xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/cp/init.c (revision d90047b5d07facf36e6c01dcc0bded8997ce9cc2)
1 /* Handle initialization things in C++.
2    Copyright (C) 1987-2017 Free Software Foundation, Inc.
3    Contributed by Michael Tiemann (tiemann@cygnus.com)
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 /* High-level class interface.  */
22 
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "target.h"
27 #include "cp-tree.h"
28 #include "stringpool.h"
29 #include "varasm.h"
30 #include "gimplify.h"
31 #include "c-family/c-ubsan.h"
32 #include "intl.h"
33 
34 static bool begin_init_stmts (tree *, tree *);
35 static tree finish_init_stmts (bool, tree, tree);
36 static void construct_virtual_base (tree, tree);
37 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
38 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
39 static void perform_member_init (tree, tree);
40 static int member_init_ok_or_else (tree, tree, tree);
41 static void expand_virtual_init (tree, tree);
42 static tree sort_mem_initializers (tree, tree);
43 static tree initializing_context (tree);
44 static void expand_cleanup_for_base (tree, tree);
45 static tree dfs_initialize_vtbl_ptrs (tree, void *);
46 static tree build_field_list (tree, tree, int *);
47 static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool);
48 
49 /* We are about to generate some complex initialization code.
50    Conceptually, it is all a single expression.  However, we may want
51    to include conditionals, loops, and other such statement-level
52    constructs.  Therefore, we build the initialization code inside a
53    statement-expression.  This function starts such an expression.
54    STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
55    pass them back to finish_init_stmts when the expression is
56    complete.  */
57 
58 static bool
59 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
60 {
61   bool is_global = !building_stmt_list_p ();
62 
63   *stmt_expr_p = begin_stmt_expr ();
64   *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
65 
66   return is_global;
67 }
68 
69 /* Finish out the statement-expression begun by the previous call to
70    begin_init_stmts.  Returns the statement-expression itself.  */
71 
72 static tree
73 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
74 {
75   finish_compound_stmt (compound_stmt);
76 
77   stmt_expr = finish_stmt_expr (stmt_expr, true);
78 
79   gcc_assert (!building_stmt_list_p () == is_global);
80 
81   return stmt_expr;
82 }
83 
84 /* Constructors */
85 
86 /* Called from initialize_vtbl_ptrs via dfs_walk.  BINFO is the base
87    which we want to initialize the vtable pointer for, DATA is
88    TREE_LIST whose TREE_VALUE is the this ptr expression.  */
89 
90 static tree
91 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
92 {
93   if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
94     return dfs_skip_bases;
95 
96   if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
97     {
98       tree base_ptr = TREE_VALUE ((tree) data);
99 
100       base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1,
101 				  tf_warning_or_error);
102 
103       expand_virtual_init (binfo, base_ptr);
104     }
105 
106   return NULL_TREE;
107 }
108 
109 /* Initialize all the vtable pointers in the object pointed to by
110    ADDR.  */
111 
112 void
113 initialize_vtbl_ptrs (tree addr)
114 {
115   tree list;
116   tree type;
117 
118   type = TREE_TYPE (TREE_TYPE (addr));
119   list = build_tree_list (type, addr);
120 
121   /* Walk through the hierarchy, initializing the vptr in each base
122      class.  We do these in pre-order because we can't find the virtual
123      bases for a class until we've initialized the vtbl for that
124      class.  */
125   dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
126 }
127 
128 /* Return an expression for the zero-initialization of an object with
129    type T.  This expression will either be a constant (in the case
130    that T is a scalar), or a CONSTRUCTOR (in the case that T is an
131    aggregate), or NULL (in the case that T does not require
132    initialization).  In either case, the value can be used as
133    DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
134    initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
135    is the number of elements in the array.  If STATIC_STORAGE_P is
136    TRUE, initializers are only generated for entities for which
137    zero-initialization does not simply mean filling the storage with
138    zero bytes.  FIELD_SIZE, if non-NULL, is the bit size of the field,
139    subfields with bit positions at or above that bit size shouldn't
140    be added.  Note that this only works when the result is assigned
141    to a base COMPONENT_REF; if we only have a pointer to the base subobject,
142    expand_assignment will end up clearing the full size of TYPE.  */
143 
144 static tree
145 build_zero_init_1 (tree type, tree nelts, bool static_storage_p,
146 		   tree field_size)
147 {
148   tree init = NULL_TREE;
149 
150   /* [dcl.init]
151 
152      To zero-initialize an object of type T means:
153 
154      -- if T is a scalar type, the storage is set to the value of zero
155 	converted to T.
156 
157      -- if T is a non-union class type, the storage for each nonstatic
158 	data member and each base-class subobject is zero-initialized.
159 
160      -- if T is a union type, the storage for its first data member is
161 	zero-initialized.
162 
163      -- if T is an array type, the storage for each element is
164 	zero-initialized.
165 
166      -- if T is a reference type, no initialization is performed.  */
167 
168   gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
169 
170   if (type == error_mark_node)
171     ;
172   else if (static_storage_p && zero_init_p (type))
173     /* In order to save space, we do not explicitly build initializers
174        for items that do not need them.  GCC's semantics are that
175        items with static storage duration that are not otherwise
176        initialized are initialized to zero.  */
177     ;
178   else if (TYPE_PTR_OR_PTRMEM_P (type))
179     init = fold (convert (type, nullptr_node));
180   else if (SCALAR_TYPE_P (type))
181     init = fold (convert (type, integer_zero_node));
182   else if (RECORD_OR_UNION_CODE_P (TREE_CODE (type)))
183     {
184       tree field;
185       vec<constructor_elt, va_gc> *v = NULL;
186 
187       /* Iterate over the fields, building initializations.  */
188       for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
189 	{
190 	  if (TREE_CODE (field) != FIELD_DECL)
191 	    continue;
192 
193 	  if (TREE_TYPE (field) == error_mark_node)
194 	    continue;
195 
196 	  /* Don't add virtual bases for base classes if they are beyond
197 	     the size of the current field, that means it is present
198 	     somewhere else in the object.  */
199 	  if (field_size)
200 	    {
201 	      tree bitpos = bit_position (field);
202 	      if (TREE_CODE (bitpos) == INTEGER_CST
203 		  && !tree_int_cst_lt (bitpos, field_size))
204 		continue;
205 	    }
206 
207 	  /* Note that for class types there will be FIELD_DECLs
208 	     corresponding to base classes as well.  Thus, iterating
209 	     over TYPE_FIELDs will result in correct initialization of
210 	     all of the subobjects.  */
211 	  if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
212 	    {
213 	      tree new_field_size
214 		= (DECL_FIELD_IS_BASE (field)
215 		   && DECL_SIZE (field)
216 		   && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
217 		  ? DECL_SIZE (field) : NULL_TREE;
218 	      tree value = build_zero_init_1 (TREE_TYPE (field),
219 					      /*nelts=*/NULL_TREE,
220 					      static_storage_p,
221 					      new_field_size);
222 	      if (value)
223 		CONSTRUCTOR_APPEND_ELT(v, field, value);
224 	    }
225 
226 	  /* For unions, only the first field is initialized.  */
227 	  if (TREE_CODE (type) == UNION_TYPE)
228 	    break;
229 	}
230 
231       /* Build a constructor to contain the initializations.  */
232       init = build_constructor (type, v);
233     }
234   else if (TREE_CODE (type) == ARRAY_TYPE)
235     {
236       tree max_index;
237       vec<constructor_elt, va_gc> *v = NULL;
238 
239       /* Iterate over the array elements, building initializations.  */
240       if (nelts)
241 	max_index = fold_build2_loc (input_location,
242 				 MINUS_EXPR, TREE_TYPE (nelts),
243 				 nelts, integer_one_node);
244       else
245 	max_index = array_type_nelts (type);
246 
247       /* If we have an error_mark here, we should just return error mark
248 	 as we don't know the size of the array yet.  */
249       if (max_index == error_mark_node)
250 	return error_mark_node;
251       gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
252 
253       /* A zero-sized array, which is accepted as an extension, will
254 	 have an upper bound of -1.  */
255       if (!tree_int_cst_equal (max_index, integer_minus_one_node))
256 	{
257 	  constructor_elt ce;
258 
259 	  /* If this is a one element array, we just use a regular init.  */
260 	  if (tree_int_cst_equal (size_zero_node, max_index))
261 	    ce.index = size_zero_node;
262 	  else
263 	    ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node,
264 				max_index);
265 
266 	  ce.value = build_zero_init_1 (TREE_TYPE (type),
267 					 /*nelts=*/NULL_TREE,
268 					 static_storage_p, NULL_TREE);
269 	  if (ce.value)
270 	    {
271 	      vec_alloc (v, 1);
272 	      v->quick_push (ce);
273 	    }
274 	}
275 
276       /* Build a constructor to contain the initializations.  */
277       init = build_constructor (type, v);
278     }
279   else if (VECTOR_TYPE_P (type))
280     init = build_zero_cst (type);
281   else
282     gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
283 
284   /* In all cases, the initializer is a constant.  */
285   if (init)
286     TREE_CONSTANT (init) = 1;
287 
288   return init;
289 }
290 
291 /* Return an expression for the zero-initialization of an object with
292    type T.  This expression will either be a constant (in the case
293    that T is a scalar), or a CONSTRUCTOR (in the case that T is an
294    aggregate), or NULL (in the case that T does not require
295    initialization).  In either case, the value can be used as
296    DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
297    initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
298    is the number of elements in the array.  If STATIC_STORAGE_P is
299    TRUE, initializers are only generated for entities for which
300    zero-initialization does not simply mean filling the storage with
301    zero bytes.  */
302 
303 tree
304 build_zero_init (tree type, tree nelts, bool static_storage_p)
305 {
306   return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE);
307 }
308 
309 /* Return a suitable initializer for value-initializing an object of type
310    TYPE, as described in [dcl.init].  */
311 
312 tree
313 build_value_init (tree type, tsubst_flags_t complain)
314 {
315   /* [dcl.init]
316 
317      To value-initialize an object of type T means:
318 
319      - if T is a class type (clause 9) with either no default constructor
320        (12.1) or a default constructor that is user-provided or deleted,
321        then the object is default-initialized;
322 
323      - if T is a (possibly cv-qualified) class type without a user-provided
324        or deleted default constructor, then the object is zero-initialized
325        and the semantic constraints for default-initialization are checked,
326        and if T has a non-trivial default constructor, the object is
327        default-initialized;
328 
329      - if T is an array type, then each element is value-initialized;
330 
331      - otherwise, the object is zero-initialized.
332 
333      A program that calls for default-initialization or
334      value-initialization of an entity of reference type is ill-formed.  */
335 
336   /* The AGGR_INIT_EXPR tweaking below breaks in templates.  */
337   gcc_assert (!processing_template_decl
338 	      || (SCALAR_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE));
339 
340   if (CLASS_TYPE_P (type)
341       && type_build_ctor_call (type))
342     {
343       tree ctor =
344 	 build_special_member_call (NULL_TREE, complete_ctor_identifier,
345 				    NULL, type, LOOKUP_NORMAL,
346 				    complain);
347       if (ctor == error_mark_node)
348 	return ctor;
349       tree fn = NULL_TREE;
350       if (TREE_CODE (ctor) == CALL_EXPR)
351 	fn = get_callee_fndecl (ctor);
352       ctor = build_aggr_init_expr (type, ctor);
353       if (fn && user_provided_p (fn))
354 	return ctor;
355       else if (TYPE_HAS_COMPLEX_DFLT (type))
356 	{
357 	  /* This is a class that needs constructing, but doesn't have
358 	     a user-provided constructor.  So we need to zero-initialize
359 	     the object and then call the implicitly defined ctor.
360 	     This will be handled in simplify_aggr_init_expr.  */
361 	  AGGR_INIT_ZERO_FIRST (ctor) = 1;
362 	  return ctor;
363 	}
364     }
365 
366   /* Discard any access checking during subobject initialization;
367      the checks are implied by the call to the ctor which we have
368      verified is OK (cpp0x/defaulted46.C).  */
369   push_deferring_access_checks (dk_deferred);
370   tree r = build_value_init_noctor (type, complain);
371   pop_deferring_access_checks ();
372   return r;
373 }
374 
375 /* Like build_value_init, but don't call the constructor for TYPE.  Used
376    for base initializers.  */
377 
378 tree
379 build_value_init_noctor (tree type, tsubst_flags_t complain)
380 {
381   if (!COMPLETE_TYPE_P (type))
382     {
383       if (complain & tf_error)
384 	error ("value-initialization of incomplete type %qT", type);
385       return error_mark_node;
386     }
387   /* FIXME the class and array cases should just use digest_init once it is
388      SFINAE-enabled.  */
389   if (CLASS_TYPE_P (type))
390     {
391       gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type)
392 		  || errorcount != 0);
393 
394       if (TREE_CODE (type) != UNION_TYPE)
395 	{
396 	  tree field;
397 	  vec<constructor_elt, va_gc> *v = NULL;
398 
399 	  /* Iterate over the fields, building initializations.  */
400 	  for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
401 	    {
402 	      tree ftype, value;
403 
404 	      if (TREE_CODE (field) != FIELD_DECL)
405 		continue;
406 
407 	      ftype = TREE_TYPE (field);
408 
409 	      if (ftype == error_mark_node)
410 		continue;
411 
412 	      /* We could skip vfields and fields of types with
413 		 user-defined constructors, but I think that won't improve
414 		 performance at all; it should be simpler in general just
415 		 to zero out the entire object than try to only zero the
416 		 bits that actually need it.  */
417 
418 	      /* Note that for class types there will be FIELD_DECLs
419 		 corresponding to base classes as well.  Thus, iterating
420 		 over TYPE_FIELDs will result in correct initialization of
421 		 all of the subobjects.  */
422 	      value = build_value_init (ftype, complain);
423 	      value = maybe_constant_init (value);
424 
425 	      if (value == error_mark_node)
426 		return error_mark_node;
427 
428 	      CONSTRUCTOR_APPEND_ELT(v, field, value);
429 
430 	      /* We shouldn't have gotten here for anything that would need
431 		 non-trivial initialization, and gimplify_init_ctor_preeval
432 		 would need to be fixed to allow it.  */
433 	      gcc_assert (TREE_CODE (value) != TARGET_EXPR
434 			  && TREE_CODE (value) != AGGR_INIT_EXPR);
435 	    }
436 
437 	  /* Build a constructor to contain the zero- initializations.  */
438 	  return build_constructor (type, v);
439 	}
440     }
441   else if (TREE_CODE (type) == ARRAY_TYPE)
442     {
443       vec<constructor_elt, va_gc> *v = NULL;
444 
445       /* Iterate over the array elements, building initializations.  */
446       tree max_index = array_type_nelts (type);
447 
448       /* If we have an error_mark here, we should just return error mark
449 	 as we don't know the size of the array yet.  */
450       if (max_index == error_mark_node)
451 	{
452 	  if (complain & tf_error)
453 	    error ("cannot value-initialize array of unknown bound %qT",
454 		   type);
455 	  return error_mark_node;
456 	}
457       gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
458 
459       /* A zero-sized array, which is accepted as an extension, will
460 	 have an upper bound of -1.  */
461       if (!tree_int_cst_equal (max_index, integer_minus_one_node))
462 	{
463 	  constructor_elt ce;
464 
465 	  /* If this is a one element array, we just use a regular init.  */
466 	  if (tree_int_cst_equal (size_zero_node, max_index))
467 	    ce.index = size_zero_node;
468 	  else
469 	    ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, max_index);
470 
471 	  ce.value = build_value_init (TREE_TYPE (type), complain);
472 	  ce.value = maybe_constant_init (ce.value);
473 	  if (ce.value == error_mark_node)
474 	    return error_mark_node;
475 
476 	  vec_alloc (v, 1);
477 	  v->quick_push (ce);
478 
479 	  /* We shouldn't have gotten here for anything that would need
480 	     non-trivial initialization, and gimplify_init_ctor_preeval
481 	     would need to be fixed to allow it.  */
482 	  gcc_assert (TREE_CODE (ce.value) != TARGET_EXPR
483 		      && TREE_CODE (ce.value) != AGGR_INIT_EXPR);
484 	}
485 
486       /* Build a constructor to contain the initializations.  */
487       return build_constructor (type, v);
488     }
489   else if (TREE_CODE (type) == FUNCTION_TYPE)
490     {
491       if (complain & tf_error)
492 	error ("value-initialization of function type %qT", type);
493       return error_mark_node;
494     }
495   else if (TREE_CODE (type) == REFERENCE_TYPE)
496     {
497       if (complain & tf_error)
498 	error ("value-initialization of reference type %qT", type);
499       return error_mark_node;
500     }
501 
502   return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
503 }
504 
505 /* Initialize current class with INIT, a TREE_LIST of
506    arguments for a target constructor. If TREE_LIST is void_type_node,
507    an empty initializer list was given.  */
508 
509 static void
510 perform_target_ctor (tree init)
511 {
512   tree decl = current_class_ref;
513   tree type = current_class_type;
514 
515   finish_expr_stmt (build_aggr_init (decl, init,
516 				     LOOKUP_NORMAL|LOOKUP_DELEGATING_CONS,
517 				     tf_warning_or_error));
518   if (type_build_dtor_call (type))
519     {
520       tree expr = build_delete (type, decl, sfk_complete_destructor,
521 				LOOKUP_NORMAL
522 				|LOOKUP_NONVIRTUAL
523 				|LOOKUP_DESTRUCTOR,
524 				0, tf_warning_or_error);
525       if (expr != error_mark_node
526 	  && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
527 	finish_eh_cleanup (expr);
528     }
529 }
530 
531 /* Return the non-static data initializer for FIELD_DECL MEMBER.  */
532 
533 tree
534 get_nsdmi (tree member, bool in_ctor)
535 {
536   tree init;
537   tree save_ccp = current_class_ptr;
538   tree save_ccr = current_class_ref;
539 
540   if (!in_ctor)
541     {
542       /* Use a PLACEHOLDER_EXPR when we don't have a 'this' parameter to
543 	 refer to; constexpr evaluation knows what to do with it.  */
544       current_class_ref = build0 (PLACEHOLDER_EXPR, DECL_CONTEXT (member));
545       current_class_ptr = build_address (current_class_ref);
546     }
547 
548   if (DECL_LANG_SPECIFIC (member) && DECL_TEMPLATE_INFO (member))
549     {
550       init = DECL_INITIAL (DECL_TI_TEMPLATE (member));
551       if (TREE_CODE (init) == DEFAULT_ARG)
552 	goto unparsed;
553 
554       /* Check recursive instantiation.  */
555       if (DECL_INSTANTIATING_NSDMI_P (member))
556 	{
557 	  error ("recursive instantiation of non-static data member "
558 		 "initializer for %qD", member);
559 	  init = error_mark_node;
560 	}
561       else
562 	{
563 	  DECL_INSTANTIATING_NSDMI_P (member) = 1;
564 
565 	  /* Do deferred instantiation of the NSDMI.  */
566 	  init = (tsubst_copy_and_build
567 		  (init, DECL_TI_ARGS (member),
568 		   tf_warning_or_error, member, /*function_p=*/false,
569 		   /*integral_constant_expression_p=*/false));
570 	  init = digest_nsdmi_init (member, init);
571 
572 	  DECL_INSTANTIATING_NSDMI_P (member) = 0;
573 	}
574     }
575   else
576     {
577       init = DECL_INITIAL (member);
578       if (init && TREE_CODE (init) == DEFAULT_ARG)
579 	{
580 	unparsed:
581 	  error ("constructor required before non-static data member "
582 		 "for %qD has been parsed", member);
583 	  DECL_INITIAL (member) = error_mark_node;
584 	  init = error_mark_node;
585 	}
586       /* Strip redundant TARGET_EXPR so we don't need to remap it, and
587 	 so the aggregate init code below will see a CONSTRUCTOR.  */
588       bool simple_target = (init && SIMPLE_TARGET_EXPR_P (init));
589       if (simple_target)
590 	init = TARGET_EXPR_INITIAL (init);
591       init = break_out_target_exprs (init);
592       if (simple_target && TREE_CODE (init) != CONSTRUCTOR)
593 	/* Now put it back so C++17 copy elision works.  */
594 	init = get_target_expr (init);
595     }
596   current_class_ptr = save_ccp;
597   current_class_ref = save_ccr;
598   return init;
599 }
600 
601 /* Diagnose the flexible array MEMBER if its INITializer is non-null
602    and return true if so.  Otherwise return false.  */
603 
604 bool
605 maybe_reject_flexarray_init (tree member, tree init)
606 {
607   tree type = TREE_TYPE (member);
608 
609   if (!init
610       || TREE_CODE (type) != ARRAY_TYPE
611       || TYPE_DOMAIN (type))
612     return false;
613 
614   /* Point at the flexible array member declaration if it's initialized
615      in-class, and at the ctor if it's initialized in a ctor member
616      initializer list.  */
617   location_t loc;
618   if (DECL_INITIAL (member) == init
619       || !current_function_decl
620       || DECL_DEFAULTED_FN (current_function_decl))
621     loc = DECL_SOURCE_LOCATION (member);
622   else
623     loc = DECL_SOURCE_LOCATION (current_function_decl);
624 
625   error_at (loc, "initializer for flexible array member %q#D", member);
626   return true;
627 }
628 
629 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
630    arguments.  If TREE_LIST is void_type_node, an empty initializer
631    list was given; if NULL_TREE no initializer was given.  */
632 
633 static void
634 perform_member_init (tree member, tree init)
635 {
636   tree decl;
637   tree type = TREE_TYPE (member);
638 
639   /* Use the non-static data member initializer if there was no
640      mem-initializer for this field.  */
641   if (init == NULL_TREE)
642     init = get_nsdmi (member, /*ctor*/true);
643 
644   if (init == error_mark_node)
645     return;
646 
647   /* Effective C++ rule 12 requires that all data members be
648      initialized.  */
649   if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
650     warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
651 		"%qD should be initialized in the member initialization list",
652 		member);
653 
654   /* Get an lvalue for the data member.  */
655   decl = build_class_member_access_expr (current_class_ref, member,
