xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/config/pa/pa.h (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* Definitions of target machine for GNU compiler, for the HP Spectrum.
2    Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
3    2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4    Free Software Foundation, Inc.
5    Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
6    and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
7    Software Science at the University of Utah.
8 
9 This file is part of GCC.
10 
11 GCC is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15 
16 GCC is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 GNU General Public License for more details.
20 
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3.  If not see
23 <http://www.gnu.org/licenses/>.  */
24 
25 /* For long call handling.  */
26 extern unsigned long total_code_bytes;
27 
28 /* Which processor to schedule for.  */
29 
30 enum processor_type
31 {
32   PROCESSOR_700,
33   PROCESSOR_7100,
34   PROCESSOR_7100LC,
35   PROCESSOR_7200,
36   PROCESSOR_7300,
37   PROCESSOR_8000
38 };
39 
40 /* For -mschedule= option.  */
41 extern enum processor_type pa_cpu;
42 
43 /* For -munix= option.  */
44 extern int flag_pa_unix;
45 
46 #define pa_cpu_attr ((enum attr_cpu)pa_cpu)
47 
48 /* Print subsidiary information on the compiler version in use.  */
49 
50 #define TARGET_VERSION fputs (" (hppa)", stderr);
51 
52 #define TARGET_PA_10 (!TARGET_PA_11 && !TARGET_PA_20)
53 
54 /* Generate code for the HPPA 2.0 architecture in 64bit mode.  */
55 #ifndef TARGET_64BIT
56 #define TARGET_64BIT 0
57 #endif
58 
59 /* Generate code for ELF32 ABI.  */
60 #ifndef TARGET_ELF32
61 #define TARGET_ELF32 0
62 #endif
63 
64 /* Generate code for SOM 32bit ABI.  */
65 #ifndef TARGET_SOM
66 #define TARGET_SOM 0
67 #endif
68 
69 /* HP-UX UNIX features.  */
70 #ifndef TARGET_HPUX
71 #define TARGET_HPUX 0
72 #endif
73 
74 /* HP-UX 10.10 UNIX 95 features.  */
75 #ifndef TARGET_HPUX_10_10
76 #define TARGET_HPUX_10_10 0
77 #endif
78 
79 /* HP-UX 11.* features (11.00, 11.11, 11.23, etc.)  */
80 #ifndef TARGET_HPUX_11
81 #define TARGET_HPUX_11 0
82 #endif
83 
84 /* HP-UX 11i multibyte and UNIX 98 extensions.  */
85 #ifndef TARGET_HPUX_11_11
86 #define TARGET_HPUX_11_11 0
87 #endif
88 
89 /* The following three defines are potential target switches.  The current
90    defines are optimal given the current capabilities of GAS and GNU ld.  */
91 
92 /* Define to a C expression evaluating to true to use long absolute calls.
93    Currently, only the HP assembler and SOM linker support long absolute
94    calls.  They are used only in non-pic code.  */
95 #define TARGET_LONG_ABS_CALL (TARGET_SOM && !TARGET_GAS)
96 
97 /* Define to a C expression evaluating to true to use long PIC symbol
98    difference calls.  Long PIC symbol difference calls are only used with
99    the HP assembler and linker.  The HP assembler detects this instruction
100    sequence and treats it as long pc-relative call.  Currently, GAS only
101    allows a difference of two symbols in the same subspace, and it doesn't
102    detect the sequence as a pc-relative call.  */
103 #define TARGET_LONG_PIC_SDIFF_CALL (!TARGET_GAS && TARGET_HPUX)
104 
105 /* Define to a C expression evaluating to true to use long PIC
106    pc-relative calls.  Long PIC pc-relative calls are only used with
107    GAS.  Currently, they are usable for calls which bind local to a
108    module but not for external calls.  */
109 #define TARGET_LONG_PIC_PCREL_CALL 0
110 
111 /* Define to a C expression evaluating to true to use SOM secondary
112    definition symbols for weak support.  Linker support for secondary
113    definition symbols is buggy prior to HP-UX 11.X.  */
114 #define TARGET_SOM_SDEF 0
115 
116 /* Define to a C expression evaluating to true to save the entry value
117    of SP in the current frame marker.  This is normally unnecessary.
118    However, the HP-UX unwind library looks at the SAVE_SP callinfo flag.
119    HP compilers don't use this flag but it is supported by the assembler.
120    We set this flag to indicate that register %r3 has been saved at the
121    start of the frame.  Thus, when the HP unwind library is used, we
122    need to generate additional code to save SP into the frame marker.  */
123 #define TARGET_HPUX_UNWIND_LIBRARY 0
124 
125 #ifndef TARGET_DEFAULT
126 #define TARGET_DEFAULT (MASK_GAS | MASK_JUMP_IN_DELAY | MASK_BIG_SWITCH)
127 #endif
128 
129 #ifndef TARGET_CPU_DEFAULT
130 #define TARGET_CPU_DEFAULT 0
131 #endif
132 
133 #ifndef TARGET_SCHED_DEFAULT
134 #define TARGET_SCHED_DEFAULT PROCESSOR_8000
135 #endif
136 
137 /* Support for a compile-time default CPU, et cetera.  The rules are:
138    --with-schedule is ignored if -mschedule is specified.
139    --with-arch is ignored if -march is specified.  */
140 #define OPTION_DEFAULT_SPECS \
141   {"arch", "%{!march=*:-march=%(VALUE)}" }, \
142   {"schedule", "%{!mschedule=*:-mschedule=%(VALUE)}" }
143 
144 /* Specify the dialect of assembler to use.  New mnemonics is dialect one
145    and the old mnemonics are dialect zero.  */
146 #define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
147 
148 #define OVERRIDE_OPTIONS override_options ()
149 
150 /* Override some settings from dbxelf.h.  */
151 
152 /* We do not have to be compatible with dbx, so we enable gdb extensions
153    by default.  */
154 #define DEFAULT_GDB_EXTENSIONS 1
155 
156 /* This used to be zero (no max length), but big enums and such can
157    cause huge strings which killed gas.
158 
159    We also have to avoid lossage in dbxout.c -- it does not compute the
160    string size accurately, so we are real conservative here.  */
161 #undef DBX_CONTIN_LENGTH
162 #define DBX_CONTIN_LENGTH 3000
163 
164 /* GDB always assumes the current function's frame begins at the value
165    of the stack pointer upon entry to the current function.  Accessing
166    local variables and parameters passed on the stack is done using the
167    base of the frame + an offset provided by GCC.
168 
169    For functions which have frame pointers this method works fine;
170    the (frame pointer) == (stack pointer at function entry) and GCC provides
171    an offset relative to the frame pointer.
172 
173    This loses for functions without a frame pointer; GCC provides an offset
174    which is relative to the stack pointer after adjusting for the function's
175    frame size.  GDB would prefer the offset to be relative to the value of
176    the stack pointer at the function's entry.  Yuk!  */
177 #define DEBUGGER_AUTO_OFFSET(X) \
178   ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
179     + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
180 
181 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
182   ((GET_CODE (X) == PLUS ? OFFSET : 0) \
183     + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
184 
185 #define TARGET_CPU_CPP_BUILTINS()				\
186 do {								\
187      builtin_assert("cpu=hppa");				\
188      builtin_assert("machine=hppa");				\
189      builtin_define("__hppa");					\
190      builtin_define("__hppa__");				\
191      if (TARGET_PA_20)						\
192        builtin_define("_PA_RISC2_0");				\
193      else if (TARGET_PA_11)					\
194        builtin_define("_PA_RISC1_1");				\
195      else							\
196        builtin_define("_PA_RISC1_0");				\
197 } while (0)
198 
199 /* An old set of OS defines for various BSD-like systems.  */
200 #define TARGET_OS_CPP_BUILTINS()				\
201   do								\
202     {								\
203 	builtin_define_std ("REVARGV");				\
204 	builtin_define_std ("hp800");				\
205 	builtin_define_std ("hp9000");				\
206 	builtin_define_std ("hp9k8");				\
207 	if (!c_dialect_cxx () && !flag_iso)			\
208 	  builtin_define ("hppa");				\
209 	builtin_define_std ("spectrum");			\
210 	builtin_define_std ("unix");				\
211 	builtin_assert ("system=bsd");				\
212 	builtin_assert ("system=unix");				\
213     }								\
214   while (0)
215 
216 #define CC1_SPEC "%{pg:} %{p:}"
217 
218 #define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
219 
220 /* We don't want -lg.  */
221 #ifndef LIB_SPEC
222 #define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
223 #endif
224 
225 /* This macro defines command-line switches that modify the default
226    target name.
