xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/cp/init.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Handle initialization things in C++.
2    Copyright (C) 1987-2015 Free Software Foundation, Inc.
3    Contributed by Michael Tiemann (tiemann@cygnus.com)
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 /* High-level class interface.  */
22 
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "hash-set.h"
28 #include "machmode.h"
29 #include "vec.h"
30 #include "double-int.h"
31 #include "input.h"
32 #include "alias.h"
33 #include "symtab.h"
34 #include "wide-int.h"
35 #include "inchash.h"
36 #include "tree.h"
37 #include "stringpool.h"
38 #include "varasm.h"
39 #include "cp-tree.h"
40 #include "flags.h"
41 #include "target.h"
42 #include "gimplify.h"
43 #include "wide-int.h"
44 #include "c-family/c-ubsan.h"
45 
46 static bool begin_init_stmts (tree *, tree *);
47 static tree finish_init_stmts (bool, tree, tree);
48 static void construct_virtual_base (tree, tree);
49 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
50 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
51 static void perform_member_init (tree, tree);
52 static int member_init_ok_or_else (tree, tree, tree);
53 static void expand_virtual_init (tree, tree);
54 static tree sort_mem_initializers (tree, tree);
55 static tree initializing_context (tree);
56 static void expand_cleanup_for_base (tree, tree);
57 static tree dfs_initialize_vtbl_ptrs (tree, void *);
58 static tree build_field_list (tree, tree, int *);
59 static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool);
60 
61 /* We are about to generate some complex initialization code.
62    Conceptually, it is all a single expression.  However, we may want
63    to include conditionals, loops, and other such statement-level
64    constructs.  Therefore, we build the initialization code inside a
65    statement-expression.  This function starts such an expression.
66    STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
67    pass them back to finish_init_stmts when the expression is
68    complete.  */
69 
70 static bool
71 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
72 {
73   bool is_global = !building_stmt_list_p ();
74 
75   *stmt_expr_p = begin_stmt_expr ();
76   *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
77 
78   return is_global;
79 }
80 
81 /* Finish out the statement-expression begun by the previous call to
82    begin_init_stmts.  Returns the statement-expression itself.  */
83 
84 static tree
85 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
86 {
87   finish_compound_stmt (compound_stmt);
88 
89   stmt_expr = finish_stmt_expr (stmt_expr, true);
90 
91   gcc_assert (!building_stmt_list_p () == is_global);
92 
93   return stmt_expr;
94 }
95 
96 /* Constructors */
97 
98 /* Called from initialize_vtbl_ptrs via dfs_walk.  BINFO is the base
99    which we want to initialize the vtable pointer for, DATA is
100    TREE_LIST whose TREE_VALUE is the this ptr expression.  */
101 
102 static tree
103 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
104 {
105   if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
106     return dfs_skip_bases;
107 
108   if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
109     {
110       tree base_ptr = TREE_VALUE ((tree) data);
111 
112       base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1,
113 				  tf_warning_or_error);
114 
115       expand_virtual_init (binfo, base_ptr);
116     }
117 
118   return NULL_TREE;
119 }
120 
121 /* Initialize all the vtable pointers in the object pointed to by
122    ADDR.  */
123 
124 void
125 initialize_vtbl_ptrs (tree addr)
126 {
127   tree list;
128   tree type;
129 
130   type = TREE_TYPE (TREE_TYPE (addr));
131   list = build_tree_list (type, addr);
132 
133   /* Walk through the hierarchy, initializing the vptr in each base
134      class.  We do these in pre-order because we can't find the virtual
135      bases for a class until we've initialized the vtbl for that
136      class.  */
137   dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
138 }
139 
140 /* Return an expression for the zero-initialization of an object with
141    type T.  This expression will either be a constant (in the case
142    that T is a scalar), or a CONSTRUCTOR (in the case that T is an
143    aggregate), or NULL (in the case that T does not require
144    initialization).  In either case, the value can be used as
145    DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
146    initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
147    is the number of elements in the array.  If STATIC_STORAGE_P is
148    TRUE, initializers are only generated for entities for which
149    zero-initialization does not simply mean filling the storage with
150    zero bytes.  FIELD_SIZE, if non-NULL, is the bit size of the field,
151    subfields with bit positions at or above that bit size shouldn't
152    be added.  Note that this only works when the result is assigned
153    to a base COMPONENT_REF; if we only have a pointer to the base subobject,
154    expand_assignment will end up clearing the full size of TYPE.  */
155 
156 static tree
157 build_zero_init_1 (tree type, tree nelts, bool static_storage_p,
158 		   tree field_size)
159 {
160   tree init = NULL_TREE;
161 
162   /* [dcl.init]
163 
164      To zero-initialize an object of type T means:
165 
166      -- if T is a scalar type, the storage is set to the value of zero
167 	converted to T.
168 
169      -- if T is a non-union class type, the storage for each nonstatic
170 	data member and each base-class subobject is zero-initialized.
171 
172      -- if T is a union type, the storage for its first data member is
173 	zero-initialized.
174 
175      -- if T is an array type, the storage for each element is
176 	zero-initialized.
177 
178      -- if T is a reference type, no initialization is performed.  */
179 
180   gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
181 
182   if (type == error_mark_node)
183     ;
184   else if (static_storage_p && zero_init_p (type))
185     /* In order to save space, we do not explicitly build initializers
186        for items that do not need them.  GCC's semantics are that
187        items with static storage duration that are not otherwise
188        initialized are initialized to zero.  */
189     ;
190   else if (TYPE_PTR_OR_PTRMEM_P (type))
191     init = convert (type, nullptr_node);
192   else if (SCALAR_TYPE_P (type))
193     init = convert (type, integer_zero_node);
194   else if (RECORD_OR_UNION_CODE_P (TREE_CODE (type)))
195     {
196       tree field;
197       vec<constructor_elt, va_gc> *v = NULL;
198 
199       /* Iterate over the fields, building initializations.  */
200       for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
201 	{
202 	  if (TREE_CODE (field) != FIELD_DECL)
203 	    continue;
204 
205 	  if (TREE_TYPE (field) == error_mark_node)
206 	    continue;
207 
208 	  /* Don't add virtual bases for base classes if they are beyond
209 	     the size of the current field, that means it is present
210 	     somewhere else in the object.  */
211 	  if (field_size)
212 	    {
213 	      tree bitpos = bit_position (field);
214 	      if (TREE_CODE (bitpos) == INTEGER_CST
215 		  && !tree_int_cst_lt (bitpos, field_size))
216 		continue;
217 	    }
218 
219 	  /* Note that for class types there will be FIELD_DECLs
220 	     corresponding to base classes as well.  Thus, iterating
221 	     over TYPE_FIELDs will result in correct initialization of
222 	     all of the subobjects.  */
223 	  if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
224 	    {
225 	      tree new_field_size
226 		= (DECL_FIELD_IS_BASE (field)
227 		   && DECL_SIZE (field)
228 		   && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
229 		  ? DECL_SIZE (field) : NULL_TREE;
230 	      tree value = build_zero_init_1 (TREE_TYPE (field),
231 					      /*nelts=*/NULL_TREE,
232 					      static_storage_p,
233 					      new_field_size);
234 	      if (value)
235 		CONSTRUCTOR_APPEND_ELT(v, field, value);
236 	    }
237 
238 	  /* For unions, only the first field is initialized.  */
239 	  if (TREE_CODE (type) == UNION_TYPE)
240 	    break;
241 	}
242 
243       /* Build a constructor to contain the initializations.  */
244       init = build_constructor (type, v);
245     }
246   else if (TREE_CODE (type) == ARRAY_TYPE)
247     {
248       tree max_index;
249       vec<constructor_elt, va_gc> *v = NULL;
250 
251       /* Iterate over the array elements, building initializations.  */
252       if (nelts)
253 	max_index = fold_build2_loc (input_location,
254 				 MINUS_EXPR, TREE_TYPE (nelts),
255 				 nelts, integer_one_node);
256       else
257 	max_index = array_type_nelts (type);
258 
259       /* If we have an error_mark here, we should just return error mark
260 	 as we don't know the size of the array yet.  */
261       if (max_index == error_mark_node)
262 	return error_mark_node;
263       gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
264 
265       /* A zero-sized array, which is accepted as an extension, will
266 	 have an upper bound of -1.  */
267       if (!tree_int_cst_equal (max_index, integer_minus_one_node))
268 	{
269 	  constructor_elt ce;
270 
271 	  /* If this is a one element array, we just use a regular init.  */
272 	  if (tree_int_cst_equal (size_zero_node, max_index))
273 	    ce.index = size_zero_node;
274 	  else
275 	    ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node,
276 				max_index);
277 
278 	  ce.value = build_zero_init_1 (TREE_TYPE (type),
279 					 /*nelts=*/NULL_TREE,
280 					 static_storage_p, NULL_TREE);
281 	  if (ce.value)
282 	    {
283 	      vec_alloc (v, 1);
284 	      v->quick_push (ce);
285 	    }
286 	}
287 
288       /* Build a constructor to contain the initializations.  */
289       init = build_constructor (type, v);
290     }
291   else if (TREE_CODE (type) == VECTOR_TYPE)
292     init = build_zero_cst (type);
293   else
294     gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
295 
296   /* In all cases, the initializer is a constant.  */
297   if (init)
298     TREE_CONSTANT (init) = 1;
299 
300   return init;
301 }
302 
303 /* Return an expression for the zero-initialization of an object with
304    type T.  This expression will either be a constant (in the case
305    that T is a scalar), or a CONSTRUCTOR (in the case that T is an
306    aggregate), or NULL (in the case that T does not require
307    initialization).  In either case, the value can be used as
308    DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
309    initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
310    is the number of elements in the array.  If STATIC_STORAGE_P is
311    TRUE, initializers are only generated for entities for which
312    zero-initialization does not simply mean filling the storage with
313    zero bytes.  */
314 
315 tree
316 build_zero_init (tree type, tree nelts, bool static_storage_p)
317 {
318   return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE);
319 }
320 
321 /* Return a suitable initializer for value-initializing an object of type
322    TYPE, as described in [dcl.init].  */
323 
324 tree
325 build_value_init (tree type, tsubst_flags_t complain)
326 {
327   /* [dcl.init]
328 
329      To value-initialize an object of type T means:
330 
331      - if T is a class type (clause 9) with either no default constructor
332        (12.1) or a default constructor that is user-provided or deleted,
333        then then the object is default-initialized;
334 
335      - if T is a (possibly cv-qualified) class type without a user-provided
336        or deleted default constructor, then the object is zero-initialized
337        and the semantic constraints for default-initialization are checked,
338        and if T has a non-trivial default constructor, the object is
339        default-initialized;
340 
341      - if T is an array type, then each element is value-initialized;
342 
343      - otherwise, the object is zero-initialized.
344 
345      A program that calls for default-initialization or
346      value-initialization of an entity of reference type is ill-formed.  */
347 
348   /* The AGGR_INIT_EXPR tweaking below breaks in templates.  */
349   gcc_assert (!processing_template_decl
350 	      || (SCALAR_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE));
351 
352   if (CLASS_TYPE_P (type)
353       && type_build_ctor_call (type))
354     {
355       tree ctor =
356 	 build_special_member_call (NULL_TREE, complete_ctor_identifier,
357 				    NULL, type, LOOKUP_NORMAL,
358 				    complain);
359       if (ctor == error_mark_node)
360 	return ctor;
361       tree fn = NULL_TREE;
362       if (TREE_CODE (ctor) == CALL_EXPR)
363 	fn = get_callee_fndecl (ctor);
364       ctor = build_aggr_init_expr (type, ctor);
365       if (fn && user_provided_p (fn))
366 	return ctor;
367       else if (TYPE_HAS_COMPLEX_DFLT (type))
368 	{
369 	  /* This is a class that needs constructing, but doesn't have
370 	     a user-provided constructor.  So we need to zero-initialize
371 	     the object and then call the implicitly defined ctor.
372 	     This will be handled in simplify_aggr_init_expr.  */
373 	  AGGR_INIT_ZERO_FIRST (ctor) = 1;
374 	  return ctor;
375 	}
376     }
377 
378   /* Discard any access checking during subobject initialization;
379      the checks are implied by the call to the ctor which we have
380      verified is OK (cpp0x/defaulted46.C).  */
381   push_deferring_access_checks (dk_deferred);
382   tree r = build_value_init_noctor (type, complain);
383   pop_deferring_access_checks ();
384   return r;
385 }
386 
387 /* Like build_value_init, but don't call the constructor for TYPE.  Used
388    for base initializers.  */
389 
390 tree
391 build_value_init_noctor (tree type, tsubst_flags_t complain)
392 {
393   if (!COMPLETE_TYPE_P (type))
394     {
395       if (complain & tf_error)
396 	error ("value-initialization of incomplete type %qT", type);
397       return error_mark_node;
398     }
399   /* FIXME the class and array cases should just use digest_init once it is
400      SFINAE-enabled.  */
401   if (CLASS_TYPE_P (type))
402     {
403       gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type)
404 		  || errorcount != 0);
405 
406       if (TREE_CODE (type) != UNION_TYPE)
407 	{
408 	  tree field;
409 	  vec<constructor_elt, va_gc> *v = NULL;
410 
411 	  /* Iterate over the fields, building initializations.  */
412 	  for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
413 	    {
414 	      tree ftype, value;
415 
416 	      if (TREE_CODE (field) != FIELD_DECL)
417 		continue;
418 
419 	      ftype = TREE_TYPE (field);
420 
421 	      if (ftype == error_mark_node)
422 		continue;
423 
424 	      /* We could skip vfields and fields of types with
425 		 user-defined constructors, but I think that won't improve
426 		 performance at all; it should be simpler in general just
427 		 to zero out the entire object than try to only zero the
428 		 bits that actually need it.  */
429 
430 	      /* Note that for class types there will be FIELD_DECLs
431 		 corresponding to base classes as well.  Thus, iterating
432 		 over TYPE_FIELDs will result in correct initialization of
433 		 all of the subobjects.  */
434 	      value = build_value_init (ftype, complain);
435 	      value = maybe_constant_init (value);
436 
437 	      if (value == error_mark_node)
438 		return error_mark_node;
439 
440 	      CONSTRUCTOR_APPEND_ELT(v, field, value);
441 
442 	      /* We shouldn't have gotten here for anything that would need
443 		 non-trivial initialization, and gimplify_init_ctor_preeval
444 		 would need to be fixed to allow it.  */
445 	      gcc_assert (TREE_CODE (value) != TARGET_EXPR
446 			  && TREE_CODE (value) != AGGR_INIT_EXPR);
447 	    }
448 
449 	  /* Build a constructor to contain the zero- initializations.  */
450 	  return build_constructor (type, v);
451 	}
452     }
453   else if (TREE_CODE (type) == ARRAY_TYPE)
454     {
455       vec<constructor_elt, va_gc> *v = NULL;
456 
457       /* Iterate over the array elements, building initializations.  */
458       tree max_index = array_type_nelts (type);
459 
460       /* If we have an error_mark here, we should just return error mark
461 	 as we don't know the size of the array yet.  */
462       if (max_index == error_mark_node)
463 	{
464 	  if (complain & tf_error)
465 	    error ("cannot value-initialize array of unknown bound %qT",
466 		   type);
467 	  return error_mark_node;
468 	}
469       gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
470 
471       /* A zero-sized array, which is accepted as an extension, will
472 	 have an upper bound of -1.  */
473       if (!tree_int_cst_equal (max_index, integer_minus_one_node))
474 	{
475 	  constructor_elt ce;
476 
477 	  /* If this is a one element array, we just use a regular init.  */
478 	  if (tree_int_cst_equal (size_zero_node, max_index))
479 	    ce.index = size_zero_node;
480 	  else
481 	    ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, max_index);
482 
483 	  ce.value = build_value_init (TREE_TYPE (type), complain);
484 	  ce.value = maybe_constant_init (ce.value);
485 	  if (ce.value == error_mark_node)
486 	    return error_mark_node;
487 
488 	  vec_alloc (v, 1);
489 	  v->quick_push (ce);
490 
491 	  /* We shouldn't have gotten here for anything that would need
492 	     non-trivial initialization, and gimplify_init_ctor_preeval
493 	     would need to be fixed to allow it.  */
494 	  gcc_assert (TREE_CODE (ce.value) != TARGET_EXPR
495 		      && TREE_CODE (ce.value) != AGGR_INIT_EXPR);
496 	}
497 
498       /* Build a constructor to contain the initializations.  */
499       return build_constructor (type, v);
500     }
501   else if (TREE_CODE (type) == FUNCTION_TYPE)
502     {
503       if (complain & tf_error)
504 	error ("value-initialization of function type %qT", type);
505       return error_mark_node;
506     }
507   else if (TREE_CODE (type) == REFERENCE_TYPE)
508     {
509       if (complain & tf_error)
510 	error ("value-initialization of reference type %qT", type);
511       return error_mark_node;
512     }
513 
514   return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
515 }
516 
517 /* Initialize current class with INIT, a TREE_LIST of
518    arguments for a target constructor. If TREE_LIST is void_type_node,
519    an empty initializer list was given.  */
520 
521 static void
522 perform_target_ctor (tree init)
523 {
524   tree decl = current_class_ref;
525   tree type = current_class_type;
526 
527   finish_expr_stmt (build_aggr_init (decl, init,
528 				     LOOKUP_NORMAL|LOOKUP_DELEGATING_CONS,
529 				     tf_warning_or_error));
530   if (type_build_dtor_call (type))
531     {
532       tree expr = build_delete (type, decl, sfk_complete_destructor,
533 				LOOKUP_NORMAL
534 				|LOOKUP_NONVIRTUAL
535 				|LOOKUP_DESTRUCTOR,
536 				0, tf_warning_or_error);
537       if (expr != error_mark_node
538 	  && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
539 	finish_eh_cleanup (expr);
540     }
541 }
542 
543 /* Return the non-static data initializer for FIELD_DECL MEMBER.  */
544 
545 tree
546 get_nsdmi (tree member, bool in_ctor)
547 {
548   tree init;
549   tree save_ccp = current_class_ptr;
550   tree save_ccr = current_class_ref;
551   if (!in_ctor)
552     {
553       /* Use a PLACEHOLDER_EXPR when we don't have a 'this' parameter to
554 	 refer to; constexpr evaluation knows what to do with it.  */
555       current_class_ref = build0 (PLACEHOLDER_EXPR, DECL_CONTEXT (member));
556       current_class_ptr = build_address (current_class_ref);
557     }
558   if (DECL_LANG_SPECIFIC (member) && DECL_TEMPLATE_INFO (member))
559     {
560       /* Do deferred instantiation of the NSDMI.  */
561       init = (tsubst_copy_and_build
562 	      (DECL_INITIAL (DECL_TI_TEMPLATE (member)),
563 	       DECL_TI_ARGS (member),
564 	       tf_warning_or_error, member, /*function_p=*/false,
565 	       /*integral_constant_expression_p=*/false));
566 
567       init = digest_nsdmi_init (member, init);
568     }
569   else
570     {
571       init = DECL_INITIAL (member);
572       if (init && TREE_CODE (init) == DEFAULT_ARG)
573 	{
574 	  error ("constructor required before non-static data member "
575 		 "for %qD has been parsed", member);
576 	  DECL_INITIAL (member) = error_mark_node;
577 	  init = error_mark_node;
578 	}
579       /* Strip redundant TARGET_EXPR so we don't need to remap it, and
580 	 so the aggregate init code below will see a CONSTRUCTOR.  */
581       if (init && TREE_CODE (init) == TARGET_EXPR
582 	  && !VOID_TYPE_P (TREE_TYPE (TARGET_EXPR_INITIAL (init))))
583 	init = TARGET_EXPR_INITIAL (init);
584       init = break_out_target_exprs (init);
585     }
586   current_class_ptr = save_ccp;
587   current_class_ref = save_ccr;
588   return init;
589 }
590 
591 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
592    arguments.  If TREE_LIST is void_type_node, an empty initializer
593    list was given; if NULL_TREE no initializer was given.  */
594 
595 static void
596 perform_member_init (tree member, tree init)
597 {
598   tree decl;
599   tree type = TREE_TYPE (member);
600 
601   /* Use the non-static data member initializer if there was no
602      mem-initializer for this field.  */
603   if (init == NULL_TREE)
604     init = get_nsdmi (member, /*ctor*/true);
605 
606   if (init == error_mark_node)
607     return;
608 
609   /* Effective C++ rule 12 requires that all data members be
610      initialized.  */
