xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/config/iq2000/iq2000.h (revision 80d9064ac03cbb6a4174695f0d5b237c8766d3d0)
1 /* Definitions of target machine for GNU compiler.
2    Vitesse IQ2000 processors
3    Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
4    Free Software Foundation, Inc.
5 
6    This file is part of GCC.
7 
8    GCC is free software; you can redistribute it and/or modify it
9    under the terms of the GNU General Public License as published
10    by the Free Software Foundation; either version 3, or (at your
11    option) any later version.
12 
13    GCC is distributed in the hope that it will be useful, but WITHOUT
14    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
16    License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with GCC; see the file COPYING3.  If not see
20    <http://www.gnu.org/licenses/>.  */
21 
22 /* Driver configuration.  */
23 
24 #undef  SWITCH_TAKES_ARG
25 #define SWITCH_TAKES_ARG(CHAR)						\
26   (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
27 
28 /* The svr4.h LIB_SPEC with -leval and --*group tacked on */
29 #undef  LIB_SPEC
30 #define LIB_SPEC "%{!shared:%{!symbolic:--start-group -lc -leval -lgcc --end-group}}"
31 
32 #undef STARTFILE_SPEC
33 #undef ENDFILE_SPEC
34 
35 
36 /* Run-time target specifications.  */
37 
38 #define TARGET_CPU_CPP_BUILTINS()               \
39   do                                            \
40     {                                           \
41       builtin_define ("__iq2000__"); 		\
42       builtin_assert ("cpu=iq2000"); 		\
43       builtin_assert ("machine=iq2000");	\
44     }                                           \
45   while (0)
46 
47 /* Macros used in the machine description to test the flags.  */
48 
49 #define TARGET_STATS		0
50 
51 #define TARGET_DEBUG_MODE	0
52 #define TARGET_DEBUG_A_MODE	0
53 #define TARGET_DEBUG_B_MODE	0
54 #define TARGET_DEBUG_C_MODE	0
55 #define TARGET_DEBUG_D_MODE	0
56 
57 #ifndef IQ2000_ISA_DEFAULT
58 #define IQ2000_ISA_DEFAULT 1
59 #endif
60 
61 #define IQ2000_VERSION "[1.0]"
62 
63 #ifndef MACHINE_TYPE
64 #define MACHINE_TYPE "IQ2000"
65 #endif
66 
67 #ifndef TARGET_VERSION_INTERNAL
68 #define TARGET_VERSION_INTERNAL(STREAM)					\
69   fprintf (STREAM, " %s %s", IQ2000_VERSION, MACHINE_TYPE)
70 #endif
71 
72 #ifndef TARGET_VERSION
73 #define TARGET_VERSION TARGET_VERSION_INTERNAL (stderr)
74 #endif
75 
76 #define OVERRIDE_OPTIONS override_options ()
77 
78 #define CAN_DEBUG_WITHOUT_FP
79 
80 /* Storage Layout.  */
81 
82 #define BITS_BIG_ENDIAN 		0
83 #define BYTES_BIG_ENDIAN 		1
84 #define WORDS_BIG_ENDIAN 		1
85 #define LIBGCC2_WORDS_BIG_ENDIAN	1
86 #define BITS_PER_WORD 			32
87 #define MAX_BITS_PER_WORD 		64
88 #define UNITS_PER_WORD 			4
89 #define MIN_UNITS_PER_WORD 		4
90 #define POINTER_SIZE 			32
91 
92 /* Define this macro if it is advisable to hold scalars in registers
93    in a wider mode than that declared by the program.  In such cases,
94    the value is constrained to be within the bounds of the declared
95    type, but kept valid in the wider mode.  The signedness of the
96    extension may differ from that of the type.
