xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/config/xtensa/xtensa.h (revision 33881f779a77dce6440bdc44610d94de75bebefe)
1 /* Definitions of Tensilica's Xtensa target machine for GNU compiler.
2    Copyright (C) 2001-2017 Free Software Foundation, Inc.
3    Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 /* Get Xtensa configuration settings */
22 #include "xtensa-config.h"
23 
24 /* External variables defined in xtensa.c.  */
25 
26 /* Macros used in the machine description to select various Xtensa
27    configuration options.  */
28 #ifndef XCHAL_HAVE_MUL32_HIGH
29 #define XCHAL_HAVE_MUL32_HIGH 0
30 #endif
31 #ifndef XCHAL_HAVE_RELEASE_SYNC
32 #define XCHAL_HAVE_RELEASE_SYNC 0
33 #endif
34 #ifndef XCHAL_HAVE_S32C1I
35 #define XCHAL_HAVE_S32C1I 0
36 #endif
37 #ifndef XCHAL_HAVE_THREADPTR
38 #define XCHAL_HAVE_THREADPTR 0
39 #endif
40 #ifndef XCHAL_HAVE_FP_POSTINC
41 #define XCHAL_HAVE_FP_POSTINC 0
42 #endif
43 #define TARGET_BIG_ENDIAN	XCHAL_HAVE_BE
44 #define TARGET_DENSITY		XCHAL_HAVE_DENSITY
45 #define TARGET_MAC16		XCHAL_HAVE_MAC16
46 #define TARGET_MUL16		XCHAL_HAVE_MUL16
47 #define TARGET_MUL32		XCHAL_HAVE_MUL32
48 #define TARGET_MUL32_HIGH	XCHAL_HAVE_MUL32_HIGH
49 #define TARGET_DIV32		XCHAL_HAVE_DIV32
50 #define TARGET_NSA		XCHAL_HAVE_NSA
51 #define TARGET_MINMAX		XCHAL_HAVE_MINMAX
52 #define TARGET_SEXT		XCHAL_HAVE_SEXT
53 #define TARGET_BOOLEANS		XCHAL_HAVE_BOOLEANS
54 #define TARGET_HARD_FLOAT	XCHAL_HAVE_FP
55 #define TARGET_HARD_FLOAT_DIV	XCHAL_HAVE_FP_DIV
56 #define TARGET_HARD_FLOAT_RECIP	XCHAL_HAVE_FP_RECIP
57 #define TARGET_HARD_FLOAT_SQRT	XCHAL_HAVE_FP_SQRT
58 #define TARGET_HARD_FLOAT_RSQRT	XCHAL_HAVE_FP_RSQRT
59 #define TARGET_HARD_FLOAT_POSTINC XCHAL_HAVE_FP_POSTINC
60 #define TARGET_ABS		XCHAL_HAVE_ABS
61 #define TARGET_ADDX		XCHAL_HAVE_ADDX
62 #define TARGET_RELEASE_SYNC	XCHAL_HAVE_RELEASE_SYNC
63 #define TARGET_S32C1I		XCHAL_HAVE_S32C1I
64 #define TARGET_ABSOLUTE_LITERALS XSHAL_USE_ABSOLUTE_LITERALS
65 #define TARGET_THREADPTR	XCHAL_HAVE_THREADPTR
66 #define TARGET_LOOPS	        XCHAL_HAVE_LOOPS
67 #define TARGET_WINDOWED_ABI	(XSHAL_ABI == XTHAL_ABI_WINDOWED)
68 #define TARGET_DEBUG		XCHAL_HAVE_DEBUG
69 
70 #define TARGET_DEFAULT \
71   ((XCHAL_HAVE_L32R	? 0 : MASK_CONST16) |				\
72    MASK_SERIALIZE_VOLATILE)
73 
74 #ifndef HAVE_AS_TLS
75 #define HAVE_AS_TLS 0
76 #endif
77 
78 
79 /* Target CPU builtins.  */
80 #define TARGET_CPU_CPP_BUILTINS()					\
81   do {									\
82     builtin_assert ("cpu=xtensa");					\
83     builtin_assert ("machine=xtensa");					\
84     builtin_define ("__xtensa__");					\
85     builtin_define ("__XTENSA__");					\
86     builtin_define (TARGET_WINDOWED_ABI ?				\
87 		    "__XTENSA_WINDOWED_ABI__" : "__XTENSA_CALL0_ABI__");\
88     builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
89     if (!TARGET_HARD_FLOAT)						\
90       builtin_define ("__XTENSA_SOFT_FLOAT__");				\
91   } while (0)
92 
93 #define CPP_SPEC " %(subtarget_cpp_spec) "
94 
95 #ifndef SUBTARGET_CPP_SPEC
96 #define SUBTARGET_CPP_SPEC ""
97 #endif
98 
99 #define EXTRA_SPECS							\
100   { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
101 
102 /* Target machine storage layout */
103 
104 /* Define this if most significant bit is lowest numbered
105    in instructions that operate on numbered bit-fields.  */
106 #define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
107 
108 /* Define this if most significant byte of a word is the lowest numbered.  */
109 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
110 
111 /* Define this if most significant word of a multiword number is the lowest.  */
112 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