611   if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
612     warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
613 		"%qD should be initialized in the member initialization list",
614 		member);
615 
616   /* Get an lvalue for the data member.  */
617   decl = build_class_member_access_expr (current_class_ref, member,
618 					 /*access_path=*/NULL_TREE,
619 					 /*preserve_reference=*/true,
620 					 tf_warning_or_error);
621   if (decl == error_mark_node)
622     return;
623 
624   if (warn_init_self && init && TREE_CODE (init) == TREE_LIST
625       && TREE_CHAIN (init) == NULL_TREE)
626     {
627       tree val = TREE_VALUE (init);
628       if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member
629 	  && TREE_OPERAND (val, 0) == current_class_ref)
630 	warning_at (DECL_SOURCE_LOCATION (current_function_decl),
631 		    OPT_Winit_self, "%qD is initialized with itself",
632 		    member);
633     }
634 
635   if (init == void_type_node)
636     {
637       /* mem() means value-initialization.  */
638       if (TREE_CODE (type) == ARRAY_TYPE)
639 	{
640 	  init = build_vec_init_expr (type, init, tf_warning_or_error);
641 	  init = build2 (INIT_EXPR, type, decl, init);
642 	  finish_expr_stmt (init);
643 	}
644       else
645 	{
646 	  tree value = build_value_init (type, tf_warning_or_error);
647 	  if (value == error_mark_node)
648 	    return;
649 	  init = build2 (INIT_EXPR, type, decl, value);
650 	  finish_expr_stmt (init);
651 	}
652     }
653   /* Deal with this here, as we will get confused if we try to call the
654      assignment op for an anonymous union.  This can happen in a
655      synthesized copy constructor.  */
656   else if (ANON_AGGR_TYPE_P (type))
657     {
658       if (init)
659 	{
660 	  init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
661 	  finish_expr_stmt (init);
662 	}
663     }
664   else if (init
665 	   && (TREE_CODE (type) == REFERENCE_TYPE
666 	       /* Pre-digested NSDMI.  */
667 	       || (((TREE_CODE (init) == CONSTRUCTOR
668 		     && TREE_TYPE (init) == type)
669 		    /* { } mem-initializer.  */
670 		    || (TREE_CODE (init) == TREE_LIST
671 			&& DIRECT_LIST_INIT_P (TREE_VALUE (init))))
672 		   && (CP_AGGREGATE_TYPE_P (type)
673 		       || is_std_init_list (type)))))
674     {
675       /* With references and list-initialization, we need to deal with
676 	 extending temporary lifetimes.  12.2p5: "A temporary bound to a
677 	 reference member in a constructor’s ctor-initializer (12.6.2)
678 	 persists until the constructor exits."  */
679       unsigned i; tree t;
680       vec<tree, va_gc> *cleanups = make_tree_vector ();
681       if (TREE_CODE (init) == TREE_LIST)
682 	init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
683 						tf_warning_or_error);
684       if (TREE_TYPE (init) != type)
685 	{
686 	  if (BRACE_ENCLOSED_INITIALIZER_P (init)
687 	      && CP_AGGREGATE_TYPE_P (type))
688 	    init = reshape_init (type, init, tf_warning_or_error);
689 	  init = digest_init (type, init, tf_warning_or_error);
690 	}
691       if (init == error_mark_node)
692 	return;
693       /* A FIELD_DECL doesn't really have a suitable lifetime, but
694 	 make_temporary_var_for_ref_to_temp will treat it as automatic and
695 	 set_up_extended_ref_temp wants to use the decl in a warning.  */
696       init = extend_ref_init_temps (member, init, &cleanups);
697       if (TREE_CODE (type) == ARRAY_TYPE
698 	  && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type)))
699 	init = build_vec_init_expr (type, init, tf_warning_or_error);
700       init = build2 (INIT_EXPR, type, decl, init);
701       finish_expr_stmt (init);
702       FOR_EACH_VEC_ELT (*cleanups, i, t)
703 	push_cleanup (decl, t, false);
704       release_tree_vector (cleanups);
705     }
706   else if (type_build_ctor_call (type)
707 	   || (init && CLASS_TYPE_P (strip_array_types (type))))
708     {
709       if (TREE_CODE (type) == ARRAY_TYPE)
710 	{
711 	  if (init)
712 	    {
713 	      if (TREE_CHAIN (init))
714 		init = error_mark_node;
715 	      else
716 		init = TREE_VALUE (init);
717 	      if (BRACE_ENCLOSED_INITIALIZER_P (init))
718 		init = digest_init (type, init, tf_warning_or_error);
719 	    }
720 	  if (init == NULL_TREE
721 	      || same_type_ignoring_top_level_qualifiers_p (type,
722 							    TREE_TYPE (init)))
723 	    {
724 	      init = build_vec_init_expr (type, init, tf_warning_or_error);
725 	      init = build2 (INIT_EXPR, type, decl, init);
726 	      finish_expr_stmt (init);
727 	    }
728 	  else
729 	    error ("invalid initializer for array member %q#D", member);
730 	}
731       else
732 	{
733 	  int flags = LOOKUP_NORMAL;
734 	  if (DECL_DEFAULTED_FN (current_function_decl))
735 	    flags |= LOOKUP_DEFAULTED;
736 	  if (CP_TYPE_CONST_P (type)
737 	      && init == NULL_TREE
738 	      && default_init_uninitialized_part (type))
739 	    {
740 	      /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
741 		 vtable; still give this diagnostic.  */
742 	      if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
743 			     "uninitialized const member in %q#T", type))
744 		inform (DECL_SOURCE_LOCATION (member),
745 			"%q#D should be initialized", member );
746 	    }
747 	  finish_expr_stmt (build_aggr_init (decl, init, flags,
748 					     tf_warning_or_error));
749 	}
750     }
751   else
752     {
753       if (init == NULL_TREE)
754 	{
755 	  tree core_type;
756 	  /* member traversal: note it leaves init NULL */
757 	  if (TREE_CODE (type) == REFERENCE_TYPE)
758 	    {
759 	      if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
760 			     "uninitialized reference member in %q#T", type))
761 		inform (DECL_SOURCE_LOCATION (member),
762 			"%q#D should be initialized", member);
763 	    }
764 	  else if (CP_TYPE_CONST_P (type))
765 	    {
766 	      if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
767 			     "uninitialized const member in %q#T", type))
768 		  inform (DECL_SOURCE_LOCATION (member),
769 			  "%q#D should be initialized", member );
770 	    }
771 
772 	  core_type = strip_array_types (type);
773 
774 	  if (CLASS_TYPE_P (core_type)
775 	      && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
776 		  || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
777 	    diagnose_uninitialized_cst_or_ref_member (core_type,
778 						      /*using_new=*/false,
779 						      /*complain=*/true);
780 	}
781       else if (TREE_CODE (init) == TREE_LIST)
782 	/* There was an explicit member initialization.  Do some work
783 	   in that case.  */
784 	init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
785 						tf_warning_or_error);
786 
787       if (init)
788 	finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
789 						tf_warning_or_error));
790     }
791 
792   if (type_build_dtor_call (type))
793     {
794       tree expr;
795 
796       expr = build_class_member_access_expr (current_class_ref, member,
797 					     /*access_path=*/NULL_TREE,
798 					     /*preserve_reference=*/false,
799 					     tf_warning_or_error);
800       expr = build_delete (type, expr, sfk_complete_destructor,
801 			   LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0,
802 			   tf_warning_or_error);
803 
804       if (expr != error_mark_node
805 	  && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
806 	finish_eh_cleanup (expr);
807     }
808 }
809 
810 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
811    the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order.  */
812 
813 static tree
814 build_field_list (tree t, tree list, int *uses_unions_p)
815 {
816   tree fields;
817 
818   /* Note whether or not T is a union.  */
819   if (TREE_CODE (t) == UNION_TYPE)
820     *uses_unions_p = 1;
821 
822   for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields))
823     {
824       tree fieldtype;
825 
826       /* Skip CONST_DECLs for enumeration constants and so forth.  */
827       if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
828 	continue;
829 
830       fieldtype = TREE_TYPE (fields);
831       /* Keep track of whether or not any fields are unions.  */
832       if (TREE_CODE (fieldtype) == UNION_TYPE)
833 	*uses_unions_p = 1;
834 
835       /* For an anonymous struct or union, we must recursively
836 	 consider the fields of the anonymous type.  They can be
837 	 directly initialized from the constructor.  */
838       if (ANON_AGGR_TYPE_P (fieldtype))
839 	{
840 	  /* Add this field itself.  Synthesized copy constructors
841 	     initialize the entire aggregate.  */
842 	  list = tree_cons (fields, NULL_TREE, list);
843 	  /* And now add the fields in the anonymous aggregate.  */
844 	  list = build_field_list (fieldtype, list, uses_unions_p);
845 	}
846       /* Add this field.  */
847       else if (DECL_NAME (fields))
848 	list = tree_cons (fields, NULL_TREE, list);
849     }
850 
851   return list;
852 }
853 
854 /* Return the innermost aggregate scope for FIELD, whether that is
855    the enclosing class or an anonymous aggregate within it.  */
856 
857 static tree
858 innermost_aggr_scope (tree field)
859 {
860   if (ANON_AGGR_TYPE_P (TREE_TYPE (field)))
861     return TREE_TYPE (field);
862   else
863     return DECL_CONTEXT (field);
864 }
865 
866 /* The MEM_INITS are a TREE_LIST.  The TREE_PURPOSE of each list gives
867    a FIELD_DECL or BINFO in T that needs initialization.  The
868    TREE_VALUE gives the initializer, or list of initializer arguments.
869 
870    Return a TREE_LIST containing all of the initializations required
871    for T, in the order in which they should be performed.  The output
872    list has the same format as the input.  */
873 
874 static tree
875 sort_mem_initializers (tree t, tree mem_inits)
876 {
877   tree init;
878   tree base, binfo, base_binfo;
879   tree sorted_inits;
880   tree next_subobject;
881   vec<tree, va_gc> *vbases;
882   int i;
883   int uses_unions_p = 0;
884 
885   /* Build up a list of initializations.  The TREE_PURPOSE of entry
886      will be the subobject (a FIELD_DECL or BINFO) to initialize.  The
887      TREE_VALUE will be the constructor arguments, or NULL if no
888      explicit initialization was provided.  */
889   sorted_inits = NULL_TREE;
890 
891   /* Process the virtual bases.  */
892   for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
893        vec_safe_iterate (vbases, i, &base); i++)
894     sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
895 
896   /* Process the direct bases.  */
897   for (binfo = TYPE_BINFO (t), i = 0;
898        BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
899     if (!BINFO_VIRTUAL_P (base_binfo))
900       sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
901 
902   /* Process the non-static data members.  */
903   sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
904   /* Reverse the entire list of initializations, so that they are in
905      the order that they will actually be performed.  */
906   sorted_inits = nreverse (sorted_inits);
907 
908   /* If the user presented the initializers in an order different from
909      that in which they will actually occur, we issue a warning.  Keep
910      track of the next subobject which can be explicitly initialized
911      without issuing a warning.  */
912   next_subobject = sorted_inits;
913 
914   /* Go through the explicit initializers, filling in TREE_PURPOSE in
915      the SORTED_INITS.  */
916   for (init = mem_inits; init; init = TREE_CHAIN (init))
917     {
918       tree subobject;
919       tree subobject_init;
920 
921       subobject = TREE_PURPOSE (init);
922 
923       /* If the explicit initializers are in sorted order, then
924 	 SUBOBJECT will be NEXT_SUBOBJECT, or something following
925 	 it.  */
926       for (subobject_init = next_subobject;
927 	   subobject_init;
928 	   subobject_init = TREE_CHAIN (subobject_init))
929 	if (TREE_PURPOSE (subobject_init) == subobject)
930 	  break;
931 
932       /* Issue a warning if the explicit initializer order does not
933 	 match that which will actually occur.
934 	 ??? Are all these on the correct lines?  */
935       if (warn_reorder && !subobject_init)
936 	{
937 	  if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
938 	    warning (OPT_Wreorder, "%q+D will be initialized after",
939 		     TREE_PURPOSE (next_subobject));
940 	  else
941 	    warning (OPT_Wreorder, "base %qT will be initialized after",
942 		     TREE_PURPOSE (next_subobject));
943 	  if (TREE_CODE (subobject) == FIELD_DECL)
944 	    warning (OPT_Wreorder, "  %q+#D", subobject);
945 	  else
946 	    warning (OPT_Wreorder, "  base %qT", subobject);
947 	  warning_at (DECL_SOURCE_LOCATION (current_function_decl),
948 		      OPT_Wreorder, "  when initialized here");
949 	}
950 
951       /* Look again, from the beginning of the list.  */
952       if (!subobject_init)
953 	{
954 	  subobject_init = sorted_inits;
955 	  while (TREE_PURPOSE (subobject_init) != subobject)
956 	    subobject_init = TREE_CHAIN (subobject_init);
957 	}
958 
959       /* It is invalid to initialize the same subobject more than
960 	 once.  */
961       if (TREE_VALUE (subobject_init))
962 	{
963 	  if (TREE_CODE (subobject) == FIELD_DECL)
964 	    error_at (DECL_SOURCE_LOCATION (current_function_decl),
965 		      "multiple initializations given for %qD",
966 		      subobject);
967 	  else
968 	    error_at (DECL_SOURCE_LOCATION (current_function_decl),
969 		      "multiple initializations given for base %qT",
970 		      subobject);
971 	}
972 
973       /* Record the initialization.  */
974       TREE_VALUE (subobject_init) = TREE_VALUE (init);
975       next_subobject = subobject_init;
976     }
977 
978   /* [class.base.init]
979 
980      If a ctor-initializer specifies more than one mem-initializer for
981      multiple members of the same union (including members of
982      anonymous unions), the ctor-initializer is ill-formed.
983 
984      Here we also splice out uninitialized union members.  */
985   if (uses_unions_p)
986     {
987       tree *last_p = NULL;
988       tree *p;
989       for (p = &sorted_inits; *p; )
990 	{
991 	  tree field;
992 	  tree ctx;
993 
994 	  init = *p;
995 
996 	  field = TREE_PURPOSE (init);
997 
998 	  /* Skip base classes.  */
999 	  if (TREE_CODE (field) != FIELD_DECL)
1000 	    goto next;
1001 
1002 	  /* If this is an anonymous union with no explicit initializer,
1003 	     splice it out.  */
1004 	  if (!TREE_VALUE (init) && ANON_UNION_TYPE_P (TREE_TYPE (field)))
1005 	    goto splice;
1006 
1007 	  /* See if this field is a member of a union, or a member of a
1008 	     structure contained in a union, etc.  */
1009 	  for (ctx = innermost_aggr_scope (field);
1010 	       !same_type_p (ctx, t);
1011 	       ctx = TYPE_CONTEXT (ctx))
1012 	    if (TREE_CODE (ctx) == UNION_TYPE
1013 		|| !ANON_AGGR_TYPE_P (ctx))
1014 	      break;
1015 	  /* If this field is not a member of a union, skip it.  */
1016 	  if (TREE_CODE (ctx) != UNION_TYPE)
1017 	    goto next;
1018 
1019 	  /* If this union member has no explicit initializer and no NSDMI,
1020 	     splice it out.  */
1021 	  if (TREE_VALUE (init) || DECL_INITIAL (field))
1022 	    /* OK.  */;
1023 	  else
1024 	    goto splice;
1025 
1026 	  /* It's only an error if we have two initializers for the same
1027 	     union type.  */
1028 	  if (!last_p)
1029 	    {
1030 	      last_p = p;
1031 	      goto next;
1032 	    }
1033 
1034 	  /* See if LAST_FIELD and the field initialized by INIT are
1035 	     members of the same union.  If so, there's a problem,
1036 	     unless they're actually members of the same structure
1037 	     which is itself a member of a union.  For example, given:
1038 
1039 	       union { struct { int i; int j; }; };
1040 
1041 	     initializing both `i' and `j' makes sense.  */
1042 	  ctx = common_enclosing_class
1043 	    (innermost_aggr_scope (field),
1044 	     innermost_aggr_scope (TREE_PURPOSE (*last_p)));
1045 
1046 	  if (ctx && TREE_CODE (ctx) == UNION_TYPE)
1047 	    {
1048 	      /* A mem-initializer hides an NSDMI.  */
1049 	      if (TREE_VALUE (init) && !TREE_VALUE (*last_p))
1050 		*last_p = TREE_CHAIN (*last_p);
1051 	      else if (TREE_VALUE (*last_p) && !TREE_VALUE (init))
1052 		goto splice;
1053 	      else
1054 		{
1055 		  error_at (DECL_SOURCE_LOCATION (current_function_decl),
1056 			    "initializations for multiple members of %qT",
1057 			    ctx);
1058 		  goto splice;
1059 		}
1060 	    }
1061 
1062 	  last_p = p;
1063 
1064 	next:
1065 	  p = &TREE_CHAIN (*p);
1066 	  continue;
1067 	splice:
1068 	  *p = TREE_CHAIN (*p);
1069 	  continue;
1070 	}
1071     }
1072 
1073   return sorted_inits;
1074 }
1075 
1076 /* Initialize all bases and members of CURRENT_CLASS_TYPE.  MEM_INITS
1077    is a TREE_LIST giving the explicit mem-initializer-list for the
1078    constructor.  The TREE_PURPOSE of each entry is a subobject (a
1079    FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE.  The TREE_VALUE
1080    is a TREE_LIST giving the arguments to the constructor or
1081    void_type_node for an empty list of arguments.  */
1082 
1083 void
1084 emit_mem_initializers (tree mem_inits)
1085 {
1086   int flags = LOOKUP_NORMAL;
1087 
1088   /* We will already have issued an error message about the fact that
1089      the type is incomplete.  */
1090   if (!COMPLETE_TYPE_P (current_class_type))
1091     return;
1092 
1093   if (mem_inits
1094       && TYPE_P (TREE_PURPOSE (mem_inits))
1095       && same_type_p (TREE_PURPOSE (mem_inits), current_class_type))
1096     {
1097       /* Delegating constructor. */
1098       gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE);
1099       perform_target_ctor (TREE_VALUE (mem_inits));
1100       return;
1101     }
1102 
1103   if (DECL_DEFAULTED_FN (current_function_decl)
1104       && ! DECL_INHERITED_CTOR_BASE (current_function_decl))
1105     flags |= LOOKUP_DEFAULTED;
1106 
1107   /* Sort the mem-initializers into the order in which the
1108      initializations should be performed.  */
1109   mem_inits = sort_mem_initializers (current_class_type, mem_inits);
1110 
1111   in_base_initializer = 1;
1112 
1113   /* Initialize base classes.  */
1114   for (; (mem_inits
1115 	  && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL);
1116        mem_inits = TREE_CHAIN (mem_inits))
1117     {
1118       tree subobject = TREE_PURPOSE (mem_inits);
1119       tree arguments = TREE_VALUE (mem_inits);
1120 
1121       /* We already have issued an error message.  */
1122       if (arguments == error_mark_node)
1123 	continue;
1124 
1125       if (arguments == NULL_TREE)
1126 	{
1127 	  /* If these initializations are taking place in a copy constructor,
1128 	     the base class should probably be explicitly initialized if there
1129 	     is a user-defined constructor in the base class (other than the
1130 	     default constructor, which will be called anyway).  */
1131 	  if (extra_warnings
1132 	      && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
1133 	      && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
1134 	    warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1135 			OPT_Wextra, "base class %q#T should be explicitly "
1136 			"initialized in the copy constructor",
1137 			BINFO_TYPE (subobject));
1138 	}
1139 
1140       /* Initialize the base.  */
1141       if (BINFO_VIRTUAL_P (subobject))
1142 	construct_virtual_base (subobject, arguments);
1143       else
1144 	{
1145 	  tree base_addr;
1146 
1147 	  base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
1148 				       subobject, 1, tf_warning_or_error);
1149 	  expand_aggr_init_1 (subobject, NULL_TREE,
1150 			      cp_build_indirect_ref (base_addr, RO_NULL,
1151                                                      tf_warning_or_error),
1152 			      arguments,
1153 			      flags,
1154                               tf_warning_or_error);
1155 	  expand_cleanup_for_base (subobject, NULL_TREE);
1156 	}
1157     }
1158   in_base_initializer = 0;
1159 
1160   /* Initialize the vptrs.  */
1161   initialize_vtbl_ptrs (current_class_ptr);
1162 
1163   /* Initialize the data members.  */
1164   while (mem_inits)
1165     {
1166       perform_member_init (TREE_PURPOSE (mem_inits),
1167 			   TREE_VALUE (mem_inits));
1168       mem_inits = TREE_CHAIN (mem_inits);
1169     }
1170 }
1171 
1172 /* Returns the address of the vtable (i.e., the value that should be
1173    assigned to the vptr) for BINFO.  */
1174 
1175 tree
1176 build_vtbl_address (tree binfo)
1177 {
1178   tree binfo_for = binfo;
1179   tree vtbl;
1180 
1181   if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
1182     /* If this is a virtual primary base, then the vtable we want to store
1183        is that for the base this is being used as the primary base of.  We
1184        can't simply skip the initialization, because we may be expanding the
1185        inits of a subobject constructor where the virtual base layout
1186        can be different.  */
1187     while (BINFO_PRIMARY_P (binfo_for))
1188       binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
1189 
1190   /* Figure out what vtable BINFO's vtable is based on, and mark it as
1191      used.  */
1192   vtbl = get_vtbl_decl_for_binfo (binfo_for);
1193   TREE_USED (vtbl) = true;
1194 
1195   /* Now compute the address to use when initializing the vptr.  */
1196   vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
1197   if (VAR_P (vtbl))
1198     vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
1199 
1200   return vtbl;
1201 }
1202 
1203 /* This code sets up the virtual function tables appropriate for
1204    the pointer DECL.  It is a one-ply initialization.
