1 /* Handle initialization things in C++. 2 Copyright (C) 1987-2015 Free Software Foundation, Inc. 3 Contributed by Michael Tiemann (tiemann@cygnus.com) 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3, or (at your option) 10 any later version. 11 12 GCC is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 /* High-level class interface. */ 22 23 #include "config.h" 24 #include "system.h" 25 #include "coretypes.h" 26 #include "tm.h" 27 #include "hash-set.h" 28 #include "machmode.h" 29 #include "vec.h" 30 #include "double-int.h" 31 #include "input.h" 32 #include "alias.h" 33 #include "symtab.h" 34 #include "wide-int.h" 35 #include "inchash.h" 36 #include "tree.h" 37 #include "stringpool.h" 38 #include "varasm.h" 39 #include "cp-tree.h" 40 #include "flags.h" 41 #include "target.h" 42 #include "gimplify.h" 43 #include "wide-int.h" 44 #include "c-family/c-ubsan.h" 45 46 static bool begin_init_stmts (tree *, tree *); 47 static tree finish_init_stmts (bool, tree, tree); 48 static void construct_virtual_base (tree, tree); 49 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t); 50 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t); 51 static void perform_member_init (tree, tree); 52 static int member_init_ok_or_else (tree, tree, tree); 53 static void expand_virtual_init (tree, tree); 54 static tree sort_mem_initializers (tree, tree); 55 static tree initializing_context (tree); 56 static void expand_cleanup_for_base (tree, tree); 57 static tree dfs_initialize_vtbl_ptrs (tree, void *); 58 static tree build_field_list (tree, tree, int *); 59 static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool); 60 61 /* We are about to generate some complex initialization code. 62 Conceptually, it is all a single expression. However, we may want 63 to include conditionals, loops, and other such statement-level 64 constructs. Therefore, we build the initialization code inside a 65 statement-expression. This function starts such an expression. 66 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function; 67 pass them back to finish_init_stmts when the expression is 68 complete. */ 69 70 static bool 71 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p) 72 { 73 bool is_global = !building_stmt_list_p (); 74 75 *stmt_expr_p = begin_stmt_expr (); 76 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE); 77 78 return is_global; 79 } 80 81 /* Finish out the statement-expression begun by the previous call to 82 begin_init_stmts. Returns the statement-expression itself. */ 83 84 static tree 85 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt) 86 { 87 finish_compound_stmt (compound_stmt); 88 89 stmt_expr = finish_stmt_expr (stmt_expr, true); 90 91 gcc_assert (!building_stmt_list_p () == is_global); 92 93 return stmt_expr; 94 } 95 96 /* Constructors */ 97 98 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base 99 which we want to initialize the vtable pointer for, DATA is 100 TREE_LIST whose TREE_VALUE is the this ptr expression. */ 101 102 static tree 103 dfs_initialize_vtbl_ptrs (tree binfo, void *data) 104 { 105 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo))) 106 return dfs_skip_bases; 107 108 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo)) 109 { 110 tree base_ptr = TREE_VALUE ((tree) data); 111 112 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1, 113 tf_warning_or_error); 114 115 expand_virtual_init (binfo, base_ptr); 116 } 117 118 return NULL_TREE; 119 } 120 121 /* Initialize all the vtable pointers in the object pointed to by 122 ADDR. */ 123 124 void 125 initialize_vtbl_ptrs (tree addr) 126 { 127 tree list; 128 tree type; 129 130 type = TREE_TYPE (TREE_TYPE (addr)); 131 list = build_tree_list (type, addr); 132 133 /* Walk through the hierarchy, initializing the vptr in each base 134 class. We do these in pre-order because we can't find the virtual 135 bases for a class until we've initialized the vtbl for that 136 class. */ 137 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list); 138 } 139 140 /* Return an expression for the zero-initialization of an object with 141 type T. This expression will either be a constant (in the case 142 that T is a scalar), or a CONSTRUCTOR (in the case that T is an 143 aggregate), or NULL (in the case that T does not require 144 initialization). In either case, the value can be used as 145 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static 146 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS 147 is the number of elements in the array. If STATIC_STORAGE_P is 148 TRUE, initializers are only generated for entities for which 149 zero-initialization does not simply mean filling the storage with 150 zero bytes. FIELD_SIZE, if non-NULL, is the bit size of the field, 151 subfields with bit positions at or above that bit size shouldn't 152 be added. Note that this only works when the result is assigned 153 to a base COMPONENT_REF; if we only have a pointer to the base subobject, 154 expand_assignment will end up clearing the full size of TYPE. */ 155 156 static tree 157 build_zero_init_1 (tree type, tree nelts, bool static_storage_p, 158 tree field_size) 159 { 160 tree init = NULL_TREE; 161 162 /* [dcl.init] 163 164 To zero-initialize an object of type T means: 165 166 -- if T is a scalar type, the storage is set to the value of zero 167 converted to T. 168 169 -- if T is a non-union class type, the storage for each nonstatic 170 data member and each base-class subobject is zero-initialized. 171 172 -- if T is a union type, the storage for its first data member is 173 zero-initialized. 174 175 -- if T is an array type, the storage for each element is 176 zero-initialized. 177 178 -- if T is a reference type, no initialization is performed. */ 179 180 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST); 181 182 if (type == error_mark_node) 183 ; 184 else if (static_storage_p && zero_init_p (type)) 185 /* In order to save space, we do not explicitly build initializers 186 for items that do not need them. GCC's semantics are that 187 items with static storage duration that are not otherwise 188 initialized are initialized to zero. */ 189 ; 190 else if (TYPE_PTR_OR_PTRMEM_P (type)) 191 init = convert (type, nullptr_node); 192 else if (SCALAR_TYPE_P (type)) 193 init = convert (type, integer_zero_node); 194 else if (RECORD_OR_UNION_CODE_P (TREE_CODE (type))) 195 { 196 tree field; 197 vec<constructor_elt, va_gc> *v = NULL; 198 199 /* Iterate over the fields, building initializations. */ 200 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) 201 { 202 if (TREE_CODE (field) != FIELD_DECL) 203 continue; 204 205 if (TREE_TYPE (field) == error_mark_node) 206 continue; 207 208 /* Don't add virtual bases for base classes if they are beyond 209 the size of the current field, that means it is present 210 somewhere else in the object. */ 211 if (field_size) 212 { 213 tree bitpos = bit_position (field); 214 if (TREE_CODE (bitpos) == INTEGER_CST 215 && !tree_int_cst_lt (bitpos, field_size)) 216 continue; 217 } 218 219 /* Note that for class types there will be FIELD_DECLs 220 corresponding to base classes as well. Thus, iterating 221 over TYPE_FIELDs will result in correct initialization of 222 all of the subobjects. */ 223 if (!static_storage_p || !zero_init_p (TREE_TYPE (field))) 224 { 225 tree new_field_size 226 = (DECL_FIELD_IS_BASE (field) 227 && DECL_SIZE (field) 228 && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST) 229 ? DECL_SIZE (field) : NULL_TREE; 230 tree value = build_zero_init_1 (TREE_TYPE (field), 231 /*nelts=*/NULL_TREE, 232 static_storage_p, 233 new_field_size); 234 if (value) 235 CONSTRUCTOR_APPEND_ELT(v, field, value); 236 } 237 238 /* For unions, only the first field is initialized. */ 239 if (TREE_CODE (type) == UNION_TYPE) 240 break; 241 } 242 243 /* Build a constructor to contain the initializations. */ 244 init = build_constructor (type, v); 245 } 246 else if (TREE_CODE (type) == ARRAY_TYPE) 247 { 248 tree max_index; 249 vec<constructor_elt, va_gc> *v = NULL; 250 251 /* Iterate over the array elements, building initializations. */ 252 if (nelts) 253 max_index = fold_build2_loc (input_location, 254 MINUS_EXPR, TREE_TYPE (nelts), 255 nelts, integer_one_node); 256 else 257 max_index = array_type_nelts (type); 258 259 /* If we have an error_mark here, we should just return error mark 260 as we don't know the size of the array yet. */ 261 if (max_index == error_mark_node) 262 return error_mark_node; 263 gcc_assert (TREE_CODE (max_index) == INTEGER_CST); 264 265 /* A zero-sized array, which is accepted as an extension, will 266 have an upper bound of -1. */ 267 if (!tree_int_cst_equal (max_index, integer_minus_one_node)) 268 { 269 constructor_elt ce; 270 271 /* If this is a one element array, we just use a regular init. */ 272 if (tree_int_cst_equal (size_zero_node, max_index)) 273 ce.index = size_zero_node; 274 else 275 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, 276 max_index); 277 278 ce.value = build_zero_init_1 (TREE_TYPE (type), 279 /*nelts=*/NULL_TREE, 280 static_storage_p, NULL_TREE); 281 if (ce.value) 282 { 283 vec_alloc (v, 1); 284 v->quick_push (ce); 285 } 286 } 287 288 /* Build a constructor to contain the initializations. */ 289 init = build_constructor (type, v); 290 } 291 else if (TREE_CODE (type) == VECTOR_TYPE) 292 init = build_zero_cst (type); 293 else 294 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE); 295 296 /* In all cases, the initializer is a constant. */ 297 if (init) 298 TREE_CONSTANT (init) = 1; 299 300 return init; 301 } 302 303 /* Return an expression for the zero-initialization of an object with 304 type T. This expression will either be a constant (in the case 305 that T is a scalar), or a CONSTRUCTOR (in the case that T is an 306 aggregate), or NULL (in the case that T does not require 307 initialization). In either case, the value can be used as 308 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static 309 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS 310 is the number of elements in the array. If STATIC_STORAGE_P is 311 TRUE, initializers are only generated for entities for which 312 zero-initialization does not simply mean filling the storage with 313 zero bytes. */ 314 315 tree 316 build_zero_init (tree type, tree nelts, bool static_storage_p) 317 { 318 return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE); 319 } 320 321 /* Return a suitable initializer for value-initializing an object of type 322 TYPE, as described in [dcl.init]. */ 323 324 tree 325 build_value_init (tree type, tsubst_flags_t complain) 326 { 327 /* [dcl.init] 328 329 To value-initialize an object of type T means: 330 331 - if T is a class type (clause 9) with either no default constructor 332 (12.1) or a default constructor that is user-provided or deleted, 333 then then the object is default-initialized; 334 335 - if T is a (possibly cv-qualified) class type without a user-provided 336 or deleted default constructor, then the object is zero-initialized 337 and the semantic constraints for default-initialization are checked, 338 and if T has a non-trivial default constructor, the object is 339 default-initialized; 340 341 - if T is an array type, then each element is value-initialized; 342 343 - otherwise, the object is zero-initialized. 344 345 A program that calls for default-initialization or 346 value-initialization of an entity of reference type is ill-formed. */ 347 348 /* The AGGR_INIT_EXPR tweaking below breaks in templates. */ 349 gcc_assert (!processing_template_decl 350 || (SCALAR_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)); 351 352 if (CLASS_TYPE_P (type) 353 && type_build_ctor_call (type)) 354 { 355 tree ctor = 356 build_special_member_call (NULL_TREE, complete_ctor_identifier, 357 NULL, type, LOOKUP_NORMAL, 358 complain); 359 if (ctor == error_mark_node) 360 return ctor; 361 tree fn = NULL_TREE; 362 if (TREE_CODE (ctor) == CALL_EXPR) 363 fn = get_callee_fndecl (ctor); 364 ctor = build_aggr_init_expr (type, ctor); 365 if (fn && user_provided_p (fn)) 366 return ctor; 367 else if (TYPE_HAS_COMPLEX_DFLT (type)) 368 { 369 /* This is a class that needs constructing, but doesn't have 370 a user-provided constructor. So we need to zero-initialize 371 the object and then call the implicitly defined ctor. 372 This will be handled in simplify_aggr_init_expr. */ 373 AGGR_INIT_ZERO_FIRST (ctor) = 1; 374 return ctor; 375 } 376 } 377 378 /* Discard any access checking during subobject initialization; 379 the checks are implied by the call to the ctor which we have 380 verified is OK (cpp0x/defaulted46.C). */ 381 push_deferring_access_checks (dk_deferred); 382 tree r = build_value_init_noctor (type, complain); 383 pop_deferring_access_checks (); 384 return r; 385 } 386 387 /* Like build_value_init, but don't call the constructor for TYPE. Used 388 for base initializers. */ 389 390 tree 391 build_value_init_noctor (tree type, tsubst_flags_t complain) 392 { 393 if (!COMPLETE_TYPE_P (type)) 394 { 395 if (complain & tf_error) 396 error ("value-initialization of incomplete type %qT", type); 397 return error_mark_node; 398 } 399 /* FIXME the class and array cases should just use digest_init once it is 400 SFINAE-enabled. */ 401 if (CLASS_TYPE_P (type)) 402 { 403 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type) 404 || errorcount != 0); 405 406 if (TREE_CODE (type) != UNION_TYPE) 407 { 408 tree field; 409 vec<constructor_elt, va_gc> *v = NULL; 410 411 /* Iterate over the fields, building initializations. */ 412 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) 413 { 414 tree ftype, value; 415 416 if (TREE_CODE (field) != FIELD_DECL) 417 continue; 418 419 ftype = TREE_TYPE (field); 420 421 if (ftype == error_mark_node) 422 continue; 423 424 /* We could skip vfields and fields of types with 425 user-defined constructors, but I think that won't improve 426 performance at all; it should be simpler in general just 427 to zero out the entire object than try to only zero the 428 bits that actually need it. */ 429 430 /* Note that for class types there will be FIELD_DECLs 431 corresponding to base classes as well. Thus, iterating 432 over TYPE_FIELDs will result in correct initialization of 433 all of the subobjects. */ 434 value = build_value_init (ftype, complain); 435 value = maybe_constant_init (value); 436 437 if (value == error_mark_node) 438 return error_mark_node; 439 440 CONSTRUCTOR_APPEND_ELT(v, field, value); 441 442 /* We shouldn't have gotten here for anything that would need 443 non-trivial initialization, and gimplify_init_ctor_preeval 444 would need to be fixed to allow it. */ 445 gcc_assert (TREE_CODE (value) != TARGET_EXPR 446 && TREE_CODE (value) != AGGR_INIT_EXPR); 447 } 448 449 /* Build a constructor to contain the zero- initializations. */ 450 return build_constructor (type, v); 451 } 452 } 453 else if (TREE_CODE (type) == ARRAY_TYPE) 454 { 455 vec<constructor_elt, va_gc> *v = NULL; 456 457 /* Iterate over the array elements, building initializations. */ 458 tree max_index = array_type_nelts (type); 459 460 /* If we have an error_mark here, we should just return error mark 461 as we don't know the size of the array yet. */ 462 if (max_index == error_mark_node) 463 { 464 if (complain & tf_error) 465 error ("cannot value-initialize array of unknown bound %qT", 466 type); 467 return error_mark_node; 468 } 469 gcc_assert (TREE_CODE (max_index) == INTEGER_CST); 470 471 /* A zero-sized array, which is accepted as an extension, will 472 have an upper bound of -1. */ 473 if (!tree_int_cst_equal (max_index, integer_minus_one_node)) 474 { 475 constructor_elt ce; 476 477 /* If this is a one element array, we just use a regular init. */ 478 if (tree_int_cst_equal (size_zero_node, max_index)) 479 ce.index = size_zero_node; 480 else 481 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, max_index); 482 483 ce.value = build_value_init (TREE_TYPE (type), complain); 484 ce.value = maybe_constant_init (ce.value); 485 if (ce.value == error_mark_node) 486 return error_mark_node; 487 488 vec_alloc (v, 1); 489 v->quick_push (ce); 490 491 /* We shouldn't have gotten here for anything that would need 492 non-trivial initialization, and gimplify_init_ctor_preeval 493 would need to be fixed to allow it. */ 494 gcc_assert (TREE_CODE (ce.value) != TARGET_EXPR 495 && TREE_CODE (ce.value) != AGGR_INIT_EXPR); 496 } 497 498 /* Build a constructor to contain the initializations. */ 499 return build_constructor (type, v); 500 } 501 else if (TREE_CODE (type) == FUNCTION_TYPE) 502 { 503 if (complain & tf_error) 504 error ("value-initialization of function type %qT", type); 505 return error_mark_node; 506 } 507 else if (TREE_CODE (type) == REFERENCE_TYPE) 508 { 509 if (complain & tf_error) 510 error ("value-initialization of reference type %qT", type); 511 return error_mark_node; 512 } 513 514 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false); 515 } 516 517 /* Initialize current class with INIT, a TREE_LIST of 518 arguments for a target constructor. If TREE_LIST is void_type_node, 519 an empty initializer list was given. */ 520 521 static void 522 perform_target_ctor (tree init) 523 { 524 tree decl = current_class_ref; 525 tree type = current_class_type; 526 527 finish_expr_stmt (build_aggr_init (decl, init, 528 LOOKUP_NORMAL|LOOKUP_DELEGATING_CONS, 529 tf_warning_or_error)); 530 if (type_build_dtor_call (type)) 531 { 532 tree expr = build_delete (type, decl, sfk_complete_destructor, 533 LOOKUP_NORMAL 534 |LOOKUP_NONVIRTUAL 535 |LOOKUP_DESTRUCTOR, 536 0, tf_warning_or_error); 537 if (expr != error_mark_node 538 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)) 539 finish_eh_cleanup (expr); 540 } 541 } 542 543 /* Return the non-static data initializer for FIELD_DECL MEMBER. */ 544 545 tree 546 get_nsdmi (tree member, bool in_ctor) 547 { 548 tree init; 549 tree save_ccp = current_class_ptr; 550 tree save_ccr = current_class_ref; 551 if (!in_ctor) 