 /* Count the number of times registers are used (not set) in X. 6768 COUNTS is an array in which we accumulate the count, INCR is how much 6769 we count each register usage. 6770 6771 Don't count a usage of DEST, which is the SET_DEST of a SET which 6772 contains X in its SET_SRC. This is because such a SET does not 6773 modify the liveness of DEST. 6774 DEST is set to pc_rtx for a trapping insn, or for an insn with side effects. 6775 We must then count uses of a SET_DEST regardless, because the insn can't be 6776 deleted here. */ 6777 6778 static void 6779 count_reg_usage (rtx x, int *counts, rtx dest, int incr) 6780 { 6781 enum rtx_code code; 6782 rtx note; 6783 const char *fmt; 6784 int i, j; 6785 6786 if (x == 0) 6787 return; 6788 6789 switch (code = GET_CODE (x)) 6790 { 6791 case REG: 6792 if (x != dest) 6793 counts[REGNO (x)] += incr; 6794 return; 6795 6796 case PC: 6797 case CC0: 6798 case CONST: 6799 CASE_CONST_ANY: 6800 case SYMBOL_REF: 6801 case LABEL_REF: 6802 return; 6803 6804 case CLOBBER: 6805 /* If we are clobbering a MEM, mark any registers inside the address 6806 as being used. */ 6807 if (MEM_P (XEXP (x, 0))) 6808 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr); 6809 return; 6810 6811 case SET: 6812 /* Unless we are setting a REG, count everything in SET_DEST. */ 6813 if (!REG_P (SET_DEST (x))) 6814 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr); 6815 count_reg_usage (SET_SRC (x), counts, 6816 dest ? dest : SET_DEST (x), 6817 incr); 6818 return; 6819 6820 case DEBUG_INSN: 6821 return; 6822 6823 case CALL_INSN: 6824 case INSN: 6825 case JUMP_INSN: 6826 /* We expect dest to be NULL_RTX here. If the insn may throw, 6827 or if it cannot be deleted due to side-effects, mark this fact 6828 by setting DEST to pc_rtx. */ 6829 if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x)) 6830 || side_effects_p (PATTERN (x))) 6831 dest = pc_rtx; 6832 if (code == CALL_INSN) 6833 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr); 6834 count_reg_usage (PATTERN (x), counts, dest, incr); 6835 6836 /* Things used in a REG_EQUAL note aren't dead since loop may try to 6837 use them. */ 6838 6839 note = find_reg_equal_equiv_note (x); 6840 if (note) 6841 { 6842 rtx eqv = XEXP (note, 0); 6843 6844 if (GET_CODE (eqv) == EXPR_LIST) 6845 /* This REG_EQUAL note describes the result of a function call. 6846 Process all the arguments. */ 6847 do 6848 { 6849 count_reg_usage (XEXP (eqv, 0), counts, dest, incr); 6850 eqv = XEXP (eqv, 1); 6851 } 6852 while (eqv && GET_CODE (eqv) == EXPR_LIST); 6853 else 6854 count_reg_usage (eqv, counts, dest, incr); 6855 } 6856 return; 6857 6858 case EXPR_LIST: 6859 if (REG_NOTE_KIND (x) == REG_EQUAL 6860 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE) 6861 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)), 6862 involving registers in the address. */ 6863 || GET_CODE (XEXP (x, 0)) == CLOBBER) 6864 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr); 6865 6866 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr); 6867 return; 6868 6869 case ASM_OPERANDS: 6870 /* Iterate over just the inputs, not the constraints as well. */ 6871 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--) 6872 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr); 6873 return; 6874 6875 case INSN_LIST: 6876 case INT_LIST: 6877 gcc_unreachable (); 6878 6879 default: 6880 break; 6881 } 6882 6883 fmt = GET_RTX_FORMAT (code); 6884 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 6885 { 6886 if (fmt[i] == 'e') 6887 count_reg_usage (XEXP (x, i), counts, dest, incr); 6888 else if (fmt[i] == 'E') 6889 for (j = XVECLEN (x, i) - 1; j >= 0; j--) 6890 