1205 
1206    BINFO is the exact type that DECL is supposed to be.  In
1207    multiple inheritance, this might mean "C's A" if C : A, B.  */
1208 
1209 static void
1210 expand_virtual_init (tree binfo, tree decl)
1211 {
1212   tree vtbl, vtbl_ptr;
1213   tree vtt_index;
1214 
1215   /* Compute the initializer for vptr.  */
1216   vtbl = build_vtbl_address (binfo);
1217 
1218   /* We may get this vptr from a VTT, if this is a subobject
1219      constructor or subobject destructor.  */
1220   vtt_index = BINFO_VPTR_INDEX (binfo);
1221   if (vtt_index)
1222     {
1223       tree vtbl2;
1224       tree vtt_parm;
1225 
1226       /* Compute the value to use, when there's a VTT.  */
1227       vtt_parm = current_vtt_parm;
1228       vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index);
1229       vtbl2 = cp_build_indirect_ref (vtbl2, RO_NULL, tf_warning_or_error);
1230       vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
1231 
1232       /* The actual initializer is the VTT value only in the subobject
1233 	 constructor.  In maybe_clone_body we'll substitute NULL for
1234 	 the vtt_parm in the case of the non-subobject constructor.  */
1235       vtbl = build3 (COND_EXPR,
1236 		     TREE_TYPE (vtbl),
1237 		     build2 (EQ_EXPR, boolean_type_node,
1238 			     current_in_charge_parm, integer_zero_node),
1239 		     vtbl2,
1240 		     vtbl);
1241     }
1242 
1243   /* Compute the location of the vtpr.  */
1244   vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, RO_NULL,
1245                                                       tf_warning_or_error),
1246 			       TREE_TYPE (binfo));
1247   gcc_assert (vtbl_ptr != error_mark_node);
1248 
1249   /* Assign the vtable to the vptr.  */
1250   vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0, tf_warning_or_error);
1251   finish_expr_stmt (cp_build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl,
1252 					  tf_warning_or_error));
1253 }
1254 
1255 /* If an exception is thrown in a constructor, those base classes already
1256    constructed must be destroyed.  This function creates the cleanup
1257    for BINFO, which has just been constructed.  If FLAG is non-NULL,
1258    it is a DECL which is nonzero when this base needs to be
1259    destroyed.  */
1260 
1261 static void
1262 expand_cleanup_for_base (tree binfo, tree flag)
1263 {
1264   tree expr;
1265 
1266   if (!type_build_dtor_call (BINFO_TYPE (binfo)))
1267     return;
1268 
1269   /* Call the destructor.  */
1270   expr = build_special_member_call (current_class_ref,
1271 				    base_dtor_identifier,
1272 				    NULL,
1273 				    binfo,
1274 				    LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
1275                                     tf_warning_or_error);
1276 
1277   if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
1278     return;
1279 
1280   if (flag)
1281     expr = fold_build3_loc (input_location,
1282 			COND_EXPR, void_type_node,
1283 			c_common_truthvalue_conversion (input_location, flag),
1284 			expr, integer_zero_node);
1285 
1286   finish_eh_cleanup (expr);
1287 }
1288 
1289 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
1290    constructor.  */
1291 
1292 static void
1293 construct_virtual_base (tree vbase, tree arguments)
1294 {
1295   tree inner_if_stmt;
1296   tree exp;
1297   tree flag;
1298 
1299   /* If there are virtual base classes with destructors, we need to
1300      emit cleanups to destroy them if an exception is thrown during
1301      the construction process.  These exception regions (i.e., the
1302      period during which the cleanups must occur) begin from the time
1303      the construction is complete to the end of the function.  If we
1304      create a conditional block in which to initialize the
1305      base-classes, then the cleanup region for the virtual base begins
1306      inside a block, and ends outside of that block.  This situation
1307      confuses the sjlj exception-handling code.  Therefore, we do not
1308      create a single conditional block, but one for each
1309      initialization.  (That way the cleanup regions always begin
1310      in the outer block.)  We trust the back end to figure out
1311      that the FLAG will not change across initializations, and
1312      avoid doing multiple tests.  */
1313   flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl));
1314   inner_if_stmt = begin_if_stmt ();
1315   finish_if_stmt_cond (flag, inner_if_stmt);
1316 
1317   /* Compute the location of the virtual base.  If we're
1318      constructing virtual bases, then we must be the most derived
1319      class.  Therefore, we don't have to look up the virtual base;
1320      we already know where it is.  */
1321   exp = convert_to_base_statically (current_class_ref, vbase);
1322 
1323   expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1324 		      0, tf_warning_or_error);
1325   finish_then_clause (inner_if_stmt);
1326   finish_if_stmt (inner_if_stmt);
1327 
1328   expand_cleanup_for_base (vbase, flag);
1329 }
1330 
1331 /* Find the context in which this FIELD can be initialized.  */
1332 
1333 static tree
1334 initializing_context (tree field)
1335 {
1336   tree t = DECL_CONTEXT (field);
1337 
1338   /* Anonymous union members can be initialized in the first enclosing
1339      non-anonymous union context.  */
1340   while (t && ANON_AGGR_TYPE_P (t))
1341     t = TYPE_CONTEXT (t);
1342   return t;
1343 }
1344 
1345 /* Function to give error message if member initialization specification
1346    is erroneous.  FIELD is the member we decided to initialize.
1347    TYPE is the type for which the initialization is being performed.
1348    FIELD must be a member of TYPE.
1349 
1350    MEMBER_NAME is the name of the member.  */
1351 
1352 static int
1353 member_init_ok_or_else (tree field, tree type, tree member_name)
1354 {
1355   if (field == error_mark_node)
1356     return 0;
1357   if (!field)
1358     {
1359       error ("class %qT does not have any field named %qD", type,
1360 	     member_name);
1361       return 0;
1362     }
1363   if (VAR_P (field))
1364     {
1365       error ("%q#D is a static data member; it can only be "
1366 	     "initialized at its definition",
1367 	     field);
1368       return 0;
1369     }
1370   if (TREE_CODE (field) != FIELD_DECL)
1371     {
1372       error ("%q#D is not a non-static data member of %qT",
1373 	     field, type);
1374       return 0;
1375     }
1376   if (initializing_context (field) != type)
1377     {
1378       error ("class %qT does not have any field named %qD", type,
1379 		member_name);
1380       return 0;
1381     }
1382 
1383   return 1;
1384 }
1385 
1386 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1387    is a _TYPE node or TYPE_DECL which names a base for that type.
1388    Check the validity of NAME, and return either the base _TYPE, base
1389    binfo, or the FIELD_DECL of the member.  If NAME is invalid, return
1390    NULL_TREE and issue a diagnostic.
1391 
1392    An old style unnamed direct single base construction is permitted,
1393    where NAME is NULL.  */
1394 
1395 tree
1396 expand_member_init (tree name)
1397 {
1398   tree basetype;
1399   tree field;
1400 
1401   if (!current_class_ref)
1402     return NULL_TREE;
1403 
1404   if (!name)
1405     {
1406       /* This is an obsolete unnamed base class initializer.  The
1407 	 parser will already have warned about its use.  */
1408       switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1409 	{
1410 	case 0:
1411 	  error ("unnamed initializer for %qT, which has no base classes",
1412 		 current_class_type);
1413 	  return NULL_TREE;
1414 	case 1:
1415 	  basetype = BINFO_TYPE
1416 	    (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1417 	  break;
1418 	default:
1419 	  error ("unnamed initializer for %qT, which uses multiple inheritance",
1420 		 current_class_type);
1421 	  return NULL_TREE;
1422       }
1423     }
1424   else if (TYPE_P (name))
1425     {
1426       basetype = TYPE_MAIN_VARIANT (name);
1427       name = TYPE_NAME (name);
1428     }
1429   else if (TREE_CODE (name) == TYPE_DECL)
1430     basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1431   else
1432     basetype = NULL_TREE;
1433 
1434   if (basetype)
1435     {
1436       tree class_binfo;
1437       tree direct_binfo;
1438       tree virtual_binfo;
1439       int i;
1440 
1441       if (current_template_parms
1442 	  || same_type_p (basetype, current_class_type))
1443 	  return basetype;
1444 
1445       class_binfo = TYPE_BINFO (current_class_type);
1446       direct_binfo = NULL_TREE;
1447       virtual_binfo = NULL_TREE;
1448 
1449       /* Look for a direct base.  */
1450       for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1451 	if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1452 	  break;
1453 
1454       /* Look for a virtual base -- unless the direct base is itself
1455 	 virtual.  */
1456       if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1457 	virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1458 
1459       /* [class.base.init]
1460 
1461 	 If a mem-initializer-id is ambiguous because it designates
1462 	 both a direct non-virtual base class and an inherited virtual
1463 	 base class, the mem-initializer is ill-formed.  */
1464       if (direct_binfo && virtual_binfo)
1465 	{
1466 	  error ("%qD is both a direct base and an indirect virtual base",
1467 		 basetype);
1468 	  return NULL_TREE;
1469 	}
1470 
1471       if (!direct_binfo && !virtual_binfo)
1472 	{
1473 	  if (CLASSTYPE_VBASECLASSES (current_class_type))
1474 	    error ("type %qT is not a direct or virtual base of %qT",
1475 		   basetype, current_class_type);
1476 	  else
1477 	    error ("type %qT is not a direct base of %qT",
1478 		   basetype, current_class_type);
1479 	  return NULL_TREE;
1480 	}
1481 
1482       return direct_binfo ? direct_binfo : virtual_binfo;
1483     }
1484   else
1485     {
1486       if (identifier_p (name))
1487 	field = lookup_field (current_class_type, name, 1, false);
1488       else
1489 	field = name;
1490 
1491       if (member_init_ok_or_else (field, current_class_type, name))
1492 	return field;
1493     }
1494 
1495   return NULL_TREE;
1496 }
1497 
1498 /* This is like `expand_member_init', only it stores one aggregate
1499    value into another.
1500 
1501    INIT comes in two flavors: it is either a value which
1502    is to be stored in EXP, or it is a parameter list
1503    to go to a constructor, which will operate on EXP.
1504    If INIT is not a parameter list for a constructor, then set
1505    LOOKUP_ONLYCONVERTING.
1506    If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1507    the initializer, if FLAGS is 0, then it is the (init) form.
1508    If `init' is a CONSTRUCTOR, then we emit a warning message,
1509    explaining that such initializations are invalid.
1510 
1511    If INIT resolves to a CALL_EXPR which happens to return
1512    something of the type we are looking for, then we know
1513    that we can safely use that call to perform the
1514    initialization.
1515 
1516    The virtual function table pointer cannot be set up here, because
1517    we do not really know its type.
1518 
1519    This never calls operator=().
1520 
1521    When initializing, nothing is CONST.
1522 
1523    A default copy constructor may have to be used to perform the
1524    initialization.
1525 
1526    A constructor or a conversion operator may have to be used to
1527    perform the initialization, but not both, as it would be ambiguous.  */
1528 
1529 tree
1530 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1531 {
1532   tree stmt_expr;
1533   tree compound_stmt;
1534   int destroy_temps;
1535   tree type = TREE_TYPE (exp);
1536   int was_const = TREE_READONLY (exp);
1537   int was_volatile = TREE_THIS_VOLATILE (exp);
1538   int is_global;
1539 
1540   if (init == error_mark_node)
1541     return error_mark_node;
1542 
1543   TREE_READONLY (exp) = 0;
1544   TREE_THIS_VOLATILE (exp) = 0;
1545 
1546   if (init && init != void_type_node
1547       && TREE_CODE (init) != TREE_LIST
1548       && !(TREE_CODE (init) == TARGET_EXPR
1549 	   && TARGET_EXPR_DIRECT_INIT_P (init))
1550       && !DIRECT_LIST_INIT_P (init))
1551     flags |= LOOKUP_ONLYCONVERTING;
1552 
1553   if (TREE_CODE (type) == ARRAY_TYPE)
1554     {
1555       tree itype;
1556 
1557       /* An array may not be initialized use the parenthesized
1558 	 initialization form -- unless the initializer is "()".  */
1559       if (init && TREE_CODE (init) == TREE_LIST)
1560 	{
1561           if (complain & tf_error)
1562             error ("bad array initializer");
1563 	  return error_mark_node;
1564 	}
1565       /* Must arrange to initialize each element of EXP
1566 	 from elements of INIT.  */
1567       itype = init ? TREE_TYPE (init) : NULL_TREE;
1568       if (cv_qualified_p (type))
1569 	TREE_TYPE (exp) = cv_unqualified (type);
1570       if (itype && cv_qualified_p (itype))
1571 	TREE_TYPE (init) = cv_unqualified (itype);
1572       stmt_expr = build_vec_init (exp, NULL_TREE, init,
1573 				  /*explicit_value_init_p=*/false,
1574 				  itype && same_type_p (TREE_TYPE (init),
1575 							TREE_TYPE (exp)),
1576                                   complain);
1577       TREE_READONLY (exp) = was_const;
1578       TREE_THIS_VOLATILE (exp) = was_volatile;
1579       TREE_TYPE (exp) = type;
1580       /* Restore the type of init unless it was used directly.  */
1581       if (init && TREE_CODE (stmt_expr) != INIT_EXPR)
1582 	TREE_TYPE (init) = itype;
1583       return stmt_expr;
1584     }
1585 
1586   if ((VAR_P (exp) || TREE_CODE (exp) == PARM_DECL)
1587       && !lookup_attribute ("warn_unused", TYPE_ATTRIBUTES (type)))
1588     /* Just know that we've seen something for this node.  */
1589     TREE_USED (exp) = 1;
1590 
1591   is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1592   destroy_temps = stmts_are_full_exprs_p ();
1593   current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1594   expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1595 		      init, LOOKUP_NORMAL|flags, complain);
1596   stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1597   current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1598   TREE_READONLY (exp) = was_const;
1599   TREE_THIS_VOLATILE (exp) = was_volatile;
1600 
1601   return stmt_expr;
1602 }
1603 
1604 static void
1605 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1606                      tsubst_flags_t complain)
1607 {
1608   tree type = TREE_TYPE (exp);
1609   tree ctor_name;
1610 
1611   /* It fails because there may not be a constructor which takes
1612      its own type as the first (or only parameter), but which does
1613      take other types via a conversion.  So, if the thing initializing
1614      the expression is a unit element of type X, first try X(X&),
1615      followed by initialization by X.  If neither of these work
1616      out, then look hard.  */
1617   tree rval;
1618   vec<tree, va_gc> *parms;
1619 
1620   /* If we have direct-initialization from an initializer list, pull
1621      it out of the TREE_LIST so the code below can see it.  */
1622   if (init && TREE_CODE (init) == TREE_LIST
1623       && DIRECT_LIST_INIT_P (TREE_VALUE (init)))
1624     {
1625       gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0
1626 			   && TREE_CHAIN (init) == NULL_TREE);
1627       init = TREE_VALUE (init);
1628     }
1629 
1630   if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
1631       && CP_AGGREGATE_TYPE_P (type))
1632     /* A brace-enclosed initializer for an aggregate.  In C++0x this can
1633        happen for direct-initialization, too.  */
1634     init = digest_init (type, init, complain);
1635 
1636   /* A CONSTRUCTOR of the target's type is a previously digested
1637      initializer, whether that happened just above or in
1638      cp_parser_late_parsing_nsdmi.
