1 /* Definitions of target machine for GNU compiler. MIPS version. 2 Copyright (C) 1989-2019 Free Software Foundation, Inc. 3 Contributed by A. Lichnewsky (lich@inria.inria.fr). 4 Changed by Michael Meissner (meissner@osf.org). 5 64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and 6 Brendan Eich (brendan@microunity.com). 7 8 This file is part of GCC. 9 10 GCC is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 3, or (at your option) 13 any later version. 14 15 GCC is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with GCC; see the file COPYING3. If not see 22 <http://www.gnu.org/licenses/>. */ 23 24 25 #include "config/vxworks-dummy.h" 26 27 #ifdef GENERATOR_FILE 28 /* This is used in some insn conditions, so needs to be declared, but 29 does not need to be defined. */ 30 extern int target_flags_explicit; 31 #endif 32 33 /* MIPS external variables defined in mips.c. */ 34 35 /* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32), 36 ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended 37 to work on a 64-bit machine. */ 38 39 #define ABI_32 0 40 #define ABI_N32 1 41 #define ABI_64 2 42 #define ABI_EABI 3 43 #define ABI_O64 4 44 45 /* Masks that affect tuning. 46 47 PTF_AVOID_BRANCHLIKELY_SPEED 48 Set if it is usually not profitable to use branch-likely instructions 49 for this target when optimizing code for speed, typically because 50 the branches are always predicted taken and so incur a large overhead 51 when not taken. 52 53 PTF_AVOID_BRANCHLIKELY_SIZE 54 As above but when optimizing for size. 55 56 PTF_AVOID_BRANCHLIKELY_ALWAYS 57 As above but regardless of whether we optimize for speed or size. 58 59 PTF_AVOID_IMADD 60 Set if it is usually not profitable to use the integer MADD or MSUB 61 instructions because of the overhead of getting the result out of 62 the HI/LO registers. */ 63 64 #define PTF_AVOID_BRANCHLIKELY_SPEED 0x1 65 #define PTF_AVOID_BRANCHLIKELY_SIZE 0x2 66 #define PTF_AVOID_BRANCHLIKELY_ALWAYS (PTF_AVOID_BRANCHLIKELY_SPEED | \ 67 PTF_AVOID_BRANCHLIKELY_SIZE) 68 #define PTF_AVOID_IMADD 0x4 69 70 /* Information about one recognized processor. Defined here for the 71 benefit of TARGET_CPU_CPP_BUILTINS. */ 72 struct mips_cpu_info { 73 /* The 'canonical' name of the processor as far as GCC is concerned. 74 It's typically a manufacturer's prefix followed by a numerical 75 designation. It should be lowercase. */ 76 const char *name; 77 78 /* The internal processor number that most closely matches this 79 entry. Several processors can have the same value, if there's no 80 difference between them from GCC's point of view. */ 81 enum processor cpu; 82 83 /* The ISA level that the processor implements. */ 84 int isa; 85 86 /* A mask of PTF_* values. */ 87 unsigned int tune_flags; 88 }; 89 90 #include "config/mips/mips-opts.h" 91 92 /* Macros to silence warnings about numbers being signed in traditional 93 C and unsigned in ISO C when compiled on 32-bit hosts. */ 94 95 #define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */ 96 #define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */ 97 #define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */ 98 99 100 /* Run-time compilation parameters selecting different hardware subsets. */ 101 102 /* True if we are generating position-independent VxWorks RTP code. */ 103 #define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic) 104 105 /* Compact branches must not be used if the user either selects the 106 'never' policy or the 'optimal' policy on a core that lacks 107 compact branch instructions. */ 108 #define TARGET_CB_NEVER (mips_cb == MIPS_CB_NEVER \ 109 || (mips_cb == MIPS_CB_OPTIMAL \ 110 && !ISA_HAS_COMPACT_BRANCHES)) 111 112 /* Compact branches may be used if the user either selects the 113 'always' policy or the 'optimal' policy on a core that supports 114 compact branch instructions. */ 115 #define TARGET_CB_MAYBE (TARGET_CB_ALWAYS \ 116 || (mips_cb == MIPS_CB_OPTIMAL \ 117 && ISA_HAS_COMPACT_BRANCHES)) 118 119 /* Compact branches must always be generated if the user selects 120 the 'always' policy or the 'optimal' policy om a core that 121 lacks delay slot branch instructions. */ 122 #define TARGET_CB_ALWAYS (mips_cb == MIPS_CB_ALWAYS \ 123 || (mips_cb == MIPS_CB_OPTIMAL \ 124 && !ISA_HAS_DELAY_SLOTS)) 125 126 /* Special handling for JRC that exists in microMIPSR3 as well as R6 127 ISAs with full compact branch support. */ 128 #define ISA_HAS_JRC ((ISA_HAS_COMPACT_BRANCHES \ 129 || TARGET_MICROMIPS) \ 130 && mips_cb != MIPS_CB_NEVER) 131 132 /* True if the output file is marked as ".abicalls; .option pic0" 133 (-call_nonpic). */ 134 #define TARGET_ABICALLS_PIC0 \ 135 (TARGET_ABSOLUTE_ABICALLS && TARGET_PLT) 136 137 /* True if the output file is marked as ".abicalls; .option pic2" (-KPIC). */ 138 #define TARGET_ABICALLS_PIC2 \ 139 (TARGET_ABICALLS && !TARGET_ABICALLS_PIC0) 140 141 /* True if the call patterns should be split into a jalr followed by 142 an instruction to restore $gp. It is only safe to split the load 143 from the call when every use of $gp is explicit. 144 145 See mips_must_initialize_gp_p for details about how we manage the 146 global pointer. */ 147 148 #define TARGET_SPLIT_CALLS \ 149 (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP && epilogue_completed) 150 151 /* True if we're generating a form of -mabicalls in which we can use 152 operators like %hi and %lo to refer to locally-binding symbols. 153 We can only do this for -mno-shared, and only then if we can use 154 relocation operations instead of assembly macros. It isn't really 155 worth using absolute sequences for 64-bit symbols because GOT 156 accesses are so much shorter. */ 157 158 #define TARGET_ABSOLUTE_ABICALLS \ 159 (TARGET_ABICALLS \ 160 && !TARGET_SHARED \ 161 && TARGET_EXPLICIT_RELOCS \ 162 && !ABI_HAS_64BIT_SYMBOLS) 163 164 /* True if we can optimize sibling calls. For simplicity, we only 165 handle cases in which call_insn_operand will reject invalid 166 sibcall addresses. There are two cases in which this isn't true: 167 168 - TARGET_MIPS16. call_insn_operand accepts constant addresses 169 but there is no direct jump instruction. It isn't worth 170 using sibling calls in this case anyway; they would usually 171 be longer than normal calls. 172 173 - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS. call_insn_operand 174 accepts global constants, but all sibcalls must be indirect. */ 175 #define TARGET_SIBCALLS \ 176 (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS)) 177 178 /* True if we need to use a global offset table to access some symbols. */ 179 #define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC) 180 181 /* True if TARGET_USE_GOT and if $gp is a call-clobbered register. */ 182 #define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI) 183 184 /* True if TARGET_USE_GOT and if $gp is a call-saved register. */ 185 #define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP) 186 187 /* True if we should use .cprestore to store to the cprestore slot. 188 189 We continue to use .cprestore for explicit-reloc code so that JALs 190 inside inline asms will work correctly. */ 191 #define TARGET_CPRESTORE_DIRECTIVE \ 192 (TARGET_ABICALLS_PIC2 && !TARGET_MIPS16) 193 194 /* True if we can use the J and JAL instructions. */ 195 #define TARGET_ABSOLUTE_JUMPS \ 196 (!flag_pic || TARGET_ABSOLUTE_ABICALLS) 197 198 /* True if indirect calls must use register class PIC_FN_ADDR_REG. 199 This is true for both the PIC and non-PIC VxWorks RTP modes. */ 200 #define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP) 201 202 /* True if .gpword or .gpdword should be used for switch tables. */ 203 #define TARGET_GPWORD \ 204 (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS) 205 206 /* True if the output must have a writable .eh_frame. 207 See ASM_PREFERRED_EH_DATA_FORMAT for details. */ 208 #ifdef HAVE_LD_PERSONALITY_RELAXATION 209 #define TARGET_WRITABLE_EH_FRAME 0 210 #else 211 #define TARGET_WRITABLE_EH_FRAME (flag_pic && TARGET_SHARED) 212 #endif 213 214 /* Test the assembler to set ISA_HAS_DSP_MULT to DSP Rev 1 or 2. */ 215 #ifdef HAVE_AS_DSPR1_MULT 216 #define ISA_HAS_DSP_MULT ISA_HAS_DSP 217 #else 218 #define ISA_HAS_DSP_MULT ISA_HAS_DSPR2 219 #endif 220 221 /* ISA has LSA available. */ 222 #define ISA_HAS_LSA (mips_isa_rev >= 6 || ISA_HAS_MSA) 223 224 /* ISA has DLSA available. */ 225 #define ISA_HAS_DLSA (TARGET_64BIT \ 226 && (mips_isa_rev >= 6 \ 227 || ISA_HAS_MSA)) 228 229 /* The ISA compression flags that are currently in effect. */ 230 #define TARGET_COMPRESSION (target_flags & (MASK_MIPS16 | MASK_MICROMIPS)) 231 232 /* Generate mips16 code */ 233 #define TARGET_MIPS16 ((target_flags & MASK_MIPS16) != 0) 234 /* Generate mips16e code. Default 16bit ASE for mips32* and mips64* */ 235 #define GENERATE_MIPS16E (TARGET_MIPS16 && mips_isa >= 32) 236 /* Generate mips16e register save/restore sequences. */ 237 #define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32) 238 239 /* True if we're generating a form of MIPS16 code in which general 240 text loads are allowed. */ 241 #define TARGET_MIPS16_TEXT_LOADS \ 242 (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES) 243 244 /* True if we're generating a form of MIPS16 code in which PC-relative 245 loads are allowed. */ 246 #define TARGET_MIPS16_PCREL_LOADS \ 247 (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL) 248 249 /* Generic ISA defines. */ 250 #define ISA_MIPS1 (mips_isa == 1) 251 #define ISA_MIPS2 (mips_isa == 2) 252 #define ISA_MIPS3 (mips_isa == 3) 253 #define ISA_MIPS4 (mips_isa == 4) 254 #define ISA_MIPS32 (mips_isa == 32) 255 #define ISA_MIPS32R2 (mips_isa == 33) 256 #define ISA_MIPS32R3 (mips_isa == 34) 257 #define ISA_MIPS32R5 (mips_isa == 36) 258 #define ISA_MIPS32R6 (mips_isa == 37) 259 #define ISA_MIPS64 (mips_isa == 64) 260 #define ISA_MIPS64R2 (mips_isa == 65) 261 #define ISA_MIPS64R3 (mips_isa == 66) 262 #define ISA_MIPS64R5 (mips_isa == 68) 263 #define ISA_MIPS64R6 (mips_isa == 69) 264 265 /* Architecture target defines. */ 266 #define TARGET_LOONGSON_2E (mips_arch == PROCESSOR_LOONGSON_2E) 267 #define TARGET_LOONGSON_2F (mips_arch == PROCESSOR_LOONGSON_2F) 268 #define TARGET_LOONGSON_2EF (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F) 269 #define TARGET_GS464 (mips_arch == PROCESSOR_GS464) 270 #define TARGET_GS464E (mips_arch == PROCESSOR_GS464E) 271 #define TARGET_GS264E (mips_arch == PROCESSOR_GS264E) 272 #define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900) 273 #define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000) 274 #define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120) 275 #define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130) 276 #define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400) 277 #define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500) 278 #define TARGET_MIPS5900 (mips_arch == PROCESSOR_R5900) 279 #define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000) 280 #define TARGET_MIPS8000 (mips_arch == PROCESSOR_R8000) 281 #define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000) 282 #define TARGET_OCTEON (mips_arch == PROCESSOR_OCTEON \ 283 || mips_arch == PROCESSOR_OCTEON2 \ 284 || mips_arch == PROCESSOR_OCTEON3) 285 #define TARGET_OCTEON2 (mips_arch == PROCESSOR_OCTEON2 \ 286 || mips_arch == PROCESSOR_OCTEON3) 287 #define TARGET_SB1 (mips_arch == PROCESSOR_SB1 \ 288 || mips_arch == PROCESSOR_SB1A) 289 #define TARGET_SR71K (mips_arch == PROCESSOR_SR71000) 290 #define TARGET_XLP (mips_arch == PROCESSOR_XLP) 291 292 /* Scheduling target defines. */ 293 #define TUNE_20KC (mips_tune == PROCESSOR_20KC) 294 #define TUNE_24K (mips_tune == PROCESSOR_24KC \ 295 || mips_tune == PROCESSOR_24KF2_1 \ 296 || mips_tune == PROCESSOR_24KF1_1) 297 #define TUNE_74K (mips_tune == PROCESSOR_74KC \ 298 || mips_tune == PROCESSOR_74KF2_1 \ 299 || mips_tune == PROCESSOR_74KF1_1 \ 300 || mips_tune == PROCESSOR_74KF3_2) 301 #define TUNE_LOONGSON_2EF (mips_tune == PROCESSOR_LOONGSON_2E \ 302 || mips_tune == PROCESSOR_LOONGSON_2F) 303 #define TUNE_GS464 (mips_tune == PROCESSOR_GS464) 304 #define TUNE_GS464E (mips_tune == PROCESSOR_GS464E) 305 #define TUNE_GS264E (mips_tune == PROCESSOR_GS264E) 306 #define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000) 307 #define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900) 308 #define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000) 309 #define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120) 310 #define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130) 311 #define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000) 312 #define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400) 313 #define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500) 314 #define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000) 315 #define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000) 316 #define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000) 317 #define TUNE_OCTEON (mips_tune == PROCESSOR_OCTEON \ 318 || mips_tune == PROCESSOR_OCTEON2 \ 319 || mips_tune == PROCESSOR_OCTEON3) 320 #define TUNE_SB1 (mips_tune == PROCESSOR_SB1 \ 321 || mips_tune == PROCESSOR_SB1A) 322 #define TUNE_P5600 (mips_tune == PROCESSOR_P5600) 323 #define TUNE_I6400 (mips_tune == PROCESSOR_I6400) 324 #define TUNE_P6600 (mips_tune == PROCESSOR_P6600) 325 326 /* True if the pre-reload scheduler should try to create chains of 327 multiply-add or multiply-subtract instructions. For example, 328 suppose we have: 329 330 t1 = a * b 331 t2 = t1 + c * d 332 t3 = e * f 333 t4 = t3 - g * h 334 335 t1 will have a higher priority than t2 and t3 will have a higher 336 priority than t4. However, before reload, there is no dependence 337 between t1 and t3, and they can often have similar priorities. 338 The scheduler will then tend to prefer: 339 340 t1 = a * b 341 t3 = e * f 342 t2 = t1 + c * d 343 t4 = t3 - g * h 344 345 which stops us from making full use of macc/madd-style instructions. 346 This sort of situation occurs frequently in Fourier transforms and 347 in unrolled loops. 348 349 To counter this, the TUNE_MACC_CHAINS code will reorder the ready 350 queue so that chained multiply-add and multiply-subtract instructions 351 appear ahead of any other instruction that is likely to clobber lo. 352 In the example above, if t2 and t3 become ready at the same time, 353 the code ensures that t2 is scheduled first. 354 355 Multiply-accumulate instructions are a bigger win for some targets 356 than others, so this macro is defined on an opt-in basis. */ 357 #define TUNE_MACC_CHAINS (TUNE_MIPS5500 \ 358 || TUNE_MIPS4120 \ 359 || TUNE_MIPS4130 \ 360 || TUNE_24K \ 361 || TUNE_P5600) 362 363 #define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64) 364 #define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64) 365 366 /* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is 367 directly accessible, while the command-line options select 368 TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI 369 in use. */ 370 #define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16) 371 #define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16) 372 373 /* TARGET_FLOAT64 represents -mfp64 and TARGET_FLOATXX represents 374 -mfpxx, derive TARGET_FLOAT32 to represent -mfp32. */ 375 #define TARGET_FLOAT32 (!TARGET_FLOAT64 && !TARGET_FLOATXX) 376 377 /* TARGET_O32_FP64A_ABI represents all the conditions that form the 378 o32 FP64A ABI extension (-mabi=32 -mfp64 -mno-odd-spreg). */ 379 #define TARGET_O32_FP64A_ABI (mips_abi == ABI_32 && TARGET_FLOAT64 \ 380 && !TARGET_ODD_SPREG) 381 382 /* False if SC acts as a memory barrier with respect to itself, 383 otherwise a SYNC will be emitted after SC for atomic operations 384 that require ordering between the SC and following loads and 385 stores. It does not tell anything about ordering of loads and 386 stores prior to and following the SC, only about the SC itself and 387 those loads and stores follow it. */ 388 #define TARGET_SYNC_AFTER_SC (!TARGET_OCTEON && !TARGET_XLP) 389 390 /* Define preprocessor macros for the -march and -mtune options. 