1 /* Language-dependent node constructors for parse phase of GNU compiler. 2 Copyright (C) 1987-2019 Free Software Foundation, Inc. 3 Hacked by Michael Tiemann (tiemann@cygnus.com) 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3, or (at your option) 10 any later version. 11 12 GCC is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #include "config.h" 22 #include "system.h" 23 #include "coretypes.h" 24 #include "tree.h" 25 #include "cp-tree.h" 26 #include "gimple-expr.h" 27 #include "cgraph.h" 28 #include "stor-layout.h" 29 #include "print-tree.h" 30 #include "tree-iterator.h" 31 #include "tree-inline.h" 32 #include "debug.h" 33 #include "convert.h" 34 #include "gimplify.h" 35 #include "stringpool.h" 36 #include "attribs.h" 37 #include "flags.h" 38 #include "selftest.h" 39 40 static tree bot_manip (tree *, int *, void *); 41 static tree bot_replace (tree *, int *, void *); 42 static hashval_t list_hash_pieces (tree, tree, tree); 43 static tree build_target_expr (tree, tree, tsubst_flags_t); 44 static tree count_trees_r (tree *, int *, void *); 45 static tree verify_stmt_tree_r (tree *, int *, void *); 46 static tree build_local_temp (tree); 47 48 static tree handle_init_priority_attribute (tree *, tree, tree, int, bool *); 49 static tree handle_abi_tag_attribute (tree *, tree, tree, int, bool *); 50 51 /* If REF is an lvalue, returns the kind of lvalue that REF is. 52 Otherwise, returns clk_none. */ 53 54 cp_lvalue_kind 55 lvalue_kind (const_tree ref) 56 { 57 cp_lvalue_kind op1_lvalue_kind = clk_none; 58 cp_lvalue_kind op2_lvalue_kind = clk_none; 59 60 /* Expressions of reference type are sometimes wrapped in 61 INDIRECT_REFs. INDIRECT_REFs are just internal compiler 62 representation, not part of the language, so we have to look 63 through them. */ 64 if (REFERENCE_REF_P (ref)) 65 return lvalue_kind (TREE_OPERAND (ref, 0)); 66 67 if (TREE_TYPE (ref) 68 && TYPE_REF_P (TREE_TYPE (ref))) 69 { 70 /* unnamed rvalue references are rvalues */ 71 if (TYPE_REF_IS_RVALUE (TREE_TYPE (ref)) 72 && TREE_CODE (ref) != PARM_DECL 73 && !VAR_P (ref) 74 && TREE_CODE (ref) != COMPONENT_REF 75 /* Functions are always lvalues. */ 76 && TREE_CODE (TREE_TYPE (TREE_TYPE (ref))) != FUNCTION_TYPE) 77 return clk_rvalueref; 78 79 /* lvalue references and named rvalue references are lvalues. */ 80 return clk_ordinary; 81 } 82 83 if (ref == current_class_ptr) 84 return clk_none; 85 86 /* Expressions with cv void type are prvalues. */ 87 if (TREE_TYPE (ref) && VOID_TYPE_P (TREE_TYPE (ref))) 88 return clk_none; 89 90 switch (TREE_CODE (ref)) 91 { 92 case SAVE_EXPR: 93 return clk_none; 94 95 /* preincrements and predecrements are valid lvals, provided 96 what they refer to are valid lvals. */ 97 case PREINCREMENT_EXPR: 98 case PREDECREMENT_EXPR: 99 case TRY_CATCH_EXPR: 100 case REALPART_EXPR: 101 case IMAGPART_EXPR: 102 case VIEW_CONVERT_EXPR: 103 return lvalue_kind (TREE_OPERAND (ref, 0)); 104 105 case ARRAY_REF: 106 { 107 tree op1 = TREE_OPERAND (ref, 0); 108 if (TREE_CODE (TREE_TYPE (op1)) == ARRAY_TYPE) 109 { 110 op1_lvalue_kind = lvalue_kind (op1); 111 if (op1_lvalue_kind == clk_class) 112 /* in the case of an array operand, the result is an lvalue if 113 that operand is an lvalue and an xvalue otherwise */ 114 op1_lvalue_kind = clk_rvalueref; 115 return op1_lvalue_kind; 116 } 117 else 118 return clk_ordinary; 119 } 120 121 case MEMBER_REF: 122 case DOTSTAR_EXPR: 123 if (TREE_CODE (ref) == MEMBER_REF) 124 op1_lvalue_kind = clk_ordinary; 125 else 126 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0)); 127 if (TYPE_PTRMEMFUNC_P (TREE_TYPE (TREE_OPERAND (ref, 1)))) 128 op1_lvalue_kind = clk_none; 129 else if (op1_lvalue_kind == clk_class) 130 /* The result of a .* expression whose second operand is a pointer to a 131 data member is an lvalue if the first operand is an lvalue and an 132 xvalue otherwise. */ 133 op1_lvalue_kind = clk_rvalueref; 134 return op1_lvalue_kind; 135 136 case COMPONENT_REF: 137 if (BASELINK_P (TREE_OPERAND (ref, 1))) 138 { 139 tree fn = BASELINK_FUNCTIONS (TREE_OPERAND (ref, 1)); 140 141 /* For static member function recurse on the BASELINK, we can get 142 here e.g. from reference_binding. If BASELINK_FUNCTIONS is 143 OVERLOAD, the overload is resolved first if possible through 144 resolve_address_of_overloaded_function. */ 145 if (TREE_CODE (fn) == FUNCTION_DECL && DECL_STATIC_FUNCTION_P (fn)) 146 return lvalue_kind (TREE_OPERAND (ref, 1)); 147 } 148 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0)); 149 if (op1_lvalue_kind == clk_class) 150 /* If E1 is an lvalue, then E1.E2 is an lvalue; 151 otherwise E1.E2 is an xvalue. */ 152 op1_lvalue_kind = clk_rvalueref; 153 154 /* Look at the member designator. */ 155 if (!op1_lvalue_kind) 156 ; 157 else if (is_overloaded_fn (TREE_OPERAND (ref, 1))) 158 /* The "field" can be a FUNCTION_DECL or an OVERLOAD in some 159 situations. If we're seeing a COMPONENT_REF, it's a non-static 160 member, so it isn't an lvalue. */ 161 op1_lvalue_kind = clk_none; 162 else if (TREE_CODE (TREE_OPERAND (ref, 1)) != FIELD_DECL) 163 /* This can be IDENTIFIER_NODE in a template. */; 164 else if (DECL_C_BIT_FIELD (TREE_OPERAND (ref, 1))) 165 { 166 /* Clear the ordinary bit. If this object was a class 167 rvalue we want to preserve that information. */ 168 op1_lvalue_kind &= ~clk_ordinary; 169 /* The lvalue is for a bitfield. */ 170 op1_lvalue_kind |= clk_bitfield; 171 } 172 else if (DECL_PACKED (TREE_OPERAND (ref, 1))) 173 op1_lvalue_kind |= clk_packed; 174 175 return op1_lvalue_kind; 176 177 case STRING_CST: 178 case COMPOUND_LITERAL_EXPR: 179 return clk_ordinary; 180 181 case CONST_DECL: 182 /* CONST_DECL without TREE_STATIC are enumeration values and 183 thus not lvalues. With TREE_STATIC they are used by ObjC++ 184 in objc_build_string_object and need to be considered as 185 lvalues. */ 186 if (! TREE_STATIC (ref)) 187 return clk_none; 188 /* FALLTHRU */ 189 case VAR_DECL: 190 if (VAR_P (ref) && DECL_HAS_VALUE_EXPR_P (ref)) 191 return lvalue_kind (DECL_VALUE_EXPR (CONST_CAST_TREE (ref))); 192 193 if (TREE_READONLY (ref) && ! TREE_STATIC (ref) 194 && DECL_LANG_SPECIFIC (ref) 195 && DECL_IN_AGGR_P (ref)) 196 return clk_none; 197 /* FALLTHRU */ 198 case INDIRECT_REF: 199 case ARROW_EXPR: 200 case PARM_DECL: 201 case RESULT_DECL: 202 case PLACEHOLDER_EXPR: 203 return clk_ordinary; 204 205 /* A scope ref in a template, left as SCOPE_REF to support later 206 access checking. */ 207 case SCOPE_REF: 208 gcc_assert (!type_dependent_expression_p (CONST_CAST_TREE (ref))); 209 { 210 tree op = TREE_OPERAND (ref, 1); 211 if (TREE_CODE (op) == FIELD_DECL) 212 return (DECL_C_BIT_FIELD (op) ? clk_bitfield : clk_ordinary); 213 else 214 return lvalue_kind (op); 215 } 216 217 case MAX_EXPR: 218 case MIN_EXPR: 219 /* Disallow <? and >? as lvalues if either argument side-effects. */ 220 if (TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 0)) 221 || TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 1))) 222 return clk_none; 223 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0)); 224 op2_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 1)); 225 break; 226 227 case COND_EXPR: 228 if (processing_template_decl) 229 { 230 /* Within templates, a REFERENCE_TYPE will indicate whether 231 the COND_EXPR result is an ordinary lvalue or rvalueref. 232 Since REFERENCE_TYPEs are handled above, if we reach this 233 point, we know we got a plain rvalue. Unless we have a 234 type-dependent expr, that is, but we shouldn't be testing 235 lvalueness if we can't even tell the types yet! */ 236 gcc_assert (!type_dependent_expression_p (CONST_CAST_TREE (ref))); 237 goto default_; 238 } 239 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 1) 240 ? TREE_OPERAND (ref, 1) 241 : TREE_OPERAND (ref, 0)); 242 op2_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 2)); 243 break; 244 245 case MODOP_EXPR: 246 /* We expect to see unlowered MODOP_EXPRs only during 247 template processing. */ 248 gcc_assert (processing_template_decl); 249 return clk_ordinary; 250 251 case MODIFY_EXPR: 252 case TYPEID_EXPR: 253 return clk_ordinary; 254 255 case COMPOUND_EXPR: 256 return lvalue_kind (TREE_OPERAND (ref, 1)); 257 258 case TARGET_EXPR: 259 return clk_class; 260 261 case VA_ARG_EXPR: 262 return (CLASS_TYPE_P (TREE_TYPE (ref)) ? clk_class : clk_none); 263 264 case CALL_EXPR: 265 /* We can see calls outside of TARGET_EXPR in templates. */ 266 if (CLASS_TYPE_P (TREE_TYPE (ref))) 267 return clk_class; 268 return clk_none; 269 270 case FUNCTION_DECL: 271 /* All functions (except non-static-member functions) are 272 lvalues. */ 273 return (DECL_NONSTATIC_MEMBER_FUNCTION_P (ref) 274 ? clk_none : clk_ordinary); 275 276 case BASELINK: 277 /* We now represent a reference to a single static member function 278 with a BASELINK. */ 279 /* This CONST_CAST is okay because BASELINK_FUNCTIONS returns 280 its argument unmodified and we assign it to a const_tree. */ 281 return lvalue_kind (BASELINK_FUNCTIONS (CONST_CAST_TREE (ref))); 282 283 case NON_DEPENDENT_EXPR: 284 case PAREN_EXPR: 285 return lvalue_kind (TREE_OPERAND (ref, 0)); 286 287 case TEMPLATE_PARM_INDEX: 288 if (CLASS_TYPE_P (TREE_TYPE (ref))) 289 /* A template parameter object is an lvalue. */ 290 return clk_ordinary; 291 return clk_none; 292 293 default: 294 default_: 295 if (!TREE_TYPE (ref)) 296 return clk_none; 297 if (CLASS_TYPE_P (TREE_TYPE (ref)) 298 || TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE) 299 return clk_class; 300 return clk_none; 301 } 302 303 /* If one operand is not an lvalue at all, then this expression is 304 not an lvalue. */ 305 if (!op1_lvalue_kind || !op2_lvalue_kind) 306 return clk_none; 307 308 /* Otherwise, it's an lvalue, and it has all the odd properties 309 contributed by either operand. */ 310 op1_lvalue_kind = op1_lvalue_kind | op2_lvalue_kind; 311 /* It's not an ordinary lvalue if it involves any other kind. */ 312 if ((op1_lvalue_kind & ~clk_ordinary) != clk_none) 313 op1_lvalue_kind &= ~clk_ordinary; 314 /* It can't be both a pseudo-lvalue and a non-addressable lvalue. 315 A COND_EXPR of those should be wrapped in a TARGET_EXPR. */ 316 if ((op1_lvalue_kind & (clk_rvalueref|clk_class)) 317 && (op1_lvalue_kind & (clk_bitfield|clk_packed))) 318 op1_lvalue_kind = clk_none; 319 return op1_lvalue_kind; 320 } 321 322 /* Returns the kind of lvalue that REF is, in the sense of [basic.lval]. */ 323 324 cp_lvalue_kind 325 real_lvalue_p (const_tree ref) 326 { 327 cp_lvalue_kind kind = lvalue_kind (ref); 328 if (kind & (clk_rvalueref|clk_class)) 329 return clk_none; 330 else 331 return kind; 332 } 333 334 /* c-common wants us to return bool. */ 335 336 bool 337 lvalue_p (const_tree t) 338 { 339 return real_lvalue_p (t); 340 } 341 342 /* This differs from lvalue_p in that xvalues are included. */ 343 344 bool 345 glvalue_p (const_tree ref) 346 { 347 cp_lvalue_kind kind = lvalue_kind (ref); 348 if (kind & clk_class) 349 return false; 350 else 351 return (kind != clk_none); 352 } 353 354 /* This differs from glvalue_p in that class prvalues are included. */ 355 356 bool 357 obvalue_p (const_tree ref) 358 { 359 return (lvalue_kind (ref) != clk_none); 360 } 361 362 /* Returns true if REF is an xvalue (the result of dereferencing an rvalue 363 reference), false otherwise. */ 364 365 bool 366 xvalue_p (const_tree ref) 367 { 368 return (lvalue_kind (ref) == clk_rvalueref); 369 } 370 371 /* True if REF is a bit-field. */ 372 373 bool 374 bitfield_p (const_tree ref) 375 { 376 return (lvalue_kind (ref) & clk_bitfield); 377 } 378 379 /* C++-specific version of stabilize_reference. */ 380 381 tree 382 cp_stabilize_reference (tree ref) 383 { 384 STRIP_ANY_LOCATION_WRAPPER (ref); 385 switch (TREE_CODE (ref)) 386 { 387 case NON_DEPENDENT_EXPR: 388 /* We aren't actually evaluating this. */ 389 return ref; 390 391 /* We need to treat specially anything stabilize_reference doesn't 392 handle specifically. */ 393 case VAR_DECL: 394 case PARM_DECL: 395 case RESULT_DECL: 396 CASE_CONVERT: 397 case FLOAT_EXPR: 398 case FIX_TRUNC_EXPR: 399 case INDIRECT_REF: 400 case COMPONENT_REF: 401 case BIT_FIELD_REF: 402 case ARRAY_REF: 403 case ARRAY_RANGE_REF: 404 case ERROR_MARK: 405 break; 406 default: 407 cp_lvalue_kind kind = lvalue_kind (ref); 408 if ((kind & ~clk_class) != clk_none) 409 { 410 tree type = unlowered_expr_type (ref); 411 bool rval = !!(kind & clk_rvalueref); 412 type = cp_build_reference_type (type, rval); 413 /* This inhibits warnings in, eg, cxx_mark_addressable 414 (c++/60955). */ 415 warning_sentinel s (extra_warnings); 416 ref = build_static_cast (type, ref, tf_error); 417 } 418 } 419 420 return stabilize_reference (ref); 421 } 422 423 /* Test whether DECL is a builtin that may appear in a 424 constant-expression. */ 425 426 bool 427 builtin_valid_in_constant_expr_p (const_tree decl) 428 { 429 STRIP_ANY_LOCATION_WRAPPER (decl); 430 if (TREE_CODE (decl) != FUNCTION_DECL) 431 /* Not a function. */ 432 return false; 433 if (DECL_BUILT_IN_CLASS (decl) != BUILT_IN_NORMAL) 434 { 435 if (fndecl_built_in_p (decl, CP_BUILT_IN_IS_CONSTANT_EVALUATED, 436 BUILT_IN_FRONTEND)) 437 return true; 438 /* Not a built-in. */ 439 return false; 440 } 441 switch (DECL_FUNCTION_CODE (decl)) 442 { 443 /* These always have constant results like the corresponding 444 macros/symbol. */ 445 case BUILT_IN_FILE: 446 case BUILT_IN_FUNCTION: 447 case BUILT_IN_LINE: 448 449 /* The following built-ins are valid in constant expressions 450 when their arguments are. */ 451 case BUILT_IN_ADD_OVERFLOW_P: 452 case BUILT_IN_SUB_OVERFLOW_P: 453 case BUILT_IN_MUL_OVERFLOW_P: 454 455 /* These have constant results even if their operands are 456 non-constant. */ 457 case BUILT_IN_CONSTANT_P: 458 case BUILT_IN_ATOMIC_ALWAYS_LOCK_FREE: 459 return true; 460 default: 461 return false; 462 } 463 } 464 465 /* Build a TARGET_EXPR, initializing the DECL with the VALUE. */ 466 467 static tree 468 build_target_expr (tree decl, tree value, tsubst_flags_t complain) 469 { 470 tree t; 471 tree type = TREE_TYPE (decl); 472 473 value = mark_rvalue_use (value); 474 475 gcc_checking_assert (VOID_TYPE_P (TREE_TYPE (value)) 476 || TREE_TYPE (decl) == TREE_TYPE (value) 477 /* On ARM ctors return 'this'. */ 478 || (TYPE_PTR_P (TREE_TYPE (value)) 479 && TREE_CODE (value) == CALL_EXPR) 480 || useless_type_conversion_p (TREE_TYPE (decl), 481 TREE_TYPE (value))); 482 483 /* Set TREE_READONLY for optimization, such as gimplify_init_constructor 484 moving a constant aggregate into .rodata. */ 485 if (CP_TYPE_CONST_NON_VOLATILE_P (type) 486 && !TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type) 487 && !VOID_TYPE_P (TREE_TYPE (value)) 488 && reduced_constant_expression_p (value)) 489 TREE_READONLY (decl) = true; 490 491 if (complain & tf_no_cleanup) 492 /* The caller is building a new-expr and does not need a cleanup. */ 493 t = NULL_TREE; 494 else 495 { 496 t = cxx_maybe_build_cleanup (decl, complain); 497 if (t == error_mark_node) 498 return error_mark_node; 499 } 500 t = build4 (TARGET_EXPR, type, decl, value, t, NULL_TREE); 501 if (location_t eloc = cp_expr_location (value)) 502 SET_EXPR_LOCATION (t, eloc); 503 /* We always set TREE_SIDE_EFFECTS so that expand_expr does not 504 ignore the TARGET_EXPR. If there really turn out to be no 505 side-effects, then the optimizer should be able to get rid of 506 whatever code is generated anyhow. */ 507 TREE_SIDE_EFFECTS (t) = 1; 508 509 return t; 510 } 511 512 /* Return an undeclared local temporary of type TYPE for use in building a 513 TARGET_EXPR. */ 514 515 static tree 516 build_local_temp (tree type) 517 { 518 tree slot = build_decl (input_location, 519 VAR_DECL, NULL_TREE, type); 520 DECL_ARTIFICIAL (slot) = 1; 521 DECL_IGNORED_P (slot) = 1; 522 DECL_CONTEXT (slot) = current_function_decl; 523 layout_decl (slot, 0); 524 return slot; 525 } 526 527 /* Set various status flags when building an AGGR_INIT_EXPR object T. */ 528 529 static void 530 process_aggr_init_operands (tree t) 531 { 532 bool side_effects; 533 534 side_effects = TREE_SIDE_EFFECTS (t); 535 if (!side_effects) 536 { 537 int i, n; 538 n = TREE_OPERAND_LENGTH (t); 539 for (i = 1; i < n; i++) 540 { 541 tree op = TREE_OPERAND (t, i); 542 if (op && TREE_SIDE_EFFECTS (op)) 543 { 544 side_effects = 1; 545 break; 546 } 547 } 548 } 549 TREE_SIDE_EFFECTS (t) = side_effects; 550 } 551 552 /* Build an AGGR_INIT_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE, 553 FN, and SLOT. NARGS is the number of call arguments which are specified 554 as a tree array ARGS. */ 555 556 static tree 557 build_aggr_init_array (tree return_type, tree fn, tree slot, int nargs, 558 tree *args) 559 { 560 tree t; 561 int i; 562 563 t = build_vl_exp (AGGR_INIT_EXPR, nargs + 3); 564 TREE_TYPE (t) = return_type; 565 AGGR_INIT_EXPR_FN (t) = fn; 566 AGGR_INIT_EXPR_SLOT (t) = slot; 567 for (i = 0; i < nargs; i++) 568 AGGR_INIT_EXPR_ARG (t, i) = args[i]; 569 process_aggr_init_operands (t); 570 return t; 571 } 572 573 /* INIT is a CALL_EXPR or AGGR_INIT_EXPR which needs info about its 574 target. TYPE is the type to be initialized. 575 576 Build an AGGR_INIT_EXPR to represent the initialization. This function 577 differs from build_cplus_new in that an AGGR_INIT_EXPR can only be used 578 to initialize another object, whereas a TARGET_EXPR can either 579 initialize another object or create its own temporary object, and as a 580 result building up a TARGET_EXPR requires that the type's destructor be 581 callable. */ 582 583 tree 584 build_aggr_init_expr (tree type, tree init) 585 { 586 tree fn; 587 tree slot; 588 tree rval; 589 int is_ctor; 590 591 gcc_assert (!VOID_TYPE_P (type)); 592 593 /* Don't build AGGR_INIT_EXPR in a template. */ 594 if (processing_template_decl) 595 return init; 596 597 fn = cp_get_callee (init); 598 if (fn == NULL_TREE) 599 return convert (type, init); 600 601 is_ctor = (TREE_CODE (fn) == ADDR_EXPR 602 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL 603 && DECL_CONSTRUCTOR_P (TREE_OPERAND (fn, 0))); 604 605 /* We split the CALL_EXPR into its function and its arguments here. 606 Then, in expand_expr, we put them back together. The reason for 607 this is that this expression might be a default argument 608 expression. In that case, we need a new temporary every time the 609 expression is used. That's what break_out_target_exprs does; it 610 replaces every AGGR_INIT_EXPR with a copy that uses a fresh 611 temporary slot. Then, expand_expr builds up a call-expression 612 using the new slot. */ 613 614 /* If we don't need to use a constructor to create an object of this 615 type, don't mess with AGGR_INIT_EXPR. */ 616 if (is_ctor || TREE_ADDRESSABLE (type)) 617 { 618 slot = build_local_temp (type); 619 620 if (TREE_CODE (init) == CALL_EXPR) 621 { 622 rval = build_aggr_init_array (void_type_node, fn, slot, 623 call_expr_nargs (init), 624 CALL_EXPR_ARGP (init)); 625 AGGR_INIT_FROM_THUNK_P (rval) 626 = CALL_FROM_THUNK_P (init); 627 } 628 else 629 { 630 rval = build_aggr_init_array (void_type_node, fn, slot, 631 aggr_init_expr_nargs (init), 632 AGGR_INIT_EXPR_ARGP (init)); 633 AGGR_INIT_FROM_THUNK_P (rval) 634 = AGGR_INIT_FROM_THUNK_P (init); 635 } 636 TREE_SIDE_EFFECTS (rval) = 1; 637 AGGR_INIT_VIA_CTOR_P (rval) = is_ctor; 638 TREE_NOTHROW (rval) = TREE_NOTHROW (init); 639 CALL_EXPR_OPERATOR_SYNTAX (rval) = CALL_EXPR_OPERATOR_SYNTAX (init); 640 CALL_EXPR_ORDERED_ARGS (rval) = CALL_EXPR_ORDERED_ARGS (init); 641 CALL_EXPR_REVERSE_ARGS (rval) = CALL_EXPR_REVERSE_ARGS (init); 642 } 643 else 644 rval = init; 645 646 return rval; 647 } 648 649 /* INIT is a CALL_EXPR or AGGR_INIT_EXPR which needs info about its 650 target. TYPE is the type that this initialization should appear to 651 have. 652 653 Build an encapsulation of the initialization to perform 654 and return it so that it can be processed by language-independent 655 and language-specific expression expanders. */ 656 657 tree 658 build_cplus_new (tree type, tree init, tsubst_flags_t complain) 659 { 660 tree rval = build_aggr_init_expr (type, init); 661 tree slot; 662 663 if (init == error_mark_node) 664 return error_mark_node; 665 666 if (!complete_type_or_maybe_complain (type, init, complain)) 667 return error_mark_node; 668 669 /* Make sure that we're not trying to create an instance of an 670 abstract class. */ 671 if (abstract_virtuals_error_sfinae (NULL_TREE, type, complain)) 672 return error_mark_node; 673 674 if (TREE_CODE (rval) == AGGR_INIT_EXPR) 675 slot = AGGR_INIT_EXPR_SLOT (rval); 676 else if (TREE_CODE (rval) == CALL_EXPR 677 || TREE_CODE (rval) == CONSTRUCTOR) 678 slot = build_local_temp (type); 679 else 680 return rval; 681 682 rval = build_target_expr (slot, rval, complain); 683 684 if (rval != error_mark_node) 685 TARGET_EXPR_IMPLICIT_P (rval) = 1; 686 687 return rval; 688 } 689 690 /* Subroutine of build_vec_init_expr: Build up a single element 691 intialization as a proxy for the full array initialization to get things 692 marked as used and any appropriate diagnostics. 