1 /* Definitions of target machine for GCC for IA-32. 2 Copyright (C) 1988-2018 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3, or (at your option) 9 any later version. 10 11 GCC is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 Under Section 7 of GPL version 3, you are granted additional 17 permissions described in the GCC Runtime Library Exception, version 18 3.1, as published by the Free Software Foundation. 19 20 You should have received a copy of the GNU General Public License and 21 a copy of the GCC Runtime Library Exception along with this program; 22 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 23 <http://www.gnu.org/licenses/>. */ 24 25 /* The purpose of this file is to define the characteristics of the i386, 26 independent of assembler syntax or operating system. 27 28 Three other files build on this one to describe a specific assembler syntax: 29 bsd386.h, att386.h, and sun386.h. 30 31 The actual tm.h file for a particular system should include 32 this file, and then the file for the appropriate assembler syntax. 33 34 Many macros that specify assembler syntax are omitted entirely from 35 this file because they really belong in the files for particular 36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR, 37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many 38 that start with ASM_ or end in ASM_OP. */ 39 40 /* Redefines for option macros. */ 41 42 #define TARGET_64BIT TARGET_ISA_64BIT 43 #define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x) 44 #define TARGET_MMX TARGET_ISA_MMX 45 #define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x) 46 #define TARGET_3DNOW TARGET_ISA_3DNOW 47 #define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x) 48 #define TARGET_3DNOW_A TARGET_ISA_3DNOW_A 49 #define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x) 50 #define TARGET_SSE TARGET_ISA_SSE 51 #define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x) 52 #define TARGET_SSE2 TARGET_ISA_SSE2 53 #define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x) 54 #define TARGET_SSE3 TARGET_ISA_SSE3 55 #define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x) 56 #define TARGET_SSSE3 TARGET_ISA_SSSE3 57 #define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x) 58 #define TARGET_SSE4_1 TARGET_ISA_SSE4_1 59 #define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x) 60 #define TARGET_SSE4_2 TARGET_ISA_SSE4_2 61 #define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x) 62 #define TARGET_AVX TARGET_ISA_AVX 63 #define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x) 64 #define TARGET_AVX2 TARGET_ISA_AVX2 65 #define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x) 66 #define TARGET_AVX512F TARGET_ISA_AVX512F 67 #define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x) 68 #define TARGET_AVX512PF TARGET_ISA_AVX512PF 69 #define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x) 70 #define TARGET_AVX512ER TARGET_ISA_AVX512ER 71 #define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x) 72 #define TARGET_AVX512CD TARGET_ISA_AVX512CD 73 #define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x) 74 #define TARGET_AVX512DQ TARGET_ISA_AVX512DQ 75 #define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x) 76 #define TARGET_AVX512BW TARGET_ISA_AVX512BW 77 #define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x) 78 #define TARGET_AVX512VL TARGET_ISA_AVX512VL 79 #define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x) 80 #define TARGET_AVX512VBMI TARGET_ISA_AVX512VBMI 81 #define TARGET_AVX512VBMI_P(x) TARGET_ISA_AVX512VBMI_P(x) 82 #define TARGET_AVX512IFMA TARGET_ISA_AVX512IFMA 83 #define TARGET_AVX512IFMA_P(x) TARGET_ISA_AVX512IFMA_P(x) 84 #define TARGET_AVX5124FMAPS TARGET_ISA_AVX5124FMAPS 85 #define TARGET_AVX5124FMAPS_P(x) TARGET_ISA_AVX5124FMAPS_P(x) 86 #define TARGET_AVX5124VNNIW TARGET_ISA_AVX5124VNNIW 87 #define TARGET_AVX5124VNNIW_P(x) TARGET_ISA_AVX5124VNNIW_P(x) 88 #define TARGET_AVX512VBMI2 TARGET_ISA_AVX512VBMI2 89 #define TARGET_AVX512VBMI2_P(x) TARGET_ISA_AVX512VBMI2_P(x) 90 #define TARGET_AVX512VPOPCNTDQ TARGET_ISA_AVX512VPOPCNTDQ 91 #define TARGET_AVX512VPOPCNTDQ_P(x) TARGET_ISA_AVX512VPOPCNTDQ_P(x) 92 #define TARGET_AVX512VNNI TARGET_ISA_AVX512VNNI 93 #define TARGET_AVX512VNNI_P(x) TARGET_ISA_AVX512VNNI_P(x) 94 #define TARGET_AVX512BITALG TARGET_ISA_AVX512BITALG 95 #define TARGET_AVX512BITALG_P(x) TARGET_ISA_AVX512BITALG_P(x) 96 #define TARGET_FMA TARGET_ISA_FMA 97 #define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x) 98 #define TARGET_SSE4A TARGET_ISA_SSE4A 99 #define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x) 100 #define TARGET_FMA4 TARGET_ISA_FMA4 101 #define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x) 102 #define TARGET_XOP TARGET_ISA_XOP 103 #define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x) 104 #define TARGET_LWP TARGET_ISA_LWP 105 #define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x) 106 #define TARGET_ABM TARGET_ISA_ABM 107 #define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x) 108 #define TARGET_PCONFIG TARGET_ISA_PCONFIG 109 #define TARGET_PCONFIG_P(x) TARGET_ISA_PCONFIG_P(x) 110 #define TARGET_WBNOINVD TARGET_ISA_WBNOINVD 111 #define TARGET_WBNOINVD_P(x) TARGET_ISA_WBNOINVD_P(x) 112 #define TARGET_SGX TARGET_ISA_SGX 113 #define TARGET_SGX_P(x) TARGET_ISA_SGX_P(x) 114 #define TARGET_RDPID TARGET_ISA_RDPID 115 #define TARGET_RDPID_P(x) TARGET_ISA_RDPID_P(x) 116 #define TARGET_GFNI TARGET_ISA_GFNI 117 #define TARGET_GFNI_P(x) TARGET_ISA_GFNI_P(x) 118 #define TARGET_VAES TARGET_ISA_VAES 119 #define TARGET_VAES_P(x) TARGET_ISA_VAES_P(x) 120 #define TARGET_VPCLMULQDQ TARGET_ISA_VPCLMULQDQ 121 #define TARGET_VPCLMULQDQ_P(x) TARGET_ISA_VPCLMULQDQ_P(x) 122 #define TARGET_BMI TARGET_ISA_BMI 123 #define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x) 124 #define TARGET_BMI2 TARGET_ISA_BMI2 125 #define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x) 126 #define TARGET_LZCNT TARGET_ISA_LZCNT 127 #define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x) 128 #define TARGET_TBM TARGET_ISA_TBM 129 #define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x) 130 #define TARGET_POPCNT TARGET_ISA_POPCNT 131 #define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x) 132 #define TARGET_SAHF TARGET_ISA_SAHF 133 #define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x) 134 #define TARGET_MOVBE TARGET_ISA_MOVBE 135 #define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x) 136 #define TARGET_CRC32 TARGET_ISA_CRC32 137 #define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x) 138 #define TARGET_AES TARGET_ISA_AES 139 #define TARGET_AES_P(x) TARGET_ISA_AES_P(x) 140 #define TARGET_SHA TARGET_ISA_SHA 141 #define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x) 142 #define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT 143 #define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x) 144 #define TARGET_CLZERO TARGET_ISA_CLZERO 145 #define TARGET_CLZERO_P(x) TARGET_ISA_CLZERO_P(x) 146 #define TARGET_XSAVEC TARGET_ISA_XSAVEC 147 #define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x) 148 #define TARGET_XSAVES TARGET_ISA_XSAVES 149 #define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x) 150 #define TARGET_PCLMUL TARGET_ISA_PCLMUL 151 #define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x) 152 #define TARGET_CMPXCHG16B TARGET_ISA_CX16 153 #define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x) 154 #define TARGET_FSGSBASE TARGET_ISA_FSGSBASE 155 #define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x) 156 #define TARGET_RDRND TARGET_ISA_RDRND 157 #define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x) 158 #define TARGET_F16C TARGET_ISA_F16C 159 #define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x) 160 #define TARGET_RTM TARGET_ISA_RTM 161 #define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x) 162 #define TARGET_HLE TARGET_ISA_HLE 163 #define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x) 164 #define TARGET_RDSEED TARGET_ISA_RDSEED 165 #define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x) 166 #define TARGET_PRFCHW TARGET_ISA_PRFCHW 167 #define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x) 168 #define TARGET_ADX TARGET_ISA_ADX 169 #define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x) 170 #define TARGET_FXSR TARGET_ISA_FXSR 171 #define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x) 172 #define TARGET_XSAVE TARGET_ISA_XSAVE 173 #define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x) 174 #define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT 175 #define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x) 176 #define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1 177 #define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x) 178 #define TARGET_MPX TARGET_ISA_MPX 179 #define TARGET_MPX_P(x) TARGET_ISA_MPX_P(x) 180 #define TARGET_CLWB TARGET_ISA_CLWB 181 #define TARGET_CLWB_P(x) TARGET_ISA_CLWB_P(x) 182 #define TARGET_MWAITX TARGET_ISA_MWAITX 183 #define TARGET_MWAITX_P(x) TARGET_ISA_MWAITX_P(x) 184 #define TARGET_PKU TARGET_ISA_PKU 185 #define TARGET_PKU_P(x) TARGET_ISA_PKU_P(x) 186 #define TARGET_SHSTK TARGET_ISA_SHSTK 187 #define TARGET_SHSTK_P(x) TARGET_ISA_SHSTK_P(x) 188 #define TARGET_MOVDIRI TARGET_ISA_MOVDIRI 189 #define TARGET_MOVDIRI_P(x) TARGET_ISA_MOVDIRI_P(x) 190 #define TARGET_MOVDIR64B TARGET_ISA_MOVDIR64B 191 #define TARGET_MOVDIR64B_P(x) TARGET_ISA_MOVDIR64B_P(x) 192 193 #define TARGET_LP64 TARGET_ABI_64 194 #define TARGET_LP64_P(x) TARGET_ABI_64_P(x) 195 #define TARGET_X32 TARGET_ABI_X32 196 #define TARGET_X32_P(x) TARGET_ABI_X32_P(x) 197 #define TARGET_16BIT TARGET_CODE16 198 #define TARGET_16BIT_P(x) TARGET_CODE16_P(x) 199 200 #include "config/vxworks-dummy.h" 201 202 #include "config/i386/i386-opts.h" 203 204 #define MAX_STRINGOP_ALGS 4 205 206 /* Specify what algorithm to use for stringops on known size. 207 When size is unknown, the UNKNOWN_SIZE alg is used. When size is 208 known at compile time or estimated via feedback, the SIZE array 209 is walked in order until MAX is greater then the estimate (or -1 210 means infinity). Corresponding ALG is used then. 211 When NOALIGN is true the code guaranting the alignment of the memory 212 block is skipped. 213 214 For example initializer: 215 {{256, loop}, {-1, rep_prefix_4_byte}} 216 will use loop for blocks smaller or equal to 256 bytes, rep prefix will 217 be used otherwise. */ 218 struct stringop_algs 219 { 220 const enum stringop_alg unknown_size; 221 const struct stringop_strategy { 222 const int max; 223 const enum stringop_alg alg; 224 int noalign; 225 } size [MAX_STRINGOP_ALGS]; 226 }; 227 228 /* Define the specific costs for a given cpu */ 229 230 struct processor_costs { 231 const int add; /* cost of an add instruction */ 232 const int lea; /* cost of a lea instruction */ 233 const int shift_var; /* variable shift costs */ 234 const int shift_const; /* constant shift costs */ 235 const int mult_init[5]; /* cost of starting a multiply 236 in QImode, HImode, SImode, DImode, TImode*/ 237 const int mult_bit; /* cost of multiply per each bit set */ 238 const int divide[5]; /* cost of a divide/mod 239 in QImode, HImode, SImode, DImode, TImode*/ 240 int movsx; /* The cost of movsx operation. */ 241 int movzx; /* The cost of movzx operation. */ 242 const int large_insn; /* insns larger than this cost more */ 243 const int move_ratio; /* The threshold of number of scalar 244 memory-to-memory move insns. */ 245 const int movzbl_load; /* cost of loading using movzbl */ 246 const int int_load[3]; /* cost of loading integer registers 247 in QImode, HImode and SImode relative 248 to reg-reg move (2). */ 249 const int int_store[3]; /* cost of storing integer register 250 in QImode, HImode and SImode */ 251 const int fp_move; /* cost of reg,reg fld/fst */ 252 const int fp_load[3]; /* cost of loading FP register 253 in SFmode, DFmode and XFmode */ 254 const int fp_store[3]; /* cost of storing FP register 255 in SFmode, DFmode and XFmode */ 256 const int mmx_move; /* cost of moving MMX register. */ 257 const int mmx_load[2]; /* cost of loading MMX register 258 in SImode and DImode */ 259 const int mmx_store[2]; /* cost of storing MMX register 260 in SImode and DImode */ 261 const int xmm_move, ymm_move, /* cost of moving XMM and YMM register. */ 262 zmm_move; 263 const int sse_load[5]; /* cost of loading SSE register 264 in 32bit, 64bit, 128bit, 256bit and 512bit */ 265 const int sse_unaligned_load[5];/* cost of unaligned load. */ 266 const int sse_store[5]; /* cost of storing SSE register 267 in SImode, DImode and TImode. */ 268 const int sse_unaligned_store[5];/* cost of unaligned store. */ 269 const int mmxsse_to_integer; /* cost of moving mmxsse register to 270 integer. */ 271 const int ssemmx_to_integer; /* cost of moving integer to mmxsse register. */ 272 const int gather_static, gather_per_elt; /* Cost of gather load is computed 273 as static + per_item * nelts. */ 274 const int scatter_static, scatter_per_elt; /* Cost of gather store is 275 computed as static + per_item * nelts. */ 276 const int l1_cache_size; /* size of l1 cache, in kilobytes. */ 277 const int l2_cache_size; /* size of l2 cache, in kilobytes. */ 278 const int prefetch_block; /* bytes moved to cache for prefetch. */ 279 const int simultaneous_prefetches; /* number of parallel prefetch 280 operations. */ 281 const int branch_cost; /* Default value for BRANCH_COST. */ 282 const int fadd; /* cost of FADD and FSUB instructions. */ 283 const int fmul; /* cost of FMUL instruction. */ 284 const int fdiv; /* cost of FDIV instruction. */ 285 const int fabs; /* cost of FABS instruction. */ 286 const int fchs; /* cost of FCHS instruction. */ 287 const int fsqrt; /* cost of FSQRT instruction. */ 288 /* Specify what algorithm 289 to use for stringops on unknown size. */ 290 const int sse_op; /* cost of cheap SSE instruction. */ 291 const int addss; /* cost of ADDSS/SD SUBSS/SD instructions. */ 292 const int mulss; /* cost of MULSS instructions. */ 293 const int mulsd; /* cost of MULSD instructions. */ 294 const int fmass; /* cost of FMASS instructions. */ 295 const int fmasd; /* cost of FMASD instructions. */ 296 const int divss; /* cost of DIVSS instructions. */ 297 const int divsd; /* cost of DIVSD instructions. */ 298 const int sqrtss; /* cost of SQRTSS