391 PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected 392 processor. If INFO's canonical name is "foo", define PREFIX to 393 be "foo", and define an additional macro PREFIX_FOO. */ 394 #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \ 395 do \ 396 { \ 397 char *macro, *p; \ 398 \ 399 macro = concat ((PREFIX), "_", (INFO)->name, NULL); \ 400 for (p = macro; *p != 0; p++) \ 401 if (*p == '+') \ 402 *p = 'P'; \ 403 else \ 404 *p = TOUPPER (*p); \ 405 \ 406 builtin_define (macro); \ 407 builtin_define_with_value ((PREFIX), (INFO)->name, 1); \ 408 free (macro); \ 409 } \ 410 while (0) 411 412 /* Target CPU builtins. */ 413 #define TARGET_CPU_CPP_BUILTINS() \ 414 do \ 415 { \ 416 builtin_assert ("machine=mips"); \ 417 builtin_assert ("cpu=mips"); \ 418 builtin_define ("__mips__"); \ 419 builtin_define ("_mips"); \ 420 \ 421 /* We do this here because __mips is defined below and so we \ 422 can't use builtin_define_std. We don't ever want to define \ 423 "mips" for VxWorks because some of the VxWorks headers \ 424 construct include filenames from a root directory macro, \ 425 an architecture macro and a filename, where the architecture \ 426 macro expands to 'mips'. If we define 'mips' to 1, the \ 427 architecture macro expands to 1 as well. */ \ 428 if (!flag_iso && !TARGET_VXWORKS) \ 429 builtin_define ("mips"); \ 430 \ 431 if (TARGET_64BIT) \ 432 builtin_define ("__mips64"); \ 433 \ 434 /* Treat _R3000 and _R4000 like register-size \ 435 defines, which is how they've historically \ 436 been used. */ \ 437 if (TARGET_64BIT) \ 438 { \ 439 builtin_define_std ("R4000"); \ 440 builtin_define ("_R4000"); \ 441 } \ 442 else \ 443 { \ 444 builtin_define_std ("R3000"); \ 445 builtin_define ("_R3000"); \ 446 } \ 447 \ 448 if (TARGET_FLOAT64) \ 449 builtin_define ("__mips_fpr=64"); \ 450 else if (TARGET_FLOATXX) \ 451 builtin_define ("__mips_fpr=0"); \ 452 else \ 453 builtin_define ("__mips_fpr=32"); \ 454 \ 455 if (mips_base_compression_flags & MASK_MIPS16) \ 456 builtin_define ("__mips16"); \ 457 \ 458 if (TARGET_MIPS3D) \ 459 builtin_define ("__mips3d"); \ 460 \ 461 if (TARGET_SMARTMIPS) \ 462 builtin_define ("__mips_smartmips"); \ 463 \ 464 if (mips_base_compression_flags & MASK_MICROMIPS) \ 465 builtin_define ("__mips_micromips"); \ 466 \ 467 if (TARGET_MCU) \ 468 builtin_define ("__mips_mcu"); \ 469 \ 470 if (TARGET_EVA) \ 471 builtin_define ("__mips_eva"); \ 472 \ 473 if (TARGET_DSP) \ 474 { \ 475 builtin_define ("__mips_dsp"); \ 476 if (TARGET_DSPR2) \ 477 { \ 478 builtin_define ("__mips_dspr2"); \ 479 builtin_define ("__mips_dsp_rev=2"); \ 480 } \ 481 else \ 482 builtin_define ("__mips_dsp_rev=1"); \ 483 } \ 484 \ 485 if (ISA_HAS_MSA) \ 486 { \ 487 builtin_define ("__mips_msa"); \ 488 builtin_define ("__mips_msa_width=128"); \ 489 } \ 490 \ 491 MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \ 492 MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \ 493 \ 494 if (ISA_MIPS1) \ 495 { \ 496 builtin_define ("__mips=1"); \ 497 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \ 498 } \ 499 else if (ISA_MIPS2) \ 500 { \ 501 builtin_define ("__mips=2"); \ 502 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \ 503 } \ 504 else if (ISA_MIPS3) \ 505 { \ 506 builtin_define ("__mips=3"); \ 507 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \ 508 } \ 509 else if (ISA_MIPS4) \ 510 { \ 511 builtin_define ("__mips=4"); \ 512 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \ 513 } \ 514 else if (mips_isa >= 32 && mips_isa < 64) \ 515 { \ 516 builtin_define ("__mips=32"); \ 517 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \ 518 } \ 519 else if (mips_isa >= 64) \ 520 { \ 521 builtin_define ("__mips=64"); \ 522 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \ 523 } \ 524 if (mips_isa_rev > 0) \ 525 builtin_define_with_int_value ("__mips_isa_rev", \ 526 mips_isa_rev); \ 527 \ 528 switch (mips_abi) \ 529 { \ 530 case ABI_32: \ 531 builtin_define ("_ABIO32=1"); \ 532 builtin_define ("_MIPS_SIM=_ABIO32"); \ 533 break; \ 534 \ 535 case ABI_N32: \ 536 builtin_define ("_ABIN32=2"); \ 537 builtin_define ("_MIPS_SIM=_ABIN32"); \ 538 break; \ 539 \ 540 case ABI_64: \ 541 builtin_define ("_ABI64=3"); \ 542 builtin_define ("_MIPS_SIM=_ABI64"); \ 543 break; \ 544 \ 545 case ABI_O64: \ 546 builtin_define ("_ABIO64=4"); \ 547 builtin_define ("_MIPS_SIM=_ABIO64"); \ 548 break; \ 549 } \ 550 \ 551 builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE); \ 552 builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE); \ 553 builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE); \ 554 builtin_define_with_int_value ("_MIPS_FPSET", \ 555 32 / MAX_FPRS_PER_FMT); \ 556 builtin_define_with_int_value ("_MIPS_SPFPSET", \ 557 TARGET_ODD_SPREG ? 32 : 16); \ 558 \ 559 /* These defines reflect the ABI in use, not whether the \ 560 FPU is directly accessible. */ \ 561 if (TARGET_NO_FLOAT) \ 562 builtin_define ("__mips_no_float"); \ 563 else if (TARGET_HARD_FLOAT_ABI) \ 564 builtin_define ("__mips_hard_float"); \ 565 else \ 566 builtin_define ("__mips_soft_float"); \ 567 \ 568 if (TARGET_SINGLE_FLOAT) \ 569 builtin_define ("__mips_single_float"); \ 570 \ 571 if (TARGET_PAIRED_SINGLE_FLOAT) \ 572 builtin_define ("__mips_paired_single_float"); \ 573 \ 574 if (mips_abs == MIPS_IEEE_754_2008) \ 575 builtin_define ("__mips_abs2008"); \ 576 \ 577 if (mips_nan == MIPS_IEEE_754_2008) \ 578 builtin_define ("__mips_nan2008"); \ 579 \ 580 if (TARGET_BIG_ENDIAN) \ 581 { \ 582 builtin_define_std ("MIPSEB"); \ 583 builtin_define ("_MIPSEB"); \ 584 } \ 585 else \ 586 { \ 587 builtin_define_std ("MIPSEL"); \ 588 builtin_define ("_MIPSEL"); \ 589 } \ 590 \ 591 /* Whether calls should go through $25. The separate __PIC__ \ 592 macro indicates whether abicalls code might use a GOT. */ \ 593 if (TARGET_ABICALLS) \ 594 builtin_define ("__mips_abicalls"); \ 595 \ 596 /* Whether Loongson vector modes are enabled. */ \ 597 if (TARGET_LOONGSON_MMI) \ 598 { \ 599 builtin_define ("__mips_loongson_vector_rev"); \ 600 builtin_define ("__mips_loongson_mmi"); \ 601 } \ 602 \ 603 /* Whether Loongson EXT modes are enabled. */ \ 604 if (TARGET_LOONGSON_EXT) \ 605 { \ 606 builtin_define ("__mips_loongson_ext"); \ 607 if (TARGET_LOONGSON_EXT2) \ 608 { \ 609 builtin_define ("__mips_loongson_ext2"); \ 610 builtin_define ("__mips_loongson_ext_rev=2"); \ 611 } \ 612 else \ 613 builtin_define ("__mips_loongson_ext_rev=1"); \ 614 } \ 615 \ 616 /* Historical Octeon macro. */ \ 617 if (TARGET_OCTEON) \ 618 builtin_define ("__OCTEON__"); \ 619 \ 620 if (TARGET_SYNCI) \ 621 builtin_define ("__mips_synci"); \ 622 \ 623 /* Macros dependent on the C dialect. */ \ 624 if (preprocessing_asm_p ()) \ 625 { \ 626 builtin_define_std ("LANGUAGE_ASSEMBLY"); \ 627 builtin_define ("_LANGUAGE_ASSEMBLY"); \ 628 } \ 629 else if (c_dialect_cxx ()) \ 630 { \ 631 builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \ 632 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \ 633 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \ 634 } \ 635 else \ 636 { \ 637 builtin_define_std ("LANGUAGE_C"); \ 638 builtin_define ("_LANGUAGE_C"); \ 639 } \ 640 if (c_dialect_objc ()) \ 641 { \ 642 builtin_define ("_LANGUAGE_OBJECTIVE_C"); \ 643 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \ 644 /* Bizarre, but retained for backwards compatibility. */ \ 645 builtin_define_std ("LANGUAGE_C"); \ 646 builtin_define ("_LANGUAGE_C"); \ 647 } \ 648 \ 649 if (mips_abi == ABI_EABI) \ 650 builtin_define ("__mips_eabi"); \ 651 \ 652 if (TARGET_CACHE_BUILTIN) \ 653 builtin_define ("__GCC_HAVE_BUILTIN_MIPS_CACHE"); \ 654 if (!ISA_HAS_LXC1_SXC1) \ 655 builtin_define ("__mips_no_lxc1_sxc1"); \ 656 if (!ISA_HAS_UNFUSED_MADD4 && !ISA_HAS_FUSED_MADD4) \ 657 builtin_define ("__mips_no_madd4"); \ 658 } \ 659 while (0) 660 661 /* Target CPU versions for D. */ 662 #define TARGET_D_CPU_VERSIONS mips_d_target_versions 663 664 /* Default target_flags if no switches are specified */ 665 666 #ifndef TARGET_DEFAULT 667 #define TARGET_DEFAULT 0 668 #endif 669 670 #ifndef TARGET_CPU_DEFAULT 671 #define TARGET_CPU_DEFAULT 0 672 #endif 673 674 #ifndef TARGET_ENDIAN_DEFAULT 675 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN 676 #endif 677 678 #ifdef IN_LIBGCC2 679 #undef TARGET_64BIT 680 /* Make this compile time constant for libgcc2 */ 681 #ifdef __mips64 682 #define TARGET_64BIT 1 683 #else 684 #define TARGET_64BIT 0 685 #endif 686 #endif /* IN_LIBGCC2 */ 687 688 /* Force the call stack unwinders in unwind.inc not to be MIPS16 code 689 when compiled with hardware floating point. This is because MIPS16 690 code cannot save and restore the floating-point registers, which is 691 important if in a mixed MIPS16/non-MIPS16 environment. */ 692 693 #ifdef IN_LIBGCC2 694 #if __mips_hard_float 695 #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__)) 696 #endif 697 #endif /* IN_LIBGCC2 */ 698 699 #define TARGET_LIBGCC_SDATA_SECTION ".sdata" 700 701 #ifndef MULTILIB_ENDIAN_DEFAULT 702 #if TARGET_ENDIAN_DEFAULT == 0 703 #define MULTILIB_ENDIAN_DEFAULT "EL" 704 #else 705 #define MULTILIB_ENDIAN_DEFAULT "EB" 706 #endif 707 #endif 708 709 #ifndef MULTILIB_ISA_DEFAULT 710 #if MIPS_ISA_DEFAULT == 1 711 #define MULTILIB_ISA_DEFAULT "mips1" 712 #elif MIPS_ISA_DEFAULT == 2 713 #define MULTILIB_ISA_DEFAULT "mips2" 714 #elif MIPS_ISA_DEFAULT == 3 715 #define MULTILIB_ISA_DEFAULT "mips3" 716 #elif MIPS_ISA_DEFAULT == 4 717 #define MULTILIB_ISA_DEFAULT "mips4" 718 #elif MIPS_ISA_DEFAULT == 32 719 #define MULTILIB_ISA_DEFAULT "mips32" 720 #elif MIPS_ISA_DEFAULT == 33 721 #define MULTILIB_ISA_DEFAULT "mips32r2" 722 #elif MIPS_ISA_DEFAULT == 37 723 #define MULTILIB_ISA_DEFAULT "mips32r6" 724 #elif MIPS_ISA_DEFAULT == 64 725 #define MULTILIB_ISA_DEFAULT "mips64" 726 #elif MIPS_ISA_DEFAULT == 65 727 #define MULTILIB_ISA_DEFAULT "mips64r2" 728 #elif MIPS_ISA_DEFAULT == 69 729 #define MULTILIB_ISA_DEFAULT "mips64r6" 730 #else 731 #define MULTILIB_ISA_DEFAULT "mips1" 732 #endif 733 #endif 734 735 #ifndef MIPS_ABI_DEFAULT 736 #define MIPS_ABI_DEFAULT ABI_32 737 #endif 738 739 /* Use the most portable ABI flag for the ASM specs. */ 740 741 #if MIPS_ABI_DEFAULT == ABI_32 742 #define MULTILIB_ABI_DEFAULT "mabi=32" 743 #elif MIPS_ABI_DEFAULT == ABI_O64 744 #define MULTILIB_ABI_DEFAULT "mabi=o64" 745 #elif MIPS_ABI_DEFAULT == ABI_N32 746 #define MULTILIB_ABI_DEFAULT "mabi=n32" 747 #elif MIPS_ABI_DEFAULT == ABI_64 748 #define MULTILIB_ABI_DEFAULT "mabi=64" 749 #elif MIPS_ABI_DEFAULT == ABI_EABI 750 #define MULTILIB_ABI_DEFAULT "mabi=eabi" 751 #endif 752 753 #ifndef MULTILIB_DEFAULTS 754 #define MULTILIB_DEFAULTS \ 755 { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT } 756 #endif 757 758 /* We must pass -EL to the linker by default for little endian embedded 759 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the 760 linker will default to using big-endian output files. The OUTPUT_FORMAT 761 line must be in the linker script, otherwise -EB/-EL will not work. */ 762 763 #ifndef ENDIAN_SPEC 764 #if TARGET_ENDIAN_DEFAULT == 0 765 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}" 766 #else 767 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}" 768 #endif 769 #endif 770 771 /* A spec condition that matches all non-mips16 -mips arguments. */ 772 773 #define MIPS_ISA_LEVEL_OPTION_SPEC \ 774 "mips1|mips2|mips3|mips4|mips32*|mips64*" 775 776 /* A spec condition that matches all non-mips16 architecture arguments. */ 777 778 #define MIPS_ARCH_OPTION_SPEC \ 779 MIPS_ISA_LEVEL_OPTION_SPEC "|march=*" 780 781 /* A spec that infers a -mips argument from an -march argument. */ 782 783 #define MIPS_ISA_LEVEL_SPEC \ 784 "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \ 785 %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \ 786 %{march=mips2|march=r6000:-mips2} \ 787 %{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \ 788 %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000 \ 789 |march=r10000|march=r12000|march=r14000|march=r16000:-mips4} \ 790 %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \ 791 %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \ 792 |march=34k*|march=74k*|march=m14k*|march=1004k* \ 793 |march=interaptiv: -mips32r2} \ 794 %{march=mips32r3: -mips32r3} \ 795 %{march=mips32r5|march=p5600|march=m5100|march=m5101: -mips32r5} \ 796 %{march=mips32r6: -mips32r6} \ 797 %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000 \ 798 |march=xlr: -mips64} \ 799 %{march=mips64r2|march=loongson3a|march=gs464|march=gs464e|march=gs264e \ 800 |march=octeon|march=xlp: -mips64r2} \ 801 %{march=mips64r3: -mips64r3} \ 802 %{march=mips64r5: -mips64r5} \ 803 %{march=mips64r6|march=i6400|march=i6500|march=p6600: -mips64r6}}" 804 805 /* A spec that injects the default multilib ISA if no architecture is 806 specified. */ 807 808 #define MIPS_DEFAULT_ISA_LEVEL_SPEC \ 809 "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \ 810 %{!march=*: -" MULTILIB_ISA_DEFAULT "}}" 811 812 /* A spec that infers a -mhard-float or -msoft-float setting from an 813 -march argument. Note that soft-float and hard-float code are not 814 link-compatible. */ 815 816 #define MIPS_ARCH_FLOAT_SPEC \ 817 "%{mhard-float|msoft-float|mno-float|march=mips*:; \ 818 march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \ 819 |march=34kc|march=34kn|march=74kc|march=1004kc|march=5kc \ 820 |march=m14k*|march=m5101|march=octeon|march=xlr: -msoft-float; \ 821 march=*: -mhard-float}" 822 823 /* A spec condition that matches 32-bit options. It only works if 824 MIPS_ISA_LEVEL_SPEC has been applied. */ 825 826 #define MIPS_32BIT_OPTION_SPEC \ 827 "mips1|mips2|mips32*|mgp32" 828 829 /* A spec condition that matches architectures should be targeted with 830 o32 FPXX for compatibility reasons. */ 831 #define MIPS_FPXX_OPTION_SPEC \ 832 "mips2|mips3|mips4|mips5|mips32|mips32r2|mips32r3|mips32r5| \ 833 mips64|mips64r2|mips64r3|mips64r5" 834 835 /* Infer a -msynci setting from a -mips argument, on the assumption that 836 -msynci is desired where possible. */ 837 #define MIPS_ISA_SYNCI_SPEC \ 838 "%{msynci|mno-synci:;:%{mips32r2|mips32r3|mips32r5|mips32r6|mips64r2 \ 839 |mips64r3|mips64r5|mips64r6:-msynci;:-mno-synci}}" 840 841 /* Infer a -mnan=2008 setting from a -mips argument. */ 842 #define MIPS_ISA_NAN2008_SPEC \ 843 "%{mnan*:;mips32r6|mips64r6:-mnan=2008;march=m51*: \ 844 %{!msoft-float:-mnan=2008}}" 845 846 #if (MIPS_ABI_DEFAULT == ABI_O64 \ 847 || MIPS_ABI_DEFAULT == ABI_N32 \ 848 || MIPS_ABI_DEFAULT == ABI_64) 849 #define OPT_ARCH64 "mabi=32|mgp32:;" 850 #define OPT_ARCH32 "mabi=32|mgp32" 851 #else 852 #define OPT_ARCH64 "mabi=o64|mabi=n32|mabi=64|mgp64" 853 #define OPT_ARCH32 "mabi=o64|mabi=n32|mabi=64|mgp64:;" 854 #endif 855 856 /* Support for a compile-time default CPU, et cetera. The rules are: 857 --with-arch is ignored if -march is specified or a -mips is specified 858 (other than -mips16); likewise --with-arch-32 and --with-arch-64. 859 --with-tune is ignored if -mtune is specified; likewise 860 --with-tune-32 and --with-tune-64. 861 --with-abi is ignored if -mabi is specified. 862 --with-float is ignored if -mhard-float or -msoft-float are 863 specified. 864 --with-fpu is ignored if -msoft-float, -msingle-float or -mdouble-float are 865 specified. 866 --with-nan is ignored if -mnan is specified. 867 --with-fp-32 is ignored if -msoft-float, -msingle-float, -mmsa or -mfp are 868 specified. 869 --with-odd-spreg-32 is ignored if -msoft-float, -msingle-float, -modd-spreg 870 or -mno-odd-spreg are specified. 871 --with-divide is ignored if -mdivide-traps or -mdivide-breaks are 872 specified. */ 873 #define OPTION_DEFAULT_SPECS \ 874 {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \ 875 {"arch_32", "%{" OPT_ARCH32 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \ 876 {"arch_64", "%{" OPT_ARCH64 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \ 877 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \ 878 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \ 879 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \ 880 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \ 881 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \ 882 {"fpu", "%{!msoft-float:%{!msingle-float:%{!mdouble-float:-m%(VALUE)-float}}}" }, \ 883 {"nan", "%{!mnan=*:-mnan=%(VALUE)}" }, \ 884 {"fp_32", "%{" OPT_ARCH32 \ 885 ":%{!msoft-float:%{!msingle-float:%{!mfp*:%{!mmsa:-mfp%(VALUE)}}}}}" }, \ 886 {"odd_spreg_32", "%{" OPT_ARCH32 ":%{!msoft-float:%{!msingle-float:" \ 887 "%{!modd-spreg:%{!mno-odd-spreg:-m%(VALUE)}}}}}" }, \ 888 {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \ 889 {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }, \ 890 {"mips-plt", "%{!mplt:%{!mno-plt:-m%(VALUE)}}" }, \ 891 {"synci", "%{!msynci:%{!mno-synci:-m%(VALUE)}}" }, \ 892 {"lxc1-sxc1", "%{!mlxc1-sxc1:%{!mno-lxc1-sxc1:-m%(VALUE)}}" }, \ 893 {"madd4", "%{!mmadd4:%{!mno-madd4:-m%(VALUE)}}" } \ 894 895 /* A spec that infers the: 896 -mnan=2008 setting from a -mips argument, 897 -mdsp setting from a -march argument. 