xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/config/frv/frv.h (revision 230b95665bbd3a9d1a53658a36b1053f8382a519)
1 /* Target macros for the FRV port of GCC.
2    Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
3    Free Software Foundation, Inc.
4    Contributed by Red Hat Inc.
5 
6    This file is part of GCC.
7 
8    GCC is free software; you can redistribute it and/or modify it
9    under the terms of the GNU General Public License as published
10    by the Free Software Foundation; either version 3, or (at your
11    option) any later version.
12 
13    GCC is distributed in the hope that it will be useful, but WITHOUT
14    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
16    License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with GCC; see the file COPYING3.  If not see
20    <http://www.gnu.org/licenses/>.  */
21 
22 #ifndef __FRV_H__
23 #define __FRV_H__
24 
25 /* Frv general purpose macros.  */
26 /* Align an address.  */
27 #define ADDR_ALIGN(addr,align) (((addr) + (align) - 1) & ~((align) - 1))
28 
29 /* Return true if a value is inside a range.  */
30 #define IN_RANGE_P(VALUE, LOW, HIGH)				\
31   (   (((HOST_WIDE_INT)(VALUE)) >= (HOST_WIDE_INT)(LOW))	\
32    && (((HOST_WIDE_INT)(VALUE)) <= ((HOST_WIDE_INT)(HIGH))))
33 
34 
35 /* Driver configuration.  */
36 
37 /* A C expression which determines whether the option `-CHAR' takes arguments.
38    The value should be the number of arguments that option takes-zero, for many
39    options.
40 
41    By default, this macro is defined to handle the standard options properly.
42    You need not define it unless you wish to add additional options which take
43    arguments.
44 
45    Defined in svr4.h.  */
46 #undef  SWITCH_TAKES_ARG
47 #define SWITCH_TAKES_ARG(CHAR)                                          \
48   (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
49 
50 /* A C expression which determines whether the option `-NAME' takes arguments.
51    The value should be the number of arguments that option takes-zero, for many
52    options.  This macro rather than `SWITCH_TAKES_ARG' is used for
53    multi-character option names.
54 
55    By default, this macro is defined as `DEFAULT_WORD_SWITCH_TAKES_ARG', which
56    handles the standard options properly.  You need not define
57    `WORD_SWITCH_TAKES_ARG' unless you wish to add additional options which take
58    arguments.  Any redefinition should call `DEFAULT_WORD_SWITCH_TAKES_ARG' and
59    then check for additional options.
60 
61    Defined in svr4.h.  */
62 #undef WORD_SWITCH_TAKES_ARG
63 
64 /* -fpic and -fPIC used to imply the -mlibrary-pic multilib, but with
65     FDPIC which multilib to use depends on whether FDPIC is in use or
66     not.  The trick we use is to introduce -multilib-library-pic as a
67     pseudo-flag that selects the library-pic multilib, and map fpic
68     and fPIC to it only if fdpic is not selected.  Also, if fdpic is
69     selected and no PIC/PIE options are present, we imply -fPIE.
70     Otherwise, if -fpic or -fPIC are enabled and we're optimizing for
71     speed, or if we have -On with n>=3, enable inlining of PLTs.  As
72     for -mgprel-ro, we want to enable it by default, but not for -fpic or
73     -fpie.  */
74 
75 #define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS \
76 "%{mno-pack:\
77    %{!mhard-float:-msoft-float}\
78    %{!mmedia:-mno-media}}\
79  %{!mfdpic:%{fpic|fPIC: -multilib-library-pic}}\
80  %{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
81    	    %{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fPIE}}}}}}}} \
82 	  %{!mno-inline-plt:%{O*:%{!O0:%{!Os:%{fpic|fPIC:-minline-plt} \
83                     %{!fpic:%{!fPIC:%{!O:%{!O1:%{!O2:-minline-plt}}}}}}}}} \
84 	  %{!mno-gprel-ro:%{!fpic:%{!fpie:-mgprel-ro}}}} \
85 "
86 #ifndef SUBTARGET_DRIVER_SELF_SPECS
87 # define SUBTARGET_DRIVER_SELF_SPECS
88 #endif
89 
90 /* A C string constant that tells the GCC driver program options to pass to
91    the assembler.  It can also specify how to translate options you give to GNU
92    CC into options for GCC to pass to the assembler.  See the file `sun3.h'
93    for an example of this.