113 
114 #define MAX_BITS_PER_WORD 32
115 
116 /* Width of a word, in units (bytes).  */
117 #define UNITS_PER_WORD 4
118 #define MIN_UNITS_PER_WORD 4
119 
120 /* Width of a floating point register.  */
121 #define UNITS_PER_FPREG 4
122 
123 /* Size in bits of various types on the target machine.  */
124 #define INT_TYPE_SIZE 32
125 #define SHORT_TYPE_SIZE 16
126 #define LONG_TYPE_SIZE 32
127 #define LONG_LONG_TYPE_SIZE 64
128 #define FLOAT_TYPE_SIZE 32
129 #define DOUBLE_TYPE_SIZE 64
130 #define LONG_DOUBLE_TYPE_SIZE 64
131 
132 /* Allocation boundary (in *bits*) for storing pointers in memory.  */
133 #define POINTER_BOUNDARY 32
134 
135 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
136 #define PARM_BOUNDARY 32
137 
138 /* Allocation boundary (in *bits*) for the code of a function.  */
139 #define FUNCTION_BOUNDARY 32
140 
141 /* Alignment of field after 'int : 0' in a structure.  */
142 #define EMPTY_FIELD_BOUNDARY 32
143 
144 /* Every structure's size must be a multiple of this.  */
145 #define STRUCTURE_SIZE_BOUNDARY 8
146 
147 /* There is no point aligning anything to a rounder boundary than this.  */
148 #define BIGGEST_ALIGNMENT 128
149 
150 /* Set this nonzero if move instructions will actually fail to work
151    when given unaligned data.  */
152 #define STRICT_ALIGNMENT 1
153 
154 /* Promote integer modes smaller than a word to SImode.  Set UNSIGNEDP
155    for QImode, because there is no 8-bit load from memory with sign
156    extension.  Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
157    loads both with and without sign extension.  */
158 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)				\
159   do {									\
160     if (GET_MODE_CLASS (MODE) == MODE_INT				\
161 	&& GET_MODE_SIZE (MODE) < UNITS_PER_WORD)			\
162       {									\
163 	if ((MODE) == QImode)						\
164 	  (UNSIGNEDP) = 1;						\
165 	(MODE) = SImode;						\
166       }									\
167   } while (0)
168 
169 /* Imitate the way many other C compilers handle alignment of
170    bitfields and the structures that contain them.  */
171 #define PCC_BITFIELD_TYPE_MATTERS 1
172 
173 /* Align string constants and constructors to at least a word boundary.
174    The typical use of this macro is to increase alignment for string
175    constants to be word aligned so that 'strcpy' calls that copy
176    constants can be done inline.  */
177 #define CONSTANT_ALIGNMENT(EXP, ALIGN)					\
178   (!optimize_size &&							\
179    (TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR)	\
180    && (ALIGN) < BITS_PER_WORD						\
181 	? BITS_PER_WORD							\
182 	: (ALIGN))
183 
184 /* Align arrays, unions and records to at least a word boundary.
185    One use of this macro is to increase alignment of medium-size
186    data to make it all fit in fewer cache lines.  Another is to
187    cause character arrays to be word-aligned so that 'strcpy' calls
188    that copy constants to character arrays can be done inline.  */
189 #undef DATA_ALIGNMENT
190 #define DATA_ALIGNMENT(TYPE, ALIGN)					\
191   (!optimize_size && (((ALIGN) < BITS_PER_WORD)				\
192     && (TREE_CODE (TYPE) == ARRAY_TYPE					\
193 	|| TREE_CODE (TYPE) == UNION_TYPE				\
194 	|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
195 
196 /* Operations between registers always perform the operation
197    on the full register even if a narrower mode is specified.  */
198 #define WORD_REGISTER_OPERATIONS 1
199 
200 /* Xtensa loads are zero-extended by default.  */
201 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
202 
203 /* Standard register usage.  */
204 
205 /* Number of actual hardware registers.