227 
228    The definition is be an initializer for an array of structures.  Each
229    array element has have three elements: the switch name, one of the
230    enumeration codes ADD or DELETE to indicate whether the string should be
231    inserted or deleted, and the string to be inserted or deleted.  */
232 #define MODIFY_TARGET_NAME {{"-32", DELETE, "64"}, {"-64", ADD, "64"}}
233 
234 /* Make gcc agree with <machine/ansi.h> */
235 
236 #define SIZE_TYPE "unsigned int"
237 #define PTRDIFF_TYPE "int"
238 #define WCHAR_TYPE "unsigned int"
239 #define WCHAR_TYPE_SIZE 32
240 
241 /* Show we can debug even without a frame pointer.  */
242 #define CAN_DEBUG_WITHOUT_FP
243 
244 /* target machine storage layout */
245 typedef struct GTY(()) machine_function
246 {
247   /* Flag indicating that a .NSUBSPA directive has been output for
248      this function.  */
249   int in_nsubspa;
250 } machine_function;
251 
252 /* Define this macro if it is advisable to hold scalars in registers
253    in a wider mode than that declared by the program.  In such cases,
254    the value is constrained to be within the bounds of the declared
255    type, but kept valid in the wider mode.  The signedness of the
256    extension may differ from that of the type.  */
257 
258 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)  \
259   if (GET_MODE_CLASS (MODE) == MODE_INT	\
260       && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)  	\
261     (MODE) = word_mode;
262 
263 /* Define this if most significant bit is lowest numbered
264    in instructions that operate on numbered bit-fields.  */
265 #define BITS_BIG_ENDIAN 1
266 
267 /* Define this if most significant byte of a word is the lowest numbered.  */
268 /* That is true on the HP-PA.  */
269 #define BYTES_BIG_ENDIAN 1
270 
271 /* Define this if most significant word of a multiword number is lowest
272    numbered.  */
273 #define WORDS_BIG_ENDIAN 1
274 
275 #define MAX_BITS_PER_WORD 64
276 
277 /* Width of a word, in units (bytes).  */
278 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
279 
280 /* Minimum number of units in a word.  If this is undefined, the default
281    is UNITS_PER_WORD.  Otherwise, it is the constant value that is the
282    smallest value that UNITS_PER_WORD can have at run-time.
283 
284    FIXME: This needs to be 4 when TARGET_64BIT is true to suppress the
285    building of various TImode routines in libgcc.  The HP runtime
286    specification doesn't provide the alignment requirements and calling
287    conventions for TImode variables.  */
288 #define MIN_UNITS_PER_WORD 4
289 
290 /* The widest floating point format supported by the hardware.  Note that
291    setting this influences some Ada floating point type sizes, currently
292    required for GNAT to operate properly.  */
293 #define WIDEST_HARDWARE_FP_SIZE 64
294 
295 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
296 #define PARM_BOUNDARY BITS_PER_WORD
297 
298 /* Largest alignment required for any stack parameter, in bits.
299    Don't define this if it is equal to PARM_BOUNDARY */
300 #define MAX_PARM_BOUNDARY BIGGEST_ALIGNMENT
301 
302 /* Boundary (in *bits*) on which stack pointer is always aligned;
303    certain optimizations in combine depend on this.
304 
305    The HP-UX runtime documents mandate 64-byte and 16-byte alignment for
306    the stack on the 32 and 64-bit ports, respectively.  However, we
307    are only guaranteed that the stack is aligned to BIGGEST_ALIGNMENT
308    in main.  Thus, we treat the former as the preferred alignment.  */
309 #define STACK_BOUNDARY BIGGEST_ALIGNMENT
310 #define PREFERRED_STACK_BOUNDARY (TARGET_64BIT ? 128 : 512)
311 
312 /* Allocation boundary (in *bits*) for the code of a function.  */
313 #define FUNCTION_BOUNDARY BITS_PER_WORD
314 
315 /* Alignment of field after `int : 0' in a structure.  */
316 #define EMPTY_FIELD_BOUNDARY 32
317 
318 /* Every structure's size must be a multiple of this.  */
319 #define STRUCTURE_SIZE_BOUNDARY 8
320 
321 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
322 #define PCC_BITFIELD_TYPE_MATTERS 1
323 
324 /* No data type wants to be aligned rounder than this.  */
325 #define BIGGEST_ALIGNMENT (2 * BITS_PER_WORD)
326 
327 /* Get around hp-ux assembler bug, and make strcpy of constants fast.  */
328 #define CONSTANT_ALIGNMENT(EXP, ALIGN)		\
329   (TREE_CODE (EXP) == STRING_CST		\
330    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
331 
332 /* Make arrays of chars word-aligned for the same reasons.  */
333 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
334   (TREE_CODE (TYPE) == ARRAY_TYPE		\
335    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
336    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
337 
338 /* Set this nonzero if move instructions will actually fail to work
339    when given unaligned data.  */
340 #define STRICT_ALIGNMENT 1
341 
342 /* Value is 1 if it is a good idea to tie two pseudo registers
343    when one has mode MODE1 and one has mode MODE2.
344    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
345    for any hard reg, then this must be 0 for correct output.  */
346 #define MODES_TIEABLE_P(MODE1, MODE2) \
347   pa_modes_tieable_p (MODE1, MODE2)
348 
349 /* Specify the registers used for certain standard purposes.
350    The values of these macros are register numbers.  */
351 
352 /* The HP-PA pc isn't overloaded on a register that the compiler knows about.  */
353 /* #define PC_REGNUM  */
354 
355 /* Register to use for pushing function arguments.  */
356 #define STACK_POINTER_REGNUM 30
357 
358 /* Base register for access to local variables of the function.  */
359 #define FRAME_POINTER_REGNUM 3
360 
361 /* Don't allow hard registers to be renamed into r2 unless r2
362    is already live or already being saved (due to eh).  */
363 
364 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
365   ((NEW_REG) != 2 || df_regs_ever_live_p (2) || crtl->calls_eh_return)
366 
367 /* C statement to store the difference between the frame pointer
368    and the stack pointer values immediately after the function prologue.
369 
370    Note, we always pretend that this is a leaf function because if
371    it's not, there's no point in trying to eliminate the
372    frame pointer.  If it is a leaf function, we guessed right!  */
373 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
374   do {(VAR) = - compute_frame_size (get_frame_size (), 0);} while (0)
375 
376 /* Base register for access to arguments of the function.  */
377 #define ARG_POINTER_REGNUM (TARGET_64BIT ? 29 : 3)
378 
379 /* Register in which static-chain is passed to a function.  */
380 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? 31 : 29)
381 
382 /* Register used to address the offset table for position-independent
383    data references.  */
384 #define PIC_OFFSET_TABLE_REGNUM \
385   (flag_pic ? (TARGET_64BIT ? 27 : 19) : INVALID_REGNUM)
386 
387 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
388 
389 /* Function to return the rtx used to save the pic offset table register
390    across function calls.  */
391 extern struct rtx_def *hppa_pic_save_rtx (void);
392 
393 #define DEFAULT_PCC_STRUCT_RETURN 0
394 
395 /* Register in which address to store a structure value
396    is passed to a function.  */
397 #define PA_STRUCT_VALUE_REGNUM 28
398 
399 /* Describe how we implement __builtin_eh_return.  */
400 #define EH_RETURN_DATA_REGNO(N)	\
401   ((N) < 3 ? (N) + 20 : (N) == 3 ? 31 : INVALID_REGNUM)
402 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 29)
403 #define EH_RETURN_HANDLER_RTX pa_eh_return_handler_rtx ()
404 
405 /* Offset from the frame pointer register value to the top of stack.  */
406 #define FRAME_POINTER_CFA_OFFSET(FNDECL) 0
407 
408 /* A C expression whose value is RTL representing the location of the
409    incoming return address at the beginning of any function, before the
410    prologue.  You only need to define this macro if you want to support
411    call frame debugging information like that provided by DWARF 2.  */
412 #define INCOMING_RETURN_ADDR_RTX (gen_rtx_REG (word_mode, 2))
413 #define DWARF_FRAME_RETURN_COLUMN (DWARF_FRAME_REGNUM (2))
414 
415 /* A C expression whose value is an integer giving a DWARF 2 column
416    number that may be used as an alternate return column.  This should
417    be defined only if DWARF_FRAME_RETURN_COLUMN is set to a general
418    register, but an alternate column needs to be used for signal frames.
419 
420    Column 0 is not used but unfortunately its register size is set to
421    4 bytes (sizeof CCmode) so it can't be used on 64-bit targets.  */
422 #define DWARF_ALT_FRAME_RETURN_COLUMN FIRST_PSEUDO_REGISTER
423 
424 /* This macro chooses the encoding of pointers embedded in the exception
425    handling sections.  If at all possible, this should be defined such
426    that the exception handling section will not require dynamic relocations,
427    and so may be read-only.