1639 
1640      A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P
1641      set represents the whole initialization, so we shouldn't build up
1642      another ctor call.  */
1643   if (init
1644       && (TREE_CODE (init) == CONSTRUCTOR
1645 	  || (TREE_CODE (init) == TARGET_EXPR
1646 	      && (TARGET_EXPR_DIRECT_INIT_P (init)
1647 		  || TARGET_EXPR_LIST_INIT_P (init))))
1648       && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
1649     {
1650       /* Early initialization via a TARGET_EXPR only works for
1651 	 complete objects.  */
1652       gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp);
1653 
1654       init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1655       TREE_SIDE_EFFECTS (init) = 1;
1656       finish_expr_stmt (init);
1657       return;
1658     }
1659 
1660   if (init && TREE_CODE (init) != TREE_LIST
1661       && (flags & LOOKUP_ONLYCONVERTING))
1662     {
1663       /* Base subobjects should only get direct-initialization.  */
1664       gcc_assert (true_exp == exp);
1665 
1666       if (flags & DIRECT_BIND)
1667 	/* Do nothing.  We hit this in two cases:  Reference initialization,
1668 	   where we aren't initializing a real variable, so we don't want
1669 	   to run a new constructor; and catching an exception, where we
1670 	   have already built up the constructor call so we could wrap it
1671 	   in an exception region.  */;
1672       else
1673 	init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP,
1674 			    flags, complain);
1675 
1676       if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1677 	/* We need to protect the initialization of a catch parm with a
1678 	   call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1679 	   around the TARGET_EXPR for the copy constructor.  See
1680 	   initialize_handler_parm.  */
1681 	{
1682 	  TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1683 					   TREE_OPERAND (init, 0));
1684 	  TREE_TYPE (init) = void_type_node;
1685 	}
1686       else
1687 	init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1688       TREE_SIDE_EFFECTS (init) = 1;
1689       finish_expr_stmt (init);
1690       return;
1691     }
1692 
1693   if (init == NULL_TREE)
1694     parms = NULL;
1695   else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1696     {
1697       parms = make_tree_vector ();
1698       for (; init != NULL_TREE; init = TREE_CHAIN (init))
1699 	vec_safe_push (parms, TREE_VALUE (init));
1700     }
1701   else
1702     parms = make_tree_vector_single (init);
1703 
1704   if (exp == current_class_ref && current_function_decl
1705       && DECL_HAS_IN_CHARGE_PARM_P (current_function_decl))
1706     {
1707       /* Delegating constructor. */
1708       tree complete;
1709       tree base;
1710       tree elt; unsigned i;
1711 
1712       /* Unshare the arguments for the second call.  */
1713       vec<tree, va_gc> *parms2 = make_tree_vector ();
1714       FOR_EACH_VEC_SAFE_ELT (parms, i, elt)
1715 	{
1716 	  elt = break_out_target_exprs (elt);
1717 	  vec_safe_push (parms2, elt);
1718 	}
1719       complete = build_special_member_call (exp, complete_ctor_identifier,
1720 					    &parms2, binfo, flags,
1721 					    complain);
1722       complete = fold_build_cleanup_point_expr (void_type_node, complete);
1723       release_tree_vector (parms2);
1724 
1725       base = build_special_member_call (exp, base_ctor_identifier,
1726 					&parms, binfo, flags,
1727 					complain);
1728       base = fold_build_cleanup_point_expr (void_type_node, base);
1729       rval = build3 (COND_EXPR, void_type_node,
1730 		     build2 (EQ_EXPR, boolean_type_node,
1731 			     current_in_charge_parm, integer_zero_node),
1732 		     base,
1733 		     complete);
1734     }
1735    else
1736     {
1737       if (true_exp == exp)
1738 	ctor_name = complete_ctor_identifier;
1739       else
1740 	ctor_name = base_ctor_identifier;
1741       rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1742 					complain);
1743   }
1744 
1745   if (parms != NULL)
1746     release_tree_vector (parms);
1747 
1748   if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR)
1749     {
1750       tree fn = get_callee_fndecl (rval);
1751       if (fn && DECL_DECLARED_CONSTEXPR_P (fn))
1752 	{
1753 	  tree e = maybe_constant_init (rval, exp);
1754 	  if (TREE_CONSTANT (e))
1755 	    rval = build2 (INIT_EXPR, type, exp, e);
1756 	}
1757     }
1758 
1759   /* FIXME put back convert_to_void?  */
1760   if (TREE_SIDE_EFFECTS (rval))
1761     finish_expr_stmt (rval);
1762 }
1763 
1764 /* This function is responsible for initializing EXP with INIT
1765    (if any).
1766 
1767    BINFO is the binfo of the type for who we are performing the
1768    initialization.  For example, if W is a virtual base class of A and B,
1769    and C : A, B.
1770    If we are initializing B, then W must contain B's W vtable, whereas
1771    were we initializing C, W must contain C's W vtable.
1772 
1773    TRUE_EXP is nonzero if it is the true expression being initialized.
1774    In this case, it may be EXP, or may just contain EXP.  The reason we
1775    need this is because if EXP is a base element of TRUE_EXP, we
1776    don't necessarily know by looking at EXP where its virtual
1777    baseclass fields should really be pointing.  But we do know
1778    from TRUE_EXP.  In constructors, we don't know anything about
1779    the value being initialized.
1780 
1781    FLAGS is just passed to `build_new_method_call'.  See that function
1782    for its description.  */
1783 
1784 static void
1785 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1786                     tsubst_flags_t complain)
1787 {
1788   tree type = TREE_TYPE (exp);
1789 
1790   gcc_assert (init != error_mark_node && type != error_mark_node);
1791   gcc_assert (building_stmt_list_p ());
1792 
1793   /* Use a function returning the desired type to initialize EXP for us.
1794      If the function is a constructor, and its first argument is
1795      NULL_TREE, know that it was meant for us--just slide exp on
1796      in and expand the constructor.  Constructors now come
1797      as TARGET_EXPRs.  */
1798 
1799   if (init && VAR_P (exp)
1800       && COMPOUND_LITERAL_P (init))
1801     {
1802       vec<tree, va_gc> *cleanups = NULL;
1803       /* If store_init_value returns NULL_TREE, the INIT has been
1804 	 recorded as the DECL_INITIAL for EXP.  That means there's
1805 	 nothing more we have to do.  */
1806       init = store_init_value (exp, init, &cleanups, flags);
1807       if (init)
1808 	finish_expr_stmt (init);
1809       gcc_assert (!cleanups);
1810       return;
1811     }
1812 
1813   /* List-initialization from {} becomes value-initialization for non-aggregate
1814      classes with default constructors.  Handle this here when we're
1815      initializing a base, so protected access works.  */
1816   if (exp != true_exp && init && TREE_CODE (init) == TREE_LIST)
1817     {
1818       tree elt = TREE_VALUE (init);
1819       if (DIRECT_LIST_INIT_P (elt)
1820 	  && CONSTRUCTOR_ELTS (elt) == 0
1821 	  && CLASSTYPE_NON_AGGREGATE (type)
1822 	  && TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
1823 	init = void_type_node;
1824     }
1825 
1826   /* If an explicit -- but empty -- initializer list was present,
1827      that's value-initialization.  */
1828   if (init == void_type_node)
1829     {
1830       /* If the type has data but no user-provided ctor, we need to zero
1831 	 out the object.  */
1832       if (!type_has_user_provided_constructor (type)
1833 	  && !is_really_empty_class (type))
1834 	{
1835 	  tree field_size = NULL_TREE;
1836 	  if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type)
1837 	    /* Don't clobber already initialized virtual bases.  */
1838 	    field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type));
1839 	  init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false,
1840 				    field_size);
1841 	  init = build2 (INIT_EXPR, type, exp, init);
1842 	  finish_expr_stmt (init);
1843 	}
1844 
1845       /* If we don't need to mess with the constructor at all,
1846 	 then we're done.  */
1847       if (! type_build_ctor_call (type))
1848 	return;
1849 
1850       /* Otherwise fall through and call the constructor.  */
1851       init = NULL_TREE;
1852     }
1853 
1854   /* We know that expand_default_init can handle everything we want
1855      at this point.  */
1856   expand_default_init (binfo, true_exp, exp, init, flags, complain);
1857 }
1858 
1859 /* Report an error if TYPE is not a user-defined, class type.  If
1860    OR_ELSE is nonzero, give an error message.  */
1861 
1862 int
1863 is_class_type (tree type, int or_else)
1864 {
1865   if (type == error_mark_node)
1866     return 0;
1867 
1868   if (! CLASS_TYPE_P (type))
1869     {
1870       if (or_else)
1871 	error ("%qT is not a class type", type);
1872       return 0;
1873     }
1874   return 1;
1875 }
1876 
1877 tree
1878 get_type_value (tree name)
1879 {
1880   if (name == error_mark_node)
1881     return NULL_TREE;
1882 
1883   if (IDENTIFIER_HAS_TYPE_VALUE (name))
1884     return IDENTIFIER_TYPE_VALUE (name);
1885   else
1886     return NULL_TREE;
1887 }
1888 
1889 /* Build a reference to a member of an aggregate.  This is not a C++
1890    `&', but really something which can have its address taken, and
1891    then act as a pointer to member, for example TYPE :: FIELD can have
1892    its address taken by saying & TYPE :: FIELD.  ADDRESS_P is true if
1893    this expression is the operand of "&".
1894 
1895    @@ Prints out lousy diagnostics for operator <typename>
1896    @@ fields.
1897 
1898    @@ This function should be rewritten and placed in search.c.  */
1899 
1900 tree
1901 build_offset_ref (tree type, tree member, bool address_p,
1902 		  tsubst_flags_t complain)
1903 {
1904   tree decl;
1905   tree basebinfo = NULL_TREE;
1906 
1907   /* class templates can come in as TEMPLATE_DECLs here.  */
1908   if (TREE_CODE (member) == TEMPLATE_DECL)
1909     return member;
1910 
1911   if (dependent_scope_p (type) || type_dependent_expression_p (member))
1912     return build_qualified_name (NULL_TREE, type, member,
1913 				  /*template_p=*/false);
1914 
1915   gcc_assert (TYPE_P (type));
1916   if (! is_class_type (type, 1))
1917     return error_mark_node;
1918 
1919   gcc_assert (DECL_P (member) || BASELINK_P (member));
1920   /* Callers should call mark_used before this point.  */
1921   gcc_assert (!DECL_P (member) || TREE_USED (member));
1922 
1923   type = TYPE_MAIN_VARIANT (type);
1924   if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type)))
1925     {
1926       if (complain & tf_error)
1927 	error ("incomplete type %qT does not have member %qD", type, member);
1928       return error_mark_node;
1929     }
1930 
1931   /* Entities other than non-static members need no further
1932      processing.  */
1933   if (TREE_CODE (member) == TYPE_DECL)
1934     return member;
1935   if (VAR_P (member) || TREE_CODE (member) == CONST_DECL)
1936     return convert_from_reference (member);
1937 
1938   if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1939     {
1940       if (complain & tf_error)
1941 	error ("invalid pointer to bit-field %qD", member);
1942       return error_mark_node;
1943     }
1944 
1945   /* Set up BASEBINFO for member lookup.  */
1946   decl = maybe_dummy_object (type, &basebinfo);
1947 
1948   /* A lot of this logic is now handled in lookup_member.  */
1949   if (BASELINK_P (member))
1950     {
1951       /* Go from the TREE_BASELINK to the member function info.  */
1952       tree t = BASELINK_FUNCTIONS (member);
1953 
1954       if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1955 	{
1956 	  /* Get rid of a potential OVERLOAD around it.  */
1957 	  t = OVL_CURRENT (t);
1958 
1959 	  /* Unique functions are handled easily.  */
1960 
1961 	  /* For non-static member of base class, we need a special rule
1962 	     for access checking [class.protected]:
1963 
1964 	       If the access is to form a pointer to member, the
1965 	       nested-name-specifier shall name the derived class
1966 	       (or any class derived from that class).  */
1967 	  if (address_p && DECL_P (t)
1968 	      && DECL_NONSTATIC_MEMBER_P (t))
1969 	    perform_or_defer_access_check (TYPE_BINFO (type), t, t,
1970 					   complain);
1971 	  else
1972 	    perform_or_defer_access_check (basebinfo, t, t,
1973 					   complain);
1974 
1975 	  if (DECL_STATIC_FUNCTION_P (t))
1976 	    return t;
1977 	  member = t;
1978 	}
1979       else
1980 	TREE_TYPE (member) = unknown_type_node;
1981     }
1982   else if (address_p && TREE_CODE (member) == FIELD_DECL)
1983     /* We need additional test besides the one in
1984        check_accessibility_of_qualified_id in case it is
1985        a pointer to non-static member.  */
1986     perform_or_defer_access_check (TYPE_BINFO (type), member, member,
1987 				   complain);
1988 
1989   if (!address_p)
1990     {
1991       /* If MEMBER is non-static, then the program has fallen afoul of
1992 	 [expr.prim]:
1993 
1994 	   An id-expression that denotes a nonstatic data member or
1995 	   nonstatic member function of a class can only be used:
1996 
1997 	   -- as part of a class member access (_expr.ref_) in which the
1998 	   object-expression refers to the member's class or a class
1999 	   derived from that class, or
2000 
2001 	   -- to form a pointer to member (_expr.unary.op_), or
2002 
2003 	   -- in the body of a nonstatic member function of that class or
2004 	   of a class derived from that class (_class.mfct.nonstatic_), or
2005 
2006 	   -- in a mem-initializer for a constructor for that class or for
2007 	   a class derived from that class (_class.base.init_).  */
2008       if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
2009 	{
2010 	  /* Build a representation of the qualified name suitable
2011 	     for use as the operand to "&" -- even though the "&" is
2012 	     not actually present.  */
2013 	  member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2014 	  /* In Microsoft mode, treat a non-static member function as if
2015 	     it were a pointer-to-member.  */
2016 	  if (flag_ms_extensions)
2017 	    {
2018 	      PTRMEM_OK_P (member) = 1;
2019 	      return cp_build_addr_expr (member, complain);
2020 	    }
2021 	  if (complain & tf_error)
2022 	    error ("invalid use of non-static member function %qD",
2023 		   TREE_OPERAND (member, 1));
2024 	  return error_mark_node;
2025 	}
2026       else if (TREE_CODE (member) == FIELD_DECL)
2027 	{
2028 	  if (complain & tf_error)
2029 	    error ("invalid use of non-static data member %qD", member);
2030 	  return error_mark_node;
2031 	}
2032       return member;
2033     }
2034 
2035   member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2036   PTRMEM_OK_P (member) = 1;
2037   return member;
2038 }
2039 
2040 /* If DECL is a scalar enumeration constant or variable with a
2041    constant initializer, return the initializer (or, its initializers,
2042    recursively); otherwise, return DECL.  If STRICT_P, the
2043    initializer is only returned if DECL is a
2044    constant-expression.  If RETURN_AGGREGATE_CST_OK_P, it is ok to
2045    return an aggregate constant.  */
2046 
2047 static tree
2048 constant_value_1 (tree decl, bool strict_p, bool return_aggregate_cst_ok_p)
2049 {
2050   while (TREE_CODE (decl) == CONST_DECL
2051 	 || (strict_p
2052 	     ? decl_constant_var_p (decl)
2053 	     : (VAR_P (decl)
2054 		&& CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
2055     {
2056       tree init;
2057       /* If DECL is a static data member in a template
2058 	 specialization, we must instantiate it here.  The
2059 	 initializer for the static data member is not processed
2060 	 until needed; we need it now.  */
2061       mark_used (decl);
2062       mark_rvalue_use (decl);
2063       init = DECL_INITIAL (decl);
2064       if (init == error_mark_node)
2065 	{
2066 	  if (TREE_CODE (decl) == CONST_DECL
2067 	      || DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2068 	    /* Treat the error as a constant to avoid cascading errors on
2069 	       excessively recursive template instantiation (c++/9335).  */
2070 	    return init;
2071 	  else
2072 	    return decl;
2073 	}
2074       /* Initializers in templates are generally expanded during
2075 	 instantiation, so before that for const int i(2)
2076 	 INIT is a TREE_LIST with the actual initializer as
2077 	 TREE_VALUE.  */
2078       if (processing_template_decl
2079 	  && init
2080 	  && TREE_CODE (init) == TREE_LIST
2081 	  && TREE_CHAIN (init) == NULL_TREE)
2082 	init = TREE_VALUE (init);
2083       if (!init
2084 	  || !TREE_TYPE (init)
2085 	  || !TREE_CONSTANT (init)
2086 	  || (!return_aggregate_cst_ok_p
2087 	      /* Unless RETURN_AGGREGATE_CST_OK_P is true, do not
2088 		 return an aggregate constant (of which string
2089 		 literals are a special case), as we do not want
2090 		 to make inadvertent copies of such entities, and
2091 		 we must be sure that their addresses are the
2092  		 same everywhere.  */
2093 	      && (TREE_CODE (init) == CONSTRUCTOR
2094 		  || TREE_CODE (init) == STRING_CST)))
2095 	break;
2096       /* Don't return a CONSTRUCTOR for a variable with partial run-time
2097 	 initialization, since it doesn't represent the entire value.  */
2098       if (TREE_CODE (init) == CONSTRUCTOR
2099 	  && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2100 	break;
2101       decl = unshare_expr (init);
2102     }
2103   return decl;
2104 }
2105 
2106 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by constant
2107    of integral or enumeration type, or a constexpr variable of scalar type,
2108    then return that value.  These are those variables permitted in constant
2109    expressions by [5.19/1].  */
2110 
2111 tree
2112 scalar_constant_value (tree decl)
2113 {
2114   return constant_value_1 (decl, /*strict_p=*/true,
2115 			   /*return_aggregate_cst_ok_p=*/false);
2116 }
2117 
2118 /* Like scalar_constant_value, but can also return aggregate initializers.  */
2119 
2120 tree
2121 decl_really_constant_value (tree decl)
2122 {
2123   return constant_value_1 (decl, /*strict_p=*/true,
2124 			   /*return_aggregate_cst_ok_p=*/true);
2125 }
2126 
2127 /* A more relaxed version of scalar_constant_value, used by the
2128    common C/C++ code.  */
2129 
2130 tree
2131 decl_constant_value (tree decl)
2132 {
2133   return constant_value_1 (decl, /*strict_p=*/processing_template_decl,
2134 			   /*return_aggregate_cst_ok_p=*/true);
2135 }
2136 
2137 /* Common subroutines of build_new and build_vec_delete.  */
2138 
2139 /* Build and return a NEW_EXPR.  If NELTS is non-NULL, TYPE[NELTS] is
2140    the type of the object being allocated; otherwise, it's just TYPE.