206    The hardware registers are assigned numbers for the compiler
207    from 0 to just below FIRST_PSEUDO_REGISTER.
208    All registers that the compiler knows about must be given numbers,
209    even those that are not normally considered general registers.
210 
211    The fake frame pointer and argument pointer will never appear in
212    the generated code, since they will always be eliminated and replaced
213    by either the stack pointer or the hard frame pointer.
214 
215    0 - 15	AR[0] - AR[15]
216    16		FRAME_POINTER (fake = initial sp)
217    17		ARG_POINTER (fake = initial sp + framesize)
218    18		BR[0] for floating-point CC
219    19 - 34	FR[0] - FR[15]
220    35		MAC16 accumulator */
221 
222 #define FIRST_PSEUDO_REGISTER 36
223 
224 /* Return the stabs register number to use for REGNO.  */
225 #define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO)
226 
227 /* 1 for registers that have pervasive standard uses
228    and are not available for the register allocator.  */
229 #define FIXED_REGISTERS							\
230 {									\
231   1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
232   1, 1, 0,								\
233   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
234   0,									\
235 }
236 
237 /* 1 for registers not available across function calls.
238    These must include the FIXED_REGISTERS and also any
239    registers that can be used without being saved.
240    The latter must include the registers where values are returned
241    and the register where structure-value addresses are passed.
242    Aside from that, you can include as many other registers as you like.
243 
244    The value encoding is the following:
245    1: register is used by all ABIs;
246    bit 1 is set: register is used by windowed ABI;
247    bit 2 is set: register is used by call0 ABI.
248 
249    Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE.  */
250 
251 #define CALL_USED_REGISTERS						\
252 {									\
253   1, 1, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 2, 2, 2, 2,			\
254   1, 1, 1,								\
255   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
256   1,									\
257 }
258 
259 /* For non-leaf procedures on Xtensa processors, the allocation order
260    is as specified below by REG_ALLOC_ORDER.  For leaf procedures, we
261    want to use the lowest numbered registers first to minimize
262    register window overflows.  However, local-alloc is not smart
263    enough to consider conflicts with incoming arguments.  If an
264    incoming argument in a2 is live throughout the function and
265    local-alloc decides to use a2, then the incoming argument must
266    either be spilled or copied to another register.  To get around
267    this, we define ADJUST_REG_ALLOC_ORDER to redefine
268    reg_alloc_order for leaf functions such that lowest numbered
269    registers are used first with the exception that the incoming
270    argument registers are not used until after other register choices
271    have been exhausted.  */
272 
273 #define REG_ALLOC_ORDER \
274 {  8,  9, 10, 11, 12, 13, 14, 15,  7,  6,  5,  4,  3,  2, \
275   18, \
276   19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \
277    0,  1, 16, 17, \
278   35, \
279 }
280 
281 #define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc ()
282 
283 /* For Xtensa, the only point of this is to prevent GCC from otherwise
284    giving preference to call-used registers.  To minimize window
285    overflows for the AR registers, we want to give preference to the
286    lower-numbered AR registers.  For other register files, which are
287    not windowed, we still prefer call-used registers, if there are any.  */
288 extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER];
289 #define LEAF_REGISTERS xtensa_leaf_regs
290 
291 /* For Xtensa, no remapping is necessary, but this macro must be
292    defined if LEAF_REGISTERS is defined.  */
293 #define LEAF_REG_REMAP(REGNO) (REGNO)
294 
295 /* This must be declared if LEAF_REGISTERS is set.  */
296 extern int leaf_function;
297 
298 /* Internal macros to classify a register number.  */
299 
300 /* 16 address registers + fake registers */
301 #define GP_REG_FIRST 0
302 #define GP_REG_LAST  17
303 #define GP_REG_NUM   (GP_REG_LAST - GP_REG_FIRST + 1)
304 
305 /* Coprocessor registers */
306 #define BR_REG_FIRST 18
307 #define BR_REG_LAST  18
308 #define BR_REG_NUM   (BR_REG_LAST - BR_REG_FIRST + 1)
309 
310 /* 16 floating-point registers */
311 #define FP_REG_FIRST 19
312 #define FP_REG_LAST  34
313 #define FP_REG_NUM   (FP_REG_LAST - FP_REG_FIRST + 1)
314 
315 /* MAC16 accumulator */
316 #define ACC_REG_FIRST 35
317 #define ACC_REG_LAST 35
318 #define ACC_REG_NUM  (ACC_REG_LAST - ACC_REG_FIRST + 1)
319 
320 #define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
321 #define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
322 #define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
323 #define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
324 
325 /* Return number of consecutive hard regs needed starting at reg REGNO
326    to hold something of mode MODE.  */
327 #define HARD_REGNO_NREGS(REGNO, MODE)					\
328   (FP_REG_P (REGNO) ?							\
329 	((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG) : \
330 	((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
331 
332 /* Value is 1 if hard register REGNO can hold a value of machine-mode
333    MODE.  */
334 extern char xtensa_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
335 
336 #define HARD_REGNO_MODE_OK(REGNO, MODE)					\
337   xtensa_hard_regno_mode_ok[(int) (MODE)][(REGNO)]
338 
339 /* Value is 1 if it is a good idea to tie two pseudo registers
340    when one has mode MODE1 and one has mode MODE2.
