xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/config/ia64/ia64.h (revision 796c32c94f6e154afc9de0f63da35c91bb739b45)
1 /* Definitions of target machine GNU compiler.  IA-64 version.
2    Copyright (C) 1999-2015 Free Software Foundation, Inc.
3    Contributed by James E. Wilson <wilson@cygnus.com> and
4    		  David Mosberger <davidm@hpl.hp.com>.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12 
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 /* ??? Look at ABI group documents for list of preprocessor macros and
23    other features required for ABI compliance.  */
24 
25 /* ??? Functions containing a non-local goto target save many registers.  Why?
26    See for instance execute/920428-2.c.  */
27 
28 
29 /* Run-time target specifications */
30 
31 /* Target CPU builtins.  */
32 #define TARGET_CPU_CPP_BUILTINS()		\
33 do {						\
34 	builtin_assert("cpu=ia64");		\
35 	builtin_assert("machine=ia64");		\
36 	builtin_define("__ia64");		\
37 	builtin_define("__ia64__");		\
38 	builtin_define("__itanium__");		\
39 	if (TARGET_BIG_ENDIAN)			\
40 	  builtin_define("__BIG_ENDIAN__");	\
41 } while (0)
42 
43 #ifndef SUBTARGET_EXTRA_SPECS
44 #define SUBTARGET_EXTRA_SPECS
45 #endif
46 
47 #define EXTRA_SPECS \
48   { "asm_extra", ASM_EXTRA_SPEC }, \
49   SUBTARGET_EXTRA_SPECS
50 
51 #define CC1_SPEC "%(cc1_cpu) "
52 
53 #define ASM_EXTRA_SPEC ""
54 
55 /* Variables which are this size or smaller are put in the sdata/sbss
56    sections.  */
57 extern unsigned int ia64_section_threshold;
58 
59 /* If the assembler supports thread-local storage, assume that the
60    system does as well.  If a particular target system has an
61    assembler that supports TLS -- but the rest of the system does not
62    support TLS -- that system should explicit define TARGET_HAVE_TLS
63    to false in its own configuration file.  */
64 #if !defined(TARGET_HAVE_TLS) && defined(HAVE_AS_TLS)
65 #define TARGET_HAVE_TLS true
66 #endif
67 
68 #define TARGET_TLS14		(ia64_tls_size == 14)
69 #define TARGET_TLS22		(ia64_tls_size == 22)
70 #define TARGET_TLS64		(ia64_tls_size == 64)
71 
72 #define TARGET_HPUX		0
73 #define TARGET_HPUX_LD		0
74 
75 #define TARGET_ABI_OPEN_VMS 0
76 
77 #ifndef TARGET_ILP32
78 #define TARGET_ILP32 0
79 #endif
80 
81 #ifndef HAVE_AS_LTOFFX_LDXMOV_RELOCS
82 #define HAVE_AS_LTOFFX_LDXMOV_RELOCS 0
83 #endif
84 
85 /* Values for TARGET_INLINE_FLOAT_DIV, TARGET_INLINE_INT_DIV, and
86    TARGET_INLINE_SQRT.  */
87 
88 enum ia64_inline_type
89 {
90   INL_NO = 0,
91   INL_MIN_LAT = 1,
92   INL_MAX_THR = 2
93 };
94 
95 /* Default target_flags if no switches are specified  */
96 
97 #ifndef TARGET_DEFAULT
98 #define TARGET_DEFAULT (MASK_DWARF2_ASM)
99 #endif
100 
101 #ifndef TARGET_CPU_DEFAULT
102 #define TARGET_CPU_DEFAULT 0
103 #endif
104 
105 /* Driver configuration */
106 
107 /* A C string constant that tells the GCC driver program options to pass to
108    `cc1'.  It can also specify how to translate options you give to GCC into
109    options for GCC to pass to the `cc1'.  */
110 
111 #undef CC1_SPEC
112 #define CC1_SPEC "%{G*}"
113 
114 /* A C string constant that tells the GCC driver program options to pass to
115    `cc1plus'.  It can also specify how to translate options you give to GCC
116    into options for GCC to pass to the `cc1plus'.  */
117 
118 /* #define CC1PLUS_SPEC "" */
119 
120 /* Storage Layout */
121 
122 /* Define this macro to have the value 1 if the most significant bit in a byte
123    has the lowest number; otherwise define it to have the value zero.  */
124 
125 #define BITS_BIG_ENDIAN 0
126 
127 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
128 
129 /* Define this macro to have the value 1 if, in a multiword object, the most
130    significant word has the lowest number.  */
131 
132 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
133 
134 #define UNITS_PER_WORD 8
135 
136 #define POINTER_SIZE (TARGET_ILP32 ? 32 : 64)
137 
138 /* A C expression whose value is zero if pointers that need to be extended
139    from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and one if
140    they are zero-extended and negative one if there is a ptr_extend operation.
141 
142    You need not define this macro if the `POINTER_SIZE' is equal to the width
143    of `Pmode'.  */
144 /* Need this for 32-bit pointers, see hpux.h for setting it.  */
145 /* #define POINTERS_EXTEND_UNSIGNED */
146 
147 /* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
148    which has the specified mode and signedness is to be stored in a register.
149    This macro is only called when TYPE is a scalar type.  */
150 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)				\
151 do									\
152   {									\
153     if (GET_MODE_CLASS (MODE) == MODE_INT				\
154 	&& GET_MODE_SIZE (MODE) < 4)					\
155       (MODE) = SImode;							\
156   }									\
157 while (0)
158 
159 #define PARM_BOUNDARY 64
160 
161 /* Define this macro if you wish to preserve a certain alignment for the stack
162    pointer.  The definition is a C expression for the desired alignment
163    (measured in bits).  */
164 
165 #define STACK_BOUNDARY 128
166 
167 /* Align frames on double word boundaries */
168 #ifndef IA64_STACK_ALIGN
169 #define IA64_STACK_ALIGN(LOC) (((LOC) + 15) & ~15)
170 #endif
171 
172 #define FUNCTION_BOUNDARY 128
173 
174 /* Optional x86 80-bit float, quad-precision 128-bit float, and quad-word
175    128-bit integers all require 128-bit alignment.  */
176 #define BIGGEST_ALIGNMENT 128
177 
178 /* If defined, a C expression to compute the alignment for a static variable.
179    TYPE is the data type, and ALIGN is the alignment that the object
180    would ordinarily have.  The value of this macro is used instead of that
181    alignment to align the object.  */
182 
183 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
184   (TREE_CODE (TYPE) == ARRAY_TYPE		\
185    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
186    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
187 
188 /* If defined, a C expression to compute the alignment given to a constant that
189    is being placed in memory.  CONSTANT is the constant and ALIGN is the
190    alignment that the object would ordinarily have.  The value of this macro is
191    used instead of that alignment to align the object.  */
192 
193 #define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
194   (TREE_CODE (EXP) == STRING_CST	\
195    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
196 
197 #define STRICT_ALIGNMENT 1
198 
199 /* Define this if you wish to imitate the way many other C compilers handle
200    alignment of bitfields and the structures that contain them.
201    The behavior is that the type written for a bit-field (`int', `short', or
202    other integer type) imposes an alignment for the entire structure, as if the
203    structure really did contain an ordinary field of that type.  In addition,
204    the bit-field is placed within the structure so that it would fit within such
205    a field, not crossing a boundary for it.  */
206 #define PCC_BITFIELD_TYPE_MATTERS 1
207 
208 /* An integer expression for the size in bits of the largest integer machine
209    mode that should actually be used.  */
210 
211 /* Allow pairs of registers to be used, which is the intent of the default.  */
212 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
213 
214 /* By default, the C++ compiler will use function addresses in the
215    vtable entries.  Setting this nonzero tells the compiler to use
216    function descriptors instead.  The value of this macro says how
217    many words wide the descriptor is (normally 2).  It is assumed
218    that the address of a function descriptor may be treated as a
219    pointer to a function.
220 
221    For reasons known only to HP, the vtable entries (as opposed to
222    normal function descriptors) are 16 bytes wide in 32-bit mode as
223    well, even though the 3rd and 4th words are unused.  */
224 #define TARGET_VTABLE_USES_DESCRIPTORS (TARGET_ILP32 ? 4 : 2)
225 
226 /* Due to silliness in the HPUX linker, vtable entries must be
227    8-byte aligned even in 32-bit mode.  Rather than create multiple
228    ABIs, force this restriction on everyone else too.  */
229 #define TARGET_VTABLE_ENTRY_ALIGN  64
230 
231 /* Due to the above, we need extra padding for the data entries below 0
232    to retain the alignment of the descriptors.  */
233 #define TARGET_VTABLE_DATA_ENTRY_DISTANCE (TARGET_ILP32 ? 2 : 1)
234 
235 /* Layout of Source Language Data Types */
236 
237 #define INT_TYPE_SIZE 32
238 
239 #define SHORT_TYPE_SIZE 16
240 
241 #define LONG_TYPE_SIZE (TARGET_ILP32 ? 32 : 64)
242 
243 #define LONG_LONG_TYPE_SIZE 64
244 
245 #define FLOAT_TYPE_SIZE 32
246 
247 #define DOUBLE_TYPE_SIZE 64
248 
249 /* long double is XFmode normally, and TFmode for HPUX.  It should be
250    TFmode for VMS as well but we only support up to DFmode now.  */
251 #define LONG_DOUBLE_TYPE_SIZE \
252   (TARGET_HPUX ? 128 \
253    : TARGET_ABI_OPEN_VMS ? 64 \
254    : 80)
255 
256 
257 #define DEFAULT_SIGNED_CHAR 1
258 
259 /* A C expression for a string describing the name of the data type to use for
260    size values.  The typedef name `size_t' is defined using the contents of the
261    string.  */
262 /* ??? Needs to be defined for P64 code.  */
263 /* #define SIZE_TYPE */
264 
265 /* A C expression for a string describing the name of the data type to use for
266    the result of subtracting two pointers.  The typedef name `ptrdiff_t' is
267    defined using the contents of the string.  See `SIZE_TYPE' above for more
268    information.  */
269 /* ??? Needs to be defined for P64 code.  */
270 /* #define PTRDIFF_TYPE */
271 
272 /* A C expression for a string describing the name of the data type to use for
273    wide characters.  The typedef name `wchar_t' is defined using the contents
274    of the string.  See `SIZE_TYPE' above for more information.  */
275 /* #define WCHAR_TYPE */
276 
277 /* A C expression for the size in bits of the data type for wide characters.