2141    INIT is the initializer, if any.  USE_GLOBAL_NEW is true if the
2142    user explicitly wrote "::operator new".  PLACEMENT, if non-NULL, is
2143    a vector of arguments to be provided as arguments to a placement
2144    new operator.  This routine performs no semantic checks; it just
2145    creates and returns a NEW_EXPR.  */
2146 
2147 static tree
2148 build_raw_new_expr (vec<tree, va_gc> *placement, tree type, tree nelts,
2149 		    vec<tree, va_gc> *init, int use_global_new)
2150 {
2151   tree init_list;
2152   tree new_expr;
2153 
2154   /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
2155      If INIT is not NULL, then we want to store VOID_ZERO_NODE.  This
2156      permits us to distinguish the case of a missing initializer "new
2157      int" from an empty initializer "new int()".  */
2158   if (init == NULL)
2159     init_list = NULL_TREE;
2160   else if (init->is_empty ())
2161     init_list = void_node;
2162   else
2163     init_list = build_tree_list_vec (init);
2164 
2165   new_expr = build4 (NEW_EXPR, build_pointer_type (type),
2166 		     build_tree_list_vec (placement), type, nelts,
2167 		     init_list);
2168   NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
2169   TREE_SIDE_EFFECTS (new_expr) = 1;
2170 
2171   return new_expr;
2172 }
2173 
2174 /* Diagnose uninitialized const members or reference members of type
2175    TYPE. USING_NEW is used to disambiguate the diagnostic between a
2176    new expression without a new-initializer and a declaration. Returns
2177    the error count. */
2178 
2179 static int
2180 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
2181 					    bool using_new, bool complain)
2182 {
2183   tree field;
2184   int error_count = 0;
2185 
2186   if (type_has_user_provided_constructor (type))
2187     return 0;
2188 
2189   for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2190     {
2191       tree field_type;
2192 
2193       if (TREE_CODE (field) != FIELD_DECL)
2194 	continue;
2195 
2196       field_type = strip_array_types (TREE_TYPE (field));
2197 
2198       if (type_has_user_provided_constructor (field_type))
2199 	continue;
2200 
2201       if (TREE_CODE (field_type) == REFERENCE_TYPE)
2202 	{
2203 	  ++ error_count;
2204 	  if (complain)
2205 	    {
2206 	      if (DECL_CONTEXT (field) == origin)
2207 		{
2208 		  if (using_new)
2209 		    error ("uninitialized reference member in %q#T "
2210 			   "using %<new%> without new-initializer", origin);
2211 		  else
2212 		    error ("uninitialized reference member in %q#T", origin);
2213 		}
2214 	      else
2215 		{
2216 		  if (using_new)
2217 		    error ("uninitialized reference member in base %q#T "
2218 			   "of %q#T using %<new%> without new-initializer",
2219 			   DECL_CONTEXT (field), origin);
2220 		  else
2221 		    error ("uninitialized reference member in base %q#T "
2222 			   "of %q#T", DECL_CONTEXT (field), origin);
2223 		}
2224 	      inform (DECL_SOURCE_LOCATION (field),
2225 		      "%q#D should be initialized", field);
2226 	    }
2227 	}
2228 
2229       if (CP_TYPE_CONST_P (field_type))
2230 	{
2231 	  ++ error_count;
2232 	  if (complain)
2233 	    {
2234 	      if (DECL_CONTEXT (field) == origin)
2235 		{
2236 		  if (using_new)
2237 		    error ("uninitialized const member in %q#T "
2238 			   "using %<new%> without new-initializer", origin);
2239 		  else
2240 		    error ("uninitialized const member in %q#T", origin);
2241 		}
2242 	      else
2243 		{
2244 		  if (using_new)
2245 		    error ("uninitialized const member in base %q#T "
2246 			   "of %q#T using %<new%> without new-initializer",
2247 			   DECL_CONTEXT (field), origin);
2248 		  else
2249 		    error ("uninitialized const member in base %q#T "
2250 			   "of %q#T", DECL_CONTEXT (field), origin);
2251 		}
2252 	      inform (DECL_SOURCE_LOCATION (field),
2253 		      "%q#D should be initialized", field);
2254 	    }
2255 	}
2256 
2257       if (CLASS_TYPE_P (field_type))
2258 	error_count
2259 	  += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin,
2260 							 using_new, complain);
2261     }
2262   return error_count;
2263 }
2264 
2265 int
2266 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain)
2267 {
2268   return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain);
2269 }
2270 
2271 /* Call __cxa_bad_array_new_length to indicate that the size calculation
2272    overflowed.  Pretend it returns sizetype so that it plays nicely in the
2273    COND_EXPR.  */
2274 
2275 tree
2276 throw_bad_array_new_length (void)
2277 {
2278   tree fn = get_identifier ("__cxa_throw_bad_array_new_length");
2279   if (!get_global_value_if_present (fn, &fn))
2280     fn = push_throw_library_fn (fn, build_function_type_list (sizetype,
2281 							      NULL_TREE));
2282 
2283   return build_cxx_call (fn, 0, NULL, tf_warning_or_error);
2284 }
2285 
2286 /* Generate code for a new-expression, including calling the "operator
2287    new" function, initializing the object, and, if an exception occurs
2288    during construction, cleaning up.  The arguments are as for
2289    build_raw_new_expr.  This may change PLACEMENT and INIT.  */
2290 
2291 static tree
2292 build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts,
2293 	     vec<tree, va_gc> **init, bool globally_qualified_p,
2294 	     tsubst_flags_t complain)
2295 {
2296   tree size, rval;
2297   /* True iff this is a call to "operator new[]" instead of just
2298      "operator new".  */
2299   bool array_p = false;
2300   /* If ARRAY_P is true, the element type of the array.  This is never
2301      an ARRAY_TYPE; for something like "new int[3][4]", the
2302      ELT_TYPE is "int".  If ARRAY_P is false, this is the same type as
2303      TYPE.  */
2304   tree elt_type;
2305   /* The type of the new-expression.  (This type is always a pointer
2306      type.)  */
2307   tree pointer_type;
2308   tree non_const_pointer_type;
2309   tree outer_nelts = NULL_TREE;
2310   /* For arrays, a bounds checks on the NELTS parameter. */
2311   tree outer_nelts_check = NULL_TREE;
2312   bool outer_nelts_from_type = false;
2313   offset_int inner_nelts_count = 1;
2314   tree alloc_call, alloc_expr;
2315   /* Size of the inner array elements. */
2316   offset_int inner_size;
2317   /* The address returned by the call to "operator new".  This node is
2318      a VAR_DECL and is therefore reusable.  */
2319   tree alloc_node;
2320   tree alloc_fn;
2321   tree cookie_expr, init_expr;
2322   int nothrow, check_new;
2323   int use_java_new = 0;
2324   /* If non-NULL, the number of extra bytes to allocate at the
2325      beginning of the storage allocated for an array-new expression in
2326      order to store the number of elements.  */
2327   tree cookie_size = NULL_TREE;
2328   tree placement_first;
2329   tree placement_expr = NULL_TREE;
2330   /* True if the function we are calling is a placement allocation
2331      function.  */
2332   bool placement_allocation_fn_p;
2333   /* True if the storage must be initialized, either by a constructor
2334      or due to an explicit new-initializer.  */
2335   bool is_initialized;
2336   /* The address of the thing allocated, not including any cookie.  In
2337      particular, if an array cookie is in use, DATA_ADDR is the
2338      address of the first array element.  This node is a VAR_DECL, and
2339      is therefore reusable.  */
2340   tree data_addr;
2341   tree init_preeval_expr = NULL_TREE;
2342   tree orig_type = type;
2343 
2344   if (nelts)
2345     {
2346       outer_nelts = nelts;
2347       array_p = true;
2348     }
2349   else if (TREE_CODE (type) == ARRAY_TYPE)
2350     {
2351       /* Transforms new (T[N]) to new T[N].  The former is a GNU
2352 	 extension for variable N.  (This also covers new T where T is
2353 	 a VLA typedef.)  */
2354       array_p = true;
2355       nelts = array_type_nelts_top (type);
2356       outer_nelts = nelts;
2357       type = TREE_TYPE (type);
2358       outer_nelts_from_type = true;
2359     }
2360 
2361   /* If our base type is an array, then make sure we know how many elements
2362      it has.  */
2363   for (elt_type = type;
2364        TREE_CODE (elt_type) == ARRAY_TYPE;
2365        elt_type = TREE_TYPE (elt_type))
2366     {
2367       tree inner_nelts = array_type_nelts_top (elt_type);
2368       tree inner_nelts_cst = maybe_constant_value (inner_nelts);
2369       if (TREE_CODE (inner_nelts_cst) == INTEGER_CST)
2370 	{
2371 	  bool overflow;
2372 	  offset_int result = wi::mul (wi::to_offset (inner_nelts_cst),
2373 				       inner_nelts_count, SIGNED, &overflow);
2374 	  if (overflow)
2375 	    {
2376 	      if (complain & tf_error)
2377 		error ("integer overflow in array size");
2378 	      nelts = error_mark_node;
2379 	    }
2380 	  inner_nelts_count = result;
2381 	}
2382       else
2383 	{
2384 	  if (complain & tf_error)
2385 	    {
2386 	      error_at (EXPR_LOC_OR_LOC (inner_nelts, input_location),
2387 			"array size in new-expression must be constant");
2388 	      cxx_constant_value(inner_nelts);
2389 	    }
2390 	  nelts = error_mark_node;
2391 	}
2392       if (nelts != error_mark_node)
2393 	nelts = cp_build_binary_op (input_location,
2394 				    MULT_EXPR, nelts,
2395 				    inner_nelts_cst,
2396 				    complain);
2397     }
2398 
2399   if (variably_modified_type_p (elt_type, NULL_TREE) && (complain & tf_error))
2400     {
2401       error ("variably modified type not allowed in new-expression");
2402       return error_mark_node;
2403     }
2404 
2405   if (nelts == error_mark_node)
2406     return error_mark_node;
2407 
2408   /* Warn if we performed the (T[N]) to T[N] transformation and N is
2409      variable.  */
2410   if (outer_nelts_from_type
2411       && !TREE_CONSTANT (maybe_constant_value (outer_nelts)))
2412     {
2413       if (complain & tf_warning_or_error)
2414 	{
2415 	  const char *msg;
2416 	  if (typedef_variant_p (orig_type))
2417 	    msg = ("non-constant array new length must be specified "
2418 		   "directly, not by typedef");
2419 	  else
2420 	    msg = ("non-constant array new length must be specified "
2421 		   "without parentheses around the type-id");
2422 	  pedwarn (EXPR_LOC_OR_LOC (outer_nelts, input_location),
2423 		   OPT_Wvla, msg);
2424 	}
2425       else
2426 	return error_mark_node;
2427     }
2428 
2429   if (VOID_TYPE_P (elt_type))
2430     {
2431       if (complain & tf_error)
2432         error ("invalid type %<void%> for new");
2433       return error_mark_node;
2434     }
2435 
2436   if (abstract_virtuals_error_sfinae (ACU_NEW, elt_type, complain))
2437     return error_mark_node;
2438 
2439   is_initialized = (type_build_ctor_call (elt_type) || *init != NULL);
2440 
2441   if (*init == NULL && cxx_dialect < cxx11)
2442     {
2443       bool maybe_uninitialized_error = false;
2444       /* A program that calls for default-initialization [...] of an
2445 	 entity of reference type is ill-formed. */
2446       if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
2447 	maybe_uninitialized_error = true;
2448 
2449       /* A new-expression that creates an object of type T initializes
2450 	 that object as follows:
2451       - If the new-initializer is omitted:
2452         -- If T is a (possibly cv-qualified) non-POD class type
2453 	   (or array thereof), the object is default-initialized (8.5).
2454 	   [...]
2455         -- Otherwise, the object created has indeterminate
2456 	   value. If T is a const-qualified type, or a (possibly
2457 	   cv-qualified) POD class type (or array thereof)
2458 	   containing (directly or indirectly) a member of
2459 	   const-qualified type, the program is ill-formed; */
2460 
2461       if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
2462 	maybe_uninitialized_error = true;
2463 
2464       if (maybe_uninitialized_error
2465 	  && diagnose_uninitialized_cst_or_ref_member (elt_type,
2466 						       /*using_new=*/true,
2467 						       complain & tf_error))
2468 	return error_mark_node;
2469     }
2470 
2471   if (CP_TYPE_CONST_P (elt_type) && *init == NULL
2472       && default_init_uninitialized_part (elt_type))
2473     {
2474       if (complain & tf_error)
2475         error ("uninitialized const in %<new%> of %q#T", elt_type);
2476       return error_mark_node;
2477     }
2478 
2479   size = size_in_bytes (elt_type);
2480   if (array_p)
2481     {
2482       /* Maximum available size in bytes.  Half of the address space
2483 	 minus the cookie size.  */
2484       offset_int max_size
2485 	= wi::set_bit_in_zero <offset_int> (TYPE_PRECISION (sizetype) - 1);
2486       /* Maximum number of outer elements which can be allocated. */
2487       offset_int max_outer_nelts;
2488       tree max_outer_nelts_tree;
2489 
2490       gcc_assert (TREE_CODE (size) == INTEGER_CST);
2491       cookie_size = targetm.cxx.get_cookie_size (elt_type);
2492       gcc_assert (TREE_CODE (cookie_size) == INTEGER_CST);
2493       gcc_checking_assert (wi::ltu_p (wi::to_offset (cookie_size), max_size));
2494       /* Unconditionally subtract the cookie size.  This decreases the
2495 	 maximum object size and is safe even if we choose not to use
2496 	 a cookie after all.  */
2497       max_size -= wi::to_offset (cookie_size);
2498       bool overflow;
2499       inner_size = wi::mul (wi::to_offset (size), inner_nelts_count, SIGNED,
2500 			    &overflow);
2501       if (overflow || wi::gtu_p (inner_size, max_size))
2502 	{
2503 	  if (complain & tf_error)
2504 	    error ("size of array is too large");
2505 	  return error_mark_node;
2506 	}
2507 
2508       max_outer_nelts = wi::udiv_trunc (max_size, inner_size);
2509       /* Only keep the top-most seven bits, to simplify encoding the
2510 	 constant in the instruction stream.  */
2511       {
2512 	unsigned shift = (max_outer_nelts.get_precision ()) - 7
2513 	  - wi::clz (max_outer_nelts);
2514 	max_outer_nelts = wi::lshift (wi::lrshift (max_outer_nelts, shift),
2515 				      shift);
2516       }
2517       max_outer_nelts_tree = wide_int_to_tree (sizetype, max_outer_nelts);
2518 
2519       size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
2520       outer_nelts_check = fold_build2 (LE_EXPR, boolean_type_node,
2521 				       outer_nelts,
2522 				       max_outer_nelts_tree);
2523     }
2524 
2525   alloc_fn = NULL_TREE;
2526 
2527   /* If PLACEMENT is a single simple pointer type not passed by
2528      reference, prepare to capture it in a temporary variable.  Do
2529      this now, since PLACEMENT will change in the calls below.  */
2530   placement_first = NULL_TREE;
2531   if (vec_safe_length (*placement) == 1
2532       && (TYPE_PTR_P (TREE_TYPE ((**placement)[0]))))
2533     placement_first = (**placement)[0];
2534 
2535   /* Allocate the object.  */
2536   if (vec_safe_is_empty (*placement) && TYPE_FOR_JAVA (elt_type))
2537     {
2538       tree class_addr;
2539       tree class_decl;
2540       static const char alloc_name[] = "_Jv_AllocObject";
2541 
2542       if (!MAYBE_CLASS_TYPE_P (elt_type))
2543 	{
2544 	  error ("%qT isn%'t a valid Java class type", elt_type);
2545 	  return error_mark_node;
2546 	}
2547 
2548       class_decl = build_java_class_ref (elt_type);
2549       if (class_decl == error_mark_node)
2550 	return error_mark_node;
2551 
2552       use_java_new = 1;
2553       if (!get_global_value_if_present (get_identifier (alloc_name),
2554 					&alloc_fn))
2555 	{
2556           if (complain & tf_error)
2557             error ("call to Java constructor with %qs undefined", alloc_name);
2558 	  return error_mark_node;
2559 	}
2560       else if (really_overloaded_fn (alloc_fn))
2561 	{
2562           if (complain & tf_error)
2563             error ("%qD should never be overloaded", alloc_fn);
2564 	  return error_mark_node;
2565 	}
2566       alloc_fn = OVL_CURRENT (alloc_fn);
2567       class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
2568       alloc_call = cp_build_function_call_nary (alloc_fn, complain,
2569 						class_addr, NULL_TREE);
2570     }
2571   else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type))
2572     {
2573       error ("Java class %q#T object allocated using placement new", elt_type);
2574       return error_mark_node;
2575     }
2576   else
2577     {
2578       tree fnname;
2579       tree fns;
2580 
2581       fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
2582 
2583       if (!globally_qualified_p
2584 	  && CLASS_TYPE_P (elt_type)
2585 	  && (array_p
2586 	      ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
2587 	      : TYPE_HAS_NEW_OPERATOR (elt_type)))
2588 	{
2589 	  /* Use a class-specific operator new.  */
2590 	  /* If a cookie is required, add some extra space.  */
2591 	  if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2592 	    size = size_binop (PLUS_EXPR, size, cookie_size);
2593 	  else
2594 	    {
2595 	      cookie_size = NULL_TREE;
2596 	      /* No size arithmetic necessary, so the size check is
2597 		 not needed. */
2598 	      if (outer_nelts_check != NULL && inner_size == 1)
2599 		outer_nelts_check = NULL_TREE;
2600 	    }
2601 	  /* Perform the overflow check.  */
2602 	  tree errval = TYPE_MAX_VALUE (sizetype);
2603 	  if (cxx_dialect >= cxx11 && flag_exceptions)
2604 	    errval = throw_bad_array_new_length ();
2605 	  if (outer_nelts_check != NULL_TREE)
2606             size = fold_build3 (COND_EXPR, sizetype, outer_nelts_check,
2607                                 size, errval);
2608 	  /* Create the argument list.  */
2609 	  vec_safe_insert (*placement, 0, size);
2610 	  /* Do name-lookup to find the appropriate operator.  */
2611 	  fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
2612 	  if (fns == NULL_TREE)
2613 	    {
2614               if (complain & tf_error)
2615                 error ("no suitable %qD found in class %qT", fnname, elt_type);
2616 	      return error_mark_node;
2617 	    }
2618 	  if (TREE_CODE (fns) == TREE_LIST)
2619 	    {
2620               if (complain & tf_error)
2621                 {
2622                   error ("request for member %qD is ambiguous", fnname);
2623                   print_candidates (fns);
2624                 }
2625 	      return error_mark_node;
2626 	    }
2627 	  alloc_call = build_new_method_call (build_dummy_object (elt_type),
2628 					      fns, placement,
2629 					      /*conversion_path=*/NULL_TREE,
2630 					      LOOKUP_NORMAL,
2631 					      &alloc_fn,
2632 					      complain);
2633 	}
2634       else
2635 	{
2636 	  /* Use a global operator new.  */
2637 	  /* See if a cookie might be required.  */
2638 	  if (!(array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)))
2639 	    {
2640 	      cookie_size = NULL_TREE;
2641 	      /* No size arithmetic necessary, so the size check is
2642 		 not needed. */
2643 	      if (outer_nelts_check != NULL && inner_size == 1)
2644 		outer_nelts_check = NULL_TREE;
2645 	    }
2646 
2647 	  alloc_call = build_operator_new_call (fnname, placement,
2648 						&size, &cookie_size,
2649 						outer_nelts_check,
2650 						&alloc_fn, complain);
2651 	}
2652     }
2653 
2654   if (alloc_call == error_mark_node)
2655     return error_mark_node;
2656 
2657   gcc_assert (alloc_fn != NULL_TREE);
2658 
2659   /* If we found a simple case of PLACEMENT_EXPR above, then copy it
2660      into a temporary variable.  */
2661   if (!processing_template_decl
2662       && placement_first != NULL_TREE
2663       && TREE_CODE (alloc_call) == CALL_EXPR
2664       && call_expr_nargs (alloc_call) == 2
2665       && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
2666       && TYPE_PTR_P (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))))
2667     {
2668       tree placement_arg = CALL_EXPR_ARG (alloc_call, 1);
2669 
2670       if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg)))
2671 	  || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg))))
2672 	{
2673 	  placement_expr = get_target_expr (placement_first);
2674 	  CALL_EXPR_ARG (alloc_call, 1)
2675 	    = convert (TREE_TYPE (placement_arg), placement_expr);
2676 	}
2677     }
2678 
2679   /* In the simple case, we can stop now.  */
2680   pointer_type = build_pointer_type (type);
2681   if (!cookie_size && !is_initialized)
2682     return build_nop (pointer_type, alloc_call);
2683 
2684   /* Store the result of the allocation call in a variable so that we can
2685      use it more than once.  */
2686   alloc_expr = get_target_expr (alloc_call);
2687   alloc_node = TARGET_EXPR_SLOT (alloc_expr);
2688 
2689   /* Strip any COMPOUND_EXPRs from ALLOC_CALL.  */
2690   while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
2691     alloc_call = TREE_OPERAND (alloc_call, 1);
2692 
2693   /* Now, check to see if this function is actually a placement
2694      allocation function.  This can happen even when PLACEMENT is NULL
2695      because we might have something like:
2696 
2697        struct S { void* operator new (size_t, int i = 0); };
2698 
2699      A call to `new S' will get this allocation function, even though
2700      there is no explicit placement argument.  If there is more than
2701      one argument, or there are variable arguments, then this is a
2702      placement allocation function.  */
2703   placement_allocation_fn_p
2704     = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2705        || varargs_function_p (alloc_fn));
2706 
2707   /* Preevaluate the placement args so that we don't reevaluate them for a
2708      placement delete.  */
2709   if (placement_allocation_fn_p)
2710     {
2711       tree inits;
2712       stabilize_call (alloc_call, &inits);
2713       if (inits)
2714 	alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
2715 			     alloc_expr);
2716     }
2717 
2718   /*        unless an allocation function is declared with an empty  excep-
2719      tion-specification  (_except.spec_),  throw(), it indicates failure to
2720      allocate storage by throwing a bad_alloc exception  (clause  _except_,
2721      _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2722      cation function is declared  with  an  empty  exception-specification,
2723      throw(), it returns null to indicate failure to allocate storage and a
2724      non-null pointer otherwise.