97 
98    We promote any value smaller than SImode up to SImode.  */
99 
100 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
101   if (GET_MODE_CLASS (MODE) == MODE_INT		\
102       && GET_MODE_SIZE (MODE) < 4)		\
103     (MODE) = SImode;
104 
105 #define PARM_BOUNDARY 32
106 
107 #define STACK_BOUNDARY 64
108 
109 #define FUNCTION_BOUNDARY 32
110 
111 #define BIGGEST_ALIGNMENT 64
112 
113 #undef  DATA_ALIGNMENT
114 #define DATA_ALIGNMENT(TYPE, ALIGN)					\
115   ((((ALIGN) < BITS_PER_WORD)						\
116     && (TREE_CODE (TYPE) == ARRAY_TYPE					\
117 	|| TREE_CODE (TYPE) == UNION_TYPE				\
118 	|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
119 
120 #define CONSTANT_ALIGNMENT(EXP, ALIGN)					\
121   ((TREE_CODE (EXP) == STRING_CST  || TREE_CODE (EXP) == CONSTRUCTOR)	\
122    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
123 
124 #define EMPTY_FIELD_BOUNDARY 32
125 
126 #define STRUCTURE_SIZE_BOUNDARY 8
127 
128 #define STRICT_ALIGNMENT 1
129 
130 #define PCC_BITFIELD_TYPE_MATTERS 1
131 
132 
133 /* Layout of Source Language Data Types.  */
134 
135 #define INT_TYPE_SIZE 		32
136 #define SHORT_TYPE_SIZE 	16
137 #define LONG_TYPE_SIZE 		32
138 #define LONG_LONG_TYPE_SIZE 	64
139 #define CHAR_TYPE_SIZE		BITS_PER_UNIT
140 #define FLOAT_TYPE_SIZE 	32
141 #define DOUBLE_TYPE_SIZE 	64
142 #define LONG_DOUBLE_TYPE_SIZE	64
143 #define DEFAULT_SIGNED_CHAR	1
144 
145 
146 /* Register Basics.  */
147 
148 /* On the IQ2000, we have 32 integer registers.  */
149 #define FIRST_PSEUDO_REGISTER 33
150 
151 #define FIXED_REGISTERS							\
152 {									\
153   1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
154   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1			\
155 }
156 
157 #define CALL_USED_REGISTERS						\
158 {									\
159   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
160   0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1			\
161 }
162 
163 
164 /* Order of allocation of registers.  */
165 
166 #define REG_ALLOC_ORDER							\
167 {  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,	\
168   16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31	\
169 }
170 
171 
172 /* How Values Fit in Registers.  */
173 
174 #define HARD_REGNO_NREGS(REGNO, MODE)   \
175   ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
176 
177 #define HARD_REGNO_MODE_OK(REGNO, MODE) 			\
178  ((REGNO_REG_CLASS (REGNO) == GR_REGS)				\
179   ? ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) <= 4     	\
180   : ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) == 4)
181 
182 #define MODES_TIEABLE_P(MODE1, MODE2)				\
183   ((GET_MODE_CLASS (MODE1) == MODE_FLOAT ||			\
184     GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT)		\
185    == (GET_MODE_CLASS (MODE2) == MODE_FLOAT ||			\
186        GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
187 
188 #define AVOID_CCMODE_COPIES
189 
190 
191 /* Register Classes.  */
192 
193 enum reg_class
194 {
195   NO_REGS,			/* No registers in set.  */
196   GR_REGS,			/* Integer registers.  */
197   ALL_REGS,			/* All registers.  */
198   LIM_REG_CLASSES		/* Max value + 1.  */
199 };
200 
201 #define GENERAL_REGS GR_REGS
202 
203 #define N_REG_CLASSES (int) LIM_REG_CLASSES
204 
205 #define IRA_COVER_CLASSES	\
206 {				\
207   GR_REGS, LIM_REG_CLASSES	\
208 }
209 
210 #define REG_CLASS_NAMES						\
211 {								\
212   "NO_REGS",							\
213   "GR_REGS",							\
214   "ALL_REGS"							\
215 }
216 
217 #define REG_CLASS_CONTENTS					\
218 {								\
219   { 0x00000000, 0x00000000 },	/* No registers,  */		\
220   { 0xffffffff, 0x00000000 },	/* Integer registers.  */	\
221   { 0xffffffff, 0x00000001 }	/* All registers.  */		\
222 }
223 
224 #define REGNO_REG_CLASS(REGNO) \
225 ((REGNO) <= GP_REG_LAST + 1 ? GR_REGS : NO_REGS)
226 
227 #define BASE_REG_CLASS  (GR_REGS)
228 
229 #define INDEX_REG_CLASS NO_REGS
230 
231 #define REG_CLASS_FROM_LETTER(C) \
232   ((C) == 'd' ? GR_REGS :        \
233    (C) == 'b' ? ALL_REGS :       \
234    (C) == 'y' ? GR_REGS :        \
235    NO_REGS)
236 
237 #define REGNO_OK_FOR_INDEX_P(regno)	0
238 
239 #define PREFERRED_RELOAD_CLASS(X,CLASS)				\
240   ((CLASS) != ALL_REGS						\
241    ? (CLASS)							\
242    : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT		\
243        || GET_MODE_CLASS (GET_MODE (X)) == MODE_COMPLEX_FLOAT)	\
244       ? (GR_REGS)						\
245       : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_INT		\
246 	  || GET_MODE (X) == VOIDmode)				\
247 	 ? (GR_REGS)						\
248 	 : (CLASS))))
249 
250 #define SMALL_REGISTER_CLASSES 0
251 
252 #define CLASS_MAX_NREGS(CLASS, MODE)    \
253   ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
254 
255 /* For IQ2000:
256 
257    `I'	is used for the range of constants an arithmetic insn can
258 	actually contain (16-bits signed integers).
259 
260    `J'	is used for the range which is just zero (i.e., $r0).
261 
262    `K'	is used for the range of constants a logical insn can actually
263 	contain (16-bit zero-extended integers).
264 
265    `L'	is used for the range of constants that be loaded with lui
266 	(i.e., the bottom 16 bits are zero).
267 
268    `M'	is used for the range of constants that take two words to load
269 	(i.e., not matched by `I', `K', and `L').
