1 /* Subroutines for insn-output.c for VAX. 2 Copyright (C) 1987-2020 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3, or (at your option) 9 any later version. 10 11 GCC is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #define IN_TARGET_CODE 1 21 22 #include "config.h" 23 #include "system.h" 24 #include "coretypes.h" 25 #include "backend.h" 26 #include "target.h" 27 #include "rtl.h" 28 #include "tree.h" 29 #include "stringpool.h" 30 #include "attribs.h" 31 #include "df.h" 32 #include "memmodel.h" 33 #include "tm_p.h" 34 #include "optabs.h" 35 #include "regs.h" 36 #include "emit-rtl.h" 37 #include "calls.h" 38 #include "varasm.h" 39 #include "conditions.h" 40 #include "output.h" 41 #include "expr.h" 42 #include "reload.h" 43 #include "builtins.h" 44 45 /* This file should be included last. */ 46 #include "target-def.h" 47 48 static void vax_option_override (void); 49 static bool vax_legitimate_address_p (machine_mode, rtx, bool); 50 static void vax_file_start (void); 51 static void vax_init_libfuncs (void); 52 static void vax_output_mi_thunk (FILE *, tree, HOST_WIDE_INT, 53 HOST_WIDE_INT, tree); 54 static int vax_address_cost_1 (rtx); 55 static int vax_address_cost (rtx, machine_mode, addr_space_t, bool); 56 static bool vax_rtx_costs (rtx, machine_mode, int, int, int *, bool); 57 static rtx vax_function_arg (cumulative_args_t, const function_arg_info &); 58 static void vax_function_arg_advance (cumulative_args_t, 59 const function_arg_info &); 60 static rtx vax_struct_value_rtx (tree, int); 61 static void vax_asm_trampoline_template (FILE *); 62 static void vax_trampoline_init (rtx, tree, rtx); 63 static poly_int64 vax_return_pops_args (tree, tree, poly_int64); 64 static bool vax_mode_dependent_address_p (const_rtx, addr_space_t); 65 static HOST_WIDE_INT vax_starting_frame_offset (void); 66 67 /* Initialize the GCC target structure. */ 68 #undef TARGET_ASM_ALIGNED_HI_OP 69 #define TARGET_ASM_ALIGNED_HI_OP "\t.word\t" 70 71 #undef TARGET_ASM_FILE_START 72 #define TARGET_ASM_FILE_START vax_file_start 73 #undef TARGET_ASM_FILE_START_APP_OFF 74 #define TARGET_ASM_FILE_START_APP_OFF true 75 76 #undef TARGET_INIT_LIBFUNCS 77 #define TARGET_INIT_LIBFUNCS vax_init_libfuncs 78 79 #undef TARGET_ASM_OUTPUT_MI_THUNK 80 #define TARGET_ASM_OUTPUT_MI_THUNK vax_output_mi_thunk 81 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK 82 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall 83 84 #undef TARGET_RTX_COSTS 85 #define TARGET_RTX_COSTS vax_rtx_costs 86 #undef TARGET_ADDRESS_COST 87 #define TARGET_ADDRESS_COST vax_address_cost 88 89 #undef TARGET_PROMOTE_PROTOTYPES 90 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true 91 92 #undef TARGET_FUNCTION_ARG 93 #define TARGET_FUNCTION_ARG vax_function_arg 94 #undef TARGET_FUNCTION_ARG_ADVANCE 95 #define TARGET_FUNCTION_ARG_ADVANCE vax_function_arg_advance 96 97 #undef TARGET_STRUCT_VALUE_RTX 98 #define TARGET_STRUCT_VALUE_RTX vax_struct_value_rtx 99 100 #undef TARGET_LRA_P 101 #define TARGET_LRA_P hook_bool_void_false 102 103 #undef TARGET_LEGITIMATE_ADDRESS_P 104 #define TARGET_LEGITIMATE_ADDRESS_P vax_legitimate_address_p 105 #undef TARGET_MODE_DEPENDENT_ADDRESS_P 106 #define TARGET_MODE_DEPENDENT_ADDRESS_P vax_mode_dependent_address_p 107 108 #undef TARGET_FRAME_POINTER_REQUIRED 109 #define TARGET_FRAME_POINTER_REQUIRED hook_bool_void_true 110 111 #undef TARGET_ASM_TRAMPOLINE_TEMPLATE 112 #define TARGET_ASM_TRAMPOLINE_TEMPLATE vax_asm_trampoline_template 113 #undef TARGET_TRAMPOLINE_INIT 114 #define TARGET_TRAMPOLINE_INIT vax_trampoline_init 115 #undef TARGET_RETURN_POPS_ARGS 116 #define TARGET_RETURN_POPS_ARGS vax_return_pops_args 117 118 #undef TARGET_OPTION_OVERRIDE 119 #define TARGET_OPTION_OVERRIDE vax_option_override 120 121 #if TARGET_ELF 122 #undef TARGET_BINDS_LOCAL_P 123 #define TARGET_BINDS_LOCAL_P vax_elf_binds_local_p 124 125 static bool 126 vax_elf_binds_local_p (const_tree exp) 127 { 128 return default_binds_local_p_3 (exp, (flag_shlib | flag_pic) != 0, 129 true, false, false); 130 } 131 #endif 132 133 #undef TARGET_STARTING_FRAME_OFFSET 134 #define TARGET_STARTING_FRAME_OFFSET vax_starting_frame_offset 135 136 #undef TARGET_HAVE_SPECULATION_SAFE_VALUE 137 #define TARGET_HAVE_SPECULATION_SAFE_VALUE speculation_safe_value_not_needed 138 139 struct gcc_target targetm = TARGET_INITIALIZER; 140 141 /* Set global variables as needed for the options enabled. */ 142 143 static void 144 vax_option_override (void) 145 { 146 /* We're VAX floating point, not IEEE floating point. */ 147 if (TARGET_G_FLOAT) 148 REAL_MODE_FORMAT (DFmode) = &vax_g_format; 149 150 flag_dwarf2_cfi_asm = 0; 151 152 #ifdef SUBTARGET_OVERRIDE_OPTIONS 153 SUBTARGET_OVERRIDE_OPTIONS; 154 #endif 155 } 156 157 static void 158 vax_add_reg_cfa_offset (rtx insn, int offset, rtx src) 159 { 160 rtx x; 161 162 x = plus_constant (Pmode, frame_pointer_rtx, offset); 163 x = gen_rtx_MEM (SImode, x); 164 x = gen_rtx_SET (x, src); 165 add_reg_note (insn, REG_CFA_OFFSET, x); 166 } 167 168 /* Generate the assembly code for function entry. FILE is a stdio 169 stream to output the code to. SIZE is an int: how many units of 170 temporary storage to allocate. 171 172 Refer to the array `regs_ever_live' to determine which registers to 173 save; `regs_ever_live[I]' is nonzero if register number I is ever 174 used in the function. This function is responsible for knowing 175 which registers should not be saved even if used. */ 176 177 void 178 vax_expand_prologue (void) 179 { 180 int regno, offset; 181 int mask = 0; 182 HOST_WIDE_INT size; 183 rtx insn; 184 185 offset = 20; 186 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) 187 if (df_regs_ever_live_p (regno) && !call_used_or_fixed_reg_p (regno)) 188 { 189 mask |= 1 << regno; 190 offset += 4; 191 } 192 193 insn = emit_insn (gen_procedure_entry_mask (GEN_INT (mask))); 194 RTX_FRAME_RELATED_P (insn) = 1; 195 196 /* The layout of the CALLG/S stack frame is follows: 197 198 <- CFA, AP 199 r11 200 r10 201 ... Registers saved as specified by MASK 202 r3 203 r2 204 return-addr 205 old fp 206 old ap 207 old psw 208 zero 209 <- FP, SP 210 211 The rest of the prologue will adjust the SP for the local frame. */ 212 213 add_reg_note (insn, REG_CFA_DEF_CFA, 214 plus_constant (Pmode, frame_pointer_rtx, offset)); 215 insn = emit_insn (gen_blockage ()); 216 RTX_FRAME_RELATED_P (insn) = 1; 217 218 #ifdef notyet 219 /* 220 * We can't do this, the dwarf code asserts and we don't have yet a 221 * way to get to the psw 222 */ 223 vax_add_reg_cfa_offset (insn, 4, gen_rtx_REG (Pmode, PSW_REGNUM)); 224 #endif 225 vax_add_reg_cfa_offset (insn, 8, arg_pointer_rtx); 226 vax_add_reg_cfa_offset (insn, 12, frame_pointer_rtx); 227 vax_add_reg_cfa_offset (insn, 16, pc_rtx); 228 229 offset = 20; 230 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) 231 if (mask & (1 << regno)) 232 { 233 vax_add_reg_cfa_offset (insn, offset, gen_rtx_REG (SImode, regno)); 234 offset += 4; 235 } 236 237 /* Allocate the local stack frame. */ 238 size = get_frame_size (); 239 size -= vax_starting_frame_offset (); 240 emit_insn (gen_addsi3 (stack_pointer_rtx, 241 stack_pointer_rtx, GEN_INT (-size))); 242 243 /* Do not allow instructions referencing local stack memory to be 244 scheduled before the frame is allocated. This is more pedantic 245 than anything else, given that VAX does not currently have a 246 scheduling description. */ 247 emit_insn (gen_blockage ()); 248 } 249 250 /* When debugging with stabs, we want to output an extra dummy label 251 so that gas can distinguish between D_float and G_float prior to 252 processing the .stabs directive identifying type double. */ 253 static void 254 vax_file_start (void) 255 { 256 default_file_start (); 257 258 if (write_symbols == DBX_DEBUG) 259 fprintf (asm_out_file, "___vax_%c_doubles:\n", ASM_DOUBLE_CHAR); 260 } 261 262 /* We can use the BSD C library routines for the libgcc calls that are 263 still generated, since that's what they boil down to anyways. When 264 ELF, avoid the user's namespace. */ 265 266 static void 267 vax_init_libfuncs (void) 268 { 269 if (TARGET_BSD_DIVMOD) 270 { 271 set_optab_libfunc (udiv_optab, SImode, TARGET_ELF ? "*__udiv" : "*udiv"); 272 set_optab_libfunc (umod_optab, SImode, TARGET_ELF ? "*__urem" : "*urem"); 273 } 274 } 275 