898 -mloongson-mmi setting from a -march argument. */ 899 #define BASE_DRIVER_SELF_SPECS \ 900 MIPS_ISA_NAN2008_SPEC, \ 901 MIPS_ASE_DSP_SPEC, \ 902 MIPS_ASE_LOONGSON_MMI_SPEC, \ 903 MIPS_ASE_LOONGSON_EXT_SPEC, \ 904 MIPS_ASE_MSA_SPEC 905 906 907 #define MIPS_ASE_DSP_SPEC \ 908 "%{!mno-dsp: \ 909 %{march=24ke*|march=34kc*|march=34kf*|march=34kx*|march=1004k* \ 910 |march=interaptiv: -mdsp} \ 911 %{march=74k*|march=m14ke*: %{!mno-dspr2: -mdspr2 -mdsp}}}" 912 913 #define MIPS_ASE_LOONGSON_MMI_SPEC \ 914 "%{!mno-loongson-mmi: \ 915 %{march=loongson2e|march=loongson2f|march=loongson3a: -mloongson-mmi}}" 916 917 #define MIPS_ASE_LOONGSON_EXT_SPEC \ 918 "%{!mno-loongson-ext: \ 919 %{march=loongson3a|march=gs464: -mloongson-ext} \ 920 %{march=gs464e|march=gs264e: %{!mno-loongson-ext2: \ 921 -mloongson-ext2 -mloongson-ext}}}" 922 923 #define MIPS_ASE_MSA_SPEC \ 924 "%{!mno-msa: \ 925 %{march=gs264e: -mmsa}}" 926 927 #define DRIVER_SELF_SPECS \ 928 MIPS_ISA_LEVEL_SPEC, \ 929 BASE_DRIVER_SELF_SPECS 930 931 #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \ 932 && ISA_HAS_COND_TRAP) 933 934 #define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY && !TARGET_MIPS16) 935 936 /* True if the ABI can only work with 64-bit integer registers. We 937 generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but 938 otherwise floating-point registers must also be 64-bit. */ 939 #define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64) 940 941 /* Likewise for 32-bit regs. */ 942 #define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32) 943 944 /* True if the file format uses 64-bit symbols. At present, this is 945 only true for n64, which uses 64-bit ELF. */ 946 #define FILE_HAS_64BIT_SYMBOLS (mips_abi == ABI_64) 947 948 /* True if symbols are 64 bits wide. This is usually determined by 949 the ABI's file format, but it can be overridden by -msym32. Note that 950 overriding the size with -msym32 changes the ABI of relocatable objects, 951 although it doesn't change the ABI of a fully-linked object. */ 952 #define ABI_HAS_64BIT_SYMBOLS (FILE_HAS_64BIT_SYMBOLS \ 953 && Pmode == DImode \ 954 && !TARGET_SYM32) 955 956 /* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3). */ 957 #define ISA_HAS_64BIT_REGS (ISA_MIPS3 \ 958 || ISA_MIPS4 \ 959 || ISA_MIPS64 \ 960 || ISA_MIPS64R2 \ 961 || ISA_MIPS64R3 \ 962 || ISA_MIPS64R5 \ 963 || ISA_MIPS64R6) 964 965 #define ISA_HAS_JR (mips_isa_rev <= 5) 966 967 #define ISA_HAS_DELAY_SLOTS 1 968 969 #define ISA_HAS_COMPACT_BRANCHES (mips_isa_rev >= 6) 970 971 /* ISA has branch likely instructions (e.g. mips2). */ 972 /* Disable branchlikely for tx39 until compare rewrite. They haven't 973 been generated up to this point. */ 974 #define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1 && mips_isa_rev <= 5) 975 976 /* ISA has 32 single-precision registers. */ 977 #define ISA_HAS_ODD_SPREG ((mips_isa_rev >= 1 \ 978 && !TARGET_GS464) \ 979 || TARGET_FLOAT64 \ 980 || TARGET_MIPS5900) 981 982 /* ISA has a three-operand multiplication instruction (usually spelt "mul"). */ 983 #define ISA_HAS_MUL3 ((TARGET_MIPS3900 \ 984 || TARGET_MIPS5400 \ 985 || TARGET_MIPS5500 \ 986 || TARGET_MIPS5900 \ 987 || TARGET_MIPS7000 \ 988 || TARGET_MIPS9000 \ 989 || TARGET_MAD \ 990 || (mips_isa_rev >= 1 \ 991 && mips_isa_rev <= 5)) \ 992 && !TARGET_MIPS16) 993 994 /* ISA has a three-operand multiplication instruction. */ 995 #define ISA_HAS_DMUL3 (TARGET_64BIT \ 996 && TARGET_OCTEON \ 997 && !TARGET_MIPS16) 998 999 /* ISA has HI and LO registers. */ 1000 #define ISA_HAS_HILO (mips_isa_rev <= 5) 1001 1002 /* ISA supports instructions DMULT and DMULTU. */ 1003 #define ISA_HAS_DMULT (TARGET_64BIT \ 1004 && !TARGET_MIPS5900 \ 1005 && mips_isa_rev <= 5) 1006 1007 /* ISA supports instructions MULT and MULTU. */ 1008 #define ISA_HAS_MULT (mips_isa_rev <= 5) 1009 1010 /* ISA supports instructions MUL, MULU, MUH, MUHU. */ 1011 #define ISA_HAS_R6MUL (mips_isa_rev >= 6) 1012 1013 /* ISA supports instructions DMUL, DMULU, DMUH, DMUHU. */ 1014 #define ISA_HAS_R6DMUL (TARGET_64BIT && mips_isa_rev >= 6) 1015 1016 /* For Loongson, it is preferable to use the Loongson-specific division and 1017 modulo instructions instead of the regular (D)DIV(U) instruction, 1018 because the former are faster and can also have the effect of reducing 1019 code size. */ 1020 #define ISA_AVOID_DIV_HILO ((TARGET_LOONGSON_2EF \ 1021 || TARGET_GS464) \ 1022 && !TARGET_MIPS16) 1023 1024 /* ISA supports instructions DDIV and DDIVU. */ 1025 #define ISA_HAS_DDIV (TARGET_64BIT \ 1026 && !TARGET_MIPS5900 \ 1027 && !ISA_AVOID_DIV_HILO \ 1028 && mips_isa_rev <= 5) 1029 1030 /* ISA supports instructions DIV and DIVU. 1031 This is always true, but the macro is needed for ISA_HAS_<D>DIV 1032 in mips.md. */ 1033 #define ISA_HAS_DIV (!ISA_AVOID_DIV_HILO \ 1034 && mips_isa_rev <= 5) 1035 1036 /* ISA supports instructions DIV, DIVU, MOD and MODU. */ 1037 #define ISA_HAS_R6DIV (mips_isa_rev >= 6) 1038 1039 /* ISA supports instructions DDIV, DDIVU, DMOD and DMODU. */ 1040 #define ISA_HAS_R6DDIV (TARGET_64BIT && mips_isa_rev >= 6) 1041 1042 /* ISA has the floating-point conditional move instructions introduced 1043 in mips4. */ 1044 #define ISA_HAS_FP_CONDMOVE ((ISA_MIPS4 \ 1045 || (mips_isa_rev >= 1 \ 1046 && mips_isa_rev <= 5)) \ 1047 && !TARGET_MIPS5500 \ 1048 && !TARGET_MIPS16) 1049 1050 /* ISA has the integer conditional move instructions introduced in mips4 and 1051 ST Loongson 2E/2F. */ 1052 #define ISA_HAS_CONDMOVE (ISA_HAS_FP_CONDMOVE \ 1053 || TARGET_MIPS5900 \ 1054 || TARGET_LOONGSON_2EF) 1055 1056 /* ISA has LDC1 and SDC1. */ 1057 #define ISA_HAS_LDC1_SDC1 (!ISA_MIPS1 \ 1058 && !TARGET_MIPS5900 \ 1059 && !TARGET_MIPS16) 1060 1061 /* ISA has the mips4 FP condition code instructions: FP-compare to CC, 1062 branch on CC, and move (both FP and non-FP) on CC. */ 1063 #define ISA_HAS_8CC (ISA_MIPS4 \ 1064 || (mips_isa_rev >= 1 \ 1065 && mips_isa_rev <= 5)) 1066 1067 /* ISA has the FP condition code instructions that store the flag in an 1068 FP register. */ 1069 #define ISA_HAS_CCF (mips_isa_rev >= 6) 1070 1071 #define ISA_HAS_SEL (mips_isa_rev >= 6) 1072 1073 /* This is a catch all for other mips4 instructions: indexed load, the 1074 FP madd and msub instructions, and the FP recip and recip sqrt 1075 instructions. Note that this macro should only be used by other 1076 ISA_HAS_* macros. */ 1077 #define ISA_HAS_FP4 ((ISA_MIPS4 \ 1078 || ISA_MIPS64 \ 1079 || (mips_isa_rev >= 2 \ 1080 && mips_isa_rev <= 5)) \ 1081 && !TARGET_MIPS16) 1082 1083 /* ISA has floating-point indexed load and store instructions 1084 (LWXC1, LDXC1, SWXC1 and SDXC1). */ 1085 #define ISA_HAS_LXC1_SXC1 (ISA_HAS_FP4 \ 1086 && mips_lxc1_sxc1) 1087 1088 /* ISA has paired-single instructions. */ 1089 #define ISA_HAS_PAIRED_SINGLE ((ISA_MIPS64 \ 1090 || (mips_isa_rev >= 2 \ 1091 && mips_isa_rev <= 5)) \ 1092 && !TARGET_OCTEON) 1093 1094 /* ISA has conditional trap instructions. */ 1095 #define ISA_HAS_COND_TRAP (!ISA_MIPS1 \ 1096 && !TARGET_MIPS16) 1097 1098 /* ISA has conditional trap with immediate instructions. */ 1099 #define ISA_HAS_COND_TRAPI (!ISA_MIPS1 \ 1100 && mips_isa_rev <= 5 \ 1101 && !TARGET_MIPS16) 1102 1103 /* ISA has integer multiply-accumulate instructions, madd and msub. */ 1104 #define ISA_HAS_MADD_MSUB (mips_isa_rev >= 1 \ 1105 && mips_isa_rev <= 5) 1106 1107 /* Integer multiply-accumulate instructions should be generated. */ 1108 #define GENERATE_MADD_MSUB (TARGET_IMADD && !TARGET_MIPS16) 1109 1110 /* ISA has 4 operand fused madd instructions of the form 1111 'd = [+-] (a * b [+-] c)'. */ 1112 #define ISA_HAS_FUSED_MADD4 (mips_madd4 \ 1113 && (TARGET_MIPS8000 \ 1114 || TARGET_GS464 \ 1115 || TARGET_GS464E \ 1116 || TARGET_GS264E)) 1117 1118 /* ISA has 4 operand unfused madd instructions of the form 1119 'd = [+-] (a * b [+-] c)'. */ 1120 #define ISA_HAS_UNFUSED_MADD4 (mips_madd4 \ 1121 && ISA_HAS_FP4 \ 1122 && !TARGET_MIPS8000 \ 1123 && !TARGET_GS464 \ 1124 && !TARGET_GS464E \ 1125 && !TARGET_GS264E) 1126 1127 /* ISA has 3 operand r6 fused madd instructions of the form 1128 'c = c [+-] (a * b)'. */ 1129 #define ISA_HAS_FUSED_MADDF (mips_isa_rev >= 6) 1130 1131 /* ISA has 3 operand loongson fused madd instructions of the form 1132 'c = [+-] (a * b [+-] c)'. */ 1133 #define ISA_HAS_FUSED_MADD3 TARGET_LOONGSON_2EF 1134 1135 /* ISA has floating-point RECIP.fmt and RSQRT.fmt instructions. The 1136 MIPS64 rev. 1 ISA says that RECIP.D and RSQRT.D are unpredictable when 1137 doubles are stored in pairs of FPRs, so for safety's sake, we apply 1138 this restriction to the MIPS IV ISA too. */ 1139 #define ISA_HAS_FP_RECIP_RSQRT(MODE) \ 1140 (((ISA_HAS_FP4 \ 1141 && ((MODE) == SFmode \ 1142 || ((TARGET_FLOAT64 \ 1143 || mips_isa_rev >= 2) \ 1144 && (MODE) == DFmode))) \ 1145 || (((MODE) == SFmode \ 1146 || (MODE) == DFmode) \ 1147 && (mips_isa_rev >= 6)) \ 1148 || (TARGET_SB1 \ 1149 && (MODE) == V2SFmode)) \ 1150 && !TARGET_MIPS16) 1151 1152 #define ISA_HAS_LWL_LWR (mips_isa_rev <= 5 && !TARGET_MIPS16) 1153 1154 #define ISA_HAS_IEEE_754_LEGACY (mips_isa_rev <= 5) 1155 1156 #define ISA_HAS_IEEE_754_2008 (mips_isa_rev >= 2) 1157 1158 /* ISA has count leading zeroes/ones instruction (not implemented). */ 1159 #define ISA_HAS_CLZ_CLO (mips_isa_rev >= 1 && !TARGET_MIPS16) 1160 1161 /* ISA has count trailing zeroes/ones instruction. */ 1162 #define ISA_HAS_CTZ_CTO (TARGET_LOONGSON_EXT2) 1163 1164 /* ISA has three operand multiply instructions that put 1165 the high part in an accumulator: mulhi or mulhiu. */ 1166 #define ISA_HAS_MULHI ((TARGET_MIPS5400 \ 1167 || TARGET_MIPS5500 \ 1168 || TARGET_SR71K) \ 1169 && !TARGET_MIPS16) 1170 1171 /* ISA has three operand multiply instructions that negate the 1172 result and put the result in an accumulator. */ 1173 #define ISA_HAS_MULS ((TARGET_MIPS5400 \ 1174 || TARGET_MIPS5500 \ 1175 || TARGET_SR71K) \ 1176 && !TARGET_MIPS16) 1177 1178 /* ISA has three operand multiply instructions that subtract the 1179 result from a 4th operand and put the result in an accumulator. */ 1180 #define ISA_HAS_MSAC ((TARGET_MIPS5400 \ 1181 || TARGET_MIPS5500 \ 1182 || TARGET_SR71K) \ 1183 && !TARGET_MIPS16) 1184 1185 /* ISA has three operand multiply instructions that add the result 1186 to a 4th operand and put the result in an accumulator. */ 1187 #define ISA_HAS_MACC ((TARGET_MIPS4120 \ 1188 || TARGET_MIPS4130 \ 1189 || TARGET_MIPS5400 \ 1190 || TARGET_MIPS5500 \ 1191 || TARGET_SR71K) \ 1192 && !TARGET_MIPS16) 1193 1194 /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions. */ 1195 #define ISA_HAS_MACCHI ((TARGET_MIPS4120 \ 1196 || TARGET_MIPS4130) \ 1197 && !TARGET_MIPS16) 1198 1199 /* ISA has the "ror" (rotate right) instructions. */ 1200 #define ISA_HAS_ROR ((mips_isa_rev >= 2 \ 1201 || TARGET_MIPS5400 \ 1202 || TARGET_MIPS5500 \ 1203 || TARGET_SR71K \ 1204 || TARGET_SMARTMIPS) \ 1205 && !TARGET_MIPS16) 1206 1207 /* ISA has the WSBH (word swap bytes within halfwords) instruction. 1208 64-bit targets also provide DSBH and DSHD. */ 1209 #define ISA_HAS_WSBH (mips_isa_rev >= 2 && !TARGET_MIPS16) 1210 1211 /* ISA has data prefetch instructions. This controls use of 'pref'. */ 1212 #define ISA_HAS_PREFETCH ((ISA_MIPS4 \ 1213 || TARGET_LOONGSON_2EF \ 1214 || TARGET_MIPS5900 \ 1215 || mips_isa_rev >= 1) \ 1216 && !TARGET_MIPS16) 1217 1218 /* ISA has data prefetch, LL and SC with limited 9-bit displacement. */ 1219 #define ISA_HAS_9BIT_DISPLACEMENT (mips_isa_rev >= 6) 1220 1221 /* ISA has data indexed prefetch instructions. This controls use of 1222 'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT. 1223 (prefx is a cop1x instruction, so can only be used if FP is 1224 enabled.) */ 1225 #define ISA_HAS_PREFETCHX (ISA_HAS_FP4 \ 1226 || TARGET_LOONGSON_EXT \ 1227 || TARGET_LOONGSON_EXT2) 1228 1229 /* True if trunc.w.s and trunc.w.d are real (not synthetic) 1230 instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d 1231 also requires TARGET_DOUBLE_FLOAT. */ 1232 #define ISA_HAS_TRUNC_W (!ISA_MIPS1) 1233 1234 /* ISA includes the MIPS32r2 seb and seh instructions. */ 1235 #define ISA_HAS_SEB_SEH (mips_isa_rev >= 2 && !TARGET_MIPS16) 1236 1237 /* ISA includes the MIPS32/64 rev 2 ext and ins instructions. */ 1238 #define ISA_HAS_EXT_INS (mips_isa_rev >= 2 && !TARGET_MIPS16) 1239 1240 /* ISA has instructions for accessing top part of 64-bit fp regs. */ 1241 #define ISA_HAS_MXHC1 (!TARGET_FLOAT32 \ 1242 && mips_isa_rev >= 2) 1243 1244 /* ISA has lwxs instruction (load w/scaled index address. */ 1245 #define ISA_HAS_LWXS ((TARGET_SMARTMIPS || TARGET_MICROMIPS) \ 1246 && !TARGET_MIPS16) 1247 1248 /* ISA has lbx, lbux, lhx, lhx, lhux, lwx, lwux, or ldx instruction. */ 1249 #define ISA_HAS_LBX (TARGET_OCTEON2) 1250 #define ISA_HAS_LBUX (ISA_HAS_DSP || TARGET_OCTEON2) 1251 #define ISA_HAS_LHX (ISA_HAS_DSP || TARGET_OCTEON2) 1252 #define ISA_HAS_LHUX (TARGET_OCTEON2) 1253 #define ISA_HAS_LWX (ISA_HAS_DSP || TARGET_OCTEON2) 1254 #define ISA_HAS_LWUX (TARGET_OCTEON2 && TARGET_64BIT) 1255 #define ISA_HAS_LDX ((ISA_HAS_DSP || TARGET_OCTEON2) \ 1256 && TARGET_64BIT) 1257 1258 /* The DSP ASE is available. */ 1259 #define ISA_HAS_DSP (TARGET_DSP && !TARGET_MIPS16) 1260 1261 /* Revision 2 of the DSP ASE is available. */ 1262 #define ISA_HAS_DSPR2 (TARGET_DSPR2 && !TARGET_MIPS16) 1263 1264 /* The MSA ASE is available. */ 1265 #define ISA_HAS_MSA (TARGET_MSA && !TARGET_MIPS16) 1266 1267 /* True if the result of a load is not available to the next instruction. 1268 A nop will then be needed between instructions like "lw $4,..." 1269 and "addiu $4,$4,1". */ 1270 #define ISA_HAS_LOAD_DELAY (ISA_MIPS1 \ 1271 && !TARGET_MIPS3900 \ 1272 && !TARGET_MIPS5900 \ 1273 && !TARGET_MIPS16 \ 1274 && !TARGET_MICROMIPS) 1275 1276 /* Likewise mtc1 and mfc1. */ 1277 #define ISA_HAS_XFER_DELAY (mips_isa <= 3 \ 1278 && !TARGET_MIPS5900 \ 1279 && !TARGET_LOONGSON_2EF) 1280 1281 /* Likewise floating-point comparisons. */ 1282 #define ISA_HAS_FCMP_DELAY (mips_isa <= 3 \ 1283 && !TARGET_MIPS5900 \ 1284 && !TARGET_LOONGSON_2EF) 1285 1286 /* True if mflo and mfhi can be immediately followed by instructions 1287 which write to the HI and LO registers. 1288 1289 According to MIPS specifications, MIPS ISAs I, II, and III need 1290 (at least) two instructions between the reads of HI/LO and 1291 instructions which write them, and later ISAs do not. Contradicting 1292 the MIPS specifications, some MIPS IV processor user manuals (e.g. 1293 the UM for the NEC Vr5000) document needing the instructions between 1294 HI/LO reads and writes, as well. Therefore, we declare only MIPS32, 1295 MIPS64 and later ISAs to have the interlocks, plus any specific 1296 earlier-ISA CPUs for which CPU documentation declares that the 1297 instructions are really interlocked. */ 1298 #define ISA_HAS_HILO_INTERLOCKS (mips_isa_rev >= 1 \ 1299 || TARGET_MIPS5500 \ 1300 || TARGET_MIPS5900 \ 1301 || TARGET_LOONGSON_2EF) 1302 1303 /* ISA includes synci, jr.hb and jalr.hb. */ 1304 #define ISA_HAS_SYNCI (mips_isa_rev >= 2 && !TARGET_MIPS16) 1305 1306 /* ISA includes sync. */ 1307 #define ISA_HAS_SYNC ((mips_isa >= 2 || TARGET_MIPS3900) && !TARGET_MIPS16) 1308 #define GENERATE_SYNC \ 1309 (target_flags_explicit & MASK_LLSC \ 1310 ? TARGET_LLSC && !TARGET_MIPS16 \ 1311 : ISA_HAS_SYNC) 1312 1313 /* ISA includes ll and sc. Note that this implies ISA_HAS_SYNC 1314 because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC 1315 instructions. */ 1316 #define ISA_HAS_LL_SC (mips_isa >= 2 && !TARGET_MIPS5900 && !TARGET_MIPS16) 1317 #define GENERATE_LL_SC \ 1318 (target_flags_explicit & MASK_LLSC \ 1319 ? TARGET_LLSC && !TARGET_MIPS16 \ 1320 : ISA_HAS_LL_SC) 1321 1322 #define ISA_HAS_SWAP (TARGET_XLP) 1323 #define ISA_HAS_LDADD (TARGET_XLP) 1324 1325 /* ISA includes the baddu instruction. */ 1326 #define ISA_HAS_BADDU (TARGET_OCTEON && !TARGET_MIPS16) 1327 1328 /* ISA includes the bbit* instructions. */ 1329 #define ISA_HAS_BBIT (TARGET_OCTEON && !TARGET_MIPS16) 1330 1331 /* ISA includes the cins instruction. */ 1332 #define ISA_HAS_CINS (TARGET_OCTEON && !TARGET_MIPS16) 1333 1334 /* ISA includes the exts instruction. */ 1335 #define ISA_HAS_EXTS (TARGET_OCTEON && !TARGET_MIPS16) 1336 1337 /* ISA includes the seq and sne instructions. */ 1338 #define ISA_HAS_SEQ_SNE (TARGET_OCTEON && !TARGET_MIPS16) 1339 1340 /* ISA includes the pop instruction. */ 1341 #define ISA_HAS_POP (TARGET_OCTEON && !TARGET_MIPS16) 1342 1343 /* The CACHE instruction is available in non-MIPS16 code. */ 1344 #define TARGET_CACHE_BUILTIN (mips_isa >= 3) 1345 1346 /* The CACHE instruction is available. */ 1347 #define ISA_HAS_CACHE (TARGET_CACHE_BUILTIN && !TARGET_MIPS16) 1348 1349 /* Tell collect what flags to pass to nm. */ 1350 #ifndef NM_FLAGS 1351 #define NM_FLAGS "-Bn" 1352 #endif 1353 1354 1355 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to 1356 the assembler. It may be overridden by subtargets. 