2725 
2726      So check for a null exception spec on the op new we just called.  */
2727 
2728   nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2729   check_new = (flag_check_new || nothrow) && ! use_java_new;
2730 
2731   if (cookie_size)
2732     {
2733       tree cookie;
2734       tree cookie_ptr;
2735       tree size_ptr_type;
2736 
2737       /* Adjust so we're pointing to the start of the object.  */
2738       data_addr = fold_build_pointer_plus (alloc_node, cookie_size);
2739 
2740       /* Store the number of bytes allocated so that we can know how
2741 	 many elements to destroy later.  We use the last sizeof
2742 	 (size_t) bytes to store the number of elements.  */
2743       cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
2744       cookie_ptr = fold_build_pointer_plus_loc (input_location,
2745 						alloc_node, cookie_ptr);
2746       size_ptr_type = build_pointer_type (sizetype);
2747       cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
2748       cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2749 
2750       cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
2751 
2752       if (targetm.cxx.cookie_has_size ())
2753 	{
2754 	  /* Also store the element size.  */
2755 	  cookie_ptr = fold_build_pointer_plus (cookie_ptr,
2756 			       fold_build1_loc (input_location,
2757 						NEGATE_EXPR, sizetype,
2758 						size_in_bytes (sizetype)));
2759 
2760 	  cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2761 	  cookie = build2 (MODIFY_EXPR, sizetype, cookie,
2762 			   size_in_bytes (elt_type));
2763 	  cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
2764 				cookie, cookie_expr);
2765 	}
2766     }
2767   else
2768     {
2769       cookie_expr = NULL_TREE;
2770       data_addr = alloc_node;
2771     }
2772 
2773   /* Now use a pointer to the type we've actually allocated.  */
2774 
2775   /* But we want to operate on a non-const version to start with,
2776      since we'll be modifying the elements.  */
2777   non_const_pointer_type = build_pointer_type
2778     (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST));
2779 
2780   data_addr = fold_convert (non_const_pointer_type, data_addr);
2781   /* Any further uses of alloc_node will want this type, too.  */
2782   alloc_node = fold_convert (non_const_pointer_type, alloc_node);
2783 
2784   /* Now initialize the allocated object.  Note that we preevaluate the
2785      initialization expression, apart from the actual constructor call or
2786      assignment--we do this because we want to delay the allocation as long
2787      as possible in order to minimize the size of the exception region for
2788      placement delete.  */
2789   if (is_initialized)
2790     {
2791       bool stable;
2792       bool explicit_value_init_p = false;
2793 
2794       if (*init != NULL && (*init)->is_empty ())
2795 	{
2796 	  *init = NULL;
2797 	  explicit_value_init_p = true;
2798 	}
2799 
2800       if (processing_template_decl && explicit_value_init_p)
2801 	{
2802 	  /* build_value_init doesn't work in templates, and we don't need
2803 	     the initializer anyway since we're going to throw it away and
2804 	     rebuild it at instantiation time, so just build up a single
2805 	     constructor call to get any appropriate diagnostics.  */
2806 	  init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2807 	  if (type_build_ctor_call (elt_type))
2808 	    init_expr = build_special_member_call (init_expr,
2809 						   complete_ctor_identifier,
2810 						   init, elt_type,
2811 						   LOOKUP_NORMAL,
2812 						   complain);
2813 	  stable = stabilize_init (init_expr, &init_preeval_expr);
2814 	}
2815       else if (array_p)
2816 	{
2817 	  tree vecinit = NULL_TREE;
2818 	  if (vec_safe_length (*init) == 1
2819 	      && DIRECT_LIST_INIT_P ((**init)[0]))
2820 	    {
2821 	      vecinit = (**init)[0];
2822 	      if (CONSTRUCTOR_NELTS (vecinit) == 0)
2823 		/* List-value-initialization, leave it alone.  */;
2824 	      else
2825 		{
2826 		  tree arraytype, domain;
2827 		  if (TREE_CONSTANT (nelts))
2828 		    domain = compute_array_index_type (NULL_TREE, nelts,
2829 						       complain);
2830 		  else
2831 		    /* We'll check the length at runtime.  */
2832 		    domain = NULL_TREE;
2833 		  arraytype = build_cplus_array_type (type, domain);
2834 		  vecinit = digest_init (arraytype, vecinit, complain);
2835 		}
2836 	    }
2837 	  else if (*init)
2838             {
2839               if (complain & tf_error)
2840                 permerror (input_location,
2841 			   "parenthesized initializer in array new");
2842               else
2843                 return error_mark_node;
2844 	      vecinit = build_tree_list_vec (*init);
2845             }
2846 	  init_expr
2847 	    = build_vec_init (data_addr,
2848 			      cp_build_binary_op (input_location,
2849 						  MINUS_EXPR, outer_nelts,
2850 						  integer_one_node,
2851 						  complain),
2852 			      vecinit,
2853 			      explicit_value_init_p,
2854 			      /*from_array=*/0,
2855                               complain);
2856 
2857 	  /* An array initialization is stable because the initialization
2858 	     of each element is a full-expression, so the temporaries don't
2859 	     leak out.  */
2860 	  stable = true;
2861 	}
2862       else
2863 	{
2864 	  init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2865 
2866 	  if (type_build_ctor_call (type) && !explicit_value_init_p)
2867 	    {
2868 	      init_expr = build_special_member_call (init_expr,
2869 						     complete_ctor_identifier,
2870 						     init, elt_type,
2871 						     LOOKUP_NORMAL,
2872                                                      complain);
2873 	    }
2874 	  else if (explicit_value_init_p)
2875 	    {
2876 	      /* Something like `new int()'.  */
2877 	      tree val = build_value_init (type, complain);
2878 	      if (val == error_mark_node)
2879 		return error_mark_node;
2880 	      init_expr = build2 (INIT_EXPR, type, init_expr, val);
2881 	    }
2882 	  else
2883 	    {
2884 	      tree ie;
2885 
2886 	      /* We are processing something like `new int (10)', which
2887 		 means allocate an int, and initialize it with 10.  */
2888 
2889 	      ie = build_x_compound_expr_from_vec (*init, "new initializer",
2890 						   complain);
2891 	      init_expr = cp_build_modify_expr (init_expr, INIT_EXPR, ie,
2892 						complain);
2893 	    }
2894 	  stable = stabilize_init (init_expr, &init_preeval_expr);
2895 	}
2896 
2897       if (init_expr == error_mark_node)
2898 	return error_mark_node;
2899 
2900       /* If any part of the object initialization terminates by throwing an
2901 	 exception and a suitable deallocation function can be found, the
2902 	 deallocation function is called to free the memory in which the
2903 	 object was being constructed, after which the exception continues
2904 	 to propagate in the context of the new-expression. If no
2905 	 unambiguous matching deallocation function can be found,
2906 	 propagating the exception does not cause the object's memory to be
2907 	 freed.  */
2908       if (flag_exceptions && ! use_java_new)
2909 	{
2910 	  enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2911 	  tree cleanup;
2912 
2913 	  /* The Standard is unclear here, but the right thing to do
2914 	     is to use the same method for finding deallocation
2915 	     functions that we use for finding allocation functions.  */
2916 	  cleanup = (build_op_delete_call
2917 		     (dcode,
2918 		      alloc_node,
2919 		      size,
2920 		      globally_qualified_p,
2921 		      placement_allocation_fn_p ? alloc_call : NULL_TREE,
2922 		      alloc_fn,
2923 		      complain));
2924 
2925 	  if (!cleanup)
2926 	    /* We're done.  */;
2927 	  else if (stable)
2928 	    /* This is much simpler if we were able to preevaluate all of
2929 	       the arguments to the constructor call.  */
2930 	    {
2931 	      /* CLEANUP is compiler-generated, so no diagnostics.  */
2932 	      TREE_NO_WARNING (cleanup) = true;
2933 	      init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2934 				  init_expr, cleanup);
2935 	      /* Likewise, this try-catch is compiler-generated.  */
2936 	      TREE_NO_WARNING (init_expr) = true;
2937 	    }
2938 	  else
2939 	    /* Ack!  First we allocate the memory.  Then we set our sentry
2940 	       variable to true, and expand a cleanup that deletes the
2941 	       memory if sentry is true.  Then we run the constructor, and
2942 	       finally clear the sentry.
2943 
2944 	       We need to do this because we allocate the space first, so
2945 	       if there are any temporaries with cleanups in the
2946 	       constructor args and we weren't able to preevaluate them, we
2947 	       need this EH region to extend until end of full-expression
2948 	       to preserve nesting.  */
2949 	    {
2950 	      tree end, sentry, begin;
2951 
2952 	      begin = get_target_expr (boolean_true_node);
2953 	      CLEANUP_EH_ONLY (begin) = 1;
2954 
2955 	      sentry = TARGET_EXPR_SLOT (begin);
2956 
2957 	      /* CLEANUP is compiler-generated, so no diagnostics.  */
2958 	      TREE_NO_WARNING (cleanup) = true;
2959 
2960 	      TARGET_EXPR_CLEANUP (begin)
2961 		= build3 (COND_EXPR, void_type_node, sentry,
2962 			  cleanup, void_node);
2963 
2964 	      end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2965 			    sentry, boolean_false_node);
2966 
2967 	      init_expr
2968 		= build2 (COMPOUND_EXPR, void_type_node, begin,
2969 			  build2 (COMPOUND_EXPR, void_type_node, init_expr,
2970 				  end));
2971 	      /* Likewise, this is compiler-generated.  */
2972 	      TREE_NO_WARNING (init_expr) = true;
2973 	    }
2974 	}
2975     }
2976   else
2977     init_expr = NULL_TREE;
2978 
2979   /* Now build up the return value in reverse order.  */
2980 
2981   rval = data_addr;
2982 
2983   if (init_expr)
2984     rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2985   if (cookie_expr)
2986     rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2987 
2988   if (rval == data_addr)
2989     /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2990        and return the call (which doesn't need to be adjusted).  */
2991     rval = TARGET_EXPR_INITIAL (alloc_expr);
2992   else
2993     {
2994       if (check_new)
2995 	{
2996 	  tree ifexp = cp_build_binary_op (input_location,
2997 					   NE_EXPR, alloc_node,
2998 					   nullptr_node,
2999 					   complain);
3000 	  rval = build_conditional_expr (input_location, ifexp, rval,
3001 					 alloc_node, complain);
3002 	}
3003 
3004       /* Perform the allocation before anything else, so that ALLOC_NODE
3005 	 has been initialized before we start using it.  */
3006       rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
3007     }
3008 
3009   if (init_preeval_expr)
3010     rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
3011 
3012   /* A new-expression is never an lvalue.  */
3013   gcc_assert (!lvalue_p (rval));
3014 
3015   return convert (pointer_type, rval);
3016 }
3017 
3018 /* Generate a representation for a C++ "new" expression.  *PLACEMENT
3019    is a vector of placement-new arguments (or NULL if none).  If NELTS
3020    is NULL, TYPE is the type of the storage to be allocated.  If NELTS
3021    is not NULL, then this is an array-new allocation; TYPE is the type
3022    of the elements in the array and NELTS is the number of elements in
3023    the array.  *INIT, if non-NULL, is the initializer for the new
3024    object, or an empty vector to indicate an initializer of "()".  If
3025    USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
3026    rather than just "new".  This may change PLACEMENT and INIT.  */
3027 
3028 tree
3029 build_new (vec<tree, va_gc> **placement, tree type, tree nelts,
3030 	   vec<tree, va_gc> **init, int use_global_new, tsubst_flags_t complain)
3031 {
3032   tree rval;
3033   vec<tree, va_gc> *orig_placement = NULL;
3034   tree orig_nelts = NULL_TREE;
3035   vec<tree, va_gc> *orig_init = NULL;
3036 
3037   if (type == error_mark_node)
3038     return error_mark_node;
3039 
3040   if (nelts == NULL_TREE && vec_safe_length (*init) == 1
3041       /* Don't do auto deduction where it might affect mangling.  */
3042       && (!processing_template_decl || at_function_scope_p ()))
3043     {
3044       tree auto_node = type_uses_auto (type);
3045       if (auto_node)
3046 	{
3047 	  tree d_init = (**init)[0];
3048 	  d_init = resolve_nondeduced_context (d_init, complain);
3049 	  type = do_auto_deduction (type, d_init, auto_node);
3050 	}
3051     }
3052 
3053   if (processing_template_decl)
3054     {
3055       if (dependent_type_p (type)
3056 	  || any_type_dependent_arguments_p (*placement)
3057 	  || (nelts && type_dependent_expression_p (nelts))
3058 	  || (nelts && *init)
3059 	  || any_type_dependent_arguments_p (*init))
3060 	return build_raw_new_expr (*placement, type, nelts, *init,
3061 				   use_global_new);
3062 
3063       orig_placement = make_tree_vector_copy (*placement);
3064       orig_nelts = nelts;
3065       if (*init)
3066 	orig_init = make_tree_vector_copy (*init);
3067 
3068       make_args_non_dependent (*placement);
3069       if (nelts)
3070 	nelts = build_non_dependent_expr (nelts);
3071       make_args_non_dependent (*init);
3072     }
3073 
3074   if (nelts)
3075     {
3076       if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
3077         {
3078           if (complain & tf_error)
3079             permerror (input_location, "size in array new must have integral type");
3080           else
3081             return error_mark_node;
3082         }
3083       nelts = mark_rvalue_use (nelts);
3084       nelts = cp_save_expr (cp_convert (sizetype, nelts, complain));
3085     }
3086 
3087   /* ``A reference cannot be created by the new operator.  A reference
3088      is not an object (8.2.2, 8.4.3), so a pointer to it could not be
3089      returned by new.'' ARM 5.3.3 */
3090   if (TREE_CODE (type) == REFERENCE_TYPE)
3091     {
3092       if (complain & tf_error)
3093         error ("new cannot be applied to a reference type");
3094       else
3095         return error_mark_node;
3096       type = TREE_TYPE (type);
3097     }
3098 
3099   if (TREE_CODE (type) == FUNCTION_TYPE)
3100     {
3101       if (complain & tf_error)
3102         error ("new cannot be applied to a function type");
3103       return error_mark_node;
3104     }
3105 
3106   /* The type allocated must be complete.  If the new-type-id was
3107      "T[N]" then we are just checking that "T" is complete here, but
3108      that is equivalent, since the value of "N" doesn't matter.  */
3109   if (!complete_type_or_maybe_complain (type, NULL_TREE, complain))
3110     return error_mark_node;
3111 
3112   rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
3113   if (rval == error_mark_node)
3114     return error_mark_node;
3115 
3116   if (processing_template_decl)
3117     {
3118       tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
3119 				     orig_init, use_global_new);
3120       release_tree_vector (orig_placement);
3121       release_tree_vector (orig_init);
3122       return ret;
3123     }
3124 
3125   /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain.  */
3126   rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
3127   TREE_NO_WARNING (rval) = 1;
3128 
3129   return rval;
3130 }
3131 
3132 /* Given a Java class, return a decl for the corresponding java.lang.Class.  */
3133 
3134 tree
3135 build_java_class_ref (tree type)
3136 {
3137   tree name = NULL_TREE, class_decl;
3138   static tree CL_suffix = NULL_TREE;
3139   if (CL_suffix == NULL_TREE)
3140     CL_suffix = get_identifier("class$");
3141   if (jclass_node == NULL_TREE)
3142     {
3143       jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
3144       if (jclass_node == NULL_TREE)
3145 	{
3146 	  error ("call to Java constructor, while %<jclass%> undefined");
3147 	  return error_mark_node;
3148 	}
3149       jclass_node = TREE_TYPE (jclass_node);
3150     }
3151 
3152   /* Mangle the class$ field.  */
3153   {
3154     tree field;
3155     for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3156       if (DECL_NAME (field) == CL_suffix)
3157 	{
3158 	  mangle_decl (field);
3159 	  name = DECL_ASSEMBLER_NAME (field);
3160 	  break;
3161 	}
3162     if (!field)
3163       {
3164 	error ("can%'t find %<class$%> in %qT", type);
3165 	return error_mark_node;
3166       }
3167   }
3168 
3169   class_decl = IDENTIFIER_GLOBAL_VALUE (name);
3170   if (class_decl == NULL_TREE)
3171     {
3172       class_decl = build_decl (input_location,
3173 			       VAR_DECL, name, TREE_TYPE (jclass_node));
3174       TREE_STATIC (class_decl) = 1;
3175       DECL_EXTERNAL (class_decl) = 1;
3176       TREE_PUBLIC (class_decl) = 1;
3177       DECL_ARTIFICIAL (class_decl) = 1;
3178       DECL_IGNORED_P (class_decl) = 1;
3179       pushdecl_top_level (class_decl);
3180       make_decl_rtl (class_decl);
3181     }
3182   return class_decl;
3183 }
3184 
3185 static tree
3186 build_vec_delete_1 (tree base, tree maxindex, tree type,
3187 		    special_function_kind auto_delete_vec,
3188 		    int use_global_delete, tsubst_flags_t complain)
3189 {
3190   tree virtual_size;
3191   tree ptype = build_pointer_type (type = complete_type (type));
3192   tree size_exp;
3193 
3194   /* Temporary variables used by the loop.  */
3195   tree tbase, tbase_init;
3196 
3197   /* This is the body of the loop that implements the deletion of a
3198      single element, and moves temp variables to next elements.  */
3199   tree body;
3200 
3201   /* This is the LOOP_EXPR that governs the deletion of the elements.  */
3202   tree loop = 0;
3203 
3204   /* This is the thing that governs what to do after the loop has run.  */
3205   tree deallocate_expr = 0;
3206 
3207   /* This is the BIND_EXPR which holds the outermost iterator of the
3208      loop.  It is convenient to set this variable up and test it before
3209      executing any other code in the loop.