552 { 553 /* Use a PLACEHOLDER_EXPR when we don't have a 'this' parameter to 554 refer to; constexpr evaluation knows what to do with it. */ 555 current_class_ref = build0 (PLACEHOLDER_EXPR, DECL_CONTEXT (member)); 556 current_class_ptr = build_address (current_class_ref); 557 } 558 if (DECL_LANG_SPECIFIC (member) && DECL_TEMPLATE_INFO (member)) 559 { 560 /* Do deferred instantiation of the NSDMI. */ 561 init = (tsubst_copy_and_build 562 (DECL_INITIAL (DECL_TI_TEMPLATE (member)), 563 DECL_TI_ARGS (member), 564 tf_warning_or_error, member, /*function_p=*/false, 565 /*integral_constant_expression_p=*/false)); 566 567 init = digest_nsdmi_init (member, init); 568 } 569 else 570 { 571 init = DECL_INITIAL (member); 572 if (init && TREE_CODE (init) == DEFAULT_ARG) 573 { 574 error ("constructor required before non-static data member " 575 "for %qD has been parsed", member); 576 DECL_INITIAL (member) = error_mark_node; 577 init = error_mark_node; 578 } 579 /* Strip redundant TARGET_EXPR so we don't need to remap it, and 580 so the aggregate init code below will see a CONSTRUCTOR. */ 581 if (init && TREE_CODE (init) == TARGET_EXPR 582 && !VOID_TYPE_P (TREE_TYPE (TARGET_EXPR_INITIAL (init)))) 583 init = TARGET_EXPR_INITIAL (init); 584 init = break_out_target_exprs (init); 585 } 586 current_class_ptr = save_ccp; 587 current_class_ref = save_ccr; 588 return init; 589 } 590 591 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of 592 arguments. If TREE_LIST is void_type_node, an empty initializer 593 list was given; if NULL_TREE no initializer was given. */ 594 595 static void 596 perform_member_init (tree member, tree init) 597 { 598 tree decl; 599 tree type = TREE_TYPE (member); 600 601 /* Use the non-static data member initializer if there was no 602 mem-initializer for this field. */ 603 if (init == NULL_TREE) 604 init = get_nsdmi (member, /*ctor*/true); 605 606 if (init == error_mark_node) 607 return; 608 609 /* Effective C++ rule 12 requires that all data members be 610 initialized. */ 611 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE) 612 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__, 613 "%qD should be initialized in the member initialization list", 614 member); 615 616 /* Get an lvalue for the data member. */ 617 decl = build_class_member_access_expr (current_class_ref, member, 618 /*access_path=*/NULL_TREE, 619 /*preserve_reference=*/true, 620 tf_warning_or_error); 621 if (decl == error_mark_node) 622 return; 623 624 if (warn_init_self && init && TREE_CODE (init) == TREE_LIST 625 && TREE_CHAIN (init) == NULL_TREE) 626 { 627 tree val = TREE_VALUE (init); 628 if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member 629 && TREE_OPERAND (val, 0) == current_class_ref) 630 warning_at (DECL_SOURCE_LOCATION (current_function_decl), 631 OPT_Winit_self, "%qD is initialized with itself", 632 member); 633 } 634 635 if (init == void_type_node) 636 { 637 /* mem() means value-initialization. */ 638 if (TREE_CODE (type) == ARRAY_TYPE) 639 { 640 init = build_vec_init_expr (type, init, tf_warning_or_error); 641 init = build2 (INIT_EXPR, type, decl, init); 642 finish_expr_stmt (init); 643 } 644 else 645 { 646 tree value = build_value_init (type, tf_warning_or_error); 647 if (value == error_mark_node) 648 return; 649 init = build2 (INIT_EXPR, type, decl, value); 650 finish_expr_stmt (init); 651 } 652 } 653 /* Deal with this here, as we will get confused if we try to call the 654 assignment op for an anonymous union. This can happen in a 655 synthesized copy constructor. */ 656 else if (ANON_AGGR_TYPE_P (type)) 657 { 658 if (init) 659 { 660 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init)); 661 finish_expr_stmt (init); 662 } 663 } 664 else if (init 665 && (TREE_CODE (type) == REFERENCE_TYPE 666 /* Pre-digested NSDMI. */ 667 || (((TREE_CODE (init) == CONSTRUCTOR 668 && TREE_TYPE (init) == type) 669 /* { } mem-initializer. */ 670 || (TREE_CODE (init) == TREE_LIST 671 && DIRECT_LIST_INIT_P (TREE_VALUE (init)))) 672 && (CP_AGGREGATE_TYPE_P (type) 673 || is_std_init_list (type))))) 674 { 675 /* With references and list-initialization, we need to deal with 676 extending temporary lifetimes. 12.2p5: "A temporary bound to a 677 reference member in a constructor’s ctor-initializer (12.6.2) 678 persists until the constructor exits." */ 679 unsigned i; tree t; 680 vec<tree, va_gc> *cleanups = make_tree_vector (); 681 if (TREE_CODE (init) == TREE_LIST) 682 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT, 683 tf_warning_or_error); 684 if (TREE_TYPE (init) != type) 685 { 686 if (BRACE_ENCLOSED_INITIALIZER_P (init) 687 && CP_AGGREGATE_TYPE_P (type)) 688 init = reshape_init (type, init, tf_warning_or_error); 689 init = digest_init (type, init, tf_warning_or_error); 690 } 691 if (init == error_mark_node) 692 return; 693 /* A FIELD_DECL doesn't really have a suitable lifetime, but 694 make_temporary_var_for_ref_to_temp will treat it as automatic and 695 set_up_extended_ref_temp wants to use the decl in a warning. */ 696 init = extend_ref_init_temps (member, init, &cleanups); 697 if (TREE_CODE (type) == ARRAY_TYPE 698 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type))) 699 init = build_vec_init_expr (type, init, tf_warning_or_error); 700 init = build2 (INIT_EXPR, type, decl, init); 701 finish_expr_stmt (init); 702 FOR_EACH_VEC_ELT (*cleanups, i, t) 703 push_cleanup (decl, t, false); 704 release_tree_vector (cleanups); 705 } 706 else if (type_build_ctor_call (type) 707 || (init && CLASS_TYPE_P (strip_array_types (type)))) 708 { 709 if (TREE_CODE (type) == ARRAY_TYPE) 710 { 711 if (init) 712 { 713 if (TREE_CHAIN (init)) 714 init = error_mark_node; 715 else 716 init = TREE_VALUE (init); 717 if (BRACE_ENCLOSED_INITIALIZER_P (init)) 718 init = digest_init (type, init, tf_warning_or_error); 719 } 720 if (init == NULL_TREE 721 || same_type_ignoring_top_level_qualifiers_p (type, 722 TREE_TYPE (init))) 723 { 724 init = build_vec_init_expr (type, init, tf_warning_or_error); 725 init = build2 (INIT_EXPR, type, decl, init); 726 finish_expr_stmt (init); 727 } 728 else 729 error ("invalid initializer for array member %q#D", member); 730 } 731 else 732 { 733 int flags = LOOKUP_NORMAL; 734 if (DECL_DEFAULTED_FN (current_function_decl)) 735 flags |= LOOKUP_DEFAULTED; 736 if (CP_TYPE_CONST_P (type) 737 && init == NULL_TREE 738 && default_init_uninitialized_part (type)) 739 { 740 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a 741 vtable; still give this diagnostic. */ 742 if (permerror (DECL_SOURCE_LOCATION (current_function_decl), 743 "uninitialized const member in %q#T", type)) 744 inform (DECL_SOURCE_LOCATION (member), 745 "%q#D should be initialized", member ); 746 } 747 finish_expr_stmt (build_aggr_init (decl, init, flags, 748 tf_warning_or_error)); 749 } 750 } 751 else 752 { 753 if (init == NULL_TREE) 754 { 755 tree core_type; 756 /* member traversal: note it leaves init NULL */ 757 if (TREE_CODE (type) == REFERENCE_TYPE) 758 { 759 if (permerror (DECL_SOURCE_LOCATION (current_function_decl), 760 "uninitialized reference member in %q#T", type)) 761 inform (DECL_SOURCE_LOCATION (member), 762 "%q#D should be initialized", member); 763 } 764 else if (CP_TYPE_CONST_P (type)) 765 { 766 if (permerror (DECL_SOURCE_LOCATION (current_function_decl), 767 "uninitialized const member in %q#T", type)) 768 inform (DECL_SOURCE_LOCATION (member), 769 "%q#D should be initialized", member ); 770 } 771 772 core_type = strip_array_types (type); 773 774 if (CLASS_TYPE_P (core_type) 775 && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type) 776 || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type))) 777 diagnose_uninitialized_cst_or_ref_member (core_type, 778 /*using_new=*/false, 779 /*complain=*/true); 780 } 781 else if (TREE_CODE (init) == TREE_LIST) 782 /* There was an explicit member initialization. Do some work 783 in that case. */ 784 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT, 785 tf_warning_or_error); 786 787 if (init) 788 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init, 789 tf_warning_or_error)); 790 } 791 792 if (type_build_dtor_call (type)) 793 { 794 tree expr; 795 796 expr = build_class_member_access_expr (current_class_ref, member, 797 /*access_path=*/NULL_TREE, 798 /*preserve_reference=*/false, 799 tf_warning_or_error); 800 expr = build_delete (type, expr, sfk_complete_destructor, 801 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0, 802 tf_warning_or_error); 803 804 if (expr != error_mark_node 805 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)) 806 finish_eh_cleanup (expr); 807 } 808 } 809 810 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all 811 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */ 812 813 static tree 814 build_field_list (tree t, tree list, int *uses_unions_p) 815 { 816 tree fields; 817 818 /* Note whether or not T is a union. */ 819 if (TREE_CODE (t) == UNION_TYPE) 820 *uses_unions_p = 1; 821 822 for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields)) 823 { 824 tree fieldtype; 825 826 /* Skip CONST_DECLs for enumeration constants and so forth. */ 827 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields)) 828 continue; 829 830 fieldtype = TREE_TYPE (fields); 831 /* Keep track of whether or not any fields are unions. */ 832 if (TREE_CODE (fieldtype) == UNION_TYPE) 833 *uses_unions_p = 1; 834 835 /* For an anonymous struct or union, we must recursively 836 consider the fields of the anonymous type. They can be 837 directly initialized from the constructor. */ 838 if (ANON_AGGR_TYPE_P (fieldtype)) 839 { 840 /* Add this field itself. Synthesized copy constructors 841 initialize the entire aggregate. */ 842 list = tree_cons (fields, NULL_TREE, list); 843 /* And now add the fields in the anonymous aggregate. */ 844 list = build_field_list (fieldtype, list, uses_unions_p); 845 } 846 /* Add this field. */ 847 else if (DECL_NAME (fields)) 848 list = tree_cons (fields, NULL_TREE, list); 849 } 850 851 return list; 852 } 853 854 /* Return the innermost aggregate scope for FIELD, whether that is 855 the enclosing class or an anonymous aggregate within it. */ 856 857 static tree 858 innermost_aggr_scope (tree field) 859 { 860 if (ANON_AGGR_TYPE_P (TREE_TYPE (field))) 861 return TREE_TYPE (field); 862 else 863 return DECL_CONTEXT (field); 864 } 865 866 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives 867 a FIELD_DECL or BINFO in T that needs initialization. The 868 TREE_VALUE gives the initializer, or list of initializer arguments. 869 870 Return a TREE_LIST containing all of the initializations required 871 for T, in the order in which they should be performed. The output 872 list has the same format as the input. */ 873 874 static tree 875 sort_mem_initializers (tree t, tree mem_inits) 876 { 877 tree init; 878 tree base, binfo, base_binfo; 879 tree sorted_inits; 880 tree next_subobject; 881 vec<tree, va_gc> *vbases; 882 int i; 883 int uses_unions_p = 0; 884 885 /* Build up a list of initializations. The TREE_PURPOSE of entry 886 will be the subobject (a FIELD_DECL or BINFO) to initialize. The 887 TREE_VALUE will be the constructor arguments, or NULL if no 888 explicit initialization was provided. */ 889 sorted_inits = NULL_TREE; 890 891 /* Process the virtual bases. */ 892 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0; 893 vec_safe_iterate (vbases, i, &base); i++) 894 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits); 895 896 /* Process the direct bases. */ 897 for (binfo = TYPE_BINFO (t), i = 0; 898 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i) 899 if (!BINFO_VIRTUAL_P (base_binfo)) 900 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits); 901 902 /* Process the non-static data members. */ 903 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p); 904 /* Reverse the entire list of initializations, so that they are in 905 the order that they will actually be performed. */ 906 sorted_inits = nreverse (sorted_inits); 907 908 /* If the user presented the initializers in an order different from 909 that in which they will actually occur, we issue a warning. Keep 910 track of the next subobject which can be explicitly initialized 911 without issuing a warning. */ 912 next_subobject = sorted_inits; 913 914 /* Go through the explicit initializers, filling in TREE_PURPOSE in 915 the SORTED_INITS. */ 916 for (init = mem_inits; init; init = TREE_CHAIN (init)) 917 { 918 tree subobject; 919 tree subobject_init; 920 921 subobject = TREE_PURPOSE (init); 922 923 /* If the explicit initializers are in sorted order, then 924 SUBOBJECT will be NEXT_SUBOBJECT, or something following 925 it. */ 926 for (subobject_init = next_subobject; 927 subobject_init; 928 subobject_init = TREE_CHAIN (subobject_init)) 929 if (TREE_PURPOSE (subobject_init) == subobject) 930 break; 931 932 /* Issue a warning if the explicit initializer order does not 933 match that which will actually occur. 934 ??? Are all these on the correct lines? */ 935 if (warn_reorder && !subobject_init) 936 { 937 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL) 938 warning (OPT_Wreorder, "%q+D will be initialized after", 939 TREE_PURPOSE (next_subobject)); 940 else 941 warning (OPT_Wreorder, "base %qT will be initialized after", 942 TREE_PURPOSE (next_subobject)); 943 if (TREE_CODE (subobject) == FIELD_DECL) 944 warning (OPT_Wreorder, " %q+#D", subobject); 945 else 946 warning (OPT_Wreorder, " base %qT", subobject); 947 warning_at (DECL_SOURCE_LOCATION (current_function_decl), 948 OPT_Wreorder, " when initialized here"); 949 } 950 951 /* Look again, from the beginning of the list. */ 952 if (!subobject_init) 953 { 954 subobject_init = sorted_inits; 955 while (TREE_PURPOSE (subobject_init) != subobject) 956 subobject_init = TREE_CHAIN (subobject_init); 957 } 958 959 /* It is invalid to initialize the same subobject more than 960 once. */ 961 if (TREE_VALUE (subobject_init)) 962 { 963 if (TREE_CODE (subobject) == FIELD_DECL) 964 error_at (DECL_SOURCE_LOCATION (current_function_decl), 965 "multiple initializations given for %qD", 966 subobject); 967 else 968 error_at (DECL_SOURCE_LOCATION (current_function_decl), 969 "multiple initializations given for base %qT", 970 subobject); 971 } 972 973 /* Record the initialization. */ 974 TREE_VALUE (subobject_init) = TREE_VALUE (init); 975 next_subobject = subobject_init; 976 } 977 978 /* [class.base.init] 979 980 If a ctor-initializer specifies more than one mem-initializer for 981 multiple members of the same union (including members of 982 anonymous unions), the ctor-initializer is ill-formed. 983 984 Here we also splice out uninitialized union members. */ 985 if (uses_unions_p) 986 { 987 tree *last_p = NULL; 988 tree *p; 989 for (p = &sorted_inits; *p; ) 990 { 991 tree field; 992 tree ctx; 993 994 init = *p; 995 996 field = TREE_PURPOSE (init); 997 998 /* Skip base classes. */ 999 if (TREE_CODE (field) != FIELD_DECL) 1000 goto next; 1001 1002 /* If this is an anonymous union with no explicit initializer, 1003 splice it out. */ 1004 if (!TREE_VALUE (init) && ANON_UNION_TYPE_P (TREE_TYPE (field))) 1005 goto splice; 1006 1007 /* See if this field is a member of a union, or a member of a 1008 structure contained in a union, etc. */ 1009 for (ctx = innermost_aggr_scope (field); 1010 !same_type_p (ctx, t); 1011 ctx = TYPE_CONTEXT (ctx)) 1012 if (TREE_CODE (ctx) == UNION_TYPE 1013 || !ANON_AGGR_TYPE_P (ctx)) 1014 break; 1015 /* If this field is not a member of a union, skip it. */ 1016 if (TREE_CODE (ctx) != UNION_TYPE) 1017 goto next; 1018 1019 /* If this union member has no explicit initializer and no NSDMI, 1020 splice it out. */ 1021 if (TREE_VALUE (init) || DECL_INITIAL (field)) 1022 /* OK. */; 1023 else 1024 goto splice; 1025 1026 /* It's only an error if we have two initializers for the same 1027 union type. */ 1028 if (!last_p) 1029 { 1030 last_p = p; 1031 goto next; 1032 } 1033 1034 /* See if LAST_FIELD and the field initialized by INIT are 1035 members of the same union. If so, there's a problem, 1036 unless they're actually members of the same structure 1037 which is itself a member of a union. For example, given: 1038 1039 union { struct { int i; int j; }; }; 1040 1041 initializing both `i' and `j' makes sense. */ 1042 ctx = common_enclosing_class 1043 (innermost_aggr_scope (field), 1044 innermost_aggr_scope (TREE_PURPOSE (*last_p))); 1045 1046 if (ctx && TREE_CODE (ctx) == UNION_TYPE) 1047 { 1048 /* A mem-initializer hides an NSDMI. */ 1049 if (TREE_VALUE (init) && !TREE_VALUE (*last_p)) 1050 *last_p = TREE_CHAIN (*last_p); 1051 else if (TREE_VALUE (*last_p) && !TREE_VALUE (init)) 1052 goto splice; 1053 else 1054 { 1055 error_at (DECL_SOURCE_LOCATION (current_function_decl), 1056 "initializations for multiple members of %qT", 1057 ctx); 1058 goto splice; 1059 } 1060 } 1061 1062 last_p = p; 1063 1064 next: 1065 p = &TREE_CHAIN (*p); 1066 continue; 1067 splice: 1068 *p = TREE_CHAIN (*p); 1069 continue; 1070 } 1071 } 1072 1073 return sorted_inits; 1074 } 1075 1076 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS 1077 is a TREE_LIST giving the explicit mem-initializer-list for the 1078 constructor. The TREE_PURPOSE of each entry is a subobject (a 1079 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE 1080 is a TREE_LIST giving the arguments to the constructor or 1081 void_type_node for an empty list of arguments. */ 1082 1083 void 1084 emit_mem_initializers (tree mem_inits) 1085 { 1086 int flags = LOOKUP_NORMAL; 1087 1088 /* We will already have issued an error message about the fact that 1089 the type is incomplete. */ 1090 if (!COMPLETE_TYPE_P (current_class_type)) 1091 return; 1092 1093 if (mem_inits 1094 && TYPE_P (TREE_PURPOSE (mem_inits)) 1095 && same_type_p (TREE_PURPOSE (mem_inits), current_class_type)) 1096 { 1097 /* Delegating constructor. */ 1098 gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE); 1099 perform_target_ctor (TREE_VALUE (mem_inits)); 1100 return; 