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr); 6891 } 6892 } 6893 6894 /* Return true if X is a dead register. */ 6895 6896 static inline int 6897 is_dead_reg (const_rtx x, int *counts) 6898 { 6899 return (REG_P (x) 6900 && REGNO (x) >= FIRST_PSEUDO_REGISTER 6901 && counts[REGNO (x)] == 0); 6902 } 6903 6904 /* Return true if set is live. */ 6905 static bool 6906 set_live_p (rtx set, rtx_insn *insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */ 6907 int *counts) 6908 { 6909 rtx_insn *tem; 6910 6911 if (set_noop_p (set)) 6912 ; 6913 6914 else if (GET_CODE (SET_DEST (set)) == CC0 6915 && !side_effects_p (SET_SRC (set)) 6916 && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX 6917 || !INSN_P (tem) 6918 || !reg_referenced_p (cc0_rtx, PATTERN (tem)))) 6919 return false; 6920 else if (!is_dead_reg (SET_DEST (set), counts) 6921 || side_effects_p (SET_SRC (set))) 6922 return true; 6923 return false; 6924 } 6925 6926 /* Return true if insn is live. */ 6927 6928 static bool 6929 insn_live_p (rtx_insn *insn, int *counts) 6930 { 6931 int i; 6932 if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn)) 6933 return true; 6934 else if (GET_CODE (PATTERN (insn)) == SET) 6935 return set_live_p (PATTERN (insn), insn, counts); 6936 else if (GET_CODE (PATTERN (insn)) == PARALLEL) 6937 { 6938 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--) 6939 { 6940 rtx elt = XVECEXP (PATTERN (insn), 0, i); 6941 6942 if (GET_CODE (elt) == SET) 6943 { 6944 if (set_live_p (elt, insn, counts)) 6945 return true; 6946 } 6947 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE) 6948 return true; 6949 } 6950 return false; 6951 } 6952 else if (DEBUG_INSN_P (insn)) 6953 { 6954 rtx_insn *next; 6955 6956 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next)) 6957 if (NOTE_P (next)) 6958 continue; 6959 else if (!DEBUG_INSN_P (next)) 6960 return true; 6961 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next)) 6962 return false; 6963 6964 return true; 6965 } 6966 else 6967 return true; 6968 } 6969 6970 /* Count the number of stores into pseudo. Callback for note_stores. */ 6971 6972 static void 6973 count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data) 6974 { 6975 int *counts = (int *) data; 6976 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER) 6977 counts[REGNO (x)]++; 6978 } 6979 6980 /* Return if DEBUG_INSN pattern PAT needs to be reset because some dead 6981 pseudo doesn't have a replacement. COUNTS[X] is zero if register X 6982 is dead and REPLACEMENTS[X] is null if it has no replacemenet. 6983 Set *SEEN_REPL to true if we see a dead register that does have 6984 a replacement. */ 6985 6986 static bool 6987 is_dead_debug_insn (const_rtx pat, int *counts, rtx *replacements, 6988 bool *seen_repl) 6989 { 6990 subrtx_iterator::array_type array; 6991 FOR_EACH_SUBRTX (iter, array, pat, NONCONST) 6992 { 6993 const_rtx x = *iter; 6994 if (is_dead_reg (x, counts)) 6995 { 6996 if (replacements && replacements[REGNO (x)] != NULL_RTX) 6997 *seen_repl = true; 6998 else 6999 return true; 7000 } 7001 } 7002 return false; 7003 } 7004 7005 /* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR. 7006 Callback for simplify_replace_fn_rtx. */ 7007 7008 static rtx 7009 replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data) 7010 { 7011 rtx *replacements = (rtx *) data; 7012 7013 if (REG_P (x) 7014 && REGNO (x) >= FIRST_PSEUDO_REGISTER 7015 && replacements[REGNO (x)] != NULL_RTX) 7016 { 7017 if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)])) 7018 return replacements[REGNO (x)]; 7019 return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)], 7020 GET_MODE (replacements[REGNO (x)])); 7021 } 7022 return NULL_RTX; 7023 } 7024 7025 /* Scan all the insns and delete any that are dead; i.e., they store a register 7026 that is never used or they copy a register to itself. 