xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/config/mips/mips.h (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Definitions of target machine for GNU compiler.  MIPS version.
2    Copyright (C) 1989-2015 Free Software Foundation, Inc.
3    Contributed by A. Lichnewsky (lich@inria.inria.fr).
4    Changed by Michael Meissner	(meissner@osf.org).
5    64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
6    Brendan Eich (brendan@microunity.com).
7 
8 This file is part of GCC.
9 
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14 
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 GNU General Public License for more details.
19 
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3.  If not see
22 <http://www.gnu.org/licenses/>.  */
23 
24 
25 #include "config/vxworks-dummy.h"
26 
27 #ifdef GENERATOR_FILE
28 /* This is used in some insn conditions, so needs to be declared, but
29    does not need to be defined.  */
30 extern int target_flags_explicit;
31 #endif
32 
33 /* MIPS external variables defined in mips.c.  */
34 
35 /* Which ABI to use.  ABI_32 (original 32, or o32), ABI_N32 (n32),
36    ABI_64 (n64) are all defined by SGI.  ABI_O64 is o32 extended
37    to work on a 64-bit machine.  */
38 
39 #define ABI_32  0
40 #define ABI_N32 1
41 #define ABI_64  2
42 #define ABI_EABI 3
43 #define ABI_O64  4
44 
45 /* Masks that affect tuning.
46 
47    PTF_AVOID_BRANCHLIKELY
48 	Set if it is usually not profitable to use branch-likely instructions
49 	for this target, typically because the branches are always predicted
50 	taken and so incur a large overhead when not taken.
51 
52    PTF_AVOID_IMADD
53 	Set if it is usually not profitable to use the integer MADD or MSUB
54 	instructions because of the overhead of getting the result out of
55 	the HI/LO registers.  */
56 
57 #define PTF_AVOID_BRANCHLIKELY	0x1
58 #define PTF_AVOID_IMADD		0x2
59 
60 /* Information about one recognized processor.  Defined here for the
61    benefit of TARGET_CPU_CPP_BUILTINS.  */
62 struct mips_cpu_info {
63   /* The 'canonical' name of the processor as far as GCC is concerned.
64      It's typically a manufacturer's prefix followed by a numerical
65      designation.  It should be lowercase.  */
66   const char *name;
67 
68   /* The internal processor number that most closely matches this
69      entry.  Several processors can have the same value, if there's no
70      difference between them from GCC's point of view.  */
71   enum processor cpu;
72 
73   /* The ISA level that the processor implements.  */
74   int isa;
75 
76   /* A mask of PTF_* values.  */
77   unsigned int tune_flags;
78 };
79 
80 #include "config/mips/mips-opts.h"
81 
82 /* Macros to silence warnings about numbers being signed in traditional
83    C and unsigned in ISO C when compiled on 32-bit hosts.  */
84 
85 #define BITMASK_HIGH	(((unsigned long)1) << 31)	/* 0x80000000 */
86 #define BITMASK_UPPER16	((unsigned long)0xffff << 16)	/* 0xffff0000 */
87 #define BITMASK_LOWER16	((unsigned long)0xffff)		/* 0x0000ffff */
88 
89 
90 /* Run-time compilation parameters selecting different hardware subsets.  */
91 
92 /* True if we are generating position-independent VxWorks RTP code.  */
93 #define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
94 
95 /* True if the output file is marked as ".abicalls; .option pic0"
96    (-call_nonpic).  */
97 #define TARGET_ABICALLS_PIC0 \
98   (TARGET_ABSOLUTE_ABICALLS && TARGET_PLT)
99 
100 /* True if the output file is marked as ".abicalls; .option pic2" (-KPIC).  */
101 #define TARGET_ABICALLS_PIC2 \
102   (TARGET_ABICALLS && !TARGET_ABICALLS_PIC0)
103 
104 /* True if the call patterns should be split into a jalr followed by
105    an instruction to restore $gp.  It is only safe to split the load
106    from the call when every use of $gp is explicit.
107 
108    See mips_must_initialize_gp_p for details about how we manage the
109    global pointer.  */
110 
111 #define TARGET_SPLIT_CALLS \
112   (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP && epilogue_completed)
113 
114 /* True if we're generating a form of -mabicalls in which we can use
115    operators like %hi and %lo to refer to locally-binding symbols.
116    We can only do this for -mno-shared, and only then if we can use
117    relocation operations instead of assembly macros.  It isn't really
118    worth using absolute sequences for 64-bit symbols because GOT
119    accesses are so much shorter.  */
120 
121 #define TARGET_ABSOLUTE_ABICALLS	\
122   (TARGET_ABICALLS			\
123    && !TARGET_SHARED			\
124    && TARGET_EXPLICIT_RELOCS		\
125    && !ABI_HAS_64BIT_SYMBOLS)
126 
127 /* True if we can optimize sibling calls.  For simplicity, we only
128    handle cases in which call_insn_operand will reject invalid
129    sibcall addresses.  There are two cases in which this isn't true:
130 
131       - TARGET_MIPS16.  call_insn_operand accepts constant addresses
132 	but there is no direct jump instruction.  It isn't worth
133 	using sibling calls in this case anyway; they would usually
134 	be longer than normal calls.
135 
136       - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS.  call_insn_operand
137 	accepts global constants, but all sibcalls must be indirect.  */
138 #define TARGET_SIBCALLS \
139   (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
140 
141 /* True if we need to use a global offset table to access some symbols.  */
142 #define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
143 
144 /* True if TARGET_USE_GOT and if $gp is a call-clobbered register.  */
145 #define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
146 
147 /* True if TARGET_USE_GOT and if $gp is a call-saved register.  */
148 #define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
149 
150 /* True if we should use .cprestore to store to the cprestore slot.
151 
152    We continue to use .cprestore for explicit-reloc code so that JALs
153    inside inline asms will work correctly.  */
154 #define TARGET_CPRESTORE_DIRECTIVE \
155   (TARGET_ABICALLS_PIC2 && !TARGET_MIPS16)
156 
157 /* True if we can use the J and JAL instructions.  */
158 #define TARGET_ABSOLUTE_JUMPS \
159   (!flag_pic || TARGET_ABSOLUTE_ABICALLS)
160 
161 /* True if indirect calls must use register class PIC_FN_ADDR_REG.
162    This is true for both the PIC and non-PIC VxWorks RTP modes.  */
163 #define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
164 
165 /* True if .gpword or .gpdword should be used for switch tables.  */
166 #define TARGET_GPWORD				\
167   (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
168 
169 /* True if the output must have a writable .eh_frame.
170    See ASM_PREFERRED_EH_DATA_FORMAT for details.  */
171 #ifdef HAVE_LD_PERSONALITY_RELAXATION
172 #define TARGET_WRITABLE_EH_FRAME 0
173 #else
174 #define TARGET_WRITABLE_EH_FRAME (flag_pic && TARGET_SHARED)
175 #endif
176 
177 /* Test the assembler to set ISA_HAS_DSP_MULT to DSP Rev 1 or 2.  */
178 #ifdef HAVE_AS_DSPR1_MULT
179 #define ISA_HAS_DSP_MULT ISA_HAS_DSP
180 #else
181 #define ISA_HAS_DSP_MULT ISA_HAS_DSPR2
182 #endif
183 
184 /* ISA has LSA available.  */
185 #define ISA_HAS_LSA		(mips_isa_rev >= 6)
186 
187 /* ISA has DLSA available.  */
188 #define ISA_HAS_DLSA		(TARGET_64BIT && mips_isa_rev >= 6)
189 
190 /* The ISA compression flags that are currently in effect.  */
191 #define TARGET_COMPRESSION (target_flags & (MASK_MIPS16 | MASK_MICROMIPS))
192 
193 /* Generate mips16 code */
194 #define TARGET_MIPS16		((target_flags & MASK_MIPS16) != 0)
195 /* Generate mips16e code. Default 16bit ASE for mips32* and mips64* */
196 #define GENERATE_MIPS16E	(TARGET_MIPS16 && mips_isa >= 32)
197 /* Generate mips16e register save/restore sequences.  */
198 #define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32)
199 
200 /* True if we're generating a form of MIPS16 code in which general
201    text loads are allowed.  */
202 #define TARGET_MIPS16_TEXT_LOADS \
203   (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES)
204 
205 /* True if we're generating a form of MIPS16 code in which PC-relative
206    loads are allowed.  */
207 #define TARGET_MIPS16_PCREL_LOADS \
208   (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL)
209 
210 /* Generic ISA defines.  */
211 #define ISA_MIPS1		    (mips_isa == 1)
212 #define ISA_MIPS2		    (mips_isa == 2)
213 #define ISA_MIPS3                   (mips_isa == 3)
214 #define ISA_MIPS4		    (mips_isa == 4)
215 #define ISA_MIPS32		    (mips_isa == 32)
216 #define ISA_MIPS32R2		    (mips_isa == 33)
217 #define ISA_MIPS32R3		    (mips_isa == 34)
218 #define ISA_MIPS32R5		    (mips_isa == 36)
219 #define ISA_MIPS32R6		    (mips_isa == 37)
220 #define ISA_MIPS64                  (mips_isa == 64)
221 #define ISA_MIPS64R2		    (mips_isa == 65)
222 #define ISA_MIPS64R3		    (mips_isa == 66)
223 #define ISA_MIPS64R5		    (mips_isa == 68)
224 #define ISA_MIPS64R6		    (mips_isa == 69)
225 
226 /* Architecture target defines.  */
227 #define TARGET_LOONGSON_2E          (mips_arch == PROCESSOR_LOONGSON_2E)
228 #define TARGET_LOONGSON_2F          (mips_arch == PROCESSOR_LOONGSON_2F)
229 #define TARGET_LOONGSON_2EF         (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F)
230 #define TARGET_LOONGSON_3A          (mips_arch == PROCESSOR_LOONGSON_3A)
231 #define TARGET_MIPS3900             (mips_arch == PROCESSOR_R3900)
232 #define TARGET_MIPS4000             (mips_arch == PROCESSOR_R4000)
233 #define TARGET_MIPS4120             (mips_arch == PROCESSOR_R4120)
234 #define TARGET_MIPS4130             (mips_arch == PROCESSOR_R4130)
235 #define TARGET_MIPS5400             (mips_arch == PROCESSOR_R5400)
236 #define TARGET_MIPS5500             (mips_arch == PROCESSOR_R5500)
237 #define TARGET_MIPS5900             (mips_arch == PROCESSOR_R5900)
238 #define TARGET_MIPS7000             (mips_arch == PROCESSOR_R7000)
239 #define TARGET_MIPS9000             (mips_arch == PROCESSOR_R9000)
240 #define TARGET_OCTEON		    (mips_arch == PROCESSOR_OCTEON	\
241 				     || mips_arch == PROCESSOR_OCTEON2	\
242 				     || mips_arch == PROCESSOR_OCTEON3)
243 #define TARGET_OCTEON2		    (mips_arch == PROCESSOR_OCTEON2	\
244 				     || mips_arch == PROCESSOR_OCTEON3)
245 #define TARGET_SB1                  (mips_arch == PROCESSOR_SB1		\
246 				     || mips_arch == PROCESSOR_SB1A)
247 #define TARGET_SR71K                (mips_arch == PROCESSOR_SR71000)
248 #define TARGET_XLP                  (mips_arch == PROCESSOR_XLP)
249 
250 /* Scheduling target defines.  */
251 #define TUNE_20KC		    (mips_tune == PROCESSOR_20KC)
252 #define TUNE_24K		    (mips_tune == PROCESSOR_24KC	\
253 				     || mips_tune == PROCESSOR_24KF2_1	\
254 				     || mips_tune == PROCESSOR_24KF1_1)
255 #define TUNE_74K                    (mips_tune == PROCESSOR_74KC	\
256 				     || mips_tune == PROCESSOR_74KF2_1	\
257 				     || mips_tune == PROCESSOR_74KF1_1  \
258 				     || mips_tune == PROCESSOR_74KF3_2)
259 #define TUNE_LOONGSON_2EF           (mips_tune == PROCESSOR_LOONGSON_2E	\
260 				     || mips_tune == PROCESSOR_LOONGSON_2F)
261 #define TUNE_LOONGSON_3A            (mips_tune == PROCESSOR_LOONGSON_3A)
262 #define TUNE_MIPS3000               (mips_tune == PROCESSOR_R3000)
263 #define TUNE_MIPS3900               (mips_tune == PROCESSOR_R3900)
264 #define TUNE_MIPS4000               (mips_tune == PROCESSOR_R4000)
265 #define TUNE_MIPS4120               (mips_tune == PROCESSOR_R4120)
266 #define TUNE_MIPS4130               (mips_tune == PROCESSOR_R4130)
267 #define TUNE_MIPS5000               (mips_tune == PROCESSOR_R5000)
268 #define TUNE_MIPS5400               (mips_tune == PROCESSOR_R5400)
269 #define TUNE_MIPS5500               (mips_tune == PROCESSOR_R5500)
270 #define TUNE_MIPS6000               (mips_tune == PROCESSOR_R6000)
271 #define TUNE_MIPS7000               (mips_tune == PROCESSOR_R7000)
272 #define TUNE_MIPS9000               (mips_tune == PROCESSOR_R9000)
273 #define TUNE_OCTEON		    (mips_tune == PROCESSOR_OCTEON	\
274 				     || mips_tune == PROCESSOR_OCTEON2	\
275 				     || mips_tune == PROCESSOR_OCTEON3)
276 #define TUNE_SB1                    (mips_tune == PROCESSOR_SB1		\
277 				     || mips_tune == PROCESSOR_SB1A)
278 #define TUNE_P5600                  (mips_tune == PROCESSOR_P5600)
279 
280 /* Whether vector modes and intrinsics for ST Microelectronics
281    Loongson-2E/2F processors should be enabled.  In o32 pairs of
282    floating-point registers provide 64-bit values.  */
283 #define TARGET_LOONGSON_VECTORS	    (TARGET_HARD_FLOAT_ABI		\
284 				     && (TARGET_LOONGSON_2EF		\
285 					 || TARGET_LOONGSON_3A))
286 
287 /* True if the pre-reload scheduler should try to create chains of
288    multiply-add or multiply-subtract instructions.  For example,
289    suppose we have:
290 
291 	t1 = a * b
292 	t2 = t1 + c * d
293 	t3 = e * f
294 	t4 = t3 - g * h
295 
296    t1 will have a higher priority than t2 and t3 will have a higher
297    priority than t4.  However, before reload, there is no dependence
298    between t1 and t3, and they can often have similar priorities.
299    The scheduler will then tend to prefer:
300 
301 	t1 = a * b
302 	t3 = e * f
303 	t2 = t1 + c * d
304 	t4 = t3 - g * h
305 
306    which stops us from making full use of macc/madd-style instructions.
307    This sort of situation occurs frequently in Fourier transforms and
308    in unrolled loops.
309 
310    To counter this, the TUNE_MACC_CHAINS code will reorder the ready
311    queue so that chained multiply-add and multiply-subtract instructions
312    appear ahead of any other instruction that is likely to clobber lo.
313    In the example above, if t2 and t3 become ready at the same time,
314    the code ensures that t2 is scheduled first.
315 
316    Multiply-accumulate instructions are a bigger win for some targets
317    than others, so this macro is defined on an opt-in basis.  */
318 #define TUNE_MACC_CHAINS	    (TUNE_MIPS5500		\
319 				     || TUNE_MIPS4120		\
320 				     || TUNE_MIPS4130		\
321 				     || TUNE_24K		\
322 				     || TUNE_P5600)
323 
324 #define TARGET_OLDABI		    (mips_abi == ABI_32 || mips_abi == ABI_O64)
325 #define TARGET_NEWABI		    (mips_abi == ABI_N32 || mips_abi == ABI_64)
326 
327 /* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
328    directly accessible, while the command-line options select
329    TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
330    in use.  */
331 #define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16)
332 #define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16)
333 
334 /* TARGET_FLOAT64 represents -mfp64 and TARGET_FLOATXX represents
335    -mfpxx, derive TARGET_FLOAT32 to represent -mfp32.  */
336 #define TARGET_FLOAT32 (!TARGET_FLOAT64 && !TARGET_FLOATXX)
337 
338 /* TARGET_O32_FP64A_ABI represents all the conditions that form the
339    o32 FP64A ABI extension (-mabi=32 -mfp64 -mno-odd-spreg).  */
340 #define TARGET_O32_FP64A_ABI (mips_abi == ABI_32 && TARGET_FLOAT64 \
341 			      && !TARGET_ODD_SPREG)
342 
343 /* False if SC acts as a memory barrier with respect to itself,
344    otherwise a SYNC will be emitted after SC for atomic operations
345    that require ordering between the SC and following loads and
346    stores.  It does not tell anything about ordering of loads and
347    stores prior to and following the SC, only about the SC itself and
348    those loads and stores follow it.  */
349 #define TARGET_SYNC_AFTER_SC (!TARGET_OCTEON && !TARGET_XLP)
350 
351 /* Define preprocessor macros for the -march and -mtune options.