428 
429    Because the HP assembler auto aligns, it is necessary to use
430    DW_EH_PE_aligned.  It's not possible to make the data read-only
431    on the HP-UX SOM port since the linker requires fixups for label
432    differences in different sections to be word aligned.  However,
433    the SOM linker can do unaligned fixups for absolute pointers.
434    We also need aligned pointers for global and function pointers.
435 
436    Although the HP-UX 64-bit ELF linker can handle unaligned pc-relative
437    fixups, the runtime doesn't have a consistent relationship between
438    text and data for dynamically loaded objects.  Thus, it's not possible
439    to use pc-relative encoding for pointers on this target.  It may be
440    possible to use segment relative encodings but GAS doesn't currently
441    have a mechanism to generate these encodings.  For other targets, we
442    use pc-relative encoding for pointers.  If the pointer might require
443    dynamic relocation, we make it indirect.  */
444 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)			\
445   (TARGET_GAS && !TARGET_HPUX						\
446    ? (DW_EH_PE_pcrel							\
447       | ((GLOBAL) || (CODE) == 2 ? DW_EH_PE_indirect : 0)		\
448       | (TARGET_64BIT ? DW_EH_PE_sdata8 : DW_EH_PE_sdata4))		\
449    : (!TARGET_GAS || (GLOBAL) || (CODE) == 2				\
450       ? DW_EH_PE_aligned : DW_EH_PE_absptr))
451 
452 /* Handle special EH pointer encodings.  Absolute, pc-relative, and
453    indirect are handled automatically.  We output pc-relative, and
454    indirect pc-relative ourself since we need some special magic to
455    generate pc-relative relocations, and to handle indirect function
456    pointers.  */
457 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
458   do {									\
459     if (((ENCODING) & 0x70) == DW_EH_PE_pcrel)				\
460       {									\
461 	fputs (integer_asm_op (SIZE, FALSE), FILE);			\
462 	if ((ENCODING) & DW_EH_PE_indirect)				\
463 	  output_addr_const (FILE, get_deferred_plabel (ADDR));		\
464 	else								\
465 	  assemble_name (FILE, XSTR ((ADDR), 0));			\
466 	fputs ("+8-$PIC_pcrel$0", FILE);				\
467 	goto DONE;							\
468       }									\
469     } while (0)
470 
471 
472 /* The class value for index registers, and the one for base regs.  */
473 #define INDEX_REG_CLASS GENERAL_REGS
474 #define BASE_REG_CLASS GENERAL_REGS
475 
476 #define FP_REG_CLASS_P(CLASS) \
477   ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
478 
479 /* True if register is floating-point.  */
480 #define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST)
481 
482 /* Given an rtx X being reloaded into a reg required to be
483    in class CLASS, return the class of reg to actually use.
484    In general this is just CLASS; but on some machines
485    in some cases it is preferable to use a more restrictive class.  */
486 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
487 
488 #define MAYBE_FP_REG_CLASS_P(CLASS) \
489   reg_classes_intersect_p ((CLASS), FP_REGS)
490 
491 
492 /* Stack layout; function entry, exit and calling.  */
493 
494 /* Define this if pushing a word on the stack
495    makes the stack pointer a smaller address.  */
496 /* #define STACK_GROWS_DOWNWARD */
497 
498 /* Believe it or not.  */
499 #define ARGS_GROW_DOWNWARD
500 
501 /* Define this to nonzero if the nominal address of the stack frame
502    is at the high-address end of the local variables;
503    that is, each additional local variable allocated
504    goes at a more negative offset in the frame.  */
505 #define FRAME_GROWS_DOWNWARD 0
506 
507 /* Offset within stack frame to start allocating local variables at.
508    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
509    first local allocated.  Otherwise, it is the offset to the BEGINNING
510    of the first local allocated.
511 
512    On the 32-bit ports, we reserve one slot for the previous frame
513    pointer and one fill slot.  The fill slot is for compatibility
514    with HP compiled programs.  On the 64-bit ports, we reserve one
515    slot for the previous frame pointer.  */
516 #define STARTING_FRAME_OFFSET 8
517 
518 /* Define STACK_ALIGNMENT_NEEDED to zero to disable final alignment
519    of the stack.  The default is to align it to STACK_BOUNDARY.  */
520 #define STACK_ALIGNMENT_NEEDED 0
521 
522 /* If we generate an insn to push BYTES bytes,
523    this says how many the stack pointer really advances by.
524    On the HP-PA, don't define this because there are no push insns.  */
525 /*  #define PUSH_ROUNDING(BYTES) */
526 
527 /* Offset of first parameter from the argument pointer register value.
528    This value will be negated because the arguments grow down.
529    Also note that on STACK_GROWS_UPWARD machines (such as this one)
530    this is the distance from the frame pointer to the end of the first
531    argument, not it's beginning.  To get the real offset of the first
532    argument, the size of the argument must be added.  */
533 
534 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32)
535 
536 /* When a parameter is passed in a register, stack space is still
537    allocated for it.  */
538 #define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16)
539 
540 /* Define this if the above stack space is to be considered part of the
541    space allocated by the caller.  */
542 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
543 
544 /* Keep the stack pointer constant throughout the function.
545    This is both an optimization and a necessity: longjmp
546    doesn't behave itself when the stack pointer moves within
547    the function!  */
548 #define ACCUMULATE_OUTGOING_ARGS 1
549 
550 /* The weird HPPA calling conventions require a minimum of 48 bytes on
551    the stack: 16 bytes for register saves, and 32 bytes for magic.
552    This is the difference between the logical top of stack and the
553    actual sp.
554 
555    On the 64-bit port, the HP C compiler allocates a 48-byte frame
556    marker, although the runtime documentation only describes a 16
557    byte marker.  For compatibility, we allocate 48 bytes.  */
558 #define STACK_POINTER_OFFSET \
559   (TARGET_64BIT ? -(crtl->outgoing_args_size + 48): -32)
560 
561 #define STACK_DYNAMIC_OFFSET(FNDECL)	\
562   (TARGET_64BIT				\
563    ? (STACK_POINTER_OFFSET)		\
564    : ((STACK_POINTER_OFFSET) - crtl->outgoing_args_size))
565 
566 /* Value is 1 if returning from a function call automatically
567    pops the arguments described by the number-of-args field in the call.
568    FUNDECL is the declaration node of the function (as a tree),
569    FUNTYPE is the data type of the function (as a tree),
570    or for a library call it is an identifier node for the subroutine name.  */
571 
572 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
573 
574 /* Define how to find the value returned by a library function
575    assuming the value has mode MODE.  */
576 
577 #define LIBCALL_VALUE(MODE)	\
578   gen_rtx_REG (MODE,							\
579 	       (! TARGET_SOFT_FLOAT					\
580 		&& ((MODE) == SFmode || (MODE) == DFmode) ? 32 : 28))
581 
582 /* 1 if N is a possible register number for a function value
583    as seen by the caller.  */
584 
585 #define FUNCTION_VALUE_REGNO_P(N) \
586   ((N) == 28 || (! TARGET_SOFT_FLOAT && (N) == 32))
587 
588 
589 /* Define a data type for recording info about an argument list
590    during the scan of that argument list.  This data type should
591    hold all necessary information about the function itself
592    and about the args processed so far, enough to enable macros
593    such as FUNCTION_ARG to determine where the next arg should go.
594 
595    On the HP-PA, the WORDS field holds the number of words
596    of arguments scanned so far (including the invisible argument,
597    if any, which holds the structure-value-address).  Thus, 4 or
598    more means all following args should go on the stack.
599 
600    The INCOMING field tracks whether this is an "incoming" or
601    "outgoing" argument.
602 
603    The INDIRECT field indicates whether this is is an indirect
604    call or not.
605 
606    The NARGS_PROTOTYPE field indicates that an argument does not
607    have a prototype when it less than or equal to 0.  */
608 
609 struct hppa_args {int words, nargs_prototype, incoming, indirect; };
610 
611 #define CUMULATIVE_ARGS struct hppa_args
612 
613 /* Initialize a variable CUM of type CUMULATIVE_ARGS
614    for a call to a function whose data type is FNTYPE.
615    For a library call, FNTYPE is 0.  */
616 
617 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
618   (CUM).words = 0, 							\
619   (CUM).incoming = 0,							\
620   (CUM).indirect = (FNTYPE) && !(FNDECL),				\
621   (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE)		\
622 			   ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1	\
623 			      + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
624 				 || pa_return_in_memory (TREE_TYPE (FNTYPE), 0))) \
625 			   : 0)
626 
627 
628 
629 /* Similar, but when scanning the definition of a procedure.  We always
630    set NARGS_PROTOTYPE large so we never return a PARALLEL.  */
631 
632 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
633   (CUM).words = 0,				\
634   (CUM).incoming = 1,				\
635   (CUM).indirect = 0,				\
636   (CUM).nargs_prototype = 1000
637 
638 /* Figure out the size in words of the function argument.  The size
639    returned by this macro should always be greater than zero because
640    we pass variable and zero sized objects by reference.  */
641 
642 #define FUNCTION_ARG_SIZE(MODE, TYPE)	\
643   ((((MODE) != BLKmode \
644      ? (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
645      : int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
646 
647 /* Update the data in CUM to advance over an argument
648    of mode MODE and data type TYPE.