656 					 /*access_path=*/NULL_TREE,
657 					 /*preserve_reference=*/true,
658 					 tf_warning_or_error);
659   if (decl == error_mark_node)
660     return;
661 
662   if (warn_init_self && init && TREE_CODE (init) == TREE_LIST
663       && TREE_CHAIN (init) == NULL_TREE)
664     {
665       tree val = TREE_VALUE (init);
666       /* Handle references.  */
667       if (REFERENCE_REF_P (val))
668 	val = TREE_OPERAND (val, 0);
669       if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member
670 	  && TREE_OPERAND (val, 0) == current_class_ref)
671 	warning_at (DECL_SOURCE_LOCATION (current_function_decl),
672 		    OPT_Winit_self, "%qD is initialized with itself",
673 		    member);
674     }
675 
676   if (init == void_type_node)
677     {
678       /* mem() means value-initialization.  */
679       if (TREE_CODE (type) == ARRAY_TYPE)
680 	{
681 	  init = build_vec_init_expr (type, init, tf_warning_or_error);
682 	  init = build2 (INIT_EXPR, type, decl, init);
683 	  finish_expr_stmt (init);
684 	}
685       else
686 	{
687 	  tree value = build_value_init (type, tf_warning_or_error);
688 	  if (value == error_mark_node)
689 	    return;
690 	  init = build2 (INIT_EXPR, type, decl, value);
691 	  finish_expr_stmt (init);
692 	}
693     }
694   /* Deal with this here, as we will get confused if we try to call the
695      assignment op for an anonymous union.  This can happen in a
696      synthesized copy constructor.  */
697   else if (ANON_AGGR_TYPE_P (type))
698     {
699       if (init)
700 	{
701 	  init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
702 	  finish_expr_stmt (init);
703 	}
704     }
705   else if (init
706 	   && (TREE_CODE (type) == REFERENCE_TYPE
707 	       /* Pre-digested NSDMI.  */
708 	       || (((TREE_CODE (init) == CONSTRUCTOR
709 		     && TREE_TYPE (init) == type)
710 		    /* { } mem-initializer.  */
711 		    || (TREE_CODE (init) == TREE_LIST
712 			&& DIRECT_LIST_INIT_P (TREE_VALUE (init))))
713 		   && (CP_AGGREGATE_TYPE_P (type)
714 		       || is_std_init_list (type)))))
715     {
716       /* With references and list-initialization, we need to deal with
717 	 extending temporary lifetimes.  12.2p5: "A temporary bound to a
718 	 reference member in a constructor’s ctor-initializer (12.6.2)
719 	 persists until the constructor exits."  */
720       unsigned i; tree t;
721       vec<tree, va_gc> *cleanups = make_tree_vector ();
722       if (TREE_CODE (init) == TREE_LIST)
723 	init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
724 						tf_warning_or_error);
725       if (TREE_TYPE (init) != type)
726 	{
727 	  if (BRACE_ENCLOSED_INITIALIZER_P (init)
728 	      && CP_AGGREGATE_TYPE_P (type))
729 	    init = reshape_init (type, init, tf_warning_or_error);
730 	  init = digest_init (type, init, tf_warning_or_error);
731 	}
732       if (init == error_mark_node)
733 	return;
734       /* A FIELD_DECL doesn't really have a suitable lifetime, but
735 	 make_temporary_var_for_ref_to_temp will treat it as automatic and
736 	 set_up_extended_ref_temp wants to use the decl in a warning.  */
737       init = extend_ref_init_temps (member, init, &cleanups);
738       if (TREE_CODE (type) == ARRAY_TYPE
739 	  && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type)))
740 	init = build_vec_init_expr (type, init, tf_warning_or_error);
741       init = build2 (INIT_EXPR, type, decl, init);
742       finish_expr_stmt (init);
743       FOR_EACH_VEC_ELT (*cleanups, i, t)
744 	push_cleanup (decl, t, false);
745       release_tree_vector (cleanups);
746     }
747   else if (type_build_ctor_call (type)
748 	   || (init && CLASS_TYPE_P (strip_array_types (type))))
749     {
750       if (TREE_CODE (type) == ARRAY_TYPE)
751 	{
752 	  if (init)
753 	    {
754 	      /* Check to make sure the member initializer is valid and
755 		 something like a CONSTRUCTOR in: T a[] = { 1, 2 } and
756 		 if it isn't, return early to avoid triggering another
757 		 error below.  */
758 	      if (maybe_reject_flexarray_init (member, init))
759 		return;
760 
761 	      if (TREE_CODE (init) != TREE_LIST || TREE_CHAIN (init))
762 		init = error_mark_node;
763 	      else
764 		init = TREE_VALUE (init);
765 
766 	      if (BRACE_ENCLOSED_INITIALIZER_P (init))
767 		init = digest_init (type, init, tf_warning_or_error);
768 	    }
769 	  if (init == NULL_TREE
770 	      || same_type_ignoring_top_level_qualifiers_p (type,
771 							    TREE_TYPE (init)))
772 	    {
773 	      if (TYPE_DOMAIN (type) && TYPE_MAX_VALUE (TYPE_DOMAIN (type)))
774 		{
775 		  /* Initialize the array only if it's not a flexible
776 		     array member (i.e., if it has an upper bound).  */
777 		  init = build_vec_init_expr (type, init, tf_warning_or_error);
778 		  init = build2 (INIT_EXPR, type, decl, init);
779 		  finish_expr_stmt (init);
780 		}
781 	    }
782 	  else
783 	    error ("invalid initializer for array member %q#D", member);
784 	}
785       else
786 	{
787 	  int flags = LOOKUP_NORMAL;
788 	  if (DECL_DEFAULTED_FN (current_function_decl))
789 	    flags |= LOOKUP_DEFAULTED;
790 	  if (CP_TYPE_CONST_P (type)
791 	      && init == NULL_TREE
792 	      && default_init_uninitialized_part (type))
793 	    {
794 	      /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
795 		 vtable; still give this diagnostic.  */
796 	      if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
797 			     "uninitialized const member in %q#T", type))
798 		inform (DECL_SOURCE_LOCATION (member),
799 			"%q#D should be initialized", member );
800 	    }
801 	  finish_expr_stmt (build_aggr_init (decl, init, flags,
802 					     tf_warning_or_error));
803 	}
804     }
805   else
806     {
807       if (init == NULL_TREE)
808 	{
809 	  tree core_type;
810 	  /* member traversal: note it leaves init NULL */
811 	  if (TREE_CODE (type) == REFERENCE_TYPE)
812 	    {
813 	      if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
814 			     "uninitialized reference member in %q#T", type))
815 		inform (DECL_SOURCE_LOCATION (member),
816 			"%q#D should be initialized", member);
817 	    }
818 	  else if (CP_TYPE_CONST_P (type))
819 	    {
820 	      if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
821 			     "uninitialized const member in %q#T", type))
822 		  inform (DECL_SOURCE_LOCATION (member),
823 			  "%q#D should be initialized", member );
824 	    }
825 
826 	  core_type = strip_array_types (type);
827 
828 	  if (CLASS_TYPE_P (core_type)
829 	      && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
830 		  || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
831 	    diagnose_uninitialized_cst_or_ref_member (core_type,
832 						      /*using_new=*/false,
833 						      /*complain=*/true);
834 	}
835       else if (TREE_CODE (init) == TREE_LIST)
836 	/* There was an explicit member initialization.  Do some work
837 	   in that case.  */
838 	init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
839 						tf_warning_or_error);
840 
841       /* Reject a member initializer for a flexible array member.  */
842       if (init && !maybe_reject_flexarray_init (member, init))
843 	finish_expr_stmt (cp_build_modify_expr (input_location, decl,
844 						INIT_EXPR, init,
845 						tf_warning_or_error));
846     }
847 
848   if (type_build_dtor_call (type))
849     {
850       tree expr;
851 
852       expr = build_class_member_access_expr (current_class_ref, member,
853 					     /*access_path=*/NULL_TREE,
854 					     /*preserve_reference=*/false,
855 					     tf_warning_or_error);
856       expr = build_delete (type, expr, sfk_complete_destructor,
857 			   LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0,
858 			   tf_warning_or_error);
859 
860       if (expr != error_mark_node
861 	  && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
862 	finish_eh_cleanup (expr);
863     }
864 }
865 
866 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
867    the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order.  */
868 
869 static tree
870 build_field_list (tree t, tree list, int *uses_unions_or_anon_p)
871 {
872   tree fields;
873 
874   /* Note whether or not T is a union.  */
875   if (TREE_CODE (t) == UNION_TYPE)
876     *uses_unions_or_anon_p = 1;
877 
878   for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields))
879     {
880       tree fieldtype;
881 
882       /* Skip CONST_DECLs for enumeration constants and so forth.  */
883       if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
884 	continue;
885 
886       fieldtype = TREE_TYPE (fields);
887 
888       /* For an anonymous struct or union, we must recursively
889 	 consider the fields of the anonymous type.  They can be
890 	 directly initialized from the constructor.  */
891       if (ANON_AGGR_TYPE_P (fieldtype))
892 	{
893 	  /* Add this field itself.  Synthesized copy constructors
894 	     initialize the entire aggregate.  */
895 	  list = tree_cons (fields, NULL_TREE, list);
896 	  /* And now add the fields in the anonymous aggregate.  */
897 	  list = build_field_list (fieldtype, list, uses_unions_or_anon_p);
898 	  *uses_unions_or_anon_p = 1;
899 	}
900       /* Add this field.  */
901       else if (DECL_NAME (fields))
902 	list = tree_cons (fields, NULL_TREE, list);
903     }
904 
905   return list;
906 }
907 
908 /* Return the innermost aggregate scope for FIELD, whether that is
909    the enclosing class or an anonymous aggregate within it.  */
910 
911 static tree
912 innermost_aggr_scope (tree field)
913 {
914   if (ANON_AGGR_TYPE_P (TREE_TYPE (field)))
915     return TREE_TYPE (field);
916   else
917     return DECL_CONTEXT (field);
918 }
919 
920 /* The MEM_INITS are a TREE_LIST.  The TREE_PURPOSE of each list gives
921    a FIELD_DECL or BINFO in T that needs initialization.  The
922    TREE_VALUE gives the initializer, or list of initializer arguments.
923 
924    Return a TREE_LIST containing all of the initializations required
925    for T, in the order in which they should be performed.  The output
926    list has the same format as the input.  */
927 
928 static tree
929 sort_mem_initializers (tree t, tree mem_inits)
930 {
931   tree init;
932   tree base, binfo, base_binfo;
933   tree sorted_inits;
934   tree next_subobject;
935   vec<tree, va_gc> *vbases;
936   int i;
937   int uses_unions_or_anon_p = 0;
938 
939   /* Build up a list of initializations.  The TREE_PURPOSE of entry
940      will be the subobject (a FIELD_DECL or BINFO) to initialize.  The
941      TREE_VALUE will be the constructor arguments, or NULL if no
942      explicit initialization was provided.  */
943   sorted_inits = NULL_TREE;
944 
945   /* Process the virtual bases.  */
946   for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
947        vec_safe_iterate (vbases, i, &base); i++)
948     sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
949 
950   /* Process the direct bases.  */
951   for (binfo = TYPE_BINFO (t), i = 0;
952        BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
953     if (!BINFO_VIRTUAL_P (base_binfo))
954       sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
955 
956   /* Process the non-static data members.  */
957   sorted_inits = build_field_list (t, sorted_inits, &uses_unions_or_anon_p);
958   /* Reverse the entire list of initializations, so that they are in
959      the order that they will actually be performed.  */
960   sorted_inits = nreverse (sorted_inits);
961 
962   /* If the user presented the initializers in an order different from
963      that in which they will actually occur, we issue a warning.  Keep
964      track of the next subobject which can be explicitly initialized
965      without issuing a warning.  */
966   next_subobject = sorted_inits;
967 
968   /* Go through the explicit initializers, filling in TREE_PURPOSE in
969      the SORTED_INITS.  */
970   for (init = mem_inits; init; init = TREE_CHAIN (init))
971     {
972       tree subobject;
973       tree subobject_init;
974 
975       subobject = TREE_PURPOSE (init);
976 
977       /* If the explicit initializers are in sorted order, then
978 	 SUBOBJECT will be NEXT_SUBOBJECT, or something following
979 	 it.  */
980       for (subobject_init = next_subobject;
981 	   subobject_init;
982 	   subobject_init = TREE_CHAIN (subobject_init))
983 	if (TREE_PURPOSE (subobject_init) == subobject)
984 	  break;
985 
986       /* Issue a warning if the explicit initializer order does not
987 	 match that which will actually occur.
988 	 ??? Are all these on the correct lines?  */
989       if (warn_reorder && !subobject_init)
990 	{
991 	  if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
992 	    warning_at (DECL_SOURCE_LOCATION (TREE_PURPOSE (next_subobject)),
993 			OPT_Wreorder, "%qD will be initialized after",
994 			TREE_PURPOSE (next_subobject));
995 	  else
996 	    warning (OPT_Wreorder, "base %qT will be initialized after",
997 		     TREE_PURPOSE (next_subobject));
998 	  if (TREE_CODE (subobject) == FIELD_DECL)
999 	    warning_at (DECL_SOURCE_LOCATION (subobject),
1000 			OPT_Wreorder, "  %q#D", subobject);
1001 	  else
1002 	    warning (OPT_Wreorder, "  base %qT", subobject);
1003 	  warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1004 		      OPT_Wreorder, "  when initialized here");
1005 	}
1006 
1007       /* Look again, from the beginning of the list.  */
1008       if (!subobject_init)
1009 	{
1010 	  subobject_init = sorted_inits;
1011 	  while (TREE_PURPOSE (subobject_init) != subobject)
1012 	    subobject_init = TREE_CHAIN (subobject_init);
1013 	}
1014 
1015       /* It is invalid to initialize the same subobject more than
1016 	 once.  */
1017       if (TREE_VALUE (subobject_init))
1018 	{
1019 	  if (TREE_CODE (subobject) == FIELD_DECL)
1020 	    error_at (DECL_SOURCE_LOCATION (current_function_decl),
1021 		      "multiple initializations given for %qD",
1022 		      subobject);
1023 	  else
1024 	    error_at (DECL_SOURCE_LOCATION (current_function_decl),
1025 		      "multiple initializations given for base %qT",
1026 		      subobject);
1027 	}
1028 
1029       /* Record the initialization.  */
1030       TREE_VALUE (subobject_init) = TREE_VALUE (init);
1031       next_subobject = subobject_init;
1032     }
1033 
1034   /* [class.base.init]
1035 
1036      If a ctor-initializer specifies more than one mem-initializer for
1037      multiple members of the same union (including members of
1038      anonymous unions), the ctor-initializer is ill-formed.
1039 
1040      Here we also splice out uninitialized union members.  */
1041   if (uses_unions_or_anon_p)
1042     {
1043       tree *last_p = NULL;
1044       tree *p;
1045       for (p = &sorted_inits; *p; )
1046 	{
1047 	  tree field;
1048 	  tree ctx;
1049 
1050 	  init = *p;
1051 
1052 	  field = TREE_PURPOSE (init);
1053 
1054 	  /* Skip base classes.  */
1055 	  if (TREE_CODE (field) != FIELD_DECL)
1056 	    goto next;
1057 
1058 	  /* If this is an anonymous aggregate with no explicit initializer,
1059 	     splice it out.  */
1060 	  if (!TREE_VALUE (init) && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
1061 	    goto splice;
1062 
1063 	  /* See if this field is a member of a union, or a member of a
1064 	     structure contained in a union, etc.  */
1065 	  ctx = innermost_aggr_scope (field);
1066 
1067 	  /* If this field is not a member of a union, skip it.  */
1068 	  if (TREE_CODE (ctx) != UNION_TYPE
1069 	      && !ANON_AGGR_TYPE_P (ctx))
1070 	    goto next;
1071 
1072 	  /* If this union member has no explicit initializer and no NSDMI,
1073 	     splice it out.  */
1074 	  if (TREE_VALUE (init) || DECL_INITIAL (field))
1075 	    /* OK.  */;
1076 	  else
1077 	    goto splice;
1078 
1079 	  /* It's only an error if we have two initializers for the same
1080 	     union type.  */
1081 	  if (!last_p)
1082 	    {
1083 	      last_p = p;
1084 	      goto next;
1085 	    }
1086 
1087 	  /* See if LAST_FIELD and the field initialized by INIT are
1088 	     members of the same union (or the union itself). If so, there's
1089 	     a problem, unless they're actually members of the same structure
1090 	     which is itself a member of a union.  For example, given:
1091 
1092 	       union { struct { int i; int j; }; };
1093 
1094 	     initializing both `i' and `j' makes sense.  */
1095 	  ctx = common_enclosing_class
1096 	    (innermost_aggr_scope (field),
1097 	     innermost_aggr_scope (TREE_PURPOSE (*last_p)));
1098 
1099 	  if (ctx && (TREE_CODE (ctx) == UNION_TYPE
1100 		      || ctx == TREE_TYPE (TREE_PURPOSE (*last_p))))
1101 	    {
1102 	      /* A mem-initializer hides an NSDMI.  */
1103 	      if (TREE_VALUE (init) && !TREE_VALUE (*last_p))
1104 		*last_p = TREE_CHAIN (*last_p);
1105 	      else if (TREE_VALUE (*last_p) && !TREE_VALUE (init))
1106 		goto splice;
1107 	      else
1108 		{
1109 		  error_at (DECL_SOURCE_LOCATION (current_function_decl),
1110 			    "initializations for multiple members of %qT",
1111 			    ctx);
1112 		  goto splice;
1113 		}
1114 	    }
1115 
1116 	  last_p = p;
1117 
1118 	next:
1119 	  p = &TREE_CHAIN (*p);
1120 	  continue;
1121 	splice:
1122 	  *p = TREE_CHAIN (*p);
1123 	  continue;
1124 	}
1125     }
1126 
1127   return sorted_inits;
1128 }
1129 
1130 /* Callback for cp_walk_tree to mark all PARM_DECLs in a tree as read.  */
1131 
1132 static tree
1133 mark_exp_read_r (tree *tp, int *, void *)
1134 {
1135   tree t = *tp;
1136   if (TREE_CODE (t) == PARM_DECL)
1137     mark_exp_read (t);
1138   return NULL_TREE;
1139 }
1140 
1141 /* Initialize all bases and members of CURRENT_CLASS_TYPE.  MEM_INITS
1142    is a TREE_LIST giving the explicit mem-initializer-list for the
1143    constructor.  The TREE_PURPOSE of each entry is a subobject (a
1144    FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE.  The TREE_VALUE
1145    is a TREE_LIST giving the arguments to the constructor or
1146    void_type_node for an empty list of arguments.  */
1147 
1148 void
1149 emit_mem_initializers (tree mem_inits)
1150 {
1151   int flags = LOOKUP_NORMAL;
1152 
1153   /* We will already have issued an error message about the fact that
1154      the type is incomplete.  */
1155   if (!COMPLETE_TYPE_P (current_class_type))
1156     return;
1157 
1158   if (mem_inits
1159       && TYPE_P (TREE_PURPOSE (mem_inits))
1160       && same_type_p (TREE_PURPOSE (mem_inits), current_class_type))
1161     {
1162       /* Delegating constructor. */
1163       gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE);
1164       perform_target_ctor (TREE_VALUE (mem_inits));
1165       return;
1166     }
1167 
1168   if (DECL_DEFAULTED_FN (current_function_decl)
1169       && ! DECL_INHERITED_CTOR (current_function_decl))
1170     flags |= LOOKUP_DEFAULTED;
1171 
1172   /* Sort the mem-initializers into the order in which the
1173      initializations should be performed.  */
1174   mem_inits = sort_mem_initializers (current_class_type, mem_inits);
1175 
1176   in_base_initializer = 1;
1177 
1178   /* Initialize base classes.  */
1179   for (; (mem_inits
1180 	  && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL);
1181        mem_inits = TREE_CHAIN (mem_inits))
1182     {
1183       tree subobject = TREE_PURPOSE (mem_inits);
1184       tree arguments = TREE_VALUE (mem_inits);
1185 
1186       /* We already have issued an error message.  */
1187       if (arguments == error_mark_node)
1188 	continue;
1189 
1190       /* Suppress access control when calling the inherited ctor.  */
1191       bool inherited_base = (DECL_INHERITED_CTOR (current_function_decl)
1192 			     && flag_new_inheriting_ctors
1193 			     && arguments);
1194       if (inherited_base)
1195 	push_deferring_access_checks (dk_deferred);
1196 
1197       if (arguments == NULL_TREE)
1198 	{
1199 	  /* If these initializations are taking place in a copy constructor,
1200 	     the base class should probably be explicitly initialized if there
1201 	     is a user-defined constructor in the base class (other than the
1202 	     default constructor, which will be called anyway).  */
1203 	  if (extra_warnings
1204 	      && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
1205 	      && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
1206 	    warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1207 			OPT_Wextra, "base class %q#T should be explicitly "
1208 			"initialized in the copy constructor",
1209 			BINFO_TYPE (subobject));
1210 	}
1211 
1212       /* Initialize the base.  */
1213       if (!BINFO_VIRTUAL_P (subobject))
1214 	{
1215 	  tree base_addr;
1216 
1217 	  base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
1218 				       subobject, 1, tf_warning_or_error);
1219 	  expand_aggr_init_1 (subobject, NULL_TREE,
1220 			      cp_build_indirect_ref (base_addr, RO_NULL,
1221                                                      tf_warning_or_error),
1222 			      arguments,
1223 			      flags,
1224                               tf_warning_or_error);
1225 	  expand_cleanup_for_base (subobject, NULL_TREE);
1226 	}
1227       else if (!ABSTRACT_CLASS_TYPE_P (current_class_type))
1228 	/* C++14 DR1658 Means we do not have to construct vbases of
1229 	   abstract classes.  */
1230 	construct_virtual_base (subobject, arguments);
1231       else
1232 	/* When not constructing vbases of abstract classes, at least mark
1233 	   the arguments expressions as read to avoid
1234 	   -Wunused-but-set-parameter false positives.  */
1235 	cp_walk_tree (&arguments, mark_exp_read_r, NULL, NULL);
1236 
1237       if (inherited_base)
1238 	pop_deferring_access_checks ();
1239     }
1240   in_base_initializer = 0;
1241 
1242   /* Initialize the vptrs.  */
1243   initialize_vtbl_ptrs (current_class_ptr);
1244 
1245   /* Initialize the data members.  */
1246   while (mem_inits)
1247     {
1248       perform_member_init (TREE_PURPOSE (mem_inits),
1249 			   TREE_VALUE (mem_inits));
1250       mem_inits = TREE_CHAIN (mem_inits);
1251     }
1252 }
1253 
1254 /* Returns the address of the vtable (i.e., the value that should be
1255    assigned to the vptr) for BINFO.  */
1256 
1257 tree
1258 build_vtbl_address (tree binfo)
1259 {
1260   tree binfo_for = binfo;
1261   tree vtbl;
1262 
1263   if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
1264     /* If this is a virtual primary base, then the vtable we want to store
1265        is that for the base this is being used as the primary base of.  We
1266        can't simply skip the initialization, because we may be expanding the
1267        inits of a subobject constructor where the virtual base layout
1268        can be different.  */
1269     while (BINFO_PRIMARY_P (binfo_for))
1270       binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
1271 
1272   /* Figure out what vtable BINFO's vtable is based on, and mark it as
1273      used.  */
1274   vtbl = get_vtbl_decl_for_binfo (binfo_for);
1275   TREE_USED (vtbl) = true;
1276 
1277   /* Now compute the address to use when initializing the vptr.  */
1278   vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
1279   if (VAR_P (vtbl))
1280     vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
1281 
1282   return vtbl;
1283 }
1284 
1285 /* This code sets up the virtual function tables appropriate for
1286    the pointer DECL.  It is a one-ply initialization.