352    PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
353    processor.  If INFO's canonical name is "foo", define PREFIX to
354    be "foo", and define an additional macro PREFIX_FOO.  */
355 #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO)			\
356   do								\
357     {								\
358       char *macro, *p;						\
359 								\
360       macro = concat ((PREFIX), "_", (INFO)->name, NULL);	\
361       for (p = macro; *p != 0; p++)				\
362         if (*p == '+')                                          \
363           *p = 'P';                                             \
364         else                                                    \
365           *p = TOUPPER (*p);                                    \
366 								\
367       builtin_define (macro);					\
368       builtin_define_with_value ((PREFIX), (INFO)->name, 1);	\
369       free (macro);						\
370     }								\
371   while (0)
372 
373 /* Target CPU builtins.  */
374 #define TARGET_CPU_CPP_BUILTINS()					\
375   do									\
376     {									\
377       builtin_assert ("machine=mips");                        		\
378       builtin_assert ("cpu=mips");					\
379       builtin_define ("__mips__");     					\
380       builtin_define ("_mips");						\
381 									\
382       /* We do this here because __mips is defined below and so we	\
383 	 can't use builtin_define_std.  We don't ever want to define	\
384 	 "mips" for VxWorks because some of the VxWorks headers		\
385 	 construct include filenames from a root directory macro,	\
386 	 an architecture macro and a filename, where the architecture	\
387 	 macro expands to 'mips'.  If we define 'mips' to 1, the	\
388 	 architecture macro expands to 1 as well.  */			\
389       if (!flag_iso && !TARGET_VXWORKS)					\
390 	builtin_define ("mips");					\
391 									\
392       if (TARGET_64BIT)							\
393 	builtin_define ("__mips64");					\
394 									\
395       /* Treat _R3000 and _R4000 like register-size			\
396 	 defines, which is how they've historically			\
397 	 been used.  */							\
398       if (TARGET_64BIT)							\
399 	{								\
400 	  builtin_define_std ("R4000");					\
401 	  builtin_define ("_R4000");					\
402 	}								\
403       else								\
404 	{								\
405 	  builtin_define_std ("R3000");					\
406 	  builtin_define ("_R3000");					\
407 	}								\
408 									\
409       if (TARGET_FLOAT64)						\
410 	builtin_define ("__mips_fpr=64");				\
411       else if (TARGET_FLOATXX)						\
412 	builtin_define ("__mips_fpr=0");				\
413       else								\
414 	builtin_define ("__mips_fpr=32");				\
415 									\
416       if (mips_base_compression_flags & MASK_MIPS16)			\
417 	builtin_define ("__mips16");					\
418 									\
419       if (TARGET_MIPS3D)						\
420 	builtin_define ("__mips3d");					\
421 									\
422       if (TARGET_SMARTMIPS)						\
423 	builtin_define ("__mips_smartmips");				\
424 									\
425       if (mips_base_compression_flags & MASK_MICROMIPS)			\
426 	builtin_define ("__mips_micromips");				\
427 									\
428       if (TARGET_MCU)							\
429 	builtin_define ("__mips_mcu");					\
430 									\
431       if (TARGET_EVA)							\
432 	builtin_define ("__mips_eva");					\
433 									\
434       if (TARGET_DSP)							\
435 	{								\
436 	  builtin_define ("__mips_dsp");				\
437 	  if (TARGET_DSPR2)						\
438 	    {								\
439 	      builtin_define ("__mips_dspr2");				\
440 	      builtin_define ("__mips_dsp_rev=2");			\
441 	    }								\
442 	  else								\
443 	    builtin_define ("__mips_dsp_rev=1");			\
444 	}								\
445 									\
446       MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info);		\
447       MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info);		\
448 									\
449       if (ISA_MIPS1)							\
450 	{								\
451 	  builtin_define ("__mips=1");					\
452 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1");			\
453 	}								\
454       else if (ISA_MIPS2)						\
455 	{								\
456 	  builtin_define ("__mips=2");					\
457 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2");			\
458 	}								\
459       else if (ISA_MIPS3)						\
460 	{								\
461 	  builtin_define ("__mips=3");					\
462 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3");			\
463 	}								\
464       else if (ISA_MIPS4)						\
465 	{								\
466 	  builtin_define ("__mips=4");					\
467 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4");			\
468 	}								\
469       else if (mips_isa >= 32 && mips_isa < 64)				\
470 	{								\
471 	  builtin_define ("__mips=32");					\
472 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32");		\
473 	}								\
474       else if (mips_isa >= 64)						\
475 	{								\
476 	  builtin_define ("__mips=64");					\
477 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64");		\
478 	}								\
479       if (mips_isa_rev > 0)						\
480 	builtin_define_with_int_value ("__mips_isa_rev",		\
481 				       mips_isa_rev);			\
482 									\
483       switch (mips_abi)							\
484 	{								\
485 	case ABI_32:							\
486 	  builtin_define ("_ABIO32=1");					\
487 	  builtin_define ("_MIPS_SIM=_ABIO32");				\
488 	  break;							\
489 									\
490 	case ABI_N32:							\
491 	  builtin_define ("_ABIN32=2");					\
492 	  builtin_define ("_MIPS_SIM=_ABIN32");				\
493 	  break;							\
494 									\
495 	case ABI_64:							\
496 	  builtin_define ("_ABI64=3");					\
497 	  builtin_define ("_MIPS_SIM=_ABI64");				\
498 	  break;							\
499 									\
500 	case ABI_O64:							\
501 	  builtin_define ("_ABIO64=4");					\
502 	  builtin_define ("_MIPS_SIM=_ABIO64");				\
503 	  break;							\
504 	}								\
505 									\
506       builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE);	\
507       builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE);	\
508       builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE);	\
509       builtin_define_with_int_value ("_MIPS_FPSET",			\
510 				     32 / MAX_FPRS_PER_FMT);		\
511       builtin_define_with_int_value ("_MIPS_SPFPSET",			\
512 				     TARGET_ODD_SPREG ? 32 : 16);	\
513 									\
514       /* These defines reflect the ABI in use, not whether the  	\
515 	 FPU is directly accessible.  */				\
516       if (TARGET_NO_FLOAT)						\
517 	builtin_define ("__mips_no_float");				\
518       else if (TARGET_HARD_FLOAT_ABI)					\
519 	builtin_define ("__mips_hard_float");				\
520       else								\
521 	builtin_define ("__mips_soft_float");				\
522 									\
523       if (TARGET_SINGLE_FLOAT)						\
524 	builtin_define ("__mips_single_float");				\
525 									\
526       if (TARGET_PAIRED_SINGLE_FLOAT)					\
527 	builtin_define ("__mips_paired_single_float");			\
528 									\
529       if (mips_abs == MIPS_IEEE_754_2008)				\
530 	builtin_define ("__mips_abs2008");				\
531 									\
532       if (mips_nan == MIPS_IEEE_754_2008)				\
533 	builtin_define ("__mips_nan2008");				\
534 									\
535       if (TARGET_BIG_ENDIAN)						\
536 	{								\
537 	  builtin_define_std ("MIPSEB");				\
538 	  builtin_define ("_MIPSEB");					\
539 	}								\
540       else								\
541 	{								\
542 	  builtin_define_std ("MIPSEL");				\
543 	  builtin_define ("_MIPSEL");					\
544 	}								\
545                                                                         \
546       /* Whether calls should go through $25.  The separate __PIC__	\
547 	 macro indicates whether abicalls code might use a GOT.  */	\
548       if (TARGET_ABICALLS)						\
549 	builtin_define ("__mips_abicalls");				\
550 									\
551       /* Whether Loongson vector modes are enabled.  */                 \
552       if (TARGET_LOONGSON_VECTORS)					\
553         builtin_define ("__mips_loongson_vector_rev");                  \
554 									\
555       /* Historical Octeon macro.  */					\
556       if (TARGET_OCTEON)						\
557 	builtin_define ("__OCTEON__");					\
558 									\
559       if (TARGET_SYNCI)							\
560 	builtin_define ("__mips_synci");				\
561 									\
562       /* Macros dependent on the C dialect.  */				\
563       if (preprocessing_asm_p ())					\
564 	{								\
565 	  builtin_define_std ("LANGUAGE_ASSEMBLY");			\
566 	  builtin_define ("_LANGUAGE_ASSEMBLY");			\
567 	}								\
568       else if (c_dialect_cxx ())					\
569 	{								\
570 	  builtin_define ("_LANGUAGE_C_PLUS_PLUS");			\
571 	  builtin_define ("__LANGUAGE_C_PLUS_PLUS");			\
572 	  builtin_define ("__LANGUAGE_C_PLUS_PLUS__");			\
573 	}								\
574       else								\
575 	{								\
576 	  builtin_define_std ("LANGUAGE_C");				\
577 	  builtin_define ("_LANGUAGE_C");				\
578 	}								\
579       if (c_dialect_objc ())						\
580 	{								\
581 	  builtin_define ("_LANGUAGE_OBJECTIVE_C");			\
582 	  builtin_define ("__LANGUAGE_OBJECTIVE_C");			\
583 	  /* Bizarre, but retained for backwards compatibility.  */	\
584 	  builtin_define_std ("LANGUAGE_C");				\
585 	  builtin_define ("_LANGUAGE_C");				\
586 	}								\
587 									\
588       if (mips_abi == ABI_EABI)						\
589 	builtin_define ("__mips_eabi");					\
590 									\
591       if (TARGET_CACHE_BUILTIN)						\
592 	builtin_define ("__GCC_HAVE_BUILTIN_MIPS_CACHE");		\
593     }									\
594   while (0)
595 
596 /* Default target_flags if no switches are specified  */
597 
598 #ifndef TARGET_DEFAULT
599 #define TARGET_DEFAULT 0
600 #endif
601 
602 #ifndef TARGET_CPU_DEFAULT
603 #define TARGET_CPU_DEFAULT 0
604 #endif
605 
606 #ifndef TARGET_ENDIAN_DEFAULT
607 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
608 #endif
609 
610 #ifdef IN_LIBGCC2
611 #undef TARGET_64BIT
612 /* Make this compile time constant for libgcc2 */
613 #ifdef __mips64
614 #define TARGET_64BIT		1
615 #else
616 #define TARGET_64BIT		0
617 #endif
618 #endif /* IN_LIBGCC2 */
619 
620 /* Force the call stack unwinders in unwind.inc not to be MIPS16 code
621    when compiled with hardware floating point.  This is because MIPS16
622    code cannot save and restore the floating-point registers, which is
623    important if in a mixed MIPS16/non-MIPS16 environment.  */
624 
625 #ifdef IN_LIBGCC2
626 #if __mips_hard_float
627 #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__))
628 #endif
629 #endif /* IN_LIBGCC2 */
630 
631 #define TARGET_LIBGCC_SDATA_SECTION ".sdata"
632 
633 #ifndef MULTILIB_ENDIAN_DEFAULT
634 #if TARGET_ENDIAN_DEFAULT == 0
635 #define MULTILIB_ENDIAN_DEFAULT "EL"
636 #else
637 #define MULTILIB_ENDIAN_DEFAULT "EB"
638 #endif
639 #endif
640 
641 #ifndef MULTILIB_ISA_DEFAULT
642 #if MIPS_ISA_DEFAULT == 1
643 #define MULTILIB_ISA_DEFAULT "mips1"
644 #elif MIPS_ISA_DEFAULT == 2
645 #define MULTILIB_ISA_DEFAULT "mips2"
646 #elif MIPS_ISA_DEFAULT == 3
647 #define MULTILIB_ISA_DEFAULT "mips3"
648 #elif MIPS_ISA_DEFAULT == 4
649 #define MULTILIB_ISA_DEFAULT "mips4"
650 #elif MIPS_ISA_DEFAULT == 32
651 #define MULTILIB_ISA_DEFAULT "mips32"
652 #elif MIPS_ISA_DEFAULT == 33
653 #define MULTILIB_ISA_DEFAULT "mips32r2"
654 #elif MIPS_ISA_DEFAULT == 37
655 #define MULTILIB_ISA_DEFAULT "mips32r6"
656 #elif MIPS_ISA_DEFAULT == 64
657 #define MULTILIB_ISA_DEFAULT "mips64"
658 #elif MIPS_ISA_DEFAULT == 65
659 #define MULTILIB_ISA_DEFAULT "mips64r2"
660 #elif MIPS_ISA_DEFAULT == 69
661 #define MULTILIB_ISA_DEFAULT "mips64r6"
662 #else
663 #define MULTILIB_ISA_DEFAULT "mips1"
664 #endif
665 #endif
666 
667 #ifndef MIPS_ABI_DEFAULT
668 #define MIPS_ABI_DEFAULT ABI_32
669 #endif
670 
671 /* Use the most portable ABI flag for the ASM specs.  */
672 
673 #if MIPS_ABI_DEFAULT == ABI_32
674 #define MULTILIB_ABI_DEFAULT "mabi=32"
675 #elif MIPS_ABI_DEFAULT == ABI_O64
676 #define MULTILIB_ABI_DEFAULT "mabi=o64"
677 #elif MIPS_ABI_DEFAULT == ABI_N32
678 #define MULTILIB_ABI_DEFAULT "mabi=n32"
679 #elif MIPS_ABI_DEFAULT == ABI_64
680 #define MULTILIB_ABI_DEFAULT "mabi=64"
681 #elif MIPS_ABI_DEFAULT == ABI_EABI
682 #define MULTILIB_ABI_DEFAULT "mabi=eabi"
683 #endif
684 
685 #ifndef MULTILIB_DEFAULTS
686 #define MULTILIB_DEFAULTS \
687     { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
688 #endif
689 
690 /* We must pass -EL to the linker by default for little endian embedded
691    targets using linker scripts with a OUTPUT_FORMAT line.  Otherwise, the
692    linker will default to using big-endian output files.  The OUTPUT_FORMAT
693    line must be in the linker script, otherwise -EB/-EL will not work.  */
694 
695 #ifndef ENDIAN_SPEC
696 #if TARGET_ENDIAN_DEFAULT == 0
697 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
698 #else
699 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
700 #endif
701 #endif
702 
703 /* A spec condition that matches all non-mips16 -mips arguments.  */
704 
705 #define MIPS_ISA_LEVEL_OPTION_SPEC \
706   "mips1|mips2|mips3|mips4|mips32*|mips64*"
707 
708 /* A spec condition that matches all non-mips16 architecture arguments.  */
709 
710 #define MIPS_ARCH_OPTION_SPEC \
711   MIPS_ISA_LEVEL_OPTION_SPEC "|march=*"
712 
713 /* A spec that infers a -mips argument from an -march argument.  */
714 
715 #define MIPS_ISA_LEVEL_SPEC \
716   "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
717      %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \
718      %{march=mips2|march=r6000:-mips2} \
719      %{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \
720      %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000 \
721        |march=r10000|march=r12000|march=r14000|march=r16000:-mips4} \
722      %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \
723      %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \
724        |march=34k*|march=74k*|march=m14k*|march=1004k*: -mips32r2} \
725      %{march=mips32r3: -mips32r3} \
726      %{march=mips32r5|march=p5600: -mips32r5} \
727      %{march=mips32r6: -mips32r6} \
728      %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000 \
729        |march=xlr: -mips64} \
730      %{march=mips64r2|march=loongson3a|march=octeon|march=xlp: -mips64r2} \
731      %{march=mips64r3: -mips64r3} \
732      %{march=mips64r5: -mips64r5} \
733      %{march=mips64r6: -mips64r6}}"
734 
735 /* A spec that injects the default multilib ISA if no architecture is
736    specified.  */
737 
738 #define MIPS_DEFAULT_ISA_LEVEL_SPEC \
739   "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
740      %{!march=*: -" MULTILIB_ISA_DEFAULT "}}"
741 
742 /* A spec that infers a -mhard-float or -msoft-float setting from an
743    -march argument.  Note that soft-float and hard-float code are not
744    link-compatible.  */
745 
746 #define MIPS_ARCH_FLOAT_SPEC \
747   "%{mhard-float|msoft-float|mno-float|march=mips*:; \
748      march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \
749      |march=34kc|march=34kn|march=74kc|march=1004kc|march=5kc \
750      |march=m14k*|march=octeon|march=xlr: -msoft-float;		  \
751      march=*: -mhard-float}"
752 
753 /* A spec condition that matches 32-bit options.  It only works if
754    MIPS_ISA_LEVEL_SPEC has been applied.  */
755 
756 #define MIPS_32BIT_OPTION_SPEC \
757   "mips1|mips2|mips32*|mgp32"
758 
759 /* A spec condition that matches architectures should be targeted with
760    o32 FPXX for compatibility reasons.  */
761 #define MIPS_FPXX_OPTION_SPEC \
762   "mips2|mips3|mips4|mips5|mips32|mips32r2|mips32r3|mips32r5| \
763    mips64|mips64r2|mips64r3|mips64r5"
764 
765 /* Infer a -msynci setting from a -mips argument, on the assumption that
766    -msynci is desired where possible.  */
767 #define MIPS_ISA_SYNCI_SPEC \
768   "%{msynci|mno-synci:;:%{mips32r2|mips32r3|mips32r5|mips32r6|mips64r2 \
769 			  |mips64r3|mips64r5|mips64r6:-msynci;:-mno-synci}}"
770 
771 /* Infer a -mnan=2008 setting from a -mips argument.  */
772 #define MIPS_ISA_NAN2008_SPEC \
773   "%{mnan*:;mips32r6|mips64r6:-mnan=2008}"
774 
775 #if (MIPS_ABI_DEFAULT == ABI_O64 \
776      || MIPS_ABI_DEFAULT == ABI_N32 \
777      || MIPS_ABI_DEFAULT == ABI_64)
778 #define OPT_ARCH64 "mabi=32|mgp32:;"
779 #define OPT_ARCH32 "mabi=32|mgp32"
780 #else
781 #define OPT_ARCH64 "mabi=o64|mabi=n32|mabi=64|mgp64"
782 #define OPT_ARCH32 "mabi=o64|mabi=n32|mabi=64|mgp64:;"
783 #endif
784 
785 /* Support for a compile-time default CPU, et cetera.  The rules are:
786    --with-arch is ignored if -march is specified or a -mips is specified
787      (other than -mips16); likewise --with-arch-32 and --with-arch-64.