94 
95    Do not define this macro if it does not need to do anything.
96 
97    Defined in svr4.h.  */
98 #undef  ASM_SPEC
99 #define ASM_SPEC "\
100 %{G*} %{v} %{n} %{T} %{Ym,*} %{Yd,*} %{Wa,*:%*} \
101 %{mtomcat-stats} \
102 %{!mno-eflags: \
103     %{mcpu=*} \
104     %{mgpr-*} %{mfpr-*} \
105     %{msoft-float} %{mhard-float} \
106     %{mdword} %{mno-dword} \
107     %{mdouble} %{mno-double} \
108     %{mmedia} %{mno-media} \
109     %{mmuladd} %{mno-muladd} \
110     %{mpack} %{mno-pack} \
111     %{mno-fdpic:-mnopic} %{mfdpic} \
112     %{fpic|fpie: -mpic} %{fPIC|fPIE: -mPIC} %{mlibrary-pic}}"
113 
114 /* Another C string constant used much like `LINK_SPEC'.  The difference
115    between the two is that `STARTFILE_SPEC' is used at the very beginning of
116    the command given to the linker.
117 
118    If this macro is not defined, a default is provided that loads the standard
119    C startup file from the usual place.  See `gcc.c'.
120 
121    Defined in svr4.h.  */
122 #undef  STARTFILE_SPEC
123 #define STARTFILE_SPEC "crt0%O%s frvbegin%O%s"
124 
125 /* Another C string constant used much like `LINK_SPEC'.  The difference
126    between the two is that `ENDFILE_SPEC' is used at the very end of the
127    command given to the linker.
128 
129    Do not define this macro if it does not need to do anything.
130 
131    Defined in svr4.h.  */
132 #undef  ENDFILE_SPEC
133 #define ENDFILE_SPEC "frvend%O%s"
134 
135 
136 #define MASK_DEFAULT_FRV	\
137   (MASK_MEDIA			\
138    | MASK_DOUBLE		\
139    | MASK_MULADD		\
140    | MASK_DWORD			\
141    | MASK_PACK)
142 
143 #define MASK_DEFAULT_FR500 \
144   (MASK_MEDIA | MASK_DWORD | MASK_PACK)
145 
146 #define MASK_DEFAULT_FR550 \
147   (MASK_MEDIA | MASK_DWORD | MASK_PACK)
148 
149 #define MASK_DEFAULT_FR450	\
150   (MASK_GPR_32			\
151    | MASK_FPR_32		\
152    | MASK_MEDIA			\
153    | MASK_SOFT_FLOAT		\
154    | MASK_DWORD			\
155    | MASK_PACK)
156 
157 #define MASK_DEFAULT_FR400	\
158   (MASK_GPR_32			\
159    | MASK_FPR_32		\
160    | MASK_MEDIA			\
161    | MASK_ACC_4			\
162    | MASK_SOFT_FLOAT		\
163    | MASK_DWORD			\
164    | MASK_PACK)
165 
166 #define MASK_DEFAULT_SIMPLE \
167   (MASK_GPR_32 | MASK_SOFT_FLOAT)
168 
169 /* A C string constant that tells the GCC driver program options to pass to
170    `cc1'.  It can also specify how to translate options you give to GCC into
171    options for GCC to pass to the `cc1'.
172 
173    Do not define this macro if it does not need to do anything.  */
174 /* For ABI compliance, we need to put bss data into the normal data section.  */
175 #define CC1_SPEC "%{G*}"
176 
177 /* A C string constant that tells the GCC driver program options to pass to
178    the linker.  It can also specify how to translate options you give to GCC
179    into options for GCC to pass to the linker.
