1 /* Global constant/copy propagation for RTL. 2 Copyright (C) 1997-2013 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "tm.h" 24 #include "diagnostic-core.h" 25 #include "toplev.h" 26 27 #include "rtl.h" 28 #include "tree.h" 29 #include "tm_p.h" 30 #include "regs.h" 31 #include "hard-reg-set.h" 32 #include "flags.h" 33 #include "insn-config.h" 34 #include "recog.h" 35 #include "basic-block.h" 36 #include "function.h" 37 #include "expr.h" 38 #include "except.h" 39 #include "params.h" 40 #include "cselib.h" 41 #include "intl.h" 42 #include "obstack.h" 43 #include "tree-pass.h" 44 #include "hashtab.h" 45 #include "df.h" 46 #include "dbgcnt.h" 47 #include "target.h" 48 #include "cfgloop.h" 49 50 51 /* An obstack for our working variables. */ 52 static struct obstack cprop_obstack; 53 54 /* Occurrence of an expression. 55 There is one per basic block. If a pattern appears more than once the 56 last appearance is used. */ 57 58 struct occr 59 { 60 /* Next occurrence of this expression. */ 61 struct occr *next; 62 /* The insn that computes the expression. */ 63 rtx insn; 64 }; 65 66 typedef struct occr *occr_t; 67 68 /* Hash table entry for assignment expressions. */ 69 70 struct expr 71 { 72 /* The expression (DEST := SRC). */ 73 rtx dest; 74 rtx src; 75 76 /* Index in the available expression bitmaps. */ 77 int bitmap_index; 78 /* Next entry with the same hash. */ 79 struct expr *next_same_hash; 80 /* List of available occurrence in basic blocks in the function. 81 An "available occurrence" is one that is the last occurrence in the 82 basic block and whose operands are not modified by following statements 83 in the basic block [including this insn]. */ 84 struct occr *avail_occr; 85 }; 86 87 /* Hash table for copy propagation expressions. 88 Each hash table is an array of buckets. 89 ??? It is known that if it were an array of entries, structure elements 90 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is 91 not clear whether in the final analysis a sufficient amount of memory would 92 be saved as the size of the available expression bitmaps would be larger 93 [one could build a mapping table without holes afterwards though]. 94 Someday I'll perform the computation and figure it out. */ 95 96 struct hash_table_d 97 { 98 /* The table itself. 99 This is an array of `set_hash_table_size' elements. */ 100 struct expr **table; 101 102 /* Size of the hash table, in elements. */ 103 unsigned int size; 104 105 /* Number of hash table elements. */ 106 unsigned int n_elems; 107 }; 108 109 /* Copy propagation hash table. */ 110 static struct hash_table_d set_hash_table; 111 112 /* Array of implicit set patterns indexed by basic block index. */ 113 static rtx *implicit_sets; 114 115 /* Array of indexes of expressions for implicit set patterns indexed by basic 116 block index. In other words, implicit_set_indexes[i] is the bitmap_index 117 of the expression whose RTX is implicit_sets[i]. */ 118 static int *implicit_set_indexes; 119 120 /* Bitmap containing one bit for each register in the program. 121 Used when performing GCSE to track which registers have been set since 122 the start or end of the basic block while traversing that block. */ 123 static regset reg_set_bitmap; 124 125 /* Various variables for statistics gathering. */ 126 127 /* Memory used in a pass. 128 This isn't intended to be absolutely precise. Its intent is only 129 to keep an eye on memory usage. */ 130 static int bytes_used; 131 132 /* Number of local constants propagated. */ 133 static int local_const_prop_count; 134 /* Number of local copies propagated. */ 135 static int local_copy_prop_count; 136 /* Number of global constants propagated. */ 137 static int global_const_prop_count; 138 /* Number of global copies propagated. */ 139 static int global_copy_prop_count; 140 141 #define GOBNEW(T) ((T *) cprop_alloc (sizeof (T))) 142 #define GOBNEWVAR(T, S) ((T *) cprop_alloc ((S))) 143 144 /* Cover function to obstack_alloc. */ 145 146 static void * 147 cprop_alloc (unsigned long size) 148 { 149 bytes_used += size; 150 return obstack_alloc (&cprop_obstack, size); 151 } 152 153 /* Return nonzero if register X is unchanged from INSN to the end 154 of INSN's basic block. */ 155 156 static int 157 reg_available_p (const_rtx x, const_rtx insn ATTRIBUTE_UNUSED) 158 { 159 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x)); 160 } 161 162 /* Hash a set of register REGNO. 163 164 Sets are hashed on the register that is set. This simplifies the PRE copy 165 propagation code. 166 167 ??? May need to make things more elaborate. Later, as necessary. */ 168 169 static unsigned int 170 hash_set (int regno, int hash_table_size) 171 { 172 return (unsigned) regno % hash_table_size; 173 } 174 175 /* Insert assignment DEST:=SET from INSN in the hash table. 176 DEST is a register and SET is a register or a suitable constant. 177 If the assignment is already present in the table, record it as 178 the last occurrence in INSN's basic block. 179 IMPLICIT is true if it's an implicit set, false otherwise. */ 180 181 static void 182 insert_set_in_table (rtx dest, rtx src, rtx insn, struct hash_table_d *table, 183 bool implicit) 184 { 185 bool found = false; 186 unsigned int hash; 187 struct expr *cur_expr, *last_expr = NULL; 188 struct occr *cur_occr; 189 190 hash = hash_set (REGNO (dest), table->size); 191 192 for (cur_expr = table->table[hash]; cur_expr; 193 cur_expr = cur_expr->next_same_hash) 194 { 195 if (dest == cur_expr->dest 196 && src == cur_expr->src) 197 { 198 found = true; 199 break; 200 } 201 last_expr = cur_expr; 202 } 203 204 if (! found) 205 { 206 cur_expr = GOBNEW (struct expr); 207 bytes_used += sizeof (struct expr); 208 if (table->table[hash] == NULL) 209 /* This is the first pattern that hashed to this index. */ 210 table->table[hash] = cur_expr; 211 else 212 /* Add EXPR to end of this hash chain. */ 213 last_expr->next_same_hash = cur_expr; 214 215 /* Set the fields of the expr element. 216 We must copy X because it can be modified when copy propagation is 217 performed on its operands. */ 218 cur_expr->dest = copy_rtx (dest); 219 cur_expr->src = copy_rtx (src); 220 cur_expr->bitmap_index = table->n_elems++; 221 cur_expr->next_same_hash = NULL; 222 cur_expr->avail_occr = NULL; 223 } 224 225 /* Now record the occurrence. */ 226 cur_occr = cur_expr->avail_occr; 227 228 if (cur_occr 229 && BLOCK_FOR_INSN (cur_occr->insn) == BLOCK_FOR_INSN (insn)) 230 { 231 /* Found another instance of the expression in the same basic block. 232 Prefer this occurrence to the currently recorded one. We want 233 the last one in the block and the block is scanned from start 234 to end. */ 235 cur_occr->insn = insn; 236 } 237 else 238 { 239 /* First occurrence of this expression in this basic block. */ 240 cur_occr = GOBNEW (struct occr); 241 bytes_used += sizeof (struct occr); 242 cur_occr->insn = insn; 243 cur_occr->next = cur_expr->avail_occr; 244 cur_expr->avail_occr = cur_occr; 245 } 246 247 /* Record bitmap_index of the implicit set in implicit_set_indexes. */ 248 if (implicit) 249 implicit_set_indexes[BLOCK_FOR_INSN(insn)->index] = cur_expr->bitmap_index; 250 } 251 252 /* Determine whether the rtx X should be treated as a constant for CPROP. 