1287 
1288    BINFO is the exact type that DECL is supposed to be.  In
1289    multiple inheritance, this might mean "C's A" if C : A, B.  */
1290 
1291 static void
1292 expand_virtual_init (tree binfo, tree decl)
1293 {
1294   tree vtbl, vtbl_ptr;
1295   tree vtt_index;
1296 
1297   /* Compute the initializer for vptr.  */
1298   vtbl = build_vtbl_address (binfo);
1299 
1300   /* We may get this vptr from a VTT, if this is a subobject
1301      constructor or subobject destructor.  */
1302   vtt_index = BINFO_VPTR_INDEX (binfo);
1303   if (vtt_index)
1304     {
1305       tree vtbl2;
1306       tree vtt_parm;
1307 
1308       /* Compute the value to use, when there's a VTT.  */
1309       vtt_parm = current_vtt_parm;
1310       vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index);
1311       vtbl2 = cp_build_indirect_ref (vtbl2, RO_NULL, tf_warning_or_error);
1312       vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
1313 
1314       /* The actual initializer is the VTT value only in the subobject
1315 	 constructor.  In maybe_clone_body we'll substitute NULL for
1316 	 the vtt_parm in the case of the non-subobject constructor.  */
1317       vtbl = build_if_in_charge (vtbl, vtbl2);
1318     }
1319 
1320   /* Compute the location of the vtpr.  */
1321   vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, RO_NULL,
1322                                                       tf_warning_or_error),
1323 			       TREE_TYPE (binfo));
1324   gcc_assert (vtbl_ptr != error_mark_node);
1325 
1326   /* Assign the vtable to the vptr.  */
1327   vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0, tf_warning_or_error);
1328   finish_expr_stmt (cp_build_modify_expr (input_location, vtbl_ptr, NOP_EXPR,
1329 					  vtbl, tf_warning_or_error));
1330 }
1331 
1332 /* If an exception is thrown in a constructor, those base classes already
1333    constructed must be destroyed.  This function creates the cleanup
1334    for BINFO, which has just been constructed.  If FLAG is non-NULL,
1335    it is a DECL which is nonzero when this base needs to be
1336    destroyed.  */
1337 
1338 static void
1339 expand_cleanup_for_base (tree binfo, tree flag)
1340 {
1341   tree expr;
1342 
1343   if (!type_build_dtor_call (BINFO_TYPE (binfo)))
1344     return;
1345 
1346   /* Call the destructor.  */
1347   expr = build_special_member_call (current_class_ref,
1348 				    base_dtor_identifier,
1349 				    NULL,
1350 				    binfo,
1351 				    LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
1352                                     tf_warning_or_error);
1353 
1354   if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
1355     return;
1356 
1357   if (flag)
1358     expr = fold_build3_loc (input_location,
1359 			COND_EXPR, void_type_node,
1360 			c_common_truthvalue_conversion (input_location, flag),
1361 			expr, integer_zero_node);
1362 
1363   finish_eh_cleanup (expr);
1364 }
1365 
1366 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
1367    constructor.  */
1368 
1369 static void
1370 construct_virtual_base (tree vbase, tree arguments)
1371 {
1372   tree inner_if_stmt;
1373   tree exp;
1374   tree flag;
1375 
1376   /* If there are virtual base classes with destructors, we need to
1377      emit cleanups to destroy them if an exception is thrown during
1378      the construction process.  These exception regions (i.e., the
1379      period during which the cleanups must occur) begin from the time
1380      the construction is complete to the end of the function.  If we
1381      create a conditional block in which to initialize the
1382      base-classes, then the cleanup region for the virtual base begins
1383      inside a block, and ends outside of that block.  This situation
1384      confuses the sjlj exception-handling code.  Therefore, we do not
1385      create a single conditional block, but one for each
1386      initialization.  (That way the cleanup regions always begin
1387      in the outer block.)  We trust the back end to figure out
1388      that the FLAG will not change across initializations, and
1389      avoid doing multiple tests.  */
1390   flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl));
1391   inner_if_stmt = begin_if_stmt ();
1392   finish_if_stmt_cond (flag, inner_if_stmt);
1393 
1394   /* Compute the location of the virtual base.  If we're
1395      constructing virtual bases, then we must be the most derived
1396      class.  Therefore, we don't have to look up the virtual base;
1397      we already know where it is.  */
1398   exp = convert_to_base_statically (current_class_ref, vbase);
1399 
1400   expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1401 		      0, tf_warning_or_error);
1402   finish_then_clause (inner_if_stmt);
1403   finish_if_stmt (inner_if_stmt);
1404 
1405   expand_cleanup_for_base (vbase, flag);
1406 }
1407 
1408 /* Find the context in which this FIELD can be initialized.  */
1409 
1410 static tree
1411 initializing_context (tree field)
1412 {
1413   tree t = DECL_CONTEXT (field);
1414 
1415   /* Anonymous union members can be initialized in the first enclosing
1416      non-anonymous union context.  */
1417   while (t && ANON_AGGR_TYPE_P (t))
1418     t = TYPE_CONTEXT (t);
1419   return t;
1420 }
1421 
1422 /* Function to give error message if member initialization specification
1423    is erroneous.  FIELD is the member we decided to initialize.
1424    TYPE is the type for which the initialization is being performed.
1425    FIELD must be a member of TYPE.
1426 
1427    MEMBER_NAME is the name of the member.  */
1428 
1429 static int
1430 member_init_ok_or_else (tree field, tree type, tree member_name)
1431 {
1432   if (field == error_mark_node)
1433     return 0;
1434   if (!field)
1435     {
1436       error ("class %qT does not have any field named %qD", type,
1437 	     member_name);
1438       return 0;
1439     }
1440   if (VAR_P (field))
1441     {
1442       error ("%q#D is a static data member; it can only be "
1443 	     "initialized at its definition",
1444 	     field);
1445       return 0;
1446     }
1447   if (TREE_CODE (field) != FIELD_DECL)
1448     {
1449       error ("%q#D is not a non-static data member of %qT",
1450 	     field, type);
1451       return 0;
1452     }
1453   if (initializing_context (field) != type)
1454     {
1455       error ("class %qT does not have any field named %qD", type,
1456 		member_name);
1457       return 0;
1458     }
1459 
1460   return 1;
1461 }
1462 
1463 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1464    is a _TYPE node or TYPE_DECL which names a base for that type.
1465    Check the validity of NAME, and return either the base _TYPE, base
1466    binfo, or the FIELD_DECL of the member.  If NAME is invalid, return
1467    NULL_TREE and issue a diagnostic.
1468 
1469    An old style unnamed direct single base construction is permitted,
1470    where NAME is NULL.  */
1471 
1472 tree
1473 expand_member_init (tree name)
1474 {
1475   tree basetype;
1476   tree field;
1477 
1478   if (!current_class_ref)
1479     return NULL_TREE;
1480 
1481   if (!name)
1482     {
1483       /* This is an obsolete unnamed base class initializer.  The
1484 	 parser will already have warned about its use.  */
1485       switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1486 	{
1487 	case 0:
1488 	  error ("unnamed initializer for %qT, which has no base classes",
1489 		 current_class_type);
1490 	  return NULL_TREE;
1491 	case 1:
1492 	  basetype = BINFO_TYPE
1493 	    (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1494 	  break;
1495 	default:
1496 	  error ("unnamed initializer for %qT, which uses multiple inheritance",
1497 		 current_class_type);
1498 	  return NULL_TREE;
1499       }
1500     }
1501   else if (TYPE_P (name))
1502     {
1503       basetype = TYPE_MAIN_VARIANT (name);
1504       name = TYPE_NAME (name);
1505     }
1506   else if (TREE_CODE (name) == TYPE_DECL)
1507     basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1508   else
1509     basetype = NULL_TREE;
1510 
1511   if (basetype)
1512     {
1513       tree class_binfo;
1514       tree direct_binfo;
1515       tree virtual_binfo;
1516       int i;
1517 
1518       if (current_template_parms
1519 	  || same_type_p (basetype, current_class_type))
1520 	  return basetype;
1521 
1522       class_binfo = TYPE_BINFO (current_class_type);
1523       direct_binfo = NULL_TREE;
1524       virtual_binfo = NULL_TREE;
1525 
1526       /* Look for a direct base.  */
1527       for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1528 	if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1529 	  break;
1530 
1531       /* Look for a virtual base -- unless the direct base is itself
1532 	 virtual.  */
1533       if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1534 	virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1535 
1536       /* [class.base.init]
1537 
1538 	 If a mem-initializer-id is ambiguous because it designates
1539 	 both a direct non-virtual base class and an inherited virtual
1540 	 base class, the mem-initializer is ill-formed.  */
1541       if (direct_binfo && virtual_binfo)
1542 	{
1543 	  error ("%qD is both a direct base and an indirect virtual base",
1544 		 basetype);
1545 	  return NULL_TREE;
1546 	}
1547 
1548       if (!direct_binfo && !virtual_binfo)
1549 	{
1550 	  if (CLASSTYPE_VBASECLASSES (current_class_type))
1551 	    error ("type %qT is not a direct or virtual base of %qT",
1552 		   basetype, current_class_type);
1553 	  else
1554 	    error ("type %qT is not a direct base of %qT",
1555 		   basetype, current_class_type);
1556 	  return NULL_TREE;
1557 	}
1558 
1559       return direct_binfo ? direct_binfo : virtual_binfo;
1560     }
1561   else
1562     {
1563       if (identifier_p (name))
1564 	field = lookup_field (current_class_type, name, 1, false);
1565       else
1566 	field = name;
1567 
1568       if (member_init_ok_or_else (field, current_class_type, name))
1569 	return field;
1570     }
1571 
1572   return NULL_TREE;
1573 }
1574 
1575 /* This is like `expand_member_init', only it stores one aggregate
1576    value into another.
1577 
1578    INIT comes in two flavors: it is either a value which
1579    is to be stored in EXP, or it is a parameter list
1580    to go to a constructor, which will operate on EXP.
1581    If INIT is not a parameter list for a constructor, then set
1582    LOOKUP_ONLYCONVERTING.
1583    If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1584    the initializer, if FLAGS is 0, then it is the (init) form.
1585    If `init' is a CONSTRUCTOR, then we emit a warning message,
1586    explaining that such initializations are invalid.
1587 
1588    If INIT resolves to a CALL_EXPR which happens to return
1589    something of the type we are looking for, then we know
1590    that we can safely use that call to perform the
1591    initialization.
1592 
1593    The virtual function table pointer cannot be set up here, because
1594    we do not really know its type.
1595 
1596    This never calls operator=().
1597 
1598    When initializing, nothing is CONST.
1599 
1600    A default copy constructor may have to be used to perform the
1601    initialization.
1602 
1603    A constructor or a conversion operator may have to be used to
1604    perform the initialization, but not both, as it would be ambiguous.  */
1605 
1606 tree
1607 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1608 {
1609   tree stmt_expr;
1610   tree compound_stmt;
1611   int destroy_temps;
1612   tree type = TREE_TYPE (exp);
1613   int was_const = TREE_READONLY (exp);
1614   int was_volatile = TREE_THIS_VOLATILE (exp);
1615   int is_global;
1616 
1617   if (init == error_mark_node)
1618     return error_mark_node;
1619 
1620   location_t init_loc = (init
1621 			 ? EXPR_LOC_OR_LOC (init, input_location)
1622 			 : location_of (exp));
1623 
1624   TREE_READONLY (exp) = 0;
1625   TREE_THIS_VOLATILE (exp) = 0;
1626 
1627   if (TREE_CODE (type) == ARRAY_TYPE)
1628     {
1629       tree itype = init ? TREE_TYPE (init) : NULL_TREE;
1630       int from_array = 0;
1631 
1632       if (VAR_P (exp) && DECL_DECOMPOSITION_P (exp))
1633 	{
1634 	  from_array = 1;
1635 	  init = mark_rvalue_use (init);
1636 	  if (init && DECL_P (init)
1637 	      && !(flags & LOOKUP_ONLYCONVERTING))
1638 	    {
1639 	      /* Wrap the initializer in a CONSTRUCTOR so that build_vec_init
1640 		 recognizes it as direct-initialization.  */
1641 	      init = build_constructor_single (init_list_type_node,
1642 					       NULL_TREE, init);
1643 	      CONSTRUCTOR_IS_DIRECT_INIT (init) = true;
1644 	    }
1645 	}
1646       else
1647 	{
1648 	  /* An array may not be initialized use the parenthesized
1649 	     initialization form -- unless the initializer is "()".  */
1650 	  if (init && TREE_CODE (init) == TREE_LIST)
1651 	    {
1652 	      if (complain & tf_error)
1653 		error ("bad array initializer");
1654 	      return error_mark_node;
1655 	    }
1656 	  /* Must arrange to initialize each element of EXP
1657 	     from elements of INIT.  */
1658 	  if (cv_qualified_p (type))
1659 	    TREE_TYPE (exp) = cv_unqualified (type);
1660 	  if (itype && cv_qualified_p (itype))
1661 	    TREE_TYPE (init) = cv_unqualified (itype);
1662 	  from_array = (itype && same_type_p (TREE_TYPE (init),
1663 					      TREE_TYPE (exp)));
1664 
1665 	  if (init && !from_array
1666 	      && !BRACE_ENCLOSED_INITIALIZER_P (init))
1667 	    {
1668 	      if (complain & tf_error)
1669 		permerror (init_loc, "array must be initialized "
1670 			   "with a brace-enclosed initializer");
1671 	      else
1672 		return error_mark_node;
1673 	    }
1674 	}
1675 
1676       stmt_expr = build_vec_init (exp, NULL_TREE, init,
1677 				  /*explicit_value_init_p=*/false,
1678 				  from_array,
1679                                   complain);
1680       TREE_READONLY (exp) = was_const;
1681       TREE_THIS_VOLATILE (exp) = was_volatile;
1682       TREE_TYPE (exp) = type;
1683       /* Restore the type of init unless it was used directly.  */
1684       if (init && TREE_CODE (stmt_expr) != INIT_EXPR)
1685 	TREE_TYPE (init) = itype;
1686       return stmt_expr;
1687     }
1688 
1689   if (init && init != void_type_node
1690       && TREE_CODE (init) != TREE_LIST
1691       && !(TREE_CODE (init) == TARGET_EXPR
1692 	   && TARGET_EXPR_DIRECT_INIT_P (init))
1693       && !DIRECT_LIST_INIT_P (init))
1694     flags |= LOOKUP_ONLYCONVERTING;
1695 
1696   if ((VAR_P (exp) || TREE_CODE (exp) == PARM_DECL)
1697       && !lookup_attribute ("warn_unused", TYPE_ATTRIBUTES (type)))
1698     /* Just know that we've seen something for this node.  */
1699     TREE_USED (exp) = 1;
1700 
1701   is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1702   destroy_temps = stmts_are_full_exprs_p ();
1703   current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1704   expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1705 		      init, LOOKUP_NORMAL|flags, complain);
1706   stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1707   current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1708   TREE_READONLY (exp) = was_const;
1709   TREE_THIS_VOLATILE (exp) = was_volatile;
1710 
1711   return stmt_expr;
1712 }
1713 
1714 static void
1715 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1716                      tsubst_flags_t complain)
1717 {
1718   tree type = TREE_TYPE (exp);
1719   tree ctor_name;
1720 
1721   /* It fails because there may not be a constructor which takes
1722      its own type as the first (or only parameter), but which does
1723      take other types via a conversion.  So, if the thing initializing
1724      the expression is a unit element of type X, first try X(X&),
1725      followed by initialization by X.  If neither of these work
1726      out, then look hard.  */
1727   tree rval;
1728   vec<tree, va_gc> *parms;
1729 
1730   /* If we have direct-initialization from an initializer list, pull
1731      it out of the TREE_LIST so the code below can see it.  */
1732   if (init && TREE_CODE (init) == TREE_LIST
1733       && DIRECT_LIST_INIT_P (TREE_VALUE (init)))
1734     {
1735       gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0
1736 			   && TREE_CHAIN (init) == NULL_TREE);
1737       init = TREE_VALUE (init);
1738       /* Only call reshape_init if it has not been called earlier
1739 	 by the callers.  */
1740       if (BRACE_ENCLOSED_INITIALIZER_P (init) && CP_AGGREGATE_TYPE_P (type))
1741 	init = reshape_init (type, init, complain);
1742     }
1743 
1744   if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
1745       && CP_AGGREGATE_TYPE_P (type))
1746     /* A brace-enclosed initializer for an aggregate.  In C++0x this can
1747        happen for direct-initialization, too.  */
1748     init = digest_init (type, init, complain);
1749 
1750   /* A CONSTRUCTOR of the target's type is a previously digested
1751      initializer, whether that happened just above or in
1752      cp_parser_late_parsing_nsdmi.
1753 
1754      A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P
1755      set represents the whole initialization, so we shouldn't build up
1756      another ctor call.  */
1757   if (init
1758       && (TREE_CODE (init) == CONSTRUCTOR
1759 	  || (TREE_CODE (init) == TARGET_EXPR
1760 	      && (TARGET_EXPR_DIRECT_INIT_P (init)
1761 		  || TARGET_EXPR_LIST_INIT_P (init))))
1762       && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
1763     {
1764       /* Early initialization via a TARGET_EXPR only works for
1765 	 complete objects.  */
1766       gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp);
1767 
1768       init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1769       TREE_SIDE_EFFECTS (init) = 1;
1770       finish_expr_stmt (init);
1771       return;
1772     }
1773 
1774   if (init && TREE_CODE (init) != TREE_LIST
1775       && (flags & LOOKUP_ONLYCONVERTING))
1776     {
1777       /* Base subobjects should only get direct-initialization.  */
1778       gcc_assert (true_exp == exp);
1779 
1780       if (flags & DIRECT_BIND)
1781 	/* Do nothing.  We hit this in two cases:  Reference initialization,
1782 	   where we aren't initializing a real variable, so we don't want
1783 	   to run a new constructor; and catching an exception, where we
1784 	   have already built up the constructor call so we could wrap it
1785 	   in an exception region.  */;
1786       else
1787 	init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP,
1788 			    flags, complain);
1789 
1790       if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1791 	/* We need to protect the initialization of a catch parm with a
1792 	   call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1793 	   around the TARGET_EXPR for the copy constructor.  See
1794 	   initialize_handler_parm.  */
1795 	{
1796 	  TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1797 					   TREE_OPERAND (init, 0));
1798 	  TREE_TYPE (init) = void_type_node;
1799 	}
1800       else
1801 	init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1802       TREE_SIDE_EFFECTS (init) = 1;
1803       finish_expr_stmt (init);
1804       return;
1805     }
1806 
1807   if (init == NULL_TREE)
1808     parms = NULL;
1809   else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1810     {
1811       parms = make_tree_vector ();
1812       for (; init != NULL_TREE; init = TREE_CHAIN (init))
1813 	vec_safe_push (parms, TREE_VALUE (init));
1814     }
1815   else
1816     parms = make_tree_vector_single (init);
1817 
1818   if (exp == current_class_ref && current_function_decl
1819       && DECL_HAS_IN_CHARGE_PARM_P (current_function_decl))
1820     {
1821       /* Delegating constructor. */
1822       tree complete;
1823       tree base;
1824       tree elt; unsigned i;
1825 
1826       /* Unshare the arguments for the second call.  */
1827       vec<tree, va_gc> *parms2 = make_tree_vector ();
1828       FOR_EACH_VEC_SAFE_ELT (parms, i, elt)
1829 	{
1830 	  elt = break_out_target_exprs (elt);
1831 	  vec_safe_push (parms2, elt);
1832 	}
1833       complete = build_special_member_call (exp, complete_ctor_identifier,
1834 					    &parms2, binfo, flags,
1835 					    complain);
1836       complete = fold_build_cleanup_point_expr (void_type_node, complete);
1837       release_tree_vector (parms2);
1838 
1839       base = build_special_member_call (exp, base_ctor_identifier,
1840 					&parms, binfo, flags,
1841 					complain);
1842       base = fold_build_cleanup_point_expr (void_type_node, base);
1843       rval = build_if_in_charge (complete, base);
1844     }
1845    else
1846     {
1847       if (true_exp == exp)
1848 	ctor_name = complete_ctor_identifier;
1849       else
1850 	ctor_name = base_ctor_identifier;
1851       rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1852 					complain);
1853     }
1854 
1855   if (parms != NULL)
1856     release_tree_vector (parms);
1857 
1858   if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR)
1859     {
1860       tree fn = get_callee_fndecl (rval);
1861       if (fn && DECL_DECLARED_CONSTEXPR_P (fn))
1862 	{
1863 	  tree e = maybe_constant_init (rval, exp);
1864 	  if (TREE_CONSTANT (e))
1865 	    rval = build2 (INIT_EXPR, type, exp, e);
1866 	}
1867     }
1868 
1869   /* FIXME put back convert_to_void?  */
1870   if (TREE_SIDE_EFFECTS (rval))
1871     finish_expr_stmt (rval);
1872 }
1873 
1874 /* This function is responsible for initializing EXP with INIT
1875    (if any).
1876 
1877    BINFO is the binfo of the type for who we are performing the
1878    initialization.  For example, if W is a virtual base class of A and B,
1879    and C : A, B.
1880    If we are initializing B, then W must contain B's W vtable, whereas
1881    were we initializing C, W must contain C's W vtable.
1882 
1883    TRUE_EXP is nonzero if it is the true expression being initialized.
1884    In this case, it may be EXP, or may just contain EXP.  The reason we
1885    need this is because if EXP is a base element of TRUE_EXP, we
1886    don't necessarily know by looking at EXP where its virtual
1887    baseclass fields should really be pointing.  But we do know
1888    from TRUE_EXP.  In constructors, we don't know anything about
1889    the value being initialized.
1890 
1891    FLAGS is just passed to `build_new_method_call'.  See that function
1892    for its description.  */
1893 
1894 static void
1895 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1896                     tsubst_flags_t complain)
1897 {
1898   tree type = TREE_TYPE (exp);
1899 
1900   gcc_assert (init != error_mark_node && type != error_mark_node);
1901   gcc_assert (building_stmt_list_p ());
1902 
1903   /* Use a function returning the desired type to initialize EXP for us.