1357 1358 Beginning with gas 2.13, -mdebug must be passed to correctly handle 1359 COFF debugging info. */ 1360 1361 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC 1362 #define SUBTARGET_ASM_DEBUGGING_SPEC "\ 1363 %{g} %{g0} %{g1} %{g2} %{g3} \ 1364 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \ 1365 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \ 1366 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3}" 1367 #endif 1368 1369 /* FP_ASM_SPEC represents the floating-point options that must be passed 1370 to the assembler when FPXX support exists. Prior to that point the 1371 assembler could accept the options but were not required for 1372 correctness. We only add the options when absolutely necessary 1373 because passing -msoft-float to the assembler will cause it to reject 1374 all hard-float instructions which may require some user code to be 1375 updated. */ 1376 1377 #ifdef HAVE_AS_DOT_MODULE 1378 #define FP_ASM_SPEC "\ 1379 %{mhard-float} %{msoft-float} \ 1380 %{msingle-float} %{mdouble-float}" 1381 #else 1382 #define FP_ASM_SPEC 1383 #endif 1384 1385 /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be 1386 overridden by subtargets. */ 1387 1388 #ifndef SUBTARGET_ASM_SPEC 1389 #define SUBTARGET_ASM_SPEC "" 1390 #endif 1391 1392 #undef ASM_SPEC 1393 #define ASM_SPEC "\ 1394 %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \ 1395 %{mips32*} %{mips64*} \ 1396 %{mips16} %{mno-mips16:-no-mips16} \ 1397 %{mmicromips} %{mno-micromips} \ 1398 %{mips3d} %{mno-mips3d:-no-mips3d} \ 1399 %{mdmx} %{mno-mdmx:-no-mdmx} \ 1400 %{mdsp} %{mno-dsp} \ 1401 %{mdspr2} %{mno-dspr2} \ 1402 %{mmcu} %{mno-mcu} \ 1403 %{meva} %{mno-eva} \ 1404 %{mvirt} %{mno-virt} \ 1405 %{mxpa} %{mno-xpa} \ 1406 %{mcrc} %{mno-crc} \ 1407 %{mginv} %{mno-ginv} \ 1408 %{mmsa} %{mno-msa} \ 1409 %{mloongson-mmi} %{mno-loongson-mmi} \ 1410 %{mloongson-ext} %{mno-loongson-ext} \ 1411 %{mloongson-ext2} %{mno-loongson-ext2} \ 1412 %{msmartmips} %{mno-smartmips} \ 1413 %{mmt} %{mno-mt} \ 1414 %{mfix-r5900} %{mno-fix-r5900} \ 1415 %{mfix-rm7000} %{mno-fix-rm7000} \ 1416 %{mfix-vr4120} %{mfix-vr4130} \ 1417 %{mfix-24k} \ 1418 %{noasmopt:-O0; O0|fno-delayed-branch:-O1; O*:-O2; :-O1} \ 1419 %(subtarget_asm_debugging_spec) \ 1420 %{mabi=*} %{!mabi=*: %(asm_abi_default_spec)} \ 1421 %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \ 1422 %{mfp32} %{mfpxx} %{mfp64} %{mnan=*} \ 1423 %{modd-spreg} %{mno-odd-spreg} \ 1424 %{mshared} %{mno-shared} \ 1425 %{msym32} %{mno-sym32} \ 1426 %{mtune=*}" \ 1427 FP_ASM_SPEC "\ 1428 %(subtarget_asm_spec)" 1429 1430 /* Extra switches sometimes passed to the linker. */ 1431 1432 #ifndef LINK_SPEC 1433 #define LINK_SPEC "\ 1434 %(endian_spec) \ 1435 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32*} %{mips64*} \ 1436 %{shared}" 1437 #endif /* LINK_SPEC defined */ 1438 1439 1440 /* Specs for the compiler proper */ 1441 1442 /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be 1443 overridden by subtargets. */ 1444 #ifndef SUBTARGET_CC1_SPEC 1445 #define SUBTARGET_CC1_SPEC "" 1446 #endif 1447 1448 /* CC1_SPEC is the set of arguments to pass to the compiler proper. */ 1449 1450 #undef CC1_SPEC 1451 #define CC1_SPEC "\ 1452 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \ 1453 %(subtarget_cc1_spec)" 1454 1455 /* Preprocessor specs. */ 1456 1457 /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be 1458 overridden by subtargets. */ 1459 #ifndef SUBTARGET_CPP_SPEC 1460 #define SUBTARGET_CPP_SPEC "" 1461 #endif 1462 1463 #define CPP_SPEC "%(subtarget_cpp_spec)" 1464 1465 /* This macro defines names of additional specifications to put in the specs 1466 that can be used in various specifications like CC1_SPEC. Its definition 1467 is an initializer with a subgrouping for each command option. 1468 1469 Each subgrouping contains a string constant, that defines the 1470 specification name, and a string constant that used by the GCC driver 1471 program. 1472 1473 Do not define this macro if it does not need to do anything. */ 1474 1475 #define EXTRA_SPECS \ 1476 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \ 1477 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \ 1478 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \ 1479 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \ 1480 { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT }, \ 1481 { "endian_spec", ENDIAN_SPEC }, \ 1482 SUBTARGET_EXTRA_SPECS 1483 1484 #ifndef SUBTARGET_EXTRA_SPECS 1485 #define SUBTARGET_EXTRA_SPECS 1486 #endif 1487 1488 #define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */ 1489 #define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */ 1490 1491 #ifndef PREFERRED_DEBUGGING_TYPE 1492 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG 1493 #endif 1494 1495 /* The size of DWARF addresses should be the same as the size of symbols 1496 in the target file format. They shouldn't depend on things like -msym32, 1497 because many DWARF consumers do not allow the mixture of address sizes 1498 that one would then get from linking -msym32 code with -msym64 code. 1499 1500 Note that the default POINTER_SIZE test is not appropriate for MIPS. 1501 EABI64 has 64-bit pointers but uses 32-bit ELF. */ 1502 #define DWARF2_ADDR_SIZE (FILE_HAS_64BIT_SYMBOLS ? 8 : 4) 1503 1504 /* By default, turn on GDB extensions. */ 1505 #define DEFAULT_GDB_EXTENSIONS 1 1506 1507 /* Registers may have a prefix which can be ignored when matching 1508 user asm and register definitions. */ 1509 #ifndef REGISTER_PREFIX 1510 #define REGISTER_PREFIX "$" 1511 #endif 1512 1513 /* Local compiler-generated symbols must have a prefix that the assembler 1514 understands. By default, this is $, although some targets (e.g., 1515 NetBSD-ELF) need to override this. */ 1516 1517 #ifndef LOCAL_LABEL_PREFIX 1518 #define LOCAL_LABEL_PREFIX "$" 1519 #endif 1520 1521 /* By default on the mips, external symbols do not have an underscore 1522 prepended, but some targets (e.g., NetBSD) require this. */ 1523 1524 #ifndef USER_LABEL_PREFIX 1525 #define USER_LABEL_PREFIX "" 1526 #endif 1527 1528 /* On Sun 4, this limit is 2048. We use 1500 to be safe, 1529 since the length can run past this up to a continuation point. */ 1530 #undef DBX_CONTIN_LENGTH 1531 #define DBX_CONTIN_LENGTH 1500 1532 1533 /* How to renumber registers for dbx and gdb. */ 1534 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO] 1535 1536 /* The mapping from gcc register number to DWARF 2 CFA column number. */ 1537 #define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO] 1538 1539 /* The DWARF 2 CFA column which tracks the return address. */ 1540 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM 1541 1542 /* Before the prologue, RA lives in r31. */ 1543 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM) 1544 1545 /* Describe how we implement __builtin_eh_return. */ 1546 #define EH_RETURN_DATA_REGNO(N) \ 1547 ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM) 1548 1549 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3) 1550 1551 #define EH_USES(N) mips_eh_uses (N) 1552 1553 /* Offsets recorded in opcodes are a multiple of this alignment factor. 1554 The default for this in 64-bit mode is 8, which causes problems with 1555 SFmode register saves. */ 1556 #define DWARF_CIE_DATA_ALIGNMENT -4 1557 1558 /* Correct the offset of automatic variables and arguments. Note that 1559 the MIPS debug format wants all automatic variables and arguments 1560 to be in terms of the virtual frame pointer (stack pointer before 1561 any adjustment in the function), while the MIPS 3.0 linker wants 1562 the frame pointer to be the stack pointer after the initial 1563 adjustment. */ 1564 1565 #define DEBUGGER_AUTO_OFFSET(X) \ 1566 mips_debugger_offset (X, (HOST_WIDE_INT) 0) 1567 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \ 1568 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET) 1569 1570 /* Target machine storage layout */ 1571 1572 #define BITS_BIG_ENDIAN 0 1573 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0) 1574 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0) 1575 1576 #define MAX_BITS_PER_WORD 64 1577 1578 /* Width of a word, in units (bytes). */ 1579 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4) 1580 #ifndef IN_LIBGCC2 1581 #define MIN_UNITS_PER_WORD 4 1582 #endif 1583 1584 /* Width of a MSA vector register in bytes. */ 1585 #define UNITS_PER_MSA_REG 16 1586 /* Width of a MSA vector register in bits. */ 1587 #define BITS_PER_MSA_REG (UNITS_PER_MSA_REG * BITS_PER_UNIT) 1588 1589 /* For MIPS, width of a floating point register. */ 1590 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4) 1591 1592 /* The number of consecutive floating-point registers needed to store the 1593 largest format supported by the FPU. */ 1594 #define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2) 1595 1596 /* The number of consecutive floating-point registers needed to store the 1597 smallest format supported by the FPU. */ 1598 #define MIN_FPRS_PER_FMT \ 1599 (TARGET_ODD_SPREG ? 1 : MAX_FPRS_PER_FMT) 1600 1601 /* The largest size of value that can be held in floating-point 1602 registers and moved with a single instruction. */ 1603 #define UNITS_PER_HWFPVALUE \ 1604 (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG) 1605 1606 /* The largest size of value that can be held in floating-point 1607 registers. */ 1608 #define UNITS_PER_FPVALUE \ 1609 (TARGET_SOFT_FLOAT_ABI ? 0 \ 1610 : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \ 1611 : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT) 1612 1613 /* The number of bytes in a double. */ 1614 #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT) 1615 1616 /* Set the sizes of the core types. */ 1617 #define SHORT_TYPE_SIZE 16 1618 #define INT_TYPE_SIZE 32 1619 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32) 1620 #define LONG_LONG_TYPE_SIZE 64 1621 1622 #define FLOAT_TYPE_SIZE 32 1623 #define DOUBLE_TYPE_SIZE 64 1624 #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64) 1625 1626 /* Define the sizes of fixed-point types. */ 1627 #define SHORT_FRACT_TYPE_SIZE 8 1628 #define FRACT_TYPE_SIZE 16 1629 #define LONG_FRACT_TYPE_SIZE 32 1630 #define LONG_LONG_FRACT_TYPE_SIZE 64 1631 1632 #define SHORT_ACCUM_TYPE_SIZE 16 1633 #define ACCUM_TYPE_SIZE 32 1634 #define LONG_ACCUM_TYPE_SIZE 64 1635 /* FIXME. LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC 1636 doesn't support 128-bit integers for MIPS32 currently. */ 1637 #define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64) 1638 1639 /* long double is not a fixed mode, but the idea is that, if we 1640 support long double, we also want a 128-bit integer type. */ 1641 #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE 1642 1643 /* Width in bits of a pointer. */ 1644 #ifndef POINTER_SIZE 1645 #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32) 1646 #endif 1647 1648 /* Allocation boundary (in *bits*) for storing arguments in argument list. */ 1649 #define PARM_BOUNDARY BITS_PER_WORD 1650 1651 /* Allocation boundary (in *bits*) for the code of a function. */ 1652 #define FUNCTION_BOUNDARY 32 1653 1654 /* Alignment of field after `int : 0' in a structure. */ 1655 #define EMPTY_FIELD_BOUNDARY 32 1656 1657 /* Every structure's size must be a multiple of this. */ 1658 /* 8 is observed right on a DECstation and on riscos 4.02. */ 1659 #define STRUCTURE_SIZE_BOUNDARY 8 1660 1661 /* There is no point aligning anything to a rounder boundary than 1662 LONG_DOUBLE_TYPE_SIZE, unless under MSA the bigggest alignment is 1663 BITS_PER_MSA_REG. */ 1664 #define BIGGEST_ALIGNMENT \ 1665 (ISA_HAS_MSA ? BITS_PER_MSA_REG : LONG_DOUBLE_TYPE_SIZE) 1666 1667 /* All accesses must be aligned. */ 1668 #define STRICT_ALIGNMENT 1 1669 1670 /* Define this if you wish to imitate the way many other C compilers 1671 handle alignment of bitfields and the structures that contain 1672 them. 1673 1674 The behavior is that the type written for a bit-field (`int', 1675 `short', or other integer type) imposes an alignment for the 1676 entire structure, as if the structure really did contain an 1677 ordinary field of that type. In addition, the bit-field is placed 1678 within the structure so that it would fit within such a field, 1679 not crossing a boundary for it. 1680 1681 Thus, on most machines, a bit-field whose type is written as `int' 1682 would not cross a four-byte boundary, and would force four-byte 1683 alignment for the whole structure. (The alignment used may not 1684 be four bytes; it is controlled by the other alignment 1685 parameters.) 1686 1687 If the macro is defined, its definition should be a C expression; 1688 a nonzero value for the expression enables this behavior. */ 1689 1690 #define PCC_BITFIELD_TYPE_MATTERS 1 1691 1692 /* If defined, a C expression to compute the alignment for a static 1693 variable. TYPE is the data type, and ALIGN is the alignment that 1694 the object would ordinarily have. The value of this macro is used 1695 instead of that alignment to align the object. 1696 1697 If this macro is not defined, then ALIGN is used. 1698 1699 One use of this macro is to increase alignment of medium-size 1700 data to make it all fit in fewer cache lines. Another is to 1701 cause character arrays to be word-aligned so that `strcpy' calls 1702 that copy constants to character arrays can be done inline. */ 1703 1704 #undef DATA_ALIGNMENT 1705 #define DATA_ALIGNMENT(TYPE, ALIGN) \ 1706 ((((ALIGN) < BITS_PER_WORD) \ 1707 && (TREE_CODE (TYPE) == ARRAY_TYPE \ 1708 || TREE_CODE (TYPE) == UNION_TYPE \ 1709 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN)) 1710 1711 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause 1712 character arrays to be word-aligned so that `strcpy' calls that copy 1713 constants to character arrays can be done inline, and 'strcmp' can be 1714 optimised to use word loads. */ 1715 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \ 1716 DATA_ALIGNMENT (TYPE, ALIGN) 1717 1718 #define PAD_VARARGS_DOWN \ 1719 (targetm.calls.function_arg_padding (TYPE_MODE (type), type) == PAD_DOWNWARD) 1720 1721 /* Define if operations between registers always perform the operation 1722 on the full register even if a narrower mode is specified. */ 1723 #define WORD_REGISTER_OPERATIONS 1 1724 1725 /* When in 64-bit mode, move insns will sign extend SImode and CCmode 1726 moves. All other references are zero extended. */ 1727 #define LOAD_EXTEND_OP(MODE) \ 1728 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \ 1729 ? SIGN_EXTEND : ZERO_EXTEND) 1730 1731 /* Define this macro if it is advisable to hold scalars in registers 1732 in a wider mode than that declared by the program. In such cases, 1733 the value is constrained to be within the bounds of the declared 1734 type, but kept valid in the wider mode. The signedness of the 1735 extension may differ from that of the type. */ 1736 1737 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \ 1738 if (GET_MODE_CLASS (MODE) == MODE_INT \ 1739 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \ 1740 { \ 1741 if ((MODE) == SImode) \ 1742 (UNSIGNEDP) = 0; \ 1743 (MODE) = Pmode; \ 1744 } 1745 1746 /* Pmode is always the same as ptr_mode, but not always the same as word_mode. 1747 Extensions of pointers to word_mode must be signed. */ 1748 #define POINTERS_EXTEND_UNSIGNED false 1749 1750 /* Define if loading short immediate values into registers sign extends. */ 1751 #define SHORT_IMMEDIATES_SIGN_EXTEND 1 1752 1753 /* The [d]clz instructions have the natural values at 0. */ 1754 1755 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \ 1756 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2) 1757 1758 /* Standard register usage. */ 1759 1760 /* Number of hardware registers. We have: 1761 1762 - 32 integer registers 1763 - 32 floating point registers 1764 - 8 condition code registers 1765 - 2 accumulator registers (hi and lo) 1766 - 32 registers each for coprocessors 0, 2 and 3 1767 - 4 fake registers: 1768 - ARG_POINTER_REGNUM 1769 - FRAME_POINTER_REGNUM 1770 - GOT_VERSION_REGNUM (see the comment above load_call<mode> for details) 1771 - CPRESTORE_SLOT_REGNUM 1772 - 2 dummy entries that were used at various times in the past. 1773 - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE 1774 - 6 DSP control registers */ 1775 1776 #define FIRST_PSEUDO_REGISTER 188 1777 1778 /* By default, fix the kernel registers ($26 and $27), the global 1779 pointer ($28) and the stack pointer ($29). This can change 1780 depending on the command-line options. 1781 1782 Regarding coprocessor registers: without evidence to the contrary, 1783 it's best to assume that each coprocessor register has a unique 1784 use. This can be overridden, in, e.g., mips_option_override or 1785 TARGET_CONDITIONAL_REGISTER_USAGE should the assumption be 1786 inappropriate for a particular target. */ 1787 1788 #define FIXED_REGISTERS \ 1789 { \ 1790 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 1791 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \ 1792 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 1793 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 1794 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \ 1795 /* COP0 registers */ \ 1796 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1797 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1798 /* COP2 registers */ \ 1799 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1800 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1801 /* COP3 registers */ \ 1802 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1803 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1804 /* 6 DSP accumulator registers & 6 control registers */ \ 1805 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 \ 1806 } 1807 1808 1809 /* Set up this array for o32 by default. 