341    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
342    for any hard reg, then this must be 0 for correct output.  */
343 #define MODES_TIEABLE_P(MODE1, MODE2)					\
344   ((GET_MODE_CLASS (MODE1) == MODE_FLOAT ||				\
345     GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT)			\
346    == (GET_MODE_CLASS (MODE2) == MODE_FLOAT ||				\
347        GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
348 
349 /* Register to use for pushing function arguments.  */
350 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
351 
352 /* Base register for access to local variables of the function.  */
353 #define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + \
354 				   (TARGET_WINDOWED_ABI ? 7 : 15))
355 
356 /* The register number of the frame pointer register, which is used to
357    access automatic variables in the stack frame.  For Xtensa, this
358    register never appears in the output.  It is always eliminated to
359    either the stack pointer or the hard frame pointer.  */
360 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
361 
362 /* Base register for access to arguments of the function.  */
363 #define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
364 
365 /* For now we don't try to use the full set of boolean registers.  Without
366    software pipelining of FP operations, there's not much to gain and it's
367    a real pain to get them reloaded.  */
368 #define FPCC_REGNUM (BR_REG_FIRST + 0)
369 
370 /* It is as good or better to call a constant function address than to
371    call an address kept in a register.  */
372 #define NO_FUNCTION_CSE 1
373 
374 /* Xtensa processors have "register windows".  GCC does not currently
375    take advantage of the possibility for variable-sized windows; instead,
376    we use a fixed window size of 8.  */
377 
378 #define INCOMING_REGNO(OUT)						\
379   (TARGET_WINDOWED_ABI ?						\
380    ((GP_REG_P (OUT) &&							\
381      ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ?		\
382     (OUT) - WINDOW_SIZE : (OUT)) : (OUT))
383 
384 #define OUTGOING_REGNO(IN)						\
385   (TARGET_WINDOWED_ABI ?						\
386    ((GP_REG_P (IN) &&							\
387      ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ?		\
388     (IN) + WINDOW_SIZE : (IN)) : (IN))
389 
390 
391 /* Define the classes of registers for register constraints in the
392    machine description.  */
393 enum reg_class
394 {
395   NO_REGS,			/* no registers in set */
396   BR_REGS,			/* coprocessor boolean registers */
397   FP_REGS,			/* floating point registers */
398   ACC_REG,			/* MAC16 accumulator */
399   SP_REG,			/* sp register (aka a1) */
400   RL_REGS,			/* preferred reload regs (not sp or fp) */
401   GR_REGS,			/* integer registers except sp */
402   AR_REGS,			/* all integer registers */
403   ALL_REGS,			/* all registers */
404   LIM_REG_CLASSES		/* max value + 1 */
405 };
406 
407 #define N_REG_CLASSES (int) LIM_REG_CLASSES
408 
409 #define GENERAL_REGS AR_REGS
410 
411 /* An initializer containing the names of the register classes as C
412    string constants.  These names are used in writing some of the
413    debugging dumps.  */
414 #define REG_CLASS_NAMES							\
415 {									\
416   "NO_REGS",								\
417   "BR_REGS",								\
418   "FP_REGS",								\
419   "ACC_REG",								\
420   "SP_REG",								\
421   "RL_REGS",								\
422   "GR_REGS",								\
423   "AR_REGS",								\
424   "ALL_REGS"								\
425 }
426 
427 /* Contents of the register classes.  The Nth integer specifies the
428    contents of class N.  The way the integer MASK is interpreted is
429    that register R is in the class if 'MASK & (1 << R)' is 1.  */
430 #define REG_CLASS_CONTENTS \
431 { \
432   { 0x00000000, 0x00000000 }, /* no registers */ \
433   { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
434   { 0xfff80000, 0x00000007 }, /* floating-point registers */ \
435   { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
436   { 0x00000002, 0x00000000 }, /* stack pointer register */ \
437   { 0x0000fffd, 0x00000000 }, /* preferred reload registers */ \
438   { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
439   { 0x0003ffff, 0x00000000 }, /* integer registers */ \
440   { 0xffffffff, 0x0000000f }  /* all registers */ \
441 }
442 
443 /* A C expression whose value is a register class containing hard
444    register REGNO.  In general there is more that one such class;
445    choose a class which is "minimal", meaning that no smaller class
446    also contains the register.  */
447 #define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class (REGNO)
448 
449 /* Use the Xtensa AR register file for base registers.