649    (TYPE is null for libcalls where that information may not be available.)  */
650 
651 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)			\
652 { (CUM).nargs_prototype--;						\
653   (CUM).words += FUNCTION_ARG_SIZE(MODE, TYPE)	 			\
654     + (((CUM).words & 01) && (TYPE) != 0				\
655 	&& FUNCTION_ARG_SIZE(MODE, TYPE) > 1);				\
656 }
657 
658 /* Determine where to put an argument to a function.
659    Value is zero to push the argument on the stack,
660    or a hard register in which to store the argument.
661 
662    MODE is the argument's machine mode.
663    TYPE is the data type of the argument (as a tree).
664     This is null for libcalls where that information may
665     not be available.
666    CUM is a variable of type CUMULATIVE_ARGS which gives info about
667     the preceding args and about the function being called.
668    NAMED is nonzero if this argument is a named parameter
669     (otherwise it is an extra parameter matching an ellipsis).
670 
671    On the HP-PA the first four words of args are normally in registers
672    and the rest are pushed.  But any arg that won't entirely fit in regs
673    is pushed.
674 
675    Arguments passed in registers are either 1 or 2 words long.
676 
677    The caller must make a distinction between calls to explicitly named
678    functions and calls through pointers to functions -- the conventions
679    are different!  Calls through pointers to functions only use general
680    registers for the first four argument words.
681 
682    Of course all this is different for the portable runtime model
683    HP wants everyone to use for ELF.  Ugh.  Here's a quick description
684    of how it's supposed to work.
685 
686    1) callee side remains unchanged.  It expects integer args to be
687    in the integer registers, float args in the float registers and
688    unnamed args in integer registers.
689 
690    2) caller side now depends on if the function being called has
691    a prototype in scope (rather than if it's being called indirectly).
692 
693       2a) If there is a prototype in scope, then arguments are passed
694       according to their type (ints in integer registers, floats in float
695       registers, unnamed args in integer registers.
696 
697       2b) If there is no prototype in scope, then floating point arguments
698       are passed in both integer and float registers.  egad.
699 
700   FYI: The portable parameter passing conventions are almost exactly like
701   the standard parameter passing conventions on the RS6000.  That's why
702   you'll see lots of similar code in rs6000.h.  */
703 
704 /* If defined, a C expression which determines whether, and in which
705    direction, to pad out an argument with extra space.  */
706 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE))
707 
708 /* Specify padding for the last element of a block move between registers
709    and memory.
710 
711    The 64-bit runtime specifies that objects need to be left justified
712    (i.e., the normal justification for a big endian target).  The 32-bit
713    runtime specifies right justification for objects smaller than 64 bits.
714    We use a DImode register in the parallel for 5 to 7 byte structures
715    so that there is only one element.  This allows the object to be
716    correctly padded.  */
717 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
718   function_arg_padding ((MODE), (TYPE))
719 
720 /* Do not expect to understand this without reading it several times.  I'm
721    tempted to try and simply it, but I worry about breaking something.  */
722 
723 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
724   function_arg (&CUM, MODE, TYPE, NAMED)
725 
726 /* If defined, a C expression that gives the alignment boundary, in
727    bits, of an argument with the specified mode and type.  If it is
728    not defined,  `PARM_BOUNDARY' is used for all arguments.  */
729 
730 /* Arguments larger than one word are double word aligned.  */
731 
732 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE)				\
733   (((TYPE)								\
734     ? (integer_zerop (TYPE_SIZE (TYPE))					\
735        || !TREE_CONSTANT (TYPE_SIZE (TYPE))				\
736        || int_size_in_bytes (TYPE) <= UNITS_PER_WORD)			\
737     : GET_MODE_SIZE(MODE) <= UNITS_PER_WORD)				\
738    ? PARM_BOUNDARY : MAX_PARM_BOUNDARY)
739 
740 
741 /* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than
742    as assembly via FUNCTION_PROFILER.  Just output a local label.
743    We can't use the function label because the GAS SOM target can't
744    handle the difference of a global symbol and a local symbol.  */
745 
746 #ifndef FUNC_BEGIN_PROLOG_LABEL
747 #define FUNC_BEGIN_PROLOG_LABEL        "LFBP"
748 #endif
749 
750 #define FUNCTION_PROFILER(FILE, LABEL) \
751   (*targetm.asm_out.internal_label) (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL)
752 
753 #define PROFILE_HOOK(label_no) hppa_profile_hook (label_no)
754 void hppa_profile_hook (int label_no);
755 
756 /* The profile counter if emitted must come before the prologue.  */
757 #define PROFILE_BEFORE_PROLOGUE 1
758 
759 /* We never want final.c to emit profile counters.  When profile
760    counters are required, we have to defer emitting them to the end
761    of the current file.  */
762 #define NO_PROFILE_COUNTERS 1
763 
764 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
765    the stack pointer does not matter.  The value is tested only in
766    functions that have frame pointers.
767    No definition is equivalent to always zero.  */
768 
769 extern int may_call_alloca;
770 
771 #define EXIT_IGNORE_STACK	\
772  (get_frame_size () != 0	\
773   || cfun->calls_alloca || crtl->outgoing_args_size)
774 
775 /* Length in units of the trampoline for entering a nested function.  */
776 
777 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 52)
778 
779 /* Alignment required by the trampoline.  */
780 
781 #define TRAMPOLINE_ALIGNMENT BITS_PER_WORD
782 
783 /* Minimum length of a cache line.  A length of 16 will work on all
784    PA-RISC processors.  All PA 1.1 processors have a cache line of
785    32 bytes.  Most but not all PA 2.0 processors have a cache line
786    of 64 bytes.  As cache flushes are expensive and we don't support
787    PA 1.0, we use a minimum length of 32.  */
788 
789 #define MIN_CACHELINE_SIZE 32
790 
791 
792 /* Addressing modes, and classification of registers for them.
793 
794    Using autoincrement addressing modes on PA8000 class machines is
795    not profitable.  */
796 
797 #define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
798 #define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
799 
800 #define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
801 #define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
802 
803 /* Macros to check register numbers against specific register classes.  */
804 
805 /* The following macros assume that X is a hard or pseudo reg number.
806    They give nonzero only if X is a hard reg of the suitable class
807    or a pseudo reg currently allocated to a suitable hard reg.
808    Since they use reg_renumber, they are safe only once reg_renumber
809    has been allocated, which happens in local-alloc.c.  */
810 
811 #define REGNO_OK_FOR_INDEX_P(X) \
812   ((X) && ((X) < 32							\
813    || (X >= FIRST_PSEUDO_REGISTER					\
814        && reg_renumber							\
815        && (unsigned) reg_renumber[X] < 32)))
816 #define REGNO_OK_FOR_BASE_P(X) \
817   ((X) && ((X) < 32							\
818    || (X >= FIRST_PSEUDO_REGISTER					\
819        && reg_renumber							\
820        && (unsigned) reg_renumber[X] < 32)))
821 #define REGNO_OK_FOR_FP_P(X) \
822   (FP_REGNO_P (X)							\
823    || (X >= FIRST_PSEUDO_REGISTER					\
824        && reg_renumber							\
825        && FP_REGNO_P (reg_renumber[X])))
826 
827 /* Now macros that check whether X is a register and also,
828    strictly, whether it is in a specified class.
829 
830    These macros are specific to the HP-PA, and may be used only
831    in code for printing assembler insns and in conditions for
832    define_optimization.  */
833 
834 /* 1 if X is an fp register.  */
835 
836 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
837 
838 /* Maximum number of registers that can appear in a valid memory address.  */
839 
840 #define MAX_REGS_PER_ADDRESS 2
841 
842 /* Non-TLS symbolic references.  */
843 #define PA_SYMBOL_REF_TLS_P(RTX) \
844   (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
845 
846 /* Recognize any constant value that is a valid address except
847    for symbolic addresses.  We get better CSE by rejecting them
848    here and allowing hppa_legitimize_address to break them up.  We
849    use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE.  */
850 
851 #define CONSTANT_ADDRESS_P(X) \
852   ((GET_CODE (X) == LABEL_REF 						\
853    || (GET_CODE (X) == SYMBOL_REF && !SYMBOL_REF_TLS_MODEL (X))		\
854    || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST		\
855    || GET_CODE (X) == HIGH) 						\
856    && (reload_in_progress || reload_completed || ! symbolic_expression_p (X)))
857 
858 /* A C expression that is nonzero if we are using the new HP assembler.  */
859 
860 #ifndef NEW_HP_ASSEMBLER
861 #define NEW_HP_ASSEMBLER 0
862 #endif
863 
864 /* The macros below define the immediate range for CONST_INTS on
865    the 64-bit port.  Constants in this range can be loaded in three
866    instructions using a ldil/ldo/depdi sequence.  Constants outside
867    this range are forced to the constant pool prior to reload.  */
868 
869 #define MAX_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) 32 << 31)
870 #define MIN_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) -32 << 31)
871 #define LEGITIMATE_64BIT_CONST_INT_P(X) \
872   ((X) >= MIN_LEGIT_64BIT_CONST_INT && (X) < MAX_LEGIT_64BIT_CONST_INT)
873 
874 /* A C expression that is nonzero if X is a legitimate constant for an
875    immediate operand.