693 694 Since we're deferring building the actual constructor calls until 695 gimplification time, we need to build one now and throw it away so 696 that the relevant constructor gets mark_used before cgraph decides 697 what functions are needed. Here we assume that init is either 698 NULL_TREE, void_type_node (indicating value-initialization), or 699 another array to copy. */ 700 701 static tree 702 build_vec_init_elt (tree type, tree init, tsubst_flags_t complain) 703 { 704 tree inner_type = strip_array_types (type); 705 vec<tree, va_gc> *argvec; 706 707 if (integer_zerop (array_type_nelts_total (type)) 708 || !CLASS_TYPE_P (inner_type)) 709 /* No interesting initialization to do. */ 710 return integer_zero_node; 711 else if (init == void_type_node) 712 return build_value_init (inner_type, complain); 713 714 gcc_assert (init == NULL_TREE 715 || (same_type_ignoring_top_level_qualifiers_p 716 (type, TREE_TYPE (init)))); 717 718 argvec = make_tree_vector (); 719 if (init) 720 { 721 tree init_type = strip_array_types (TREE_TYPE (init)); 722 tree dummy = build_dummy_object (init_type); 723 if (!lvalue_p (init)) 724 dummy = move (dummy); 725 argvec->quick_push (dummy); 726 } 727 init = build_special_member_call (NULL_TREE, complete_ctor_identifier, 728 &argvec, inner_type, LOOKUP_NORMAL, 729 complain); 730 release_tree_vector (argvec); 731 732 /* For a trivial constructor, build_over_call creates a TARGET_EXPR. But 733 we don't want one here because we aren't creating a temporary. */ 734 if (TREE_CODE (init) == TARGET_EXPR) 735 init = TARGET_EXPR_INITIAL (init); 736 737 return init; 738 } 739 740 /* Return a TARGET_EXPR which expresses the initialization of an array to 741 be named later, either default-initialization or copy-initialization 742 from another array of the same type. */ 743 744 tree 745 build_vec_init_expr (tree type, tree init, tsubst_flags_t complain) 746 { 747 tree slot; 748 bool value_init = false; 749 tree elt_init = build_vec_init_elt (type, init, complain); 750 751 if (init == void_type_node) 752 { 753 value_init = true; 754 init = NULL_TREE; 755 } 756 757 slot = build_local_temp (type); 758 init = build2 (VEC_INIT_EXPR, type, slot, init); 759 TREE_SIDE_EFFECTS (init) = true; 760 SET_EXPR_LOCATION (init, input_location); 761 762 if (cxx_dialect >= cxx11 763 && potential_constant_expression (elt_init)) 764 VEC_INIT_EXPR_IS_CONSTEXPR (init) = true; 765 VEC_INIT_EXPR_VALUE_INIT (init) = value_init; 766 767 return init; 768 } 769 770 /* Give a helpful diagnostic for a non-constexpr VEC_INIT_EXPR in a context 771 that requires a constant expression. */ 772 773 void 774 diagnose_non_constexpr_vec_init (tree expr) 775 { 776 tree type = TREE_TYPE (VEC_INIT_EXPR_SLOT (expr)); 777 tree init, elt_init; 778 if (VEC_INIT_EXPR_VALUE_INIT (expr)) 779 init = void_type_node; 780 else 781 init = VEC_INIT_EXPR_INIT (expr); 782 783 elt_init = build_vec_init_elt (type, init, tf_warning_or_error); 784 require_potential_constant_expression (elt_init); 785 } 786 787 tree 788 build_array_copy (tree init) 789 { 790 return build_vec_init_expr (TREE_TYPE (init), init, tf_warning_or_error); 791 } 792 793 /* Build a TARGET_EXPR using INIT to initialize a new temporary of the 794 indicated TYPE. */ 795 796 tree 797 build_target_expr_with_type (tree init, tree type, tsubst_flags_t complain) 798 { 799 gcc_assert (!VOID_TYPE_P (type)); 800 801 if (TREE_CODE (init) == TARGET_EXPR 802 || init == error_mark_node) 803 return init; 804 else if (CLASS_TYPE_P (type) && type_has_nontrivial_copy_init (type) 805 && !VOID_TYPE_P (TREE_TYPE (init)) 806 && TREE_CODE (init) != COND_EXPR 807 && TREE_CODE (init) != CONSTRUCTOR 808 && TREE_CODE (init) != VA_ARG_EXPR) 809 /* We need to build up a copy constructor call. A void initializer 810 means we're being called from bot_manip. COND_EXPR is a special 811 case because we already have copies on the arms and we don't want 812 another one here. A CONSTRUCTOR is aggregate initialization, which 813 is handled separately. A VA_ARG_EXPR is magic creation of an 814 aggregate; there's no additional work to be done. */ 815 return force_rvalue (init, complain); 816 817 return force_target_expr (type, init, complain); 818 } 819 820 /* Like the above function, but without the checking. This function should 821 only be used by code which is deliberately trying to subvert the type 822 system, such as call_builtin_trap. Or build_over_call, to avoid 823 infinite recursion. */ 824 825 tree 826 force_target_expr (tree type, tree init, tsubst_flags_t complain) 827 { 828 tree slot; 829 830 gcc_assert (!VOID_TYPE_P (type)); 831 832 slot = build_local_temp (type); 833 return build_target_expr (slot, init, complain); 834 } 835 836 /* Like build_target_expr_with_type, but use the type of INIT. */ 837 838 tree 839 get_target_expr_sfinae (tree init, tsubst_flags_t complain) 840 { 841 if (TREE_CODE (init) == AGGR_INIT_EXPR) 842 return build_target_expr (AGGR_INIT_EXPR_SLOT (init), init, complain); 843 else if (TREE_CODE (init) == VEC_INIT_EXPR) 844 return build_target_expr (VEC_INIT_EXPR_SLOT (init), init, complain); 845 else 846 { 847 init = convert_bitfield_to_declared_type (init); 848 return build_target_expr_with_type (init, TREE_TYPE (init), complain); 849 } 850 } 851 852 tree 853 get_target_expr (tree init) 854 { 855 return get_target_expr_sfinae (init, tf_warning_or_error); 856 } 857 858 /* If EXPR is a bitfield reference, convert it to the declared type of 859 the bitfield, and return the resulting expression. Otherwise, 860 return EXPR itself. */ 861 862 tree 863 convert_bitfield_to_declared_type (tree expr) 864 { 865 tree bitfield_type; 866 867 bitfield_type = is_bitfield_expr_with_lowered_type (expr); 868 if (bitfield_type) 869 expr = convert_to_integer_nofold (TYPE_MAIN_VARIANT (bitfield_type), 870 expr); 871 return expr; 872 } 873 874 /* EXPR is being used in an rvalue context. Return a version of EXPR 875 that is marked as an rvalue. */ 876 877 tree 878 rvalue (tree expr) 879 { 880 tree type; 881 882 if (error_operand_p (expr)) 883 return expr; 884 885 expr = mark_rvalue_use (expr); 886 887 /* [basic.lval] 888 889 Non-class rvalues always have cv-unqualified types. */ 890 type = TREE_TYPE (expr); 891 if (!CLASS_TYPE_P (type) && cv_qualified_p (type)) 892 type = cv_unqualified (type); 893 894 /* We need to do this for rvalue refs as well to get the right answer 895 from decltype; see c++/36628. */ 896 if (!processing_template_decl && glvalue_p (expr)) 897 expr = build1 (NON_LVALUE_EXPR, type, expr); 898 else if (type != TREE_TYPE (expr)) 899 expr = build_nop (type, expr); 900 901 return expr; 902 } 903 904 905 struct cplus_array_info 906 { 907 tree type; 908 tree domain; 909 }; 910 911 struct cplus_array_hasher : ggc_ptr_hash<tree_node> 912 { 913 typedef cplus_array_info *compare_type; 914 915 static hashval_t hash (tree t); 916 static bool equal (tree, cplus_array_info *); 917 }; 918 919 /* Hash an ARRAY_TYPE. K is really of type `tree'. */ 920 921 hashval_t 922 cplus_array_hasher::hash (tree t) 923 { 924 hashval_t hash; 925 926 hash = TYPE_UID (TREE_TYPE (t)); 927 if (TYPE_DOMAIN (t)) 928 hash ^= TYPE_UID (TYPE_DOMAIN (t)); 929 return hash; 930 } 931 932 /* Compare two ARRAY_TYPEs. K1 is really of type `tree', K2 is really 933 of type `cplus_array_info*'. */ 934 935 bool 936 cplus_array_hasher::equal (tree t1, cplus_array_info *t2) 937 { 938 return (TREE_TYPE (t1) == t2->type && TYPE_DOMAIN (t1) == t2->domain); 939 } 940 941 /* Hash table containing dependent array types, which are unsuitable for 942 the language-independent type hash table. */ 943 static GTY (()) hash_table<cplus_array_hasher> *cplus_array_htab; 944 945 /* Build an ARRAY_TYPE without laying it out. */ 946 947 static tree 948 build_min_array_type (tree elt_type, tree index_type) 949 { 950 tree t = cxx_make_type (ARRAY_TYPE); 951 TREE_TYPE (t) = elt_type; 952 TYPE_DOMAIN (t) = index_type; 953 return t; 954 } 955 956 /* Set TYPE_CANONICAL like build_array_type_1, but using 957 build_cplus_array_type. */ 958 959 static void 960 set_array_type_canon (tree t, tree elt_type, tree index_type) 961 { 962 /* Set the canonical type for this new node. */ 963 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type) 964 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))) 965 SET_TYPE_STRUCTURAL_EQUALITY (t); 966 else if (TYPE_CANONICAL (elt_type) != elt_type 967 || (index_type && TYPE_CANONICAL (index_type) != index_type)) 968 TYPE_CANONICAL (t) 969 = build_cplus_array_type (TYPE_CANONICAL (elt_type), 970 index_type 971 ? TYPE_CANONICAL (index_type) : index_type); 972 else 973 TYPE_CANONICAL (t) = t; 974 } 975 976 /* Like build_array_type, but handle special C++ semantics: an array of a 977 variant element type is a variant of the array of the main variant of 978 the element type. */ 979 980 tree 981 build_cplus_array_type (tree elt_type, tree index_type) 982 { 983 tree t; 984 985 if (elt_type == error_mark_node || index_type == error_mark_node) 986 return error_mark_node; 987 988 bool dependent = (uses_template_parms (elt_type) 989 || (index_type && uses_template_parms (index_type))); 990 991 if (elt_type != TYPE_MAIN_VARIANT (elt_type)) 992 /* Start with an array of the TYPE_MAIN_VARIANT. */ 993 t = build_cplus_array_type (TYPE_MAIN_VARIANT (elt_type), 994 index_type); 995 else if (dependent) 996 { 997 /* Since type_hash_canon calls layout_type, we need to use our own 998 hash table. */ 999 cplus_array_info cai; 1000 hashval_t hash; 1001 1002 if (cplus_array_htab == NULL) 1003 cplus_array_htab = hash_table<cplus_array_hasher>::create_ggc (61); 1004 1005 hash = TYPE_UID (elt_type); 1006 if (index_type) 1007 hash ^= TYPE_UID (index_type); 1008 cai.type = elt_type; 1009 cai.domain = index_type; 1010 1011 tree *e = cplus_array_htab->find_slot_with_hash (&cai, hash, INSERT); 1012 if (*e) 1013 /* We have found the type: we're done. */ 1014 return (tree) *e; 1015 else 1016 { 1017 /* Build a new array type. */ 1018 t = build_min_array_type (elt_type, index_type); 1019 1020 /* Store it in the hash table. */ 1021 *e = t; 1022 1023 /* Set the canonical type for this new node. */ 1024 set_array_type_canon (t, elt_type, index_type); 1025 } 1026 } 1027 else 1028 { 1029 bool typeless_storage 1030 = (elt_type == unsigned_char_type_node 1031 || elt_type == signed_char_type_node 1032 || elt_type == char_type_node 1033 || (TREE_CODE (elt_type) == ENUMERAL_TYPE 1034 && TYPE_CONTEXT (elt_type) == std_node 1035 && !strcmp ("byte", TYPE_NAME_STRING (elt_type)))); 1036 t = build_array_type (elt_type, index_type, typeless_storage); 1037 } 1038 1039 /* Now check whether we already have this array variant. */ 1040 if (elt_type != TYPE_MAIN_VARIANT (elt_type)) 1041 { 1042 tree m = t; 1043 for (t = m; t; t = TYPE_NEXT_VARIANT (t)) 1044 if (TREE_TYPE (t) == elt_type 1045 && TYPE_NAME (t) == NULL_TREE 1046 && TYPE_ATTRIBUTES (t) == NULL_TREE) 1047 break; 1048 if (!t) 1049 { 1050 t = build_min_array_type (elt_type, index_type); 1051 set_array_type_canon (t, elt_type, index_type); 1052 if (!dependent) 1053 { 1054 layout_type (t); 1055 /* Make sure sizes are shared with the main variant. 1056 layout_type can't be called after setting TYPE_NEXT_VARIANT, 1057 as it will overwrite alignment etc. of all variants. */ 1058 TYPE_SIZE (t) = TYPE_SIZE (m); 1059 TYPE_SIZE_UNIT (t) = TYPE_SIZE_UNIT (m); 1060 TYPE_TYPELESS_STORAGE (t) = TYPE_TYPELESS_STORAGE (m); 1061 } 1062 1063 TYPE_MAIN_VARIANT (t) = m; 1064 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m); 1065 TYPE_NEXT_VARIANT (m) = t; 1066 } 1067 } 1068 1069 /* Avoid spurious warnings with VLAs (c++/54583). */ 1070 if (TYPE_SIZE (t) && EXPR_P (TYPE_SIZE (t))) 1071 TREE_NO_WARNING (TYPE_SIZE (t)) = 1; 1072 1073 /* Push these needs up to the ARRAY_TYPE so that initialization takes 1074 place more easily. */ 1075 bool needs_ctor = (TYPE_NEEDS_CONSTRUCTING (t) 1076 = TYPE_NEEDS_CONSTRUCTING (elt_type)); 1077 bool needs_dtor = (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) 1078 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (elt_type)); 1079 1080 if (!dependent && t == TYPE_MAIN_VARIANT (t) 1081 && !COMPLETE_TYPE_P (t) && COMPLETE_TYPE_P (elt_type)) 1082 { 1083 /* The element type has been completed since the last time we saw 1084 this array type; update the layout and 'tor flags for any variants 1085 that need it. */ 1086 layout_type (t); 1087 for (tree v = TYPE_NEXT_VARIANT (t); v; v = TYPE_NEXT_VARIANT (v)) 1088 { 1089 TYPE_NEEDS_CONSTRUCTING (v) = needs_ctor; 1090 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (v) = needs_dtor; 1091 } 1092 } 1093 1094 return t; 1095 } 1096 1097 /* Return an ARRAY_TYPE with element type ELT and length N. */ 1098 1099 tree 1100 build_array_of_n_type (tree elt, int n) 1101 { 1102 return build_cplus_array_type (elt, build_index_type (size_int (n - 1))); 1103 } 1104 1105 /* True iff T is an N3639 array of runtime bound (VLA). These were approved 1106 for C++14 but then removed. This should only be used for N3639 1107 specifically; code wondering more generally if something is a VLA should use 1108 vla_type_p. */ 1109 1110 bool 1111 array_of_runtime_bound_p (tree t) 1112 { 1113 if (!t || TREE_CODE (t) != ARRAY_TYPE) 1114 return false; 1115 if (variably_modified_type_p (TREE_TYPE (t), NULL_TREE)) 1116 return false; 1117 tree dom = TYPE_DOMAIN (t); 1118 if (!dom) 1119 return false; 1120 tree max = TYPE_MAX_VALUE (dom); 1121 return (!potential_rvalue_constant_expression (max) 1122 || (!value_dependent_expression_p (max) && !TREE_CONSTANT (max))); 1123 } 1124 1125 /* True iff T is a variable length array. */ 1126 1127 bool 1128 vla_type_p (tree t) 1129 { 1130 for (; t && TREE_CODE (t) == ARRAY_TYPE; 1131 t = TREE_TYPE (t)) 1132 if (tree dom = TYPE_DOMAIN (t)) 1133 { 1134 tree max = TYPE_MAX_VALUE (dom); 1135 if (!potential_rvalue_constant_expression (max) 1136 || (!value_dependent_expression_p (max) && !TREE_CONSTANT (max))) 1137 return true; 1138 } 1139 return false; 1140 } 1141 1142 /* Return a reference type node referring to TO_TYPE. If RVAL is 1143 true, return an rvalue reference type, otherwise return an lvalue 1144 reference type. If a type node exists, reuse it, otherwise create 1145 a new one. */ 1146 tree 1147 cp_build_reference_type (tree to_type, bool rval) 1148 { 1149 tree lvalue_ref, t; 1150 1151 if (to_type == error_mark_node) 1152 return error_mark_node; 1153 1154 if (TYPE_REF_P (to_type)) 1155 { 1156 rval = rval && TYPE_REF_IS_RVALUE (to_type); 1157 to_type = TREE_TYPE (to_type); 1158 } 1159 1160 lvalue_ref = build_reference_type (to_type); 1161 if (!rval) 1162 return lvalue_ref; 1163 1164 /* This code to create rvalue reference types is based on and tied 1165 to the code creating lvalue reference types in the middle-end 1166 functions build_reference_type_for_mode and build_reference_type. 1167 1168 It works by putting the rvalue reference type nodes after the 1169 lvalue reference nodes in the TYPE_NEXT_REF_TO linked list, so 1170 they will effectively be ignored by the middle end. */ 1171 1172 for (t = lvalue_ref; (t = TYPE_NEXT_REF_TO (t)); ) 1173 if (TYPE_REF_IS_RVALUE (t)) 1174 return t; 1175 1176 t = build_distinct_type_copy (lvalue_ref); 1177 1178 TYPE_REF_IS_RVALUE (t) = true; 1179 TYPE_NEXT_REF_TO (t) = TYPE_NEXT_REF_TO (lvalue_ref); 1180 TYPE_NEXT_REF_TO (lvalue_ref) = t; 1181 1182 if (TYPE_STRUCTURAL_EQUALITY_P (to_type)) 1183 SET_TYPE_STRUCTURAL_EQUALITY (t); 1184 else if (TYPE_CANONICAL (to_type) != to_type) 1185 TYPE_CANONICAL (t) 1186 = cp_build_reference_type (TYPE_CANONICAL (to_type), rval); 1187 else 1188 TYPE_CANONICAL (t) = t; 1189 1190 layout_type (t); 1191 1192 return t; 1193 1194 } 1195 1196 /* Returns EXPR cast to rvalue reference type, like std::move. */ 1197 1198 tree 1199 move (tree expr) 1200 { 1201 tree type = TREE_TYPE (expr); 1202 gcc_assert (!TYPE_REF_P (type)); 1203 type = cp_build_reference_type (type, /*rval*/true); 1204 return build_static_cast (type, expr, tf_warning_or_error); 1205 } 1206 1207 /* Used by the C++ front end to build qualified array types. However, 1208 the C version of this function does not properly maintain canonical 1209 types (which are not used in C). */ 1210 tree 1211 c_build_qualified_type (tree type, int type_quals, tree /* orig_qual_type */, 1212 size_t /* orig_qual_indirect */) 1213 { 1214 return cp_build_qualified_type (type, type_quals); 1215 } 1216 1217 1218 /* Make a variant of TYPE, qualified with the TYPE_QUALS. Handles 1219 arrays correctly. In particular, if TYPE is an array of T's, and 1220 TYPE_QUALS is non-empty, returns an array of qualified T's. 1221 1222 FLAGS determines how to deal with ill-formed qualifications. If 1223 tf_ignore_bad_quals is set, then bad qualifications are dropped 1224 (this is permitted if TYPE was introduced via a typedef or template 1225 type parameter). If bad qualifications are dropped and tf_warning 1226 is set, then a warning is issued for non-const qualifications. If 1227 tf_ignore_bad_quals is not set and tf_error is not set, we 1228 return error_mark_node. Otherwise, we issue an error, and ignore 1229 the qualifications. 1230 1231 Qualification of a reference type is valid when the reference came 1232 via a typedef or template type argument. [dcl.ref] No such 1233 dispensation is provided for qualifying a function type. [dcl.fct] 1234 DR 295 queries this and the proposed resolution brings it into line 1235 with qualifying a reference. We implement the DR. We also behave 1236 in a similar manner for restricting non-pointer types. */ 1237 1238 tree 1239 cp_build_qualified_type_real (tree type, 1240 int type_quals, 1241 tsubst_flags_t complain) 1242 { 1243 tree result; 1244 int bad_quals = TYPE_UNQUALIFIED; 1245 1246 if (type == error_mark_node) 1247 return type; 1248 1249 if (type_quals == cp_type_quals (type)) 1250 return type; 1251 1252 if (TREE_CODE (type) == ARRAY_TYPE) 1253 { 1254 /* In C++, the qualification really applies to the array element 1255 type. Obtain the appropriately qualified element type. */ 1256 tree t; 1257 tree element_type 1258 = cp_build_qualified_type_real (TREE_TYPE (type), 1259 type_quals, 1260 complain); 1261 1262 if (element_type == error_mark_node) 1263 return error_mark_node; 1264 1265 /* See if we already have an identically qualified type. Tests 1266 should be equivalent to those in check_qualified_type. */ 1267 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t)) 1268 if (TREE_TYPE (t) == element_type 1269 && TYPE_NAME (t) == TYPE_NAME (type) 1270 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type) 1271 && attribute_list_equal (TYPE_ATTRIBUTES (t), 1272 TYPE_ATTRIBUTES (type))) 1273 break; 1274 1275 if (!t) 1276 { 1277 t = build_cplus_array_type (element_type, TYPE_DOMAIN (type)); 1278 1279 /* Keep the typedef name. */ 1280 if (TYPE_NAME (t) != TYPE_NAME (type)) 1281 { 1282 t = build_variant_type_copy (t); 1283 TYPE_NAME (t) = TYPE_NAME (type); 1284 SET_TYPE_ALIGN (t, TYPE_ALIGN (type)); 1285 TYPE_USER_ALIGN (t) = TYPE_USER_ALIGN (type); 1286 } 1287 } 1288 1289 /* Even if we already had this variant, we update 1290 TYPE_NEEDS_CONSTRUCTING and TYPE_HAS_NONTRIVIAL_DESTRUCTOR in case 1291 they changed since the variant was originally created. 1292 1293 This seems hokey; if there is some way to use a previous 1294 variant *without* coming through here, 1295 TYPE_NEEDS_CONSTRUCTING will never be updated. */ 1296 TYPE_NEEDS_CONSTRUCTING (t) 1297 = TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (element_type)); 1298 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) 1299 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (element_type)); 1300 return t; 1301 } 1302 else if (TREE_CODE (type) == TYPE_PACK_EXPANSION) 1303 { 1304 tree t = PACK_EXPANSION_PATTERN (type); 1305 1306 t = cp_build_qualified_type_real (t, type_quals, complain); 1307 return make_pack_expansion (t, complain); 1308 } 1309 1310 /* A reference or method type shall not be cv-qualified. 1311 [dcl.ref], [dcl.fct]. This used to be an error, but as of DR 295 1312 (in CD1) we always ignore extra cv-quals on functions. */ 1313 if (type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE) 1314 && (TYPE_REF_P (type) 1315 || TREE_CODE (type) == FUNCTION_TYPE 1316 || TREE_CODE (type) == METHOD_TYPE)) 1317 { 1318 if (TYPE_REF_P (type)) 1319 bad_quals |= type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE); 1320 type_quals &= ~(TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE); 1321 } 1322 1323 /* But preserve any function-cv-quals on a FUNCTION_TYPE. */ 1324 if (TREE_CODE (type) == FUNCTION_TYPE) 1325 type_quals |= type_memfn_quals (type); 1326 1327 /* A restrict-qualified type must be a pointer (or reference) 1328 to object or incomplete type. */ 1329 if ((type_quals & TYPE_QUAL_RESTRICT) 1330 && TREE_CODE (type) != TEMPLATE_TYPE_PARM 1331 && TREE_CODE (type) != TYPENAME_TYPE 1332 && !INDIRECT_TYPE_P (type)) 1333 { 1334 bad_quals |= TYPE_QUAL_RESTRICT; 1335 type_quals &= ~TYPE_QUAL_RESTRICT; 1336 } 1337 1338 if (bad_quals == TYPE_UNQUALIFIED 1339 || (complain & tf_ignore_bad_quals)) 1340 /*OK*/; 1341 else if (!