276 /* This is like nonimmediate_operand with a restriction on the type of MEM. */ 277 278 static void 279 split_quadword_operands (rtx insn, enum rtx_code code, rtx * operands, 280 rtx * low, int n) 281 { 282 int i; 283 284 for (i = 0; i < n; i++) 285 low[i] = 0; 286 287 for (i = 0; i < n; i++) 288 { 289 if (MEM_P (operands[i]) 290 && (GET_CODE (XEXP (operands[i], 0)) == PRE_DEC 291 || GET_CODE (XEXP (operands[i], 0)) == POST_INC)) 292 { 293 rtx addr = XEXP (operands[i], 0); 294 operands[i] = low[i] = gen_rtx_MEM (SImode, addr); 295 } 296 else if (optimize_size && MEM_P (operands[i]) 297 && REG_P (XEXP (operands[i], 0)) 298 && (code != MINUS || operands[1] != const0_rtx) 299 && find_regno_note (insn, REG_DEAD, 300 REGNO (XEXP (operands[i], 0)))) 301 { 302 low[i] = gen_rtx_MEM (SImode, 303 gen_rtx_POST_INC (Pmode, 304 XEXP (operands[i], 0))); 305 operands[i] = gen_rtx_MEM (SImode, XEXP (operands[i], 0)); 306 } 307 else 308 { 309 low[i] = operand_subword (operands[i], 0, 0, DImode); 310 operands[i] = operand_subword (operands[i], 1, 0, DImode); 311 } 312 } 313 } 314 315 void 316 print_operand_address (FILE * file, rtx addr) 317 { 318 rtx orig = addr; 319 rtx reg1, breg, ireg; 320 rtx offset; 321 322 retry: 323 switch (GET_CODE (addr)) 324 { 325 case MEM: 326 fprintf (file, "*"); 327 addr = XEXP (addr, 0); 328 goto retry; 329 330 case REG: 331 fprintf (file, "(%s)", reg_names[REGNO (addr)]); 332 break; 333 334 case PRE_DEC: 335 fprintf (file, "-(%s)", reg_names[REGNO (XEXP (addr, 0))]); 336 break; 337 338 case POST_INC: 339 fprintf (file, "(%s)+", reg_names[REGNO (XEXP (addr, 0))]); 340 break; 341 342 case PLUS: 343 /* There can be either two or three things added here. One must be a 344 REG. One can be either a REG or a MULT of a REG and an appropriate 345 constant, and the third can only be a constant or a MEM. 346 347 We get these two or three things and put the constant or MEM in 348 OFFSET, the MULT or REG in IREG, and the REG in BREG. If we have 349 a register and can't tell yet if it is a base or index register, 350 put it into REG1. */ 351 352 reg1 = 0; ireg = 0; breg = 0; offset = 0; 353 354 if (CONSTANT_ADDRESS_P (XEXP (addr, 0)) 355 || MEM_P (XEXP (addr, 0))) 356 { 357 offset = XEXP (addr, 0); 358 addr = XEXP (addr, 1); 359 } 360 else if (CONSTANT_ADDRESS_P (XEXP (addr, 1)) 361 || MEM_P (XEXP (addr, 1))) 362 { 363 offset = XEXP (addr, 1); 364 addr = XEXP (addr, 0); 365 } 366 else if (GET_CODE (XEXP (addr, 1)) == MULT) 367 { 368 ireg = XEXP (addr, 1); 369 addr = XEXP (addr, 0); 370 } 371 else if (GET_CODE (XEXP (addr, 0)) == MULT) 372 { 373 ireg = XEXP (addr, 0); 374 addr = XEXP (addr, 1); 375 } 376 else if (REG_P (XEXP (addr, 1))) 377 { 378 reg1 = XEXP (addr, 1); 379 addr = XEXP (addr, 0); 380 } 381 else if (REG_P (XEXP (addr, 0))) 382 { 383 reg1 = XEXP (addr, 0); 384 addr = XEXP (addr, 1); 385 } 386 else 387 { 388 debug_rtx (orig); 389 gcc_unreachable (); 390 } 391 392 if (REG_P (addr)) 393 { 394 if (reg1) 395 ireg = addr; 396 else 397 reg1 = addr; 398 } 399 else if (GET_CODE (addr) == MULT) 400 ireg = addr; 401 else if (GET_CODE (addr) == PLUS) 402 { 403 if (CONSTANT_ADDRESS_P (XEXP (addr, 0)) 404 || MEM_P (XEXP (addr, 0))) 405 { 406 if (offset) 407 { 408 if (CONST_INT_P (offset)) 409 offset = plus_constant (Pmode, XEXP (addr, 0), 410 INTVAL (offset)); 411 else 412 { 413 gcc_assert (CONST_INT_P (XEXP (addr, 0))); 414 offset = plus_constant (Pmode, offset, 415 INTVAL (XEXP (addr, 0))); 416 } 417 } 418 offset = XEXP (addr, 0); 419 } 420 else if (REG_P (XEXP (addr, 0))) 421 { 422 if (reg1) 423 ireg = reg1, breg = XEXP (addr, 0), reg1 = 0; 424 else 425 reg1 = XEXP (addr, 0); 426 } 427 else if (GET_CODE (XEXP (addr, 0)) == MULT && !ireg) 428 { 429 ireg = XEXP (addr, 0); 430 } 431 else 432 { 433 debug_rtx (orig); 434 gcc_unreachable (); 435 } 436 437 if (CONSTANT_ADDRESS_P (XEXP (addr, 1)) 438 || MEM_P (XEXP (addr, 1))) 439 { 440 if (offset) 441 { 442 if (CONST_INT_P (offset)) 443 offset = plus_constant (Pmode, XEXP (addr, 1), 444 INTVAL (offset)); 445 else 446 { 447 gcc_assert (CONST_INT_P (XEXP (addr, 1))); 448 offset = plus_constant (Pmode, offset, 449 INTVAL (XEXP (addr, 1))); 450 } 451 } 452 offset = XEXP (addr, 1); 453 } 454 else if (REG_P (XEXP (addr, 1))) 455 { 456 if (reg1) 457 ireg = reg1, breg = XEXP (addr, 1), reg1 = 0; 458 else 459 reg1 = XEXP (addr, 1); 460 } 461 else if (GET_CODE (XEXP (addr, 1)) == MULT && !ireg) 462 { 463 ireg = XEXP (addr, 1); 464 } 465 else 466 { 467 debug_rtx (orig); 468 gcc_unreachable (); 469 } 470 } 471 else 472 { 473 debug_rtx (orig); 474 gcc_unreachable (); 475 } 476 477 /* If REG1 is nonzero, figure out if it is a base or index register. */ 478 if (reg1) 479 { 480 if (breg 481 || (flag_pic && GET_CODE (addr) == SYMBOL_REF) 482 || (offset 483 && (MEM_P (offset) 484 || (flag_pic && symbolic_operand (offset, SImode))))) 485 { 486 if (ireg) 487 { 488 debug_rtx (orig); 489 gcc_unreachable (); 490 } 491 ireg = reg1; 492 } 493 else 494 breg = reg1; 495 } 496 497 if (offset != 0) 498 { 499 if (flag_pic && symbolic_operand (offset, SImode)) 500 { 501 if (breg && ireg) 502 { 503 debug_rtx (orig); 504 output_operand_lossage ("symbol used with both base and indexed registers"); 505 } 506 507 #ifdef NO_EXTERNAL_INDIRECT_ADDRESS 508 if (flag_pic > 1 && GET_CODE (offset) == CONST 509 && GET_CODE (XEXP (XEXP (offset, 0), 0)) == SYMBOL_REF 510 && !SYMBOL_REF_LOCAL_P (XEXP (XEXP (offset, 0), 0))) 511 { 512 debug_rtx (orig); 513 output_operand_lossage ("symbol with offset used in PIC mode"); 514 } 515 #endif 516 517 /* symbol(reg) isn't PIC, but symbol[reg] is. */ 518 if (breg) 519 { 520 ireg = breg; 521 breg = 0; 522 } 523 524 } 525 526 output_address (VOIDmode, offset); 527 } 528 529 if (breg != 0) 530 fprintf (file, "(%s)", reg_names[REGNO (breg)]); 531 532 if (ireg != 0) 533 { 534 if (GET_CODE (ireg) == MULT) 535 ireg = XEXP (ireg, 0); 536 if (! REG_P (ireg)) 537 { 538 debug_rtx (orig); 539 output_operand_lossage ("non-register index expression"); 540 } 541 fprintf (file, "[%s]", reg_names[REGNO (ireg)]); 542 } 543 break; 544 545 default: 546 gcc_assert (! REG_P(addr)); 547 output_addr_const (file, addr); 548 } 549 } 550 551 void 552 print_operand (FILE *file, rtx x, int code) 553 { 554 if (code == '#') 555 fputc (ASM_DOUBLE_CHAR, file); 556 else if (code == '|') 557 fputs (REGISTER_PREFIX, file); 558 else if (code == 'c') 559 fputs (cond_name (x), file); 560 else if (code == 'C') 561 fputs (rev_cond_name (x), file); 562 else if (code == 'D' && CONST_INT_P (x) && INTVAL (x) < 0) 563 fprintf (file, "$" NEG_HWI_PRINT_HEX16, INTVAL (x)); 564 else if (code == 'P' && CONST_INT_P (x)) 565 fprintf (file, "$" HOST_WIDE_INT_PRINT_DEC, INTVAL (x) + 1); 566 else if (code == 'N' && CONST_INT_P (x)) 567 fprintf (file, "$" HOST_WIDE_INT_PRINT_DEC, ~ INTVAL (x)); 568 /* rotl instruction cannot deal with negative arguments. */ 569 else if (code == 'R' && CONST_INT_P (x)) 570 fprintf (file, "$" HOST_WIDE_INT_PRINT_DEC, 32 - INTVAL (x)); 571 else if (code == 'H' && CONST_INT_P (x)) 572 fprintf (file, "$%d", (int) (0xffff & ~ INTVAL (x))); 573 else if (code == 'h' && CONST_INT_P (x)) 574 fprintf (file, "$%d", (short) - INTVAL (x)); 575 else if (code == 'B' && CONST_INT_P (x)) 576 fprintf (file, "$%d", (int) (0xff & ~ INTVAL (x))); 577 else if (code == 'b' && CONST_INT_P (x)) 578 fprintf (file, "$%d", (int) (0xff & - INTVAL (x))); 579 else if (code == 'M' && CONST_INT_P (x)) 580 fprintf (file, "$%d", ~((1 << INTVAL (x)) - 1)); 581 else if (code == 'x' && CONST_INT_P (x)) 582 fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (x)); 583 else if (REG_P (x)) 584 fprintf (file, "%s", reg_names[REGNO (x)]); 585 else if (MEM_P (x)) 586 output_address (GET_MODE (x), XEXP (x, 0)); 587 else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == SFmode) 588 { 589 char dstr[30]; 590 real_to_decimal (dstr, CONST_DOUBLE_REAL_VALUE (x), 591 sizeof (dstr), 0, 1); 592 fprintf (file, "$0f%s", dstr); 593 } 594 else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == DFmode) 595 { 596 char dstr[30]; 597 real_to_decimal (dstr, CONST_DOUBLE_REAL_VALUE (x), 598 sizeof (dstr), 0, 1); 599 fprintf (file, "$0%c%s", ASM_DOUBLE_CHAR, dstr); 600 } 601 else if (GET_CODE (x) == SUBREG) 602 { 603 debug_rtx (x); 604 output_operand_lossage ("SUBREG