270 
271    `N'	is used for constants 0xffffnnnn or 0xnnnnffff
272 
273    `O'	is a 5-bit zero-extended integer.  */
274 
275 #define CONST_OK_FOR_LETTER_P(VALUE, C)					\
276   ((C) == 'I' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000)	\
277    : (C) == 'J' ? ((VALUE) == 0)					\
278    : (C) == 'K' ? ((unsigned HOST_WIDE_INT) (VALUE) < 0x10000)		\
279    : (C) == 'L' ? (((VALUE) & 0x0000ffff) == 0				\
280 		   && (((VALUE) & ~2147483647) == 0			\
281 		       || ((VALUE) & ~2147483647) == ~2147483647))	\
282    : (C) == 'M' ? ((((VALUE) & ~0x0000ffff) != 0)			\
283 		   && (((VALUE) & ~0x0000ffff) != ~0x0000ffff)		\
284 		   && (((VALUE) & 0x0000ffff) != 0			\
285 		       || (((VALUE) & ~2147483647) != 0			\
286 			   && ((VALUE) & ~2147483647) != ~2147483647)))	\
287    : (C) == 'N' ? ((((VALUE) & 0xffff) == 0xffff)			\
288 		   || (((VALUE) & 0xffff0000) == 0xffff0000))		\
289    : (C) == 'O' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x20) < 0x40)	\
290    : 0)
291 
292 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)				\
293   ((C) == 'G'								\
294    && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))
295 
296 /* `R' is for memory references which take 1 word for the instruction.  */
297 
298 #define EXTRA_CONSTRAINT(OP,CODE)					\
299   (((CODE) == 'R')	  ? simple_memory_operand (OP, GET_MODE (OP))	\
300    : FALSE)
301 
302 
303 /* Basic Stack Layout.  */
304 
305 #define STACK_GROWS_DOWNWARD
306 
307 #define FRAME_GROWS_DOWNWARD 0
308 
309 #define STARTING_FRAME_OFFSET						\
310   (crtl->outgoing_args_size)
311 
312 /* Use the default value zero.  */
313 /* #define STACK_POINTER_OFFSET 0 */
314 
315 #define FIRST_PARM_OFFSET(FNDECL) 0
316 
317 /* The return address for the current frame is in r31 if this is a leaf
318    function.  Otherwise, it is on the stack.  It is at a variable offset
319    from sp/fp/ap, so we define a fake hard register rap which is a
320    pointer to the return address on the stack.  This always gets eliminated
321    during reload to be either the frame pointer or the stack pointer plus
322    an offset.  */
323 
324 #define RETURN_ADDR_RTX(count, frame)                                   \
325   (((count) == 0)                                                       \
326    ? (leaf_function_p ()                                                \
327       ? gen_rtx_REG (Pmode, GP_REG_FIRST + 31)                          \
328       : gen_rtx_MEM (Pmode, gen_rtx_REG (Pmode,                         \
329                                          RETURN_ADDRESS_POINTER_REGNUM))) \
330     : (rtx) 0)
331 
332 /* Before the prologue, RA lives in r31.  */
333 #define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
334 
335 
336 /* Register That Address the Stack Frame.  */
337 
338 #define STACK_POINTER_REGNUM 		(GP_REG_FIRST + 29)
339 #define FRAME_POINTER_REGNUM 		(GP_REG_FIRST + 1)
340 #define HARD_FRAME_POINTER_REGNUM 	(GP_REG_FIRST + 27)
341 #define ARG_POINTER_REGNUM 		GP_REG_FIRST
342 #define RETURN_ADDRESS_POINTER_REGNUM	RAP_REG_NUM
343 #define STATIC_CHAIN_REGNUM 		(GP_REG_FIRST + 2)
344 
345 
346 /* Eliminating the Frame Pointer and the Arg Pointer.  */
347 
348 #define ELIMINABLE_REGS							\
349 {{ ARG_POINTER_REGNUM,   STACK_POINTER_REGNUM},				\
350  { ARG_POINTER_REGNUM,   HARD_FRAME_POINTER_REGNUM},			\
351  { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
352  { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},		\
353  { RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 31},			\
354  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},				\
355  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
356 
357 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			 \
358         (OFFSET) = iq2000_initial_elimination_offset ((FROM), (TO))
359 
360 /* Passing Function Arguments on the Stack.  */
361 
362 /* #define PUSH_ROUNDING(BYTES) 0 */
363 
364 #define ACCUMULATE_OUTGOING_ARGS 1
365 
366 #define REG_PARM_STACK_SPACE(FNDECL) 0
367 
368 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
369 
370 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
371 
372 
373 /* Function Arguments in Registers.  */
374 
375 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
376   function_arg (& CUM, MODE, TYPE, NAMED)
377 
378 #define MAX_ARGS_IN_REGISTERS 8
379 
380 typedef struct iq2000_args
381 {
382   int gp_reg_found;		/* Whether a gp register was found yet.  */
383   unsigned int arg_number;	/* Argument number.  */
384   unsigned int arg_words;	/* # total words the arguments take.  */
385   unsigned int fp_arg_words;	/* # words for FP args (IQ2000_EABI only).  */
386   int last_arg_fp;		/* Nonzero if last arg was FP (EABI only).  */
387   int fp_code;			/* Mode of FP arguments.  */
388   unsigned int num_adjusts;	/* Number of adjustments made.  */
389 				/* Adjustments made to args pass in regs.  */
390   struct rtx_def * adjust[MAX_ARGS_IN_REGISTERS * 2];
391 } CUMULATIVE_ARGS;
392 
393 /* Initialize a variable CUM of type CUMULATIVE_ARGS
394    for a call to a function whose data type is FNTYPE.