253 Since X might be inserted more than once we have to take care that it 254 is sharable. */ 255 256 static bool 257 cprop_constant_p (const_rtx x) 258 { 259 return CONSTANT_P (x) && (GET_CODE (x) != CONST || shared_const_p (x)); 260 } 261 262 /* Scan SET present in INSN and add an entry to the hash TABLE. 263 IMPLICIT is true if it's an implicit set, false otherwise. */ 264 265 static void 266 hash_scan_set (rtx set, rtx insn, struct hash_table_d *table, bool implicit) 267 { 268 rtx src = SET_SRC (set); 269 rtx dest = SET_DEST (set); 270 271 if (REG_P (dest) 272 && ! HARD_REGISTER_P (dest) 273 && reg_available_p (dest, insn) 274 && can_copy_p (GET_MODE (dest))) 275 { 276 /* See if a REG_EQUAL note shows this equivalent to a simpler expression. 277 278 This allows us to do a single CPROP pass and still eliminate 279 redundant constants, addresses or other expressions that are 280 constructed with multiple instructions. 281 282 However, keep the original SRC if INSN is a simple reg-reg move. In 283 In this case, there will almost always be a REG_EQUAL note on the 284 insn that sets SRC. By recording the REG_EQUAL value here as SRC 285 for INSN, we miss copy propagation opportunities. 286 287 Note that this does not impede profitable constant propagations. We 288 "look through" reg-reg sets in lookup_set. */ 289 rtx note = find_reg_equal_equiv_note (insn); 290 if (note != 0 291 && REG_NOTE_KIND (note) == REG_EQUAL 292 && !REG_P (src) 293 && cprop_constant_p (XEXP (note, 0))) 294 src = XEXP (note, 0), set = gen_rtx_SET (VOIDmode, dest, src); 295 296 /* Record sets for constant/copy propagation. */ 297 if ((REG_P (src) 298 && src != dest 299 && ! HARD_REGISTER_P (src) 300 && reg_available_p (src, insn)) 301 || cprop_constant_p (src)) 302 insert_set_in_table (dest, src, insn, table, implicit); 303 } 304 } 305 306 /* Process INSN and add hash table entries as appropriate. */ 307 308 static void 309 hash_scan_insn (rtx insn, struct hash_table_d *table) 310 { 311 rtx pat = PATTERN (insn); 312 int i; 313 314 /* Pick out the sets of INSN and for other forms of instructions record 315 what's been modified. */ 316 317 if (GET_CODE (pat) == SET) 318 hash_scan_set (pat, insn, table, false); 319 else if (GET_CODE (pat) == PARALLEL) 320 for (i = 0; i < XVECLEN (pat, 0); i++) 321 { 322 rtx x = XVECEXP (pat, 0, i); 323 324 if (GET_CODE (x) == SET) 325 hash_scan_set (x, insn, table, false); 326 } 327 } 328 329 /* Dump the hash table TABLE to file FILE under the name NAME. */ 330 331 static void 332 dump_hash_table (FILE *file, const char *name, struct hash_table_d *table) 333 { 334 int i; 335 /* Flattened out table, so it's printed in proper order. */ 336 struct expr **flat_table; 337 unsigned int *hash_val; 338 struct expr *expr; 339 340 flat_table = XCNEWVEC (struct expr *, table->n_elems); 341 hash_val = XNEWVEC (unsigned int, table->n_elems); 342 343 for (i = 0; i < (int) table->size; i++) 344 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash) 345 { 346 flat_table[expr->bitmap_index] = expr; 347 hash_val[expr->bitmap_index] = i; 348 } 349 350 fprintf (file, "%s hash table (%d buckets, %d entries)\n", 351 name, table->size, table->n_elems); 352 353 for (i = 0; i < (int) table->n_elems; i++) 354 if (flat_table[i] != 0) 355 { 356 expr = flat_table[i]; 357 fprintf (file, "Index %d (hash value %d)\n ", 358 expr->bitmap_index, hash_val[i]); 359 print_rtl (file, expr->dest); 360 fprintf (file, " := "); 361 print_rtl (file, expr->src); 362 fprintf (file, "\n"); 363 } 364 365 fprintf (file, "\n"); 366 367 free (flat_table); 368 free (hash_val); 369 } 370 371 /* Record as unavailable all registers that are DEF operands of INSN. */ 372 373 static void 374 make_set_regs_unavailable (rtx insn) 375 { 376 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn); 377 df_ref *def_rec; 378 379 for (def_rec = DF_INSN_INFO_DEFS (insn_info); *def_rec; def_rec++) 380 SET_REGNO_REG_SET (reg_set_bitmap, DF_REF_REGNO (*def_rec)); 381 } 382 383 /* Top level function to create an assignment hash table. 384 385 Assignment entries are placed in the hash table if 386 - they are of the form (set (pseudo-reg) src), 387 - src is something we want to perform const/copy propagation on, 388 - none of the operands or target are subsequently modified in the block 389 390 Currently src must be a pseudo-reg or a const_int. 391 392 TABLE is the table computed. */ 393 394 static void 395 compute_hash_table_work (struct hash_table_d *table) 396 { 397 basic_block bb; 398 399 /* Allocate vars to track sets of regs. */ 400 reg_set_bitmap = ALLOC_REG_SET (NULL); 401 402 FOR_EACH_BB (bb) 403 { 404 rtx insn; 405 406 /* Reset tables used to keep track of what's not yet invalid [since 407 the end of the block]. */ 408 CLEAR_REG_SET (reg_set_bitmap); 409 410 /* Go over all insns from the last to the first. This is convenient 411 for tracking available registers, i.e. not set between INSN and 412 the end of the basic block BB. */ 413 FOR_BB_INSNS_REVERSE (bb, insn) 414 { 415 /* Only real insns are interesting. */ 416 if (!NONDEBUG_INSN_P (insn)) 417 continue; 418 419 /* Record interesting sets from INSN in the hash table. */ 420 hash_scan_insn (insn, table); 421 422 /* Any registers set in INSN will make SETs above it not AVAIL. */ 423 make_set_regs_unavailable (insn); 424 } 425 426 /* Insert implicit sets in the hash table, pretending they appear as 427 insns at the head of the basic block. */ 428 if (implicit_sets[bb->index] != NULL_RTX) 429 hash_scan_set (implicit_sets[bb->index], BB_HEAD (bb), table, true); 430 } 431 432 FREE_REG_SET (reg_set_bitmap); 433 } 434 435 /* Allocate space for the set/expr hash TABLE. 436 It is used to determine the number of buckets to use. */ 437 438 static void 439 alloc_hash_table (struct hash_table_d *table) 440 { 441 int n; 442 443 n = get_max_insn_count (); 444 445 table->size = n / 4; 446 if (table->size < 11) 447 table->size = 11; 448 449 /* Attempt to maintain efficient use of hash table. 450 Making it an odd number is simplest for now. 451 ??? Later take some measurements. */ 452 table->size |= 1; 453 n = table->size * sizeof (struct expr *); 454 table->table = XNEWVAR (struct expr *, n); 455 } 456 457 /* Free things allocated by alloc_hash_table. */ 458 459 static void 460 free_hash_table (struct hash_table_d *table) 461 { 462 free (table->table); 463 } 464 465 /* Compute the hash TABLE for doing copy/const propagation or 466 expression hash table. */ 467 468 static void 469 compute_hash_table (struct hash_table_d *table) 470 { 471 /* Initialize count of number of entries in hash table. */ 472 table->n_elems = 0; 473 memset (table->table, 0, table->size * sizeof (struct expr *)); 474 475 compute_hash_table_work (table); 476 } 477 478 /* Expression tracking support. */ 479 480 /* Lookup REGNO in the set TABLE. The result is a pointer to the 481 table entry, or NULL if not found. */ 482 483 static struct expr * 484 lookup_set (unsigned int regno, struct hash_table_d *table) 485 { 486 unsigned int hash = hash_set (regno, table->size); 487 struct expr *expr; 488 489 expr = table->table[hash]; 490 491 while (expr && REGNO (expr->dest) != regno) 492 expr = expr->next_same_hash; 493 494 return expr; 495 } 496 497 /* Return the next entry for REGNO in list EXPR. */ 498 499 static struct expr * 500 