1904      If the function is a constructor, and its first argument is
1905      NULL_TREE, know that it was meant for us--just slide exp on
1906      in and expand the constructor.  Constructors now come
1907      as TARGET_EXPRs.  */
1908 
1909   if (init && VAR_P (exp)
1910       && COMPOUND_LITERAL_P (init))
1911     {
1912       vec<tree, va_gc> *cleanups = NULL;
1913       /* If store_init_value returns NULL_TREE, the INIT has been
1914 	 recorded as the DECL_INITIAL for EXP.  That means there's
1915 	 nothing more we have to do.  */
1916       init = store_init_value (exp, init, &cleanups, flags);
1917       if (init)
1918 	finish_expr_stmt (init);
1919       gcc_assert (!cleanups);
1920       return;
1921     }
1922 
1923   /* List-initialization from {} becomes value-initialization for non-aggregate
1924      classes with default constructors.  Handle this here when we're
1925      initializing a base, so protected access works.  */
1926   if (exp != true_exp && init && TREE_CODE (init) == TREE_LIST)
1927     {
1928       tree elt = TREE_VALUE (init);
1929       if (DIRECT_LIST_INIT_P (elt)
1930 	  && CONSTRUCTOR_ELTS (elt) == 0
1931 	  && CLASSTYPE_NON_AGGREGATE (type)
1932 	  && TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
1933 	init = void_type_node;
1934     }
1935 
1936   /* If an explicit -- but empty -- initializer list was present,
1937      that's value-initialization.  */
1938   if (init == void_type_node)
1939     {
1940       /* If the type has data but no user-provided ctor, we need to zero
1941 	 out the object.  */
1942       if (!type_has_user_provided_constructor (type)
1943 	  && !is_really_empty_class (type))
1944 	{
1945 	  tree field_size = NULL_TREE;
1946 	  if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type)
1947 	    /* Don't clobber already initialized virtual bases.  */
1948 	    field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type));
1949 	  init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false,
1950 				    field_size);
1951 	  init = build2 (INIT_EXPR, type, exp, init);
1952 	  finish_expr_stmt (init);
1953 	}
1954 
1955       /* If we don't need to mess with the constructor at all,
1956 	 then we're done.  */
1957       if (! type_build_ctor_call (type))
1958 	return;
1959 
1960       /* Otherwise fall through and call the constructor.  */
1961       init = NULL_TREE;
1962     }
1963 
1964   /* We know that expand_default_init can handle everything we want
1965      at this point.  */
1966   expand_default_init (binfo, true_exp, exp, init, flags, complain);
1967 }
1968 
1969 /* Report an error if TYPE is not a user-defined, class type.  If
1970    OR_ELSE is nonzero, give an error message.  */
1971 
1972 int
1973 is_class_type (tree type, int or_else)
1974 {
1975   if (type == error_mark_node)
1976     return 0;
1977 
1978   if (! CLASS_TYPE_P (type))
1979     {
1980       if (or_else)
1981 	error ("%qT is not a class type", type);
1982       return 0;
1983     }
1984   return 1;
1985 }
1986 
1987 tree
1988 get_type_value (tree name)
1989 {
1990   if (name == error_mark_node)
1991     return NULL_TREE;
1992 
1993   if (IDENTIFIER_HAS_TYPE_VALUE (name))
1994     return IDENTIFIER_TYPE_VALUE (name);
1995   else
1996     return NULL_TREE;
1997 }
1998 
1999 /* Build a reference to a member of an aggregate.  This is not a C++
2000    `&', but really something which can have its address taken, and
2001    then act as a pointer to member, for example TYPE :: FIELD can have
2002    its address taken by saying & TYPE :: FIELD.  ADDRESS_P is true if
2003    this expression is the operand of "&".
2004 
2005    @@ Prints out lousy diagnostics for operator <typename>
2006    @@ fields.
2007 
2008    @@ This function should be rewritten and placed in search.c.  */
2009 
2010 tree
2011 build_offset_ref (tree type, tree member, bool address_p,
2012 		  tsubst_flags_t complain)
2013 {
2014   tree decl;
2015   tree basebinfo = NULL_TREE;
2016 
2017   /* class templates can come in as TEMPLATE_DECLs here.  */
2018   if (TREE_CODE (member) == TEMPLATE_DECL)
2019     return member;
2020 
2021   if (dependent_scope_p (type) || type_dependent_expression_p (member))
2022     return build_qualified_name (NULL_TREE, type, member,
2023 				  /*template_p=*/false);
2024 
2025   gcc_assert (TYPE_P (type));
2026   if (! is_class_type (type, 1))
2027     return error_mark_node;
2028 
2029   gcc_assert (DECL_P (member) || BASELINK_P (member));
2030   /* Callers should call mark_used before this point.  */
2031   gcc_assert (!DECL_P (member) || TREE_USED (member));
2032 
2033   type = TYPE_MAIN_VARIANT (type);
2034   if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type)))
2035     {
2036       if (complain & tf_error)
2037 	error ("incomplete type %qT does not have member %qD", type, member);
2038       return error_mark_node;
2039     }
2040 
2041   /* Entities other than non-static members need no further
2042      processing.  */
2043   if (TREE_CODE (member) == TYPE_DECL)
2044     return member;
2045   if (VAR_P (member) || TREE_CODE (member) == CONST_DECL)
2046     return convert_from_reference (member);
2047 
2048   if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
2049     {
2050       if (complain & tf_error)
2051 	error ("invalid pointer to bit-field %qD", member);
2052       return error_mark_node;
2053     }
2054 
2055   /* Set up BASEBINFO for member lookup.  */
2056   decl = maybe_dummy_object (type, &basebinfo);
2057 
2058   /* A lot of this logic is now handled in lookup_member.  */
2059   if (BASELINK_P (member))
2060     {
2061       /* Go from the TREE_BASELINK to the member function info.  */
2062       tree t = BASELINK_FUNCTIONS (member);
2063 
2064       if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
2065 	{
2066 	  /* Get rid of a potential OVERLOAD around it.  */
2067 	  t = OVL_CURRENT (t);
2068 
2069 	  /* Unique functions are handled easily.  */
2070 
2071 	  /* For non-static member of base class, we need a special rule
2072 	     for access checking [class.protected]:
2073 
2074 	       If the access is to form a pointer to member, the
2075 	       nested-name-specifier shall name the derived class
2076 	       (or any class derived from that class).  */
2077 	  bool ok;
2078 	  if (address_p && DECL_P (t)
2079 	      && DECL_NONSTATIC_MEMBER_P (t))
2080 	    ok = perform_or_defer_access_check (TYPE_BINFO (type), t, t,
2081 						complain);
2082 	  else
2083 	    ok = perform_or_defer_access_check (basebinfo, t, t,
2084 						complain);
2085 	  if (!ok)
2086 	    return error_mark_node;
2087 	  if (DECL_STATIC_FUNCTION_P (t))
2088 	    return t;
2089 	  member = t;
2090 	}
2091       else
2092 	TREE_TYPE (member) = unknown_type_node;
2093     }
2094   else if (address_p && TREE_CODE (member) == FIELD_DECL)
2095     {
2096       /* We need additional test besides the one in
2097 	 check_accessibility_of_qualified_id in case it is
2098 	 a pointer to non-static member.  */
2099       if (!perform_or_defer_access_check (TYPE_BINFO (type), member, member,
2100 					  complain))
2101 	return error_mark_node;
2102     }
2103 
2104   if (!address_p)
2105     {
2106       /* If MEMBER is non-static, then the program has fallen afoul of
2107 	 [expr.prim]:
2108 
2109 	   An id-expression that denotes a nonstatic data member or
2110 	   nonstatic member function of a class can only be used:
2111 
2112 	   -- as part of a class member access (_expr.ref_) in which the
2113 	   object-expression refers to the member's class or a class
2114 	   derived from that class, or
2115 
2116 	   -- to form a pointer to member (_expr.unary.op_), or
2117 
2118 	   -- in the body of a nonstatic member function of that class or
2119 	   of a class derived from that class (_class.mfct.nonstatic_), or
2120 
2121 	   -- in a mem-initializer for a constructor for that class or for
2122 	   a class derived from that class (_class.base.init_).  */
2123       if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
2124 	{
2125 	  /* Build a representation of the qualified name suitable
2126 	     for use as the operand to "&" -- even though the "&" is
2127 	     not actually present.  */
2128 	  member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2129 	  /* In Microsoft mode, treat a non-static member function as if
2130 	     it were a pointer-to-member.  */
2131 	  if (flag_ms_extensions)
2132 	    {
2133 	      PTRMEM_OK_P (member) = 1;
2134 	      return cp_build_addr_expr (member, complain);
2135 	    }
2136 	  if (complain & tf_error)
2137 	    error ("invalid use of non-static member function %qD",
2138 		   TREE_OPERAND (member, 1));
2139 	  return error_mark_node;
2140 	}
2141       else if (TREE_CODE (member) == FIELD_DECL)
2142 	{
2143 	  if (complain & tf_error)
2144 	    error ("invalid use of non-static data member %qD", member);
2145 	  return error_mark_node;
2146 	}
2147       return member;
2148     }
2149 
2150   member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2151   PTRMEM_OK_P (member) = 1;
2152   return member;
2153 }
2154 
2155 /* If DECL is a scalar enumeration constant or variable with a
2156    constant initializer, return the initializer (or, its initializers,
2157    recursively); otherwise, return DECL.  If STRICT_P, the
2158    initializer is only returned if DECL is a
2159    constant-expression.  If RETURN_AGGREGATE_CST_OK_P, it is ok to
2160    return an aggregate constant.  */
2161 
2162 static tree
2163 constant_value_1 (tree decl, bool strict_p, bool return_aggregate_cst_ok_p)
2164 {
2165   while (TREE_CODE (decl) == CONST_DECL
2166 	 || decl_constant_var_p (decl)
2167 	 || (!strict_p && VAR_P (decl)
2168 	     && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl))))
2169     {
2170       tree init;
2171       /* If DECL is a static data member in a template
2172 	 specialization, we must instantiate it here.  The
2173 	 initializer for the static data member is not processed
2174 	 until needed; we need it now.  */
2175       mark_used (decl, tf_none);
2176       mark_rvalue_use (decl);
2177       init = DECL_INITIAL (decl);
2178       if (init == error_mark_node)
2179 	{
2180 	  if (TREE_CODE (decl) == CONST_DECL
2181 	      || DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2182 	    /* Treat the error as a constant to avoid cascading errors on
2183 	       excessively recursive template instantiation (c++/9335).  */
2184 	    return init;
2185 	  else
2186 	    return decl;
2187 	}
2188       /* Initializers in templates are generally expanded during
2189 	 instantiation, so before that for const int i(2)
2190 	 INIT is a TREE_LIST with the actual initializer as
2191 	 TREE_VALUE.  */
2192       if (processing_template_decl
2193 	  && init
2194 	  && TREE_CODE (init) == TREE_LIST
2195 	  && TREE_CHAIN (init) == NULL_TREE)
2196 	init = TREE_VALUE (init);
2197       /* Instantiate a non-dependent initializer for user variables.  We
2198 	 mustn't do this for the temporary for an array compound literal;
2199 	 trying to instatiate the initializer will keep creating new
2200 	 temporaries until we crash.  Probably it's not useful to do it for
2201 	 other artificial variables, either.  */
2202       if (!DECL_ARTIFICIAL (decl))
2203 	init = instantiate_non_dependent_or_null (init);
2204       if (!init
2205 	  || !TREE_TYPE (init)
2206 	  || !TREE_CONSTANT (init)
2207 	  || (!return_aggregate_cst_ok_p
2208 	      /* Unless RETURN_AGGREGATE_CST_OK_P is true, do not
2209 		 return an aggregate constant (of which string
2210 		 literals are a special case), as we do not want
2211 		 to make inadvertent copies of such entities, and
2212 		 we must be sure that their addresses are the
2213  		 same everywhere.  */
2214 	      && (TREE_CODE (init) == CONSTRUCTOR
2215 		  || TREE_CODE (init) == STRING_CST)))
2216 	break;
2217       /* Don't return a CONSTRUCTOR for a variable with partial run-time
2218 	 initialization, since it doesn't represent the entire value.  */
2219       if (TREE_CODE (init) == CONSTRUCTOR
2220 	  && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2221 	break;
2222       /* If the variable has a dynamic initializer, don't use its
2223 	 DECL_INITIAL which doesn't reflect the real value.  */
2224       if (VAR_P (decl)
2225 	  && TREE_STATIC (decl)
2226 	  && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl)
2227 	  && DECL_NONTRIVIALLY_INITIALIZED_P (decl))
2228 	break;
2229       decl = unshare_expr (init);
2230     }
2231   return decl;
2232 }
2233 
2234 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by constant
2235    of integral or enumeration type, or a constexpr variable of scalar type,
2236    then return that value.  These are those variables permitted in constant
2237    expressions by [5.19/1].  */
2238 
2239 tree
2240 scalar_constant_value (tree decl)
2241 {
2242   return constant_value_1 (decl, /*strict_p=*/true,
2243 			   /*return_aggregate_cst_ok_p=*/false);
2244 }
2245 
2246 /* Like scalar_constant_value, but can also return aggregate initializers.  */
2247 
2248 tree
2249 decl_really_constant_value (tree decl)
2250 {
2251   return constant_value_1 (decl, /*strict_p=*/true,
2252 			   /*return_aggregate_cst_ok_p=*/true);
2253 }
2254 
2255 /* A more relaxed version of scalar_constant_value, used by the
2256    common C/C++ code.  */
2257 
2258 tree
2259 decl_constant_value (tree decl)
2260 {
2261   return constant_value_1 (decl, /*strict_p=*/processing_template_decl,
2262 			   /*return_aggregate_cst_ok_p=*/true);
2263 }
2264 
2265 /* Common subroutines of build_new and build_vec_delete.  */
2266 
2267 /* Build and return a NEW_EXPR.  If NELTS is non-NULL, TYPE[NELTS] is
2268    the type of the object being allocated; otherwise, it's just TYPE.
2269    INIT is the initializer, if any.  USE_GLOBAL_NEW is true if the
2270    user explicitly wrote "::operator new".  PLACEMENT, if non-NULL, is
2271    a vector of arguments to be provided as arguments to a placement
2272    new operator.  This routine performs no semantic checks; it just
2273    creates and returns a NEW_EXPR.  */
2274 
2275 static tree
2276 build_raw_new_expr (vec<tree, va_gc> *placement, tree type, tree nelts,
2277 		    vec<tree, va_gc> *init, int use_global_new)
2278 {
2279   tree init_list;
2280   tree new_expr;
2281 
2282   /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
2283      If INIT is not NULL, then we want to store VOID_ZERO_NODE.  This
2284      permits us to distinguish the case of a missing initializer "new
2285      int" from an empty initializer "new int()".  */
2286   if (init == NULL)
2287     init_list = NULL_TREE;
2288   else if (init->is_empty ())
2289     init_list = void_node;
2290   else
2291     init_list = build_tree_list_vec (init);
2292 
2293   new_expr = build4 (NEW_EXPR, build_pointer_type (type),
2294 		     build_tree_list_vec (placement), type, nelts,
2295 		     init_list);
2296   NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
2297   TREE_SIDE_EFFECTS (new_expr) = 1;
2298 
2299   return new_expr;
2300 }
2301 
2302 /* Diagnose uninitialized const members or reference members of type
2303    TYPE. USING_NEW is used to disambiguate the diagnostic between a
2304    new expression without a new-initializer and a declaration. Returns
2305    the error count. */
2306 
2307 static int
2308 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
2309 					    bool using_new, bool complain)
2310 {
2311   tree field;
2312   int error_count = 0;
2313 
2314   if (type_has_user_provided_constructor (type))
2315     return 0;
2316 
2317   for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2318     {
2319       tree field_type;
2320 
2321       if (TREE_CODE (field) != FIELD_DECL)
2322 	continue;
2323 
2324       field_type = strip_array_types (TREE_TYPE (field));
2325 
2326       if (type_has_user_provided_constructor (field_type))
2327 	continue;
2328 
2329       if (TREE_CODE (field_type) == REFERENCE_TYPE)
2330 	{
2331 	  ++ error_count;
2332 	  if (complain)
2333 	    {
2334 	      if (DECL_CONTEXT (field) == origin)
2335 		{
2336 		  if (using_new)
2337 		    error ("uninitialized reference member in %q#T "
2338 			   "using %<new%> without new-initializer", origin);
2339 		  else
2340 		    error ("uninitialized reference member in %q#T", origin);
2341 		}
2342 	      else
2343 		{
2344 		  if (using_new)
2345 		    error ("uninitialized reference member in base %q#T "
2346 			   "of %q#T using %<new%> without new-initializer",
2347 			   DECL_CONTEXT (field), origin);
2348 		  else
2349 		    error ("uninitialized reference member in base %q#T "
2350 			   "of %q#T", DECL_CONTEXT (field), origin);
2351 		}
2352 	      inform (DECL_SOURCE_LOCATION (field),
2353 		      "%q#D should be initialized", field);
2354 	    }
2355 	}
2356 
2357       if (CP_TYPE_CONST_P (field_type))
2358 	{
2359 	  ++ error_count;
2360 	  if (complain)
2361 	    {
2362 	      if (DECL_CONTEXT (field) == origin)
2363 		{
2364 		  if (using_new)
2365 		    error ("uninitialized const member in %q#T "
2366 			   "using %<new%> without new-initializer", origin);
2367 		  else
2368 		    error ("uninitialized const member in %q#T", origin);
2369 		}
2370 	      else
2371 		{
2372 		  if (using_new)
2373 		    error ("uninitialized const member in base %q#T "
2374 			   "of %q#T using %<new%> without new-initializer",
2375 			   DECL_CONTEXT (field), origin);
2376 		  else
2377 		    error ("uninitialized const member in base %q#T "
2378 			   "of %q#T", DECL_CONTEXT (field), origin);
2379 		}
2380 	      inform (DECL_SOURCE_LOCATION (field),
2381 		      "%q#D should be initialized", field);
2382 	    }
2383 	}
2384 
2385       if (CLASS_TYPE_P (field_type))
2386 	error_count
2387 	  += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin,
2388 							 using_new, complain);
2389     }
2390   return error_count;
2391 }
2392 
2393 int
2394 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain)
2395 {
2396   return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain);
2397 }
2398 
2399 /* Call __cxa_bad_array_new_length to indicate that the size calculation
2400    overflowed.  Pretend it returns sizetype so that it plays nicely in the
2401    COND_EXPR.  */
2402 
2403 tree
2404 throw_bad_array_new_length (void)
2405 {
2406   tree fn = get_identifier ("__cxa_throw_bad_array_new_length");
2407   if (!get_global_value_if_present (fn, &fn))
2408     fn = push_throw_library_fn (fn, build_function_type_list (sizetype,
2409 							      NULL_TREE));
2410 
2411   return build_cxx_call (fn, 0, NULL, tf_warning_or_error);
2412 }
2413 
2414 /* Attempt to find the initializer for field T in the initializer INIT,
2415    when non-null.  Returns the initializer when successful and NULL
2416    otherwise.  */
2417 static tree
2418 find_field_init (tree t, tree init)
2419 {
2420   if (!init)
2421     return NULL_TREE;
2422 
2423   unsigned HOST_WIDE_INT idx;
2424   tree field, elt;
2425 
2426   /* Iterate over all top-level initializer elements.  */
2427   FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
2428     {
2429       /* If the member T is found, return it.  */
2430       if (field == t)
2431 	return elt;
2432 
2433       /* Otherwise continue and/or recurse into nested initializers.  */
2434       if (TREE_CODE (elt) == CONSTRUCTOR
2435 	  && (init = find_field_init (t, elt)))
2436 	return init;
2437     }
2438   return NULL_TREE;
2439 }
2440 
2441 /* Attempt to verify that the argument, OPER, of a placement new expression
2442    refers to an object sufficiently large for an object of TYPE or an array
2443    of NELTS of such objects when NELTS is non-null, and issue a warning when
2444    it does not.  SIZE specifies the size needed to construct the object or
2445    array and captures the result of NELTS * sizeof (TYPE). (SIZE could be
2446    greater when the array under construction requires a cookie to store
2447    NELTS.  GCC's placement new expression stores the cookie when invoking
2448    a user-defined placement new operator function but not the default one.
2449    Placement new expressions with user-defined placement new operator are
2450    not diagnosed since we don't know how they use the buffer (this could
2451    be a future extension).  */
2452 static void
2453 warn_placement_new_too_small (tree type, tree nelts, tree size, tree oper)
2454 {
2455   location_t loc = EXPR_LOC_OR_LOC (oper, input_location);
2456 
2457   /* The number of bytes to add to or subtract from the size of the provided
2458      buffer based on an offset into an array or an array element reference.
2459      Although intermediate results may be negative (as in a[3] - 2) the final
2460      result cannot be.  */
2461   HOST_WIDE_INT adjust = 0;
2462   /* True when the size of the entire destination object should be used
2463      to compute the possibly optimistic estimate of the available space.  */
2464   bool use_obj_size = false;
2465   /* True when the reference to the destination buffer is an ADDR_EXPR.  */
2466   bool addr_expr = false;
2467 
2468   STRIP_NOPS (oper);
2469 
2470   /* Using a function argument or a (non-array) variable as an argument
2471      to placement new is not checked since it's unknown what it might
2472      point to.  */
2473   if (TREE_CODE (oper) == PARM_DECL
2474       || VAR_P (oper)
2475       || TREE_CODE (oper) == COMPONENT_REF)
2476     return;
2477 
2478   /* Evaluate any constant expressions.  */
2479   size = fold_non_dependent_expr (size);
2480 
2481   /* Handle the common case of array + offset expression when the offset
2482      is a constant.  */
2483   if (TREE_CODE (oper) == POINTER_PLUS_EXPR)
2484     {
2485       /* If the offset is comple-time constant, use it to compute a more
2486 	 accurate estimate of the size of the buffer.  Since the operand
2487 	 of POINTER_PLUS_EXPR is represented as an unsigned type, convert
2488 	 it to signed first.