450    No index registers.  */
451 #define BASE_REG_CLASS AR_REGS
452 #define INDEX_REG_CLASS NO_REGS
453 
454 /* The small_register_classes_for_mode_p hook must always return true for
455    Xtrnase, because all of the 16 AR registers may be explicitly used in
456    the RTL, as either incoming or outgoing arguments.  */
457 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
458 
459 /* Stack layout; function entry, exit and calling.  */
460 
461 #define STACK_GROWS_DOWNWARD 1
462 
463 #define FRAME_GROWS_DOWNWARD (flag_stack_protect \
464 			      || (flag_sanitize & SANITIZE_ADDRESS) != 0)
465 
466 /* Offset within stack frame to start allocating local variables at.  */
467 #define STARTING_FRAME_OFFSET						\
468   (FRAME_GROWS_DOWNWARD ? 0 : crtl->outgoing_args_size)
469 
470 /* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
471    they are eliminated to either the stack pointer or hard frame pointer.  */
472 #define ELIMINABLE_REGS							\
473 {{ ARG_POINTER_REGNUM,		STACK_POINTER_REGNUM},			\
474  { ARG_POINTER_REGNUM,		HARD_FRAME_POINTER_REGNUM},		\
475  { FRAME_POINTER_REGNUM,	STACK_POINTER_REGNUM},			\
476  { FRAME_POINTER_REGNUM,	HARD_FRAME_POINTER_REGNUM}}
477 
478 /* Specify the initial difference between the specified pair of registers.  */
479 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
480   (OFFSET) = xtensa_initial_elimination_offset ((FROM), (TO))
481 
482 /* If defined, the maximum amount of space required for outgoing
483    arguments will be computed and placed into the variable
484    'crtl->outgoing_args_size'.  No space will be pushed
485    onto the stack for each call; instead, the function prologue
486    should increase the stack frame size by this amount.  */
487 #define ACCUMULATE_OUTGOING_ARGS 1
488 
489 /* Offset from the argument pointer register to the first argument's
490    address.  On some machines it may depend on the data type of the
491    function.  If 'ARGS_GROW_DOWNWARD', this is the offset to the
492    location above the first argument's address.  */
493 #define FIRST_PARM_OFFSET(FNDECL) 0
494 
495 /* Align stack frames on 128 bits for Xtensa.  This is necessary for
496    128-bit datatypes defined in TIE (e.g., for Vectra).  */
497 #define STACK_BOUNDARY 128
498 
499 /* Use a fixed register window size of 8.  */
500 #define WINDOW_SIZE (TARGET_WINDOWED_ABI ? 8 : 0)
501 
502 /* Symbolic macros for the registers used to return integer, floating
503    point, and values of coprocessor and user-defined modes.  */
504 #define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE)
505 #define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
506 
507 /* Symbolic macros for the first/last argument registers.  */
508 #define GP_ARG_FIRST (GP_REG_FIRST + 2)
509 #define GP_ARG_LAST  (GP_REG_FIRST + 7)
510 #define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
511 #define GP_OUTGOING_ARG_LAST  (GP_REG_FIRST + 7 + WINDOW_SIZE)
512 
513 #define MAX_ARGS_IN_REGISTERS 6
514 
515 /* Don't worry about compatibility with PCC.  */
516 #define DEFAULT_PCC_STRUCT_RETURN 0
517 
518 /* A C expression that is nonzero if REGNO is the number of a hard
519    register in which function arguments are sometimes passed.  This
520    does *not* include implicit arguments such as the static chain and
521    the structure-value address.  On many machines, no registers can be
522    used for this purpose since all function arguments are pushed on
523    the stack.  */
524 #define FUNCTION_ARG_REGNO_P(N)						\
525   ((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST)
526 
527 /* Record the number of argument words seen so far, along with a flag to
528    indicate whether these are incoming arguments.  (FUNCTION_INCOMING_ARG
529    is used for both incoming and outgoing args, so a separate flag is
530    needed.  */
531 typedef struct xtensa_args
532 {
533   int arg_words;
534   int incoming;
535 } CUMULATIVE_ARGS;
536 
537 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
538   init_cumulative_args (&CUM, 0)
539 
540 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME)		\
541   init_cumulative_args (&CUM, 1)
542 
543 /* Profiling Xtensa code is typically done with the built-in profiling
544    feature of Tensilica's instruction set simulator, which does not
545    require any compiler support.  Profiling code on a real (i.e.,
546    non-simulated) Xtensa processor is currently only supported by
547    GNU/Linux with glibc.  The glibc version of _mcount doesn't require
548    counter variables.  The _mcount function needs the current PC and
549    the current return address to identify an arc in the call graph.