7027 7028 This is used to remove insns made obviously dead by cse, loop or other 7029 optimizations. It improves the heuristics in loop since it won't try to 7030 move dead invariants out of loops or make givs for dead quantities. The 7031 remaining passes of the compilation are also sped up. */ 7032 7033 int 7034 delete_trivially_dead_insns (rtx_insn *insns, int nreg) 7035 { 7036 int *counts; 7037 rtx_insn *insn, *prev; 7038 rtx *replacements = NULL; 7039 int ndead = 0; 7040 7041 timevar_push (TV_DELETE_TRIVIALLY_DEAD); 7042 /* First count the number of times each register is used. */ 7043 if (MAY_HAVE_DEBUG_INSNS) 7044 { 7045 counts = XCNEWVEC (int, nreg * 3); 7046 for (insn = insns; insn; insn = NEXT_INSN (insn)) 7047 if (DEBUG_INSN_P (insn)) 7048 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg, 7049 NULL_RTX, 1); 7050 else if (INSN_P (insn)) 7051 { 7052 count_reg_usage (insn, counts, NULL_RTX, 1); 7053 note_stores (PATTERN (insn), count_stores, counts + nreg * 2); 7054 } 7055 /* If there can be debug insns, COUNTS are 3 consecutive arrays. 7056 First one counts how many times each pseudo is used outside 7057 of debug insns, second counts how many times each pseudo is 7058 used in debug insns and third counts how many times a pseudo 7059 is stored. */ 7060 } 7061 else 7062 { 7063 counts = XCNEWVEC (int, nreg); 7064 for (insn = insns; insn; insn = NEXT_INSN (insn)) 7065 if (INSN_P (insn)) 7066 count_reg_usage (insn, counts, NULL_RTX, 1); 7067 /* If no debug insns can be present, COUNTS is just an array 7068 which counts how many times each pseudo is used. */ 7069 } 7070 /* Pseudo PIC register should be considered as used due to possible 7071 new usages generated. */ 7072 if (!reload_completed 7073 && pic_offset_table_rtx 7074 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER) 7075 counts[REGNO (pic_offset_table_rtx)]++; 7076 /* Go from the last insn to the first and delete insns that only set unused 7077 registers or copy a register to itself. As we delete an insn, remove 7078 usage counts for registers it uses. 7079 7080 The first jump optimization pass may leave a real insn as the last 7081 insn in the function. We must not skip that insn or we may end 7082 up deleting code that is not really dead. 7083 7084 If some otherwise unused register is only used in DEBUG_INSNs, 7085 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before 7086 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR 7087 has been created for the unused register, replace it with 7088 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */ 7089 for (insn = get_last_insn (); insn; insn = prev) 7090 { 7091 int live_insn = 0; 7092 7093 prev = PREV_INSN (insn); 7094 if (!INSN_P (insn)) 7095 continue; 7096 7097 live_insn = insn_live_p (insn, counts); 7098 7099 /* If this is a dead insn, delete it and show registers in it aren't 7100 being used. */ 7101 7102 if (! live_insn && dbg_cnt (delete_trivial_dead)) 7103 { 7104 if (DEBUG_INSN_P (insn)) 7105 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg, 7106 NULL_RTX, -1); 7107 else 7108 { 7109 rtx set; 7110 if (MAY_HAVE_DEBUG_INSNS 7111 && (set = single_set (insn)) != NULL_RTX 7112 && is_dead_reg (SET_DEST (set), counts) 7113 /* Used at least once in some DEBUG_INSN. */ 7114 && counts[REGNO (SET_DEST (set)) + nreg] > 0 7115 /* And set exactly once. */ 7116 && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1 7117 && !side_effects_p (SET_SRC (set)) 7118 && asm_noperands (PATTERN (insn)) < 0) 7119 { 7120 rtx dval, bind_var_loc; 7121 rtx_insn *bind; 7122 7123 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */ 7124 dval = make_debug_expr_from_rtl (SET_DEST (set)); 7125 7126 /* Emit a debug bind insn before the insn in which 7127 reg dies. */ 7128 bind_var_loc = 7129 gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)), 7130 DEBUG_EXPR_TREE_DECL (dval), 7131 SET_SRC (set), 7132 VAR_INIT_STATUS_INITIALIZED); 7133 count_reg_usage (bind_var_loc, counts + nreg, NULL_RTX, 1); 7134 7135 bind = emit_debug_insn_before (bind_var_loc, insn); 7136 df_insn_rescan (bind); 7137 7138 if (replacements == NULL) 7139 replacements = XCNEWVEC (rtx, nreg); 7140 replacements[REGNO (SET_DEST (set))] = dval; 7141 } 7142 7143 count_reg_usage (insn, counts, NULL_RTX, -1); 7144 ndead++; 7145 } 7146 cse_cfg_altered |= delete_insn_and_edges (insn); 7147 } 7148 } 7149 7150 if (MAY_HAVE_DEBUG_INSNS) 7151 { 7152 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn)) 7153 if (DEBUG_INSN_P (insn)) 7154 { 7155 /* If this debug insn references a dead register that wasn't replaced 7156 with an DEBUG_EXPR, reset the DEBUG_INSN. */ 7157 bool seen_repl = false; 7158 if (is_dead_debug_insn (INSN_VAR_LOCATION_LOC (insn), 7159 counts, replacements, &seen_repl)) 7160 { 7161 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC (); 7162 df_insn_rescan (insn); 7163 } 7164 else if (seen_repl) 7165 { 7166 INSN_VAR_LOCATION_LOC (insn) 7167 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn), 7168 NULL_RTX, replace_dead_reg, 7169 replacements); 7170 df_insn_rescan (insn); 7171 } 7172 } 7173 free (replacements); 7174 } 7175 7176 if (dump_file && ndead) 7177 fprintf (dump_file, "Deleted %i trivially dead insns\n", 7178 ndead); 7179 /* Clean up. */ 7180 free (counts); 7181 timevar_pop (TV_DELETE_TRIVIALLY_DEAD); 7182 return ndead; 7183 } 7184 7185 /* If LOC contains references to NEWREG in a different mode, change them 7186 to use NEWREG instead. */ 7187 7188 static void 7189 cse_change_cc_mode (subrtx_ptr_iterator::array_type &array, 7190 rtx *loc, rtx_insn *insn, rtx newreg) 7191 { 7192 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST) 7193 { 7194 rtx *loc = *iter; 7195 rtx x = *loc; 7196 if (x 7197 && REG_P (x) 7198 && REGNO (x) == REGNO (newreg) 7199 && GET_MODE (x) != GET_MODE (newreg)) 7200 { 7201 validate_change (insn, loc, newreg, 1); 7202 iter.skip_subrtxes (); 7203 } 7204 } 7205 } 7206 7207 /* Change the mode of any reference to the register REGNO (NEWREG) to 7208 GET_MODE (NEWREG) in INSN. */ 7209 7210 static void 7211 cse_change_cc_mode_insn (rtx_insn *insn, rtx newreg) 7212 { 7213 int success; 7214 7215 if (!INSN_P (insn)) 7216 return; 7217 7218 subrtx_ptr_iterator::array_type array; 7219 cse_change_cc_mode (array, &PATTERN (insn), insn, newreg); 7220 cse_change_cc_mode (array, ®_NOTES (insn), insn, newreg); 7221 7222 /* If the following assertion was triggered, there is most probably 7223 something wrong with the cc_modes_compatible back end function. 7224 CC modes only can be considered compatible if the insn - with the mode 7225 replaced by any of the compatible modes - can still be recognized. */ 7226 success = apply_change_group (); 7227 gcc_assert (success); 7228 } 7229 7230 /* Change the mode of any reference to the register REGNO (NEWREG) to 7231 GET_MODE (NEWREG), starting at START. Stop before END. Stop at 7232 any instruction which modifies NEWREG. */ 7233 7234 static void 7235 cse_change_cc_mode_insns (rtx_insn *start, rtx_insn *end, rtx newreg) 7236 { 7237 rtx_insn *insn; 7238 7239 for (insn = start; insn != end; insn = NEXT_INSN (insn)) 7240 { 7241 if (! INSN_P (insn)) 7242 