2489 	 Otherwise, use the size of the entire array as an optimistic
2490 	 estimate (this may lead to false negatives).  */
2491       tree adj = TREE_OPERAND (oper, 1);
2492       if (CONSTANT_CLASS_P (adj))
2493 	adjust += tree_to_shwi (convert (ssizetype, adj));
2494       else
2495 	use_obj_size = true;
2496 
2497       oper = TREE_OPERAND (oper, 0);
2498 
2499       STRIP_NOPS (oper);
2500     }
2501 
2502   if (TREE_CODE (oper) == TARGET_EXPR)
2503     oper = TREE_OPERAND (oper, 1);
2504   else if (TREE_CODE (oper) == ADDR_EXPR)
2505     {
2506       addr_expr = true;
2507       oper = TREE_OPERAND (oper, 0);
2508     }
2509 
2510   STRIP_NOPS (oper);
2511 
2512   if (TREE_CODE (oper) == ARRAY_REF
2513       && (addr_expr || TREE_CODE (TREE_TYPE (oper)) == ARRAY_TYPE))
2514     {
2515       /* Similar to the offset computed above, see if the array index
2516 	 is a compile-time constant.  If so, and unless the offset was
2517 	 not a compile-time constant, use the index to determine the
2518 	 size of the buffer.  Otherwise, use the entire array as
2519 	 an optimistic estimate of the size.  */
2520       const_tree adj = TREE_OPERAND (oper, 1);
2521       if (!use_obj_size && CONSTANT_CLASS_P (adj))
2522 	adjust += tree_to_shwi (adj);
2523       else
2524 	{
2525 	  use_obj_size = true;
2526 	  adjust = 0;
2527 	}
2528 
2529       oper = TREE_OPERAND (oper, 0);
2530     }
2531 
2532   /* Refers to the declared object that constains the subobject referenced
2533      by OPER.  When the object is initialized, makes it possible to determine
2534      the actual size of a flexible array member used as the buffer passed
2535      as OPER to placement new.  */
2536   tree var_decl = NULL_TREE;
2537   /* True when operand is a COMPONENT_REF, to distinguish flexible array
2538      members from arrays of unspecified size.  */
2539   bool compref = TREE_CODE (oper) == COMPONENT_REF;
2540 
2541   /* Descend into a struct or union to find the member whose address
2542      is being used as the argument.  */
2543   if (TREE_CODE (oper) == COMPONENT_REF)
2544     {
2545       tree op0 = oper;
2546       while (TREE_CODE (op0 = TREE_OPERAND (op0, 0)) == COMPONENT_REF);
2547       if (VAR_P (op0))
2548 	var_decl = op0;
2549       oper = TREE_OPERAND (oper, 1);
2550     }
2551 
2552   if ((addr_expr || !POINTER_TYPE_P (TREE_TYPE (oper)))
2553       && (VAR_P (oper)
2554 	  || TREE_CODE (oper) == FIELD_DECL
2555 	  || TREE_CODE (oper) == PARM_DECL))
2556     {
2557       /* A possibly optimistic estimate of the number of bytes available
2558 	 in the destination buffer.  */
2559       unsigned HOST_WIDE_INT bytes_avail = 0;
2560       /* True when the estimate above is in fact the exact size
2561 	 of the destination buffer rather than an estimate.  */
2562       bool exact_size = true;
2563 
2564       /* Treat members of unions and members of structs uniformly, even
2565 	 though the size of a member of a union may be viewed as extending
2566 	 to the end of the union itself (it is by __builtin_object_size).  */
2567       if ((VAR_P (oper) || use_obj_size)
2568 	  && DECL_SIZE_UNIT (oper)
2569 	  && tree_fits_uhwi_p (DECL_SIZE_UNIT (oper)))
2570 	{
2571 	  /* Use the size of the entire array object when the expression
2572 	     refers to a variable or its size depends on an expression
2573 	     that's not a compile-time constant.  */
2574 	  bytes_avail = tree_to_uhwi (DECL_SIZE_UNIT (oper));
2575 	  exact_size = !use_obj_size;
2576 	}
2577       else if (TYPE_SIZE_UNIT (TREE_TYPE (oper))
2578 	       && tree_fits_uhwi_p (TYPE_SIZE_UNIT (TREE_TYPE (oper))))
2579 	{
2580 	  /* Use the size of the type of the destination buffer object
2581 	     as the optimistic estimate of the available space in it.  */
2582 	  bytes_avail = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (oper)));
2583 	}
2584       else if (var_decl)
2585 	{
2586 	  /* Constructing into a buffer provided by the flexible array
2587 	     member of a declared object (which is permitted as a G++
2588 	     extension).  If the array member has been initialized,
2589 	     determine its size from the initializer.  Otherwise,
2590 	     the array size is zero.  */
2591 	  bytes_avail = 0;
2592 
2593 	  if (tree init = find_field_init (oper, DECL_INITIAL (var_decl)))
2594 	    bytes_avail = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (init)));
2595 	}
2596       else
2597 	{
2598 	  /* Bail if neither the size of the object nor its type is known.  */
2599 	  return;
2600 	}
2601 
2602       tree_code oper_code = TREE_CODE (TREE_TYPE (oper));
2603 
2604       if (compref && oper_code == ARRAY_TYPE)
2605 	{
2606 	  /* Avoid diagnosing flexible array members (which are accepted
2607 	     as an extension and diagnosed with -Wpedantic) and zero-length
2608 	     arrays (also an extension).
2609 	     Overflowing construction in one-element arrays is diagnosed
2610 	     only at level 2.  */
2611 	  if (bytes_avail == 0 && !var_decl)
2612 	    return;
2613 
2614 	  tree nelts = array_type_nelts_top (TREE_TYPE (oper));
2615 	  tree nelts_cst = maybe_constant_value (nelts);
2616 	  if (TREE_CODE (nelts_cst) == INTEGER_CST
2617 	      && integer_onep (nelts_cst)
2618 	      && !var_decl
2619 	      && warn_placement_new < 2)
2620 	    return;
2621 	}
2622 
2623       /* The size of the buffer can only be adjusted down but not up.  */
2624       gcc_checking_assert (0 <= adjust);
2625 
2626       /* Reduce the size of the buffer by the adjustment computed above
2627 	 from the offset and/or the index into the array.  */
2628       if (bytes_avail < static_cast<unsigned HOST_WIDE_INT>(adjust))
2629 	bytes_avail = 0;
2630       else
2631 	bytes_avail -= adjust;
2632 
2633       /* The minimum amount of space needed for the allocation.  This
2634 	 is an optimistic estimate that makes it possible to detect
2635 	 placement new invocation for some undersize buffers but not
2636 	 others.  */
2637       unsigned HOST_WIDE_INT bytes_need;
2638 
2639       if (CONSTANT_CLASS_P (size))
2640 	bytes_need = tree_to_uhwi (size);
2641       else if (nelts && CONSTANT_CLASS_P (nelts))
2642 	  bytes_need = tree_to_uhwi (nelts)
2643 	    * tree_to_uhwi (TYPE_SIZE_UNIT (type));
2644       else if (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
2645 	bytes_need = tree_to_uhwi (TYPE_SIZE_UNIT (type));
2646       else
2647 	{
2648 	  /* The type is a VLA.  */
2649 	  return;
2650 	}
2651 
2652       if (bytes_avail < bytes_need)
2653 	{
2654 	  if (nelts)
2655 	    if (CONSTANT_CLASS_P (nelts))
2656 	      warning_at (loc, OPT_Wplacement_new_,
2657 			  exact_size ?
2658 			  "placement new constructing an object of type "
2659 			  "%<%T [%wu]%> and size %qwu in a region of type %qT "
2660 			  "and size %qwi"
2661 			  : "placement new constructing an object of type "
2662 			  "%<%T [%wu]%> and size %qwu in a region of type %qT "
2663 			  "and size at most %qwu",
2664 			  type, tree_to_uhwi (nelts), bytes_need,
2665 			  TREE_TYPE (oper),
2666 			  bytes_avail);
2667 	    else
2668 	      warning_at (loc, OPT_Wplacement_new_,
2669 			  exact_size ?
2670 			  "placement new constructing an array of objects "
2671 			  "of type %qT and size %qwu in a region of type %qT "
2672 			  "and size %qwi"
2673 			  : "placement new constructing an array of objects "
2674 			  "of type %qT and size %qwu in a region of type %qT "
2675 			  "and size at most %qwu",
2676 			  type, bytes_need, TREE_TYPE (oper),
2677 			  bytes_avail);
2678 	  else
2679 	    warning_at (loc, OPT_Wplacement_new_,
2680 			exact_size ?
2681 			"placement new constructing an object of type %qT "
2682 			"and size %qwu in a region of type %qT and size %qwi"
2683 			: "placement new constructing an object of type %qT "
2684 			"and size %qwu in a region of type %qT and size "
2685 			"at most %qwu",
2686 			type, bytes_need, TREE_TYPE (oper),
2687 			bytes_avail);
2688 	}
2689     }
2690 }
2691 
2692 /* True if alignof(T) > __STDCPP_DEFAULT_NEW_ALIGNMENT__.  */
2693 
2694 bool
2695 type_has_new_extended_alignment (tree t)
2696 {
2697   return (aligned_new_threshold
2698 	  && TYPE_ALIGN_UNIT (t) > (unsigned)aligned_new_threshold);
2699 }
2700 
2701 /* Return the alignment we expect malloc to guarantee.  This should just be
2702    MALLOC_ABI_ALIGNMENT, but that macro defaults to only BITS_PER_WORD for some
2703    reason, so don't let the threshold be smaller than max_align_t_align.  */
2704 
2705 unsigned
2706 malloc_alignment ()
2707 {
2708   return MAX (max_align_t_align(), MALLOC_ABI_ALIGNMENT);
2709 }
2710 
2711 /* Determine whether an allocation function is a namespace-scope
2712    non-replaceable placement new function. See DR 1748.
2713    TODO: Enable in all standard modes.  */
2714 static bool
2715 std_placement_new_fn_p (tree alloc_fn)
2716 {
2717   if ((cxx_dialect > cxx14) && DECL_NAMESPACE_SCOPE_P (alloc_fn))
2718     {
2719       tree first_arg = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (alloc_fn)));
2720       if ((TREE_VALUE (first_arg) == ptr_type_node)
2721 	  && TREE_CHAIN (first_arg) == void_list_node)
2722 	return true;
2723     }
2724   return false;
2725 }
2726 
2727 /* Generate code for a new-expression, including calling the "operator
2728    new" function, initializing the object, and, if an exception occurs
2729    during construction, cleaning up.  The arguments are as for
2730    build_raw_new_expr.  This may change PLACEMENT and INIT.
2731    TYPE is the type of the object being constructed, possibly an array
2732    of NELTS elements when NELTS is non-null (in "new T[NELTS]", T may
2733    be an array of the form U[inner], with the whole expression being
2734    "new U[NELTS][inner]").  */
2735 
2736 static tree
2737 build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts,
2738 	     vec<tree, va_gc> **init, bool globally_qualified_p,
2739 	     tsubst_flags_t complain)
2740 {
2741   tree size, rval;
2742   /* True iff this is a call to "operator new[]" instead of just
2743      "operator new".  */
2744   bool array_p = false;
2745   /* If ARRAY_P is true, the element type of the array.  This is never
2746      an ARRAY_TYPE; for something like "new int[3][4]", the
2747      ELT_TYPE is "int".  If ARRAY_P is false, this is the same type as
2748      TYPE.  */
2749   tree elt_type;
2750   /* The type of the new-expression.  (This type is always a pointer
2751      type.)  */
2752   tree pointer_type;
2753   tree non_const_pointer_type;
2754   /* The most significant array bound in int[OUTER_NELTS][inner].  */
2755   tree outer_nelts = NULL_TREE;
2756   /* For arrays with a non-constant number of elements, a bounds checks
2757      on the NELTS parameter to avoid integer overflow at runtime. */
2758   tree outer_nelts_check = NULL_TREE;
2759   bool outer_nelts_from_type = false;
2760   /* Number of the "inner" elements in "new T[OUTER_NELTS][inner]".  */
2761   offset_int inner_nelts_count = 1;
2762   tree alloc_call, alloc_expr;
2763   /* Size of the inner array elements (those with constant dimensions). */
2764   offset_int inner_size;
2765   /* The address returned by the call to "operator new".  This node is
2766      a VAR_DECL and is therefore reusable.  */
2767   tree alloc_node;
2768   tree alloc_fn;
2769   tree cookie_expr, init_expr;
2770   int nothrow, check_new;
2771   /* If non-NULL, the number of extra bytes to allocate at the
2772      beginning of the storage allocated for an array-new expression in
2773      order to store the number of elements.  */
2774   tree cookie_size = NULL_TREE;
2775   tree placement_first;
2776   tree placement_expr = NULL_TREE;
2777   /* True if the function we are calling is a placement allocation
2778      function.  */
2779   bool placement_allocation_fn_p;
2780   /* True if the storage must be initialized, either by a constructor
2781      or due to an explicit new-initializer.  */
2782   bool is_initialized;
2783   /* The address of the thing allocated, not including any cookie.  In
2784      particular, if an array cookie is in use, DATA_ADDR is the
2785      address of the first array element.  This node is a VAR_DECL, and
2786      is therefore reusable.  */
2787   tree data_addr;
2788   tree init_preeval_expr = NULL_TREE;
2789   tree orig_type = type;
2790 
2791   if (nelts)
2792     {
2793       outer_nelts = nelts;
2794       array_p = true;
2795     }
2796   else if (TREE_CODE (type) == ARRAY_TYPE)
2797     {
2798       /* Transforms new (T[N]) to new T[N].  The former is a GNU
2799 	 extension for variable N.  (This also covers new T where T is
2800 	 a VLA typedef.)  */
2801       array_p = true;
2802       nelts = array_type_nelts_top (type);
2803       outer_nelts = nelts;
2804       type = TREE_TYPE (type);
2805       outer_nelts_from_type = true;
2806     }
2807 
2808   /* Lots of logic below. depends on whether we have a constant number of
2809      elements, so go ahead and fold it now.  */
2810   if (outer_nelts)
2811     outer_nelts = maybe_constant_value (outer_nelts);
2812 
2813   /* If our base type is an array, then make sure we know how many elements
2814      it has.  */
2815   for (elt_type = type;
2816        TREE_CODE (elt_type) == ARRAY_TYPE;
2817        elt_type = TREE_TYPE (elt_type))
2818     {
2819       tree inner_nelts = array_type_nelts_top (elt_type);
2820       tree inner_nelts_cst = maybe_constant_value (inner_nelts);
2821       if (TREE_CODE (inner_nelts_cst) == INTEGER_CST)
2822 	{
2823 	  bool overflow;
2824 	  offset_int result = wi::mul (wi::to_offset (inner_nelts_cst),
2825 				       inner_nelts_count, SIGNED, &overflow);
2826 	  if (overflow)
2827 	    {
2828 	      if (complain & tf_error)
2829 		error ("integer overflow in array size");
2830 	      nelts = error_mark_node;
2831 	    }
2832 	  inner_nelts_count = result;
2833 	}
2834       else
2835 	{
2836 	  if (complain & tf_error)
2837 	    {
2838 	      error_at (EXPR_LOC_OR_LOC (inner_nelts, input_location),
2839 			"array size in new-expression must be constant");
2840 	      cxx_constant_value(inner_nelts);
2841 	    }
2842 	  nelts = error_mark_node;
2843 	}
2844       if (nelts != error_mark_node)
2845 	nelts = cp_build_binary_op (input_location,
2846 				    MULT_EXPR, nelts,
2847 				    inner_nelts_cst,
2848 				    complain);
2849     }
2850 
2851   if (variably_modified_type_p (elt_type, NULL_TREE) && (complain & tf_error))
2852     {
2853       error ("variably modified type not allowed in new-expression");
2854       return error_mark_node;
2855     }
2856 
2857   if (nelts == error_mark_node)
2858     return error_mark_node;
2859 
2860   /* Warn if we performed the (T[N]) to T[N] transformation and N is
2861      variable.  */
2862   if (outer_nelts_from_type
2863       && !TREE_CONSTANT (outer_nelts))
2864     {
2865       if (complain & tf_warning_or_error)
2866 	{
2867 	  pedwarn (EXPR_LOC_OR_LOC (outer_nelts, input_location), OPT_Wvla,
2868 		   typedef_variant_p (orig_type)
2869 		   ? G_("non-constant array new length must be specified "
2870 			"directly, not by typedef")
2871 		   : G_("non-constant array new length must be specified "
2872 			"without parentheses around the type-id"));
2873 	}
2874       else
2875 	return error_mark_node;
2876     }
2877 
2878   if (VOID_TYPE_P (elt_type))
2879     {
2880       if (complain & tf_error)
2881         error ("invalid type %<void%> for new");
2882       return error_mark_node;
2883     }
2884 
2885   if (abstract_virtuals_error_sfinae (ACU_NEW, elt_type, complain))
2886     return error_mark_node;
2887 
2888   is_initialized = (type_build_ctor_call (elt_type) || *init != NULL);
2889 
2890   if (*init == NULL && cxx_dialect < cxx11)
2891     {
2892       bool maybe_uninitialized_error = false;
2893       /* A program that calls for default-initialization [...] of an
2894 	 entity of reference type is ill-formed. */
2895       if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
2896 	maybe_uninitialized_error = true;
2897 
2898       /* A new-expression that creates an object of type T initializes
2899 	 that object as follows:
2900       - If the new-initializer is omitted:
2901         -- If T is a (possibly cv-qualified) non-POD class type
2902 	   (or array thereof), the object is default-initialized (8.5).
2903 	   [...]
2904         -- Otherwise, the object created has indeterminate
2905 	   value. If T is a const-qualified type, or a (possibly
2906 	   cv-qualified) POD class type (or array thereof)
2907 	   containing (directly or indirectly) a member of
2908 	   const-qualified type, the program is ill-formed; */
2909 
2910       if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
2911 	maybe_uninitialized_error = true;
2912 
2913       if (maybe_uninitialized_error
2914 	  && diagnose_uninitialized_cst_or_ref_member (elt_type,
2915 						       /*using_new=*/true,
2916 						       complain & tf_error))
2917 	return error_mark_node;
2918     }
2919 
2920   if (CP_TYPE_CONST_P (elt_type) && *init == NULL
2921       && default_init_uninitialized_part (elt_type))
2922     {
2923       if (complain & tf_error)
2924         error ("uninitialized const in %<new%> of %q#T", elt_type);
2925       return error_mark_node;
2926     }
2927 
2928   size = size_in_bytes (elt_type);
2929   if (array_p)
2930     {
2931       /* Maximum available size in bytes.  Half of the address space
2932 	 minus the cookie size.  */
2933       offset_int max_size
2934 	= wi::set_bit_in_zero <offset_int> (TYPE_PRECISION (sizetype) - 1);
2935       /* Maximum number of outer elements which can be allocated. */
2936       offset_int max_outer_nelts;
2937       tree max_outer_nelts_tree;
2938 
2939       gcc_assert (TREE_CODE (size) == INTEGER_CST);
2940       cookie_size = targetm.cxx.get_cookie_size (elt_type);
2941       gcc_assert (TREE_CODE (cookie_size) == INTEGER_CST);
2942       gcc_checking_assert (wi::ltu_p (wi::to_offset (cookie_size), max_size));
2943       /* Unconditionally subtract the cookie size.  This decreases the
2944 	 maximum object size and is safe even if we choose not to use
2945 	 a cookie after all.  */
2946       max_size -= wi::to_offset (cookie_size);
2947       bool overflow;
2948       inner_size = wi::mul (wi::to_offset (size), inner_nelts_count, SIGNED,
2949 			    &overflow);
2950       if (overflow || wi::gtu_p (inner_size, max_size))
2951 	{
2952 	  if (complain & tf_error)
2953 	    error ("size of array is too large");
2954 	  return error_mark_node;
2955 	}
2956 
2957       max_outer_nelts = wi::udiv_trunc (max_size, inner_size);
2958       max_outer_nelts_tree = wide_int_to_tree (sizetype, max_outer_nelts);
2959 
2960       size = size_binop (MULT_EXPR, size, fold_convert (sizetype, nelts));
2961 
2962       if (INTEGER_CST == TREE_CODE (outer_nelts))
2963 	{
2964 	  if (tree_int_cst_lt (max_outer_nelts_tree, outer_nelts))
2965 	    {
2966 	      /* When the array size is constant, check it at compile time
2967 		 to make sure it doesn't exceed the implementation-defined
2968 		 maximum, as required by C++ 14 (in C++ 11 this requirement
2969 		 isn't explicitly stated but it's enforced anyway -- see
2970 		 grokdeclarator in cp/decl.c).  */
2971 	      if (complain & tf_error)
2972 		error ("size of array is too large");
2973 	      return error_mark_node;
2974 	    }
2975 	}
2976       else
2977  	{
2978 	  /* When a runtime check is necessary because the array size
2979 	     isn't constant, keep only the top-most seven bits (starting
2980 	     with the most significant non-zero bit) of the maximum size
2981 	     to compare the array size against, to simplify encoding the
2982 	     constant maximum size in the instruction stream.  */
2983 
2984 	  unsigned shift = (max_outer_nelts.get_precision ()) - 7
2985 	    - wi::clz (max_outer_nelts);
2986 	  max_outer_nelts = (max_outer_nelts >> shift) << shift;
2987 
2988           outer_nelts_check = fold_build2 (LE_EXPR, boolean_type_node,
2989 					   outer_nelts,
2990 					   max_outer_nelts_tree);
2991 	}
2992     }
2993 
2994   tree align_arg = NULL_TREE;
2995   if (type_has_new_extended_alignment (elt_type))
2996     align_arg = build_int_cst (align_type_node, TYPE_ALIGN_UNIT (elt_type));
2997 
2998   alloc_fn = NULL_TREE;
2999 
3000   /* If PLACEMENT is a single simple pointer type not passed by
3001      reference, prepare to capture it in a temporary variable.  Do
3002      this now, since PLACEMENT will change in the calls below.  */
3003   placement_first = NULL_TREE;
3004   if (vec_safe_length (*placement) == 1
3005       && (TYPE_PTR_P (TREE_TYPE ((**placement)[0]))))
3006     placement_first = (**placement)[0];
3007 
3008   bool member_new_p = false;
3009 
3010   /* Allocate the object.  */
3011   tree fnname;
3012   tree fns;
3013 
3014   fnname = cp_operator_id (array_p ? VEC_NEW_EXPR : NEW_EXPR);
3015 
3016   member_new_p = !globally_qualified_p
3017 		 && CLASS_TYPE_P (elt_type)
3018 		 && (array_p
3019 		     ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
3020 		     : TYPE_HAS_NEW_OPERATOR (elt_type));
3021 
3022   if (member_new_p)
3023     {
3024       /* Use a class-specific operator new.  */
3025       /* If a cookie is required, add some extra space.  */
3026       if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
3027 	size = size_binop (PLUS_EXPR, size, cookie_size);
3028       else
3029 	{
3030 	  cookie_size = NULL_TREE;
3031 	  /* No size arithmetic necessary, so the size check is
3032 	     not needed. */
3033 	  if (outer_nelts_check != NULL && inner_size == 1)
3034 	    outer_nelts_check = NULL_TREE;
3035 	}
3036       /* Perform the overflow check.  */
3037       tree errval = TYPE_MAX_VALUE (sizetype);
3038       if (cxx_dialect >= cxx11 && flag_exceptions)
3039 	errval = throw_bad_array_new_length ();
3040       if (outer_nelts_check != NULL_TREE)
3041 	size = fold_build3 (COND_EXPR, sizetype, outer_nelts_check,
3042 			    size, errval);
3043       /* Create the argument list.  */
3044       vec_safe_insert (*placement, 0, size);
3045       /* Do name-lookup to find the appropriate operator.  */
3046       fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
3047       if (fns == NULL_TREE)
3048 	{
3049 	  if (complain & tf_error)
3050 	    error ("no suitable %qD found in class %qT", fnname, elt_type);
3051 	  return error_mark_node;
3052 	}
3053       if (TREE_CODE (fns) == TREE_LIST)
3054 	{
3055 	  if (complain & tf_error)
3056 	    {
3057 	      error ("request for member %qD is ambiguous", fnname);
3058 	      print_candidates (fns);
3059 	    }
3060 	  return error_mark_node;
3061 	}
3062       tree dummy = build_dummy_object (elt_type);
3063       alloc_call = NULL_TREE;
3064       if (align_arg)
3065 	{
3066 	  vec<tree, va_gc> *align_args
3067 	    = vec_copy_and_insert (*placement, align_arg, 1);
3068 	  alloc_call
3069 	    = build_new_method_call (dummy, fns, &align_args,
3070 				     /*conversion_path=*/NULL_TREE,
3071 				     LOOKUP_NORMAL, &alloc_fn, tf_none);
3072 	  /* If no matching function is found and the allocated object type
3073 	     has new-extended alignment, the alignment argument is removed
3074 	     from the argument list, and overload resolution is performed
3075 	     again.  */
3076 	  if (alloc_call == error_mark_node)
3077 	    alloc_call = NULL_TREE;
3078 	}
3079       if (!alloc_call)
3080 	alloc_call = build_new_method_call (dummy, fns, placement,
3081 					    /*conversion_path=*/NULL_TREE,
3082 					    LOOKUP_NORMAL,
3083 					    &alloc_fn, complain);
3084     }
3085   else
3086     {
3087       /* Use a global operator new.  */
3088       /* See if a cookie might be required.  */
3089       if (!(array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)))
3090 	{
3091 	  cookie_size = NULL_TREE;
3092 	  /* No size arithmetic necessary, so the size check is
3093 	     not needed. */
3094 	  if (outer_nelts_check != NULL && inner_size == 1)
3095 	    outer_nelts_check = NULL_TREE;
3096 	}
3097 
3098       alloc_call = build_operator_new_call (fnname, placement,
3099 					    &size, &cookie_size,
3100 					    align_arg, outer_nelts_check,
3101 					    &alloc_fn, complain);
3102     }
3103 
3104   if (alloc_call == error_mark_node)
3105     return error_mark_node;
3106 
3107   gcc_assert (alloc_fn != NULL_TREE);
3108 
3109   /* Now, check to see if this function is actually a placement
3110      allocation function.  This can happen even when PLACEMENT is NULL
3111      because we might have something like:
3112 
3113        struct S { void* operator new (size_t, int i = 0); };
3114 
3115      A call to `new S' will get this allocation function, even though
3116      there is no explicit placement argument.  If there is more than
3117      one argument, or there are variable arguments, then this is a
3118      placement allocation function.  */
3119   placement_allocation_fn_p
3120     = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
3121        || varargs_function_p (alloc_fn));
3122 
3123   if (warn_aligned_new
3124       && !placement_allocation_fn_p
3125       && TYPE_ALIGN (elt_type) > malloc_alignment ()
3126       && (warn_aligned_new > 1
3127 	  || CP_DECL_CONTEXT (alloc_fn) == global_namespace)
3128       && !aligned_allocation_fn_p (alloc_fn))
3129     {
3130       if (warning (OPT_Waligned_new_, "%<new%> of type %qT with extended "
3131 		   "alignment %d", elt_type, TYPE_ALIGN_UNIT (elt_type)))
3132 	{
3133 	  inform (input_location, "uses %qD, which does not have an alignment "
3134 		  "parameter", alloc_fn);
3135 	  if (!aligned_new_threshold)
3136 	    inform (input_location, "use %<-faligned-new%> to enable C++17 "
3137 				    "over-aligned new support");
3138 	}
3139     }
3140 
3141   /* If we found a simple case of PLACEMENT_EXPR above, then copy it
3142      into a temporary variable.  */
3143   if (!processing_template_decl
3144       && TREE_CODE (alloc_call) == CALL_EXPR
3145       && call_expr_nargs (alloc_call) == 2
3146       && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
3147       && TYPE_PTR_P (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))))
3148     {
3149       tree placement = CALL_EXPR_ARG (alloc_call, 1);
3150 
3151       if (placement_first != NULL_TREE
3152 	  && (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement)))
3153 	      || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement)))))
3154 	{
3155 	  placement_expr = get_target_expr (placement_first);
3156 	  CALL_EXPR_ARG (alloc_call, 1)
3157 	    = fold_convert (TREE_TYPE (placement), placement_expr);
3158 	}
3159 
3160       if (!member_new_p
3161 	  && VOID_TYPE_P (TREE_TYPE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1)))))
3162 	{
3163 	  /* Attempt to make the warning point at the operator new argument.  */
3164 	  if (placement_first)
3165 	    placement = placement_first;
3166 
3167 	  warn_placement_new_too_small (orig_type, nelts, size, placement);
3168 	}
3169     }
3170 
3171   /* In the simple case, we can stop now.  */
3172   pointer_type = build_pointer_type (type);
3173   if (!cookie_size && !is_initialized)
3174     return build_nop (pointer_type, alloc_call);
3175 
3176   /* Store the result of the allocation call in a variable so that we can
3177      use it more than once.  */
3178   alloc_expr = get_target_expr (alloc_call);
3179   alloc_node = TARGET_EXPR_SLOT (alloc_expr);
3180 
3181   /* Strip any COMPOUND_EXPRs from ALLOC_CALL.  */
3182   while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
3183     alloc_call = TREE_OPERAND (alloc_call, 1);
3184 
3185   /* Preevaluate the placement args so that we don't reevaluate them for a
3186      placement delete.  */
3187   if (placement_allocation_fn_p)
3188     {
3189       tree inits;
3190       stabilize_call (alloc_call, &inits);
3191       if (inits)
3192 	alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
3193 			     alloc_expr);
3194     }
3195 
3196   /*        unless an allocation function is declared with an empty  excep-
3197      tion-specification  (_except.spec_),  throw(), it indicates failure to
3198      allocate storage by throwing a bad_alloc exception  (clause  _except_,
3199      _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
3200      cation function is declared  with  an  empty  exception-specification,
3201      throw(), it returns null to indicate failure to allocate storage and a
3202      non-null pointer otherwise.