395    For a library call, FNTYPE is 0.  */
396 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
397   init_cumulative_args (& CUM, FNTYPE, LIBNAME)				\
398 
399 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)			\
400   function_arg_advance (& CUM, MODE, TYPE, NAMED)
401 
402 #define FUNCTION_ARG_PADDING(MODE, TYPE)				\
403   (! BYTES_BIG_ENDIAN							\
404    ? upward								\
405    : (((MODE) == BLKmode						\
406        ? ((TYPE) && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST		\
407 	  && int_size_in_bytes (TYPE) < (PARM_BOUNDARY / BITS_PER_UNIT))\
408        : (GET_MODE_BITSIZE (MODE) < PARM_BOUNDARY			\
409 	  && (GET_MODE_CLASS (MODE) == MODE_INT)))			\
410       ? downward : upward))
411 
412 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE)				\
413   (((TYPE) != 0)							\
414 	? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY)				\
415 		? PARM_BOUNDARY						\
416 		: TYPE_ALIGN(TYPE))					\
417 	: ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY)			\
418 		? PARM_BOUNDARY						\
419 		: GET_MODE_ALIGNMENT(MODE)))
420 
421 #define FUNCTION_ARG_REGNO_P(N)						\
422   (((N) >= GP_ARG_FIRST && (N) <= GP_ARG_LAST))
423 
424 
425 /* On the IQ2000, R2 and R3 are the only register thus used.  */
426 
427 #define FUNCTION_VALUE_REGNO_P(N) iq2000_function_value_regno_p (N)
428 
429 
430 /* How Large Values are Returned.  */
431 
432 #define DEFAULT_PCC_STRUCT_RETURN 0
433 
434 /* Function Entry and Exit.  */
435 
436 #define EXIT_IGNORE_STACK 1
437 
438 
439 /* Generating Code for Profiling.  */
440 
441 #define FUNCTION_PROFILER(FILE, LABELNO)				\
442 {									\
443   fprintf (FILE, "\t.set\tnoreorder\n");				\
444   fprintf (FILE, "\t.set\tnoat\n");					\
445   fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n",	\
446 	   reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]);	\
447   fprintf (FILE, "\tjal\t_mcount\n");					\
448   fprintf (FILE,							\
449 	   "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from  stack\n",	\
450 	   "subu",							\
451 	   reg_names[STACK_POINTER_REGNUM],				\
452 	   reg_names[STACK_POINTER_REGNUM],				\
453 	   Pmode == DImode ? 16 : 8);					\
454   fprintf (FILE, "\t.set\treorder\n");					\
455   fprintf (FILE, "\t.set\tat\n");					\
456 }
457 
458 
459 /* Trampolines for Nested Functions.  */
460 
461 #define TRAMPOLINE_CODE_SIZE  (8*4)
462 #define TRAMPOLINE_SIZE       (TRAMPOLINE_CODE_SIZE + 2*GET_MODE_SIZE (Pmode))
463 #define TRAMPOLINE_ALIGNMENT  GET_MODE_ALIGNMENT (Pmode)
464 
465 
466 /* Addressing Modes.  */
467 
468 #define CONSTANT_ADDRESS_P(X)						\
469   (   (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
470     || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH		\
471     || (GET_CODE (X) == CONST)))
472 
473 #define MAX_REGS_PER_ADDRESS 1
474 
475 #define REG_OK_FOR_INDEX_P(X) 0
476 
477 #define LEGITIMATE_CONSTANT_P(X) (1)
478 
479 
480 /* Describing Relative Costs of Operations.  */
481 
482 #define REGISTER_MOVE_COST(MODE, FROM, TO)	2
483 
484 #define MEMORY_MOVE_COST(MODE,CLASS,TO_P)	\
485   (TO_P ? 2 : 16)
486 
487 #define BRANCH_COST(speed_p, predictable_p) 2
488 
489 #define SLOW_BYTE_ACCESS 1
490 
491 #define NO_FUNCTION_CSE 1
492 
493 #define ADJUST_COST(INSN,LINK,DEP_INSN,COST)				\
494   if (REG_NOTE_KIND (LINK) != 0)					\
495     (COST) = 0; /* Anti or output dependence.  */
496 
497 
498 /* Dividing the output into sections.  */
499 
500 #define TEXT_SECTION_ASM_OP	"\t.text"	/* Instructions.  */
501 
502 #define DATA_SECTION_ASM_OP	"\t.data"	/* Large data.  */
503 
504 
505 /* The Overall Framework of an Assembler File.  */
506 
507 #define ASM_COMMENT_START " #"
508 
509 #define ASM_APP_ON "#APP\n"
510 
511 #define ASM_APP_OFF "#NO_APP\n"
512 