788    --with-tune is ignored if -mtune is specified; likewise
789      --with-tune-32 and --with-tune-64.
790    --with-abi is ignored if -mabi is specified.
791    --with-float is ignored if -mhard-float or -msoft-float are
792      specified.
793    --with-fpu is ignored if -msoft-float, -msingle-float or -mdouble-float are
794      specified.
795    --with-nan is ignored if -mnan is specified.
796    --with-fp-32 is ignored if -msoft-float, -msingle-float or -mfp are specified.
797    --with-odd-spreg-32 is ignored if -msoft-float, -msingle-float, -modd-spreg
798      or -mno-odd-spreg are specified.
799    --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
800      specified. */
801 #define OPTION_DEFAULT_SPECS \
802   {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \
803   {"arch_32", "%{" OPT_ARCH32 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
804   {"arch_64", "%{" OPT_ARCH64 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
805   {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
806   {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
807   {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
808   {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
809   {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
810   {"fpu", "%{!msoft-float:%{!msingle-float:%{!mdouble-float:-m%(VALUE)-float}}}" }, \
811   {"nan", "%{!mnan=*:-mnan=%(VALUE)}" }, \
812   {"fp_32", "%{" OPT_ARCH32 \
813 	    ":%{!msoft-float:%{!msingle-float:%{!mfp*:-mfp%(VALUE)}}}}" }, \
814   {"odd_spreg_32", "%{" OPT_ARCH32 ":%{!msoft-float:%{!msingle-float:" \
815 		   "%{!modd-spreg:%{!mno-odd-spreg:-m%(VALUE)}}}}}" }, \
816   {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \
817   {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }, \
818   {"mips-plt", "%{!mplt:%{!mno-plt:-m%(VALUE)}}" }, \
819   {"synci", "%{!msynci:%{!mno-synci:-m%(VALUE)}}" }
820 
821 /* A spec that infers the:
822    -mnan=2008 setting from a -mips argument,
823    -mdsp setting from a -march argument.  */
824 #define BASE_DRIVER_SELF_SPECS \
825   MIPS_ISA_NAN2008_SPEC,       \
826   "%{!mno-dsp: \
827      %{march=24ke*|march=34kc*|march=34kf*|march=34kx*|march=1004k*: -mdsp} \
828      %{march=74k*|march=m14ke*: %{!mno-dspr2: -mdspr2 -mdsp}}}"
829 
830 #define DRIVER_SELF_SPECS \
831   MIPS_ISA_LEVEL_SPEC,	  \
832   BASE_DRIVER_SELF_SPECS
833 
834 #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
835                                && ISA_HAS_COND_TRAP)
836 
837 #define GENERATE_BRANCHLIKELY   (TARGET_BRANCHLIKELY && !TARGET_MIPS16)
838 
839 /* True if the ABI can only work with 64-bit integer registers.  We
840    generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
841    otherwise floating-point registers must also be 64-bit.  */
842 #define ABI_NEEDS_64BIT_REGS	(TARGET_NEWABI || mips_abi == ABI_O64)
843 
844 /* Likewise for 32-bit regs.  */
845 #define ABI_NEEDS_32BIT_REGS	(mips_abi == ABI_32)
846 
847 /* True if the file format uses 64-bit symbols.  At present, this is
848    only true for n64, which uses 64-bit ELF.  */
849 #define FILE_HAS_64BIT_SYMBOLS	(mips_abi == ABI_64)
850 
851 /* True if symbols are 64 bits wide.  This is usually determined by
852    the ABI's file format, but it can be overridden by -msym32.  Note that
853    overriding the size with -msym32 changes the ABI of relocatable objects,
854    although it doesn't change the ABI of a fully-linked object.  */
855 #define ABI_HAS_64BIT_SYMBOLS	(FILE_HAS_64BIT_SYMBOLS \
856 				 && Pmode == DImode	\
857 				 && !TARGET_SYM32)
858 
859 /* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3).  */
860 #define ISA_HAS_64BIT_REGS	(ISA_MIPS3				\
861 				 || ISA_MIPS4				\
862 				 || ISA_MIPS64				\
863 				 || ISA_MIPS64R2			\
864 				 || ISA_MIPS64R3			\
865 				 || ISA_MIPS64R5			\
866 				 || ISA_MIPS64R6)
867 
868 #define ISA_HAS_JR		(mips_isa_rev <= 5)
869 
870 /* ISA has branch likely instructions (e.g. mips2).  */
871 /* Disable branchlikely for tx39 until compare rewrite.  They haven't
872    been generated up to this point.  */
873 #define ISA_HAS_BRANCHLIKELY	(!ISA_MIPS1 && mips_isa_rev <= 5)
874 
875 /* ISA has 32 single-precision registers.  */
876 #define ISA_HAS_ODD_SPREG	((mips_isa_rev >= 1			\
877 				  && !TARGET_LOONGSON_3A)		\
878 				 || TARGET_FLOAT64			\
879 				 || TARGET_MIPS5900)
880 
881 /* ISA has a three-operand multiplication instruction (usually spelt "mul").  */
882 #define ISA_HAS_MUL3		((TARGET_MIPS3900                       \
883 				  || TARGET_MIPS5400			\
884 				  || TARGET_MIPS5500			\
885 				  || TARGET_MIPS5900			\
886 				  || TARGET_MIPS7000			\
887 				  || TARGET_MIPS9000			\
888 				  || TARGET_MAD				\
889 				  || (mips_isa_rev >= 1			\
890 				      && mips_isa_rev <= 5))		\
891 				 && !TARGET_MIPS16)
892 
893 /* ISA has a three-operand multiplication instruction.  */
894 #define ISA_HAS_DMUL3		(TARGET_64BIT				\
895 				 && TARGET_OCTEON			\
896 				 && !TARGET_MIPS16)
897 
898 /* ISA has HI and LO registers.  */
899 #define ISA_HAS_HILO		(mips_isa_rev <= 5)
900 
901 /* ISA supports instructions DMULT and DMULTU. */
902 #define ISA_HAS_DMULT		(TARGET_64BIT				\
903 				 && !TARGET_MIPS5900			\
904 				 && mips_isa_rev <= 5)
905 
906 /* ISA supports instructions MULT and MULTU.  */
907 #define ISA_HAS_MULT		(mips_isa_rev <= 5)
908 
909 /* ISA supports instructions MUL, MULU, MUH, MUHU.  */
910 #define ISA_HAS_R6MUL		(mips_isa_rev >= 6)
911 
912 /* ISA supports instructions DMUL, DMULU, DMUH, DMUHU.  */
913 #define ISA_HAS_R6DMUL		(TARGET_64BIT && mips_isa_rev >= 6)
914 
915 /* ISA supports instructions DDIV and DDIVU. */
916 #define ISA_HAS_DDIV		(TARGET_64BIT				\
917 				 && !TARGET_MIPS5900			\
918 				 && mips_isa_rev <= 5)
919 
920 /* ISA supports instructions DIV and DIVU.
921    This is always true, but the macro is needed for ISA_HAS_<D>DIV
922    in mips.md.  */
923 #define ISA_HAS_DIV		(mips_isa_rev <= 5)
924 
925 #define ISA_HAS_DIV3		((TARGET_LOONGSON_2EF			\
926 				  || TARGET_LOONGSON_3A)		\
927 				 && !TARGET_MIPS16)
928 
929 /* ISA supports instructions DIV, DIVU, MOD and MODU.  */
930 #define ISA_HAS_R6DIV		(mips_isa_rev >= 6)
931 
932 /* ISA supports instructions DDIV, DDIVU, DMOD and DMODU.  */
933 #define ISA_HAS_R6DDIV		(TARGET_64BIT && mips_isa_rev >= 6)
934 
935 /* ISA has the floating-point conditional move instructions introduced
936    in mips4.  */
937 #define ISA_HAS_FP_CONDMOVE	((ISA_MIPS4				\
938 				  || (mips_isa_rev >= 1			\
939 				      && mips_isa_rev <= 5))		\
940 				 && !TARGET_MIPS5500			\
941 				 && !TARGET_MIPS16)
942 
943 /* ISA has the integer conditional move instructions introduced in mips4 and
944    ST Loongson 2E/2F.  */
945 #define ISA_HAS_CONDMOVE        (ISA_HAS_FP_CONDMOVE			\
946 				 || TARGET_MIPS5900			\
947 				 || TARGET_LOONGSON_2EF)
948 
949 /* ISA has LDC1 and SDC1.  */
950 #define ISA_HAS_LDC1_SDC1	(!ISA_MIPS1				\
951 				 && !TARGET_MIPS5900			\
952 				 && !TARGET_MIPS16)
953 
954 /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
955    branch on CC, and move (both FP and non-FP) on CC.  */
956 #define ISA_HAS_8CC		(ISA_MIPS4				\
957 				 || (mips_isa_rev >= 1			\
958 				     && mips_isa_rev <= 5))
959 
960 /* ISA has the FP condition code instructions that store the flag in an
961    FP register.  */
962 #define ISA_HAS_CCF		(mips_isa_rev >= 6)
963 
964 #define ISA_HAS_SEL		(mips_isa_rev >= 6)
965 
966 /* This is a catch all for other mips4 instructions: indexed load, the
967    FP madd and msub instructions, and the FP recip and recip sqrt
968    instructions.  Note that this macro should only be used by other
969    ISA_HAS_* macros.  */
970 #define ISA_HAS_FP4		((ISA_MIPS4				\
971 				  || ISA_MIPS64				\
972 				  || (mips_isa_rev >= 2			\
973 				      && mips_isa_rev <= 5))		\
974 				 && !TARGET_MIPS16)
975 
976 /* ISA has floating-point indexed load and store instructions
977    (LWXC1, LDXC1, SWXC1 and SDXC1).  */
978 #define ISA_HAS_LXC1_SXC1	ISA_HAS_FP4
979 
980 /* ISA has paired-single instructions.  */
981 #define ISA_HAS_PAIRED_SINGLE	(ISA_MIPS64				\
982 				 || (mips_isa_rev >= 2			\
983 				     && mips_isa_rev <= 5))
984 
985 /* ISA has conditional trap instructions.  */
986 #define ISA_HAS_COND_TRAP	(!ISA_MIPS1				\
987 				 && !TARGET_MIPS16)
988 
989 /* ISA has conditional trap with immediate instructions.  */
990 #define ISA_HAS_COND_TRAPI	(!ISA_MIPS1				\
991 				 && mips_isa_rev <= 5			\
992 				 && !TARGET_MIPS16)
993 
994 /* ISA has integer multiply-accumulate instructions, madd and msub.  */
995 #define ISA_HAS_MADD_MSUB	(mips_isa_rev >= 1			\
996 				 && mips_isa_rev <= 5)
997 
998 /* Integer multiply-accumulate instructions should be generated.  */
999 #define GENERATE_MADD_MSUB	(TARGET_IMADD && !TARGET_MIPS16)
1000 
1001 /* ISA has floating-point madd and msub instructions 'd = a * b [+-] c'.  */
1002 #define ISA_HAS_FP_MADD4_MSUB4  ISA_HAS_FP4
1003 
1004 /* ISA has floating-point MADDF and MSUBF instructions 'd = d [+-] a * b'.  */
1005 #define ISA_HAS_FP_MADDF_MSUBF  (mips_isa_rev >= 6)
1006 
1007 /* ISA has floating-point madd and msub instructions 'c = a * b [+-] c'.  */
1008 #define ISA_HAS_FP_MADD3_MSUB3  TARGET_LOONGSON_2EF
1009 
1010 /* ISA has floating-point nmadd and nmsub instructions
1011    'd = -((a * b) [+-] c)'.  */
1012 #define ISA_HAS_NMADD4_NMSUB4	ISA_HAS_FP4
1013 
1014 /* ISA has floating-point nmadd and nmsub instructions
1015    'c = -((a * b) [+-] c)'.  */
1016 #define ISA_HAS_NMADD3_NMSUB3	TARGET_LOONGSON_2EF
1017 
1018 /* ISA has floating-point RECIP.fmt and RSQRT.fmt instructions.  The
1019    MIPS64 rev. 1 ISA says that RECIP.D and RSQRT.D are unpredictable when
1020    doubles are stored in pairs of FPRs, so for safety's sake, we apply
1021    this restriction to the MIPS IV ISA too.  */
1022 #define ISA_HAS_FP_RECIP_RSQRT(MODE)					\
1023 				(((ISA_HAS_FP4				\
1024 				   && ((MODE) == SFmode			\
1025 				       || ((TARGET_FLOAT64		\
1026 					    || mips_isa_rev >= 2)	\
1027 					   && (MODE) == DFmode)))	\
1028 				  || (((MODE) == SFmode			\
1029 				       || (MODE) == DFmode)		\
1030 				      && (mips_isa_rev >= 6))		\
1031 				  || (TARGET_SB1			\
1032 				      && (MODE) == V2SFmode))		\
1033 				 && !TARGET_MIPS16)
1034 
1035 #define ISA_HAS_LWL_LWR		(mips_isa_rev <= 5 && !TARGET_MIPS16)
1036 
1037 #define ISA_HAS_IEEE_754_LEGACY	(mips_isa_rev <= 5)
1038 
1039 #define ISA_HAS_IEEE_754_2008	(mips_isa_rev >= 2)
1040 
1041 /* ISA has count leading zeroes/ones instruction (not implemented).  */
1042 #define ISA_HAS_CLZ_CLO		(mips_isa_rev >= 1 && !TARGET_MIPS16)
1043 
1044 /* ISA has three operand multiply instructions that put
1045    the high part in an accumulator: mulhi or mulhiu.  */
1046 #define ISA_HAS_MULHI		((TARGET_MIPS5400			 \
1047 				  || TARGET_MIPS5500			 \
1048 				  || TARGET_SR71K)			 \
1049 				 && !TARGET_MIPS16)
1050 
1051 /* ISA has three operand multiply instructions that negate the
1052    result and put the result in an accumulator.  */
1053 #define ISA_HAS_MULS		((TARGET_MIPS5400			\
1054 				  || TARGET_MIPS5500			\
1055 				  || TARGET_SR71K)			\
1056 				 && !TARGET_MIPS16)
1057 
1058 /* ISA has three operand multiply instructions that subtract the
1059    result from a 4th operand and put the result in an accumulator.  */
1060 #define ISA_HAS_MSAC		((TARGET_MIPS5400			\
1061 				  || TARGET_MIPS5500			\
1062 				  || TARGET_SR71K)			\
1063 				 && !TARGET_MIPS16)
1064 
1065 /* ISA has three operand multiply instructions that add the result
1066    to a 4th operand and put the result in an accumulator.  */
1067 #define ISA_HAS_MACC		((TARGET_MIPS4120			\
1068 				  || TARGET_MIPS4130			\
1069 				  || TARGET_MIPS5400			\
1070 				  || TARGET_MIPS5500			\
1071 				  || TARGET_SR71K)			\
1072 				 && !TARGET_MIPS16)
1073 
1074 /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions.  */
1075 #define ISA_HAS_MACCHI		((TARGET_MIPS4120			\
1076 				  || TARGET_MIPS4130)			\
1077 				 && !TARGET_MIPS16)
1078 
1079 /* ISA has the "ror" (rotate right) instructions.  */
1080 #define ISA_HAS_ROR		((mips_isa_rev >= 2			\
1081 				  || TARGET_MIPS5400			\
1082 				  || TARGET_MIPS5500			\
1083 				  || TARGET_SR71K			\
1084 				  || TARGET_SMARTMIPS)			\
1085 				 && !TARGET_MIPS16)
1086 
1087 /* ISA has the WSBH (word swap bytes within halfwords) instruction.