instructions. */ 299 const int sqrtsd; /* cost of SQRTSD instructions. */ 300 const int reassoc_int, reassoc_fp, reassoc_vec_int, reassoc_vec_fp; 301 /* Specify reassociation width for integer, 302 fp, vector integer and vector fp 303 operations. Generally should correspond 304 to number of instructions executed in 305 parallel. See also 306 ix86_reassociation_width. */ 307 struct stringop_algs *memcpy, *memset; 308 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer 309 cost model. */ 310 const int cond_not_taken_branch_cost;/* Cost of not taken branch for 311 vectorizer cost model. */ 312 }; 313 314 extern const struct processor_costs *ix86_cost; 315 extern const struct processor_costs ix86_size_cost; 316 317 #define ix86_cur_cost() \ 318 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost) 319 320 /* Macros used in the machine description to test the flags. */ 321 322 /* configure can arrange to change it. */ 323 324 #ifndef TARGET_CPU_DEFAULT 325 #define TARGET_CPU_DEFAULT PROCESSOR_GENERIC 326 #endif 327 328 #ifndef TARGET_FPMATH_DEFAULT 329 #define TARGET_FPMATH_DEFAULT \ 330 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387) 331 #endif 332 333 #ifndef TARGET_FPMATH_DEFAULT_P 334 #define TARGET_FPMATH_DEFAULT_P(x) \ 335 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387) 336 #endif 337 338 /* If the i387 is disabled or -miamcu is used , then do not return 339 values in it. */ 340 #define TARGET_FLOAT_RETURNS_IN_80387 \ 341 (TARGET_FLOAT_RETURNS && TARGET_80387 && !TARGET_IAMCU) 342 #define TARGET_FLOAT_RETURNS_IN_80387_P(x) \ 343 (TARGET_FLOAT_RETURNS_P(x) && TARGET_80387_P(x) && !TARGET_IAMCU_P(x)) 344 345 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a 346 compile-time constant. */ 347 #ifdef IN_LIBGCC2 348 #undef TARGET_64BIT 349 #ifdef __x86_64__ 350 #define TARGET_64BIT 1 351 #else 352 #define TARGET_64BIT 0 353 #endif 354 #else 355 #ifndef TARGET_BI_ARCH 356 #undef TARGET_64BIT 357 #undef TARGET_64BIT_P 358 #if TARGET_64BIT_DEFAULT 359 #define TARGET_64BIT 1 360 #define TARGET_64BIT_P(x) 1 361 #else 362 #define TARGET_64BIT 0 363 #define TARGET_64BIT_P(x) 0 364 #endif 365 #endif 366 #endif 367 368 #define HAS_LONG_COND_BRANCH 1 369 #define HAS_LONG_UNCOND_BRANCH 1 370 371 #define TARGET_386 (ix86_tune == PROCESSOR_I386) 372 #define TARGET_486 (ix86_tune == PROCESSOR_I486) 373 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM) 374 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO) 375 #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE) 376 #define TARGET_K6 (ix86_tune == PROCESSOR_K6) 377 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON) 378 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4) 379 #define TARGET_K8 (ix86_tune == PROCESSOR_K8) 380 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON) 381 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA) 382 #define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2) 383 #define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM) 384 #define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE) 385 #define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL) 386 #define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL) 387 #define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT) 388 #define TARGET_KNL (ix86_tune == PROCESSOR_KNL) 389 #define TARGET_KNM (ix86_tune == PROCESSOR_KNM) 390 #define TARGET_SKYLAKE (ix86_tune == PROCESSOR_SKYLAKE) 391 #define TARGET_SKYLAKE_AVX512 (ix86_tune == PROCESSOR_SKYLAKE_AVX512) 392 #define TARGET_CANNONLAKE (ix86_tune == PROCESSOR_CANNONLAKE) 393 #define TARGET_ICELAKE_CLIENT (ix86_tune == PROCESSOR_ICELAKE_CLIENT) 394 #define TARGET_ICELAKE_SERVER (ix86_tune == PROCESSOR_ICELAKE_SERVER) 395 #define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL) 396 #define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC) 397 #define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10) 398 #define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1) 399 #define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2) 400 #define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3) 401 #define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4) 402 #define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1) 403 #define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2) 404 #define TARGET_ZNVER1 (ix86_tune == PROCESSOR_ZNVER1) 405 406 /* Feature tests against the various tunings. */ 407 enum ix86_tune_indices { 408 #undef DEF_TUNE 409 #define DEF_TUNE(tune, name, selector) tune, 410 #include "x86-tune.def" 411 #undef DEF_TUNE 412 X86_TUNE_LAST 413 }; 414 415 extern unsigned char ix86_tune_features[X86_TUNE_LAST]; 416 417 #define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE] 418 #define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY] 419 #define TARGET_ZERO_EXTEND_WITH_AND \ 420 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND] 421 #define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN] 422 #define TARGET_BRANCH_PREDICTION_HINTS \ 423 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS] 424 #define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD] 425 #define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF] 426 #define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX] 427 #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL] 428 #define TARGET_PARTIAL_FLAG_REG_STALL \ 429 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL] 430 #define TARGET_LCP_STALL \ 431 ix86_tune_features[X86_TUNE_LCP_STALL] 432 #define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP] 433 #define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP] 434 #define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0] 435 #define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD] 436 #define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB] 437 #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES] 438 #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE] 439 #define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY] 440 #define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE] 441 #define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX] 442 #define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP] 443 #define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \ 444 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES] 445 #define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH] 446 #define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH] 447 #define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS] 448 #define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS] 449 #define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP] 450 #define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP] 451 #define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH] 452 #define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH] 453 #define TARGET_INTEGER_DFMODE_MOVES \ 454 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES] 455 #define TARGET_PARTIAL_REG_DEPENDENCY \ 456 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY] 457 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \ 458 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY] 459 #define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \ 460 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL] 461 #define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \ 462 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL] 463 #define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \ 464 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL] 465 #define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS] 466 #define TARGET_SSE_TYPELESS_STORES \ 467 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES] 468 #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR] 469 #define TARGET_MEMORY_MISMATCH_STALL \ 470 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL] 471 #define TARGET_PROLOGUE_USING_MOVE \ 472 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE] 473 #define TARGET_EPILOGUE_USING_MOVE \ 474 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE] 475 #define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1] 476 #define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP] 477 #define TARGET_INTER_UNIT_MOVES_TO_VEC \ 478 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC] 479 #define TARGET_INTER_UNIT_MOVES_FROM_VEC \ 480 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC] 481 #define TARGET_INTER_UNIT_CONVERSIONS \ 482 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS] 483 #define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT] 484 #define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE] 485 #define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT] 486 #define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC] 487 #define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS] 488 #define TARGET_PAD_SHORT_FUNCTION \ 489 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION] 490 #define TARGET_EXT_80387_CONSTANTS \ 491 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS] 492 #define TARGET_AVOID_VECTOR_DECODE \ 493 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE] 494 #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \ 495 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL] 496 #define TARGET_SLOW_IMUL_IMM32_MEM \ 497 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM] 498 #define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8] 499 #define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR] 500 #define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE] 501 #define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE] 502 #define TARGET_USE_VECTOR_FP_CONVERTS \ 503 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS] 504 #define TARGET_USE_VECTOR_CONVERTS \ 505 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS] 506 #define TARGET_SLOW_PSHUFB \ 507 ix86_tune_features[X86_TUNE_SLOW_PSHUFB] 508 #define TARGET_AVOID_4BYTE_PREFIXES \ 509 ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES] 510 #define TARGET_USE_GATHER \ 511 ix86_tune_features[X86_TUNE_USE_GATHER] 512 #define TARGET_FUSE_CMP_AND_BRANCH_32 \ 513 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32] 514 #define TARGET_FUSE_CMP_AND_BRANCH_64 \ 515 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64] 516 #define TARGET_FUSE_CMP_AND_BRANCH \ 517 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \ 518 : TARGET_FUSE_CMP_AND_BRANCH_32) 519 #define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \ 520 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS] 521 #define TARGET_FUSE_ALU_AND_BRANCH \ 522 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH] 523 #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU] 524 #define TARGET_AVOID_LEA_FOR_ADDR \ 525 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR] 526 #define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \ 527 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL] 528 #define TARGET_AVX128_OPTIMAL \ 529 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL] 530 #define TARGET_GENERAL_REGS_SSE_SPILL \ 531 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL] 532 #define TARGET_AVOID_MEM_OPND_FOR_CMOVE \ 533 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE] 534 #define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \ 535 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS] 536 #define TARGET_ADJUST_UNROLL \ 537 ix86_tune_features[X86_TUNE_ADJUST_UNROLL] 538 #define TARGET_AVOID_FALSE_DEP_FOR_BMI \ 539 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI] 540 #define TARGET_ONE_IF_CONV_INSN \ 541 ix86_tune_features[X86_TUNE_ONE_IF_CONV_INSN] 542 #define TARGET_EMIT_VZEROUPPER \ 543 ix86_tune_features[X86_TUNE_EMIT_VZEROUPPER] 544 545 /* Feature tests against the various architecture variations. */ 546 enum ix86_arch_indices { 547 X86_ARCH_CMOV, 548 X86_ARCH_CMPXCHG, 549 X86_ARCH_CMPXCHG8B, 550 X86_ARCH_XADD, 551 X86_ARCH_BSWAP, 552 553 X86_ARCH_LAST 554 }; 555 556 extern unsigned char ix86_arch_features[X86_ARCH_LAST]; 557 558 #define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV] 559 #define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG] 560 #define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B] 561 #define TARGET_XADD ix86_arch_features[X86_ARCH_XADD] 562 #define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP] 563 564 /* For sane SSE instruction set generation we need fcomi instruction. 565 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic 566 expands to a sequence that includes conditional move. */ 567 #define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND) 568 569 #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387) 570 571 extern unsigned char x86_prefetch_sse; 572 #define TARGET_PREFETCH_SSE x86_prefetch_sse 573 574 #define ASSEMBLER_DIALECT (ix86_asm_dialect) 575 576 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0) 577 #define TARGET_MIX_SSE_I387 \ 578 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387)) 579 580 #define TARGET_HARD_SF_REGS (TARGET_80387 || TARGET_MMX || TARGET_SSE) 581 #define TARGET_HARD_DF_REGS (TARGET_80387 || TARGET_SSE) 582 #define TARGET_HARD_XF_REGS (TARGET_80387) 583 584 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU) 585 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2) 586 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS) 587 #define TARGET_SUN_TLS 0 588 589 #ifndef TARGET_64BIT_DEFAULT 590 #define TARGET_64BIT_DEFAULT 0 591 #endif 592 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 593 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0 594 #endif 595 596 #define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL) 597 #define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS) 598 599 /* Fence to use after loop using storent. */ 600 601 extern tree x86_mfence; 602 #define FENCE_FOLLOWING_MOVNT x86_mfence 603 604 /* Once GDB has been enhanced to deal with functions without frame 605 pointers, we can change this to allow for elimination of 606 the frame pointer in leaf functions. */ 607 #define TARGET_DEFAULT 0 608 609 /* Extra bits to force. */ 610 #define TARGET_SUBTARGET_DEFAULT 0 611 #define TARGET_SUBTARGET_ISA_DEFAULT 0 612 613 /* Extra bits to force on w/ 32-bit mode. */ 614 #define TARGET_SUBTARGET32_DEFAULT 0 615 #define TARGET_SUBTARGET32_ISA_DEFAULT 0 616 617 /* Extra bits to force on w/ 64-bit mode. */ 618 #define TARGET_SUBTARGET64_DEFAULT 0 619 #define TARGET_SUBTARGET64_ISA_DEFAULT 0 620 621 /* Replace MACH-O, ifdefs by in-line tests, where possible. 