513 
514 /* Output and Generation of Labels.  */
515 
516 #undef ASM_GENERATE_INTERNAL_LABEL
517 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)			\
518   sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long) (NUM))
519 
520 #define GLOBAL_ASM_OP "\t.globl\t"
521 
522 
523 /* Output of Assembler Instructions.  */
524 
525 #define REGISTER_NAMES							\
526 {									\
527  "%0",   "%1",   "%2",   "%3",   "%4",   "%5",   "%6",   "%7",		\
528  "%8",   "%9",   "%10",  "%11",  "%12",  "%13",  "%14",  "%15",		\
529  "%16",  "%17",  "%18",  "%19",  "%20",  "%21",  "%22",  "%23",		\
530  "%24",  "%25",  "%26",  "%27",  "%28",  "%29",  "%30",  "%31",  "%rap"	\
531 };
532 
533 #define ADDITIONAL_REGISTER_NAMES					\
534 {									\
535   { "%0",	 0 + GP_REG_FIRST },					\
536   { "%1",	 1 + GP_REG_FIRST },					\
537   { "%2",	 2 + GP_REG_FIRST },					\
538   { "%3",	 3 + GP_REG_FIRST },					\
539   { "%4",	 4 + GP_REG_FIRST },					\
540   { "%5",	 5 + GP_REG_FIRST },					\
541   { "%6",	 6 + GP_REG_FIRST },					\
542   { "%7",	 7 + GP_REG_FIRST },					\
543   { "%8",	 8 + GP_REG_FIRST },					\
544   { "%9",	 9 + GP_REG_FIRST },					\
545   { "%10",	10 + GP_REG_FIRST },					\
546   { "%11",	11 + GP_REG_FIRST },					\
547   { "%12",	12 + GP_REG_FIRST },					\
548   { "%13",	13 + GP_REG_FIRST },					\
549   { "%14",	14 + GP_REG_FIRST },					\
550   { "%15",	15 + GP_REG_FIRST },					\
551   { "%16",	16 + GP_REG_FIRST },					\
552   { "%17",	17 + GP_REG_FIRST },					\
553   { "%18",	18 + GP_REG_FIRST },					\
554   { "%19",	19 + GP_REG_FIRST },					\
555   { "%20",	20 + GP_REG_FIRST },					\
556   { "%21",	21 + GP_REG_FIRST },					\
557   { "%22",	22 + GP_REG_FIRST },					\
558   { "%23",	23 + GP_REG_FIRST },					\
559   { "%24",	24 + GP_REG_FIRST },					\
560   { "%25",	25 + GP_REG_FIRST },					\
561   { "%26",	26 + GP_REG_FIRST },					\
562   { "%27",	27 + GP_REG_FIRST },					\
563   { "%28",	28 + GP_REG_FIRST },					\
564   { "%29",	29 + GP_REG_FIRST },					\
565   { "%30",	27 + GP_REG_FIRST },					\
566   { "%31",	31 + GP_REG_FIRST },					\
567   { "%rap",	32 + GP_REG_FIRST },					\
568 }
569 
570 /* Check if the current insn needs a nop in front of it
571    because of load delays, and also update the delay slot statistics.  */
572 
573 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)			\
574   final_prescan_insn (INSN, OPVEC, NOPERANDS)
575 
576 /* See iq2000.c for the IQ2000 specific codes.  */
577 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
578 
579 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) iq2000_print_operand_punct[CODE]
580 
581 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
582 
583 #define DBR_OUTPUT_SEQEND(STREAM)					\
584 do									\
585   {									\
586     fputs ("\n", STREAM);						\
587   }									\
588 while (0)
589 
590 #define LOCAL_LABEL_PREFIX	"$"
591 
592 #define USER_LABEL_PREFIX	""
593 
594 
595 /* Output of dispatch tables.  */
596 
597 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)		\
598   do									\
599     {									\
600       fprintf (STREAM, "\t%s\t%sL%d\n",					\
601 	       Pmode == DImode ? ".dword" : ".word",			\
602 	       LOCAL_LABEL_PREFIX, VALUE);				\
603     }									\
604   while (0)
605 
606 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE)				\
607   fprintf (STREAM, "\t%s\t%sL%d\n",					\
608 	   Pmode == DImode ? ".dword" : ".word",			\
609 	   LOCAL_LABEL_PREFIX,						\
610 	   VALUE)
611 
612 
613 /* Assembler Commands for Alignment.  */
614 
615 #undef ASM_OUTPUT_SKIP
616 #define ASM_OUTPUT_SKIP(STREAM,SIZE)					\
617   fprintf (STREAM, "\t.space\t" HOST_WIDE_INT_PRINT_UNSIGNED "\n",	\
618            (unsigned HOST_WIDE_INT)(SIZE))
619 
620 #define ASM_OUTPUT_ALIGN(STREAM,LOG)					\