(complain & tf_error)) 1342 return error_mark_node; 1343 else 1344 { 1345 tree bad_type = build_qualified_type (ptr_type_node, bad_quals); 1346 error ("%qV qualifiers cannot be applied to %qT", 1347 bad_type, type); 1348 } 1349 1350 /* Retrieve (or create) the appropriately qualified variant. */ 1351 result = build_qualified_type (type, type_quals); 1352 1353 return result; 1354 } 1355 1356 /* Return TYPE with const and volatile removed. */ 1357 1358 tree 1359 cv_unqualified (tree type) 1360 { 1361 int quals; 1362 1363 if (type == error_mark_node) 1364 return type; 1365 1366 quals = cp_type_quals (type); 1367 quals &= ~(TYPE_QUAL_CONST|TYPE_QUAL_VOLATILE); 1368 return cp_build_qualified_type (type, quals); 1369 } 1370 1371 /* Subroutine of strip_typedefs. We want to apply to RESULT the attributes 1372 from ATTRIBS that affect type identity, and no others. If any are not 1373 applied, set *remove_attributes to true. */ 1374 1375 static tree 1376 apply_identity_attributes (tree result, tree attribs, bool *remove_attributes) 1377 { 1378 tree first_ident = NULL_TREE; 1379 tree new_attribs = NULL_TREE; 1380 tree *p = &new_attribs; 1381 1382 if (OVERLOAD_TYPE_P (result)) 1383 { 1384 /* On classes and enums all attributes are ingrained. */ 1385 gcc_assert (attribs == TYPE_ATTRIBUTES (result)); 1386 return result; 1387 } 1388 1389 for (tree a = attribs; a; a = TREE_CHAIN (a)) 1390 { 1391 const attribute_spec *as 1392 = lookup_attribute_spec (get_attribute_name (a)); 1393 if (as && as->affects_type_identity) 1394 { 1395 if (!first_ident) 1396 first_ident = a; 1397 else if (first_ident == error_mark_node) 1398 { 1399 *p = tree_cons (TREE_PURPOSE (a), TREE_VALUE (a), NULL_TREE); 1400 p = &TREE_CHAIN (*p); 1401 } 1402 } 1403 else if (first_ident) 1404 { 1405 for (tree a2 = first_ident; a2; a2 = TREE_CHAIN (a2)) 1406 { 1407 *p = tree_cons (TREE_PURPOSE (a2), TREE_VALUE (a2), NULL_TREE); 1408 p = &TREE_CHAIN (*p); 1409 } 1410 first_ident = error_mark_node; 1411 } 1412 } 1413 if (first_ident != error_mark_node) 1414 new_attribs = first_ident; 1415 1416 if (first_ident == attribs) 1417 /* All attributes affected type identity. */; 1418 else 1419 *remove_attributes = true; 1420 1421 return cp_build_type_attribute_variant (result, new_attribs); 1422 } 1423 1424 /* Builds a qualified variant of T that is not a typedef variant. 1425 E.g. consider the following declarations: 1426 typedef const int ConstInt; 1427 typedef ConstInt* PtrConstInt; 1428 If T is PtrConstInt, this function returns a type representing 1429 const int*. 1430 In other words, if T is a typedef, the function returns the underlying type. 1431 The cv-qualification and attributes of the type returned match the 1432 input type. 1433 They will always be compatible types. 1434 The returned type is built so that all of its subtypes 1435 recursively have their typedefs stripped as well. 1436 1437 This is different from just returning TYPE_CANONICAL (T) 1438 Because of several reasons: 1439 * If T is a type that needs structural equality 1440 its TYPE_CANONICAL (T) will be NULL. 1441 * TYPE_CANONICAL (T) desn't carry type attributes 1442 and loses template parameter names. 1443 1444 If REMOVE_ATTRIBUTES is non-null, also strip attributes that don't 1445 affect type identity, and set the referent to true if any were 1446 stripped. */ 1447 1448 tree 1449 strip_typedefs (tree t, bool *remove_attributes) 1450 { 1451 tree result = NULL, type = NULL, t0 = NULL; 1452 1453 if (!t || t == error_mark_node) 1454 return t; 1455 1456 if (TREE_CODE (t) == TREE_LIST) 1457 { 1458 bool changed = false; 1459 vec<tree,va_gc> *vec = make_tree_vector (); 1460 tree r = t; 1461 for (; t; t = TREE_CHAIN (t)) 1462 { 1463 gcc_assert (!TREE_PURPOSE (t)); 1464 tree elt = strip_typedefs (TREE_VALUE (t), remove_attributes); 1465 if (elt != TREE_VALUE (t)) 1466 changed = true; 1467 vec_safe_push (vec, elt); 1468 } 1469 if (changed) 1470 r = build_tree_list_vec (vec); 1471 release_tree_vector (vec); 1472 return r; 1473 } 1474 1475 gcc_assert (TYPE_P (t)); 1476 1477 if (t == TYPE_CANONICAL (t)) 1478 return t; 1479 1480 if (dependent_alias_template_spec_p (t)) 1481 /* DR 1558: However, if the template-id is dependent, subsequent 1482 template argument substitution still applies to the template-id. */ 1483 return t; 1484 1485 switch (TREE_CODE (t)) 1486 { 1487 case POINTER_TYPE: 1488 type = strip_typedefs (TREE_TYPE (t), remove_attributes); 1489 result = build_pointer_type (type); 1490 break; 1491 case REFERENCE_TYPE: 1492 type = strip_typedefs (TREE_TYPE (t), remove_attributes); 1493 result = cp_build_reference_type (type, TYPE_REF_IS_RVALUE (t)); 1494 break; 1495 case OFFSET_TYPE: 1496 t0 = strip_typedefs (TYPE_OFFSET_BASETYPE (t), remove_attributes); 1497 type = strip_typedefs (TREE_TYPE (t), remove_attributes); 1498 result = build_offset_type (t0, type); 1499 break; 1500 case RECORD_TYPE: 1501 if (TYPE_PTRMEMFUNC_P (t)) 1502 { 1503 t0 = strip_typedefs (TYPE_PTRMEMFUNC_FN_TYPE (t), remove_attributes); 1504 result = build_ptrmemfunc_type (t0); 1505 } 1506 break; 1507 case ARRAY_TYPE: 1508 type = strip_typedefs (TREE_TYPE (t), remove_attributes); 1509 t0 = strip_typedefs (TYPE_DOMAIN (t), remove_attributes); 1510 result = build_cplus_array_type (type, t0); 1511 break; 1512 case FUNCTION_TYPE: 1513 case METHOD_TYPE: 1514 { 1515 tree arg_types = NULL, arg_node, arg_node2, arg_type; 1516 bool changed; 1517 1518 /* Because we stomp on TREE_PURPOSE of TYPE_ARG_TYPES in many places 1519 around the compiler (e.g. cp_parser_late_parsing_default_args), we 1520 can't expect that re-hashing a function type will find a previous 1521 equivalent type, so try to reuse the input type if nothing has 1522 changed. If the type is itself a variant, that will change. */ 1523 bool is_variant = typedef_variant_p (t); 1524 if (remove_attributes 1525 && (TYPE_ATTRIBUTES (t) || TYPE_USER_ALIGN (t))) 1526 is_variant = true; 1527 1528 type = strip_typedefs (TREE_TYPE (t), remove_attributes); 1529 tree canon_spec = (flag_noexcept_type 1530 ? canonical_eh_spec (TYPE_RAISES_EXCEPTIONS (t)) 1531 : NULL_TREE); 1532 changed = (type != TREE_TYPE (t) || is_variant 1533 || TYPE_RAISES_EXCEPTIONS (t) != canon_spec); 1534 1535 for (arg_node = TYPE_ARG_TYPES (t); 1536 arg_node; 1537 arg_node = TREE_CHAIN (arg_node)) 1538 { 1539 if (arg_node == void_list_node) 1540 break; 1541 arg_type = strip_typedefs (TREE_VALUE (arg_node), 1542 remove_attributes); 1543 gcc_assert (arg_type); 1544 if (arg_type == TREE_VALUE (arg_node) && !changed) 1545 continue; 1546 1547 if (!changed) 1548 { 1549 changed = true; 1550 for (arg_node2 = TYPE_ARG_TYPES (t); 1551 arg_node2 != arg_node; 1552 arg_node2 = TREE_CHAIN (arg_node2)) 1553 arg_types 1554 = tree_cons (TREE_PURPOSE (arg_node2), 1555 TREE_VALUE (arg_node2), arg_types); 1556 } 1557 1558 arg_types 1559 = tree_cons (TREE_PURPOSE (arg_node), arg_type, arg_types); 1560 } 1561 1562 if (!changed) 1563 return t; 1564 1565 if (arg_types) 1566 arg_types = nreverse (arg_types); 1567 1568 /* A list of parameters not ending with an ellipsis 1569 must end with void_list_node. */ 1570 if (arg_node) 1571 arg_types = chainon (arg_types, void_list_node); 1572 1573 if (TREE_CODE (t) == METHOD_TYPE) 1574 { 1575 tree class_type = TREE_TYPE (TREE_VALUE (arg_types)); 1576 gcc_assert (class_type); 1577 result = 1578 build_method_type_directly (class_type, type, 1579 TREE_CHAIN (arg_types)); 1580 } 1581 else 1582 { 1583 result = build_function_type (type, arg_types); 1584 result = apply_memfn_quals (result, type_memfn_quals (t)); 1585 } 1586 1587 result = build_cp_fntype_variant (result, 1588 type_memfn_rqual (t), canon_spec, 1589 TYPE_HAS_LATE_RETURN_TYPE (t)); 1590 } 1591 break; 1592 case TYPENAME_TYPE: 1593 { 1594 bool changed = false; 1595 tree fullname = TYPENAME_TYPE_FULLNAME (t); 1596 if (TREE_CODE (fullname) == TEMPLATE_ID_EXPR 1597 && TREE_OPERAND (fullname, 1)) 1598 { 1599 tree args = TREE_OPERAND (fullname, 1); 1600 tree new_args = copy_node (args); 1601 for (int i = 0; i < TREE_VEC_LENGTH (args); ++i) 1602 { 1603 tree arg = TREE_VEC_ELT (args, i); 1604 tree strip_arg; 1605 if (TYPE_P (arg)) 1606 strip_arg = strip_typedefs (arg, remove_attributes); 1607 else 1608 strip_arg = strip_typedefs_expr (arg, remove_attributes); 1609 TREE_VEC_ELT (new_args, i) = strip_arg; 1610 if (strip_arg != arg) 1611 changed = true; 1612 } 1613 if (changed) 1614 { 1615 NON_DEFAULT_TEMPLATE_ARGS_COUNT (new_args) 1616 = NON_DEFAULT_TEMPLATE_ARGS_COUNT (args); 1617 fullname 1618 = lookup_template_function (TREE_OPERAND (fullname, 0), 1619 new_args); 1620 } 1621 else 1622 ggc_free (new_args); 1623 } 1624 tree ctx = strip_typedefs (TYPE_CONTEXT (t), remove_attributes); 1625 if (!changed && ctx == TYPE_CONTEXT (t) && !typedef_variant_p (t)) 1626 return t; 1627 tree name = fullname; 1628 if (TREE_CODE (fullname) == TEMPLATE_ID_EXPR) 1629 name = TREE_OPERAND (fullname, 0); 1630 /* Use build_typename_type rather than make_typename_type because we 1631 don't want to resolve it here, just strip typedefs. */ 1632 result = build_typename_type (ctx, name, fullname, typename_type); 1633 } 1634 break; 1635 case DECLTYPE_TYPE: 1636 result = strip_typedefs_expr (DECLTYPE_TYPE_EXPR (t), 1637 remove_attributes); 1638 if (result == DECLTYPE_TYPE_EXPR (t)) 1639 result = NULL_TREE; 1640 else 1641 result = (finish_decltype_type 1642 (result, 1643 DECLTYPE_TYPE_ID_EXPR_OR_MEMBER_ACCESS_P (t), 1644 tf_none)); 1645 break; 1646 case UNDERLYING_TYPE: 1647 type = strip_typedefs (UNDERLYING_TYPE_TYPE (t), remove_attributes); 1648 result = finish_underlying_type (type); 1649 break; 1650 default: 1651 break; 1652 } 1653 1654 if (!result) 1655 { 1656 if (typedef_variant_p (t)) 1657 { 1658 /* Explicitly get the underlying type, as TYPE_MAIN_VARIANT doesn't 1659 strip typedefs with attributes. */ 1660 result = TYPE_MAIN_VARIANT (DECL_ORIGINAL_TYPE (TYPE_NAME (t))); 1661 result = strip_typedefs (result); 1662 } 1663 else 1664 result = TYPE_MAIN_VARIANT (t); 1665 } 1666 gcc_assert (!typedef_variant_p (result)); 1667 1668 if (COMPLETE_TYPE_P (result) && !COMPLETE_TYPE_P (t)) 1669 /* If RESULT is complete and T isn't, it's likely the case that T 1670 is a variant of RESULT which hasn't been updated yet. Skip the 1671 attribute handling. */; 1672 else 1673 { 1674 if (TYPE_USER_ALIGN (t) != TYPE_USER_ALIGN (result) 1675 || TYPE_ALIGN (t) != TYPE_ALIGN (result)) 1676 { 1677 gcc_assert (TYPE_USER_ALIGN (t)); 1678 if (remove_attributes) 1679 *remove_attributes = true; 1680 else 1681 { 1682 if (TYPE_ALIGN (t) == TYPE_ALIGN (result)) 1683 result = build_variant_type_copy (result); 1684 else 1685 result = build_aligned_type (result, TYPE_ALIGN (t)); 1686 TYPE_USER_ALIGN (result) = true; 1687 } 1688 } 1689 1690 if (TYPE_ATTRIBUTES (t)) 1691 { 1692 if (remove_attributes) 1693 result = apply_identity_attributes (result, TYPE_ATTRIBUTES (t), 1694 remove_attributes); 1695 else 1696 result = cp_build_type_attribute_variant (result, 1697 TYPE_ATTRIBUTES (t)); 1698 } 1699 } 1700 1701 return cp_build_qualified_type (result, cp_type_quals (t)); 1702 } 1703 1704 /* Like strip_typedefs above, but works on expressions, so that in 1705 1706 template<class T> struct A 1707 { 1708 typedef T TT; 1709 B<sizeof(TT)> b; 1710 }; 1711 1712 sizeof(TT) is replaced by sizeof(T). */ 1713 1714 tree 1715 strip_typedefs_expr (tree t, bool *remove_attributes) 1716 { 1717 unsigned i,n; 1718 tree r, type, *ops; 1719 enum tree_code code; 1720 1721 if (t == NULL_TREE || t == error_mark_node) 1722 return t; 1723 1724 STRIP_ANY_LOCATION_WRAPPER (t); 1725 1726 if (DECL_P (t) || CONSTANT_CLASS_P (t)) 1727 return t; 1728 1729 /* Some expressions have type operands, so let's handle types here rather 1730 than check TYPE_P in multiple places below. */ 1731 if (TYPE_P (t)) 1732 return strip_typedefs (t, remove_attributes); 1733 1734 code = TREE_CODE (t); 1735 switch (code) 1736 { 1737 case IDENTIFIER_NODE: 1738 case TEMPLATE_PARM_INDEX: 1739 case OVERLOAD: 1740 case BASELINK: 1741 case ARGUMENT_PACK_SELECT: 1742 return t; 1743 1744 case TRAIT_EXPR: 1745 { 1746 tree type1 = strip_typedefs (TRAIT_EXPR_TYPE1 (t), remove_attributes); 1747 tree type2 = strip_typedefs (TRAIT_EXPR_TYPE2 (t), remove_attributes); 1748 if (type1 == TRAIT_EXPR_TYPE1 (t) 1749 && type2 == TRAIT_EXPR_TYPE2 (t)) 1750 return t; 1751 r = copy_node (t); 1752 TRAIT_EXPR_TYPE1 (r) = type1; 1753 TRAIT_EXPR_TYPE2 (r) = type2; 1754 return r; 1755 } 1756 1757 case TREE_LIST: 1758 { 1759 vec<tree, va_gc> *vec = make_tree_vector (); 1760 bool changed = false; 1761 tree it; 1762 for (it = t; it; it = TREE_CHAIN (it)) 1763 { 1764 tree val = strip_typedefs_expr (TREE_VALUE (it), remove_attributes); 1765 vec_safe_push (vec, val); 1766 if (val != TREE_VALUE (it)) 1767 changed = true; 1768 gcc_assert (TREE_PURPOSE (it) == NULL_TREE); 1769 } 1770 if (changed) 1771 { 1772 r = NULL_TREE; 1773 FOR_EACH_VEC_ELT_REVERSE (*vec, i, it) 1774 r = tree_cons (NULL_TREE, it, r); 1775 } 1776 else 1777 r = t; 1778 release_tree_vector (vec); 1779 return r; 1780 } 1781 1782 case TREE_VEC: 1783 { 1784 bool changed = false; 1785 vec<tree, va_gc> *vec = make_tree_vector (); 1786 n = TREE_VEC_LENGTH (t); 1787 vec_safe_reserve (vec, n); 1788 for (i = 0; i < n; ++i) 1789 { 1790 tree op = strip_typedefs_expr (TREE_VEC_ELT (t, i), 1791 remove_attributes); 1792 vec->quick_push (op); 1793 if (op != TREE_VEC_ELT (t, i)) 1794 changed = true; 1795 } 1796 if (changed) 1797 { 1798 r = copy_node (t); 1799 for (i = 0; i < n; ++i) 1800 TREE_VEC_ELT (r, i) = (*vec)[i]; 1801 NON_DEFAULT_TEMPLATE_ARGS_COUNT (r) 1802 = NON_DEFAULT_TEMPLATE_ARGS_COUNT (t); 1803 } 1804 else 1805 r = t; 1806 release_tree_vector (vec); 1807 return r; 1808 } 1809 1810 case CONSTRUCTOR: 1811 { 1812 bool changed = false; 1813 vec<constructor_elt, va_gc> *vec 1814 = vec_safe_copy (CONSTRUCTOR_ELTS (t)); 1815 n = CONSTRUCTOR_NELTS (t); 1816 type = strip_typedefs (TREE_TYPE (t), remove_attributes); 1817 for (i = 0; i < n; ++i) 1818 { 1819 constructor_elt *e = &(*vec)[i]; 1820 tree op = strip_typedefs_expr (e->value, remove_attributes); 1821 if (op != e->value) 1822 { 1823 changed = true; 1824 e->value = op; 1825 } 1826 gcc_checking_assert 1827 (e->index == strip_typedefs_expr (e->index, remove_attributes)); 1828 } 1829 1830 if (!changed && type == TREE_TYPE (t)) 1831 { 1832 vec_free (vec); 1833 return t; 1834 } 1835 else 1836 { 1837 r = copy_node (t); 1838 TREE_TYPE (r) = type; 1839 CONSTRUCTOR_ELTS (r) = vec; 1840 return r; 1841 } 1842 } 1843 1844 case LAMBDA_EXPR: 1845 return t; 1846 1847 case STATEMENT_LIST: 1848 error ("statement-expression in a constant expression"); 1849 return error_mark_node; 1850 1851 default: 1852 break; 1853 } 1854 1855 gcc_assert (EXPR_P (t)); 1856 1857 n = cp_tree_operand_length (t); 1858 ops = XALLOCAVEC (tree, n); 1859 type = TREE_TYPE (t); 1860 1861 switch (code) 1862 { 1863 CASE_CONVERT: 1864 case IMPLICIT_CONV_EXPR: 1865 case DYNAMIC_CAST_EXPR: 1866 case STATIC_CAST_EXPR: 1867 case CONST_CAST_EXPR: 1868 case REINTERPRET_CAST_EXPR: 1869 case CAST_EXPR: 1870 case NEW_EXPR: 1871 type = strip_typedefs (type, remove_attributes); 1872 /* fallthrough */ 1873 1874 default: 1875 for (i = 0; i < n; ++i) 1876 ops[i] = strip_typedefs_expr (TREE_OPERAND (t, i), remove_attributes); 1877 break; 1878 } 1879 1880 /* If nothing changed, return t. */ 1881 for (i = 0; i < n; ++i) 1882 if (ops[i] != TREE_OPERAND (t, i)) 1883 break; 1884 if (i == n && type == TREE_TYPE (t)) 1885 return t; 1886 1887 r = copy_node (t); 1888 TREE_TYPE (r) = type; 1889 for (i = 0; i < n; ++i) 1890 TREE_OPERAND (r, i) = ops[i]; 1891 return r; 1892 } 1893 1894 /* Makes a copy of BINFO and TYPE, which is to be inherited into a 1895 graph dominated by T. If BINFO is NULL, TYPE is a dependent base, 1896 and we do a shallow copy. If BINFO is non-NULL, we do a deep copy. 1897 VIRT indicates whether TYPE is inherited virtually or not. 1898 IGO_PREV points at the previous binfo of the inheritance graph 1899 order chain. The newly copied binfo's TREE_CHAIN forms this 1900 ordering. 1901 1902 The CLASSTYPE_VBASECLASSES vector of T is constructed in the 1903 correct order. That is in the order the bases themselves should be 1904 constructed in. 1905 1906 The BINFO_INHERITANCE of a virtual base class points to the binfo 1907 of the most derived type. ??? We could probably change this so that 1908 BINFO_INHERITANCE becomes synonymous with BINFO_PRIMARY, and hence 1909 remove a field. They currently can only differ for primary virtual 1910 virtual bases. */ 1911 1912 tree 1913 copy_binfo (tree binfo, tree type, tree t, tree *igo_prev, int virt) 1914 { 1915 tree new_binfo; 1916 1917 if (virt) 1918 { 1919 /* See if we've already made this virtual base. */ 1920 new_binfo = binfo_for_vbase (type, t); 1921 if (new_binfo) 1922 return new_binfo; 1923 } 1924 1925 new_binfo = make_tree_binfo (binfo ? BINFO_N_BASE_BINFOS (binfo) : 0); 1926 BINFO_TYPE (new_binfo) = type; 1927 1928 /* Chain it into the inheritance graph. */ 1929 TREE_CHAIN (*igo_prev) = new_binfo; 1930 *igo_prev = new_binfo; 1931 1932 if (binfo && !BINFO_DEPENDENT_BASE_P (binfo)) 1933 { 1934 int ix; 1935 tree base_binfo; 1936 1937 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), type)); 1938 1939 BINFO_OFFSET (new_binfo) = BINFO_OFFSET (binfo); 1940 BINFO_VIRTUALS (new_binfo) = BINFO_VIRTUALS (binfo); 1941 1942 /* We do not need to copy the accesses, as they are read only. */ 1943 BINFO_BASE_ACCESSES (new_binfo) = BINFO_BASE_ACCESSES (binfo); 1944 1945 /* Recursively copy base binfos of BINFO. */ 1946 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++) 1947 { 1948 tree new_base_binfo; 1949 new_base_binfo = copy_binfo (base_binfo, BINFO_TYPE (base_binfo), 1950 t, igo_prev, 1951 BINFO_VIRTUAL_P (base_binfo)); 1952 1953 if (!BINFO_INHERITANCE_CHAIN (new_base_binfo)) 1954 BINFO_INHERITANCE_CHAIN (new_base_binfo) = new_binfo; 1955 BINFO_BASE_APPEND (new_binfo, new_base_binfo); 1956 } 1957 } 1958 else 1959 BINFO_DEPENDENT_BASE_P (new_binfo) = 1; 1960 1961 if (virt) 1962 { 1963 /* Push it onto the list after any virtual bases it contains 1964 will have been pushed. */ 1965 CLASSTYPE_VBASECLASSES (t)->quick_push (new_binfo); 1966 BINFO_VIRTUAL_P (new_binfo) = 1; 1967 BINFO_INHERITANCE_CHAIN (new_binfo) = TYPE_BINFO (t); 1968 } 1969 1970 return new_binfo; 1971 } 1972 1973 /* Hashing of lists so that we don't make duplicates. 1974 The entry point is `list_hash_canon'. */ 1975 1976 struct list_proxy 1977 { 1978 tree purpose; 1979 tree value; 1980 tree chain; 1981 }; 1982 1983 struct list_hasher : ggc_ptr_hash<tree_node> 1984 { 1985 typedef list_proxy *compare_type; 1986 1987 static hashval_t hash (tree); 1988 static bool equal (tree, list_proxy *); 1989 }; 1990 1991 /* Now here is the hash table. When recording a list, it is added 1992 to the slot whose index is the hash code mod the table size. 1993 Note that the hash table is used for several kinds of lists. 1994 While all these live in the same table, they are completely independent, 1995 and the hash code is computed differently for each of these. */ 1996 1997 static GTY (()) hash_table<list_hasher> *list_hash_table; 1998 1999 /* Compare ENTRY (an entry in the hash table) with DATA (a list_proxy 2000 for a node we are thinking about adding). */ 2001 2002 bool 2003 list_hasher::equal (tree t, list_proxy *proxy) 2004 { 2005 return (TREE_VALUE (t) == proxy->value 2006 && TREE_PURPOSE (t) == proxy->purpose 2007 && TREE_CHAIN (t) == proxy->chain); 2008 } 2009 2010 /* Compute a hash code for a list (chain of TREE_LIST nodes 2011 with goodies in the TREE_PURPOSE, TREE_VALUE, and bits of the 2012 TREE_COMMON slots), by adding the hash codes of the individual entries. */ 2013 2014 static hashval_t 2015 list_hash_pieces (tree purpose, tree value, tree chain) 2016 { 2017 hashval_t hashcode = 0; 2018 2019 if (chain) 2020 hashcode += TREE_HASH (chain); 2021 2022 if (value) 2023 hashcode += TREE_HASH (value); 2024 else 2025 hashcode += 1007; 2026 if (purpose) 2027 hashcode += TREE_HASH (purpose); 2028 else 2029 hashcode += 1009; 2030 return hashcode; 2031 } 2032 2033 /* Hash an already existing TREE_LIST. */ 2034 2035 hashval_t 2036 list_hasher::hash (tree t) 2037 { 2038 return list_hash_pieces (TREE_PURPOSE (t), 2039 TREE_VALUE (t), 2040 TREE_CHAIN (t)); 2041 } 2042 2043 /* Given list components PURPOSE, VALUE, AND CHAIN, return the canonical 2044 object for an identical list if one already exists. Otherwise, build a 2045 new one, and record it as the canonical object. */ 2046 2047 tree 2048 hash_tree_cons (tree purpose, tree value, tree chain) 2049 { 2050 int hashcode = 0; 2051 tree *slot; 2052 struct list_proxy proxy; 2053 2054 /* Hash the list node. */ 2055 hashcode = list_hash_pieces (purpose, value, chain); 2056 /* Create a proxy for the TREE_LIST we would like to create. We 2057 don't actually create it so as to avoid creating garbage. */ 2058 proxy.purpose = purpose; 2059 proxy.value = value; 2060 proxy.chain = chain; 2061 /* See if it is already in the table. */ 2062 slot = list_hash_table->find_slot_with_hash (&proxy, hashcode, INSERT); 2063 /* If not, create a new node. */ 2064 if (!