550    Pass the current return address as the first argument; the current
551    PC is available as a0 in _mcount's register window.  Both of these
552    values contain window size information in the two most significant
553    bits; we assume that _mcount will mask off those bits.  The call to
554    _mcount uses a window size of 8 to make sure that it doesn't clobber
555    any incoming argument values.  */
556 
557 #define NO_PROFILE_COUNTERS	1
558 
559 #define FUNCTION_PROFILER(FILE, LABELNO) \
560   do {									\
561     fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
562     if (flag_pic)							\
563       {									\
564 	fprintf (FILE, "\tmovi\ta%d, _mcount@PLT\n", WINDOW_SIZE);	\
565 	fprintf (FILE, "\tcallx%d\ta%d\n", WINDOW_SIZE, WINDOW_SIZE);	\
566       }									\
567     else								\
568       fprintf (FILE, "\tcall%d\t_mcount\n", WINDOW_SIZE);		\
569   } while (0)
570 
571 /* Stack pointer value doesn't matter at exit.  */
572 #define EXIT_IGNORE_STACK 1
573 
574 /* Size in bytes of the trampoline, as an integer.  Make sure this is
575    a multiple of TRAMPOLINE_ALIGNMENT to avoid -Wpadded warnings.  */
576 #define TRAMPOLINE_SIZE (TARGET_WINDOWED_ABI ? \
577 			 (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? \
578 			  60 : 52) : \
579 			 (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? \
580 			  32 : 24))
581 
582 /* Alignment required for trampolines, in bits.  */
583 #define TRAMPOLINE_ALIGNMENT 32
584 
585 /* If defined, a C expression that produces the machine-specific code
586    to setup the stack so that arbitrary frames can be accessed.
587 
588    On Xtensa, a stack back-trace must always begin from the stack pointer,
589    so that the register overflow save area can be located.  However, the
590    stack-walking code in GCC always begins from the hard_frame_pointer
591    register, not the stack pointer.  The frame pointer is usually equal
592    to the stack pointer, but the __builtin_return_address and
593    __builtin_frame_address functions will not work if count > 0 and
594    they are called from a routine that uses alloca.  These functions
595    are not guaranteed to work at all if count > 0 so maybe that is OK.
596 
597    A nicer solution would be to allow the architecture-specific files to
598    specify whether to start from the stack pointer or frame pointer.  That
599    would also allow us to skip the machine->accesses_prev_frame stuff that
600    we currently need to ensure that there is a frame pointer when these
601    builtin functions are used.  */
602 
603 #define SETUP_FRAME_ADDRESSES  xtensa_setup_frame_addresses
604 
605 /* A C expression whose value is RTL representing the address in a
606    stack frame where the pointer to the caller's frame is stored.
607    Assume that FRAMEADDR is an RTL expression for the address of the
608    stack frame itself.