278    This is used in `cpp', which cannot make use of `WCHAR_TYPE'.  */
279 /* #define WCHAR_TYPE_SIZE */
280 
281 
282 /* Register Basics */
283 
284 /* Number of hardware registers known to the compiler.
285    We have 128 general registers, 128 floating point registers,
286    64 predicate registers, 8 branch registers, one frame pointer,
287    and several "application" registers.  */
288 
289 #define FIRST_PSEUDO_REGISTER 334
290 
291 /* Ranges for the various kinds of registers.  */
292 #define ADDL_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 3)
293 #define GR_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 127)
294 #define FR_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 255)
295 #define FP_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 254 && (REGNO) != 159)
296 #define PR_REGNO_P(REGNO) ((REGNO) >= 256 && (REGNO) <= 319)
297 #define BR_REGNO_P(REGNO) ((REGNO) >= 320 && (REGNO) <= 327)
298 #define GENERAL_REGNO_P(REGNO) \
299   (GR_REGNO_P (REGNO) || (REGNO) == FRAME_POINTER_REGNUM)
300 
301 #define GR_REG(REGNO) ((REGNO) + 0)
302 #define FR_REG(REGNO) ((REGNO) + 128)
303 #define PR_REG(REGNO) ((REGNO) + 256)
304 #define BR_REG(REGNO) ((REGNO) + 320)
305 #define OUT_REG(REGNO) ((REGNO) + 120)
306 #define IN_REG(REGNO) ((REGNO) + 112)
307 #define LOC_REG(REGNO) ((REGNO) + 32)
308 
309 #define AR_CCV_REGNUM	329
310 #define AR_UNAT_REGNUM  330
311 #define AR_PFS_REGNUM	331
312 #define AR_LC_REGNUM	332
313 #define AR_EC_REGNUM	333
314 
315 #define IN_REGNO_P(REGNO) ((REGNO) >= IN_REG (0) && (REGNO) <= IN_REG (7))
316 #define LOC_REGNO_P(REGNO) ((REGNO) >= LOC_REG (0) && (REGNO) <= LOC_REG (79))
317 #define OUT_REGNO_P(REGNO) ((REGNO) >= OUT_REG (0) && (REGNO) <= OUT_REG (7))
318 
319 #define AR_M_REGNO_P(REGNO) ((REGNO) == AR_CCV_REGNUM \
320 			     || (REGNO) == AR_UNAT_REGNUM)
321 #define AR_I_REGNO_P(REGNO) ((REGNO) >= AR_PFS_REGNUM \
322 			     && (REGNO) < FIRST_PSEUDO_REGISTER)
323 #define AR_REGNO_P(REGNO) ((REGNO) >= AR_CCV_REGNUM \
324 			   && (REGNO) < FIRST_PSEUDO_REGISTER)
325 
326 
327 /* ??? Don't really need two sets of macros.  I like this one better because
328    it is less typing.  */
329 #define R_GR(REGNO) GR_REG (REGNO)
330 #define R_FR(REGNO) FR_REG (REGNO)
331 #define R_PR(REGNO) PR_REG (REGNO)
332 #define R_BR(REGNO) BR_REG (REGNO)
333 
334 /* An initializer that says which registers are used for fixed purposes all
335    throughout the compiled code and are therefore not available for general
336    allocation.
337 
338    r0: constant 0
339    r1: global pointer (gp)
340    r12: stack pointer (sp)
341    r13: thread pointer (tp)
342    f0: constant 0.0
343    f1: constant 1.0
344    p0: constant true
345    fp: eliminable frame pointer */
346 
347 /* The last 16 stacked regs are reserved for the 8 input and 8 output
348    registers.  */
349 
350 #define FIXED_REGISTERS \
351 { /* General registers.  */				\
352   1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,	\
353   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
354   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
355   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
356   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
357   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
358   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
359   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
360   /* Floating-point registers.  */			\
361   1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
362   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
363   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
364   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
365   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
366   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
367   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
368   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
369   /* Predicate registers.  */				\
370   1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
371   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
372   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
373   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
374   /* Branch registers.  */				\
375   0, 0, 0, 0, 0, 0, 0, 0,				\
376   /*FP CCV UNAT PFS LC EC */				\
377      1,  1,   1,  1, 1, 1				\
378  }
379 
380 /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered
381    (in general) by function calls as well as for fixed registers.  This
382    macro therefore identifies the registers that are not available for
383    general allocation of values that must live across function calls.  */
384 
385 #define CALL_USED_REGISTERS \
386 { /* General registers.  */				\
387   1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,	\
388   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
389   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
390   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
391   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
392   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
393   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
394   0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,	\
395   /* Floating-point registers.  */			\
396   1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
397   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
398   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
399   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
400   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
401   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
402   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
403   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
404   /* Predicate registers.  */				\
405   1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
406   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
407   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
408   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
409   /* Branch registers.  */				\
410   1, 0, 0, 0, 0, 0, 1, 1,				\
411   /*FP CCV UNAT PFS LC EC */				\
412      1,  1,   1,  1, 1, 1				\
413 }
414 
415 /* Like `CALL_USED_REGISTERS' but used to overcome a historical
416    problem which makes CALL_USED_REGISTERS *always* include
417    all the FIXED_REGISTERS.  Until this problem has been
418    resolved this macro can be used to overcome this situation.
419    In particular, block_propagate() requires this list
420    be accurate, or we can remove registers which should be live.
421    This macro is used in regs_invalidated_by_call.  */
422 
423 #define CALL_REALLY_USED_REGISTERS \
424 { /* General registers.  */				\
425   0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1,	\
426   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
427   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
428   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
429   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
430   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
431   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
432   0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,	\
433   /* Floating-point registers.  */			\
434   0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
435   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
436   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
437   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
438   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
439   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
440   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
441   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
442   /* Predicate registers.  */				\
443   0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
444   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
445   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
446   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
447   /* Branch registers.  */				\
448   1, 0, 0, 0, 0, 0, 1, 1,				\
449   /*FP CCV UNAT PFS LC EC */				\
450      0,  1,   0,  1, 0, 0				\
451 }
452 
453 
454 /* Define this macro if the target machine has register windows.  This C
455    expression returns the register number as seen by the called function
456    corresponding to the register number OUT as seen by the calling function.
457    Return OUT if register number OUT is not an outbound register.  */
458 
459 #define INCOMING_REGNO(OUT) \
460   ((unsigned) ((OUT) - OUT_REG (0)) < 8 ? IN_REG ((OUT) - OUT_REG (0)) : (OUT))
461 
462 /* Define this macro if the target machine has register windows.  This C
463    expression returns the register number as seen by the calling function
464    corresponding to the register number IN as seen by the called function.
465    Return IN if register number IN is not an inbound register.  */
466 
467 #define OUTGOING_REGNO(IN) \
468   ((unsigned) ((IN) - IN_REG (0)) < 8 ? OUT_REG ((IN) - IN_REG (0)) : (IN))
469 
470 /* Define this macro if the target machine has register windows.  This
471    C expression returns true if the register is call-saved but is in the
472    register window.  */
473 
474 #define LOCAL_REGNO(REGNO) \
475   (IN_REGNO_P (REGNO) || LOC_REGNO_P (REGNO))
476 
477 /* We define CCImode in ia64-modes.def so we need a selector.  */
478 
479 #define SELECT_CC_MODE(OP,X,Y)  CCmode
480 
481 /* Order of allocation of registers */
482 
483 /* If defined, an initializer for a vector of integers, containing the numbers
484    of hard registers in the order in which GCC should prefer to use them
485    (from most preferred to least).
486 
487    If this macro is not defined, registers are used lowest numbered first (all
488    else being equal).