operand"); 605 } 606 else 607 { 608 if (flag_pic > 1 && symbolic_operand (x, SImode)) 609 { 610 debug_rtx (x); 611 output_operand_lossage ("symbol used as immediate operand"); 612 } 613 putc ('$', file); 614 output_addr_const (file, x); 615 } 616 } 617 618 const char * 619 cond_name (rtx op) 620 { 621 switch (GET_CODE (op)) 622 { 623 case NE: 624 return "neq"; 625 case EQ: 626 return "eql"; 627 case GE: 628 return "geq"; 629 case GT: 630 return "gtr"; 631 case LE: 632 return "leq"; 633 case LT: 634 return "lss"; 635 case GEU: 636 return "gequ"; 637 case GTU: 638 return "gtru"; 639 case LEU: 640 return "lequ"; 641 case LTU: 642 return "lssu"; 643 644 default: 645 gcc_unreachable (); 646 } 647 } 648 649 const char * 650 rev_cond_name (rtx op) 651 { 652 switch (GET_CODE (op)) 653 { 654 case EQ: 655 return "neq"; 656 case NE: 657 return "eql"; 658 case LT: 659 return "geq"; 660 case LE: 661 return "gtr"; 662 case GT: 663 return "leq"; 664 case GE: 665 return "lss"; 666 case LTU: 667 return "gequ"; 668 case LEU: 669 return "gtru"; 670 case GTU: 671 return "lequ"; 672 case GEU: 673 return "lssu"; 674 675 default: 676 gcc_unreachable (); 677 } 678 } 679 680 static bool 681 vax_float_literal (rtx c) 682 { 683 machine_mode mode; 684 const REAL_VALUE_TYPE *r; 685 REAL_VALUE_TYPE s; 686 int i; 687 688 if (GET_CODE (c) != CONST_DOUBLE) 689 return false; 690 691 mode = GET_MODE (c); 692 693 if (c == const_tiny_rtx[(int) mode][0] 694 || c == const_tiny_rtx[(int) mode][1] 695 || c == const_tiny_rtx[(int) mode][2]) 696 return true; 697 698 r = CONST_DOUBLE_REAL_VALUE (c); 699 700 for (i = 0; i < 7; i++) 701 { 702 int x = 1 << i; 703 bool ok; 704 real_from_integer (&s, mode, x, SIGNED); 705 706 if (real_equal (r, &s)) 707 return true; 708 ok = exact_real_inverse (mode, &s); 709 gcc_assert (ok); 710 if (real_equal (r, &s)) 711 return true; 712 } 713 return false; 714 } 715 716 717 /* Return the cost in cycles of a memory address, relative to register 718 indirect. 719 720 Each of the following adds the indicated number of cycles: 721 722 1 - symbolic address 723 1 - pre-decrement 724 1 - indexing and/or offset(register) 725 2 - indirect */ 726 727 728 static int 729 vax_address_cost_1 (rtx addr) 730 { 731 int reg = 0, indexed = 0, indir = 0, offset = 0, predec = 0; 732 rtx plus_op0 = 0, plus_op1 = 0; 733 restart: 734 switch (GET_CODE (addr)) 735 { 736 case PRE_DEC: 737 predec = 1; 738 /* FALLTHRU */ 739 case REG: 740 case SUBREG: 741 case POST_INC: 742 reg = 1; 743 break; 744 case MULT: 745 indexed = 1; /* 2 on VAX 2 */ 746 break; 747 case CONST_INT: 748 /* byte offsets cost nothing (on a VAX 2, they cost 1 cycle) */ 749 if (offset == 0) 750 offset = (unsigned HOST_WIDE_INT)(INTVAL(addr)+128) > 256; 751 break; 752 case CONST: 753 case SYMBOL_REF: 754 offset = 1; /* 2 on VAX 2 */ 755 break; 756 case LABEL_REF: /* this is probably a byte offset from the pc */ 757 if (offset == 0) 758 offset = 1; 759 break; 760 case PLUS: 761 if (plus_op0) 762 plus_op1 = XEXP (addr, 0); 763 else 764 plus_op0 = XEXP (addr, 0); 765 addr = XEXP (addr, 1); 766 goto restart; 767 case MEM: 768 indir = 2; /* 3 on VAX 2 */ 769 addr = XEXP (addr, 0); 770 goto restart; 771 default: 772 break; 773 } 774 775 /* Up to 3 things can be added in an address. They are stored in 776 plus_op0, plus_op1, and addr. */ 777 778 if (plus_op0) 779 { 780 addr = plus_op0; 781 plus_op0 = 0; 782 goto restart; 783 } 784 if (plus_op1) 785 { 786 addr = plus_op1; 787 plus_op1 = 0; 788 goto restart; 789 } 790 /* Indexing and register+offset can both be used (except on a VAX 2) 791 without increasing execution time over either one alone. */ 792 if (reg && indexed && offset) 793 return reg + indir + offset + predec; 794 return reg + indexed + indir + offset + predec; 795 } 796 797 static int 798 vax_address_cost (rtx x, machine_mode mode ATTRIBUTE_UNUSED, 799 addr_space_t as ATTRIBUTE_UNUSED, 800 bool speed ATTRIBUTE_UNUSED) 801 { 802 return (1 + (REG_P (x) ? 0 : vax_address_cost_1 (x))); 803 } 804 805 /* Cost of an expression on a VAX. This version has costs tuned for the 806 CVAX chip (found in the VAX 3 series) with comments for variations on 807 other models. 808 809 FIXME: The costs need review, particularly for TRUNCATE, FLOAT_EXTEND 810 and FLOAT_TRUNCATE. We need a -mcpu option to allow provision of 811 costs on a per cpu basis. */ 812 813 static bool 814 vax_rtx_costs (rtx x, machine_mode mode, int outer_code, 815 int opno ATTRIBUTE_UNUSED, 816 int *total, bool speed ATTRIBUTE_UNUSED) 817 { 818 int code = GET_CODE (x); 819 int i = 0; /* may be modified in switch */ 820 const char *fmt = GET_RTX_FORMAT (code); /* may be modified in switch */ 821 822 switch (code) 823 { 824 /* On a VAX, constants from 0..63 are cheap because they can use the 825 1 byte literal constant format. Compare to -1 should be made cheap 826 so that decrement-and-branch insns can be formed more easily (if 827 the value -1 is copied to a register some decrement-and-branch 828 patterns will not match). */ 829 case CONST_INT: 830 if (INTVAL (x) == 0) 831 { 832 *total = 0; 833 return true; 834 } 835 if (outer_code == AND) 836 { 837 *total = ((unsigned HOST_WIDE_INT) ~INTVAL (x) <= 077) ? 1 : 2; 838 return true; 839 } 840 if ((unsigned HOST_WIDE_INT) INTVAL (x) <= 077 841 || (outer_code == COMPARE 842 && INTVAL (x) == -1) 843 || ((outer_code == PLUS || outer_code == MINUS) 844 && (unsigned HOST_WIDE_INT) -INTVAL (x) <= 077)) 845 { 846 *total = 1; 847 return true; 848 } 849 /* FALLTHRU */ 850 851 case CONST: 852 case LABEL_REF: 853 case SYMBOL_REF: 854 *total = 3; 855 return true; 856 857 case CONST_DOUBLE: 858 if (GET_MODE_CLASS (mode) == MODE_FLOAT) 859 *total = vax_float_literal (x) ? 5 : 8; 860 else 861 *total = ((CONST_DOUBLE_HIGH (x) == 0 862 && (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x) < 64) 863 || (outer_code == PLUS 864 && CONST_DOUBLE_HIGH (x) == -1 865 && (unsigned HOST_WIDE_INT)-CONST_DOUBLE_LOW (x) < 64)) 866 ? 2 : 5; 867 return true; 868 869 case POST_INC: 870 *total = 2; 871 return true; /* Implies register operand. */ 872 873 case PRE_DEC: 874 *total = 3; 875 return true; /* Implies register operand. */ 876 877 case MULT: 878 switch (mode) 879 { 880 case E_DFmode: 881 *total = 16; /* 4 on VAX 9000 */ 882 break; 883 case E_SFmode: 884 *total = 9; /* 4 on VAX 9000, 12 on VAX 2 */ 885 break; 886 case E_DImode: 887 *total = 16; /* 6 on VAX 9000, 28 on VAX 2 */ 888 break; 889 case E_SImode: 890 case E_HImode: 891 case E_QImode: 892 *total = 10; /* 3-4 on VAX 9000, 20-28 on VAX 2 */ 893 break; 894 default: 895 *total = MAX_COST; /* Mode is not supported. */ 896 return true; 897 } 898 break; 899 900 case UDIV: 901 if (mode != SImode) 902 { 903 *total = MAX_COST; /* Mode is not supported. */ 904 return true; 905 } 906 *total = 17; 907 break; 908 909 case DIV: 910 if (mode == DImode) 911 *total = 30; /* Highly variable. */ 912 else if (mode == DFmode) 913 /* divide takes 28 cycles if the result is not zero, 13 otherwise */ 914 *total = 24; 915 else 916 *total = 11; /* 25 on VAX 2 */ 917 break; 918 919 case MOD: 920 *total = 23; 921 break; 922 923 case UMOD: 924 if (mode != SImode) 925 { 926 *total = MAX_COST; /* Mode is not supported. */ 927 return true; 928 } 929 *total = 29; 930 break; 931 932 case FLOAT: 933 *total = (6 /* 4 on VAX 9000 */ 934 + (mode == DFmode) + (GET_MODE (XEXP (x, 0)) != SImode)); 935 break; 936 937 case FIX: 938 *total = 7; /* 17 on VAX 2 */ 939 break; 940 941 case ASHIFT: 942 case LSHIFTRT: 943 case ASHIFTRT: 944 if (mode == DImode) 945 *total = 12; 946 else 947 *total = 10; /* 6 on VAX 9000 */ 948 break; 949 950 case ROTATE: 951 case ROTATERT: 952 *total = 6; /* 5 on VAX 2, 4 on VAX 9000 */ 953 if (CONST_INT_P (XEXP (x, 1))) 954 fmt = "e"; /* all constant rotate counts are short */ 955 break; 956 957 case PLUS: 958 case MINUS: 959 *total = (mode == DFmode) ? 