622 (a) Macros defined in config/i386/darwin.h */ 623 #define TARGET_MACHO 0 624 #define TARGET_MACHO_SYMBOL_STUBS 0 625 #define MACHOPIC_ATT_STUB 0 626 /* (b) Macros defined in config/darwin.h */ 627 #define MACHO_DYNAMIC_NO_PIC_P 0 628 #define MACHOPIC_INDIRECT 0 629 #define MACHOPIC_PURE 0 630 631 /* For the RDOS */ 632 #define TARGET_RDOS 0 633 634 /* For the Windows 64-bit ABI. */ 635 #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI) 636 637 /* For the Windows 32-bit ABI. */ 638 #define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI) 639 640 /* This is re-defined by cygming.h. */ 641 #define TARGET_SEH 0 642 643 /* The default abi used by target. */ 644 #define DEFAULT_ABI SYSV_ABI 645 646 /* The default TLS segment register used by target. */ 647 #define DEFAULT_TLS_SEG_REG \ 648 (TARGET_64BIT ? ADDR_SPACE_SEG_FS : ADDR_SPACE_SEG_GS) 649 650 /* Subtargets may reset this to 1 in order to enable 96-bit long double 651 with the rounding mode forced to 53 bits. */ 652 #define TARGET_96_ROUND_53_LONG_DOUBLE 0 653 654 /* -march=native handling only makes sense with compiler running on 655 an x86 or x86_64 chip. If changing this condition, also change 656 the condition in driver-i386.c. */ 657 #if defined(__i386__) || defined(__x86_64__) 658 /* In driver-i386.c. */ 659 extern const char *host_detect_local_cpu (int argc, const char **argv); 660 #define EXTRA_SPEC_FUNCTIONS \ 661 { "local_cpu_detect", host_detect_local_cpu }, 662 #define HAVE_LOCAL_CPU_DETECT 663 #endif 664 665 #if TARGET_64BIT_DEFAULT 666 #define OPT_ARCH64 "!m32" 667 #define OPT_ARCH32 "m32" 668 #else 669 #define OPT_ARCH64 "m64|mx32" 670 #define OPT_ARCH32 "m64|mx32:;" 671 #endif 672 673 /* Support for configure-time defaults of some command line options. 674 The order here is important so that -march doesn't squash the 675 tune or cpu values. */ 676 #define OPTION_DEFAULT_SPECS \ 677 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \ 678 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \ 679 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \ 680 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \ 681 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \ 682 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \ 683 {"arch", "%{!march=*:-march=%(VALUE)}"}, \ 684 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \ 685 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"}, 686 687 /* Specs for the compiler proper */ 688 689 #ifndef CC1_CPU_SPEC 690 #define CC1_CPU_SPEC_1 "" 691 692 #ifndef HAVE_LOCAL_CPU_DETECT 693 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 694 #else 695 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \ 696 "%{march=native:%>march=native %:local_cpu_detect(arch) \ 697 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \ 698 %{mtune=native:%>mtune=native %:local_cpu_detect(tune)}" 699 #endif 700 #endif 701 702 /* Target CPU builtins. */ 703 #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros () 704 705 /* Target Pragmas. */ 706 #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas () 707 708 #ifndef CC1_SPEC 709 #define CC1_SPEC "%(cc1_cpu) " 710 #endif 711 712 /* This macro defines names of additional specifications to put in the 713 specs that can be used in various specifications like CC1_SPEC. Its 714 definition is an initializer with a subgrouping for each command option. 715 716 Each subgrouping contains a string constant, that defines the 717 specification name, and a string constant that used by the GCC driver 718 program. 719 720 Do not define this macro if it does not need to do anything. */ 721 722 #ifndef SUBTARGET_EXTRA_SPECS 723 #define SUBTARGET_EXTRA_SPECS 724 #endif 725 726 #define EXTRA_SPECS \ 727 { "cc1_cpu", CC1_CPU_SPEC }, \ 728 SUBTARGET_EXTRA_SPECS 729 730 731 /* Whether to allow x87 floating-point arithmetic on MODE (one of 732 SFmode, DFmode and XFmode) in the current excess precision 733 configuration. */ 734 #define X87_ENABLE_ARITH(MODE) \ 735 (flag_unsafe_math_optimizations \ 736 || flag_excess_precision == EXCESS_PRECISION_FAST \ 737 || (MODE) == XFmode) 738 739 /* Likewise, whether to allow direct conversions from integer mode 740 IMODE (HImode, SImode or DImode) to MODE. */ 741 #define X87_ENABLE_FLOAT(MODE, IMODE) \ 742 (flag_unsafe_math_optimizations \ 743 || flag_excess_precision == EXCESS_PRECISION_FAST \ 744 || (MODE) == XFmode \ 745 || ((MODE) == DFmode && (IMODE) == SImode) \ 746 || (IMODE) == HImode) 747 748 /* target machine storage layout */ 749 750 #define SHORT_TYPE_SIZE 16 751 #define INT_TYPE_SIZE 32 752 #define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD) 753 #define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD) 754 #define LONG_LONG_TYPE_SIZE 64 755 #define FLOAT_TYPE_SIZE 32 756 #define DOUBLE_TYPE_SIZE 64 757 #define LONG_DOUBLE_TYPE_SIZE \ 758 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80)) 759 760 #define WIDEST_HARDWARE_FP_SIZE 80 761 762 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT 763 #define MAX_BITS_PER_WORD 64 764 #else 765 #define MAX_BITS_PER_WORD 32 766 #endif 767 768 /* Define this if most significant byte of a word is the lowest numbered. */ 769 /* That is true on the 80386. */ 770 771 #define BITS_BIG_ENDIAN 0 772 773 /* Define this if most significant byte of a word is the lowest numbered. */ 774 /* That is not true on the 80386. */ 775 #define BYTES_BIG_ENDIAN 0 776 777 /* Define this if most significant word of a multiword number is the lowest 778 numbered. */ 779 /* Not true for 80386 */ 780 #define WORDS_BIG_ENDIAN 0 781 782 /* Width of a word, in units (bytes). */ 783 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4) 784 785 #ifndef IN_LIBGCC2 786 #define MIN_UNITS_PER_WORD 4 787 #endif 788 789 /* Allocation boundary (in *bits*) for storing arguments in argument list. */ 790 #define PARM_BOUNDARY BITS_PER_WORD 791 792 /* Boundary (in *bits*) on which stack pointer should be aligned. */ 793 #define STACK_BOUNDARY (TARGET_64BIT_MS_ABI ? 128 : BITS_PER_WORD) 794 795 /* Stack boundary of the main function guaranteed by OS. */ 796 #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32) 797 798 /* Minimum stack boundary. */ 799 #define MIN_STACK_BOUNDARY BITS_PER_WORD 800 801 /* Boundary (in *bits*) on which the stack pointer prefers to be 802 aligned; the compiler cannot rely on having this alignment. */ 803 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary 804 805 /* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for 806 both 32bit and 64bit, to support codes that need 128 bit stack 807 alignment for SSE instructions, but can't realign the stack. */ 808 #define PREFERRED_STACK_BOUNDARY_DEFAULT \ 809 (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128) 810 811 /* 1 if -mstackrealign should be turned on by default. It will 812 generate an alternate prologue and epilogue that realigns the 813 runtime stack if nessary. This supports mixing codes that keep a 814 4-byte aligned stack, as specified by i386 psABI, with codes that 815 need a 16-byte aligned stack, as required by SSE instructions. */ 816 #define STACK_REALIGN_DEFAULT 0 817 818 /* Boundary (in *bits*) on which the incoming stack is aligned. */ 819 #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary 820 821 /* According to Windows x64 software convention, the maximum stack allocatable 822 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of 823 instructions allowed to adjust the stack pointer in the epilog, forcing the 824 use of frame pointer for frames larger than 2 GB. This theorical limit 825 is reduced by 256, an over-estimated upper bound for the stack use by the 826 prologue. 827 We define only one threshold for both the prolog and the epilog. When the 828 frame size is larger than this threshold, we allocate the area to save SSE 829 regs, then save them, and then allocate the remaining. There is no SEH 830 unwind info for this later allocation. */ 831 #define SEH_MAX_FRAME_SIZE ((2U << 30) - 256) 832 833 /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is 834 mandatory for the 64-bit ABI, and may or may not be true for other 835 operating systems. */ 836 #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT 837 838 /* Minimum allocation boundary for the code of a function. */ 839 #define FUNCTION_BOUNDARY 8 840 841 /* C++ stores the virtual bit in the lowest bit of function pointers. */ 842 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn 843 844 /* Minimum size in bits of the largest boundary to which any 845 and all fundamental data types supported by the hardware 846 might need to be aligned. No data type wants to be aligned 847 rounder than this. 848 849 Pentium+ prefers DFmode values to be aligned to 64 bit boundary 850 and Pentium Pro XFmode values at 128 bit boundaries. 851 852 When increasing the maximum, also update 853 TARGET_ABSOLUTE_BIGGEST_ALIGNMENT. */ 854 855 #define BIGGEST_ALIGNMENT \ 856 (TARGET_IAMCU ? 32 : (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128))) 857 858 /* Maximum stack alignment. */ 859 #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT 860 861 /* Alignment value for attribute ((aligned)). It is a constant since 862 it is the part of the ABI. We shouldn't change it with -mavx. */ 863 #define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128) 864 865 /* Decide whether a variable of mode MODE should be 128 bit aligned. */ 866 #define ALIGN_MODE_128(MODE) \ 867 ((MODE) == XFmode || SSE_REG_MODE_P (MODE)) 868 869 /* The published ABIs say that doubles should be aligned on word 870 boundaries, so lower the alignment for structure fields unless 871 -malign-double is set. */ 872 873 /* ??? Blah -- this macro is used directly by libobjc. Since it 874 supports no vector modes, cut out the complexity and fall back 875 on BIGGEST_FIELD_ALIGNMENT. */ 876 #ifdef IN_TARGET_LIBS 877 #ifdef __x86_64__ 878 #define BIGGEST_FIELD_ALIGNMENT 128 879 #else 880 #define BIGGEST_FIELD_ALIGNMENT 32 881 #endif 882 #else 883 #define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \ 884 x86_field_alignment ((TYPE), (COMPUTED)) 885 #endif 886 887 /* If defined, a C expression to compute the alignment for a static 888 variable. TYPE is the data type, and ALIGN is the alignment that 889 the object would ordinarily have. The value of this macro is used 890 instead of that alignment to align the object. 891 892 If this macro is not defined, then ALIGN is used. 893 894 One use of this macro is to increase alignment of medium-size 895 data to make it all fit in fewer cache lines. Another is to 896 cause character arrays to be word-aligned so that `strcpy' calls 897 that copy constants to character arrays can be done inline. */ 898 899 #define DATA_ALIGNMENT(TYPE, ALIGN) \ 900 ix86_data_alignment ((TYPE), (ALIGN), true) 901 902 /* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates 903 some alignment increase, instead of optimization only purposes. E.g. 904 AMD x86-64 psABI says that variables with array type larger than 15 bytes 905 must be aligned to 16 byte boundaries. 906 907 If this macro is not defined, then ALIGN is used. */ 908 909 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \ 910 ix86_data_alignment ((TYPE), (ALIGN), false) 911 912 /* If defined, a C expression to compute the alignment for a local 913 variable. TYPE is the data type, and ALIGN is the alignment that 914 the object would ordinarily have. The value of this macro is used 915 instead of that alignment to align the object. 916 917 If this macro is not defined, then ALIGN is used. 918 919 One use of this macro is to increase alignment of medium-size 920 data to make it all fit in fewer cache lines. */ 921 922 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \ 923 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN)) 924 925 /* If defined, a C expression to compute the alignment for stack slot. 926 TYPE is the data type, MODE is the widest mode available, and ALIGN 927 is the alignment that the slot would ordinarily have. The value of 928 this macro is used instead of that alignment to align the slot. 929 930 If this macro is not defined, then ALIGN is used when TYPE is NULL, 931 Otherwise, LOCAL_ALIGNMENT will be used. 932 933 One use of this macro is to set alignment of stack slot to the 934 maximum alignment of all possible modes which the slot may have. */ 935 936 #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \ 937 ix86_local_alignment ((TYPE), (MODE), (ALIGN)) 938 939 /* If defined, a C expression to compute the alignment for a local 940 variable DECL. 941 942 If this macro is not defined, then 943 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used. 944 945 One use of this macro is to increase alignment of medium-size 946 data to make it all fit in fewer cache lines. */ 947 948 #define LOCAL_DECL_ALIGNMENT(DECL) \ 949 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL)) 950 951 /* If defined, a C expression to compute the minimum required alignment 952 for dynamic stack realignment purposes for EXP (a TYPE or DECL), 953 MODE, assuming normal alignment ALIGN. 954 955 If this macro is not defined, then (ALIGN) will be used. */ 956 957 #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \ 958 ix86_minimum_alignment ((EXP), (MODE), (ALIGN)) 959 960 961 /* Set this nonzero if move instructions will actually fail to work 962 when given unaligned data. */ 963 #define STRICT_ALIGNMENT 0 964 965 /* If bit field type is int, don't let it cross an int, 966 and give entire struct the alignment of an int. */ 967 /* Required on the 386 since it doesn't have bit-field insns. */ 968 #define PCC_BITFIELD_TYPE_MATTERS 1 969 970 /* Standard register usage. */ 971 972 /* This processor has special stack-like registers. See reg-stack.c 973 for details. */ 974 975 #define STACK_REGS 976 977 #define IS_STACK_MODE(MODE) \ 978 (X87_FLOAT_MODE_P (MODE) \ 979 && (!(SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH) \ 980 || TARGET_MIX_SSE_I387)) 981 982 /* Number of actual hardware registers. 