1101 } 1102 1103 if (DECL_DEFAULTED_FN (current_function_decl) 1104 && ! DECL_INHERITED_CTOR_BASE (current_function_decl)) 1105 flags |= LOOKUP_DEFAULTED; 1106 1107 /* Sort the mem-initializers into the order in which the 1108 initializations should be performed. */ 1109 mem_inits = sort_mem_initializers (current_class_type, mem_inits); 1110 1111 in_base_initializer = 1; 1112 1113 /* Initialize base classes. */ 1114 for (; (mem_inits 1115 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL); 1116 mem_inits = TREE_CHAIN (mem_inits)) 1117 { 1118 tree subobject = TREE_PURPOSE (mem_inits); 1119 tree arguments = TREE_VALUE (mem_inits); 1120 1121 /* We already have issued an error message. */ 1122 if (arguments == error_mark_node) 1123 continue; 1124 1125 if (arguments == NULL_TREE) 1126 { 1127 /* If these initializations are taking place in a copy constructor, 1128 the base class should probably be explicitly initialized if there 1129 is a user-defined constructor in the base class (other than the 1130 default constructor, which will be called anyway). */ 1131 if (extra_warnings 1132 && DECL_COPY_CONSTRUCTOR_P (current_function_decl) 1133 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject))) 1134 warning_at (DECL_SOURCE_LOCATION (current_function_decl), 1135 OPT_Wextra, "base class %q#T should be explicitly " 1136 "initialized in the copy constructor", 1137 BINFO_TYPE (subobject)); 1138 } 1139 1140 /* Initialize the base. */ 1141 if (BINFO_VIRTUAL_P (subobject)) 1142 construct_virtual_base (subobject, arguments); 1143 else 1144 { 1145 tree base_addr; 1146 1147 base_addr = build_base_path (PLUS_EXPR, current_class_ptr, 1148 subobject, 1, tf_warning_or_error); 1149 expand_aggr_init_1 (subobject, NULL_TREE, 1150 cp_build_indirect_ref (base_addr, RO_NULL, 1151 tf_warning_or_error), 1152 arguments, 1153 flags, 1154 tf_warning_or_error); 1155 expand_cleanup_for_base (subobject, NULL_TREE); 1156 } 1157 } 1158 in_base_initializer = 0; 1159 1160 /* Initialize the vptrs. */ 1161 initialize_vtbl_ptrs (current_class_ptr); 1162 1163 /* Initialize the data members. */ 1164 while (mem_inits) 1165 { 1166 perform_member_init (TREE_PURPOSE (mem_inits), 1167 TREE_VALUE (mem_inits)); 1168 mem_inits = TREE_CHAIN (mem_inits); 1169 } 1170 } 1171 1172 /* Returns the address of the vtable (i.e., the value that should be 1173 assigned to the vptr) for BINFO. */ 1174 1175 tree 1176 build_vtbl_address (tree binfo) 1177 { 1178 tree binfo_for = binfo; 1179 tree vtbl; 1180 1181 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo)) 1182 /* If this is a virtual primary base, then the vtable we want to store 1183 is that for the base this is being used as the primary base of. We 1184 can't simply skip the initialization, because we may be expanding the 1185 inits of a subobject constructor where the virtual base layout 1186 can be different. */ 1187 while (BINFO_PRIMARY_P (binfo_for)) 1188 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for); 1189 1190 /* Figure out what vtable BINFO's vtable is based on, and mark it as 1191 used. */ 1192 vtbl = get_vtbl_decl_for_binfo (binfo_for); 1193 TREE_USED (vtbl) = true; 1194 1195 /* Now compute the address to use when initializing the vptr. */ 1196 vtbl = unshare_expr (BINFO_VTABLE (binfo_for)); 1197 if (VAR_P (vtbl)) 1198 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl); 1199 1200 return vtbl; 1201 } 1202 1203 /* This code sets up the virtual function tables appropriate for 1204 the pointer DECL. It is a one-ply initialization. 1205 1206 BINFO is the exact type that DECL is supposed to be. In 1207 multiple inheritance, this might mean "C's A" if C : A, B. */ 1208 1209 static void 1210 expand_virtual_init (tree binfo, tree decl) 1211 { 1212 tree vtbl, vtbl_ptr; 1213 tree vtt_index; 1214 1215 /* Compute the initializer for vptr. */ 1216 vtbl = build_vtbl_address (binfo); 1217 1218 /* We may get this vptr from a VTT, if this is a subobject 1219 constructor or subobject destructor. */ 1220 vtt_index = BINFO_VPTR_INDEX (binfo); 1221 if (vtt_index) 1222 { 1223 tree vtbl2; 1224 tree vtt_parm; 1225 1226 /* Compute the value to use, when there's a VTT. */ 1227 vtt_parm = current_vtt_parm; 1228 vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index); 1229 vtbl2 = cp_build_indirect_ref (vtbl2, RO_NULL, tf_warning_or_error); 1230 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2); 1231 1232 /* The actual initializer is the VTT value only in the subobject 1233 constructor. In maybe_clone_body we'll substitute NULL for 1234 the vtt_parm in the case of the non-subobject constructor. */ 1235 vtbl = build3 (COND_EXPR, 1236 TREE_TYPE (vtbl), 1237 build2 (EQ_EXPR, boolean_type_node, 1238 current_in_charge_parm, integer_zero_node), 1239 vtbl2, 1240 vtbl); 1241 } 1242 1243 /* Compute the location of the vtpr. */ 1244 vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, RO_NULL, 1245 tf_warning_or_error), 1246 TREE_TYPE (binfo)); 1247 gcc_assert (vtbl_ptr != error_mark_node); 1248 1249 /* Assign the vtable to the vptr. */ 1250 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0, tf_warning_or_error); 1251 finish_expr_stmt (cp_build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl, 1252 tf_warning_or_error)); 1253 } 1254 1255 /* If an exception is thrown in a constructor, those base classes already 1256 constructed must be destroyed. This function creates the cleanup 1257 for BINFO, which has just been constructed. If FLAG is non-NULL, 1258 it is a DECL which is nonzero when this base needs to be 1259 destroyed. */ 1260 1261 static void 1262 expand_cleanup_for_base (tree binfo, tree flag) 1263 { 1264 tree expr; 1265 1266 if (!type_build_dtor_call (BINFO_TYPE (binfo))) 1267 return; 1268 1269 /* Call the destructor. */ 1270 expr = build_special_member_call (current_class_ref, 1271 base_dtor_identifier, 1272 NULL, 1273 binfo, 1274 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL, 1275 tf_warning_or_error); 1276 1277 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo))) 1278 return; 1279 1280 if (flag) 1281 expr = fold_build3_loc (input_location, 1282 COND_EXPR, void_type_node, 1283 c_common_truthvalue_conversion (input_location, flag), 1284 expr, integer_zero_node); 1285 1286 finish_eh_cleanup (expr); 1287 } 1288 1289 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its 1290 constructor. */ 1291 1292 static void 1293 construct_virtual_base (tree vbase, tree arguments) 1294 { 1295 tree inner_if_stmt; 1296 tree exp; 1297 tree flag; 1298 1299 /* If there are virtual base classes with destructors, we need to 1300 emit cleanups to destroy them if an exception is thrown during 1301 the construction process. These exception regions (i.e., the 1302 period during which the cleanups must occur) begin from the time 1303 the construction is complete to the end of the function. If we 1304 create a conditional block in which to initialize the 1305 base-classes, then the cleanup region for the virtual base begins 1306 inside a block, and ends outside of that block. This situation 1307 confuses the sjlj exception-handling code. Therefore, we do not 1308 create a single conditional block, but one for each 1309 initialization. (That way the cleanup regions always begin 1310 in the outer block.) We trust the back end to figure out 1311 that the FLAG will not change across initializations, and 1312 avoid doing multiple tests. */ 1313 flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl)); 1314 inner_if_stmt = begin_if_stmt (); 1315 finish_if_stmt_cond (flag, inner_if_stmt); 1316 1317 /* Compute the location of the virtual base. If we're 1318 constructing virtual bases, then we must be the most derived 1319 class. Therefore, we don't have to look up the virtual base; 1320 we already know where it is. */ 1321 exp = convert_to_base_statically (current_class_ref, vbase); 1322 1323 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments, 1324 0, tf_warning_or_error); 1325 finish_then_clause (inner_if_stmt); 1326 finish_if_stmt (inner_if_stmt); 1327 1328 expand_cleanup_for_base (vbase, flag); 1329 } 1330 1331 /* Find the context in which this FIELD can be initialized. */ 1332 1333 static tree 1334 initializing_context (tree field) 1335 { 1336 tree t = DECL_CONTEXT (field); 1337 1338 /* Anonymous union members can be initialized in the first enclosing 1339 non-anonymous union context. */ 1340 while (t && ANON_AGGR_TYPE_P (t)) 1341 t = TYPE_CONTEXT (t); 1342 return t; 1343 } 1344 1345 /* Function to give error message if member initialization specification 1346 is erroneous. FIELD is the member we decided to initialize. 1347 TYPE is the type for which the initialization is being performed. 1348 FIELD must be a member of TYPE. 1349 1350 MEMBER_NAME is the name of the member. */ 1351 1352 static int 1353 member_init_ok_or_else (tree field, tree type, tree member_name) 1354 { 1355 if (field == error_mark_node) 1356 return 0; 1357 if (!field) 1358 { 1359 error ("class %qT does not have any field named %qD", type, 1360 member_name); 1361 return 0; 1362 } 1363 if (VAR_P (field)) 1364 { 1365 error ("%q#D is a static data member; it can only be " 1366 "initialized at its definition", 1367 field); 1368 return 0; 1369 } 1370 if (TREE_CODE (field) != FIELD_DECL) 1371 { 1372 error ("%q#D is not a non-static data member of %qT", 1373 field, type); 1374 return 0; 1375 } 1376 if (initializing_context (field) != type) 1377 { 1378 error ("class %qT does not have any field named %qD", type, 1379 member_name); 1380 return 0; 1381 } 1382 1383 return 1; 1384 } 1385 1386 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it 1387 is a _TYPE node or TYPE_DECL which names a base for that type. 1388 Check the validity of NAME, and return either the base _TYPE, base 1389 binfo, or the FIELD_DECL of the member. If NAME is invalid, return 1390 NULL_TREE and issue a diagnostic. 1391 1392 An old style unnamed direct single base construction is permitted, 1393 where NAME is NULL. */ 1394 1395 tree 1396 expand_member_init (tree name) 1397 { 1398 tree basetype; 1399 tree field; 1400 1401 if (!current_class_ref) 1402 return NULL_TREE; 1403 1404 if (!name) 1405 { 1406 /* This is an obsolete unnamed base class initializer. The 1407 parser will already have warned about its use. */ 1408 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type))) 1409 { 1410 case 0: 1411 error ("unnamed initializer for %qT, which has no base classes", 1412 current_class_type); 1413 return NULL_TREE; 1414 case 1: 1415 basetype = BINFO_TYPE 1416 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0)); 1417 break; 1418 default: 1419 error ("unnamed initializer for %qT, which uses multiple inheritance", 1420 current_class_type); 1421 return NULL_TREE; 1422 } 1423 } 1424 else if (TYPE_P (name)) 1425 { 1426 basetype = TYPE_MAIN_VARIANT (name); 1427 name = TYPE_NAME (name); 1428 } 1429 else if (TREE_CODE (name) == TYPE_DECL) 1430 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name)); 1431 else 1432 basetype = NULL_TREE; 1433 1434 if (basetype) 1435 { 1436 tree class_binfo; 1437 tree direct_binfo; 1438 tree virtual_binfo; 1439 int i; 1440 1441 if (current_template_parms 1442 || same_type_p (basetype, current_class_type)) 1443 return basetype; 1444 1445 class_binfo = TYPE_BINFO (current_class_type); 1446 direct_binfo = NULL_TREE; 1447 virtual_binfo = NULL_TREE; 1448 1449 /* Look for a direct base. */ 1450 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i) 1451 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype)) 1452 break; 1453 1454 /* Look for a virtual base -- unless the direct base is itself 1455 virtual. */ 1456 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo)) 1457 virtual_binfo = binfo_for_vbase (basetype, current_class_type); 1458 1459 /* [class.base.init] 1460 1461 If a mem-initializer-id is ambiguous because it designates 1462 both a direct non-virtual base class and an inherited virtual 1463 base class, the mem-initializer is ill-formed. */ 1464 if (direct_binfo && virtual_binfo) 1465 { 1466 error ("%qD is both a direct base and an indirect virtual base", 1467 basetype); 1468 return NULL_TREE; 1469 } 1470 1471 if (!direct_binfo && !virtual_binfo) 1472 { 1473 if (CLASSTYPE_VBASECLASSES (current_class_type)) 1474 error ("type %qT is not a direct or virtual base of %qT", 1475 basetype, current_class_type); 1476 else 1477 error ("type %qT is not a direct base of %qT", 1478 basetype, current_class_type); 1479 return NULL_TREE; 1480 } 1481 1482 return direct_binfo ? direct_binfo : virtual_binfo; 1483 } 1484 else 1485 { 1486 if (identifier_p (name)) 1487 field = lookup_field (current_class_type, name, 1, false); 1488 else 1489 field = name; 1490 1491 if (member_init_ok_or_else (field, current_class_type, name)) 1492 return field; 1493 } 1494 1495 return NULL_TREE; 1496 } 1497 1498 /* This is like `expand_member_init', only it stores one aggregate 1499 value into another. 1500 1501 INIT comes in two flavors: it is either a value which 1502 is to be stored in EXP, or it is a parameter list 1503 to go to a constructor, which will operate on EXP. 1504 If INIT is not a parameter list for a constructor, then set 1505 LOOKUP_ONLYCONVERTING. 1506 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of 1507 the initializer, if FLAGS is 0, then it is the (init) form. 1508 If `init' is a CONSTRUCTOR, then we emit a warning message, 1509 explaining that such initializations are invalid. 1510 1511 If INIT resolves to a CALL_EXPR which happens to return 1512 something of the type we are looking for, then we know 1513 that we can safely use that call to perform the 1514 initialization. 1515 1516 The virtual function table pointer cannot be set up here, because 1517 we do not really know its type. 1518 1519 This never calls operator=(). 1520 1521 When initializing, nothing is CONST. 1522 1523 A default copy constructor may have to be used to perform the 1524 initialization. 1525 1526 A constructor or a conversion operator may have to be used to 1527 perform the initialization, but not both, as it would be ambiguous. */ 1528 1529 tree 1530 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain) 1531 { 1532 tree stmt_expr; 1533 tree compound_stmt; 1534 int destroy_temps; 1535 tree type = TREE_TYPE (exp); 1536 int was_const = TREE_READONLY (exp); 1537 int was_volatile = TREE_THIS_VOLATILE (exp); 1538 int is_global; 1539 1540 if (init == error_mark_node) 1541 return error_mark_node; 1542 1543 TREE_READONLY (exp) = 0; 1544 TREE_THIS_VOLATILE (exp) = 0; 1545 1546 if (init && init != void_type_node 1547 && TREE_CODE (init) != TREE_LIST 1548 && !(TREE_CODE (init) == TARGET_EXPR 1549 && TARGET_EXPR_DIRECT_INIT_P (init)) 1550 && !DIRECT_LIST_INIT_P (init)) 1551 flags |= LOOKUP_ONLYCONVERTING; 1552 1553 if (TREE_CODE (type) == ARRAY_TYPE) 1554 { 1555 tree itype; 1556 1557 /* An array may not be initialized use the parenthesized 1558 initialization form -- unless the initializer is "()". */ 1559 if (init && TREE_CODE (init) == TREE_LIST) 1560 { 1561 if (complain & tf_error) 1562 error ("bad array initializer"); 1563 return error_mark_node; 1564 } 1565 /* Must arrange to initialize each element of EXP 1566 from elements of INIT. */ 1567 itype = init ? TREE_TYPE (init) : NULL_TREE; 1568 if (cv_qualified_p (type)) 1569 TREE_TYPE (exp) = cv_unqualified (type); 1570 if (itype && cv_qualified_p (itype)) 1571 TREE_TYPE (init) = cv_unqualified (itype); 1572 stmt_expr = build_vec_init (exp, NULL_TREE, init, 1573 /*explicit_value_init_p=*/false, 1574 itype && same_type_p (TREE_TYPE (init), 1575 TREE_TYPE (exp)), 1576 complain); 1577 TREE_READONLY (exp) = was_const; 1578 TREE_THIS_VOLATILE (exp) = was_volatile; 1579 TREE_TYPE (exp) = type; 1580 /* Restore the type of init unless it was used directly. */ 1581 if (init && TREE_CODE (stmt_expr) != INIT_EXPR) 1582 TREE_TYPE (init) = itype; 1583 return stmt_expr; 1584 } 1585 1586 if ((VAR_P (exp) || TREE_CODE (exp) == PARM_DECL) 1587 && !lookup_attribute ("warn_unused", TYPE_ATTRIBUTES (type))) 1588 /* Just know that we've seen something for this node. */ 1589 TREE_USED (exp) = 1; 1590 1591 is_global = begin_init_stmts (&stmt_expr, &compound_stmt); 1592 destroy_temps = stmts_are_full_exprs_p (); 1593 current_stmt_tree ()->stmts_are_full_exprs_p = 0; 1594 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp, 1595 init, LOOKUP_NORMAL|flags, complain); 1596 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt); 1597 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps; 1598 TREE_READONLY (exp) = was_const; 1599 TREE_THIS_VOLATILE (exp) = was_volatile; 1600 1601 return stmt_expr; 1602 } 1603 1604 static void 1605 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags, 1606 tsubst_flags_t complain) 1607 { 1608 tree type = TREE_TYPE (exp); 1609 tree ctor_name; 1610 1611 /* It fails because there may not be a constructor which takes 1612 its own type as the first (or only parameter), but which does 1613 take other types via a conversion. So, if the thing initializing 1614 the expression is a unit element of type X, first try X(X&), 1615 followed by initialization by X. If neither of these work 1616 out, then look hard. */ 1617 tree rval; 1618 vec<tree, va_gc> *parms; 1619 1620 /* If we have direct-initialization from an initializer list, pull 1621 it out of the TREE_LIST so the code below can see it. */ 1622 if (init && TREE_CODE (init) == TREE_LIST 1623 && DIRECT_LIST_INIT_P (TREE_VALUE (init))) 1624 { 1625 gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0 1626 && TREE_CHAIN (init) == NULL_TREE); 1627 init = TREE_VALUE (init); 1628 } 1629 1630 if (init && BRACE_ENCLOSED_INITIALIZER_P (init) 1631 && CP_AGGREGATE_TYPE_P (type)) 1632 /* A brace-enclosed initializer for an aggregate. In C++0x this can 1633 happen for direct-initialization, too. */ 1634 init = digest_init (type, init, complain); 1635 1636 /* A CONSTRUCTOR of the target's type is a previously digested 1637 initializer, whether that happened just above or in 1638 cp_parser_late_parsing_nsdmi. 