1088    64-bit targets also provide DSBH and DSHD.  */
1089 #define ISA_HAS_WSBH		(mips_isa_rev >= 2 && !TARGET_MIPS16)
1090 
1091 /* ISA has data prefetch instructions.  This controls use of 'pref'.  */
1092 #define ISA_HAS_PREFETCH	((ISA_MIPS4				\
1093 				  || TARGET_LOONGSON_2EF		\
1094 				  || TARGET_MIPS5900			\
1095 				  || mips_isa_rev >= 1)			\
1096 				 && !TARGET_MIPS16)
1097 
1098 /* ISA has data prefetch, LL and SC with limited 9-bit displacement.  */
1099 #define ISA_HAS_9BIT_DISPLACEMENT	(mips_isa_rev >= 6)
1100 
1101 /* ISA has data indexed prefetch instructions.  This controls use of
1102    'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
1103    (prefx is a cop1x instruction, so can only be used if FP is
1104    enabled.)  */
1105 #define ISA_HAS_PREFETCHX	ISA_HAS_FP4
1106 
1107 /* True if trunc.w.s and trunc.w.d are real (not synthetic)
1108    instructions.  Both require TARGET_HARD_FLOAT, and trunc.w.d
1109    also requires TARGET_DOUBLE_FLOAT.  */
1110 #define ISA_HAS_TRUNC_W		(!ISA_MIPS1)
1111 
1112 /* ISA includes the MIPS32r2 seb and seh instructions.  */
1113 #define ISA_HAS_SEB_SEH		(mips_isa_rev >= 2 && !TARGET_MIPS16)
1114 
1115 /* ISA includes the MIPS32/64 rev 2 ext and ins instructions.  */
1116 #define ISA_HAS_EXT_INS		(mips_isa_rev >= 2 && !TARGET_MIPS16)
1117 
1118 /* ISA has instructions for accessing top part of 64-bit fp regs.  */
1119 #define ISA_HAS_MXHC1		(!TARGET_FLOAT32	\
1120 				 && mips_isa_rev >= 2)
1121 
1122 /* ISA has lwxs instruction (load w/scaled index address.  */
1123 #define ISA_HAS_LWXS		((TARGET_SMARTMIPS || TARGET_MICROMIPS) \
1124 				 && !TARGET_MIPS16)
1125 
1126 /* ISA has lbx, lbux, lhx, lhx, lhux, lwx, lwux, or ldx instruction. */
1127 #define ISA_HAS_LBX		(TARGET_OCTEON2)
1128 #define ISA_HAS_LBUX		(ISA_HAS_DSP || TARGET_OCTEON2)
1129 #define ISA_HAS_LHX		(ISA_HAS_DSP || TARGET_OCTEON2)
1130 #define ISA_HAS_LHUX		(TARGET_OCTEON2)
1131 #define ISA_HAS_LWX		(ISA_HAS_DSP || TARGET_OCTEON2)
1132 #define ISA_HAS_LWUX		(TARGET_OCTEON2 && TARGET_64BIT)
1133 #define ISA_HAS_LDX		((ISA_HAS_DSP || TARGET_OCTEON2) \
1134 				 && TARGET_64BIT)
1135 
1136 /* The DSP ASE is available.  */
1137 #define ISA_HAS_DSP		(TARGET_DSP && !TARGET_MIPS16)
1138 
1139 /* Revision 2 of the DSP ASE is available.  */
1140 #define ISA_HAS_DSPR2		(TARGET_DSPR2 && !TARGET_MIPS16)
1141 
1142 /* True if the result of a load is not available to the next instruction.
1143    A nop will then be needed between instructions like "lw $4,..."
1144    and "addiu $4,$4,1".  */
1145 #define ISA_HAS_LOAD_DELAY	(ISA_MIPS1				\
1146 				 && !TARGET_MIPS3900			\
1147 				 && !TARGET_MIPS5900			\
1148 				 && !TARGET_MIPS16			\
1149 				 && !TARGET_MICROMIPS)
1150 
1151 /* Likewise mtc1 and mfc1.  */
1152 #define ISA_HAS_XFER_DELAY	(mips_isa <= 3			\
1153 				 && !TARGET_MIPS5900		\
1154 				 && !TARGET_LOONGSON_2EF)
1155 
1156 /* Likewise floating-point comparisons.  */
1157 #define ISA_HAS_FCMP_DELAY	(mips_isa <= 3			\
1158 				 && !TARGET_MIPS5900		\
1159 				 && !TARGET_LOONGSON_2EF)
1160 
1161 /* True if mflo and mfhi can be immediately followed by instructions
1162    which write to the HI and LO registers.
1163 
1164    According to MIPS specifications, MIPS ISAs I, II, and III need
1165    (at least) two instructions between the reads of HI/LO and
1166    instructions which write them, and later ISAs do not.  Contradicting
1167    the MIPS specifications, some MIPS IV processor user manuals (e.g.
1168    the UM for the NEC Vr5000) document needing the instructions between
1169    HI/LO reads and writes, as well.  Therefore, we declare only MIPS32,
1170    MIPS64 and later ISAs to have the interlocks, plus any specific
1171    earlier-ISA CPUs for which CPU documentation declares that the
1172    instructions are really interlocked.  */
1173 #define ISA_HAS_HILO_INTERLOCKS	(mips_isa_rev >= 1			\
1174 				 || TARGET_MIPS5500			\
1175 				 || TARGET_MIPS5900			\
1176 				 || TARGET_LOONGSON_2EF)
1177 
1178 /* ISA includes synci, jr.hb and jalr.hb.  */
1179 #define ISA_HAS_SYNCI (mips_isa_rev >= 2 && !TARGET_MIPS16)
1180 
1181 /* ISA includes sync.  */
1182 #define ISA_HAS_SYNC ((mips_isa >= 2 || TARGET_MIPS3900) && !TARGET_MIPS16)
1183 #define GENERATE_SYNC			\
1184   (target_flags_explicit & MASK_LLSC	\
1185    ? TARGET_LLSC && !TARGET_MIPS16	\
1186    : ISA_HAS_SYNC)
1187 
1188 /* ISA includes ll and sc.  Note that this implies ISA_HAS_SYNC
1189    because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC
1190    instructions.  */
1191 #define ISA_HAS_LL_SC (mips_isa >= 2 && !TARGET_MIPS5900 && !TARGET_MIPS16)
1192 #define GENERATE_LL_SC			\
1193   (target_flags_explicit & MASK_LLSC	\
1194    ? TARGET_LLSC && !TARGET_MIPS16	\
1195    : ISA_HAS_LL_SC)
1196 
1197 #define ISA_HAS_SWAP (TARGET_XLP)
1198 #define ISA_HAS_LDADD (TARGET_XLP)
1199 
1200 /* ISA includes the baddu instruction.  */
1201 #define ISA_HAS_BADDU		(TARGET_OCTEON && !TARGET_MIPS16)
1202 
1203 /* ISA includes the bbit* instructions.  */
1204 #define ISA_HAS_BBIT		(TARGET_OCTEON && !TARGET_MIPS16)
1205 
1206 /* ISA includes the cins instruction.  */
1207 #define ISA_HAS_CINS		(TARGET_OCTEON && !TARGET_MIPS16)
1208 
1209 /* ISA includes the exts instruction.  */
1210 #define ISA_HAS_EXTS		(TARGET_OCTEON && !TARGET_MIPS16)
1211 
1212 /* ISA includes the seq and sne instructions.  */
1213 #define ISA_HAS_SEQ_SNE		(TARGET_OCTEON && !TARGET_MIPS16)
1214 
1215 /* ISA includes the pop instruction.  */
1216 #define ISA_HAS_POP		(TARGET_OCTEON && !TARGET_MIPS16)
1217 
1218 /* The CACHE instruction is available in non-MIPS16 code.  */
1219 #define TARGET_CACHE_BUILTIN (mips_isa >= 3)
1220 
1221 /* The CACHE instruction is available.  */
1222 #define ISA_HAS_CACHE (TARGET_CACHE_BUILTIN && !TARGET_MIPS16)
1223 
1224 /* Tell collect what flags to pass to nm.  */
1225 #ifndef NM_FLAGS
1226 #define NM_FLAGS "-Bn"
1227 #endif
1228 
1229 
1230 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
1231    the assembler.  It may be overridden by subtargets.
1232 
1233    Beginning with gas 2.13, -mdebug must be passed to correctly handle
1234    COFF debugging info.  */
1235 
1236 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
1237 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
1238 %{g} %{g0} %{g1} %{g2} %{g3} \
1239 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
1240 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
1241 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
1242 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
1243 %{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
1244 #endif
1245 
1246 /* FP_ASM_SPEC represents the floating-point options that must be passed
1247    to the assembler when FPXX support exists.  Prior to that point the
1248    assembler could accept the options but were not required for
1249    correctness.  We only add the options when absolutely necessary
1250    because passing -msoft-float to the assembler will cause it to reject
1251    all hard-float instructions which may require some user code to be
1252    updated.  */
1253 
1254 #ifdef HAVE_AS_DOT_MODULE
1255 #define FP_ASM_SPEC "\
1256 %{mhard-float} %{msoft-float} \
1257 %{msingle-float} %{mdouble-float}"
1258 #else
1259 #define FP_ASM_SPEC
1260 #endif
1261 
1262 /* SUBTARGET_ASM_SPEC is always passed to the assembler.  It may be
1263    overridden by subtargets.  */
1264 
1265 #ifndef SUBTARGET_ASM_SPEC
1266 #define SUBTARGET_ASM_SPEC ""
1267 #endif
1268 
1269 #undef ASM_SPEC
1270 #define ASM_SPEC "\
1271 %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
1272 %{mips32*} %{mips64*} \
1273 %{mips16} %{mno-mips16:-no-mips16} \
1274 %{mmicromips} %{mno-micromips} \
1275 %{mips3d} %{mno-mips3d:-no-mips3d} \
1276 %{mdmx} %{mno-mdmx:-no-mdmx} \
1277 %{mdsp} %{mno-dsp} \
1278 %{mdspr2} %{mno-dspr2} \
1279 %{mmcu} %{mno-mcu} \
1280 %{meva} %{mno-eva} \
1281 %{mvirt} %{mno-virt} \
1282 %{mxpa} %{mno-xpa} \
1283 %{msmartmips} %{mno-smartmips} \
1284 %{mmt} %{mno-mt} \
1285 %{mfix-rm7000} %{mno-fix-rm7000} \
1286 %{mfix-vr4120} %{mfix-vr4130} \
1287 %{mfix-24k} \
1288 %{noasmopt:-O0; O0|fno-delayed-branch:-O1; O*:-O2; :-O1} \
1289 %(subtarget_asm_debugging_spec) \
1290 %{mabi=*} %{!mabi=*: %(asm_abi_default_spec)} \
1291 %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
1292 %{mfp32} %{mfpxx} %{mfp64} %{mnan=*} \
1293 %{modd-spreg} %{mno-odd-spreg} \
1294 %{mshared} %{mno-shared} \
1295 %{msym32} %{mno-sym32} \
1296 %{mtune=*}" \
1297 FP_ASM_SPEC "\
1298 %(subtarget_asm_spec)"
1299 
1300 /* Extra switches sometimes passed to the linker.  */
1301 
1302 #ifndef LINK_SPEC
1303 #define LINK_SPEC "\
1304 %(endian_spec) \
1305 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32*} %{mips64*} \
1306 %{shared}"
1307 #endif  /* LINK_SPEC defined */
1308 
1309 
1310 /* Specs for the compiler proper */
1311 
1312 /* SUBTARGET_CC1_SPEC is passed to the compiler proper.  It may be
1313    overridden by subtargets.  */
1314 #ifndef SUBTARGET_CC1_SPEC
1315 #define SUBTARGET_CC1_SPEC ""
1316 #endif
1317 
1318 /* CC1_SPEC is the set of arguments to pass to the compiler proper.  */
1319 
1320 #undef CC1_SPEC
1321 #define CC1_SPEC "\
1322 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
1323 %(subtarget_cc1_spec)"
1324 
1325 /* Preprocessor specs.  */
1326 
1327 /* SUBTARGET_CPP_SPEC is passed to the preprocessor.  It may be
1328    overridden by subtargets.  */
1329 #ifndef SUBTARGET_CPP_SPEC
1330 #define SUBTARGET_CPP_SPEC ""
1331 #endif
1332 
1333 #define CPP_SPEC "%(subtarget_cpp_spec)"
1334 
1335 /* This macro defines names of additional specifications to put in the specs
1336    that can be used in various specifications like CC1_SPEC.  Its definition
1337    is an initializer with a subgrouping for each command option.
1338 
1339    Each subgrouping contains a string constant, that defines the
1340    specification name, and a string constant that used by the GCC driver
1341    program.
1342 
1343    Do not define this macro if it does not need to do anything.  */
1344 
1345 #define EXTRA_SPECS							\
1346   { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC },				\
1347   { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },				\
1348   { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC },	\
1349   { "subtarget_asm_spec", SUBTARGET_ASM_SPEC },				\
1350   { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT },			\
1351   { "endian_spec", ENDIAN_SPEC },					\
1352   SUBTARGET_EXTRA_SPECS
1353 
1354 #ifndef SUBTARGET_EXTRA_SPECS
1355 #define SUBTARGET_EXTRA_SPECS
1356 #endif
1357 
1358 #define DBX_DEBUGGING_INFO 1		/* generate stabs (OSF/rose) */
1359 #define DWARF2_DEBUGGING_INFO 1         /* dwarf2 debugging info */
1360 
1361 #ifndef PREFERRED_DEBUGGING_TYPE
1362 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1363 #endif
1364 
1365 /* The size of DWARF addresses should be the same as the size of symbols
1366    in the target file format.  They shouldn't depend on things like -msym32,
1367    because many DWARF consumers do not allow the mixture of address sizes
1368    that one would then get from linking -msym32 code with -msym64 code.
1369 
1370    Note that the default POINTER_SIZE test is not appropriate for MIPS.
1371    EABI64 has 64-bit pointers but uses 32-bit ELF.  */
1372 #define DWARF2_ADDR_SIZE (FILE_HAS_64BIT_SYMBOLS ? 8 : 4)
1373 
1374 /* By default, turn on GDB extensions.  */
1375 #define DEFAULT_GDB_EXTENSIONS 1
1376 
1377 /* Registers may have a prefix which can be ignored when matching
1378    user asm and register definitions.  */
1379 #ifndef REGISTER_PREFIX
1380 #define REGISTER_PREFIX    "$"
1381 #endif
1382 
1383 /* Local compiler-generated symbols must have a prefix that the assembler
1384    understands.   By default, this is $, although some targets (e.g.,
1385    NetBSD-ELF) need to override this.  */
1386 
1387 #ifndef LOCAL_LABEL_PREFIX
1388 #define LOCAL_LABEL_PREFIX	"$"
1389 #endif
1390 
1391 /* By default on the mips, external symbols do not have an underscore
1392    prepended, but some targets (e.g., NetBSD) require this.  */
1393 
1394 #ifndef USER_LABEL_PREFIX
1395 #define USER_LABEL_PREFIX	""
1396 #endif
1397 
1398 /* On Sun 4, this limit is 2048.  We use 1500 to be safe,
1399    since the length can run past this up to a continuation point.  */
1400 #undef DBX_CONTIN_LENGTH
1401 #define DBX_CONTIN_LENGTH 1500
1402 
1403 /* How to renumber registers for dbx and gdb.  */
1404 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO]
1405 
1406 /* The mapping from gcc register number to DWARF 2 CFA column number.  */
1407 #define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO]
1408 
1409 /* The DWARF 2 CFA column which tracks the return address.  */
1410 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
1411 
1412 /* Before the prologue, RA lives in r31.  */
1413 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
1414 
1415 /* Describe how we implement __builtin_eh_return.  */
1416 #define EH_RETURN_DATA_REGNO(N) \
1417   ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1418 
1419 #define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1420 
1421 #define EH_USES(N) mips_eh_uses (N)
1422 
1423 /* Offsets recorded in opcodes are a multiple of this alignment factor.
1424    The default for this in 64-bit mode is 8, which causes problems with
1425    SFmode register saves.  */
1426 #define DWARF_CIE_DATA_ALIGNMENT -4
1427 
1428 /* Correct the offset of automatic variables and arguments.  Note that
1429    the MIPS debug format wants all automatic variables and arguments
1430    to be in terms of the virtual frame pointer (stack pointer before
1431    any adjustment in the function), while the MIPS 3.0 linker wants
1432    the frame pointer to be the stack pointer after the initial
1433    adjustment.  */
1434 
1435 #define DEBUGGER_AUTO_OFFSET(X)				\
1436   mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1437 #define DEBUGGER_ARG_OFFSET(OFFSET, X)			\
1438   mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1439 
1440 /* Target machine storage layout */
1441 
1442 #define BITS_BIG_ENDIAN 0
1443 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1444 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1445 
1446 #define MAX_BITS_PER_WORD 64
1447 
1448 /* Width of a word, in units (bytes).  */
1449 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1450 #ifndef IN_LIBGCC2
1451 #define MIN_UNITS_PER_WORD 4
1452 #endif
1453 
1454 /* For MIPS, width of a floating point register.  */
1455 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1456 
1457 /* The number of consecutive floating-point registers needed to store the
1458    largest format supported by the FPU.  */
1459 #define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1460 
1461 /* The number of consecutive floating-point registers needed to store the
1462    smallest format supported by the FPU.  */
1463 #define MIN_FPRS_PER_FMT \
1464   (TARGET_ODD_SPREG ? 1 : MAX_FPRS_PER_FMT)
1465 
1466 /* The largest size of value that can be held in floating-point
1467    registers and moved with a single instruction.  */
1468 #define UNITS_PER_HWFPVALUE \
1469   (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG)
1470 
1471 /* The largest size of value that can be held in floating-point
1472    registers.  */
1473 #define UNITS_PER_FPVALUE			\
1474   (TARGET_SOFT_FLOAT_ABI ? 0			\
1475    : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG	\
1476    : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1477 
1478 /* The number of bytes in a double.  */
1479 #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1480 
1481 /* Set the sizes of the core types.  */
1482 #define SHORT_TYPE_SIZE 16
1483 #define INT_TYPE_SIZE 32
1484 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1485 #define LONG_LONG_TYPE_SIZE 64
1486 
1487 #define FLOAT_TYPE_SIZE 32
1488 #define DOUBLE_TYPE_SIZE 64
1489 #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1490 
1491 /* Define the sizes of fixed-point types.  */
1492 #define SHORT_FRACT_TYPE_SIZE 8
1493 #define FRACT_TYPE_SIZE 16
1494 #define LONG_FRACT_TYPE_SIZE 32
1495 #define LONG_LONG_FRACT_TYPE_SIZE 64
1496 
1497 #define SHORT_ACCUM_TYPE_SIZE 16
1498 #define ACCUM_TYPE_SIZE 32
1499 #define LONG_ACCUM_TYPE_SIZE 64
1500 /* FIXME.  LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC
1501    doesn't support 128-bit integers for MIPS32 currently.  */
1502 #define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
1503 
1504 /* long double is not a fixed mode, but the idea is that, if we
1505    support long double, we also want a 128-bit integer type.  */
1506 #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1507 
1508 /* Width in bits of a pointer.  */
1509 #ifndef POINTER_SIZE
1510 #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1511 #endif
1512 
1513 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
1514 #define PARM_BOUNDARY BITS_PER_WORD
1515 
1516 /* Allocation boundary (in *bits*) for the code of a function.  */
1517 #define FUNCTION_BOUNDARY 32
1518 
1519 /* Alignment of field after `int : 0' in a structure.  */
1520 #define EMPTY_FIELD_BOUNDARY 32
1521 
1522 /* Every structure's size must be a multiple of this.  */
1523 /* 8 is observed right on a DECstation and on riscos 4.02.  */
1524 #define STRUCTURE_SIZE_BOUNDARY 8
1525 
1526 /* There is no point aligning anything to a rounder boundary than this.  */
1527 #define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
1528 
1529 /* All accesses must be aligned.  */
1530 #define STRICT_ALIGNMENT 1
1531 
1532 /* Define this if you wish to imitate the way many other C compilers
1533    handle alignment of bitfields and the structures that contain
1534    them.