13 : 8; /* 6/8 on VAX 9000, 16/15 on VAX 2 */ 960 /* Small integer operands can use subl2 and addl2. */ 961 if ((CONST_INT_P (XEXP (x, 1))) 962 && (unsigned HOST_WIDE_INT)(INTVAL (XEXP (x, 1)) + 63) < 127) 963 fmt = "e"; 964 break; 965 966 case IOR: 967 case XOR: 968 *total = 3; 969 break; 970 971 case AND: 972 /* AND is special because the first operand is complemented. */ 973 *total = 3; 974 if (CONST_INT_P (XEXP (x, 0))) 975 { 976 if ((unsigned HOST_WIDE_INT)~INTVAL (XEXP (x, 0)) > 63) 977 *total = 4; 978 fmt = "e"; 979 i = 1; 980 } 981 break; 982 983 case NEG: 984 if (mode == DFmode) 985 *total = 9; 986 else if (mode == SFmode) 987 *total = 6; 988 else if (mode == DImode) 989 *total = 4; 990 else 991 *total = 2; 992 break; 993 994 case NOT: 995 *total = 2; 996 break; 997 998 case ZERO_EXTRACT: 999 case SIGN_EXTRACT: 1000 *total = 15; 1001 break; 1002 1003 case MEM: 1004 if (mode == DImode || mode == DFmode) 1005 *total = 5; /* 7 on VAX 2 */ 1006 else 1007 *total = 3; /* 4 on VAX 2 */ 1008 x = XEXP (x, 0); 1009 if (!REG_P (x) && GET_CODE (x) != POST_INC) 1010 *total += vax_address_cost_1 (x); 1011 return true; 1012 1013 case FLOAT_EXTEND: 1014 case FLOAT_TRUNCATE: 1015 case TRUNCATE: 1016 *total = 3; /* FIXME: Costs need to be checked */ 1017 break; 1018 1019 default: 1020 return false; 1021 } 1022 1023 /* Now look inside the expression. Operands which are not registers or 1024 short constants add to the cost. 1025 1026 FMT and I may have been adjusted in the switch above for instructions 1027 which require special handling. */ 1028 1029 while (*fmt++ == 'e') 1030 { 1031 rtx op = XEXP (x, i); 1032 1033 i += 1; 1034 code = GET_CODE (op); 1035 1036 /* A NOT is likely to be found as the first operand of an AND 1037 (in which case the relevant cost is of the operand inside 1038 the not) and not likely to be found anywhere else. */ 1039 if (code == NOT) 1040 op = XEXP (op, 0), code = GET_CODE (op); 1041 1042 switch (code) 1043 { 1044 case CONST_INT: 1045 if ((unsigned HOST_WIDE_INT)INTVAL (op) > 63 1046 && mode != QImode) 1047 *total += 1; /* 2 on VAX 2 */ 1048 break; 1049 case CONST: 1050 case LABEL_REF: 1051 case SYMBOL_REF: 1052 *total += 1; /* 2 on VAX 2 */ 1053 break; 1054 case CONST_DOUBLE: 1055 if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT) 1056 { 1057 /* Registers are faster than floating point constants -- even 1058 those constants which can be encoded in a single byte. */ 1059 if (vax_float_literal (op)) 1060 *total += 1; 1061 else 1062 *total += (GET_MODE (x) == DFmode) ? 3 : 2; 1063 } 1064 else 1065 { 1066 if (CONST_DOUBLE_HIGH (op) != 0 1067 || (unsigned HOST_WIDE_INT)CONST_DOUBLE_LOW (op) > 63) 1068 *total += 2; 1069 } 1070 break; 1071 case MEM: 1072 *total += 1; /* 2 on VAX 2 */ 1073 if (!REG_P (XEXP (op, 0))) 1074 *total += vax_address_cost_1 (XEXP (op, 0)); 1075 break; 1076 case REG: 1077 case SUBREG: 1078 break; 1079 default: 1080 *total += 1; 1081 break; 1082 } 1083 } 1084 return true; 1085 } 1086 1087 /* Output code to add DELTA to the first argument, and then jump to FUNCTION. 1088 Used for C++ multiple inheritance. 1089 .mask ^m<r2,r3,r4,r5,r6,r7,r8,r9,r10,r11> #conservative entry mask 1090 addl2 $DELTA, 4(ap) #adjust first argument 1091 jmp FUNCTION+2 #jump beyond FUNCTION's entry mask 1092 */ 1093 1094 static void 1095 vax_output_mi_thunk (FILE * file, 1096 tree thunk ATTRIBUTE_UNUSED, 1097 HOST_WIDE_INT delta, 1098 HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED, 1099 tree function) 1100 { 1101 const char *fnname = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (thunk)); 1102 1103 assemble_start_function (thunk, fnname); 1104 fprintf (file, "\t.word 0x0ffc\n\taddl2 $" HOST_WIDE_INT_PRINT_DEC, delta); 1105 asm_fprintf (file, ",4(%Rap)\n"); 1106 fprintf (file, "\tjmp "); 1107 assemble_name (file, XSTR (XEXP (DECL_RTL (function), 0), 0)); 1108 fprintf (file, "+2\n"); 1109 assemble_end_function (thunk, fnname); 1110 } 1111 1112 static rtx 1113 vax_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED, 1114 int incoming ATTRIBUTE_UNUSED) 1115 { 1116 return gen_rtx_REG (Pmode, VAX_STRUCT_VALUE_REGNUM); 1117 } 1118 1119 /* Worker function for NOTICE_UPDATE_CC. */ 1120 1121 void 1122 vax_notice_update_cc (rtx exp, rtx insn ATTRIBUTE_UNUSED) 1123 { 1124 if (GET_CODE (exp) == SET) 1125 { 1126 if (GET_CODE (SET_SRC (exp)) == CALL) 1127 CC_STATUS_INIT; 1128 else if (GET_CODE (SET_DEST (exp)) != ZERO_EXTRACT 1129 && GET_CODE (SET_DEST (exp)) != PC) 1130 { 1131 cc_status.flags = 0; 1132 /* The integer operations below don't set carry or 1133 set it in an incompatible way. That's ok though 1134 as the Z bit is all we need when doing unsigned 1135 comparisons on the result of these insns (since 1136 they're always with 0). Set CC_NO_OVERFLOW to 1137 generate the correct unsigned branches. */ 1138 switch (GET_CODE (SET_SRC (exp))) 1139 { 1140 case NEG: 1141 if (GET_MODE_CLASS (GET_MODE (exp)) == MODE_FLOAT) 1142 break; 1143 /* FALLTHRU */ 1144 case AND: 1145 case IOR: 1146 case XOR: 1147 case NOT: 1148 case CTZ: 1149 case MEM: 1150 case REG: 1151 cc_status.flags = CC_NO_OVERFLOW; 1152 break; 1153 default: 1154 break; 1155 } 1156 cc_status.value1 = SET_DEST (exp); 1157 cc_status.value2 = SET_SRC (exp); 1158 } 1159 } 1160 else if (GET_CODE (exp) == PARALLEL 1161 && GET_CODE (XVECEXP (exp, 0, 0)) == SET) 1162 { 1163 if (GET_CODE (SET_SRC (XVECEXP (exp, 0, 0))) == CALL) 1164 CC_STATUS_INIT; 1165 else if (GET_CODE (SET_DEST (XVECEXP (exp, 0, 0))) != PC) 1166 { 1167 cc_status.flags = 0; 1168 cc_status.value1 = SET_DEST (XVECEXP (exp, 0, 0)); 1169 cc_status.value2 = SET_SRC (XVECEXP (exp, 0, 0)); 1170 } 1171 else 1172 /* PARALLELs whose first element sets the PC are aob, 1173 sob insns. They do change the cc's. */ 1174 CC_STATUS_INIT; 1175 } 1176 else 1177 CC_STATUS_INIT; 1178 if (cc_status.value1 && REG_P (cc_status.value1) 1179 && cc_status.value2 1180 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) 1181 cc_status.value2 = 0; 1182 if (cc_status.value1 && MEM_P (cc_status.value1) 1183 && cc_status.value2 1184 && MEM_P (cc_status.value2)) 1185 cc_status.value2 = 0; 1186 /* Actual condition, one line up, should be that value2's address 1187 depends on value1, but that is too much of a pain. */ 1188 } 1189 1190 /* Output integer move instructions. */ 1191 1192 const char * 1193 vax_output_int_move (rtx insn ATTRIBUTE_UNUSED, rtx *operands, 1194 machine_mode mode) 1195 { 1196 rtx hi[3], lo[3]; 1197 const char *pattern_hi, *pattern_lo; 1198 1199 switch (mode) 1200 { 1201 case E_DImode: 1202 if (operands[1] == const0_rtx) 1203 return "clrq %0"; 1204 if (TARGET_QMATH && optimize_size 1205 && (CONST_INT_P (operands[1]) 1206 || GET_CODE (operands[1]) == CONST_DOUBLE)) 1207 { 1208 unsigned HOST_WIDE_INT hval, lval; 1209 int n; 1210 1211 if (GET_CODE (operands[1]) == CONST_DOUBLE) 1212 { 1213 gcc_assert (HOST_BITS_PER_WIDE_INT != 64); 1214 1215 /* Make sure only the low 32 bits are valid. */ 1216 lval = CONST_DOUBLE_LOW (operands[1]) & 0xffffffff; 1217 hval = CONST_DOUBLE_HIGH (operands[1]) & 0xffffffff; 1218 } 1219 else 1220 { 1221 lval = INTVAL (operands[1]); 1222 hval = 0; 1223 } 1224 1225 /* Here we see if we are trying to see if the 64bit value is really 1226 a 6bit shifted some arbitrary amount. If so, we can use ashq to 1227 shift it to the correct value saving 7 bytes (1 addr-mode-byte + 1228 8 bytes - 1 shift byte - 1 short literal byte. */ 1229 if (lval != 0 1230 && (n = exact_log2 (lval & (- lval))) != -1 1231 && (lval >> n) < 64) 1232 { 1233 lval >>= n; 1234 1235 /* On 32bit platforms, if the 6bits didn't overflow into the 1236 upper 32bit value that value better be 0. If we have 1237 overflowed, make sure it wasn't too much. */ 1238 if (HOST_BITS_PER_WIDE_INT == 32 && hval != 0) 1239 { 1240 if (n <= 26 || hval >= ((unsigned)1 << (n - 26))) 1241 n = 0; /* failure */ 1242 else 1243 lval |= hval << (32 - n); 1244 } 1245 /* If n is 0, then ashq is not the best way to emit this. */ 1246 if (n > 0) 1247 { 1248 operands[1] = GEN_INT (lval); 1249 operands[2] = GEN_INT (n); 1250 return "ashq %2,%D1,%0"; 1251 } 1252 #if HOST_BITS_PER_WIDE_INT == 32 1253 } 1254 /* On 32bit platforms, if the low 32bit value is 0, checkout the 1255 upper 32bit value. */ 1256 else if (hval != 0 1257 && (n = exact_log2 (hval & (- hval)) - 1) != -1 1258 && (hval >> n) < 64) 1259 { 1260 operands[1] = GEN_INT (hval >> n); 1261 operands[2] = GEN_INT (n + 32); 1262 return "ashq %2,%D1,%0"; 1263 #endif 1264 } 1265 } 1266 1267 if (TARGET_QMATH 1268 && (!MEM_P (operands[0]) 1269 || GET_CODE (XEXP (operands[0], 0)) == PRE_DEC 1270 || GET_CODE (XEXP (operands[0], 0)) == POST_INC 1271 || !illegal_addsub_di_memory_operand (operands[0], DImode)) 1272 && ((CONST_INT_P (operands[1]) 1273 && (unsigned HOST_WIDE_INT) INTVAL (operands[1]) >= 64) 1274 || GET_CODE (operands[1]) == CONST_DOUBLE)) 1275 { 1276 hi[0] = operands[0]; 1277 hi[1] = operands[1]; 1278 1279 split_quadword_operands (insn, SET, hi, lo, 2); 1280 1281 pattern_lo = vax_output_int_move (NULL, lo, SImode); 1282 pattern_hi = vax_output_int_move (NULL, hi, SImode); 1283 1284 /* The patterns are just movl/movl or pushl/pushl then a movq will 1285 be shorter (1 opcode byte + 1 addrmode byte + 8 immediate value 1286 bytes .vs. 2 opcode bytes + 2 addrmode bytes + 8 immediate value 1287 value bytes. */ 1288 if ((!strncmp (pattern_lo, "movl", 4) 1289 && !strncmp (pattern_hi, "movl", 4)) 1290 || (!strncmp (pattern_lo, "pushl", 5) 1291 && !strncmp (pattern_hi, "pushl", 5))) 1292 return "movq %1,%0"; 1293 1294 if (MEM_P (operands[0]) 1295 && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC) 1296 { 1297 output_asm_insn (pattern_hi, hi); 1298 operands[0] = lo[0]; 1299 operands[1] = lo[1]; 1300 operands[2] = lo[2]; 1301 return pattern_lo; 1302 } 1303 else 1304 { 1305 output_asm_insn (pattern_lo, lo); 1306 operands[0] = hi[0]; 1307 operands[1] = hi[1]; 1308 operands[2] = hi[2]; 1309 return pattern_hi; 1310 } 1311 } 1312 return "movq %1,%0"; 1313 1314 case E_SImode: 1315 if (symbolic_operand (operands[1], SImode)) 1316 { 1317 if (push_operand (operands[0], SImode)) 1318 return "pushab %a1"; 1319 return "movab %a1,%0"; 1320 } 1321 1322 if (operands[1] == const0_rtx) 1323 { 1324 if (push_operand (operands[0], SImode)) 1325 return "pushl %1"; 1326 return "clrl %0"; 1327 } 1328 1329 if (CONST_INT_P (operands[1]) 1330 && (unsigned HOST_WIDE_INT) INTVAL (operands[1]) >= 64) 1331 { 1332 HOST_WIDE_INT i = INTVAL (operands[1]); 1333 int n; 1334 if ((unsigned HOST_WIDE_INT)(~i) < 64) 1335 return "mcoml %N1,%0"; 1336 if ((unsigned HOST_WIDE_INT)i < 0x100) 1337 return "movzbl %1,%0"; 1338 if (i >= -0x80 && i < 0) 1339 return "cvtbl %1,%0"; 1340 if (optimize_size 1341 && (n = exact_log2 (i & (-i))) != -1 1342 && ((unsigned HOST_WIDE_INT)i >> n) < 64) 1343 { 1344 operands[1] = GEN_INT ((unsigned HOST_WIDE_INT)i >> n); 1345 operands[2] = GEN_INT (n); 1346 return "ashl %2,%1,%0"; 1347 } 1348 if ((unsigned HOST_WIDE_INT)i < 0x10000) 1349 return "movzwl %1,%0"; 1350 if (i >= -0x8000 && i < 0) 1351 return "cvtwl %1,%0"; 1352 } 1353 if (push_operand (operands[0], SImode)) 1354 return "pushl %1"; 1355 return "movl %1,%0"; 1356 1357 case E_HImode: 1358 if (CONST_INT_P (operands[1])) 1359 { 1360 HOST_WIDE_INT i = INTVAL (operands[1]); 1361 if (i == 0) 1362 return "clrw %0"; 1363 else if ((unsigned HOST_WIDE_INT)i < 64) 1364 return "movw %1,%0"; 1365 else if ((unsigned HOST_WIDE_INT)~i < 64) 1366 return "mcomw %H1,%0"; 1367 else if ((unsigned HOST_WIDE_INT)i < 256) 1368 return "movzbw %1,%0"; 1369 else if (i >= -0x80 && i < 0) 1370 return "cvtbw %1,%0"; 1371 } 1372 return "movw %1,%0"; 1373 1374 case E_QImode: 1375 if (CONST_INT_P (operands[1])) 1376 { 1377 HOST_WIDE_INT i = INTVAL (operands[1]); 1378 if (i == 0) 1379 return "clrb %0"; 1380 else if ((unsigned HOST_WIDE_INT)~i < 64) 1381 return "mcomb %B1,%0"; 1382 } 1383 return "movb %1,%0"; 1384 1385 default: 1386 gcc_unreachable (); 1387 } 1388 } 1389 1390 /* Output integer add instructions. 1391 1392 The space-time-opcode tradeoffs for addition vary by model of VAX. 1393 1394 On a VAX 3 "movab (r1)[r2],r3" is faster than "addl3 r1,r2,r3", 1395 but it not faster on other models. 1396 1397 "movab #(r1),r2" is usually shorter than "addl3 #,r1,r2", and is 1398 faster on a VAX 3, but some VAXen (e.g. VAX 9000) will stall if 1399 a register is used in an address too soon after it is set. 1400 Compromise by using movab only when it is shorter than the add 1401 or the base register in the address is one of sp, ap, and fp, 1402 which are not modified very often. */ 1403 1404 const char * 1405 vax_output_int_add (rtx_insn *insn, rtx *operands, machine_mode mode) 1406 { 1407 switch (mode) 1408 { 1409 case E_DImode: 1410 { 1411 rtx low[3]; 1412 const char *pattern; 1413 int carry = 1; 1414 bool sub; 1415 1416 if (TARGET_QMATH && 0) 1417 debug_rtx (insn); 1418 1419 split_quadword_operands (insn, PLUS, operands, low, 3); 1420 1421 if (TARGET_QMATH) 1422 { 1423 gcc_assert (rtx_equal_p (operands[0], operands[1])); 1424 #ifdef NO_EXTERNAL_INDIRECT_ADDRESSS 1425 gcc_assert (!flag_pic || !external_memory_operand (low[2], SImode)); 1426 gcc_assert (!flag_pic || !external_memory_operand (low[0], SImode)); 1427 #endif 1428 1429 /* No reason to add a 0 to the low part and thus no carry, so just 1430 emit the appropriate add/sub instruction. */ 1431 if (low[2] == const0_rtx) 1432 return vax_output_int_add (NULL, operands, SImode); 1433 1434 /* Are we doing addition or subtraction? */ 1435 sub = CONST_INT_P (operands[2]) && INTVAL (operands[2]) < 0; 1436 1437 /* We can't use vax_output_int_add since some the patterns don't 1438 modify the carry bit. */ 1439 if (sub) 1440 { 1441 if (low[2] == constm1_rtx) 1442 pattern = "decl %0"; 1443 else 1444 pattern = "subl2 $%n2,%0"; 1445 } 1446 else 1447 { 1448 if (low[2] == const1_rtx) 1449 pattern = "incl %0"; 1450 else 1451 pattern = "addl2 %2,%0"; 1452 } 1453 output_asm_insn (pattern, low); 1454 1455 /* In 2's complement, -n = ~n + 1. Since we are dealing with 1456 two 32bit parts, we complement each and then add one to 1457 low part. We know that the low part can't overflow since 1458 it's value can never be 0. */ 1459 if (sub) 1460 return "sbwc %N2,%0"; 1461 return "adwc %2,%0"; 1462 } 1463 1464 /* Add low parts. */ 1465 if (rtx_equal_p (operands[0], operands[1])) 1466 { 1467 if (low[2] == const0_rtx) 1468 /* Should examine operand, punt if not POST_INC. */ 1469 pattern = "tstl %0", carry = 0; 1470 else if (low[2] == const1_rtx) 1471 pattern = "incl %0"; 1472 else 1473 pattern = "addl2 %2,%0"; 1474 } 1475 else 1476 { 1477 if (low[2] == const0_rtx) 1478 pattern = "movl %1,%0", carry = 0; 1479 else 1480 pattern = "addl3 %2,%1,%0"; 1481 } 1482 if (pattern) 1483 output_asm_insn (pattern, low); 1484 if (!carry) 1485 /* If CARRY is 0, we don't have any carry value to worry about. */ 1486 return get_insn_template (CODE_FOR_addsi3, insn); 1487 /* %0 = C + %1 + %2 */ 1488 if (!rtx_equal_p (operands[0], operands[1])) 1489 output_asm_insn ((operands[1] == const0_rtx 1490 ? "clrl %0" 1491 : "movl %1,%0"), operands); 1492 return "adwc %2,%0"; 1493 } 1494 1495 case E_SImode: 1496 if (rtx_equal_p (operands[0], operands[1])) 1497 { 1498 if (operands[2] == const1_rtx) 1499 return "incl %0"; 1500 if (operands[2] == constm1_rtx) 1501 return "decl %0"; 1502 if (CONST_INT_P (operands[2]) 1503 && (unsigned HOST_WIDE_INT) (- INTVAL (operands[2])) < 64) 1504 return "subl2 $%n2,%0"; 1505 if (CONST_INT_P (operands[2]) 1506 && (unsigned HOST_WIDE_INT) INTVAL (operands[2]) >= 64 1507 && REG_P (operands[1]) 1508 && ((INTVAL (operands[2]) < 32767 && INTVAL (operands[2]) > -32768) 1509 || REGNO (operands[1]) > 11)) 1510 return "movab %c2(%1),%0"; 1511 if (REG_P (operands[0]) && symbolic_operand (operands[2], SImode)) 1512 return "movab %a2[%0],%0"; 1513 return "addl2 %2,%0"; 1514 } 1515 1516 if (rtx_equal_p (operands[0], operands[2])) 1517 { 1518 if (REG_P (operands[0]) && symbolic_operand (operands[1], SImode)) 1519 return "movab %a1[%0],%0"; 1520 return "addl2 %1,%0"; 1521 } 1522 1523 if (CONST_INT_P (operands[2]) 1524 && INTVAL (operands[2]) < 32767 1525 && INTVAL (operands[2]) > -32768 1526 && REG_P (operands[1]) 1527 && push_operand (operands[0], SImode)) 1528 return "pushab %c2(%1)"; 1529 1530 if (CONST_INT_P (operands[2]) 1531 && (unsigned HOST_WIDE_INT) (- INTVAL (operands[2])) < 64) 1532 return "subl3 $%n2,%1,%0"; 1533 1534 if (CONST_INT_P (operands[2]) 1535 && (unsigned HOST_WIDE_INT) INTVAL (operands[2]) >= 64 1536 && REG_P (operands[1]) 1537 && ((INTVAL (operands[2]) < 32767 && INTVAL (operands[2]) > -32768) 1538 || REGNO (operands[1]) > 11)) 1539 return "movab %c2(%1),%0"; 1540 1541 /* Add this if using gcc on a VAX 3xxx: 1542 if (REG_P (operands[1]) && REG_P (operands[2])) 1543 return "movab (%1)[%2],%0"; 1544 */ 1545 1546 if (REG_P (operands[1]) && symbolic_operand (operands[2], SImode)) 1547 { 1548 if (push_operand (operands[0], SImode)) 1549 return "pushab %a2[%1]"; 1550 return "movab %a2[%1],%0"; 