1639 1640 A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P 1641 set represents the whole initialization, so we shouldn't build up 1642 another ctor call. */ 1643 if (init 1644 && (TREE_CODE (init) == CONSTRUCTOR 1645 || (TREE_CODE (init) == TARGET_EXPR 1646 && (TARGET_EXPR_DIRECT_INIT_P (init) 1647 || TARGET_EXPR_LIST_INIT_P (init)))) 1648 && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type)) 1649 { 1650 /* Early initialization via a TARGET_EXPR only works for 1651 complete objects. */ 1652 gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp); 1653 1654 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init); 1655 TREE_SIDE_EFFECTS (init) = 1; 1656 finish_expr_stmt (init); 1657 return; 1658 } 1659 1660 if (init && TREE_CODE (init) != TREE_LIST 1661 && (flags & LOOKUP_ONLYCONVERTING)) 1662 { 1663 /* Base subobjects should only get direct-initialization. */ 1664 gcc_assert (true_exp == exp); 1665 1666 if (flags & DIRECT_BIND) 1667 /* Do nothing. We hit this in two cases: Reference initialization, 1668 where we aren't initializing a real variable, so we don't want 1669 to run a new constructor; and catching an exception, where we 1670 have already built up the constructor call so we could wrap it 1671 in an exception region. */; 1672 else 1673 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, 1674 flags, complain); 1675 1676 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR) 1677 /* We need to protect the initialization of a catch parm with a 1678 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR 1679 around the TARGET_EXPR for the copy constructor. See 1680 initialize_handler_parm. */ 1681 { 1682 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp, 1683 TREE_OPERAND (init, 0)); 1684 TREE_TYPE (init) = void_type_node; 1685 } 1686 else 1687 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init); 1688 TREE_SIDE_EFFECTS (init) = 1; 1689 finish_expr_stmt (init); 1690 return; 1691 } 1692 1693 if (init == NULL_TREE) 1694 parms = NULL; 1695 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init)) 1696 { 1697 parms = make_tree_vector (); 1698 for (; init != NULL_TREE; init = TREE_CHAIN (init)) 1699 vec_safe_push (parms, TREE_VALUE (init)); 1700 } 1701 else 1702 parms = make_tree_vector_single (init); 1703 1704 if (exp == current_class_ref && current_function_decl 1705 && DECL_HAS_IN_CHARGE_PARM_P (current_function_decl)) 1706 { 1707 /* Delegating constructor. */ 1708 tree complete; 1709 tree base; 1710 tree elt; unsigned i; 1711 1712 /* Unshare the arguments for the second call. */ 1713 vec<tree, va_gc> *parms2 = make_tree_vector (); 1714 FOR_EACH_VEC_SAFE_ELT (parms, i, elt) 1715 { 1716 elt = break_out_target_exprs (elt); 1717 vec_safe_push (parms2, elt); 1718 } 1719 complete = build_special_member_call (exp, complete_ctor_identifier, 1720 &parms2, binfo, flags, 1721 complain); 1722 complete = fold_build_cleanup_point_expr (void_type_node, complete); 1723 release_tree_vector (parms2); 1724 1725 base = build_special_member_call (exp, base_ctor_identifier, 1726 &parms, binfo, flags, 1727 complain); 1728 base = fold_build_cleanup_point_expr (void_type_node, base); 1729 rval = build3 (COND_EXPR, void_type_node, 1730 build2 (EQ_EXPR, boolean_type_node, 1731 current_in_charge_parm, integer_zero_node), 1732 base, 1733 complete); 1734 } 1735 else 1736 { 1737 if (true_exp == exp) 1738 ctor_name = complete_ctor_identifier; 1739 else 1740 ctor_name = base_ctor_identifier; 1741 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags, 1742 complain); 1743 } 1744 1745 if (parms != NULL) 1746 release_tree_vector (parms); 1747 1748 if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR) 1749 { 1750 tree fn = get_callee_fndecl (rval); 1751 if (fn && DECL_DECLARED_CONSTEXPR_P (fn)) 1752 { 1753 tree e = maybe_constant_init (rval, exp); 1754 if (TREE_CONSTANT (e)) 1755 rval = build2 (INIT_EXPR, type, exp, e); 1756 } 1757 } 1758 1759 /* FIXME put back convert_to_void? */ 1760 if (TREE_SIDE_EFFECTS (rval)) 1761 finish_expr_stmt (rval); 1762 } 1763 1764 /* This function is responsible for initializing EXP with INIT 1765 (if any). 1766 1767 BINFO is the binfo of the type for who we are performing the 1768 initialization. For example, if W is a virtual base class of A and B, 1769 and C : A, B. 1770 If we are initializing B, then W must contain B's W vtable, whereas 1771 were we initializing C, W must contain C's W vtable. 1772 1773 TRUE_EXP is nonzero if it is the true expression being initialized. 1774 In this case, it may be EXP, or may just contain EXP. The reason we 1775 need this is because if EXP is a base element of TRUE_EXP, we 1776 don't necessarily know by looking at EXP where its virtual 1777 baseclass fields should really be pointing. But we do know 1778 from TRUE_EXP. In constructors, we don't know anything about 1779 the value being initialized. 1780 1781 FLAGS is just passed to `build_new_method_call'. See that function 1782 for its description. */ 1783 1784 static void 1785 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags, 1786 tsubst_flags_t complain) 1787 { 1788 tree type = TREE_TYPE (exp); 1789 1790 gcc_assert (init != error_mark_node && type != error_mark_node); 1791 gcc_assert (building_stmt_list_p ()); 1792 1793 /* Use a function returning the desired type to initialize EXP for us. 1794 If the function is a constructor, and its first argument is 1795 NULL_TREE, know that it was meant for us--just slide exp on 1796 in and expand the constructor. Constructors now come 1797 as TARGET_EXPRs. */ 1798 1799 if (init && VAR_P (exp) 1800 && COMPOUND_LITERAL_P (init)) 1801 { 1802 vec<tree, va_gc> *cleanups = NULL; 1803 /* If store_init_value returns NULL_TREE, the INIT has been 1804 recorded as the DECL_INITIAL for EXP. That means there's 1805 nothing more we have to do. */ 1806 init = store_init_value (exp, init, &cleanups, flags); 1807 if (init) 1808 finish_expr_stmt (init); 1809 gcc_assert (!cleanups); 1810 return; 1811 } 1812 1813 /* List-initialization from {} becomes value-initialization for non-aggregate 1814 classes with default constructors. Handle this here when we're 1815 initializing a base, so protected access works. */ 1816 if (exp != true_exp && init && TREE_CODE (init) == TREE_LIST) 1817 { 1818 tree elt = TREE_VALUE (init); 1819 if (DIRECT_LIST_INIT_P (elt) 1820 && CONSTRUCTOR_ELTS (elt) == 0 1821 && CLASSTYPE_NON_AGGREGATE (type) 1822 && TYPE_HAS_DEFAULT_CONSTRUCTOR (type)) 1823 init = void_type_node; 1824 } 1825 1826 /* If an explicit -- but empty -- initializer list was present, 1827 that's value-initialization. */ 1828 if (init == void_type_node) 1829 { 1830 /* If the type has data but no user-provided ctor, we need to zero 1831 out the object. */ 1832 if (!type_has_user_provided_constructor (type) 1833 && !is_really_empty_class (type)) 1834 { 1835 tree field_size = NULL_TREE; 1836 if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type) 1837 /* Don't clobber already initialized virtual bases. */ 1838 field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type)); 1839 init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false, 1840 field_size); 1841 init = build2 (INIT_EXPR, type, exp, init); 1842 finish_expr_stmt (init); 1843 } 1844 1845 /* If we don't need to mess with the constructor at all, 1846 then we're done. */ 1847 if (! type_build_ctor_call (type)) 1848 return; 1849 1850 /* Otherwise fall through and call the constructor. */ 1851 init = NULL_TREE; 1852 } 1853 1854 /* We know that expand_default_init can handle everything we want 1855 at this point. */ 1856 expand_default_init (binfo, true_exp, exp, init, flags, complain); 1857 } 1858 1859 /* Report an error if TYPE is not a user-defined, class type. If 1860 OR_ELSE is nonzero, give an error message. */ 1861 1862 int 1863 is_class_type (tree type, int or_else) 1864 { 1865 if (type == error_mark_node) 1866 return 0; 1867 1868 if (! CLASS_TYPE_P (type)) 1869 { 1870 if (or_else) 1871 error ("%qT is not a class type", type); 1872 return 0; 1873 } 1874 return 1; 1875 } 1876 1877 tree 1878 get_type_value (tree name) 1879 { 1880 if (name == error_mark_node) 1881 return NULL_TREE; 1882 1883 if (IDENTIFIER_HAS_TYPE_VALUE (name)) 1884 return IDENTIFIER_TYPE_VALUE (name); 1885 else 1886 return NULL_TREE; 1887 } 1888 1889 /* Build a reference to a member of an aggregate. This is not a C++ 1890 `&', but really something which can have its address taken, and 1891 then act as a pointer to member, for example TYPE :: FIELD can have 1892 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if 1893 this expression is the operand of "&". 1894 1895 @@ Prints out lousy diagnostics for operator <typename> 1896 @@ fields. 1897 1898 @@ This function should be rewritten and placed in search.c. */ 1899 1900 tree 1901 build_offset_ref (tree type, tree member, bool address_p, 1902 tsubst_flags_t complain) 1903 { 1904 tree decl; 1905 tree basebinfo = NULL_TREE; 1906 1907 /* class templates can come in as TEMPLATE_DECLs here. */ 1908 if (TREE_CODE (member) == TEMPLATE_DECL) 1909 return member; 1910 1911 if (dependent_scope_p (type) || type_dependent_expression_p (member)) 1912 return build_qualified_name (NULL_TREE, type, member, 1913 /*template_p=*/false); 1914 1915 gcc_assert (TYPE_P (type)); 1916 if (! is_class_type (type, 1)) 1917 return error_mark_node; 1918 1919 gcc_assert (DECL_P (member) || BASELINK_P (member)); 1920 /* Callers should call mark_used before this point. */ 1921 gcc_assert (!DECL_P (member) || TREE_USED (member)); 1922 1923 type = TYPE_MAIN_VARIANT (type); 1924 if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type))) 1925 { 1926 if (complain & tf_error) 1927 error ("incomplete type %qT does not have member %qD", type, member); 1928 return error_mark_node; 1929 } 1930 1931 /* Entities other than non-static members need no further 1932 processing. */ 1933 if (TREE_CODE (member) == TYPE_DECL) 1934 return member; 1935 if (VAR_P (member) || TREE_CODE (member) == CONST_DECL) 1936 return convert_from_reference (member); 1937 1938 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member)) 1939 { 1940 if (complain & tf_error) 1941 error ("invalid pointer to bit-field %qD", member); 1942 return error_mark_node; 1943 } 1944 1945 /* Set up BASEBINFO for member lookup. */ 1946 decl = maybe_dummy_object (type, &basebinfo); 1947 1948 /* A lot of this logic is now handled in lookup_member. */ 1949 if (BASELINK_P (member)) 1950 { 1951 /* Go from the TREE_BASELINK to the member function info. */ 1952 tree t = BASELINK_FUNCTIONS (member); 1953 1954 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t)) 1955 { 1956 /* Get rid of a potential OVERLOAD around it. */ 1957 t = OVL_CURRENT (t); 1958 1959 /* Unique functions are handled easily. */ 1960 1961 /* For non-static member of base class, we need a special rule 1962 for access checking [class.protected]: 1963 1964 If the access is to form a pointer to member, the 1965 nested-name-specifier shall name the derived class 1966 (or any class derived from that class). */ 1967 if (address_p && DECL_P (t) 1968 && DECL_NONSTATIC_MEMBER_P (t)) 1969 perform_or_defer_access_check (TYPE_BINFO (type), t, t, 1970 complain); 1971 else 1972 perform_or_defer_access_check (basebinfo, t, t, 1973 complain); 1974 1975 if (DECL_STATIC_FUNCTION_P (t)) 1976 return t; 1977 member = t; 1978 } 1979 else 1980 TREE_TYPE (member) = unknown_type_node; 1981 } 1982 else if (address_p && TREE_CODE (member) == FIELD_DECL) 1983 /* We need additional test besides the one in 1984 check_accessibility_of_qualified_id in case it is 1985 a pointer to non-static member. */ 1986 perform_or_defer_access_check (TYPE_BINFO (type), member, member, 1987 complain); 1988 1989 if (!address_p) 1990 { 1991 /* If MEMBER is non-static, then the program has fallen afoul of 1992 [expr.prim]: 1993 1994 An id-expression that denotes a nonstatic data member or 1995 nonstatic member function of a class can only be used: 1996 1997 -- as part of a class member access (_expr.ref_) in which the 1998 object-expression refers to the member's class or a class 1999 derived from that class, or 2000 2001 -- to form a pointer to member (_expr.unary.op_), or 2002 2003 -- in the body of a nonstatic member function of that class or 2004 of a class derived from that class (_class.mfct.nonstatic_), or 2005 2006 -- in a mem-initializer for a constructor for that class or for 2007 a class derived from that class (_class.base.init_). */ 2008 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member)) 2009 { 2010 /* Build a representation of the qualified name suitable 2011 for use as the operand to "&" -- even though the "&" is 2012 not actually present. */ 2013 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member); 2014 /* In Microsoft mode, treat a non-static member function as if 2015 it were a pointer-to-member. */ 2016 if (flag_ms_extensions) 2017 { 2018 PTRMEM_OK_P (member) = 1; 2019 return cp_build_addr_expr (member, complain); 2020 } 2021 if (complain & tf_error) 2022 error ("invalid use of non-static member function %qD", 2023 TREE_OPERAND (member, 1)); 2024 return error_mark_node; 2025 } 2026 else if (TREE_CODE (member) == FIELD_DECL) 2027 { 2028 if (complain & tf_error) 2029 error ("invalid use of non-static data member %qD", member); 2030 return error_mark_node; 2031 } 2032 return member; 2033 } 2034 2035 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member); 2036 PTRMEM_OK_P (member) = 1; 2037 return member; 2038 } 2039 2040 /* If DECL is a scalar enumeration constant or variable with a 2041 constant initializer, return the initializer (or, its initializers, 2042 recursively); otherwise, return DECL. If STRICT_P, the 2043 initializer is only returned if DECL is a 2044 constant-expression. If RETURN_AGGREGATE_CST_OK_P, it is ok to 2045 return an aggregate constant. */ 2046 2047 static tree 2048 constant_value_1 (tree decl, bool strict_p, bool return_aggregate_cst_ok_p) 2049 { 2050 while (TREE_CODE (decl) == CONST_DECL 2051 || (strict_p 2052 ? decl_constant_var_p (decl) 2053 : (VAR_P (decl) 2054 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl))))) 2055 { 2056 tree init; 2057 /* If DECL is a static data member in a template 2058 specialization, we must instantiate it here. The 2059 initializer for the static data member is not processed 2060 until needed; we need it now. */ 2061 mark_used (decl); 2062 mark_rvalue_use (decl); 2063 init = DECL_INITIAL (decl); 2064 if (init == error_mark_node) 2065 { 2066 if (TREE_CODE (decl) == CONST_DECL 2067 || DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl)) 2068 /* Treat the error as a constant to avoid cascading errors on 2069 excessively recursive template instantiation (c++/9335). */ 2070 return init; 2071 else 2072 return decl; 2073 } 2074 /* Initializers in templates are generally expanded during 2075 instantiation, so before that for const int i(2) 2076 INIT is a TREE_LIST with the actual initializer as 2077 TREE_VALUE. */ 2078 if (processing_template_decl 2079 && init 2080 && TREE_CODE (init) == TREE_LIST 2081 && TREE_CHAIN (init) == NULL_TREE) 2082 init = TREE_VALUE (init); 2083 if (!init 2084 || !TREE_TYPE (init) 2085 || !TREE_CONSTANT (init) 2086 || (!return_aggregate_cst_ok_p 2087 /* Unless RETURN_AGGREGATE_CST_OK_P is true, do not 2088 return an aggregate constant (of which string 2089 literals are a special case), as we do not want 2090 to make inadvertent copies of such entities, and 2091 we must be sure that their addresses are the 2092 same everywhere. */ 2093 && (TREE_CODE (init) == CONSTRUCTOR 2094 || TREE_CODE (init) == STRING_CST))) 2095 break; 2096 /* Don't return a CONSTRUCTOR for a variable with partial run-time 2097 initialization, since it doesn't represent the entire value. */ 2098 if (TREE_CODE (init) == CONSTRUCTOR 2099 && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl)) 2100 break; 2101 decl = unshare_expr (init); 2102 } 2103 return decl; 2104 } 2105 2106 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by constant 2107 of integral or enumeration type, or a constexpr variable of scalar type, 2108 then return that value. These are those variables permitted in constant 2109 expressions by [5.19/1]. */ 2110 2111 tree 2112 scalar_constant_value (tree decl) 2113 { 2114 return constant_value_1 (decl, /*strict_p=*/true, 2115 /*return_aggregate_cst_ok_p=*/false); 2116 } 2117 2118 /* Like scalar_constant_value, but can also return aggregate initializers. */ 2119 2120 tree 2121 decl_really_constant_value (tree decl) 2122 { 2123 return constant_value_1 (decl, /*strict_p=*/true, 2124 /*return_aggregate_cst_ok_p=*/true); 2125 } 2126 2127 /* A more relaxed version of scalar_constant_value, used by the 2128 common C/C++ code. */ 2129 2130 tree 2131 decl_constant_value (tree decl) 2132 { 2133 return constant_value_1 (decl, /*strict_p=*/processing_template_decl, 2134 /*return_aggregate_cst_ok_p=*/true); 2135 } 2136 2137 /* Common subroutines of build_new and build_vec_delete. */ 2138 2139 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is 2140 the type of the object being allocated; otherwise, it's just TYPE. 2141 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the 2142 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is 2143 a vector of arguments to be provided as arguments to a placement 2144 new operator. This routine performs no semantic checks; it just 2145 creates and returns a NEW_EXPR. */ 2146 2147 static tree 2148 build_raw_new_expr (vec<tree, va_gc> *placement, tree type, tree nelts, 2149 vec<tree, va_gc> *init, int use_global_new) 2150 { 2151 tree init_list; 2152 tree new_expr; 2153 2154 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR. 2155 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This 2156 permits us to distinguish the case of a missing initializer "new 2157 int" from an empty initializer "new int()". */ 2158 if (init == NULL) 