xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/config/rs6000/rs6000.h (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2    Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3    2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4    2010, 2011
5    Free Software Foundation, Inc.
6    Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
7 
8    This file is part of GCC.
9 
10    GCC is free software; you can redistribute it and/or modify it
11    under the terms of the GNU General Public License as published
12    by the Free Software Foundation; either version 3, or (at your
13    option) any later version.
14 
15    GCC is distributed in the hope that it will be useful, but WITHOUT
16    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
18    License for more details.
19 
20    Under Section 7 of GPL version 3, you are granted additional
21    permissions described in the GCC Runtime Library Exception, version
22    3.1, as published by the Free Software Foundation.
23 
24    You should have received a copy of the GNU General Public License and
25    a copy of the GCC Runtime Library Exception along with this program;
26    see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
27    <http://www.gnu.org/licenses/>.  */
28 
29 /* Note that some other tm.h files include this one and then override
30    many of the definitions.  */
31 
32 /* Definitions for the object file format.  These are set at
33    compile-time.  */
34 
35 #define OBJECT_XCOFF 1
36 #define OBJECT_ELF 2
37 #define OBJECT_PEF 3
38 #define OBJECT_MACHO 4
39 
40 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
41 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
42 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
43 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
44 
45 #ifndef TARGET_AIX
46 #define TARGET_AIX 0
47 #endif
48 
49 /* Control whether function entry points use a "dot" symbol when
50    ABI_AIX.  */
51 #define DOT_SYMBOLS 1
52 
53 /* Default string to use for cpu if not specified.  */
54 #ifndef TARGET_CPU_DEFAULT
55 #define TARGET_CPU_DEFAULT ((char *)0)
56 #endif
57 
58 /* If configured for PPC405, support PPC405CR Erratum77.  */
59 #ifdef CONFIG_PPC405CR
60 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
61 #else
62 #define PPC405_ERRATUM77 0
63 #endif
64 
65 #ifndef TARGET_PAIRED_FLOAT
66 #define TARGET_PAIRED_FLOAT 0
67 #endif
68 
69 #ifdef HAVE_AS_POPCNTB
70 #define ASM_CPU_POWER5_SPEC "-mpower5"
71 #else
72 #define ASM_CPU_POWER5_SPEC "-mpower4"
73 #endif
74 
75 #ifdef HAVE_AS_DFP
76 #define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
77 #else
78 #define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
79 #endif
80 
81 #ifdef HAVE_AS_POPCNTD
82 #define ASM_CPU_POWER7_SPEC "-mpower7"
83 #else
84 #define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
85 #endif
86 
87 #ifdef HAVE_AS_DCI
88 #define ASM_CPU_476_SPEC "-m476"
89 #else
90 #define ASM_CPU_476_SPEC "-mpower4"
91 #endif
92 
93 /* Common ASM definitions used by ASM_SPEC among the various targets for
94    handling -mcpu=xxx switches.  There is a parallel list in driver-rs6000.c to
95    provide the default assembler options if the user uses -mcpu=native, so if
96    you make changes here, make them also there.  */
97 #define ASM_CPU_SPEC \
98 "%{!mcpu*: \
99   %{mpower: %{!mpower2: -mpwr}} \
100   %{mpower2: -mpwrx} \
101   %{mpowerpc64*: -mppc64} \
102   %{!mpowerpc64*: %{mpowerpc*: -mppc}} \
103   %{mno-power: %{!mpowerpc*: -mcom}} \
104   %{!mno-power: %{!mpower*: %(asm_default)}}} \
105 %{mcpu=native: %(asm_cpu_native)} \
106 %{mcpu=common: -mcom} \
107 %{mcpu=cell: -mcell} \
108 %{mcpu=power: -mpwr} \
109 %{mcpu=power2: -mpwrx} \
110 %{mcpu=power3: -mppc64} \
111 %{mcpu=power4: -mpower4} \
112 %{mcpu=power5: %(asm_cpu_power5)} \
113 %{mcpu=power5+: %(asm_cpu_power5)} \
114 %{mcpu=power6: %(asm_cpu_power6) -maltivec} \
115 %{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
116 %{mcpu=power7: %(asm_cpu_power7)} \
117 %{mcpu=a2: -ma2} \
118 %{mcpu=powerpc: -mppc} \
119 %{mcpu=rios: -mpwr} \
120 %{mcpu=rios1: -mpwr} \
121 %{mcpu=rios2: -mpwrx} \
122 %{mcpu=rsc: -mpwr} \
123 %{mcpu=rsc1: -mpwr} \
124 %{mcpu=rs64a: -mppc64} \
125 %{mcpu=401: -mppc} \
126 %{mcpu=403: -m403} \
127 %{mcpu=405: -m405} \
128 %{mcpu=405fp: -m405} \
129 %{mcpu=440: -m440} \
130 %{mcpu=440fp: -m440} \
131 %{mcpu=464: -m440} \
132 %{mcpu=464fp: -m440} \
133 %{mcpu=476: %(asm_cpu_476)} \
134 %{mcpu=476fp: %(asm_cpu_476)} \
135 %{mcpu=505: -mppc} \
136 %{mcpu=601: -m601} \
137 %{mcpu=602: -mppc} \
138 %{mcpu=603: -mppc} \
139 %{mcpu=603e: -mppc} \
140 %{mcpu=ec603e: -mppc} \
141 %{mcpu=604: -mppc} \
142 %{mcpu=604e: -mppc} \
143 %{mcpu=620: -mppc64} \
144 %{mcpu=630: -mppc64} \
145 %{mcpu=740: -mppc} \
146 %{mcpu=750: -mppc} \
147 %{mcpu=G3: -mppc} \
148 %{mcpu=7400: -mppc -maltivec} \
149 %{mcpu=7450: -mppc -maltivec} \
150 %{mcpu=G4: -mppc -maltivec} \
151 %{mcpu=801: -mppc} \
152 %{mcpu=821: -mppc} \
153 %{mcpu=823: -mppc} \
154 %{mcpu=860: -mppc} \
155 %{mcpu=970: -mpower4 -maltivec} \
156 %{mcpu=G5: -mpower4 -maltivec} \
157 %{mcpu=8540: -me500} \
158 %{mcpu=8548: -me500} \
159 %{mcpu=e300c2: -me300} \
160 %{mcpu=e300c3: -me300} \
161 %{mcpu=e500mc: -me500mc} \
162 %{mcpu=e500mc64: -me500mc64} \
163 %{maltivec: -maltivec} \
164 -many"
165 
166 #define CPP_DEFAULT_SPEC ""
167 
168 #define ASM_DEFAULT_SPEC ""
169 
170 /* This macro defines names of additional specifications to put in the specs
171    that can be used in various specifications like CC1_SPEC.  Its definition
172    is an initializer with a subgrouping for each command option.
173 
174    Each subgrouping contains a string constant, that defines the
175    specification name, and a string constant that used by the GCC driver
176    program.
177 
178    Do not define this macro if it does not need to do anything.  */
179 
180 #define SUBTARGET_EXTRA_SPECS
181 
182 #define EXTRA_SPECS							\
183   { "cpp_default",		CPP_DEFAULT_SPEC },			\
184   { "asm_cpu",			ASM_CPU_SPEC },				\
185   { "asm_cpu_native",		ASM_CPU_NATIVE_SPEC },			\
186   { "asm_default",		ASM_DEFAULT_SPEC },			\
187   { "cc1_cpu",			CC1_CPU_SPEC },				\
188   { "asm_cpu_power5",		ASM_CPU_POWER5_SPEC },			\
189   { "asm_cpu_power6",		ASM_CPU_POWER6_SPEC },			\
190   { "asm_cpu_power7",		ASM_CPU_POWER7_SPEC },			\
191   { "asm_cpu_476",		ASM_CPU_476_SPEC },			\
192   SUBTARGET_EXTRA_SPECS
193 
194 /* -mcpu=native handling only makes sense with compiler running on
195    an PowerPC chip.  If changing this condition, also change
196    the condition in driver-rs6000.c.  */
197 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
198 /* In driver-rs6000.c.  */
199 extern const char *host_detect_local_cpu (int argc, const char **argv);
200 #define EXTRA_SPEC_FUNCTIONS \
201   { "local_cpu_detect", host_detect_local_cpu },
202 #define HAVE_LOCAL_CPU_DETECT
203 #define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
204 
205 #else
206 #define ASM_CPU_NATIVE_SPEC "%(asm_default)"
207 #endif
208 
209 #ifndef CC1_CPU_SPEC
210 #ifdef HAVE_LOCAL_CPU_DETECT
211 #define CC1_CPU_SPEC \
212 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
213  %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
214 #else
215 #define CC1_CPU_SPEC ""
216 #endif
217 #endif
218 
219 /* Architecture type.  */
220 
221 /* Define TARGET_MFCRF if the target assembler does not support the
222    optional field operand for mfcr.  */
223 
224 #ifndef HAVE_AS_MFCRF
225 #undef  TARGET_MFCRF
226 #define TARGET_MFCRF 0
227 #endif
228 
229 /* Define TARGET_POPCNTB if the target assembler does not support the
230    popcount byte instruction.  */
231 
232 #ifndef HAVE_AS_POPCNTB
233 #undef  TARGET_POPCNTB
234 #define TARGET_POPCNTB 0
235 #endif
236 
237 /* Define TARGET_FPRND if the target assembler does not support the
238    fp rounding instructions.  */
239 
240 #ifndef HAVE_AS_FPRND
241 #undef  TARGET_FPRND
242 #define TARGET_FPRND 0
243 #endif
244 
245 /* Define TARGET_CMPB if the target assembler does not support the
246    cmpb instruction.  */
247 
248 #ifndef HAVE_AS_CMPB
249 #undef  TARGET_CMPB
250 #define TARGET_CMPB 0
251 #endif
252 
253 /* Define TARGET_MFPGPR if the target assembler does not support the
254    mffpr and mftgpr instructions. */
255 
256 #ifndef HAVE_AS_MFPGPR
257 #undef  TARGET_MFPGPR
258 #define TARGET_MFPGPR 0
259 #endif
260 
261 /* Define TARGET_DFP if the target assembler does not support decimal
262    floating point instructions.  */
263 #ifndef HAVE_AS_DFP
264 #undef  TARGET_DFP
265 #define TARGET_DFP 0
266 #endif
267 
268 /* Define TARGET_POPCNTD if the target assembler does not support the
269    popcount word and double word instructions.  */
270 
271 #ifndef HAVE_AS_POPCNTD
272 #undef  TARGET_POPCNTD
273 #define TARGET_POPCNTD 0
274 #endif
275 
276 /* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync.  If
277    not, generate the lwsync code as an integer constant.  */
278 #ifdef HAVE_AS_LWSYNC
279 #define TARGET_LWSYNC_INSTRUCTION 1
280 #else
281 #define TARGET_LWSYNC_INSTRUCTION 0
282 #endif
283 
284 /* Define TARGET_TLS_MARKERS if the target assembler does not support
285    arg markers for __tls_get_addr calls.  */
286 #ifndef HAVE_AS_TLS_MARKERS
287 #undef  TARGET_TLS_MARKERS
288 #define TARGET_TLS_MARKERS 0
289 #else
290 #define TARGET_TLS_MARKERS tls_markers
291 #endif
292 
293 #ifndef TARGET_SECURE_PLT
294 #define TARGET_SECURE_PLT 0
295 #endif
296 
297 #define TARGET_32BIT		(! TARGET_64BIT)
298 
299 #ifndef HAVE_AS_TLS
300 #define HAVE_AS_TLS 0
301 #endif
302 
303 /* Return 1 for a symbol ref for a thread-local storage symbol.  */
304 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
305   (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
306 
307 #ifdef IN_LIBGCC2
308 /* For libgcc2 we make sure this is a compile time constant */
309 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
310 #undef TARGET_POWERPC64
311 #define TARGET_POWERPC64	1
312 #else
313 #undef TARGET_POWERPC64
314 #define TARGET_POWERPC64	0
315 #endif
316 #else
317     /* The option machinery will define this.  */
318 #endif
319 
320 #define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
321 
322 /* Processor type.  Order must match cpu attribute in MD file.  */
323 enum processor_type
324  {
325    PROCESSOR_RIOS1,
326    PROCESSOR_RIOS2,
327    PROCESSOR_RS64A,
328    PROCESSOR_MPCCORE,
329    PROCESSOR_PPC403,
330    PROCESSOR_PPC405,
331    PROCESSOR_PPC440,
332    PROCESSOR_PPC476,
333    PROCESSOR_PPC601,
334    PROCESSOR_PPC603,
335    PROCESSOR_PPC604,
336    PROCESSOR_PPC604e,
337    PROCESSOR_PPC620,
338    PROCESSOR_PPC630,
339    PROCESSOR_PPC750,
340    PROCESSOR_PPC7400,
341    PROCESSOR_PPC7450,
342    PROCESSOR_PPC8540,
343    PROCESSOR_PPCE300C2,
344    PROCESSOR_PPCE300C3,
345    PROCESSOR_PPCE500MC,
346    PROCESSOR_PPCE500MC64,
347    PROCESSOR_POWER4,
348    PROCESSOR_POWER5,
349    PROCESSOR_POWER6,
350    PROCESSOR_POWER7,
351    PROCESSOR_CELL,
352    PROCESSOR_PPCA2
353 };
354 
355 /* FPU operations supported.