next_set (unsigned int regno, struct expr *expr) 501 { 502 do 503 expr = expr->next_same_hash; 504 while (expr && REGNO (expr->dest) != regno); 505 506 return expr; 507 } 508 509 /* Reset tables used to keep track of what's still available [since the 510 start of the block]. */ 511 512 static void 513 reset_opr_set_tables (void) 514 { 515 /* Maintain a bitmap of which regs have been set since beginning of 516 the block. */ 517 CLEAR_REG_SET (reg_set_bitmap); 518 } 519 520 /* Return nonzero if the register X has not been set yet [since the 521 start of the basic block containing INSN]. */ 522 523 static int 524 reg_not_set_p (const_rtx x, const_rtx insn ATTRIBUTE_UNUSED) 525 { 526 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x)); 527 } 528 529 /* Record things set by INSN. 530 This data is used by reg_not_set_p. */ 531 532 static void 533 mark_oprs_set (rtx insn) 534 { 535 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn); 536 df_ref *def_rec; 537 538 for (def_rec = DF_INSN_INFO_DEFS (insn_info); *def_rec; def_rec++) 539 SET_REGNO_REG_SET (reg_set_bitmap, DF_REF_REGNO (*def_rec)); 540 } 541 542 /* Compute copy/constant propagation working variables. */ 543 544 /* Local properties of assignments. */ 545 static sbitmap *cprop_avloc; 546 static sbitmap *cprop_kill; 547 548 /* Global properties of assignments (computed from the local properties). */ 549 static sbitmap *cprop_avin; 550 static sbitmap *cprop_avout; 551 552 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of 553 basic blocks. N_SETS is the number of sets. */ 554 555 static void 556 alloc_cprop_mem (int n_blocks, int n_sets) 557 { 558 cprop_avloc = sbitmap_vector_alloc (n_blocks, n_sets); 559 cprop_kill = sbitmap_vector_alloc (n_blocks, n_sets); 560 561 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets); 562 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets); 563 } 564 565 /* Free vars used by copy/const propagation. */ 566 567 static void 568 free_cprop_mem (void) 569 { 570 sbitmap_vector_free (cprop_avloc); 571 sbitmap_vector_free (cprop_kill); 572 sbitmap_vector_free (cprop_avin); 573 sbitmap_vector_free (cprop_avout); 574 } 575 576 /* Compute the local properties of each recorded expression. 577 578 Local properties are those that are defined by the block, irrespective of 579 other blocks. 580 581 An expression is killed in a block if its operands, either DEST or SRC, are 582 modified in the block. 583 584 An expression is computed (locally available) in a block if it is computed 585 at least once and expression would contain the same value if the 586 computation was moved to the end of the block. 587 588 KILL and COMP are destination sbitmaps for recording local properties. */ 589 590 static void 591 compute_local_properties (sbitmap *kill, sbitmap *comp, 592 struct hash_table_d *table) 593 { 594 unsigned int i; 595 596 /* Initialize the bitmaps that were passed in. */ 597 bitmap_vector_clear (kill, last_basic_block); 598 bitmap_vector_clear (comp, last_basic_block); 599 600 for (i = 0; i < table->size; i++) 601 { 602 struct expr *expr; 603 604 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash) 605 { 606 int indx = expr->bitmap_index; 607 df_ref def; 608 struct occr *occr; 609 610 /* For each definition of the destination pseudo-reg, the expression 611 is killed in the block where the definition is. */ 612 for (def = DF_REG_DEF_CHAIN (REGNO (expr->dest)); 613 def; def = DF_REF_NEXT_REG (def)) 614 bitmap_set_bit (kill[DF_REF_BB (def)->index], indx); 615 616 /* If the source is a pseudo-reg, for each definition of the source, 617 the expression is killed in the block where the definition is. */ 618 if (REG_P (expr->src)) 619 for (def = DF_REG_DEF_CHAIN (REGNO (expr->src)); 620 def; def = DF_REF_NEXT_REG (def)) 621 bitmap_set_bit (kill[DF_REF_BB (def)->index], indx); 622 623 /* The occurrences recorded in avail_occr are exactly those that 624 are locally available in the block where they are. */ 625 for (occr = expr->avail_occr; occr != NULL; occr = occr->next) 626 { 627 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx); 628 } 629 } 630 } 631 } 632 633 /* Hash table support. */ 634 635 /* Top level routine to do the dataflow analysis needed by copy/const 636 propagation. */ 637 638 static void 639 compute_cprop_data (void) 640 { 641 basic_block bb; 642 643 compute_local_properties (cprop_kill, cprop_avloc, &set_hash_table); 644 compute_available (cprop_avloc, cprop_kill, cprop_avout, cprop_avin); 645 646 /* Merge implicit sets into CPROP_AVIN. They are always available at the 647 entry of their basic block. We need to do this because 1) implicit sets 648 aren't recorded for the local pass so they cannot be propagated within 649 their basic block by this pass and 2) the global pass would otherwise 650 propagate them only in the successors of their basic block. */ 651 FOR_EACH_BB (bb) 652 { 653 int index = implicit_set_indexes[bb->index]; 654 if (index != -1) 655 bitmap_set_bit (cprop_avin[bb->index], index); 656 } 657 } 658 659 /* Copy/constant propagation. */ 660 661 /* Maximum number of register uses in an insn that we handle. */ 662 #define MAX_USES 8 663 664 /* Table of uses (registers, both hard and pseudo) found in an insn. 665 Allocated statically to avoid alloc/free complexity and overhead. */ 666 static rtx reg_use_table[MAX_USES]; 667 668 /* Index into `reg_use_table' while building it. */ 669 static unsigned reg_use_count; 670 671 /* Set up a list of register numbers used in INSN. The found uses are stored 672 in `reg_use_table'. `reg_use_count' is initialized to zero before entry, 673 and contains the number of uses in the table upon exit. 674 675 ??? If a register appears multiple times we will record it multiple times. 676 This doesn't hurt anything but it will slow things down. */ 677 678 static void 679 find_used_regs (rtx *xptr, void *data ATTRIBUTE_UNUSED) 680 { 681 int i, j; 682 enum rtx_code code; 683 const char *fmt; 684 rtx x = *xptr; 685 686 /* repeat is used to turn tail-recursion into iteration since GCC 687 can't do it when there's no return value. */ 688 repeat: 689 if (x == 0) 690 return; 691 692 code = GET_CODE (x); 693 if (REG_P (x)) 694 { 695 if (reg_use_count == MAX_USES) 696 return; 697 698 reg_use_table[reg_use_count] = x; 699 reg_use_count++; 700 } 701 702 /* Recursively scan the operands of this expression. */ 703 704 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--) 705 { 706 if (fmt[i] == 'e') 707 { 708 /* If we are about to do the last recursive call 709 needed at this level, change it into iteration. 710 This function is called enough to be worth it. */ 711 if (i == 0) 712 { 713 x = XEXP (x, 0); 714 goto repeat; 715 } 716 717 find_used_regs (&XEXP (x, i), data); 718 } 719 else if (fmt[i] == 'E') 720 for (j = 0; j < XVECLEN (x, i); j++) 721 find_used_regs (&XVECEXP (x, i, j), data); 722 } 723 } 724 725 /* Try to replace all uses of FROM in INSN with TO. 726 Return nonzero if successful. */ 727 728 static int 729 try_replace_reg (rtx from, rtx to, rtx insn) 730 { 731 rtx note = find_reg_equal_equiv_note (insn); 732 rtx src = 0; 733 int success = 0; 734 rtx set = single_set (insn); 735 736 /* Usually we substitute easy stuff, so we won't copy everything. 