2159 init_list = NULL_TREE; 2160 else if (init->is_empty ()) 2161 init_list = void_node; 2162 else 2163 init_list = build_tree_list_vec (init); 2164 2165 new_expr = build4 (NEW_EXPR, build_pointer_type (type), 2166 build_tree_list_vec (placement), type, nelts, 2167 init_list); 2168 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new; 2169 TREE_SIDE_EFFECTS (new_expr) = 1; 2170 2171 return new_expr; 2172 } 2173 2174 /* Diagnose uninitialized const members or reference members of type 2175 TYPE. USING_NEW is used to disambiguate the diagnostic between a 2176 new expression without a new-initializer and a declaration. Returns 2177 the error count. */ 2178 2179 static int 2180 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin, 2181 bool using_new, bool complain) 2182 { 2183 tree field; 2184 int error_count = 0; 2185 2186 if (type_has_user_provided_constructor (type)) 2187 return 0; 2188 2189 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) 2190 { 2191 tree field_type; 2192 2193 if (TREE_CODE (field) != FIELD_DECL) 2194 continue; 2195 2196 field_type = strip_array_types (TREE_TYPE (field)); 2197 2198 if (type_has_user_provided_constructor (field_type)) 2199 continue; 2200 2201 if (TREE_CODE (field_type) == REFERENCE_TYPE) 2202 { 2203 ++ error_count; 2204 if (complain) 2205 { 2206 if (DECL_CONTEXT (field) == origin) 2207 { 2208 if (using_new) 2209 error ("uninitialized reference member in %q#T " 2210 "using %<new%> without new-initializer", origin); 2211 else 2212 error ("uninitialized reference member in %q#T", origin); 2213 } 2214 else 2215 { 2216 if (using_new) 2217 error ("uninitialized reference member in base %q#T " 2218 "of %q#T using %<new%> without new-initializer", 2219 DECL_CONTEXT (field), origin); 2220 else 2221 error ("uninitialized reference member in base %q#T " 2222 "of %q#T", DECL_CONTEXT (field), origin); 2223 } 2224 inform (DECL_SOURCE_LOCATION (field), 2225 "%q#D should be initialized", field); 2226 } 2227 } 2228 2229 if (CP_TYPE_CONST_P (field_type)) 2230 { 2231 ++ error_count; 2232 if (complain) 2233 { 2234 if (DECL_CONTEXT (field) == origin) 2235 { 2236 if (using_new) 2237 error ("uninitialized const member in %q#T " 2238 "using %<new%> without new-initializer", origin); 2239 else 2240 error ("uninitialized const member in %q#T", origin); 2241 } 2242 else 2243 { 2244 if (using_new) 2245 error ("uninitialized const member in base %q#T " 2246 "of %q#T using %<new%> without new-initializer", 2247 DECL_CONTEXT (field), origin); 2248 else 2249 error ("uninitialized const member in base %q#T " 2250 "of %q#T", DECL_CONTEXT (field), origin); 2251 } 2252 inform (DECL_SOURCE_LOCATION (field), 2253 "%q#D should be initialized", field); 2254 } 2255 } 2256 2257 if (CLASS_TYPE_P (field_type)) 2258 error_count 2259 += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin, 2260 using_new, complain); 2261 } 2262 return error_count; 2263 } 2264 2265 int 2266 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain) 2267 { 2268 return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain); 2269 } 2270 2271 /* Call __cxa_bad_array_new_length to indicate that the size calculation 2272 overflowed. Pretend it returns sizetype so that it plays nicely in the 2273 COND_EXPR. */ 2274 2275 tree 2276 throw_bad_array_new_length (void) 2277 { 2278 tree fn = get_identifier ("__cxa_throw_bad_array_new_length"); 2279 if (!get_global_value_if_present (fn, &fn)) 2280 fn = push_throw_library_fn (fn, build_function_type_list (sizetype, 2281 NULL_TREE)); 2282 2283 return build_cxx_call (fn, 0, NULL, tf_warning_or_error); 2284 } 2285 2286 /* Generate code for a new-expression, including calling the "operator 2287 new" function, initializing the object, and, if an exception occurs 2288 during construction, cleaning up. The arguments are as for 2289 build_raw_new_expr. This may change PLACEMENT and INIT. */ 2290 2291 static tree 2292 build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts, 2293 vec<tree, va_gc> **init, bool globally_qualified_p, 2294 tsubst_flags_t complain) 2295 { 2296 tree size, rval; 2297 /* True iff this is a call to "operator new[]" instead of just 2298 "operator new". */ 2299 bool array_p = false; 2300 /* If ARRAY_P is true, the element type of the array. This is never 2301 an ARRAY_TYPE; for something like "new int[3][4]", the 2302 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as 2303 TYPE. */ 2304 tree elt_type; 2305 /* The type of the new-expression. (This type is always a pointer 2306 type.) */ 2307 tree pointer_type; 2308 tree non_const_pointer_type; 2309 tree outer_nelts = NULL_TREE; 2310 /* For arrays, a bounds checks on the NELTS parameter. */ 2311 tree outer_nelts_check = NULL_TREE; 2312 bool outer_nelts_from_type = false; 2313 offset_int inner_nelts_count = 1; 2314 tree alloc_call, alloc_expr; 2315 /* Size of the inner array elements. */ 2316 offset_int inner_size; 2317 /* The address returned by the call to "operator new". This node is 2318 a VAR_DECL and is therefore reusable. */ 2319 tree alloc_node; 2320 tree alloc_fn; 2321 tree cookie_expr, init_expr; 2322 int nothrow, check_new; 2323 int use_java_new = 0; 2324 /* If non-NULL, the number of extra bytes to allocate at the 2325 beginning of the storage allocated for an array-new expression in 2326 order to store the number of elements. */ 2327 tree cookie_size = NULL_TREE; 2328 tree placement_first; 2329 tree placement_expr = NULL_TREE; 2330 /* True if the function we are calling is a placement allocation 2331 function. */ 2332 bool placement_allocation_fn_p; 2333 /* True if the storage must be initialized, either by a constructor 2334 or due to an explicit new-initializer. */ 2335 bool is_initialized; 2336 /* The address of the thing allocated, not including any cookie. In 2337 particular, if an array cookie is in use, DATA_ADDR is the 2338 address of the first array element. This node is a VAR_DECL, and 2339 is therefore reusable. */ 2340 tree data_addr; 2341 tree init_preeval_expr = NULL_TREE; 2342 tree orig_type = type; 2343 2344 if (nelts) 2345 { 2346 outer_nelts = nelts; 2347 array_p = true; 2348 } 2349 else if (TREE_CODE (type) == ARRAY_TYPE) 2350 { 2351 /* Transforms new (T[N]) to new T[N]. The former is a GNU 2352 extension for variable N. (This also covers new T where T is 2353 a VLA typedef.) */ 2354 array_p = true; 2355 nelts = array_type_nelts_top (type); 2356 outer_nelts = nelts; 2357 type = TREE_TYPE (type); 2358 outer_nelts_from_type = true; 2359 } 2360 2361 /* If our base type is an array, then make sure we know how many elements 2362 it has. */ 2363 for (elt_type = type; 2364 TREE_CODE (elt_type) == ARRAY_TYPE; 2365 elt_type = TREE_TYPE (elt_type)) 2366 { 2367 tree inner_nelts = array_type_nelts_top (elt_type); 2368 tree inner_nelts_cst = maybe_constant_value (inner_nelts); 2369 if (TREE_CODE (inner_nelts_cst) == INTEGER_CST) 2370 { 2371 bool overflow; 2372 offset_int result = wi::mul (wi::to_offset (inner_nelts_cst), 2373 inner_nelts_count, SIGNED, &overflow); 2374 if (overflow) 2375 { 2376 if (complain & tf_error) 2377 error ("integer overflow in array size"); 2378 nelts = error_mark_node; 2379 } 2380 inner_nelts_count = result; 2381 } 2382 else 2383 { 2384 if (complain & tf_error) 2385 { 2386 error_at (EXPR_LOC_OR_LOC (inner_nelts, input_location), 2387 "array size in new-expression must be constant"); 2388 cxx_constant_value(inner_nelts); 2389 } 2390 nelts = error_mark_node; 2391 } 2392 if (nelts != error_mark_node) 2393 nelts = cp_build_binary_op (input_location, 2394 MULT_EXPR, nelts, 2395 inner_nelts_cst, 2396 complain); 2397 } 2398 2399 if (variably_modified_type_p (elt_type, NULL_TREE) && (complain & tf_error)) 2400 { 2401 error ("variably modified type not allowed in new-expression"); 2402 return error_mark_node; 2403 } 2404 2405 if (nelts == error_mark_node) 2406 return error_mark_node; 2407 2408 /* Warn if we performed the (T[N]) to T[N] transformation and N is 2409 variable. */ 2410 if (outer_nelts_from_type 2411 && !TREE_CONSTANT (maybe_constant_value (outer_nelts))) 2412 { 2413 if (complain & tf_warning_or_error) 2414 { 2415 const char *msg; 2416 if (typedef_variant_p (orig_type)) 2417 msg = ("non-constant array new length must be specified " 2418 "directly, not by typedef"); 2419 else 2420 msg = ("non-constant array new length must be specified " 2421 "without parentheses around the type-id"); 2422 pedwarn (EXPR_LOC_OR_LOC (outer_nelts, input_location), 2423 OPT_Wvla, msg); 2424 } 2425 else 2426 return error_mark_node; 2427 } 2428 2429 if (VOID_TYPE_P (elt_type)) 2430 { 2431 if (complain & tf_error) 2432 error ("invalid type %<void%> for new"); 2433 return error_mark_node; 2434 } 2435 2436 if (abstract_virtuals_error_sfinae (ACU_NEW, elt_type, complain)) 2437 return error_mark_node; 2438 2439 is_initialized = (type_build_ctor_call (elt_type) || *init != NULL); 2440 2441 if (*init == NULL && cxx_dialect < cxx11) 2442 { 2443 bool maybe_uninitialized_error = false; 2444 /* A program that calls for default-initialization [...] of an 2445 entity of reference type is ill-formed. */ 2446 if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type)) 2447 maybe_uninitialized_error = true; 2448 2449 /* A new-expression that creates an object of type T initializes 2450 that object as follows: 2451 - If the new-initializer is omitted: 2452 -- If T is a (possibly cv-qualified) non-POD class type 2453 (or array thereof), the object is default-initialized (8.5). 2454 [...] 2455 -- Otherwise, the object created has indeterminate 2456 value. If T is a const-qualified type, or a (possibly 2457 cv-qualified) POD class type (or array thereof) 2458 containing (directly or indirectly) a member of 2459 const-qualified type, the program is ill-formed; */ 2460 2461 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type)) 2462 maybe_uninitialized_error = true; 2463 2464 if (maybe_uninitialized_error 2465 && diagnose_uninitialized_cst_or_ref_member (elt_type, 2466 /*using_new=*/true, 2467 complain & tf_error)) 2468 return error_mark_node; 2469 } 2470 2471 if (CP_TYPE_CONST_P (elt_type) && *init == NULL 2472 && default_init_uninitialized_part (elt_type)) 2473 { 2474 if (complain & tf_error) 2475 error ("uninitialized const in %<new%> of %q#T", elt_type); 2476 return error_mark_node; 2477 } 2478 2479 size = size_in_bytes (elt_type); 2480 if (array_p) 2481 { 2482 /* Maximum available size in bytes. Half of the address space 2483 minus the cookie size. */ 2484 offset_int max_size 2485 = wi::set_bit_in_zero <offset_int> (TYPE_PRECISION (sizetype) - 1); 2486 /* Maximum number of outer elements which can be allocated. */ 2487 offset_int max_outer_nelts; 2488 tree max_outer_nelts_tree; 2489 2490 gcc_assert (TREE_CODE (size) == INTEGER_CST); 2491 cookie_size = targetm.cxx.get_cookie_size (elt_type); 2492 gcc_assert (TREE_CODE (cookie_size) == INTEGER_CST); 2493 gcc_checking_assert (wi::ltu_p (wi::to_offset (cookie_size), max_size)); 2494 /* Unconditionally subtract the cookie size. This decreases the 2495 maximum object size and is safe even if we choose not to use 2496 a cookie after all. */ 2497 max_size -= wi::to_offset (cookie_size); 2498 bool overflow; 2499 inner_size = wi::mul (wi::to_offset (size), inner_nelts_count, SIGNED, 2500 &overflow); 2501 if (overflow || wi::gtu_p (inner_size, max_size)) 2502 { 2503 if (complain & tf_error) 2504 error ("size of array is too large"); 2505 return error_mark_node; 2506 } 2507 2508 max_outer_nelts = wi::udiv_trunc (max_size, inner_size); 2509 /* Only keep the top-most seven bits, to simplify encoding the 2510 constant in the instruction stream. */ 2511 { 2512 unsigned shift = (max_outer_nelts.get_precision ()) - 7 2513 - wi::clz (max_outer_nelts); 2514 max_outer_nelts = wi::lshift (wi::lrshift (max_outer_nelts, shift), 2515 shift); 2516 } 2517 max_outer_nelts_tree = wide_int_to_tree (sizetype, max_outer_nelts); 2518 2519 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts)); 2520 outer_nelts_check = fold_build2 (LE_EXPR, boolean_type_node, 2521 outer_nelts, 2522 max_outer_nelts_tree); 2523 } 2524 2525 alloc_fn = NULL_TREE; 2526 2527 /* If PLACEMENT is a single simple pointer type not passed by 2528 reference, prepare to capture it in a temporary variable. Do 2529 this now, since PLACEMENT will change in the calls below. */ 2530 placement_first = NULL_TREE; 2531 if (vec_safe_length (*placement) == 1 2532 && (TYPE_PTR_P (TREE_TYPE ((**placement)[0])))) 2533 placement_first = (**placement)[0]; 2534 2535 /* Allocate the object. */ 2536 if (vec_safe_is_empty (*placement) && TYPE_FOR_JAVA (elt_type)) 2537 { 2538 tree class_addr; 2539 tree class_decl; 2540 static const char alloc_name[] = "_Jv_AllocObject"; 2541 2542 if (!MAYBE_CLASS_TYPE_P (elt_type)) 2543 { 2544 error ("%qT isn%'t a valid Java class type", elt_type); 2545 return error_mark_node; 2546 } 2547 2548 class_decl = build_java_class_ref (elt_type); 2549 if (class_decl == error_mark_node) 2550 return error_mark_node; 2551 2552 use_java_new = 1; 2553 if (!get_global_value_if_present (get_identifier (alloc_name), 2554 &alloc_fn)) 2555 { 2556 if (complain & tf_error) 2557 error ("call to Java constructor with %qs undefined", alloc_name); 2558 return error_mark_node; 2559 } 2560 else if (really_overloaded_fn (alloc_fn)) 2561 { 2562 if (complain & tf_error) 2563 error ("%qD should never be overloaded", alloc_fn); 2564 return error_mark_node; 2565 } 2566 alloc_fn = OVL_CURRENT (alloc_fn); 2567 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl); 2568 alloc_call = cp_build_function_call_nary (alloc_fn, complain, 2569 class_addr, NULL_TREE); 2570 } 2571 else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type)) 2572 { 2573 error ("Java class %q#T object allocated using placement new", elt_type); 2574 return error_mark_node; 2575 } 2576 else 2577 { 2578 tree fnname; 2579 tree fns; 2580 2581 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR); 2582 2583 if (!globally_qualified_p 2584 && CLASS_TYPE_P (elt_type) 2585 && (array_p 2586 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type) 2587 : TYPE_HAS_NEW_OPERATOR (elt_type))) 2588 { 2589 /* Use a class-specific operator new. */ 2590 /* If a cookie is required, add some extra space. */ 2591 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)) 2592 size = size_binop (PLUS_EXPR, size, cookie_size); 2593 else 2594 { 2595 cookie_size = NULL_TREE; 2596 /* No size arithmetic necessary, so the size check is 2597 not needed. */ 2598 if (outer_nelts_check != NULL && inner_size == 1) 2599 outer_nelts_check = NULL_TREE; 2600 } 2601 /* Perform the overflow check. */ 2602 tree errval = TYPE_MAX_VALUE (sizetype); 2603 if (cxx_dialect >= cxx11 && flag_exceptions) 2604 errval = throw_bad_array_new_length (); 2605 if (outer_nelts_check != NULL_TREE) 2606 size = fold_build3 (COND_EXPR, sizetype, outer_nelts_check, 2607 size, errval); 2608 /* Create the argument list. */ 2609 vec_safe_insert (*placement, 0, size); 2610 /* Do name-lookup to find the appropriate operator. */ 2611 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2); 2612 if (fns == NULL_TREE) 2613 { 2614 if (complain & tf_error) 2615 error ("no suitable %qD found in class %qT", fnname, elt_type); 2616 return error_mark_node; 2617 } 2618 if (TREE_CODE (fns) == TREE_LIST) 2619 { 2620 if (complain & tf_error) 2621 { 2622 error ("request for member %qD is ambiguous", fnname); 2623 print_candidates (fns); 2624 } 2625 return error_mark_node; 2626 } 2627 alloc_call = build_new_method_call (build_dummy_object (elt_type), 2628 fns, placement, 2629 /*conversion_path=*/NULL_TREE, 2630 LOOKUP_NORMAL, 2631 &alloc_fn, 2632 complain); 2633 } 2634 else 2635 { 2636 /* Use a global operator new. */ 2637 /* See if a cookie might be required. */ 2638 if (!(array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))) 2639 { 2640 cookie_size = NULL_TREE; 2641 /* No size arithmetic necessary, so the size check is 2642 not needed. */ 2643 if (outer_nelts_check != NULL && inner_size == 1) 2644 outer_nelts_check = NULL_TREE; 2645 } 2646 2647 alloc_call = build_operator_new_call (fnname, placement, 2648 &size, &cookie_size, 2649 outer_nelts_check, 2650 &alloc_fn, complain); 2651 } 2652 } 2653 2654 if (alloc_call == error_mark_node) 2655 return error_mark_node; 2656 2657 gcc_assert (alloc_fn != NULL_TREE); 2658 2659 /* If we found a simple case of PLACEMENT_EXPR above, then copy it 2660 into a temporary variable. */ 2661 if (!processing_template_decl 2662 && placement_first != NULL_TREE 2663 && TREE_CODE (alloc_call) == CALL_EXPR 2664 && call_expr_nargs (alloc_call) == 2 2665 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE 2666 && TYPE_PTR_P (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1)))) 2667 { 2668 tree placement_arg = CALL_EXPR_ARG (alloc_call, 1); 2669 2670 if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg))) 2671 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg)))) 2672 { 2673 placement_expr = get_target_expr (placement_first); 2674 CALL_EXPR_ARG (alloc_call, 1) 2675 = convert (TREE_TYPE (placement_arg), placement_expr); 2676 } 2677 } 2678 2679 /* In the simple case, we can stop now. */ 2680 pointer_type = build_pointer_type (type); 2681 if (!cookie_size && !is_initialized) 2682 return build_nop (pointer_type, alloc_call); 2683 2684 /* Store the result of the allocation call in a variable so that we can 2685 use it more than once. */ 2686 alloc_expr = get_target_expr (alloc_call); 2687 alloc_node = TARGET_EXPR_SLOT (alloc_expr); 2688 2689 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */ 2690 while (TREE_CODE (alloc_call) == COMPOUND_EXPR) 2691 alloc_call = TREE_OPERAND (alloc_call, 1); 2692 2693 /* Now, check to see if this function is actually a placement 2694 allocation function. This can happen even when PLACEMENT is NULL 2695 because we might have something like: 2696 2697 struct S { void* operator new (size_t, int i = 0); }; 2698 2699 A call to `new S' will get this allocation function, even though 2700 there is no explicit placement argument. If there is more than 2701 one argument, or there are variable arguments, then this is a 2702 placement allocation function. */ 2703 placement_allocation_fn_p 2704 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1 2705 || varargs_function_p (alloc_fn)); 2706 2707 /* Preevaluate the placement args so that we don't reevaluate them for a 2708 placement delete. */ 2709 if (placement_allocation_fn_p) 2710 { 2711 tree inits; 2712 stabilize_call (alloc_call, &inits); 2713 if (inits) 2714 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits, 2715 alloc_expr); 2716 } 2717 2718 /* unless an allocation function is declared with an empty excep- 2719 tion-specification (_except.spec_), throw(), it indicates failure to 2720 allocate storage by throwing a bad_alloc exception (clause _except_, 2721 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo- 2722 cation function is declared with an empty exception-specification, 2723 throw(), it returns null to indicate failure to allocate storage and a 2724 non-null pointer otherwise. 