1810 1811 Note that we don't mark $31 as a call-clobbered register. The idea is 1812 that it's really the call instructions themselves which clobber $31. 1813 We don't care what the called function does with it afterwards. 1814 1815 This approach makes it easier to implement sibcalls. Unlike normal 1816 calls, sibcalls don't clobber $31, so the register reaches the 1817 called function in tact. EPILOGUE_USES says that $31 is useful 1818 to the called function. */ 1819 1820 #define CALL_USED_REGISTERS \ 1821 { \ 1822 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1823 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, \ 1824 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1825 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 1826 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1827 /* COP0 registers */ \ 1828 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1829 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1830 /* COP2 registers */ \ 1831 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1832 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1833 /* COP3 registers */ \ 1834 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1835 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1836 /* 6 DSP accumulator registers & 6 control registers */ \ 1837 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \ 1838 } 1839 1840 1841 /* Define this since $28, though fixed, is call-saved in many ABIs. */ 1842 1843 #define CALL_REALLY_USED_REGISTERS \ 1844 { /* General registers. */ \ 1845 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1846 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \ 1847 /* Floating-point registers. */ \ 1848 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1849 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 1850 /* Others. */ \ 1851 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, \ 1852 /* COP0 registers */ \ 1853 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 1854 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 1855 /* COP2 registers */ \ 1856 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 1857 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 1858 /* COP3 registers */ \ 1859 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 1860 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 1861 /* 6 DSP accumulator registers & 6 control registers */ \ 1862 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 \ 1863 } 1864 1865 /* Internal macros to classify a register number as to whether it's a 1866 general purpose register, a floating point register, a 1867 multiply/divide register, or a status register. */ 1868 1869 #define GP_REG_FIRST 0 1870 #define GP_REG_LAST 31 1871 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1) 1872 #define GP_DBX_FIRST 0 1873 #define K0_REG_NUM (GP_REG_FIRST + 26) 1874 #define K1_REG_NUM (GP_REG_FIRST + 27) 1875 #define KERNEL_REG_P(REGNO) (IN_RANGE (REGNO, K0_REG_NUM, K1_REG_NUM)) 1876 1877 #define FP_REG_FIRST 32 1878 #define FP_REG_LAST 63 1879 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1) 1880 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32) 1881 1882 #define MD_REG_FIRST 64 1883 #define MD_REG_LAST 65 1884 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1) 1885 #define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM) 1886 1887 #define MSA_REG_FIRST FP_REG_FIRST 1888 #define MSA_REG_LAST FP_REG_LAST 1889 #define MSA_REG_NUM FP_REG_NUM 1890 1891 /* The DWARF 2 CFA column which tracks the return address from a 1892 signal handler context. This means that to maintain backwards 1893 compatibility, no hard register can be assigned this column if it 1894 would need to be handled by the DWARF unwinder. */ 1895 #define DWARF_ALT_FRAME_RETURN_COLUMN 66 1896 1897 #define ST_REG_FIRST 67 1898 #define ST_REG_LAST 74 1899 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1) 1900 1901 1902 /* FIXME: renumber. */ 1903 #define COP0_REG_FIRST 80 1904 #define COP0_REG_LAST 111 1905 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1) 1906 1907 #define COP0_STATUS_REG_NUM (COP0_REG_FIRST + 12) 1908 #define COP0_CAUSE_REG_NUM (COP0_REG_FIRST + 13) 1909 #define COP0_EPC_REG_NUM (COP0_REG_FIRST + 14) 1910 1911 #define COP2_REG_FIRST 112 1912 #define COP2_REG_LAST 143 1913 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1) 1914 1915 #define COP3_REG_FIRST 144 1916 #define COP3_REG_LAST 175 1917 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1) 1918 1919 /* These definitions assume that COP0, 2 and 3 are numbered consecutively. */ 1920 #define ALL_COP_REG_FIRST COP0_REG_FIRST 1921 #define ALL_COP_REG_LAST COP3_REG_LAST 1922 #define ALL_COP_REG_NUM (ALL_COP_REG_LAST - ALL_COP_REG_FIRST + 1) 1923 1924 #define DSP_ACC_REG_FIRST 176 1925 #define DSP_ACC_REG_LAST 181 1926 #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1) 1927 1928 #define AT_REGNUM (GP_REG_FIRST + 1) 1929 #define HI_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1) 1930 #define LO_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST) 1931 1932 /* A few bitfield locations for the coprocessor registers. */ 1933 /* Request Interrupt Priority Level is from bit 10 to bit 15 of 1934 the cause register for the EIC interrupt mode. */ 1935 #define CAUSE_IPL 10 1936 /* COP1 Enable is at bit 29 of the status register. */ 1937 #define SR_COP1 29 1938 /* Interrupt Priority Level is from bit 10 to bit 15 of the status register. */ 1939 #define SR_IPL 10 1940 /* Interrupt masks start with IM0 at bit 8 to IM7 at bit 15 of the status 1941 register. */ 1942 #define SR_IM0 8 1943 /* Exception Level is at bit 1 of the status register. */ 1944 #define SR_EXL 1 1945 /* Interrupt Enable is at bit 0 of the status register. */ 1946 #define SR_IE 0 1947 1948 /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC. 1949 If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG 1950 should be used instead. */ 1951 #define FPSW_REGNUM ST_REG_FIRST 1952 1953 #define GP_REG_P(REGNO) \ 1954 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM) 1955 #define M16_REG_P(REGNO) \ 1956 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17) 1957 #define M16STORE_REG_P(REGNO) \ 1958 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 0 || (REGNO) == 17) 1959 #define FP_REG_P(REGNO) \ 1960 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM) 1961 #define MD_REG_P(REGNO) \ 1962 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM) 1963 #define ST_REG_P(REGNO) \ 1964 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM) 1965 #define COP0_REG_P(REGNO) \ 1966 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM) 1967 #define COP2_REG_P(REGNO) \ 1968 ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM) 1969 #define COP3_REG_P(REGNO) \ 1970 ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM) 1971 #define ALL_COP_REG_P(REGNO) \ 1972 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM) 1973 /* Test if REGNO is one of the 6 new DSP accumulators. */ 1974 #define DSP_ACC_REG_P(REGNO) \ 1975 ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM) 1976 /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators. */ 1977 #define ACC_REG_P(REGNO) \ 1978 (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO)) 1979 #define MSA_REG_P(REGNO) \ 1980 ((unsigned int) ((int) (REGNO) - MSA_REG_FIRST) < MSA_REG_NUM) 1981 1982 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X))) 1983 #define MSA_REG_RTX_P(X) (REG_P (X) && MSA_REG_P (REGNO (X))) 1984 1985 /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)). This is used 1986 to initialize the mips16 gp pseudo register. */ 1987 #define CONST_GP_P(X) \ 1988 (GET_CODE (X) == CONST \ 1989 && GET_CODE (XEXP (X, 0)) == UNSPEC \ 1990 && XINT (XEXP (X, 0), 1) == UNSPEC_GP) 1991 1992 /* Return coprocessor number from register number. */ 1993 1994 #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \ 1995 (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \ 1996 : COP3_REG_P (REGNO) ? '3' : '?') 1997 1998 1999 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \ 2000 mips_hard_regno_rename_ok (OLD_REG, NEW_REG) 2001 2002 /* Select a register mode required for caller save of hard regno REGNO. */ 2003 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \ 2004 mips_hard_regno_caller_save_mode (REGNO, NREGS, MODE) 2005 2006 /* Register to use for pushing function arguments. */ 2007 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29) 2008 2009 /* These two registers don't really exist: they get eliminated to either 2010 the stack or hard frame pointer. */ 2011 #define ARG_POINTER_REGNUM 77 2012 #define FRAME_POINTER_REGNUM 78 2013 2014 /* $30 is not available on the mips16, so we use $17 as the frame 2015 pointer. */ 2016 #define HARD_FRAME_POINTER_REGNUM \ 2017 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30) 2018 2019 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0 2020 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0 2021 2022 /* Register in which static-chain is passed to a function. */ 2023 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 15) 2024 2025 /* Registers used as temporaries in prologue/epilogue code: 2026 2027 - If a MIPS16 PIC function needs access to _gp, it first loads 2028 the value into MIPS16_PIC_TEMP and then copies it to $gp. 2029 2030 - The prologue can use MIPS_PROLOGUE_TEMP as a general temporary 2031 register. The register must not conflict with MIPS16_PIC_TEMP. 2032 2033 - If we aren't generating MIPS16 code, the prologue can also use 2034 MIPS_PROLOGUE_TEMP2 as a general temporary register. 2035 2036 - The epilogue can use MIPS_EPILOGUE_TEMP as a general temporary 2037 register. 2038 2039 If we're generating MIPS16 code, these registers must come from the 2040 core set of 8. The prologue registers mustn't conflict with any 2041 incoming arguments, the static chain pointer, or the frame pointer. 2042 The epilogue temporary mustn't conflict with the return registers, 2043 the PIC call register ($25), the frame pointer, the EH stack adjustment, 2044 or the EH data registers. 2045 2046 If we're generating interrupt handlers, we use K0 as a temporary register 2047 in prologue/epilogue code. */ 2048 2049 #define MIPS16_PIC_TEMP_REGNUM (GP_REG_FIRST + 2) 2050 #define MIPS_PROLOGUE_TEMP_REGNUM \ 2051 (cfun->machine->interrupt_handler_p ? K0_REG_NUM : GP_REG_FIRST + 3) 2052 #define MIPS_PROLOGUE_TEMP2_REGNUM \ 2053 (TARGET_MIPS16 \ 2054 ? (gcc_unreachable (), INVALID_REGNUM) \ 2055 : cfun->machine->interrupt_handler_p ? K1_REG_NUM : GP_REG_FIRST + 12) 2056 #define MIPS_EPILOGUE_TEMP_REGNUM \ 2057 (cfun->machine->interrupt_handler_p \ 2058 ? K0_REG_NUM \ 2059 : GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8)) 2060 2061 #define MIPS16_PIC_TEMP gen_rtx_REG (Pmode, MIPS16_PIC_TEMP_REGNUM) 2062 #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM) 2063 #define MIPS_PROLOGUE_TEMP2(MODE) \ 2064 gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP2_REGNUM) 2065 #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM) 2066 2067 /* Define this macro if it is as good or better to call a constant 2068 function address than to call an address kept in a register. */ 2069 #define NO_FUNCTION_CSE 1 2070 2071 /* The ABI-defined global pointer. Sometimes we use a different 2072 register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */ 2073 #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28) 2074 2075 /* We normally use $28 as the global pointer. However, when generating 2076 n32/64 PIC, it is better for leaf functions to use a call-clobbered 2077 register instead. They can then avoid saving and restoring $28 2078 and perhaps avoid using a frame at all. 2079 2080 When a leaf function uses something other than $28, mips_expand_prologue 2081 will modify pic_offset_table_rtx in place. Take the register number 2082 from there after reload. */ 2083 #define PIC_OFFSET_TABLE_REGNUM \ 2084 (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM) 2085 2086 /* Define the classes of registers for register constraints in the 2087 machine description. Also define ranges of constants. 2088 2089 One of the classes must always be named ALL_REGS and include all hard regs. 2090 If there is more than one class, another class must be named NO_REGS 2091 and contain no registers. 2092 2093 The name GENERAL_REGS must be the name of a class (or an alias for 2094 another name such as ALL_REGS). This is the class of registers 2095 that is allowed by "g" or "r" in a register constraint. 2096 Also, registers outside this class are allocated only when 2097 instructions express preferences for them. 2098 2099 The classes must be numbered in nondecreasing order; that is, 2100 a larger-numbered class must never be contained completely 2101 in a smaller-numbered class. 2102 2103 For any two classes, it is very desirable that there be another 2104 class that represents their union. */ 2105 2106 enum reg_class 2107 { 2108 NO_REGS, /* no registers in set */ 2109 M16_STORE_REGS, /* microMIPS store registers */ 2110 M16_REGS, /* mips16 directly accessible registers */ 2111 M16_SP_REGS, /* mips16 + $sp */ 2112 T_REG, /* mips16 T register ($24) */ 2113 M16_T_REGS, /* mips16 registers plus T register */ 2114 PIC_FN_ADDR_REG, /* SVR4 PIC function address register */ 2115 V1_REG, /* Register $v1 ($3) used for TLS access. */ 2116 SPILL_REGS, /* All but $sp and call preserved regs are in here */ 2117 LEA_REGS, /* Every GPR except $25 */ 2118 GR_REGS, /* integer registers */ 2119 FP_REGS, /* floating point registers */ 2120 MD0_REG, /* first multiply/divide register */ 2121 MD1_REG, /* second multiply/divide register */ 2122 MD_REGS, /* multiply/divide registers (hi/lo) */ 2123 COP0_REGS, /* generic coprocessor classes */ 2124 COP2_REGS, 2125 COP3_REGS, 2126 ST_REGS, /* status registers (fp status) */ 2127 DSP_ACC_REGS, /* DSP accumulator registers */ 2128 ACC_REGS, /* Hi/Lo and DSP accumulator registers */ 2129 FRAME_REGS, /* $arg and $frame */ 2130 GR_AND_MD0_REGS, /* union classes */ 2131 GR_AND_MD1_REGS, 2132 GR_AND_MD_REGS, 2133 GR_AND_ACC_REGS, 2134 ALL_REGS, /* all registers */ 2135 LIM_REG_CLASSES /* max value + 1 */ 2136 }; 2137 2138 #define N_REG_CLASSES (int) LIM_REG_CLASSES 2139 2140 #define GENERAL_REGS GR_REGS 2141 2142 /* An initializer containing the names of the register classes as C 2143 string constants. These names are used in writing some of the 2144 debugging dumps. */ 2145 2146 #define REG_CLASS_NAMES \ 2147 { \ 2148 "NO_REGS", \ 2149 "M16_STORE_REGS", \ 2150 "M16_REGS", \ 2151 "M16_SP_REGS", \ 2152 "T_REG", \ 2153 "M16_T_REGS", \ 2154 "PIC_FN_ADDR_REG", \ 2155 "V1_REG", \ 2156 "SPILL_REGS", \ 2157 "LEA_REGS", \ 2158 "GR_REGS", \ 2159 "FP_REGS", \ 2160 "MD0_REG", \ 2161 "MD1_REG", \ 2162 "MD_REGS", \ 2163 /* coprocessor registers */ \ 2164 "COP0_REGS", \ 2165 "COP2_REGS", \ 2166 "COP3_REGS", \ 2167 "ST_REGS", \ 2168 "DSP_ACC_REGS", \ 2169 "ACC_REGS", \ 2170 "FRAME_REGS", \ 2171 "GR_AND_MD0_REGS", \ 2172 "GR_AND_MD1_REGS", \ 2173 "GR_AND_MD_REGS", \ 2174 "GR_AND_ACC_REGS", \ 2175 "ALL_REGS" \ 2176 } 2177 2178 /* An initializer containing the contents of the register classes, 2179 as integers which are bit masks. The Nth integer specifies the 2180 contents of class N. The way the integer MASK is interpreted is 2181 that register R is in the class if `MASK & (1 << R)' is 1. 