1 /* Configuration for GCC-compiler for PA-RISC. 2 Copyright (C) 1999, 2000, 2003, 2004, 2007, 2008 3 Free Software Foundation, Inc. 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3, or (at your option) 10 any later version. 11 12 GCC is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 /* Standard register usage. 22 23 It is safe to refer to actual register numbers in this file. */ 24 25 /* Number of actual hardware registers. 26 The hardware registers are assigned numbers for the compiler 27 from 0 to just below FIRST_PSEUDO_REGISTER. 28 All registers that the compiler knows about must be given numbers, 29 even those that are not normally considered general registers. 30 31 HP-PA 2.0w has 32 fullword registers and 32 floating point 32 registers. However, the floating point registers behave 33 differently: the left and right halves of registers are addressable 34 as 32-bit registers. 35 36 Due to limitations within GCC itself, we do not expose the left/right 37 half addressability when in wide mode. This is not a major performance 38 issue as using the halves independently triggers false dependency stalls 39 anyway. */ 40 41 #define FIRST_PSEUDO_REGISTER 61 /* 32 general regs + 28 fp regs + 42 + 1 shift reg */ 43 44 /* 1 for registers that have pervasive standard uses 45 and are not available for the register allocator. 46 47 On the HP-PA, these are: 48 Reg 0 = 0 (hardware). However, 0 is used for condition code, 49 so is not fixed. 50 Reg 1 = ADDIL target/Temporary (hardware). 51 Reg 2 = Return Pointer 52 Reg 3 = Frame Pointer 53 Reg 4 = Frame Pointer (>8k varying frame with HP compilers only) 54 Reg 4-18 = Preserved Registers 55 Reg 19 = Linkage Table Register in HPUX 8.0 shared library scheme. 56 Reg 20-22 = Temporary Registers 57 Reg 23-26 = Temporary/Parameter Registers 58 Reg 27 = Global Data Pointer (hp) 59 Reg 28 = Temporary/Return Value register 60 Reg 29 = Temporary/Static Chain/Return Value register #2 61 Reg 30 = stack pointer 62 Reg 31 = Temporary/Millicode Return Pointer (hp) 63 64 Freg 0-3 = Status Registers -- Not known to the compiler. 65 Freg 4-7 = Arguments/Return Value 66 Freg 8-11 = Temporary Registers 67 Freg 12-21 = Preserved Registers 68 Freg 22-31 = Temporary Registers 69 70 */ 71 72 #define FIXED_REGISTERS \ 73 {0, 0, 0, 0, 0, 0, 0, 0, \ 74 0, 0, 0, 0, 0, 0, 0, 0, \ 75 0, 0, 0, 0, 0, 0, 0, 0, \ 76 0, 0, 0, 1, 0, 0, 1, 0, \ 77 /* fp registers */ \ 78 0, 0, 0, 0, 0, 0, 0, 0, \ 79 0, 0, 0, 0, 0, 0, 0, 0, \ 80 0, 0, 0, 0, 0, 0, 0, 0, \ 81 0, 0, 0, 0, \ 82 /* shift register */ \ 83 0} 84 85 /* 1 for registers not available across function calls. 86 These must include the FIXED_REGISTERS and also any 87 registers that can be used without being saved. 88 The latter must include the registers where values are returned 89 and the register where structure-value addresses are passed. 90 Aside from that, you can include as many other registers as you like. */ 91 #define CALL_USED_REGISTERS \ 92 {1, 1, 1, 0, 0, 0, 0, 0, \ 93 0, 0, 0, 0, 0, 0, 0, 0, \ 94 0, 0, 0, 1, 1, 1, 1, 1, \ 95 1, 1, 1, 1, 1, 1, 1, 1, \ 96 /* fp registers */ \ 97 1, 1, 1, 1, 1, 1, 1, 1, \ 98 0, 0, 0, 0, 0, 0, 0, 0, \ 99 0, 0, 1, 1, 1, 1, 1, 1, \ 100 1, 1, 1, 1, \ 101 /* shift register */ \ 102 1} 103 104 #define CONDITIONAL_REGISTER_USAGE \ 105 { \ 106 int i; \ 107 if (TARGET_DISABLE_FPREGS || TARGET_SOFT_FLOAT)\ 108 { \ 109 for (i = FP_REG_FIRST; i <= FP_REG_LAST; i++)\ 110 fixed_regs[i] = call_used_regs[i] = 1; \ 111 } \ 112 if (flag_pic) \ 113 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ 114 } 115 116 /* Allocate the call used registers first. This should minimize 117 the number of registers that need to be saved (as call used 118 registers will generally not be allocated across a call). 