1535 
1536    The behavior is that the type written for a bit-field (`int',
1537    `short', or other integer type) imposes an alignment for the
1538    entire structure, as if the structure really did contain an
1539    ordinary field of that type.  In addition, the bit-field is placed
1540    within the structure so that it would fit within such a field,
1541    not crossing a boundary for it.
1542 
1543    Thus, on most machines, a bit-field whose type is written as `int'
1544    would not cross a four-byte boundary, and would force four-byte
1545    alignment for the whole structure.  (The alignment used may not
1546    be four bytes; it is controlled by the other alignment
1547    parameters.)
1548 
1549    If the macro is defined, its definition should be a C expression;
1550    a nonzero value for the expression enables this behavior.  */
1551 
1552 #define PCC_BITFIELD_TYPE_MATTERS 1
1553 
1554 /* If defined, a C expression to compute the alignment given to a
1555    constant that is being placed in memory.  CONSTANT is the constant
1556    and ALIGN is the alignment that the object would ordinarily have.
1557    The value of this macro is used instead of that alignment to align
1558    the object.
1559 
1560    If this macro is not defined, then ALIGN is used.
1561 
1562    The typical use of this macro is to increase alignment for string
1563    constants to be word aligned so that `strcpy' calls that copy
1564    constants can be done inline.  */
1565 
1566 #define CONSTANT_ALIGNMENT(EXP, ALIGN)					\
1567   ((TREE_CODE (EXP) == STRING_CST  || TREE_CODE (EXP) == CONSTRUCTOR)	\
1568    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1569 
1570 /* If defined, a C expression to compute the alignment for a static
1571    variable.  TYPE is the data type, and ALIGN is the alignment that
1572    the object would ordinarily have.  The value of this macro is used
1573    instead of that alignment to align the object.
1574 
1575    If this macro is not defined, then ALIGN is used.
1576 
1577    One use of this macro is to increase alignment of medium-size
1578    data to make it all fit in fewer cache lines.  Another is to
1579    cause character arrays to be word-aligned so that `strcpy' calls
1580    that copy constants to character arrays can be done inline.  */
1581 
1582 #undef DATA_ALIGNMENT
1583 #define DATA_ALIGNMENT(TYPE, ALIGN)					\
1584   ((((ALIGN) < BITS_PER_WORD)						\
1585     && (TREE_CODE (TYPE) == ARRAY_TYPE					\
1586 	|| TREE_CODE (TYPE) == UNION_TYPE				\
1587 	|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1588 
1589 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
1590    character arrays to be word-aligned so that `strcpy' calls that copy
1591    constants to character arrays can be done inline, and 'strcmp' can be
1592    optimised to use word loads. */
1593 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
1594   DATA_ALIGNMENT (TYPE, ALIGN)
1595 
1596 #define PAD_VARARGS_DOWN \
1597   (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1598 
1599 /* Define if operations between registers always perform the operation
1600    on the full register even if a narrower mode is specified.  */
1601 #define WORD_REGISTER_OPERATIONS
1602 
1603 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
1604    moves.  All other references are zero extended.  */
1605 #define LOAD_EXTEND_OP(MODE) \
1606   (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1607    ? SIGN_EXTEND : ZERO_EXTEND)
1608 
1609 /* Define this macro if it is advisable to hold scalars in registers
1610    in a wider mode than that declared by the program.  In such cases,
1611    the value is constrained to be within the bounds of the declared
1612    type, but kept valid in the wider mode.  The signedness of the
1613    extension may differ from that of the type.  */
1614 
1615 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
1616   if (GET_MODE_CLASS (MODE) == MODE_INT		\
1617       && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1618     {                                           \
1619       if ((MODE) == SImode)                     \
1620         (UNSIGNEDP) = 0;                        \
1621       (MODE) = Pmode;                           \
1622     }
1623 
1624 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
1625    Extensions of pointers to word_mode must be signed.  */
1626 #define POINTERS_EXTEND_UNSIGNED false
1627 
1628 /* Define if loading short immediate values into registers sign extends.  */
1629 #define SHORT_IMMEDIATES_SIGN_EXTEND
1630 
1631 /* The [d]clz instructions have the natural values at 0.  */
1632 
1633 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1634   ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1635 
1636 /* Standard register usage.  */
1637 
1638 /* Number of hardware registers.  We have:
1639 
1640    - 32 integer registers
1641    - 32 floating point registers
1642    - 8 condition code registers
1643    - 2 accumulator registers (hi and lo)
1644    - 32 registers each for coprocessors 0, 2 and 3
1645    - 4 fake registers:
1646 	- ARG_POINTER_REGNUM
1647 	- FRAME_POINTER_REGNUM
1648 	- GOT_VERSION_REGNUM (see the comment above load_call<mode> for details)
1649 	- CPRESTORE_SLOT_REGNUM
1650    - 2 dummy entries that were used at various times in the past.
1651    - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1652    - 6 DSP control registers  */
1653 
1654 #define FIRST_PSEUDO_REGISTER 188
1655 
1656 /* By default, fix the kernel registers ($26 and $27), the global
1657    pointer ($28) and the stack pointer ($29).  This can change
1658    depending on the command-line options.
1659 
1660    Regarding coprocessor registers: without evidence to the contrary,
1661    it's best to assume that each coprocessor register has a unique
1662    use.  This can be overridden, in, e.g., mips_option_override or
1663    TARGET_CONDITIONAL_REGISTER_USAGE should the assumption be
1664    inappropriate for a particular target.  */
1665 
1666 #define FIXED_REGISTERS							\
1667 {									\
1668   1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1669   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0,			\
1670   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1671   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1672   0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,			\
1673   /* COP0 registers */							\
1674   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1675   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1676   /* COP2 registers */							\
1677   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1678   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1679   /* COP3 registers */							\
1680   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1681   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1682   /* 6 DSP accumulator registers & 6 control registers */		\
1683   0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1					\
1684 }
1685 
1686 
1687 /* Set up this array for o32 by default.
1688 
1689    Note that we don't mark $31 as a call-clobbered register.  The idea is
1690    that it's really the call instructions themselves which clobber $31.
1691    We don't care what the called function does with it afterwards.
1692 
1693    This approach makes it easier to implement sibcalls.  Unlike normal
1694    calls, sibcalls don't clobber $31, so the register reaches the
1695    called function in tact.  EPILOGUE_USES says that $31 is useful
1696    to the called function.  */
1697 
1698 #define CALL_USED_REGISTERS						\
1699 {									\
1700   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1701   0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0,			\
1702   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1703   1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1704   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1705   /* COP0 registers */							\
1706   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1707   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1708   /* COP2 registers */							\
1709   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1710   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1711   /* COP3 registers */							\
1712   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1713   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1714   /* 6 DSP accumulator registers & 6 control registers */		\
1715   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1					\
1716 }
1717 
1718 
1719 /* Define this since $28, though fixed, is call-saved in many ABIs.  */
1720 
1721 #define CALL_REALLY_USED_REGISTERS                                      \
1722 { /* General registers.  */                                             \
1723   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1724   0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,                       \
1725   /* Floating-point registers.  */                                      \
1726   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1727   1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1728   /* Others.  */                                                        \
1729   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,			\
1730   /* COP0 registers */							\
1731   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1732   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1733   /* COP2 registers */							\
1734   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1735   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1736   /* COP3 registers */							\
1737   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1738   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1739   /* 6 DSP accumulator registers & 6 control registers */		\
1740   1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0					\
1741 }
1742 
1743 /* Internal macros to classify a register number as to whether it's a
1744    general purpose register, a floating point register, a
1745    multiply/divide register, or a status register.  */
1746 
1747 #define GP_REG_FIRST 0
1748 #define GP_REG_LAST  31
1749 #define GP_REG_NUM   (GP_REG_LAST - GP_REG_FIRST + 1)
1750 #define GP_DBX_FIRST 0
1751 #define K0_REG_NUM   (GP_REG_FIRST + 26)
1752 #define K1_REG_NUM   (GP_REG_FIRST + 27)
1753 #define KERNEL_REG_P(REGNO)	(IN_RANGE (REGNO, K0_REG_NUM, K1_REG_NUM))
1754 
1755 #define FP_REG_FIRST 32
1756 #define FP_REG_LAST  63
1757 #define FP_REG_NUM   (FP_REG_LAST - FP_REG_FIRST + 1)
1758 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1759 
1760 #define MD_REG_FIRST 64
1761 #define MD_REG_LAST  65
1762 #define MD_REG_NUM   (MD_REG_LAST - MD_REG_FIRST + 1)
1763 #define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1764 
1765 /* The DWARF 2 CFA column which tracks the return address from a
1766    signal handler context.  This means that to maintain backwards
1767    compatibility, no hard register can be assigned this column if it
1768    would need to be handled by the DWARF unwinder.  */
1769 #define DWARF_ALT_FRAME_RETURN_COLUMN 66
1770 
1771 #define ST_REG_FIRST 67
1772 #define ST_REG_LAST  74
1773 #define ST_REG_NUM   (ST_REG_LAST - ST_REG_FIRST + 1)
1774 
1775 
1776 /* FIXME: renumber.  */
1777 #define COP0_REG_FIRST 80
1778 #define COP0_REG_LAST 111
1779 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1780 
1781 #define COP0_STATUS_REG_NUM	(COP0_REG_FIRST + 12)
1782 #define COP0_CAUSE_REG_NUM	(COP0_REG_FIRST + 13)
1783 #define COP0_EPC_REG_NUM	(COP0_REG_FIRST + 14)
1784 
1785 #define COP2_REG_FIRST 112
1786 #define COP2_REG_LAST 143
1787 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1788 
1789 #define COP3_REG_FIRST 144
1790 #define COP3_REG_LAST 175
1791 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1792 
1793 /* These definitions assume that COP0, 2 and 3 are numbered consecutively.  */
1794 #define ALL_COP_REG_FIRST COP0_REG_FIRST
1795 #define ALL_COP_REG_LAST COP3_REG_LAST
1796 #define ALL_COP_REG_NUM (ALL_COP_REG_LAST - ALL_COP_REG_FIRST + 1)
1797 
1798 #define DSP_ACC_REG_FIRST 176
1799 #define DSP_ACC_REG_LAST 181
1800 #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1801 
1802 #define AT_REGNUM	(GP_REG_FIRST + 1)
1803 #define HI_REGNUM	(TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1)
1804 #define LO_REGNUM	(TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST)
1805 
1806 /* A few bitfield locations for the coprocessor registers.  */
1807 /* Request Interrupt Priority Level is from bit 10 to bit 15 of
1808    the cause register for the EIC interrupt mode.  */
1809 #define CAUSE_IPL	10
1810 /* Interrupt Priority Level is from bit 10 to bit 15 of the status register.  */
1811 #define SR_IPL		10
1812 /* Exception Level is at bit 1 of the status register.  */
1813 #define SR_EXL		1
1814 /* Interrupt Enable is at bit 0 of the status register.  */
1815 #define SR_IE		0
1816 
1817 /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1818    If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1819    should be used instead.  */
1820 #define FPSW_REGNUM	ST_REG_FIRST
1821 
1822 #define GP_REG_P(REGNO)	\
1823   ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1824 #define M16_REG_P(REGNO) \
1825   (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1826 #define M16STORE_REG_P(REGNO) \
1827   (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 0 || (REGNO) == 17)
1828 #define FP_REG_P(REGNO)  \
1829   ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1830 #define MD_REG_P(REGNO) \
1831   ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1832 #define ST_REG_P(REGNO) \
1833   ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1834 #define COP0_REG_P(REGNO) \
1835   ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1836 #define COP2_REG_P(REGNO) \
1837   ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1838 #define COP3_REG_P(REGNO) \
1839   ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1840 #define ALL_COP_REG_P(REGNO) \
1841   ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1842 /* Test if REGNO is one of the 6 new DSP accumulators.  */
1843 #define DSP_ACC_REG_P(REGNO) \
1844   ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1845 /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators.  */
1846 #define ACC_REG_P(REGNO) \
1847   (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1848 
1849 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1850 
1851 /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)).  This is used
1852    to initialize the mips16 gp pseudo register.  */
1853 #define CONST_GP_P(X)				\
1854   (GET_CODE (X) == CONST			\
1855    && GET_CODE (XEXP (X, 0)) == UNSPEC		\
1856    && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1857 
1858 /* Return coprocessor number from register number.  */
1859 
1860 #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) 				\
1861   (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2'			\
1862    : COP3_REG_P (REGNO) ? '3' : '?')
1863 
1864 
1865 #define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1866 
1867 #define HARD_REGNO_MODE_OK(REGNO, MODE)					\
1868   mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1869 
1870 /* Select a register mode required for caller save of hard regno REGNO.  */
1871 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1872   mips_hard_regno_caller_save_mode (REGNO, NREGS, MODE)
1873 
1874 /* Odd-numbered single-precision registers are not considered callee-saved
1875    for o32 FPXX as they will be clobbered when run on an FR=1 FPU.  */
1876 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE)			\
1877   (TARGET_FLOATXX && hard_regno_nregs[REGNO][MODE] == 1			\
1878    && FP_REG_P (REGNO) && ((REGNO) & 1))
1879 
1880 #define MODES_TIEABLE_P mips_modes_tieable_p
1881 
1882 /* Register to use for pushing function arguments.  */
1883 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1884 
1885 /* These two registers don't really exist: they get eliminated to either
1886    the stack or hard frame pointer.  */
1887 #define ARG_POINTER_REGNUM 77
1888 #define FRAME_POINTER_REGNUM 78
1889 
1890 /* $30 is not available on the mips16, so we use $17 as the frame
1891    pointer.  */
1892 #define HARD_FRAME_POINTER_REGNUM \
1893   (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1894 
1895 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
1896 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
1897 
1898 /* Register in which static-chain is passed to a function.  */
1899 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 15)
1900 
1901 /* Registers used as temporaries in prologue/epilogue code:
1902 
1903    - If a MIPS16 PIC function needs access to _gp, it first loads
1904      the value into MIPS16_PIC_TEMP and then copies it to $gp.
1905 
1906    - The prologue can use MIPS_PROLOGUE_TEMP as a general temporary
1907      register.  The register must not conflict with MIPS16_PIC_TEMP.
1908 
1909    - If we aren't generating MIPS16 code, the prologue can also use
1910      MIPS_PROLOGUE_TEMP2 as a general temporary register.
1911 
1912    - The epilogue can use MIPS_EPILOGUE_TEMP as a general temporary
1913      register.
1914 
1915    If we're generating MIPS16 code, these registers must come from the
1916    core set of 8.  The prologue registers mustn't conflict with any
1917    incoming arguments, the static chain pointer, or the frame pointer.
1918    The epilogue temporary mustn't conflict with the return registers,
1919    the PIC call register ($25), the frame pointer, the EH stack adjustment,
1920    or the EH data registers.
1921 
1922    If we're generating interrupt handlers, we use K0 as a temporary register
1923    in prologue/epilogue code.  */
1924 
1925 #define MIPS16_PIC_TEMP_REGNUM (GP_REG_FIRST + 2)
1926 #define MIPS_PROLOGUE_TEMP_REGNUM \
1927   (cfun->machine->interrupt_handler_p ? K0_REG_NUM : GP_REG_FIRST + 3)
1928 #define MIPS_PROLOGUE_TEMP2_REGNUM \
1929   (TARGET_MIPS16 \
1930    ? (gcc_unreachable (), INVALID_REGNUM) \
1931    : cfun->machine->interrupt_handler_p ? K1_REG_NUM : GP_REG_FIRST + 12)
1932 #define MIPS_EPILOGUE_TEMP_REGNUM		\
1933   (cfun->machine->interrupt_handler_p		\
1934    ? K0_REG_NUM					\
1935    : GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1936 
1937 #define MIPS16_PIC_TEMP gen_rtx_REG (Pmode, MIPS16_PIC_TEMP_REGNUM)
1938 #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1939 #define MIPS_PROLOGUE_TEMP2(MODE) \
1940   gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP2_REGNUM)
1941 #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
1942 
1943 /* Define this macro if it is as good or better to call a constant
1944    function address than to call an address kept in a register.  */
1945 #define NO_FUNCTION_CSE 1
1946 
1947 /* The ABI-defined global pointer.  Sometimes we use a different
1948    register in leaf functions: see PIC_OFFSET_TABLE_REGNUM.  */
1949 #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1950 
1951 /* We normally use $28 as the global pointer.  However, when generating
1952    n32/64 PIC, it is better for leaf functions to use a call-clobbered
1953    register instead.  They can then avoid saving and restoring $28
1954    and perhaps avoid using a frame at all.