continue; 7243 7244 if (reg_set_p (newreg, insn)) 7245 return; 7246 7247 cse_change_cc_mode_insn (insn, newreg); 7248 } 7249 } 7250 7251 /* BB is a basic block which finishes with CC_REG as a condition code 7252 register which is set to CC_SRC. Look through the successors of BB 7253 to find blocks which have a single predecessor (i.e., this one), 7254 and look through those blocks for an assignment to CC_REG which is 7255 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are 7256 permitted to change the mode of CC_SRC to a compatible mode. This 7257 returns VOIDmode if no equivalent assignments were found. 7258 Otherwise it returns the mode which CC_SRC should wind up with. 7259 ORIG_BB should be the same as BB in the outermost cse_cc_succs call, 7260 but is passed unmodified down to recursive calls in order to prevent 7261 endless recursion. 7262 7263 The main complexity in this function is handling the mode issues. 7264 We may have more than one duplicate which we can eliminate, and we 7265 try to find a mode which will work for multiple duplicates. */ 7266 7267 static machine_mode 7268 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src, 7269 bool can_change_mode) 7270 { 7271 bool found_equiv; 7272 machine_mode mode; 7273 unsigned int insn_count; 7274 edge e; 7275 rtx_insn *insns[2]; 7276 machine_mode modes[2]; 7277 rtx_insn *last_insns[2]; 7278 unsigned int i; 7279 rtx newreg; 7280 edge_iterator ei; 7281 7282 /* We expect to have two successors. Look at both before picking 7283 the final mode for the comparison. If we have more successors 7284 (i.e., some sort of table jump, although that seems unlikely), 7285 then we require all beyond the first two to use the same 7286 mode. */ 7287 7288 found_equiv = false; 7289 mode = GET_MODE (cc_src); 7290 insn_count = 0; 7291 FOR_EACH_EDGE (e, ei, bb->succs) 7292 { 7293 rtx_insn *insn; 7294 rtx_insn *end; 7295 7296 if (e->flags & EDGE_COMPLEX) 7297 continue; 7298 7299 if (EDGE_COUNT (e->dest->preds) != 1 7300 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun) 7301 /* Avoid endless recursion on unreachable blocks. */ 7302 || e->dest == orig_bb) 7303 continue; 7304 7305 end = NEXT_INSN (BB_END (e->dest)); 7306 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn)) 7307 { 7308 rtx set; 7309 7310 if (! INSN_P (insn)) 7311 continue; 7312 7313 /* If CC_SRC is modified, we have to stop looking for 7314 something which uses it. */ 7315 if (modified_in_p (cc_src, insn)) 7316 break; 7317 7318 /* Check whether INSN sets CC_REG to CC_SRC. */ 7319 set = single_set (insn); 7320 if (set 7321 && REG_P (SET_DEST (set)) 7322 && REGNO (SET_DEST (set)) == REGNO (cc_reg)) 7323 { 7324 bool found; 7325 machine_mode set_mode; 7326 machine_mode comp_mode; 7327 7328 found = false; 7329 set_mode = GET_MODE (SET_SRC (set)); 7330 comp_mode = set_mode; 7331 if (rtx_equal_p (cc_src, SET_SRC (set))) 7332 found = true; 7333 else if (GET_CODE (cc_src) == COMPARE 7334 && GET_CODE (SET_SRC (set)) == COMPARE 7335 && mode != set_mode 7336 && rtx_equal_p (XEXP (cc_src, 0), 7337 XEXP (SET_SRC (set), 0)) 7338 && rtx_equal_p (XEXP (cc_src, 1), 7339 XEXP (SET_SRC (set), 1))) 7340 7341 { 7342 comp_mode = targetm.cc_modes_compatible (mode, set_mode); 7343 if (comp_mode != VOIDmode 7344 && (can_change_mode || comp_mode == mode)) 7345 found = true; 7346 } 7347 7348 if (found) 7349 { 7350 found_equiv = true; 7351 if (insn_count < ARRAY_SIZE (insns)) 7352 { 7353 insns[insn_count] = insn; 7354 modes[insn_count] = set_mode; 7355 last_insns[insn_count] = end; 7356 ++insn_count; 7357 7358 if (mode != comp_mode) 7359 { 7360 gcc_assert (can_change_mode); 7361 mode = comp_mode; 7362 7363 /* The