3210      This is also the containing expression returned by this function.  */
3211   tree controller = NULL_TREE;
3212   tree tmp;
3213 
3214   /* We should only have 1-D arrays here.  */
3215   gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
3216 
3217   if (base == error_mark_node || maxindex == error_mark_node)
3218     return error_mark_node;
3219 
3220   if (!COMPLETE_TYPE_P (type))
3221     {
3222       if ((complain & tf_warning)
3223 	  && warning (OPT_Wdelete_incomplete,
3224 		      "possible problem detected in invocation of "
3225 		      "delete [] operator:"))
3226        {
3227          cxx_incomplete_type_diagnostic (base, type, DK_WARNING);
3228          inform (input_location, "neither the destructor nor the "
3229                  "class-specific operator delete [] will be called, "
3230                  "even if they are declared when the class is defined");
3231        }
3232       /* This size won't actually be used.  */
3233       size_exp = size_one_node;
3234       goto no_destructor;
3235     }
3236 
3237   size_exp = size_in_bytes (type);
3238 
3239   if (! MAYBE_CLASS_TYPE_P (type))
3240     goto no_destructor;
3241   else if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3242     {
3243       /* Make sure the destructor is callable.  */
3244       if (type_build_dtor_call (type))
3245 	{
3246 	  tmp = build_delete (ptype, base, sfk_complete_destructor,
3247 			      LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3248 			      complain);
3249 	  if (tmp == error_mark_node)
3250 	    return error_mark_node;
3251 	}
3252       goto no_destructor;
3253     }
3254 
3255   /* The below is short by the cookie size.  */
3256   virtual_size = size_binop (MULT_EXPR, size_exp,
3257 			     convert (sizetype, maxindex));
3258 
3259   tbase = create_temporary_var (ptype);
3260   tbase_init
3261     = cp_build_modify_expr (tbase, NOP_EXPR,
3262 			    fold_build_pointer_plus_loc (input_location,
3263 							 fold_convert (ptype,
3264 								       base),
3265 							 virtual_size),
3266 			    complain);
3267   if (tbase_init == error_mark_node)
3268     return error_mark_node;
3269   controller = build3 (BIND_EXPR, void_type_node, tbase,
3270 		       NULL_TREE, NULL_TREE);
3271   TREE_SIDE_EFFECTS (controller) = 1;
3272 
3273   body = build1 (EXIT_EXPR, void_type_node,
3274 		 build2 (EQ_EXPR, boolean_type_node, tbase,
3275 			 fold_convert (ptype, base)));
3276   tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp);
3277   tmp = fold_build_pointer_plus (tbase, tmp);
3278   tmp = cp_build_modify_expr (tbase, NOP_EXPR, tmp, complain);
3279   if (tmp == error_mark_node)
3280     return error_mark_node;
3281   body = build_compound_expr (input_location, body, tmp);
3282   tmp = build_delete (ptype, tbase, sfk_complete_destructor,
3283 		      LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3284 		      complain);
3285   if (tmp == error_mark_node)
3286     return error_mark_node;
3287   body = build_compound_expr (input_location, body, tmp);
3288 
3289   loop = build1 (LOOP_EXPR, void_type_node, body);
3290   loop = build_compound_expr (input_location, tbase_init, loop);
3291 
3292  no_destructor:
3293   /* Delete the storage if appropriate.  */
3294   if (auto_delete_vec == sfk_deleting_destructor)
3295     {
3296       tree base_tbd;
3297 
3298       /* The below is short by the cookie size.  */
3299       virtual_size = size_binop (MULT_EXPR, size_exp,
3300 				 convert (sizetype, maxindex));
3301 
3302       if (! TYPE_VEC_NEW_USES_COOKIE (type))
3303 	/* no header */
3304 	base_tbd = base;
3305       else
3306 	{
3307 	  tree cookie_size;
3308 
3309 	  cookie_size = targetm.cxx.get_cookie_size (type);
3310 	  base_tbd = cp_build_binary_op (input_location,
3311 					 MINUS_EXPR,
3312 					 cp_convert (string_type_node,
3313 						     base, complain),
3314 					 cookie_size,
3315 					 complain);
3316 	  if (base_tbd == error_mark_node)
3317 	    return error_mark_node;
3318 	  base_tbd = cp_convert (ptype, base_tbd, complain);
3319 	  /* True size with header.  */
3320 	  virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
3321 	}
3322 
3323       deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
3324 					      base_tbd, virtual_size,
3325 					      use_global_delete & 1,
3326 					      /*placement=*/NULL_TREE,
3327 					      /*alloc_fn=*/NULL_TREE,
3328 					      complain);
3329     }
3330 
3331   body = loop;
3332   if (!deallocate_expr)
3333     ;
3334   else if (!body)
3335     body = deallocate_expr;
3336   else
3337     body = build_compound_expr (input_location, body, deallocate_expr);
3338 
3339   if (!body)
3340     body = integer_zero_node;
3341 
3342   /* Outermost wrapper: If pointer is null, punt.  */
3343   body = fold_build3_loc (input_location, COND_EXPR, void_type_node,
3344 		      fold_build2_loc (input_location,
3345 				   NE_EXPR, boolean_type_node, base,
3346 				   convert (TREE_TYPE (base),
3347 					    nullptr_node)),
3348 		      body, integer_zero_node);
3349   body = build1 (NOP_EXPR, void_type_node, body);
3350 
3351   if (controller)
3352     {
3353       TREE_OPERAND (controller, 1) = body;
3354       body = controller;
3355     }
3356 
3357   if (TREE_CODE (base) == SAVE_EXPR)
3358     /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR.  */
3359     body = build2 (COMPOUND_EXPR, void_type_node, base, body);
3360 
3361   return convert_to_void (body, ICV_CAST, complain);
3362 }
3363 
3364 /* Create an unnamed variable of the indicated TYPE.  */
3365 
3366 tree
3367 create_temporary_var (tree type)
3368 {
3369   tree decl;
3370 
3371   decl = build_decl (input_location,
3372 		     VAR_DECL, NULL_TREE, type);
3373   TREE_USED (decl) = 1;
3374   DECL_ARTIFICIAL (decl) = 1;
3375   DECL_IGNORED_P (decl) = 1;
3376   DECL_CONTEXT (decl) = current_function_decl;
3377 
3378   return decl;
3379 }
3380 
3381 /* Create a new temporary variable of the indicated TYPE, initialized
3382    to INIT.
3383 
3384    It is not entered into current_binding_level, because that breaks
3385    things when it comes time to do final cleanups (which take place
3386    "outside" the binding contour of the function).  */
3387 
3388 tree
3389 get_temp_regvar (tree type, tree init)
3390 {
3391   tree decl;
3392 
3393   decl = create_temporary_var (type);
3394   add_decl_expr (decl);
3395 
3396   finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
3397 					  tf_warning_or_error));
3398 
3399   return decl;
3400 }
3401 
3402 /* Subroutine of build_vec_init.  Returns true if assigning to an array of
3403    INNER_ELT_TYPE from INIT is trivial.  */
3404 
3405 static bool
3406 vec_copy_assign_is_trivial (tree inner_elt_type, tree init)
3407 {
3408   tree fromtype = inner_elt_type;
3409   if (real_lvalue_p (init))
3410     fromtype = cp_build_reference_type (fromtype, /*rval*/false);
3411   return is_trivially_xible (MODIFY_EXPR, inner_elt_type, fromtype);
3412 }
3413 
3414 /* `build_vec_init' returns tree structure that performs
3415    initialization of a vector of aggregate types.
3416 
3417    BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
3418      to the first element, of POINTER_TYPE.
3419    MAXINDEX is the maximum index of the array (one less than the
3420      number of elements).  It is only used if BASE is a pointer or
3421      TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
3422 
3423    INIT is the (possibly NULL) initializer.
3424 
3425    If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL.  All
3426    elements in the array are value-initialized.
3427 
3428    FROM_ARRAY is 0 if we should init everything with INIT
3429    (i.e., every element initialized from INIT).
3430    FROM_ARRAY is 1 if we should index into INIT in parallel
3431    with initialization of DECL.
3432    FROM_ARRAY is 2 if we should index into INIT in parallel,
3433    but use assignment instead of initialization.  */
3434 
3435 tree
3436 build_vec_init (tree base, tree maxindex, tree init,
3437 		bool explicit_value_init_p,
3438 		int from_array, tsubst_flags_t complain)
3439 {
3440   tree rval;
3441   tree base2 = NULL_TREE;
3442   tree itype = NULL_TREE;
3443   tree iterator;
3444   /* The type of BASE.  */
3445   tree atype = TREE_TYPE (base);
3446   /* The type of an element in the array.  */
3447   tree type = TREE_TYPE (atype);
3448   /* The element type reached after removing all outer array
3449      types.  */
3450   tree inner_elt_type;
3451   /* The type of a pointer to an element in the array.  */
3452   tree ptype;
3453   tree stmt_expr;
3454   tree compound_stmt;
3455   int destroy_temps;
3456   tree try_block = NULL_TREE;
3457   int num_initialized_elts = 0;
3458   bool is_global;
3459   tree obase = base;
3460   bool xvalue = false;
3461   bool errors = false;
3462 
3463   if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
3464     maxindex = array_type_nelts (atype);
3465 
3466   if (maxindex == NULL_TREE || maxindex == error_mark_node)
3467     return error_mark_node;
3468 
3469   if (explicit_value_init_p)
3470     gcc_assert (!init);
3471 
3472   inner_elt_type = strip_array_types (type);
3473 
3474   /* Look through the TARGET_EXPR around a compound literal.  */
3475   if (init && TREE_CODE (init) == TARGET_EXPR
3476       && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
3477       && from_array != 2)
3478     init = TARGET_EXPR_INITIAL (init);
3479 
3480   /* If we have a braced-init-list, make sure that the array
3481      is big enough for all the initializers.  */
3482   bool length_check = (init && TREE_CODE (init) == CONSTRUCTOR
3483 		       && CONSTRUCTOR_NELTS (init) > 0
3484 		       && !TREE_CONSTANT (maxindex));
3485 
3486   if (init
3487       && TREE_CODE (atype) == ARRAY_TYPE
3488       && TREE_CONSTANT (maxindex)
3489       && (from_array == 2
3490 	  ? vec_copy_assign_is_trivial (inner_elt_type, init)
3491 	  : !TYPE_NEEDS_CONSTRUCTING (type))
3492       && ((TREE_CODE (init) == CONSTRUCTOR
3493 	   /* Don't do this if the CONSTRUCTOR might contain something
3494 	      that might throw and require us to clean up.  */
3495 	   && (vec_safe_is_empty (CONSTRUCTOR_ELTS (init))
3496 	       || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
3497 	  || from_array))
3498     {
3499       /* Do non-default initialization of trivial arrays resulting from
3500 	 brace-enclosed initializers.  In this case, digest_init and
3501 	 store_constructor will handle the semantics for us.  */
3502 
3503       if (BRACE_ENCLOSED_INITIALIZER_P (init))
3504 	init = digest_init (atype, init, complain);
3505       stmt_expr = build2 (INIT_EXPR, atype, base, init);
3506       return stmt_expr;
3507     }
3508 
3509   maxindex = cp_convert (ptrdiff_type_node, maxindex, complain);
3510   if (TREE_CODE (atype) == ARRAY_TYPE)
3511     {
3512       ptype = build_pointer_type (type);
3513       base = decay_conversion (base, complain);
3514       if (base == error_mark_node)
3515 	return error_mark_node;
3516       base = cp_convert (ptype, base, complain);
3517     }
3518   else
3519     ptype = atype;
3520 
3521   /* The code we are generating looks like:
3522      ({
3523        T* t1 = (T*) base;
3524        T* rval = t1;
3525        ptrdiff_t iterator = maxindex;
3526        try {
3527 	 for (; iterator != -1; --iterator) {
3528 	   ... initialize *t1 ...
3529 	   ++t1;
3530 	 }
3531        } catch (...) {
3532 	 ... destroy elements that were constructed ...
3533        }
3534        rval;
3535      })
3536 
3537      We can omit the try and catch blocks if we know that the
3538      initialization will never throw an exception, or if the array
3539      elements do not have destructors.  We can omit the loop completely if
3540      the elements of the array do not have constructors.
3541 
3542      We actually wrap the entire body of the above in a STMT_EXPR, for
3543      tidiness.
3544 
3545      When copying from array to another, when the array elements have
3546      only trivial copy constructors, we should use __builtin_memcpy
3547      rather than generating a loop.  That way, we could take advantage
3548      of whatever cleverness the back end has for dealing with copies
3549      of blocks of memory.  */
3550 
3551   is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
3552   destroy_temps = stmts_are_full_exprs_p ();
3553   current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3554   rval = get_temp_regvar (ptype, base);
3555   base = get_temp_regvar (ptype, rval);
3556   iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
3557 
3558   /* If initializing one array from another, initialize element by
3559      element.  We rely upon the below calls to do the argument
3560      checking.  Evaluate the initializer before entering the try block.  */
3561   if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
3562     {
3563       if (lvalue_kind (init) & clk_rvalueref)
3564 	xvalue = true;
3565       base2 = decay_conversion (init, complain);
3566       if (base2 == error_mark_node)
3567 	return error_mark_node;
3568       itype = TREE_TYPE (base2);
3569       base2 = get_temp_regvar (itype, base2);
3570       itype = TREE_TYPE (itype);
3571     }
3572 
3573   /* Protect the entire array initialization so that we can destroy
3574      the partially constructed array if an exception is thrown.
3575      But don't do this if we're assigning.  */
3576   if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3577       && from_array != 2)
3578     {
3579       try_block = begin_try_block ();
3580     }
3581 
3582   /* Should we try to create a constant initializer?  */
3583   bool try_const = (TREE_CODE (atype) == ARRAY_TYPE
3584 		    && TREE_CONSTANT (maxindex)
3585 		    && (init ? TREE_CODE (init) == CONSTRUCTOR
3586 			: (type_has_constexpr_default_constructor
3587 			   (inner_elt_type)))
3588 		    && (literal_type_p (inner_elt_type)
3589 			|| TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type)));
3590   vec<constructor_elt, va_gc> *const_vec = NULL;
3591   bool saw_non_const = false;
3592   /* If we're initializing a static array, we want to do static
3593      initialization of any elements with constant initializers even if
3594      some are non-constant.  */
3595   bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase));
3596 
3597   bool empty_list = false;
3598   if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
3599       && CONSTRUCTOR_NELTS (init) == 0)
3600     /* Skip over the handling of non-empty init lists.  */
3601     empty_list = true;
3602 
3603   /* Maybe pull out constant value when from_array? */
3604 
3605   else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
3606     {
3607       /* Do non-default initialization of non-trivial arrays resulting from
3608 	 brace-enclosed initializers.  */
3609       unsigned HOST_WIDE_INT idx;
3610       tree field, elt;
3611       /* If the constructor already has the array type, it's been through
3612 	 digest_init, so we shouldn't try to do anything more.  */
3613       bool digested = same_type_p (atype, TREE_TYPE (init));
3614       from_array = 0;
3615 
3616       if (length_check)
3617 	{
3618 	  tree nelts = size_int (CONSTRUCTOR_NELTS (init) - 1);
3619 	  if (TREE_CODE (atype) != ARRAY_TYPE)
3620 	    {
3621 	      if (flag_exceptions)
3622 		{
3623 		  tree c = fold_build2 (LT_EXPR, boolean_type_node, iterator,
3624 					nelts);
3625 		  c = build3 (COND_EXPR, void_type_node, c,
3626 			      throw_bad_array_new_length (), void_node);
3627 		  finish_expr_stmt (c);
3628 		}
3629 	      /* Don't check an array new when -fno-exceptions.  */
3630 	    }
3631 	  else if (flag_sanitize & SANITIZE_BOUNDS
3632 		   && do_ubsan_in_current_function ())
3633 	    {
3634 	      /* Make sure the last element of the initializer is in bounds. */
3635 	      finish_expr_stmt
3636 		(ubsan_instrument_bounds
3637 		 (input_location, obase, &nelts, /*ignore_off_by_one*/false));
3638 	    }
3639 	}
3640 
3641       if (try_const)
3642 	vec_alloc (const_vec, CONSTRUCTOR_NELTS (init));
3643 
3644       FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
3645 	{
3646 	  tree baseref = build1 (INDIRECT_REF, type, base);
3647 	  tree one_init;
3648 
3649 	  num_initialized_elts++;
3650 
3651 	  current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3652 	  if (digested)
3653 	    one_init = build2 (INIT_EXPR, type, baseref, elt);
3654 	  else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
3655 	    one_init = build_aggr_init (baseref, elt, 0, complain);
3656 	  else
3657 	    one_init = cp_build_modify_expr (baseref, NOP_EXPR,
3658 					     elt, complain);
3659 	  if (one_init == error_mark_node)
3660 	    errors = true;
3661 	  if (try_const)
3662 	    {
3663 	      tree e = maybe_constant_init (one_init);
3664 	      if (reduced_constant_expression_p (e))
3665 		{
3666 		  CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
3667 		  if (do_static_init)
3668 		    one_init = NULL_TREE;
3669 		  else
3670 		    one_init = build2 (INIT_EXPR, type, baseref, e);
3671 		}
3672 	      else
3673 		{
3674 		  if (do_static_init)
3675 		    {
3676 		      tree value = build_zero_init (TREE_TYPE (e), NULL_TREE,
3677 						    true);
3678 		      if (value)
3679 			CONSTRUCTOR_APPEND_ELT (const_vec, field, value);
3680 		    }
3681 		  saw_non_const = true;
3682 		}
3683 	    }
3684 
3685 	  if (one_init)
3686 	    finish_expr_stmt (one_init);
3687 	  current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3688 
3689 	  one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, 0, complain);
3690 	  if (one_init == error_mark_node)
3691 	    errors = true;
3692 	  else
3693 	    finish_expr_stmt (one_init);
3694 
3695 	  one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
3696 					complain);
3697 	  if (one_init == error_mark_node)
3698 	    errors = true;
3699 	  else
3700 	    finish_expr_stmt (one_init);
3701 	}
3702 
3703       /* Any elements without explicit initializers get T{}.  */
3704       empty_list = true;
3705     }
3706   else if (from_array)
3707     {
3708       if (init)
3709 	/* OK, we set base2 above.  */;
3710       else if (CLASS_TYPE_P (type)
3711 	       && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
3712 	{
3713           if (complain & tf_error)
3714             error ("initializer ends prematurely");
3715 	  errors = true;
3716 	}
3717     }
3718 
3719   /* Now, default-initialize any remaining elements.  We don't need to
3720      do that if a) the type does not need constructing, or b) we've
3721      already initialized all the elements.
3722 
3723      We do need to keep going if we're copying an array.  */
3724 
3725   if (try_const && !init)
3726     /* With a constexpr default constructor, which we checked for when
3727        setting try_const above, default-initialization is equivalent to
3728        value-initialization, and build_value_init gives us something more
3729        friendly to maybe_constant_init.  */
3730     explicit_value_init_p = true;
3731   if (from_array
3732       || ((type_build_ctor_call (type) || init || explicit_value_init_p)
3733 	  && ! (tree_fits_shwi_p (maxindex)
3734 		&& (num_initialized_elts
3735 		    == tree_to_shwi (maxindex) + 1))))
3736     {
3737       /* If the ITERATOR is equal to -1, then we don't have to loop;
3738 	 we've already initialized all the elements.  */
3739       tree for_stmt;
3740       tree elt_init;
3741       tree to;
3742 
3743       for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE);
3744       finish_for_init_stmt (for_stmt);
3745       finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
3746 			       build_int_cst (TREE_TYPE (iterator), -1)),
3747 		       for_stmt, false);
3748       elt_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
3749 				    complain);
3750       if (elt_init == error_mark_node)
3751 	errors = true;
3752       finish_for_expr (elt_init, for_stmt);
3753 
3754       to = build1 (INDIRECT_REF, type, base);
3755 
3756       /* If the initializer is {}, then all elements are initialized from T{}.