*slot) 2065 *slot = tree_cons (purpose, value, chain); 2066 return (tree) *slot; 2067 } 2068 2069 /* Constructor for hashed lists. */ 2070 2071 tree 2072 hash_tree_chain (tree value, tree chain) 2073 { 2074 return hash_tree_cons (NULL_TREE, value, chain); 2075 } 2076 2077 void 2078 debug_binfo (tree elem) 2079 { 2080 HOST_WIDE_INT n; 2081 tree virtuals; 2082 2083 fprintf (stderr, "type \"%s\", offset = " HOST_WIDE_INT_PRINT_DEC 2084 "\nvtable type:\n", 2085 TYPE_NAME_STRING (BINFO_TYPE (elem)), 2086 TREE_INT_CST_LOW (BINFO_OFFSET (elem))); 2087 debug_tree (BINFO_TYPE (elem)); 2088 if (BINFO_VTABLE (elem)) 2089 fprintf (stderr, "vtable decl \"%s\"\n", 2090 IDENTIFIER_POINTER (DECL_NAME (get_vtbl_decl_for_binfo (elem)))); 2091 else 2092 fprintf (stderr, "no vtable decl yet\n"); 2093 fprintf (stderr, "virtuals:\n"); 2094 virtuals = BINFO_VIRTUALS (elem); 2095 n = 0; 2096 2097 while (virtuals) 2098 { 2099 tree fndecl = TREE_VALUE (virtuals); 2100 fprintf (stderr, "%s [%ld =? %ld]\n", 2101 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (fndecl)), 2102 (long) n, (long) TREE_INT_CST_LOW (DECL_VINDEX (fndecl))); 2103 ++n; 2104 virtuals = TREE_CHAIN (virtuals); 2105 } 2106 } 2107 2108 /* Build a representation for the qualified name SCOPE::NAME. TYPE is 2109 the type of the result expression, if known, or NULL_TREE if the 2110 resulting expression is type-dependent. If TEMPLATE_P is true, 2111 NAME is known to be a template because the user explicitly used the 2112 "template" keyword after the "::". 2113 2114 All SCOPE_REFs should be built by use of this function. */ 2115 2116 tree 2117 build_qualified_name (tree type, tree scope, tree name, bool template_p) 2118 { 2119 tree t; 2120 if (type == error_mark_node 2121 || scope == error_mark_node 2122 || name == error_mark_node) 2123 return error_mark_node; 2124 gcc_assert (TREE_CODE (name) != SCOPE_REF); 2125 t = build2 (SCOPE_REF, type, scope, name); 2126 QUALIFIED_NAME_IS_TEMPLATE (t) = template_p; 2127 PTRMEM_OK_P (t) = true; 2128 if (type) 2129 t = convert_from_reference (t); 2130 return t; 2131 } 2132 2133 /* Like check_qualified_type, but also check ref-qualifier, exception 2134 specification, and whether the return type was specified after the 2135 parameters. */ 2136 2137 static bool 2138 cp_check_qualified_type (const_tree cand, const_tree base, int type_quals, 2139 cp_ref_qualifier rqual, tree raises, bool late) 2140 { 2141 return (TYPE_QUALS (cand) == type_quals 2142 && check_base_type (cand, base) 2143 && comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (cand), 2144 ce_exact) 2145 && TYPE_HAS_LATE_RETURN_TYPE (cand) == late 2146 && type_memfn_rqual (cand) == rqual); 2147 } 2148 2149 /* Build the FUNCTION_TYPE or METHOD_TYPE with the ref-qualifier RQUAL. */ 2150 2151 tree 2152 build_ref_qualified_type (tree type, cp_ref_qualifier rqual) 2153 { 2154 tree raises = TYPE_RAISES_EXCEPTIONS (type); 2155 bool late = TYPE_HAS_LATE_RETURN_TYPE (type); 2156 return build_cp_fntype_variant (type, rqual, raises, late); 2157 } 2158 2159 /* Make a raw overload node containing FN. */ 2160 2161 tree 2162 ovl_make (tree fn, tree next) 2163 { 2164 tree result = make_node (OVERLOAD); 2165 2166 if (TREE_CODE (fn) == OVERLOAD) 2167 OVL_NESTED_P (result) = true; 2168 2169 TREE_TYPE (result) = (next || TREE_CODE (fn) == TEMPLATE_DECL 2170 ? unknown_type_node : TREE_TYPE (fn)); 2171 if (next && TREE_CODE (next) == OVERLOAD && OVL_DEDUP_P (next)) 2172 OVL_DEDUP_P (result) = true; 2173 OVL_FUNCTION (result) = fn; 2174 OVL_CHAIN (result) = next; 2175 return result; 2176 } 2177 2178 /* Add FN to the (potentially NULL) overload set OVL. USING_P is 2179 true, if FN is via a using declaration. We also pay attention to 2180 DECL_HIDDEN. We keep the hidden decls first, but remaining ones 2181 are unordered. */ 2182 2183 tree 2184 ovl_insert (tree fn, tree maybe_ovl, bool using_p) 2185 { 2186 tree result = maybe_ovl; 2187 tree insert_after = NULL_TREE; 2188 2189 /* Skip hidden. */ 2190 for (; maybe_ovl && TREE_CODE (maybe_ovl) == OVERLOAD 2191 && OVL_HIDDEN_P (maybe_ovl); 2192 maybe_ovl = OVL_CHAIN (maybe_ovl)) 2193 { 2194 gcc_checking_assert (!OVL_LOOKUP_P (maybe_ovl)); 2195 insert_after = maybe_ovl; 2196 } 2197 2198 bool hidden_p = DECL_HIDDEN_P (fn); 2199 if (maybe_ovl || using_p || hidden_p || TREE_CODE (fn) == TEMPLATE_DECL) 2200 { 2201 maybe_ovl = ovl_make (fn, maybe_ovl); 2202 if (hidden_p) 2203 OVL_HIDDEN_P (maybe_ovl) = true; 2204 if (using_p) 2205 OVL_DEDUP_P (maybe_ovl) = OVL_USING_P (maybe_ovl) = true; 2206 } 2207 else 2208 maybe_ovl = fn; 2209 2210 if (insert_after) 2211 { 2212 OVL_CHAIN (insert_after) = maybe_ovl; 2213 TREE_TYPE (insert_after) = unknown_type_node; 2214 } 2215 else 2216 result = maybe_ovl; 2217 2218 return result; 2219 } 2220 2221 /* Skip any hidden names at the beginning of OVL. */ 2222 2223 tree 2224 ovl_skip_hidden (tree ovl) 2225 { 2226 for (; 2227 ovl && TREE_CODE (ovl) == OVERLOAD && OVL_HIDDEN_P (ovl); 2228 ovl = OVL_CHAIN (ovl)) 2229 gcc_checking_assert (DECL_HIDDEN_P (OVL_FUNCTION (ovl))); 2230 2231 if (ovl && TREE_CODE (ovl) != OVERLOAD && DECL_HIDDEN_P (ovl)) 2232 { 2233 /* Any hidden functions should have been wrapped in an 2234 overload, but injected friend classes will not. */ 2235 gcc_checking_assert (!DECL_DECLARES_FUNCTION_P (ovl)); 2236 ovl = NULL_TREE; 2237 } 2238 2239 return ovl; 2240 } 2241 2242 /* NODE is an OVL_HIDDEN_P node which is now revealed. */ 2243 2244 tree 2245 ovl_iterator::reveal_node (tree overload, tree node) 2246 { 2247 /* We cannot have returned NODE as part of a lookup overload, so we 2248 don't have to worry about preserving that. */ 2249 2250 OVL_HIDDEN_P (node) = false; 2251 if (tree chain = OVL_CHAIN (node)) 2252 if (TREE_CODE (chain) == OVERLOAD) 2253 { 2254 if (OVL_HIDDEN_P (chain)) 2255 { 2256 /* The node needs moving, and the simplest way is to remove it 2257 and reinsert. */ 2258 overload = remove_node (overload, node); 2259 overload = ovl_insert (OVL_FUNCTION (node), overload); 2260 } 2261 else if (OVL_DEDUP_P (chain)) 2262 OVL_DEDUP_P (node) = true; 2263 } 2264 return overload; 2265 } 2266 2267 /* NODE is on the overloads of OVL. Remove it. 2268 The removed node is unaltered and may continue to be iterated 2269 from (i.e. it is safe to remove a node from an overload one is 2270 currently iterating over). */ 2271 2272 tree 2273 ovl_iterator::remove_node (tree overload, tree node) 2274 { 2275 tree *slot = &overload; 2276 while (*slot != node) 2277 { 2278 tree probe = *slot; 2279 gcc_checking_assert (!OVL_LOOKUP_P (probe)); 2280 2281 slot = &OVL_CHAIN (probe); 2282 } 2283 2284 /* Stitch out NODE. We don't have to worry about now making a 2285 singleton overload (and consequently maybe setting its type), 2286 because all uses of this function will be followed by inserting a 2287 new node that must follow the place we've cut this out from. */ 2288 if (TREE_CODE (node) != OVERLOAD) 2289 /* Cloned inherited ctors don't mark themselves as via_using. */ 2290 *slot = NULL_TREE; 2291 else 2292 *slot = OVL_CHAIN (node); 2293 2294 return overload; 2295 } 2296 2297 /* Mark or unmark a lookup set. */ 2298 2299 void 2300 lookup_mark (tree ovl, bool val) 2301 { 2302 for (lkp_iterator iter (ovl); iter; ++iter) 2303 { 2304 gcc_checking_assert (LOOKUP_SEEN_P (*iter) != val); 2305 LOOKUP_SEEN_P (*iter) = val; 2306 } 2307 } 2308 2309 /* Add a set of new FNS into a lookup. */ 2310 2311 tree 2312 lookup_add (tree fns, tree lookup) 2313 { 2314 if (lookup || TREE_CODE (fns) == TEMPLATE_DECL) 2315 { 2316 lookup = ovl_make (fns, lookup); 2317 OVL_LOOKUP_P (lookup) = true; 2318 } 2319 else 2320 lookup = fns; 2321 2322 return lookup; 2323 } 2324 2325 /* FNS is a new overload set, add them to LOOKUP, if they are not 2326 already present there. */ 2327 2328 tree 2329 lookup_maybe_add (tree fns, tree lookup, bool deduping) 2330 { 2331 if (deduping) 2332 for (tree next, probe = fns; probe; probe = next) 2333 { 2334 tree fn = probe; 2335 next = NULL_TREE; 2336 2337 if (TREE_CODE (probe) == OVERLOAD) 2338 { 2339 fn = OVL_FUNCTION (probe); 2340 next = OVL_CHAIN (probe); 2341 } 2342 2343 if (!LOOKUP_SEEN_P (fn)) 2344 LOOKUP_SEEN_P (fn) = true; 2345 else 2346 { 2347 /* This function was already seen. Insert all the 2348 predecessors onto the lookup. */ 2349 for (; fns != probe; fns = OVL_CHAIN (fns)) 2350 { 2351 lookup = lookup_add (OVL_FUNCTION (fns), lookup); 2352 /* Propagate OVL_USING, but OVL_HIDDEN & 2353 OVL_DEDUP_P don't matter. */ 2354 if (OVL_USING_P (fns)) 2355 OVL_USING_P (lookup) = true; 2356 } 2357 2358 /* And now skip this function. */ 2359 fns = next; 2360 } 2361 } 2362 2363 if (fns) 2364 /* We ended in a set of new functions. Add them all in one go. */ 2365 lookup = lookup_add (fns, lookup); 2366 2367 return lookup; 2368 } 2369 2370 /* Returns nonzero if X is an expression for a (possibly overloaded) 2371 function. If "f" is a function or function template, "f", "c->f", 2372 "c.f", "C::f", and "f<int>" will all be considered possibly 2373 overloaded functions. Returns 2 if the function is actually 2374 overloaded, i.e., if it is impossible to know the type of the 2375 function without performing overload resolution. */ 2376 2377 int 2378 is_overloaded_fn (tree x) 2379 { 2380 STRIP_ANY_LOCATION_WRAPPER (x); 2381 2382 /* A baselink is also considered an overloaded function. */ 2383 if (TREE_CODE (x) == OFFSET_REF 2384 || TREE_CODE (x) == COMPONENT_REF) 2385 x = TREE_OPERAND (x, 1); 2386 x = MAYBE_BASELINK_FUNCTIONS (x); 2387 if (TREE_CODE (x) == TEMPLATE_ID_EXPR) 2388 x = TREE_OPERAND (x, 0); 2389 2390 if (DECL_FUNCTION_TEMPLATE_P (OVL_FIRST (x)) 2391 || (TREE_CODE (x) == OVERLOAD && !OVL_SINGLE_P (x))) 2392 return 2; 2393 2394 return (TREE_CODE (x) == FUNCTION_DECL 2395 || TREE_CODE (x) == OVERLOAD); 2396 } 2397 2398 /* X is the CALL_EXPR_FN of a CALL_EXPR. If X represents a dependent name 2399 (14.6.2), return the IDENTIFIER_NODE for that name. Otherwise, return 2400 NULL_TREE. */ 2401 2402 tree 2403 dependent_name (tree x) 2404 { 2405 if (identifier_p (x)) 2406 return x; 2407 if (TREE_CODE (x) == TEMPLATE_ID_EXPR) 2408 x = TREE_OPERAND (x, 0); 2409 if (TREE_CODE (x) == OVERLOAD || TREE_CODE (x) == FUNCTION_DECL) 2410 return OVL_NAME (x); 2411 return NULL_TREE; 2412 } 2413 2414 /* Returns true iff X is an expression for an overloaded function 2415 whose type cannot be known without performing overload 2416 resolution. */ 2417 2418 bool 2419 really_overloaded_fn (tree x) 2420 { 2421 return is_overloaded_fn (x) == 2; 2422 } 2423 2424 /* Get the overload set FROM refers to. Returns NULL if it's not an 2425 overload set. */ 2426 2427 tree 2428 maybe_get_fns (tree from) 2429 { 2430 STRIP_ANY_LOCATION_WRAPPER (from); 2431 2432 /* A baselink is also considered an overloaded function. */ 2433 if (TREE_CODE (from) == OFFSET_REF 2434 || TREE_CODE (from) == COMPONENT_REF) 2435 from = TREE_OPERAND (from, 1); 2436 if (BASELINK_P (from)) 2437 from = BASELINK_FUNCTIONS (from); 2438 if (TREE_CODE (from) == TEMPLATE_ID_EXPR) 2439 from = TREE_OPERAND (from, 0); 2440 2441 if (TREE_CODE (from) == OVERLOAD 2442 || TREE_CODE (from) == FUNCTION_DECL) 2443 return from; 2444 2445 return NULL; 2446 } 2447 2448 /* FROM refers to an overload set. Return that set (or die). */ 2449 2450 tree 2451 get_fns (tree from) 2452 { 2453 tree res = maybe_get_fns (from); 2454 2455 gcc_assert (res); 2456 return res; 2457 } 2458 2459 /* Return the first function of the overload set FROM refers to. */ 2460 2461 tree 2462 get_first_fn (tree from) 2463 { 2464 return OVL_FIRST (get_fns (from)); 2465 } 2466 2467 /* Return the scope where the overloaded functions OVL were found. */ 2468 2469 tree 2470 ovl_scope (tree ovl) 2471 { 2472 if (TREE_CODE (ovl) == OFFSET_REF 2473 || TREE_CODE (ovl) == COMPONENT_REF) 2474 ovl = TREE_OPERAND (ovl, 1); 2475 if (TREE_CODE (ovl) == BASELINK) 2476 return BINFO_TYPE (BASELINK_BINFO (ovl)); 2477 if (TREE_CODE (ovl) == TEMPLATE_ID_EXPR) 2478 ovl = TREE_OPERAND (ovl, 0); 2479 /* Skip using-declarations. */ 2480 lkp_iterator iter (ovl); 2481 do 2482 ovl = *iter; 2483 while (iter.using_p () && ++iter); 2484 2485 return CP_DECL_CONTEXT (ovl); 2486 } 2487 2488 #define PRINT_RING_SIZE 4 2489 2490 static const char * 2491 cxx_printable_name_internal (tree decl, int v, bool translate) 2492 { 2493 static unsigned int uid_ring[PRINT_RING_SIZE]; 2494 static char *print_ring[PRINT_RING_SIZE]; 2495 static bool trans_ring[PRINT_RING_SIZE]; 2496 static int ring_counter; 2497 int i; 2498 2499 /* Only cache functions. */ 2500 if (v < 2 2501 || TREE_CODE (decl) != FUNCTION_DECL 2502 || DECL_LANG_SPECIFIC (decl) == 0) 2503 return lang_decl_name (decl, v, translate); 2504 2505 /* See if this print name is lying around. */ 2506 for (i = 0; i < PRINT_RING_SIZE; i++) 2507 if (uid_ring[i] == DECL_UID (decl) && translate == trans_ring[i]) 2508 /* yes, so return it. */ 2509 return print_ring[i]; 2510 2511 if (++ring_counter == PRINT_RING_SIZE) 2512 ring_counter = 0; 2513 2514 if (current_function_decl != NULL_TREE) 2515 { 2516 /* There may be both translated and untranslated versions of the 2517 name cached. */ 2518 for (i = 0; i < 2; i++) 2519 { 2520 if (uid_ring[ring_counter] == DECL_UID (current_function_decl)) 2521 ring_counter += 1; 2522 if (ring_counter == PRINT_RING_SIZE) 2523 ring_counter = 0; 2524 } 2525 gcc_assert (uid_ring[ring_counter] != DECL_UID (current_function_decl)); 2526 } 2527 2528 free (print_ring[ring_counter]); 2529 2530 print_ring[ring_counter] = xstrdup (lang_decl_name (decl, v, translate)); 2531 uid_ring[ring_counter] = DECL_UID (decl); 2532 trans_ring[ring_counter] = translate; 2533 return print_ring[ring_counter]; 2534 } 2535 2536 const char * 2537 cxx_printable_name (tree decl, int v) 2538 { 2539 return cxx_printable_name_internal (decl, v, false); 2540 } 2541 2542 const char * 2543 cxx_printable_name_translate (tree decl, int v) 2544 { 2545 return cxx_printable_name_internal (decl, v, true); 2546 } 2547 2548 /* Return the canonical version of exception-specification RAISES for a C++17 2549 function type, for use in type comparison and building TYPE_CANONICAL. */ 2550 2551 tree 2552 canonical_eh_spec (tree raises) 2553 { 2554 if (raises == NULL_TREE) 2555 return raises; 2556 else if (DEFERRED_NOEXCEPT_SPEC_P (raises) 2557 || uses_template_parms (raises) 2558 || uses_template_parms (TREE_PURPOSE (raises))) 2559 /* Keep a dependent or deferred exception specification. */ 2560 return raises; 2561 else if (nothrow_spec_p (raises)) 2562 /* throw() -> noexcept. */ 2563 return noexcept_true_spec; 2564 else 2565 /* For C++17 type matching, anything else -> nothing. */ 2566 return NULL_TREE; 2567 } 2568 2569 tree 2570 build_cp_fntype_variant (tree type, cp_ref_qualifier rqual, 2571 tree raises, bool late) 2572 { 2573 cp_cv_quals type_quals = TYPE_QUALS (type); 2574 2575 if (cp_check_qualified_type (type, type, type_quals, rqual, raises, late)) 2576 return type; 2577 2578 tree v = TYPE_MAIN_VARIANT (type); 2579 for (; v; v = TYPE_NEXT_VARIANT (v)) 2580 if (cp_check_qualified_type (v, type, type_quals, rqual, raises, late)) 2581 return v; 2582 2583 /* Need to build a new variant. */ 2584 v = build_variant_type_copy (type); 2585 TYPE_RAISES_EXCEPTIONS (v) = raises; 2586 TYPE_HAS_LATE_RETURN_TYPE (v) = late; 2587 switch (rqual) 2588 { 2589 case REF_QUAL_RVALUE: 2590 FUNCTION_RVALUE_QUALIFIED (v) = 1; 2591 FUNCTION_REF_QUALIFIED (v) = 1; 2592 break; 2593 case REF_QUAL_LVALUE: 2594 FUNCTION_RVALUE_QUALIFIED (v) = 0; 2595 FUNCTION_REF_QUALIFIED (v) = 1; 2596 break; 2597 default: 2598 FUNCTION_REF_QUALIFIED (v) = 0; 2599 break; 2600 } 2601 2602 /* Canonicalize the exception specification. */ 2603 tree cr = flag_noexcept_type ? canonical_eh_spec (raises) : NULL_TREE; 2604 2605 if (TYPE_STRUCTURAL_EQUALITY_P (type)) 2606 /* Propagate structural equality. */ 2607 SET_TYPE_STRUCTURAL_EQUALITY (v); 2608 else if (TYPE_CANONICAL (type) != type || cr != raises || late) 2609 /* Build the underlying canonical type, since it is different 2610 from TYPE. */ 2611 TYPE_CANONICAL (v) = build_cp_fntype_variant (TYPE_CANONICAL (type), 2612 rqual, cr, false); 2613 else 2614 /* T is its own canonical type. */ 2615 TYPE_CANONICAL (v) = v; 2616 2617 return v; 2618 } 2619 2620 /* Build the FUNCTION_TYPE or METHOD_TYPE which may throw exceptions 2621 listed in RAISES. */ 2622 2623 tree 2624 build_exception_variant (tree type, tree raises) 2625 { 2626 cp_ref_qualifier rqual = type_memfn_rqual (type); 2627 bool late = TYPE_HAS_LATE_RETURN_TYPE (type); 2628 return build_cp_fntype_variant (type, rqual, raises, late); 2629 } 2630 2631 /* Given a TEMPLATE_TEMPLATE_PARM node T, create a new 2632 BOUND_TEMPLATE_TEMPLATE_PARM bound with NEWARGS as its template 2633 arguments. */ 2634 2635 tree 2636 bind_template_template_parm (tree t, tree newargs) 2637 { 2638 tree decl = TYPE_NAME (t); 2639 tree t2; 2640 2641 t2 = cxx_make_type (BOUND_TEMPLATE_TEMPLATE_PARM); 2642 decl = build_decl (input_location, 2643 TYPE_DECL, DECL_NAME (decl), NULL_TREE); 2644 2645 /* These nodes have to be created to reflect new TYPE_DECL and template 2646 arguments. */ 2647 TEMPLATE_TYPE_PARM_INDEX (t2) = copy_node (TEMPLATE_TYPE_PARM_INDEX (t)); 2648 TEMPLATE_PARM_DECL (TEMPLATE_TYPE_PARM_INDEX (t2)) = decl; 2649 TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (t2) 2650 = build_template_info (TEMPLATE_TEMPLATE_PARM_TEMPLATE_DECL (t), newargs); 2651 2652 TREE_TYPE (decl) = t2; 2653 TYPE_NAME (t2) = decl; 2654 TYPE_STUB_DECL (t2) = decl; 2655 TYPE_SIZE (t2) = 0; 2656 SET_TYPE_STRUCTURAL_EQUALITY (t2); 2657 2658 return t2; 2659 } 2660 2661 /* Called from count_trees via walk_tree. */ 2662 2663 static tree 2664 count_trees_r (tree *tp, int *walk_subtrees, void *data) 2665 { 2666 ++*((int *) data); 2667 2668 if (TYPE_P (*tp)) 2669 *walk_subtrees = 0; 2670 2671 return NULL_TREE; 2672 } 2673 2674 /* Debugging function for measuring the rough complexity of a tree 2675 representation. */ 2676 2677 int 2678 count_trees (tree t) 2679 { 2680 int n_trees = 0; 2681 cp_walk_tree_without_duplicates (&t, count_trees_r, &n_trees); 2682 return n_trees; 2683 } 2684 2685 /* Called from verify_stmt_tree via walk_tree. */ 2686 2687 static tree 2688 verify_stmt_tree_r (tree* tp, int * /*walk_subtrees*/, void* data) 2689 { 2690 tree t = *tp; 2691 hash_table<nofree_ptr_hash <tree_node> > *statements 2692 = static_cast <hash_table<nofree_ptr_hash <tree_node> > *> (data); 2693 tree_node **slot; 2694 2695 if (!STATEMENT_CODE_P (TREE_CODE (t))) 2696 return NULL_TREE; 2697 2698 /* If this statement is already present in the hash table, then 2699 there is a circularity in the statement tree. */ 2700 gcc_assert (!statements->find (t)); 2701 2702 slot = statements->find_slot (t, INSERT); 2703 *slot = t; 2704 2705 return NULL_TREE; 2706 } 2707 2708 /* Debugging function to check that the statement T has not been 2709 corrupted. For now, this function simply checks that T contains no 2710 circularities. */ 2711 2712 void 2713 verify_stmt_tree (tree t) 2714 { 2715 hash_table<nofree_ptr_hash <tree_node> > statements (37); 2716 cp_walk_tree (&t, verify_stmt_tree_r, &statements, NULL); 2717 } 2718 2719 /* Check if the type T depends on a type with no linkage and if so, return 2720 it. If RELAXED_P then do not consider a class type declared within 2721 a vague-linkage function to have no linkage. */ 2722 2723 tree 2724 no_linkage_check (tree t, bool relaxed_p) 2725 { 2726 tree r; 2727 2728 /* Lambda types that don't have mangling scope have no linkage. We 2729 check CLASSTYPE_LAMBDA_EXPR for error_mark_node because 2730 when we get here from pushtag none of the lambda information is 2731 set up yet, so we want to assume that the lambda has linkage and 2732 fix it up later if not. We need to check this even in templates so 2733 that we properly handle a lambda-expression in the signature. */ 2734 if (LAMBDA_TYPE_P (t) 2735 && CLASSTYPE_LAMBDA_EXPR (t) != error_mark_node 2736 && LAMBDA_TYPE_EXTRA_SCOPE (t) == NULL_TREE) 2737 return t; 2738 2739 /* Otherwise there's no point in checking linkage on template functions; we 2740 can't know their complete types. */ 2741 if (processing_template_decl) 2742 return NULL_TREE; 2743 2744 switch (TREE_CODE (t)) 2745 { 2746 case RECORD_TYPE: 2747 if (TYPE_PTRMEMFUNC_P (t)) 2748 goto ptrmem; 2749 /* Fall through. */ 2750 case UNION_TYPE: 2751 if (!CLASS_TYPE_P (t)) 2752 return NULL_TREE; 2753 /* Fall through. */ 2754 case ENUMERAL_TYPE: 2755 /* Only treat unnamed types as having no linkage if they're at 2756 namespace scope. This is core issue 966. */ 2757 if (TYPE_UNNAMED_P (t) && TYPE_NAMESPACE_SCOPE_P (t)) 2758 return t; 2759 2760 for (r = CP_TYPE_CONTEXT (t); ; ) 2761 { 2762 /* If we're a nested type of a !TREE_PUBLIC class, we might not 2763 have linkage, or we might just be in an anonymous namespace. 