983 The hardware registers are assigned numbers for the compiler 984 from 0 to just below FIRST_PSEUDO_REGISTER. 985 All registers that the compiler knows about must be given numbers, 986 even those that are not normally considered general registers. 987 988 In the 80386 we give the 8 general purpose registers the numbers 0-7. 989 We number the floating point registers 8-15. 990 Note that registers 0-7 can be accessed as a short or int, 991 while only 0-3 may be used with byte `mov' instructions. 992 993 Reg 16 does not correspond to any hardware register, but instead 994 appears in the RTL as an argument pointer prior to reload, and is 995 eliminated during reloading in favor of either the stack or frame 996 pointer. */ 997 998 #define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG 999 1000 /* Number of hardware registers that go into the DWARF-2 unwind info. 1001 If not defined, equals FIRST_PSEUDO_REGISTER. */ 1002 1003 #define DWARF_FRAME_REGISTERS 17 1004 1005 /* 1 for registers that have pervasive standard uses 1006 and are not available for the register allocator. 1007 On the 80386, the stack pointer is such, as is the arg pointer. 1008 1009 REX registers are disabled for 32bit targets in 1010 TARGET_CONDITIONAL_REGISTER_USAGE. */ 1011 1012 #define FIXED_REGISTERS \ 1013 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \ 1014 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \ 1015 /*arg,flags,fpsr,fpcr,frame*/ \ 1016 1, 1, 1, 1, 1, \ 1017 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \ 1018 0, 0, 0, 0, 0, 0, 0, 0, \ 1019 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \ 1020 0, 0, 0, 0, 0, 0, 0, 0, \ 1021 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \ 1022 0, 0, 0, 0, 0, 0, 0, 0, \ 1023 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \ 1024 0, 0, 0, 0, 0, 0, 0, 0, \ 1025 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \ 1026 0, 0, 0, 0, 0, 0, 0, 0, \ 1027 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \ 1028 0, 0, 0, 0, 0, 0, 0, 0, \ 1029 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \ 1030 0, 0, 0, 0, 0, 0, 0, 0, \ 1031 /* b0, b1, b2, b3*/ \ 1032 0, 0, 0, 0 } 1033 1034 /* 1 for registers not available across function calls. 1035 These must include the FIXED_REGISTERS and also any 1036 registers that can be used without being saved. 1037 The latter must include the registers where values are returned 1038 and the register where structure-value addresses are passed. 1039 Aside from that, you can include as many other registers as you like. 1040 1041 Value is set to 1 if the register is call used unconditionally. 1042 Bit one is set if the register is call used on TARGET_32BIT ABI. 1043 Bit two is set if the register is call used on TARGET_64BIT ABI. 1044 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI. 1045 1046 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */ 1047 1048 #define CALL_USED_REGISTERS_MASK(IS_64BIT_MS_ABI) \ 1049 ((IS_64BIT_MS_ABI) ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1)) 1050 1051 #define CALL_USED_REGISTERS \ 1052 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \ 1053 { 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1054 /*arg,flags,fpsr,fpcr,frame*/ \ 1055 1, 1, 1, 1, 1, \ 1056 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \ 1057 1, 1, 1, 1, 1, 1, 6, 6, \ 1058 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \ 1059 1, 1, 1, 1, 1, 1, 1, 1, \ 1060 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \ 1061 1, 1, 1, 1, 2, 2, 2, 2, \ 1062 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \ 1063 6, 6, 6, 6, 6, 6, 6, 6, \ 1064 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \ 1065 1, 1, 1, 1, 1, 1, 1, 1, \ 1066 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \ 1067 1, 1, 1, 1, 1, 1, 1, 1, \ 1068 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \ 1069 1, 1, 1, 1, 1, 1, 1, 1, \ 1070 /* b0, b1, b2, b3*/ \ 1071 1, 1, 1, 1 } 1072 1073 /* Order in which to allocate registers. Each register must be 1074 listed once, even those in FIXED_REGISTERS. List frame pointer 1075 late and fixed registers last. Note that, in general, we prefer 1076 registers listed in CALL_USED_REGISTERS, keeping the others 1077 available for storage of persistent values. 1078 1079 The ADJUST_REG_ALLOC_ORDER actually overwrite the order, 1080 so this is just empty initializer for array. */ 1081 1082 #define REG_ALLOC_ORDER \ 1083 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\ 1084 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \ 1085 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \ 1086 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \ 1087 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, \ 1088 78, 79, 80 } 1089 1090 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order 1091 to be rearranged based on a particular function. When using sse math, 1092 we want to allocate SSE before x87 registers and vice versa. */ 1093 1094 #define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc () 1095 1096 1097 #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL) 1098 1099 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \ 1100 (TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT \ 1101 && GENERAL_REGNO_P (REGNO) \ 1102 && ((MODE) == XFmode || (MODE) == XCmode)) 1103 1104 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8) 1105 1106 #define VALID_AVX256_REG_MODE(MODE) \ 1107 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \ 1108 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \ 1109 || (MODE) == V4DFmode) 1110 1111 #define VALID_AVX256_REG_OR_OI_MODE(MODE) \ 1112 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode) 1113 1114 #define VALID_AVX512F_SCALAR_MODE(MODE) \ 1115 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \ 1116 || (MODE) == SFmode) 1117 1118 #define VALID_AVX512F_REG_MODE(MODE) \ 1119 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \ 1120 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \ 1121 || (MODE) == V4TImode) 1122 1123 #define VALID_AVX512F_REG_OR_XI_MODE(MODE) \ 1124 (VALID_AVX512F_REG_MODE (MODE) || (MODE) == XImode) 1125 1126 #define VALID_AVX512VL_128_REG_MODE(MODE) \ 1127 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \ 1128 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode \ 1129 || (MODE) == TFmode || (MODE) == V1TImode) 1130 1131 #define VALID_SSE2_REG_MODE(MODE) \ 1132 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \ 1133 || (MODE) == V2DImode || (MODE) == DFmode) 1134 1135 #define VALID_SSE_REG_MODE(MODE) \ 1136 ((MODE) == V1TImode || (MODE) == TImode \ 1137 || (MODE) == V4SFmode || (MODE) == V4SImode \ 1138 || (MODE) == SFmode || (MODE) == TFmode) 1139 1140 #define VALID_MMX_REG_MODE_3DNOW(MODE) \ 1141 ((MODE) == V2SFmode || (MODE) == SFmode) 1142 1143 #define VALID_MMX_REG_MODE(MODE) \ 1144 ((MODE == V1DImode) || (MODE) == DImode \ 1145 || (MODE) == V2SImode || (MODE) == SImode \ 1146 || (MODE) == V4HImode || (MODE) == V8QImode) 1147 1148 #define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode) 1149 1150 #define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode) 1151 1152 #define VALID_BND_REG_MODE(MODE) \ 1153 (TARGET_64BIT ? (MODE) == BND64mode : (MODE) == BND32mode) 1154 1155 #define VALID_DFP_MODE_P(MODE) \ 1156 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode) 1157 1158 #define VALID_FP_MODE_P(MODE) \ 1159 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \ 1160 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \ 1161 1162 #define VALID_INT_MODE_P(MODE) \ 1163 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \ 1164 || (MODE) == DImode \ 1165 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \ 1166 || (MODE) == CDImode \ 1167 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \ 1168 || (MODE) == TFmode || (MODE) == TCmode))) 1169 1170 /* Return true for modes passed in SSE registers. */ 1171 #define SSE_REG_MODE_P(MODE) \ 1172 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \ 1173 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \ 1174 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \ 1175 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \ 1176 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \ 1177 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \ 1178 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \ 1179 || (MODE) == V16SFmode) 1180 1181 #define X87_FLOAT_MODE_P(MODE) \ 1182 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode)) 1183 1184 #define SSE_FLOAT_MODE_P(MODE) \ 1185 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode)) 1186 1187 #define FMA4_VEC_FLOAT_MODE_P(MODE) \ 1188 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \ 1189 || (MODE) == V8SFmode || (MODE) == V4DFmode)) 1190 1191 /* It is possible to write patterns to move flags; but until someone 1192 does it, */ 1193 #define AVOID_CCMODE_COPIES 1194 1195 /* Specify the modes required to caller save a given hard regno. 1196 We do this on i386 to prevent flags from being saved at all. 1197 1198 Kill any attempts to combine saving of modes. */ 1199 1200 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \ 1201 (CC_REGNO_P (REGNO) ? VOIDmode \ 1202 : MMX_REGNO_P (REGNO) ? V8QImode \ 1203 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \ 1204 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \ 1205 : (MODE) == HImode && !((GENERAL_REGNO_P (REGNO) \ 1206 && TARGET_PARTIAL_REG_STALL) \ 1207 || MASK_REGNO_P (REGNO)) ? SImode \ 1208 : (MODE) == QImode && !(ANY_QI_REGNO_P (REGNO) \ 1209 || MASK_REGNO_P (REGNO)) ? SImode \ 1210 : (MODE)) 1211 1212 /* Specify the registers used for certain standard purposes. 1213 The values of these macros are register numbers. */ 1214 1215 /* on the 386 the pc register is %eip, and is not usable as a general 1216 register. The ordinary mov instructions won't work */ 1217 /* #define PC_REGNUM */ 1218 1219 /* Base register for access to arguments of the function. */ 1220 #define ARG_POINTER_REGNUM ARGP_REG 1221 1222 /* Register to use for pushing function arguments. */ 1223 #define STACK_POINTER_REGNUM SP_REG 1224 1225 /* Base register for access to local variables of the function. */ 1226 #define FRAME_POINTER_REGNUM FRAME_REG 1227 #define HARD_FRAME_POINTER_REGNUM BP_REG 1228 1229 #define FIRST_INT_REG AX_REG 1230 #define LAST_INT_REG SP_REG 1231 1232 #define FIRST_QI_REG AX_REG 1233 #define LAST_QI_REG BX_REG 1234 1235 /* First & last stack-like regs */ 1236 #define FIRST_STACK_REG ST0_REG 1237 #define LAST_STACK_REG ST7_REG 1238 1239 #define FIRST_SSE_REG XMM0_REG 1240 #define LAST_SSE_REG XMM7_REG 1241 1242 #define FIRST_MMX_REG MM0_REG 1243 #define LAST_MMX_REG MM7_REG 1244 1245 #define FIRST_REX_INT_REG R8_REG 1246 #define LAST_REX_INT_REG R15_REG 1247 1248 #define FIRST_REX_SSE_REG XMM8_REG 1249 #define LAST_REX_SSE_REG XMM15_REG 1250 1251 #define FIRST_EXT_REX_SSE_REG XMM16_REG 1252 #define LAST_EXT_REX_SSE_REG XMM31_REG 1253 1254 #define FIRST_MASK_REG MASK0_REG 1255 #define LAST_MASK_REG MASK7_REG 1256 1257 #define FIRST_BND_REG BND0_REG 1258 #define LAST_BND_REG BND3_REG 1259 1260 /* Override this in other tm.h files to cope with various OS lossage 1261 requiring a frame pointer. */ 1262 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED 1263 #define SUBTARGET_FRAME_POINTER_REQUIRED 0 1264 #endif 1265 1266 /* Make sure we can access arbitrary call frames. */ 1267 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses () 1268 1269 /* Register to hold the addressing base for position independent 1270 code access to data items. We don't use PIC pointer for 64bit 1271 mode. Define the regnum to dummy value to prevent gcc from 1272 pessimizing code dealing with EBX. 1273 1274 To avoid clobbering a call-saved register unnecessarily, we renumber 1275 the pic register when possible. The change is visible after the 1276 prologue has been emitted. */ 1277 1278 #define REAL_PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? R15_REG : BX_REG) 1279 1280 #define PIC_OFFSET_TABLE_REGNUM \ 1281 (ix86_use_pseudo_pic_reg () \ 1282 ? (pic_offset_table_rtx \ 1283 ? INVALID_REGNUM \ 1284 : REAL_PIC_OFFSET_TABLE_REGNUM) \ 1285 : INVALID_REGNUM) 1286 1287 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_" 1288 1289 /* This is overridden by <cygwin.h>. */ 1290 #define MS_AGGREGATE_RETURN 0 1291 1292 #define KEEP_AGGREGATE_RETURN_POINTER 0 1293 1294 /* Define the classes of registers for register constraints in the 1295 machine description. Also define ranges of constants. 1296 1297 One of the classes must always be named ALL_REGS and include all hard regs. 1298 If there is more than one class, another class must be named NO_REGS 1299 and contain no registers. 1300 1301 The name GENERAL_REGS must be the name of a class (or an alias for 1302 another name such as ALL_REGS). This is the class of registers 1303 that is allowed by "g" or "r" in a register constraint. 1304 Also, registers outside this class are allocated only when 1305 instructions express preferences for them. 1306 1307 The classes must be numbered in nondecreasing order; that is, 1308 a larger-numbered class must never be contained completely 1309 in a smaller-numbered class. This is why CLOBBERED_REGS class 1310 is listed early, even though in 64-bit mode it contains more 1311 registers than just %eax, %ecx, %edx. 1312 1313 For any two classes, it is very desirable that there be another 1314 class that represents their union. 1315 1316 It might seem that class BREG is unnecessary, since no useful 386 1317 opcode needs reg %ebx. But some systems pass args to the OS in ebx, 1318 and the "b" register constraint is useful in asms for syscalls. 