2725 2726 So check for a null exception spec on the op new we just called. */ 2727 2728 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn)); 2729 check_new = (flag_check_new || nothrow) && ! use_java_new; 2730 2731 if (cookie_size) 2732 { 2733 tree cookie; 2734 tree cookie_ptr; 2735 tree size_ptr_type; 2736 2737 /* Adjust so we're pointing to the start of the object. */ 2738 data_addr = fold_build_pointer_plus (alloc_node, cookie_size); 2739 2740 /* Store the number of bytes allocated so that we can know how 2741 many elements to destroy later. We use the last sizeof 2742 (size_t) bytes to store the number of elements. */ 2743 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype)); 2744 cookie_ptr = fold_build_pointer_plus_loc (input_location, 2745 alloc_node, cookie_ptr); 2746 size_ptr_type = build_pointer_type (sizetype); 2747 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr); 2748 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain); 2749 2750 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts); 2751 2752 if (targetm.cxx.cookie_has_size ()) 2753 { 2754 /* Also store the element size. */ 2755 cookie_ptr = fold_build_pointer_plus (cookie_ptr, 2756 fold_build1_loc (input_location, 2757 NEGATE_EXPR, sizetype, 2758 size_in_bytes (sizetype))); 2759 2760 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain); 2761 cookie = build2 (MODIFY_EXPR, sizetype, cookie, 2762 size_in_bytes (elt_type)); 2763 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr), 2764 cookie, cookie_expr); 2765 } 2766 } 2767 else 2768 { 2769 cookie_expr = NULL_TREE; 2770 data_addr = alloc_node; 2771 } 2772 2773 /* Now use a pointer to the type we've actually allocated. */ 2774 2775 /* But we want to operate on a non-const version to start with, 2776 since we'll be modifying the elements. */ 2777 non_const_pointer_type = build_pointer_type 2778 (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST)); 2779 2780 data_addr = fold_convert (non_const_pointer_type, data_addr); 2781 /* Any further uses of alloc_node will want this type, too. */ 2782 alloc_node = fold_convert (non_const_pointer_type, alloc_node); 2783 2784 /* Now initialize the allocated object. Note that we preevaluate the 2785 initialization expression, apart from the actual constructor call or 2786 assignment--we do this because we want to delay the allocation as long 2787 as possible in order to minimize the size of the exception region for 2788 placement delete. */ 2789 if (is_initialized) 2790 { 2791 bool stable; 2792 bool explicit_value_init_p = false; 2793 2794 if (*init != NULL && (*init)->is_empty ()) 2795 { 2796 *init = NULL; 2797 explicit_value_init_p = true; 2798 } 2799 2800 if (processing_template_decl && explicit_value_init_p) 2801 { 2802 /* build_value_init doesn't work in templates, and we don't need 2803 the initializer anyway since we're going to throw it away and 2804 rebuild it at instantiation time, so just build up a single 2805 constructor call to get any appropriate diagnostics. */ 2806 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain); 2807 if (type_build_ctor_call (elt_type)) 2808 init_expr = build_special_member_call (init_expr, 2809 complete_ctor_identifier, 2810 init, elt_type, 2811 LOOKUP_NORMAL, 2812 complain); 2813 stable = stabilize_init (init_expr, &init_preeval_expr); 2814 } 2815 else if (array_p) 2816 { 2817 tree vecinit = NULL_TREE; 2818 if (vec_safe_length (*init) == 1 2819 && DIRECT_LIST_INIT_P ((**init)[0])) 2820 { 2821 vecinit = (**init)[0]; 2822 if (CONSTRUCTOR_NELTS (vecinit) == 0) 2823 /* List-value-initialization, leave it alone. */; 2824 else 2825 { 2826 tree arraytype, domain; 2827 if (TREE_CONSTANT (nelts)) 2828 domain = compute_array_index_type (NULL_TREE, nelts, 2829 complain); 2830 else 2831 /* We'll check the length at runtime. */ 2832 domain = NULL_TREE; 2833 arraytype = build_cplus_array_type (type, domain); 2834 vecinit = digest_init (arraytype, vecinit, complain); 2835 } 2836 } 2837 else if (*init) 2838 { 2839 if (complain & tf_error) 2840 permerror (input_location, 2841 "parenthesized initializer in array new"); 2842 else 2843 return error_mark_node; 2844 vecinit = build_tree_list_vec (*init); 2845 } 2846 init_expr 2847 = build_vec_init (data_addr, 2848 cp_build_binary_op (input_location, 2849 MINUS_EXPR, outer_nelts, 2850 integer_one_node, 2851 complain), 2852 vecinit, 2853 explicit_value_init_p, 2854 /*from_array=*/0, 2855 complain); 2856 2857 /* An array initialization is stable because the initialization 2858 of each element is a full-expression, so the temporaries don't 2859 leak out. */ 2860 stable = true; 2861 } 2862 else 2863 { 2864 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain); 2865 2866 if (type_build_ctor_call (type) && !explicit_value_init_p) 2867 { 2868 init_expr = build_special_member_call (init_expr, 2869 complete_ctor_identifier, 2870 init, elt_type, 2871 LOOKUP_NORMAL, 2872 complain); 2873 } 2874 else if (explicit_value_init_p) 2875 { 2876 /* Something like `new int()'. */ 2877 tree val = build_value_init (type, complain); 2878 if (val == error_mark_node) 2879 return error_mark_node; 2880 init_expr = build2 (INIT_EXPR, type, init_expr, val); 2881 } 2882 else 2883 { 2884 tree ie; 2885 2886 /* We are processing something like `new int (10)', which 2887 means allocate an int, and initialize it with 10. */ 2888 2889 ie = build_x_compound_expr_from_vec (*init, "new initializer", 2890 complain); 2891 init_expr = cp_build_modify_expr (init_expr, INIT_EXPR, ie, 2892 complain); 2893 } 2894 stable = stabilize_init (init_expr, &init_preeval_expr); 2895 } 2896 2897 if (init_expr == error_mark_node) 2898 return error_mark_node; 2899 2900 /* If any part of the object initialization terminates by throwing an 2901 exception and a suitable deallocation function can be found, the 2902 deallocation function is called to free the memory in which the 2903 object was being constructed, after which the exception continues 2904 to propagate in the context of the new-expression. If no 2905 unambiguous matching deallocation function can be found, 2906 propagating the exception does not cause the object's memory to be 2907 freed. */ 2908 if (flag_exceptions && ! use_java_new) 2909 { 2910 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR; 2911 tree cleanup; 2912 2913 /* The Standard is unclear here, but the right thing to do 2914 is to use the same method for finding deallocation 2915 functions that we use for finding allocation functions. */ 2916 cleanup = (build_op_delete_call 2917 (dcode, 2918 alloc_node, 2919 size, 2920 globally_qualified_p, 2921 placement_allocation_fn_p ? alloc_call : NULL_TREE, 2922 alloc_fn, 2923 complain)); 2924 2925 if (!cleanup) 2926 /* We're done. */; 2927 else if (stable) 2928 /* This is much simpler if we were able to preevaluate all of 2929 the arguments to the constructor call. */ 2930 { 2931 /* CLEANUP is compiler-generated, so no diagnostics. */ 2932 TREE_NO_WARNING (cleanup) = true; 2933 init_expr = build2 (TRY_CATCH_EXPR, void_type_node, 2934 init_expr, cleanup); 2935 /* Likewise, this try-catch is compiler-generated. */ 2936 TREE_NO_WARNING (init_expr) = true; 2937 } 2938 else 2939 /* Ack! First we allocate the memory. Then we set our sentry 2940 variable to true, and expand a cleanup that deletes the 2941 memory if sentry is true. Then we run the constructor, and 2942 finally clear the sentry. 2943 2944 We need to do this because we allocate the space first, so 2945 if there are any temporaries with cleanups in the 2946 constructor args and we weren't able to preevaluate them, we 2947 need this EH region to extend until end of full-expression 2948 to preserve nesting. */ 2949 { 2950 tree end, sentry, begin; 2951 2952 begin = get_target_expr (boolean_true_node); 2953 CLEANUP_EH_ONLY (begin) = 1; 2954 2955 sentry = TARGET_EXPR_SLOT (begin); 2956 2957 /* CLEANUP is compiler-generated, so no diagnostics. */ 2958 TREE_NO_WARNING (cleanup) = true; 2959 2960 TARGET_EXPR_CLEANUP (begin) 2961 = build3 (COND_EXPR, void_type_node, sentry, 2962 cleanup, void_node); 2963 2964 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry), 2965 sentry, boolean_false_node); 2966 2967 init_expr 2968 = build2 (COMPOUND_EXPR, void_type_node, begin, 2969 build2 (COMPOUND_EXPR, void_type_node, init_expr, 2970 end)); 2971 /* Likewise, this is compiler-generated. */ 2972 TREE_NO_WARNING (init_expr) = true; 2973 } 2974 } 2975 } 2976 else 2977 init_expr = NULL_TREE; 2978 2979 /* Now build up the return value in reverse order. */ 2980 2981 rval = data_addr; 2982 2983 if (init_expr) 2984 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval); 2985 if (cookie_expr) 2986 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval); 2987 2988 if (rval == data_addr) 2989 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR 2990 and return the call (which doesn't need to be adjusted). */ 2991 rval = TARGET_EXPR_INITIAL (alloc_expr); 2992 else 2993 { 2994 if (check_new) 2995 { 2996 tree ifexp = cp_build_binary_op (input_location, 2997 NE_EXPR, alloc_node, 2998 nullptr_node, 2999 complain); 3000 rval = build_conditional_expr (input_location, ifexp, rval, 3001 alloc_node, complain); 3002 } 3003 3004 /* Perform the allocation before anything else, so that ALLOC_NODE 3005 has been initialized before we start using it. */ 3006 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval); 3007 } 3008 3009 if (init_preeval_expr) 3010 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval); 3011 3012 /* A new-expression is never an lvalue. */ 3013 gcc_assert (!lvalue_p (rval)); 3014 3015 return convert (pointer_type, rval); 3016 } 3017 3018 /* Generate a representation for a C++ "new" expression. *PLACEMENT 3019 is a vector of placement-new arguments (or NULL if none). If NELTS 3020 is NULL, TYPE is the type of the storage to be allocated. If NELTS 3021 is not NULL, then this is an array-new allocation; TYPE is the type 3022 of the elements in the array and NELTS is the number of elements in 3023 the array. *INIT, if non-NULL, is the initializer for the new 3024 object, or an empty vector to indicate an initializer of "()". If 3025 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new" 3026 rather than just "new". This may change PLACEMENT and INIT. */ 3027 3028 tree 3029 build_new (vec<tree, va_gc> **placement, tree type, tree nelts, 3030 vec<tree, va_gc> **init, int use_global_new, tsubst_flags_t complain) 3031 { 3032 tree rval; 3033 vec<tree, va_gc> *orig_placement = NULL; 3034 tree orig_nelts = NULL_TREE; 3035 vec<tree, va_gc> *orig_init = NULL; 3036 3037 if (type == error_mark_node) 3038 return error_mark_node; 3039 3040 if (nelts == NULL_TREE && vec_safe_length (*init) == 1 3041 /* Don't do auto deduction where it might affect mangling. */ 3042 && (!processing_template_decl || at_function_scope_p ())) 3043 { 3044 tree auto_node = type_uses_auto (type); 3045 if (auto_node) 3046 { 3047 tree d_init = (**init)[0]; 3048 d_init = resolve_nondeduced_context (d_init, complain); 3049 type = do_auto_deduction (type, d_init, auto_node); 3050 } 3051 } 3052 3053 if (processing_template_decl) 3054 { 3055 if (dependent_type_p (type) 3056 || any_type_dependent_arguments_p (*placement) 3057 || (nelts && type_dependent_expression_p (nelts)) 3058 || (nelts && *init) 3059 || any_type_dependent_arguments_p (*init)) 3060 return build_raw_new_expr (*placement, type, nelts, *init, 3061 use_global_new); 3062 3063 orig_placement = make_tree_vector_copy (*placement); 3064 orig_nelts = nelts; 3065 if (*init) 3066 orig_init = make_tree_vector_copy (*init); 3067 3068 make_args_non_dependent (*placement); 3069 if (nelts) 3070 nelts = build_non_dependent_expr (nelts); 3071 make_args_non_dependent (*init); 3072 } 3073 3074 if (nelts) 3075 { 3076 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false)) 3077 { 3078 if (complain & tf_error) 3079 permerror (input_location, "size in array new must have integral type"); 3080 else 3081 return error_mark_node; 3082 } 3083 nelts = mark_rvalue_use (nelts); 3084 nelts = cp_save_expr (cp_convert (sizetype, nelts, complain)); 3085 } 3086 3087 /* ``A reference cannot be created by the new operator. A reference 3088 is not an object (8.2.2, 8.4.3), so a pointer to it could not be 3089 returned by new.'' ARM 5.3.3 */ 3090 if (TREE_CODE (type) == REFERENCE_TYPE) 3091 { 3092 if (complain & tf_error) 3093 error ("new cannot be applied to a reference type"); 3094 else 3095 return error_mark_node; 3096 type = TREE_TYPE (type); 3097 } 3098 3099 if (TREE_CODE (type) == FUNCTION_TYPE) 3100 { 3101 if (complain & tf_error) 3102 error ("new cannot be applied to a function type"); 3103 return error_mark_node; 3104 } 3105 3106 /* The type allocated must be complete. If the new-type-id was 3107 "T[N]" then we are just checking that "T" is complete here, but 3108 that is equivalent, since the value of "N" doesn't matter. */ 3109 if (!complete_type_or_maybe_complain (type, NULL_TREE, complain)) 3110 return error_mark_node; 3111 3112 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain); 3113 if (rval == error_mark_node) 3114 return error_mark_node; 3115 3116 if (processing_template_decl) 3117 { 3118 tree ret = build_raw_new_expr (orig_placement, type, orig_nelts, 3119 orig_init, use_global_new); 3120 release_tree_vector (orig_placement); 3121 release_tree_vector (orig_init); 3122 return ret; 3123 } 3124 3125 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */ 3126 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval); 3127 TREE_NO_WARNING (rval) = 1; 3128 3129 return rval; 3130 } 3131 3132 /* Given a Java class, return a decl for the corresponding java.lang.Class. */ 3133 3134 tree 3135 build_java_class_ref (tree type) 3136 { 3137 tree name = NULL_TREE, class_decl; 3138 static tree CL_suffix = NULL_TREE; 3139 if (CL_suffix == NULL_TREE) 3140 CL_suffix = get_identifier("class$"); 3141 if (jclass_node == NULL_TREE) 3142 { 3143 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass")); 3144 if (jclass_node == NULL_TREE) 3145 { 3146 error ("call to Java constructor, while %<jclass%> undefined"); 3147 return error_mark_node; 3148 } 3149 jclass_node = TREE_TYPE (jclass_node); 3150 } 3151 3152 /* Mangle the class$ field. */ 3153 { 3154 tree field; 3155 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) 3156 if (DECL_NAME (field) == CL_suffix) 3157 { 3158 mangle_decl (field); 3159 name = DECL_ASSEMBLER_NAME (field); 3160 break; 3161 } 3162 if (!field) 3163 { 3164 error ("can%'t find %<class$%> in %qT", type); 3165 return error_mark_node; 3166 } 3167 } 3168 3169 class_decl = IDENTIFIER_GLOBAL_VALUE (name); 3170 if (class_decl == NULL_TREE) 3171 { 3172 class_decl = build_decl (input_location, 3173 VAR_DECL, name, TREE_TYPE (jclass_node)); 3174 TREE_STATIC (class_decl) = 1; 3175 DECL_EXTERNAL (class_decl) = 1; 3176 TREE_PUBLIC (class_decl) = 1; 3177 DECL_ARTIFICIAL (class_decl) = 1; 3178 DECL_IGNORED_P (class_decl) = 1; 3179 pushdecl_top_level (class_decl); 3180 make_decl_rtl (class_decl); 3181 } 3182 return class_decl; 3183 } 3184 3185 static tree 3186 build_vec_delete_1 (tree base, tree maxindex, tree type, 3187 special_function_kind auto_delete_vec, 3188 int use_global_delete, tsubst_flags_t complain) 3189 { 3190 tree virtual_size; 3191 tree ptype = build_pointer_type (type = complete_type (type)); 3192 tree size_exp; 3193 3194 /* Temporary variables used by the loop. */ 3195 tree tbase, tbase_init; 3196 3197 /* This is the body of the loop that implements the deletion of a 3198 single element, and moves temp variables to next elements. */ 3199 tree body; 3200 3201 /* This is the LOOP_EXPR that governs the deletion of the elements. */ 3202 tree loop = 0; 3203 3204 /* This is the thing that governs what to do after the loop has run. */ 3205 tree deallocate_expr = 0; 3206 3207 /* This is the BIND_EXPR which holds the outermost iterator of the 3208 loop. It is convenient to set this variable up and test it before 3209 executing any other code in the loop. 3210 This is also the containing expression returned by this function. */ 3211 tree controller = NULL_TREE; 3212 tree tmp; 3213 3214 /* We should only have 1-D arrays here. */ 3215 gcc_assert (TREE_CODE (type) != ARRAY_TYPE); 3216 3217 if (base == error_mark_node || maxindex == error_mark_node) 3218 return error_mark_node; 3219 3220 if (!COMPLETE_TYPE_P (type)) 3221 { 3222 if ((complain & tf_warning) 3223 && warning (OPT_Wdelete_incomplete, 3224 "possible problem detected in invocation of " 3225 "delete [] operator:")) 3226 { 3227 cxx_incomplete_type_diagnostic (base, type, DK_WARNING); 3228 inform (input_location, "neither the destructor nor the " 3229 "class-specific operator delete [] will be called, " 3230 "even if they are declared when the class is defined"); 3231 } 3232 /* This size won't actually be used. */ 3233 size_exp = size_one_node; 3234 goto no_destructor; 3235 } 3236 3237 size_exp = size_in_bytes (type); 3238 3239 if (! MAYBE_CLASS_TYPE_P (type)) 3240 goto no_destructor; 3241 else if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type)) 3242 { 3243 /* Make sure the destructor is callable. */ 3244 if (type_build_dtor_call (type)) 3245 { 3246 tmp = build_delete (ptype, base, sfk_complete_destructor, 3247 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1, 3248 complain); 3249 if (tmp == error_mark_node) 3250 return error_mark_node; 3251 } 3252 goto no_destructor; 3253 } 3254 3255 /* The below is short by the cookie size. */ 3256 virtual_size = size_binop (MULT_EXPR, size_exp, 3257 convert (sizetype, maxindex)); 3258 3259 tbase = create_temporary_var (ptype); 3260 tbase_init 3261 = cp_build_modify_expr (tbase, NOP_EXPR, 3262 fold_build_pointer_plus_loc (input_location, 3263 fold_convert (ptype, 3264 base), 3265 virtual_size), 3266 complain); 3267 if (tbase_init == error_mark_node) 3268 return error_mark_node; 3269 controller = build3 (BIND_EXPR, void_type_node, tbase, 3270 NULL_TREE, NULL_TREE); 3271 TREE_SIDE_EFFECTS (controller) = 1; 3272 3273 body = build1 (EXIT_EXPR, void_type_node, 3274 build2 (EQ_EXPR, boolean_type_node, tbase, 3275 fold_convert (ptype, base))); 3276 tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp); 3277 tmp = fold_build_pointer_plus (tbase, tmp); 3278 tmp = cp_build_modify_expr (tbase, NOP_EXPR, tmp, complain); 3279 if (tmp == error_mark_node) 3280 return error_mark_node; 3281 body = build_compound_expr (input_location, body, tmp); 3282 tmp = build_delete (ptype, tbase, sfk_complete_destructor, 3283 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1, 3284 complain); 3285 if (tmp == error_mark_node) 3286 return error_mark_node; 3287 body = build_compound_expr (input_location, body, tmp); 3288 3289 loop = build1 (LOOP_EXPR, void_type_node, body); 3290 loop = build_compound_expr (input_location, tbase_init, loop); 3291 3292 no_destructor: 3293 /* Delete the storage if appropriate. */ 3294 if (auto_delete_vec == sfk_deleting_destructor) 3295 { 3296 tree base_tbd; 3297 3298 /* The below is short by the cookie size. */ 3299 virtual_size = size_binop (MULT_EXPR, size_exp, 3300 convert (sizetype, maxindex)); 3301 3302 if (! TYPE_VEC_NEW_USES_COOKIE (type)) 3303 /* no header */ 3304 base_tbd = base; 3305 else 3306 { 3307 tree cookie_size; 3308 3309 cookie_size = targetm.cxx.get_cookie_size (type); 3310 base_tbd = cp_build_binary_op (input_location, 3311 MINUS_EXPR, 3312 cp_convert (string_type_node, 3313 base, complain), 3314 cookie_size, 3315 complain); 3316 if (base_tbd == error_mark_node) 3317 return error_mark_node; 3318 base_tbd = cp_convert (ptype, base_tbd, complain); 3319 /* True size with header. */ 3320 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size); 3321 } 3322 3323 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR, 3324 base_tbd, virtual_size, 3325 use_global_delete & 1, 3326 /*placement=*/NULL_TREE, 3327 /*alloc_fn=*/NULL_TREE, 3328 complain); 3329 } 3330 3331 body = loop; 3332 if (!deallocate_expr) 3333 ; 3334 else if (!body) 3335 body = deallocate_expr; 3336 else 3337 body = build_compound_expr (input_location, body, deallocate_expr); 3338 3339 if (!body) 3340 body = integer_zero_node; 3341 3342 /* Outermost wrapper: If pointer is null, punt. */ 3343 body = fold_build3_loc (input_location, COND_EXPR, void_type_node, 3344 fold_build2_loc (input_location, 3345 NE_EXPR, boolean_type_node, base, 3346 convert (TREE_TYPE (base), 3347 nullptr_node)), 3348 body, integer_zero_node); 3349 body = build1 (NOP_EXPR, void_type_node, body); 3350 3351 if (controller) 3352 { 3353 TREE_OPERAND (controller, 1) = body; 3354 body = controller; 3355 } 3356 3357 if (TREE_CODE (base) == SAVE_EXPR) 3358 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */ 3359 body = build2 (COMPOUND_EXPR, void_type_node, base, body); 3360 3361 return convert_to_void (body, ICV_CAST, complain); 3362 } 3363 3364 /* Create an unnamed variable of the indicated TYPE. */ 3365 3366 tree 3367 create_temporary_var (tree type) 3368 { 3369 tree decl; 3370 3371 decl = build_decl (input_location, 3372 VAR_DECL, NULL_TREE, type); 3373 TREE_USED (decl) = 1; 3374 DECL_ARTIFICIAL (decl) = 1; 3375 DECL_IGNORED_P (decl) = 1; 3376 DECL_CONTEXT (decl) = current_function_decl; 3377 3378 return decl; 3379 } 3380 3381 /* Create a new temporary variable of the indicated TYPE, initialized 3382 to INIT. 3383 3384 It is not entered into current_binding_level, because that breaks 3385 things when it comes time to do final cleanups (which take place 3386 "outside" the binding contour of the function). */ 3387 3388 tree 3389 get_temp_regvar (tree type, tree init) 3390 { 3391 tree decl; 3392 3393 decl = create_temporary_var (type); 3394 add_decl_expr (decl); 3395 3396 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init, 3397 tf_warning_or_error)); 3398 3399 return decl; 3400 } 3401 3402 /* Subroutine of build_vec_init. Returns true if assigning to an array of 3403 INNER_ELT_TYPE from INIT is trivial. */ 3404 3405 static bool 3406 vec_copy_assign_is_trivial (tree inner_elt_type, tree init) 3407 { 3408 tree fromtype = inner_elt_type; 3409 if (real_lvalue_p (init)) 3410 fromtype = cp_build_reference_type (fromtype, /*rval*/false); 3411 return is_trivially_xible (MODIFY_EXPR, inner_elt_type, fromtype); 3412 } 3413 3414 /* `build_vec_init' returns tree structure that performs 3415 initialization of a vector of aggregate types. 3416 3417 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer 3418 to the first element, of POINTER_TYPE. 3419 MAXINDEX is the maximum index of the array (one less than the 3420 number of elements). It is only used if BASE is a pointer or 3421 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE. 3422 3423 INIT is the (possibly NULL) initializer. 3424 3425 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All 3426 elements in the array are value-initialized. 3427 3428 FROM_ARRAY is 0 if we should init everything with INIT 3429 (i.e., every element initialized from INIT). 3430 FROM_ARRAY is 1 if we should index into INIT in parallel 3431 with initialization of DECL. 3432 FROM_ARRAY is 2 if we should index into INIT in parallel, 3433 but use assignment instead of initialization. */ 3434 3435 tree 3436 build_vec_init (tree base, tree maxindex, tree init, 3437 bool explicit_value_init_p, 3438 int from_array, tsubst_flags_t complain) 3439 { 3440 tree rval; 3441 tree base2 = NULL_TREE; 3442 tree itype = NULL_TREE; 3443 tree iterator; 3444 /* The type of BASE. */ 3445 tree atype = TREE_TYPE (base); 3446 /* The type of an element in the array. */ 3447 tree type = TREE_TYPE (atype); 3448 /* The element type reached after removing all outer array 3449 types. */ 3450 tree inner_elt_type; 3451 /* The type of a pointer to an element in the array. */ 3452 tree ptype; 3453 tree stmt_expr; 3454 tree compound_stmt; 3455 int destroy_temps; 3456 tree try_block = NULL_TREE; 3457 int num_initialized_elts = 0; 3458 bool is_global; 3459 tree obase = base; 3460 bool xvalue = false; 3461 bool errors = false; 3462 3463 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype)) 3464 maxindex = array_type_nelts (atype); 3465 3466 if (maxindex == NULL_TREE || maxindex == error_mark_node) 3467 return error_mark_node; 3468 3469 if (explicit_value_init_p) 3470 gcc_assert (!init); 3471 3472 inner_elt_type = strip_array_types (type); 3473 3474 /* Look through the TARGET_EXPR around a compound literal. */ 3475 if (init && TREE_CODE (init) == TARGET_EXPR 3476 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR 3477 && from_array != 2) 3478 init = TARGET_EXPR_INITIAL (init); 3479 3480 /* If we have a braced-init-list, make sure that the array 3481 is big enough for all the initializers. */ 3482 bool length_check = (init && TREE_CODE (init) == CONSTRUCTOR 3483 && CONSTRUCTOR_NELTS (init) > 0 3484 && !TREE_CONSTANT (maxindex)); 3485 3486 if (init 3487 && TREE_CODE (atype) == ARRAY_TYPE 3488 && TREE_CONSTANT (maxindex) 3489 && (from_array == 2 3490 ? vec_copy_assign_is_trivial (inner_elt_type, init) 3491 : !TYPE_NEEDS_CONSTRUCTING (type)) 3492 && ((TREE_CODE (init) == CONSTRUCTOR 3493 /* Don't do this if the CONSTRUCTOR might contain something 3494 that might throw and require us to clean up. */ 3495 && (vec_safe_is_empty (CONSTRUCTOR_ELTS (init)) 3496 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type))) 3497 || from_array)) 3498 { 3499 /* Do non-default initialization of trivial arrays resulting from 3500 brace-enclosed initializers. In this case, digest_init and 3501 store_constructor will handle the semantics for us. */ 3502 3503 if (BRACE_ENCLOSED_INITIALIZER_P (init)) 3504 init = digest_init (atype, init, complain); 3505 stmt_expr = build2 (INIT_EXPR, atype, base, init); 3506 return stmt_expr; 3507 } 3508 3509 maxindex = cp_convert (ptrdiff_type_node, maxindex, complain); 3510 if (TREE_CODE (atype) == ARRAY_TYPE) 3511 { 3512 ptype = build_pointer_type (type); 3513 base = decay_conversion (base, complain); 3514 if (base == error_mark_node) 3515 return error_mark_node; 3516 base = cp_convert (ptype, base, complain); 3517 } 3518 else 3519 ptype = atype; 3520 3521 /* The code we are generating looks like: 3522 ({ 3523 T* t1 = (T*) base; 3524 T* rval = t1; 3525 ptrdiff_t iterator = maxindex; 3526 try { 3527 for (; iterator != -1; --iterator) { 3528 ... initialize *t1 ... 3529 ++t1; 3530 } 3531 } catch (...) { 3532 ... destroy elements that were constructed ... 3533 } 3534 rval; 3535 }) 3536 3537 We can omit the try and catch blocks if we know that the 3538 initialization will never throw an exception, or if the array 3539 elements do not have destructors. We can omit the loop completely if 3540 the elements of the array do not have constructors. 3541 3542 We actually wrap the entire body of the above in a STMT_EXPR, for 3543 tidiness. 3544 3545 When copying from array to another, when the array elements have 3546 only trivial copy constructors, we should use __builtin_memcpy 3547 rather than generating a loop. That way, we could take advantage 3548 of whatever cleverness the back end has for dealing with copies 3549 of blocks of memory. */ 3550 3551 is_global = begin_init_stmts (&stmt_expr, &compound_stmt); 3552 destroy_temps = stmts_are_full_exprs_p (); 3553 current_stmt_tree ()->stmts_are_full_exprs_p = 0; 3554 rval = get_temp_regvar (ptype, base); 3555 base = get_temp_regvar (ptype, rval); 3556 iterator = get_temp_regvar (ptrdiff_type_node, maxindex); 3557 3558 /* If initializing one array from another, initialize element by 3559 element. We rely upon the below calls to do the argument 3560 checking. Evaluate the initializer before entering the try block. */ 3561 if (from_array && init && TREE_CODE (init) != CONSTRUCTOR) 3562 { 3563 if (lvalue_kind (init) & clk_rvalueref) 3564 xvalue = true; 3565 base2 = decay_conversion (init, complain); 3566 if (base2 == error_mark_node) 3567 return error_mark_node; 3568 itype = TREE_TYPE (base2); 3569 base2 = get_temp_regvar (itype, base2); 3570 itype = TREE_TYPE (itype); 3571 } 3572 3573 /* Protect the entire array initialization so that we can destroy 3574 the partially constructed array if an exception is thrown. 3575 But don't do this if we're assigning. */ 3576 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type) 3577 && from_array != 2) 3578 { 3579 try_block = begin_try_block (); 3580 } 3581 3582 /* Should we try to create a constant initializer? */ 3583 bool try_const = (TREE_CODE (atype) == ARRAY_TYPE 3584 && TREE_CONSTANT (maxindex) 3585 && (init ? TREE_CODE (init) == CONSTRUCTOR 3586 : (type_has_constexpr_default_constructor 3587 (inner_elt_type))) 3588 && (literal_type_p (inner_elt_type) 3589 || TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type))); 3590 vec<constructor_elt, va_gc> *const_vec = NULL; 3591 bool saw_non_const = false; 3592 /* If we're initializing a static array, we want to do static 3593 initialization of any elements with constant initializers even if 3594 some are non-constant. */ 3595 bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase)); 3596 3597 bool empty_list = false; 3598 if (init && BRACE_ENCLOSED_INITIALIZER_P (init) 3599 && CONSTRUCTOR_NELTS (init) == 0) 3600 /* Skip over the handling of non-empty init lists. */ 3601 empty_list = true; 3602 3603 /* Maybe pull out constant value when from_array? */ 3604 3605 else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR) 3606 { 3607 /* Do non-default initialization of non-trivial arrays resulting from 3608 brace-enclosed initializers. */ 3609 unsigned HOST_WIDE_INT idx; 3610 tree field, elt; 3611 /* If the constructor already has the array type, it's been through 3612 digest_init, so we shouldn't try to do anything more. */ 3613 bool digested = same_type_p (atype, TREE_TYPE (init)); 3614 from_array = 0; 3615 3616 if (length_check) 3617 { 3618 tree nelts = size_int (CONSTRUCTOR_NELTS (init) - 1); 3619 if (TREE_CODE (atype) != ARRAY_TYPE) 3620 { 3621 if (flag_exceptions) 3622 { 3623 tree c = fold_build2 (LT_EXPR, boolean_type_node, iterator, 3624 nelts); 3625 c = build3 (COND_EXPR, void_type_node, c, 3626 throw_bad_array_new_length (), void_node); 3627 finish_expr_stmt (c); 3628 } 3629 /* Don't check an array new when -fno-exceptions. */ 3630 } 3631 else if (flag_sanitize & SANITIZE_BOUNDS 3632 && do_ubsan_in_current_function ()) 3633 { 3634 /* Make sure the last element of the initializer is in bounds. */ 3635 finish_expr_stmt 3636 (ubsan_instrument_bounds 3637 (input_location, obase, &nelts, /*ignore_off_by_one*/false)); 3638 } 3639 } 3640 3641 if (try_const) 3642 vec_alloc (const_vec, CONSTRUCTOR_NELTS (init)); 3643 3644 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt) 3645 { 3646 tree baseref = build1 (INDIRECT_REF, type, base); 3647 tree one_init; 3648 3649 num_initialized_elts++; 3650 3651 current_stmt_tree ()->stmts_are_full_exprs_p = 1; 3652 if (digested) 3653 one_init = build2 (INIT_EXPR, type, baseref, elt); 3654 else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE) 3655 one_init = build_aggr_init (baseref, elt, 0, complain); 3656 else 3657 one_init = cp_build_modify_expr (baseref, NOP_EXPR, 3658 elt, complain); 3659 if (one_init == error_mark_node) 3660 errors = true; 3661 if (try_const) 3662 { 3663 tree e = maybe_constant_init (one_init); 3664 if (reduced_constant_expression_p (e)) 3665 { 3666 CONSTRUCTOR_APPEND_ELT (const_vec, field, e); 3667 if (do_static_init) 3668 one_init = NULL_TREE; 3669 else 3670 one_init = build2 (INIT_EXPR, type, baseref, e); 3671 } 3672 else 3673 { 3674 if (do_static_init) 3675 { 3676 tree value = build_zero_init (TREE_TYPE (e), NULL_TREE, 3677 true); 3678 if (value) 3679 CONSTRUCTOR_APPEND_ELT (const_vec, field, value); 3680 } 3681 saw_non_const = true; 3682 } 3683 } 3684 3685 if (one_init) 3686 finish_expr_stmt (one_init); 3687 current_stmt_tree ()->stmts_are_full_exprs_p = 0; 3688 3689 one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, 0, complain); 3690 if (one_init == error_mark_node) 3691 errors = true; 3692 else 3693 finish_expr_stmt (one_init); 3694 3695 one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0, 3696 complain); 3697 if (one_init == error_mark_node) 3698 errors = true; 3699 else 3700 finish_expr_stmt (one_init); 3701 } 3702 3703 /* Any elements without explicit initializers get T{}. */ 3704 empty_list = true; 3705 } 3706 else if (from_array) 3707 { 3708 if (init) 3709 /* OK, we set base2 above. */; 3710 else if (CLASS_TYPE_P (type) 3711 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type)) 3712 { 3713 if (complain & tf_error) 3714 error ("initializer ends prematurely"); 3715 errors = true; 3716 } 3717 } 3718 3719 /* Now, default-initialize any remaining elements. We don't need to 3720 do that if a) the type does not need constructing, or b) we've 3721 already initialized all the elements. 3722 3723 We do need to keep going if we're copying an array. */ 3724 3725 if (try_const && !init) 3726 /* With a constexpr default constructor, which we checked for when 3727 setting try_const above, default-initialization is equivalent to 3728 value-initialization, and build_value_init gives us something more 3729 friendly to maybe_constant_init. */ 3730 explicit_value_init_p = true; 3731 if (from_array 3732 || ((type_build_ctor_call (type) || init || explicit_value_init_p) 3733 && ! (tree_fits_shwi_p (maxindex) 3734 && (num_initialized_elts 3735 == tree_to_shwi (maxindex) + 1)))) 3736 { 3737 /* If the ITERATOR is equal to -1, then we don't have to loop; 3738 we've already initialized all the elements. */ 3739 tree for_stmt; 3740 tree elt_init; 3741 tree to; 3742 3743 for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE); 3744 finish_for_init_stmt (for_stmt); 3745 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator, 3746 build_int_cst (TREE_TYPE (iterator), -1)), 3747 for_stmt, false); 3748 elt_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0, 3749 complain); 3750 if (elt_init == error_mark_node) 3751 errors = true; 3752 finish_for_expr (elt_init, for_stmt); 3753 3754 to = build1 (INDIRECT_REF, type, base); 3755 3756 /* If the initializer is {}, then all elements are initialized from T{}. 