modified insn will be re-recognized later. */ 7364 PUT_MODE (cc_src, mode); 7365 } 7366 } 7367 else 7368 { 7369 if (set_mode != mode) 7370 { 7371 /* We found a matching expression in the 7372 wrong mode, but we don't have room to 7373 store it in the array. Punt. This case 7374 should be rare. */ 7375 break; 7376 } 7377 /* INSN sets CC_REG to a value equal to CC_SRC 7378 with the right mode. We can simply delete 7379 it. */ 7380 delete_insn (insn); 7381 } 7382 7383 /* We found an instruction to delete. Keep looking, 7384 in the hopes of finding a three-way jump. */ 7385 continue; 7386 } 7387 7388 /* We found an instruction which sets the condition 7389 code, so don't look any farther. */ 7390 break; 7391 } 7392 7393 /* If INSN sets CC_REG in some other way, don't look any 7394 farther. */ 7395 if (reg_set_p (cc_reg, insn)) 7396 break; 7397 } 7398 7399 /* If we fell off the bottom of the block, we can keep looking 7400 through successors. We pass CAN_CHANGE_MODE as false because 7401 we aren't prepared to handle compatibility between the 7402 further blocks and this block. */ 7403 if (insn == end) 7404 { 7405 machine_mode submode; 7406 7407 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false); 7408 if (submode != VOIDmode) 7409 { 7410 gcc_assert (submode == mode); 7411 found_equiv = true; 7412 can_change_mode = false; 7413 } 7414 } 7415 } 7416 7417 if (! found_equiv) 7418 return VOIDmode; 7419 7420 /* Now INSN_COUNT is the number of instructions we found which set 7421 CC_REG to a value equivalent to CC_SRC. The instructions are in 7422 INSNS. The modes used by those instructions are in MODES. */ 7423 7424 newreg = NULL_RTX; 7425 for (i = 0; i < insn_count; ++i) 7426 { 7427 if (modes[i] != mode) 7428 { 7429 /* We need to change the mode of CC_REG in INSNS[i] and 7430 subsequent instructions. */ 7431 if (! newreg) 7432 { 7433 if (GET_MODE (cc_reg) == mode) 7434 newreg = cc_reg; 7435 else 7436 newreg = gen_rtx_REG (mode, REGNO (cc_reg)); 7437 } 7438 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i], 7439 newreg); 7440 } 7441 7442 cse_cfg_altered |= delete_insn_and_edges (insns[i]); 7443 } 7444 7445 return mode; 7446 } 7447 7448 /* If we have a fixed condition code register (or two), walk through 7449 the instructions and try to eliminate duplicate assignments. */ 7450 7451 static void 7452 cse_condition_code_reg (void) 7453 { 7454 unsigned int cc_regno_1; 7455 unsigned int cc_regno_2; 7456 rtx cc_reg_1; 7457 rtx cc_reg_2; 7458 basic_block bb; 7459 7460 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2)) 7461 return; 7462 7463 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1); 7464 if (cc_regno_2 != INVALID_REGNUM) 7465 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2); 7466 else 7467 cc_reg_2 = NULL_RTX; 7468 7469 FOR_EACH_BB_FN (bb, cfun) 7470 { 7471 rtx_insn *last_insn; 7472 rtx cc_reg; 7473 rtx_insn *insn; 7474 rtx_insn *cc_src_insn; 7475 rtx cc_src; 7476 machine_mode mode; 7477 machine_mode orig_mode; 7478 7479 /* Look for blocks which end with a conditional jump based on a 7480 condition code register. Then look for the instruction which 7481 sets the condition code register. Then look through the 7482 successor blocks for instructions which set the condition 7483 code register to the same value. There are other possible 7484 uses of the condition code register, but these are by far the 7485 most common and the ones which we are most likely to be able 7486 to optimize. */ 7487 7488 last_insn = BB_END (bb); 7489 if (!JUMP_P (last_insn)) 7490 continue; 7491 7492 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn))) 7493 cc_reg = cc_reg_1; 7494 