356    Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
357    also test TARGET_HARD_FLOAT.  */
358 #define TARGET_SINGLE_FLOAT 1
359 #define TARGET_DOUBLE_FLOAT 1
360 #define TARGET_SINGLE_FPU   0
361 #define TARGET_SIMPLE_FPU   0
362 #define TARGET_XILINX_FPU   0
363 
364 extern enum processor_type rs6000_cpu;
365 
366 /* Recast the processor type to the cpu attribute.  */
367 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
368 
369 /* Define generic processor types based upon current deployment.  */
370 #define PROCESSOR_COMMON    PROCESSOR_PPC601
371 #define PROCESSOR_POWER     PROCESSOR_RIOS1
372 #define PROCESSOR_POWERPC   PROCESSOR_PPC604
373 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
374 
375 /* Define the default processor.  This is overridden by other tm.h files.  */
376 #define PROCESSOR_DEFAULT   PROCESSOR_RIOS1
377 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
378 
379 /* FP processor type.  */
380 enum fpu_type_t
381 {
382 	FPU_NONE,		/* No FPU */
383 	FPU_SF_LITE,		/* Limited Single Precision FPU */
384 	FPU_DF_LITE,		/* Limited Double Precision FPU */
385 	FPU_SF_FULL,		/* Full Single Precision FPU */
386 	FPU_DF_FULL		/* Full Double Single Precision FPU */
387 };
388 
389 extern enum fpu_type_t fpu_type;
390 
391 /* Specify the dialect of assembler to use.  New mnemonics is dialect one
392    and the old mnemonics are dialect zero.  */
393 #define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
394 
395 /* Types of costly dependences.  */
396 enum rs6000_dependence_cost
397  {
398    max_dep_latency = 1000,
399    no_dep_costly,
400    all_deps_costly,
401    true_store_to_load_dep_costly,
402    store_to_load_dep_costly
403  };
404 
405 /* Types of nop insertion schemes in sched target hook sched_finish.  */
406 enum rs6000_nop_insertion
407   {
408     sched_finish_regroup_exact = 1000,
409     sched_finish_pad_groups,
410     sched_finish_none
411   };
412 
413 /* Dispatch group termination caused by an insn.  */
414 enum group_termination
415   {
416     current_group,
417     previous_group
418   };
419 
420 /* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
421 struct rs6000_cpu_select
422 {
423   const char *string;
424   const char *name;
425   int set_tune_p;
426   int set_arch_p;
427 };
428 
429 extern struct rs6000_cpu_select rs6000_select[];
430 
431 /* Debug support */
432 extern const char *rs6000_debug_name;	/* Name for -mdebug-xxxx option */
433 extern int rs6000_debug_stack;		/* debug stack applications */
434 extern int rs6000_debug_arg;		/* debug argument handling */
435 extern int rs6000_debug_reg;		/* debug register handling */
436 extern int rs6000_debug_addr;		/* debug memory addressing */
437 extern int rs6000_debug_cost;		/* debug rtx_costs */
438 
439 #define	TARGET_DEBUG_STACK	rs6000_debug_stack
440 #define	TARGET_DEBUG_ARG	rs6000_debug_arg
441 #define TARGET_DEBUG_REG	rs6000_debug_reg
442 #define TARGET_DEBUG_ADDR	rs6000_debug_addr
443 #define TARGET_DEBUG_COST	rs6000_debug_cost
444 
445 extern const char *rs6000_traceback_name; /* Type of traceback table.  */
446 
447 /* These are separate from target_flags because we've run out of bits
448    there.  */
449 extern int rs6000_long_double_type_size;
450 extern int rs6000_ieeequad;
451 extern int rs6000_altivec_abi;
452 extern int rs6000_spe_abi;
453 extern int rs6000_spe;
454 extern int rs6000_float_gprs;
455 extern int rs6000_alignment_flags;
456 extern const char *rs6000_sched_insert_nops_str;
457 extern enum rs6000_nop_insertion rs6000_sched_insert_nops;
458 extern int rs6000_xilinx_fpu;
459 
460 /* Describe which vector unit to use for a given machine mode.  */
461 enum rs6000_vector {
462   VECTOR_NONE,			/* Type is not  a vector or not supported */
463   VECTOR_ALTIVEC,		/* Use altivec for vector processing */
464   VECTOR_VSX,			/* Use VSX for vector processing */
465   VECTOR_PAIRED,		/* Use paired floating point for vectors */
466   VECTOR_SPE,			/* Use SPE for vector processing */
467   VECTOR_OTHER			/* Some other vector unit */
468 };
469 
470 extern enum rs6000_vector rs6000_vector_unit[];
471 
472 #define VECTOR_UNIT_NONE_P(MODE)			\
473   (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
474 
475 #define VECTOR_UNIT_VSX_P(MODE)				\
476   (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
477 
478 #define VECTOR_UNIT_ALTIVEC_P(MODE)			\
479   (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
480 
481 #define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE)		\
482   (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC 	\
483    || rs6000_vector_unit[(MODE)] == VECTOR_VSX)
484 
485 /* Describe whether to use VSX loads or Altivec loads.  For now, just use the
486    same unit as the vector unit we are using, but we may want to migrate to
487    using VSX style loads even for types handled by altivec.  */
488 extern enum rs6000_vector rs6000_vector_mem[];
489 
490 #define VECTOR_MEM_NONE_P(MODE)				\
491   (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
492 
493 #define VECTOR_MEM_VSX_P(MODE)				\
494   (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
495 
496 #define VECTOR_MEM_ALTIVEC_P(MODE)			\
497   (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
498 
499 #define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE)		\
500   (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC 	\
501    || rs6000_vector_mem[(MODE)] == VECTOR_VSX)
502 
503 /* Return the alignment of a given vector type, which is set based on the
504    vector unit use.  VSX for instance can load 32 or 64 bit aligned words
505    without problems, while Altivec requires 128-bit aligned vectors.  */
506 extern int rs6000_vector_align[];
507 
508 #define VECTOR_ALIGN(MODE)						\
509   ((rs6000_vector_align[(MODE)] != 0)					\
510    ? rs6000_vector_align[(MODE)]					\
511    : (int)GET_MODE_BITSIZE ((MODE)))
512 
513 /* Alignment options for fields in structures for sub-targets following
514    AIX-like ABI.
515    ALIGN_POWER word-aligns FP doubles (default AIX ABI).
516    ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
517 
518    Override the macro definitions when compiling libobjc to avoid undefined
519    reference to rs6000_alignment_flags due to library's use of GCC alignment
520    macros which use the macros below.  */
521 
522 #ifndef IN_TARGET_LIBS
523 #define MASK_ALIGN_POWER   0x00000000
524 #define MASK_ALIGN_NATURAL 0x00000001
525 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
526 #else
527 #define TARGET_ALIGN_NATURAL 0
528 #endif
529 
530 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
531 #define TARGET_IEEEQUAD rs6000_ieeequad
532 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
533 #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
534 
535 #define TARGET_SPE_ABI 0
536 #define TARGET_SPE 0
537 #define TARGET_E500 0
538 #define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64)
539 #define TARGET_FPRS 1
540 #define TARGET_E500_SINGLE 0
541 #define TARGET_E500_DOUBLE 0
542 #define CHECK_E500_OPTIONS do { } while (0)
543 
544 /* E500 processors only support plain "sync", not lwsync.  */
545 #define TARGET_NO_LWSYNC TARGET_E500
546 
547 /* Sometimes certain combinations of command options do not make sense
548    on a particular target machine.  You can define a macro
549    `OVERRIDE_OPTIONS' to take account of this.  This macro, if
550    defined, is executed once just after all the command options have
551    been parsed.
552 
553    Do not use this macro to turn on various extra optimizations for
554    `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.
555 
556    On the RS/6000 this is used to define the target cpu type.  */
557 
558 #define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
559 
560 /* Define this to change the optimizations performed by default.  */
561 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
562 
563 /* Show we can debug even without a frame pointer.  */
564 #define CAN_DEBUG_WITHOUT_FP
565 
566 /* Target pragma.  */
567 #define REGISTER_TARGET_PRAGMAS() do {				\
568   c_register_pragma (0, "longcall", rs6000_pragma_longcall);	\
569   targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
570 } while (0)
571 
572 /* Target #defines.  */
573 #define TARGET_CPU_CPP_BUILTINS() \
574   rs6000_cpu_cpp_builtins (pfile)
575 
576 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
577    we're compiling for.  Some configurations may need to override it.  */
578 #define RS6000_CPU_CPP_ENDIAN_BUILTINS()	\
579   do						\
580     {						\
581       if (BYTES_BIG_ENDIAN)			\
582 	{					\
583 	  builtin_define ("__BIG_ENDIAN__");	\
584 	  builtin_define ("_BIG_ENDIAN");	\
585 	  builtin_assert ("machine=bigendian");	\
586 	}					\
587       else					\
588 	{					\
589 	  builtin_define ("__LITTLE_ENDIAN__");	\
590 	  builtin_define ("_LITTLE_ENDIAN");	\
591 	  builtin_assert ("machine=littleendian"); \
592 	}					\
593     }						\
594   while (0)
595 
596 /* Target machine storage layout.  */
597 
598 /* Define this macro if it is advisable to hold scalars in registers
599    in a wider mode than that declared by the program.  In such cases,
600    the value is constrained to be within the bounds of the declared
601    type, but kept valid in the wider mode.  The signedness of the
602    extension may differ from that of the type.  */
603 
604 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)	\
605   if (GET_MODE_CLASS (MODE) == MODE_INT		\
606       && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
607     (MODE) = TARGET_32BIT ? SImode : DImode;
608 
609 /* Define this if most significant bit is lowest numbered
610    in instructions that operate on numbered bit-fields.  */
611 /* That is true on RS/6000.  */
612 #define BITS_BIG_ENDIAN 1
613 
614 /* Define this if most significant byte of a word is the lowest numbered.  */
615 /* That is true on RS/6000.  */
616 #define BYTES_BIG_ENDIAN 1
617 
618 /* Define this if most significant word of a multiword number is lowest
619    numbered.
620 
621    For RS/6000 we can decide arbitrarily since there are no machine
622    instructions for them.  Might as well be consistent with bits and bytes.  */
623 #define WORDS_BIG_ENDIAN 1
624 
625 #define MAX_BITS_PER_WORD 64
626 
627 /* Width of a word, in units (bytes).  */
628 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
629 #ifdef IN_LIBGCC2
630 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
631 #else
632 #define MIN_UNITS_PER_WORD 4
633 #endif
634 #define UNITS_PER_FP_WORD 8
635 #define UNITS_PER_ALTIVEC_WORD 16
636 #define UNITS_PER_VSX_WORD 16
637 #define UNITS_PER_SPE_WORD 8
638 #define UNITS_PER_PAIRED_WORD 8
639 
640 /* Type used for ptrdiff_t, as a string used in a declaration.  */
641 #define PTRDIFF_TYPE "int"
642 
643 /* Type used for size_t, as a string used in a declaration.  */
644 #define SIZE_TYPE "long unsigned int"
645 
646 /* Type used for wchar_t, as a string used in a declaration.  */
647 #define WCHAR_TYPE "short unsigned int"
648 
649 /* Width of wchar_t in bits.  */
650 #define WCHAR_TYPE_SIZE 16
651 
652 /* A C expression for the size in bits of the type `short' on the
653    target machine.  If you don't define this, the default is half a
654    word.  (If this would be less than one storage unit, it is
655    rounded up to one unit.)  */
656 #define SHORT_TYPE_SIZE 16
657 
658 /* A C expression for the size in bits of the type `int' on the
659    target machine.  If you don't define this, the default is one
660    word.  */
661 #define INT_TYPE_SIZE 32
662 
663 /* A C expression for the size in bits of the type `long' on the
664    target machine.  If you don't define this, the default is one
665    word.  */
666 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
667 
668 /* A C expression for the size in bits of the type `long long' on the
669    target machine.  If you don't define this, the default is two
670    words.  */
671 #define LONG_LONG_TYPE_SIZE 64
672 
673 /* A C expression for the size in bits of the type `float' on the
674    target machine.  If you don't define this, the default is one
675    word.  */
676 #define FLOAT_TYPE_SIZE 32
677 
678 /* A C expression for the size in bits of the type `double' on the
679    target machine.  If you don't define this, the default is two
680    words.  */
681 #define DOUBLE_TYPE_SIZE 64
682 
683 /* A C expression for the size in bits of the type `long double' on
684    the target machine.  If you don't define this, the default is two
685    words.  */
686 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
687 
688 /* Define this to set long double type size to use in libgcc2.c, which can
689    not depend on target_flags.  */
690 #ifdef __LONG_DOUBLE_128__
691 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
692 #else
693 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
694 #endif
695 
696 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c.  */
697 #define WIDEST_HARDWARE_FP_SIZE 64
698 
699 /* Width in bits of a pointer.
700    See also the macro `Pmode' defined below.  */
701 extern unsigned rs6000_pointer_size;
702 #define POINTER_SIZE rs6000_pointer_size
703 
704 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
705 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
706 
707 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
708 #define STACK_BOUNDARY	\
709   ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
710     ? 64 : 128)
711 
712 /* Allocation boundary (in *bits*) for the code of a function.  */
713 #define FUNCTION_BOUNDARY 32
714 
715 /* No data type wants to be aligned rounder than this.  */
716 #define BIGGEST_ALIGNMENT 128
717 
718 /* A C expression to compute the alignment for a variables in the
719    local store.  TYPE is the data type, and ALIGN is the alignment
720    that the object would ordinarily have.  */
721 #define LOCAL_ALIGNMENT(TYPE, ALIGN)				\
722   DATA_ALIGNMENT (TYPE, ALIGN)
723 
724 /* Alignment of field after `int : 0' in a structure.  */
725 #define EMPTY_FIELD_BOUNDARY 32
726 
727 /* Every structure's size must be a multiple of this.  */
728 #define STRUCTURE_SIZE_BOUNDARY 8
729 
730 /* Return 1 if a structure or array containing FIELD should be
731    accessed using `BLKMODE'.