3757 But for non-classes, that's the same as value-initialization. */ 3758 if (empty_list) 3759 { 3760 if (cxx_dialect >= cxx11 && AGGREGATE_TYPE_P (type)) 3761 { 3762 init = build_constructor (init_list_type_node, NULL); 3763 CONSTRUCTOR_IS_DIRECT_INIT (init) = true; 3764 } 3765 else 3766 { 3767 init = NULL_TREE; 3768 explicit_value_init_p = true; 3769 } 3770 } 3771 3772 if (from_array) 3773 { 3774 tree from; 3775 3776 if (base2) 3777 { 3778 from = build1 (INDIRECT_REF, itype, base2); 3779 if (xvalue) 3780 from = move (from); 3781 } 3782 else 3783 from = NULL_TREE; 3784 3785 if (from_array == 2) 3786 elt_init = cp_build_modify_expr (to, NOP_EXPR, from, 3787 complain); 3788 else if (type_build_ctor_call (type)) 3789 elt_init = build_aggr_init (to, from, 0, complain); 3790 else if (from) 3791 elt_init = cp_build_modify_expr (to, NOP_EXPR, from, 3792 complain); 3793 else 3794 gcc_unreachable (); 3795 } 3796 else if (TREE_CODE (type) == ARRAY_TYPE) 3797 { 3798 if (init && !BRACE_ENCLOSED_INITIALIZER_P (init)) 3799 sorry 3800 ("cannot initialize multi-dimensional array with initializer"); 3801 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base), 3802 0, init, 3803 explicit_value_init_p, 3804 0, complain); 3805 } 3806 else if (explicit_value_init_p) 3807 { 3808 elt_init = build_value_init (type, complain); 3809 if (elt_init != error_mark_node) 3810 elt_init = build2 (INIT_EXPR, type, to, elt_init); 3811 } 3812 else 3813 { 3814 gcc_assert (type_build_ctor_call (type) || init); 3815 if (CLASS_TYPE_P (type)) 3816 elt_init = build_aggr_init (to, init, 0, complain); 3817 else 3818 { 3819 if (TREE_CODE (init) == TREE_LIST) 3820 init = build_x_compound_expr_from_list (init, ELK_INIT, 3821 complain); 3822 elt_init = build2 (INIT_EXPR, type, to, init); 3823 } 3824 } 3825 3826 if (elt_init == error_mark_node) 3827 errors = true; 3828 3829 if (try_const) 3830 { 3831 /* FIXME refs to earlier elts */ 3832 tree e = maybe_constant_init (elt_init); 3833 if (reduced_constant_expression_p (e)) 3834 { 3835 if (initializer_zerop (e)) 3836 /* Don't fill the CONSTRUCTOR with zeros. */ 3837 e = NULL_TREE; 3838 if (do_static_init) 3839 elt_init = NULL_TREE; 3840 } 3841 else 3842 { 3843 saw_non_const = true; 3844 if (do_static_init) 3845 e = build_zero_init (TREE_TYPE (e), NULL_TREE, true); 3846 else 3847 e = NULL_TREE; 3848 } 3849 3850 if (e) 3851 { 3852 int max = tree_to_shwi (maxindex)+1; 3853 for (; num_initialized_elts < max; ++num_initialized_elts) 3854 { 3855 tree field = size_int (num_initialized_elts); 3856 CONSTRUCTOR_APPEND_ELT (const_vec, field, e); 3857 } 3858 } 3859 } 3860 3861 current_stmt_tree ()->stmts_are_full_exprs_p = 1; 3862 if (elt_init) 3863 finish_expr_stmt (elt_init); 3864 current_stmt_tree ()->stmts_are_full_exprs_p = 0; 3865 3866 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0, 3867 complain)); 3868 if (base2) 3869 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0, 3870 complain)); 3871 3872 finish_for_stmt (for_stmt); 3873 } 3874 3875 /* Make sure to cleanup any partially constructed elements. */ 3876 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type) 3877 && from_array != 2) 3878 { 3879 tree e; 3880 tree m = cp_build_binary_op (input_location, 3881 MINUS_EXPR, maxindex, iterator, 3882 complain); 3883 3884 /* Flatten multi-dimensional array since build_vec_delete only 3885 expects one-dimensional array. */ 3886 if (TREE_CODE (type) == ARRAY_TYPE) 3887 m = cp_build_binary_op (input_location, 3888 MULT_EXPR, m, 3889 /* Avoid mixing signed and unsigned. */ 3890 convert (TREE_TYPE (m), 3891 array_type_nelts_total (type)), 3892 complain); 3893 3894 finish_cleanup_try_block (try_block); 3895 e = build_vec_delete_1 (rval, m, 3896 inner_elt_type, sfk_complete_destructor, 3897 /*use_global_delete=*/0, complain); 3898 if (e == error_mark_node) 3899 errors = true; 3900 finish_cleanup (e, try_block); 3901 } 3902 3903 /* The value of the array initialization is the array itself, RVAL 3904 is a pointer to the first element. */ 3905 finish_stmt_expr_expr (rval, stmt_expr); 3906 3907 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt); 3908 3909 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps; 3910 3911 if (errors) 3912 return error_mark_node; 3913 3914 if (try_const) 3915 { 3916 if (!saw_non_const) 3917 { 3918 tree const_init = build_constructor (atype, const_vec); 3919 return build2 (INIT_EXPR, atype, obase, const_init); 3920 } 3921 else if (do_static_init && !vec_safe_is_empty (const_vec)) 3922 DECL_INITIAL (obase) = build_constructor (atype, const_vec); 3923 else 3924 vec_free (const_vec); 3925 } 3926 3927 /* Now make the result have the correct type. */ 3928 if (TREE_CODE (atype) == ARRAY_TYPE) 3929 { 3930 atype = build_pointer_type (atype); 3931 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr); 3932 stmt_expr = cp_build_indirect_ref (stmt_expr, RO_NULL, complain); 3933 TREE_NO_WARNING (stmt_expr) = 1; 3934 } 3935 3936 return stmt_expr; 3937 } 3938 3939 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for 3940 build_delete. */ 3941 3942 static tree 3943 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags, 3944 tsubst_flags_t complain) 3945 { 3946 tree name; 3947 tree fn; 3948 switch (dtor_kind) 3949 { 3950 case sfk_complete_destructor: 3951 name = complete_dtor_identifier; 3952 break; 3953 3954 case sfk_base_destructor: 3955 name = base_dtor_identifier; 3956 break; 3957 3958 case sfk_deleting_destructor: 3959 name = deleting_dtor_identifier; 3960 break; 3961 3962 default: 3963 gcc_unreachable (); 3964 } 3965 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2); 3966 return build_new_method_call (exp, fn, 3967 /*args=*/NULL, 3968 /*conversion_path=*/NULL_TREE, 3969 flags, 3970 /*fn_p=*/NULL, 3971 complain); 3972 } 3973 3974 /* Generate a call to a destructor. TYPE is the type to cast ADDR to. 3975 ADDR is an expression which yields the store to be destroyed. 3976 AUTO_DELETE is the name of the destructor to call, i.e., either 3977 sfk_complete_destructor, sfk_base_destructor, or 3978 sfk_deleting_destructor. 3979 3980 FLAGS is the logical disjunction of zero or more LOOKUP_ 3981 flags. See cp-tree.h for more info. */ 3982 3983 tree 3984 build_delete (tree otype, tree addr, special_function_kind auto_delete, 3985 int flags, int use_global_delete, tsubst_flags_t complain) 3986 { 3987 tree expr; 3988 3989 if (addr == error_mark_node) 3990 return error_mark_node; 3991 3992 tree type = TYPE_MAIN_VARIANT (otype); 3993 3994 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type 3995 set to `error_mark_node' before it gets properly cleaned up. */ 3996 if (type == error_mark_node) 3997 return error_mark_node; 3998 3999 if (TREE_CODE (type) == POINTER_TYPE) 4000 type = TYPE_MAIN_VARIANT (TREE_TYPE (type)); 4001 4002 if (TREE_CODE (type) == ARRAY_TYPE) 4003 { 4004 if (TYPE_DOMAIN (type) == NULL_TREE) 4005 { 4006 if (complain & tf_error) 4007 error ("unknown array size in delete"); 4008 return error_mark_node; 4009 } 4010 return build_vec_delete (addr, array_type_nelts (type), 4011 auto_delete, use_global_delete, complain); 4012 } 4013 4014 if (TYPE_PTR_P (otype)) 4015 { 4016 addr = mark_rvalue_use (addr); 4017 4018 /* We don't want to warn about delete of void*, only other 4019 incomplete types. Deleting other incomplete types 4020 invokes undefined behavior, but it is not ill-formed, so 4021 compile to something that would even do The Right Thing 4022 (TM) should the type have a trivial dtor and no delete 4023 operator. */ 4024 if (!VOID_TYPE_P (type)) 4025 { 4026 complete_type (type); 4027 if (!COMPLETE_TYPE_P (type)) 4028 { 4029 if ((complain & tf_warning) 4030 && warning (OPT_Wdelete_incomplete, 4031 "possible problem detected in invocation of " 4032 "delete operator:")) 4033 { 4034 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING); 4035 inform (input_location, 4036 "neither the destructor nor the class-specific " 4037 "operator delete will be called, even if they are " 4038 "declared when the class is defined"); 4039 } 4040 } 4041 else if (auto_delete == sfk_deleting_destructor && warn_delnonvdtor 4042 && MAYBE_CLASS_TYPE_P (type) && !CLASSTYPE_FINAL (type) 4043 && TYPE_POLYMORPHIC_P (type)) 4044 { 4045 tree dtor; 4046 dtor = CLASSTYPE_DESTRUCTORS (type); 4047 if (!dtor || !DECL_VINDEX (dtor)) 4048 { 4049 if (CLASSTYPE_PURE_VIRTUALS (type)) 4050 warning (OPT_Wdelete_non_virtual_dtor, 4051 "deleting object of abstract class type %qT" 4052 " which has non-virtual destructor" 4053 " will cause undefined behaviour", type); 4054 else 4055 warning (OPT_Wdelete_non_virtual_dtor, 4056 "deleting object of polymorphic class type %qT" 4057 " which has non-virtual destructor" 4058 " might cause undefined behaviour", type); 4059 } 4060 } 4061 } 4062 if (TREE_SIDE_EFFECTS (addr)) 4063 addr = save_expr (addr); 4064 4065 /* Throw away const and volatile on target type of addr. */ 4066 addr = convert_force (build_pointer_type (type), addr, 0, complain); 4067 } 4068 else 4069 { 4070 /* Don't check PROTECT here; leave that decision to the 4071 destructor. If the destructor is accessible, call it, 4072 else report error. */ 4073 addr = cp_build_addr_expr (addr, complain); 4074 if (addr == error_mark_node) 4075 return error_mark_node; 4076 if (TREE_SIDE_EFFECTS (addr)) 4077 addr = save_expr (addr); 4078 4079 addr = convert_force (build_pointer_type (type), addr, 0, complain); 4080 } 4081 4082 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type)) 4083 { 4084 /* Make sure the destructor is callable. */ 4085 if (type_build_dtor_call (type)) 4086 { 4087 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL, 4088 complain), 4089 sfk_complete_destructor, flags, complain); 4090 if (expr == error_mark_node) 4091 return error_mark_node; 4092 } 4093 4094 if (auto_delete != sfk_deleting_destructor) 4095 return void_node; 4096 4097 return build_op_delete_call (DELETE_EXPR, addr, 4098 cxx_sizeof_nowarn (type), 4099 use_global_delete, 4100 /*placement=*/NULL_TREE, 4101 /*alloc_fn=*/NULL_TREE, 4102 complain); 4103 } 4104 else 4105 { 4106 tree head = NULL_TREE; 4107 tree do_delete = NULL_TREE; 4108 tree ifexp; 4109 4110 if (CLASSTYPE_LAZY_DESTRUCTOR (type)) 4111 lazily_declare_fn (sfk_destructor, type); 4112 4113 /* For `::delete x', we must not use the deleting destructor 4114 since then we would not be sure to get the global `operator 4115 delete'. */ 4116 if (use_global_delete && auto_delete == sfk_deleting_destructor) 4117 { 4118 /* We will use ADDR multiple times so we must save it. */ 4119 addr = save_expr (addr); 4120 head = get_target_expr (build_headof (addr)); 4121 /* Delete the object. */ 4122 do_delete = build_op_delete_call (DELETE_EXPR, 4123 head, 4124 cxx_sizeof_nowarn (type), 4125 /*global_p=*/true, 4126 /*placement=*/NULL_TREE, 4127 /*alloc_fn=*/NULL_TREE, 4128 complain); 4129 /* Otherwise, treat this like a complete object destructor 4130 call. */ 4131 auto_delete = sfk_complete_destructor; 4132 } 4133 /* If the destructor is non-virtual, there is no deleting 4134 variant. Instead, we must explicitly call the appropriate 4135 `operator delete' here. */ 4136 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type)) 4137 && auto_delete == sfk_deleting_destructor) 4138 { 4139 /* We will use ADDR multiple times so we must save it. */ 4140 addr = save_expr (addr); 4141 /* Build the call. */ 4142 do_delete = build_op_delete_call (DELETE_EXPR, 4143 addr, 4144 cxx_sizeof_nowarn (type), 4145 /*global_p=*/false, 4146 /*placement=*/NULL_TREE, 4147 /*alloc_fn=*/NULL_TREE, 4148 complain); 4149 /* Call the complete object destructor. */ 4150 auto_delete = sfk_complete_destructor; 4151 } 4152 else if (auto_delete == sfk_deleting_destructor 4153 && TYPE_GETS_REG_DELETE (type)) 4154 { 4155 /* Make sure we have access to the member op delete, even though 4156 we'll actually be calling it from the destructor. */ 4157 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type), 4158 /*global_p=*/false, 4159 /*placement=*/NULL_TREE, 4160 /*alloc_fn=*/NULL_TREE, 4161 complain); 4162 } 4163 4164 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL, complain), 4165 auto_delete, flags, complain); 4166 if (expr == error_mark_node) 4167 return error_mark_node; 4168 if (do_delete) 4169 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete); 4170 4171 /* We need to calculate this before the dtor changes the vptr. */ 4172 if (head) 4173 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr); 4174 4175 if (flags & LOOKUP_DESTRUCTOR) 4176 /* Explicit destructor call; don't check for null pointer. */ 4177 ifexp = integer_one_node; 4178 else 4179 { 4180 /* Handle deleting a null pointer. */ 4181 ifexp = fold (cp_build_binary_op (input_location, 4182 NE_EXPR, addr, nullptr_node, 4183 complain)); 4184 if (ifexp == error_mark_node) 4185 return error_mark_node; 4186 } 4187 4188 if (ifexp != integer_one_node) 4189 expr = build3 (COND_EXPR, void_type_node, ifexp, expr, void_node); 4190 4191 return expr; 4192 } 4193 } 4194 4195 /* At the beginning of a destructor, push cleanups that will call the 4196 destructors for our base classes and members. 4197 4198 Called from begin_destructor_body. */ 4199 4200 void 4201 push_base_cleanups (void) 4202 { 4203 tree binfo, base_binfo; 4204 int i; 4205 tree member; 4206 tree expr; 4207 vec<tree, va_gc> *vbases; 4208 4209 /* Run destructors for all virtual baseclasses. */ 4210 if (CLASSTYPE_VBASECLASSES (current_class_type)) 4211 { 4212 tree cond = (condition_conversion 4213 (build2 (BIT_AND_EXPR, integer_type_node, 4214 current_in_charge_parm, 4215 integer_two_node))); 4216 4217 /* The CLASSTYPE_VBASECLASSES vector is in initialization 4218 order, which is also the right order for pushing cleanups. */ 4219 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0; 4220 vec_safe_iterate (vbases, i, &base_binfo); i++) 4221 { 4222 if (type_build_dtor_call (BINFO_TYPE (base_binfo))) 4223 { 4224 expr = build_special_member_call (current_class_ref, 4225 base_dtor_identifier, 4226 NULL, 4227 base_binfo, 4228 (LOOKUP_NORMAL 4229 | LOOKUP_NONVIRTUAL), 4230 tf_warning_or_error); 4231 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))) 4232 { 4233 expr = build3 (COND_EXPR, void_type_node, cond, 4234 expr, void_node); 4235 finish_decl_cleanup (NULL_TREE, expr); 4236 } 4237 } 4238 } 4239 } 4240 4241 /* Take care of the remaining baseclasses. */ 4242 for (binfo = TYPE_BINFO (current_class_type), i = 0; 4243 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++) 4244 { 4245 if (BINFO_VIRTUAL_P (base_binfo) 4246 || !type_build_dtor_call (BINFO_TYPE (base_binfo))) 4247 continue; 4248 4249 expr = build_special_member_call (current_class_ref, 4250 base_dtor_identifier, 4251 NULL, base_binfo, 4252 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL, 4253 tf_warning_or_error); 4254 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))) 4255 finish_decl_cleanup (NULL_TREE, expr); 4256 } 4257 4258 /* Don't automatically destroy union members. */ 4259 if (TREE_CODE (current_class_type) == UNION_TYPE) 4260 return; 4261 4262 for (member = TYPE_FIELDS (current_class_type); member; 4263 member = DECL_CHAIN (member)) 4264 { 4265 tree this_type = TREE_TYPE (member); 4266 if (this_type == error_mark_node 4267 || TREE_CODE (member) != FIELD_DECL 4268 || DECL_ARTIFICIAL (member)) 4269 continue; 4270 if (ANON_AGGR_TYPE_P (this_type)) 4271 continue; 4272 if (type_build_dtor_call (this_type)) 4273 { 4274 tree this_member = (build_class_member_access_expr 4275 (current_class_ref, member, 4276 /*access_path=*/NULL_TREE, 4277 /*preserve_reference=*/false, 4278 tf_warning_or_error)); 4279 expr = build_delete (this_type, this_member, 4280 sfk_complete_destructor, 4281 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL, 4282 0, tf_warning_or_error); 4283 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type)) 4284 finish_decl_cleanup (NULL_TREE, expr); 4285 } 4286 } 4287 } 4288 4289 /* Build a C++ vector delete expression. 4290 MAXINDEX is the number of elements to be deleted. 4291 ELT_SIZE is the nominal size of each element in the vector. 4292 BASE is the expression that should yield the store to be deleted. 4293 This function expands (or synthesizes) these calls itself. 4294 AUTO_DELETE_VEC says whether the container (vector) should be deallocated. 4295 4296 This also calls delete for virtual baseclasses of elements of the vector. 4297 4298 Update: MAXINDEX is no longer needed. The size can be extracted from the 4299 start of the vector for pointers, and from the type for arrays. We still 4300 use MAXINDEX for arrays because it happens to already have one of the 4301 values we'd have to extract. (We could use MAXINDEX with pointers to 4302 confirm the size, and trap if the numbers differ; not clear that it'd 4303 be worth bothering.) */ 4304 4305 tree 4306 build_vec_delete (tree base, tree maxindex, 4307 special_function_kind auto_delete_vec, 4308 int use_global_delete, tsubst_flags_t complain) 4309 { 4310 tree type; 4311 tree rval; 4312 tree base_init = NULL_TREE; 4313 4314 type = TREE_TYPE (base); 4315 4316 if (TYPE_PTR_P (type)) 4317 { 4318 /* Step back one from start of vector, and read dimension. */ 4319 tree cookie_addr; 4320 tree size_ptr_type = build_pointer_type (sizetype); 4321 4322 base = mark_rvalue_use (base); 4323 if (TREE_SIDE_EFFECTS (base)) 4324 { 4325 base_init = get_target_expr (base); 4326 base = TARGET_EXPR_SLOT (base_init); 4327 } 4328 type = strip_array_types (TREE_TYPE (type)); 4329 cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR, 4330 sizetype, TYPE_SIZE_UNIT (sizetype)); 4331 cookie_addr = fold_build_pointer_plus (fold_convert (size_ptr_type, base), 4332 cookie_addr); 4333 maxindex = cp_build_indirect_ref (cookie_addr, RO_NULL, complain); 4334 } 4335 else if (TREE_CODE (type) == ARRAY_TYPE) 4336 { 4337 /* Get the total number of things in the array, maxindex is a 4338 bad name. */ 4339 maxindex = array_type_nelts_total (type); 4340 type = strip_array_types (type); 4341 base = decay_conversion (base, complain); 4342 if (base == error_mark_node) 4343 return error_mark_node; 4344 if (TREE_SIDE_EFFECTS (base)) 4345 { 4346 base_init = get_target_expr (base); 4347 base = TARGET_EXPR_SLOT (base_init); 4348 } 4349 } 4350 else 4351 { 4352 if (base != error_mark_node && !(complain & tf_error)) 4353 error ("type to vector delete is neither pointer or array type"); 4354 return error_mark_node; 4355 } 4356 4357 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec, 4358 use_global_delete, complain); 4359 if (base_init && rval != error_mark_node) 4360 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval); 4361 4362 return rval; 4363 } 4364