737 We however need to take care to not duplicate non-trivial CONST 738 expressions. */ 739 to = copy_rtx (to); 740 741 validate_replace_src_group (from, to, insn); 742 if (num_changes_pending () && apply_change_group ()) 743 success = 1; 744 745 /* Try to simplify SET_SRC if we have substituted a constant. */ 746 if (success && set && CONSTANT_P (to)) 747 { 748 src = simplify_rtx (SET_SRC (set)); 749 750 if (src) 751 validate_change (insn, &SET_SRC (set), src, 0); 752 } 753 754 /* If there is already a REG_EQUAL note, update the expression in it 755 with our replacement. */ 756 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL) 757 set_unique_reg_note (insn, REG_EQUAL, 758 simplify_replace_rtx (XEXP (note, 0), from, to)); 759 if (!success && set && reg_mentioned_p (from, SET_SRC (set))) 760 { 761 /* If above failed and this is a single set, try to simplify the source 762 of the set given our substitution. We could perhaps try this for 763 multiple SETs, but it probably won't buy us anything. */ 764 src = simplify_replace_rtx (SET_SRC (set), from, to); 765 766 if (!rtx_equal_p (src, SET_SRC (set)) 767 && validate_change (insn, &SET_SRC (set), src, 0)) 768 success = 1; 769 770 /* If we've failed perform the replacement, have a single SET to 771 a REG destination and don't yet have a note, add a REG_EQUAL note 772 to not lose information. */ 773 if (!success && note == 0 && set != 0 && REG_P (SET_DEST (set))) 774 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src)); 775 } 776 777 if (set && MEM_P (SET_DEST (set)) && reg_mentioned_p (from, SET_DEST (set))) 778 { 779 /* Registers can also appear as uses in SET_DEST if it is a MEM. 780 We could perhaps try this for multiple SETs, but it probably 781 won't buy us anything. */ 782 rtx dest = simplify_replace_rtx (SET_DEST (set), from, to); 783 784 if (!rtx_equal_p (dest, SET_DEST (set)) 785 && validate_change (insn, &SET_DEST (set), dest, 0)) 786 success = 1; 787 } 788 789 /* REG_EQUAL may get simplified into register. 790 We don't allow that. Remove that note. This code ought 791 not to happen, because previous code ought to synthesize 792 reg-reg move, but be on the safe side. */ 793 if (note && REG_NOTE_KIND (note) == REG_EQUAL && REG_P (XEXP (note, 0))) 794 remove_note (insn, note); 795 796 return success; 797 } 798 799 /* Find a set of REGNOs that are available on entry to INSN's block. Return 800 NULL no such set is found. */ 801 802 static struct expr * 803 find_avail_set (int regno, rtx insn) 804 { 805 /* SET1 contains the last set found that can be returned to the caller for 806 use in a substitution. */ 807 struct expr *set1 = 0; 808 809 /* Loops are not possible here. To get a loop we would need two sets 810 available at the start of the block containing INSN. i.e. we would 811 need two sets like this available at the start of the block: 812 813 (set (reg X) (reg Y)) 814 (set (reg Y) (reg X)) 815 816 This can not happen since the set of (reg Y) would have killed the 817 set of (reg X) making it unavailable at the start of this block. */ 818 while (1) 819 { 820 rtx src; 821 struct expr *set = lookup_set (regno, &set_hash_table); 822 823 /* Find a set that is available at the start of the block 824 which contains INSN. */ 825 while (set) 826 { 827 if (bitmap_bit_p (cprop_avin[BLOCK_FOR_INSN (insn)->index], 828 set->bitmap_index)) 829 break; 830 set = next_set (regno, set); 831 } 832 833 /* If no available set was found we've reached the end of the 834 (possibly empty) copy chain. */ 835 if (set == 0) 836 break; 837 838 src = set->src; 839 840 /* We know the set is available. 841 Now check that SRC is locally anticipatable (i.e. none of the 842 source operands have changed since the start of the block). 843 844 If the source operand changed, we may still use it for the next 845 iteration of this loop, but we may not use it for substitutions. */ 846 847 if (cprop_constant_p (src) || reg_not_set_p (src, insn)) 848 set1 = set; 849 850 /* If the source of the set is anything except a register, then 851 we have reached the end of the copy chain. */ 852 if (! REG_P (src)) 853 break; 854 855 /* Follow the copy chain, i.e. start another iteration of the loop 856 and see if we have an available copy into SRC. */ 857 regno = REGNO (src); 858 } 859 860 /* SET1 holds the last set that was available and anticipatable at 861 INSN. */ 862 return set1; 863 } 864 865 /* Subroutine of cprop_insn that tries to propagate constants into 866 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL 867 it is the instruction that immediately precedes JUMP, and must be a 868 single SET of a register. FROM is what we will try to replace, 869 SRC is the constant we will try to substitute for it. Return nonzero 870 if a change was made. */ 871 872 static int 873 cprop_jump (basic_block bb, rtx setcc, rtx jump, rtx from, rtx src) 874 { 875 rtx new_rtx, set_src, note_src; 876 rtx set = pc_set (jump); 877 rtx note = find_reg_equal_equiv_note (jump); 878 879 if (note) 880 { 881 note_src = XEXP (note, 0); 882 if (GET_CODE (note_src) == EXPR_LIST) 883 note_src = NULL_RTX; 884 } 885 else note_src = NULL_RTX; 886 887 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */ 888 set_src = note_src ? note_src : SET_SRC (set); 889 890 /* First substitute the SETCC condition into the JUMP instruction, 891 then substitute that given values into this expanded JUMP. */ 892 if (setcc != NULL_RTX 893 && !modified_between_p (from, setcc, jump) 894 && !modified_between_p (src, setcc, jump)) 895 { 896 rtx setcc_src; 897 rtx setcc_set = single_set (setcc); 898 rtx setcc_note = find_reg_equal_equiv_note (setcc); 899 setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST) 900 ? XEXP (setcc_note, 0) : SET_SRC (setcc_set); 901 set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set), 902 setcc_src); 903 } 904 else 905 setcc = NULL_RTX; 906 907 new_rtx = simplify_replace_rtx (set_src, from, src); 908 909 /* If no simplification can be made, then try the next register. */ 910 if (rtx_equal_p (new_rtx, SET_SRC (set))) 911 return 0; 912 913 /* If this is now a no-op delete it, otherwise this must be a valid insn. */ 914 if (new_rtx == pc_rtx) 915 delete_insn (jump); 916 else 917 { 918 /* Ensure the value computed inside the jump insn to be equivalent 919 to one computed by setcc. */ 920 if (setcc && modified_in_p (new_rtx, setcc)) 921 return 0; 922 if (! validate_unshare_change (jump, &SET_SRC (set), new_rtx, 0)) 923 { 924 /* When (some) constants are not valid in a comparison, and there 925 are two registers to be replaced by constants before the entire 926 comparison can be folded into a constant, we need to keep 927 intermediate information in REG_EQUAL notes. For targets with 928 separate compare insns, such notes are added by try_replace_reg. 929 When we have a combined compare-and-branch instruction, however, 930 we need to attach a note to the branch itself to make this 931 optimization work. */ 932 933 if (!rtx_equal_p (new_rtx, note_src)) 934 set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new_rtx)); 935 return 0; 936 } 937 938 /* Remove REG_EQUAL note after simplification. */ 939 if (note_src) 940 remove_note (jump, note); 941 } 942 943 #ifdef HAVE_cc0 944 /* Delete the cc0 setter. */ 945 if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc)))) 