3203 
3204      So check for a null exception spec on the op new we just called.  */
3205 
3206   nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
3207   check_new
3208     = flag_check_new || (nothrow && !std_placement_new_fn_p (alloc_fn));
3209 
3210   if (cookie_size)
3211     {
3212       tree cookie;
3213       tree cookie_ptr;
3214       tree size_ptr_type;
3215 
3216       /* Adjust so we're pointing to the start of the object.  */
3217       data_addr = fold_build_pointer_plus (alloc_node, cookie_size);
3218 
3219       /* Store the number of bytes allocated so that we can know how
3220 	 many elements to destroy later.  We use the last sizeof
3221 	 (size_t) bytes to store the number of elements.  */
3222       cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
3223       cookie_ptr = fold_build_pointer_plus_loc (input_location,
3224 						alloc_node, cookie_ptr);
3225       size_ptr_type = build_pointer_type (sizetype);
3226       cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
3227       cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
3228 
3229       cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
3230 
3231       if (targetm.cxx.cookie_has_size ())
3232 	{
3233 	  /* Also store the element size.  */
3234 	  cookie_ptr = fold_build_pointer_plus (cookie_ptr,
3235 			       fold_build1_loc (input_location,
3236 						NEGATE_EXPR, sizetype,
3237 						size_in_bytes (sizetype)));
3238 
3239 	  cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
3240 	  cookie = build2 (MODIFY_EXPR, sizetype, cookie,
3241 			   size_in_bytes (elt_type));
3242 	  cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
3243 				cookie, cookie_expr);
3244 	}
3245     }
3246   else
3247     {
3248       cookie_expr = NULL_TREE;
3249       data_addr = alloc_node;
3250     }
3251 
3252   /* Now use a pointer to the type we've actually allocated.  */
3253 
3254   /* But we want to operate on a non-const version to start with,
3255      since we'll be modifying the elements.  */
3256   non_const_pointer_type = build_pointer_type
3257     (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST));
3258 
3259   data_addr = fold_convert (non_const_pointer_type, data_addr);
3260   /* Any further uses of alloc_node will want this type, too.  */
3261   alloc_node = fold_convert (non_const_pointer_type, alloc_node);
3262 
3263   /* Now initialize the allocated object.  Note that we preevaluate the
3264      initialization expression, apart from the actual constructor call or
3265      assignment--we do this because we want to delay the allocation as long
3266      as possible in order to minimize the size of the exception region for
3267      placement delete.  */
3268   if (is_initialized)
3269     {
3270       bool stable;
3271       bool explicit_value_init_p = false;
3272 
3273       if (*init != NULL && (*init)->is_empty ())
3274 	{
3275 	  *init = NULL;
3276 	  explicit_value_init_p = true;
3277 	}
3278 
3279       if (processing_template_decl && explicit_value_init_p)
3280 	{
3281 	  /* build_value_init doesn't work in templates, and we don't need
3282 	     the initializer anyway since we're going to throw it away and
3283 	     rebuild it at instantiation time, so just build up a single
3284 	     constructor call to get any appropriate diagnostics.  */
3285 	  init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
3286 	  if (type_build_ctor_call (elt_type))
3287 	    init_expr = build_special_member_call (init_expr,
3288 						   complete_ctor_identifier,
3289 						   init, elt_type,
3290 						   LOOKUP_NORMAL,
3291 						   complain);
3292 	  stable = stabilize_init (init_expr, &init_preeval_expr);
3293 	}
3294       else if (array_p)
3295 	{
3296 	  tree vecinit = NULL_TREE;
3297 	  if (vec_safe_length (*init) == 1
3298 	      && DIRECT_LIST_INIT_P ((**init)[0]))
3299 	    {
3300 	      vecinit = (**init)[0];
3301 	      if (CONSTRUCTOR_NELTS (vecinit) == 0)
3302 		/* List-value-initialization, leave it alone.  */;
3303 	      else
3304 		{
3305 		  tree arraytype, domain;
3306 		  if (TREE_CONSTANT (nelts))
3307 		    domain = compute_array_index_type (NULL_TREE, nelts,
3308 						       complain);
3309 		  else
3310 		    /* We'll check the length at runtime.  */
3311 		    domain = NULL_TREE;
3312 		  arraytype = build_cplus_array_type (type, domain);
3313 		  vecinit = digest_init (arraytype, vecinit, complain);
3314 		}
3315 	    }
3316 	  else if (*init)
3317             {
3318               if (complain & tf_error)
3319                 permerror (input_location,
3320 			   "parenthesized initializer in array new");
3321               else
3322                 return error_mark_node;
3323 	      vecinit = build_tree_list_vec (*init);
3324             }
3325 	  init_expr
3326 	    = build_vec_init (data_addr,
3327 			      cp_build_binary_op (input_location,
3328 						  MINUS_EXPR, outer_nelts,
3329 						  integer_one_node,
3330 						  complain),
3331 			      vecinit,
3332 			      explicit_value_init_p,
3333 			      /*from_array=*/0,
3334                               complain);
3335 
3336 	  /* An array initialization is stable because the initialization
3337 	     of each element is a full-expression, so the temporaries don't
3338 	     leak out.  */
3339 	  stable = true;
3340 	}
3341       else
3342 	{
3343 	  init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
3344 
3345 	  if (type_build_ctor_call (type) && !explicit_value_init_p)
3346 	    {
3347 	      init_expr = build_special_member_call (init_expr,
3348 						     complete_ctor_identifier,
3349 						     init, elt_type,
3350 						     LOOKUP_NORMAL,
3351                                                      complain);
3352 	    }
3353 	  else if (explicit_value_init_p)
3354 	    {
3355 	      /* Something like `new int()'.  NO_CLEANUP is needed so
3356 		 we don't try and build a (possibly ill-formed)
3357 		 destructor.  */
3358 	      tree val = build_value_init (type, complain | tf_no_cleanup);
3359 	      if (val == error_mark_node)
3360 		return error_mark_node;
3361 	      init_expr = build2 (INIT_EXPR, type, init_expr, val);
3362 	    }
3363 	  else
3364 	    {
3365 	      tree ie;
3366 
3367 	      /* We are processing something like `new int (10)', which
3368 		 means allocate an int, and initialize it with 10.  */
3369 
3370 	      ie = build_x_compound_expr_from_vec (*init, "new initializer",
3371 						   complain);
3372 	      init_expr = cp_build_modify_expr (input_location, init_expr,
3373 						INIT_EXPR, ie, complain);
3374 	    }
3375 	  /* If the initializer uses C++14 aggregate NSDMI that refer to the
3376 	     object being initialized, replace them now and don't try to
3377 	     preevaluate.  */
3378 	  bool had_placeholder = false;
3379 	  if (!processing_template_decl
3380 	      && TREE_CODE (init_expr) == INIT_EXPR)
3381 	    TREE_OPERAND (init_expr, 1)
3382 	      = replace_placeholders (TREE_OPERAND (init_expr, 1),
3383 				      TREE_OPERAND (init_expr, 0),
3384 				      &had_placeholder);
3385 	  stable = (!had_placeholder
3386 		    && stabilize_init (init_expr, &init_preeval_expr));
3387 	}
3388 
3389       if (init_expr == error_mark_node)
3390 	return error_mark_node;
3391 
3392       /* If any part of the object initialization terminates by throwing an
3393 	 exception and a suitable deallocation function can be found, the
3394 	 deallocation function is called to free the memory in which the
3395 	 object was being constructed, after which the exception continues
3396 	 to propagate in the context of the new-expression. If no
3397 	 unambiguous matching deallocation function can be found,
3398 	 propagating the exception does not cause the object's memory to be
3399 	 freed.  */
3400       if (flag_exceptions)
3401 	{
3402 	  enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
3403 	  tree cleanup;
3404 
3405 	  /* The Standard is unclear here, but the right thing to do
3406 	     is to use the same method for finding deallocation
3407 	     functions that we use for finding allocation functions.  */
3408 	  cleanup = (build_op_delete_call
3409 		     (dcode,
3410 		      alloc_node,
3411 		      size,
3412 		      globally_qualified_p,
3413 		      placement_allocation_fn_p ? alloc_call : NULL_TREE,
3414 		      alloc_fn,
3415 		      complain));
3416 
3417 	  if (!cleanup)
3418 	    /* We're done.  */;
3419 	  else if (stable)
3420 	    /* This is much simpler if we were able to preevaluate all of
3421 	       the arguments to the constructor call.  */
3422 	    {
3423 	      /* CLEANUP is compiler-generated, so no diagnostics.  */
3424 	      TREE_NO_WARNING (cleanup) = true;
3425 	      init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
3426 				  init_expr, cleanup);
3427 	      /* Likewise, this try-catch is compiler-generated.  */
3428 	      TREE_NO_WARNING (init_expr) = true;
3429 	    }
3430 	  else
3431 	    /* Ack!  First we allocate the memory.  Then we set our sentry
3432 	       variable to true, and expand a cleanup that deletes the
3433 	       memory if sentry is true.  Then we run the constructor, and
3434 	       finally clear the sentry.
3435 
3436 	       We need to do this because we allocate the space first, so
3437 	       if there are any temporaries with cleanups in the
3438 	       constructor args and we weren't able to preevaluate them, we
3439 	       need this EH region to extend until end of full-expression
3440 	       to preserve nesting.  */
3441 	    {
3442 	      tree end, sentry, begin;
3443 
3444 	      begin = get_target_expr (boolean_true_node);
3445 	      CLEANUP_EH_ONLY (begin) = 1;
3446 
3447 	      sentry = TARGET_EXPR_SLOT (begin);
3448 
3449 	      /* CLEANUP is compiler-generated, so no diagnostics.  */
3450 	      TREE_NO_WARNING (cleanup) = true;
3451 
3452 	      TARGET_EXPR_CLEANUP (begin)
3453 		= build3 (COND_EXPR, void_type_node, sentry,
3454 			  cleanup, void_node);
3455 
3456 	      end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
3457 			    sentry, boolean_false_node);
3458 
3459 	      init_expr
3460 		= build2 (COMPOUND_EXPR, void_type_node, begin,
3461 			  build2 (COMPOUND_EXPR, void_type_node, init_expr,
3462 				  end));
3463 	      /* Likewise, this is compiler-generated.  */
3464 	      TREE_NO_WARNING (init_expr) = true;
3465 	    }
3466 	}
3467     }
3468   else
3469     init_expr = NULL_TREE;
3470 
3471   /* Now build up the return value in reverse order.  */
3472 
3473   rval = data_addr;
3474 
3475   if (init_expr)
3476     rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
3477   if (cookie_expr)
3478     rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
3479 
3480   if (rval == data_addr)
3481     /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
3482        and return the call (which doesn't need to be adjusted).  */
3483     rval = TARGET_EXPR_INITIAL (alloc_expr);
3484   else
3485     {
3486       if (check_new)
3487 	{
3488 	  tree ifexp = cp_build_binary_op (input_location,
3489 					   NE_EXPR, alloc_node,
3490 					   nullptr_node,
3491 					   complain);
3492 	  rval = build_conditional_expr (input_location, ifexp, rval,
3493 					 alloc_node, complain);
3494 	}
3495 
3496       /* Perform the allocation before anything else, so that ALLOC_NODE
3497 	 has been initialized before we start using it.  */
3498       rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
3499     }
3500 
3501   if (init_preeval_expr)
3502     rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
3503 
3504   /* A new-expression is never an lvalue.  */
3505   gcc_assert (!obvalue_p (rval));
3506 
3507   return convert (pointer_type, rval);
3508 }
3509 
3510 /* Generate a representation for a C++ "new" expression.  *PLACEMENT
3511    is a vector of placement-new arguments (or NULL if none).  If NELTS
3512    is NULL, TYPE is the type of the storage to be allocated.  If NELTS
3513    is not NULL, then this is an array-new allocation; TYPE is the type
3514    of the elements in the array and NELTS is the number of elements in
3515    the array.  *INIT, if non-NULL, is the initializer for the new
3516    object, or an empty vector to indicate an initializer of "()".  If
3517    USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
3518    rather than just "new".  This may change PLACEMENT and INIT.  */
3519 
3520 tree
3521 build_new (vec<tree, va_gc> **placement, tree type, tree nelts,
3522 	   vec<tree, va_gc> **init, int use_global_new, tsubst_flags_t complain)
3523 {
3524   tree rval;
3525   vec<tree, va_gc> *orig_placement = NULL;
3526   tree orig_nelts = NULL_TREE;
3527   vec<tree, va_gc> *orig_init = NULL;
3528 
3529   if (type == error_mark_node)
3530     return error_mark_node;
3531 
3532   if (nelts == NULL_TREE
3533       /* Don't do auto deduction where it might affect mangling.  */
3534       && (!processing_template_decl || at_function_scope_p ()))
3535     {
3536       tree auto_node = type_uses_auto (type);
3537       if (auto_node)
3538 	{
3539 	  tree d_init = NULL_TREE;
3540 	  if (vec_safe_length (*init) == 1)
3541 	    {
3542 	      d_init = (**init)[0];
3543 	      d_init = resolve_nondeduced_context (d_init, complain);
3544 	    }
3545 	  type = do_auto_deduction (type, d_init, auto_node);
3546 	}
3547     }
3548 
3549   if (processing_template_decl)
3550     {
3551       if (dependent_type_p (type)
3552 	  || any_type_dependent_arguments_p (*placement)
3553 	  || (nelts && type_dependent_expression_p (nelts))
3554 	  || (nelts && *init)
3555 	  || any_type_dependent_arguments_p (*init))
3556 	return build_raw_new_expr (*placement, type, nelts, *init,
3557 				   use_global_new);
3558 
3559       orig_placement = make_tree_vector_copy (*placement);
3560       orig_nelts = nelts;
3561       if (*init)
3562 	{
3563 	  orig_init = make_tree_vector_copy (*init);
3564 	  /* Also copy any CONSTRUCTORs in *init, since reshape_init and
3565 	     digest_init clobber them in place.  */
3566 	  for (unsigned i = 0; i < orig_init->length(); ++i)
3567 	    {
3568 	      tree e = (**init)[i];
3569 	      if (TREE_CODE (e) == CONSTRUCTOR)
3570 		(**init)[i] = copy_node (e);
3571 	    }
3572 	}
3573 
3574       make_args_non_dependent (*placement);
3575       if (nelts)
3576 	nelts = build_non_dependent_expr (nelts);
3577       make_args_non_dependent (*init);
3578     }
3579 
3580   if (nelts)
3581     {
3582       if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
3583         {
3584           if (complain & tf_error)
3585             permerror (input_location, "size in array new must have integral type");
3586           else
3587             return error_mark_node;
3588         }
3589 
3590       /* Try to determine the constant value only for the purposes
3591 	 of the diagnostic below but continue to use the original
3592 	 value and handle const folding later.  */
3593       const_tree cst_nelts = maybe_constant_value (nelts);
3594 
3595       /* The expression in a noptr-new-declarator is erroneous if it's of
3596 	 non-class type and its value before converting to std::size_t is
3597 	 less than zero. ... If the expression is a constant expression,
3598 	 the program is ill-fomed.  */
3599       if (INTEGER_CST == TREE_CODE (cst_nelts)
3600 	  && tree_int_cst_sgn (cst_nelts) == -1)
3601 	{
3602 	  if (complain & tf_error)
3603 	    error ("size of array is negative");
3604 	  return error_mark_node;
3605 	}
3606 
3607       nelts = mark_rvalue_use (nelts);
3608       nelts = cp_save_expr (cp_convert (sizetype, nelts, complain));
3609     }
3610 
3611   /* ``A reference cannot be created by the new operator.  A reference
3612      is not an object (8.2.2, 8.4.3), so a pointer to it could not be
3613      returned by new.'' ARM 5.3.3 */
3614   if (TREE_CODE (type) == REFERENCE_TYPE)
3615     {
3616       if (complain & tf_error)
3617         error ("new cannot be applied to a reference type");
3618       else
3619         return error_mark_node;
3620       type = TREE_TYPE (type);
3621     }
3622 
3623   if (TREE_CODE (type) == FUNCTION_TYPE)
3624     {
3625       if (complain & tf_error)
3626         error ("new cannot be applied to a function type");
3627       return error_mark_node;
3628     }
3629 
3630   /* The type allocated must be complete.  If the new-type-id was
3631      "T[N]" then we are just checking that "T" is complete here, but
3632      that is equivalent, since the value of "N" doesn't matter.  */
3633   if (!complete_type_or_maybe_complain (type, NULL_TREE, complain))
3634     return error_mark_node;
3635 
3636   rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
3637   if (rval == error_mark_node)
3638     return error_mark_node;
3639 
3640   if (processing_template_decl)
3641     {
3642       tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
3643 				     orig_init, use_global_new);
3644       release_tree_vector (orig_placement);
3645       release_tree_vector (orig_init);
3646       return ret;
3647     }
3648 
3649   /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain.  */
3650   rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
3651   TREE_NO_WARNING (rval) = 1;
3652 
3653   return rval;
3654 }
3655 
3656 static tree
3657 build_vec_delete_1 (tree base, tree maxindex, tree type,
3658 		    special_function_kind auto_delete_vec,
3659 		    int use_global_delete, tsubst_flags_t complain)
3660 {
3661   tree virtual_size;
3662   tree ptype = build_pointer_type (type = complete_type (type));
3663   tree size_exp;
3664 
3665   /* Temporary variables used by the loop.  */
3666   tree tbase, tbase_init;
3667 
3668   /* This is the body of the loop that implements the deletion of a
3669      single element, and moves temp variables to next elements.  */
3670   tree body;
3671 
3672   /* This is the LOOP_EXPR that governs the deletion of the elements.  */
3673   tree loop = 0;
3674 
3675   /* This is the thing that governs what to do after the loop has run.  */
3676   tree deallocate_expr = 0;
3677 
3678   /* This is the BIND_EXPR which holds the outermost iterator of the
3679      loop.  It is convenient to set this variable up and test it before
3680      executing any other code in the loop.