876 
877    We include all constant integers and constant doubles, but not
878    floating-point, except for floating-point zero.  We reject LABEL_REFs
879    if we're not using gas or the new HP assembler.
880 
881    In 64-bit mode, we reject CONST_DOUBLES.  We also reject CONST_INTS
882    that need more than three instructions to load prior to reload.  This
883    limit is somewhat arbitrary.  It takes three instructions to load a
884    CONST_INT from memory but two are memory accesses.  It may be better
885    to increase the allowed range for CONST_INTS.  We may also be able
886    to handle CONST_DOUBLES.  */
887 
888 #define LEGITIMATE_CONSTANT_P(X)				\
889   ((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT			\
890     || (X) == CONST0_RTX (GET_MODE (X)))			\
891    && (NEW_HP_ASSEMBLER						\
892        || TARGET_GAS						\
893        || GET_CODE (X) != LABEL_REF)				\
894    && (!PA_SYMBOL_REF_TLS_P (X)					\
895        || (SYMBOL_REF_TLS_MODEL (X) != TLS_MODEL_GLOBAL_DYNAMIC		\
896 	   && SYMBOL_REF_TLS_MODEL (X) != TLS_MODEL_LOCAL_DYNAMIC))	\
897    && (!TARGET_64BIT						\
898        || GET_CODE (X) != CONST_DOUBLE)				\
899    && (!TARGET_64BIT						\
900        || HOST_BITS_PER_WIDE_INT <= 32				\
901        || GET_CODE (X) != CONST_INT				\
902        || reload_in_progress					\
903        || reload_completed					\
904        || LEGITIMATE_64BIT_CONST_INT_P (INTVAL (X))		\
905        || cint_ok_for_move (INTVAL (X)))			\
906    && !function_label_operand (X, VOIDmode))
907 
908 /* Target flags set on a symbol_ref.  */
909 
910 /* Set by ASM_OUTPUT_SYMBOL_REF when a symbol_ref is output.  */
911 #define SYMBOL_FLAG_REFERENCED (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
912 #define SYMBOL_REF_REFERENCED_P(RTX) \
913   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_REFERENCED) != 0)
914 
915 /* Defines for constraints.md.  */
916 
917 /* Return 1 iff OP is a scaled or unscaled index address.  */
918 #define IS_INDEX_ADDR_P(OP) \
919   (GET_CODE (OP) == PLUS				\
920    && GET_MODE (OP) == Pmode				\
921    && (GET_CODE (XEXP (OP, 0)) == MULT			\
922        || GET_CODE (XEXP (OP, 1)) == MULT		\
923        || (REG_P (XEXP (OP, 0))				\
924 	   && REG_P (XEXP (OP, 1)))))
925 
926 /* Return 1 iff OP is a LO_SUM DLT address.  */
927 #define IS_LO_SUM_DLT_ADDR_P(OP) \
928   (GET_CODE (OP) == LO_SUM				\
929    && GET_MODE (OP) == Pmode				\
930    && REG_P (XEXP (OP, 0))				\
931    && REG_OK_FOR_BASE_P (XEXP (OP, 0))			\
932    && GET_CODE (XEXP (OP, 1)) == UNSPEC)
933 
934 /* Nonzero if 14-bit offsets can be used for all loads and stores.
935    This is not possible when generating PA 1.x code as floating point
936    loads and stores only support 5-bit offsets.  Note that we do not
937    forbid the use of 14-bit offsets in GO_IF_LEGITIMATE_ADDRESS.
938    Instead, we use pa_secondary_reload() to reload integer mode
939    REG+D memory addresses used in floating point loads and stores.
940 
941    FIXME: the ELF32 linker clobbers the LSB of the FP register number
942    in PA 2.0 floating-point insns with long displacements.  This is
943    because R_PARISC_DPREL14WR and other relocations like it are not
944    yet supported by GNU ld.  For now, we reject long displacements
945    on this target.  */
946 
947 #define INT14_OK_STRICT \
948   (TARGET_SOFT_FLOAT                                                   \
949    || TARGET_DISABLE_FPREGS                                            \
950    || (TARGET_PA_20 && !TARGET_ELF32))
951 
952 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
953    and check its validity for a certain class.
954    We have two alternate definitions for each of them.
955    The usual definition accepts all pseudo regs; the other rejects
956    them unless they have been allocated suitable hard regs.
957    The symbol REG_OK_STRICT causes the latter definition to be used.
958 
959    Most source files want to accept pseudo regs in the hope that
960    they will get allocated to the class that the insn wants them to be in.
961    Source files for reload pass need to be strict.
962    After reload, it makes no difference, since pseudo regs have
963    been eliminated by then.  */
964 
965 #ifndef REG_OK_STRICT
966 
967 /* Nonzero if X is a hard reg that can be used as an index
968    or if it is a pseudo reg.  */
969 #define REG_OK_FOR_INDEX_P(X) \
970   (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
971 
972 /* Nonzero if X is a hard reg that can be used as a base reg
973    or if it is a pseudo reg.  */
974 #define REG_OK_FOR_BASE_P(X) \
975   (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
976 
977 #else
978 
979 /* Nonzero if X is a hard reg that can be used as an index.  */
980 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
981 
982 /* Nonzero if X is a hard reg that can be used as a base reg.  */
983 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
984 
985 #endif
986 
987 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
988    valid memory address for an instruction.  The MODE argument is the
989    machine mode for the MEM expression that wants to use this address.
990 
991    On HP PA-RISC, the legitimate address forms are REG+SMALLINT,
992    REG+REG, and REG+(REG*SCALE).  The indexed address forms are only
993    available with floating point loads and stores, and integer loads.
994    We get better code by allowing indexed addresses in the initial
995    RTL generation.
996 
997    The acceptance of indexed addresses as legitimate implies that we
998    must provide patterns for doing indexed integer stores, or the move
999    expanders must force the address of an indexed store to a register.
1000    We have adopted the latter approach.
1001 
1002    Another function of GO_IF_LEGITIMATE_ADDRESS is to ensure that
1003    the base register is a valid pointer for indexed instructions.
1004    On targets that have non-equivalent space registers, we have to
1005    know at the time of assembler output which register in a REG+REG
1006    pair is the base register.  The REG_POINTER flag is sometimes lost
1007    in reload and the following passes, so it can't be relied on during
1008    code generation.  Thus, we either have to canonicalize the order
1009    of the registers in REG+REG indexed addresses, or treat REG+REG
1010    addresses separately and provide patterns for both permutations.
1011 
1012    The latter approach requires several hundred additional lines of
1013    code in pa.md.  The downside to canonicalizing is that a PLUS
1014    in the wrong order can't combine to form to make a scaled indexed
1015    memory operand.  As we won't need to canonicalize the operands if
1016    the REG_POINTER lossage can be fixed, it seems better canonicalize.
1017 
1018    We initially break out scaled indexed addresses in canonical order
1019    in emit_move_sequence.  LEGITIMIZE_ADDRESS also canonicalizes
1020    scaled indexed addresses during RTL generation.  However, fold_rtx
1021    has its own opinion on how the operands of a PLUS should be ordered.
1022    If one of the operands is equivalent to a constant, it will make
1023    that operand the second operand.  As the base register is likely to
1024    be equivalent to a SYMBOL_REF, we have made it the second operand.
1025 
1026    GO_IF_LEGITIMATE_ADDRESS accepts REG+REG as legitimate when the
1027    operands are in the order INDEX+BASE on targets with non-equivalent
1028    space registers, and in any order on targets with equivalent space
1029    registers.  It accepts both MULT+BASE and BASE+MULT for scaled indexing.