2764 If we're in a TREE_PUBLIC class, we have linkage. */ 2765 if (TYPE_P (r) && !TREE_PUBLIC (TYPE_NAME (r))) 2766 return no_linkage_check (TYPE_CONTEXT (t), relaxed_p); 2767 else if (TREE_CODE (r) == FUNCTION_DECL) 2768 { 2769 if (!relaxed_p || !vague_linkage_p (r)) 2770 return t; 2771 else 2772 r = CP_DECL_CONTEXT (r); 2773 } 2774 else 2775 break; 2776 } 2777 2778 return NULL_TREE; 2779 2780 case ARRAY_TYPE: 2781 case POINTER_TYPE: 2782 case REFERENCE_TYPE: 2783 case VECTOR_TYPE: 2784 return no_linkage_check (TREE_TYPE (t), relaxed_p); 2785 2786 case OFFSET_TYPE: 2787 ptrmem: 2788 r = no_linkage_check (TYPE_PTRMEM_POINTED_TO_TYPE (t), 2789 relaxed_p); 2790 if (r) 2791 return r; 2792 return no_linkage_check (TYPE_PTRMEM_CLASS_TYPE (t), relaxed_p); 2793 2794 case METHOD_TYPE: 2795 case FUNCTION_TYPE: 2796 { 2797 tree parm = TYPE_ARG_TYPES (t); 2798 if (TREE_CODE (t) == METHOD_TYPE) 2799 /* The 'this' pointer isn't interesting; a method has the same 2800 linkage (or lack thereof) as its enclosing class. */ 2801 parm = TREE_CHAIN (parm); 2802 for (; 2803 parm && parm != void_list_node; 2804 parm = TREE_CHAIN (parm)) 2805 { 2806 r = no_linkage_check (TREE_VALUE (parm), relaxed_p); 2807 if (r) 2808 return r; 2809 } 2810 return no_linkage_check (TREE_TYPE (t), relaxed_p); 2811 } 2812 2813 default: 2814 return NULL_TREE; 2815 } 2816 } 2817 2818 extern int depth_reached; 2819 2820 void 2821 cxx_print_statistics (void) 2822 { 2823 print_template_statistics (); 2824 if (GATHER_STATISTICS) 2825 fprintf (stderr, "maximum template instantiation depth reached: %d\n", 2826 depth_reached); 2827 } 2828 2829 /* Return, as an INTEGER_CST node, the number of elements for TYPE 2830 (which is an ARRAY_TYPE). This counts only elements of the top 2831 array. */ 2832 2833 tree 2834 array_type_nelts_top (tree type) 2835 { 2836 return fold_build2_loc (input_location, 2837 PLUS_EXPR, sizetype, 2838 array_type_nelts (type), 2839 size_one_node); 2840 } 2841 2842 /* Return, as an INTEGER_CST node, the number of elements for TYPE 2843 (which is an ARRAY_TYPE). This one is a recursive count of all 2844 ARRAY_TYPEs that are clumped together. */ 2845 2846 tree 2847 array_type_nelts_total (tree type) 2848 { 2849 tree sz = array_type_nelts_top (type); 2850 type = TREE_TYPE (type); 2851 while (TREE_CODE (type) == ARRAY_TYPE) 2852 { 2853 tree n = array_type_nelts_top (type); 2854 sz = fold_build2_loc (input_location, 2855 MULT_EXPR, sizetype, sz, n); 2856 type = TREE_TYPE (type); 2857 } 2858 return sz; 2859 } 2860 2861 struct bot_data 2862 { 2863 splay_tree target_remap; 2864 bool clear_location; 2865 }; 2866 2867 /* Called from break_out_target_exprs via mapcar. */ 2868 2869 static tree 2870 bot_manip (tree* tp, int* walk_subtrees, void* data_) 2871 { 2872 bot_data &data = *(bot_data*)data_; 2873 splay_tree target_remap = data.target_remap; 2874 tree t = *tp; 2875 2876 if (!TYPE_P (t) && TREE_CONSTANT (t) && !TREE_SIDE_EFFECTS (t)) 2877 { 2878 /* There can't be any TARGET_EXPRs or their slot variables below this 2879 point. But we must make a copy, in case subsequent processing 2880 alters any part of it. For example, during gimplification a cast 2881 of the form (T) &X::f (where "f" is a member function) will lead 2882 to replacing the PTRMEM_CST for &X::f with a VAR_DECL. */ 2883 *walk_subtrees = 0; 2884 *tp = unshare_expr (t); 2885 return NULL_TREE; 2886 } 2887 if (TREE_CODE (t) == TARGET_EXPR) 2888 { 2889 tree u; 2890 2891 if (TREE_CODE (TREE_OPERAND (t, 1)) == AGGR_INIT_EXPR) 2892 { 2893 u = build_cplus_new (TREE_TYPE (t), TREE_OPERAND (t, 1), 2894 tf_warning_or_error); 2895 if (u == error_mark_node) 2896 return u; 2897 if (AGGR_INIT_ZERO_FIRST (TREE_OPERAND (t, 1))) 2898 AGGR_INIT_ZERO_FIRST (TREE_OPERAND (u, 1)) = true; 2899 } 2900 else 2901 u = build_target_expr_with_type (TREE_OPERAND (t, 1), TREE_TYPE (t), 2902 tf_warning_or_error); 2903 2904 TARGET_EXPR_IMPLICIT_P (u) = TARGET_EXPR_IMPLICIT_P (t); 2905 TARGET_EXPR_LIST_INIT_P (u) = TARGET_EXPR_LIST_INIT_P (t); 2906 TARGET_EXPR_DIRECT_INIT_P (u) = TARGET_EXPR_DIRECT_INIT_P (t); 2907 2908 /* Map the old variable to the new one. */ 2909 splay_tree_insert (target_remap, 2910 (splay_tree_key) TREE_OPERAND (t, 0), 2911 (splay_tree_value) TREE_OPERAND (u, 0)); 2912 2913 TREE_OPERAND (u, 1) = break_out_target_exprs (TREE_OPERAND (u, 1), 2914 data.clear_location); 2915 if (TREE_OPERAND (u, 1) == error_mark_node) 2916 return error_mark_node; 2917 2918 /* Replace the old expression with the new version. */ 2919 *tp = u; 2920 /* We don't have to go below this point; the recursive call to 2921 break_out_target_exprs will have handled anything below this 2922 point. */ 2923 *walk_subtrees = 0; 2924 return NULL_TREE; 2925 } 2926 if (TREE_CODE (*tp) == SAVE_EXPR) 2927 { 2928 t = *tp; 2929 splay_tree_node n = splay_tree_lookup (target_remap, 2930 (splay_tree_key) t); 2931 if (n) 2932 { 2933 *tp = (tree)n->value; 2934 *walk_subtrees = 0; 2935 } 2936 else 2937 { 2938 copy_tree_r (tp, walk_subtrees, NULL); 2939 splay_tree_insert (target_remap, 2940 (splay_tree_key)t, 2941 (splay_tree_value)*tp); 2942 /* Make sure we don't remap an already-remapped SAVE_EXPR. */ 2943 splay_tree_insert (target_remap, 2944 (splay_tree_key)*tp, 2945 (splay_tree_value)*tp); 2946 } 2947 return NULL_TREE; 2948 } 2949 2950 /* Make a copy of this node. */ 2951 t = copy_tree_r (tp, walk_subtrees, NULL); 2952 if (TREE_CODE (*tp) == CALL_EXPR || TREE_CODE (*tp) == AGGR_INIT_EXPR) 2953 if (!processing_template_decl) 2954 set_flags_from_callee (*tp); 2955 if (data.clear_location && EXPR_HAS_LOCATION (*tp)) 2956 SET_EXPR_LOCATION (*tp, input_location); 2957 return t; 2958 } 2959 2960 /* Replace all remapped VAR_DECLs in T with their new equivalents. 2961 DATA is really a splay-tree mapping old variables to new 2962 variables. */ 2963 2964 static tree 2965 bot_replace (tree* t, int* /*walk_subtrees*/, void* data_) 2966 { 2967 bot_data &data = *(bot_data*)data_; 2968 splay_tree target_remap = data.target_remap; 2969 2970 if (VAR_P (*t)) 2971 { 2972 splay_tree_node n = splay_tree_lookup (target_remap, 2973 (splay_tree_key) *t); 2974 if (n) 2975 *t = (tree) n->value; 2976 } 2977 else if (TREE_CODE (*t) == PARM_DECL 2978 && DECL_NAME (*t) == this_identifier 2979 && !DECL_CONTEXT (*t)) 2980 { 2981 /* In an NSDMI we need to replace the 'this' parameter we used for 2982 parsing with the real one for this function. */ 2983 *t = current_class_ptr; 2984 } 2985 else if (TREE_CODE (*t) == CONVERT_EXPR 2986 && CONVERT_EXPR_VBASE_PATH (*t)) 2987 { 2988 /* In an NSDMI build_base_path defers building conversions to virtual 2989 bases, and we handle it here. */ 2990 tree basetype = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (*t))); 2991 vec<tree, va_gc> *vbases = CLASSTYPE_VBASECLASSES (current_class_type); 2992 int i; tree binfo; 2993 FOR_EACH_VEC_SAFE_ELT (vbases, i, binfo) 2994 if (BINFO_TYPE (binfo) == basetype) 2995 break; 2996 *t = build_base_path (PLUS_EXPR, TREE_OPERAND (*t, 0), binfo, true, 2997 tf_warning_or_error); 2998 } 2999 3000 return NULL_TREE; 3001 } 3002 3003 /* When we parse a default argument expression, we may create 3004 temporary variables via TARGET_EXPRs. When we actually use the 3005 default-argument expression, we make a copy of the expression 3006 and replace the temporaries with appropriate local versions. 3007 3008 If CLEAR_LOCATION is true, override any EXPR_LOCATION with 3009 input_location. */ 3010 3011 tree 3012 break_out_target_exprs (tree t, bool clear_location /* = false */) 3013 { 3014 static int target_remap_count; 3015 static splay_tree target_remap; 3016 3017 if (!target_remap_count++) 3018 target_remap = splay_tree_new (splay_tree_compare_pointers, 3019 /*splay_tree_delete_key_fn=*/NULL, 3020 /*splay_tree_delete_value_fn=*/NULL); 3021 bot_data data = { target_remap, clear_location }; 3022 if (cp_walk_tree (&t, bot_manip, &data, NULL) == error_mark_node) 3023 t = error_mark_node; 3024 cp_walk_tree (&t, bot_replace, &data, NULL); 3025 3026 if (!--target_remap_count) 3027 { 3028 splay_tree_delete (target_remap); 3029 target_remap = NULL; 3030 } 3031 3032 return t; 3033 } 3034 3035 /* Build an expression for the subobject of OBJ at CONSTRUCTOR index INDEX, 3036 which we expect to have type TYPE. */ 3037 3038 tree 3039 build_ctor_subob_ref (tree index, tree type, tree obj) 3040 { 3041 if (index == NULL_TREE) 3042 /* Can't refer to a particular member of a vector. */ 3043 obj = NULL_TREE; 3044 else if (TREE_CODE (index) == INTEGER_CST) 3045 obj = cp_build_array_ref (input_location, obj, index, tf_none); 3046 else 3047 obj = build_class_member_access_expr (obj, index, NULL_TREE, 3048 /*reference*/false, tf_none); 3049 if (obj) 3050 { 3051 tree objtype = TREE_TYPE (obj); 3052 if (TREE_CODE (objtype) == ARRAY_TYPE && !TYPE_DOMAIN (objtype)) 3053 { 3054 /* When the destination object refers to a flexible array member 3055 verify that it matches the type of the source object except 3056 for its domain and qualifiers. */ 3057 gcc_assert (comptypes (TYPE_MAIN_VARIANT (type), 3058 TYPE_MAIN_VARIANT (objtype), 3059 COMPARE_REDECLARATION)); 3060 } 3061 else 3062 gcc_assert (same_type_ignoring_top_level_qualifiers_p (type, objtype)); 3063 } 3064 3065 return obj; 3066 } 3067 3068 struct replace_placeholders_t 3069 { 3070 tree obj; /* The object to be substituted for a PLACEHOLDER_EXPR. */ 3071 tree exp; /* The outermost exp. */ 3072 bool seen; /* Whether we've encountered a PLACEHOLDER_EXPR. */ 3073 hash_set<tree> *pset; /* To avoid walking same trees multiple times. */ 3074 }; 3075 3076 /* Like substitute_placeholder_in_expr, but handle C++ tree codes and 3077 build up subexpressions as we go deeper. */ 3078 3079 static tree 3080 replace_placeholders_r (tree* t, int* walk_subtrees, void* data_) 3081 { 3082 replace_placeholders_t *d = static_cast<replace_placeholders_t*>(data_); 3083 tree obj = d->obj; 3084 3085 if (TYPE_P (*t) || TREE_CONSTANT (*t)) 3086 { 3087 *walk_subtrees = false; 3088 return NULL_TREE; 3089 } 3090 3091 switch (TREE_CODE (*t)) 3092 { 3093 case PLACEHOLDER_EXPR: 3094 { 3095 tree x = obj; 3096 for (; !same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (*t), 3097 TREE_TYPE (x)); 3098 x = TREE_OPERAND (x, 0)) 3099 gcc_assert (handled_component_p (x)); 3100 *t = unshare_expr (x); 3101 *walk_subtrees = false; 3102 d->seen = true; 3103 } 3104 break; 3105 3106 case CONSTRUCTOR: 3107 { 3108 constructor_elt *ce; 3109 vec<constructor_elt,va_gc> *v = CONSTRUCTOR_ELTS (*t); 3110 /* Don't walk into CONSTRUCTOR_PLACEHOLDER_BOUNDARY ctors 3111 other than the d->exp one, those have PLACEHOLDER_EXPRs 3112 related to another object. */ 3113 if ((CONSTRUCTOR_PLACEHOLDER_BOUNDARY (*t) 3114 && *t != d->exp) 3115 || d->pset->add (*t)) 3116 { 3117 *walk_subtrees = false; 3118 return NULL_TREE; 3119 } 3120 for (unsigned i = 0; vec_safe_iterate (v, i, &ce); ++i) 3121 { 3122 tree *valp = &ce->value; 3123 tree type = TREE_TYPE (*valp); 3124 tree subob = obj; 3125 3126 /* Elements with RANGE_EXPR index shouldn't have any 3127 placeholders in them. */ 3128 if (ce->index && TREE_CODE (ce->index) == RANGE_EXPR) 3129 continue; 3130 3131 if (TREE_CODE (*valp) == CONSTRUCTOR 3132 && AGGREGATE_TYPE_P (type)) 3133 { 3134 /* If we're looking at the initializer for OBJ, then build 3135 a sub-object reference. If we're looking at an 3136 initializer for another object, just pass OBJ down. */ 3137 if (same_type_ignoring_top_level_qualifiers_p 3138 (TREE_TYPE (*t), TREE_TYPE (obj))) 3139 subob = build_ctor_subob_ref (ce->index, type, obj); 3140 if (TREE_CODE (*valp) == TARGET_EXPR) 3141 valp = &TARGET_EXPR_INITIAL (*valp); 3142 } 3143 d->obj = subob; 3144 cp_walk_tree (valp, replace_placeholders_r, data_, NULL); 3145 d->obj = obj; 3146 } 3147 *walk_subtrees = false; 3148 break; 3149 } 3150 3151 default: 3152 if (d->pset->add (*t)) 3153 *walk_subtrees = false; 3154 break; 3155 } 3156 3157 return NULL_TREE; 3158 } 3159 3160 /* Replace PLACEHOLDER_EXPRs in EXP with object OBJ. SEEN_P is set if 3161 a PLACEHOLDER_EXPR has been encountered. */ 3162 3163 tree 3164 replace_placeholders (tree exp, tree obj, bool *seen_p) 3165 { 3166 /* This is only relevant for C++14. */ 3167 if (cxx_dialect < cxx14) 3168 return exp; 3169 3170 /* If the object isn't a (member of a) class, do nothing. */ 3171 tree op0 = obj; 3172 while (TREE_CODE (op0) == COMPONENT_REF) 3173 op0 = TREE_OPERAND (op0, 0); 3174 if (!CLASS_TYPE_P (strip_array_types (TREE_TYPE (op0)))) 3175 return exp; 3176 3177 tree *tp = &exp; 3178 if (TREE_CODE (exp) == TARGET_EXPR) 3179 tp = &TARGET_EXPR_INITIAL (exp); 3180 hash_set<tree> pset; 3181 replace_placeholders_t data = { obj, *tp, false, &pset }; 3182 cp_walk_tree (tp, replace_placeholders_r, &data, NULL); 3183 if (seen_p) 3184 *seen_p = data.seen; 3185 return exp; 3186 } 3187 3188 /* Callback function for find_placeholders. */ 3189 3190 static tree 3191 find_placeholders_r (tree *t, int *walk_subtrees, void *) 3192 { 3193 if (TYPE_P (*t) || TREE_CONSTANT (*t)) 3194 { 3195 *walk_subtrees = false; 3196 return NULL_TREE; 3197 } 3198 3199 switch (TREE_CODE (*t)) 3200 { 3201 case PLACEHOLDER_EXPR: 3202 return *t; 3203 3204 case CONSTRUCTOR: 3205 if (CONSTRUCTOR_PLACEHOLDER_BOUNDARY (*t)) 3206 *walk_subtrees = false; 3207 break; 3208 3209 default: 3210 break; 3211 } 3212 3213 return NULL_TREE; 3214 } 3215 3216 /* Return true if EXP contains a PLACEHOLDER_EXPR. Don't walk into 3217 ctors with CONSTRUCTOR_PLACEHOLDER_BOUNDARY flag set. */ 3218 3219 bool 3220 find_placeholders (tree exp) 3221 { 3222 /* This is only relevant for C++14. */ 3223 if (cxx_dialect < cxx14) 3224 return false; 3225 3226 return cp_walk_tree_without_duplicates (&exp, find_placeholders_r, NULL); 3227 } 3228 3229 /* Similar to `build_nt', but for template definitions of dependent 3230 expressions */ 3231 3232 tree 3233 build_min_nt_loc (location_t loc, enum tree_code code, ...) 3234 { 3235 tree t; 3236 int length; 3237 int i; 3238 va_list p; 3239 3240 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp); 3241 3242 va_start (p, code); 3243 3244 t = make_node (code); 3245 SET_EXPR_LOCATION (t, loc); 3246 length = TREE_CODE_LENGTH (code); 3247 3248 for (i = 0; i < length; i++) 3249 TREE_OPERAND (t, i) = va_arg (p, tree); 3250 3251 va_end (p); 3252 return t; 3253 } 3254 3255 /* Similar to `build', but for template definitions. */ 3256 3257 tree 3258 build_min (enum tree_code code, tree tt, ...) 3259 { 3260 tree t; 3261 int length; 3262 int i; 3263 va_list p; 3264 3265 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp); 3266 3267 va_start (p, tt); 3268 3269 t = make_node (code); 3270 length = TREE_CODE_LENGTH (code); 3271 TREE_TYPE (t) = tt; 3272 3273 for (i = 0; i < length; i++) 3274 { 3275 tree x = va_arg (p, tree); 3276 TREE_OPERAND (t, i) = x; 3277 if (x && !TYPE_P (x) && TREE_SIDE_EFFECTS (x)) 3278 TREE_SIDE_EFFECTS (t) = 1; 3279 } 3280 3281 va_end (p); 3282 3283 return t; 3284 } 3285 3286 /* Similar to `build', but for template definitions of non-dependent 3287 expressions. NON_DEP is the non-dependent expression that has been 3288 built. */ 3289 3290 tree 3291 build_min_non_dep (enum tree_code code, tree non_dep, ...) 3292 { 3293 tree t; 3294 int length; 3295 int i; 3296 va_list p; 3297 3298 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp); 3299 3300 va_start (p, non_dep); 3301 3302 if (REFERENCE_REF_P (non_dep)) 3303 non_dep = TREE_OPERAND (non_dep, 0); 3304 3305 t = make_node (code); 3306 length = TREE_CODE_LENGTH (code); 3307 TREE_TYPE (t) = unlowered_expr_type (non_dep); 3308 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep); 3309 3310 for (i = 0; i < length; i++) 3311 TREE_OPERAND (t, i) = va_arg (p, tree); 3312 3313 if (code == COMPOUND_EXPR && TREE_CODE (non_dep) != COMPOUND_EXPR) 3314 /* This should not be considered a COMPOUND_EXPR, because it 3315 resolves to an overload. */ 3316 COMPOUND_EXPR_OVERLOADED (t) = 1; 3317 3318 va_end (p); 3319 return convert_from_reference (t); 3320 } 3321 3322 /* Similar to build_min_nt, but call expressions */ 3323 3324 tree 3325 build_min_nt_call_vec (tree fn, vec<tree, va_gc> *args) 3326 { 3327 tree ret, t; 3328 unsigned int ix; 3329 3330 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3); 3331 CALL_EXPR_FN (ret) = fn; 3332 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE; 3333 FOR_EACH_VEC_SAFE_ELT (args, ix, t) 3334 CALL_EXPR_ARG (ret, ix) = t; 3335 3336 return ret; 3337 } 3338 3339 /* Similar to `build_min_nt_call_vec', but for template definitions of 3340 non-dependent expressions. NON_DEP is the non-dependent expression 3341 that has been built. */ 3342 3343 tree 3344 build_min_non_dep_call_vec (tree non_dep, tree fn, vec<tree, va_gc> *argvec) 3345 { 3346 tree t = build_min_nt_call_vec (fn, argvec); 3347 if (REFERENCE_REF_P (non_dep)) 3348 non_dep = TREE_OPERAND (non_dep, 0); 3349 TREE_TYPE (t) = TREE_TYPE (non_dep); 3350 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep); 3351 return convert_from_reference (t); 3352 } 3353 3354 /* Similar to build_min_non_dep, but for expressions that have been resolved to 3355 a call to an operator overload. OP is the operator that has been 3356 overloaded. NON_DEP is the non-dependent expression that's been built, 3357 which should be a CALL_EXPR or an INDIRECT_REF to a CALL_EXPR. OVERLOAD is 3358 the overload that NON_DEP is calling. */ 3359 3360 tree 3361 build_min_non_dep_op_overload (enum tree_code op, 3362 tree non_dep, 3363 tree overload, ...) 3364 { 3365 va_list p; 3366 int nargs, expected_nargs; 3367 tree fn, call; 3368 vec<tree, va_gc> *args; 3369 3370 non_dep = extract_call_expr (non_dep); 3371 3372 nargs = call_expr_nargs (non_dep); 3373 3374 expected_nargs = cp_tree_code_length (op); 3375 if ((op == POSTINCREMENT_EXPR 3376 || op == POSTDECREMENT_EXPR) 3377 /* With -fpermissive non_dep could be operator++(). */ 3378 && (!flag_permissive || nargs != expected_nargs)) 3379 expected_nargs += 1; 3380 gcc_assert (nargs == expected_nargs); 3381 3382 args = make_tree_vector (); 3383 va_start (p, overload); 3384 3385 if (TREE_CODE (TREE_TYPE (overload)) == FUNCTION_TYPE) 3386 { 3387 fn = overload; 3388 for (int i = 0; i < nargs; i++) 3389 { 3390 tree arg = va_arg (p, tree); 3391 vec_safe_push (args, arg); 3392 } 3393 } 3394 else if (TREE_CODE (TREE_TYPE (overload)) == METHOD_TYPE) 3395 { 3396 tree object = va_arg (p, tree); 3397 tree binfo = TYPE_BINFO (TREE_TYPE (object)); 3398 tree method = build_baselink (binfo, binfo, overload, NULL_TREE); 3399 fn = build_min (COMPONENT_REF, TREE_TYPE (overload), 3400 object, method, NULL_TREE); 3401 for (int i = 1; i < nargs; i++) 3402 { 3403 tree arg = va_arg (p, tree); 3404 vec_safe_push (args, arg); 3405 } 3406 } 3407 else 3408 gcc_unreachable (); 3409 3410 va_end (p); 3411 call = build_min_non_dep_call_vec (non_dep, fn, args); 3412 release_tree_vector (args); 3413 3414 tree call_expr = extract_call_expr (call); 3415 KOENIG_LOOKUP_P (call_expr) = KOENIG_LOOKUP_P (non_dep); 3416 CALL_EXPR_OPERATOR_SYNTAX (call_expr) = true; 3417 CALL_EXPR_ORDERED_ARGS (call_expr) = CALL_EXPR_ORDERED_ARGS (non_dep); 3418 CALL_EXPR_REVERSE_ARGS (call_expr) = CALL_EXPR_REVERSE_ARGS (non_dep); 3419 3420 return call; 3421 } 3422 3423 /* Return a new tree vec copied from VEC, with ELT inserted at index IDX. */ 3424 3425 vec<tree, va_gc> * 3426 vec_copy_and_insert (vec<tree, va_gc> *old_vec, tree elt, unsigned idx) 3427 { 3428 unsigned len = vec_safe_length (old_vec); 3429 gcc_assert (idx <= len); 3430 3431 vec<tree, va_gc> *new_vec = NULL; 3432 vec_alloc (new_vec, len + 1); 3433 3434 unsigned i; 3435 for (i = 0; i < len; ++i) 3436 { 3437 if (i == idx) 3438 new_vec->quick_push (elt); 3439 new_vec->quick_push ((*old_vec)[i]); 3440 } 3441 if (i == idx) 3442 new_vec->quick_push (elt); 3443 3444 return new_vec; 3445 } 3446 3447 tree 3448 get_type_decl (tree t) 3449 { 3450 if (TREE_CODE (t) == TYPE_DECL) 3451 return t; 3452 if (TYPE_P (t)) 3453 return TYPE_STUB_DECL (t); 3454 gcc_assert (t == error_mark_node); 3455 return t; 3456 } 3457 3458 /* Returns the namespace that contains DECL, whether directly or 3459 indirectly. */ 3460 3461 tree 3462 decl_namespace_context (tree decl) 3463 { 3464 while (1) 3465 { 3466 if (TREE_CODE (decl) == NAMESPACE_DECL) 3467 return decl; 3468 else if (TYPE_P (decl)) 3469 decl = CP_DECL_CONTEXT (TYPE_MAIN_DECL (decl)); 3470 else 3471 decl = CP_DECL_CONTEXT (decl); 3472 } 3473 } 3474 3475 /* Returns true if decl is within an anonymous namespace, however deeply 3476 nested, or false otherwise. */ 3477 3478 bool 3479 decl_anon_ns_mem_p (const_tree decl) 3480 { 3481 while (TREE_CODE (decl) != NAMESPACE_DECL) 3482 { 3483 /* Classes inside anonymous namespaces have TREE_PUBLIC == 0. */ 3484 if (TYPE_P (decl)) 3485 return !TREE_PUBLIC (TYPE_MAIN_DECL (decl)); 3486 3487 decl = CP_DECL_CONTEXT (decl); 3488 } 3489 return !TREE_PUBLIC (decl); 3490 } 3491 3492 /* Subroutine of cp_tree_equal: t1 and t2 are the CALL_EXPR_FNs of two 3493 CALL_EXPRS. Return whether they are equivalent. */ 3494 3495 static bool 3496 called_fns_equal (tree t1, tree t2) 3497 { 3498 /* Core 1321: dependent names are equivalent even if the overload sets 3499 are different. But do compare explicit template arguments. */ 3500 tree name1 = dependent_name (t1); 3501 tree name2 = dependent_name (t2); 3502 if (name1 || name2) 3503 { 3504 tree targs1 = NULL_TREE, targs2 = NULL_TREE; 3505 3506 if (name1 != name2) 3507 return false; 3508 3509 if (TREE_CODE (t1) == TEMPLATE_ID_EXPR) 3510 targs1 = TREE_OPERAND (t1, 1); 3511 if (TREE_CODE (t2) == TEMPLATE_ID_EXPR) 3512 targs2 = TREE_OPERAND (t2, 1); 3513 return cp_tree_equal (targs1, targs2); 3514 } 3515 else 3516 return cp_tree_equal (t1, t2); 3517 } 3518 3519 /* Return truthvalue of whether T1 is the same tree structure as T2. 