1955 
1956    When a leaf function uses something other than $28, mips_expand_prologue
1957    will modify pic_offset_table_rtx in place.  Take the register number
1958    from there after reload.  */
1959 #define PIC_OFFSET_TABLE_REGNUM \
1960   (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
1961 
1962 /* Define the classes of registers for register constraints in the
1963    machine description.  Also define ranges of constants.
1964 
1965    One of the classes must always be named ALL_REGS and include all hard regs.
1966    If there is more than one class, another class must be named NO_REGS
1967    and contain no registers.
1968 
1969    The name GENERAL_REGS must be the name of a class (or an alias for
1970    another name such as ALL_REGS).  This is the class of registers
1971    that is allowed by "g" or "r" in a register constraint.
1972    Also, registers outside this class are allocated only when
1973    instructions express preferences for them.
1974 
1975    The classes must be numbered in nondecreasing order; that is,
1976    a larger-numbered class must never be contained completely
1977    in a smaller-numbered class.
1978 
1979    For any two classes, it is very desirable that there be another
1980    class that represents their union.  */
1981 
1982 enum reg_class
1983 {
1984   NO_REGS,			/* no registers in set */
1985   M16_STORE_REGS,		/* microMIPS store registers  */
1986   M16_REGS,			/* mips16 directly accessible registers */
1987   M16_SP_REGS,			/* mips16 + $sp */
1988   T_REG,			/* mips16 T register ($24) */
1989   M16_T_REGS,			/* mips16 registers plus T register */
1990   PIC_FN_ADDR_REG,		/* SVR4 PIC function address register */
1991   V1_REG,			/* Register $v1 ($3) used for TLS access.  */
1992   SPILL_REGS,			/* All but $sp and call preserved regs are in here */
1993   LEA_REGS,			/* Every GPR except $25 */
1994   GR_REGS,			/* integer registers */
1995   FP_REGS,			/* floating point registers */
1996   MD0_REG,			/* first multiply/divide register */
1997   MD1_REG,			/* second multiply/divide register */
1998   MD_REGS,			/* multiply/divide registers (hi/lo) */
1999   COP0_REGS,			/* generic coprocessor classes */
2000   COP2_REGS,
2001   COP3_REGS,
2002   ST_REGS,			/* status registers (fp status) */
2003   DSP_ACC_REGS,			/* DSP accumulator registers */
2004   ACC_REGS,			/* Hi/Lo and DSP accumulator registers */
2005   FRAME_REGS,			/* $arg and $frame */
2006   GR_AND_MD0_REGS,		/* union classes */
2007   GR_AND_MD1_REGS,
2008   GR_AND_MD_REGS,
2009   GR_AND_ACC_REGS,
2010   ALL_REGS,			/* all registers */
2011   LIM_REG_CLASSES		/* max value + 1 */
2012 };
2013 
2014 #define N_REG_CLASSES (int) LIM_REG_CLASSES
2015 
2016 #define GENERAL_REGS GR_REGS
2017 
2018 /* An initializer containing the names of the register classes as C
2019    string constants.  These names are used in writing some of the
2020    debugging dumps.  */
2021 
2022 #define REG_CLASS_NAMES							\
2023 {									\
2024   "NO_REGS",								\
2025   "M16_STORE_REGS",							\
2026   "M16_REGS",								\
2027   "M16_SP_REGS",								\
2028   "T_REG",								\
2029   "M16_T_REGS",								\
2030   "PIC_FN_ADDR_REG",							\
2031   "V1_REG",								\
2032   "SPILL_REGS",								\
2033   "LEA_REGS",								\
2034   "GR_REGS",								\
2035   "FP_REGS",								\
2036   "MD0_REG",								\
2037   "MD1_REG",								\
2038   "MD_REGS",								\
2039   /* coprocessor registers */						\
2040   "COP0_REGS",								\
2041   "COP2_REGS",								\
2042   "COP3_REGS",								\
2043   "ST_REGS",								\
2044   "DSP_ACC_REGS",							\
2045   "ACC_REGS",								\
2046   "FRAME_REGS",								\
2047   "GR_AND_MD0_REGS",							\
2048   "GR_AND_MD1_REGS",							\
2049   "GR_AND_MD_REGS",							\
2050   "GR_AND_ACC_REGS",							\
2051   "ALL_REGS"								\
2052 }
2053 
2054 /* An initializer containing the contents of the register classes,
2055    as integers which are bit masks.  The Nth integer specifies the
2056    contents of class N.  The way the integer MASK is interpreted is
2057    that register R is in the class if `MASK & (1 << R)' is 1.
2058 
2059    When the machine has more than 32 registers, an integer does not
2060    suffice.  Then the integers are replaced by sub-initializers,
2061    braced groupings containing several integers.  Each
2062    sub-initializer must be suitable as an initializer for the type
2063    `HARD_REG_SET' which is defined in `hard-reg-set.h'.  */
2064 
2065 #define REG_CLASS_CONTENTS						                                \
2066 {									                                \
2067   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* NO_REGS */		\
2068   { 0x000200fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* M16_STORE_REGS */	\
2069   { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* M16_REGS */		\
2070   { 0x200300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* M16_SP_REGS */		\
2071   { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* T_REG */		\
2072   { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* M16_T_REGS */	\
2073   { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* PIC_FN_ADDR_REG */	\
2074   { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* V1_REG */		\
2075   { 0x0303fffc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* SPILL_REGS */      	\
2076   { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* LEA_REGS */		\
2077   { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* GR_REGS */		\
2078   { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* FP_REGS */		\
2079   { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },	/* MD0_REG */		\
2080   { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 },	/* MD1_REG */		\
2081   { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 },	/* MD_REGS */		\
2082   { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 },   /* COP0_REGS */		\
2083   { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 },   /* COP2_REGS */		\
2084   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff },   /* COP3_REGS */		\
2085   { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 },	/* ST_REGS */		\
2086   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 },	/* DSP_ACC_REGS */	\
2087   { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 },	/* ACC_REGS */		\
2088   { 0x00000000, 0x00000000, 0x00006000, 0x00000000, 0x00000000, 0x00000000 },	/* FRAME_REGS */	\
2089   { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },	/* GR_AND_MD0_REGS */	\
2090   { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 },	/* GR_AND_MD1_REGS */	\
2091   { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 },	/* GR_AND_MD_REGS */	\
2092   { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 },	/* GR_AND_ACC_REGS */	\
2093   { 0xffffffff, 0xffffffff, 0xffff67ff, 0xffffffff, 0xffffffff, 0x0fffffff }	/* ALL_REGS */		\
2094 }
2095 
2096 
2097 /* A C expression whose value is a register class containing hard
2098    register REGNO.  In general there is more that one such class;
2099    choose a class which is "minimal", meaning that no smaller class
2100    also contains the register.  */
2101 
2102 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
2103 
2104 /* A macro whose definition is the name of the class to which a
2105    valid base register must belong.  A base register is one used in
2106    an address which is the register value plus a displacement.  */
2107 
2108 #define BASE_REG_CLASS  (TARGET_MIPS16 ? M16_SP_REGS : GR_REGS)
2109 
2110 /* A macro whose definition is the name of the class to which a
2111    valid index register must belong.  An index register is one used
2112    in an address where its value is either multiplied by a scale
2113    factor or added to another register (as well as added to a
2114    displacement).  */
2115 
2116 #define INDEX_REG_CLASS NO_REGS
2117 
2118 /* We generally want to put call-clobbered registers ahead of
2119    call-saved ones.  (IRA expects this.)  */
2120 
2121 #define REG_ALLOC_ORDER							\
2122 { /* Accumulator registers.  When GPRs and accumulators have equal	\
2123      cost, we generally prefer to use accumulators.  For example,	\
2124      a division of multiplication result is better allocated to LO,	\
2125      so that we put the MFLO at the point of use instead of at the	\
2126      point of definition.  It's also needed if we're to take advantage	\
2127      of the extra accumulators available with -mdspr2.  In some cases,	\
2128      it can also help to reduce register pressure.  */			\
2129   64, 65,176,177,178,179,180,181,					\
2130   /* Call-clobbered GPRs.  */						\
2131   1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,		\
2132   24, 25, 31,								\
2133   /* The global pointer.  This is call-clobbered for o32 and o64	\
2134      abicalls, call-saved for n32 and n64 abicalls, and a program	\
2135      invariant otherwise.  Putting it between the call-clobbered	\
2136      and call-saved registers should cope with all eventualities.  */	\
2137   28,									\
2138   /* Call-saved GPRs.  */						\
2139   16, 17, 18, 19, 20, 21, 22, 23, 30,					\
2140   /* GPRs that can never be exposed to the register allocator.  */	\
2141   0,  26, 27, 29,							\
2142   /* Call-clobbered FPRs.  */						\
2143   32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,	\
2144   48, 49, 50, 51,							\
2145   /* FPRs that are usually call-saved.  The odd ones are actually	\
2146      call-clobbered for n32, but listing them ahead of the even		\
2147      registers might encourage the register allocator to fragment	\
2148      the available FPR pairs.  We need paired FPRs to store long	\
2149      doubles, so it isn't clear that using a different order		\
2150      for n32 would be a win.  */					\
2151   52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,			\
2152   /* None of the remaining classes have defined call-saved		\
2153      registers.  */							\
2154   66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,		\
2155   80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,	\
2156   96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111,	\
2157   112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,	\
2158   128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,	\
2159   144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,	\
2160   160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,	\
2161   182,183,184,185,186,187						\
2162 }
2163 
2164 /* True if VALUE is an unsigned 6-bit number.  */
2165 
2166 #define UIMM6_OPERAND(VALUE) \
2167   (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
2168 
2169 /* True if VALUE is a signed 10-bit number.  */
2170 
2171 #define IMM10_OPERAND(VALUE) \
2172   ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
2173 
2174 /* True if VALUE is a signed 16-bit number.  */
2175 
2176 #define SMALL_OPERAND(VALUE) \
2177   ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
2178 
2179 /* True if VALUE is an unsigned 16-bit number.  */
2180 
2181 #define SMALL_OPERAND_UNSIGNED(VALUE) \
2182   (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
2183 
2184 /* True if VALUE can be loaded into a register using LUI.  */
2185 
2186 #define LUI_OPERAND(VALUE)					\
2187   (((VALUE) | 0x7fff0000) == 0x7fff0000				\
2188    || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
2189 
2190 /* Return a value X with the low 16 bits clear, and such that
2191    VALUE - X is a signed 16-bit value.  */
2192 
2193 #define CONST_HIGH_PART(VALUE) \
2194   (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
2195 
2196 #define CONST_LOW_PART(VALUE) \
2197   ((VALUE) - CONST_HIGH_PART (VALUE))
2198 
2199 #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
2200 #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
2201 #define LUI_INT(X) LUI_OPERAND (INTVAL (X))
2202 #define UMIPS_12BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -2048, 2047))
2203 #define MIPS_9BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -256, 255))
2204 
2205 /* The HI and LO registers can only be reloaded via the general
2206    registers.  Condition code registers can only be loaded to the
2207    general registers, and from the floating point registers.  */
2208 
2209 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)			\
2210   mips_secondary_reload_class (CLASS, MODE, X, true)
2211 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)			\
2212   mips_secondary_reload_class (CLASS, MODE, X, false)
2213 
2214 /* When targeting the o32 FPXX ABI, all moves with a length of doubleword
2215    or greater must be performed by FR-mode-aware instructions.
2216    This can be achieved using MFHC1/MTHC1 when these instructions are
2217    available but otherwise moves must go via memory.
2218    For the o32 FP64A ABI, all odd-numbered moves with a length of
2219    doubleword or greater are required to use memory.  Using MTC1/MFC1
2220    to access the lower-half of these registers would require a forbidden
2221    single-precision access.  We require all double-word moves to use
2222    memory because adding even and odd floating-point registers classes
2223    would have a significant impact on the backend.  */
2224 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE)			\
2225   mips_secondary_memory_needed ((CLASS1), (CLASS2), (MODE))
2226 
2227 /* Return the maximum number of consecutive registers
2228    needed to represent mode MODE in a register of class CLASS.  */
2229 
2230 #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
2231 
2232 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
2233   mips_cannot_change_mode_class (FROM, TO, CLASS)
2234 
2235 /* Stack layout; function entry, exit and calling.  */
2236 
2237 #define STACK_GROWS_DOWNWARD
2238 
2239 #define FRAME_GROWS_DOWNWARD flag_stack_protect
2240 
2241 /* Size of the area allocated in the frame to save the GP.  */
2242 
2243 #define MIPS_GP_SAVE_AREA_SIZE \
2244   (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0)
2245 
2246 /* The offset of the first local variable from the frame pointer.  See
2247    mips_compute_frame_info for details about the frame layout.  */
2248 
2249 #define STARTING_FRAME_OFFSET				\
2250   (FRAME_GROWS_DOWNWARD					\
2251    ? 0							\
2252    : crtl->outgoing_args_size + MIPS_GP_SAVE_AREA_SIZE)
2253 
2254 #define RETURN_ADDR_RTX mips_return_addr
2255 
2256 /* Mask off the MIPS16 ISA bit in unwind addresses.
2257 
2258    The reason for this is a little subtle.  When unwinding a call,
2259    we are given the call's return address, which on most targets
2260    is the address of the following instruction.  However, what we
2261    actually want to find is the EH region for the call itself.
2262    The target-independent unwind code therefore searches for "RA - 1".
2263 
2264    In the MIPS16 case, RA is always an odd-valued (ISA-encoded) address.
2265    RA - 1 is therefore the real (even-valued) start of the return
2266    instruction.  EH region labels are usually odd-valued MIPS16 symbols
2267    too, so a search for an even address within a MIPS16 region would
2268    usually work.
2269 
2270    However, there is an exception.  If the end of an EH region is also
2271    the end of a function, the end label is allowed to be even.  This is
2272    necessary because a following non-MIPS16 function may also need EH
2273    information for its first instruction.
2274 
2275    Thus a MIPS16 region may be terminated by an ISA-encoded or a
2276    non-ISA-encoded address.  This probably isn't ideal, but it is
2277    the traditional (legacy) behavior.  It is therefore only safe
2278    to search MIPS EH regions for an _odd-valued_ address.
2279 
2280    Masking off the ISA bit means that the target-independent code
2281    will search for "(RA & -2) - 1", which is guaranteed to be odd.  */
2282 #define MASK_RETURN_ADDR GEN_INT (-2)
2283 
2284 
2285 /* Similarly, don't use the least-significant bit to tell pointers to
2286    code from vtable index.  */
2287 
2288 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
2289 
2290 /* The eliminations to $17 are only used for mips16 code.  See the
2291    definition of HARD_FRAME_POINTER_REGNUM.  */
2292 
2293 #define ELIMINABLE_REGS							\
2294 {{ ARG_POINTER_REGNUM,   STACK_POINTER_REGNUM},				\
2295  { ARG_POINTER_REGNUM,   GP_REG_FIRST + 30},				\
2296  { ARG_POINTER_REGNUM,   GP_REG_FIRST + 17},				\
2297  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},				\
2298  { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30},				\
2299  { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
2300 
2301 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2302   (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
2303 
2304 /* Allocate stack space for arguments at the beginning of each function.  */
2305 #define ACCUMULATE_OUTGOING_ARGS 1
2306 
2307 /* The argument pointer always points to the first argument.  */
2308 #define FIRST_PARM_OFFSET(FNDECL) 0
2309 
2310 /* o32 and o64 reserve stack space for all argument registers.  */
2311 #define REG_PARM_STACK_SPACE(FNDECL) 			\
2312   (TARGET_OLDABI					\
2313    ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD)		\
2314    : 0)
2315 
2316 /* Define this if it is the responsibility of the caller to
2317    allocate the area reserved for arguments passed in registers.
2318    If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
2319    of this macro is to determine whether the space is included in
2320    `crtl->outgoing_args_size'.  */
2321 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
2322 
2323 #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
2324 
2325 /* Symbolic macros for the registers used to return integer and floating
2326    point values.  */
2327 
2328 #define GP_RETURN (GP_REG_FIRST + 2)
2329 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2330 
2331 #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
2332 
2333 /* Symbolic macros for the first/last argument registers.  */
2334 
2335 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
2336 #define GP_ARG_LAST  (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2337 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
2338 #define FP_ARG_LAST  (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2339 
2340 /* Temporary register that is used when restoring $gp after a call.  $4 and $5
2341    are used for returning complex double values in soft-float code, so $6 is the
2342    first suitable candidate for TARGET_MIPS16.  For !TARGET_MIPS16 we can use
2343    $gp itself as the temporary.  */
2344 #define POST_CALL_TMP_REG \
2345   (TARGET_MIPS16 ? GP_ARG_FIRST + 2 : PIC_OFFSET_TABLE_REGNUM)
2346 
2347 /* 1 if N is a possible register number for function argument passing.