609 
610    For Xtensa, there is no easy way to get the frame pointer if it is
611    not equivalent to the stack pointer.  Moreover, the result of this
612    macro is used for continuing to walk back up the stack, so it must
613    return the stack pointer address.  Thus, there is some inconsistency
614    here in that __builtin_frame_address will return the frame pointer
615    when count == 0 and the stack pointer when count > 0.  */
616 
617 #define DYNAMIC_CHAIN_ADDRESS(frame)					\
618   gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD))
619 
620 /* Define this if the return address of a particular stack frame is
621    accessed from the frame pointer of the previous stack frame.  */
622 #define RETURN_ADDR_IN_PREVIOUS_FRAME TARGET_WINDOWED_ABI
623 
624 /* A C expression whose value is RTL representing the value of the
625    return address for the frame COUNT steps up from the current
626    frame, after the prologue.  */
627 #define RETURN_ADDR_RTX  xtensa_return_addr
628 
629 /* Addressing modes, and classification of registers for them.  */
630 
631 /* C expressions which are nonzero if register number NUM is suitable
632    for use as a base or index register in operand addresses.  */
633 
634 #define REGNO_OK_FOR_INDEX_P(NUM) 0
635 #define REGNO_OK_FOR_BASE_P(NUM) \
636   (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
637 
638 /* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
639    valid for use as a base or index register.  */
640 
641 #ifdef REG_OK_STRICT
642 #define REG_OK_STRICT_FLAG 1
643 #else
644 #define REG_OK_STRICT_FLAG 0
645 #endif
646 
647 #define BASE_REG_P(X, STRICT)						\
648   ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER)			\
649    || REGNO_OK_FOR_BASE_P (REGNO (X)))
650 
651 #define REG_OK_FOR_INDEX_P(X) 0
652 #define REG_OK_FOR_BASE_P(X) BASE_REG_P (X, REG_OK_STRICT_FLAG)
653 
654 /* Maximum number of registers that can appear in a valid memory address.  */
655 #define MAX_REGS_PER_ADDRESS 1
656 
657 /* A C expression that is 1 if the RTX X is a constant which is a
658    valid address.  This is defined to be the same as 'CONSTANT_P (X)',
659    but rejecting CONST_DOUBLE.  */
660 #define CONSTANT_ADDRESS_P(X)						\
661   ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
662     || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH		\
663     || (GET_CODE (X) == CONST)))
664 
665 /* A C expression that is nonzero if X is a legitimate immediate
666    operand on the target machine when generating position independent
667    code.  */
668 #define LEGITIMATE_PIC_OPERAND_P(X)					\
669   ((GET_CODE (X) != SYMBOL_REF						\
670     || (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X)))		\
671    && GET_CODE (X) != LABEL_REF						\
672    && GET_CODE (X) != CONST)
673 
674 /* Specify the machine mode that this machine uses
675    for the index in the tablejump instruction.  */
676 #define CASE_VECTOR_MODE (SImode)
677 
678 /* Define this as 1 if 'char' should by default be signed; else as 0.  */
679 #define DEFAULT_SIGNED_CHAR 0
680 
681 /* Max number of bytes we can move from memory to memory
682    in one reasonably fast instruction.  */
683 #define MOVE_MAX 4
684 #define MAX_MOVE_MAX 4
685 
686 /* Prefer word-sized loads.  */
687 #define SLOW_BYTE_ACCESS 1
688 
689 /* Shift instructions ignore all but the low-order few bits.  */
690 #define SHIFT_COUNT_TRUNCATED 1
691 
692 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
693    is done just by pretending it is already truncated.  */
694 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
695 
696 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)  ((VALUE) = 32, 1)
697 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)  ((VALUE) = -1, 1)
698 
699 /* Specify the machine mode that pointers have.
700    After generation of rtl, the compiler makes no further distinction
701    between pointers and any other objects of this machine mode.  */
702 #define Pmode SImode
703 
704 /* A function address in a call instruction is a word address (for
705    indexing purposes) so give the MEM rtx a words's mode.  */
706 #define FUNCTION_MODE SImode
707 
708 #define BRANCH_COST(speed_p, predictable_p) 3
709 
710 /* How to refer to registers in assembler output.
711    This sequence is indexed by compiler's hard-register-number (see above).  */
712 #define REGISTER_NAMES							\
713 {									\
714   "a0",   "sp",   "a2",   "a3",   "a4",   "a5",   "a6",   "a7",		\
715   "a8",   "a9",   "a10",  "a11",  "a12",  "a13",  "a14",  "a15",	\
716   "fp",   "argp", "b0",							\
717   "f0",   "f1",   "f2",   "f3",   "f4",   "f5",   "f6",   "f7",		\
718   "f8",   "f9",   "f10",  "f11",  "f12",  "f13",  "f14",  "f15",	\
719   "acc"									\
720 }
721 
722 /* If defined, a C initializer for an array of structures containing a
723    name and a register number.  This macro defines additional names
724    for hard registers, thus allowing the 'asm' option in declarations
725    to refer to registers using alternate names.  */
726 #define ADDITIONAL_REGISTER_NAMES					\
727 {									\
728   { "a1",	 1 + GP_REG_FIRST }					\
729 }
730 
731 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
732 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
733 
734 /* Globalizing directive for a label.  */
735 #define GLOBAL_ASM_OP "\t.global\t"
736 
737 /* Declare an uninitialized external linkage data object.  */
738 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
739   asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
740 
741 /* This is how to output an element of a case-vector that is absolute.  */
742 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE)				\
743   fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE),		\
744 	   LOCAL_LABEL_PREFIX, VALUE)
745 
746 /* This is how to output an element of a case-vector that is relative.