3520 Return 1 if they are the same. Return 0 if they are different. */ 3521 3522 bool 3523 cp_tree_equal (tree t1, tree t2) 3524 { 3525 enum tree_code code1, code2; 3526 3527 if (t1 == t2) 3528 return true; 3529 if (!t1 || !t2) 3530 return false; 3531 3532 code1 = TREE_CODE (t1); 3533 code2 = TREE_CODE (t2); 3534 3535 if (code1 != code2) 3536 return false; 3537 3538 if (CONSTANT_CLASS_P (t1) 3539 && !same_type_p (TREE_TYPE (t1), TREE_TYPE (t2))) 3540 return false; 3541 3542 switch (code1) 3543 { 3544 case VOID_CST: 3545 /* There's only a single VOID_CST node, so we should never reach 3546 here. */ 3547 gcc_unreachable (); 3548 3549 case INTEGER_CST: 3550 return tree_int_cst_equal (t1, t2); 3551 3552 case REAL_CST: 3553 return real_equal (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2)); 3554 3555 case STRING_CST: 3556 return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2) 3557 && !memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2), 3558 TREE_STRING_LENGTH (t1)); 3559 3560 case FIXED_CST: 3561 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), 3562 TREE_FIXED_CST (t2)); 3563 3564 case COMPLEX_CST: 3565 return cp_tree_equal (TREE_REALPART (t1), TREE_REALPART (t2)) 3566 && cp_tree_equal (TREE_IMAGPART (t1), TREE_IMAGPART (t2)); 3567 3568 case VECTOR_CST: 3569 return operand_equal_p (t1, t2, OEP_ONLY_CONST); 3570 3571 case CONSTRUCTOR: 3572 /* We need to do this when determining whether or not two 3573 non-type pointer to member function template arguments 3574 are the same. */ 3575 if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)) 3576 || CONSTRUCTOR_NELTS (t1) != CONSTRUCTOR_NELTS (t2)) 3577 return false; 3578 { 3579 tree field, value; 3580 unsigned int i; 3581 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t1), i, field, value) 3582 { 3583 constructor_elt *elt2 = CONSTRUCTOR_ELT (t2, i); 3584 if (!cp_tree_equal (field, elt2->index) 3585 || !cp_tree_equal (value, elt2->value)) 3586 return false; 3587 } 3588 } 3589 return true; 3590 3591 case TREE_LIST: 3592 if (!cp_tree_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))) 3593 return false; 3594 if (!cp_tree_equal (TREE_VALUE (t1), TREE_VALUE (t2))) 3595 return false; 3596 return cp_tree_equal (TREE_CHAIN (t1), TREE_CHAIN (t2)); 3597 3598 case SAVE_EXPR: 3599 return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)); 3600 3601 case CALL_EXPR: 3602 { 3603 tree arg1, arg2; 3604 call_expr_arg_iterator iter1, iter2; 3605 if (!called_fns_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2))) 3606 return false; 3607 for (arg1 = first_call_expr_arg (t1, &iter1), 3608 arg2 = first_call_expr_arg (t2, &iter2); 3609 arg1 && arg2; 3610 arg1 = next_call_expr_arg (&iter1), 3611 arg2 = next_call_expr_arg (&iter2)) 3612 if (!cp_tree_equal (arg1, arg2)) 3613 return false; 3614 if (arg1 || arg2) 3615 return false; 3616 return true; 3617 } 3618 3619 case TARGET_EXPR: 3620 { 3621 tree o1 = TREE_OPERAND (t1, 0); 3622 tree o2 = TREE_OPERAND (t2, 0); 3623 3624 /* Special case: if either target is an unallocated VAR_DECL, 3625 it means that it's going to be unified with whatever the 3626 TARGET_EXPR is really supposed to initialize, so treat it 3627 as being equivalent to anything. */ 3628 if (VAR_P (o1) && DECL_NAME (o1) == NULL_TREE 3629 && !DECL_RTL_SET_P (o1)) 3630 /*Nop*/; 3631 else if (VAR_P (o2) && DECL_NAME (o2) == NULL_TREE 3632 && !DECL_RTL_SET_P (o2)) 3633 /*Nop*/; 3634 else if (!cp_tree_equal (o1, o2)) 3635 return false; 3636 3637 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1)); 3638 } 3639 3640 case PARM_DECL: 3641 /* For comparing uses of parameters in late-specified return types 3642 with an out-of-class definition of the function, but can also come 3643 up for expressions that involve 'this' in a member function 3644 template. */ 3645 3646 if (comparing_specializations && !CONSTRAINT_VAR_P (t1)) 3647 /* When comparing hash table entries, only an exact match is 3648 good enough; we don't want to replace 'this' with the 3649 version from another function. But be more flexible 3650 with local parameters in a requires-expression. */ 3651 return false; 3652 3653 if (same_type_p (TREE_TYPE (t1), TREE_TYPE (t2))) 3654 { 3655 if (DECL_ARTIFICIAL (t1) ^ DECL_ARTIFICIAL (t2)) 3656 return false; 3657 if (CONSTRAINT_VAR_P (t1) ^ CONSTRAINT_VAR_P (t2)) 3658 return false; 3659 if (DECL_ARTIFICIAL (t1) 3660 || (DECL_PARM_LEVEL (t1) == DECL_PARM_LEVEL (t2) 3661 && DECL_PARM_INDEX (t1) == DECL_PARM_INDEX (t2))) 3662 return true; 3663 } 3664 return false; 3665 3666 case VAR_DECL: 3667 case CONST_DECL: 3668 case FIELD_DECL: 3669 case FUNCTION_DECL: 3670 case TEMPLATE_DECL: 3671 case IDENTIFIER_NODE: 3672 case SSA_NAME: 3673 case USING_DECL: 3674 return false; 3675 3676 case BASELINK: 3677 return (BASELINK_BINFO (t1) == BASELINK_BINFO (t2) 3678 && BASELINK_ACCESS_BINFO (t1) == BASELINK_ACCESS_BINFO (t2) 3679 && BASELINK_QUALIFIED_P (t1) == BASELINK_QUALIFIED_P (t2) 3680 && cp_tree_equal (BASELINK_FUNCTIONS (t1), 3681 BASELINK_FUNCTIONS (t2))); 3682 3683 case TEMPLATE_PARM_INDEX: 3684 return (TEMPLATE_PARM_IDX (t1) == TEMPLATE_PARM_IDX (t2) 3685 && TEMPLATE_PARM_LEVEL (t1) == TEMPLATE_PARM_LEVEL (t2) 3686 && (TEMPLATE_PARM_PARAMETER_PACK (t1) 3687 == TEMPLATE_PARM_PARAMETER_PACK (t2)) 3688 && same_type_p (TREE_TYPE (TEMPLATE_PARM_DECL (t1)), 3689 TREE_TYPE (TEMPLATE_PARM_DECL (t2)))); 3690 3691 case TEMPLATE_ID_EXPR: 3692 return (cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)) 3693 && cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1))); 3694 3695 case CONSTRAINT_INFO: 3696 return cp_tree_equal (CI_ASSOCIATED_CONSTRAINTS (t1), 3697 CI_ASSOCIATED_CONSTRAINTS (t2)); 3698 3699 case CHECK_CONSTR: 3700 return (CHECK_CONSTR_CONCEPT (t1) == CHECK_CONSTR_CONCEPT (t2) 3701 && comp_template_args (CHECK_CONSTR_ARGS (t1), 3702 CHECK_CONSTR_ARGS (t2))); 3703 3704 case TREE_VEC: 3705 { 3706 unsigned ix; 3707 if (TREE_VEC_LENGTH (t1) != TREE_VEC_LENGTH (t2)) 3708 return false; 3709 for (ix = TREE_VEC_LENGTH (t1); ix--;) 3710 if (!cp_tree_equal (TREE_VEC_ELT (t1, ix), 3711 TREE_VEC_ELT (t2, ix))) 3712 return false; 3713 return true; 3714 } 3715 3716 case SIZEOF_EXPR: 3717 case ALIGNOF_EXPR: 3718 { 3719 tree o1 = TREE_OPERAND (t1, 0); 3720 tree o2 = TREE_OPERAND (t2, 0); 3721 3722 if (code1 == SIZEOF_EXPR) 3723 { 3724 if (SIZEOF_EXPR_TYPE_P (t1)) 3725 o1 = TREE_TYPE (o1); 3726 if (SIZEOF_EXPR_TYPE_P (t2)) 3727 o2 = TREE_TYPE (o2); 3728 } 3729 if (TREE_CODE (o1) != TREE_CODE (o2)) 3730 return false; 3731 if (TYPE_P (o1)) 3732 return same_type_p (o1, o2); 3733 else 3734 return cp_tree_equal (o1, o2); 3735 } 3736 3737 case MODOP_EXPR: 3738 { 3739 tree t1_op1, t2_op1; 3740 3741 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0))) 3742 return false; 3743 3744 t1_op1 = TREE_OPERAND (t1, 1); 3745 t2_op1 = TREE_OPERAND (t2, 1); 3746 if (TREE_CODE (t1_op1) != TREE_CODE (t2_op1)) 3747 return false; 3748 3749 return cp_tree_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t2, 2)); 3750 } 3751 3752 case PTRMEM_CST: 3753 /* Two pointer-to-members are the same if they point to the same 3754 field or function in the same class. */ 3755 if (PTRMEM_CST_MEMBER (t1) != PTRMEM_CST_MEMBER (t2)) 3756 return false; 3757 3758 return same_type_p (PTRMEM_CST_CLASS (t1), PTRMEM_CST_CLASS (t2)); 3759 3760 case OVERLOAD: 3761 { 3762 /* Two overloads. Must be exactly the same set of decls. */ 3763 lkp_iterator first (t1); 3764 lkp_iterator second (t2); 3765 3766 for (; first && second; ++first, ++second) 3767 if (*first != *second) 3768 return false; 3769 return !(first || second); 3770 } 3771 3772 case TRAIT_EXPR: 3773 if (TRAIT_EXPR_KIND (t1) != TRAIT_EXPR_KIND (t2)) 3774 return false; 3775 return same_type_p (TRAIT_EXPR_TYPE1 (t1), TRAIT_EXPR_TYPE1 (t2)) 3776 && cp_tree_equal (TRAIT_EXPR_TYPE2 (t1), TRAIT_EXPR_TYPE2 (t2)); 3777 3778 case CAST_EXPR: 3779 case STATIC_CAST_EXPR: 3780 case REINTERPRET_CAST_EXPR: 3781 case CONST_CAST_EXPR: 3782 case DYNAMIC_CAST_EXPR: 3783 case IMPLICIT_CONV_EXPR: 3784 case NEW_EXPR: 3785 CASE_CONVERT: 3786 case NON_LVALUE_EXPR: 3787 case VIEW_CONVERT_EXPR: 3788 if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2))) 3789 return false; 3790 /* Now compare operands as usual. */ 3791 break; 3792 3793 case DEFERRED_NOEXCEPT: 3794 return (cp_tree_equal (DEFERRED_NOEXCEPT_PATTERN (t1), 3795 DEFERRED_NOEXCEPT_PATTERN (t2)) 3796 && comp_template_args (DEFERRED_NOEXCEPT_ARGS (t1), 3797 DEFERRED_NOEXCEPT_ARGS (t2))); 3798 break; 3799 3800 case LAMBDA_EXPR: 3801 /* Two lambda-expressions are never considered equivalent. */ 3802 return false; 3803 3804 default: 3805 break; 3806 } 3807 3808 switch (TREE_CODE_CLASS (code1)) 3809 { 3810 case tcc_unary: 3811 case tcc_binary: 3812 case tcc_comparison: 3813 case tcc_expression: 3814 case tcc_vl_exp: 3815 case tcc_reference: 3816 case tcc_statement: 3817 { 3818 int i, n; 3819 3820 n = cp_tree_operand_length (t1); 3821 if (TREE_CODE_CLASS (code1) == tcc_vl_exp 3822 && n != TREE_OPERAND_LENGTH (t2)) 3823 return false; 3824 3825 for (i = 0; i < n; ++i) 3826 if (!cp_tree_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i))) 3827 return false; 3828 3829 return true; 3830 } 3831 3832 case tcc_type: 3833 return same_type_p (t1, t2); 3834 default: 3835 gcc_unreachable (); 3836 } 3837 /* We can get here with --disable-checking. */ 3838 return false; 3839 } 3840 3841 /* The type of ARG when used as an lvalue. */ 3842 3843 tree 3844 lvalue_type (tree arg) 3845 { 3846 tree type = TREE_TYPE (arg); 3847 return type; 3848 } 3849 3850 /* The type of ARG for printing error messages; denote lvalues with 3851 reference types. */ 3852 3853 tree 3854 error_type (tree arg) 3855 { 3856 tree type = TREE_TYPE (arg); 3857 3858 if (TREE_CODE (type) == ARRAY_TYPE) 3859 ; 3860 else if (TREE_CODE (type) == ERROR_MARK) 3861 ; 3862 else if (lvalue_p (arg)) 3863 type = build_reference_type (lvalue_type (arg)); 3864 else if (MAYBE_CLASS_TYPE_P (type)) 3865 type = lvalue_type (arg); 3866 3867 return type; 3868 } 3869 3870 /* Does FUNCTION use a variable-length argument list? */ 3871 3872 int 3873 varargs_function_p (const_tree function) 3874 { 3875 return stdarg_p (TREE_TYPE (function)); 3876 } 3877 3878 /* Returns 1 if decl is a member of a class. */ 3879 3880 int 3881 member_p (const_tree decl) 3882 { 3883 const_tree const ctx = DECL_CONTEXT (decl); 3884 return (ctx && TYPE_P (ctx)); 3885 } 3886 3887 /* Create a placeholder for member access where we don't actually have an 3888 object that the access is against. */ 3889 3890 tree 3891 build_dummy_object (tree type) 3892 { 3893 tree decl = build1 (CONVERT_EXPR, build_pointer_type (type), void_node); 3894 return cp_build_fold_indirect_ref (decl); 3895 } 3896 3897 /* We've gotten a reference to a member of TYPE. Return *this if appropriate, 3898 or a dummy object otherwise. If BINFOP is non-0, it is filled with the 3899 binfo path from current_class_type to TYPE, or 0. */ 3900 3901 tree 3902 maybe_dummy_object (tree type, tree* binfop) 3903 { 3904 tree decl, context; 3905 tree binfo; 3906 tree current = current_nonlambda_class_type (); 3907 3908 if (current 3909 && (binfo = lookup_base (current, type, ba_any, NULL, 3910 tf_warning_or_error))) 3911 context = current; 3912 else 3913 { 3914 /* Reference from a nested class member function. */ 3915 context = type; 3916 binfo = TYPE_BINFO (type); 3917 } 3918 3919 if (binfop) 3920 *binfop = binfo; 3921 3922 if (current_class_ref 3923 /* current_class_ref might not correspond to current_class_type if 3924 we're in tsubst_default_argument or a lambda-declarator; in either 3925 case, we want to use current_class_ref if it matches CONTEXT. */ 3926 && (same_type_ignoring_top_level_qualifiers_p 3927 (TREE_TYPE (current_class_ref), context))) 3928 decl = current_class_ref; 3929 else 3930 decl = build_dummy_object (context); 3931 3932 return decl; 3933 } 3934 3935 /* Returns 1 if OB is a placeholder object, or a pointer to one. */ 3936 3937 int 3938 is_dummy_object (const_tree ob) 3939 { 3940 if (INDIRECT_REF_P (ob)) 3941 ob = TREE_OPERAND (ob, 0); 3942 return (TREE_CODE (ob) == CONVERT_EXPR 3943 && TREE_OPERAND (ob, 0) == void_node); 3944 } 3945 3946 /* Returns 1 iff type T is something we want to treat as a scalar type for 3947 the purpose of deciding whether it is trivial/POD/standard-layout. */ 3948 3949 bool 3950 scalarish_type_p (const_tree t) 3951 { 3952 if (t == error_mark_node) 3953 return 1; 3954 3955 return (SCALAR_TYPE_P (t) || VECTOR_TYPE_P (t)); 3956 } 3957 3958 /* Returns true iff T requires non-trivial default initialization. */ 3959 3960 bool 3961 type_has_nontrivial_default_init (const_tree t) 3962 { 3963 t = strip_array_types (CONST_CAST_TREE (t)); 3964 3965 if (CLASS_TYPE_P (t)) 3966 return TYPE_HAS_COMPLEX_DFLT (t); 3967 else 3968 return 0; 3969 } 3970 3971 /* Track classes with only deleted copy/move constructors so that we can warn 3972 if they are used in call/return by value. */ 3973 3974 static GTY(()) hash_set<tree>* deleted_copy_types; 3975 static void 3976 remember_deleted_copy (const_tree t) 3977 { 3978 if (!deleted_copy_types) 3979 deleted_copy_types = hash_set<tree>::create_ggc(37); 3980 deleted_copy_types->add (CONST_CAST_TREE (t)); 3981 } 3982 void 3983 maybe_warn_parm_abi (tree t, location_t loc) 3984 { 3985 if (!deleted_copy_types 3986 || !deleted_copy_types->contains (t)) 3987 return; 3988 3989 if ((flag_abi_version == 12 || warn_abi_version == 12) 3990 && classtype_has_non_deleted_move_ctor (t)) 3991 { 3992 bool w; 3993 auto_diagnostic_group d; 3994 if (flag_abi_version > 12) 3995 w = warning_at (loc, OPT_Wabi, "%<-fabi-version=13%> (GCC 8.2) fixes " 3996 "the calling convention for %qT, which was " 3997 "accidentally changed in 8.1", t); 3998 else 3999 w = warning_at (loc, OPT_Wabi, "%<-fabi-version=12%> (GCC 8.1) accident" 4000 "ally changes the calling convention for %qT", t); 4001 if (w) 4002 inform (location_of (t), " declared here"); 4003 return; 4004 } 4005 4006 auto_diagnostic_group d; 4007 if (warning_at (loc, OPT_Wabi, "the calling convention for %qT changes in " 4008 "%<-fabi-version=13%> (GCC 8.2)", t)) 4009 inform (location_of (t), " because all of its copy and move " 4010 "constructors are deleted"); 4011 } 4012 4013 /* Returns true iff copying an object of type T (including via move 4014 constructor) is non-trivial. That is, T has no non-trivial copy 4015 constructors and no non-trivial move constructors, and not all copy/move 4016 constructors are deleted. This function implements the ABI notion of 4017 non-trivial copy, which has diverged from the one in the standard. */ 4018 4019 bool 4020 type_has_nontrivial_copy_init (const_tree type) 4021 { 4022 tree t = strip_array_types (CONST_CAST_TREE (type)); 4023 4024 if (CLASS_TYPE_P (t)) 4025 { 4026 gcc_assert (COMPLETE_TYPE_P (t)); 4027 4028 if (TYPE_HAS_COMPLEX_COPY_CTOR (t) 4029 || TYPE_HAS_COMPLEX_MOVE_CTOR (t)) 4030 /* Nontrivial. */ 4031 return true; 4032 4033 if (cxx_dialect < cxx11) 4034 /* No deleted functions before C++11. */ 4035 return false; 4036 4037 /* Before ABI v12 we did a bitwise copy of types with only deleted 4038 copy/move constructors. */ 4039 if (!abi_version_at_least (12) 4040 && !(warn_abi && abi_version_crosses (12))) 4041 return false; 4042 4043 bool saw_copy = false; 4044 bool saw_non_deleted = false; 4045 bool saw_non_deleted_move = false; 4046 4047 if (CLASSTYPE_LAZY_MOVE_CTOR (t)) 4048 saw_copy = saw_non_deleted = true; 4049 else if (CLASSTYPE_LAZY_COPY_CTOR (t)) 4050 { 4051 saw_copy = true; 4052 if (classtype_has_move_assign_or_move_ctor_p (t, true)) 4053 /* [class.copy]/8 If the class definition declares a move 4054 constructor or move assignment operator, the implicitly declared 4055 copy constructor is defined as deleted.... */; 4056 else 4057 /* Any other reason the implicitly-declared function would be 4058 deleted would also cause TYPE_HAS_COMPLEX_COPY_CTOR to be 4059 set. */ 4060 saw_non_deleted = true; 4061 } 4062 4063 if (!saw_non_deleted) 4064 for (ovl_iterator iter (CLASSTYPE_CONSTRUCTORS (t)); iter; ++iter) 4065 { 4066 tree fn = *iter; 4067 if (copy_fn_p (fn)) 4068 { 4069 saw_copy = true; 4070 if (!DECL_DELETED_FN (fn)) 4071 { 4072 /* Not deleted, therefore trivial. */ 4073 saw_non_deleted = true; 4074 break; 4075 } 4076 } 4077 else if (move_fn_p (fn)) 4078 if (!DECL_DELETED_FN (fn)) 4079 saw_non_deleted_move = true; 4080 } 4081 4082 gcc_assert (saw_copy); 4083 4084 /* ABI v12 buggily ignored move constructors. */ 4085 bool v11nontriv = false; 4086 bool v12nontriv = !saw_non_deleted; 4087 bool v13nontriv = !saw_non_deleted && !saw_non_deleted_move; 4088 bool nontriv = (abi_version_at_least (13) ? v13nontriv 4089 : flag_abi_version == 12 ? v12nontriv 4090 : v11nontriv); 4091 bool warn_nontriv = (warn_abi_version >= 13 ? v13nontriv 4092 : warn_abi_version == 12 ? v12nontriv 4093 : v11nontriv); 4094 if (nontriv != warn_nontriv) 4095 remember_deleted_copy (t); 4096 4097 return nontriv; 4098 } 4099 else 4100 return 0; 4101 } 4102 4103 /* Returns 1 iff type T is a trivially copyable type, as defined in 4104 [basic.types] and [class]. */ 4105 4106 bool 4107 trivially_copyable_p (const_tree t) 4108 { 4109 t = strip_array_types (CONST_CAST_TREE (t)); 4110 4111 if (CLASS_TYPE_P (t)) 4112 return ((!TYPE_HAS_COPY_CTOR (t) 4113 || !TYPE_HAS_COMPLEX_COPY_CTOR (t)) 4114 && !TYPE_HAS_COMPLEX_MOVE_CTOR (t) 4115 && (!TYPE_HAS_COPY_ASSIGN (t) 4116 || !TYPE_HAS_COMPLEX_COPY_ASSIGN (t)) 4117 && !TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) 4118 && TYPE_HAS_TRIVIAL_DESTRUCTOR (t)); 4119 else 4120 return !CP_TYPE_VOLATILE_P (t) && scalarish_type_p (t); 4121 } 4122 4123 /* Returns 1 iff type T is a trivial type, as defined in [basic.types] and 4124 [class]. */ 4125 4126 bool 4127 trivial_type_p (const_tree t) 4128 { 4129 t = strip_array_types (CONST_CAST_TREE (t)); 4130 4131 if (CLASS_TYPE_P (t)) 4132 return (TYPE_HAS_TRIVIAL_DFLT (t) 4133 && trivially_copyable_p (t)); 4134 else 4135 return scalarish_type_p (t); 4136 } 4137 4138 /* Returns 1 iff type T is a POD type, as defined in [basic.types]. */ 4139 4140 bool 4141 pod_type_p (const_tree t) 4142 { 4143 /* This CONST_CAST is okay because strip_array_types returns its 4144 argument unmodified and we assign it to a const_tree. */ 4145 t = strip_array_types (CONST_CAST_TREE(t)); 4146 4147 if (!CLASS_TYPE_P (t)) 4148 return scalarish_type_p (t); 4149 else if (cxx_dialect > cxx98) 4150 /* [class]/10: A POD struct is a class that is both a trivial class and a 4151 standard-layout class, and has no non-static data members of type 4152 non-POD struct, non-POD union (or array of such types). 4153 4154 We don't need to check individual members because if a member is 4155 non-std-layout or non-trivial, the class will be too. */ 4156 return (std_layout_type_p (t) && trivial_type_p (t)); 4157 else 4158 /* The C++98 definition of POD is different. */ 4159 return !CLASSTYPE_NON_LAYOUT_POD_P (t); 4160 } 4161 4162 /* Returns true iff T is POD for the purpose of layout, as defined in the 4163 C++ ABI. */ 4164 4165 bool 4166 layout_pod_type_p (const_tree t) 4167 { 4168 t = strip_array_types (CONST_CAST_TREE (t)); 4169 4170 if (CLASS_TYPE_P (t)) 4171 return !CLASSTYPE_NON_LAYOUT_POD_P (t); 4172 else 4173 return scalarish_type_p (t); 4174 } 4175 4176 /* Returns true iff T is a standard-layout type, as defined in 4177 [basic.types]. */ 4178 4179 bool 4180 std_layout_type_p (const_tree t) 4181 { 4182 t = strip_array_types (CONST_CAST_TREE (t)); 4183 4184 if (CLASS_TYPE_P (t)) 4185 return !CLASSTYPE_NON_STD_LAYOUT (t); 4186 else 4187 return scalarish_type_p (t); 4188 } 4189 4190 static bool record_has_unique_obj_representations (const_tree, const_tree); 4191 4192 /* Returns true iff T satisfies std::has_unique_object_representations<T>, 4193 as defined in [meta.unary.prop]. */ 4194 4195 bool 4196 type_has_unique_obj_representations (const_tree t) 4197 { 4198 bool ret; 4199 4200 t = strip_array_types (CONST_CAST_TREE (t)); 4201 4202 if (!trivially_copyable_p (t)) 4203 return false; 4204 4205 if (CLASS_TYPE_P (t) && CLASSTYPE_UNIQUE_OBJ_REPRESENTATIONS_SET (t)) 4206 return CLASSTYPE_UNIQUE_OBJ_REPRESENTATIONS (t); 4207 4208 switch (TREE_CODE (t)) 4209 { 4210 case INTEGER_TYPE: 4211 case POINTER_TYPE: 4212 case REFERENCE_TYPE: 4213 /* If some backend has any paddings in these types, we should add 4214 a target hook for this and handle it there. */ 4215 return true; 4216 4217 case BOOLEAN_TYPE: 4218 /* For bool values other than 0 and 1 should only appear with 4219 undefined behavior. */ 4220 return true; 4221 4222 case ENUMERAL_TYPE: 4223 return type_has_unique_obj_representations (ENUM_UNDERLYING_TYPE (t)); 4224 4225 case REAL_TYPE: 4226 /* XFmode certainly contains padding on x86, which the CPU doesn't store 4227 when storing long double values, so for that we have to return false. 