1551 } 1552 1553 if (REG_P (operands[2]) && symbolic_operand (operands[1], SImode)) 1554 { 1555 if (push_operand (operands[0], SImode)) 1556 return "pushab %a1[%2]"; 1557 return "movab %a1[%2],%0"; 1558 } 1559 1560 if (flag_pic && REG_P (operands[0]) 1561 && symbolic_operand (operands[2], SImode)) 1562 return "movab %a2,%0;addl2 %1,%0"; 1563 1564 if (flag_pic 1565 && (symbolic_operand (operands[1], SImode) 1566 || symbolic_operand (operands[1], SImode))) 1567 debug_rtx (insn); 1568 1569 return "addl3 %1,%2,%0"; 1570 1571 case E_HImode: 1572 if (rtx_equal_p (operands[0], operands[1])) 1573 { 1574 if (operands[2] == const1_rtx) 1575 return "incw %0"; 1576 if (operands[2] == constm1_rtx) 1577 return "decw %0"; 1578 if (CONST_INT_P (operands[2]) 1579 && (unsigned HOST_WIDE_INT) (- INTVAL (operands[2])) < 64) 1580 return "subw2 $%n2,%0"; 1581 return "addw2 %2,%0"; 1582 } 1583 if (rtx_equal_p (operands[0], operands[2])) 1584 return "addw2 %1,%0"; 1585 if (CONST_INT_P (operands[2]) 1586 && (unsigned HOST_WIDE_INT) (- INTVAL (operands[2])) < 64) 1587 return "subw3 $%n2,%1,%0"; 1588 return "addw3 %1,%2,%0"; 1589 1590 case E_QImode: 1591 if (rtx_equal_p (operands[0], operands[1])) 1592 { 1593 if (operands[2] == const1_rtx) 1594 return "incb %0"; 1595 if (operands[2] == constm1_rtx) 1596 return "decb %0"; 1597 if (CONST_INT_P (operands[2]) 1598 && (unsigned HOST_WIDE_INT) (- INTVAL (operands[2])) < 64) 1599 return "subb2 $%n2,%0"; 1600 return "addb2 %2,%0"; 1601 } 1602 if (rtx_equal_p (operands[0], operands[2])) 1603 return "addb2 %1,%0"; 1604 if (CONST_INT_P (operands[2]) 1605 && (unsigned HOST_WIDE_INT) (- INTVAL (operands[2])) < 64) 1606 return "subb3 $%n2,%1,%0"; 1607 return "addb3 %1,%2,%0"; 1608 1609 default: 1610 gcc_unreachable (); 1611 } 1612 } 1613 1614 const char * 1615 vax_output_int_subtract (rtx_insn *insn, rtx *operands, machine_mode mode) 1616 { 1617 switch (mode) 1618 { 1619 case E_DImode: 1620 { 1621 rtx low[3]; 1622 const char *pattern; 1623 int carry = 1; 1624 1625 if (TARGET_QMATH && 0) 1626 debug_rtx (insn); 1627 1628 split_quadword_operands (insn, MINUS, operands, low, 3); 1629 1630 if (TARGET_QMATH) 1631 { 1632 if (operands[1] == const0_rtx && low[1] == const0_rtx) 1633 { 1634 /* Negation is tricky. It's basically complement and increment. 1635 Negate hi, then lo, and subtract the carry back. */ 1636 if ((MEM_P (low[0]) && GET_CODE (XEXP (low[0], 0)) == POST_INC) 1637 || (MEM_P (operands[0]) 1638 && GET_CODE (XEXP (operands[0], 0)) == POST_INC)) 1639 fatal_insn ("illegal operand detected", insn); 1640 output_asm_insn ("mnegl %2,%0", operands); 1641 output_asm_insn ("mnegl %2,%0", low); 1642 return "sbwc $0,%0"; 1643 } 1644 gcc_assert (rtx_equal_p (operands[0], operands[1])); 1645 gcc_assert (rtx_equal_p (low[0], low[1])); 1646 if (low[2] == const1_rtx) 1647 output_asm_insn ("decl %0", low); 1648 else 1649 output_asm_insn ("subl2 %2,%0", low); 1650 return "sbwc %2,%0"; 1651 } 1652 1653 /* Subtract low parts. */ 1654 if (rtx_equal_p (operands[0], operands[1])) 1655 { 1656 if (low[2] == const0_rtx) 1657 pattern = 0, carry = 0; 1658 else if (low[2] == constm1_rtx) 1659 pattern = "decl %0"; 1660 else 1661 pattern = "subl2 %2,%0"; 1662 } 1663 else 1664 { 1665 if (low[2] == constm1_rtx) 1666 pattern = "decl %0"; 1667 else if (low[2] == const0_rtx) 1668 pattern = get_insn_template (CODE_FOR_movsi, insn), carry = 0; 1669 else 1670 pattern = "subl3 %2,%1,%0"; 1671 } 1672 if (pattern) 1673 output_asm_insn (pattern, low); 1674 if (carry) 1675 { 1676 if (!rtx_equal_p (operands[0], operands[1])) 1677 return "movl %1,%0;sbwc %2,%0"; 1678 return "sbwc %2,%0"; 1679 /* %0 = %2 - %1 - C */ 1680 } 1681 return get_insn_template (CODE_FOR_subsi3, insn); 1682 } 1683 1684 default: 1685 gcc_unreachable (); 1686 } 1687 } 1688 1689 static rtx 1690 mkrtx(enum rtx_code code, enum machine_mode mode, rtx base, HOST_WIDE_INT off) 1691 { 1692 rtx tmp; 1693 1694 if (GET_CODE (base) == CONST) 1695 base = XEXP (base, 0); 1696 1697 if (GET_CODE (base) == PLUS) 1698 { 1699 rtx a = XEXP (base, 0); 1700 rtx b = XEXP (base, 1); 1701 if (GET_CODE (b) == CONST) 1702 b = XEXP (b, 0); 1703 if (CONST_INT_P (b)) 1704 { 1705 off += INTVAL (b); 1706 base = a; 1707 } 1708 else if (REG_P (a) && GET_CODE (b) == SYMBOL_REF) 1709 { 1710 if (off != 0) 1711 { 1712 base = gen_rtx_PLUS (Pmode, a, plus_constant(Pmode, b, off)); 1713 off = 0; 1714 } 1715 } 1716 else if (REG_P (a) && GET_CODE (b) == PLUS) 1717 { 1718 off += INTVAL (XEXP (b, 1)); 1719 base = gen_rtx_PLUS (Pmode, a, plus_constant(Pmode, XEXP (b, 0), off)); 1720 off = 0; 1721 } 1722 else 1723 { 1724 debug_rtx(base); 1725 gcc_unreachable (); 1726 } 1727 } 1728 if (code == POST_INC) 1729 tmp = gen_rtx_POST_INC (SImode, base); 1730 else if (off == 0 || (REG_P (base) && code == REG)) 1731 tmp = base; 1732 else 1733 tmp = plus_constant (Pmode, base, off); 1734 return gen_rtx_MEM (mode, tmp); 1735 } 1736 1737 const char * 1738 vax_output_movmemsi (rtx insn, rtx *operands) 1739 { 1740 HOST_WIDE_INT n = INTVAL (operands[2]); 1741 HOST_WIDE_INT off; 1742 rtx src, dest; 1743 const char *pat = NULL; 1744 const enum rtx_code *src_codes; 1745 const enum rtx_code *dest_codes; 1746 int code_idx = 0; 1747 int mode_idx; 1748 1749 static const enum machine_mode xmodes[4] = 1750 { 1751 QImode, HImode, SImode, DImode 1752 }; 1753 static const char * const pats[4] = 1754 { 1755 "movb %1,%0", "movw %1,%0", "movl %1,%0", "movq %1,%0", 1756 }; 1757 static const enum rtx_code codes[2][3] = 1758 { 1759 { PLUS, PLUS, PLUS }, 1760 { POST_INC, POST_INC, REG }, 1761 }; 1762 1763 src = XEXP (operands[1], 0); 1764 1765 src_codes = 1766 codes[REG_P (src) && find_regno_note (insn, REG_DEAD, REGNO(src))]; 1767 1768 dest = XEXP (operands[0], 0); 1769 1770 dest_codes = 1771 codes[REG_P (dest) && find_regno_note (insn, REG_DEAD, REGNO(dest))]; 1772 1773 for (off = 0, code_idx = 0, mode_idx = 3; mode_idx >= 0; mode_idx--) 1774 { 1775 const enum machine_mode mode = xmodes[mode_idx]; 1776 const HOST_WIDE_INT mode_len = GET_MODE_SIZE (mode); 1777 for (; n >= mode_len; n -= mode_len, off += mode_len) 1778 { 1779 if (pat != NULL) 1780 output_asm_insn (pat, operands); 1781 if (n == mode_len) 1782 code_idx = 2; 1783 operands[0] = mkrtx(dest_codes[code_idx], mode, dest, off); 1784 operands[1] = mkrtx(src_codes[code_idx], mode, src, off); 1785 if (pat == NULL) 1786 code_idx = 1; 1787 pat = pats[mode_idx]; 1788 } 1789 } 1790 1791 return pat; 1792 } 1793 1794 /* True if X is an rtx for a constant that is a valid address. */ 1795 1796 bool 1797 legitimate_constant_address_p (rtx x) 1798 { 1799 if (GET_CODE (x) == LABEL_REF || GET_CODE (x) == SYMBOL_REF 1800 || CONST_INT_P (x) || GET_CODE (x) == HIGH) 1801 return true; 1802 if (GET_CODE (x) != CONST) 1803 return false; 1804 #ifdef NO_EXTERNAL_INDIRECT_ADDRESS 1805 if (flag_pic 1806 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF 1807 && !SYMBOL_REF_LOCAL_P (XEXP (XEXP (x, 0), 0))) 1808 return false; 1809 #endif 1810 gcc_assert (! REG_P (x)); 1811 return true; 1812 } 1813 1814 bool 1815 legitimate_pic_operand_p (rtx x) 1816 { 1817 #ifdef NO_EXTERNAL_INDIRECT_ADDRESS 1818 if (GET_CODE (x) != CONST) 1819 return true; 1820 if (GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF 1821 && !SYMBOL_REF_LOCAL_P (XEXP (XEXP (x, 0), 0))) 1822 return false; 1823 #endif 1824 return true; 1825 } 1826 1827 /* The other macros defined here are used only in legitimate_address_p (). */ 1828 1829 /* Nonzero if X is a hard reg that can be used as an index 1830 or, if not strict, if it is a pseudo reg. */ 1831 #define INDEX_REGISTER_P(X, STRICT) \ 1832 (REG_P (X) && (!(STRICT) || REGNO_OK_FOR_INDEX_P (REGNO (X)))) 1833 1834 /* Nonzero if X is a hard reg that can be used as a base reg 1835 or, if not strict, if it is a pseudo reg. */ 1836 #define BASE_REGISTER_P(X, STRICT) \ 1837 (REG_P (X) && (!