946 delete_insn (setcc); 947 #endif 948 949 global_const_prop_count++; 950 if (dump_file != NULL) 951 { 952 fprintf (dump_file, 953 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with" 954 "constant ", REGNO (from), INSN_UID (jump)); 955 print_rtl (dump_file, src); 956 fprintf (dump_file, "\n"); 957 } 958 purge_dead_edges (bb); 959 960 /* If a conditional jump has been changed into unconditional jump, remove 961 the jump and make the edge fallthru - this is always called in 962 cfglayout mode. */ 963 if (new_rtx != pc_rtx && simplejump_p (jump)) 964 { 965 edge e; 966 edge_iterator ei; 967 968 FOR_EACH_EDGE (e, ei, bb->succs) 969 if (e->dest != EXIT_BLOCK_PTR 970 && BB_HEAD (e->dest) == JUMP_LABEL (jump)) 971 { 972 e->flags |= EDGE_FALLTHRU; 973 break; 974 } 975 delete_insn (jump); 976 } 977 978 return 1; 979 } 980 981 /* Subroutine of cprop_insn that tries to propagate constants. FROM is what 982 we will try to replace, SRC is the constant we will try to substitute for 983 it and INSN is the instruction where this will be happening. */ 984 985 static int 986 constprop_register (rtx from, rtx src, rtx insn) 987 { 988 rtx sset; 989 990 /* Check for reg or cc0 setting instructions followed by 991 conditional branch instructions first. */ 992 if ((sset = single_set (insn)) != NULL 993 && NEXT_INSN (insn) 994 && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn))) 995 { 996 rtx dest = SET_DEST (sset); 997 if ((REG_P (dest) || CC0_P (dest)) 998 && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), 999 from, src)) 1000 return 1; 1001 } 1002 1003 /* Handle normal insns next. */ 1004 if (NONJUMP_INSN_P (insn) && try_replace_reg (from, src, insn)) 1005 return 1; 1006 1007 /* Try to propagate a CONST_INT into a conditional jump. 1008 We're pretty specific about what we will handle in this 1009 code, we can extend this as necessary over time. 1010 1011 Right now the insn in question must look like 1012 (set (pc) (if_then_else ...)) */ 1013 else if (any_condjump_p (insn) && onlyjump_p (insn)) 1014 return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, src); 1015 return 0; 1016 } 1017 1018 /* Perform constant and copy propagation on INSN. 1019 Return nonzero if a change was made. */ 1020 1021 static int 1022 cprop_insn (rtx insn) 1023 { 1024 unsigned i; 1025 int changed = 0, changed_this_round; 1026 rtx note; 1027 1028 retry: 1029 changed_this_round = 0; 1030 reg_use_count = 0; 1031 note_uses (&PATTERN (insn), find_used_regs, NULL); 1032 1033 /* We may win even when propagating constants into notes. */ 1034 note = find_reg_equal_equiv_note (insn); 1035 if (note) 1036 find_used_regs (&XEXP (note, 0), NULL); 1037 1038 for (i = 0; i < reg_use_count; i++) 1039 { 1040 rtx reg_used = reg_use_table[i]; 1041 unsigned int regno = REGNO (reg_used); 1042 rtx src; 1043 struct expr *set; 1044 1045 /* If the register has already been set in this block, there's 1046 nothing we can do. */ 1047 if (! reg_not_set_p (reg_used, insn)) 1048 continue; 1049 1050 /* Find an assignment that sets reg_used and is available 1051 at the start of the block. */ 1052 set = find_avail_set (regno, insn); 1053 if (! set) 1054 continue; 1055 1056 src = set->src; 1057 1058 /* Constant propagation. */ 1059 if (cprop_constant_p (src)) 1060 { 1061 if (constprop_register (reg_used, src, insn)) 1062 { 1063 changed_this_round = changed = 1; 1064 global_const_prop_count++; 1065 if (dump_file != NULL) 1066 { 1067 fprintf (dump_file, 1068 "GLOBAL CONST-PROP: Replacing reg %d in ", regno); 1069 fprintf (dump_file, "insn %d with constant ", 1070 INSN_UID (insn)); 1071 print_rtl (dump_file, src); 1072 fprintf (dump_file, "\n"); 1073 } 1074 if (INSN_DELETED_P (insn)) 1075 return 1; 1076 } 1077 } 1078 else if (REG_P (src) 1079 && REGNO (src) >= FIRST_PSEUDO_REGISTER 1080 && REGNO (src) != regno) 1081 { 1082 if (try_replace_reg (reg_used, src, insn)) 1083 { 1084 changed_this_round = changed = 1; 1085 global_copy_prop_count++; 1086 if (dump_file != NULL) 1087 { 1088 fprintf (dump_file, 1089 "GLOBAL COPY-PROP: Replacing reg %d in insn %d", 1090 regno, INSN_UID (insn)); 1091 fprintf (dump_file, " with reg %d\n", REGNO (src)); 1092 } 1093 1094 /* The original insn setting reg_used may or may not now be 1095 deletable. We leave the deletion to DCE. */ 1096 /* FIXME: If it turns out that the insn isn't deletable, 1097 then we may have unnecessarily extended register lifetimes 1098 and made things worse. */ 1099 } 1100 } 1101 1102 /* If try_replace_reg simplified the insn, the regs found 1103 by find_used_regs may not be valid anymore. Start over. */ 1104 if (changed_this_round) 1105 goto retry; 1106 } 1107 1108 if (changed && DEBUG_INSN_P (insn)) 1109 return 0; 1110 1111 return changed; 1112 } 1113 1114 /* Like find_used_regs, but avoid recording uses that appear in 1115 input-output contexts such as zero_extract or pre_dec. This 1116 restricts the cases we consider to those for which local cprop 1117 can legitimately make replacements. */ 1118 1119 static void 1120 local_cprop_find_used_regs (rtx *xptr, void *data) 1121 { 1122 rtx x = *xptr; 1123 1124 if (x == 0) 1125 return; 1126 1127 switch (GET_CODE (x)) 1128 { 1129 case ZERO_EXTRACT: 1130 case SIGN_EXTRACT: 1131 case STRICT_LOW_PART: 1132 return; 1133 1134 case PRE_DEC: 1135 case PRE_INC: 1136 case POST_DEC: 1137 case POST_INC: 1138 case PRE_MODIFY: 1139 case POST_MODIFY: 1140 /* Can only legitimately appear this early in the context of 1141 stack pushes for function arguments, but handle all of the 1142 codes nonetheless. */ 1143 return; 1144 1145 case SUBREG: 1146 /* Setting a subreg of a register larger than word_mode leaves 1147 the non-written words unchanged. */ 1148 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD) 1149 return; 1150 break; 1151 1152 default: 1153 break; 1154 } 1155 1156 find_used_regs (xptr, data); 1157 } 1158 1159 /* Try to perform local const/copy propagation on X in INSN. */ 1160 1161 static bool 1162 do_local_cprop (rtx x, rtx insn) 1163 { 1164 rtx newreg = NULL, newcnst = NULL; 1165 1166 /* Rule out USE instructions and ASM statements as we don't want to 1167 change the hard registers mentioned. */ 1168 if (REG_P (x) 1169 && (REGNO (x) >= FIRST_PSEUDO_REGISTER 1170 || (GET_CODE (PATTERN (insn)) != USE 1171 && asm_noperands (PATTERN (insn)) < 0))) 1172 { 1173 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode); 1174 struct elt_loc_list *l; 1175 1176 if (!val) 1177 return false; 1178 for (l = val->locs; l; l = l->next) 1179 { 1180 rtx this_rtx = l->loc; 1181 rtx note; 1182 1183 if (cprop_constant_p (this_rtx)) 1184 newcnst = this_rtx; 1185 if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER 1186 /* Don't copy propagate if it has attached REG_EQUIV note. 1187 At this point this only function parameters should have 1188 REG_EQUIV notes and if the argument slot is used somewhere 1189 explicitly, it means address of parameter has been taken, 1190 so we should not extend the lifetime of the pseudo. */ 1191 && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX)) 1192 || ! MEM_P (XEXP (note, 0)))) 1193 newreg = this_rtx; 1194 } 1195 if (newcnst && constprop_register (x, newcnst, insn)) 1196 { 1197 if (dump_file != NULL) 1198 { 1199 fprintf (dump_file, "LOCAL CONST-PROP: Replacing reg %d in ", 1200 REGNO (x)); 1201 fprintf (dump_file, "insn %d with constant ", 1202 INSN_UID (insn)); 1203 print_rtl (dump_file, newcnst); 1204 fprintf (dump_file, "\n"); 1205 } 1206 local_const_prop_count++; 1207 return true; 1208 } 1209 else if (newreg && newreg != x && try_replace_reg (x, newreg, insn)) 1210 { 1211 if (dump_file != NULL) 1212 { 1213 fprintf (dump_file, 1214 "LOCAL COPY-PROP: Replacing reg %d in insn %d", 1215 REGNO (x), INSN_UID (insn)); 1216 fprintf (dump_file, " with reg %d\n", REGNO (newreg)); 1217 } 1218 local_copy_prop_count++; 1219 return true; 1220 } 1221 } 1222 return false; 1223 } 1224 1225 /* Do local const/copy propagation (i.e. within each basic block). */ 1226 1227 static int 1228 local_cprop_pass (void) 1229 { 1230 basic_block bb; 1231 rtx insn; 1232 bool changed = false; 1233 unsigned i; 1234 1235 cselib_init (0); 1236 FOR_EACH_BB (bb) 1237 { 1238 FOR_BB_INSNS (bb, insn) 1239 { 1240 if (INSN_P (insn)) 1241 { 1242 rtx note = find_reg_equal_equiv_note (insn); 1243 do 1244 { 1245 reg_use_count = 0; 1246 note_uses (&PATTERN (insn), local_cprop_find_used_regs, 1247 NULL); 1248 if (note) 1249 local_cprop_find_used_regs (&XEXP (note, 0), NULL); 1250 1251 for (i = 0; i < reg_use_count; i++) 1252 { 1253 if (do_local_cprop (reg_use_table[i], insn)) 1254 { 1255 if (!DEBUG_INSN_P (insn)) 1256 changed = true; 1257 break; 1258 } 1259 } 1260 if (INSN_DELETED_P (insn)) 1261 break; 1262 } 1263 while (i < reg_use_count); 1264 } 1265 cselib_process_insn (insn); 1266 } 1267 1268 /* Forget everything at the end of a basic block. */ 1269 cselib_clear_table (); 1270 } 1271 1272 cselib_finish (); 1273 1274 return changed; 1275 } 1276 1277 /* Similar to get_condition, only the resulting condition must be 1278 valid at JUMP, instead of at EARLIEST. 1279 1280 This differs from noce_get_condition in ifcvt.c in that we prefer not to 1281 settle for the condition variable in the jump instruction being integral. 1282 We prefer to be able to record the value of a user variable, rather than 1283 the value of a temporary used in a condition. This could be solved by 1284 recording the value of *every* register scanned by canonicalize_condition, 1285 but this would require some code reorganization. */ 1286 1287 rtx 1288 fis_get_condition (rtx jump) 1289 { 1290 return get_condition (jump, NULL, false, true); 1291 } 1292 1293 /* Check the comparison COND to see if we can safely form an implicit 1294 set from it. */ 1295 1296 static bool 1297 implicit_set_cond_p (const_rtx cond) 1298 { 1299 enum machine_mode mode; 1300 rtx cst; 1301 1302 /* COND must be either an EQ or NE comparison. */ 1303 if (GET_CODE (cond) != EQ && GET_CODE (cond) != NE) 1304 return false; 1305 1306 /* The first operand of COND must be a pseudo-reg. */ 1307 if (! REG_P (XEXP (cond, 0)) 1308 || HARD_REGISTER_P (XEXP (cond, 0))) 1309 return false; 1310 1311 /* The second operand of COND must be a suitable constant. */ 1312 mode = GET_MODE (XEXP (cond, 0)); 1313 cst = XEXP (cond, 1); 1314 1315 /* We can't perform this optimization if either operand might be or might 1316 contain a signed zero. */ 1317 if (HONOR_SIGNED_ZEROS (mode)) 1318 { 1319 /* It is sufficient to check if CST is or contains a zero. We must 1320 handle float, complex, and vector. If any subpart is a zero, then 1321 the optimization can't be performed. */ 1322 /* ??? The complex and vector checks are not implemented yet. We just 1323 always return zero for them. */ 1324 if (CONST_DOUBLE_AS_FLOAT_P (cst)) 1325 { 1326 REAL_VALUE_TYPE d; 1327 REAL_VALUE_FROM_CONST_DOUBLE (d, cst); 1328 if (REAL_VALUES_EQUAL (d, dconst0)) 1329 return 0; 1330 } 1331 else 1332 return 0; 1333 } 1334 1335 return cprop_constant_p (cst); 1336 } 1337 1338 /* Find the implicit sets of a function. An "implicit set" is a constraint 1339 on the value of a variable, implied by a conditional jump. For example, 1340 following "if (x == 2)", the then branch may be optimized as though the 1341 conditional performed an "explicit set", in this example, "x = 2". This 1342 function records the set patterns that are implicit at the start of each 1343 basic block. 1344 1345 If an implicit set is found but the set is implicit on a critical edge, 1346 this critical edge is split. 1347 1348 Return true if the CFG was modified, false otherwise. */ 1349 1350 static bool 1351 find_implicit_sets (void) 1352 { 1353 basic_block bb, dest; 1354 rtx cond, new_rtx; 1355 unsigned int count = 0; 1356 bool edges_split = false; 1357 size_t implicit_sets_size = last_basic_block + 10; 1358 1359 implicit_sets = XCNEWVEC (rtx, implicit_sets_size); 1360 1361 FOR_EACH_BB (bb) 1362 { 1363 /* Check for more than one successor. */ 1364 if (EDGE_COUNT (bb->succs) <= 1) 1365 continue; 1366 1367 cond = fis_get_condition (BB_END (bb)); 1368 1369 /* If no condition is found or if it isn't of a suitable form, 1370 ignore it. */ 1371 if (! cond || ! implicit_set_cond_p (cond)) 1372 continue; 1373 1374 dest = GET_CODE (cond) == EQ 1375 ? BRANCH_EDGE (bb)->dest : FALLTHRU_EDGE (bb)->dest; 1376 1377 /* If DEST doesn't go anywhere, ignore it. */ 1378 if (! dest || dest == EXIT_BLOCK_PTR) 1379 continue; 1380 1381 /* We have found a suitable implicit set. Try to record it now as 1382 a SET in DEST. If DEST has more than one predecessor, the edge 1383 between BB and DEST is a critical edge and we must split it, 1384 because we can only record one implicit set per DEST basic block. */ 1385 if (! single_pred_p (dest)) 1386 { 1387 dest = split_edge (find_edge (bb, dest)); 1388 edges_split = true; 1389 } 1390 1391 if (implicit_sets_size <= (size_t) dest->index) 1392 { 1393 size_t old_implicit_sets_size = implicit_sets_size; 1394 implicit_sets_size *= 2; 1395 implicit_sets = XRESIZEVEC (rtx, implicit_sets, implicit_sets_size); 1396 memset (implicit_sets + old_implicit_sets_size, 0, 1397 (implicit_sets_size - old_implicit_sets_size) * sizeof (rtx)); 1398 } 1399 1400 new_rtx = gen_rtx_SET (VOIDmode, XEXP (cond, 0), 1401 XEXP (cond, 1)); 1402 implicit_sets[dest->index] = new_rtx; 1403 if (dump_file) 1404 { 1405 fprintf(dump_file, "Implicit set of reg %d in ", 1406 REGNO (XEXP (cond, 0))); 1407 fprintf(dump_file, "basic block %d\n", dest->index); 1408 } 1409 count++; 1410 } 1411 1412 if (dump_file) 1413 fprintf (dump_file, "Found %d implicit sets\n", count); 1414 1415 /* Confess our sins. */ 1416 return edges_split; 1417 } 1418 1419 /* Bypass conditional jumps. */ 1420 1421 /* The value of last_basic_block at the beginning of the jump_bypass 1422 pass. The use of redirect_edge_and_branch_force may introduce new 1423 basic blocks, but the data flow analysis is only valid for basic 1424 block indices less than bypass_last_basic_block. */ 1425 1426 static int bypass_last_basic_block; 1427 1428 /* Find a set of REGNO to a constant that is available at the end of basic 1429 block BB. Return NULL if no such set is found. Based heavily upon 1430 find_avail_set. */ 1431 1432 static struct expr * 1433 find_bypass_set (int regno, int bb) 1434 { 1435 struct expr *result = 0; 1436 1437 for (;;) 1438 { 1439 rtx src; 1440 struct expr *set = lookup_set (regno, &set_hash_table); 1441 1442 while (set) 1443 { 1444 if (bitmap_bit_p (cprop_avout[bb], set->bitmap_index)) 1445 break; 1446 set = next_set (regno, set); 1447 } 1448 1449 if (set == 0) 1450 break; 1451 1452 src = set->src; 1453 if (cprop_constant_p (src)) 1454 result = set; 1455 1456 if (! REG_P (src)) 1457 break; 1458 1459 regno = REGNO (src); 1460 } 1461 return result; 1462 } 1463 1464 /* Subroutine of bypass_block that checks whether a pseudo is killed by 1465 any of the instructions inserted on an edge. Jump bypassing places 1466 condition code setters on CFG edges using insert_insn_on_edge. This 1467 function is required to check that our data flow analysis is still 1468 valid prior to commit_edge_insertions. */ 1469 1470 static bool 1471 reg_killed_on_edge (const_rtx reg, const_edge e) 1472 { 1473 rtx insn; 1474 1475 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn)) 1476 if (INSN_P (insn) && reg_set_p (reg, insn)) 1477 return true; 1478 1479 return false; 1480 } 1481 1482 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given 1483 basic block BB which has more than one predecessor. If not NULL, SETCC 1484 is the first instruction of BB, which is immediately followed by JUMP_INSN 1485 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB. 1486 Returns nonzero if a change was made. 1487 1488 During the jump bypassing pass, we may place copies of SETCC instructions 1489 on CFG edges. The following routine must be careful to pay attention to 1490 these inserted insns when performing its transformations. */ 1491 1492 static int 1493 bypass_block (basic_block bb, rtx setcc, rtx jump) 1494 { 1495 rtx insn, note; 1496 edge e, edest; 1497 int change; 1498 int may_be_loop_header = false; 1499 unsigned removed_p; 1500 unsigned i; 1501 edge_iterator ei; 1502 1503 insn = (setcc != NULL) ? setcc : jump; 1504 1505 /* Determine set of register uses in INSN. */ 1506 reg_use_count = 0; 1507 note_uses (&PATTERN (insn), find_used_regs, NULL); 1508 note = find_reg_equal_equiv_note (insn); 1509 if (note) 1510 find_used_regs (&XEXP (note, 0), NULL); 1511 1512 if (current_loops) 1513 { 1514 /* If we are to preserve loop structure then do not bypass 1515 a loop header. This will either rotate the loop, create 1516 multiple entry loops or even irreducible regions. */ 1517 if (bb == bb->loop_father->header) 1518 return 0; 1519 } 1520 else 1521 { 1522 FOR_EACH_EDGE (e, ei, bb->preds) 1523 if (e->flags & EDGE_DFS_BACK) 1524 { 1525 may_be_loop_header = true; 1526 break; 1527 } 1528 } 1529 1530 change = 0; 1531 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); ) 1532 { 1533 removed_p = 0; 1534 1535 if (e->flags & EDGE_COMPLEX) 1536 { 1537 ei_next (&ei); 1538 continue; 1539 } 1540 1541 /* We can't redirect edges from new basic blocks. */ 1542 if (e->src->index >= bypass_last_basic_block) 1543 { 1544 ei_next (&ei); 1545 continue; 1546 } 1547 1548 /* The irreducible loops created by redirecting of edges entering the 1549 loop from outside would decrease effectiveness of some of the 1550 following optimizations, so prevent this. */ 1551 if (may_be_loop_header 1552 && !(e->flags & EDGE_DFS_BACK)) 1553 { 1554 ei_next (&ei); 1555 continue; 1556 } 1557 1558 for (i = 0; i < reg_use_count; i++) 1559 { 1560 rtx reg_used = reg_use_table[i]; 1561 unsigned int regno = REGNO (reg_used); 1562 basic_block dest, old_dest; 1563 struct expr *set; 1564 rtx src, new_rtx; 1565 1566 set = find_bypass_set (regno, e->src->index); 1567 1568 if (! set) 1569 continue; 1570 1571 /* Check the data flow is valid after edge insertions. */ 1572 if (e->insns.r && reg_killed_on_edge (reg_used, e)) 1573 continue; 1574 1575 src = SET_SRC (pc_set (jump)); 1576 1577 if (setcc != NULL) 1578 src = simplify_replace_rtx (src, 1579 SET_DEST (PATTERN (setcc)), 1580 SET_SRC (PATTERN (setcc))); 1581 1582 new_rtx = simplify_replace_rtx (src, reg_used, set->src); 1583 1584 /* Jump bypassing may have already placed instructions on 1585 edges of the CFG. We can't bypass an outgoing edge that 1586 has instructions associated with it, as these insns won't 1587 get executed if the incoming edge is redirected. */ 1588 if (new_rtx == pc_rtx) 1589 { 1590 edest = FALLTHRU_EDGE (bb); 1591 dest = edest->insns.r ? NULL : edest->dest; 1592 } 1593 else if (GET_CODE (new_rtx) == LABEL_REF) 1594 { 1595 dest = BLOCK_FOR_INSN (XEXP (new_rtx, 0)); 1596 /* Don't bypass edges containing instructions. */ 1597 edest = find_edge (bb, dest); 1598 if (edest && edest->insns.r) 1599 dest = NULL; 1600 } 1601 else 1602 dest = NULL; 1603 1604 /* Avoid unification of the edge with other edges from original 1605 branch. We would end up emitting the instruction on "both" 1606 edges. */ 1607 if (dest && setcc && !CC0_P (SET_DEST (PATTERN (setcc))) 1608 && find_edge (e->src, dest)) 1609 dest = NULL; 1610 1611 old_dest = e->dest; 1612 if (dest != NULL 1613 && dest != old_dest 1614 && dest != EXIT_BLOCK_PTR) 1615 { 1616 redirect_edge_and_branch_force (e, dest); 1617 1618 /* Copy the register setter to the redirected edge. 1619 Don't copy CC0 setters, as CC0 is dead after jump. */ 1620 if (setcc) 1621 { 1622 rtx pat = PATTERN (setcc); 1623 if (!CC0_P (SET_DEST (pat))) 1624 insert_insn_on_edge (copy_insn (pat), e); 1625 } 1626 1627 if (dump_file != NULL) 1628 { 1629 fprintf (dump_file, "JUMP-BYPASS: Proved reg %d " 1630 "in jump_insn %d equals constant ", 1631 regno, INSN_UID (jump)); 1632 print_rtl (dump_file, set->src); 1633 fprintf (dump_file, "\n\t when BB %d is entered from " 1634 "BB %d. Redirect edge %d->%d to %d.\n", 1635 old_dest->index, e->src->index, e->src->index, 1636 old_dest->index, dest->index); 1637 } 1638 change = 1; 1639 removed_p = 1; 1640 break; 1641 } 1642 } 1643 if (!removed_p) 1644 ei_next (&ei); 1645 } 1646 return change; 1647 } 1648 1649 /* Find basic blocks with more than one predecessor that only contain a 1650 single conditional jump. If the result of the comparison is known at 1651 compile-time from any incoming edge, redirect that edge to the 1652 appropriate target. Return nonzero if a change was made. 1653 1654 This function is now mis-named, because we also handle indirect jumps. */ 1655 1656 static int 1657 bypass_conditional_jumps (void) 1658 { 1659 basic_block bb; 1660 int changed; 1661 rtx setcc; 1662 rtx insn; 1663 rtx dest; 1664 1665 /* Note we start at block 1. */ 1666 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR) 1667 return 0; 1668 1669 bypass_last_basic_block = last_basic_block; 1670 mark_dfs_back_edges (); 1671 1672 changed = 0; 1673 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, 1674 EXIT_BLOCK_PTR, next_bb) 1675 { 1676 /* Check for more than one predecessor. */ 1677 if (!single_pred_p (bb)) 1678 { 1679 setcc = NULL_RTX; 1680 FOR_BB_INSNS (bb, insn) 1681 if (DEBUG_INSN_P (insn)) 1682 continue; 1683 else if (NONJUMP_INSN_P (insn)) 1684 { 1685 if (setcc) 1686 break; 1687 if (GET_CODE (PATTERN (insn)) != SET) 1688 break; 1689 1690 dest = SET_DEST (PATTERN (insn)); 1691 if (REG_P (dest) || CC0_P (dest)) 1692 setcc = insn; 1693 else 1694 break; 1695 } 1696 else if (JUMP_P (insn)) 1697 { 1698 if ((any_condjump_p (insn) || computed_jump_p (insn)) 1699 && onlyjump_p (insn)) 1700 changed |= bypass_block (bb, setcc, insn); 1701 break; 1702 } 1703 else if (INSN_P (insn)) 1704 break; 1705 } 1706 } 1707 1708 /* If we bypassed any register setting insns, we inserted a 1709 copy on the redirected edge. These need to be committed. */ 1710 if (changed) 1711 commit_edge_insertions (); 1712 1713 return changed; 1714 } 1715 1716 /* Return true if the graph is too expensive to optimize. PASS is the 1717 optimization about to be performed. */ 1718 1719 static bool 1720 is_too_expensive (const char *pass) 1721 { 1722 /* Trying to perform global optimizations on flow graphs which have 1723 a high connectivity will take a long time and is unlikely to be 1724 particularly useful. 