747    This is used for pc-relative code.  */
748 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)		\
749   do {									\
750     fprintf (STREAM, "%s%sL%u-%sL%u\n",	integer_asm_op (4, TRUE),	\
751 	     LOCAL_LABEL_PREFIX, (VALUE),				\
752 	     LOCAL_LABEL_PREFIX, (REL));				\
753   } while (0)
754 
755 /* This is how to output an assembler line that says to advance the
756    location counter to a multiple of 2**LOG bytes.  */
757 #define ASM_OUTPUT_ALIGN(STREAM, LOG)					\
758   do {									\
759     if ((LOG) != 0)							\
760       fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG));			\
761   } while (0)
762 
763 /* Indicate that jump tables go in the text section.  This is
764    necessary when compiling PIC code.  */
765 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
766 
767 
768 /* Define the strings to put out for each section in the object file.  */
769 #define TEXT_SECTION_ASM_OP	"\t.text"
770 #define DATA_SECTION_ASM_OP	"\t.data"
771 #define BSS_SECTION_ASM_OP	"\t.section\t.bss"
772 
773 
774 /* Define output to appear before the constant pool.  */
775 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE)          \
776   do {									\
777     if ((SIZE) > 0 || !TARGET_WINDOWED_ABI)				\
778       {									\
779 	resolve_unique_section ((FUNDECL), 0, flag_function_sections);	\
780 	switch_to_section (function_section (FUNDECL));			\
781 	fprintf (FILE, "\t.literal_position\n");			\
782       }									\
783   } while (0)
784 
785 
786 /* A C statement (with or without semicolon) to output a constant in
787    the constant pool, if it needs special treatment.  */
788 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
789   do {									\
790     xtensa_output_literal (FILE, X, MODE, LABELNO);			\
791     goto JUMPTO;							\
792   } while (0)
793 
794 /* How to start an assembler comment.  */
795 #define ASM_COMMENT_START "#"
796 
797 /* Exception handling.  Xtensa uses much of the standard DWARF2 unwinding
798    machinery, but the variable size register window save areas are too
799    complicated to efficiently describe with CFI entries.  The CFA must
800    still be specified in DWARF so that DW_AT_frame_base is set correctly
801    for debugging.  */
802 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 0)
803 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (0)
804 #define DWARF_ALT_FRAME_RETURN_COLUMN 16
805 #define DWARF_FRAME_REGISTERS (DWARF_ALT_FRAME_RETURN_COLUMN		\
806 			       + (TARGET_WINDOWED_ABI ? 0 : 1))
807 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) + 2 : INVALID_REGNUM)
808 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)			\
809   (flag_pic								\
810    ? (((GLOBAL) ? DW_EH_PE_indirect : 0)				\
811       | DW_EH_PE_pcrel | DW_EH_PE_sdata4)				\
812    : DW_EH_PE_absptr)
813 
814 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 10)
815 
816 /* Emit a PC-relative relocation.  */
817 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL)			\
818   do {									\
819     fputs (integer_asm_op (SIZE, FALSE), FILE);				\
820     assemble_name (FILE, LABEL);					\
821     fputs ("@pcrel", FILE);						\
822   } while (0)
823 
824 /* Xtensa constant pool breaks the devices in crtstuff.c to control
825    section in where code resides.  We have to write it as asm code.  Use
826    a MOVI and let the assembler relax it -- for the .init and .fini
827    sections, the assembler knows to put the literal in the right
828    place.  */
829 #if defined(__XTENSA_WINDOWED_ABI__)
830 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
831     asm (SECTION_OP "\n\
832 	movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\
833 	callx8\ta8\n" \
834 	TEXT_SECTION_ASM_OP);
835 #elif defined(__XTENSA_CALL0_ABI__)
836 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
837     asm (SECTION_OP "\n\
838 	movi\ta0, " USER_LABEL_PREFIX #FUNC "\n\
839 	callx0\ta0\n" \
840 	TEXT_SECTION_ASM_OP);
841 #endif
842