489 
490    One use of this macro is on machines where the highest numbered registers
491    must always be saved and the save-multiple-registers instruction supports
492    only sequences of consecutive registers.  On such machines, define
493    `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
494    allocatable register first.  */
495 
496 /* ??? Should the GR return value registers come before or after the rest
497    of the caller-save GRs?  */
498 
499 #define REG_ALLOC_ORDER							   \
500 {									   \
501   /* Caller-saved general registers.  */				   \
502   R_GR (14), R_GR (15), R_GR (16), R_GR (17),				   \
503   R_GR (18), R_GR (19), R_GR (20), R_GR (21), R_GR (22), R_GR (23),	   \
504   R_GR (24), R_GR (25), R_GR (26), R_GR (27), R_GR (28), R_GR (29),	   \
505   R_GR (30), R_GR (31),							   \
506   /* Output registers.  */						   \
507   R_GR (120), R_GR (121), R_GR (122), R_GR (123), R_GR (124), R_GR (125),  \
508   R_GR (126), R_GR (127),						   \
509   /* Caller-saved general registers, also used for return values.  */	   \
510   R_GR (8), R_GR (9), R_GR (10), R_GR (11),				   \
511   /* addl caller-saved general registers.  */				   \
512   R_GR (2), R_GR (3),							   \
513   /* Caller-saved FP registers.  */					   \
514   R_FR (6), R_FR (7),							   \
515   /* Caller-saved FP registers, used for parameters and return values.  */ \
516   R_FR (8), R_FR (9), R_FR (10), R_FR (11),				   \
517   R_FR (12), R_FR (13), R_FR (14), R_FR (15),				   \
518   /* Rotating caller-saved FP registers.  */				   \
519   R_FR (32), R_FR (33), R_FR (34), R_FR (35),				   \
520   R_FR (36), R_FR (37), R_FR (38), R_FR (39), R_FR (40), R_FR (41),	   \
521   R_FR (42), R_FR (43), R_FR (44), R_FR (45), R_FR (46), R_FR (47),	   \
522   R_FR (48), R_FR (49), R_FR (50), R_FR (51), R_FR (52), R_FR (53),	   \
523   R_FR (54), R_FR (55), R_FR (56), R_FR (57), R_FR (58), R_FR (59),	   \
524   R_FR (60), R_FR (61), R_FR (62), R_FR (63), R_FR (64), R_FR (65),	   \
525   R_FR (66), R_FR (67), R_FR (68), R_FR (69), R_FR (70), R_FR (71),	   \
526   R_FR (72), R_FR (73), R_FR (74), R_FR (75), R_FR (76), R_FR (77),	   \
527   R_FR (78), R_FR (79), R_FR (80), R_FR (81), R_FR (82), R_FR (83),	   \
528   R_FR (84), R_FR (85), R_FR (86), R_FR (87), R_FR (88), R_FR (89),	   \
529   R_FR (90), R_FR (91), R_FR (92), R_FR (93), R_FR (94), R_FR (95),	   \
530   R_FR (96), R_FR (97), R_FR (98), R_FR (99), R_FR (100), R_FR (101),	   \
531   R_FR (102), R_FR (103), R_FR (104), R_FR (105), R_FR (106), R_FR (107),  \
532   R_FR (108), R_FR (109), R_FR (110), R_FR (111), R_FR (112), R_FR (113),  \
533   R_FR (114), R_FR (115), R_FR (116), R_FR (117), R_FR (118), R_FR (119),  \
534   R_FR (120), R_FR (121), R_FR (122), R_FR (123), R_FR (124), R_FR (125),  \
535   R_FR (126), R_FR (127),						   \
536   /* Caller-saved predicate registers.  */				   \
537   R_PR (6), R_PR (7), R_PR (8), R_PR (9), R_PR (10), R_PR (11),		   \
538   R_PR (12), R_PR (13), R_PR (14), R_PR (15),				   \
539   /* Rotating caller-saved predicate registers.  */			   \
540   R_PR (16), R_PR (17),							   \
541   R_PR (18), R_PR (19), R_PR (20), R_PR (21), R_PR (22), R_PR (23),	   \
542   R_PR (24), R_PR (25), R_PR (26), R_PR (27), R_PR (28), R_PR (29),	   \
543   R_PR (30), R_PR (31), R_PR (32), R_PR (33), R_PR (34), R_PR (35),	   \
544   R_PR (36), R_PR (37), R_PR (38), R_PR (39), R_PR (40), R_PR (41),	   \
545   R_PR (42), R_PR (43), R_PR (44), R_PR (45), R_PR (46), R_PR (47),	   \
546   R_PR (48), R_PR (49), R_PR (50), R_PR (51), R_PR (52), R_PR (53),	   \
547   R_PR (54), R_PR (55), R_PR (56), R_PR (57), R_PR (58), R_PR (59),	   \
548   R_PR (60), R_PR (61), R_PR (62), R_PR (63),				   \
549   /* Caller-saved branch registers.  */					   \
550   R_BR (6), R_BR (7),							   \
551 									   \
552   /* Stacked callee-saved general registers.  */			   \
553   R_GR (32), R_GR (33), R_GR (34), R_GR (35),				   \
554   R_GR (36), R_GR (37), R_GR (38), R_GR (39), R_GR (40), R_GR (41),	   \
555   R_GR (42), R_GR (43), R_GR (44), R_GR (45), R_GR (46), R_GR (47),	   \
556   R_GR (48), R_GR (49), R_GR (50), R_GR (51), R_GR (52), R_GR (53),	   \
557   R_GR (54), R_GR (55), R_GR (56), R_GR (57), R_GR (58), R_GR (59),	   \
558   R_GR (60), R_GR (61), R_GR (62), R_GR (63), R_GR (64), R_GR (65),	   \
559   R_GR (66), R_GR (67), R_GR (68), R_GR (69), R_GR (70), R_GR (71),	   \
560   R_GR (72), R_GR (73), R_GR (74), R_GR (75), R_GR (76), R_GR (77),	   \
561   R_GR (78), R_GR (79), R_GR (80), R_GR (81), R_GR (82), R_GR (83),	   \
562   R_GR (84), R_GR (85), R_GR (86), R_GR (87), R_GR (88), R_GR (89),	   \
563   R_GR (90), R_GR (91), R_GR (92), R_GR (93), R_GR (94), R_GR (95),	   \
564   R_GR (96), R_GR (97), R_GR (98), R_GR (99), R_GR (100), R_GR (101),	   \
565   R_GR (102), R_GR (103), R_GR (104), R_GR (105), R_GR (106), R_GR (107),  \
566   R_GR (108),								   \
567   /* Input registers.  */						   \
568   R_GR (112), R_GR (113), R_GR (114), R_GR (115), R_GR (116), R_GR (117),  \
569   R_GR (118), R_GR (119),						   \
570   /* Callee-saved general registers.  */				   \
571   R_GR (4), R_GR (5), R_GR (6), R_GR (7),				   \
572   /* Callee-saved FP registers.  */					   \
573   R_FR (2), R_FR (3), R_FR (4), R_FR (5), R_FR (16), R_FR (17),		   \
574   R_FR (18), R_FR (19), R_FR (20), R_FR (21), R_FR (22), R_FR (23),	   \
575   R_FR (24), R_FR (25), R_FR (26), R_FR (27), R_FR (28), R_FR (29),	   \
576   R_FR (30), R_FR (31),							   \
577   /* Callee-saved predicate registers.  */				   \
578   R_PR (1), R_PR (2), R_PR (3), R_PR (4), R_PR (5),			   \
579   /* Callee-saved branch registers.  */					   \
580   R_BR (1), R_BR (2), R_BR (3), R_BR (4), R_BR (5),			   \
581 									   \
582   /* ??? Stacked registers reserved for fp, rp, and ar.pfs.  */		   \
583   R_GR (109), R_GR (110), R_GR (111),					   \
584 									   \
585   /* Special general registers.  */					   \
586   R_GR (0), R_GR (1), R_GR (12), R_GR (13),				   \
587   /* Special FP registers.  */						   \
588   R_FR (0), R_FR (1),							   \
589   /* Special predicate registers.  */					   \
590   R_PR (0),								   \
591   /* Special branch registers.  */					   \
592   R_BR (0),								   \
593   /* Other fixed registers.  */						   \
594   FRAME_POINTER_REGNUM, 						   \
595   AR_CCV_REGNUM, AR_UNAT_REGNUM, AR_PFS_REGNUM, AR_LC_REGNUM,		   \
596   AR_EC_REGNUM		  						   \
597 }
598 
599 /* How Values Fit in Registers */
600 
601 /* A C expression for the number of consecutive hard registers, starting at
602    register number REGNO, required to hold a value of mode MODE.  */
603 
604 /* ??? We say that BImode PR values require two registers.  This allows us to
605    easily store the normal and inverted values.  We use CCImode to indicate
606    a single predicate register.  */
607 
608 #define HARD_REGNO_NREGS(REGNO, MODE)					\
609   ((REGNO) == PR_REG (0) && (MODE) == DImode ? 64			\
610    : PR_REGNO_P (REGNO) && (MODE) == BImode ? 2				\
611    : (PR_REGNO_P (REGNO) || GR_REGNO_P (REGNO)) && (MODE) == CCImode ? 1\
612    : FR_REGNO_P (REGNO) && (MODE) == XFmode ? 1				\
613    : FR_REGNO_P (REGNO) && (MODE) == RFmode ? 1				\
614    : FR_REGNO_P (REGNO) && (MODE) == XCmode ? 2				\
615    : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
616 
617 /* A C expression that is nonzero if it is permissible to store a value of mode
618    MODE in hard register number REGNO (or in several registers starting with
619    that one).  */
620 
621 #define HARD_REGNO_MODE_OK(REGNO, MODE)				\
622   (FR_REGNO_P (REGNO) ?						\
623      GET_MODE_CLASS (MODE) != MODE_CC &&			\
624      (MODE) != BImode &&					\
625      (MODE) != TFmode 						\
626    : PR_REGNO_P (REGNO) ?					\
627      (MODE) == BImode || GET_MODE_CLASS (MODE) == MODE_CC	\
628    : GR_REGNO_P (REGNO) ?					\
629      (MODE) != XFmode && (MODE) != XCmode && (MODE) != RFmode	\
630    : AR_REGNO_P (REGNO) ? (MODE) == DImode			\
631    : BR_REGNO_P (REGNO) ? (MODE) == DImode			\
632    : 0)
633 
634 /* A C expression that is nonzero if it is desirable to choose register
635    allocation so as to avoid move instructions between a value of mode MODE1
636    and a value of mode MODE2.