1030 
1031    We treat a SYMBOL_REF as legitimate if it is part of the current
1032    function's constant-pool, because such addresses can actually be
1033    output as REG+SMALLINT.  */
1034 
1035 #define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20)
1036 #define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
1037 
1038 #define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20)
1039 #define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
1040 
1041 #define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800)
1042 #define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
1043 
1044 #define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000)
1045 #define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
1046 
1047 #if HOST_BITS_PER_WIDE_INT > 32
1048 #define VAL_32_BITS_P(X) \
1049   ((unsigned HOST_WIDE_INT)(X) + ((unsigned HOST_WIDE_INT) 1 << 31)    \
1050    < (unsigned HOST_WIDE_INT) 2 << 31)
1051 #else
1052 #define VAL_32_BITS_P(X) 1
1053 #endif
1054 #define INT_32_BITS(X) VAL_32_BITS_P (INTVAL (X))
1055 
1056 /* These are the modes that we allow for scaled indexing.  */
1057 #define MODE_OK_FOR_SCALED_INDEXING_P(MODE) \
1058   ((TARGET_64BIT && (MODE) == DImode)					\
1059    || (MODE) == SImode							\
1060    || (MODE) == HImode							\
1061    || (MODE) == SFmode							\
1062    || (MODE) == DFmode)
1063 
1064 /* These are the modes that we allow for unscaled indexing.  */
1065 #define MODE_OK_FOR_UNSCALED_INDEXING_P(MODE) \
1066   ((TARGET_64BIT && (MODE) == DImode)					\
1067    || (MODE) == SImode							\
1068    || (MODE) == HImode							\
1069    || (MODE) == QImode							\
1070    || (MODE) == SFmode							\
1071    || (MODE) == DFmode)
1072 
1073 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1074 {									\
1075   if ((REG_P (X) && REG_OK_FOR_BASE_P (X))				\
1076       || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC		\
1077 	   || GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC)	\
1078 	  && REG_P (XEXP (X, 0))					\
1079 	  && REG_OK_FOR_BASE_P (XEXP (X, 0))))				\
1080     goto ADDR;								\
1081   else if (GET_CODE (X) == PLUS)					\
1082     {									\
1083       rtx base = 0, index = 0;						\
1084       if (REG_P (XEXP (X, 1))						\
1085 	  && REG_OK_FOR_BASE_P (XEXP (X, 1)))				\
1086 	base = XEXP (X, 1), index = XEXP (X, 0);			\
1087       else if (REG_P (XEXP (X, 0))					\
1088 	       && REG_OK_FOR_BASE_P (XEXP (X, 0)))			\
1089 	base = XEXP (X, 0), index = XEXP (X, 1);			\
1090       if (base								\
1091 	  && GET_CODE (index) == CONST_INT				\
1092 	  && ((INT_14_BITS (index)					\
1093 	       && (((MODE) != DImode					\
1094 		    && (MODE) != SFmode					\
1095 		    && (MODE) != DFmode)				\
1096 		   /* The base register for DImode loads and stores	\
1097 		      with long displacements must be aligned because	\
1098 		      the lower three bits in the displacement are	\
1099 		      assumed to be zero.  */				\
1100 		   || ((MODE) == DImode					\
1101 		       && (!TARGET_64BIT				\
1102 			   || (INTVAL (index) % 8) == 0))		\
1103 		   /* Similarly, the base register for SFmode/DFmode	\
1104 		      loads and stores with long displacements must	\
1105 		      be aligned.  */					\
1106 		   || (((MODE) == SFmode || (MODE) == DFmode)		\
1107 		       && INT14_OK_STRICT				\
1108 		       && (INTVAL (index) % GET_MODE_SIZE (MODE)) == 0))) \
1109 	       || INT_5_BITS (index)))					\
1110 	goto ADDR;							\
1111       if (!TARGET_DISABLE_INDEXING					\
1112 	  /* Only accept the "canonical" INDEX+BASE operand order	\
1113 	     on targets with non-equivalent space registers.  */	\
1114 	  && (TARGET_NO_SPACE_REGS					\
1115 	      ? (base && REG_P (index))					\
1116 	      : (base == XEXP (X, 1) && REG_P (index)			\
1117 		 && (reload_completed					\
1118 		     || (reload_in_progress && HARD_REGISTER_P (base))	\
1119 		     || REG_POINTER (base))				\
1120 		 && (reload_completed					\
1121 		     || (reload_in_progress && HARD_REGISTER_P (index))	\
1122 		     || !REG_POINTER (index))))				\
1123 	  && MODE_OK_FOR_UNSCALED_INDEXING_P (MODE)			\
1124 	  && REG_OK_FOR_INDEX_P (index)					\
1125 	  && borx_reg_operand (base, Pmode)				\
1126 	  && borx_reg_operand (index, Pmode))				\
1127 	goto ADDR;							\
1128       if (!TARGET_DISABLE_INDEXING					\
1129 	  && base							\
1130 	  && GET_CODE (index) == MULT					\
1131 	  && MODE_OK_FOR_SCALED_INDEXING_P (MODE)			\
1132 	  && REG_P (XEXP (index, 0))					\
1133 	  && GET_MODE (XEXP (index, 0)) == Pmode			\
1134 	  && REG_OK_FOR_INDEX_P (XEXP (index, 0))			\
1135 	  && GET_CODE (XEXP (index, 1)) == CONST_INT			\
1136 	  && INTVAL (XEXP (index, 1))					\
1137 	     == (HOST_WIDE_INT) GET_MODE_SIZE (MODE)			\
1138 	  && borx_reg_operand (base, Pmode))				\
1139 	goto ADDR;							\
1140     }									\
1141   else if (GET_CODE (X) == LO_SUM					\
1142 	   && GET_CODE (XEXP (X, 0)) == REG				\
1143 	   && REG_OK_FOR_BASE_P (XEXP (X, 0))				\
1144 	   && CONSTANT_P (XEXP (X, 1))					\
1145 	   && (TARGET_SOFT_FLOAT					\
1146 	       /* We can allow symbolic LO_SUM addresses for PA2.0.  */	\
1147 	       || (TARGET_PA_20						\
1148 		   && !TARGET_ELF32					\
1149 	           && GET_CODE (XEXP (X, 1)) != CONST_INT)		\
1150 	       || ((MODE) != SFmode					\
1151 		   && (MODE) != DFmode)))				\
1152     goto ADDR;								\
1153   else if (GET_CODE (X) == LO_SUM					\
1154 	   && GET_CODE (XEXP (X, 0)) == SUBREG				\
1155 	   && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG		\
1156 	   && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0)))		\
1157 	   && CONSTANT_P (XEXP (X, 1))					\
1158 	   && (TARGET_SOFT_FLOAT					\
1159 	       /* We can allow symbolic LO_SUM addresses for PA2.0.  */	\
1160 	       || (TARGET_PA_20						\
1161 		   && !TARGET_ELF32					\
1162 	           && GET_CODE (XEXP (X, 1)) != CONST_INT)		\
1163 	       || ((MODE) != SFmode					\
1164 		   && (MODE) != DFmode)))				\
1165     goto ADDR;								\
1166   else if (GET_CODE (X) == CONST_INT && INT_5_BITS (X))			\
1167     goto ADDR;								\
1168   /* Needed for -fPIC */						\
1169   else if (GET_CODE (X) == LO_SUM					\
1170 	   && GET_CODE (XEXP (X, 0)) == REG             		\
1171 	   && REG_OK_FOR_BASE_P (XEXP (X, 0))				\
1172 	   && GET_CODE (XEXP (X, 1)) == UNSPEC				\
1173 	   && (TARGET_SOFT_FLOAT					\
1174 	       || (TARGET_PA_20	&& !TARGET_ELF32)			\
1175 	       || ((MODE) != SFmode					\
1176 		   && (MODE) != DFmode)))				\
1177     goto ADDR;								\
1178 }
1179 
1180 /* Look for machine dependent ways to make the invalid address AD a
1181    valid address.
1182 
1183    For the PA, transform:
1184 
1185         memory(X + <large int>)
1186 
1187    into:
1188 
1189         if (<large int> & mask) >= 16
1190           Y = (<large int> & ~mask) + mask + 1  Round up.
1191         else
1192           Y = (<large int> & ~mask)             Round down.
1193         Z = X + Y
1194         memory (Z + (<large int> - Y));
1195 
1196    This makes reload inheritance and reload_cse work better since Z
1197    can be reused.