1319 1320 The flags, fpsr and fpcr registers are in no class. */ 1321 1322 enum reg_class 1323 { 1324 NO_REGS, 1325 AREG, DREG, CREG, BREG, SIREG, DIREG, 1326 AD_REGS, /* %eax/%edx for DImode */ 1327 CLOBBERED_REGS, /* call-clobbered integer registers */ 1328 Q_REGS, /* %eax %ebx %ecx %edx */ 1329 NON_Q_REGS, /* %esi %edi %ebp %esp */ 1330 TLS_GOTBASE_REGS, /* %ebx %ecx %edx %esi %edi %ebp */ 1331 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */ 1332 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */ 1333 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp 1334 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */ 1335 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */ 1336 FLOAT_REGS, 1337 SSE_FIRST_REG, 1338 NO_REX_SSE_REGS, 1339 SSE_REGS, 1340 EVEX_SSE_REGS, 1341 BND_REGS, 1342 ALL_SSE_REGS, 1343 MMX_REGS, 1344 FP_TOP_SSE_REGS, 1345 FP_SECOND_SSE_REGS, 1346 FLOAT_SSE_REGS, 1347 FLOAT_INT_REGS, 1348 INT_SSE_REGS, 1349 FLOAT_INT_SSE_REGS, 1350 MASK_EVEX_REGS, 1351 MASK_REGS, 1352 MOD4_SSE_REGS, 1353 ALL_REGS, LIM_REG_CLASSES 1354 }; 1355 1356 #define N_REG_CLASSES ((int) LIM_REG_CLASSES) 1357 1358 #define INTEGER_CLASS_P(CLASS) \ 1359 reg_class_subset_p ((CLASS), GENERAL_REGS) 1360 #define FLOAT_CLASS_P(CLASS) \ 1361 reg_class_subset_p ((CLASS), FLOAT_REGS) 1362 #define SSE_CLASS_P(CLASS) \ 1363 reg_class_subset_p ((CLASS), ALL_SSE_REGS) 1364 #define MMX_CLASS_P(CLASS) \ 1365 ((CLASS) == MMX_REGS) 1366 #define MASK_CLASS_P(CLASS) \ 1367 reg_class_subset_p ((CLASS), MASK_REGS) 1368 #define MAYBE_INTEGER_CLASS_P(CLASS) \ 1369 reg_classes_intersect_p ((CLASS), GENERAL_REGS) 1370 #define MAYBE_FLOAT_CLASS_P(CLASS) \ 1371 reg_classes_intersect_p ((CLASS), FLOAT_REGS) 1372 #define MAYBE_SSE_CLASS_P(CLASS) \ 1373 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS) 1374 #define MAYBE_MMX_CLASS_P(CLASS) \ 1375 reg_classes_intersect_p ((CLASS), MMX_REGS) 1376 #define MAYBE_MASK_CLASS_P(CLASS) \ 1377 reg_classes_intersect_p ((CLASS), MASK_REGS) 1378 1379 #define Q_CLASS_P(CLASS) \ 1380 reg_class_subset_p ((CLASS), Q_REGS) 1381 1382 #define MAYBE_NON_Q_CLASS_P(CLASS) \ 1383 reg_classes_intersect_p ((CLASS), NON_Q_REGS) 1384 1385 /* Give names of register classes as strings for dump file. */ 1386 1387 #define REG_CLASS_NAMES \ 1388 { "NO_REGS", \ 1389 "AREG", "DREG", "CREG", "BREG", \ 1390 "SIREG", "DIREG", \ 1391 "AD_REGS", \ 1392 "CLOBBERED_REGS", \ 1393 "Q_REGS", "NON_Q_REGS", \ 1394 "TLS_GOTBASE_REGS", \ 1395 "INDEX_REGS", \ 1396 "LEGACY_REGS", \ 1397 "GENERAL_REGS", \ 1398 "FP_TOP_REG", "FP_SECOND_REG", \ 1399 "FLOAT_REGS", \ 1400 "SSE_FIRST_REG", \ 1401 "NO_REX_SSE_REGS", \ 1402 "SSE_REGS", \ 1403 "EVEX_SSE_REGS", \ 1404 "BND_REGS", \ 1405 "ALL_SSE_REGS", \ 1406 "MMX_REGS", \ 1407 "FP_TOP_SSE_REGS", \ 1408 "FP_SECOND_SSE_REGS", \ 1409 "FLOAT_SSE_REGS", \ 1410 "FLOAT_INT_REGS", \ 1411 "INT_SSE_REGS", \ 1412 "FLOAT_INT_SSE_REGS", \ 1413 "MASK_EVEX_REGS", \ 1414 "MASK_REGS", \ 1415 "MOD4_SSE_REGS", \ 1416 "ALL_REGS" } 1417 1418 /* Define which registers fit in which classes. This is an initializer 1419 for a vector of HARD_REG_SET of length N_REG_CLASSES. 1420 1421 Note that CLOBBERED_REGS are calculated by 1422 TARGET_CONDITIONAL_REGISTER_USAGE. */ 1423 1424 #define REG_CLASS_CONTENTS \ 1425 { { 0x00, 0x0, 0x0 }, \ 1426 { 0x01, 0x0, 0x0 }, /* AREG */ \ 1427 { 0x02, 0x0, 0x0 }, /* DREG */ \ 1428 { 0x04, 0x0, 0x0 }, /* CREG */ \ 1429 { 0x08, 0x0, 0x0 }, /* BREG */ \ 1430 { 0x10, 0x0, 0x0 }, /* SIREG */ \ 1431 { 0x20, 0x0, 0x0 }, /* DIREG */ \ 1432 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \ 1433 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \ 1434 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \ 1435 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \ 1436 { 0x7e, 0x1fe0, 0x0 }, /* TLS_GOTBASE_REGS */ \ 1437 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \ 1438 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \ 1439 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \ 1440 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \ 1441 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \ 1442 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \ 1443 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \ 1444 { 0x1fe00000, 0x000000, 0x0 }, /* NO_REX_SSE_REGS */ \ 1445 { 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \ 1446 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \ 1447 { 0x0, 0x0,0x1e000 }, /* BND_REGS */ \ 1448 { 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \ 1449 { 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \ 1450 { 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \ 1451 { 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \ 1452 { 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \ 1453 { 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \ 1454 { 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \ 1455 { 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \ 1456 { 0x0, 0x0, 0x1fc0 }, /* MASK_EVEX_REGS */ \ 1457 { 0x0, 0x0, 0x1fe0 }, /* MASK_REGS */ \ 1458 { 0x1fe00000,0xffffe000, 0x1f }, /* MOD4_SSE_REGS */ \ 1459 { 0xffffffff,0xffffffff,0x1ffff } \ 1460 } 1461 1462 /* The same information, inverted: 1463 Return the class number of the smallest class containing 1464 reg number REGNO. This could be a conditional expression 1465 or could index an array. */ 1466 1467 #define REGNO_REG_CLASS(REGNO) (regclass_map[(REGNO)]) 1468 1469 /* When this hook returns true for MODE, the compiler allows 1470 registers explicitly used in the rtl to be used as spill registers 1471 but prevents the compiler from extending the lifetime of these 1472 registers. */ 1473 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true 1474 1475 #define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X))) 1476 #define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG) 1477 1478 #define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X))) 1479 #define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG)) 1480 1481 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X))) 1482 #define REX_INT_REGNO_P(N) \ 1483 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG) 1484 1485 #define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X))) 1486 #define GENERAL_REGNO_P(N) \ 1487 (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N)) 1488 1489 #define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X))) 1490 #define ANY_QI_REGNO_P(N) \ 1491 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N)) 1492 1493 #define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X))) 1494 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG) 1495 1496 #define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X))) 1497 #define SSE_REGNO_P(N) \ 1498 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \ 1499 || REX_SSE_REGNO_P (N) \ 1500 || EXT_REX_SSE_REGNO_P (N)) 1501 1502 #define REX_SSE_REGNO_P(N) \ 1503 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG) 1504 1505 #define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X))) 1506 1507 #define EXT_REX_SSE_REGNO_P(N) \ 1508 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG) 1509 1510 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X))) 1511 #define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N)) 1512 1513 #define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X))) 1514 #define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG) 1515 1516 #define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X))) 1517 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG) 1518 1519 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X))) 1520 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG) 1521 1522 #define BND_REG_P(X) (REG_P (X) && BND_REGNO_P (REGNO (X))) 1523 #define BND_REGNO_P(N) IN_RANGE ((N), FIRST_BND_REG, LAST_BND_REG) 1524 1525 #define MOD4_SSE_REG_P(X) (REG_P (X) && MOD4_SSE_REGNO_P (REGNO (X))) 1526 #define MOD4_SSE_REGNO_P(N) ((N) == XMM0_REG \ 1527 || (N) == XMM4_REG \ 1528 || (N) == XMM8_REG \ 1529 || (N) == XMM12_REG \ 1530 || (N) == XMM16_REG \ 1531 || (N) == XMM20_REG \ 1532 || (N) == XMM24_REG \ 1533 || (N) == XMM28_REG) 1534 1535 /* First floating point reg */ 1536 #define FIRST_FLOAT_REG FIRST_STACK_REG 1537 #define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG) 1538 1539 #define GET_SSE_REGNO(N) \ 1540 ((N) < 8 ? FIRST_SSE_REG + (N) \ 1541 : (N) < 16 ? FIRST_REX_SSE_REG + (N) - 8 \ 1542 : FIRST_EXT_REX_SSE_REG + (N) - 16) 1543 1544 /* The class value for index registers, and the one for base regs. */ 1545 1546 #define INDEX_REG_CLASS INDEX_REGS 1547 #define BASE_REG_CLASS GENERAL_REGS 1548 1549 /* Stack layout; function entry, exit and calling. */ 1550 1551 /* Define this if pushing a word on the stack 1552 makes the stack pointer a smaller address. */ 1553 #define STACK_GROWS_DOWNWARD 1 1554 1555 /* Define this to nonzero if the nominal address of the stack frame 1556 is at the high-address end of the local variables; 1557 that is, each additional local variable allocated 1558 goes at a more negative offset in the frame. */ 1559 #define FRAME_GROWS_DOWNWARD 1 1560 1561 #define PUSH_ROUNDING(BYTES) ix86_push_rounding (BYTES) 1562 1563 /* If defined, the maximum amount of space required for outgoing arguments 1564 will be computed and placed into the variable `crtl->outgoing_args_size'. 1565 No space will be pushed onto the stack for each call; instead, the 1566 function prologue should increase the stack frame size by this amount. 1567 1568 In 32bit mode enabling argument accumulation results in about 5% code size 1569 growth because move instructions are less compact than push. In 64bit 1570 mode the difference is less drastic but visible. 1571 1572 FIXME: Unlike earlier implementations, the size of unwind info seems to 1573 actually grow with accumulation. Is that because accumulated args 1574 unwind info became unnecesarily bloated? 1575 1576 With the 64-bit MS ABI, we can generate correct code with or without 1577 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code 1578 generated without accumulated args is terrible. 1579 1580 If stack probes are required, the space used for large function 1581 arguments on the stack must also be probed, so enable 1582 -maccumulate-outgoing-args so this happens in the prologue. 1583 1584 We must use argument accumulation in interrupt function if stack 1585 may be realigned to avoid DRAP. */ 1586 1587 #define ACCUMULATE_OUTGOING_ARGS \ 1588 ((TARGET_ACCUMULATE_OUTGOING_ARGS \ 1589 && optimize_function_for_speed_p (cfun)) \ 1590 || (cfun->machine->func_type != TYPE_NORMAL \ 1591 && crtl->stack_realign_needed) \ 1592 || TARGET_STACK_PROBE \ 1593 || TARGET_64BIT_MS_ABI \ 1594 || (TARGET_MACHO && crtl->profile)) 1595 1596 /* If defined, a C expression whose value is nonzero when we want to use PUSH 1597 instructions to pass outgoing arguments. */ 1598 1599 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS) 1600 1601 /* We want the stack and args grow in opposite directions, even if 1602 PUSH_ARGS is 0. */ 1603 #define PUSH_ARGS_REVERSED 1 1604 1605 /* Offset of first parameter from the argument pointer register value. */ 1606 #define FIRST_PARM_OFFSET(FNDECL) 0 1607 1608 /* Define this macro if functions should assume that stack space has been 1609 allocated for arguments even when their values are passed in registers. 1610 1611 The value of this macro is the size, in bytes, of the area reserved for 1612 arguments passed in registers for the function represented by FNDECL. 1613 1614 This space can be allocated by the caller, or be a part of the 1615 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says 1616 which. */ 1617 #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL) 1618 1619 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \ 1620 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI) 1621 1622 /* Define how to find the value returned by a library function 1623 assuming the value has mode MODE. */ 1624 1625 #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE) 1626 1627 /* Define the size of the result block used for communication between 1628 untyped_call and untyped_return. The block contains a DImode value 1629 followed by the block used by fnsave and frstor. */ 1630 1631 #define APPLY_RESULT_SIZE (8+108) 1632 1633 /* 1 if N is a possible register number for function argument passing. */ 1634 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N) 1635 1636 /* Define a data type for recording info about an argument list 1637 during the scan of that argument list. This data type should 1638 hold all necessary information about the function itself 1639 and about the args processed so far, enough to enable macros 1640 such as FUNCTION_ARG to determine where the next arg should go. */ 1641 1642 typedef struct ix86_args { 1643 int words; /* # words passed so far */ 1644 int nregs; /* # registers available for passing */ 1645 int regno; /* next available register number */ 1646 int fastcall; /* fastcall or thiscall calling convention 1647 is used */ 1648 int sse_words; /* # sse words passed so far */ 1649 int sse_nregs; /* # sse registers available for passing */ 1650 int warn_avx512f; /* True when we want to warn 1651 about AVX512F ABI. */ 1652 int warn_avx; /* True when we want to warn about AVX ABI. */ 1653 int warn_sse; /* True when we want to warn about SSE ABI. */ 1654 int warn_mmx; /* True when we want to warn about MMX ABI. */ 1655 int warn_empty; /* True when we want to warn about empty classes 1656 passing ABI change. */ 1657 int sse_regno; /* next available sse register number */ 1658 int mmx_words; /* # mmx words passed so far */ 1659 int mmx_nregs; /* # mmx registers available for passing */ 1660 int mmx_regno; /* next available mmx register number */ 1661 int maybe_vaarg; /* true for calls to possibly vardic fncts. */ 1662 int caller; /* true if it is caller. */ 1663 int float_in_sse; /* Set to 1 or 2 for 32bit targets if 1664 SFmode/DFmode arguments should be passed 1665 in SSE registers. Otherwise 0. */ 1666 int bnd_regno; /* next available bnd register number */ 1667 int bnds_in_bt; /* number of bounds expected in BT. */ 1668 int force_bnd_pass; /* number of bounds expected for stdarg arg. */ 1669 int stdarg; /* Set to 1 if function is stdarg. */ 1670 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise 1671 MS_ABI for ms abi. */ 1672 tree decl; /* Callee decl. */ 1673 } CUMULATIVE_ARGS; 1674 1675 /* Initialize a variable CUM of type CUMULATIVE_ARGS 1676 for a call to a function whose data type is FNTYPE. 1677 For a library call, FNTYPE is 0. */ 1678 1679 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \ 1680 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \ 1681 (N_NAMED_ARGS) != -1) 1682 1683 /* Output assembler code to FILE to increment profiler label # LABELNO 1684 for profiling a function entry. */ 1685 1686 #define FUNCTION_PROFILER(FILE, LABELNO) \ 1687 x86_function_profiler ((FILE), (LABELNO)) 1688 1689 #define MCOUNT_NAME "_mcount" 1690 1691 #define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__" 1692 1693 #define PROFILE_COUNT_REGISTER "edx" 1694 1695 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, 1696 the stack pointer does not matter. The value is tested only in 1697 functions that have frame pointers. 