2348    We have no FP argument registers when soft-float.  Special handling
2349    is required for O32 where only even numbered registers are used for
2350    O32-FPXX and O32-FP64.  */
2351 
2352 #define FUNCTION_ARG_REGNO_P(N)					\
2353   ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST)			\
2354     || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST) 		\
2355         && (mips_abi != ABI_32 					\
2356             || TARGET_FLOAT32 					\
2357             || ((N) % 2 == 0))))				\
2358    && !fixed_regs[N])
2359 
2360 /* This structure has to cope with two different argument allocation
2361    schemes.  Most MIPS ABIs view the arguments as a structure, of which
2362    the first N words go in registers and the rest go on the stack.  If I
2363    < N, the Ith word might go in Ith integer argument register or in a
2364    floating-point register.  For these ABIs, we only need to remember
2365    the offset of the current argument into the structure.
2366 
2367    The EABI instead allocates the integer and floating-point arguments
2368    separately.  The first N words of FP arguments go in FP registers,
2369    the rest go on the stack.  Likewise, the first N words of the other
2370    arguments go in integer registers, and the rest go on the stack.  We
2371    need to maintain three counts: the number of integer registers used,
2372    the number of floating-point registers used, and the number of words
2373    passed on the stack.
2374 
2375    We could keep separate information for the two ABIs (a word count for
2376    the standard ABIs, and three separate counts for the EABI).  But it
2377    seems simpler to view the standard ABIs as forms of EABI that do not
2378    allocate floating-point registers.
2379 
2380    So for the standard ABIs, the first N words are allocated to integer
2381    registers, and mips_function_arg decides on an argument-by-argument
2382    basis whether that argument should really go in an integer register,
2383    or in a floating-point one.  */
2384 
2385 typedef struct mips_args {
2386   /* Always true for varargs functions.  Otherwise true if at least
2387      one argument has been passed in an integer register.  */
2388   int gp_reg_found;
2389 
2390   /* The number of arguments seen so far.  */
2391   unsigned int arg_number;
2392 
2393   /* The number of integer registers used so far.  For all ABIs except
2394      EABI, this is the number of words that have been added to the
2395      argument structure, limited to MAX_ARGS_IN_REGISTERS.  */
2396   unsigned int num_gprs;
2397 
2398   /* For EABI, the number of floating-point registers used so far.  */
2399   unsigned int num_fprs;
2400 
2401   /* The number of words passed on the stack.  */
2402   unsigned int stack_words;
2403 
2404   /* On the mips16, we need to keep track of which floating point
2405      arguments were passed in general registers, but would have been
2406      passed in the FP regs if this were a 32-bit function, so that we
2407      can move them to the FP regs if we wind up calling a 32-bit
2408      function.  We record this information in fp_code, encoded in base
2409      four.  A zero digit means no floating point argument, a one digit
2410      means an SFmode argument, and a two digit means a DFmode argument,
2411      and a three digit is not used.  The low order digit is the first
2412      argument.  Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2413      an SFmode argument.  ??? A more sophisticated approach will be
2414      needed if MIPS_ABI != ABI_32.  */
2415   int fp_code;
2416 
2417   /* True if the function has a prototype.  */
2418   int prototype;
2419 } CUMULATIVE_ARGS;
2420 
2421 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2422    for a call to a function whose data type is FNTYPE.
2423    For a library call, FNTYPE is 0.  */
2424 
2425 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
2426   mips_init_cumulative_args (&CUM, FNTYPE)
2427 
2428 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
2429   (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
2430 
2431 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
2432   (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
2433 
2434 /* True if using EABI and varargs can be passed in floating-point
2435    registers.  Under these conditions, we need a more complex form
2436    of va_list, which tracks GPR, FPR and stack arguments separately.  */
2437 #define EABI_FLOAT_VARARGS_P \
2438 	(mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2439 
2440 
2441 #define EPILOGUE_USES(REGNO)	mips_epilogue_uses (REGNO)
2442 
2443 /* Treat LOC as a byte offset from the stack pointer and round it up
2444    to the next fully-aligned offset.  */
2445 #define MIPS_STACK_ALIGN(LOC) \
2446   (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
2447 
2448 
2449 /* Output assembler code to FILE to increment profiler label # LABELNO
2450    for profiling a function entry.  */
2451 
2452 #define FUNCTION_PROFILER(FILE, LABELNO) mips_function_profiler ((FILE))
2453 
2454 /* The profiler preserves all interesting registers, including $31.  */
2455 #define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false
2456 
2457 /* No mips port has ever used the profiler counter word, so don't emit it
2458    or the label for it.  */
2459 
2460 #define NO_PROFILE_COUNTERS 1
2461 
2462 /* Define this macro if the code for function profiling should come
2463    before the function prologue.  Normally, the profiling code comes
2464    after.  */
2465 
2466 /* #define PROFILE_BEFORE_PROLOGUE */
2467 
2468 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2469    the stack pointer does not matter.  The value is tested only in
2470    functions that have frame pointers.
2471    No definition is equivalent to always zero.  */
2472 
2473 #define EXIT_IGNORE_STACK 1
2474 
2475 
2476 /* Trampolines are a block of code followed by two pointers.  */
2477 
2478 #define TRAMPOLINE_SIZE \
2479   (mips_trampoline_code_size () + GET_MODE_SIZE (ptr_mode) * 2)
2480 
2481 /* Forcing a 64-bit alignment for 32-bit targets allows us to load two
2482    pointers from a single LUI base.  */
2483 
2484 #define TRAMPOLINE_ALIGNMENT 64
2485 
2486 /* mips_trampoline_init calls this library function to flush
2487    program and data caches.  */
2488 
2489 #ifndef CACHE_FLUSH_FUNC
2490 #define CACHE_FLUSH_FUNC "_flush_cache"
2491 #endif
2492 
2493 #define MIPS_ICACHE_SYNC(ADDR, SIZE)					\
2494   /* Flush both caches.  We need to flush the data cache in case	\
2495      the system has a write-back cache.  */				\
2496   emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func),	\
2497 		     LCT_NORMAL, VOIDmode, 3, ADDR, Pmode, SIZE, Pmode,	\
2498 		     GEN_INT (3), TYPE_MODE (integer_type_node))
2499 
2500 
2501 /* Addressing modes, and classification of registers for them.  */
2502 
2503 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
2504 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2505   mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2506 
2507 /* Maximum number of registers that can appear in a valid memory address.  */
2508 
2509 #define MAX_REGS_PER_ADDRESS 1
2510 
2511 /* Check for constness inline but use mips_legitimate_address_p
2512    to check whether a constant really is an address.  */
2513 
2514 #define CONSTANT_ADDRESS_P(X) \
2515   (CONSTANT_P (X) && memory_address_p (SImode, X))
2516 
2517 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2518    'the start of the function that this code is output in'.  */
2519 
2520 #define ASM_OUTPUT_LABELREF(FILE,NAME)  \
2521   if (strcmp (NAME, "..CURRENT_FUNCTION") == 0)				\
2522     asm_fprintf ((FILE), "%U%s",					\
2523 		 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0));	\
2524   else									\
2525     asm_fprintf ((FILE), "%U%s", (NAME))
2526 
2527 /* Flag to mark a function decl symbol that requires a long call.  */
2528 #define SYMBOL_FLAG_LONG_CALL	(SYMBOL_FLAG_MACH_DEP << 0)
2529 #define SYMBOL_REF_LONG_CALL_P(X)					\
2530   ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2531 
2532 /* This flag marks functions that cannot be lazily bound.  */
2533 #define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1)
2534 #define SYMBOL_REF_BIND_NOW_P(RTX) \
2535   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0)
2536 
2537 /* True if we're generating a form of MIPS16 code in which jump tables
2538    are stored in the text section and encoded as 16-bit PC-relative
2539    offsets.  This is only possible when general text loads are allowed,
2540    since the table access itself will be an "lh" instruction.  If the
2541    PC-relative offsets grow too large, 32-bit offsets are used instead.  */
2542 #define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS
2543 
2544 #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES
2545 
2546 #define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? SImode : ptr_mode)
2547 
2548 /* Only use short offsets if their range will not overflow.  */
2549 #define CASE_VECTOR_SHORTEN_MODE(MIN, MAX, BODY) \
2550   (!TARGET_MIPS16_SHORT_JUMP_TABLES ? ptr_mode \
2551    : ((MIN) >= -32768 && (MAX) < 32768) ? HImode \
2552    : SImode)
2553 
2554 #define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES
2555 
2556 /* Define this as 1 if `char' should by default be signed; else as 0.  */
2557 #ifndef DEFAULT_SIGNED_CHAR
2558 #define DEFAULT_SIGNED_CHAR 1
2559 #endif
2560 
2561 /* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets,
2562    we generally don't want to use them for copying arbitrary data.
2563    A single N-word move is usually the same cost as N single-word moves.  */
2564 #define MOVE_MAX UNITS_PER_WORD
2565 #define MAX_MOVE_MAX 8
2566 
2567 /* Define this macro as a C expression which is nonzero if
2568    accessing less than a word of memory (i.e. a `char' or a
2569    `short') is no faster than accessing a word of memory, i.e., if
2570    such access require more than one instruction or if there is no
2571    difference in cost between byte and (aligned) word loads.
2572 
2573    On RISC machines, it tends to generate better code to define
2574    this as 1, since it avoids making a QI or HI mode register.
2575 
2576    But, generating word accesses for -mips16 is generally bad as shifts
2577    (often extended) would be needed for byte accesses.  */
2578 #define SLOW_BYTE_ACCESS (!TARGET_MIPS16)
2579 
2580 /* Standard MIPS integer shifts truncate the shift amount to the
2581    width of the shifted operand.  However, Loongson vector shifts
2582    do not truncate the shift amount at all.  */
2583 #define SHIFT_COUNT_TRUNCATED (!TARGET_LOONGSON_VECTORS)
2584 
2585 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2586    is done just by pretending it is already truncated.  */
2587 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2588   (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2589 
2590 
2591 /* Specify the machine mode that pointers have.
2592    After generation of rtl, the compiler makes no further distinction
2593    between pointers and any other objects of this machine mode.  */
2594 
2595 #ifndef Pmode
2596 #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2597 #endif
2598 
2599 /* Give call MEMs SImode since it is the "most permissive" mode
2600    for both 32-bit and 64-bit targets.  */
2601 
2602 #define FUNCTION_MODE SImode
2603 
2604 
2605 /* We allocate $fcc registers by hand and can't cope with moves of
2606    CCmode registers to and from pseudos (or memory).  */
2607 #define AVOID_CCMODE_COPIES
2608 
2609 /* A C expression for the cost of a branch instruction.  A value of
2610    1 is the default; other values are interpreted relative to that.  */
2611 
2612 #define BRANCH_COST(speed_p, predictable_p) mips_branch_cost
2613 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2614 
2615 /* The MIPS port has several functions that return an instruction count.
2616    Multiplying the count by this value gives the number of bytes that
2617    the instructions occupy.  */
2618 #define BASE_INSN_LENGTH (TARGET_MIPS16 ? 2 : 4)
2619 
2620 /* The length of a NOP in bytes.  */
2621 #define NOP_INSN_LENGTH (TARGET_COMPRESSION ? 2 : 4)
2622 
2623 /* If defined, modifies the length assigned to instruction INSN as a
2624    function of the context in which it is used.  LENGTH is an lvalue
2625    that contains the initially computed length of the insn and should
2626    be updated with the correct length of the insn.  */
2627 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2628   ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2629 
2630 /* Return the asm template for a non-MIPS16 conditional branch instruction.
2631    OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2632    its operands.  */
2633 #define MIPS_BRANCH(OPCODE, OPERANDS) \
2634   "%*" OPCODE "%?\t" OPERANDS "%/"
2635 
2636 /* Return an asm string that forces INSN to be treated as an absolute
2637    J or JAL instruction instead of an assembler macro.  */
2638 #define MIPS_ABSOLUTE_JUMP(INSN) \
2639   (TARGET_ABICALLS_PIC2						\
2640    ? ".option\tpic0\n\t" INSN "\n\t.option\tpic2"		\
2641    : INSN)
2642 
2643 /* Return the asm template for a call.  INSN is the instruction's mnemonic
2644    ("j" or "jal"), OPERANDS are its operands, TARGET_OPNO is the operand
2645    number of the target.  SIZE_OPNO is the operand number of the argument size
2646    operand that can optionally hold the call attributes.  If SIZE_OPNO is not
2647    -1 and the call is indirect, use the function symbol from the call
2648    attributes to attach a R_MIPS_JALR relocation to the call.
2649 
2650    When generating GOT code without explicit relocation operators,
2651    all calls should use assembly macros.  Otherwise, all indirect
2652    calls should use "jr" or "jalr"; we will arrange to restore $gp
2653    afterwards if necessary.  Finally, we can only generate direct
2654    calls for -mabicalls by temporarily switching to non-PIC mode.
2655 
2656    For microMIPS jal(r), we try to generate jal(r)s when a 16-bit
2657    instruction is in the delay slot of jal(r).  */
2658 #define MIPS_CALL(INSN, OPERANDS, TARGET_OPNO, SIZE_OPNO)	\
2659   (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS			\
2660    ? "%*" INSN "\t%" #TARGET_OPNO "%/"				\
2661    : REG_P (OPERANDS[TARGET_OPNO])				\
2662    ? (mips_get_pic_call_symbol (OPERANDS, SIZE_OPNO)		\
2663       ? ("%*.reloc\t1f,R_MIPS_JALR,%" #SIZE_OPNO "\n"		\
2664 	 "1:\t" INSN "r\t%" #TARGET_OPNO "%/")			\
2665       : TARGET_MICROMIPS && !TARGET_INTERLINK_COMPRESSED	\
2666       ? "%*" INSN "r%!\t%" #TARGET_OPNO "%/"			\
2667       : "%*" INSN "r\t%" #TARGET_OPNO "%/")			\
2668    : TARGET_MICROMIPS && !TARGET_INTERLINK_COMPRESSED		\
2669      ? MIPS_ABSOLUTE_JUMP ("%*" INSN "%!\t%" #TARGET_OPNO "%/")	\
2670      : MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #TARGET_OPNO "%/"))	\
2671 
2672 /* Similar to MIPS_CALL, but this is for MICROMIPS "j" to generate
2673    "jrc" when nop is in the delay slot of "jr".  */
2674 
2675 #define MICROMIPS_J(INSN, OPERANDS, OPNO)			\
2676   (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS			\
2677    ? "%*j\t%" #OPNO "%/"					\
2678    : REG_P (OPERANDS[OPNO])					\
2679    ? "%*jr%:\t%" #OPNO						\
2680    : MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #OPNO "%/"))
2681 
2682 
2683 /* Control the assembler format that we output.  */
2684 
2685 /* Output to assembler file text saying following lines
2686    may contain character constants, extra white space, comments, etc.  */
2687 
2688 #ifndef ASM_APP_ON
2689 #define ASM_APP_ON " #APP\n"
2690 #endif
2691 
2692 /* Output to assembler file text saying following lines
2693    no longer contain unusual constructs.  */
2694 
2695 #ifndef ASM_APP_OFF
2696 #define ASM_APP_OFF " #NO_APP\n"
2697 #endif
2698 
2699 #define REGISTER_NAMES							   \
2700 { "$0",   "$1",   "$2",   "$3",   "$4",   "$5",   "$6",   "$7",		   \
2701   "$8",   "$9",   "$10",  "$11",  "$12",  "$13",  "$14",  "$15",	   \
2702   "$16",  "$17",  "$18",  "$19",  "$20",  "$21",  "$22",  "$23",	   \
2703   "$24",  "$25",  "$26",  "$27",  "$28",  "$sp",  "$fp",  "$31",	   \
2704   "$f0",  "$f1",  "$f2",  "$f3",  "$f4",  "$f5",  "$f6",  "$f7",	   \
2705   "$f8",  "$f9",  "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",	   \
2706   "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",	   \
2707   "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31",	   \
2708   "hi",   "lo",   "",     "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4",	   \
2709   "$fcc5","$fcc6","$fcc7","", "$cprestore", "$arg", "$frame", "$fakec",	   \
2710   "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7",  \
2711   "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2712   "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2713   "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2714   "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7",  \
2715   "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2716   "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2717   "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2718   "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7",  \
2719   "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2720   "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2721   "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2722   "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2723   "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2724 
2725 /* List the "software" names for each register.  Also list the numerical
2726    names for $fp and $sp.  */
2727 
2728 #define ADDITIONAL_REGISTER_NAMES					\
2729 {									\
2730   { "$29",	29 + GP_REG_FIRST },					\
2731   { "$30",	30 + GP_REG_FIRST },					\
2732   { "at",	 1 + GP_REG_FIRST },					\
2733   { "v0",	 2 + GP_REG_FIRST },					\
2734   { "v1",	 3 + GP_REG_FIRST },					\
2735   { "a0",	 4 + GP_REG_FIRST },					\
2736   { "a1",	 5 + GP_REG_FIRST },					\
2737   { "a2",	 6 + GP_REG_FIRST },					\
2738   { "a3",	 7 + GP_REG_FIRST },					\
2739   { "t0",	 8 + GP_REG_FIRST },					\
2740   { "t1",	 9 + GP_REG_FIRST },					\
2741   { "t2",	10 + GP_REG_FIRST },					\
2742   { "t3",	11 + GP_REG_FIRST },					\
2743   { "t4",	12 + GP_REG_FIRST },					\
2744   { "t5",	13 + GP_REG_FIRST },					\
2745   { "t6",	14 + GP_REG_FIRST },					\
2746   { "t7",	15 + GP_REG_FIRST },					\
2747   { "s0",	16 + GP_REG_FIRST },					\
2748   { "s1",	17 + GP_REG_FIRST },					\
2749   { "s2",	18 + GP_REG_FIRST },					\
2750   { "s3",	19 + GP_REG_FIRST },					\
2751   { "s4",	20 + GP_REG_FIRST },					\
2752   { "s5",	21 + GP_REG_FIRST },					\
2753   { "s6",	22 + GP_REG_FIRST },					\
2754   { "s7",	23 + GP_REG_FIRST },					\
2755   { "t8",	24 + GP_REG_FIRST },					\
2756   { "t9",	25 + GP_REG_FIRST },					\
2757   { "k0",	26 + GP_REG_FIRST },					\
2758   { "k1",	27 + GP_REG_FIRST },					\
2759   { "gp",	28 + GP_REG_FIRST },					\
2760   { "sp",	29 + GP_REG_FIRST },					\
2761   { "fp",	30 + GP_REG_FIRST },					\
2762   { "ra",	31 + GP_REG_FIRST }					\
2763 }
2764 
2765 #define DBR_OUTPUT_SEQEND(STREAM)					\
2766 do									\
2767   {									\
2768     /* Undo the effect of '%*'.  */					\
2769     mips_pop_asm_switch (&mips_nomacro);				\
2770     mips_pop_asm_switch (&mips_noreorder);				\
2771     /* Emit a blank line after the delay slot for emphasis.  */		\
2772     fputs ("\n", STREAM);						\
2773   }									\
2774 while (0)
2775 
2776 /* The MIPS implementation uses some labels for its own purpose.  The
2777    following lists what labels are created, and are all formed by the
2778    pattern $L[a-z].*.  The machine independent portion of GCC creates
2779    labels matching:  $L[A-Z][0-9]+ and $L[0-9]+.