3681      This is also the containing expression returned by this function.  */
3682   tree controller = NULL_TREE;
3683   tree tmp;
3684 
3685   /* We should only have 1-D arrays here.  */
3686   gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
3687 
3688   if (base == error_mark_node || maxindex == error_mark_node)
3689     return error_mark_node;
3690 
3691   if (!COMPLETE_TYPE_P (type))
3692     {
3693       if ((complain & tf_warning)
3694 	  && warning (OPT_Wdelete_incomplete,
3695 		      "possible problem detected in invocation of "
3696 		      "delete [] operator:"))
3697        {
3698          cxx_incomplete_type_diagnostic (base, type, DK_WARNING);
3699          inform (input_location, "neither the destructor nor the "
3700                  "class-specific operator delete [] will be called, "
3701                  "even if they are declared when the class is defined");
3702        }
3703       /* This size won't actually be used.  */
3704       size_exp = size_one_node;
3705       goto no_destructor;
3706     }
3707 
3708   size_exp = size_in_bytes (type);
3709 
3710   if (! MAYBE_CLASS_TYPE_P (type))
3711     goto no_destructor;
3712   else if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3713     {
3714       /* Make sure the destructor is callable.  */
3715       if (type_build_dtor_call (type))
3716 	{
3717 	  tmp = build_delete (ptype, base, sfk_complete_destructor,
3718 			      LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3719 			      complain);
3720 	  if (tmp == error_mark_node)
3721 	    return error_mark_node;
3722 	}
3723       goto no_destructor;
3724     }
3725 
3726   /* The below is short by the cookie size.  */
3727   virtual_size = size_binop (MULT_EXPR, size_exp,
3728 			     fold_convert (sizetype, maxindex));
3729 
3730   tbase = create_temporary_var (ptype);
3731   tbase_init
3732     = cp_build_modify_expr (input_location, tbase, NOP_EXPR,
3733 			    fold_build_pointer_plus_loc (input_location,
3734 							 fold_convert (ptype,
3735 								       base),
3736 							 virtual_size),
3737 			    complain);
3738   if (tbase_init == error_mark_node)
3739     return error_mark_node;
3740   controller = build3 (BIND_EXPR, void_type_node, tbase,
3741 		       NULL_TREE, NULL_TREE);
3742   TREE_SIDE_EFFECTS (controller) = 1;
3743 
3744   body = build1 (EXIT_EXPR, void_type_node,
3745 		 build2 (EQ_EXPR, boolean_type_node, tbase,
3746 			 fold_convert (ptype, base)));
3747   tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp);
3748   tmp = fold_build_pointer_plus (tbase, tmp);
3749   tmp = cp_build_modify_expr (input_location, tbase, NOP_EXPR, tmp, complain);
3750   if (tmp == error_mark_node)
3751     return error_mark_node;
3752   body = build_compound_expr (input_location, body, tmp);
3753   tmp = build_delete (ptype, tbase, sfk_complete_destructor,
3754 		      LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3755 		      complain);
3756   if (tmp == error_mark_node)
3757     return error_mark_node;
3758   body = build_compound_expr (input_location, body, tmp);
3759 
3760   loop = build1 (LOOP_EXPR, void_type_node, body);
3761   loop = build_compound_expr (input_location, tbase_init, loop);
3762 
3763  no_destructor:
3764   /* Delete the storage if appropriate.  */
3765   if (auto_delete_vec == sfk_deleting_destructor)
3766     {
3767       tree base_tbd;
3768 
3769       /* The below is short by the cookie size.  */
3770       virtual_size = size_binop (MULT_EXPR, size_exp,
3771 				 fold_convert (sizetype, maxindex));
3772 
3773       if (! TYPE_VEC_NEW_USES_COOKIE (type))
3774 	/* no header */
3775 	base_tbd = base;
3776       else
3777 	{
3778 	  tree cookie_size;
3779 
3780 	  cookie_size = targetm.cxx.get_cookie_size (type);
3781 	  base_tbd = cp_build_binary_op (input_location,
3782 					 MINUS_EXPR,
3783 					 cp_convert (string_type_node,
3784 						     base, complain),
3785 					 cookie_size,
3786 					 complain);
3787 	  if (base_tbd == error_mark_node)
3788 	    return error_mark_node;
3789 	  base_tbd = cp_convert (ptype, base_tbd, complain);
3790 	  /* True size with header.  */
3791 	  virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
3792 	}
3793 
3794       deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
3795 					      base_tbd, virtual_size,
3796 					      use_global_delete & 1,
3797 					      /*placement=*/NULL_TREE,
3798 					      /*alloc_fn=*/NULL_TREE,
3799 					      complain);
3800     }
3801 
3802   body = loop;
3803   if (!deallocate_expr)
3804     ;
3805   else if (!body)
3806     body = deallocate_expr;
3807   else
3808     /* The delete operator mist be called, even if a destructor
3809        throws.  */
3810     body = build2 (TRY_FINALLY_EXPR, void_type_node, body, deallocate_expr);
3811 
3812   if (!body)
3813     body = integer_zero_node;
3814 
3815   /* Outermost wrapper: If pointer is null, punt.  */
3816   tree cond = build2_loc (input_location, NE_EXPR, boolean_type_node, base,
3817 			  fold_convert (TREE_TYPE (base), nullptr_node));
3818   /* This is a compiler generated comparison, don't emit
3819      e.g. -Wnonnull-compare warning for it.  */
3820   TREE_NO_WARNING (cond) = 1;
3821   body = build3_loc (input_location, COND_EXPR, void_type_node,
3822 		     cond, body, integer_zero_node);
3823   COND_EXPR_IS_VEC_DELETE (body) = true;
3824   body = build1 (NOP_EXPR, void_type_node, body);
3825 
3826   if (controller)
3827     {
3828       TREE_OPERAND (controller, 1) = body;
3829       body = controller;
3830     }
3831 
3832   if (TREE_CODE (base) == SAVE_EXPR)
3833     /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR.  */
3834     body = build2 (COMPOUND_EXPR, void_type_node, base, body);
3835 
3836   return convert_to_void (body, ICV_CAST, complain);
3837 }
3838 
3839 /* Create an unnamed variable of the indicated TYPE.  */
3840 
3841 tree
3842 create_temporary_var (tree type)
3843 {
3844   tree decl;
3845 
3846   decl = build_decl (input_location,
3847 		     VAR_DECL, NULL_TREE, type);
3848   TREE_USED (decl) = 1;
3849   DECL_ARTIFICIAL (decl) = 1;
3850   DECL_IGNORED_P (decl) = 1;
3851   DECL_CONTEXT (decl) = current_function_decl;
3852 
3853   return decl;
3854 }
3855 
3856 /* Create a new temporary variable of the indicated TYPE, initialized
3857    to INIT.
3858 
3859    It is not entered into current_binding_level, because that breaks
3860    things when it comes time to do final cleanups (which take place
3861    "outside" the binding contour of the function).  */
3862 
3863 tree
3864 get_temp_regvar (tree type, tree init)
3865 {
3866   tree decl;
3867 
3868   decl = create_temporary_var (type);
3869   add_decl_expr (decl);
3870 
3871   finish_expr_stmt (cp_build_modify_expr (input_location, decl, INIT_EXPR,
3872 					  init, tf_warning_or_error));
3873 
3874   return decl;
3875 }
3876 
3877 /* Subroutine of build_vec_init.  Returns true if assigning to an array of
3878    INNER_ELT_TYPE from INIT is trivial.  */
3879 
3880 static bool
3881 vec_copy_assign_is_trivial (tree inner_elt_type, tree init)
3882 {
3883   tree fromtype = inner_elt_type;
3884   if (lvalue_p (init))
3885     fromtype = cp_build_reference_type (fromtype, /*rval*/false);
3886   return is_trivially_xible (MODIFY_EXPR, inner_elt_type, fromtype);
3887 }
3888 
3889 /* Subroutine of build_vec_init: Check that the array has at least N
3890    elements.  Other parameters are local variables in build_vec_init.  */
3891 
3892 void
3893 finish_length_check (tree atype, tree iterator, tree obase, unsigned n)
3894 {
3895   tree nelts = build_int_cst (ptrdiff_type_node, n - 1);
3896   if (TREE_CODE (atype) != ARRAY_TYPE)
3897     {
3898       if (flag_exceptions)
3899 	{
3900 	  tree c = fold_build2 (LT_EXPR, boolean_type_node, iterator,
3901 				nelts);
3902 	  c = build3 (COND_EXPR, void_type_node, c,
3903 		      throw_bad_array_new_length (), void_node);
3904 	  finish_expr_stmt (c);
3905 	}
3906       /* Don't check an array new when -fno-exceptions.  */
3907     }
3908   else if (flag_sanitize & SANITIZE_BOUNDS
3909 	   && do_ubsan_in_current_function ())
3910     {
3911       /* Make sure the last element of the initializer is in bounds. */
3912       finish_expr_stmt
3913 	(ubsan_instrument_bounds
3914 	 (input_location, obase, &nelts, /*ignore_off_by_one*/false));
3915     }
3916 }
3917 
3918 /* `build_vec_init' returns tree structure that performs
3919    initialization of a vector of aggregate types.
3920 
3921    BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
3922      to the first element, of POINTER_TYPE.
3923    MAXINDEX is the maximum index of the array (one less than the
3924      number of elements).  It is only used if BASE is a pointer or
3925      TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
3926 
3927    INIT is the (possibly NULL) initializer.
3928 
3929    If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL.  All
3930    elements in the array are value-initialized.
3931 
3932    FROM_ARRAY is 0 if we should init everything with INIT
3933    (i.e., every element initialized from INIT).
3934    FROM_ARRAY is 1 if we should index into INIT in parallel
3935    with initialization of DECL.
3936    FROM_ARRAY is 2 if we should index into INIT in parallel,
3937    but use assignment instead of initialization.  */
3938 
3939 tree
3940 build_vec_init (tree base, tree maxindex, tree init,
3941 		bool explicit_value_init_p,
3942 		int from_array, tsubst_flags_t complain)
3943 {
3944   tree rval;
3945   tree base2 = NULL_TREE;
3946   tree itype = NULL_TREE;
3947   tree iterator;
3948   /* The type of BASE.  */
3949   tree atype = TREE_TYPE (base);
3950   /* The type of an element in the array.  */
3951   tree type = TREE_TYPE (atype);
3952   /* The element type reached after removing all outer array
3953      types.  */
3954   tree inner_elt_type;
3955   /* The type of a pointer to an element in the array.  */
3956   tree ptype;
3957   tree stmt_expr;
3958   tree compound_stmt;
3959   int destroy_temps;
3960   tree try_block = NULL_TREE;
3961   int num_initialized_elts = 0;
3962   bool is_global;
3963   tree obase = base;
3964   bool xvalue = false;
3965   bool errors = false;
3966   location_t loc = (init ? EXPR_LOC_OR_LOC (init, input_location)
3967 		    : location_of (base));
3968 
3969   if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
3970     maxindex = array_type_nelts (atype);
3971 
3972   if (maxindex == NULL_TREE || maxindex == error_mark_node)
3973     return error_mark_node;
3974 
3975   maxindex = maybe_constant_value (maxindex);
3976   if (explicit_value_init_p)
3977     gcc_assert (!init);
3978 
3979   inner_elt_type = strip_array_types (type);
3980 
3981   /* Look through the TARGET_EXPR around a compound literal.  */
3982   if (init && TREE_CODE (init) == TARGET_EXPR
3983       && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
3984       && from_array != 2)
3985     init = TARGET_EXPR_INITIAL (init);
3986 
3987   bool direct_init = false;
3988   if (from_array && init && BRACE_ENCLOSED_INITIALIZER_P (init)
3989       && CONSTRUCTOR_NELTS (init) == 1)
3990     {
3991       tree elt = CONSTRUCTOR_ELT (init, 0)->value;
3992       if (TREE_CODE (TREE_TYPE (elt)) == ARRAY_TYPE)
3993 	{
3994 	  direct_init = DIRECT_LIST_INIT_P (init);
3995 	  init = elt;
3996 	}
3997     }
3998 
3999   /* If we have a braced-init-list or string constant, make sure that the array
4000      is big enough for all the initializers.  */
4001   bool length_check = (init
4002 		       && (TREE_CODE (init) == STRING_CST
4003 			   || (TREE_CODE (init) == CONSTRUCTOR
4004 			       && CONSTRUCTOR_NELTS (init) > 0))
4005 		       && !TREE_CONSTANT (maxindex));
4006 
4007   if (init
4008       && TREE_CODE (atype) == ARRAY_TYPE
4009       && TREE_CONSTANT (maxindex)
4010       && (from_array == 2
4011 	  ? vec_copy_assign_is_trivial (inner_elt_type, init)
4012 	  : !TYPE_NEEDS_CONSTRUCTING (type))
4013       && ((TREE_CODE (init) == CONSTRUCTOR
4014 	   && (BRACE_ENCLOSED_INITIALIZER_P (init)
4015 	       || (same_type_ignoring_top_level_qualifiers_p
4016 		   (atype, TREE_TYPE (init))))
4017 	   /* Don't do this if the CONSTRUCTOR might contain something
4018 	      that might throw and require us to clean up.  */
4019 	   && (vec_safe_is_empty (CONSTRUCTOR_ELTS (init))
4020 	       || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
4021 	  || from_array))
4022     {
4023       /* Do non-default initialization of trivial arrays resulting from
4024 	 brace-enclosed initializers.  In this case, digest_init and
4025 	 store_constructor will handle the semantics for us.  */
4026 
4027       if (BRACE_ENCLOSED_INITIALIZER_P (init))
4028 	init = digest_init (atype, init, complain);
4029       stmt_expr = build2 (INIT_EXPR, atype, base, init);
4030       return stmt_expr;
4031     }
4032 
4033   maxindex = cp_convert (ptrdiff_type_node, maxindex, complain);
4034   maxindex = fold_simple (maxindex);
4035 
4036   if (TREE_CODE (atype) == ARRAY_TYPE)
4037     {
4038       ptype = build_pointer_type (type);
4039       base = decay_conversion (base, complain);
4040       if (base == error_mark_node)
4041 	return error_mark_node;
4042       base = cp_convert (ptype, base, complain);
4043     }
4044   else
4045     ptype = atype;
4046 
4047   /* The code we are generating looks like:
4048      ({
4049        T* t1 = (T*) base;
4050        T* rval = t1;
4051        ptrdiff_t iterator = maxindex;
4052        try {
4053 	 for (; iterator != -1; --iterator) {
4054 	   ... initialize *t1 ...
4055 	   ++t1;
4056 	 }
4057        } catch (...) {
4058 	 ... destroy elements that were constructed ...
4059        }
4060        rval;
4061      })
4062 
4063      We can omit the try and catch blocks if we know that the
4064      initialization will never throw an exception, or if the array
4065      elements do not have destructors.  We can omit the loop completely if
4066      the elements of the array do not have constructors.
4067 
4068      We actually wrap the entire body of the above in a STMT_EXPR, for
4069      tidiness.
4070 
4071      When copying from array to another, when the array elements have
4072      only trivial copy constructors, we should use __builtin_memcpy
4073      rather than generating a loop.  That way, we could take advantage
4074      of whatever cleverness the back end has for dealing with copies
4075      of blocks of memory.  */
4076 
4077   is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
4078   destroy_temps = stmts_are_full_exprs_p ();
4079   current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4080   rval = get_temp_regvar (ptype, base);
4081   base = get_temp_regvar (ptype, rval);
4082   iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
4083 
4084   /* If initializing one array from another, initialize element by
4085      element.  We rely upon the below calls to do the argument
4086      checking.  Evaluate the initializer before entering the try block.  */
4087   if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
4088     {
4089       if (lvalue_kind (init) & clk_rvalueref)
4090 	xvalue = true;
4091       base2 = decay_conversion (init, complain);
4092       if (base2 == error_mark_node)
4093 	return error_mark_node;
4094       itype = TREE_TYPE (base2);
4095       base2 = get_temp_regvar (itype, base2);
4096       itype = TREE_TYPE (itype);
4097     }
4098 
4099   /* Protect the entire array initialization so that we can destroy
4100      the partially constructed array if an exception is thrown.
4101      But don't do this if we're assigning.  */
4102   if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
4103       && from_array != 2)
4104     {
4105       try_block = begin_try_block ();
4106     }
4107 
4108   /* Should we try to create a constant initializer?  */
4109   bool try_const = (TREE_CODE (atype) == ARRAY_TYPE
4110 		    && TREE_CONSTANT (maxindex)
4111 		    && (init ? TREE_CODE (init) == CONSTRUCTOR
4112 			: (type_has_constexpr_default_constructor
4113 			   (inner_elt_type)))
4114 		    && (literal_type_p (inner_elt_type)
4115 			|| TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type)));
4116   vec<constructor_elt, va_gc> *const_vec = NULL;
4117   bool saw_non_const = false;
4118   /* If we're initializing a static array, we want to do static
4119      initialization of any elements with constant initializers even if
4120      some are non-constant.  */
4121   bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase));
4122 
4123   bool empty_list = false;
4124   if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
4125       && CONSTRUCTOR_NELTS (init) == 0)
4126     /* Skip over the handling of non-empty init lists.  */
4127     empty_list = true;
4128 
4129   /* Maybe pull out constant value when from_array? */
4130 
4131   else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
4132     {
4133       /* Do non-default initialization of non-trivial arrays resulting from
4134 	 brace-enclosed initializers.  */
4135       unsigned HOST_WIDE_INT idx;
4136       tree field, elt;
4137       /* If the constructor already has the array type, it's been through
4138 	 digest_init, so we shouldn't try to do anything more.  */
4139       bool digested = same_type_p (atype, TREE_TYPE (init));
4140       from_array = 0;
4141 
4142       if (length_check)
4143 	finish_length_check (atype, iterator, obase, CONSTRUCTOR_NELTS (init));
4144 
4145       if (try_const)
4146 	vec_alloc (const_vec, CONSTRUCTOR_NELTS (init));
4147 
4148       FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
4149 	{
4150 	  tree baseref = build1 (INDIRECT_REF, type, base);
4151 	  tree one_init;
4152 
4153 	  num_initialized_elts++;
4154 
4155 	  current_stmt_tree ()->stmts_are_full_exprs_p = 1;
4156 	  if (digested)
4157 	    one_init = build2 (INIT_EXPR, type, baseref, elt);
4158 	  else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
4159 	    one_init = build_aggr_init (baseref, elt, 0, complain);
4160 	  else
4161 	    one_init = cp_build_modify_expr (input_location, baseref,
4162 					     NOP_EXPR, elt, complain);
4163 	  if (one_init == error_mark_node)
4164 	    errors = true;
4165 	  if (try_const)
4166 	    {
4167 	      tree e = maybe_constant_init (one_init);
4168 	      if (reduced_constant_expression_p (e))
4169 		{
4170 		  CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
4171 		  if (do_static_init)
4172 		    one_init = NULL_TREE;
4173 		  else
4174 		    one_init = build2 (INIT_EXPR, type, baseref, e);
4175 		}
4176 	      else
4177 		{
4178 		  if (do_static_init)
4179 		    {
4180 		      tree value = build_zero_init (TREE_TYPE (e), NULL_TREE,
4181 						    true);
4182 		      if (value)
4183 			CONSTRUCTOR_APPEND_ELT (const_vec, field, value);
4184 		    }
4185 		  saw_non_const = true;
4186 		}
4187 	    }
4188 
4189 	  if (one_init)
4190 	    finish_expr_stmt (one_init);
4191 	  current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4192 
4193 	  one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, false,
4194 					complain);
4195 	  if (one_init == error_mark_node)
4196 	    errors = true;
4197 	  else
4198 	    finish_expr_stmt (one_init);
4199 
4200 	  one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false,
4201 					complain);
4202 	  if (one_init == error_mark_node)
4203 	    errors = true;
4204 	  else
4205 	    finish_expr_stmt (one_init);
4206 	}
4207 
4208       /* Any elements without explicit initializers get T{}.  */
4209       empty_list = true;
4210     }
4211   else if (init && TREE_CODE (init) == STRING_CST)
4212     {
4213       /* Check that the array is at least as long as the string.  */
4214       if (length_check)
4215 	finish_length_check (atype, iterator, obase,
4216 			     TREE_STRING_LENGTH (init));
4217       tree length = build_int_cst (ptrdiff_type_node,
4218 				   TREE_STRING_LENGTH (init));
4219 
4220       /* Copy the string to the first part of the array.  */
4221       tree alias_set = build_int_cst (build_pointer_type (type), 0);
4222       tree lhs = build2 (MEM_REF, TREE_TYPE (init), base, alias_set);
4223       tree stmt = build2 (MODIFY_EXPR, void_type_node, lhs, init);
4224       finish_expr_stmt (stmt);
4225 
4226       /* Adjust the counter and pointer.  */
4227       stmt = cp_build_binary_op (loc, MINUS_EXPR, iterator, length, complain);
4228       stmt = build2 (MODIFY_EXPR, void_type_node, iterator, stmt);
4229       finish_expr_stmt (stmt);
4230 
4231       stmt = cp_build_binary_op (loc, PLUS_EXPR, base, length, complain);
4232       stmt = build2 (MODIFY_EXPR, void_type_node, base, stmt);
4233       finish_expr_stmt (stmt);
4234 
4235       /* And set the rest of the array to NUL.  */
4236       from_array = 0;
4237       explicit_value_init_p = true;
4238     }
4239   else if (from_array)
4240     {
4241       if (init)
4242 	/* OK, we set base2 above.  */;
4243       else if (CLASS_TYPE_P (type)
4244 	       && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
4245 	{
4246           if (complain & tf_error)
4247             error ("initializer ends prematurely");
4248 	  errors = true;
4249 	}
4250     }
4251 
4252   /* Now, default-initialize any remaining elements.  We don't need to
4253      do that if a) the type does not need constructing, or b) we've
4254      already initialized all the elements.
4255 
4256      We do need to keep going if we're copying an array.  */
4257 
4258   if (try_const && !init)
4259     /* With a constexpr default constructor, which we checked for when
4260        setting try_const above, default-initialization is equivalent to
4261        value-initialization, and build_value_init gives us something more
4262        friendly to maybe_constant_init.  */
4263     explicit_value_init_p = true;
4264   if (from_array
4265       || ((type_build_ctor_call (type) || init || explicit_value_init_p)
4266 	  && ! (tree_fits_shwi_p (maxindex)
4267 		&& (num_initialized_elts
4268 		    == tree_to_shwi (maxindex) + 1))))
4269     {
4270       /* If the ITERATOR is lesser or equal to -1, then we don't have to loop;
4271 	 we've already initialized all the elements.  */
4272       tree for_stmt;
4273       tree elt_init;
4274       tree to;
4275 
4276       for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE);
4277       finish_init_stmt (for_stmt);
4278       finish_for_cond (build2 (GT_EXPR, boolean_type_node, iterator,
4279 			       build_int_cst (TREE_TYPE (iterator), -1)),
4280 		       for_stmt, false);
4281       elt_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false,
4282 				    complain);
4283       if (elt_init == error_mark_node)
4284 	errors = true;
4285       finish_for_expr (elt_init, for_stmt);
4286 
4287       to = build1 (INDIRECT_REF, type, base);
4288 
4289       /* If the initializer is {}, then all elements are initialized from T{}.