637 
638    If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
639    ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
640    zero.  */
641 /* Don't tie integer and FP modes, as that causes us to get integer registers
642    allocated for FP instructions.  XFmode only supported in FP registers so
643    we can't tie it with any other modes.  */
644 #define MODES_TIEABLE_P(MODE1, MODE2)			\
645   (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2)	\
646    && ((((MODE1) == XFmode) || ((MODE1) == XCmode) || ((MODE1) == RFmode))	\
647        == (((MODE2) == XFmode) || ((MODE2) == XCmode) || ((MODE2) == RFmode)))	\
648    && (((MODE1) == BImode) == ((MODE2) == BImode)))
649 
650 /* Specify the modes required to caller save a given hard regno.
651    We need to ensure floating pt regs are not saved as DImode.  */
652 
653 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
654   ((FR_REGNO_P (REGNO) && (NREGS) == 1) ? RFmode        \
655    : choose_hard_reg_mode ((REGNO), (NREGS), false))
656 
657 /* Handling Leaf Functions */
658 
659 /* A C initializer for a vector, indexed by hard register number, which
660    contains 1 for a register that is allowable in a candidate for leaf function
661    treatment.  */
662 /* ??? This might be useful.  */
663 /* #define LEAF_REGISTERS */
664 
665 /* A C expression whose value is the register number to which REGNO should be
666    renumbered, when a function is treated as a leaf function.  */
667 /* ??? This might be useful.  */
668 /* #define LEAF_REG_REMAP(REGNO) */
669 
670 
671 /* Register Classes */
672 
673 /* An enumeral type that must be defined with all the register class names as
674    enumeral values.  `NO_REGS' must be first.  `ALL_REGS' must be the last
675    register class, followed by one more enumeral value, `LIM_REG_CLASSES',
676    which is not a register class but rather tells how many classes there
677    are.  */
678 /* ??? When compiling without optimization, it is possible for the only use of
679    a pseudo to be a parameter load from the stack with a REG_EQUIV note.
680    Regclass handles this case specially and does not assign any costs to the
681    pseudo.  The pseudo then ends up using the last class before ALL_REGS.
682    Thus we must not let either PR_REGS or BR_REGS be the last class.  The
683    testcase for this is gcc.c-torture/execute/va-arg-7.c.  */
684 enum reg_class
685 {
686   NO_REGS,
687   PR_REGS,
688   BR_REGS,
689   AR_M_REGS,
690   AR_I_REGS,
691   ADDL_REGS,
692   GR_REGS,
693   FP_REGS,
694   FR_REGS,
695   GR_AND_BR_REGS,
696   GR_AND_FR_REGS,
697   ALL_REGS,
698   LIM_REG_CLASSES
699 };
700 
701 #define GENERAL_REGS GR_REGS
702 
703 /* The number of distinct register classes.  */
704 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
705 
706 /* An initializer containing the names of the register classes as C string
707    constants.  These names are used in writing some of the debugging dumps.  */
708 #define REG_CLASS_NAMES \
709 { "NO_REGS", "PR_REGS", "BR_REGS", "AR_M_REGS", "AR_I_REGS", \
710   "ADDL_REGS", "GR_REGS", "FP_REGS", "FR_REGS", \
711   "GR_AND_BR_REGS", "GR_AND_FR_REGS", "ALL_REGS" }
712 
713 /* An initializer containing the contents of the register classes, as integers
714    which are bit masks.  The Nth integer specifies the contents of class N.
715    The way the integer MASK is interpreted is that register R is in the class
716    if `MASK & (1 << R)' is 1.  */
717 #define REG_CLASS_CONTENTS \
718 { 							\
719   /* NO_REGS.  */					\
720   { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
721     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
722     0x00000000, 0x00000000, 0x0000 },			\
723   /* PR_REGS.  */					\
724   { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
725     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
726     0xFFFFFFFF, 0xFFFFFFFF, 0x0000 },			\
727   /* BR_REGS.  */					\
728   { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
729     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
730     0x00000000, 0x00000000, 0x00FF },			\
731   /* AR_M_REGS.  */					\
732   { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
733     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
734     0x00000000, 0x00000000, 0x0600 },			\
735   /* AR_I_REGS.  */					\
736   { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
737     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
738     0x00000000, 0x00000000, 0x3800 },			\
739   /* ADDL_REGS.  */					\
740   { 0x0000000F, 0x00000000, 0x00000000, 0x00000000,	\
741     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
742     0x00000000, 0x00000000, 0x0000 },			\
743   /* GR_REGS.  */					\
744   { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
745     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
746     0x00000000, 0x00000000, 0x0100 },			\
747   /* FP_REGS.  */					\
748   { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
749     0x7FFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF,	\
750     0x00000000, 0x00000000, 0x0000 },			\
751   /* FR_REGS.  */					\
752   { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
753     0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
754     0x00000000, 0x00000000, 0x0000 },			\
755   /* GR_AND_BR_REGS.  */				\
756   { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
757     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
758     0x00000000, 0x00000000, 0x01FF },			\
759   /* GR_AND_FR_REGS.  */				\
760   { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
761     0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
762     0x00000000, 0x00000000, 0x0100 },			\
763   /* ALL_REGS.  */					\
764   { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
765     0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
766     0xFFFFFFFF, 0xFFFFFFFF, 0x3FFF },			\
767 }
768 
769 /* A C expression whose value is a register class containing hard register
770    REGNO.  In general there is more than one such class; choose a class which
771    is "minimal", meaning that no smaller class also contains the register.  */
772 /* The NO_REGS case is primarily for the benefit of rws_access_reg, which
773    may call here with private (invalid) register numbers, such as
774    REG_VOLATILE.  */
775 #define REGNO_REG_CLASS(REGNO) \
776 (ADDL_REGNO_P (REGNO) ? ADDL_REGS	\
777  : GENERAL_REGNO_P (REGNO) ? GR_REGS	\
778  : FR_REGNO_P (REGNO) ? (REGNO) != R_FR (31) \
779 			&& (REGNO) != R_FR(127) ? FP_REGS : FR_REGS \
780  : PR_REGNO_P (REGNO) ? PR_REGS		\
781  : BR_REGNO_P (REGNO) ? BR_REGS		\
782  : AR_M_REGNO_P (REGNO) ? AR_M_REGS	\
783  : AR_I_REGNO_P (REGNO) ? AR_I_REGS	\
784  : NO_REGS)
785 
786 /* A macro whose definition is the name of the class to which a valid base
787    register must belong.  A base register is one used in an address which is
788    the register value plus a displacement.  */
789 #define BASE_REG_CLASS GENERAL_REGS
790 
791 /* A macro whose definition is the name of the class to which a valid index
792    register must belong.  An index register is one used in an address where its
793    value is either multiplied by a scale factor or added to another register
794    (as well as added to a displacement).  This is needed for POST_MODIFY.  */
795 #define INDEX_REG_CLASS GENERAL_REGS
796 
797 /* A C expression which is nonzero if register number NUM is suitable for use
798    as a base register in operand addresses.  It may be either a suitable hard
799    register or a pseudo register that has been allocated such a hard reg.  */
800 #define REGNO_OK_FOR_BASE_P(REGNO) \
801   (GENERAL_REGNO_P (REGNO) || GENERAL_REGNO_P (reg_renumber[REGNO]))
802 
803 /* A C expression which is nonzero if register number NUM is suitable for use
804    as an index register in operand addresses.  It may be either a suitable hard
805    register or a pseudo register that has been allocated such a hard reg.
806    This is needed for POST_MODIFY.  */
807 #define REGNO_OK_FOR_INDEX_P(NUM) REGNO_OK_FOR_BASE_P (NUM)
808 
809 /* You should define this macro to indicate to the reload phase that it may
810    need to allocate at least one register for a reload in addition to the
811    register to contain the data.  Specifically, if copying X to a register
812    CLASS in MODE requires an intermediate register, you should define this
813    to return the largest register class all of whose registers can be used
814    as intermediate registers or scratch registers.  */
815 
816 #define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
817  ia64_secondary_reload_class (CLASS, MODE, X)
818 
819 /* Certain machines have the property that some registers cannot be copied to
820    some other registers without using memory.  Define this macro on those
821    machines to be a C expression that is nonzero if objects of mode M in
822    registers of CLASS1 can only be copied to registers of class CLASS2 by
823    storing a register of CLASS1 into memory and loading that memory location
824    into a register of CLASS2.  */
825 
826 #if 0
827 /* ??? May need this, but since we've disallowed XFmode in GR_REGS,
828    I'm not quite sure how it could be invoked.  The normal problems
829    with unions should be solved with the addressof fiddling done by
830    movxf and friends.  */
831 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE)			\
832   (((MODE) == XFmode || (MODE) == XCmode)				\
833    && (((CLASS1) == GR_REGS && (CLASS2) == FR_REGS)			\
834        || ((CLASS1) == FR_REGS && (CLASS2) == GR_REGS)))
835 #endif
836 
837 /* A C expression for the maximum number of consecutive registers of
838    class CLASS needed to hold a value of mode MODE.