2182 2183 When the machine has more than 32 registers, an integer does not 2184 suffice. Then the integers are replaced by sub-initializers, 2185 braced groupings containing several integers. Each 2186 sub-initializer must be suitable as an initializer for the type 2187 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */ 2188 2189 #define REG_CLASS_CONTENTS \ 2190 { \ 2191 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \ 2192 { 0x000200fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_STORE_REGS */ \ 2193 { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_REGS */ \ 2194 { 0x200300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_SP_REGS */ \ 2195 { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* T_REG */ \ 2196 { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_T_REGS */ \ 2197 { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* PIC_FN_ADDR_REG */ \ 2198 { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* V1_REG */ \ 2199 { 0x0303fffc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* SPILL_REGS */ \ 2200 { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* LEA_REGS */ \ 2201 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \ 2202 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* FP_REGS */ \ 2203 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* MD0_REG */ \ 2204 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* MD1_REG */ \ 2205 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* MD_REGS */ \ 2206 { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* COP0_REGS */ \ 2207 { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* COP2_REGS */ \ 2208 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* COP3_REGS */ \ 2209 { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* ST_REGS */ \ 2210 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 }, /* DSP_ACC_REGS */ \ 2211 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* ACC_REGS */ \ 2212 { 0x00000000, 0x00000000, 0x00006000, 0x00000000, 0x00000000, 0x00000000 }, /* FRAME_REGS */ \ 2213 { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD0_REGS */ \ 2214 { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD1_REGS */ \ 2215 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD_REGS */ \ 2216 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* GR_AND_ACC_REGS */ \ 2217 { 0xffffffff, 0xffffffff, 0xffff67ff, 0xffffffff, 0xffffffff, 0x0fffffff } /* ALL_REGS */ \ 2218 } 2219 2220 2221 /* A C expression whose value is a register class containing hard 2222 register REGNO. In general there is more that one such class; 2223 choose a class which is "minimal", meaning that no smaller class 2224 also contains the register. */ 2225 2226 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ] 2227 2228 /* A macro whose definition is the name of the class to which a 2229 valid base register must belong. A base register is one used in 2230 an address which is the register value plus a displacement. */ 2231 2232 #define BASE_REG_CLASS (TARGET_MIPS16 ? M16_SP_REGS : GR_REGS) 2233 2234 /* A macro whose definition is the name of the class to which a 2235 valid index register must belong. An index register is one used 2236 in an address where its value is either multiplied by a scale 2237 factor or added to another register (as well as added to a 2238 displacement). */ 2239 2240 #define INDEX_REG_CLASS NO_REGS 2241 2242 /* We generally want to put call-clobbered registers ahead of 2243 call-saved ones. (IRA expects this.) */ 2244 2245 #define REG_ALLOC_ORDER \ 2246 { /* Accumulator registers. When GPRs and accumulators have equal \ 2247 cost, we generally prefer to use accumulators. For example, \ 2248 a division of multiplication result is better allocated to LO, \ 2249 so that we put the MFLO at the point of use instead of at the \ 2250 point of definition. It's also needed if we're to take advantage \ 2251 of the extra accumulators available with -mdspr2. In some cases, \ 2252 it can also help to reduce register pressure. */ \ 2253 64, 65,176,177,178,179,180,181, \ 2254 /* Call-clobbered GPRs. */ \ 2255 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \ 2256 24, 25, 31, \ 2257 /* The global pointer. This is call-clobbered for o32 and o64 \ 2258 abicalls, call-saved for n32 and n64 abicalls, and a program \ 2259 invariant otherwise. Putting it between the call-clobbered \ 2260 and call-saved registers should cope with all eventualities. */ \ 2261 28, \ 2262 /* Call-saved GPRs. */ \ 2263 16, 17, 18, 19, 20, 21, 22, 23, 30, \ 2264 /* GPRs that can never be exposed to the register allocator. */ \ 2265 0, 26, 27, 29, \ 2266 /* Call-clobbered FPRs. */ \ 2267 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \ 2268 48, 49, 50, 51, \ 2269 /* FPRs that are usually call-saved. The odd ones are actually \ 2270 call-clobbered for n32, but listing them ahead of the even \ 2271 registers might encourage the register allocator to fragment \ 2272 the available FPR pairs. We need paired FPRs to store long \ 2273 doubles, so it isn't clear that using a different order \ 2274 for n32 would be a win. */ \ 2275 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \ 2276 /* None of the remaining classes have defined call-saved \ 2277 registers. */ \ 2278 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \ 2279 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \ 2280 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \ 2281 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \ 2282 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \ 2283 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \ 2284 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, \ 2285 182,183,184,185,186,187 \ 2286 } 2287 2288 /* True if VALUE is an unsigned 6-bit number. */ 2289 2290 #define UIMM6_OPERAND(VALUE) \ 2291 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0) 2292 2293 /* True if VALUE is a signed 10-bit number. */ 2294 2295 #define IMM10_OPERAND(VALUE) \ 2296 ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400) 2297 2298 /* True if VALUE is a signed 16-bit number. */ 2299 2300 #define SMALL_OPERAND(VALUE) \ 2301 ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000) 2302 2303 /* True if VALUE is an unsigned 16-bit number. */ 2304 2305 #define SMALL_OPERAND_UNSIGNED(VALUE) \ 2306 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0) 2307 2308 /* True if VALUE can be loaded into a register using LUI. */ 2309 2310 #define LUI_OPERAND(VALUE) \ 2311 (((VALUE) | 0x7fff0000) == 0x7fff0000 \ 2312 || ((VALUE) | 0x7fff0000) + 0x10000 == 0) 2313 2314 /* Return a value X with the low 16 bits clear, and such that 2315 VALUE - X is a signed 16-bit value. */ 2316 2317 #define CONST_HIGH_PART(VALUE) \ 2318 (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff) 2319 2320 #define CONST_LOW_PART(VALUE) \ 2321 ((VALUE) - CONST_HIGH_PART (VALUE)) 2322 2323 #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X)) 2324 #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X)) 2325 #define LUI_INT(X) LUI_OPERAND (INTVAL (X)) 2326 #define UMIPS_12BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -2048, 2047)) 2327 #define MIPS_9BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -256, 255)) 2328 2329 /* The HI and LO registers can only be reloaded via the general 2330 registers. Condition code registers can only be loaded to the 2331 general registers, and from the floating point registers. */ 2332 2333 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \ 2334 mips_secondary_reload_class (CLASS, MODE, X, true) 2335 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \ 2336 mips_secondary_reload_class (CLASS, MODE, X, false) 2337 2338 /* Return the maximum number of consecutive registers 2339 needed to represent mode MODE in a register of class CLASS. */ 2340 2341 #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE) 2342 2343 /* Stack layout; function entry, exit and calling. */ 2344 2345 #define STACK_GROWS_DOWNWARD 1 2346 2347 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \ 2348 || (flag_sanitize & SANITIZE_ADDRESS) != 0) 2349 2350 /* Size of the area allocated in the frame to save the GP. */ 2351 2352 #define MIPS_GP_SAVE_AREA_SIZE \ 2353 (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0) 2354 2355 #define RETURN_ADDR_RTX mips_return_addr 2356 2357 /* Mask off the MIPS16 ISA bit in unwind addresses. 2358 2359 The reason for this is a little subtle. When unwinding a call, 2360 we are given the call's return address, which on most targets 2361 is the address of the following instruction. However, what we 2362 actually want to find is the EH region for the call itself. 2363 The target-independent unwind code therefore searches for "RA - 1". 2364 2365 In the MIPS16 case, RA is always an odd-valued (ISA-encoded) address. 2366 RA - 1 is therefore the real (even-valued) start of the return 2367 instruction. EH region labels are usually odd-valued MIPS16 symbols 2368 too, so a search for an even address within a MIPS16 region would 2369 usually work. 2370 2371 However, there is an exception. If the end of an EH region is also 2372 the end of a function, the end label is allowed to be even. This is 2373 necessary because a following non-MIPS16 function may also need EH 2374 information for its first instruction. 2375 2376 Thus a MIPS16 region may be terminated by an ISA-encoded or a 2377 non-ISA-encoded address. This probably isn't ideal, but it is 2378 the traditional (legacy) behavior. It is therefore only safe 2379 to search MIPS EH regions for an _odd-valued_ address. 2380 2381 Masking off the ISA bit means that the target-independent code 2382 will search for "(RA & -2) - 1", which is guaranteed to be odd. */ 2383 #define MASK_RETURN_ADDR GEN_INT (-2) 2384 2385 2386 /* Similarly, don't use the least-significant bit to tell pointers to 2387 code from vtable index. */ 2388 2389 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta 2390 2391 /* The eliminations to $17 are only used for mips16 code. See the 2392 definition of HARD_FRAME_POINTER_REGNUM. */ 2393 2394 #define ELIMINABLE_REGS \ 2395 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ 2396 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \ 2397 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \ 2398 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ 2399 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \ 2400 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}} 2401 2402 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ 2403 (OFFSET) = mips_initial_elimination_offset ((FROM), (TO)) 2404 2405 /* Allocate stack space for arguments at the beginning of each function. */ 2406 #define ACCUMULATE_OUTGOING_ARGS 1 2407 2408 /* The argument pointer always points to the first argument. */ 2409 #define FIRST_PARM_OFFSET(FNDECL) 0 2410 2411 /* o32 and o64 reserve stack space for all argument registers. */ 2412 #define REG_PARM_STACK_SPACE(FNDECL) \ 2413 (TARGET_OLDABI \ 2414 ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \ 2415 : 0) 2416 2417 /* Define this if it is the responsibility of the caller to 2418 allocate the area reserved for arguments passed in registers. 2419 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect 2420 of this macro is to determine whether the space is included in 2421 `crtl->outgoing_args_size'. */ 2422 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1 2423 2424 #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64) 2425 2426 /* Symbolic macros for the registers used to return integer and floating 2427 point values. */ 2428 2429 #define GP_RETURN (GP_REG_FIRST + 2) 2430 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0)) 2431 2432 #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8) 2433 2434 /* Symbolic macros for the first/last argument registers. */ 2435 2436 #define GP_ARG_FIRST (GP_REG_FIRST + 4) 2437 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1) 2438 #define FP_ARG_FIRST (FP_REG_FIRST + 12) 2439 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1) 2440 2441 /* True if MODE is vector and supported in a MSA vector register. */ 2442 #define MSA_SUPPORTED_MODE_P(MODE) \ 2443 (ISA_HAS_MSA \ 2444 && GET_MODE_SIZE (MODE) == UNITS_PER_MSA_REG \ 2445 && (GET_MODE_CLASS (MODE) == MODE_VECTOR_INT \ 2446 || GET_MODE_CLASS (MODE) == MODE_VECTOR_FLOAT)) 2447 2448 /* Temporary register that is used when restoring $gp after a call. $4 and $5 2449 are used for returning complex double values in soft-float code, so $6 is the 2450 first suitable candidate for TARGET_MIPS16. For !TARGET_MIPS16 we can use 2451 $gp itself as the temporary. */ 2452 #define POST_CALL_TMP_REG \ 2453 (TARGET_MIPS16 ? GP_ARG_FIRST + 2 : PIC_OFFSET_TABLE_REGNUM) 2454 2455 /* 1 if N is a possible register number for function argument passing. 2456 We have no FP argument registers when soft-float. Special handling 2457 is required for O32 where only even numbered registers are used for 2458 O32-FPXX and O32-FP64. */ 2459 2460 #define FUNCTION_ARG_REGNO_P(N) \ 2461 ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \ 2462 || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST) \ 2463 && (mips_abi != ABI_32 \ 2464 || TARGET_FLOAT32 \ 2465 || ((N) % 2 == 0)))) \ 2466 && !fixed_regs[N]) 2467 2468 /* This structure has to cope with two different argument allocation 2469 schemes. Most MIPS ABIs view the arguments as a structure, of which 2470 the first N words go in registers and the rest go on the stack. If I 2471 < N, the Ith word might go in Ith integer argument register or in a 2472 floating-point register. For these ABIs, we only need to remember 2473 the offset of the current argument into the structure. 2474 2475 The EABI instead allocates the integer and floating-point arguments 2476 separately. The first N words of FP arguments go in FP registers, 2477 the rest go on the stack. Likewise, the first N words of the other 2478 arguments go in integer registers, and the rest go on the stack. We 2479 need to maintain three counts: the number of integer registers used, 2480 the number of floating-point registers used, and the number of words 2481 passed on the stack. 2482 2483 We could keep separate information for the two ABIs (a word count for 2484 the standard ABIs, and three separate counts for the EABI). But it 2485 seems simpler to view the standard ABIs as forms of EABI that do not 2486 allocate floating-point registers. 2487 2488 So for the standard ABIs, the first N words are allocated to integer 2489 registers, and mips_function_arg decides on an argument-by-argument 2490 basis whether that argument should really go in an integer register, 2491 or in a floating-point one. */ 2492 2493 typedef struct mips_args { 2494 /* Always true for varargs functions. Otherwise true if at least 2495 one argument has been passed in an integer register. */ 2496 int gp_reg_found; 2497 2498 /* The number of arguments seen so far. */ 2499 unsigned int arg_number; 2500 2501 /* The number of integer registers used so far. For all ABIs except 2502 EABI, this is the number of words that have been added to the 2503 argument structure, limited to MAX_ARGS_IN_REGISTERS. */ 2504 unsigned int num_gprs; 2505 2506 /* For EABI, the number of floating-point registers used so far. */ 2507 unsigned int num_fprs; 2508 2509 /* The number of words passed on the stack. */ 2510 unsigned int stack_words; 2511 2512 /* On the mips16, we need to keep track of which floating point 2513 arguments were passed in general registers, but would have been 2514 passed in the FP regs if this were a 32-bit function, so that we 2515 can move them to the FP regs if we wind up calling a 32-bit 2516 function. We record this information in fp_code, encoded in base 2517 four. A zero digit means no floating point argument, a one digit 2518 means an SFmode argument, and a two digit means a DFmode argument, 2519 and a three digit is not used. The low order digit is the first 2520 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by 2521 an SFmode argument. ??? A more sophisticated approach will be 2522 needed if MIPS_ABI != ABI_32. */ 2523 int fp_code; 2524 2525 /* True if the function has a prototype. */ 2526 int prototype; 2527 } CUMULATIVE_ARGS; 2528 2529 /* Initialize a variable CUM of type CUMULATIVE_ARGS 2530 for a call to a function whose data type is FNTYPE. 2531 For a library call, FNTYPE is 0. */ 2532 2533 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \ 2534 mips_init_cumulative_args (&CUM, FNTYPE) 2535 2536 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \ 2537 (mips_pad_reg_upward (MODE, TYPE) ? PAD_UPWARD : PAD_DOWNWARD) 2538 2539 /* True if using EABI and varargs can be passed in floating-point 2540 registers. Under these conditions, we need a more complex form 2541 of va_list, which tracks GPR, FPR and stack arguments separately. */ 2542 #define EABI_FLOAT_VARARGS_P \ 2543 (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE) 2544 2545 2546 #define EPILOGUE_USES(REGNO) mips_epilogue_uses (REGNO) 2547 2548 /* Treat LOC as a byte offset from the stack pointer and round it up 2549 to the next fully-aligned offset. */ 2550 #define MIPS_STACK_ALIGN(LOC) \ 2551 (TARGET_NEWABI ? ROUND_UP ((LOC), 16) : ROUND_UP ((LOC), 8)) 2552 2553 2554 /* Output assembler code to FILE to increment profiler label # LABELNO 2555 for profiling a function entry. */ 2556 2557 #define FUNCTION_PROFILER(FILE, LABELNO) mips_function_profiler ((FILE)) 2558 2559 /* The profiler preserves all interesting registers, including $31. */ 2560 #define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false 2561 2562 /* No mips port has ever used the profiler counter word, so don't emit it 2563 or the label for it. */ 2564 2565 #define NO_PROFILE_COUNTERS 1 2566 2567 /* Define this macro if the code for function profiling should come 2568 before the function prologue. Normally, the profiling code comes 2569 after. */ 2570 2571 /* #define PROFILE_BEFORE_PROLOGUE */ 2572 2573 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, 2574 the stack pointer does not matter. The value is tested only in 2575 functions that have frame pointers. 