621   if ((LOG) != 0)                       				\
622     fprintf (STREAM, "\t.balign %d\n", 1<<(LOG))
623 
624 
625 /* Macros Affecting all Debug Formats.  */
626 
627 #define DEBUGGER_AUTO_OFFSET(X)  \
628   iq2000_debugger_offset (X, (HOST_WIDE_INT) 0)
629 
630 #define DEBUGGER_ARG_OFFSET(OFFSET, X)  \
631   iq2000_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
632 
633 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
634 
635 #define DWARF2_DEBUGGING_INFO 1
636 
637 
638 /* Miscellaneous Parameters.  */
639 
640 #define CASE_VECTOR_MODE SImode
641 
642 #define WORD_REGISTER_OPERATIONS
643 
644 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
645 
646 #define MOVE_MAX 4
647 
648 #define MAX_MOVE_MAX 8
649 
650 #define SHIFT_COUNT_TRUNCATED 1
651 
652 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
653 
654 #define STORE_FLAG_VALUE 1
655 
656 #define Pmode SImode
657 
658 #define FUNCTION_MODE SImode
659 
660 /* Standard GCC variables that we reference.  */
661 
662 extern char	call_used_regs[];
663 
664 /* IQ2000 external variables defined in iq2000.c.  */
665 
666 /* Comparison type.  */
667 enum cmp_type
668 {
669   CMP_SI,				/* Compare four byte integers.  */
670   CMP_DI,				/* Compare eight byte integers.  */
671   CMP_SF,				/* Compare single precision floats.  */
672   CMP_DF,				/* Compare double precision floats.  */
673   CMP_MAX				/* Max comparison type.  */
674 };
675 
676 /* Types of delay slot.  */
677 enum delay_type
678 {
679   DELAY_NONE,				/* No delay slot.  */
680   DELAY_LOAD,				/* Load from memory delay.  */
681   DELAY_FCMP				/* Delay after doing c.<xx>.{d,s}.  */
682 };
683 
684 /* Which processor to schedule for.  */
685 
686 enum processor_type
687 {
688   PROCESSOR_DEFAULT,
689   PROCESSOR_IQ2000,
690   PROCESSOR_IQ10
691 };
692 
693 /* Recast the cpu class to be the cpu attribute.  */
694 #define iq2000_cpu_attr ((enum attr_cpu) iq2000_tune)
695 
696 #define BITMASK_UPPER16	((unsigned long) 0xffff << 16)	/* 0xffff0000 */
697 #define BITMASK_LOWER16	((unsigned long) 0xffff)	/* 0x0000ffff */
698 
699 
700 #define GENERATE_BRANCHLIKELY  (ISA_HAS_BRANCHLIKELY)
701 
702 /* Macros to decide whether certain features are available or not,
703    depending on the instruction set architecture level.  */
704 
705 #define BRANCH_LIKELY_P()	GENERATE_BRANCHLIKELY
706 
707 /* ISA has branch likely instructions.  */
708 #define ISA_HAS_BRANCHLIKELY	(iq2000_isa == 1)
709 
710 
711 #undef ASM_SPEC
712 
713 
714 /* The mapping from gcc register number to DWARF 2 CFA column number.  */
715 #define DWARF_FRAME_REGNUM(REG)        (REG)
716 
717 /* The DWARF 2 CFA column which tracks the return address.  */
718 #define DWARF_FRAME_RETURN_COLUMN (GP_REG_FIRST + 31)
719 
720 /* Describe how we implement __builtin_eh_return.  */
721 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
722 
723 /* The EH_RETURN_STACKADJ_RTX macro returns RTL which describes the
724    location used to store the amount to adjust the stack.  This is
725    usually a register that is available from end of the function's body
726    to the end of the epilogue. Thus, this cannot be a register used as a
727    temporary by the epilogue.
728 
729    This must be an integer register.  */
730 #define EH_RETURN_STACKADJ_REGNO        3
731 #define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, EH_RETURN_STACKADJ_REGNO)
732 
733 /* The EH_RETURN_HANDLER_RTX macro returns RTL which describes the
734    location used to store the address the processor should jump to
735    catch exception.  This is usually a registers that is available from
736    end of the function's body to the end of the epilogue. Thus, this
737    cannot be a register used as a temporary by the epilogue.