732 
733    For the SPE, simd types are V2SI, and gcc can be tempted to put the
734    entire thing in a DI and use subregs to access the internals.
735    store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
736    back-end.  Because a single GPR can hold a V2SI, but not a DI, the
737    best thing to do is set structs to BLKmode and avoid Severe Tire
738    Damage.
739 
740    On e500 v2, DF and DI modes suffer from the same anomaly.  DF can
741    fit into 1, whereas DI still needs two.  */
742 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
743   ((TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE) \
744    || (TARGET_E500_DOUBLE && (MODE) == DFmode))
745 
746 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
747 #define PCC_BITFIELD_TYPE_MATTERS 1
748 
749 /* Make strings word-aligned so strcpy from constants will be faster.
750    Make vector constants quadword aligned.  */
751 #define CONSTANT_ALIGNMENT(EXP, ALIGN)                           \
752   (TREE_CODE (EXP) == STRING_CST	                         \
753    && (STRICT_ALIGNMENT || !optimize_size)                       \
754    && (ALIGN) < BITS_PER_WORD                                    \
755    ? BITS_PER_WORD                                               \
756    : (ALIGN))
757 
758 /* Make arrays of chars word-aligned for the same reasons.
759    Align vectors to 128 bits.  Align SPE vectors and E500 v2 doubles to
760    64 bits.  */
761 #define DATA_ALIGNMENT(TYPE, ALIGN)					\
762   (TREE_CODE (TYPE) == VECTOR_TYPE					\
763    ? (((TARGET_SPE && SPE_VECTOR_MODE (TYPE_MODE (TYPE)))		\
764        || (TARGET_PAIRED_FLOAT && PAIRED_VECTOR_MODE (TYPE_MODE (TYPE)))) \
765       ? 64 : 128)							\
766    : ((TARGET_E500_DOUBLE						\
767        && TREE_CODE (TYPE) == REAL_TYPE					\
768        && TYPE_MODE (TYPE) == DFmode)					\
769       ? 64								\
770       : (TREE_CODE (TYPE) == ARRAY_TYPE					\
771 	 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode			\
772 	 && (ALIGN) < BITS_PER_WORD) ? BITS_PER_WORD : (ALIGN)))
773 
774 /* Nonzero if move instructions will actually fail to work
775    when given unaligned data.  */
776 #define STRICT_ALIGNMENT 0
777 
778 /* Define this macro to be the value 1 if unaligned accesses have a cost
779    many times greater than aligned accesses, for example if they are
780    emulated in a trap handler.  */
781 /* Altivec vector memory instructions simply ignore the low bits; SPE vector
782    memory instructions trap on unaligned accesses; VSX memory instructions are
783    aligned to 4 or 8 bytes.  */
784 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN)				\
785   (STRICT_ALIGNMENT							\
786    || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode	\
787 	|| (MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode	\
788 	|| (MODE) == DImode)						\
789        && (ALIGN) < 32)							\
790    || (VECTOR_MODE_P ((MODE)) && (((int)(ALIGN)) < VECTOR_ALIGN (MODE))))
791 
792 
793 /* Standard register usage.  */
794 
795 /* Number of actual hardware registers.
796    The hardware registers are assigned numbers for the compiler
797    from 0 to just below FIRST_PSEUDO_REGISTER.
798    All registers that the compiler knows about must be given numbers,
799    even those that are not normally considered general registers.
800 
801    RS/6000 has 32 fixed-point registers, 32 floating-point registers,
802    an MQ register, a count register, a link register, and 8 condition
803    register fields, which we view here as separate registers.  AltiVec
804    adds 32 vector registers and a VRsave register.
805 
806    In addition, the difference between the frame and argument pointers is
807    a function of the number of registers saved, so we need to have a
808    register for AP that will later be eliminated in favor of SP or FP.
809    This is a normal register, but it is fixed.
810 
811    We also create a pseudo register for float/int conversions, that will
812    really represent the memory location used.  It is represented here as
813    a register, in order to work around problems in allocating stack storage
814    in inline functions.
815 
816    Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
817    pointer, which is eventually eliminated in favor of SP or FP.  */
818 
819 #define FIRST_PSEUDO_REGISTER 114
820 
821 /* This must be included for pre gcc 3.0 glibc compatibility.  */
822 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
823 
824 /* Add 32 dwarf columns for synthetic SPE registers.  */
825 #define DWARF_FRAME_REGISTERS ((FIRST_PSEUDO_REGISTER - 1) + 32)
826 
827 /* The SPE has an additional 32 synthetic registers, with DWARF debug
828    info numbering for these registers starting at 1200.  While eh_frame
829    register numbering need not be the same as the debug info numbering,
830    we choose to number these regs for eh_frame at 1200 too.  This allows
831    future versions of the rs6000 backend to add hard registers and
832    continue to use the gcc hard register numbering for eh_frame.  If the
833    extra SPE registers in eh_frame were numbered starting from the
834    current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
835    changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
836    avoid invalidating older SPE eh_frame info.
837 
838    We must map them here to avoid huge unwinder tables mostly consisting
839    of unused space.  */
840 #define DWARF_REG_TO_UNWIND_COLUMN(r) \
841   ((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER - 1) : (r))
842 
843 /* Use standard DWARF numbering for DWARF debugging information.  */
844 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number (REGNO)
845 
846 /* Use gcc hard register numbering for eh_frame.  */
847 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
848 
849 /* Map register numbers held in the call frame info that gcc has
850    collected using DWARF_FRAME_REGNUM to those that should be output in
851    .debug_frame and .eh_frame.  We continue to use gcc hard reg numbers
852    for .eh_frame, but use the numbers mandated by the various ABIs for
853    .debug_frame.  rs6000_emit_prologue has translated any combination of
854    CR2, CR3, CR4 saves to a save of CR2.  The actual code emitted saves
855    the whole of CR, so we map CR2_REGNO to the DWARF reg for CR.  */
856 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH)	\
857   ((FOR_EH) ? (REGNO)				\
858    : (REGNO) == CR2_REGNO ? 64			\
859    : DBX_REGISTER_NUMBER (REGNO))
860 
861 /* 1 for registers that have pervasive standard uses
862    and are not available for the register allocator.
863 
864    On RS/6000, r1 is used for the stack.  On Darwin, r2 is available
865    as a local register; for all other OS's r2 is the TOC pointer.
866 
867    cr5 is not supposed to be used.
868 
869    On System V implementations, r13 is fixed and not available for use.  */
870 
871 #define FIXED_REGISTERS  \
872   {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
873    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
874    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
875    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
876    0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,	   \
877    /* AltiVec registers.  */			   \
878    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
879    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
880    1, 1						   \
881    , 1, 1, 1                                       \
882 }
883 
884 /* 1 for registers not available across function calls.
885    These must include the FIXED_REGISTERS and also any
886    registers that can be used without being saved.
887    The latter must include the registers where values are returned
888    and the register where structure-value addresses are passed.
889    Aside from that, you can include as many other registers as you like.  */
890 
891 #define CALL_USED_REGISTERS  \
892   {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
893    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
894    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
895    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
896    1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,	   \
897    /* AltiVec registers.  */			   \
898    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
899    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
900    1, 1						   \
901    , 1, 1, 1                                       \
902 }
903 
904 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
905    the entire set of `FIXED_REGISTERS' be included.
906    (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
907    This macro is optional.  If not specified, it defaults to the value
908    of `CALL_USED_REGISTERS'.  */
909 
910 #define CALL_REALLY_USED_REGISTERS  \
911   {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
912    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
913    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
914    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
915    1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,	   \
916    /* AltiVec registers.  */			   \
917    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
918    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
919    0, 0						   \
920    , 0, 0, 0                                       \
921 }
922 
923 #define TOTAL_ALTIVEC_REGS	(LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
924 
925 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
926 #define FIRST_SAVED_FP_REGNO    (14+32)
927 #define FIRST_SAVED_GP_REGNO 13
928 
929 /* List the order in which to allocate registers.  Each register must be
930    listed once, even those in FIXED_REGISTERS.
931 
932    We allocate in the following order:
933 	fp0		(not saved or used for anything)
934 	fp13 - fp2	(not saved; incoming fp arg registers)
935 	fp1		(not saved; return value)
936 	fp31 - fp14	(saved; order given to save least number)
937 	cr7, cr6	(not saved or special)
938 	cr1		(not saved, but used for FP operations)
939 	cr0		(not saved, but used for arithmetic operations)
940 	cr4, cr3, cr2	(saved)
941 	r0		(not saved; cannot be base reg)
942 	r9		(not saved; best for TImode)
943 	r11, r10, r8-r4	(not saved; highest used first to make less conflict)
944 	r3		(not saved; return value register)
945 	r31 - r13	(saved; order given to save least number)
946 	r12		(not saved; if used for DImode or DFmode would use r13)
947 	mq		(not saved; best to use it if we can)
948 	ctr		(not saved; when we have the choice ctr is better)
949 	lr		(saved)
950 	cr5, r1, r2, ap, xer (fixed)
951 	v0 - v1		(not saved or used for anything)
952 	v13 - v3	(not saved; incoming vector arg registers)
953 	v2		(not saved; incoming vector arg reg; return value)
954 	v19 - v14	(not saved or used for anything)
955 	v31 - v20	(saved; order given to save least number)
956 	vrsave, vscr	(fixed)
957 	spe_acc, spefscr (fixed)
958 	sfp		(fixed)
959 */
960 
961 #if FIXED_R2 == 1
962 #define MAYBE_R2_AVAILABLE
963 #define MAYBE_R2_FIXED 2,
964 #else
965 #define MAYBE_R2_AVAILABLE 2,
966 #define MAYBE_R2_FIXED
967 #endif
968 
969 #define REG_ALLOC_ORDER						\
970   {32,								\
971    45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34,		\
972    33,								\
973    63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51,		\
974    50, 49, 48, 47, 46,						\
975    75, 74, 69, 68, 72, 71, 70,					\
976    0, MAYBE_R2_AVAILABLE					\
977    9, 11, 10, 8, 7, 6, 5, 4,					\
978    3,								\
979    31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19,		\
980    18, 17, 16, 15, 14, 13, 12,					\
981    64, 66, 65,							\
982    73, 1, MAYBE_R2_FIXED 67, 76,				\
983    /* AltiVec registers.  */					\
984    77, 78,							\
985    90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80,			\
986    79,								\
987    96, 95, 94, 93, 92, 91,					\
988    108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97,	\
989    109, 110,							\
990    111, 112, 113						\
991 }
992 
993 /* True if register is floating-point.  */
994 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
995 
996 /* True if register is a condition register.  */
997 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
998 
999 /* True if register is a condition register, but not cr0.  */
1000 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
1001 
1002 /* True if register is an integer register.  */
1003 #define INT_REGNO_P(N) \
1004   ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
1005 
1006 /* SPE SIMD registers are just the GPRs.  */
1007 #define SPE_SIMD_REGNO_P(N) ((N) <= 31)
1008 
1009 /* PAIRED SIMD registers are just the FPRs.  */
1010 #define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1011 
1012 /* True if register is the XER register.  */
1013 #define XER_REGNO_P(N) ((N) == XER_REGNO)
1014 
1015 /* True if register is an AltiVec register.  */
1016 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1017 
1018 /* True if register is a VSX register.  */
1019 #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1020 
1021 /* Alternate name for any vector register supporting floating point, no matter
1022    which instruction set(s) are available.  */
1023 #define VFLOAT_REGNO_P(N) \
1024   (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1025 
1026 /* Alternate name for any vector register supporting integer, no matter which
1027    instruction set(s) are available.  */
1028 #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1029 
1030 /* Alternate name for any vector register supporting logical operations, no
1031    matter which instruction set(s) are available.  */
1032 #define VLOGICAL_REGNO_P(N) VFLOAT_REGNO_P (N)
1033 
1034 /* Return number of consecutive hard regs needed starting at reg REGNO
1035    to hold something of mode MODE.  */
1036 
1037 #define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs[(MODE)][(REGNO)]
1038 
1039 /* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
1040    enough space to account for vectors in FP regs. */
1041 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
1042   (TARGET_VSX								\
1043    && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE))		\
1044    && FP_REGNO_P (REGNO)				\
1045    ? V2DFmode						\
1046    : choose_hard_reg_mode ((REGNO), (NREGS), false))
1047 
1048 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE)			\
1049   (((TARGET_32BIT && TARGET_POWERPC64					\
1050      && (GET_MODE_SIZE (MODE) > 4)					\
1051      && INT_REGNO_P (REGNO)) ? 1 : 0)					\
1052    || (TARGET_VSX && FP_REGNO_P (REGNO)					\
1053        && GET_MODE_SIZE (MODE) > 8))
1054 
1055 #define VSX_VECTOR_MODE(MODE)		\
1056 	 ((MODE) == V4SFmode		\
1057 	  || (MODE) == V2DFmode)	\
1058 
1059 #define ALTIVEC_VECTOR_MODE(MODE)	\
1060 	 ((MODE) == V16QImode		\
1061 	  || (MODE) == V8HImode		\
1062 	  || (MODE) == V4SFmode		\
1063 	  || (MODE) == V4SImode)
1064 
1065 #define ALTIVEC_OR_VSX_VECTOR_MODE(MODE)				\
1066   (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE)			\
1067    || (MODE) == V2DImode)
1068 
1069 #define SPE_VECTOR_MODE(MODE)		\
1070 	((MODE) == V4HImode          	\
1071          || (MODE) == V2SFmode          \
1072          || (MODE) == V1DImode          \
1073          || (MODE) == V2SImode)
1074 
1075 #define PAIRED_VECTOR_MODE(MODE)        \
1076          ((MODE) == V2SFmode)
1077 
1078 #define UNITS_PER_SIMD_WORD(MODE)					\
1079 	(TARGET_VSX ? UNITS_PER_VSX_WORD				\
1080 	 : (TARGET_ALTIVEC ? UNITS_PER_ALTIVEC_WORD			\
1081 	 : (TARGET_SPE ? UNITS_PER_SPE_WORD				\
1082 	 : (TARGET_PAIRED_FLOAT ? UNITS_PER_PAIRED_WORD			\
1083 	 : UNITS_PER_WORD))))
1084 
1085 /* Value is TRUE if hard register REGNO can hold a value of
1086    machine-mode MODE.  */
1087 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1088   rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
1089 
1090 /* Value is 1 if it is a good idea to tie two pseudo registers
1091    when one has mode MODE1 and one has mode MODE2.