1198 
1199    There may be more opportunities to improve code with this hook.  */
1200 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) 	\
1201 do { 									\
1202   HOST_WIDE_INT offset, newoffset, mask;						\
1203   rtx new_rtx, temp = NULL_RTX;						\
1204 									\
1205   mask = (GET_MODE_CLASS (MODE) == MODE_FLOAT				\
1206 	  ? (INT14_OK_STRICT ? 0x3fff : 0x1f) : 0x3fff);		\
1207 									\
1208   if (optimize && GET_CODE (AD) == PLUS)				\
1209     temp = simplify_binary_operation (PLUS, Pmode,			\
1210 				      XEXP (AD, 0), XEXP (AD, 1));	\
1211 									\
1212   new_rtx = temp ? temp : AD;						\
1213 									\
1214   if (optimize								\
1215       && GET_CODE (new_rtx) == PLUS						\
1216       && GET_CODE (XEXP (new_rtx, 0)) == REG				\
1217       && GET_CODE (XEXP (new_rtx, 1)) == CONST_INT)				\
1218     {									\
1219       offset = INTVAL (XEXP ((new_rtx), 1));				\
1220 									\
1221       /* Choose rounding direction.  Round up if we are >= halfway.  */	\
1222       if ((offset & mask) >= ((mask + 1) / 2))				\
1223 	newoffset = (offset & ~mask) + mask + 1;			\
1224       else								\
1225 	newoffset = offset & ~mask;					\
1226 									\
1227       /* Ensure that long displacements are aligned.  */		\
1228       if (mask == 0x3fff						\
1229 	  && (GET_MODE_CLASS (MODE) == MODE_FLOAT			\
1230 	      || (TARGET_64BIT && (MODE) == DImode)))			\
1231 	newoffset &= ~(GET_MODE_SIZE (MODE) - 1);			\
1232 									\
1233       if (newoffset != 0 && VAL_14_BITS_P (newoffset))			\
1234 	{								\
1235 	  temp = gen_rtx_PLUS (Pmode, XEXP (new_rtx, 0),			\
1236 			       GEN_INT (newoffset));			\
1237 	  AD = gen_rtx_PLUS (Pmode, temp, GEN_INT (offset - newoffset));\
1238 	  push_reload (XEXP (AD, 0), 0, &XEXP (AD, 0), 0,		\
1239 		       BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,		\
1240 		       (OPNUM), (TYPE));				\
1241 	  goto WIN;							\
1242 	}								\
1243     }									\
1244 } while (0)
1245 
1246 
1247 
1248 #define TARGET_ASM_SELECT_SECTION  pa_select_section
1249 
1250 /* Return a nonzero value if DECL has a section attribute.  */
1251 #define IN_NAMED_SECTION_P(DECL) \
1252   ((TREE_CODE (DECL) == FUNCTION_DECL || TREE_CODE (DECL) == VAR_DECL) \
1253    && DECL_SECTION_NAME (DECL) != NULL_TREE)
1254 
1255 /* Define this macro if references to a symbol must be treated
1256    differently depending on something about the variable or
1257    function named by the symbol (such as what section it is in).
1258 
1259    The macro definition, if any, is executed immediately after the
1260    rtl for DECL or other node is created.
1261    The value of the rtl will be a `mem' whose address is a
1262    `symbol_ref'.
1263 
1264    The usual thing for this macro to do is to a flag in the
1265    `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
1266    name string in the `symbol_ref' (if one bit is not enough
1267    information).
1268 
1269    On the HP-PA we use this to indicate if a symbol is in text or
1270    data space.  Also, function labels need special treatment.  */
1271 
1272 #define TEXT_SPACE_P(DECL)\
1273   (TREE_CODE (DECL) == FUNCTION_DECL					\
1274    || (TREE_CODE (DECL) == VAR_DECL					\
1275        && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL)		\
1276        && (! DECL_INITIAL (DECL) || ! reloc_needed (DECL_INITIAL (DECL))) \
1277        && !flag_pic)							\
1278    || CONSTANT_CLASS_P (DECL))
1279 
1280 #define FUNCTION_NAME_P(NAME)  (*(NAME) == '@')
1281 
1282 /* Specify the machine mode that this machine uses for the index in the
1283    tablejump instruction.  For small tables, an element consists of a
1284    ia-relative branch and its delay slot.  When -mbig-switch is specified,
1285    we use a 32-bit absolute address for non-pic code, and a 32-bit offset
1286    for both 32 and 64-bit pic code.  */
1287 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : DImode)
1288 
1289 /* Jump tables must be 32-bit aligned, no matter the size of the element.  */
1290 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
1291 
1292 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1293 #define DEFAULT_SIGNED_CHAR 1
1294 
1295 /* Max number of bytes we can move from memory to memory
1296    in one reasonably fast instruction.  */
1297 #define MOVE_MAX 8
1298 
1299 /* Higher than the default as we prefer to use simple move insns
1300    (better scheduling and delay slot filling) and because our
1301    built-in block move is really a 2X unrolled loop.
1302 
1303    Believe it or not, this has to be big enough to allow for copying all
1304    arguments passed in registers to avoid infinite recursion during argument
1305    setup for a function call.  Why?  Consider how we copy the stack slots
1306    reserved for parameters when they may be trashed by a call.  */
1307 #define MOVE_RATIO(speed) (TARGET_64BIT ? 8 : 4)
1308 
1309 /* Define if operations between registers always perform the operation
1310    on the full register even if a narrower mode is specified.  */
1311 #define WORD_REGISTER_OPERATIONS
1312 
1313 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1314    will either zero-extend or sign-extend.  The value of this macro should
1315    be the code that says which one of the two operations is implicitly
1316    done, UNKNOWN if none.  */
1317 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1318 
1319 /* Nonzero if access to memory by bytes is slow and undesirable.  */
1320 #define SLOW_BYTE_ACCESS 1
1321 
1322 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1323    is done just by pretending it is already truncated.  */
1324 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1325 
1326 /* Specify the machine mode that pointers have.
1327    After generation of rtl, the compiler makes no further distinction
1328    between pointers and any other objects of this machine mode.  */
1329 #define Pmode word_mode
1330 
1331 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1332    return the mode to be used for the comparison.  For floating-point, CCFPmode
1333    should be used.  CC_NOOVmode should be used when the first operand is a
1334    PLUS, MINUS, or NEG.  CCmode should be used when no special processing is
1335    needed.  */
1336 #define SELECT_CC_MODE(OP,X,Y) \
1337   (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode)    \
1338 
1339 /* A function address in a call instruction
1340    is a byte address (for indexing purposes)
1341    so give the MEM rtx a byte's mode.  */
1342 #define FUNCTION_MODE SImode
1343 
1344 /* Define this if addresses of constant functions
1345    shouldn't be put through pseudo regs where they can be cse'd.
1346    Desirable on machines where ordinary constants are expensive
1347    but a CALL with constant address is cheap.  */
1348 #define NO_FUNCTION_CSE
1349 
1350 /* Define this to be nonzero if shift instructions ignore all but the low-order
1351    few bits.  */
1352 #define SHIFT_COUNT_TRUNCATED 1
1353 
1354 /* Compute extra cost of moving data between one register class
1355    and another.
1356 
1357    Make moves from SAR so expensive they should never happen.  We used to
1358    have 0xffff here, but that generates overflow in rare cases.
1359 
1360    Copies involving a FP register and a non-FP register are relatively
1361    expensive because they must go through memory.
1362 
1363    Other copies are reasonably cheap.  */
1364 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1365  (CLASS1 == SHIFT_REGS ? 0x100					\
1366   : CLASS2 == SHIFT_REGS && FP_REG_CLASS_P (CLASS1) ? 18	\
1367   : FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2) ? 16	\
1368   : FP_REG_CLASS_P (CLASS2) && ! FP_REG_CLASS_P (CLASS1) ? 16	\
1369   : 2)
1370 
1371 /* Adjust the cost of branches.  */
1372 #define BRANCH_COST(speed_p, predictable_p) (pa_cpu == PROCESSOR_8000 ? 2 : 1)
1373 
1374 /* Handling the special cases is going to get too complicated for a macro,
1375    just call `pa_adjust_insn_length' to do the real work.  */
1376 #define ADJUST_INSN_LENGTH(INSN, LENGTH)	\
1377   LENGTH += pa_adjust_insn_length (INSN, LENGTH);
1378 
1379 /* Millicode insns are actually function calls with some special
1380    constraints on arguments and register usage.
1381 
1382    Millicode calls always expect their arguments in the integer argument
1383    registers, and always return their result in %r29 (ret1).  They
1384    are expected to clobber their arguments, %r1, %r29, and the return
1385    pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
1386 
1387    This macro tells reorg that the references to arguments and
1388    millicode calls do not appear to happen until after the millicode call.
1389    This allows reorg to put insns which set the argument registers into the
1390    delay slot of the millicode call -- thus they act more like traditional
1391    CALL_INSNs.
1392 
1393    Note we cannot consider side effects of the insn to be delayed because
1394    the branch and link insn will clobber the return pointer.  If we happened
1395    to use the return pointer in the delay slot of the call, then we lose.