738 
739    This must be an address register.  */
740 #define EH_RETURN_HANDLER_REGNO         26
741 #define EH_RETURN_HANDLER_RTX           \
742         gen_rtx_REG (Pmode, EH_RETURN_HANDLER_REGNO)
743 
744 /* Offsets recorded in opcodes are a multiple of this alignment factor.  */
745 #define DWARF_CIE_DATA_ALIGNMENT 4
746 
747 /* For IQ2000, width of a floating point register.  */
748 #define UNITS_PER_FPREG 4
749 
750 /* Force right-alignment for small varargs in 32 bit little_endian mode */
751 
752 #define PAD_VARARGS_DOWN !BYTES_BIG_ENDIAN
753 
754 /* Internal macros to classify a register number as to whether it's a
755    general purpose register, a floating point register, a
756    multiply/divide register, or a status register.  */
757 
758 #define GP_REG_FIRST 0
759 #define GP_REG_LAST  31
760 #define GP_REG_NUM   (GP_REG_LAST - GP_REG_FIRST + 1)
761 
762 #define RAP_REG_NUM   32
763 #define AT_REGNUM	(GP_REG_FIRST + 1)
764 
765 #define GP_REG_P(REGNO)	\
766   ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
767 
768 /* IQ2000 registers used in prologue/epilogue code when the stack frame
769    is larger than 32K bytes.  These registers must come from the
770    scratch register set, and not used for passing and returning
771    arguments and any other information used in the calling sequence.  */
772 
773 #define IQ2000_TEMP1_REGNUM (GP_REG_FIRST + 12)
774 #define IQ2000_TEMP2_REGNUM (GP_REG_FIRST + 13)
775 
776 /* This macro is used later on in the file.  */
777 #define GR_REG_CLASS_P(CLASS)						\
778   ((CLASS) == GR_REGS)
779 
780 #define SMALL_INT(X) ((unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
781 #define SMALL_INT_UNSIGNED(X) ((unsigned HOST_WIDE_INT) (INTVAL (X)) < 0x10000)
782 
783 /* Certain machines have the property that some registers cannot be
784    copied to some other registers without using memory.  Define this
785    macro on those machines to be a C expression that is nonzero if
786    objects of mode MODE in registers of CLASS1 can only be copied to
787    registers of class CLASS2 by storing a register of CLASS1 into
788    memory and loading that memory location into a register of CLASS2.
789 
790    Do not define this macro if its value would always be zero.  */
791 
792 /* Return the maximum number of consecutive registers
793    needed to represent mode MODE in a register of class CLASS.  */
794 
795 #define CLASS_UNITS(mode, size)						\
796   ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
797 
798 /* If defined, gives a class of registers that cannot be used as the
799    operand of a SUBREG that changes the mode of the object illegally.  */
800 
801 #define CLASS_CANNOT_CHANGE_MODE 0
802 
803 /* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE.  */
804 
805 #define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
806   (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
807 
808 /* Make sure 4 words are always allocated on the stack.  */
809 
810 #ifndef STACK_ARGS_ADJUST
811 #define STACK_ARGS_ADJUST(SIZE)						\
812   {									\
813     if (SIZE.constant < 4 * UNITS_PER_WORD)				\
814       SIZE.constant = 4 * UNITS_PER_WORD;				\
815   }
816 #endif
817 
818 
819 /* Symbolic macros for the registers used to return integer and floating
820    point values.  */
821 
822 #define GP_RETURN (GP_REG_FIRST + 2)
823 
824 /* Symbolic macros for the first/last argument registers.  */
825 
826 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
827 #define GP_ARG_LAST  (GP_REG_FIRST + 11)
828 
829 #define MAX_ARGS_IN_REGISTERS	8
830 
831 
832 /* Tell prologue and epilogue if register REGNO should be saved / restored.  */
833 
834 #define MUST_SAVE_REGISTER(regno) \
835   ((df_regs_ever_live_p (regno) && !call_used_regs[regno])		\
836   || (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed)	\
837    || (regno == (GP_REG_FIRST + 31) && df_regs_ever_live_p (GP_REG_FIRST + 31)))
838 
839 /* ALIGN FRAMES on double word boundaries */
840 #ifndef IQ2000_STACK_ALIGN
841 #define IQ2000_STACK_ALIGN(LOC) (((LOC) + 7) & ~7)
842 #endif
843 
844 
845 /* These assume that REGNO is a hard or pseudo reg number.
846    They give nonzero only if REGNO is a hard reg of the suitable class
847    or a pseudo reg currently allocated to a suitable hard reg.
848    These definitions are NOT overridden anywhere.  */
849 
850 #define BASE_REG_P(regno, mode)					\
851   (GP_REG_P (regno))
852 
853 #define GP_REG_OR_PSEUDO_STRICT_P(regno, mode)				    \
854   BASE_REG_P((regno < FIRST_PSEUDO_REGISTER) ? regno : reg_renumber[regno], \
855 	     (mode))
856 
857 #define GP_REG_OR_PSEUDO_NONSTRICT_P(regno, mode) \
858   (((regno) >= FIRST_PSEUDO_REGISTER) || (BASE_REG_P ((regno), (mode))))
859 
860 #define REGNO_MODE_OK_FOR_BASE_P(regno, mode) \
861   GP_REG_OR_PSEUDO_STRICT_P ((regno), (mode))
862 
863 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
864    and check its validity for a certain class.
865    We have two alternate definitions for each of them.
866    The usual definition accepts all pseudo regs; the other rejects them all.
867    The symbol REG_OK_STRICT causes the latter definition to be used.
868 
869    Most source files want to accept pseudo regs in the hope that
870    they will get allocated to the class that the insn wants them to be in.