839    This is closely related to the macro `HARD_REGNO_NREGS'.  */
840 
841 #define CLASS_MAX_NREGS(CLASS, MODE) \
842   ((MODE) == BImode && (CLASS) == PR_REGS ? 2			\
843    : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == XFmode) ? 1 \
844    : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == RFmode) ? 1 \
845    : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == XCmode) ? 2 \
846    : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
847 
848 /* In BR regs, we can't change the DImode at all.
849    In FP regs, we can't change FP values to integer values and vice versa,
850    but we can change e.g. DImode to SImode, and V2SFmode into DImode.  */
851 
852 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) 		\
853   (reg_classes_intersect_p (CLASS, BR_REGS)			\
854    ? (FROM) != (TO)						\
855    : (SCALAR_FLOAT_MODE_P (FROM) != SCALAR_FLOAT_MODE_P (TO)	\
856       ? reg_classes_intersect_p (CLASS, FR_REGS)		\
857       : 0))
858 
859 /* Basic Stack Layout */
860 
861 /* Define this macro if pushing a word onto the stack moves the stack pointer
862    to a smaller address.  */
863 #define STACK_GROWS_DOWNWARD 1
864 
865 /* Define this macro to nonzero if the addresses of local variable slots
866    are at negative offsets from the frame pointer.  */
867 #define FRAME_GROWS_DOWNWARD 0
868 
869 /* Offset from the frame pointer to the first local variable slot to
870    be allocated.  */
871 #define STARTING_FRAME_OFFSET 0
872 
873 /* Offset from the stack pointer register to the first location at which
874    outgoing arguments are placed.  If not specified, the default value of zero
875    is used.  This is the proper value for most machines.  */
876 /* IA64 has a 16 byte scratch area that is at the bottom of the stack.  */
877 #define STACK_POINTER_OFFSET 16
878 
879 /* Offset from the argument pointer register to the first argument's address.
880    On some machines it may depend on the data type of the function.  */
881 #define FIRST_PARM_OFFSET(FUNDECL) 0
882 
883 /* A C expression whose value is RTL representing the value of the return
884    address for the frame COUNT steps up from the current frame, after the
885    prologue.  */
886 
887 /* ??? Frames other than zero would likely require interpreting the frame
888    unwind info, so we don't try to support them.  We would also need to define
889    DYNAMIC_CHAIN_ADDRESS and SETUP_FRAME_ADDRESS (for the reg stack flush).  */
890 
891 #define RETURN_ADDR_RTX(COUNT, FRAME) \
892   ia64_return_addr_rtx (COUNT, FRAME)
893 
894 /* A C expression whose value is RTL representing the location of the incoming
895    return address at the beginning of any function, before the prologue.  This
896    RTL is either a `REG', indicating that the return value is saved in `REG',
897    or a `MEM' representing a location in the stack.  This enables DWARF2
898    unwind info for C++ EH.  */
899 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, BR_REG (0))
900 
901 /* A C expression whose value is an integer giving the offset, in bytes, from
902    the value of the stack pointer register to the top of the stack frame at the
903    beginning of any function, before the prologue.  The top of the frame is
904    defined to be the value of the stack pointer in the previous frame, just
905    before the call instruction.  */
906 /* The CFA is past the red zone, not at the entry-point stack
907    pointer.  */
908 #define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
909 
910 /* We shorten debug info by using CFA-16 as DW_AT_frame_base.  */
911 #define CFA_FRAME_BASE_OFFSET(FUNDECL) (-INCOMING_FRAME_SP_OFFSET)
912 
913 
914 /* Register That Address the Stack Frame.  */
915 
916 /* The register number of the stack pointer register, which must also be a
917    fixed register according to `FIXED_REGISTERS'.  On most machines, the
918    hardware determines which register this is.  */
919 
920 #define STACK_POINTER_REGNUM 12
921 
922 /* The register number of the frame pointer register, which is used to access
923    automatic variables in the stack frame.  On some machines, the hardware
924    determines which register this is.  On other machines, you can choose any
925    register you wish for this purpose.  */
926 
927 #define FRAME_POINTER_REGNUM 328
928 
929 /* Base register for access to local variables of the function.  */
930 #define HARD_FRAME_POINTER_REGNUM  LOC_REG (79)
931 
932 /* The register number of the arg pointer register, which is used to access the
933    function's argument list.  */
934 /* r0 won't otherwise be used, so put the always eliminated argument pointer
935    in it.  */
936 #define ARG_POINTER_REGNUM R_GR(0)
937 
938 /* Due to the way varargs and argument spilling happens, the argument
939    pointer is not 16-byte aligned like the stack pointer.  */
940 #define INIT_EXPANDERS					\
941   do {							\
942     ia64_init_expanders ();                             \
943     if (crtl->emit.regno_pointer_align)	\
944       REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = 64;	\
945   } while (0)
946 
947 /* Register numbers used for passing a function's static chain pointer.  */
948 /* ??? The ABI sez the static chain should be passed as a normal parameter.  */
949 #define STATIC_CHAIN_REGNUM 15
950 
951 /* Eliminating the Frame Pointer and the Arg Pointer */
952 
953 /* If defined, this macro specifies a table of register pairs used to eliminate
954    unneeded registers that point into the stack frame.  */
955 
956 #define ELIMINABLE_REGS							\
957 {									\
958   {ARG_POINTER_REGNUM,	 STACK_POINTER_REGNUM},				\
959   {ARG_POINTER_REGNUM,	 HARD_FRAME_POINTER_REGNUM},			\
960   {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},				\
961   {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},			\
962 }
963 
964 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'.  It
965    specifies the initial difference between the specified pair of
966    registers.  This macro must be defined if `ELIMINABLE_REGS' is
967    defined.  */
968 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
969   ((OFFSET) = ia64_initial_elimination_offset ((FROM), (TO)))
970 
971 /* Passing Function Arguments on the Stack */
972 
973 /* If defined, the maximum amount of space required for outgoing arguments will
974    be computed and placed into the variable
975    `crtl->outgoing_args_size'.  */
976 
977 #define ACCUMULATE_OUTGOING_ARGS 1
978 
979 
980 /* Function Arguments in Registers */
981 
982 #define MAX_ARGUMENT_SLOTS 8
983 #define MAX_INT_RETURN_SLOTS 4
984 #define GR_ARG_FIRST IN_REG (0)
985 #define GR_RET_FIRST GR_REG (8)
986 #define GR_RET_LAST  GR_REG (11)
987 #define FR_ARG_FIRST FR_REG (8)
988 #define FR_RET_FIRST FR_REG (8)
989 #define FR_RET_LAST  FR_REG (15)
990 #define AR_ARG_FIRST OUT_REG (0)
991 
992 /* A C type for declaring a variable that is used as the first argument of
993    `FUNCTION_ARG' and other related values.  For some target machines, the type
994    `int' suffices and can hold the number of bytes of argument so far.  */
995 
996 enum ivms_arg_type {I64, FF, FD, FG, FS, FT};
997 /* VMS floating point formats VAX F, VAX D, VAX G, IEEE S, IEEE T.  */
998 
999 typedef struct ia64_args
1000 {
1001   int words;			/* # words of arguments so far  */
1002   int int_regs;			/* # GR registers used so far  */
1003   int fp_regs;			/* # FR registers used so far  */
1004   int prototype;		/* whether function prototyped  */
1005   enum ivms_arg_type atypes[8]; /* which VMS float type or if not float */
1006 } CUMULATIVE_ARGS;
1007 
1008 /* A C statement (sans semicolon) for initializing the variable CUM for the
1009    state at the beginning of the argument list.  */
1010 
1011 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1012 do {									\
1013   (CUM).words = 0;							\
1014   (CUM).int_regs = 0;							\
1015   (CUM).fp_regs = 0;							\
1016   (CUM).prototype = ((FNTYPE) && prototype_p (FNTYPE)) || (LIBNAME);	\
1017   (CUM).atypes[0] = (CUM).atypes[1] = (CUM).atypes[2] = I64;	        \
1018   (CUM).atypes[3] = (CUM).atypes[4] = (CUM).atypes[5] = I64;            \
1019   (CUM).atypes[6] = (CUM).atypes[7] = I64;                              \
1020 } while (0)
1021 
1022 /* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1023    arguments for the function being compiled.  If this macro is undefined,
1024    `INIT_CUMULATIVE_ARGS' is used instead.  */
1025 
1026 /* We set prototype to true so that we never try to return a PARALLEL from
1027    function_arg.  */
1028 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1029 do {									\
1030   (CUM).words = 0;							\
1031   (CUM).int_regs = 0;							\
1032   (CUM).fp_regs = 0;							\
1033   (CUM).prototype = 1;							\
1034   (CUM).atypes[0] = (CUM).atypes[1] = (CUM).atypes[2] = I64;	        \
1035   (CUM).atypes[3] = (CUM).atypes[4] = (CUM).atypes[5] = I64;            \
1036   (CUM).atypes[6] = (CUM).atypes[7] = I64;                              \
1037 } while (0)
1038 
1039 /* A C expression that is nonzero if REGNO is the number of a hard register in
1040    which function arguments are sometimes passed.  This does *not* include
1041    implicit arguments such as the static chain and the structure-value address.