3757 	 But for non-classes, that's the same as value-initialization.  */
3758       if (empty_list)
3759 	{
3760 	  if (cxx_dialect >= cxx11 && AGGREGATE_TYPE_P (type))
3761 	    {
3762 	      init = build_constructor (init_list_type_node, NULL);
3763 	      CONSTRUCTOR_IS_DIRECT_INIT (init) = true;
3764 	    }
3765 	  else
3766 	    {
3767 	      init = NULL_TREE;
3768 	      explicit_value_init_p = true;
3769 	    }
3770 	}
3771 
3772       if (from_array)
3773 	{
3774 	  tree from;
3775 
3776 	  if (base2)
3777 	    {
3778 	      from = build1 (INDIRECT_REF, itype, base2);
3779 	      if (xvalue)
3780 		from = move (from);
3781 	    }
3782 	  else
3783 	    from = NULL_TREE;
3784 
3785 	  if (from_array == 2)
3786 	    elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
3787 					     complain);
3788 	  else if (type_build_ctor_call (type))
3789 	    elt_init = build_aggr_init (to, from, 0, complain);
3790 	  else if (from)
3791 	    elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
3792 					     complain);
3793 	  else
3794 	    gcc_unreachable ();
3795 	}
3796       else if (TREE_CODE (type) == ARRAY_TYPE)
3797 	{
3798 	  if (init && !BRACE_ENCLOSED_INITIALIZER_P (init))
3799 	    sorry
3800 	      ("cannot initialize multi-dimensional array with initializer");
3801 	  elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
3802 				     0, init,
3803 				     explicit_value_init_p,
3804 				     0, complain);
3805 	}
3806       else if (explicit_value_init_p)
3807 	{
3808 	  elt_init = build_value_init (type, complain);
3809 	  if (elt_init != error_mark_node)
3810 	    elt_init = build2 (INIT_EXPR, type, to, elt_init);
3811 	}
3812       else
3813 	{
3814 	  gcc_assert (type_build_ctor_call (type) || init);
3815 	  if (CLASS_TYPE_P (type))
3816 	    elt_init = build_aggr_init (to, init, 0, complain);
3817 	  else
3818 	    {
3819 	      if (TREE_CODE (init) == TREE_LIST)
3820 		init = build_x_compound_expr_from_list (init, ELK_INIT,
3821 							complain);
3822 	      elt_init = build2 (INIT_EXPR, type, to, init);
3823 	    }
3824 	}
3825 
3826       if (elt_init == error_mark_node)
3827 	errors = true;
3828 
3829       if (try_const)
3830 	{
3831 	  /* FIXME refs to earlier elts */
3832 	  tree e = maybe_constant_init (elt_init);
3833 	  if (reduced_constant_expression_p (e))
3834 	    {
3835 	      if (initializer_zerop (e))
3836 		/* Don't fill the CONSTRUCTOR with zeros.  */
3837 		e = NULL_TREE;
3838 	      if (do_static_init)
3839 		elt_init = NULL_TREE;
3840 	    }
3841 	  else
3842 	    {
3843 	      saw_non_const = true;
3844 	      if (do_static_init)
3845 		e = build_zero_init (TREE_TYPE (e), NULL_TREE, true);
3846 	      else
3847 		e = NULL_TREE;
3848 	    }
3849 
3850 	  if (e)
3851 	    {
3852 	      int max = tree_to_shwi (maxindex)+1;
3853 	      for (; num_initialized_elts < max; ++num_initialized_elts)
3854 		{
3855 		  tree field = size_int (num_initialized_elts);
3856 		  CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
3857 		}
3858 	    }
3859 	}
3860 
3861       current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3862       if (elt_init)
3863 	finish_expr_stmt (elt_init);
3864       current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3865 
3866       finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
3867                                            complain));
3868       if (base2)
3869 	finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0,
3870                                              complain));
3871 
3872       finish_for_stmt (for_stmt);
3873     }
3874 
3875   /* Make sure to cleanup any partially constructed elements.  */
3876   if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3877       && from_array != 2)
3878     {
3879       tree e;
3880       tree m = cp_build_binary_op (input_location,
3881 				   MINUS_EXPR, maxindex, iterator,
3882 				   complain);
3883 
3884       /* Flatten multi-dimensional array since build_vec_delete only
3885 	 expects one-dimensional array.  */
3886       if (TREE_CODE (type) == ARRAY_TYPE)
3887 	m = cp_build_binary_op (input_location,
3888 				MULT_EXPR, m,
3889 				/* Avoid mixing signed and unsigned.  */
3890 				convert (TREE_TYPE (m),
3891 					 array_type_nelts_total (type)),
3892 				complain);
3893 
3894       finish_cleanup_try_block (try_block);
3895       e = build_vec_delete_1 (rval, m,
3896 			      inner_elt_type, sfk_complete_destructor,
3897 			      /*use_global_delete=*/0, complain);
3898       if (e == error_mark_node)
3899 	errors = true;
3900       finish_cleanup (e, try_block);
3901     }
3902 
3903   /* The value of the array initialization is the array itself, RVAL
3904      is a pointer to the first element.  */
3905   finish_stmt_expr_expr (rval, stmt_expr);
3906 
3907   stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
3908 
3909   current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
3910 
3911   if (errors)
3912     return error_mark_node;
3913 
3914   if (try_const)
3915     {
3916       if (!saw_non_const)
3917 	{
3918 	  tree const_init = build_constructor (atype, const_vec);
3919 	  return build2 (INIT_EXPR, atype, obase, const_init);
3920 	}
3921       else if (do_static_init && !vec_safe_is_empty (const_vec))
3922 	DECL_INITIAL (obase) = build_constructor (atype, const_vec);
3923       else
3924 	vec_free (const_vec);
3925     }
3926 
3927   /* Now make the result have the correct type.  */
3928   if (TREE_CODE (atype) == ARRAY_TYPE)
3929     {
3930       atype = build_pointer_type (atype);
3931       stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
3932       stmt_expr = cp_build_indirect_ref (stmt_expr, RO_NULL, complain);
3933       TREE_NO_WARNING (stmt_expr) = 1;
3934     }
3935 
3936   return stmt_expr;
3937 }
3938 
3939 /* Call the DTOR_KIND destructor for EXP.  FLAGS are as for
3940    build_delete.  */
3941 
3942 static tree
3943 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags,
3944 		 tsubst_flags_t complain)
3945 {
3946   tree name;
3947   tree fn;
3948   switch (dtor_kind)
3949     {
3950     case sfk_complete_destructor:
3951       name = complete_dtor_identifier;
3952       break;
3953 
3954     case sfk_base_destructor:
3955       name = base_dtor_identifier;
3956       break;
3957 
3958     case sfk_deleting_destructor:
3959       name = deleting_dtor_identifier;
3960       break;
3961 
3962     default:
3963       gcc_unreachable ();
3964     }
3965   fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
3966   return build_new_method_call (exp, fn,
3967 				/*args=*/NULL,
3968 				/*conversion_path=*/NULL_TREE,
3969 				flags,
3970 				/*fn_p=*/NULL,
3971 				complain);
3972 }
3973 
3974 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
3975    ADDR is an expression which yields the store to be destroyed.
3976    AUTO_DELETE is the name of the destructor to call, i.e., either
3977    sfk_complete_destructor, sfk_base_destructor, or
3978    sfk_deleting_destructor.
3979 
3980    FLAGS is the logical disjunction of zero or more LOOKUP_
3981    flags.  See cp-tree.h for more info.  */
3982 
3983 tree
3984 build_delete (tree otype, tree addr, special_function_kind auto_delete,
3985 	      int flags, int use_global_delete, tsubst_flags_t complain)
3986 {
3987   tree expr;
3988 
3989   if (addr == error_mark_node)
3990     return error_mark_node;
3991 
3992   tree type = TYPE_MAIN_VARIANT (otype);
3993 
3994   /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
3995      set to `error_mark_node' before it gets properly cleaned up.  */
3996   if (type == error_mark_node)
3997     return error_mark_node;
3998 
3999   if (TREE_CODE (type) == POINTER_TYPE)
4000     type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4001 
4002   if (TREE_CODE (type) == ARRAY_TYPE)
4003     {
4004       if (TYPE_DOMAIN (type) == NULL_TREE)
4005 	{
4006 	  if (complain & tf_error)
4007 	    error ("unknown array size in delete");
4008 	  return error_mark_node;
4009 	}
4010       return build_vec_delete (addr, array_type_nelts (type),
4011 			       auto_delete, use_global_delete, complain);
4012     }
4013 
4014   if (TYPE_PTR_P (otype))
4015     {
4016       addr = mark_rvalue_use (addr);
4017 
4018       /* We don't want to warn about delete of void*, only other
4019 	  incomplete types.  Deleting other incomplete types
4020 	  invokes undefined behavior, but it is not ill-formed, so
4021 	  compile to something that would even do The Right Thing
4022 	  (TM) should the type have a trivial dtor and no delete
4023 	  operator.  */
4024       if (!VOID_TYPE_P (type))
4025 	{
4026 	  complete_type (type);
4027 	  if (!COMPLETE_TYPE_P (type))
4028 	    {
4029 	      if ((complain & tf_warning)
4030 		  && warning (OPT_Wdelete_incomplete,
4031 			      "possible problem detected in invocation of "
4032 			      "delete operator:"))
4033 		{
4034 		  cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
4035 		  inform (input_location,
4036 			  "neither the destructor nor the class-specific "
4037 			  "operator delete will be called, even if they are "
4038 			  "declared when the class is defined");
4039 		}
4040 	    }
4041 	  else if (auto_delete == sfk_deleting_destructor && warn_delnonvdtor
4042 	           && MAYBE_CLASS_TYPE_P (type) && !CLASSTYPE_FINAL (type)
4043 		   && TYPE_POLYMORPHIC_P (type))
4044 	    {
4045 	      tree dtor;
4046 	      dtor = CLASSTYPE_DESTRUCTORS (type);
4047 	      if (!dtor || !DECL_VINDEX (dtor))
4048 		{
4049 		  if (CLASSTYPE_PURE_VIRTUALS (type))
4050 		    warning (OPT_Wdelete_non_virtual_dtor,
4051 			     "deleting object of abstract class type %qT"
4052 			     " which has non-virtual destructor"
4053 			     " will cause undefined behaviour", type);
4054 		  else
4055 		    warning (OPT_Wdelete_non_virtual_dtor,
4056 			     "deleting object of polymorphic class type %qT"
4057 			     " which has non-virtual destructor"
4058 			     " might cause undefined behaviour", type);
4059 		}
4060 	    }
4061 	}
4062       if (TREE_SIDE_EFFECTS (addr))
4063 	addr = save_expr (addr);
4064 
4065       /* Throw away const and volatile on target type of addr.  */
4066       addr = convert_force (build_pointer_type (type), addr, 0, complain);
4067     }
4068   else
4069     {
4070       /* Don't check PROTECT here; leave that decision to the
4071 	 destructor.  If the destructor is accessible, call it,
4072 	 else report error.  */
4073       addr = cp_build_addr_expr (addr, complain);
4074       if (addr == error_mark_node)
4075 	return error_mark_node;
4076       if (TREE_SIDE_EFFECTS (addr))
4077 	addr = save_expr (addr);
4078 
4079       addr = convert_force (build_pointer_type (type), addr, 0, complain);
4080     }
4081 
4082   if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
4083     {
4084       /* Make sure the destructor is callable.  */
4085       if (type_build_dtor_call (type))
4086 	{
4087 	  expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL,
4088 							 complain),
4089 				  sfk_complete_destructor, flags, complain);
4090 	  if (expr == error_mark_node)
4091 	    return error_mark_node;
4092 	}
4093 
4094       if (auto_delete != sfk_deleting_destructor)
4095 	return void_node;
4096 
4097       return build_op_delete_call (DELETE_EXPR, addr,
4098 				   cxx_sizeof_nowarn (type),
4099 				   use_global_delete,
4100 				   /*placement=*/NULL_TREE,
4101 				   /*alloc_fn=*/NULL_TREE,
4102 				   complain);
4103     }
4104   else
4105     {
4106       tree head = NULL_TREE;
4107       tree do_delete = NULL_TREE;
4108       tree ifexp;
4109 
4110       if (CLASSTYPE_LAZY_DESTRUCTOR (type))
4111 	lazily_declare_fn (sfk_destructor, type);
4112 
4113       /* For `::delete x', we must not use the deleting destructor
4114 	 since then we would not be sure to get the global `operator
4115 	 delete'.  */
4116       if (use_global_delete && auto_delete == sfk_deleting_destructor)
4117 	{
4118 	  /* We will use ADDR multiple times so we must save it.  */
4119 	  addr = save_expr (addr);
4120 	  head = get_target_expr (build_headof (addr));
4121 	  /* Delete the object.  */
4122 	  do_delete = build_op_delete_call (DELETE_EXPR,
4123 					    head,
4124 					    cxx_sizeof_nowarn (type),
4125 					    /*global_p=*/true,
4126 					    /*placement=*/NULL_TREE,
4127 					    /*alloc_fn=*/NULL_TREE,
4128 					    complain);
4129 	  /* Otherwise, treat this like a complete object destructor
4130 	     call.  */
4131 	  auto_delete = sfk_complete_destructor;
4132 	}
4133       /* If the destructor is non-virtual, there is no deleting
4134 	 variant.  Instead, we must explicitly call the appropriate
4135 	 `operator delete' here.  */
4136       else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
4137 	       && auto_delete == sfk_deleting_destructor)
4138 	{
4139 	  /* We will use ADDR multiple times so we must save it.  */
4140 	  addr = save_expr (addr);
4141 	  /* Build the call.  */
4142 	  do_delete = build_op_delete_call (DELETE_EXPR,
4143 					    addr,
4144 					    cxx_sizeof_nowarn (type),
4145 					    /*global_p=*/false,
4146 					    /*placement=*/NULL_TREE,
4147 					    /*alloc_fn=*/NULL_TREE,
4148 					    complain);
4149 	  /* Call the complete object destructor.  */
4150 	  auto_delete = sfk_complete_destructor;
4151 	}
4152       else if (auto_delete == sfk_deleting_destructor
4153 	       && TYPE_GETS_REG_DELETE (type))
4154 	{
4155 	  /* Make sure we have access to the member op delete, even though
4156 	     we'll actually be calling it from the destructor.  */
4157 	  build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
4158 				/*global_p=*/false,
4159 				/*placement=*/NULL_TREE,
4160 				/*alloc_fn=*/NULL_TREE,
4161 				complain);
4162 	}
4163 
4164       expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL, complain),
4165 			      auto_delete, flags, complain);
4166       if (expr == error_mark_node)
4167 	return error_mark_node;
4168       if (do_delete)
4169 	expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
4170 
4171       /* We need to calculate this before the dtor changes the vptr.  */
4172       if (head)
4173 	expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
4174 
4175       if (flags & LOOKUP_DESTRUCTOR)
4176 	/* Explicit destructor call; don't check for null pointer.  */
4177 	ifexp = integer_one_node;
4178       else
4179 	{
4180 	  /* Handle deleting a null pointer.  */
4181 	  ifexp = fold (cp_build_binary_op (input_location,
4182 					    NE_EXPR, addr, nullptr_node,
4183 					    complain));
4184 	  if (ifexp == error_mark_node)
4185 	    return error_mark_node;
4186 	}
4187 
4188       if (ifexp != integer_one_node)
4189 	expr = build3 (COND_EXPR, void_type_node, ifexp, expr, void_node);
4190 
4191       return expr;
4192     }
4193 }
4194 
4195 /* At the beginning of a destructor, push cleanups that will call the
4196    destructors for our base classes and members.
4197 
4198    Called from begin_destructor_body.  */
4199 
4200 void
4201 push_base_cleanups (void)
4202 {
4203   tree binfo, base_binfo;
4204   int i;
4205   tree member;
4206   tree expr;
4207   vec<tree, va_gc> *vbases;
4208 
4209   /* Run destructors for all virtual baseclasses.  */
4210   if (CLASSTYPE_VBASECLASSES (current_class_type))
4211     {
4212       tree cond = (condition_conversion
4213 		   (build2 (BIT_AND_EXPR, integer_type_node,
4214 			    current_in_charge_parm,
4215 			    integer_two_node)));
4216 
4217       /* The CLASSTYPE_VBASECLASSES vector is in initialization
4218 	 order, which is also the right order for pushing cleanups.  */
4219       for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
4220 	   vec_safe_iterate (vbases, i, &base_binfo); i++)
4221 	{
4222 	  if (type_build_dtor_call (BINFO_TYPE (base_binfo)))
4223 	    {
4224 	      expr = build_special_member_call (current_class_ref,
4225 						base_dtor_identifier,
4226 						NULL,
4227 						base_binfo,
4228 						(LOOKUP_NORMAL
4229 						 | LOOKUP_NONVIRTUAL),
4230 						tf_warning_or_error);
4231 	      if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4232 		{
4233 		  expr = build3 (COND_EXPR, void_type_node, cond,
4234 				 expr, void_node);
4235 		  finish_decl_cleanup (NULL_TREE, expr);
4236 		}
4237 	    }
4238 	}
4239     }
4240 
4241   /* Take care of the remaining baseclasses.  */
4242   for (binfo = TYPE_BINFO (current_class_type), i = 0;
4243        BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
4244     {
4245       if (BINFO_VIRTUAL_P (base_binfo)
4246 	  || !type_build_dtor_call (BINFO_TYPE (base_binfo)))
4247 	continue;
4248 
4249       expr = build_special_member_call (current_class_ref,
4250 					base_dtor_identifier,
4251 					NULL, base_binfo,
4252 					LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
4253                                         tf_warning_or_error);
4254       if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4255 	finish_decl_cleanup (NULL_TREE, expr);
4256     }
4257 
4258   /* Don't automatically destroy union members.  */
4259   if (TREE_CODE (current_class_type) == UNION_TYPE)
4260     return;
4261 
4262   for (member = TYPE_FIELDS (current_class_type); member;
4263        member = DECL_CHAIN (member))
4264     {
4265       tree this_type = TREE_TYPE (member);
4266       if (this_type == error_mark_node
4267 	  || TREE_CODE (member) != FIELD_DECL
4268 	  || DECL_ARTIFICIAL (member))
4269 	continue;
4270       if (ANON_AGGR_TYPE_P (this_type))
4271 	continue;
4272       if (type_build_dtor_call (this_type))
4273 	{
4274 	  tree this_member = (build_class_member_access_expr
4275 			      (current_class_ref, member,
4276 			       /*access_path=*/NULL_TREE,
4277 			       /*preserve_reference=*/false,
4278 			       tf_warning_or_error));
4279 	  expr = build_delete (this_type, this_member,
4280 			       sfk_complete_destructor,
4281 			       LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
4282 			       0, tf_warning_or_error);
4283 	  if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type))
4284 	    finish_decl_cleanup (NULL_TREE, expr);
4285 	}
4286     }
4287 }
4288 
4289 /* Build a C++ vector delete expression.
4290    MAXINDEX is the number of elements to be deleted.
4291    ELT_SIZE is the nominal size of each element in the vector.
4292    BASE is the expression that should yield the store to be deleted.
4293    This function expands (or synthesizes) these calls itself.
4294    AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
4295 
4296    This also calls delete for virtual baseclasses of elements of the vector.
4297 
4298    Update: MAXINDEX is no longer needed.  The size can be extracted from the
4299    start of the vector for pointers, and from the type for arrays.  We still
4300    use MAXINDEX for arrays because it happens to already have one of the
4301    values we'd have to extract.  (We could use MAXINDEX with pointers to
4302    confirm the size, and trap if the numbers differ; not clear that it'd
4303    be worth bothering.)  */
4304 
4305 tree
4306 build_vec_delete (tree base, tree maxindex,
4307 		  special_function_kind auto_delete_vec,
4308 		  int use_global_delete, tsubst_flags_t complain)
4309 {
4310   tree type;
4311   tree rval;
4312   tree base_init = NULL_TREE;
4313 
4314   type = TREE_TYPE (base);
4315 
4316   if (TYPE_PTR_P (type))
4317     {
4318       /* Step back one from start of vector, and read dimension.  */
4319       tree cookie_addr;
4320       tree size_ptr_type = build_pointer_type (sizetype);
4321 
4322       base = mark_rvalue_use (base);
4323       if (TREE_SIDE_EFFECTS (base))
4324 	{
4325 	  base_init = get_target_expr (base);
4326 	  base = TARGET_EXPR_SLOT (base_init);
4327 	}
4328       type = strip_array_types (TREE_TYPE (type));
4329       cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR,
4330 				 sizetype, TYPE_SIZE_UNIT (sizetype));
4331       cookie_addr = fold_build_pointer_plus (fold_convert (size_ptr_type, base),
4332 					     cookie_addr);
4333       maxindex = cp_build_indirect_ref (cookie_addr, RO_NULL, complain);
4334     }
4335   else if (TREE_CODE (type) == ARRAY_TYPE)
4336     {
4337       /* Get the total number of things in the array, maxindex is a
4338 	 bad name.  */
4339       maxindex = array_type_nelts_total (type);
4340       type = strip_array_types (type);
4341       base = decay_conversion (base, complain);
4342       if (base == error_mark_node)
4343 	return error_mark_node;
4344       if (TREE_SIDE_EFFECTS (base))
4345 	{
4346 	  base_init = get_target_expr (base);
4347 	  base = TARGET_EXPR_SLOT (base_init);
4348 	}
4349     }
4350   else
4351     {
4352       if (base != error_mark_node && !(complain & tf_error))
4353 	error ("type to vector delete is neither pointer or array type");
4354       return error_mark_node;
4355     }
4356 
4357   rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
4358 			     use_global_delete, complain);
4359   if (base_init && rval != error_mark_node)
4360     rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
4361 
4362   return rval;
4363 }
4364