1092    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1093    for any hard reg, then this must be 0 for correct output.  */
1094 #define MODES_TIEABLE_P(MODE1, MODE2) \
1095   (SCALAR_FLOAT_MODE_P (MODE1)			\
1096    ? SCALAR_FLOAT_MODE_P (MODE2)		\
1097    : SCALAR_FLOAT_MODE_P (MODE2)		\
1098    ? SCALAR_FLOAT_MODE_P (MODE1)		\
1099    : GET_MODE_CLASS (MODE1) == MODE_CC		\
1100    ? GET_MODE_CLASS (MODE2) == MODE_CC		\
1101    : GET_MODE_CLASS (MODE2) == MODE_CC		\
1102    ? GET_MODE_CLASS (MODE1) == MODE_CC		\
1103    : SPE_VECTOR_MODE (MODE1)			\
1104    ? SPE_VECTOR_MODE (MODE2)			\
1105    : SPE_VECTOR_MODE (MODE2)			\
1106    ? SPE_VECTOR_MODE (MODE1)			\
1107    : ALTIVEC_VECTOR_MODE (MODE1)		\
1108    ? ALTIVEC_VECTOR_MODE (MODE2)		\
1109    : ALTIVEC_VECTOR_MODE (MODE2)		\
1110    ? ALTIVEC_VECTOR_MODE (MODE1)		\
1111    : ALTIVEC_OR_VSX_VECTOR_MODE (MODE1)		\
1112    ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE2)		\
1113    : ALTIVEC_OR_VSX_VECTOR_MODE (MODE2)		\
1114    ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE1)		\
1115    : 1)
1116 
1117 /* Post-reload, we can't use any new AltiVec registers, as we already
1118    emitted the vrsave mask.  */
1119 
1120 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1121   (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
1122 
1123 /* A C expression returning the cost of moving data from a register of class
1124    CLASS1 to one of CLASS2.  */
1125 
1126 #define REGISTER_MOVE_COST rs6000_register_move_cost
1127 
1128 /* A C expressions returning the cost of moving data of MODE from a register to
1129    or from memory.  */
1130 
1131 #define MEMORY_MOVE_COST rs6000_memory_move_cost
1132 
1133 /* Specify the cost of a branch insn; roughly the number of extra insns that
1134    should be added to avoid a branch.
1135 
1136    Set this to 3 on the RS/6000 since that is roughly the average cost of an
1137    unscheduled conditional branch.  */
1138 
1139 #define BRANCH_COST(speed_p, predictable_p) 3
1140 
1141 /* Override BRANCH_COST heuristic which empirically produces worse
1142    performance for removing short circuiting from the logical ops.  */
1143 
1144 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1145 
1146 /* A fixed register used at epilogue generation to address SPE registers
1147    with negative offsets.  The 64-bit load/store instructions on the SPE
1148    only take positive offsets (and small ones at that), so we need to
1149    reserve a register for consing up negative offsets.  */
1150 
1151 #define FIXED_SCRATCH 0
1152 
1153 /* Define this macro to change register usage conditional on target
1154    flags.  */
1155 
1156 #define CONDITIONAL_REGISTER_USAGE rs6000_conditional_register_usage ()
1157 
1158 /* Specify the registers used for certain standard purposes.
1159    The values of these macros are register numbers.  */
1160 
1161 /* RS/6000 pc isn't overloaded on a register that the compiler knows about.  */
1162 /* #define PC_REGNUM  */
1163 
1164 /* Register to use for pushing function arguments.  */
1165 #define STACK_POINTER_REGNUM 1
1166 
1167 /* Base register for access to local variables of the function.  */
1168 #define HARD_FRAME_POINTER_REGNUM 31
1169 
1170 /* Base register for access to local variables of the function.  */
1171 #define FRAME_POINTER_REGNUM 113
1172 
1173 /* Base register for access to arguments of the function.  */
1174 #define ARG_POINTER_REGNUM 67
1175 
1176 /* Place to put static chain when calling a function that requires it.  */
1177 #define STATIC_CHAIN_REGNUM 11
1178 
1179 
1180 /* Define the classes of registers for register constraints in the
1181    machine description.  Also define ranges of constants.
1182 
1183    One of the classes must always be named ALL_REGS and include all hard regs.
1184    If there is more than one class, another class must be named NO_REGS
1185    and contain no registers.
1186 
1187    The name GENERAL_REGS must be the name of a class (or an alias for
1188    another name such as ALL_REGS).  This is the class of registers
1189    that is allowed by "g" or "r" in a register constraint.
1190    Also, registers outside this class are allocated only when
1191    instructions express preferences for them.
1192 
1193    The classes must be numbered in nondecreasing order; that is,
1194    a larger-numbered class must never be contained completely
1195    in a smaller-numbered class.
1196 
1197    For any two classes, it is very desirable that there be another
1198    class that represents their union.  */
1199 
1200 /* The RS/6000 has three types of registers, fixed-point, floating-point, and
1201    condition registers, plus three special registers, MQ, CTR, and the link
1202    register.  AltiVec adds a vector register class.  VSX registers overlap the
1203    FPR registers and the Altivec registers.
1204 
1205    However, r0 is special in that it cannot be used as a base register.
1206    So make a class for registers valid as base registers.
1207 
1208    Also, cr0 is the only condition code register that can be used in
1209    arithmetic insns, so make a separate class for it.  */
1210 
1211 enum reg_class
1212 {
1213   NO_REGS,
1214   BASE_REGS,
1215   GENERAL_REGS,
1216   FLOAT_REGS,
1217   ALTIVEC_REGS,
1218   VSX_REGS,
1219   VRSAVE_REGS,
1220   VSCR_REGS,
1221   SPE_ACC_REGS,
1222   SPEFSCR_REGS,
1223   NON_SPECIAL_REGS,
1224   MQ_REGS,
1225   LINK_REGS,
1226   CTR_REGS,
1227   LINK_OR_CTR_REGS,
1228   SPECIAL_REGS,
1229   SPEC_OR_GEN_REGS,
1230   CR0_REGS,
1231   CR_REGS,
1232   NON_FLOAT_REGS,
1233   XER_REGS,
1234   ALL_REGS,
1235   LIM_REG_CLASSES
1236 };
1237 
1238 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1239 
1240 /* Give names of register classes as strings for dump file.  */
1241 
1242 #define REG_CLASS_NAMES							\
1243 {									\
1244   "NO_REGS",								\
1245   "BASE_REGS",								\
1246   "GENERAL_REGS",							\
1247   "FLOAT_REGS",								\
1248   "ALTIVEC_REGS",							\
1249   "VSX_REGS",								\
1250   "VRSAVE_REGS",							\
1251   "VSCR_REGS",								\
1252   "SPE_ACC_REGS",                                                       \
1253   "SPEFSCR_REGS",                                                       \
1254   "NON_SPECIAL_REGS",							\
1255   "MQ_REGS",								\
1256   "LINK_REGS",								\
1257   "CTR_REGS",								\
1258   "LINK_OR_CTR_REGS",							\
1259   "SPECIAL_REGS",							\
1260   "SPEC_OR_GEN_REGS",							\
1261   "CR0_REGS",								\
1262   "CR_REGS",								\
1263   "NON_FLOAT_REGS",							\
1264   "XER_REGS",								\
1265   "ALL_REGS"								\
1266 }
1267 
1268 /* Define which registers fit in which classes.
1269    This is an initializer for a vector of HARD_REG_SET
1270    of length N_REG_CLASSES.  */
1271 
1272 #define REG_CLASS_CONTENTS						     \
1273 {									     \
1274   { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */	     \
1275   { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000 }, /* BASE_REGS */	     \
1276   { 0xffffffff, 0x00000000, 0x00000008, 0x00020000 }, /* GENERAL_REGS */     \
1277   { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */       \
1278   { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */     \
1279   { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff }, /* VSX_REGS */	     \
1280   { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */	     \
1281   { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */	     \
1282   { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */     \
1283   { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */     \
1284   { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000 }, /* NON_SPECIAL_REGS */ \
1285   { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */	     \
1286   { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */	     \
1287   { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */	     \
1288   { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1289   { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */     \
1290   { 0xffffffff, 0x00000000, 0x0000000f, 0x00022000 }, /* SPEC_OR_GEN_REGS */ \
1291   { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */	     \
1292   { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */	     \
1293   { 0xffffffff, 0x00000000, 0x0000efff, 0x00020000 }, /* NON_FLOAT_REGS */   \
1294   { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */	     \
1295   { 0xffffffff, 0xffffffff, 0xffffffff, 0x0003ffff }  /* ALL_REGS */	     \
1296 }
1297 
1298 /* The following macro defines cover classes for Integrated Register
1299    Allocator.  Cover classes is a set of non-intersected register
1300    classes covering all hard registers used for register allocation
1301    purpose.  Any move between two registers of a cover class should be
1302    cheaper than load or store of the registers.  The macro value is
1303    array of register classes with LIM_REG_CLASSES used as the end
1304    marker.
1305 
1306    We need two IRA_COVER_CLASSES, one for pre-VSX, and the other for VSX to
1307    account for the Altivec and Floating registers being subsets of the VSX
1308    register set.  */
1309 
1310 #define IRA_COVER_CLASSES_PRE_VSX					     \
1311 {									     \
1312   GENERAL_REGS, SPECIAL_REGS, FLOAT_REGS, ALTIVEC_REGS, /* VSX_REGS, */	     \
1313   /* VRSAVE_REGS,*/ VSCR_REGS, SPE_ACC_REGS, SPEFSCR_REGS,		     \
1314   /* MQ_REGS, LINK_REGS, CTR_REGS, */					     \
1315   CR_REGS, XER_REGS, LIM_REG_CLASSES					     \
1316 }
1317 
1318 #define IRA_COVER_CLASSES_VSX						     \
1319 {									     \
1320   GENERAL_REGS, SPECIAL_REGS, /* FLOAT_REGS, ALTIVEC_REGS, */ VSX_REGS,	     \
1321   /* VRSAVE_REGS,*/ VSCR_REGS, SPE_ACC_REGS, SPEFSCR_REGS,		     \
1322   /* MQ_REGS, LINK_REGS, CTR_REGS, */					     \
1323   CR_REGS, XER_REGS, LIM_REG_CLASSES					     \
1324 }
1325 
1326 /* The same information, inverted:
1327    Return the class number of the smallest class containing
1328    reg number REGNO.  This could be a conditional expression
1329    or could index an array.  */
1330 
1331 extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1332 
1333 #if ENABLE_CHECKING
1334 #define REGNO_REG_CLASS(REGNO) 						\
1335   (gcc_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),		\
1336    rs6000_regno_regclass[(REGNO)])
1337 
1338 #else
1339 #define REGNO_REG_CLASS(REGNO) rs6000_regno_regclass[(REGNO)]
1340 #endif
1341 
1342 /* Register classes for various constraints that are based on the target
1343    switches.  */
1344 enum r6000_reg_class_enum {
1345   RS6000_CONSTRAINT_d,		/* fpr registers for double values */
1346   RS6000_CONSTRAINT_f,		/* fpr registers for single values */
1347   RS6000_CONSTRAINT_v,		/* Altivec registers */
1348   RS6000_CONSTRAINT_wa,		/* Any VSX register */
1349   RS6000_CONSTRAINT_wd,		/* VSX register for V2DF */
1350   RS6000_CONSTRAINT_wf,		/* VSX register for V4SF */
1351   RS6000_CONSTRAINT_ws,		/* VSX register for DF */
1352   RS6000_CONSTRAINT_MAX
1353 };
1354 
1355 extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
1356 
1357 /* The class value for index registers, and the one for base regs.  */
1358 #define INDEX_REG_CLASS GENERAL_REGS
1359 #define BASE_REG_CLASS BASE_REGS
1360 
1361 /* Return whether a given register class can hold VSX objects.  */
1362 #define VSX_REG_CLASS_P(CLASS)			\
1363   ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1364 
1365 /* Given an rtx X being reloaded into a reg required to be
1366    in class CLASS, return the class of reg to actually use.