4228 Other kinds of floating point values are questionable due to +.0/-.0 4229 and NaNs, let's play safe for now. */ 4230 return false; 4231 4232 case FIXED_POINT_TYPE: 4233 return false; 4234 4235 case OFFSET_TYPE: 4236 return true; 4237 4238 case COMPLEX_TYPE: 4239 case VECTOR_TYPE: 4240 return type_has_unique_obj_representations (TREE_TYPE (t)); 4241 4242 case RECORD_TYPE: 4243 ret = record_has_unique_obj_representations (t, TYPE_SIZE (t)); 4244 if (CLASS_TYPE_P (t)) 4245 { 4246 CLASSTYPE_UNIQUE_OBJ_REPRESENTATIONS_SET (t) = 1; 4247 CLASSTYPE_UNIQUE_OBJ_REPRESENTATIONS (t) = ret; 4248 } 4249 return ret; 4250 4251 case UNION_TYPE: 4252 ret = true; 4253 bool any_fields; 4254 any_fields = false; 4255 for (tree field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field)) 4256 if (TREE_CODE (field) == FIELD_DECL) 4257 { 4258 any_fields = true; 4259 if (!type_has_unique_obj_representations (TREE_TYPE (field)) 4260 || simple_cst_equal (DECL_SIZE (field), TYPE_SIZE (t)) != 1) 4261 { 4262 ret = false; 4263 break; 4264 } 4265 } 4266 if (!any_fields && !integer_zerop (TYPE_SIZE (t))) 4267 ret = false; 4268 if (CLASS_TYPE_P (t)) 4269 { 4270 CLASSTYPE_UNIQUE_OBJ_REPRESENTATIONS_SET (t) = 1; 4271 CLASSTYPE_UNIQUE_OBJ_REPRESENTATIONS (t) = ret; 4272 } 4273 return ret; 4274 4275 case NULLPTR_TYPE: 4276 return false; 4277 4278 case ERROR_MARK: 4279 return false; 4280 4281 default: 4282 gcc_unreachable (); 4283 } 4284 } 4285 4286 /* Helper function for type_has_unique_obj_representations. */ 4287 4288 static bool 4289 record_has_unique_obj_representations (const_tree t, const_tree sz) 4290 { 4291 for (tree field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field)) 4292 if (TREE_CODE (field) != FIELD_DECL) 4293 ; 4294 /* For bases, can't use type_has_unique_obj_representations here, as in 4295 struct S { int i : 24; S (); }; 4296 struct T : public S { int j : 8; T (); }; 4297 S doesn't have unique obj representations, but T does. */ 4298 else if (DECL_FIELD_IS_BASE (field)) 4299 { 4300 if (!record_has_unique_obj_representations (TREE_TYPE (field), 4301 DECL_SIZE (field))) 4302 return false; 4303 } 4304 else if (DECL_C_BIT_FIELD (field)) 4305 { 4306 tree btype = DECL_BIT_FIELD_TYPE (field); 4307 if (!type_has_unique_obj_representations (btype)) 4308 return false; 4309 } 4310 else if (!type_has_unique_obj_representations (TREE_TYPE (field))) 4311 return false; 4312 4313 offset_int cur = 0; 4314 for (tree field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field)) 4315 if (TREE_CODE (field) == FIELD_DECL) 4316 { 4317 offset_int fld = wi::to_offset (DECL_FIELD_OFFSET (field)); 4318 offset_int bitpos = wi::to_offset (DECL_FIELD_BIT_OFFSET (field)); 4319 fld = fld * BITS_PER_UNIT + bitpos; 4320 if (cur != fld) 4321 return false; 4322 if (DECL_SIZE (field)) 4323 { 4324 offset_int size = wi::to_offset (DECL_SIZE (field)); 4325 cur += size; 4326 } 4327 } 4328 if (cur != wi::to_offset (sz)) 4329 return false; 4330 4331 return true; 4332 } 4333 4334 /* Nonzero iff type T is a class template implicit specialization. */ 4335 4336 bool 4337 class_tmpl_impl_spec_p (const_tree t) 4338 { 4339 return CLASS_TYPE_P (t) && CLASSTYPE_TEMPLATE_INSTANTIATION (t); 4340 } 4341 4342 /* Returns 1 iff zero initialization of type T means actually storing 4343 zeros in it. */ 4344 4345 int 4346 zero_init_p (const_tree t) 4347 { 4348 /* This CONST_CAST is okay because strip_array_types returns its 4349 argument unmodified and we assign it to a const_tree. */ 4350 t = strip_array_types (CONST_CAST_TREE(t)); 4351 4352 if (t == error_mark_node) 4353 return 1; 4354 4355 /* NULL pointers to data members are initialized with -1. */ 4356 if (TYPE_PTRDATAMEM_P (t)) 4357 return 0; 4358 4359 /* Classes that contain types that can't be zero-initialized, cannot 4360 be zero-initialized themselves. */ 4361 if (CLASS_TYPE_P (t) && CLASSTYPE_NON_ZERO_INIT_P (t)) 4362 return 0; 4363 4364 return 1; 4365 } 4366 4367 /* Handle the C++17 [[nodiscard]] attribute, which is similar to the GNU 4368 warn_unused_result attribute. */ 4369 4370 static tree 4371 handle_nodiscard_attribute (tree *node, tree name, tree /*args*/, 4372 int /*flags*/, bool *no_add_attrs) 4373 { 4374 if (TREE_CODE (*node) == FUNCTION_DECL) 4375 { 4376 if (VOID_TYPE_P (TREE_TYPE (TREE_TYPE (*node)))) 4377 warning_at (DECL_SOURCE_LOCATION (*node), 4378 OPT_Wattributes, "%qE attribute applied to %qD with void " 4379 "return type", name, *node); 4380 } 4381 else if (OVERLOAD_TYPE_P (*node)) 4382 /* OK */; 4383 else 4384 { 4385 warning (OPT_Wattributes, "%qE attribute can only be applied to " 4386 "functions or to class or enumeration types", name); 4387 *no_add_attrs = true; 4388 } 4389 return NULL_TREE; 4390 } 4391 4392 /* Handle a C++2a "no_unique_address" attribute; arguments as in 4393 struct attribute_spec.handler. */ 4394 static tree 4395 handle_no_unique_addr_attribute (tree* node, 4396 tree name, 4397 tree /*args*/, 4398 int /*flags*/, 4399 bool* no_add_attrs) 4400 { 4401 if (TREE_CODE (*node) != FIELD_DECL) 4402 { 4403 warning (OPT_Wattributes, "%qE attribute can only be applied to " 4404 "non-static data members", name); 4405 *no_add_attrs = true; 4406 } 4407 else if (DECL_C_BIT_FIELD (*node)) 4408 { 4409 warning (OPT_Wattributes, "%qE attribute cannot be applied to " 4410 "a bit-field", name); 4411 *no_add_attrs = true; 4412 } 4413 4414 return NULL_TREE; 4415 } 4416 4417 /* The C++20 [[likely]] and [[unlikely]] attributes on labels map to the GNU 4418 hot/cold attributes. */ 4419 4420 static tree 4421 handle_likeliness_attribute (tree *node, tree name, tree args, 4422 int flags, bool *no_add_attrs) 4423 { 4424 *no_add_attrs = true; 4425 if (TREE_CODE (*node) == LABEL_DECL 4426 || TREE_CODE (*node) == FUNCTION_DECL) 4427 { 4428 if (args) 4429 warning (OPT_Wattributes, "%qE attribute takes no arguments", name); 4430 tree bname = (is_attribute_p ("likely", name) 4431 ? get_identifier ("hot") : get_identifier ("cold")); 4432 if (TREE_CODE (*node) == FUNCTION_DECL) 4433 warning (OPT_Wattributes, "ISO C++ %qE attribute does not apply to " 4434 "functions; treating as %<[[gnu::%E]]%>", name, bname); 4435 tree battr = build_tree_list (bname, NULL_TREE); 4436 decl_attributes (node, battr, flags); 4437 return NULL_TREE; 4438 } 4439 else 4440 return error_mark_node; 4441 } 4442 4443 /* Table of valid C++ attributes. */ 4444 const struct attribute_spec cxx_attribute_table[] = 4445 { 4446 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, 4447 affects_type_identity, handler, exclude } */ 4448 { "init_priority", 1, 1, true, false, false, false, 4449 handle_init_priority_attribute, NULL }, 4450 { "abi_tag", 1, -1, false, false, false, true, 4451 handle_abi_tag_attribute, NULL }, 4452 { NULL, 0, 0, false, false, false, false, NULL, NULL } 4453 }; 4454 4455 /* Table of C++ standard attributes. */ 4456 const struct attribute_spec std_attribute_table[] = 4457 { 4458 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, 4459 affects_type_identity, handler, exclude } */ 4460 { "maybe_unused", 0, 0, false, false, false, false, 4461 handle_unused_attribute, NULL }, 4462 { "nodiscard", 0, 0, false, false, false, false, 4463 handle_nodiscard_attribute, NULL }, 4464 { "no_unique_address", 0, 0, true, false, false, false, 4465 handle_no_unique_addr_attribute, NULL }, 4466 { "likely", 0, 0, false, false, false, false, 4467 handle_likeliness_attribute, attr_cold_hot_exclusions }, 4468 { "unlikely", 0, 0, false, false, false, false, 4469 handle_likeliness_attribute, attr_cold_hot_exclusions }, 4470 { NULL, 0, 0, false, false, false, false, NULL, NULL } 4471 }; 4472 4473 /* Handle an "init_priority" attribute; arguments as in 4474 struct attribute_spec.handler. */ 4475 static tree 4476 handle_init_priority_attribute (tree* node, 4477 tree name, 4478 tree args, 4479 int /*flags*/, 4480 bool* no_add_attrs) 4481 { 4482 tree initp_expr = TREE_VALUE (args); 4483 tree decl = *node; 4484 tree type = TREE_TYPE (decl); 4485 int pri; 4486 4487 STRIP_NOPS (initp_expr); 4488 initp_expr = default_conversion (initp_expr); 4489 if (initp_expr) 4490 initp_expr = maybe_constant_value (initp_expr); 4491 4492 if (!initp_expr || TREE_CODE (initp_expr) != INTEGER_CST) 4493 { 4494 error ("requested init_priority is not an integer constant"); 4495 cxx_constant_value (initp_expr); 4496 *no_add_attrs = true; 4497 return NULL_TREE; 4498 } 4499 4500 pri = TREE_INT_CST_LOW (initp_expr); 4501 4502 type = strip_array_types (type); 4503 4504 if (decl == NULL_TREE 4505 || !VAR_P (decl) 4506 || !TREE_STATIC (decl) 4507 || DECL_EXTERNAL (decl) 4508 || (TREE_CODE (type) != RECORD_TYPE 4509 && TREE_CODE (type) != UNION_TYPE) 4510 /* Static objects in functions are initialized the 4511 first time control passes through that 4512 function. This is not precise enough to pin down an 4513 init_priority value, so don't allow it. */ 4514 || current_function_decl) 4515 { 4516 error ("can only use %qE attribute on file-scope definitions " 4517 "of objects of class type", name); 4518 *no_add_attrs = true; 4519 return NULL_TREE; 4520 } 4521 4522 if (pri > MAX_INIT_PRIORITY || pri <= 0) 4523 { 4524 error ("requested init_priority is out of range"); 4525 *no_add_attrs = true; 4526 return NULL_TREE; 4527 } 4528 4529 /* Check for init_priorities that are reserved for 4530 language and runtime support implementations.*/ 4531 if (pri <= MAX_RESERVED_INIT_PRIORITY) 4532 { 4533 warning 4534 (0, "requested init_priority is reserved for internal use"); 4535 } 4536 4537 if (SUPPORTS_INIT_PRIORITY) 4538 { 4539 SET_DECL_INIT_PRIORITY (decl, pri); 4540 DECL_HAS_INIT_PRIORITY_P (decl) = 1; 4541 return NULL_TREE; 4542 } 4543 else 4544 { 4545 error ("%qE attribute is not supported on this platform", name); 4546 *no_add_attrs = true; 4547 return NULL_TREE; 4548 } 4549 } 4550 4551 /* DECL is being redeclared; the old declaration had the abi tags in OLD, 4552 and the new one has the tags in NEW_. Give an error if there are tags 4553 in NEW_ that weren't in OLD. */ 4554 4555 bool 4556 check_abi_tag_redeclaration (const_tree decl, const_tree old, const_tree new_) 4557 { 4558 if (old && TREE_CODE (TREE_VALUE (old)) == TREE_LIST) 4559 old = TREE_VALUE (old); 4560 if (new_ && TREE_CODE (TREE_VALUE (new_)) == TREE_LIST) 4561 new_ = TREE_VALUE (new_); 4562 bool err = false; 4563 for (const_tree t = new_; t; t = TREE_CHAIN (t)) 4564 { 4565 tree str = TREE_VALUE (t); 4566 for (const_tree in = old; in; in = TREE_CHAIN (in)) 4567 { 4568 tree ostr = TREE_VALUE (in); 4569 if (cp_tree_equal (str, ostr)) 4570 goto found; 4571 } 4572 error ("redeclaration of %qD adds abi tag %qE", decl, str); 4573 err = true; 4574 found:; 4575 } 4576 if (err) 4577 { 4578 inform (DECL_SOURCE_LOCATION (decl), "previous declaration here"); 4579 return false; 4580 } 4581 return true; 4582 } 4583 4584 /* The abi_tag attribute with the name NAME was given ARGS. If they are 4585 ill-formed, give an error and return false; otherwise, return true. */ 4586 4587 bool 4588 check_abi_tag_args (tree args, tree name) 4589 { 4590 if (!args) 4591 { 4592 error ("the %qE attribute requires arguments", name); 4593 return false; 4594 } 4595 for (tree arg = args; arg; arg = TREE_CHAIN (arg)) 4596 { 4597 tree elt = TREE_VALUE (arg); 4598 if (TREE_CODE (elt) != STRING_CST 4599 || (!same_type_ignoring_top_level_qualifiers_p 4600 (strip_array_types (TREE_TYPE (elt)), 4601 char_type_node))) 4602 { 4603 error ("arguments to the %qE attribute must be narrow string " 4604 "literals", name); 4605 return false; 4606 } 4607 const char *begin = TREE_STRING_POINTER (elt); 4608 const char *end = begin + TREE_STRING_LENGTH (elt); 4609 for (const char *p = begin; p != end; ++p) 4610 { 4611 char c = *p; 4612 if (p == begin) 4613 { 4614 if (!ISALPHA (c) && c != '_') 4615 { 4616 error ("arguments to the %qE attribute must contain valid " 4617 "identifiers", name); 4618 inform (input_location, "%<%c%> is not a valid first " 4619 "character for an identifier", c); 4620 return false; 4621 } 4622 } 4623 else if (p == end - 1) 4624 gcc_assert (c == 0); 4625 else 4626 { 4627 if (!ISALNUM (c) && c != '_') 4628 { 4629 error ("arguments to the %qE attribute must contain valid " 4630 "identifiers", name); 4631 inform (input_location, "%<%c%> is not a valid character " 4632 "in an identifier", c); 4633 return false; 4634 } 4635 } 4636 } 4637 } 4638 return true; 4639 } 4640 4641 /* Handle an "abi_tag" attribute; arguments as in 4642 struct attribute_spec.handler. */ 4643 4644 static tree 4645 handle_abi_tag_attribute (tree* node, tree name, tree args, 4646 int flags, bool* no_add_attrs) 4647 { 4648 if (!check_abi_tag_args (args, name)) 4649 goto fail; 4650 4651 if (TYPE_P (*node)) 4652 { 4653 if (!OVERLOAD_TYPE_P (*node)) 4654 { 4655 error ("%qE attribute applied to non-class, non-enum type %qT", 4656 name, *node); 4657 goto fail; 4658 } 4659 else if (!(flags & (int)ATTR_FLAG_TYPE_IN_PLACE)) 4660 { 4661 error ("%qE attribute applied to %qT after its definition", 4662 name, *node); 4663 goto fail; 4664 } 4665 else if (CLASS_TYPE_P (*node) 4666 && CLASSTYPE_TEMPLATE_INSTANTIATION (*node)) 4667 { 4668 warning (OPT_Wattributes, "ignoring %qE attribute applied to " 4669 "template instantiation %qT", name, *node); 4670 goto fail; 4671 } 4672 else if (CLASS_TYPE_P (*node) 4673 && CLASSTYPE_TEMPLATE_SPECIALIZATION (*node)) 4674 { 4675 warning (OPT_Wattributes, "ignoring %qE attribute applied to " 4676 "template specialization %qT", name, *node); 4677 goto fail; 4678 } 4679 4680 tree attributes = TYPE_ATTRIBUTES (*node); 4681 tree decl = TYPE_NAME (*node); 4682 4683 /* Make sure all declarations have the same abi tags. */ 4684 if (DECL_SOURCE_LOCATION (decl) != input_location) 4685 { 4686 if (!check_abi_tag_redeclaration (decl, 4687 lookup_attribute ("abi_tag", 4688 attributes), 4689 args)) 4690 goto fail; 4691 } 4692 } 4693 else 4694 { 4695 if (!VAR_OR_FUNCTION_DECL_P (*node)) 4696 { 4697 error ("%qE attribute applied to non-function, non-variable %qD", 4698 name, *node); 4699 goto fail; 4700 } 4701 else if (DECL_LANGUAGE (*node) == lang_c) 4702 { 4703 error ("%qE attribute applied to extern \"C\" declaration %qD", 4704 name, *node); 4705 goto fail; 4706 } 4707 } 4708 4709 return NULL_TREE; 4710 4711 fail: 4712 *no_add_attrs = true; 4713 return NULL_TREE; 4714 } 4715 4716 /* Return a new PTRMEM_CST of the indicated TYPE. The MEMBER is the 4717 thing pointed to by the constant. */ 4718 4719 tree 4720 make_ptrmem_cst (tree type, tree member) 4721 { 4722 tree ptrmem_cst = make_node (PTRMEM_CST); 4723 TREE_TYPE (ptrmem_cst) = type; 4724 PTRMEM_CST_MEMBER (ptrmem_cst) = member; 4725 return ptrmem_cst; 4726 } 4727 4728 /* Build a variant of TYPE that has the indicated ATTRIBUTES. May 4729 return an existing type if an appropriate type already exists. */ 4730 4731 tree 4732 cp_build_type_attribute_variant (tree type, tree attributes) 4733 { 4734 tree new_type; 4735 4736 new_type = build_type_attribute_variant (type, attributes); 4737 if (TREE_CODE (new_type) == FUNCTION_TYPE 4738 || TREE_CODE (new_type) == METHOD_TYPE) 4739 gcc_checking_assert (cxx_type_hash_eq (type, new_type)); 4740 4741 /* Making a new main variant of a class type is broken. */ 4742 gcc_assert (!CLASS_TYPE_P (type) || new_type == type); 4743 4744 return new_type; 4745 } 4746 4747 /* Return TRUE if TYPE1 and TYPE2 are identical for type hashing purposes. 4748 Called only after doing all language independent checks. */ 4749 4750 bool 4751 cxx_type_hash_eq (const_tree typea, const_tree typeb) 4752 { 4753 gcc_assert (TREE_CODE (typea) == FUNCTION_TYPE 4754 || TREE_CODE (typea) == METHOD_TYPE); 4755 4756 if (type_memfn_rqual (typea) != type_memfn_rqual (typeb)) 4757 return false; 4758 if (TYPE_HAS_LATE_RETURN_TYPE (typea) != TYPE_HAS_LATE_RETURN_TYPE (typeb)) 4759 return false; 4760 return comp_except_specs (TYPE_RAISES_EXCEPTIONS (typea), 4761 TYPE_RAISES_EXCEPTIONS (typeb), ce_exact); 4762 } 4763 4764 /* Copy the language-specific type variant modifiers from TYPEB to TYPEA. For 4765 C++, these are the exception-specifier and ref-qualifier. */ 4766 4767 tree 4768 cxx_copy_lang_qualifiers (const_tree typea, const_tree typeb) 4769 { 4770 tree type = CONST_CAST_TREE (typea); 4771 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE) 4772 type = build_cp_fntype_variant (type, type_memfn_rqual (typeb), 4773 TYPE_RAISES_EXCEPTIONS (typeb), 4774 TYPE_HAS_LATE_RETURN_TYPE (typeb)); 4775 return type; 4776 } 4777 4778 /* Apply FUNC to all language-specific sub-trees of TP in a pre-order 4779 traversal. Called from walk_tree. */ 4780 4781 tree 4782 cp_walk_subtrees (tree *tp, int *walk_subtrees_p, walk_tree_fn func, 4783 void *data, hash_set<tree> *pset) 4784 { 4785 enum tree_code code = TREE_CODE (*tp); 4786 tree result; 4787 4788 #define WALK_SUBTREE(NODE) \ 4789 do \ 4790 { \ 4791 result = cp_walk_tree (&(NODE), func, data, pset); \ 4792 if (result) goto out; \ 4793 } \ 4794 while (0) 4795 4796 /* Not one of the easy cases. We must explicitly go through the 4797 children. */ 4798 result = NULL_TREE; 4799 switch (code) 4800 { 4801 case DEFAULT_ARG: 4802 case TEMPLATE_TEMPLATE_PARM: 4803 case BOUND_TEMPLATE_TEMPLATE_PARM: 4804 case UNBOUND_CLASS_TEMPLATE: 4805 case TEMPLATE_PARM_INDEX: 4806 case TEMPLATE_TYPE_PARM: 4807 case TYPENAME_TYPE: 4808 case TYPEOF_TYPE: 4809 case UNDERLYING_TYPE: 4810 /* None of these have subtrees other than those already walked 4811 above. */ 4812 *walk_subtrees_p = 0; 4813 break; 4814 4815 case BASELINK: 4816 if (BASELINK_QUALIFIED_P (*tp)) 4817 WALK_SUBTREE (BINFO_TYPE (BASELINK_ACCESS_BINFO (*tp))); 4818 WALK_SUBTREE (BASELINK_FUNCTIONS (*tp)); 4819 *walk_subtrees_p = 0; 4820 break; 4821 4822 case PTRMEM_CST: 4823 WALK_SUBTREE (TREE_TYPE (*tp)); 4824 *walk_subtrees_p = 0; 4825 break; 4826 4827 case TREE_LIST: 4828 WALK_SUBTREE (TREE_PURPOSE (*tp)); 4829 break; 4830 4831 case OVERLOAD: 4832 WALK_SUBTREE (OVL_FUNCTION (*tp)); 4833 WALK_SUBTREE (OVL_CHAIN (*tp)); 4834 *walk_subtrees_p = 0; 4835 break; 4836 4837 case USING_DECL: 4838 WALK_SUBTREE (DECL_NAME (*tp)); 4839 WALK_SUBTREE (USING_DECL_SCOPE (*tp)); 4840 WALK_SUBTREE (USING_DECL_DECLS (*tp)); 4841 *walk_subtrees_p = 0; 4842 break; 4843 4844 case RECORD_TYPE: 4845 if (TYPE_PTRMEMFUNC_P (*tp)) 4846 WALK_SUBTREE (TYPE_PTRMEMFUNC_FN_TYPE_RAW (*tp)); 4847 break; 4848 4849 case TYPE_ARGUMENT_PACK: 4850 case NONTYPE_ARGUMENT_PACK: 4851 { 4852 tree args = ARGUMENT_PACK_ARGS (*tp); 4853 int i, len = TREE_VEC_LENGTH (args); 4854 for (i = 0; i < len; i++) 4855 WALK_SUBTREE (TREE_VEC_ELT (args, i)); 4856 } 4857 break; 4858 4859 case TYPE_PACK_EXPANSION: 4860 WALK_SUBTREE (TREE_TYPE (*tp)); 4861 WALK_SUBTREE (PACK_EXPANSION_EXTRA_ARGS (*tp)); 4862 *walk_subtrees_p = 0; 4863 break; 4864 4865 case EXPR_PACK_EXPANSION: 4866 WALK_SUBTREE (TREE_OPERAND (*tp, 0)); 4867 WALK_SUBTREE (PACK_EXPANSION_EXTRA_ARGS (*tp)); 4868 *walk_subtrees_p = 0; 4869 break; 4870 4871 case CAST_EXPR: 4872 case REINTERPRET_CAST_EXPR: 4873 case STATIC_CAST_EXPR: 4874 case CONST_CAST_EXPR: 4875 case DYNAMIC_CAST_EXPR: 4876 case IMPLICIT_CONV_EXPR: 4877 if (TREE_TYPE (*tp)) 4878 WALK_SUBTREE (TREE_TYPE (*tp)); 4879 4880 { 4881 int i; 4882 for (i = 0; i < TREE_CODE_LENGTH (TREE_CODE (*tp)); ++i) 4883 WALK_SUBTREE (TREE_OPERAND (*tp, i)); 4884 } 4885 *walk_subtrees_p = 0; 4886 break; 4887 4888 case TRAIT_EXPR: 4889 WALK_SUBTREE (TRAIT_EXPR_TYPE1 (*tp)); 4890 WALK_SUBTREE (TRAIT_EXPR_TYPE2 (*tp)); 4891 *walk_subtrees_p = 0; 4892 break; 4893 4894 case DECLTYPE_TYPE: 4895 ++cp_unevaluated_operand; 4896 /* We can't use WALK_SUBTREE here because of the goto. */ 4897 result = cp_walk_tree (&DECLTYPE_TYPE_EXPR (*tp), func, data, pset); 4898 --cp_unevaluated_operand; 4899 *walk_subtrees_p = 0; 4900 break; 4901 4902 case ALIGNOF_EXPR: 4903 case SIZEOF_EXPR: 4904 case NOEXCEPT_EXPR: 4905 ++cp_unevaluated_operand; 4906 result = cp_walk_tree (&TREE_OPERAND (*tp, 0), func, data, pset); 4907 --cp_unevaluated_operand; 4908 *walk_subtrees_p = 0; 4909 break; 4910 4911 case REQUIRES_EXPR: 4912 // Only recurse through the nested expression. Do not 4913 // walk the parameter list. Doing so causes false 4914 // positives in the pack expansion checker since the 4915 // requires parameters are introduced as pack expansions. 