(STRICT) || REGNO_OK_FOR_BASE_P (REGNO (X)))) 1838 1839 #ifdef NO_EXTERNAL_INDIRECT_ADDRESS 1840 1841 /* Re-definition of CONSTANT_ADDRESS_P, which is true only when there 1842 are no SYMBOL_REFs for external symbols present. */ 1843 1844 static bool 1845 indirectable_constant_address_p (rtx x, bool indirect) 1846 { 1847 if (GET_CODE (x) == SYMBOL_REF) 1848 return !flag_pic || SYMBOL_REF_LOCAL_P (x) || !indirect; 1849 1850 if (GET_CODE (x) == CONST) 1851 return !flag_pic 1852 || GET_CODE (XEXP (XEXP (x, 0), 0)) != SYMBOL_REF 1853 || SYMBOL_REF_LOCAL_P (XEXP (XEXP (x, 0), 0)); 1854 1855 return CONSTANT_ADDRESS_P (x); 1856 } 1857 1858 #else /* not NO_EXTERNAL_INDIRECT_ADDRESS */ 1859 1860 static bool 1861 indirectable_constant_address_p (rtx x, bool indirect ATTRIBUTE_UNUSED) 1862 { 1863 return CONSTANT_ADDRESS_P (x); 1864 } 1865 1866 #endif /* not NO_EXTERNAL_INDIRECT_ADDRESS */ 1867 1868 /* True if X is an address which can be indirected. External symbols 1869 could be in a sharable image library, so we disallow those. */ 1870 1871 static bool 1872 indirectable_address_p (rtx x, bool strict, bool indirect) 1873 { 1874 if (indirectable_constant_address_p (x, indirect) 1875 || BASE_REGISTER_P (x, strict)) 1876 return true; 1877 if (GET_CODE (x) != PLUS 1878 || !BASE_REGISTER_P (XEXP (x, 0), strict) 1879 || (flag_pic && !CONST_INT_P (XEXP (x, 1)))) 1880 return false; 1881 return indirectable_constant_address_p (XEXP (x, 1), indirect); 1882 } 1883 1884 /* Return true if x is a valid address not using indexing. 1885 (This much is the easy part.) */ 1886 static bool 1887 nonindexed_address_p (rtx x, bool strict) 1888 { 1889 rtx xfoo0; 1890 if (REG_P (x)) 1891 { 1892 if (! reload_in_progress 1893 || reg_equiv_mem (REGNO (x)) == 0 1894 || indirectable_address_p (reg_equiv_mem (REGNO (x)), strict, false)) 1895 return true; 1896 } 1897 if (indirectable_constant_address_p (x, false)) 1898 return true; 1899 if (indirectable_address_p (x, strict, false)) 1900 return true; 1901 xfoo0 = XEXP (x, 0); 1902 if (MEM_P (x) && indirectable_address_p (xfoo0, strict, true)) 1903 return true; 1904 if ((GET_CODE (x) == PRE_DEC || GET_CODE (x) == POST_INC) 1905 && BASE_REGISTER_P (xfoo0, strict)) 1906 return true; 1907 return false; 1908 } 1909 1910 /* True if PROD is either a reg times size of mode MODE and MODE is less 1911 than or equal 8 bytes, or just a reg if MODE is one byte. */ 1912 1913 static bool 1914 index_term_p (rtx prod, machine_mode mode, bool strict) 1915 { 1916 rtx xfoo0, xfoo1; 1917 1918 if (GET_MODE_SIZE (mode) == 1) 1919 return BASE_REGISTER_P (prod, strict); 1920 1921 if (GET_CODE (prod) != MULT || GET_MODE_SIZE (mode) > 8) 1922 return false; 1923 1924 xfoo0 = XEXP (prod, 0); 1925 xfoo1 = XEXP (prod, 1); 1926 1927 if (CONST_INT_P (xfoo0) 1928 && INTVAL (xfoo0) == (int)GET_MODE_SIZE (mode) 1929 && INDEX_REGISTER_P (xfoo1, strict)) 1930 return true; 1931 1932 if (CONST_INT_P (xfoo1) 1933 && INTVAL (xfoo1) == (int)GET_MODE_SIZE (mode) 1934 && INDEX_REGISTER_P (xfoo0, strict)) 1935 return true; 1936 1937 return false; 1938 } 1939 1940 /* Return true if X is the sum of a register 1941 and a valid index term for mode MODE. */ 1942 static bool 1943 reg_plus_index_p (rtx x, machine_mode mode, bool strict) 1944 { 1945 rtx xfoo0, xfoo1; 1946 1947 if (GET_CODE (x) != PLUS) 1948 return false; 1949 1950 xfoo0 = XEXP (x, 0); 1951 xfoo1 = XEXP (x, 1); 1952 1953 if (BASE_REGISTER_P (xfoo0, strict) && index_term_p (xfoo1, mode, strict)) 1954 return true; 1955 1956 if (BASE_REGISTER_P (xfoo1, strict) && index_term_p (xfoo0, mode, strict)) 1957 return true; 1958 1959 return false; 1960 } 1961 1962 /* Return true if xfoo0 and xfoo1 constitute a valid indexed address. */ 1963 static bool 1964 indexable_address_p (rtx xfoo0, rtx xfoo1, machine_mode mode, bool strict) 1965 { 1966 if (!CONSTANT_ADDRESS_P (xfoo0)) 1967 return false; 1968 if (BASE_REGISTER_P (xfoo1, strict)) 1969 return !flag_pic || mode == QImode; 1970 if (flag_pic && symbolic_operand (xfoo0, SImode)) 1971 return false; 1972 return reg_plus_index_p (xfoo1, mode, strict); 1973 } 1974 1975 /* legitimate_address_p returns true if it recognizes an RTL expression "x" 1976 that is a valid memory address for an instruction. 1977 The MODE argument is the machine mode for the MEM expression 1978 that wants to use this address. */ 1979 bool 1980 vax_legitimate_address_p (machine_mode mode, rtx x, bool strict) 1981 { 1982 rtx xfoo0, xfoo1; 1983 1984 if (nonindexed_address_p (x, strict)) 1985 return true; 1986 1987 if (GET_CODE (x) != PLUS) 1988 return false; 1989 1990 /* Handle <address>[index] represented with index-sum outermost */ 1991 1992 xfoo0 = XEXP (x, 0); 1993 xfoo1 = XEXP (x, 1); 1994 1995 if (index_term_p (xfoo0, mode, strict) 1996 && nonindexed_address_p (xfoo1, strict)) 1997 return true; 1998 1999 if (index_term_p (xfoo1, mode, strict) 2000 && nonindexed_address_p (xfoo0, strict)) 2001 return true; 2002 2003 /* Handle offset(reg)[index] with offset added outermost */ 2004 2005 if (indexable_address_p (xfoo0, xfoo1, mode, strict) 2006 || indexable_address_p (xfoo1, xfoo0, mode, strict)) 2007 return true; 2008 2009 return false; 2010 } 2011 2012 /* Return true if x (a legitimate address expression) has an effect that 2013 depends on the machine mode it is used for. On the VAX, the predecrement 2014 and postincrement address depend thus (the amount of decrement or 2015 increment being the length of the operand) and all indexed address depend 2016 thus (because the index scale factor is the length of the operand). */ 2017 2018 static bool 2019 vax_mode_dependent_address_p (const_rtx x, addr_space_t as ATTRIBUTE_UNUSED) 2020 { 2021 rtx xfoo0, xfoo1; 2022 2023 /* Auto-increment cases are now dealt with generically in recog.c. */ 2024 if (GET_CODE (x) != PLUS) 2025 return false; 2026 2027 xfoo0 = XEXP (x, 0); 2028 xfoo1 = XEXP (x, 1); 2029 2030 if (CONST_INT_P (xfoo0) && REG_P (xfoo1)) 2031 return false; 2032 if (CONST_INT_P (xfoo1) && REG_P (xfoo0)) 2033 return false; 2034 if (!flag_pic && CONSTANT_ADDRESS_P (xfoo0) && REG_P (xfoo1)) 2035 return false; 2036 if (!flag_pic && CONSTANT_ADDRESS_P (xfoo1) && REG_P (xfoo0)) 2037 return false; 2038 2039 return true; 2040 } 2041 2042 static rtx 2043 fixup_mathdi_operand (rtx x, machine_mode mode) 2044 { 2045 if (illegal_addsub_di_memory_operand (x, mode)) 2046 { 2047 rtx addr = XEXP (x, 0); 2048 rtx temp = gen_reg_rtx (Pmode); 2049 rtx offset = 0; 2050 #ifdef NO_EXTERNAL_INDIRECT_ADDRESS 2051 if (GET_CODE (addr) == CONST && flag_pic) 2052 { 2053 offset = XEXP (XEXP (addr, 0), 1); 2054 addr = XEXP (XEXP (addr, 0), 0); 2055 } 2056 #endif 2057 emit_move_insn (temp, addr); 2058 if (offset) 2059 temp = gen_rtx_PLUS (Pmode, temp, offset); 2060 x = gen_rtx_MEM (DImode, temp); 2061 } 2062 return x; 2063 } 2064 2065 void 2066 vax_expand_addsub_di_operands (rtx * operands, enum rtx_code code) 2067 { 2068 int hi_only = operand_subword (operands[2], 0, 0, DImode) == const0_rtx; 2069 rtx temp; 2070 2071 rtx (*gen_old_insn)(rtx, rtx, rtx); 2072 rtx (*gen_si_insn)(rtx, rtx, rtx); 2073 rtx (*gen_insn)(rtx, rtx, rtx); 2074 2075 if (code == PLUS) 2076 { 2077 gen_old_insn = gen_adddi3_old; 2078 gen_si_insn = gen_addsi3; 2079 gen_insn = gen_adcdi3; 2080 } 2081 else if (code == MINUS) 2082 { 2083 gen_old_insn = gen_subdi3_old; 2084 gen_si_insn = gen_subsi3; 2085 gen_insn = gen_sbcdi3; 2086 } 2087 else 2088 gcc_unreachable (); 2089 2090 /* If this is addition (thus operands are commutative) and if there is one 2091 addend that duplicates the desination, we want that addend to be the 2092 first addend. */ 2093 if (code == PLUS 2094 && rtx_equal_p (operands[0], operands[2]) 2095 && !rtx_equal_p (operands[1], operands[2])) 2096 { 2097 temp = operands[2]; 2098 operands[2] = operands[1]; 2099 operands[1] = temp; 2100 } 2101 2102 if (!TARGET_QMATH) 2103 { 2104 emit_insn ((*gen_old_insn) (operands[0], operands[1], operands[2])); 2105 } 2106 else if (hi_only) 2107 { 2108 if (!rtx_equal_p (operands[0], operands[1]) 2109 && (REG_P (operands[0]) && MEM_P (operands[1]))) 2110 { 2111 emit_move_insn (operands[0], operands[1]); 2112 operands[1] = operands[0]; 2113 } 2114 2115 operands[0] = fixup_mathdi_operand (operands[0], DImode); 2116 operands[1] = fixup_mathdi_operand (operands[1], DImode); 2117 operands[2] = fixup_mathdi_operand (operands[2], DImode); 2118 2119 if (!rtx_equal_p (operands[0], operands[1])) 2120 emit_move_insn (operand_subword (operands[0], 0, 0, DImode), 2121 operand_subword (operands[1], 0, 0, DImode)); 2122 2123 emit_insn ((*gen_si_insn) (operand_subword (operands[0], 1, 0, DImode), 2124 operand_subword (operands[1], 1, 0, DImode), 2125 operand_subword (operands[2], 1, 0, DImode))); 2126 } 