871    Some source files that are used after register allocation
872    need to be strict.  */
873 
874 #ifndef REG_OK_STRICT
875 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
876   iq2000_reg_mode_ok_for_base_p (X, MODE, 0)
877 #else
878 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
879   iq2000_reg_mode_ok_for_base_p (X, MODE, 1)
880 #endif
881 
882 #if 1
883 #define GO_PRINTF(x)	fprintf (stderr, (x))
884 #define GO_PRINTF2(x,y)	fprintf (stderr, (x), (y))
885 #define GO_DEBUG_RTX(x) debug_rtx (x)
886 
887 #else
888 #define GO_PRINTF(x)
889 #define GO_PRINTF2(x,y)
890 #define GO_DEBUG_RTX(x)
891 #endif
892 
893 /* If defined, modifies the length assigned to instruction INSN as a
894    function of the context in which it is used.  LENGTH is an lvalue
895    that contains the initially computed length of the insn and should
896    be updated with the correct length of the insn.  */
897 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
898   ((LENGTH) = iq2000_adjust_insn_length ((INSN), (LENGTH)))
899 
900 
901 
902 
903 /* How to tell the debugger about changes of source files.  */
904 
905 #ifndef SET_FILE_NUMBER
906 #define SET_FILE_NUMBER() ++ num_source_filenames
907 #endif
908 
909 /* This is how to output a note the debugger telling it the line number
910    to which the following sequence of instructions corresponds.  */
911 
912 #ifndef LABEL_AFTER_LOC
913 #define LABEL_AFTER_LOC(STREAM)
914 #endif
915 
916 
917 /* Default to -G 8 */
918 #ifndef IQ2000_DEFAULT_GVALUE
919 #define IQ2000_DEFAULT_GVALUE 8
920 #endif
921 
922 #define SDATA_SECTION_ASM_OP	"\t.sdata"	/* Small data.  */
923 
924 
925 /* List of all IQ2000 punctuation characters used by print_operand.  */
926 extern char iq2000_print_operand_punct[256];
927 
928 /* The target cpu for optimization and scheduling.  */
929 extern enum processor_type iq2000_tune;
930 
931 /* Which instruction set architecture to use.  */
932 extern int iq2000_isa;
933 
934 enum iq2000_builtins
935 {
936   IQ2000_BUILTIN_ADO16,
937   IQ2000_BUILTIN_CFC0,
938   IQ2000_BUILTIN_CFC1,
939   IQ2000_BUILTIN_CFC2,
940   IQ2000_BUILTIN_CFC3,
941   IQ2000_BUILTIN_CHKHDR,
942   IQ2000_BUILTIN_CTC0,
943   IQ2000_BUILTIN_CTC1,
944   IQ2000_BUILTIN_CTC2,
945   IQ2000_BUILTIN_CTC3,
946   IQ2000_BUILTIN_LU,
947   IQ2000_BUILTIN_LUC32L,
948   IQ2000_BUILTIN_LUC64,
949   IQ2000_BUILTIN_LUC64L,
950   IQ2000_BUILTIN_LUK,
951   IQ2000_BUILTIN_LULCK,
952   IQ2000_BUILTIN_LUM32,
953   IQ2000_BUILTIN_LUM32L,
954   IQ2000_BUILTIN_LUM64,
955   IQ2000_BUILTIN_LUM64L,
956   IQ2000_BUILTIN_LUR,
957   IQ2000_BUILTIN_LURL,
958   IQ2000_BUILTIN_MFC0,
959   IQ2000_BUILTIN_MFC1,
960   IQ2000_BUILTIN_MFC2,
961   IQ2000_BUILTIN_MFC3,
962   IQ2000_BUILTIN_MRGB,
963   IQ2000_BUILTIN_MTC0,
964   IQ2000_BUILTIN_MTC1,
965   IQ2000_BUILTIN_MTC2,
966   IQ2000_BUILTIN_MTC3,
967   IQ2000_BUILTIN_PKRL,
968   IQ2000_BUILTIN_RAM,
969   IQ2000_BUILTIN_RB,
970   IQ2000_BUILTIN_RX,
971   IQ2000_BUILTIN_SRRD,
972   IQ2000_BUILTIN_SRRDL,
973   IQ2000_BUILTIN_SRULC,
974   IQ2000_BUILTIN_SRULCK,
975   IQ2000_BUILTIN_SRWR,
976   IQ2000_BUILTIN_SRWRU,
977   IQ2000_BUILTIN_TRAPQF,
978   IQ2000_BUILTIN_TRAPQFL,
979   IQ2000_BUILTIN_TRAPQN,
980   IQ2000_BUILTIN_TRAPQNE,
981   IQ2000_BUILTIN_TRAPRE,
982   IQ2000_BUILTIN_TRAPREL,
983   IQ2000_BUILTIN_WB,
984   IQ2000_BUILTIN_WBR,
985   IQ2000_BUILTIN_WBU,
986   IQ2000_BUILTIN_WX,
987   IQ2000_BUILTIN_SYSCALL
988 };
989