4916 WALK_SUBTREE (TREE_OPERAND (*tp, 1)); 4917 *walk_subtrees_p = 0; 4918 break; 4919 4920 case DECL_EXPR: 4921 /* User variables should be mentioned in BIND_EXPR_VARS 4922 and their initializers and sizes walked when walking 4923 the containing BIND_EXPR. Compiler temporaries are 4924 handled here. And also normal variables in templates, 4925 since do_poplevel doesn't build a BIND_EXPR then. */ 4926 if (VAR_P (TREE_OPERAND (*tp, 0)) 4927 && (processing_template_decl 4928 || (DECL_ARTIFICIAL (TREE_OPERAND (*tp, 0)) 4929 && !TREE_STATIC (TREE_OPERAND (*tp, 0))))) 4930 { 4931 tree decl = TREE_OPERAND (*tp, 0); 4932 WALK_SUBTREE (DECL_INITIAL (decl)); 4933 WALK_SUBTREE (DECL_SIZE (decl)); 4934 WALK_SUBTREE (DECL_SIZE_UNIT (decl)); 4935 } 4936 break; 4937 4938 case LAMBDA_EXPR: 4939 /* Don't walk into the body of the lambda, but the capture initializers 4940 are part of the enclosing context. */ 4941 for (tree cap = LAMBDA_EXPR_CAPTURE_LIST (*tp); cap; 4942 cap = TREE_CHAIN (cap)) 4943 WALK_SUBTREE (TREE_VALUE (cap)); 4944 break; 4945 4946 default: 4947 return NULL_TREE; 4948 } 4949 4950 /* We didn't find what we were looking for. */ 4951 out: 4952 return result; 4953 4954 #undef WALK_SUBTREE 4955 } 4956 4957 /* Like save_expr, but for C++. */ 4958 4959 tree 4960 cp_save_expr (tree expr) 4961 { 4962 /* There is no reason to create a SAVE_EXPR within a template; if 4963 needed, we can create the SAVE_EXPR when instantiating the 4964 template. Furthermore, the middle-end cannot handle C++-specific 4965 tree codes. */ 4966 if (processing_template_decl) 4967 return expr; 4968 4969 /* TARGET_EXPRs are only expanded once. */ 4970 if (TREE_CODE (expr) == TARGET_EXPR) 4971 return expr; 4972 4973 return save_expr (expr); 4974 } 4975 4976 /* Initialize tree.c. */ 4977 4978 void 4979 init_tree (void) 4980 { 4981 list_hash_table = hash_table<list_hasher>::create_ggc (61); 4982 register_scoped_attributes (std_attribute_table, NULL); 4983 } 4984 4985 /* Returns the kind of special function that DECL (a FUNCTION_DECL) 4986 is. Note that sfk_none is zero, so this function can be used as a 4987 predicate to test whether or not DECL is a special function. */ 4988 4989 special_function_kind 4990 special_function_p (const_tree decl) 4991 { 4992 /* Rather than doing all this stuff with magic names, we should 4993 probably have a field of type `special_function_kind' in 4994 DECL_LANG_SPECIFIC. */ 4995 if (DECL_INHERITED_CTOR (decl)) 4996 return sfk_inheriting_constructor; 4997 if (DECL_COPY_CONSTRUCTOR_P (decl)) 4998 return sfk_copy_constructor; 4999 if (DECL_MOVE_CONSTRUCTOR_P (decl)) 5000 return sfk_move_constructor; 5001 if (DECL_CONSTRUCTOR_P (decl)) 5002 return sfk_constructor; 5003 if (DECL_ASSIGNMENT_OPERATOR_P (decl) 5004 && DECL_OVERLOADED_OPERATOR_IS (decl, NOP_EXPR)) 5005 { 5006 if (copy_fn_p (decl)) 5007 return sfk_copy_assignment; 5008 if (move_fn_p (decl)) 5009 return sfk_move_assignment; 5010 } 5011 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (decl)) 5012 return sfk_destructor; 5013 if (DECL_COMPLETE_DESTRUCTOR_P (decl)) 5014 return sfk_complete_destructor; 5015 if (DECL_BASE_DESTRUCTOR_P (decl)) 5016 return sfk_base_destructor; 5017 if (DECL_DELETING_DESTRUCTOR_P (decl)) 5018 return sfk_deleting_destructor; 5019 if (DECL_CONV_FN_P (decl)) 5020 return sfk_conversion; 5021 if (deduction_guide_p (decl)) 5022 return sfk_deduction_guide; 5023 5024 return sfk_none; 5025 } 5026 5027 /* Returns nonzero if TYPE is a character type, including wchar_t. */ 5028 5029 int 5030 char_type_p (tree type) 5031 { 5032 return (same_type_p (type, char_type_node) 5033 || same_type_p (type, unsigned_char_type_node) 5034 || same_type_p (type, signed_char_type_node) 5035 || same_type_p (type, char8_type_node) 5036 || same_type_p (type, char16_type_node) 5037 || same_type_p (type, char32_type_node) 5038 || same_type_p (type, wchar_type_node)); 5039 } 5040 5041 /* Returns the kind of linkage associated with the indicated DECL. Th 5042 value returned is as specified by the language standard; it is 5043 independent of implementation details regarding template 5044 instantiation, etc. For example, it is possible that a declaration 5045 to which this function assigns external linkage would not show up 5046 as a global symbol when you run `nm' on the resulting object file. */ 5047 5048 linkage_kind 5049 decl_linkage (tree decl) 5050 { 5051 /* This function doesn't attempt to calculate the linkage from first 5052 principles as given in [basic.link]. Instead, it makes use of 5053 the fact that we have already set TREE_PUBLIC appropriately, and 5054 then handles a few special cases. Ideally, we would calculate 5055 linkage first, and then transform that into a concrete 5056 implementation. */ 5057 5058 /* Things that don't have names have no linkage. */ 5059 if (!DECL_NAME (decl)) 5060 return lk_none; 5061 5062 /* Fields have no linkage. */ 5063 if (TREE_CODE (decl) == FIELD_DECL) 5064 return lk_none; 5065 5066 /* Things that are TREE_PUBLIC have external linkage. */ 5067 if (TREE_PUBLIC (decl)) 5068 return lk_external; 5069 5070 /* maybe_thunk_body clears TREE_PUBLIC on the maybe-in-charge 'tor variants, 5071 check one of the "clones" for the real linkage. */ 5072 if (DECL_MAYBE_IN_CHARGE_CDTOR_P (decl) 5073 && DECL_CHAIN (decl) 5074 && DECL_CLONED_FUNCTION_P (DECL_CHAIN (decl))) 5075 return decl_linkage (DECL_CHAIN (decl)); 5076 5077 if (TREE_CODE (decl) == NAMESPACE_DECL) 5078 return lk_external; 5079 5080 /* Linkage of a CONST_DECL depends on the linkage of the enumeration 5081 type. */ 5082 if (TREE_CODE (decl) == CONST_DECL) 5083 return decl_linkage (TYPE_NAME (DECL_CONTEXT (decl))); 5084 5085 /* Things in local scope do not have linkage, if they don't have 5086 TREE_PUBLIC set. */ 5087 if (decl_function_context (decl)) 5088 return lk_none; 5089 5090 /* Members of the anonymous namespace also have TREE_PUBLIC unset, but 5091 are considered to have external linkage for language purposes, as do 5092 template instantiations on targets without weak symbols. DECLs really 5093 meant to have internal linkage have DECL_THIS_STATIC set. */ 5094 if (TREE_CODE (decl) == TYPE_DECL) 5095 return lk_external; 5096 if (VAR_OR_FUNCTION_DECL_P (decl)) 5097 { 5098 if (!DECL_THIS_STATIC (decl)) 5099 return lk_external; 5100 5101 /* Static data members and static member functions from classes 5102 in anonymous namespace also don't have TREE_PUBLIC set. */ 5103 if (DECL_CLASS_CONTEXT (decl)) 5104 return lk_external; 5105 } 5106 5107 /* Everything else has internal linkage. */ 5108 return lk_internal; 5109 } 5110 5111 /* Returns the storage duration of the object or reference associated with 5112 the indicated DECL, which should be a VAR_DECL or PARM_DECL. */ 5113 5114 duration_kind 5115 decl_storage_duration (tree decl) 5116 { 5117 if (TREE_CODE (decl) == PARM_DECL) 5118 return dk_auto; 5119 if (TREE_CODE (decl) == FUNCTION_DECL) 5120 return dk_static; 5121 gcc_assert (VAR_P (decl)); 5122 if (!TREE_STATIC (decl) 5123 && !DECL_EXTERNAL (decl)) 5124 return dk_auto; 5125 if (CP_DECL_THREAD_LOCAL_P (decl)) 5126 return dk_thread; 5127 return dk_static; 5128 } 5129 5130 /* EXP is an expression that we want to pre-evaluate. Returns (in 5131 *INITP) an expression that will perform the pre-evaluation. The 5132 value returned by this function is a side-effect free expression 5133 equivalent to the pre-evaluated expression. Callers must ensure 5134 that *INITP is evaluated before EXP. */ 5135 5136 tree 5137 stabilize_expr (tree exp, tree* initp) 5138 { 5139 tree init_expr; 5140 5141 if (!TREE_SIDE_EFFECTS (exp)) 5142 init_expr = NULL_TREE; 5143 else if (VOID_TYPE_P (TREE_TYPE (exp))) 5144 { 5145 init_expr = exp; 5146 exp = void_node; 5147 } 5148 /* There are no expressions with REFERENCE_TYPE, but there can be call 5149 arguments with such a type; just treat it as a pointer. */ 5150 else if (TYPE_REF_P (TREE_TYPE (exp)) 5151 || SCALAR_TYPE_P (TREE_TYPE (exp)) 5152 || !glvalue_p (exp)) 5153 { 5154 init_expr = get_target_expr (exp); 5155 exp = TARGET_EXPR_SLOT (init_expr); 5156 if (CLASS_TYPE_P (TREE_TYPE (exp))) 5157 exp = move (exp); 5158 else 5159 exp = rvalue (exp); 5160 } 5161 else 5162 { 5163 bool xval = !lvalue_p (exp); 5164 exp = cp_build_addr_expr (exp, tf_warning_or_error); 5165 init_expr = get_target_expr (exp); 5166 exp = TARGET_EXPR_SLOT (init_expr); 5167 exp = cp_build_fold_indirect_ref (exp); 5168 if (xval) 5169 exp = move (exp); 5170 } 5171 *initp = init_expr; 5172 5173 gcc_assert (!TREE_SIDE_EFFECTS (exp)); 5174 return exp; 5175 } 5176 5177 /* Add NEW_EXPR, an expression whose value we don't care about, after the 5178 similar expression ORIG. */ 5179 5180 tree 5181 add_stmt_to_compound (tree orig, tree new_expr) 5182 { 5183 if (!new_expr || !TREE_SIDE_EFFECTS (new_expr)) 5184 return orig; 5185 if (!orig || !TREE_SIDE_EFFECTS (orig)) 5186 return new_expr; 5187 return build2 (COMPOUND_EXPR, void_type_node, orig, new_expr); 5188 } 5189 5190 /* Like stabilize_expr, but for a call whose arguments we want to 5191 pre-evaluate. CALL is modified in place to use the pre-evaluated 5192 arguments, while, upon return, *INITP contains an expression to 5193 compute the arguments. */ 5194 5195 void 5196 stabilize_call (tree call, tree *initp) 5197 { 5198 tree inits = NULL_TREE; 5199 int i; 5200 int nargs = call_expr_nargs (call); 5201 5202 if (call == error_mark_node || processing_template_decl) 5203 { 5204 *initp = NULL_TREE; 5205 return; 5206 } 5207 5208 gcc_assert (TREE_CODE (call) == CALL_EXPR); 5209 5210 for (i = 0; i < nargs; i++) 5211 { 5212 tree init; 5213 CALL_EXPR_ARG (call, i) = 5214 stabilize_expr (CALL_EXPR_ARG (call, i), &init); 5215 inits = add_stmt_to_compound (inits, init); 5216 } 5217 5218 *initp = inits; 5219 } 5220 5221 /* Like stabilize_expr, but for an AGGR_INIT_EXPR whose arguments we want 5222 to pre-evaluate. CALL is modified in place to use the pre-evaluated 5223 arguments, while, upon return, *INITP contains an expression to 5224 compute the arguments. */ 5225 5226 static void 5227 stabilize_aggr_init (tree call, tree *initp) 5228 { 5229 tree inits = NULL_TREE; 5230 int i; 5231 int nargs = aggr_init_expr_nargs (call); 5232 5233 if (call == error_mark_node) 5234 return; 5235 5236 gcc_assert (TREE_CODE (call) == AGGR_INIT_EXPR); 5237 5238 for (i = 0; i < nargs; i++) 5239 { 5240 tree init; 5241 AGGR_INIT_EXPR_ARG (call, i) = 5242 stabilize_expr (AGGR_INIT_EXPR_ARG (call, i), &init); 5243 inits = add_stmt_to_compound (inits, init); 5244 } 5245 5246 *initp = inits; 5247 } 5248 5249 /* Like stabilize_expr, but for an initialization. 5250 5251 If the initialization is for an object of class type, this function 5252 takes care not to introduce additional temporaries. 5253 5254 Returns TRUE iff the expression was successfully pre-evaluated, 5255 i.e., if INIT is now side-effect free, except for, possibly, a 5256 single call to a constructor. */ 5257 5258 bool 5259 stabilize_init (tree init, tree *initp) 5260 { 5261 tree t = init; 5262 5263 *initp = NULL_TREE; 5264 5265 if (t == error_mark_node || processing_template_decl) 5266 return true; 5267 5268 if (TREE_CODE (t) == INIT_EXPR) 5269 t = TREE_OPERAND (t, 1); 5270 if (TREE_CODE (t) == TARGET_EXPR) 5271 t = TARGET_EXPR_INITIAL (t); 5272 5273 /* If the RHS can be stabilized without breaking copy elision, stabilize 5274 it. We specifically don't stabilize class prvalues here because that 5275 would mean an extra copy, but they might be stabilized below. */ 5276 if (TREE_CODE (init) == INIT_EXPR 5277 && TREE_CODE (t) != CONSTRUCTOR 5278 && TREE_CODE (t) != AGGR_INIT_EXPR 5279 && (SCALAR_TYPE_P (TREE_TYPE (t)) 5280 || glvalue_p (t))) 5281 { 5282 TREE_OPERAND (init, 1) = stabilize_expr (t, initp); 5283 return true; 5284 } 5285 5286 if (TREE_CODE (t) == COMPOUND_EXPR 5287 && TREE_CODE (init) == INIT_EXPR) 5288 { 5289 tree last = expr_last (t); 5290 /* Handle stabilizing the EMPTY_CLASS_EXPR pattern. */ 5291 if (!TREE_SIDE_EFFECTS (last)) 5292 { 5293 *initp = t; 5294 TREE_OPERAND (init, 1) = last; 5295 return true; 5296 } 5297 } 5298 5299 if (TREE_CODE (t) == CONSTRUCTOR) 5300 { 5301 /* Aggregate initialization: stabilize each of the field 5302 initializers. */ 5303 unsigned i; 5304 constructor_elt *ce; 5305 bool good = true; 5306 vec<constructor_elt, va_gc> *v = CONSTRUCTOR_ELTS (t); 5307 for (i = 0; vec_safe_iterate (v, i, &ce); ++i) 5308 { 5309 tree type = TREE_TYPE (ce->value); 5310 tree subinit; 5311 if (TYPE_REF_P (type) 5312 || SCALAR_TYPE_P (type)) 5313 ce->value = stabilize_expr (ce->value, &subinit); 5314 else if (!stabilize_init (ce->value, &subinit)) 5315 good = false; 5316 *initp = add_stmt_to_compound (*initp, subinit); 5317 } 5318 return good; 5319 } 5320 5321 if (TREE_CODE (t) == CALL_EXPR) 5322 { 5323 stabilize_call (t, initp); 5324 return true; 5325 } 5326 5327 if (TREE_CODE (t) == AGGR_INIT_EXPR) 5328 { 5329 stabilize_aggr_init (t, initp); 5330 return true; 5331 } 5332 5333 /* The initialization is being performed via a bitwise copy -- and 5334 the item copied may have side effects. */ 5335 return !TREE_SIDE_EFFECTS (init); 5336 } 5337 5338 /* Returns true if a cast to TYPE may appear in an integral constant 5339 expression. */ 5340 5341 bool 5342 cast_valid_in_integral_constant_expression_p (tree type) 5343 { 5344 return (INTEGRAL_OR_ENUMERATION_TYPE_P (type) 5345 || cxx_dialect >= cxx11 5346 || dependent_type_p (type) 5347 || type == error_mark_node); 5348 } 5349 5350 /* Return true if we need to fix linkage information of DECL. */ 5351 5352 static bool 5353 cp_fix_function_decl_p (tree decl) 5354 { 5355 /* Skip if DECL is not externally visible. */ 5356 if (!TREE_PUBLIC (decl)) 5357 return false; 5358 5359 /* We need to fix DECL if it a appears to be exported but with no 5360 function body. Thunks do not have CFGs and we may need to 5361 handle them specially later. */ 5362 if (!gimple_has_body_p (decl) 5363 && !DECL_THUNK_P (decl) 5364 && !DECL_EXTERNAL (decl)) 5365 { 5366 struct cgraph_node *node = cgraph_node::get (decl); 5367 5368 /* Don't fix same_body aliases. Although they don't have their own 5369 CFG, they share it with what they alias to. */ 5370 if (!node || !node->alias 5371 || !vec_safe_length (node->ref_list.references)) 5372 return true; 5373 } 5374 5375 return false; 5376 } 5377 5378 /* Clean the C++ specific parts of the tree T. */ 5379 5380 void 5381 cp_free_lang_data (tree t) 5382 { 5383 if (TREE_CODE (t) == METHOD_TYPE 5384 || TREE_CODE (t) == FUNCTION_TYPE) 5385 { 5386 /* Default args are not interesting anymore. */ 5387 tree argtypes = TYPE_ARG_TYPES (t); 5388 while (argtypes) 5389 { 5390 TREE_PURPOSE (argtypes) = 0; 5391 argtypes = TREE_CHAIN (argtypes); 5392 } 5393 } 5394 else if (TREE_CODE (t) == FUNCTION_DECL 5395 && cp_fix_function_decl_p (t)) 5396 { 5397 /* If T is used in this translation unit at all, the definition 5398 must exist somewhere else since we have decided to not emit it 5399 in this TU. So make it an external reference. */ 5400 DECL_EXTERNAL (t) = 1; 5401 TREE_STATIC (t) = 0; 5402 } 5403 if (TREE_CODE (t) == FUNCTION_DECL) 5404 discard_operator_bindings (t); 5405 if (TREE_CODE (t) == NAMESPACE_DECL) 5406 /* We do not need the leftover chaining of namespaces from the 5407 binding level. */ 5408 DECL_CHAIN (t) = NULL_TREE; 5409 } 5410 5411 /* Stub for c-common. Please keep in sync with c-decl.c. 5412 FIXME: If address space support is target specific, then this 5413 should be a C target hook. But currently this is not possible, 5414 because this function is called via REGISTER_TARGET_PRAGMAS. */ 5415 void 5416 c_register_addr_space (const char * /*word*/, addr_space_t /*as*/) 5417 { 5418 } 5419 5420 /* Return the number of operands in T that we care about for things like 5421 mangling. */ 5422 5423 int 5424 cp_tree_operand_length (const_tree t) 5425 { 5426 enum tree_code code = TREE_CODE (t); 5427 5428 if (TREE_CODE_CLASS (code) == tcc_vl_exp) 5429 return VL_EXP_OPERAND_LENGTH (t); 5430 5431 return cp_tree_code_length (code); 5432 } 5433 5434 /* Like cp_tree_operand_length, but takes a tree_code CODE. */ 5435 5436 int 5437 cp_tree_code_length (enum tree_code code) 5438 { 5439 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp); 5440 5441 switch (code) 5442 { 5443 case PREINCREMENT_EXPR: 5444 case PREDECREMENT_EXPR: 5445 case POSTINCREMENT_EXPR: 5446 case POSTDECREMENT_EXPR: 5447 return 1; 5448 5449 case ARRAY_REF: 5450 return 2; 5451 5452 case EXPR_PACK_EXPANSION: 5453 return 1; 5454 5455 default: 5456 return TREE_CODE_LENGTH (code); 5457 } 5458 } 5459 5460 /* Like EXPR_LOCATION, but also handle some tcc_exceptional that have 5461 locations. */ 5462 5463 location_t 5464 cp_expr_location (const_tree t_) 5465 { 5466 tree t = CONST_CAST_TREE (t_); 5467 if (t == NULL_TREE) 5468 return UNKNOWN_LOCATION; 5469 switch (TREE_CODE (t)) 5470 { 5471 case LAMBDA_EXPR: 5472 return LAMBDA_EXPR_LOCATION (t); 5473 case STATIC_ASSERT: 5474 return STATIC_ASSERT_SOURCE_LOCATION (t); 5475 default: 5476 return EXPR_LOCATION (t); 5477 } 5478 } 5479 5480 /* Implement -Wzero_as_null_pointer_constant. Return true if the 5481 conditions for the warning hold, false otherwise. */ 5482 bool 5483 maybe_warn_zero_as_null_pointer_constant (tree expr, location_t loc) 5484 { 5485 if (c_inhibit_evaluation_warnings == 0 5486 && !null_node_p (expr) && !NULLPTR_TYPE_P (TREE_TYPE (expr))) 5487 { 5488 warning_at (loc, OPT_Wzero_as_null_pointer_constant, 5489 "zero as null pointer constant"); 5490 return true; 5491 } 5492 return false; 5493 } 5494 5495 /* Given an initializer INIT for a TYPE, return true if INIT is zero 5496 so that it can be replaced by value initialization. This function 5497 distinguishes betwen empty strings as initializers for arrays and 5498 for pointers (which make it return false). */ 5499 5500 bool 5501 type_initializer_zero_p (tree type, tree init) 5502 { 5503 if (type == error_mark_node || init == error_mark_node) 5504 return false; 5505 5506 STRIP_NOPS (init); 5507 5508 if (POINTER_TYPE_P (type)) 5509 return TREE_CODE (init) != STRING_CST && initializer_zerop (init); 5510 5511 if (TREE_CODE (init) != CONSTRUCTOR) 5512 { 5513 /* A class can only be initialized by a non-class type if it has 5514 a ctor that converts from that type. Such classes are excluded 5515 since their semantics are unknown. */ 5516 if (RECORD_OR_UNION_TYPE_P (type) 5517 && !RECORD_OR_UNION_TYPE_P (TREE_TYPE (init))) 5518 return false; 5519 return initializer_zerop (init); 5520 } 5521 5522 if (TREE_CODE (type) == ARRAY_TYPE) 5523 { 5524 tree elt_type = TREE_TYPE (type); 5525 elt_type = TYPE_MAIN_VARIANT (elt_type); 5526 if (elt_type == char_type_node) 5527 return initializer_zerop (init); 5528 5529 tree elt_init; 5530 unsigned HOST_WIDE_INT i; 5531 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), i, elt_init) 5532 if (!type_initializer_zero_p (elt_type, elt_init)) 5533 return false; 5534 return true; 5535 } 5536 5537 if (TREE_CODE (type) != RECORD_TYPE) 5538 return initializer_zerop (init); 5539 5540 if (TYPE_NON_AGGREGATE_CLASS (type)) 5541 return false; 5542 5543 tree fld = TYPE_FIELDS (type); 5544 5545 tree fld_init; 5546 unsigned HOST_WIDE_INT i; 5547 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), i, fld_init) 5548 { 5549 fld = next_initializable_field (fld); 5550 if (!fld) 5551 return true; 5552 5553 tree fldtype = TREE_TYPE (fld); 5554 if (!type_initializer_zero_p (fldtype, fld_init)) 5555 return false; 5556 5557 fld = DECL_CHAIN (fld); 5558 if (!fld) 5559 break; 5560 } 5561 5562 return true; 5563 } 5564 5565 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007) 5566 /* Complain that some language-specific thing hanging off a tree 5567 node has been accessed improperly. */ 5568 5569 void 5570 lang_check_failed (const char* file, int line, const char* function) 5571 { 5572 internal_error ("lang_* check: failed in %s, at %s:%d", 5573 function, trim_filename (file), line); 5574 } 5575 #endif /* ENABLE_TREE_CHECKING */ 5576 5577 #if CHECKING_P 5578 5579 namespace selftest { 5580 5581 /* Verify that lvalue_kind () works, for various expressions, 5582 and that location wrappers don't affect the results. */ 5583 5584 static void 5585 test_lvalue_kind () 5586 { 5587 location_t loc = BUILTINS_LOCATION; 5588 5589 /* Verify constants and parameters, without and with 5590 location wrappers. */ 5591 tree int_cst = build_int_cst (integer_type_node, 42); 5592 ASSERT_EQ (clk_none, lvalue_kind (int_cst)); 5593 5594 tree wrapped_int_cst = maybe_wrap_with_location (int_cst, loc); 5595 ASSERT_TRUE (location_wrapper_p (wrapped_int_cst)); 5596 ASSERT_EQ (clk_none, lvalue_kind (wrapped_int_cst)); 5597 5598 tree string_lit = build_string (4, "foo"); 5599 TREE_TYPE (string_lit) = char_array_type_node; 5600 string_lit = fix_string_type (string_lit); 5601 ASSERT_EQ (clk_ordinary, lvalue_kind (string_lit)); 5602 5603 tree wrapped_string_lit = maybe_wrap_with_location (string_lit, loc); 5604 ASSERT_TRUE (location_wrapper_p (wrapped_string_lit)); 5605 ASSERT_EQ (clk_ordinary, lvalue_kind (wrapped_string_lit)); 5606 5607 tree parm = build_decl (UNKNOWN_LOCATION, PARM_DECL, 5608 get_identifier ("some_parm"), 5609 integer_type_node); 5610 ASSERT_EQ (clk_ordinary, lvalue_kind (parm)); 5611 5612 tree wrapped_parm = maybe_wrap_with_location (parm, loc); 5613 ASSERT_TRUE (location_wrapper_p (wrapped_parm)); 5614 ASSERT_EQ (clk_ordinary, lvalue_kind (wrapped_parm)); 5615 5616 /* Verify that lvalue_kind of std::move on a parm isn't 5617 affected by location wrappers. */ 5618 tree rvalue_ref_of_parm = move (parm); 5619 ASSERT_EQ (clk_rvalueref, lvalue_kind (rvalue_ref_of_parm)); 5620 tree rvalue_ref_of_wrapped_parm = move (wrapped_parm); 5621 ASSERT_EQ (clk_rvalueref, lvalue_kind (rvalue_ref_of_wrapped_parm)); 5622 5623 /* Verify lvalue_p. */ 5624 ASSERT_FALSE (lvalue_p (int_cst)); 5625 ASSERT_FALSE (lvalue_p (wrapped_int_cst)); 5626 ASSERT_TRUE (lvalue_p (parm)); 5627 ASSERT_TRUE (lvalue_p (wrapped_parm)); 5628 ASSERT_FALSE (lvalue_p (rvalue_ref_of_parm)); 5629 ASSERT_FALSE (lvalue_p (rvalue_ref_of_wrapped_parm)); 5630 } 5631 5632 /* Run all of the selftests within this file. */ 5633 5634 void 5635 cp_tree_c_tests () 5636 { 5637 test_lvalue_kind (); 5638 } 5639 5640 } // namespace selftest 5641 5642 #endif /* #if CHECKING_P */ 5643 5644 5645 #include "gt-cp-tree.h" 5646