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn))) 7495 cc_reg = cc_reg_2; 7496 else 7497 continue; 7498 7499 cc_src_insn = NULL; 7500 cc_src = NULL_RTX; 7501 for (insn = PREV_INSN (last_insn); 7502 insn && insn != PREV_INSN (BB_HEAD (bb)); 7503 insn = PREV_INSN (insn)) 7504 { 7505 rtx set; 7506 7507 if (! INSN_P (insn)) 7508 continue; 7509 set = single_set (insn); 7510 if (set 7511 && REG_P (SET_DEST (set)) 7512 && REGNO (SET_DEST (set)) == REGNO (cc_reg)) 7513 { 7514 cc_src_insn = insn; 7515 cc_src = SET_SRC (set); 7516 break; 7517 } 7518 else if (reg_set_p (cc_reg, insn)) 7519 break; 7520 } 7521 7522 if (! cc_src_insn) 7523 continue; 7524 7525 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn))) 7526 continue; 7527 7528 /* Now CC_REG is a condition code register used for a 7529 conditional jump at the end of the block, and CC_SRC, in 7530 CC_SRC_INSN, is the value to which that condition code 7531 register is set, and CC_SRC is still meaningful at the end of 7532 the basic block. */ 7533 7534 orig_mode = GET_MODE (cc_src); 7535 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true); 7536 if (mode != VOIDmode) 7537 { 7538 gcc_assert (mode == GET_MODE (cc_src)); 7539 if (mode != orig_mode) 7540 { 7541 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg)); 7542 7543 cse_change_cc_mode_insn (cc_src_insn, newreg); 7544 7545 /* Do the same in the following insns that use the 7546 current value of CC_REG within BB. */ 7547 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn), 7548 NEXT_INSN (last_insn), 7549 newreg); 7550 } 7551 } 7552 } 7553 } 7554 7555 7556 /* Perform common subexpression elimination. Nonzero value from 7557 `cse_main' means that jumps were simplified and some code may now 7558 be unreachable, so do jump optimization again. */ 7559 static unsigned int 7560 rest_of_handle_cse (void) 7561 { 7562 int tem; 7563 7564 if (dump_file) 7565 dump_flow_info (dump_file, dump_flags); 7566 7567 tem = cse_main (get_insns (), max_reg_num ()); 7568 7569 /* If we are not running more CSE passes, then we are no longer 7570 expecting CSE to be run. But always rerun it in a cheap mode. */ 7571 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse; 7572 7573 if (tem == 2) 7574 { 7575 timevar_push (TV_JUMP); 7576 rebuild_jump_labels (get_insns ()); 7577 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED); 7578 timevar_pop (TV_JUMP); 7579 } 7580 else if (tem == 1 || optimize > 1) 7581 cse_cfg_altered |= cleanup_cfg (0); 7582 7583 return 0; 7584 } 7585 7586 namespace { 7587 7588 const pass_data pass_data_cse = 7589 { 7590 RTL_PASS, /* type */ 7591 "cse1", /* name */ 7592 OPTGROUP_NONE, /* optinfo_flags */ 7593 TV_CSE, /* tv_id */ 7594 0, /* properties_required */ 7595 0, /* properties_provided */ 7596 0, /* properties_destroyed */ 7597 0, /* todo_flags_start */ 7598 TODO_df_finish, /* todo_flags_finish */ 7599 }; 7600 7601 class pass_cse : public rtl_opt_pass 7602 { 7603 public: 7604 pass_cse (gcc::context *ctxt) 7605 : rtl_opt_pass (pass_data_cse, ctxt) 7606 {} 7607 7608 /* opt_pass methods: */ 7609 virtual bool gate (function *) { return optimize > 0; } 7610 virtual unsigned int execute (function *) { return rest_of_handle_cse (); } 7611 7612 }; // class pass_cse 7613 7614 } // anon namespace 7615 7616 rtl_opt_pass * 7617 make_pass_cse (gcc::context *ctxt) 7618 { 7619 return new pass_cse (ctxt); 7620 } 7621 7622 7623 /* Run second CSE pass after loop optimizations. */ 7624 static unsigned int 7625 rest_of_handle_cse2 (void) 7626 { 7627 int tem; 7628 7629 if (dump_file) 7630 dump_flow_info (dump_file, dump_flags); 7631 7632 tem = cse_main (get_insns (), max_reg_num ()); 7633 7634 /* Run a