2127 else 2128 { 2129 /* If are adding the same value together, that's really a multiply by 2, 2130 and that's just a left shift of 1. */ 2131 if (rtx_equal_p (operands[1], operands[2])) 2132 { 2133 if (code == MINUS) 2134 emit_insn (gen_movdi (operands[0], const0_rtx)); 2135 else 2136 emit_insn (gen_ashldi3 (operands[0], operands[1], const1_rtx)); 2137 return; 2138 } 2139 2140 operands[0] = fixup_mathdi_operand (operands[0], DImode); 2141 2142 /* If an operand is the same as operand[0], use the operand[0] rtx 2143 because fixup will an equivalent rtx but not an equal one. */ 2144 2145 if (rtx_equal_p (operands[0], operands[1])) 2146 operands[1] = operands[0]; 2147 else 2148 operands[1] = fixup_mathdi_operand (operands[1], DImode); 2149 2150 if (rtx_equal_p (operands[0], operands[2])) 2151 operands[2] = operands[0]; 2152 else 2153 operands[2] = fixup_mathdi_operand (operands[2], DImode); 2154 2155 /* If we are subtracting not from ourselves [d = a - b], and because the 2156 carry ops are two operand only, we would need to do a move prior to 2157 the subtract. And if d == b, we would need a temp otherwise 2158 [d = a, d -= d] and we end up with 0. Instead we rewrite d = a - b 2159 into d = -b, d += a. Since -b can never overflow, even if b == d, 2160 no temp is needed. 2161 2162 If we are doing addition, since the carry ops are two operand, if 2163 we aren't adding to ourselves, move the first addend to the 2164 destination first. */ 2165 2166 gcc_assert (operands[1] != const0_rtx || code == MINUS); 2167 if (!rtx_equal_p (operands[0], operands[1]) && operands[1] != const0_rtx) 2168 { 2169 if (code == MINUS && CONSTANT_P (operands[1])) 2170 { 2171 temp = gen_reg_rtx (DImode); 2172 emit_insn (gen_sbcdi3 (operands[0], const0_rtx, operands[2])); 2173 code = PLUS; 2174 gen_insn = gen_adcdi3; 2175 operands[2] = operands[1]; 2176 operands[1] = operands[0]; 2177 } 2178 else 2179 emit_move_insn (operands[0], operands[1]); 2180 } 2181 2182 /* Subtracting a constant will have been rewritten to an addition of the 2183 negative of that constant before we get here. */ 2184 gcc_assert (!CONSTANT_P (operands[2]) || code == PLUS); 2185 emit_insn ((*gen_insn) (operands[0], operands[1], operands[2])); 2186 } 2187 } 2188 2189 bool 2190 adjacent_operands_p (rtx lo, rtx hi, machine_mode mode) 2191 { 2192 HOST_WIDE_INT lo_offset; 2193 HOST_WIDE_INT hi_offset; 2194 2195 if (GET_CODE (lo) != GET_CODE (hi)) 2196 return false; 2197 2198 if (REG_P (lo)) 2199 return mode == SImode && REGNO (lo) + 1 == REGNO (hi); 2200 if (CONST_INT_P (lo)) 2201 return INTVAL (hi) == 0 && UINTVAL (lo) < 64; 2202 if (CONST_INT_P (lo)) 2203 return mode != SImode; 2204 2205 if (!MEM_P (lo)) 2206 return false; 2207 2208 if (MEM_VOLATILE_P (lo) || MEM_VOLATILE_P (hi)) 2209 return false; 2210 2211 lo = XEXP (lo, 0); 2212 hi = XEXP (hi, 0); 2213 2214 if (GET_CODE (lo) == POST_INC /* || GET_CODE (lo) == PRE_DEC */) 2215 return rtx_equal_p (lo, hi); 2216 2217 switch (GET_CODE (lo)) 2218 { 2219 case REG: 2220 case SYMBOL_REF: 2221 lo_offset = 0; 2222 break; 2223 case CONST: 2224 lo = XEXP (lo, 0); 2225 /* FALLTHROUGH */ 2226 case PLUS: 2227 if (!CONST_INT_P (XEXP (lo, 1))) 2228 return false; 2229 lo_offset = INTVAL (XEXP (lo, 1)); 2230 lo = XEXP (lo, 0); 2231 break; 2232 default: 2233 return false; 2234 } 2235 2236 switch (GET_CODE (hi)) 2237 { 2238 case REG: 2239 case SYMBOL_REF: 2240 hi_offset = 0; 2241 break; 2242 case CONST: 2243 hi = XEXP (hi, 0); 2244 /* FALLTHROUGH */ 2245 case PLUS: 2246 if (!CONST_INT_P (XEXP (hi, 1))) 2247 return false; 2248 hi_offset = INTVAL (XEXP (hi, 1)); 2249 hi = XEXP (hi, 0); 2250 break; 2251 default: 2252 return false; 2253 } 2254 2255 if (GET_CODE (lo) == MULT || GET_CODE (lo) == PLUS) 2256 return false; 2257 2258 return rtx_equal_p (lo, hi) 2259 && hi_offset - lo_offset == GET_MODE_SIZE (mode); 2260 } 2261 2262 /* Output assembler code for a block containing the constant parts 2263 of a trampoline, leaving space for the variable parts. */ 2264 2265 /* On the VAX, the trampoline contains an entry mask and two instructions: 2266 .word NN 2267 movl $STATIC,r0 (store the functions static chain) 2268 jmp *$FUNCTION (jump to function code at address FUNCTION) */ 2269 2270 static void 2271 vax_asm_trampoline_template (FILE *f ATTRIBUTE_UNUSED) 2272 { 2273 assemble_aligned_integer (2, const0_rtx); 2274 assemble_aligned_integer (2, GEN_INT (0x8fd0)); 2275 assemble_aligned_integer (4, const0_rtx); 2276 assemble_aligned_integer (1, GEN_INT (0x50 + STATIC_CHAIN_REGNUM)); 2277 assemble_aligned_integer (2, GEN_INT (0x9f17)); 2278 assemble_aligned_integer (4, const0_rtx); 2279 } 2280 2281 /* We copy the register-mask from the function's pure code 2282 to the start of the trampoline. */ 2283 2284 static void 2285 vax_trampoline_init (rtx m_tramp, tree fndecl, rtx cxt) 2286 { 2287 rtx fnaddr = XEXP (DECL_RTL (fndecl), 0); 2288 rtx mem; 2289 2290 emit_block_move (m_tramp, assemble_trampoline_template (), 2291 GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL); 2292 2293 mem = adjust_address (m_tramp, HImode, 0); 2294 emit_move_insn (mem, gen_const_mem (HImode, fnaddr)); 2295 2296 mem = adjust_address (m_tramp, SImode, 4); 2297 emit_move_insn (mem, cxt); 2298 mem = adjust_address (m_tramp, SImode, 11); 2299 emit_move_insn (mem, plus_constant (Pmode, fnaddr, 2)); 2300 emit_insn (gen_sync_istream ()); 2301 } 2302 2303 /* Value is the number of bytes of arguments automatically 2304 popped when returning from a subroutine call. 2305 FUNDECL is the declaration node of the function (as a tree), 2306 FUNTYPE is the data type of the function (as a tree), 2307 or for a library call it is an identifier node for the subroutine name. 2308 SIZE is the number of bytes of arguments passed on the stack. 2309 2310 On the VAX, the RET insn pops a maximum of 255 args for any function. */ 2311 2312 static poly_int64 2313 vax_return_pops_args (tree fundecl ATTRIBUTE_UNUSED, 2314 tree funtype ATTRIBUTE_UNUSED, poly_int64 size) 2315 { 2316 return size > 255 * 4 ? 0 : (HOST_WIDE_INT) size; 2317 } 2318 2319 /* Implement TARGET_FUNCTION_ARG. On the VAX all args are pushed. */ 2320 2321 static rtx 2322 vax_function_arg (cumulative_args_t, const function_arg_info &) 2323 { 2324 return NULL_RTX; 2325 } 2326 2327 /* Update the data in CUM to advance over argument ARG. */ 2328 2329 static void 2330 vax_function_arg_advance (cumulative_args_t cum_v, 2331 const function_arg_info &arg) 2332 { 2333 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v); 2334 2335 *cum += (arg.promoted_size_in_bytes () + 3) & ~3; 2336 } 2337 2338 static HOST_WIDE_INT 2339 vax_starting_frame_offset (void) 2340 { 2341 /* On ELF targets, reserve the top of the stack for exception handler 2342 stackadj value. */ 2343 return TARGET_ELF ? -4 : 0; 2344 } 2345 2346 bool 2347 vax_decomposed_dimode_operand_p (rtx lo, rtx hi) 2348 { 2349 HOST_WIDE_INT lo_offset = 0; 2350 HOST_WIDE_INT hi_offset = 0; 2351 2352 /* If the codes aren't the same, can't be a DImode operand. */ 2353 if (GET_CODE (lo) != GET_CODE (hi)) 2354 return false; 2355 2356 /* If a register, hi regno must be one more than the lo regno. */ 2357 if (REG_P (lo)) 2358 return REGNO (lo) + 1 == REGNO (hi); 2359 2360 /* If not memory, can't be a DImode operand. */ 2361 if (!MEM_P (lo)) 2362 return false; 2363 2364 /* Get addresses of memory operands. */ 2365 lo = XEXP(lo, 0); 2366 hi = XEXP(hi, 0); 2367 2368 /* If POST_INC, regno must match. */ 2369 if (GET_CODE (lo) == POST_INC && GET_CODE (hi) == POST_INC) 2370 return REGNO (XEXP (lo, 0)) == REGNO (XEXP (hi, 0)); 2371 2372 if (GET_CODE (lo) == PLUS) 2373 { 2374 /* If PLUS or MULT, this must an indexed address so fail. */ 2375 if (GET_CODE (XEXP (lo, 0)) == PLUS 2376 || GET_CODE (XEXP (lo, 0)) == MULT 2377 || !CONST_INT_P (XEXP (lo, 1))) 2378 return false; 2379 lo_offset = INTVAL (XEXP (lo, 1)); 2380 lo = XEXP(lo, 0); 2381 } 2382 2383 if (GET_CODE (hi) == PLUS) 2384 { 2385 /* If PLUS or MULT, this must an indexed address so fail. */ 2386 if (GET_CODE (XEXP (hi, 0)) == PLUS 2387 || GET_CODE (XEXP (hi, 0)) == MULT 2388 || !CONST_INT_P (XEXP (hi, 1))) 2389 return false; 2390 hi_offset = INTVAL (XEXP (hi, 1)); 2391 hi = XEXP(hi, 0); 2392 } 2393 2394 return rtx_equal_p(lo, hi) && lo_offset + 4 == hi_offset; 2395 } 2396