1367    In general this is just CLASS; but on some machines
1368    in some cases it is preferable to use a more restrictive class.
1369 
1370    On the RS/6000, we have to return NO_REGS when we want to reload a
1371    floating-point CONST_DOUBLE to force it to be copied to memory.
1372 
1373    We also don't want to reload integer values into floating-point
1374    registers if we can at all help it.  In fact, this can
1375    cause reload to die, if it tries to generate a reload of CTR
1376    into a FP register and discovers it doesn't have the memory location
1377    required.
1378 
1379    ??? Would it be a good idea to have reload do the converse, that is
1380    try to reload floating modes into FP registers if possible?
1381  */
1382 
1383 #define PREFERRED_RELOAD_CLASS(X,CLASS)			\
1384   rs6000_preferred_reload_class_ptr (X, CLASS)
1385 
1386 /* Return the register class of a scratch register needed to copy IN into
1387    or out of a register in CLASS in MODE.  If it can be done directly,
1388    NO_REGS is returned.  */
1389 
1390 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1391   rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1392 
1393 /* If we are copying between FP or AltiVec registers and anything
1394    else, we need a memory location.  The exception is when we are
1395    targeting ppc64 and the move to/from fpr to gpr instructions
1396    are available.*/
1397 
1398 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE)			\
1399   rs6000_secondary_memory_needed_ptr (CLASS1, CLASS2, MODE)
1400 
1401 /* For cpus that cannot load/store SDmode values from the 64-bit
1402    FP registers without using a full 64-bit load/store, we need
1403    to allocate a full 64-bit stack slot for them.  */
1404 
1405 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1406   rs6000_secondary_memory_needed_rtx (MODE)
1407 
1408 /* Return the maximum number of consecutive registers
1409    needed to represent mode MODE in a register of class CLASS.
1410 
1411    On RS/6000, this is the size of MODE in words, except in the FP regs, where
1412    a single reg is enough for two words, unless we have VSX, where the FP
1413    registers can hold 128 bits.  */
1414 #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1415 
1416 /* Return nonzero if for CLASS a mode change from FROM to TO is invalid.  */
1417 
1418 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)			\
1419   rs6000_cannot_change_mode_class_ptr (FROM, TO, CLASS)
1420 
1421 /* Stack layout; function entry, exit and calling.  */
1422 
1423 /* Enumeration to give which calling sequence to use.  */
1424 enum rs6000_abi {
1425   ABI_NONE,
1426   ABI_AIX,			/* IBM's AIX */
1427   ABI_V4,			/* System V.4/eabi */
1428   ABI_DARWIN			/* Apple's Darwin (OS X kernel) */
1429 };
1430 
1431 extern enum rs6000_abi rs6000_current_abi;	/* available for use by subtarget */
1432 
1433 /* Define this if pushing a word on the stack
1434    makes the stack pointer a smaller address.  */
1435 #define STACK_GROWS_DOWNWARD
1436 
1437 /* Offsets recorded in opcodes are a multiple of this alignment factor.  */
1438 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1439 
1440 /* Define this to nonzero if the nominal address of the stack frame
1441    is at the high-address end of the local variables;
1442    that is, each additional local variable allocated
1443    goes at a more negative offset in the frame.
1444 
1445    On the RS/6000, we grow upwards, from the area after the outgoing
1446    arguments.  */
1447 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0)
1448 
1449 /* Size of the outgoing register save area */
1450 #define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX			\
1451 			  || DEFAULT_ABI == ABI_DARWIN)			\
1452 			 ? (TARGET_64BIT ? 64 : 32)			\
1453 			 : 0)
1454 
1455 /* Size of the fixed area on the stack */
1456 #define RS6000_SAVE_AREA \
1457   (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8)	\
1458    << (TARGET_64BIT ? 1 : 0))
1459 
1460 /* MEM representing address to save the TOC register */
1461 #define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1462 				     plus_constant (stack_pointer_rtx, \
1463 						    (TARGET_32BIT ? 20 : 40)))
1464 
1465 /* Align an address */
1466 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1467 
1468 /* Offset within stack frame to start allocating local variables at.
1469    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1470    first local allocated.  Otherwise, it is the offset to the BEGINNING
1471    of the first local allocated.
1472 
1473    On the RS/6000, the frame pointer is the same as the stack pointer,
1474    except for dynamic allocations.  So we start after the fixed area and
1475    outgoing parameter area.  */
1476 
1477 #define STARTING_FRAME_OFFSET						\
1478   (FRAME_GROWS_DOWNWARD							\
1479    ? 0									\
1480    : (RS6000_ALIGN (crtl->outgoing_args_size,				\
1481 		    (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)		\
1482       + RS6000_SAVE_AREA))
1483 
1484 /* Offset from the stack pointer register to an item dynamically
1485    allocated on the stack, e.g., by `alloca'.
1486 
1487    The default value for this macro is `STACK_POINTER_OFFSET' plus the
1488    length of the outgoing arguments.  The default is correct for most
1489    machines.  See `function.c' for details.  */
1490 #define STACK_DYNAMIC_OFFSET(FUNDECL)					\
1491   (RS6000_ALIGN (crtl->outgoing_args_size,				\
1492 		 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)		\
1493    + (STACK_POINTER_OFFSET))
1494 
1495 /* If we generate an insn to push BYTES bytes,
1496    this says how many the stack pointer really advances by.
1497    On RS/6000, don't define this because there are no push insns.  */
1498 /*  #define PUSH_ROUNDING(BYTES) */
1499 
1500 /* Offset of first parameter from the argument pointer register value.
1501    On the RS/6000, we define the argument pointer to the start of the fixed
1502    area.  */
1503 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1504 
1505 /* Offset from the argument pointer register value to the top of
1506    stack.  This is different from FIRST_PARM_OFFSET because of the
1507    register save area.  */
1508 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1509 
1510 /* Define this if stack space is still allocated for a parameter passed
1511    in a register.  The value is the number of bytes allocated to this
1512    area.  */
1513 #define REG_PARM_STACK_SPACE(FNDECL)	RS6000_REG_SAVE
1514 
1515 /* Define this if the above stack space is to be considered part of the
1516    space allocated by the caller.  */
1517 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1518 
1519 /* This is the difference between the logical top of stack and the actual sp.
1520 
1521    For the RS/6000, sp points past the fixed area.  */
1522 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1523 
1524 /* Define this if the maximum size of all the outgoing args is to be
1525    accumulated and pushed during the prologue.  The amount can be
1526    found in the variable crtl->outgoing_args_size.  */
1527 #define ACCUMULATE_OUTGOING_ARGS 1
1528 
1529 /* Value is the number of bytes of arguments automatically
1530    popped when returning from a subroutine call.
1531    FUNDECL is the declaration node of the function (as a tree),
1532    FUNTYPE is the data type of the function (as a tree),
1533    or for a library call it is an identifier node for the subroutine name.
1534    SIZE is the number of bytes of arguments passed on the stack.  */
1535 
1536 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1537 
1538 /* Define how to find the value returned by a library function
1539    assuming the value has mode MODE.  */
1540 
1541 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1542 
1543 /* DRAFT_V4_STRUCT_RET defaults off.  */
1544 #define DRAFT_V4_STRUCT_RET 0
1545 
1546 /* Let TARGET_RETURN_IN_MEMORY control what happens.  */
1547 #define DEFAULT_PCC_STRUCT_RETURN 0
1548 
1549 /* Mode of stack savearea.
1550    FUNCTION is VOIDmode because calling convention maintains SP.
1551    BLOCK needs Pmode for SP.
1552    NONLOCAL needs twice Pmode to maintain both backchain and SP.  */
1553 #define STACK_SAVEAREA_MODE(LEVEL)	\
1554   (LEVEL == SAVE_FUNCTION ? VOIDmode	\
1555   : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1556 
1557 /* Minimum and maximum general purpose registers used to hold arguments.  */
1558 #define GP_ARG_MIN_REG 3
1559 #define GP_ARG_MAX_REG 10
1560 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1561 
1562 /* Minimum and maximum floating point registers used to hold arguments.  */
1563 #define FP_ARG_MIN_REG 33
1564 #define	FP_ARG_AIX_MAX_REG 45
1565 #define	FP_ARG_V4_MAX_REG  40
1566 #define	FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX				\
1567 			 || DEFAULT_ABI == ABI_DARWIN)			\
1568 			? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1569 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1570 
1571 /* Minimum and maximum AltiVec registers used to hold arguments.  */
1572 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1573 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1574 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1575 
1576 /* Return registers */
1577 #define GP_ARG_RETURN GP_ARG_MIN_REG
1578 #define FP_ARG_RETURN FP_ARG_MIN_REG
1579 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1580 
1581 /* Flags for the call/call_value rtl operations set up by function_arg */
1582 #define CALL_NORMAL		0x00000000	/* no special processing */
1583 /* Bits in 0x00000001 are unused.  */
1584 #define CALL_V4_CLEAR_FP_ARGS	0x00000002	/* V.4, no FP args passed */
1585 #define CALL_V4_SET_FP_ARGS	0x00000004	/* V.4, FP args were passed */
1586 #define CALL_LONG		0x00000008	/* always call indirect */
1587 #define CALL_LIBCALL		0x00000010	/* libcall */
1588 
1589 /* We don't have prologue and epilogue functions to save/restore
1590    everything for most ABIs.  */
1591 #define WORLD_SAVE_P(INFO) 0
1592 
1593 /* 1 if N is a possible register number for a function value
1594    as seen by the caller.
1595 
1596    On RS/6000, this is r3, fp1, and v2 (for AltiVec).  */
1597 #define FUNCTION_VALUE_REGNO_P(N)					\
1598   ((N) == GP_ARG_RETURN							\
1599    || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT && TARGET_FPRS)	\
1600    || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1601 
1602 /* 1 if N is a possible register number for function argument passing.
1603    On RS/6000, these are r3-r10 and fp1-fp13.
1604    On AltiVec, v2 - v13 are used for passing vectors.  */
1605 #define FUNCTION_ARG_REGNO_P(N)						\
1606   ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG			\
1607    || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG	\
1608        && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI)				\
1609    || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG			\
1610        && TARGET_HARD_FLOAT && TARGET_FPRS))
1611 
1612 /* Define a data type for recording info about an argument list
1613    during the scan of that argument list.  This data type should
1614    hold all necessary information about the function itself
1615    and about the args processed so far, enough to enable macros
1616    such as FUNCTION_ARG to determine where the next arg should go.
1617 
1618    On the RS/6000, this is a structure.  The first element is the number of
1619    total argument words, the second is used to store the next
1620    floating-point register number, and the third says how many more args we
1621    have prototype types for.
1622 
1623    For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1624    the next available GP register, `fregno' is the next available FP
1625    register, and `words' is the number of words used on the stack.
1626 
1627    The varargs/stdarg support requires that this structure's size
1628    be a multiple of sizeof(int).  */
1629 
1630 typedef struct rs6000_args
1631 {
1632   int words;			/* # words used for passing GP registers */
1633   int fregno;			/* next available FP register */
1634   int vregno;			/* next available AltiVec register */
1635   int nargs_prototype;		/* # args left in the current prototype */
1636   int prototype;		/* Whether a prototype was defined */
1637   int stdarg;			/* Whether function is a stdarg function.  */
1638   int call_cookie;		/* Do special things for this call */
1639   int sysv_gregno;		/* next available GP register */
1640   int intoffset;		/* running offset in struct (darwin64) */
1641   int use_stack;		/* any part of struct on stack (darwin64) */
1642   int named;			/* false for varargs params */
1643 } CUMULATIVE_ARGS;
1644 
1645 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1646    for a call to a function whose data type is FNTYPE.
1647    For a library call, FNTYPE is 0.  */
1648 
1649 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1650   init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, N_NAMED_ARGS)
1651 
1652 /* Similar, but when scanning the definition of a procedure.  We always
1653    set NARGS_PROTOTYPE large so we never return an EXPR_LIST.  */
1654 
1655 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1656   init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, 1000)
1657 
1658 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls.  */
1659 
1660 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1661   init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, 0)
1662 
1663 /* Update the data in CUM to advance over an argument
1664    of mode MODE and data type TYPE.
1665    (TYPE is null for libcalls where that information may not be available.)  */
1666 
1667 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)	\
1668   function_arg_advance (&CUM, MODE, TYPE, NAMED, 0)
1669 
1670 /* Determine where to put an argument to a function.
1671    Value is zero to push the argument on the stack,
1672    or a hard register in which to store the argument.
1673 
1674    MODE is the argument's machine mode.
1675    TYPE is the data type of the argument (as a tree).
1676     This is null for libcalls where that information may
1677     not be available.
1678    CUM is a variable of type CUMULATIVE_ARGS which gives info about
1679     the preceding args and about the function being called.
1680    NAMED is nonzero if this argument is a named parameter
1681     (otherwise it is an extra parameter matching an ellipsis).
1682 
1683    On RS/6000 the first eight words of non-FP are normally in registers
1684    and the rest are pushed.  The first 13 FP args are in registers.