119 120 Experimentation has shown slightly better results by allocating 121 FP registers first. We allocate the caller-saved registers more 122 or less in reverse order to their allocation as arguments. */ 123 124 #define REG_ALLOC_ORDER \ 125 { \ 126 /* caller-saved fp regs. */ \ 127 50, 51, 52, 53, 54, 55, 56, 57, \ 128 58, 59, 39, 38, 37, 36, 35, 34, \ 129 33, 32, \ 130 /* caller-saved general regs. */ \ 131 28, 31, 19, 20, 21, 22, 23, 24, \ 132 25, 26, 29, 2, \ 133 /* callee-saved fp regs. */ \ 134 40, 41, 42, 43, 44, 45, 46, 47, \ 135 48, 49, \ 136 /* callee-saved general regs. */ \ 137 3, 4, 5, 6, 7, 8, 9, 10, \ 138 11, 12, 13, 14, 15, 16, 17, 18, \ 139 /* special registers. */ \ 140 1, 27, 30, 0, 60} 141 142 143 /* Return number of consecutive hard regs needed starting at reg REGNO 144 to hold something of mode MODE. 145 This is ordinarily the length in words of a value of mode MODE 146 but can be less for certain modes in special long registers. 147 148 For PA64, GPRs and FPRs hold 64 bits worth. We ignore the 32-bit 149 addressability of the FPRs and pretend each register holds precisely 150 WORD_SIZE bits. Note that SCmode values are placed in a single FPR. 151 Thus, any patterns defined to operate on these values would have to 152 use the 32-bit addressability of the FPR registers. */ 153 #define HARD_REGNO_NREGS(REGNO, MODE) \ 154 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) 155 156 /* These are the valid FP modes. */ 157 #define VALID_FP_MODE_P(MODE) \ 158 ((MODE) == SFmode || (MODE) == DFmode \ 159 || (MODE) == SCmode || (MODE) == DCmode \ 160 || (MODE) == SImode || (MODE) == DImode) 161 162 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. 163 On the HP-PA, the cpu registers can hold any mode. We 164 force this to be an even register if it cannot hold the full mode. */ 165 #define HARD_REGNO_MODE_OK(REGNO, MODE) \ 166 ((REGNO) == 0 \ 167 ? (MODE) == CCmode || (MODE) == CCFPmode \ 168 : (REGNO) == 60 ? SCALAR_INT_MODE_P (MODE) \ 169 /* Make wide modes be in aligned registers. */ \ 170 : FP_REGNO_P (REGNO) \ 171 ? (VALID_FP_MODE_P (MODE) \ 172 && (GET_MODE_SIZE (MODE) <= 8 \ 173 || (GET_MODE_SIZE (MODE) == 16 && ((REGNO) & 1) == 0) \ 174 || (GET_MODE_SIZE (MODE) == 32 && ((REGNO) & 3) == 0))) \ 175 : (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD \ 176 || (GET_MODE_SIZE (MODE) == 2 * UNITS_PER_WORD \ 177 && ((((REGNO) & 1) == 1 && (REGNO) <= 25) || (REGNO) == 28)) \ 178 || (GET_MODE_SIZE (MODE) == 4 * UNITS_PER_WORD \ 179 && ((REGNO) & 3) == 3 && (REGNO) <= 23))) 180 181 /* How to renumber registers for dbx and gdb. 182 183 Registers 0 - 31 remain unchanged. 184 185 Registers 32 - 59 are mapped to 72, 74, 76 ... 186 187 Register 60 is mapped to 32. */ 188 #define DBX_REGISTER_NUMBER(REGNO) \ 189 ((REGNO) <= 31 ? (REGNO) : ((REGNO) < 60 ? (REGNO - 32) * 2 + 72 : 32)) 190 191 /* We must not use the DBX register numbers for the DWARF 2 CFA column 192 numbers because that maps to numbers beyond FIRST_PSEUDO_REGISTER. 193 Instead use the identity mapping. */ 194 #define DWARF_FRAME_REGNUM(REG) REG 195 196 /* Define the classes of registers for register constraints in the 197 machine description. Also define ranges of constants. 198 199 One of the classes must always be named ALL_REGS and include all hard regs. 200 If there is more than one class, another class must be named NO_REGS 201 and contain no registers. 202 203 The name GENERAL_REGS must be the name of a class (or an alias for 204 another name such as ALL_REGS). This is the class of registers 205 that is allowed by "g" or "r" in a register constraint. 206 Also, registers outside this class are allocated only when 207 instructions express preferences for them. 208 209 The classes must be numbered in nondecreasing order; that is, 210 a larger-numbered class must never be contained completely 211 in a smaller-numbered class. 