1042    On many machines, no registers can be used for this purpose since all
1043    function arguments are pushed on the stack.  */
1044 #define FUNCTION_ARG_REGNO_P(REGNO) \
1045 (((REGNO) >= AR_ARG_FIRST && (REGNO) < (AR_ARG_FIRST + MAX_ARGUMENT_SLOTS)) \
1046  || ((REGNO) >= FR_ARG_FIRST && (REGNO) < (FR_ARG_FIRST + MAX_ARGUMENT_SLOTS)))
1047 
1048 
1049 /* How Large Values are Returned */
1050 
1051 #define DEFAULT_PCC_STRUCT_RETURN 0
1052 
1053 
1054 /* Caller-Saves Register Allocation */
1055 
1056 /* A C expression to determine whether it is worthwhile to consider placing a
1057    pseudo-register in a call-clobbered hard register and saving and restoring
1058    it around each function call.  The expression should be 1 when this is worth
1059    doing, and 0 otherwise.
1060 
1061    If you don't define this macro, a default is used which is good on most
1062    machines: `4 * CALLS < REFS'.  */
1063 /* ??? Investigate.  */
1064 /* #define CALLER_SAVE_PROFITABLE(REFS, CALLS) */
1065 
1066 
1067 /* Function Entry and Exit */
1068 
1069 /* Define this macro as a C expression that is nonzero if the return
1070    instruction or the function epilogue ignores the value of the stack pointer;
1071    in other words, if it is safe to delete an instruction to adjust the stack
1072    pointer before a return from the function.  */
1073 
1074 #define EXIT_IGNORE_STACK 1
1075 
1076 /* Define this macro as a C expression that is nonzero for registers
1077    used by the epilogue or the `return' pattern.  */
1078 
1079 #define EPILOGUE_USES(REGNO) ia64_epilogue_uses (REGNO)
1080 
1081 /* Nonzero for registers used by the exception handling mechanism.  */
1082 
1083 #define EH_USES(REGNO) ia64_eh_uses (REGNO)
1084 
1085 /* Output part N of a function descriptor for DECL.  For ia64, both
1086    words are emitted with a single relocation, so ignore N > 0.  */
1087 #define ASM_OUTPUT_FDESC(FILE, DECL, PART)				\
1088 do {									\
1089   if ((PART) == 0)							\
1090     {									\
1091       if (TARGET_ILP32)							\
1092         fputs ("\tdata8.ua @iplt(", FILE);				\
1093       else								\
1094         fputs ("\tdata16.ua @iplt(", FILE);				\
1095       mark_decl_referenced (DECL);					\
1096       assemble_name (FILE, XSTR (XEXP (DECL_RTL (DECL), 0), 0));	\
1097       fputs (")\n", FILE);						\
1098       if (TARGET_ILP32)							\
1099 	fputs ("\tdata8.ua 0\n", FILE);					\
1100     }									\
1101 } while (0)
1102 
1103 /* Generating Code for Profiling.  */
1104 
1105 /* A C statement or compound statement to output to FILE some assembler code to
1106    call the profiling subroutine `mcount'.  */
1107 
1108 #undef FUNCTION_PROFILER
1109 #define FUNCTION_PROFILER(FILE, LABELNO) \
1110   ia64_output_function_profiler(FILE, LABELNO)
1111 
1112 /* Neither hpux nor linux use profile counters.  */
1113 #define NO_PROFILE_COUNTERS 1
1114 
1115 /* Trampolines for Nested Functions.  */
1116 
1117 /* We need 32 bytes, so we can save the sp, ar.rnat, ar.bsp, and ar.pfs of
1118    the function containing a non-local goto target.  */
1119 
1120 #define STACK_SAVEAREA_MODE(LEVEL) \
1121   ((LEVEL) == SAVE_NONLOCAL ? OImode : Pmode)
1122 
1123 /* A C expression for the size in bytes of the trampoline, as an integer.  */
1124 
1125 #define TRAMPOLINE_SIZE		32
1126 
1127 /* Alignment required for trampolines, in bits.  */
1128 
1129 #define TRAMPOLINE_ALIGNMENT	64
1130 
1131 /* Addressing Modes */
1132 
1133 /* Define this macro if the machine supports post-increment addressing.  */
1134 
1135 #define HAVE_POST_INCREMENT 1
1136 #define HAVE_POST_DECREMENT 1
1137 #define HAVE_POST_MODIFY_DISP 1
1138 #define HAVE_POST_MODIFY_REG 1
1139 
1140 /* A C expression that is 1 if the RTX X is a constant which is a valid
1141    address.  */
1142 
1143 #define CONSTANT_ADDRESS_P(X) 0
1144 
1145 /* The max number of registers that can appear in a valid memory address.  */
1146 
1147 #define MAX_REGS_PER_ADDRESS 2
1148 
1149 
1150 /* Condition Code Status */
1151 
1152 /* One some machines not all possible comparisons are defined, but you can
1153    convert an invalid comparison into a valid one.  */
1154 /* ??? Investigate.  See the alpha definition.  */
1155 /* #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) */
1156 
1157 
1158 /* Describing Relative Costs of Operations */
1159 
1160 /* A C expression for the cost of a branch instruction.  A value of 1 is the
1161    default; other values are interpreted relative to that.  Used by the
1162    if-conversion code as max instruction count.  */
1163 /* ??? This requires investigation.  The primary effect might be how
1164    many additional insn groups we run into, vs how good the dynamic
1165    branch predictor is.  */
1166 
1167 #define BRANCH_COST(speed_p, predictable_p) 6
1168 
1169 /* Define this macro as a C expression which is nonzero if accessing less than
1170    a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1171    word of memory.  */
1172 
1173 #define SLOW_BYTE_ACCESS 1
1174 
1175 /* Define this macro if it is as good or better to call a constant function
1176    address than to call an address kept in a register.
1177 
1178    Indirect function calls are more expensive that direct function calls, so
1179    don't cse function addresses.  */
1180 
1181 #define NO_FUNCTION_CSE
1182 
1183 
1184 /* Dividing the output into sections.  */
1185 
1186 /* A C expression whose value is a string containing the assembler operation
1187    that should precede instructions and read-only data.  */
1188 
1189 #define TEXT_SECTION_ASM_OP "\t.text"
1190 
1191 /* A C expression whose value is a string containing the assembler operation to
1192    identify the following data as writable initialized data.  */
1193 
1194 #define DATA_SECTION_ASM_OP "\t.data"
1195 
1196 /* If defined, a C expression whose value is a string containing the assembler
1197    operation to identify the following data as uninitialized global data.  */
1198 
1199 #define BSS_SECTION_ASM_OP "\t.bss"
1200 
1201 #define IA64_DEFAULT_GVALUE 8
1202 
1203 /* Position Independent Code.  */
1204 
1205 /* The register number of the register used to address a table of static data
1206    addresses in memory.  */
1207 
1208 /* ??? Should modify ia64.md to use pic_offset_table_rtx instead of
1209    gen_rtx_REG (DImode, 1).  */
1210 
1211 /* ??? Should we set flag_pic?  Probably need to define
1212    LEGITIMIZE_PIC_OPERAND_P to make that work.  */
1213 
1214 #define PIC_OFFSET_TABLE_REGNUM GR_REG (1)
1215 
1216 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM' is
1217    clobbered by calls.  */
1218 
1219 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
1220 
1221 
1222 /* The Overall Framework of an Assembler File.  */
1223 
1224 /* A C string constant describing how to begin a comment in the target
1225    assembler language.  The compiler assumes that the comment will end at the
1226    end of the line.  */
1227 
1228 #define ASM_COMMENT_START "//"
1229 
1230 /* A C string constant for text to be output before each `asm' statement or
1231    group of consecutive ones.  */
1232 
1233 #define ASM_APP_ON (TARGET_GNU_AS ? "#APP\n" : "//APP\n")
1234 
1235 /* A C string constant for text to be output after each `asm' statement or
1236    group of consecutive ones.  */
1237 
1238 #define ASM_APP_OFF (TARGET_GNU_AS ? "#NO_APP\n" : "//NO_APP\n")
1239 
1240 /* Output and Generation of Labels.  */
1241 
1242 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
1243    assembler definition of a label named NAME.  */
1244 
1245 /* See the ASM_OUTPUT_LABELREF definition in sysv4.h for an explanation of
1246    why ia64_asm_output_label exists.  */
1247 
1248 extern int ia64_asm_output_label;
1249 #define ASM_OUTPUT_LABEL(STREAM, NAME)					\
1250 do {									\
1251   ia64_asm_output_label = 1;						\
1252   assemble_name (STREAM, NAME);						\
1253   fputs (":\n", STREAM);						\
1254   ia64_asm_output_label = 0;						\
1255 } while (0)
1256 
1257 /* Globalizing directive for a label.  */
1258 #define GLOBAL_ASM_OP "\t.global "
1259 
1260 /* A C statement (sans semicolon) to output to the stdio stream STREAM any text
1261    necessary for declaring the name of an external symbol named NAME which is
1262    referenced in this compilation but not defined.  */
1263 
1264 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1265   ia64_asm_output_external (FILE, DECL, NAME)
1266 
1267 /* A C statement to store into the string STRING a label whose name is made
1268    from the string PREFIX and the number NUM.  */
1269 
1270 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1271 do {									\
1272   sprintf (LABEL, "*.%s%d", PREFIX, NUM);				\