1685 
1686    If this is floating-point and no prototype is specified, we use
1687    both an FP and integer register (or possibly FP reg and stack).  Library
1688    functions (when TYPE is zero) always have the proper types for args,
1689    so we can pass the FP value just in one register.  emit_library_function
1690    doesn't support EXPR_LIST anyway.  */
1691 
1692 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1693   function_arg (&CUM, MODE, TYPE, NAMED)
1694 
1695 /* If defined, a C expression which determines whether, and in which
1696    direction, to pad out an argument with extra space.  The value
1697    should be of type `enum direction': either `upward' to pad above
1698    the argument, `downward' to pad below, or `none' to inhibit
1699    padding.  */
1700 
1701 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1702 
1703 /* If defined, a C expression that gives the alignment boundary, in bits,
1704    of an argument with the specified mode and type.  If it is not defined,
1705    PARM_BOUNDARY is used for all arguments.  */
1706 
1707 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1708   function_arg_boundary (MODE, TYPE)
1709 
1710 #define PAD_VARARGS_DOWN \
1711    (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1712 
1713 /* Output assembler code to FILE to increment profiler label # LABELNO
1714    for profiling a function entry.  */
1715 
1716 #define FUNCTION_PROFILER(FILE, LABELNO)	\
1717   output_function_profiler ((FILE), (LABELNO));
1718 
1719 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1720    the stack pointer does not matter. No definition is equivalent to
1721    always zero.
1722 
1723    On the RS/6000, this is nonzero because we can restore the stack from
1724    its backpointer, which we maintain.  */
1725 #define EXIT_IGNORE_STACK	1
1726 
1727 /* Define this macro as a C expression that is nonzero for registers
1728    that are used by the epilogue or the return' pattern.  The stack
1729    and frame pointer registers are already be assumed to be used as
1730    needed.  */
1731 
1732 #define	EPILOGUE_USES(REGNO)					\
1733   ((reload_completed && (REGNO) == LR_REGNO)			\
1734    || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO)		\
1735    || (crtl->calls_eh_return					\
1736        && TARGET_AIX						\
1737        && (REGNO) == 2))
1738 
1739 
1740 /* Length in units of the trampoline for entering a nested function.  */
1741 
1742 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1743 
1744 /* Definitions for __builtin_return_address and __builtin_frame_address.
1745    __builtin_return_address (0) should give link register (65), enable
1746    this.  */
1747 /* This should be uncommented, so that the link register is used, but
1748    currently this would result in unmatched insns and spilling fixed
1749    registers so we'll leave it for another day.  When these problems are
1750    taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1751    (mrs) */
1752 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1753 
1754 /* Number of bytes into the frame return addresses can be found.  See
1755    rs6000_stack_info in rs6000.c for more information on how the different
1756    abi's store the return address.  */
1757 #define RETURN_ADDRESS_OFFSET						\
1758  ((DEFAULT_ABI == ABI_AIX						\
1759    || DEFAULT_ABI == ABI_DARWIN)	? (TARGET_32BIT ? 8 : 16) :	\
1760   (DEFAULT_ABI == ABI_V4)		? 4 :				\
1761   (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1762 
1763 /* The current return address is in link register (65).  The return address
1764    of anything farther back is accessed normally at an offset of 8 from the
1765    frame pointer.  */
1766 #define RETURN_ADDR_RTX(COUNT, FRAME)                 \
1767   (rs6000_return_addr (COUNT, FRAME))
1768 
1769 
1770 /* Definitions for register eliminations.
1771 
1772    We have two registers that can be eliminated on the RS/6000.  First, the
1773    frame pointer register can often be eliminated in favor of the stack
1774    pointer register.  Secondly, the argument pointer register can always be
1775    eliminated; it is replaced with either the stack or frame pointer.
1776 
1777    In addition, we use the elimination mechanism to see if r30 is needed
1778    Initially we assume that it isn't.  If it is, we spill it.  This is done
1779    by making it an eliminable register.  We replace it with itself so that
1780    if it isn't needed, then existing uses won't be modified.  */
1781 
1782 /* This is an array of structures.  Each structure initializes one pair
1783    of eliminable registers.  The "from" register number is given first,
1784    followed by "to".  Eliminations of the same "from" register are listed
1785    in order of preference.  */
1786 #define ELIMINABLE_REGS					\
1787 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
1788  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1789  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1790  { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1791  { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1792  { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1793 
1794 /* Define the offset between two registers, one to be eliminated, and the other
1795    its replacement, at the start of a routine.  */
1796 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1797   ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1798 
1799 /* Addressing modes, and classification of registers for them.  */
1800 
1801 #define HAVE_PRE_DECREMENT 1
1802 #define HAVE_PRE_INCREMENT 1
1803 #define HAVE_PRE_MODIFY_DISP 1
1804 #define HAVE_PRE_MODIFY_REG 1
1805 
1806 /* Macros to check register numbers against specific register classes.  */
1807 
1808 /* These assume that REGNO is a hard or pseudo reg number.
1809    They give nonzero only if REGNO is a hard reg of the suitable class
1810    or a pseudo reg currently allocated to a suitable hard reg.
1811    Since they use reg_renumber, they are safe only once reg_renumber
1812    has been allocated, which happens in local-alloc.c.  */
1813 
1814 #define REGNO_OK_FOR_INDEX_P(REGNO)				\
1815 ((REGNO) < FIRST_PSEUDO_REGISTER				\
1816  ? (REGNO) <= 31 || (REGNO) == 67				\
1817    || (REGNO) == FRAME_POINTER_REGNUM				\
1818  : (reg_renumber[REGNO] >= 0					\
1819     && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67	\
1820 	|| reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1821 
1822 #define REGNO_OK_FOR_BASE_P(REGNO)				\
1823 ((REGNO) < FIRST_PSEUDO_REGISTER				\
1824  ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67		\
1825    || (REGNO) == FRAME_POINTER_REGNUM				\
1826  : (reg_renumber[REGNO] > 0					\
1827     && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67	\
1828 	|| reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1829 
1830 /* Nonzero if X is a hard reg that can be used as an index
1831    or if it is a pseudo reg in the non-strict case.  */
1832 #define INT_REG_OK_FOR_INDEX_P(X, STRICT)			\
1833   ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER)		\
1834    || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1835 
1836 /* Nonzero if X is a hard reg that can be used as a base reg
1837    or if it is a pseudo reg in the non-strict case.  */
1838 #define INT_REG_OK_FOR_BASE_P(X, STRICT)			\
1839   ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER)		\
1840    || REGNO_OK_FOR_BASE_P (REGNO (X)))
1841 
1842 
1843 /* Maximum number of registers that can appear in a valid memory address.  */
1844 
1845 #define MAX_REGS_PER_ADDRESS 2
1846 
1847 /* Recognize any constant value that is a valid address.  */
1848 
1849 #define CONSTANT_ADDRESS_P(X)   \
1850   (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
1851    || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST		\
1852    || GET_CODE (X) == HIGH)
1853 
1854 /* Nonzero if the constant value X is a legitimate general operand.
1855    It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1856 
1857    On the RS/6000, all integer constants are acceptable, most won't be valid
1858    for particular insns, though.  Only easy FP constants are
1859    acceptable.  */
1860 
1861 #define LEGITIMATE_CONSTANT_P(X)				\
1862   (((GET_CODE (X) != CONST_DOUBLE				\
1863      && GET_CODE (X) != CONST_VECTOR)				\
1864     || GET_MODE (X) == VOIDmode					\
1865     || (TARGET_POWERPC64 && GET_MODE (X) == DImode)		\
1866     || easy_fp_constant (X, GET_MODE (X))			\
1867     || easy_vector_constant (X, GET_MODE (X)))			\
1868    && !rs6000_tls_referenced_p (X))
1869 
1870 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1871 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n))	\
1872 				    && EASY_VECTOR_15((n) >> 1) \
1873 				    && ((n) & 1) == 0)
1874 
1875 #define EASY_VECTOR_MSB(n,mode)						\
1876   (((unsigned HOST_WIDE_INT)n) ==					\
1877    ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1878 
1879 
1880 /* Try a machine-dependent way of reloading an illegitimate address
1881    operand.  If we find one, push the reload and jump to WIN.  This
1882    macro is used in only one place: `find_reloads_address' in reload.c.
1883 
1884    Implemented on rs6000 by rs6000_legitimize_reload_address.
1885    Note that (X) is evaluated twice; this is safe in current usage.  */
1886 
1887 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)	     \
1888 do {									     \
1889   int win;								     \
1890   (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM),	     \
1891 			(int)(TYPE), (IND_LEVELS), &win);		     \
1892   if ( win )								     \
1893     goto WIN;								     \
1894 } while (0)
1895 
1896 /* Go to LABEL if ADDR (a legitimate address expression)
1897    has an effect that depends on the machine mode it is used for.  */
1898 
1899 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)		\
1900 do {								\
1901   if (rs6000_mode_dependent_address_ptr (ADDR))			\
1902     goto LABEL;							\
1903 } while (0)
1904 
1905 #define FIND_BASE_TERM rs6000_find_base_term
1906 
1907 /* The register number of the register used to address a table of
1908    static data addresses in memory.  In some cases this register is
1909    defined by a processor's "application binary interface" (ABI).
1910    When this macro is defined, RTL is generated for this register
1911    once, as with the stack pointer and frame pointer registers.  If
1912    this macro is not defined, it is up to the machine-dependent files
1913    to allocate such a register (if necessary).  */
1914 
1915 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1916 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
1917 
1918 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1919 
1920 /* Define this macro if the register defined by
1921    `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls.  Do not define
1922    this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined.  */
1923 
1924 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1925 
1926 /* A C expression that is nonzero if X is a legitimate immediate
1927    operand on the target machine when generating position independent
1928    code.  You can assume that X satisfies `CONSTANT_P', so you need
1929    not check this.  You can also assume FLAG_PIC is true, so you need
1930    not check it either.  You need not define this macro if all
1931    constants (including `SYMBOL_REF') can be immediate operands when
1932    generating position independent code.  */
1933 
1934 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1935 
1936 /* Define this if some processing needs to be done immediately before
1937    emitting code for an insn.  */
1938 
1939 #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
1940   rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS)
1941 
1942 /* Specify the machine mode that this machine uses
1943    for the index in the tablejump instruction.  */
1944 #define CASE_VECTOR_MODE SImode
1945 
1946 /* Define as C expression which evaluates to nonzero if the tablejump
1947    instruction expects the table to contain offsets from the address of the
1948    table.
1949    Do not define this if the table should contain absolute addresses.  */
1950 #define CASE_VECTOR_PC_RELATIVE 1
1951 
1952 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1953 #define DEFAULT_SIGNED_CHAR 0
1954 
1955 /* This flag, if defined, says the same insns that convert to a signed fixnum
1956    also convert validly to an unsigned one.  */
1957 
1958 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1959 
1960 /* An integer expression for the size in bits of the largest integer machine
1961    mode that should actually be used.  */
1962 
1963 /* Allow pairs of registers to be used, which is the intent of the default.  */
1964 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1965 
1966 /* Max number of bytes we can move from memory to memory
1967    in one reasonably fast instruction.  */
1968 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1969 #define MAX_MOVE_MAX 8
1970 
1971 /* Nonzero if access to memory by bytes is no faster than for words.
1972    Also nonzero if doing byte operations (specifically shifts) in registers
1973    is undesirable.  */
1974 #define SLOW_BYTE_ACCESS 1
1975 
1976 /* Define if operations between registers always perform the operation
1977    on the full register even if a narrower mode is specified.  */
1978 #define WORD_REGISTER_OPERATIONS
1979 
1980 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1981    will either zero-extend or sign-extend.  The value of this macro should
1982    be the code that says which one of the two operations is implicitly
1983    done, UNKNOWN if none.  */
1984 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1985 
1986 /* Define if loading short immediate values into registers sign extends.  */
1987 #define SHORT_IMMEDIATES_SIGN_EXTEND
1988 
1989 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1990    is done just by pretending it is already truncated.  */
1991 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1992 
1993 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero.  */
1994 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1995   ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
1996 
1997 /* The CTZ patterns return -1 for input of zero.  */
1998 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
1999 
2000 /* Specify the machine mode that pointers have.
2001    After generation of rtl, the compiler makes no further distinction
2002    between pointers and any other objects of this machine mode.  */
2003 extern unsigned rs6000_pmode;
2004 #define Pmode ((enum machine_mode)rs6000_pmode)
2005 
2006 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space.  */
2007 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
2008 
2009 /* Mode of a function address in a call instruction (for indexing purposes).
2010    Doesn't matter on RS/6000.  */
2011 #define FUNCTION_MODE SImode
2012 
2013 /* Define this if addresses of constant functions
2014    shouldn't be put through pseudo regs where they can be cse'd.
2015    Desirable on machines where ordinary constants are expensive
2016    but a CALL with constant address is cheap.  */
2017 #define NO_FUNCTION_CSE
2018 
2019 /* Define this to be nonzero if shift instructions ignore all but the low-order
2020    few bits.