2576 No definition is equivalent to always zero. */ 2577 2578 #define EXIT_IGNORE_STACK 1 2579 2580 2581 /* Trampolines are a block of code followed by two pointers. */ 2582 2583 #define TRAMPOLINE_SIZE \ 2584 (mips_trampoline_code_size () + GET_MODE_SIZE (ptr_mode) * 2) 2585 2586 /* Forcing a 64-bit alignment for 32-bit targets allows us to load two 2587 pointers from a single LUI base. */ 2588 2589 #define TRAMPOLINE_ALIGNMENT 64 2590 2591 /* mips_trampoline_init calls this library function to flush 2592 program and data caches. */ 2593 2594 #ifndef CACHE_FLUSH_FUNC 2595 #define CACHE_FLUSH_FUNC "_flush_cache" 2596 #endif 2597 2598 #define MIPS_ICACHE_SYNC(ADDR, SIZE) \ 2599 /* Flush both caches. We need to flush the data cache in case \ 2600 the system has a write-back cache. */ \ 2601 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \ 2602 LCT_NORMAL, VOIDmode, ADDR, Pmode, SIZE, Pmode, \ 2603 GEN_INT (3), TYPE_MODE (integer_type_node)) 2604 2605 2606 /* Addressing modes, and classification of registers for them. */ 2607 2608 #define REGNO_OK_FOR_INDEX_P(REGNO) 0 2609 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \ 2610 mips_regno_mode_ok_for_base_p (REGNO, MODE, 1) 2611 2612 /* Maximum number of registers that can appear in a valid memory address. */ 2613 2614 #define MAX_REGS_PER_ADDRESS 1 2615 2616 /* Check for constness inline but use mips_legitimate_address_p 2617 to check whether a constant really is an address. */ 2618 2619 #define CONSTANT_ADDRESS_P(X) \ 2620 (CONSTANT_P (X) && memory_address_p (SImode, X)) 2621 2622 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means 2623 'the start of the function that this code is output in'. */ 2624 2625 #define ASM_OUTPUT_LABELREF(FILE,NAME) \ 2626 do { \ 2627 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \ 2628 asm_fprintf ((FILE), "%U%s", \ 2629 XSTR (XEXP (DECL_RTL (current_function_decl), \ 2630 0), 0)); \ 2631 else \ 2632 asm_fprintf ((FILE), "%U%s", (NAME)); \ 2633 } while (0) 2634 2635 /* Flag to mark a function decl symbol that requires a long call. */ 2636 #define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 0) 2637 #define SYMBOL_REF_LONG_CALL_P(X) \ 2638 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0) 2639 2640 /* This flag marks functions that cannot be lazily bound. */ 2641 #define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1) 2642 #define SYMBOL_REF_BIND_NOW_P(RTX) \ 2643 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0) 2644 2645 /* True if we're generating a form of MIPS16 code in which jump tables 2646 are stored in the text section and encoded as 16-bit PC-relative 2647 offsets. This is only possible when general text loads are allowed, 2648 since the table access itself will be an "lh" instruction. If the 2649 PC-relative offsets grow too large, 32-bit offsets are used instead. */ 2650 #define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS 2651 2652 #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES 2653 2654 #define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? SImode : ptr_mode) 2655 2656 /* Only use short offsets if their range will not overflow. */ 2657 #define CASE_VECTOR_SHORTEN_MODE(MIN, MAX, BODY) \ 2658 (!TARGET_MIPS16_SHORT_JUMP_TABLES ? ptr_mode \ 2659 : ((MIN) >= -32768 && (MAX) < 32768) ? HImode \ 2660 : SImode) 2661 2662 #define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES 2663 2664 /* Define this as 1 if `char' should by default be signed; else as 0. */ 2665 #ifndef DEFAULT_SIGNED_CHAR 2666 #define DEFAULT_SIGNED_CHAR 1 2667 #endif 2668 2669 /* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets, 2670 we generally don't want to use them for copying arbitrary data. 2671 A single N-word move is usually the same cost as N single-word moves. */ 2672 #define MOVE_MAX UNITS_PER_WORD 2673 /* We don't modify it for MSA as it is only used by the classic reload. */ 2674 #define MAX_MOVE_MAX 8 2675 2676 /* Define this macro as a C expression which is nonzero if 2677 accessing less than a word of memory (i.e. a `char' or a 2678 `short') is no faster than accessing a word of memory, i.e., if 2679 such access require more than one instruction or if there is no 2680 difference in cost between byte and (aligned) word loads. 2681 2682 On RISC machines, it tends to generate better code to define 2683 this as 1, since it avoids making a QI or HI mode register. 2684 2685 But, generating word accesses for -mips16 is generally bad as shifts 2686 (often extended) would be needed for byte accesses. */ 2687 #define SLOW_BYTE_ACCESS (!TARGET_MIPS16) 2688 2689 /* Standard MIPS integer shifts truncate the shift amount to the 2690 width of the shifted operand. However, Loongson MMI shifts 2691 do not truncate the shift amount at all. */ 2692 #define SHIFT_COUNT_TRUNCATED (!TARGET_LOONGSON_MMI) 2693 2694 2695 /* Specify the machine mode that pointers have. 2696 After generation of rtl, the compiler makes no further distinction 2697 between pointers and any other objects of this machine mode. */ 2698 2699 #ifndef Pmode 2700 #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode) 2701 #endif 2702 2703 /* Give call MEMs SImode since it is the "most permissive" mode 2704 for both 32-bit and 64-bit targets. */ 2705 2706 #define FUNCTION_MODE SImode 2707 2708 2709 /* We allocate $fcc registers by hand and can't cope with moves of 2710 CCmode registers to and from pseudos (or memory). */ 2711 #define AVOID_CCMODE_COPIES 2712 2713 /* A C expression for the cost of a branch instruction. A value of 2714 1 is the default; other values are interpreted relative to that. */ 2715 2716 #define BRANCH_COST(speed_p, predictable_p) mips_branch_cost 2717 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0 2718 2719 /* The MIPS port has several functions that return an instruction count. 2720 Multiplying the count by this value gives the number of bytes that 2721 the instructions occupy. */ 2722 #define BASE_INSN_LENGTH (TARGET_MIPS16 ? 2 : 4) 2723 2724 /* The length of a NOP in bytes. */ 2725 #define NOP_INSN_LENGTH (TARGET_COMPRESSION ? 2 : 4) 2726 2727 /* If defined, modifies the length assigned to instruction INSN as a 2728 function of the context in which it is used. LENGTH is an lvalue 2729 that contains the initially computed length of the insn and should 2730 be updated with the correct length of the insn. */ 2731 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \ 2732 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH))) 2733 2734 /* Return the asm template for a non-MIPS16 conditional branch instruction. 2735 OPCODE is the opcode's mnemonic and OPERANDS is the asm template for 2736 its operands. */ 2737 #define MIPS_BRANCH(OPCODE, OPERANDS) \ 2738 "%*" OPCODE "%?\t" OPERANDS "%/" 2739 2740 #define MIPS_BRANCH_C(OPCODE, OPERANDS) \ 2741 "%*" OPCODE "%:\t" OPERANDS 2742 2743 /* Return an asm string that forces INSN to be treated as an absolute 2744 J or JAL instruction instead of an assembler macro. */ 2745 #define MIPS_ABSOLUTE_JUMP(INSN) \ 2746 (TARGET_ABICALLS_PIC2 \ 2747 ? ".option\tpic0\n\t" INSN "\n\t.option\tpic2" \ 2748 : INSN) 2749 2750 2751 /* Control the assembler format that we output. */ 2752 2753 /* Output to assembler file text saying following lines 2754 may contain character constants, extra white space, comments, etc. */ 2755 2756 #ifndef ASM_APP_ON 2757 #define ASM_APP_ON " #APP\n" 2758 #endif 2759 2760 /* Output to assembler file text saying following lines 2761 no longer contain unusual constructs. */ 2762 2763 #ifndef ASM_APP_OFF 2764 #define ASM_APP_OFF " #NO_APP\n" 2765 #endif 2766 2767 #define REGISTER_NAMES \ 2768 { "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", \ 2769 "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", \ 2770 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \ 2771 "$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31", \ 2772 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \ 2773 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \ 2774 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \ 2775 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \ 2776 "hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \ 2777 "$fcc5","$fcc6","$fcc7","", "$cprestore", "$arg", "$frame", "$fakec", \ 2778 "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7", \ 2779 "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \ 2780 "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \ 2781 "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \ 2782 "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7", \ 2783 "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \ 2784 "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \ 2785 "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \ 2786 "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7", \ 2787 "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \ 2788 "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \ 2789 "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \ 2790 "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \ 2791 "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" } 2792 2793 /* List the "software" names for each register. Also list the numerical 2794 names for $fp and $sp. */ 2795 2796 #define ADDITIONAL_REGISTER_NAMES \ 2797 { \ 2798 { "$29", 29 + GP_REG_FIRST }, \ 2799 { "$30", 30 + GP_REG_FIRST }, \ 2800 { "at", 1 + GP_REG_FIRST }, \ 2801 { "v0", 2 + GP_REG_FIRST }, \ 2802 { "v1", 3 + GP_REG_FIRST }, \ 2803 { "a0", 4 + GP_REG_FIRST }, \ 2804 { "a1", 5 + GP_REG_FIRST }, \ 2805 { "a2", 6 + GP_REG_FIRST }, \ 2806 { "a3", 7 + GP_REG_FIRST }, \ 2807 { "t0", 8 + GP_REG_FIRST }, \ 2808 { "t1", 9 + GP_REG_FIRST }, \ 2809 { "t2", 10 + GP_REG_FIRST }, \ 2810 { "t3", 11 + GP_REG_FIRST }, \ 2811 { "t4", 12 + GP_REG_FIRST }, \ 2812 { "t5", 13 + GP_REG_FIRST }, \ 2813 { "t6", 14 + GP_REG_FIRST }, \ 2814 { "t7", 15 + GP_REG_FIRST }, \ 2815 { "s0", 16 + GP_REG_FIRST }, \ 2816 { "s1", 17 + GP_REG_FIRST }, \ 2817 { "s2", 18 + GP_REG_FIRST }, \ 2818 { "s3", 19 + GP_REG_FIRST }, \ 2819 { "s4", 20 + GP_REG_FIRST }, \ 2820 { "s5", 21 + GP_REG_FIRST }, \ 2821 { "s6", 22 + GP_REG_FIRST }, \ 2822 { "s7", 23 + GP_REG_FIRST }, \ 2823 { "t8", 24 + GP_REG_FIRST }, \ 2824 { "t9", 25 + GP_REG_FIRST }, \ 2825 { "k0", 26 + GP_REG_FIRST }, \ 2826 { "k1", 27 + GP_REG_FIRST }, \ 2827 { "gp", 28 + GP_REG_FIRST }, \ 2828 { "sp", 29 + GP_REG_FIRST }, \ 2829 { "fp", 30 + GP_REG_FIRST }, \ 2830 { "ra", 31 + GP_REG_FIRST }, \ 2831 { "$w0", 0 + FP_REG_FIRST }, \ 2832 { "$w1", 1 + FP_REG_FIRST }, \ 2833 { "$w2", 2 + FP_REG_FIRST }, \ 2834 { "$w3", 3 + FP_REG_FIRST }, \ 2835 { "$w4", 4 + FP_REG_FIRST }, \ 2836 { "$w5", 5 + FP_REG_FIRST }, \ 2837 { "$w6", 6 + FP_REG_FIRST }, \ 2838 { "$w7", 7 + FP_REG_FIRST }, \ 2839 { "$w8", 8 + FP_REG_FIRST }, \ 2840 { "$w9", 9 + FP_REG_FIRST }, \ 2841 { "$w10", 10 + FP_REG_FIRST }, \ 2842 { "$w11", 11 + FP_REG_FIRST }, \ 2843 { "$w12", 12 + FP_REG_FIRST }, \ 2844 { "$w13", 13 + FP_REG_FIRST }, \ 2845 { "$w14", 14 + FP_REG_FIRST }, \ 2846 { "$w15", 15 + FP_REG_FIRST }, \ 2847 { "$w16", 16 + FP_REG_FIRST }, \ 2848 { "$w17", 17 + FP_REG_FIRST }, \ 2849 { "$w18", 18 + FP_REG_FIRST }, \ 2850 { "$w19", 19 + FP_REG_FIRST }, \ 2851 { "$w20", 20 + FP_REG_FIRST }, \ 2852 { "$w21", 21 + FP_REG_FIRST }, \ 2853 { "$w22", 22 + FP_REG_FIRST }, \ 2854 { "$w23", 23 + FP_REG_FIRST }, \ 2855 { "$w24", 24 + FP_REG_FIRST }, \ 2856 { "$w25", 25 + FP_REG_FIRST }, \ 2857 { "$w26", 26 + FP_REG_FIRST }, \ 2858 { "$w27", 27 + FP_REG_FIRST }, \ 2859 { "$w28", 28 + FP_REG_FIRST }, \ 2860 { "$w29", 29 + FP_REG_FIRST }, \ 2861 { "$w30", 30 + FP_REG_FIRST }, \ 2862 { "$w31", 31 + FP_REG_FIRST } \ 2863 } 2864 2865 #define DBR_OUTPUT_SEQEND(STREAM) \ 2866 do \ 2867 { \ 2868 /* Undo the effect of '%*'. */ \ 2869 mips_pop_asm_switch (&mips_nomacro); \ 2870 mips_pop_asm_switch (&mips_noreorder); \ 2871 /* Emit a blank line after the delay slot for emphasis. */ \ 2872 fputs ("\n", STREAM); \ 2873 } \ 2874 while (0) 2875 2876 /* The MIPS implementation uses some labels for its own purpose. The 2877 following lists what labels are created, and are all formed by the 2878 pattern $L[a-z].*. The machine independent portion of GCC creates 2879 labels matching: $L[A-Z][0-9]+ and $L[0-9]+. 2880 2881 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt. 2882 $Lb[0-9]+ Begin blocks for MIPS debug support 2883 $Lc[0-9]+ Label for use in s<xx> operation. 2884 $Le[0-9]+ End blocks for MIPS debug support */ 2885 2886 #undef ASM_DECLARE_OBJECT_NAME 2887 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \ 2888 mips_declare_object (STREAM, NAME, "", ":\n") 2889 2890 /* Globalizing directive for a label. */ 2891 #define GLOBAL_ASM_OP "\t.globl\t" 2892 2893 /* This says how to define a global common symbol. */ 2894 2895 #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common 2896 2897 /* This says how to define a local common symbol (i.e., not visible to 2898 linker). */ 2899 2900 #ifndef ASM_OUTPUT_ALIGNED_LOCAL 2901 #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \ 2902 mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false) 2903 #endif 2904 2905 /* This says how to output an external. It would be possible not to 2906 output anything and let undefined symbol become external. However 2907 the assembler uses length information on externals to allocate in 2908 data/sdata bss/sbss, thereby saving exec time. */ 2909 2910 #undef ASM_OUTPUT_EXTERNAL 2911 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \ 2912 mips_output_external(STREAM,DECL,NAME) 2913 2914 /* This is how to declare a function name. The actual work of 2915 emitting the label is moved to function_prologue, so that we can 2916 get the line number correctly emitted before the .ent directive, 2917 and after any .file directives. Define as empty so that the function 2918 is not declared before the .ent directive elsewhere. */ 2919 2920 #undef ASM_DECLARE_FUNCTION_NAME 2921 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL) 2922 2923 /* This is how to store into the string LABEL 2924 the symbol_ref name of an internal numbered label where 2925 PREFIX is the class of label and NUM is the number within the class. 2926 This is suitable for output with `assemble_name'. */ 2927 2928 #undef ASM_GENERATE_INTERNAL_LABEL 2929 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ 2930 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM)) 2931 2932 /* Print debug labels as "foo = ." rather than "foo:" because they should 2933 represent a byte pointer rather than an ISA-encoded address. This is 2934 particularly important for code like: 2935 2936 $LFBxxx = . 2937 .cfi_startproc 2938 ... 2939 .section .gcc_except_table,... 2940 ... 2941 .uleb128 foo-$LFBxxx 2942 2943 The .uleb128 requies $LFBxxx to match the FDE start address, which is 2944 likewise a byte pointer rather than an ISA-encoded address. 