1273 } while (0)
1274 
1275 /* ??? Not sure if using a ? in the name for Intel as is safe.  */
1276 
1277 #define ASM_PN_FORMAT (TARGET_GNU_AS ? "%s.%lu" : "%s?%lu")
1278 
1279 /* A C statement to output to the stdio stream STREAM assembler code which
1280    defines (equates) the symbol NAME to have the value VALUE.  */
1281 
1282 #define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
1283 do {									\
1284   assemble_name (STREAM, NAME);						\
1285   fputs (" = ", STREAM);						\
1286   if (ISDIGIT (*VALUE))							\
1287     ia64_asm_output_label = 1;						\
1288   assemble_name (STREAM, VALUE);					\
1289   fputc ('\n', STREAM);							\
1290   ia64_asm_output_label = 0;						\
1291 } while (0)
1292 
1293 
1294 /* Macros Controlling Initialization Routines.  */
1295 
1296 /* This is handled by sysv4.h.  */
1297 
1298 
1299 /* Output of Assembler Instructions.  */
1300 
1301 /* A C initializer containing the assembler's names for the machine registers,
1302    each one as a C string constant.  */
1303 
1304 #define REGISTER_NAMES \
1305 {									\
1306   /* General registers.  */						\
1307   "ap", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9",		\
1308   "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19",	\
1309   "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29",	\
1310   "r30", "r31",								\
1311   /* Local registers.  */						\
1312   "loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7",	\
1313   "loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15",	\
1314   "loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23",	\
1315   "loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31",	\
1316   "loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39",	\
1317   "loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47",	\
1318   "loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55",	\
1319   "loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63",	\
1320   "loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71",	\
1321   "loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79",	\
1322   /* Input registers.  */						\
1323   "in0",  "in1",  "in2",  "in3",  "in4",  "in5",  "in6",  "in7",	\
1324   /* Output registers.  */						\
1325   "out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7",	\
1326   /* Floating-point registers.  */					\
1327   "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9",		\
1328   "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19",	\
1329   "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29",	\
1330   "f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39",	\
1331   "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49",	\
1332   "f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59",	\
1333   "f60", "f61", "f62", "f63", "f64", "f65", "f66", "f67", "f68", "f69",	\
1334   "f70", "f71", "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79",	\
1335   "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", "f88", "f89",	\
1336   "f90", "f91", "f92", "f93", "f94", "f95", "f96", "f97", "f98", "f99",	\
1337   "f100","f101","f102","f103","f104","f105","f106","f107","f108","f109",\
1338   "f110","f111","f112","f113","f114","f115","f116","f117","f118","f119",\
1339   "f120","f121","f122","f123","f124","f125","f126","f127",		\
1340   /* Predicate registers.  */						\
1341   "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8", "p9",		\
1342   "p10", "p11", "p12", "p13", "p14", "p15", "p16", "p17", "p18", "p19",	\
1343   "p20", "p21", "p22", "p23", "p24", "p25", "p26", "p27", "p28", "p29",	\
1344   "p30", "p31", "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39",	\
1345   "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", "p48", "p49",	\
1346   "p50", "p51", "p52", "p53", "p54", "p55", "p56", "p57", "p58", "p59",	\
1347   "p60", "p61", "p62", "p63",						\
1348   /* Branch registers.  */						\
1349   "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7",			\
1350   /* Frame pointer.  Application registers.  */				\
1351   "sfp", "ar.ccv", "ar.unat", "ar.pfs", "ar.lc", "ar.ec",	\
1352 }
1353 
1354 /* If defined, a C initializer for an array of structures containing a name and
1355    a register number.  This macro defines additional names for hard registers,
1356    thus allowing the `asm' option in declarations to refer to registers using
1357    alternate names.  */
1358 
1359 #define ADDITIONAL_REGISTER_NAMES \
1360 {									\
1361   { "gp", R_GR (1) },							\
1362   { "sp", R_GR (12) },							\
1363   { "in0", IN_REG (0) },						\
1364   { "in1", IN_REG (1) },						\
1365   { "in2", IN_REG (2) },						\
1366   { "in3", IN_REG (3) },						\
1367   { "in4", IN_REG (4) },						\
1368   { "in5", IN_REG (5) },						\
1369   { "in6", IN_REG (6) },						\
1370   { "in7", IN_REG (7) },						\
1371   { "out0", OUT_REG (0) },						\
1372   { "out1", OUT_REG (1) },						\
1373   { "out2", OUT_REG (2) },						\
1374   { "out3", OUT_REG (3) },						\
1375   { "out4", OUT_REG (4) },						\
1376   { "out5", OUT_REG (5) },						\
1377   { "out6", OUT_REG (6) },						\
1378   { "out7", OUT_REG (7) },						\
1379   { "loc0", LOC_REG (0) },						\
1380   { "loc1", LOC_REG (1) },						\
1381   { "loc2", LOC_REG (2) },						\
1382   { "loc3", LOC_REG (3) },						\
1383   { "loc4", LOC_REG (4) },						\
1384   { "loc5", LOC_REG (5) },						\
1385   { "loc6", LOC_REG (6) },						\
1386   { "loc7", LOC_REG (7) },						\
1387   { "loc8", LOC_REG (8) }, 						\
1388   { "loc9", LOC_REG (9) }, 						\
1389   { "loc10", LOC_REG (10) }, 						\
1390   { "loc11", LOC_REG (11) }, 						\
1391   { "loc12", LOC_REG (12) }, 						\
1392   { "loc13", LOC_REG (13) }, 						\
1393   { "loc14", LOC_REG (14) }, 						\
1394   { "loc15", LOC_REG (15) }, 						\
1395   { "loc16", LOC_REG (16) }, 						\
1396   { "loc17", LOC_REG (17) }, 						\
1397   { "loc18", LOC_REG (18) }, 						\
1398   { "loc19", LOC_REG (19) }, 						\
1399   { "loc20", LOC_REG (20) }, 						\
1400   { "loc21", LOC_REG (21) }, 						\
1401   { "loc22", LOC_REG (22) }, 						\
1402   { "loc23", LOC_REG (23) }, 						\
1403   { "loc24", LOC_REG (24) }, 						\
1404   { "loc25", LOC_REG (25) }, 						\
1405   { "loc26", LOC_REG (26) }, 						\
1406   { "loc27", LOC_REG (27) }, 						\
1407   { "loc28", LOC_REG (28) }, 						\
1408   { "loc29", LOC_REG (29) }, 						\
1409   { "loc30", LOC_REG (30) }, 						\
1410   { "loc31", LOC_REG (31) }, 						\
1411   { "loc32", LOC_REG (32) }, 						\
1412   { "loc33", LOC_REG (33) }, 						\
1413   { "loc34", LOC_REG (34) }, 						\
1414   { "loc35", LOC_REG (35) }, 						\
1415   { "loc36", LOC_REG (36) }, 						\
1416   { "loc37", LOC_REG (37) }, 						\
1417   { "loc38", LOC_REG (38) }, 						\
1418   { "loc39", LOC_REG (39) }, 						\
1419   { "loc40", LOC_REG (40) }, 						\
1420   { "loc41", LOC_REG (41) }, 						\
1421   { "loc42", LOC_REG (42) }, 						\
1422   { "loc43", LOC_REG (43) }, 						\
1423   { "loc44", LOC_REG (44) }, 						\
1424   { "loc45", LOC_REG (45) }, 						\
1425   { "loc46", LOC_REG (46) }, 						\
1426   { "loc47", LOC_REG (47) }, 						\
1427   { "loc48", LOC_REG (48) }, 						\
1428   { "loc49", LOC_REG (49) }, 						\
1429   { "loc50", LOC_REG (50) }, 						\
1430   { "loc51", LOC_REG (51) }, 						\
1431   { "loc52", LOC_REG (52) }, 						\
1432   { "loc53", LOC_REG (53) }, 						\
1433   { "loc54", LOC_REG (54) }, 						\
1434   { "loc55", LOC_REG (55) }, 						\
1435   { "loc56", LOC_REG (56) }, 						\
1436   { "loc57", LOC_REG (57) }, 						\
1437   { "loc58", LOC_REG (58) }, 						\
1438   { "loc59", LOC_REG (59) }, 						\
1439   { "loc60", LOC_REG (60) }, 						\
1440   { "loc61", LOC_REG (61) }, 						\
1441   { "loc62", LOC_REG (62) }, 						\
1442   { "loc63", LOC_REG (63) }, 						\
1443   { "loc64", LOC_REG (64) }, 						\
1444   { "loc65", LOC_REG (65) }, 						\
1445   { "loc66", LOC_REG (66) }, 						\
1446   { "loc67", LOC_REG (67) }, 						\
1447   { "loc68", LOC_REG (68) }, 						\
1448   { "loc69", LOC_REG (69) }, 						\
1449   { "loc70", LOC_REG (70) }, 						\
1450   { "loc71", LOC_REG (71) }, 						\
1451   { "loc72", LOC_REG (72) }, 						\
1452   { "loc73", LOC_REG (73) }, 						\
1453   { "loc74", LOC_REG (74) }, 						\
1454   { "loc75", LOC_REG (75) }, 						\
1455   { "loc76", LOC_REG (76) }, 						\
1456   { "loc77", LOC_REG (77) }, 						\
1457   { "loc78", LOC_REG (78) }, 						\
1458   { "loc79", LOC_REG (79) }, 						\
1459 }
1460 
1461 /* If defined, C string expressions to be used for the `%R', `%L', `%U', and
1462    `%I' options of `asm_fprintf' (see `final.c').  */
1463 
1464 #define REGISTER_PREFIX ""
1465 #define LOCAL_LABEL_PREFIX "."