1698 No definition is equivalent to always zero. */ 1699 /* Note on the 386 it might be more efficient not to define this since 1700 we have to restore it ourselves from the frame pointer, in order to 1701 use pop */ 1702 1703 #define EXIT_IGNORE_STACK 1 1704 1705 /* Define this macro as a C expression that is nonzero for registers 1706 used by the epilogue or the `return' pattern. */ 1707 1708 #define EPILOGUE_USES(REGNO) ix86_epilogue_uses (REGNO) 1709 1710 /* Output assembler code for a block containing the constant parts 1711 of a trampoline, leaving space for the variable parts. */ 1712 1713 /* On the 386, the trampoline contains two instructions: 1714 mov #STATIC,ecx 1715 jmp FUNCTION 1716 The trampoline is generated entirely at runtime. The operand of JMP 1717 is the address of FUNCTION relative to the instruction following the 1718 JMP (which is 5 bytes long). */ 1719 1720 /* Length in units of the trampoline for entering a nested function. */ 1721 1722 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 28 : 14) 1723 1724 /* Definitions for register eliminations. 1725 1726 This is an array of structures. Each structure initializes one pair 1727 of eliminable registers. The "from" register number is given first, 1728 followed by "to". Eliminations of the same "from" register are listed 1729 in order of preference. 1730 1731 There are two registers that can always be eliminated on the i386. 1732 The frame pointer and the arg pointer can be replaced by either the 1733 hard frame pointer or to the stack pointer, depending upon the 1734 circumstances. The hard frame pointer is not used before reload and 1735 so it is not eligible for elimination. */ 1736 1737 #define ELIMINABLE_REGS \ 1738 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ 1739 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \ 1740 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ 1741 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \ 1742 1743 /* Define the offset between two registers, one to be eliminated, and the other 1744 its replacement, at the start of a routine. */ 1745 1746 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ 1747 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO))) 1748 1749 /* Addressing modes, and classification of registers for them. */ 1750 1751 /* Macros to check register numbers against specific register classes. */ 1752 1753 /* These assume that REGNO is a hard or pseudo reg number. 1754 They give nonzero only if REGNO is a hard reg of the suitable class 1755 or a pseudo reg currently allocated to a suitable hard reg. 1756 Since they use reg_renumber, they are safe only once reg_renumber 1757 has been allocated, which happens in reginfo.c during register 1758 allocation. */ 1759 1760 #define REGNO_OK_FOR_INDEX_P(REGNO) \ 1761 ((REGNO) < STACK_POINTER_REGNUM \ 1762 || REX_INT_REGNO_P (REGNO) \ 1763 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \ 1764 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)])) 1765 1766 #define REGNO_OK_FOR_BASE_P(REGNO) \ 1767 (GENERAL_REGNO_P (REGNO) \ 1768 || (REGNO) == ARG_POINTER_REGNUM \ 1769 || (REGNO) == FRAME_POINTER_REGNUM \ 1770 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)])) 1771 1772 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx 1773 and check its validity for a certain class. 1774 We have two alternate definitions for each of them. 1775 The usual definition accepts all pseudo regs; the other rejects 1776 them unless they have been allocated suitable hard regs. 1777 The symbol REG_OK_STRICT causes the latter definition to be used. 1778 1779 Most source files want to accept pseudo regs in the hope that 1780 they will get allocated to the class that the insn wants them to be in. 1781 Source files for reload pass need to be strict. 1782 After reload, it makes no difference, since pseudo regs have 1783 been eliminated by then. */ 1784 1785 1786 /* Non strict versions, pseudos are ok. */ 1787 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \ 1788 (REGNO (X) < STACK_POINTER_REGNUM \ 1789 || REX_INT_REGNO_P (REGNO (X)) \ 1790 || REGNO (X) >= FIRST_PSEUDO_REGISTER) 1791 1792 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \ 1793 (GENERAL_REGNO_P (REGNO (X)) \ 1794 || REGNO (X) == ARG_POINTER_REGNUM \ 1795 || REGNO (X) == FRAME_POINTER_REGNUM \ 1796 || REGNO (X) >= FIRST_PSEUDO_REGISTER) 1797 1798 /* Strict versions, hard registers only */ 1799 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) 1800 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) 1801 1802 #ifndef REG_OK_STRICT 1803 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X) 1804 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X) 1805 1806 #else 1807 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X) 1808 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X) 1809 #endif 1810 1811 /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression 1812 that is a valid memory address for an instruction. 1813 The MODE argument is the machine mode for the MEM expression 1814 that wants to use this address. 1815 1816 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P, 1817 except for CONSTANT_ADDRESS_P which is usually machine-independent. 1818 1819 See legitimize_pic_address in i386.c for details as to what 1820 constitutes a legitimate address when -fpic is used. */ 1821 1822 #define MAX_REGS_PER_ADDRESS 2 1823 1824 #define CONSTANT_ADDRESS_P(X) constant_address_p (X) 1825 1826 /* If defined, a C expression to determine the base term of address X. 1827 This macro is used in only one place: `find_base_term' in alias.c. 1828 1829 It is always safe for this macro to not be defined. It exists so 1830 that alias analysis can understand machine-dependent addresses. 1831 1832 The typical use of this macro is to handle addresses containing 1833 a label_ref or symbol_ref within an UNSPEC. */ 1834 1835 #define FIND_BASE_TERM(X) ix86_find_base_term (X) 1836 1837 /* Nonzero if the constant value X is a legitimate general operand 1838 when generating PIC code. It is given that flag_pic is on and 1839 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ 1840 1841 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X) 1842 1843 #define SYMBOLIC_CONST(X) \ 1844 (GET_CODE (X) == SYMBOL_REF \ 1845 || GET_CODE (X) == LABEL_REF \ 1846 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X))) 1847 1848 /* Max number of args passed in registers. If this is more than 3, we will 1849 have problems with ebx (register #4), since it is a caller save register and 1850 is also used as the pic register in ELF. So for now, don't allow more than 1851 3 registers to be passed in registers. */ 1852 1853 /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */ 1854 #define X86_64_REGPARM_MAX 6 1855 #define X86_64_MS_REGPARM_MAX 4 1856 1857 #define X86_32_REGPARM_MAX 3 1858 1859 #define REGPARM_MAX \ 1860 (TARGET_64BIT \ 1861 ? (TARGET_64BIT_MS_ABI \ 1862 ? X86_64_MS_REGPARM_MAX \ 1863 : X86_64_REGPARM_MAX) \ 1864 : X86_32_REGPARM_MAX) 1865 1866 #define X86_64_SSE_REGPARM_MAX 8 1867 #define X86_64_MS_SSE_REGPARM_MAX 4 1868 1869 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0) 1870 1871 #define SSE_REGPARM_MAX \ 1872 (TARGET_64BIT \ 1873 ? (TARGET_64BIT_MS_ABI \ 1874 ? X86_64_MS_SSE_REGPARM_MAX \ 1875 : X86_64_SSE_REGPARM_MAX) \ 1876 : X86_32_SSE_REGPARM_MAX) 1877 1878 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0)) 1879 1880 /* Specify the machine mode that this machine uses 1881 for the index in the tablejump instruction. */ 1882 #define CASE_VECTOR_MODE \ 1883 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode) 1884 1885 /* Define this as 1 if `char' should by default be signed; else as 0. */ 1886 #define DEFAULT_SIGNED_CHAR 1 1887 1888 /* Max number of bytes we can move from memory to memory 1889 in one reasonably fast instruction. */ 1890 #define MOVE_MAX 16 1891 1892 /* MOVE_MAX_PIECES is the number of bytes at a time which we can 1893 move efficiently, as opposed to MOVE_MAX which is the maximum 1894 number of bytes we can move with a single instruction. 1895 1896 ??? We should use TImode in 32-bit mode and use OImode or XImode 1897 if they are available. But since by_pieces_ninsns determines the 1898 widest mode with MAX_FIXED_MODE_SIZE, we can only use TImode in 1899 64-bit mode. */ 1900 #define MOVE_MAX_PIECES \ 1901 ((TARGET_64BIT \ 1902 && TARGET_SSE2 \ 1903 && TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \ 1904 && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \ 1905 ? GET_MODE_SIZE (TImode) : UNITS_PER_WORD) 1906 1907 /* If a memory-to-memory move would take MOVE_RATIO or more simple 1908 move-instruction pairs, we will do a movmem or libcall instead. 1909 Increasing the value will always make code faster, but eventually 1910 incurs high cost in increased code size. 1911 1912 If you don't define this, a reasonable default is used. */ 1913 1914 #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3) 1915 1916 /* If a clear memory operation would take CLEAR_RATIO or more simple 1917 move-instruction sequences, we will do a clrmem or libcall instead. */ 1918 1919 #define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2) 1920 1921 /* Define if shifts truncate the shift count which implies one can 1922 omit a sign-extension or zero-extension of a shift count. 1923 1924 On i386, shifts do truncate the count. But bit test instructions 1925 take the modulo of the bit offset operand. */ 1926 1927 /* #define SHIFT_COUNT_TRUNCATED */ 1928 1929 /* A macro to update M and UNSIGNEDP when an object whose type is 1930 TYPE and which has the specified mode and signedness is to be 1931 stored in a register. This macro is only called when TYPE is a 1932 scalar type. 1933 1934 On i386 it is sometimes useful to promote HImode and QImode 1935 quantities to SImode. The choice depends on target type. */ 1936 1937 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \ 1938 do { \ 1939 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \ 1940 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \ 1941 (MODE) = SImode; \ 1942 } while (0) 1943 1944 /* Specify the machine mode that pointers have. 1945 After generation of rtl, the compiler makes no further distinction 1946 between pointers and any other objects of this machine mode. */ 1947 #define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode) 1948 1949 /* Supply a definition of STACK_SAVEAREA_MODE for emit_stack_save. 1950 NONLOCAL needs space to save both shadow stack and stack pointers. 1951 1952 FIXME: We only need to save and restore stack pointer in ptr_mode. 1953 But expand_builtin_setjmp_setup and expand_builtin_longjmp use Pmode 1954 to save and restore stack pointer. See 1955 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84150 1956 */ 1957 #define STACK_SAVEAREA_MODE(LEVEL) \ 1958 ((LEVEL) == SAVE_NONLOCAL ? (TARGET_64BIT ? TImode : DImode) : Pmode) 1959 1960 /* Specify the machine mode that bounds have. */ 1961 #define BNDmode (ix86_pmode == PMODE_DI ? BND64mode : BND32mode) 1962 1963 /* A C expression whose value is zero if pointers that need to be extended 1964 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and 1965 greater then zero if they are zero-extended and less then zero if the 1966 ptr_extend instruction should be used. */ 1967 1968 #define POINTERS_EXTEND_UNSIGNED 1 1969 1970 /* A function address in a call instruction 1971 is a byte address (for indexing purposes) 1972 so give the MEM rtx a byte's mode. */ 1973 #define FUNCTION_MODE QImode 1974 1975 1976 /* A C expression for the cost of a branch instruction. A value of 1 1977 is the default; other values are interpreted relative to that. */ 1978 1979 #define BRANCH_COST(speed_p, predictable_p) \ 1980 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost) 1981 1982 /* An integer expression for the size in bits of the largest integer machine 1983 mode that should actually be used. We allow pairs of registers. */ 1984 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode) 1985 1986 /* Define this macro as a C expression which is nonzero if accessing 1987 less than a word of memory (i.e. a `char' or a `short') is no 1988 faster than accessing a word of memory, i.e., if such access 1989 require more than one instruction or if there is no difference in 1990 cost between byte and (aligned) word loads. 1991 1992 When this macro is not defined, the compiler will access a field by 1993 finding the smallest containing object; when it is defined, a 1994 fullword load will be used if alignment permits. Unless bytes 1995 accesses are faster than word accesses, using word accesses is 1996 preferable since it may eliminate subsequent memory access if 1997 subsequent accesses occur to other fields in the same word of the 1998 structure, but to different bytes. */ 1999 2000 #define SLOW_BYTE_ACCESS 0 2001 2002 /* Nonzero if access to memory by shorts is slow and undesirable. */ 2003 #define SLOW_SHORT_ACCESS 0 2004 2005 /* Define this macro if it is as good or better to call a constant 2006 function address than to call an address kept in a register. 2007 2008 Desirable on the 386 because a CALL with a constant address is 2009 faster than one with a register address. */ 2010 2011 #define NO_FUNCTION_CSE 1 2012 2013 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, 2014 return the mode to be used for the comparison. 2015 2016 For floating-point equality comparisons, CCFPEQmode should be used. 2017 VOIDmode should be used in all other cases. 2018 2019 For integer comparisons against zero, reduce to CCNOmode or CCZmode if 2020 possible, to allow for more combinations. */ 2021 2022 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y)) 2023 2024 /* Return nonzero if MODE implies a floating point inequality can be 2025 reversed. */ 2026 2027 #define REVERSIBLE_CC_MODE(MODE) 1 2028 2029 /* A C expression whose value is reversed condition code of the CODE for 2030 comparison done in CC_MODE mode. */ 2031 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE)) 2032 2033 2034 /* Control the assembler format that we output, to the extent 2035 this does not vary between assemblers. */ 2036 2037 /* How to refer to registers in assembler output. 