1396 
1397    get_attr_type will try to recognize the given insn, so make sure to
1398    filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1399    in particular.  */
1400 #define INSN_REFERENCES_ARE_DELAYED(X) (insn_refs_are_delayed (X))
1401 
1402 
1403 /* Control the assembler format that we output.  */
1404 
1405 /* A C string constant describing how to begin a comment in the target
1406    assembler language.  The compiler assumes that the comment will end at
1407    the end of the line.  */
1408 
1409 #define ASM_COMMENT_START ";"
1410 
1411 /* Output to assembler file text saying following lines
1412    may contain character constants, extra white space, comments, etc.  */
1413 
1414 #define ASM_APP_ON ""
1415 
1416 /* Output to assembler file text saying following lines
1417    no longer contain unusual constructs.  */
1418 
1419 #define ASM_APP_OFF ""
1420 
1421 /* This is how to output the definition of a user-level label named NAME,
1422    such as the label on a static function or variable NAME.  */
1423 
1424 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1425   do {							\
1426     assemble_name ((FILE), (NAME));			\
1427     if (TARGET_GAS)					\
1428       fputs (":\n", (FILE));				\
1429     else						\
1430       fputc ('\n', (FILE));				\
1431   } while (0)
1432 
1433 /* This is how to output a reference to a user-level label named NAME.
1434    `assemble_name' uses this.  */
1435 
1436 #define ASM_OUTPUT_LABELREF(FILE,NAME)	\
1437   do {					\
1438     const char *xname = (NAME);		\
1439     if (FUNCTION_NAME_P (NAME))		\
1440       xname += 1;			\
1441     if (xname[0] == '*')		\
1442       xname += 1;			\
1443     else				\
1444       fputs (user_label_prefix, FILE);	\
1445     fputs (xname, FILE);		\
1446   } while (0)
1447 
1448 /* This how we output the symbol_ref X.  */
1449 
1450 #define ASM_OUTPUT_SYMBOL_REF(FILE,X) \
1451   do {                                                 \
1452     SYMBOL_REF_FLAGS (X) |= SYMBOL_FLAG_REFERENCED;    \
1453     assemble_name (FILE, XSTR (X, 0));                 \
1454   } while (0)
1455 
1456 /* This is how to store into the string LABEL
1457    the symbol_ref name of an internal numbered label where
1458    PREFIX is the class of label and NUM is the number within the class.
1459    This is suitable for output with `assemble_name'.  */
1460 
1461 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
1462   sprintf (LABEL, "*%c$%s%04ld", (PREFIX)[0], (PREFIX) + 1, (long)(NUM))
1463 
1464 /* Output the definition of a compiler-generated label named NAME.  */
1465 
1466 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,NAME) \
1467   do {							\
1468     assemble_name_raw ((FILE), (NAME));			\
1469     if (TARGET_GAS)					\
1470       fputs (":\n", (FILE));				\
1471     else						\
1472       fputc ('\n', (FILE));				\
1473   } while (0)
1474 
1475 #define TARGET_ASM_GLOBALIZE_LABEL pa_globalize_label
1476 
1477 #define ASM_OUTPUT_ASCII(FILE, P, SIZE)  \
1478   output_ascii ((FILE), (P), (SIZE))
1479 
1480 /* Jump tables are always placed in the text section.  Technically, it
1481    is possible to put them in the readonly data section when -mbig-switch
1482    is specified.  This has the benefit of getting the table out of .text
1483    and reducing branch lengths as a result.  The downside is that an
1484    additional insn (addil) is needed to access the table when generating
1485    PIC code.  The address difference table also has to use 32-bit
1486    pc-relative relocations.  Currently, GAS does not support these
1487    relocations, although it is easily modified to do this operation.
1488    The table entries need to look like "$L1+(.+8-$L0)-$PIC_pcrel$0"
1489    when using ELF GAS.  A simple difference can be used when using
1490    SOM GAS or the HP assembler.  The final downside is GDB complains
1491    about the nesting of the label for the table when debugging.  */
1492 
1493 #define JUMP_TABLES_IN_TEXT_SECTION 1
1494 
1495 /* This is how to output an element of a case-vector that is absolute.  */
1496 
1497 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1498   if (TARGET_BIG_SWITCH)						\
1499     fprintf (FILE, "\t.word L$%04d\n", VALUE);				\
1500   else									\
1501     fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1502 
1503 /* This is how to output an element of a case-vector that is relative.
1504    Since we always place jump tables in the text section, the difference
1505    is absolute and requires no relocation.  */
1506 
1507 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)  \
1508   if (TARGET_BIG_SWITCH)						\
1509     fprintf (FILE, "\t.word L$%04d-L$%04d\n", VALUE, REL);		\
1510   else									\
1511     fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1512 
1513 /* This is how to output an assembler line that says to advance the
1514    location counter to a multiple of 2**LOG bytes.  */
1515 
1516 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
1517     fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1518 
1519 #define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1520   fprintf (FILE, "\t.blockz "HOST_WIDE_INT_PRINT_UNSIGNED"\n",		\
1521 	   (unsigned HOST_WIDE_INT)(SIZE))
1522 
1523 /* This says how to output an assembler line to define an uninitialized
1524    global variable with size SIZE (in bytes) and alignment ALIGN (in bits).
1525    This macro exists to properly support languages like C++ which do not
1526    have common data.  */
1527 
1528 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN)		\
1529   pa_asm_output_aligned_bss (FILE, NAME, SIZE, ALIGN)
1530 
1531 /* This says how to output an assembler line to define a global common symbol
1532    with size SIZE (in bytes) and alignment ALIGN (in bits).  */
1533 
1534 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN)  		\
1535   pa_asm_output_aligned_common (FILE, NAME, SIZE, ALIGN)
1536 
1537 /* This says how to output an assembler line to define a local common symbol
1538    with size SIZE (in bytes) and alignment ALIGN (in bits).  This macro
1539    controls how the assembler definitions of uninitialized static variables
1540    are output.  */
1541 
1542 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN)		\
1543   pa_asm_output_aligned_local (FILE, NAME, SIZE, ALIGN)
1544 
1545 /* All HP assemblers use "!" to separate logical lines.  */
1546 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == '!')
1547 
1548 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1549   ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
1550 
1551 /* Print operand X (an rtx) in assembler syntax to file FILE.
1552    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1553    For `%' followed by punctuation, CODE is the punctuation and X is null.
1554 
1555    On the HP-PA, the CODE can be `r', meaning this is a register-only operand
1556    and an immediate zero should be represented as `r0'.
1557 
1558    Several % codes are defined:
1559    O an operation
1560    C compare conditions
1561    N extract conditions
1562    M modifier to handle preincrement addressing for memory refs.
1563    F modifier to handle preincrement addressing for fp memory refs */
1564 
1565 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1566 
1567 
1568 /* Print a memory address as an operand to reference that memory location.  */
1569 
1570 #define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
1571 { rtx addr = ADDR;							\
1572   switch (GET_CODE (addr))						\
1573     {									\
1574     case REG:								\
1575       fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]);		\
1576       break;								\
1577     case PLUS:								\
1578       gcc_assert (GET_CODE (XEXP (addr, 1)) == CONST_INT);		\
1579       fprintf (FILE, "%d(%s)", (int)INTVAL (XEXP (addr, 1)),		\
1580 	       reg_names [REGNO (XEXP (addr, 0))]);			\
1581       break;								\
1582     case LO_SUM:							\
1583       if (!symbolic_operand (XEXP (addr, 1), VOIDmode))			\
1584 	fputs ("R'", FILE);						\
1585       else if (flag_pic == 0)						\
1586 	fputs ("RR'", FILE);						\
1587       else								\
1588 	fputs ("RT'", FILE);						\
1589       output_global_address (FILE, XEXP (addr, 1), 0);			\
1590       fputs ("(", FILE);						\
1591       output_operand (XEXP (addr, 0), 0);				\
1592       fputs (")", FILE);						\
1593       break;								\
1594     case CONST_INT:							\
1595       fprintf (FILE, HOST_WIDE_INT_PRINT_DEC "(%%r0)", INTVAL (addr));	\
1596       break;								\
1597     default:								\
1598       output_addr_const (FILE, addr);					\
1599     }}
1600 
1601 
1602 /* Find the return address associated with the frame given by
1603    FRAMEADDR.  */
1604 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR)				 \
1605   (return_addr_rtx (COUNT, FRAMEADDR))
1606 
1607 /* Used to mask out junk bits from the return address, such as
1608    processor state, interrupt status, condition codes and the like.  */
1609 #define MASK_RETURN_ADDR						\
1610   /* The privilege level is in the two low order bits, mask em out	\
1611      of the return address.  */						\
1612   (GEN_INT (-4))
1613 
1614 /* The number of Pmode words for the setjmp buffer.  */
1615 #define JMP_BUF_SIZE 50
1616 
1617 /* We need a libcall to canonicalize function pointers on TARGET_ELF32.  */
1618 #define CANONICALIZE_FUNCPTR_FOR_COMPARE_LIBCALL \
1619   "__canonicalize_funcptr_for_compare"
1620 
1621 #ifdef HAVE_AS_TLS
1622 #undef TARGET_HAVE_TLS
1623 #define TARGET_HAVE_TLS true
1624 #endif
1625