1466 #define USER_LABEL_PREFIX ""
1467 #define IMMEDIATE_PREFIX ""
1468 
1469 
1470 /* Output of dispatch tables.  */
1471 
1472 /* This macro should be provided on machines where the addresses in a dispatch
1473    table are relative to the table's own address.  */
1474 
1475 /* ??? Depends on the pointer size.  */
1476 
1477 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)	\
1478   do {								\
1479   if (CASE_VECTOR_MODE == SImode)				\
1480     fprintf (STREAM, "\tdata4 @pcrel(.L%d)\n", VALUE);		\
1481   else								\
1482     fprintf (STREAM, "\tdata8 @pcrel(.L%d)\n", VALUE);		\
1483   } while (0)
1484 
1485 /* Jump tables only need 4 or 8 byte alignment.  */
1486 
1487 #define ADDR_VEC_ALIGN(ADDR_VEC) (CASE_VECTOR_MODE == SImode ? 2 : 3)
1488 
1489 
1490 /* Assembler Commands for Exception Regions.  */
1491 
1492 /* Select a format to encode pointers in exception handling data.  CODE
1493    is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
1494    true if the symbol may be affected by dynamic relocations.  */
1495 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)	\
1496   (((CODE) == 1 ? DW_EH_PE_textrel : DW_EH_PE_datarel)	\
1497    | ((GLOBAL) ? DW_EH_PE_indirect : 0)			\
1498    | (TARGET_ILP32 ? DW_EH_PE_udata4 : DW_EH_PE_udata8))
1499 
1500 /* Handle special EH pointer encodings.  Absolute, pc-relative, and
1501    indirect are handled automatically.  */
1502 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
1503   do {									\
1504     const char *reltag = NULL;						\
1505     if (((ENCODING) & 0xF0) == DW_EH_PE_textrel)			\
1506       reltag = "@segrel(";						\
1507     else if (((ENCODING) & 0xF0) == DW_EH_PE_datarel)			\
1508       reltag = "@gprel(";						\
1509     if (reltag)								\
1510       {									\
1511 	fputs (integer_asm_op (SIZE, FALSE), FILE);			\
1512 	fputs (reltag, FILE);						\
1513 	assemble_name (FILE, XSTR (ADDR, 0));				\
1514 	fputc (')', FILE);						\
1515 	goto DONE;							\
1516       }									\
1517   } while (0)
1518 
1519 
1520 /* Assembler Commands for Alignment.  */
1521 
1522 /* ??? Investigate.  */
1523 
1524 /* The alignment (log base 2) to put in front of LABEL, which follows
1525    a BARRIER.  */
1526 
1527 /* #define LABEL_ALIGN_AFTER_BARRIER(LABEL) */
1528 
1529 /* The desired alignment for the location counter at the beginning
1530    of a loop.  */
1531 
1532 /* #define LOOP_ALIGN(LABEL) */
1533 
1534 /* Define this macro if `ASM_OUTPUT_SKIP' should not be used in the text
1535    section because it fails put zeros in the bytes that are skipped.  */
1536 
1537 #define ASM_NO_SKIP_IN_TEXT 1
1538 
1539 /* A C statement to output to the stdio stream STREAM an assembler command to
1540    advance the location counter to a multiple of 2 to the POWER bytes.  */
1541 
1542 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
1543   fprintf (STREAM, "\t.align %d\n", 1<<(POWER))
1544 
1545 
1546 /* Macros Affecting all Debug Formats.  */
1547 
1548 /* This is handled in sysv4.h.  */
1549 
1550 
1551 /* Specific Options for DBX Output.  */
1552 
1553 /* This is handled by dbxelf.h.  */
1554 
1555 
1556 /* Open ended Hooks for DBX Output.  */
1557 
1558 /* Likewise.  */
1559 
1560 
1561 /* File names in DBX format.  */
1562 
1563 /* Likewise.  */
1564 
1565 
1566 /* Macros for SDB and Dwarf Output.  */
1567 
1568 /* Define this macro if GCC should produce dwarf version 2 format debugging
1569    output in response to the `-g' option.  */
1570 
1571 #define DWARF2_DEBUGGING_INFO 1
1572 
1573 #define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DWARF2_ASM)
1574 
1575 /* Use tags for debug info labels, so that they don't break instruction
1576    bundles.  This also avoids getting spurious DV warnings from the
1577    assembler.  This is similar to (*targetm.asm_out.internal_label), except that we
1578    add brackets around the label.  */
1579 
1580 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
1581   fprintf (FILE, TARGET_GNU_AS ? "[.%s%d:]\n" : ".%s%d:\n", PREFIX, NUM)
1582 
1583 /* Use section-relative relocations for debugging offsets.  Unlike other
1584    targets that fake this by putting the section VMA at 0, IA-64 has
1585    proper relocations for them.  */
1586 #define ASM_OUTPUT_DWARF_OFFSET(FILE, SIZE, LABEL, SECTION)	\
1587   do {								\
1588     fputs (integer_asm_op (SIZE, FALSE), FILE);			\
1589     fputs ("@secrel(", FILE);					\
1590     assemble_name (FILE, LABEL);				\
1591     fputc (')', FILE);						\
1592   } while (0)
1593 
1594 /* Emit a PC-relative relocation.  */
1595 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL)	\
1596   do {							\
1597     fputs (integer_asm_op (SIZE, FALSE), FILE);		\
1598     fputs ("@pcrel(", FILE);				\
1599     assemble_name (FILE, LABEL);			\
1600     fputc (')', FILE);					\
1601   } while (0)
1602 
1603 /* Register Renaming Parameters.  */
1604 
1605 /* A C expression that is nonzero if hard register number REGNO2 can be
1606    considered for use as a rename register for REGNO1 */
1607 
1608 #define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
1609   ia64_hard_regno_rename_ok((REGNO1), (REGNO2))
1610 
1611 
1612 /* Miscellaneous Parameters.  */
1613 
1614 /* Flag to mark data that is in the small address area (addressable
1615    via "addl", that is, within a 2MByte offset of 0.  */
1616 #define SYMBOL_FLAG_SMALL_ADDR		(SYMBOL_FLAG_MACH_DEP << 0)
1617 #define SYMBOL_REF_SMALL_ADDR_P(X)	\
1618 	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SMALL_ADDR) != 0)
1619 
1620 /* An alias for a machine mode name.  This is the machine mode that elements of
1621    a jump-table should have.  */
1622 
1623 #define CASE_VECTOR_MODE ptr_mode
1624 
1625 /* Define as C expression which evaluates to nonzero if the tablejump
1626    instruction expects the table to contain offsets from the address of the
1627    table.  */
1628 
1629 #define CASE_VECTOR_PC_RELATIVE 1
1630 
1631 /* Define this macro if operations between registers with integral mode smaller
1632    than a word are always performed on the entire register.  */
1633 
1634 #define WORD_REGISTER_OPERATIONS
1635 
1636 /* Define this macro to be a C expression indicating when insns that read
1637    memory in MODE, an integral mode narrower than a word, set the bits outside
1638    of MODE to be either the sign-extension or the zero-extension of the data
1639    read.  */
1640 
1641 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1642 
1643 /* The maximum number of bytes that a single instruction can move quickly from
1644    memory to memory.  */
1645 #define MOVE_MAX 8
1646 
1647 /* A C expression which is nonzero if on this machine it is safe to "convert"
1648    an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
1649    than INPREC) by merely operating on it as if it had only OUTPREC bits.  */
1650 
1651 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1652 
1653 /* A C expression describing the value returned by a comparison operator with
1654    an integral mode and stored by a store-flag instruction (`sCOND') when the
1655    condition is true.  */
1656 
1657 /* ??? Investigate using STORE_FLAG_VALUE of -1 instead of 1.  */
1658 
1659 /* An alias for the machine mode for pointers.  */
1660 
1661 /* ??? This would change if we had ILP32 support.  */
1662 
1663 #define Pmode DImode
1664 
1665 /* An alias for the machine mode used for memory references to functions being
1666    called, in `call' RTL expressions.  */
1667 
1668 #define FUNCTION_MODE Pmode
1669 
1670 /* A C expression for the maximum number of instructions to execute via
1671    conditional execution instructions instead of a branch.  A value of
1672    BRANCH_COST+1 is the default if the machine does not use
1673    cc0, and 1 if it does use cc0.  */
1674 /* ??? Investigate.  */
1675 #define MAX_CONDITIONAL_EXECUTE 12
1676 
1677 extern int ia64_final_schedule;
1678 
1679 #define TARGET_UNWIND_TABLES_DEFAULT true
1680 
1681 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 15 : INVALID_REGNUM)
1682 
1683 /* This function contains machine specific function data.  */
1684 struct GTY(()) machine_function
1685 {
1686   /* The new stack pointer when unwinding from EH.  */
1687   rtx ia64_eh_epilogue_sp;
1688 
1689   /* The new bsp value when unwinding from EH.  */
1690   rtx ia64_eh_epilogue_bsp;
1691 
1692   /* The GP value save register.  */
1693   rtx ia64_gp_save;
1694 
1695   /* The number of varargs registers to save.  */
1696   int n_varargs;
1697 
1698   /* The number of the next unwind state to copy.  */
1699   int state_num;
1700 };
1701 
1702 #define DONT_USE_BUILTIN_SETJMP
1703 
1704 /* Output any profiling code before the prologue.  */
1705 
1706 #undef  PROFILE_BEFORE_PROLOGUE
1707 #define PROFILE_BEFORE_PROLOGUE 1
1708 
1709 /* Initialize library function table. */
1710 #undef TARGET_INIT_LIBFUNCS
1711 #define TARGET_INIT_LIBFUNCS ia64_init_libfuncs
1712 
1713 
1714 /* Switch on code for querying unit reservations.  */
1715 #define CPU_UNITS_QUERY 1
1716 
1717 /* End of ia64.h */
1718