4290 	 But for non-classes, that's the same as value-initialization.  */
4291       if (empty_list)
4292 	{
4293 	  if (cxx_dialect >= cxx11 && AGGREGATE_TYPE_P (type))
4294 	    {
4295 	      init = build_constructor (init_list_type_node, NULL);
4296 	    }
4297 	  else
4298 	    {
4299 	      init = NULL_TREE;
4300 	      explicit_value_init_p = true;
4301 	    }
4302 	}
4303 
4304       if (from_array)
4305 	{
4306 	  tree from;
4307 
4308 	  if (base2)
4309 	    {
4310 	      from = build1 (INDIRECT_REF, itype, base2);
4311 	      if (xvalue)
4312 		from = move (from);
4313 	      if (direct_init)
4314 		from = build_tree_list (NULL_TREE, from);
4315 	    }
4316 	  else
4317 	    from = NULL_TREE;
4318 
4319 	  if (from_array == 2)
4320 	    elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR,
4321 					     from, complain);
4322 	  else if (type_build_ctor_call (type))
4323 	    elt_init = build_aggr_init (to, from, 0, complain);
4324 	  else if (from)
4325 	    elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR, from,
4326 					     complain);
4327 	  else
4328 	    gcc_unreachable ();
4329 	}
4330       else if (TREE_CODE (type) == ARRAY_TYPE)
4331 	{
4332 	  if (init && !BRACE_ENCLOSED_INITIALIZER_P (init))
4333 	    sorry
4334 	      ("cannot initialize multi-dimensional array with initializer");
4335 	  elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
4336 				     0, init,
4337 				     explicit_value_init_p,
4338 				     0, complain);
4339 	}
4340       else if (explicit_value_init_p)
4341 	{
4342 	  elt_init = build_value_init (type, complain);
4343 	  if (elt_init != error_mark_node)
4344 	    elt_init = build2 (INIT_EXPR, type, to, elt_init);
4345 	}
4346       else
4347 	{
4348 	  gcc_assert (type_build_ctor_call (type) || init);
4349 	  if (CLASS_TYPE_P (type))
4350 	    elt_init = build_aggr_init (to, init, 0, complain);
4351 	  else
4352 	    {
4353 	      if (TREE_CODE (init) == TREE_LIST)
4354 		init = build_x_compound_expr_from_list (init, ELK_INIT,
4355 							complain);
4356 	      elt_init = build2 (INIT_EXPR, type, to, init);
4357 	    }
4358 	}
4359 
4360       if (elt_init == error_mark_node)
4361 	errors = true;
4362 
4363       if (try_const)
4364 	{
4365 	  /* FIXME refs to earlier elts */
4366 	  tree e = maybe_constant_init (elt_init);
4367 	  if (reduced_constant_expression_p (e))
4368 	    {
4369 	      if (initializer_zerop (e))
4370 		/* Don't fill the CONSTRUCTOR with zeros.  */
4371 		e = NULL_TREE;
4372 	      if (do_static_init)
4373 		elt_init = NULL_TREE;
4374 	    }
4375 	  else
4376 	    {
4377 	      saw_non_const = true;
4378 	      if (do_static_init)
4379 		e = build_zero_init (TREE_TYPE (e), NULL_TREE, true);
4380 	      else
4381 		e = NULL_TREE;
4382 	    }
4383 
4384 	  if (e)
4385 	    {
4386 	      int max = tree_to_shwi (maxindex)+1;
4387 	      for (; num_initialized_elts < max; ++num_initialized_elts)
4388 		{
4389 		  tree field = size_int (num_initialized_elts);
4390 		  CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
4391 		}
4392 	    }
4393 	}
4394 
4395       current_stmt_tree ()->stmts_are_full_exprs_p = 1;
4396       if (elt_init)
4397 	finish_expr_stmt (elt_init);
4398       current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4399 
4400       finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, false,
4401                                            complain));
4402       if (base2)
4403 	finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, false,
4404                                              complain));
4405 
4406       finish_for_stmt (for_stmt);
4407     }
4408 
4409   /* Make sure to cleanup any partially constructed elements.  */
4410   if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
4411       && from_array != 2)
4412     {
4413       tree e;
4414       tree m = cp_build_binary_op (input_location,
4415 				   MINUS_EXPR, maxindex, iterator,
4416 				   complain);
4417 
4418       /* Flatten multi-dimensional array since build_vec_delete only
4419 	 expects one-dimensional array.  */
4420       if (TREE_CODE (type) == ARRAY_TYPE)
4421 	m = cp_build_binary_op (input_location,
4422 				MULT_EXPR, m,
4423 				/* Avoid mixing signed and unsigned.  */
4424 				convert (TREE_TYPE (m),
4425 					 array_type_nelts_total (type)),
4426 				complain);
4427 
4428       finish_cleanup_try_block (try_block);
4429       e = build_vec_delete_1 (rval, m,
4430 			      inner_elt_type, sfk_complete_destructor,
4431 			      /*use_global_delete=*/0, complain);
4432       if (e == error_mark_node)
4433 	errors = true;
4434       finish_cleanup (e, try_block);
4435     }
4436 
4437   /* The value of the array initialization is the array itself, RVAL
4438      is a pointer to the first element.  */
4439   finish_stmt_expr_expr (rval, stmt_expr);
4440 
4441   stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
4442 
4443   current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
4444 
4445   if (errors)
4446     return error_mark_node;
4447 
4448   if (try_const)
4449     {
4450       if (!saw_non_const)
4451 	{
4452 	  tree const_init = build_constructor (atype, const_vec);
4453 	  return build2 (INIT_EXPR, atype, obase, const_init);
4454 	}
4455       else if (do_static_init && !vec_safe_is_empty (const_vec))
4456 	DECL_INITIAL (obase) = build_constructor (atype, const_vec);
4457       else
4458 	vec_free (const_vec);
4459     }
4460 
4461   /* Now make the result have the correct type.  */
4462   if (TREE_CODE (atype) == ARRAY_TYPE)
4463     {
4464       atype = build_pointer_type (atype);
4465       stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
4466       stmt_expr = cp_build_indirect_ref (stmt_expr, RO_NULL, complain);
4467       TREE_NO_WARNING (stmt_expr) = 1;
4468     }
4469 
4470   return stmt_expr;
4471 }
4472 
4473 /* Call the DTOR_KIND destructor for EXP.  FLAGS are as for
4474    build_delete.  */
4475 
4476 static tree
4477 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags,
4478 		 tsubst_flags_t complain)
4479 {
4480   tree name;
4481   tree fn;
4482   switch (dtor_kind)
4483     {
4484     case sfk_complete_destructor:
4485       name = complete_dtor_identifier;
4486       break;
4487 
4488     case sfk_base_destructor:
4489       name = base_dtor_identifier;
4490       break;
4491 
4492     case sfk_deleting_destructor:
4493       name = deleting_dtor_identifier;
4494       break;
4495 
4496     default:
4497       gcc_unreachable ();
4498     }
4499   fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
4500   return build_new_method_call (exp, fn,
4501 				/*args=*/NULL,
4502 				/*conversion_path=*/NULL_TREE,
4503 				flags,
4504 				/*fn_p=*/NULL,
4505 				complain);
4506 }
4507 
4508 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
4509    ADDR is an expression which yields the store to be destroyed.
4510    AUTO_DELETE is the name of the destructor to call, i.e., either
4511    sfk_complete_destructor, sfk_base_destructor, or
4512    sfk_deleting_destructor.
4513 
4514    FLAGS is the logical disjunction of zero or more LOOKUP_
4515    flags.  See cp-tree.h for more info.  */
4516 
4517 tree
4518 build_delete (tree otype, tree addr, special_function_kind auto_delete,
4519 	      int flags, int use_global_delete, tsubst_flags_t complain)
4520 {
4521   tree expr;
4522 
4523   if (addr == error_mark_node)
4524     return error_mark_node;
4525 
4526   tree type = TYPE_MAIN_VARIANT (otype);
4527 
4528   /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
4529      set to `error_mark_node' before it gets properly cleaned up.  */
4530   if (type == error_mark_node)
4531     return error_mark_node;
4532 
4533   if (TREE_CODE (type) == POINTER_TYPE)
4534     type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4535 
4536   if (TREE_CODE (type) == ARRAY_TYPE)
4537     {
4538       if (TYPE_DOMAIN (type) == NULL_TREE)
4539 	{
4540 	  if (complain & tf_error)
4541 	    error ("unknown array size in delete");
4542 	  return error_mark_node;
4543 	}
4544       return build_vec_delete (addr, array_type_nelts (type),
4545 			       auto_delete, use_global_delete, complain);
4546     }
4547 
4548   if (TYPE_PTR_P (otype))
4549     {
4550       addr = mark_rvalue_use (addr);
4551 
4552       /* We don't want to warn about delete of void*, only other
4553 	  incomplete types.  Deleting other incomplete types
4554 	  invokes undefined behavior, but it is not ill-formed, so
4555 	  compile to something that would even do The Right Thing
4556 	  (TM) should the type have a trivial dtor and no delete
4557 	  operator.  */
4558       if (!VOID_TYPE_P (type))
4559 	{
4560 	  complete_type (type);
4561 	  if (!COMPLETE_TYPE_P (type))
4562 	    {
4563 	      if ((complain & tf_warning)
4564 		  && warning (OPT_Wdelete_incomplete,
4565 			      "possible problem detected in invocation of "
4566 			      "delete operator:"))
4567 		{
4568 		  cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
4569 		  inform (input_location,
4570 			  "neither the destructor nor the class-specific "
4571 			  "operator delete will be called, even if they are "
4572 			  "declared when the class is defined");
4573 		}
4574 	    }
4575 	  else if (auto_delete == sfk_deleting_destructor && warn_delnonvdtor
4576 	           && MAYBE_CLASS_TYPE_P (type) && !CLASSTYPE_FINAL (type)
4577 		   && TYPE_POLYMORPHIC_P (type))
4578 	    {
4579 	      tree dtor;
4580 	      dtor = CLASSTYPE_DESTRUCTORS (type);
4581 	      if (!dtor || !DECL_VINDEX (dtor))
4582 		{
4583 		  if (CLASSTYPE_PURE_VIRTUALS (type))
4584 		    warning (OPT_Wdelete_non_virtual_dtor,
4585 			     "deleting object of abstract class type %qT"
4586 			     " which has non-virtual destructor"
4587 			     " will cause undefined behavior", type);
4588 		  else
4589 		    warning (OPT_Wdelete_non_virtual_dtor,
4590 			     "deleting object of polymorphic class type %qT"
4591 			     " which has non-virtual destructor"
4592 			     " might cause undefined behavior", type);
4593 		}
4594 	    }
4595 	}
4596       if (TREE_SIDE_EFFECTS (addr))
4597 	addr = save_expr (addr);
4598 
4599       /* Throw away const and volatile on target type of addr.  */
4600       addr = convert_force (build_pointer_type (type), addr, 0, complain);
4601     }
4602   else
4603     {
4604       /* Don't check PROTECT here; leave that decision to the
4605 	 destructor.  If the destructor is accessible, call it,
4606 	 else report error.  */
4607       addr = cp_build_addr_expr (addr, complain);
4608       if (addr == error_mark_node)
4609 	return error_mark_node;
4610       if (TREE_SIDE_EFFECTS (addr))
4611 	addr = save_expr (addr);
4612 
4613       addr = convert_force (build_pointer_type (type), addr, 0, complain);
4614     }
4615 
4616   if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
4617     {
4618       /* Make sure the destructor is callable.  */
4619       if (type_build_dtor_call (type))
4620 	{
4621 	  expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL,
4622 							 complain),
4623 				  sfk_complete_destructor, flags, complain);
4624 	  if (expr == error_mark_node)
4625 	    return error_mark_node;
4626 	}
4627 
4628       if (auto_delete != sfk_deleting_destructor)
4629 	return void_node;
4630 
4631       return build_op_delete_call (DELETE_EXPR, addr,
4632 				   cxx_sizeof_nowarn (type),
4633 				   use_global_delete,
4634 				   /*placement=*/NULL_TREE,
4635 				   /*alloc_fn=*/NULL_TREE,
4636 				   complain);
4637     }
4638   else
4639     {
4640       tree head = NULL_TREE;
4641       tree do_delete = NULL_TREE;
4642       tree ifexp;
4643 
4644       if (CLASSTYPE_LAZY_DESTRUCTOR (type))
4645 	lazily_declare_fn (sfk_destructor, type);
4646 
4647       /* For `::delete x', we must not use the deleting destructor
4648 	 since then we would not be sure to get the global `operator
4649 	 delete'.  */
4650       if (use_global_delete && auto_delete == sfk_deleting_destructor)
4651 	{
4652 	  /* We will use ADDR multiple times so we must save it.  */
4653 	  addr = save_expr (addr);
4654 	  head = get_target_expr (build_headof (addr));
4655 	  /* Delete the object.  */
4656 	  do_delete = build_op_delete_call (DELETE_EXPR,
4657 					    head,
4658 					    cxx_sizeof_nowarn (type),
4659 					    /*global_p=*/true,
4660 					    /*placement=*/NULL_TREE,
4661 					    /*alloc_fn=*/NULL_TREE,
4662 					    complain);
4663 	  /* Otherwise, treat this like a complete object destructor
4664 	     call.  */
4665 	  auto_delete = sfk_complete_destructor;
4666 	}
4667       /* If the destructor is non-virtual, there is no deleting
4668 	 variant.  Instead, we must explicitly call the appropriate
4669 	 `operator delete' here.  */
4670       else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
4671 	       && auto_delete == sfk_deleting_destructor)
4672 	{
4673 	  /* We will use ADDR multiple times so we must save it.  */
4674 	  addr = save_expr (addr);
4675 	  /* Build the call.  */
4676 	  do_delete = build_op_delete_call (DELETE_EXPR,
4677 					    addr,
4678 					    cxx_sizeof_nowarn (type),
4679 					    /*global_p=*/false,
4680 					    /*placement=*/NULL_TREE,
4681 					    /*alloc_fn=*/NULL_TREE,
4682 					    complain);
4683 	  /* Call the complete object destructor.  */
4684 	  auto_delete = sfk_complete_destructor;
4685 	}
4686       else if (auto_delete == sfk_deleting_destructor
4687 	       && TYPE_GETS_REG_DELETE (type))
4688 	{
4689 	  /* Make sure we have access to the member op delete, even though
4690 	     we'll actually be calling it from the destructor.  */
4691 	  build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
4692 				/*global_p=*/false,
4693 				/*placement=*/NULL_TREE,
4694 				/*alloc_fn=*/NULL_TREE,
4695 				complain);
4696 	}
4697 
4698       expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL, complain),
4699 			      auto_delete, flags, complain);
4700       if (expr == error_mark_node)
4701 	return error_mark_node;
4702       if (do_delete)
4703 	/* The delete operator must be called, regardless of whether
4704 	   the destructor throws.
4705 
4706 	   [expr.delete]/7 The deallocation function is called
4707 	   regardless of whether the destructor for the object or some
4708 	   element of the array throws an exception.  */
4709 	expr = build2 (TRY_FINALLY_EXPR, void_type_node, expr, do_delete);
4710 
4711       /* We need to calculate this before the dtor changes the vptr.  */
4712       if (head)
4713 	expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
4714 
4715       if (flags & LOOKUP_DESTRUCTOR)
4716 	/* Explicit destructor call; don't check for null pointer.  */
4717 	ifexp = integer_one_node;
4718       else
4719 	{
4720 	  /* Handle deleting a null pointer.  */
4721 	  warning_sentinel s (warn_address);
4722 	  ifexp = cp_build_binary_op (input_location, NE_EXPR, addr,
4723 				      nullptr_node, complain);
4724 	  if (ifexp == error_mark_node)
4725 	    return error_mark_node;
4726 	  /* This is a compiler generated comparison, don't emit
4727 	     e.g. -Wnonnull-compare warning for it.  */
4728 	  else if (TREE_CODE (ifexp) == NE_EXPR)
4729 	    TREE_NO_WARNING (ifexp) = 1;
4730 	}
4731 
4732       if (ifexp != integer_one_node)
4733 	expr = build3 (COND_EXPR, void_type_node, ifexp, expr, void_node);
4734 
4735       return expr;
4736     }
4737 }
4738 
4739 /* At the beginning of a destructor, push cleanups that will call the
4740    destructors for our base classes and members.
4741 
4742    Called from begin_destructor_body.  */
4743 
4744 void
4745 push_base_cleanups (void)
4746 {
4747   tree binfo, base_binfo;
4748   int i;
4749   tree member;
4750   tree expr;
4751   vec<tree, va_gc> *vbases;
4752 
4753   /* Run destructors for all virtual baseclasses.  */
4754   if (!ABSTRACT_CLASS_TYPE_P (current_class_type)
4755       && CLASSTYPE_VBASECLASSES (current_class_type))
4756     {
4757       tree cond = (condition_conversion
4758 		   (build2 (BIT_AND_EXPR, integer_type_node,
4759 			    current_in_charge_parm,
4760 			    integer_two_node)));
4761 
4762       /* The CLASSTYPE_VBASECLASSES vector is in initialization
4763 	 order, which is also the right order for pushing cleanups.  */
4764       for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
4765 	   vec_safe_iterate (vbases, i, &base_binfo); i++)
4766 	{
4767 	  if (type_build_dtor_call (BINFO_TYPE (base_binfo)))
4768 	    {
4769 	      expr = build_special_member_call (current_class_ref,
4770 						base_dtor_identifier,
4771 						NULL,
4772 						base_binfo,
4773 						(LOOKUP_NORMAL
4774 						 | LOOKUP_NONVIRTUAL),
4775 						tf_warning_or_error);
4776 	      if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4777 		{
4778 		  expr = build3 (COND_EXPR, void_type_node, cond,
4779 				 expr, void_node);
4780 		  finish_decl_cleanup (NULL_TREE, expr);
4781 		}
4782 	    }
4783 	}
4784     }
4785 
4786   /* Take care of the remaining baseclasses.  */
4787   for (binfo = TYPE_BINFO (current_class_type), i = 0;
4788        BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
4789     {
4790       if (BINFO_VIRTUAL_P (base_binfo)
4791 	  || !type_build_dtor_call (BINFO_TYPE (base_binfo)))
4792 	continue;
4793 
4794       expr = build_special_member_call (current_class_ref,
4795 					base_dtor_identifier,
4796 					NULL, base_binfo,
4797 					LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
4798                                         tf_warning_or_error);
4799       if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4800 	finish_decl_cleanup (NULL_TREE, expr);
4801     }
4802 
4803   /* Don't automatically destroy union members.  */
4804   if (TREE_CODE (current_class_type) == UNION_TYPE)
4805     return;
4806 
4807   for (member = TYPE_FIELDS (current_class_type); member;
4808        member = DECL_CHAIN (member))
4809     {
4810       tree this_type = TREE_TYPE (member);
4811       if (this_type == error_mark_node
4812 	  || TREE_CODE (member) != FIELD_DECL
4813 	  || DECL_ARTIFICIAL (member))
4814 	continue;
4815       if (ANON_AGGR_TYPE_P (this_type))
4816 	continue;
4817       if (type_build_dtor_call (this_type))
4818 	{
4819 	  tree this_member = (build_class_member_access_expr
4820 			      (current_class_ref, member,
4821 			       /*access_path=*/NULL_TREE,
4822 			       /*preserve_reference=*/false,
4823 			       tf_warning_or_error));
4824 	  expr = build_delete (this_type, this_member,
4825 			       sfk_complete_destructor,
4826 			       LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
4827 			       0, tf_warning_or_error);
4828 	  if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type))
4829 	    finish_decl_cleanup (NULL_TREE, expr);
4830 	}
4831     }
4832 }
4833 
4834 /* Build a C++ vector delete expression.
4835    MAXINDEX is the number of elements to be deleted.
4836    ELT_SIZE is the nominal size of each element in the vector.
4837    BASE is the expression that should yield the store to be deleted.
4838    This function expands (or synthesizes) these calls itself.
4839    AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
4840 
4841    This also calls delete for virtual baseclasses of elements of the vector.
4842 
4843    Update: MAXINDEX is no longer needed.  The size can be extracted from the
4844    start of the vector for pointers, and from the type for arrays.  We still
4845    use MAXINDEX for arrays because it happens to already have one of the
4846    values we'd have to extract.  (We could use MAXINDEX with pointers to
4847    confirm the size, and trap if the numbers differ; not clear that it'd
4848    be worth bothering.)  */
4849 
4850 tree
4851 build_vec_delete (tree base, tree maxindex,
4852 		  special_function_kind auto_delete_vec,
4853 		  int use_global_delete, tsubst_flags_t complain)
4854 {
4855   tree type;
4856   tree rval;
4857   tree base_init = NULL_TREE;
4858 
4859   type = TREE_TYPE (base);
4860 
4861   if (TYPE_PTR_P (type))
4862     {
4863       /* Step back one from start of vector, and read dimension.  */
4864       tree cookie_addr;
4865       tree size_ptr_type = build_pointer_type (sizetype);
4866 
4867       base = mark_rvalue_use (base);
4868       if (TREE_SIDE_EFFECTS (base))
4869 	{
4870 	  base_init = get_target_expr (base);
4871 	  base = TARGET_EXPR_SLOT (base_init);
4872 	}
4873       type = strip_array_types (TREE_TYPE (type));
4874       cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR,
4875 				 sizetype, TYPE_SIZE_UNIT (sizetype));
4876       cookie_addr = fold_build_pointer_plus (fold_convert (size_ptr_type, base),
4877 					     cookie_addr);
4878       maxindex = cp_build_indirect_ref (cookie_addr, RO_NULL, complain);
4879     }
4880   else if (TREE_CODE (type) == ARRAY_TYPE)
4881     {
4882       /* Get the total number of things in the array, maxindex is a
4883 	 bad name.  */
4884       maxindex = array_type_nelts_total (type);
4885       type = strip_array_types (type);
4886       base = decay_conversion (base, complain);
4887       if (base == error_mark_node)
4888 	return error_mark_node;
4889       if (TREE_SIDE_EFFECTS (base))
4890 	{
4891 	  base_init = get_target_expr (base);
4892 	  base = TARGET_EXPR_SLOT (base_init);
4893 	}
4894     }
4895   else
4896     {
4897       if (base != error_mark_node && !(complain & tf_error))
4898 	error ("type to vector delete is neither pointer or array type");
4899       return error_mark_node;
4900     }
4901 
4902   rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
4903 			     use_global_delete, complain);
4904   if (base_init && rval != error_mark_node)
4905     rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
4906 
4907   return rval;
4908 }
4909