2038 This sequence is indexed by compiler's hard-register-number (see above). */ 2039 2040 /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e". 2041 For non floating point regs, the following are the HImode names. 2042 2043 For float regs, the stack top is sometimes referred to as "%st(0)" 2044 instead of just "%st". TARGET_PRINT_OPERAND handles this with the 2045 "y" code. */ 2046 2047 #define HI_REGISTER_NAMES \ 2048 {"ax","dx","cx","bx","si","di","bp","sp", \ 2049 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \ 2050 "argp", "flags", "fpsr", "fpcr", "frame", \ 2051 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \ 2052 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \ 2053 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \ 2054 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \ 2055 "xmm16", "xmm17", "xmm18", "xmm19", \ 2056 "xmm20", "xmm21", "xmm22", "xmm23", \ 2057 "xmm24", "xmm25", "xmm26", "xmm27", \ 2058 "xmm28", "xmm29", "xmm30", "xmm31", \ 2059 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7", \ 2060 "bnd0", "bnd1", "bnd2", "bnd3" } 2061 2062 #define REGISTER_NAMES HI_REGISTER_NAMES 2063 2064 /* Table of additional register names to use in user input. */ 2065 2066 #define ADDITIONAL_REGISTER_NAMES \ 2067 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \ 2068 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \ 2069 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \ 2070 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \ 2071 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \ 2072 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \ 2073 { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24}, \ 2074 { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28}, \ 2075 { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48}, \ 2076 { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52}, \ 2077 { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56}, \ 2078 { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60}, \ 2079 { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64}, \ 2080 { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68}, \ 2081 { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24}, \ 2082 { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28}, \ 2083 { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48}, \ 2084 { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52}, \ 2085 { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56}, \ 2086 { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60}, \ 2087 { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64}, \ 2088 { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} } 2089 2090 /* Note we are omitting these since currently I don't know how 2091 to get gcc to use these, since they want the same but different 2092 number as al, and ax. 2093 */ 2094 2095 #define QI_REGISTER_NAMES \ 2096 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",} 2097 2098 /* These parallel the array above, and can be used to access bits 8:15 2099 of regs 0 through 3. */ 2100 2101 #define QI_HIGH_REGISTER_NAMES \ 2102 {"ah", "dh", "ch", "bh", } 2103 2104 /* How to renumber registers for dbx and gdb. */ 2105 2106 #define DBX_REGISTER_NUMBER(N) \ 2107 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)]) 2108 2109 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER]; 2110 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER]; 2111 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER]; 2112 2113 /* Before the prologue, RA is at 0(%esp). */ 2114 #define INCOMING_RETURN_ADDR_RTX \ 2115 gen_rtx_MEM (Pmode, stack_pointer_rtx) 2116 2117 /* After the prologue, RA is at -4(AP) in the current frame. */ 2118 #define RETURN_ADDR_RTX(COUNT, FRAME) \ 2119 ((COUNT) == 0 \ 2120 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \ 2121 -UNITS_PER_WORD)) \ 2122 : gen_rtx_MEM (Pmode, plus_constant (Pmode, (FRAME), UNITS_PER_WORD))) 2123 2124 /* PC is dbx register 8; let's use that column for RA. */ 2125 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8) 2126 2127 /* Before the prologue, there are return address and error code for 2128 exception handler on the top of the frame. */ 2129 #define INCOMING_FRAME_SP_OFFSET \ 2130 (cfun->machine->func_type == TYPE_EXCEPTION \ 2131 ? 2 * UNITS_PER_WORD : UNITS_PER_WORD) 2132 2133 /* The value of INCOMING_FRAME_SP_OFFSET the assembler assumes in 2134 .cfi_startproc. */ 2135 #define DEFAULT_INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD 2136 2137 /* Describe how we implement __builtin_eh_return. */ 2138 #define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM) 2139 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG) 2140 2141 2142 /* Select a format to encode pointers in exception handling data. CODE 2143 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is 2144 true if the symbol may be affected by dynamic relocations. 2145 2146 ??? All x86 object file formats are capable of representing this. 2147 After all, the relocation needed is the same as for the call insn. 2148 Whether or not a particular assembler allows us to enter such, I 2149 guess we'll have to see. */ 2150 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \ 2151 asm_preferred_eh_data_format ((CODE), (GLOBAL)) 2152 2153 /* These are a couple of extensions to the formats accepted 2154 by asm_fprintf: 2155 %z prints out opcode suffix for word-mode instruction 2156 %r prints out word-mode name for reg_names[arg] */ 2157 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \ 2158 case 'z': \ 2159 fputc (TARGET_64BIT ? 'q' : 'l', (FILE)); \ 2160 break; \ 2161 \ 2162 case 'r': \ 2163 { \ 2164 unsigned int regno = va_arg ((ARGS), int); \ 2165 if (LEGACY_INT_REGNO_P (regno)) \ 2166 fputc (TARGET_64BIT ? 'r' : 'e', (FILE)); \ 2167 fputs (reg_names[regno], (FILE)); \ 2168 break; \ 2169 } 2170 2171 /* This is how to output an insn to push a register on the stack. */ 2172 2173 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \ 2174 asm_fprintf ((FILE), "\tpush%z\t%%%r\n", (REGNO)) 2175 2176 /* This is how to output an insn to pop a register from the stack. */ 2177 2178 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \ 2179 asm_fprintf ((FILE), "\tpop%z\t%%%r\n", (REGNO)) 2180 2181 /* This is how to output an element of a case-vector that is absolute. */ 2182 2183 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ 2184 ix86_output_addr_vec_elt ((FILE), (VALUE)) 2185 2186 /* This is how to output an element of a case-vector that is relative. */ 2187 2188 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ 2189 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL)) 2190 2191 /* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */ 2192 2193 #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \ 2194 { \ 2195 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \ 2196 (PTR) += TARGET_AVX ? 1 : 2; \ 2197 } 2198 2199 /* A C statement or statements which output an assembler instruction 2200 opcode to the stdio stream STREAM. The macro-operand PTR is a 2201 variable of type `char *' which points to the opcode name in 2202 its "internal" form--the form that is written in the machine 2203 description. */ 2204 2205 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \ 2206 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR)) 2207 2208 /* A C statement to output to the stdio stream FILE an assembler 2209 command to pad the location counter to a multiple of 1<<LOG 2210 bytes if it is within MAX_SKIP bytes. */ 2211 2212 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN 2213 #undef ASM_OUTPUT_MAX_SKIP_PAD 2214 #define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \ 2215 if ((LOG) != 0) \ 2216 { \ 2217 if ((MAX_SKIP) == 0) \ 2218 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \ 2219 else \ 2220 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \ 2221 } 2222 #endif 2223 2224 /* Write the extra assembler code needed to declare a function 2225 properly. */ 2226 2227 #undef ASM_OUTPUT_FUNCTION_LABEL 2228 #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \ 2229 ix86_asm_output_function_label ((FILE), (NAME), (DECL)) 2230 2231 /* A C statement (sans semicolon) to output a reference to SYMBOL_REF SYM. 2232 If not defined, assemble_name will be used to output the name of the 2233 symbol. This macro may be used to modify the way a symbol is referenced 2234 depending on information encoded by TARGET_ENCODE_SECTION_INFO. */ 2235 2236 #ifndef ASM_OUTPUT_SYMBOL_REF 2237 #define ASM_OUTPUT_SYMBOL_REF(FILE, SYM) \ 2238 do { \ 2239 const char *name \ 2240 = assemble_name_resolve (XSTR (x, 0)); \ 2241 /* In -masm=att wrap identifiers that start with $ \ 2242 into parens. */ \ 2243 if (ASSEMBLER_DIALECT == ASM_ATT \ 2244 && name[0] == '$' \ 2245 && user_label_prefix[0] == '\0') \ 2246 { \ 2247 fputc ('(', (FILE)); \ 2248 assemble_name_raw ((FILE), name); \ 2249 fputc (')', (FILE)); \ 2250 } \ 2251 else \ 2252 assemble_name_raw ((FILE), name); \ 2253 } while (0) 2254 #endif 2255 2256 /* Under some conditions we need jump tables in the text section, 2257 because the assembler cannot handle label differences between 2258 sections. This is the case for x86_64 on Mach-O for example. */ 2259 2260 #define JUMP_TABLES_IN_TEXT_SECTION \ 2261 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \ 2262 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA))) 2263 2264 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC, 2265 and switch back. For x86 we do this only to save a few bytes that 2266 would otherwise be unused in the text section. */ 2267 #define CRT_MKSTR2(VAL) #VAL 2268 #define CRT_MKSTR(x) CRT_MKSTR2(x) 2269 2270 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \ 2271 asm (SECTION_OP "\n\t" \ 2272 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \ 2273 TEXT_SECTION_ASM_OP); 2274 2275 /* Default threshold for putting data in large sections 2276 with x86-64 medium memory model */ 2277 #define DEFAULT_LARGE_SECTION_THRESHOLD 65536 2278 2279 /* Adjust the length of the insn with the length of BND prefix. */ 2280 2281 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \ 2282 do { \ 2283 if (NONDEBUG_INSN_P (INSN) && INSN_CODE (INSN) >= 0 \ 2284 && get_attr_maybe_prefix_bnd (INSN)) \ 2285 LENGTH += ix86_bnd_prefixed_insn_p (INSN); \ 2286 } while (0) 2287 2288 /* Which processor to tune code generation for. These must be in sync 2289 with processor_target_table in i386.c. */ 2290 2291 enum processor_type 2292 { 2293 PROCESSOR_GENERIC = 0, 2294 PROCESSOR_I386, /* 80386 */ 2295 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */ 2296 PROCESSOR_PENTIUM, 2297 PROCESSOR_LAKEMONT, 2298 PROCESSOR_PENTIUMPRO, 2299 PROCESSOR_PENTIUM4, 2300 PROCESSOR_NOCONA, 2301 PROCESSOR_CORE2, 2302 PROCESSOR_NEHALEM, 2303 PROCESSOR_SANDYBRIDGE, 2304 PROCESSOR_HASWELL, 2305 PROCESSOR_BONNELL, 2306 PROCESSOR_SILVERMONT, 2307 PROCESSOR_KNL, 2308 PROCESSOR_KNM, 2309 PROCESSOR_SKYLAKE, 2310 PROCESSOR_SKYLAKE_AVX512, 2311 PROCESSOR_CANNONLAKE, 2312 PROCESSOR_ICELAKE_CLIENT, 2313 PROCESSOR_ICELAKE_SERVER, 2314 PROCESSOR_INTEL, 2315 PROCESSOR_GEODE, 2316 PROCESSOR_K6, 2317 PROCESSOR_ATHLON, 2318 PROCESSOR_K8, 2319 PROCESSOR_AMDFAM10, 2320 PROCESSOR_BDVER1, 2321 PROCESSOR_BDVER2, 2322 PROCESSOR_BDVER3, 2323 PROCESSOR_BDVER4, 2324 PROCESSOR_BTVER1, 2325 PROCESSOR_BTVER2, 2326 PROCESSOR_ZNVER1, 2327 PROCESSOR_max 2328 }; 2329 2330 extern enum processor_type ix86_tune; 2331 extern enum processor_type ix86_arch; 2332 2333 /* Size of the RED_ZONE area. */ 2334 #define RED_ZONE_SIZE 128 2335 /* Reserved area of the red zone for temporaries. */ 2336 #define RED_ZONE_RESERVE 8 2337 2338 extern unsigned int ix86_preferred_stack_boundary; 2339 extern unsigned int ix86_incoming_stack_boundary; 2340 2341 /* Smallest class containing REGNO. */ 2342 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER]; 2343 2344 enum ix86_fpcmp_strategy { 2345 IX86_FPCMP_SAHF, 2346 IX86_FPCMP_COMI, 2347 IX86_FPCMP_ARITH 2348 }; 2349 2350 /* To properly truncate FP values into integers, we need to set i387 control 2351 word. We can't emit proper mode switching code before reload, as spills 2352 generated by reload may truncate values incorrectly, but we still can avoid 2353 redundant computation of new control word by the mode switching pass. 2354 The fldcw instructions are still emitted redundantly, but this is probably 2355 not going to be noticeable problem, as most CPUs do have fast path for 2356 the sequence. 2357 2358 The machinery is to emit simple truncation instructions and split them 2359 before reload to instructions having USEs of two memory locations that 2360 are filled by this code to old and new control word. 2361 2362 Post-reload pass may be later used to eliminate the redundant fildcw if 2363 needed. */ 2364 2365 enum ix86_stack_slot 2366 { 2367 SLOT_TEMP = 0, 2368 SLOT_CW_STORED, 2369 SLOT_CW_TRUNC, 2370 SLOT_CW_FLOOR, 2371 SLOT_CW_CEIL, 2372 SLOT_CW_MASK_PM, 2373 SLOT_STV_TEMP, 2374 MAX_386_STACK_LOCALS 2375 }; 2376 2377 enum ix86_entity 2378 { 2379 X86_DIRFLAG = 0, 2380 AVX_U128, 2381 I387_TRUNC, 2382 I387_FLOOR, 2383 I387_CEIL, 2384 I387_MASK_PM, 2385 MAX_386_ENTITIES 2386 }; 2387 2388 enum x86_dirflag_state 2389 { 2390 X86_DIRFLAG_RESET, 2391 X86_DIRFLAG_ANY 2392 }; 2393 2394 enum avx_u128_state 2395 { 2396 AVX_U128_CLEAN, 2397 AVX_U128_DIRTY, 2398 AVX_U128_ANY 2399 }; 2400 2401 /* Define this macro if the port needs extra instructions inserted 2402 for mode switching in an optimizing compilation. */ 2403 2404 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \ 2405 ix86_optimize_mode_switching[(ENTITY)] 2406 2407 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as 2408 initializer for an array of integers. Each initializer element N 2409 refers to an entity that needs mode switching, and specifies the 2410 number of different modes that might need to be set for this 2411 entity. The position of the initializer in the initializer - 2412 starting counting at zero - determines the integer that is used to 2413 refer to the mode-switched entity in question. */ 2414 2415 #define NUM_MODES_FOR_MODE_SWITCHING \ 2416 { X86_DIRFLAG_ANY, AVX_U128_ANY, \ 2417 I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY } 2418 2419 2420 /* Avoid renaming of stack registers, as doing so in combination with 2421 scheduling just increases amount of live registers at time and in 2422 the turn amount of fxch instructions needed. 