1725 1726 In normal circumstances a cfg should have about twice as many 1727 edges as blocks. But we do not want to punish small functions 1728 which have a couple switch statements. Rather than simply 1729 threshold the number of blocks, uses something with a more 1730 graceful degradation. */ 1731 if (n_edges > 20000 + n_basic_blocks * 4) 1732 { 1733 warning (OPT_Wdisabled_optimization, 1734 "%s: %d basic blocks and %d edges/basic block", 1735 pass, n_basic_blocks, n_edges / n_basic_blocks); 1736 1737 return true; 1738 } 1739 1740 /* If allocating memory for the cprop bitmap would take up too much 1741 storage it's better just to disable the optimization. */ 1742 if ((n_basic_blocks 1743 * SBITMAP_SET_SIZE (max_reg_num ()) 1744 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY) 1745 { 1746 warning (OPT_Wdisabled_optimization, 1747 "%s: %d basic blocks and %d registers", 1748 pass, n_basic_blocks, max_reg_num ()); 1749 1750 return true; 1751 } 1752 1753 return false; 1754 } 1755 1756 /* Main function for the CPROP pass. */ 1757 1758 static int 1759 one_cprop_pass (void) 1760 { 1761 int i; 1762 int changed = 0; 1763 1764 /* Return if there's nothing to do, or it is too expensive. */ 1765 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1 1766 || is_too_expensive (_ ("const/copy propagation disabled"))) 1767 return 0; 1768 1769 global_const_prop_count = local_const_prop_count = 0; 1770 global_copy_prop_count = local_copy_prop_count = 0; 1771 1772 bytes_used = 0; 1773 gcc_obstack_init (&cprop_obstack); 1774 1775 /* Do a local const/copy propagation pass first. The global pass 1776 only handles global opportunities. 1777 If the local pass changes something, remove any unreachable blocks 1778 because the CPROP global dataflow analysis may get into infinite 1779 loops for CFGs with unreachable blocks. 1780 1781 FIXME: This local pass should not be necessary after CSE (but for 1782 some reason it still is). It is also (proven) not necessary 1783 to run the local pass right after FWPWOP. 1784 1785 FIXME: The global analysis would not get into infinite loops if it 1786 would use the DF solver (via df_simple_dataflow) instead of 1787 the solver implemented in this file. */ 1788 changed |= local_cprop_pass (); 1789 if (changed) 1790 delete_unreachable_blocks (); 1791 1792 /* Determine implicit sets. This may change the CFG (split critical 1793 edges if that exposes an implicit set). 1794 Note that find_implicit_sets() does not rely on up-to-date DF caches 1795 so that we do not have to re-run df_analyze() even if local CPROP 1796 changed something. 1797 ??? This could run earlier so that any uncovered implicit sets 1798 sets could be exploited in local_cprop_pass() also. Later. */ 1799 changed |= find_implicit_sets (); 1800 1801 /* If local_cprop_pass() or find_implicit_sets() changed something, 1802 run df_analyze() to bring all insn caches up-to-date, and to take 1803 new basic blocks from edge splitting on the DF radar. 1804 NB: This also runs the fast DCE pass, because execute_rtl_cprop 1805 sets DF_LR_RUN_DCE. */ 1806 if (changed) 1807 df_analyze (); 1808 1809 /* Initialize implicit_set_indexes array. */ 1810 implicit_set_indexes = XNEWVEC (int, last_basic_block); 1811 for (i = 0; i < last_basic_block; i++) 1812 implicit_set_indexes[i] = -1; 1813 1814 alloc_hash_table (&set_hash_table); 1815 compute_hash_table (&set_hash_table); 1816 1817 /* Free implicit_sets before peak usage. */ 1818 free (implicit_sets); 1819 implicit_sets = NULL; 1820 1821 if (dump_file) 1822 dump_hash_table (dump_file, "SET", &set_hash_table); 1823 if (set_hash_table.n_elems > 0) 1824 { 1825 basic_block bb; 1826 rtx insn; 1827 1828 alloc_cprop_mem (last_basic_block, set_hash_table.n_elems); 1829 compute_cprop_data (); 1830 1831 free (implicit_set_indexes); 1832 implicit_set_indexes = NULL; 1833 1834 /* Allocate vars to track sets of regs. */ 1835 reg_set_bitmap = ALLOC_REG_SET (NULL); 1836 1837 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, 1838 next_bb) 1839 { 1840 /* Reset tables used to keep track of what's still valid [since 1841 the start of the block]. */ 1842 reset_opr_set_tables (); 1843 1844 FOR_BB_INSNS (bb, insn) 1845 if (INSN_P (insn)) 1846 { 1847 changed |= cprop_insn (insn); 1848 1849 /* Keep track of everything modified by this insn. */ 1850 /* ??? Need to be careful w.r.t. mods done to INSN. 1851 Don't call mark_oprs_set if we turned the 1852 insn into a NOTE, or deleted the insn. */ 1853 if (! NOTE_P (insn) && ! INSN_DELETED_P (insn)) 1854 mark_oprs_set (insn); 1855 } 1856 } 1857 1858 changed |= bypass_conditional_jumps (); 1859 1860 FREE_REG_SET (reg_set_bitmap); 1861 free_cprop_mem (); 1862 } 1863 else 1864 { 1865 free (implicit_set_indexes); 1866 implicit_set_indexes = NULL; 1867 } 1868 1869 free_hash_table (&set_hash_table); 1870 obstack_free (&cprop_obstack, NULL); 1871 1872 if (dump_file) 1873 { 1874 fprintf (dump_file, "CPROP of %s, %d basic blocks, %d bytes needed, ", 1875 current_function_name (), n_basic_blocks, bytes_used); 1876 fprintf (dump_file, "%d local const props, %d local copy props, ", 1877 local_const_prop_count, local_copy_prop_count); 1878 fprintf (dump_file, "%d global const props, %d global copy props\n\n", 1879 global_const_prop_count, global_copy_prop_count); 1880 } 1881 1882 return changed; 1883 } 1884 1885 /* All the passes implemented in this file. Each pass has its 1886 own gate and execute function, and at the end of the file a 1887 pass definition for passes.c. 1888 1889 We do not construct an accurate cfg in functions which call 1890 setjmp, so none of these passes runs if the function calls 1891 setjmp. 1892 FIXME: Should just handle setjmp via REG_SETJMP notes. */ 1893 1894 static bool 1895 gate_rtl_cprop (void) 1896 { 1897 return optimize > 0 && flag_gcse 1898 && !cfun->calls_setjmp 1899 && dbg_cnt (cprop); 1900 } 1901 1902 static unsigned int 1903 execute_rtl_cprop (void) 1904 { 1905 int changed; 1906 delete_unreachable_blocks (); 1907 df_set_flags (DF_LR_RUN_DCE); 1908 df_analyze (); 1909 changed = one_cprop_pass (); 1910 flag_rerun_cse_after_global_opts |= changed; 1911 if (changed) 1912 cleanup_cfg (CLEANUP_CFG_CHANGED); 1913 return 0; 1914 } 1915 1916 struct rtl_opt_pass pass_rtl_cprop = 1917 { 1918 { 1919 RTL_PASS, 1920 "cprop", /* name */ 1921 OPTGROUP_NONE, /* optinfo_flags */ 1922 gate_rtl_cprop, /* gate */ 1923 execute_rtl_cprop, /* execute */ 1924 NULL, /* sub */ 1925 NULL, /* next */ 1926 0, /* static_pass_number */ 1927 TV_CPROP, /* tv_id */ 1928 PROP_cfglayout, /* properties_required */ 1929 0, /* properties_provided */ 1930 0, /* properties_destroyed */ 1931 0, /* todo_flags_start */ 1932 TODO_df_finish | TODO_verify_rtl_sharing | 1933 TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */ 1934 } 1935 }; 1936