2945 2946 At the time of writing, this hook is not used for the function end 2947 label: 2948 2949 $LFExxx: 2950 .end foo 2951 2952 But this doesn't matter, because GAS doesn't treat a pre-.end label 2953 as a MIPS16 one anyway. */ 2954 2955 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \ 2956 fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM) 2957 2958 /* This is how to output an element of a case-vector that is absolute. */ 2959 2960 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \ 2961 fprintf (STREAM, "\t%s\t%sL%d\n", \ 2962 ptr_mode == DImode ? ".dword" : ".word", \ 2963 LOCAL_LABEL_PREFIX, \ 2964 VALUE) 2965 2966 /* This is how to output an element of a case-vector. We can make the 2967 entries PC-relative in MIPS16 code and GP-relative when .gp(d)word 2968 is supported. */ 2969 2970 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \ 2971 do { \ 2972 if (TARGET_MIPS16_SHORT_JUMP_TABLES) \ 2973 { \ 2974 if (GET_MODE (BODY) == HImode) \ 2975 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \ 2976 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \ 2977 else \ 2978 fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \ 2979 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \ 2980 } \ 2981 else if (TARGET_GPWORD) \ 2982 fprintf (STREAM, "\t%s\t%sL%d\n", \ 2983 ptr_mode == DImode ? ".gpdword" : ".gpword", \ 2984 LOCAL_LABEL_PREFIX, VALUE); \ 2985 else if (TARGET_RTP_PIC) \ 2986 { \ 2987 /* Make the entry relative to the start of the function. */ \ 2988 rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0); \ 2989 fprintf (STREAM, "\t%s\t%sL%d-", \ 2990 Pmode == DImode ? ".dword" : ".word", \ 2991 LOCAL_LABEL_PREFIX, VALUE); \ 2992 assemble_name (STREAM, XSTR (fnsym, 0)); \ 2993 fprintf (STREAM, "\n"); \ 2994 } \ 2995 else \ 2996 fprintf (STREAM, "\t%s\t%sL%d\n", \ 2997 ptr_mode == DImode ? ".dword" : ".word", \ 2998 LOCAL_LABEL_PREFIX, VALUE); \ 2999 } while (0) 3000 3001 /* Mark inline jump tables as data for the purpose of disassembly. For 3002 simplicity embed the jump table's label number in the local symbol 3003 produced so that multiple jump tables within a single function end 3004 up marked with unique symbols. Retain the alignment setting from 3005 `elfos.h' as we are replacing the definition from there. */ 3006 3007 #undef ASM_OUTPUT_BEFORE_CASE_LABEL 3008 #define ASM_OUTPUT_BEFORE_CASE_LABEL(STREAM, PREFIX, NUM, TABLE) \ 3009 do \ 3010 { \ 3011 ASM_OUTPUT_ALIGN ((STREAM), 2); \ 3012 if (JUMP_TABLES_IN_TEXT_SECTION) \ 3013 mips_set_text_contents_type (STREAM, "__jump_", NUM, FALSE); \ 3014 } \ 3015 while (0) 3016 3017 /* Reset text marking to code after an inline jump table. Like with 3018 the beginning of a jump table use the label number to keep symbols 3019 unique. */ 3020 3021 #define ASM_OUTPUT_CASE_END(STREAM, NUM, TABLE) \ 3022 do \ 3023 if (JUMP_TABLES_IN_TEXT_SECTION) \ 3024 mips_set_text_contents_type (STREAM, "__jend_", NUM, TRUE); \ 3025 while (0) 3026 3027 /* This is how to output an assembler line 3028 that says to advance the location counter 3029 to a multiple of 2**LOG bytes. */ 3030 3031 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \ 3032 fprintf (STREAM, "\t.align\t%d\n", (LOG)) 3033 3034 /* This is how to output an assembler line to advance the location 3035 counter by SIZE bytes. */ 3036 3037 #undef ASM_OUTPUT_SKIP 3038 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \ 3039 fprintf (STREAM, "\t.space\t" HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)) 3040 3041 /* This is how to output a string. */ 3042 #undef ASM_OUTPUT_ASCII 3043 #define ASM_OUTPUT_ASCII mips_output_ascii 3044 3045 3046 /* Default to -G 8 */ 3047 #ifndef MIPS_DEFAULT_GVALUE 3048 #define MIPS_DEFAULT_GVALUE 8 3049 #endif 3050 3051 /* Define the strings to put out for each section in the object file. */ 3052 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */ 3053 #define DATA_SECTION_ASM_OP "\t.data" /* large data */ 3054 3055 #undef READONLY_DATA_SECTION_ASM_OP 3056 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */ 3057 3058 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \ 3059 do \ 3060 { \ 3061 fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \ 3062 TARGET_64BIT ? "daddiu" : "addiu", \ 3063 reg_names[STACK_POINTER_REGNUM], \ 3064 reg_names[STACK_POINTER_REGNUM], \ 3065 TARGET_64BIT ? "sd" : "sw", \ 3066 reg_names[REGNO], \ 3067 reg_names[STACK_POINTER_REGNUM]); \ 3068 } \ 3069 while (0) 3070 3071 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \ 3072 do \ 3073 { \ 3074 mips_push_asm_switch (&mips_noreorder); \ 3075 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \ 3076 TARGET_64BIT ? "ld" : "lw", \ 3077 reg_names[REGNO], \ 3078 reg_names[STACK_POINTER_REGNUM], \ 3079 TARGET_64BIT ? "daddu" : "addu", \ 3080 reg_names[STACK_POINTER_REGNUM], \ 3081 reg_names[STACK_POINTER_REGNUM]); \ 3082 mips_pop_asm_switch (&mips_noreorder); \ 3083 } \ 3084 while (0) 3085 3086 /* How to start an assembler comment. 3087 The leading space is important (the mips native assembler requires it). */ 3088 #ifndef ASM_COMMENT_START 3089 #define ASM_COMMENT_START " #" 3090 #endif 3091 3092 #undef SIZE_TYPE 3093 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int") 3094 3095 #undef PTRDIFF_TYPE 3096 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int") 3097 3098 /* The minimum alignment of any expanded block move. */ 3099 #define MIPS_MIN_MOVE_MEM_ALIGN 16 3100 3101 /* The maximum number of bytes that can be copied by one iteration of 3102 a movmemsi loop; see mips_block_move_loop. */ 3103 #define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \ 3104 (UNITS_PER_WORD * 4) 3105 3106 /* The maximum number of bytes that can be copied by a straight-line 3107 implementation of movmemsi; see mips_block_move_straight. We want 3108 to make sure that any loop-based implementation will iterate at 3109 least twice. */ 3110 #define MIPS_MAX_MOVE_BYTES_STRAIGHT \ 3111 (MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2) 3112 3113 /* The base cost of a memcpy call, for MOVE_RATIO and friends. These 3114 values were determined experimentally by benchmarking with CSiBE. 3115 In theory, the call overhead is higher for TARGET_ABICALLS (especially 3116 for o32 where we have to restore $gp afterwards as well as make an 3117 indirect call), but in practice, bumping this up higher for 3118 TARGET_ABICALLS doesn't make much difference to code size. */ 3119 3120 #define MIPS_CALL_RATIO 8 3121 3122 /* Any loop-based implementation of movmemsi will have at least 3123 MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory 3124 moves, so allow individual copies of fewer elements. 3125 3126 When movmemsi is not available, use a value approximating 3127 the length of a memcpy call sequence, so that move_by_pieces 3128 will generate inline code if it is shorter than a function call. 3129 Since move_by_pieces_ninsns counts memory-to-memory moves, but 3130 we'll have to generate a load/store pair for each, halve the 3131 value of MIPS_CALL_RATIO to take that into account. */ 3132 3133 #define MOVE_RATIO(speed) \ 3134 (HAVE_movmemsi \ 3135 ? MIPS_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX \ 3136 : MIPS_CALL_RATIO / 2) 3137 3138 /* For CLEAR_RATIO, when optimizing for size, give a better estimate 3139 of the length of a memset call, but use the default otherwise. */ 3140 3141 #define CLEAR_RATIO(speed)\ 3142 ((speed) ? 15 : MIPS_CALL_RATIO) 3143 3144 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when 3145 optimizing for size adjust the ratio to account for the overhead of 3146 loading the constant and replicating it across the word. */ 3147 3148 #define SET_RATIO(speed) \ 3149 ((speed) ? 15 : MIPS_CALL_RATIO - 2) 3150 3151 /* Since the bits of the _init and _fini function is spread across 3152 many object files, each potentially with its own GP, we must assume 3153 we need to load our GP. We don't preserve $gp or $ra, since each 3154 init/fini chunk is supposed to initialize $gp, and crti/crtn 3155 already take care of preserving $ra and, when appropriate, $gp. */ 3156 #if (defined _ABIO32 && _MIPS_SIM == _ABIO32) 3157 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \ 3158 asm (SECTION_OP "\n\ 3159 .set push\n\ 3160 .set nomips16\n\ 3161 .set noreorder\n\ 3162 bal 1f\n\ 3163 nop\n\ 3164 1: .cpload $31\n\ 3165 .set reorder\n\ 3166 la $25, " USER_LABEL_PREFIX #FUNC "\n\ 3167 jalr $25\n\ 3168 .set pop\n\ 3169 " TEXT_SECTION_ASM_OP); 3170 #elif (defined _ABIN32 && _MIPS_SIM == _ABIN32) 3171 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \ 3172 asm (SECTION_OP "\n\ 3173 .set push\n\ 3174 .set nomips16\n\ 3175 .set noreorder\n\ 3176 bal 1f\n\ 3177 nop\n\ 3178 1: .set reorder\n\ 3179 .cpsetup $31, $2, 1b\n\ 3180 la $25, " USER_LABEL_PREFIX #FUNC "\n\ 3181 jalr $25\n\ 3182 .set pop\n\ 3183 " TEXT_SECTION_ASM_OP); 3184 #elif (defined _ABI64 && _MIPS_SIM == _ABI64) 3185 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \ 3186 asm (SECTION_OP "\n\ 3187 .set push\n\ 3188 .set nomips16\n\ 3189 .set noreorder\n\ 3190 bal 1f\n\ 3191 nop\n\ 3192 1: .set reorder\n\ 3193 .cpsetup $31, $2, 1b\n\ 3194 dla $25, " USER_LABEL_PREFIX #FUNC "\n\ 3195 jalr $25\n\ 3196 .set pop\n\ 3197 " TEXT_SECTION_ASM_OP); 3198 #endif 3199 3200 #ifndef HAVE_AS_TLS 3201 #define HAVE_AS_TLS 0 3202 #endif 3203 3204 #ifndef HAVE_AS_NAN 3205 #define HAVE_AS_NAN 0 3206 #endif 3207 3208 #ifndef USED_FOR_TARGET 3209 /* Information about ".set noFOO; ...; .set FOO" blocks. */ 3210 struct mips_asm_switch { 3211 /* The FOO in the description above. */ 3212 const char *name; 3213 3214 /* The current block nesting level, or 0 if we aren't in a block. */ 3215 int nesting_level; 3216 }; 3217 3218 extern const enum reg_class mips_regno_to_class[]; 3219 extern const char *current_function_file; /* filename current function is in */ 3220 extern int num_source_filenames; /* current .file # */ 3221 extern struct mips_asm_switch mips_noreorder; 3222 extern struct mips_asm_switch mips_nomacro; 3223 extern struct mips_asm_switch mips_noat; 3224 extern int mips_dbx_regno[]; 3225 extern int mips_dwarf_regno[]; 3226 extern bool mips_split_p[]; 3227 extern bool mips_split_hi_p[]; 3228 extern bool mips_use_pcrel_pool_p[]; 3229 extern const char *mips_lo_relocs[]; 3230 extern const char *mips_hi_relocs[]; 3231 extern enum processor mips_arch; /* which cpu to codegen for */ 3232 extern enum processor mips_tune; /* which cpu to schedule for */ 3233 extern int mips_isa; /* architectural level */ 3234 extern int mips_isa_rev; 3235 extern const struct mips_cpu_info *mips_arch_info; 3236 extern const struct mips_cpu_info *mips_tune_info; 3237 extern unsigned int mips_base_compression_flags; 3238 extern GTY(()) struct target_globals *mips16_globals; 3239 extern GTY(()) struct target_globals *micromips_globals; 3240 3241 /* Information about a function's frame layout. */ 3242 struct GTY(()) mips_frame_info { 3243 /* The size of the frame in bytes. */ 3244 HOST_WIDE_INT total_size; 3245 3246 /* The number of bytes allocated to variables. */ 3247 HOST_WIDE_INT var_size; 3248 3249 /* The number of bytes allocated to outgoing function arguments. */ 3250 HOST_WIDE_INT args_size; 3251 3252 /* The number of bytes allocated to the .cprestore slot, or 0 if there 3253 is no such slot. */ 3254 HOST_WIDE_INT cprestore_size; 3255 3256 /* Bit X is set if the function saves or restores GPR X. */ 3257 unsigned int mask; 3258 3259 /* Likewise FPR X. */ 3260 unsigned int fmask; 3261 3262 /* Likewise doubleword accumulator X ($acX). */ 3263 unsigned int acc_mask; 3264 3265 /* The number of GPRs, FPRs, doubleword accumulators and COP0 3266 registers saved. */ 3267 unsigned int num_gp; 3268 unsigned int num_fp; 3269 unsigned int num_acc; 3270 unsigned int num_cop0_regs; 3271 3272 /* The offset of the topmost GPR, FPR, accumulator and COP0-register 3273 save slots from the top of the frame, or zero if no such slots are 3274 needed. */ 3275 HOST_WIDE_INT gp_save_offset; 3276 HOST_WIDE_INT fp_save_offset; 3277 HOST_WIDE_INT acc_save_offset; 3278 HOST_WIDE_INT cop0_save_offset; 3279 3280 /* Likewise, but giving offsets from the bottom of the frame. */ 3281 HOST_WIDE_INT gp_sp_offset; 3282 HOST_WIDE_INT fp_sp_offset; 3283 HOST_WIDE_INT acc_sp_offset; 3284 HOST_WIDE_INT cop0_sp_offset; 3285 3286 /* Similar, but the value passed to _mcount. */ 3287 HOST_WIDE_INT ra_fp_offset; 3288 3289 /* The offset of arg_pointer_rtx from the bottom of the frame. */ 3290 HOST_WIDE_INT arg_pointer_offset; 3291 3292 /* The offset of hard_frame_pointer_rtx from the bottom of the frame. */ 3293 HOST_WIDE_INT hard_frame_pointer_offset; 3294 }; 3295 3296 /* Enumeration for masked vectored (VI) and non-masked (EIC) interrupts. */ 3297 enum mips_int_mask 3298 { 3299 INT_MASK_EIC = -1, 3300 INT_MASK_SW0 = 0, 3301 INT_MASK_SW1 = 1, 3302 INT_MASK_HW0 = 2, 3303 INT_MASK_HW1 = 3, 3304 INT_MASK_HW2 = 4, 3305 INT_MASK_HW3 = 5, 3306 INT_MASK_HW4 = 6, 3307 INT_MASK_HW5 = 7 3308 }; 3309 3310 /* Enumeration to mark the existence of the shadow register set. 3311 SHADOW_SET_INTSTACK indicates a shadow register set with a valid stack 3312 pointer. */ 3313 enum mips_shadow_set 3314 { 3315 SHADOW_SET_NO, 3316 SHADOW_SET_YES, 3317 SHADOW_SET_INTSTACK 3318 }; 3319 3320 struct GTY(()) machine_function { 3321 /* The next floating-point condition-code register to allocate 3322 for ISA_HAS_8CC targets, relative to ST_REG_FIRST. */ 3323 unsigned int next_fcc; 3324 3325 /* The register returned by mips16_gp_pseudo_reg; see there for details. */ 3326 rtx mips16_gp_pseudo_rtx; 3327 3328 /* The number of extra stack bytes taken up by register varargs. 3329 This area is allocated by the callee at the very top of the frame. */ 3330 int varargs_size; 3331 3332 /* The current frame information, calculated by mips_compute_frame_info. */ 3333 struct mips_frame_info frame; 3334 3335 /* The register to use as the function's global pointer, or INVALID_REGNUM 3336 if the function doesn't need one. */ 3337 unsigned int global_pointer; 3338 3339 /* How many instructions it takes to load a label into $AT, or 0 if 3340 this property hasn't yet been calculated. */ 3341 unsigned int load_label_num_insns; 3342 3343 /* True if mips_adjust_insn_length should ignore an instruction's 3344 hazard attribute. */ 3345 bool ignore_hazard_length_p; 3346 3347 /* True if the whole function is suitable for .set noreorder and 3348 .set nomacro. */ 3349 bool all_noreorder_p; 3350 3351 /* True if the function has "inflexible" and "flexible" references 3352 to the global pointer. See mips_cfun_has_inflexible_gp_ref_p 3353 and mips_cfun_has_flexible_gp_ref_p for details. */ 3354 bool has_inflexible_gp_insn_p; 3355 bool has_flexible_gp_insn_p; 3356 3357 /* True if the function's prologue must load the global pointer 3358 value into pic_offset_table_rtx and store the same value in 3359 the function's cprestore slot (if any). Even if this value 3360 is currently false, we may decide to set it to true later; 3361 see mips_must_initialize_gp_p () for details. */ 3362 bool must_initialize_gp_p; 3363 3364 /* True if the current function must restore $gp after any potential 3365 clobber. This value is only meaningful during the first post-epilogue 3366 split_insns pass; see mips_must_initialize_gp_p () for details. */ 3367 bool must_restore_gp_when_clobbered_p; 3368 3369 /* True if this is an interrupt handler. */ 3370 bool interrupt_handler_p; 3371 3372 /* Records the way in which interrupts should be masked. Only used if 3373 interrupts are not kept masked. */ 3374 enum mips_int_mask int_mask; 3375 3376 /* Records if this is an interrupt handler that uses shadow registers. */ 3377 enum mips_shadow_set use_shadow_register_set; 3378 3379 /* True if this is an interrupt handler that should keep interrupts 3380 masked. */ 3381 bool keep_interrupts_masked_p; 3382 3383 /* True if this is an interrupt handler that should use DERET 3384 instead of ERET. */ 3385 bool use_debug_exception_return_p; 3386 3387 /* True if at least one of the formal parameters to a function must be 3388 written to the frame header (probably so its address can be taken). */ 3389 bool does_not_use_frame_header; 3390 3391 /* True if none of the functions that are called by this function need 3392 stack space allocated for their arguments. */ 3393 bool optimize_call_stack; 3394 3395 /* True if one of the functions calling this function may not allocate 3396 a frame header. */ 3397 bool callers_may_not_allocate_frame; 3398 3399 /* True if GCC stored callee saved registers in the frame header. */ 3400 bool use_frame_header_for_callee_saved_regs; 3401 }; 3402 #endif 3403 3404 /* Enable querying of DFA units. */ 3405 #define CPU_UNITS_QUERY 1 3406 3407 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \ 3408 mips_final_prescan_insn (INSN, OPVEC, NOPERANDS) 3409 3410 /* As on most targets, we want the .eh_frame section to be read-only where 3411 possible. And as on most targets, this means two things: 3412 3413 (a) Non-locally-binding pointers must have an indirect encoding, 3414 so that the addresses in the .eh_frame section itself become 3415 locally-binding. 3416 3417 (b) A shared library's .eh_frame section must encode locally-binding 3418 pointers in a relative (relocation-free) form. 3419 3420 However, MIPS has traditionally not allowed directives like: 3421 3422 .long x-. 3423 3424 in cases where "x" is in a different section, or is not defined in the 3425 same assembly file. We are therefore unable to emit the PC-relative 3426 form required by (b) at assembly time. 3427 3428 Fortunately, the linker is able to convert absolute addresses into 3429 PC-relative addresses on our behalf. Unfortunately, only certain 3430 versions of the linker know how to do this for indirect pointers, 3431 and for personality data. We must fall back on using writable 3432 .eh_frame sections for shared libraries if the linker does not 3433 support this feature. */ 3434 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \ 3435 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_absptr) 3436 3437 /* For switching between MIPS16 and non-MIPS16 modes. */ 3438 #define SWITCHABLE_TARGET 1 3439 3440 /* Several named MIPS patterns depend on Pmode. These patterns have the 3441 form <NAME>_si for Pmode == SImode and <NAME>_di for Pmode == DImode. 3442 Add the appropriate suffix to generator function NAME and invoke it 3443 with arguments ARGS. */ 3444 #define PMODE_INSN(NAME, ARGS) \ 3445 (Pmode == SImode ? NAME ## _si ARGS : NAME ## _di ARGS) 3446 3447 /* If we are *not* using multilibs and the default ABI is not ABI_32 we 3448 need to change these from /lib and /usr/lib. */ 3449 #if MIPS_ABI_DEFAULT == ABI_N32 3450 #define STANDARD_STARTFILE_PREFIX_1 "/lib32/" 3451 #define STANDARD_STARTFILE_PREFIX_2 "/usr/lib32/" 3452 #elif MIPS_ABI_DEFAULT == ABI_64 3453 #define STANDARD_STARTFILE_PREFIX_1 "/lib64/" 3454 #define STANDARD_STARTFILE_PREFIX_2 "/usr/lib64/" 3455 #endif 3456 3457 /* Load store bonding is not supported by micromips and fix_24k. The 3458 performance can be degraded for those targets. Hence, do not bond for 3459 micromips or fix_24k. */ 3460 #define ENABLE_LD_ST_PAIRS \ 3461 (TARGET_LOAD_STORE_PAIRS \ 3462 && (TUNE_P5600 || TUNE_I6400 || TUNE_P6600) \ 3463 && !TARGET_MICROMIPS && !TARGET_FIX_24K) 3464