2021 
2022    The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2023    have been dropped from the PowerPC architecture.  */
2024 
2025 #define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
2026 
2027 /* Adjust the length of an INSN.  LENGTH is the currently-computed length and
2028    should be adjusted to reflect any required changes.  This macro is used when
2029    there is some systematic length adjustment required that would be difficult
2030    to express in the length attribute.  */
2031 
2032 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2033 
2034 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
2035    COMPARE, return the mode to be used for the comparison.  For
2036    floating-point, CCFPmode should be used.  CCUNSmode should be used
2037    for unsigned comparisons.  CCEQmode should be used when we are
2038    doing an inequality comparison on the result of a
2039    comparison.  CCmode should be used in all other cases.  */
2040 
2041 #define SELECT_CC_MODE(OP,X,Y) \
2042   (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode	\
2043    : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2044    : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X)			  \
2045       ? CCEQmode : CCmode))
2046 
2047 /* Can the condition code MODE be safely reversed?  This is safe in
2048    all cases on this port, because at present it doesn't use the
2049    trapping FP comparisons (fcmpo).  */
2050 #define REVERSIBLE_CC_MODE(MODE) 1
2051 
2052 /* Given a condition code and a mode, return the inverse condition.  */
2053 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2054 
2055 
2056 /* Control the assembler format that we output.  */
2057 
2058 /* A C string constant describing how to begin a comment in the target
2059    assembler language.  The compiler assumes that the comment will end at
2060    the end of the line.  */
2061 #define ASM_COMMENT_START " #"
2062 
2063 /* Flag to say the TOC is initialized */
2064 extern int toc_initialized;
2065 
2066 /* Macro to output a special constant pool entry.  Go to WIN if we output
2067    it.  Otherwise, it is written the usual way.
2068 
2069    On the RS/6000, toc entries are handled this way.  */
2070 
2071 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2072 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE))			  \
2073     {									  \
2074       output_toc (FILE, X, LABELNO, MODE);				  \
2075       goto WIN;								  \
2076     }									  \
2077 }
2078 
2079 #ifdef HAVE_GAS_WEAK
2080 #define RS6000_WEAK 1
2081 #else
2082 #define RS6000_WEAK 0
2083 #endif
2084 
2085 #if RS6000_WEAK
2086 /* Used in lieu of ASM_WEAKEN_LABEL.  */
2087 #define	ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL)			 	\
2088   do									\
2089     {									\
2090       fputs ("\t.weak\t", (FILE));					\
2091       RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 				\
2092       if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL			\
2093 	  && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)			\
2094 	{								\
2095 	  if (TARGET_XCOFF)						\
2096 	    fputs ("[DS]", (FILE));					\
2097 	  fputs ("\n\t.weak\t.", (FILE));				\
2098 	  RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 			\
2099 	}								\
2100       fputc ('\n', (FILE));						\
2101       if (VAL)								\
2102 	{								\
2103 	  ASM_OUTPUT_DEF ((FILE), (NAME), (VAL));			\
2104 	  if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL		\
2105 	      && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)			\
2106 	    {								\
2107 	      fputs ("\t.set\t.", (FILE));				\
2108 	      RS6000_OUTPUT_BASENAME ((FILE), (NAME));			\
2109 	      fputs (",.", (FILE));					\
2110 	      RS6000_OUTPUT_BASENAME ((FILE), (VAL));			\
2111 	      fputc ('\n', (FILE));					\
2112 	    }								\
2113 	}								\
2114     }									\
2115   while (0)
2116 #endif
2117 
2118 #if HAVE_GAS_WEAKREF
2119 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE)			\
2120   do									\
2121     {									\
2122       fputs ("\t.weakref\t", (FILE));					\
2123       RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 				\
2124       fputs (", ", (FILE));						\
2125       RS6000_OUTPUT_BASENAME ((FILE), (VALUE));				\
2126       if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL			\
2127 	  && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)			\
2128 	{								\
2129 	  fputs ("\n\t.weakref\t.", (FILE));				\
2130 	  RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 			\
2131 	  fputs (", .", (FILE));					\
2132 	  RS6000_OUTPUT_BASENAME ((FILE), (VALUE));			\
2133 	}								\
2134       fputc ('\n', (FILE));						\
2135     } while (0)
2136 #endif
2137 
2138 /* This implements the `alias' attribute.  */
2139 #undef	ASM_OUTPUT_DEF_FROM_DECLS
2140 #define	ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET)			\
2141   do									\
2142     {									\
2143       const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0);		\
2144       const char *name = IDENTIFIER_POINTER (TARGET);			\
2145       if (TREE_CODE (DECL) == FUNCTION_DECL				\
2146 	  && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)			\
2147 	{								\
2148 	  if (TREE_PUBLIC (DECL))					\
2149 	    {								\
2150 	      if (!RS6000_WEAK || !DECL_WEAK (DECL))			\
2151 		{							\
2152 		  fputs ("\t.globl\t.", FILE);				\
2153 		  RS6000_OUTPUT_BASENAME (FILE, alias);			\
2154 		  putc ('\n', FILE);					\
2155 		}							\
2156 	    }								\
2157 	  else if (TARGET_XCOFF)					\
2158 	    {								\
2159 	      fputs ("\t.lglobl\t.", FILE);				\
2160 	      RS6000_OUTPUT_BASENAME (FILE, alias);			\
2161 	      putc ('\n', FILE);					\
2162 	    }								\
2163 	  fputs ("\t.set\t.", FILE);					\
2164 	  RS6000_OUTPUT_BASENAME (FILE, alias);				\
2165 	  fputs (",.", FILE);						\
2166 	  RS6000_OUTPUT_BASENAME (FILE, name);				\
2167 	  fputc ('\n', FILE);						\
2168 	}								\
2169       ASM_OUTPUT_DEF (FILE, alias, name);				\
2170     }									\
2171    while (0)
2172 
2173 #define TARGET_ASM_FILE_START rs6000_file_start
2174 
2175 /* Output to assembler file text saying following lines
2176    may contain character constants, extra white space, comments, etc.  */
2177 
2178 #define ASM_APP_ON ""
2179 
2180 /* Output to assembler file text saying following lines
2181    no longer contain unusual constructs.  */
2182 
2183 #define ASM_APP_OFF ""
2184 
2185 /* How to refer to registers in assembler output.
2186    This sequence is indexed by compiler's hard-register-number (see above).  */
2187 
2188 extern char rs6000_reg_names[][8];	/* register names (0 vs. %r0).  */
2189 
2190 #define REGISTER_NAMES							\
2191 {									\
2192   &rs6000_reg_names[ 0][0],	/* r0   */				\
2193   &rs6000_reg_names[ 1][0],	/* r1	*/				\
2194   &rs6000_reg_names[ 2][0],     /* r2	*/				\
2195   &rs6000_reg_names[ 3][0],	/* r3	*/				\
2196   &rs6000_reg_names[ 4][0],	/* r4	*/				\
2197   &rs6000_reg_names[ 5][0],	/* r5	*/				\
2198   &rs6000_reg_names[ 6][0],	/* r6	*/				\
2199   &rs6000_reg_names[ 7][0],	/* r7	*/				\
2200   &rs6000_reg_names[ 8][0],	/* r8	*/				\
2201   &rs6000_reg_names[ 9][0],	/* r9	*/				\
2202   &rs6000_reg_names[10][0],	/* r10  */				\
2203   &rs6000_reg_names[11][0],	/* r11  */				\
2204   &rs6000_reg_names[12][0],	/* r12  */				\
2205   &rs6000_reg_names[13][0],	/* r13  */				\
2206   &rs6000_reg_names[14][0],	/* r14  */				\
2207   &rs6000_reg_names[15][0],	/* r15  */				\
2208   &rs6000_reg_names[16][0],	/* r16  */				\
2209   &rs6000_reg_names[17][0],	/* r17  */				\
2210   &rs6000_reg_names[18][0],	/* r18  */				\
2211   &rs6000_reg_names[19][0],	/* r19  */				\
2212   &rs6000_reg_names[20][0],	/* r20  */				\
2213   &rs6000_reg_names[21][0],	/* r21  */				\
2214   &rs6000_reg_names[22][0],	/* r22  */				\
2215   &rs6000_reg_names[23][0],	/* r23  */				\
2216   &rs6000_reg_names[24][0],	/* r24  */				\
2217   &rs6000_reg_names[25][0],	/* r25  */				\
2218   &rs6000_reg_names[26][0],	/* r26  */				\
2219   &rs6000_reg_names[27][0],	/* r27  */				\
2220   &rs6000_reg_names[28][0],	/* r28  */				\
2221   &rs6000_reg_names[29][0],	/* r29  */				\
2222   &rs6000_reg_names[30][0],	/* r30  */				\
2223   &rs6000_reg_names[31][0],	/* r31  */				\
2224 									\
2225   &rs6000_reg_names[32][0],     /* fr0  */				\
2226   &rs6000_reg_names[33][0],	/* fr1  */				\
2227   &rs6000_reg_names[34][0],	/* fr2  */				\
2228   &rs6000_reg_names[35][0],	/* fr3  */				\
2229   &rs6000_reg_names[36][0],	/* fr4  */				\
2230   &rs6000_reg_names[37][0],	/* fr5  */				\
2231   &rs6000_reg_names[38][0],	/* fr6  */				\
2232   &rs6000_reg_names[39][0],	/* fr7  */				\
2233   &rs6000_reg_names[40][0],	/* fr8  */				\
2234   &rs6000_reg_names[41][0],	/* fr9  */				\
2235   &rs6000_reg_names[42][0],	/* fr10 */				\
2236   &rs6000_reg_names[43][0],	/* fr11 */				\
2237   &rs6000_reg_names[44][0],	/* fr12 */				\
2238   &rs6000_reg_names[45][0],	/* fr13 */				\
2239   &rs6000_reg_names[46][0],	/* fr14 */				\
2240   &rs6000_reg_names[47][0],	/* fr15 */				\
2241   &rs6000_reg_names[48][0],	/* fr16 */				\
2242   &rs6000_reg_names[49][0],	/* fr17 */				\
2243   &rs6000_reg_names[50][0],	/* fr18 */				\
2244   &rs6000_reg_names[51][0],	/* fr19 */				\
2245   &rs6000_reg_names[52][0],	/* fr20 */				\
2246   &rs6000_reg_names[53][0],	/* fr21 */				\
2247   &rs6000_reg_names[54][0],	/* fr22 */				\
2248   &rs6000_reg_names[55][0],	/* fr23 */				\
2249   &rs6000_reg_names[56][0],	/* fr24 */				\
2250   &rs6000_reg_names[57][0],	/* fr25 */				\
2251   &rs6000_reg_names[58][0],	/* fr26 */				\
2252   &rs6000_reg_names[59][0],	/* fr27 */				\
2253   &rs6000_reg_names[60][0],	/* fr28 */				\
2254   &rs6000_reg_names[61][0],	/* fr29 */				\
2255   &rs6000_reg_names[62][0],	/* fr30 */				\
2256   &rs6000_reg_names[63][0],	/* fr31 */				\
2257 									\
2258   &rs6000_reg_names[64][0],     /* mq   */				\
2259   &rs6000_reg_names[65][0],	/* lr   */				\
2260   &rs6000_reg_names[66][0],	/* ctr  */				\
2261   &rs6000_reg_names[67][0],	/* ap   */				\
2262 									\
2263   &rs6000_reg_names[68][0],	/* cr0  */				\
2264   &rs6000_reg_names[69][0],	/* cr1  */				\
2265   &rs6000_reg_names[70][0],	/* cr2  */				\
2266   &rs6000_reg_names[71][0],	/* cr3  */				\
2267   &rs6000_reg_names[72][0],	/* cr4  */				\
2268   &rs6000_reg_names[73][0],	/* cr5  */				\
2269   &rs6000_reg_names[74][0],	/* cr6  */				\
2270   &rs6000_reg_names[75][0],	/* cr7  */				\
2271 									\
2272   &rs6000_reg_names[76][0],	/* xer  */				\
2273 									\
2274   &rs6000_reg_names[77][0],	/* v0  */				\
2275   &rs6000_reg_names[78][0],	/* v1  */				\
2276   &rs6000_reg_names[79][0],	/* v2  */				\
2277   &rs6000_reg_names[80][0],	/* v3  */				\
2278   &rs6000_reg_names[81][0],	/* v4  */				\
2279   &rs6000_reg_names[82][0],	/* v5  */				\
2280   &rs6000_reg_names[83][0],	/* v6  */				\
2281   &rs6000_reg_names[84][0],	/* v7  */				\
2282   &rs6000_reg_names[85][0],	/* v8  */				\
2283   &rs6000_reg_names[86][0],	/* v9  */				\
2284   &rs6000_reg_names[87][0],	/* v10  */				\
2285   &rs6000_reg_names[88][0],	/* v11  */				\
2286   &rs6000_reg_names[89][0],	/* v12  */				\
2287   &rs6000_reg_names[90][0],	/* v13  */				\
2288   &rs6000_reg_names[91][0],	/* v14  */				\
2289   &rs6000_reg_names[92][0],	/* v15  */				\
2290   &rs6000_reg_names[93][0],	/* v16  */				\
2291   &rs6000_reg_names[94][0],	/* v17  */				\
2292   &rs6000_reg_names[95][0],	/* v18  */				\
2293   &rs6000_reg_names[96][0],	/* v19  */				\
2294   &rs6000_reg_names[97][0],	/* v20  */				\
2295   &rs6000_reg_names[98][0],	/* v21  */				\
2296   &rs6000_reg_names[99][0],	/* v22  */				\
2297   &rs6000_reg_names[100][0],	/* v23  */				\
2298   &rs6000_reg_names[101][0],	/* v24  */				\
2299   &rs6000_reg_names[102][0],	/* v25  */				\
2300   &rs6000_reg_names[103][0],	/* v26  */				\
2301   &rs6000_reg_names[104][0],	/* v27  */				\
2302   &rs6000_reg_names[105][0],	/* v28  */				\
2303   &rs6000_reg_names[106][0],	/* v29  */				\
2304   &rs6000_reg_names[107][0],	/* v30  */				\
2305   &rs6000_reg_names[108][0],	/* v31  */				\
2306   &rs6000_reg_names[109][0],	/* vrsave  */				\
2307   &rs6000_reg_names[110][0],	/* vscr  */				\
2308   &rs6000_reg_names[111][0],	/* spe_acc */				\
2309   &rs6000_reg_names[112][0],	/* spefscr */				\
2310   &rs6000_reg_names[113][0],	/* sfp  */				\
2311 }
2312 
2313 /* Table of additional register names to use in user input.  */
2314 
2315 #define ADDITIONAL_REGISTER_NAMES \