2423 2424 ??? Maybe Pentium chips benefits from renaming, someone can try.... 2425 2426 Don't rename evex to non-evex sse registers. */ 2427 2428 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \ 2429 (!STACK_REGNO_P (SRC) \ 2430 && EXT_REX_SSE_REGNO_P (SRC) == EXT_REX_SSE_REGNO_P (TARGET)) 2431 2432 2433 #define FASTCALL_PREFIX '@' 2434 2435 #ifndef USED_FOR_TARGET 2436 /* Structure describing stack frame layout. 2437 Stack grows downward: 2438 2439 [arguments] 2440 <- ARG_POINTER 2441 saved pc 2442 2443 saved static chain if ix86_static_chain_on_stack 2444 2445 saved frame pointer if frame_pointer_needed 2446 <- HARD_FRAME_POINTER 2447 [saved regs] 2448 <- reg_save_offset 2449 [padding0] 2450 <- stack_realign_offset 2451 [saved SSE regs] 2452 OR 2453 [stub-saved registers for ms x64 --> sysv clobbers 2454 <- Start of out-of-line, stub-saved/restored regs 2455 (see libgcc/config/i386/(sav|res)ms64*.S) 2456 [XMM6-15] 2457 [RSI] 2458 [RDI] 2459 [?RBX] only if RBX is clobbered 2460 [?RBP] only if RBP and RBX are clobbered 2461 [?R12] only if R12 and all previous regs are clobbered 2462 [?R13] only if R13 and all previous regs are clobbered 2463 [?R14] only if R14 and all previous regs are clobbered 2464 [?R15] only if R15 and all previous regs are clobbered 2465 <- end of stub-saved/restored regs 2466 [padding1] 2467 ] 2468 <- sse_reg_save_offset 2469 [padding2] 2470 | <- FRAME_POINTER 2471 [va_arg registers] | 2472 | 2473 [frame] | 2474 | 2475 [padding2] | = to_allocate 2476 <- STACK_POINTER 2477 */ 2478 struct GTY(()) ix86_frame 2479 { 2480 int nsseregs; 2481 int nregs; 2482 int va_arg_size; 2483 int red_zone_size; 2484 int outgoing_arguments_size; 2485 2486 /* The offsets relative to ARG_POINTER. */ 2487 HOST_WIDE_INT frame_pointer_offset; 2488 HOST_WIDE_INT hard_frame_pointer_offset; 2489 HOST_WIDE_INT stack_pointer_offset; 2490 HOST_WIDE_INT hfp_save_offset; 2491 HOST_WIDE_INT reg_save_offset; 2492 HOST_WIDE_INT stack_realign_allocate; 2493 HOST_WIDE_INT stack_realign_offset; 2494 HOST_WIDE_INT sse_reg_save_offset; 2495 2496 /* When save_regs_using_mov is set, emit prologue using 2497 move instead of push instructions. */ 2498 bool save_regs_using_mov; 2499 }; 2500 2501 /* Machine specific frame tracking during prologue/epilogue generation. All 2502 values are positive, but since the x86 stack grows downward, are subtratced 2503 from the CFA to produce a valid address. */ 2504 2505 struct GTY(()) machine_frame_state 2506 { 2507 /* This pair tracks the currently active CFA as reg+offset. When reg 2508 is drap_reg, we don't bother trying to record here the real CFA when 2509 it might really be a DW_CFA_def_cfa_expression. */ 2510 rtx cfa_reg; 2511 HOST_WIDE_INT cfa_offset; 2512 2513 /* The current offset (canonically from the CFA) of ESP and EBP. 2514 When stack frame re-alignment is active, these may not be relative 2515 to the CFA. However, in all cases they are relative to the offsets 2516 of the saved registers stored in ix86_frame. */ 2517 HOST_WIDE_INT sp_offset; 2518 HOST_WIDE_INT fp_offset; 2519 2520 /* The size of the red-zone that may be assumed for the purposes of 2521 eliding register restore notes in the epilogue. This may be zero 2522 if no red-zone is in effect, or may be reduced from the real 2523 red-zone value by a maximum runtime stack re-alignment value. */ 2524 int red_zone_offset; 2525 2526 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid 2527 value within the frame. If false then the offset above should be 2528 ignored. Note that DRAP, if valid, *always* points to the CFA and 2529 thus has an offset of zero. */ 2530 BOOL_BITFIELD sp_valid : 1; 2531 BOOL_BITFIELD fp_valid : 1; 2532 BOOL_BITFIELD drap_valid : 1; 2533 2534 /* Indicate whether the local stack frame has been re-aligned. When 2535 set, the SP/FP offsets above are relative to the aligned frame 2536 and not the CFA. */ 2537 BOOL_BITFIELD realigned : 1; 2538 2539 /* Indicates whether the stack pointer has been re-aligned. When set, 2540 SP/FP continue to be relative to the CFA, but the stack pointer 2541 should only be used for offsets > sp_realigned_offset, while 2542 the frame pointer should be used for offsets <= sp_realigned_fp_last. 2543 The flags realigned and sp_realigned are mutually exclusive. */ 2544 BOOL_BITFIELD sp_realigned : 1; 2545 2546 /* If sp_realigned is set, this is the last valid offset from the CFA 2547 that can be used for access with the frame pointer. */ 2548 HOST_WIDE_INT sp_realigned_fp_last; 2549 2550 /* If sp_realigned is set, this is the offset from the CFA that the stack 2551 pointer was realigned, and may or may not be equal to sp_realigned_fp_last. 2552 Access via the stack pointer is only valid for offsets that are greater than 2553 this value. */ 2554 HOST_WIDE_INT sp_realigned_offset; 2555 }; 2556 2557 /* Private to winnt.c. */ 2558 struct seh_frame_state; 2559 2560 enum function_type 2561 { 2562 TYPE_UNKNOWN = 0, 2563 TYPE_NORMAL, 2564 /* The current function is an interrupt service routine with a 2565 pointer argument as specified by the "interrupt" attribute. */ 2566 TYPE_INTERRUPT, 2567 /* The current function is an interrupt service routine with a 2568 pointer argument and an integer argument as specified by the 2569 "interrupt" attribute. */ 2570 TYPE_EXCEPTION 2571 }; 2572 2573 struct GTY(()) machine_function { 2574 struct stack_local_entry *stack_locals; 2575 int varargs_gpr_size; 2576 int varargs_fpr_size; 2577 int optimize_mode_switching[MAX_386_ENTITIES]; 2578 2579 /* Cached initial frame layout for the current function. */ 2580 struct ix86_frame frame; 2581 2582 /* For -fsplit-stack support: A stack local which holds a pointer to 2583 the stack arguments for a function with a variable number of 2584 arguments. This is set at the start of the function and is used 2585 to initialize the overflow_arg_area field of the va_list 2586 structure. */ 2587 rtx split_stack_varargs_pointer; 2588 2589 /* This value is used for amd64 targets and specifies the current abi 2590 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */ 2591 ENUM_BITFIELD(calling_abi) call_abi : 8; 2592 2593 /* Nonzero if the function accesses a previous frame. */ 2594 BOOL_BITFIELD accesses_prev_frame : 1; 2595 2596 /* Set by ix86_compute_frame_layout and used by prologue/epilogue 2597 expander to determine the style used. */ 2598 BOOL_BITFIELD use_fast_prologue_epilogue : 1; 2599 2600 /* Nonzero if the current function calls pc thunk and 2601 must not use the red zone. */ 2602 BOOL_BITFIELD pc_thunk_call_expanded : 1; 2603 2604 /* If true, the current function needs the default PIC register, not 2605 an alternate register (on x86) and must not use the red zone (on 2606 x86_64), even if it's a leaf function. We don't want the 2607 function to be regarded as non-leaf because TLS calls need not 2608 affect register allocation. This flag is set when a TLS call 2609 instruction is expanded within a function, and never reset, even 2610 if all such instructions are optimized away. Use the 2611 ix86_current_function_calls_tls_descriptor macro for a better 2612 approximation. */ 2613 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1; 2614 2615 /* If true, the current function has a STATIC_CHAIN is placed on the 2616 stack below the return address. */ 2617 BOOL_BITFIELD static_chain_on_stack : 1; 2618 2619 /* If true, it is safe to not save/restore DRAP register. */ 2620 BOOL_BITFIELD no_drap_save_restore : 1; 2621 2622 /* Function type. */ 2623 ENUM_BITFIELD(function_type) func_type : 2; 2624 2625 /* How to generate indirec branch. */ 2626 ENUM_BITFIELD(indirect_branch) indirect_branch_type : 3; 2627 2628 /* If true, the current function has local indirect jumps, like 2629 "indirect_jump" or "tablejump". */ 2630 BOOL_BITFIELD has_local_indirect_jump : 1; 2631 2632 /* How to generate function return. */ 2633 ENUM_BITFIELD(indirect_branch) function_return_type : 3; 2634 2635 /* If true, the current function is a function specified with 2636 the "interrupt" or "no_caller_saved_registers" attribute. */ 2637 BOOL_BITFIELD no_caller_saved_registers : 1; 2638 2639 /* If true, there is register available for argument passing. This 2640 is used only in ix86_function_ok_for_sibcall by 32-bit to determine 2641 if there is scratch register available for indirect sibcall. In 2642 64-bit, rax, r10 and r11 are scratch registers which aren't used to 2643 pass arguments and can be used for indirect sibcall. */ 2644 BOOL_BITFIELD arg_reg_available : 1; 2645 2646 /* If true, we're out-of-lining reg save/restore for regs clobbered 2647 by 64-bit ms_abi functions calling a sysv_abi function. */ 2648 BOOL_BITFIELD call_ms2sysv : 1; 2649 2650 /* If true, the incoming 16-byte aligned stack has an offset (of 8) and 2651 needs padding prior to out-of-line stub save/restore area. */ 2652 BOOL_BITFIELD call_ms2sysv_pad_in : 1; 2653 2654 /* This is the number of extra registers saved by stub (valid range is 2655 0-6). Each additional register is only saved/restored by the stubs 2656 if all successive ones are. (Will always be zero when using a hard 2657 frame pointer.) */ 2658 unsigned int call_ms2sysv_extra_regs:3; 2659 2660 /* Nonzero if the function places outgoing arguments on stack. */ 2661 BOOL_BITFIELD outgoing_args_on_stack : 1; 2662 2663 /* If true, ENDBR is queued at function entrance. */ 2664 BOOL_BITFIELD endbr_queued_at_entrance : 1; 2665 2666 /* The largest alignment, in bytes, of stack slot actually used. */ 2667 unsigned int max_used_stack_alignment; 2668 2669 /* During prologue/epilogue generation, the current frame state. 2670 Otherwise, the frame state at the end of the prologue. */ 2671 struct machine_frame_state fs; 2672 2673 /* During SEH output, this is non-null. */ 2674 struct seh_frame_state * GTY((skip(""))) seh; 2675 }; 2676 #endif 2677 2678 #define ix86_stack_locals (cfun->machine->stack_locals) 2679 #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size) 2680 #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size) 2681 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching) 2682 #define ix86_pc_thunk_call_expanded (cfun->machine->pc_thunk_call_expanded) 2683 #define ix86_tls_descriptor_calls_expanded_in_cfun \ 2684 (cfun->machine->tls_descriptor_call_expanded_p) 2685 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS 2686 calls are optimized away, we try to detect cases in which it was 2687 optimized away. Since such instructions (use (reg REG_SP)), we can 2688 verify whether there's any such instruction live by testing that 2689 REG_SP is live. */ 2690 #define ix86_current_function_calls_tls_descriptor \ 2691 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG)) 2692 #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack) 2693 #define ix86_red_zone_size (cfun->machine->frame.red_zone_size) 2694 2695 /* Control behavior of x86_file_start. */ 2696 #define X86_FILE_START_VERSION_DIRECTIVE false 2697 #define X86_FILE_START_FLTUSED false 2698 2699 /* Flag to mark data that is in the large address area. */ 2700 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0) 2701 #define SYMBOL_REF_FAR_ADDR_P(X) \ 2702 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0) 2703 2704 /* Flags to mark dllimport/dllexport. Used by PE ports, but handy to 2705 have defined always, to avoid ifdefing. */ 2706 #define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1) 2707 #define SYMBOL_REF_DLLIMPORT_P(X) \ 2708 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0) 2709 2710 #define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2) 2711 #define SYMBOL_REF_DLLEXPORT_P(X) \ 2712 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0) 2713 2714 #define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4) 2715 #define SYMBOL_REF_STUBVAR_P(X) \ 2716 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0) 2717 2718 extern void debug_ready_dispatch (void); 2719 extern void debug_dispatch_window (int); 2720 2721 /* The value at zero is only defined for the BMI instructions 2722 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */ 2723 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \ 2724 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0) 2725 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \ 2726 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0) 2727 2728 2729 /* Flags returned by ix86_get_callcvt (). */ 2730 #define IX86_CALLCVT_CDECL 0x1 2731 #define IX86_CALLCVT_STDCALL 0x2 2732 #define IX86_CALLCVT_FASTCALL 0x4 2733 #define IX86_CALLCVT_THISCALL 0x8 2734 #define IX86_CALLCVT_REGPARM 0x10 2735 #define IX86_CALLCVT_SSEREGPARM 0x20 2736 2737 #define IX86_BASE_CALLCVT(FLAGS) \ 2738 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \ 2739 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL)) 2740 2741 #define RECIP_MASK_NONE 0x00 2742 #define RECIP_MASK_DIV 0x01 2743 #define RECIP_MASK_SQRT 0x02 2744 #define RECIP_MASK_VEC_DIV 0x04 2745 #define RECIP_MASK_VEC_SQRT 0x08 2746 #define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \ 2747 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT) 2748 #define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT) 2749 2750 #define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0) 2751 #define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0) 2752 #define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0) 2753 #define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0) 2754 2755 /* Use 128-bit AVX instructions in the auto-vectorizer. */ 2756 #define TARGET_PREFER_AVX128 (prefer_vector_width_type == PVW_AVX128) 2757 /* Use 256-bit AVX instructions in the auto-vectorizer. */ 2758 #define TARGET_PREFER_AVX256 (TARGET_PREFER_AVX128 \ 2759 || prefer_vector_width_type == PVW_AVX256) 2760 2761 #define TARGET_INDIRECT_BRANCH_REGISTER \ 2762 (ix86_indirect_branch_register \ 2763 || cfun->machine->indirect_branch_type != indirect_branch_keep) 2764 2765 #define IX86_HLE_ACQUIRE (1 << 16) 2766 #define IX86_HLE_RELEASE (1 << 17) 2767 2768 /* For switching between functions with different target attributes. */ 2769 #define SWITCHABLE_TARGET 1 2770 2771 #define TARGET_SUPPORTS_WIDE_INT 1 2772 2773 /* 2774 Local variables: 2775 version-control: t 2776 End: 2777 */ 2778