pass to eliminate duplicated assignments to condition code 7635 registers. We have to run this after bypass_jumps, because it 7636 makes it harder for that pass to determine whether a jump can be 7637 bypassed safely. */ 7638 cse_condition_code_reg (); 7639 7640 delete_trivially_dead_insns (get_insns (), max_reg_num ()); 7641 7642 if (tem == 2) 7643 { 7644 timevar_push (TV_JUMP); 7645 rebuild_jump_labels (get_insns ()); 7646 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED); 7647 timevar_pop (TV_JUMP); 7648 } 7649 else if (tem == 1) 7650 cse_cfg_altered |= cleanup_cfg (0); 7651 7652 cse_not_expected = 1; 7653 return 0; 7654 } 7655 7656 7657 namespace { 7658 7659 const pass_data pass_data_cse2 = 7660 { 7661 RTL_PASS, /* type */ 7662 "cse2", /* name */ 7663 OPTGROUP_NONE, /* optinfo_flags */ 7664 TV_CSE2, /* tv_id */ 7665 0, /* properties_required */ 7666 0, /* properties_provided */ 7667 0, /* properties_destroyed */ 7668 0, /* todo_flags_start */ 7669 TODO_df_finish, /* todo_flags_finish */ 7670 }; 7671 7672 class pass_cse2 : public rtl_opt_pass 7673 { 7674 public: 7675 pass_cse2 (gcc::context *ctxt) 7676 : rtl_opt_pass (pass_data_cse2, ctxt) 7677 {} 7678 7679 /* opt_pass methods: */ 7680 virtual bool gate (function *) 7681 { 7682 return optimize > 0 && flag_rerun_cse_after_loop; 7683 } 7684 7685 virtual unsigned int execute (function *) { return rest_of_handle_cse2 (); } 7686 7687 }; // class pass_cse2 7688 7689 } // anon namespace 7690 7691 rtl_opt_pass * 7692 make_pass_cse2 (gcc::context *ctxt) 7693 { 7694 return new pass_cse2 (ctxt); 7695 } 7696 7697 /* Run second CSE pass after loop optimizations. */ 7698 static unsigned int 7699 rest_of_handle_cse_after_global_opts (void) 7700 { 7701 int save_cfj; 7702 int tem; 7703 7704 /* We only want to do local CSE, so don't follow jumps. */ 7705 save_cfj = flag_cse_follow_jumps; 7706 flag_cse_follow_jumps = 0; 7707 7708 rebuild_jump_labels (get_insns ()); 7709 tem = cse_main (get_insns (), max_reg_num ()); 7710 cse_cfg_altered |= purge_all_dead_edges (); 7711 delete_trivially_dead_insns (get_insns (), max_reg_num ()); 7712 7713 cse_not_expected = !flag_rerun_cse_after_loop; 7714 7715 /* If cse altered any jumps, rerun jump opts to clean things up. */ 7716 if (tem == 2) 7717 { 7718 timevar_push (TV_JUMP); 7719 rebuild_jump_labels (get_insns ()); 7720 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED); 7721 timevar_pop (TV_JUMP); 7722 } 7723 else if (tem == 1) 7724 cse_cfg_altered |= cleanup_cfg (0); 7725 7726 flag_cse_follow_jumps = save_cfj; 7727 return 0; 7728 } 7729 7730 namespace { 7731 7732 const pass_data pass_data_cse_after_global_opts = 7733 { 7734 RTL_PASS, /* type */ 7735 "cse_local", /* name */ 7736 OPTGROUP_NONE, /* optinfo_flags */ 7737 TV_CSE, /* tv_id */ 7738 0, /* properties_required */ 7739 0, /* properties_provided */ 7740 0, /* properties_destroyed */ 7741 0, /* todo_flags_start */ 7742 TODO_df_finish, /* todo_flags_finish */ 7743 }; 7744 7745 class pass_cse_after_global_opts : public rtl_opt_pass 7746 { 7747 public: 7748 pass_cse_after_global_opts (gcc::context *ctxt) 7749 : rtl_opt_pass (pass_data_cse_after_global_opts, ctxt) 7750 {} 7751 7752 /* opt_pass methods: */ 7753 virtual bool gate (function *) 7754 { 7755 return optimize > 0 && flag_rerun_cse_after_global_opts; 7756 } 7757 7758 virtual unsigned int execute (function *) 7759 { 7760 return rest_of_handle_cse_after_global_opts (); 7761 } 7762 7763 }; // class pass_cse_after_global_opts 7764 7765 } // anon namespace 7766 7767 rtl_opt_pass * 7768 make_pass_cse_after_global_opts (gcc::context *ctxt) 7769 { 7770 return new pass_cse_after_global_opts (ctxt); 7771 } 7772