2316  {{"r0",    0}, {"r1",    1}, {"r2",    2}, {"r3",    3},	\
2317   {"r4",    4}, {"r5",    5}, {"r6",    6}, {"r7",    7},	\
2318   {"r8",    8}, {"r9",    9}, {"r10",  10}, {"r11",  11},	\
2319   {"r12",  12}, {"r13",  13}, {"r14",  14}, {"r15",  15},	\
2320   {"r16",  16}, {"r17",  17}, {"r18",  18}, {"r19",  19},	\
2321   {"r20",  20}, {"r21",  21}, {"r22",  22}, {"r23",  23},	\
2322   {"r24",  24}, {"r25",  25}, {"r26",  26}, {"r27",  27},	\
2323   {"r28",  28}, {"r29",  29}, {"r30",  30}, {"r31",  31},	\
2324   {"fr0",  32}, {"fr1",  33}, {"fr2",  34}, {"fr3",  35},	\
2325   {"fr4",  36}, {"fr5",  37}, {"fr6",  38}, {"fr7",  39},	\
2326   {"fr8",  40}, {"fr9",  41}, {"fr10", 42}, {"fr11", 43},	\
2327   {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47},	\
2328   {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51},	\
2329   {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55},	\
2330   {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59},	\
2331   {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63},	\
2332   {"v0",   77}, {"v1",   78}, {"v2",   79}, {"v3",   80},       \
2333   {"v4",   81}, {"v5",   82}, {"v6",   83}, {"v7",   84},       \
2334   {"v8",   85}, {"v9",   86}, {"v10",  87}, {"v11",  88},       \
2335   {"v12",  89}, {"v13",  90}, {"v14",  91}, {"v15",  92},       \
2336   {"v16",  93}, {"v17",  94}, {"v18",  95}, {"v19",  96},       \
2337   {"v20",  97}, {"v21",  98}, {"v22",  99}, {"v23",  100},	\
2338   {"v24",  101},{"v25",  102},{"v26",  103},{"v27",  104},      \
2339   {"v28",  105},{"v29",  106},{"v30",  107},{"v31",  108},      \
2340   {"vrsave", 109}, {"vscr", 110},				\
2341   {"spe_acc", 111}, {"spefscr", 112},				\
2342   /* no additional names for: mq, lr, ctr, ap */		\
2343   {"cr0",  68}, {"cr1",  69}, {"cr2",  70}, {"cr3",  71},	\
2344   {"cr4",  72}, {"cr5",  73}, {"cr6",  74}, {"cr7",  75},	\
2345   {"cc",   68}, {"sp",    1}, {"toc",   2},			\
2346   /* VSX registers overlaid on top of FR, Altivec registers */	\
2347   {"vs0",  32}, {"vs1",  33}, {"vs2",  34}, {"vs3",  35},	\
2348   {"vs4",  36}, {"vs5",  37}, {"vs6",  38}, {"vs7",  39},	\
2349   {"vs8",  40}, {"vs9",  41}, {"vs10", 42}, {"vs11", 43},	\
2350   {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47},	\
2351   {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51},	\
2352   {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55},	\
2353   {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59},	\
2354   {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63},	\
2355   {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80},       \
2356   {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84},       \
2357   {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88},       \
2358   {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92},       \
2359   {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96},       \
2360   {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100},	\
2361   {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104},      \
2362   {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108} }
2363 
2364 /* Text to write out after a CALL that may be replaced by glue code by
2365    the loader.  This depends on the AIX version.  */
2366 #define RS6000_CALL_GLUE "cror 31,31,31"
2367 
2368 /* This is how to output an element of a case-vector that is relative.  */
2369 
2370 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2371   do { char buf[100];					\
2372        fputs ("\t.long ", FILE);			\
2373        ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE);	\
2374        assemble_name (FILE, buf);			\
2375        putc ('-', FILE);				\
2376        ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL);	\
2377        assemble_name (FILE, buf);			\
2378        putc ('\n', FILE);				\
2379      } while (0)
2380 
2381 /* This is how to output an assembler line
2382    that says to advance the location counter
2383    to a multiple of 2**LOG bytes.  */
2384 
2385 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
2386   if ((LOG) != 0)			\
2387     fprintf (FILE, "\t.align %d\n", (LOG))
2388 
2389 /* Pick up the return address upon entry to a procedure. Used for
2390    dwarf2 unwind information.  This also enables the table driven
2391    mechanism.  */
2392 
2393 #define INCOMING_RETURN_ADDR_RTX   gen_rtx_REG (Pmode, LR_REGNO)
2394 #define DWARF_FRAME_RETURN_COLUMN  DWARF_FRAME_REGNUM (LR_REGNO)
2395 
2396 /* Describe how we implement __builtin_eh_return.  */
2397 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2398 #define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, 10)
2399 
2400 /* Print operand X (an rtx) in assembler syntax to file FILE.
2401    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2402    For `%' followed by punctuation, CODE is the punctuation and X is null.  */
2403 
2404 #define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)
2405 
2406 /* Define which CODE values are valid.  */
2407 
2408 #define PRINT_OPERAND_PUNCT_VALID_P(CODE)  \
2409   ((CODE) == '.' || (CODE) == '&')
2410 
2411 /* Print a memory address as an operand to reference that memory location.  */
2412 
2413 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2414 
2415 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL)		\
2416   do								\
2417     if (!rs6000_output_addr_const_extra (STREAM, X))		\
2418       goto FAIL;						\
2419   while (0)
2420 
2421 /* uncomment for disabling the corresponding default options */
2422 /* #define  MACHINE_no_sched_interblock */
2423 /* #define  MACHINE_no_sched_speculative */
2424 /* #define  MACHINE_no_sched_speculative_load */
2425 
2426 /* General flags.  */
2427 extern int flag_pic;
2428 extern int optimize;
2429 extern int flag_expensive_optimizations;
2430 extern int frame_pointer_needed;
2431 
2432 /* Classification of the builtin functions to properly set the declaration tree
2433    flags.  */
2434 enum rs6000_btc
2435 {
2436   RS6000_BTC_MISC,		/* assume builtin can do anything */
2437   RS6000_BTC_CONST,		/* builtin is a 'const' function.  */
2438   RS6000_BTC_PURE,		/* builtin is a 'pure' function.  */
2439   RS6000_BTC_FP_PURE		/* builtin is 'pure' if rounding math.  */
2440 };
2441 
2442 /* Convenience macros to document the instruction type.  */
2443 #define RS6000_BTC_MEM	RS6000_BTC_MISC	/* load/store touches memory */
2444 #define RS6000_BTC_SAT	RS6000_BTC_MISC	/* VMX saturate sets VSCR register */
2445 
2446 #undef RS6000_BUILTIN
2447 #undef RS6000_BUILTIN_EQUATE
2448 #define RS6000_BUILTIN(NAME, TYPE) NAME,
2449 #define RS6000_BUILTIN_EQUATE(NAME, VALUE) NAME = VALUE,
2450 
2451 enum rs6000_builtins
2452 {
2453 #include "rs6000-builtin.def"
2454 
2455   RS6000_BUILTIN_COUNT
2456 };
2457 
2458 #undef RS6000_BUILTIN
2459 #undef RS6000_BUILTIN_EQUATE
2460 
2461 enum rs6000_builtin_type_index
2462 {
2463   RS6000_BTI_NOT_OPAQUE,
2464   RS6000_BTI_opaque_V2SI,
2465   RS6000_BTI_opaque_V2SF,
2466   RS6000_BTI_opaque_p_V2SI,
2467   RS6000_BTI_opaque_V4SI,
2468   RS6000_BTI_V16QI,
2469   RS6000_BTI_V2SI,
2470   RS6000_BTI_V2SF,
2471   RS6000_BTI_V2DI,
2472   RS6000_BTI_V2DF,
2473   RS6000_BTI_V4HI,
2474   RS6000_BTI_V4SI,
2475   RS6000_BTI_V4SF,
2476   RS6000_BTI_V8HI,
2477   RS6000_BTI_unsigned_V16QI,
2478   RS6000_BTI_unsigned_V8HI,
2479   RS6000_BTI_unsigned_V4SI,
2480   RS6000_BTI_unsigned_V2DI,
2481   RS6000_BTI_bool_char,          /* __bool char */
2482   RS6000_BTI_bool_short,         /* __bool short */
2483   RS6000_BTI_bool_int,           /* __bool int */
2484   RS6000_BTI_bool_long,		 /* __bool long */
2485   RS6000_BTI_pixel,              /* __pixel */
2486   RS6000_BTI_bool_V16QI,         /* __vector __bool char */
2487   RS6000_BTI_bool_V8HI,          /* __vector __bool short */
2488   RS6000_BTI_bool_V4SI,          /* __vector __bool int */
2489   RS6000_BTI_bool_V2DI,          /* __vector __bool long */
2490   RS6000_BTI_pixel_V8HI,         /* __vector __pixel */
2491   RS6000_BTI_long,	         /* long_integer_type_node */
2492   RS6000_BTI_unsigned_long,      /* long_unsigned_type_node */
2493   RS6000_BTI_long_long,	         /* long_long_integer_type_node */
2494   RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
2495   RS6000_BTI_INTQI,	         /* intQI_type_node */
2496   RS6000_BTI_UINTQI,		 /* unsigned_intQI_type_node */
2497   RS6000_BTI_INTHI,	         /* intHI_type_node */
2498   RS6000_BTI_UINTHI,		 /* unsigned_intHI_type_node */
2499   RS6000_BTI_INTSI,		 /* intSI_type_node */
2500   RS6000_BTI_UINTSI,		 /* unsigned_intSI_type_node */
2501   RS6000_BTI_INTDI,		 /* intDI_type_node */
2502   RS6000_BTI_UINTDI,		 /* unsigned_intDI_type_node */
2503   RS6000_BTI_float,	         /* float_type_node */
2504   RS6000_BTI_double,	         /* double_type_node */
2505   RS6000_BTI_void,	         /* void_type_node */
2506   RS6000_BTI_MAX
2507 };
2508 
2509 
2510 #define opaque_V2SI_type_node         (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2511 #define opaque_V2SF_type_node         (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2512 #define opaque_p_V2SI_type_node       (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2513 #define opaque_V4SI_type_node         (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2514 #define V16QI_type_node               (rs6000_builtin_types[RS6000_BTI_V16QI])
2515 #define V2DI_type_node                (rs6000_builtin_types[RS6000_BTI_V2DI])
2516 #define V2DF_type_node                (rs6000_builtin_types[RS6000_BTI_V2DF])
2517 #define V2SI_type_node                (rs6000_builtin_types[RS6000_BTI_V2SI])
2518 #define V2SF_type_node                (rs6000_builtin_types[RS6000_BTI_V2SF])
2519 #define V4HI_type_node                (rs6000_builtin_types[RS6000_BTI_V4HI])
2520 #define V4SI_type_node                (rs6000_builtin_types[RS6000_BTI_V4SI])
2521 #define V4SF_type_node                (rs6000_builtin_types[RS6000_BTI_V4SF])
2522 #define V8HI_type_node                (rs6000_builtin_types[RS6000_BTI_V8HI])
2523 #define unsigned_V16QI_type_node      (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2524 #define unsigned_V8HI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2525 #define unsigned_V4SI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2526 #define unsigned_V2DI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
2527 #define bool_char_type_node           (rs6000_builtin_types[RS6000_BTI_bool_char])
2528 #define bool_short_type_node          (rs6000_builtin_types[RS6000_BTI_bool_short])
2529 #define bool_int_type_node            (rs6000_builtin_types[RS6000_BTI_bool_int])
2530 #define bool_long_type_node           (rs6000_builtin_types[RS6000_BTI_bool_long])
2531 #define pixel_type_node               (rs6000_builtin_types[RS6000_BTI_pixel])
2532 #define bool_V16QI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2533 #define bool_V8HI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2534 #define bool_V4SI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2535 #define bool_V2DI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
2536 #define pixel_V8HI_type_node	      (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2537 
2538 #define long_long_integer_type_internal_node  (rs6000_builtin_types[RS6000_BTI_long_long])
2539 #define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
2540 #define long_integer_type_internal_node  (rs6000_builtin_types[RS6000_BTI_long])
2541 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2542 #define intQI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTQI])
2543 #define uintQI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTQI])
2544 #define intHI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTHI])
2545 #define uintHI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTHI])
2546 #define intSI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTSI])
2547 #define uintSI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTSI])
2548 #define intDI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTDI])
2549 #define uintDI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTDI])
2550 #define float_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_float])
2551 #define double_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_double])
2552 #define void_type_internal_node		 (rs6000_builtin_types[RS6000_BTI_void])
2553 
2554 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2555 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
2556 
2557