212 213 For any two classes, it is very desirable that there be another 214 class that represents their union. */ 215 216 /* The HP-PA has four kinds of registers: general regs, 1.0 fp regs, 217 1.1 fp regs, and the high 1.1 fp regs, to which the operands of 218 fmpyadd and fmpysub are restricted. */ 219 220 enum reg_class { NO_REGS, R1_REGS, GENERAL_REGS, FPUPPER_REGS, FP_REGS, 221 GENERAL_OR_FP_REGS, SHIFT_REGS, ALL_REGS, LIM_REG_CLASSES}; 222 223 #define N_REG_CLASSES (int) LIM_REG_CLASSES 224 225 /* Give names of register classes as strings for dump file. */ 226 227 #define REG_CLASS_NAMES \ 228 {"NO_REGS", "R1_REGS", "GENERAL_REGS", "FPUPPER_REGS", "FP_REGS", \ 229 "GENERAL_OR_FP_REGS", "SHIFT_REGS", "ALL_REGS"} 230 231 /* Define which registers fit in which classes. 232 This is an initializer for a vector of HARD_REG_SET 233 of length N_REG_CLASSES. Register 0, the "condition code" register, 234 is in no class. */ 235 236 #define REG_CLASS_CONTENTS \ 237 {{0x00000000, 0x00000000}, /* NO_REGS */ \ 238 {0x00000002, 0x00000000}, /* R1_REGS */ \ 239 {0xfffffffe, 0x00000000}, /* GENERAL_REGS */ \ 240 {0x00000000, 0x00000000}, /* FPUPPER_REGS */ \ 241 {0x00000000, 0x0fffffff}, /* FP_REGS */ \ 242 {0xfffffffe, 0x0fffffff}, /* GENERAL_OR_FP_REGS */ \ 243 {0x00000000, 0x10000000}, /* SHIFT_REGS */ \ 244 {0xfffffffe, 0x1fffffff}} /* ALL_REGS */ 245 246 /* The following macro defines cover classes for Integrated Register 247 Allocator. Cover classes is a set of non-intersected register 248 classes covering all hard registers used for register allocation 249 purpose. Any move between two registers of a cover class should be 250 cheaper than load or store of the registers. The macro value is 251 array of register classes with LIM_REG_CLASSES used as the end 252 marker. */ 253 254 #define IRA_COVER_CLASSES \ 255 { \ 256 GENERAL_REGS, FP_REGS, SHIFT_REGS, LIM_REG_CLASSES \ 257 } 258 259 /* Defines invalid mode changes. */ 260 261 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \ 262 pa_cannot_change_mode_class (FROM, TO, CLASS) 263 264 /* Return the class number of the smallest class containing 265 reg number REGNO. This could be a conditional expression 266 or could index an array. */ 267 268 #define REGNO_REG_CLASS(REGNO) \ 269 ((REGNO) == 0 ? NO_REGS \ 270 : (REGNO) == 1 ? R1_REGS \ 271 : (REGNO) < 32 ? GENERAL_REGS \ 272 : (REGNO) < 60 ? FP_REGS \ 273 : SHIFT_REGS) 274 275 /* Return the maximum number of consecutive registers 276 needed to represent mode MODE in a register of class CLASS. */ 277 #define CLASS_MAX_NREGS(CLASS, MODE) \ 278 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) 279 280 /* 1 if N is a possible register number for function argument passing. */ 281 282 #define FUNCTION_ARG_REGNO_P(N) \ 283 ((((N) >= 19) && (N) <= 26) \ 284 || (! TARGET_SOFT_FLOAT && (N) >= 32 && (N) <= 39)) 285 286 /* How to refer to registers in assembler output. 287 This sequence is indexed by compiler's hard-register-number (see above). */ 288 289 #define REGISTER_NAMES \ 290 {"%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \ 291 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \ 292 "%r16", "%r17", "%r18", "%r19", "%r20", "%r21", "%r22", "%r23", \ 293 "%r24", "%r25", "%r26", "%r27", "%r28", "%r29", "%r30", "%r31", \ 294 "%fr4", "%fr5", "%fr6", "%fr7", "%fr8", "%fr9", "%fr10", "%fr11", \ 295 "%fr12", "%fr13", "%fr14", "%fr15", "%fr16", "%fr17", "%fr18", "%fr19", \ 296 "%fr20", "%fr21", "%fr22", "%fr23", "%fr24", "%fr25", "%fr26", "%fr27", \ 297 "%fr28", "%fr29", "%fr30", "%fr31", "SAR"} 298 299 #define ADDITIONAL_REGISTER_NAMES \ 300 {{"%cr11",60}} 301 302 #define FP_SAVED_REG_LAST 49 303 #define FP_SAVED_REG_FIRST 40 304 #define FP_REG_STEP 1 305 #define FP_REG_FIRST 32 306 #define FP_REG_LAST 59 307