2780 
2781 	LM[0-9]+	Silicon Graphics/ECOFF stabs label before each stmt.
2782 	$Lb[0-9]+	Begin blocks for MIPS debug support
2783 	$Lc[0-9]+	Label for use in s<xx> operation.
2784 	$Le[0-9]+	End blocks for MIPS debug support  */
2785 
2786 #undef ASM_DECLARE_OBJECT_NAME
2787 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2788   mips_declare_object (STREAM, NAME, "", ":\n")
2789 
2790 /* Globalizing directive for a label.  */
2791 #define GLOBAL_ASM_OP "\t.globl\t"
2792 
2793 /* This says how to define a global common symbol.  */
2794 
2795 #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2796 
2797 /* This says how to define a local common symbol (i.e., not visible to
2798    linker).  */
2799 
2800 #ifndef ASM_OUTPUT_ALIGNED_LOCAL
2801 #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2802   mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2803 #endif
2804 
2805 /* This says how to output an external.  It would be possible not to
2806    output anything and let undefined symbol become external. However
2807    the assembler uses length information on externals to allocate in
2808    data/sdata bss/sbss, thereby saving exec time.  */
2809 
2810 #undef ASM_OUTPUT_EXTERNAL
2811 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2812   mips_output_external(STREAM,DECL,NAME)
2813 
2814 /* This is how to declare a function name.  The actual work of
2815    emitting the label is moved to function_prologue, so that we can
2816    get the line number correctly emitted before the .ent directive,
2817    and after any .file directives.  Define as empty so that the function
2818    is not declared before the .ent directive elsewhere.  */
2819 
2820 #undef ASM_DECLARE_FUNCTION_NAME
2821 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2822 
2823 /* This is how to store into the string LABEL
2824    the symbol_ref name of an internal numbered label where
2825    PREFIX is the class of label and NUM is the number within the class.
2826    This is suitable for output with `assemble_name'.  */
2827 
2828 #undef ASM_GENERATE_INTERNAL_LABEL
2829 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)			\
2830   sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2831 
2832 /* Print debug labels as "foo = ." rather than "foo:" because they should
2833    represent a byte pointer rather than an ISA-encoded address.  This is
2834    particularly important for code like:
2835 
2836 	$LFBxxx = .
2837 		.cfi_startproc
2838 		...
2839 		.section .gcc_except_table,...
2840 		...
2841 		.uleb128 foo-$LFBxxx
2842 
2843    The .uleb128 requies $LFBxxx to match the FDE start address, which is
2844    likewise a byte pointer rather than an ISA-encoded address.
2845 
2846    At the time of writing, this hook is not used for the function end
2847    label:
2848 
2849    	$LFExxx:
2850 		.end foo
2851 
2852    But this doesn't matter, because GAS doesn't treat a pre-.end label
2853    as a MIPS16 one anyway.  */
2854 
2855 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM)			\
2856   fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
2857 
2858 /* This is how to output an element of a case-vector that is absolute.  */
2859 
2860 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE)				\
2861   fprintf (STREAM, "\t%s\t%sL%d\n",					\
2862 	   ptr_mode == DImode ? ".dword" : ".word",			\
2863 	   LOCAL_LABEL_PREFIX,						\
2864 	   VALUE)
2865 
2866 /* This is how to output an element of a case-vector.  We can make the
2867    entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2868    is supported.  */
2869 
2870 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)		\
2871 do {									\
2872   if (TARGET_MIPS16_SHORT_JUMP_TABLES)					\
2873     {									\
2874       if (GET_MODE (BODY) == HImode)					\
2875 	fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n",			\
2876 		 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL);	\
2877       else								\
2878 	fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n",			\
2879 		 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL);	\
2880     }									\
2881   else if (TARGET_GPWORD)						\
2882     fprintf (STREAM, "\t%s\t%sL%d\n",					\
2883 	     ptr_mode == DImode ? ".gpdword" : ".gpword",		\
2884 	     LOCAL_LABEL_PREFIX, VALUE);				\
2885   else if (TARGET_RTP_PIC)						\
2886     {									\
2887       /* Make the entry relative to the start of the function.  */	\
2888       rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0);		\
2889       fprintf (STREAM, "\t%s\t%sL%d-",					\
2890 	       Pmode == DImode ? ".dword" : ".word",			\
2891 	       LOCAL_LABEL_PREFIX, VALUE);				\
2892       assemble_name (STREAM, XSTR (fnsym, 0));				\
2893       fprintf (STREAM, "\n");						\
2894     }									\
2895   else									\
2896     fprintf (STREAM, "\t%s\t%sL%d\n",					\
2897 	     ptr_mode == DImode ? ".dword" : ".word",			\
2898 	     LOCAL_LABEL_PREFIX, VALUE);				\
2899 } while (0)
2900 
2901 /* This is how to output an assembler line
2902    that says to advance the location counter
2903    to a multiple of 2**LOG bytes.  */
2904 
2905 #define ASM_OUTPUT_ALIGN(STREAM,LOG)					\
2906   fprintf (STREAM, "\t.align\t%d\n", (LOG))
2907 
2908 /* This is how to output an assembler line to advance the location
2909    counter by SIZE bytes.  */
2910 
2911 #undef ASM_OUTPUT_SKIP
2912 #define ASM_OUTPUT_SKIP(STREAM,SIZE)					\
2913   fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2914 
2915 /* This is how to output a string.  */
2916 #undef ASM_OUTPUT_ASCII
2917 #define ASM_OUTPUT_ASCII mips_output_ascii
2918 
2919 
2920 /* Default to -G 8 */
2921 #ifndef MIPS_DEFAULT_GVALUE
2922 #define MIPS_DEFAULT_GVALUE 8
2923 #endif
2924 
2925 /* Define the strings to put out for each section in the object file.  */
2926 #define TEXT_SECTION_ASM_OP	"\t.text"	/* instructions */
2927 #define DATA_SECTION_ASM_OP	"\t.data"	/* large data */
2928 
2929 #undef READONLY_DATA_SECTION_ASM_OP
2930 #define READONLY_DATA_SECTION_ASM_OP	"\t.rdata"	/* read-only data */
2931 
2932 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO)				\
2933 do									\
2934   {									\
2935     fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n",		\
2936 	     TARGET_64BIT ? "daddiu" : "addiu",				\
2937 	     reg_names[STACK_POINTER_REGNUM],				\
2938 	     reg_names[STACK_POINTER_REGNUM],				\
2939 	     TARGET_64BIT ? "sd" : "sw",				\
2940 	     reg_names[REGNO],						\
2941 	     reg_names[STACK_POINTER_REGNUM]);				\
2942   }									\
2943 while (0)
2944 
2945 #define ASM_OUTPUT_REG_POP(STREAM,REGNO)				\
2946 do									\
2947   {									\
2948     mips_push_asm_switch (&mips_noreorder);				\
2949     fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n",			\
2950 	     TARGET_64BIT ? "ld" : "lw",				\
2951 	     reg_names[REGNO],						\
2952 	     reg_names[STACK_POINTER_REGNUM],				\
2953 	     TARGET_64BIT ? "daddu" : "addu",				\
2954 	     reg_names[STACK_POINTER_REGNUM],				\
2955 	     reg_names[STACK_POINTER_REGNUM]);				\
2956     mips_pop_asm_switch (&mips_noreorder);				\
2957   }									\
2958 while (0)
2959 
2960 /* How to start an assembler comment.
2961    The leading space is important (the mips native assembler requires it).  */
2962 #ifndef ASM_COMMENT_START
2963 #define ASM_COMMENT_START " #"
2964 #endif
2965 
2966 #undef SIZE_TYPE
2967 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
2968 
2969 #undef PTRDIFF_TYPE
2970 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
2971 
2972 /* The maximum number of bytes that can be copied by one iteration of
2973    a movmemsi loop; see mips_block_move_loop.  */
2974 #define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \
2975   (UNITS_PER_WORD * 4)
2976 
2977 /* The maximum number of bytes that can be copied by a straight-line
2978    implementation of movmemsi; see mips_block_move_straight.  We want
2979    to make sure that any loop-based implementation will iterate at
2980    least twice.  */
2981 #define MIPS_MAX_MOVE_BYTES_STRAIGHT \
2982   (MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
2983 
2984 /* The base cost of a memcpy call, for MOVE_RATIO and friends.  These
2985    values were determined experimentally by benchmarking with CSiBE.
2986    In theory, the call overhead is higher for TARGET_ABICALLS (especially
2987    for o32 where we have to restore $gp afterwards as well as make an
2988    indirect call), but in practice, bumping this up higher for
2989    TARGET_ABICALLS doesn't make much difference to code size.  */
2990 
2991 #define MIPS_CALL_RATIO 8
2992 
2993 /* Any loop-based implementation of movmemsi will have at least
2994    MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
2995    moves, so allow individual copies of fewer elements.
2996 
2997    When movmemsi is not available, use a value approximating
2998    the length of a memcpy call sequence, so that move_by_pieces
2999    will generate inline code if it is shorter than a function call.
3000    Since move_by_pieces_ninsns counts memory-to-memory moves, but
3001    we'll have to generate a load/store pair for each, halve the
3002    value of MIPS_CALL_RATIO to take that into account.  */
3003 
3004 #define MOVE_RATIO(speed)				\
3005   (HAVE_movmemsi					\
3006    ? MIPS_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX		\
3007    : MIPS_CALL_RATIO / 2)
3008 
3009 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
3010    of the length of a memset call, but use the default otherwise.  */
3011 
3012 #define CLEAR_RATIO(speed)\
3013   ((speed) ? 15 : MIPS_CALL_RATIO)
3014 
3015 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
3016    optimizing for size adjust the ratio to account for the overhead of
3017    loading the constant and replicating it across the word.  */
3018 
3019 #define SET_RATIO(speed) \
3020   ((speed) ? 15 : MIPS_CALL_RATIO - 2)
3021 
3022 /* Since the bits of the _init and _fini function is spread across
3023    many object files, each potentially with its own GP, we must assume
3024    we need to load our GP.  We don't preserve $gp or $ra, since each
3025    init/fini chunk is supposed to initialize $gp, and crti/crtn
3026    already take care of preserving $ra and, when appropriate, $gp.  */
3027 #if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
3028 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
3029    asm (SECTION_OP "\n\
3030 	.set push\n\
3031 	.set nomips16\n\
3032 	.set noreorder\n\
3033 	bal 1f\n\
3034 	nop\n\
3035 1:	.cpload $31\n\
3036 	.set reorder\n\
3037 	jal " USER_LABEL_PREFIX #FUNC "\n\
3038 	.set pop\n\
3039 	" TEXT_SECTION_ASM_OP);
3040 #elif ((defined _ABIN32 && _MIPS_SIM == _ABIN32) \
3041        || (defined _ABI64 && _MIPS_SIM == _ABI64))
3042 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
3043    asm (SECTION_OP "\n\
3044 	.set push\n\
3045 	.set nomips16\n\
3046 	.set noreorder\n\
3047 	bal 1f\n\
3048 	nop\n\
3049 1:	.set reorder\n\
3050 	.cpsetup $31, $2, 1b\n\
3051 	jal " USER_LABEL_PREFIX #FUNC "\n\
3052 	.set pop\n\
3053 	" TEXT_SECTION_ASM_OP);
3054 #endif
3055 
3056 #ifndef HAVE_AS_TLS
3057 #define HAVE_AS_TLS 0
3058 #endif
3059 
3060 #ifndef HAVE_AS_NAN
3061 #define HAVE_AS_NAN 0
3062 #endif
3063 
3064 #ifndef USED_FOR_TARGET
3065 /* Information about ".set noFOO; ...; .set FOO" blocks.  */
3066 struct mips_asm_switch {
3067   /* The FOO in the description above.  */
3068   const char *name;
3069 
3070   /* The current block nesting level, or 0 if we aren't in a block.  */
3071   int nesting_level;
3072 };
3073 
3074 extern const enum reg_class mips_regno_to_class[];
3075 extern bool mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
3076 extern const char *current_function_file; /* filename current function is in */
3077 extern int num_source_filenames;	/* current .file # */
3078 extern struct mips_asm_switch mips_noreorder;
3079 extern struct mips_asm_switch mips_nomacro;
3080 extern struct mips_asm_switch mips_noat;
3081 extern int mips_dbx_regno[];
3082 extern int mips_dwarf_regno[];
3083 extern bool mips_split_p[];
3084 extern bool mips_split_hi_p[];
3085 extern bool mips_use_pcrel_pool_p[];
3086 extern const char *mips_lo_relocs[];
3087 extern const char *mips_hi_relocs[];
3088 extern enum processor mips_arch;        /* which cpu to codegen for */
3089 extern enum processor mips_tune;        /* which cpu to schedule for */
3090 extern int mips_isa;			/* architectural level */
3091 extern int mips_isa_rev;
3092 extern const struct mips_cpu_info *mips_arch_info;
3093 extern const struct mips_cpu_info *mips_tune_info;
3094 extern unsigned int mips_base_compression_flags;
3095 extern GTY(()) struct target_globals *mips16_globals;
3096 #endif
3097 
3098 /* Enable querying of DFA units.  */
3099 #define CPU_UNITS_QUERY 1
3100 
3101 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)	\
3102   mips_final_prescan_insn (INSN, OPVEC, NOPERANDS)
3103 
3104 /* As on most targets, we want the .eh_frame section to be read-only where
3105    possible.  And as on most targets, this means two things:
3106 
3107      (a) Non-locally-binding pointers must have an indirect encoding,
3108 	 so that the addresses in the .eh_frame section itself become
3109 	 locally-binding.
3110 
3111      (b) A shared library's .eh_frame section must encode locally-binding
3112 	 pointers in a relative (relocation-free) form.
3113 
3114    However, MIPS has traditionally not allowed directives like:
3115 
3116 	.long	x-.
3117 
3118    in cases where "x" is in a different section, or is not defined in the
3119    same assembly file.  We are therefore unable to emit the PC-relative
3120    form required by (b) at assembly time.
3121 
3122    Fortunately, the linker is able to convert absolute addresses into
3123    PC-relative addresses on our behalf.  Unfortunately, only certain
3124    versions of the linker know how to do this for indirect pointers,
3125    and for personality data.  We must fall back on using writable
3126    .eh_frame sections for shared libraries if the linker does not
3127    support this feature.  */
3128 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
3129   (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_absptr)
3130 
3131 /* For switching between MIPS16 and non-MIPS16 modes.  */
3132 #define SWITCHABLE_TARGET 1
3133 
3134 /* Several named MIPS patterns depend on Pmode.  These patterns have the
3135    form <NAME>_si for Pmode == SImode and <NAME>_di for Pmode == DImode.
3136    Add the appropriate suffix to generator function NAME and invoke it
3137    with arguments ARGS.  */
3138 #define PMODE_INSN(NAME, ARGS) \
3139   (Pmode == SImode ? NAME ## _si ARGS : NAME ## _di ARGS)
3140 
3141 /* If we are *not* using multilibs and the default ABI is not ABI_32 we
3142    need to change these from /lib and /usr/lib.  */
3143 #if MIPS_ABI_DEFAULT == ABI_N32
3144 #define STANDARD_STARTFILE_PREFIX_1 "/lib32/"
3145 #define STANDARD_STARTFILE_PREFIX_2 "/usr/lib32/"
3146 #elif MIPS_ABI_DEFAULT == ABI_64
3147 #define STANDARD_STARTFILE_PREFIX_1 "/lib64/"
3148 #define STANDARD_STARTFILE_PREFIX_2 "/usr/lib64/"
3149 #endif
3150