180 
181    Do not define this macro if it does not need to do anything.
182 
183    Defined in svr4.h.  */
184 /* Override the svr4.h version with one that dispenses without the svr4
185    shared library options, notably -G.  */
186 #undef	LINK_SPEC
187 #define LINK_SPEC "\
188 %{h*} %{v:-V} \
189 %{b} \
190 %{mfdpic:-melf32frvfd -z text} \
191 %{static:-dn -Bstatic} \
192 %{shared:-Bdynamic} \
193 %{symbolic:-Bsymbolic} \
194 %{G*} \
195 %{YP,*} \
196 %{Qy:} %{!Qn:-Qy}"
197 
198 /* Another C string constant used much like `LINK_SPEC'.  The difference
199    between the two is that `LIB_SPEC' is used at the end of the command given
200    to the linker.
201 
202    If this macro is not defined, a default is provided that loads the standard
203    C library from the usual place.  See `gcc.c'.
204 
205    Defined in svr4.h.  */
206 
207 #undef  LIB_SPEC
208 #define LIB_SPEC "--start-group -lc -lsim --end-group"
209 
210 #ifndef CPU_TYPE
211 #define CPU_TYPE		FRV_CPU_FR500
212 #endif
213 
214 /* Run-time target specifications */
215 
216 #define TARGET_CPU_CPP_BUILTINS()					\
217   do									\
218     {									\
219       int issue_rate;							\
220 									\
221       builtin_define ("__frv__");					\
222       builtin_assert ("machine=frv");					\
223 									\
224       issue_rate = frv_issue_rate ();					\
225       if (issue_rate > 1)						\
226 	builtin_define_with_int_value ("__FRV_VLIW__", issue_rate);	\
227       builtin_define_with_int_value ("__FRV_GPR__", NUM_GPRS);		\
228       builtin_define_with_int_value ("__FRV_FPR__", NUM_FPRS);		\
229       builtin_define_with_int_value ("__FRV_ACC__", NUM_ACCS);		\
230 									\
231       switch (frv_cpu_type)						\
232 	{								\
233 	case FRV_CPU_GENERIC:						\
234 	  builtin_define ("__CPU_GENERIC__");				\
235 	  break;							\
236 	case FRV_CPU_FR550:						\
237 	  builtin_define ("__CPU_FR550__");				\
238 	  break;							\
239 	case FRV_CPU_FR500:						\
240 	case FRV_CPU_TOMCAT:						\
241 	  builtin_define ("__CPU_FR500__");				\
242 	  break;							\
243 	case FRV_CPU_FR450:						\
244 	  builtin_define ("__CPU_FR450__");				\
245 	  break;							\
246 	case FRV_CPU_FR405:						\
247 	  builtin_define ("__CPU_FR405__");				\
248 	  break;							\
249 	case FRV_CPU_FR400:						\
250 	  builtin_define ("__CPU_FR400__");				\
251 	  break;							\
252 	case FRV_CPU_FR300:						\
253 	case FRV_CPU_SIMPLE:						\
254 	  builtin_define ("__CPU_FR300__");				\
255 	  break;							\
256 	}								\
257 									\
258       if (TARGET_HARD_FLOAT)						\
259 	builtin_define ("__FRV_HARD_FLOAT__");				\
260       if (TARGET_DWORD)							\
261 	builtin_define ("__FRV_DWORD__");				\
262       if (TARGET_FDPIC)							\
263 	builtin_define ("__FRV_FDPIC__");				\
264       if (flag_leading_underscore > 0)					\
265 	builtin_define ("__FRV_UNDERSCORE__");				\
266     }									\
267   while (0)
268 
269 
270 #define TARGET_HAS_FPRS		(TARGET_HARD_FLOAT || TARGET_MEDIA)
271 
272 #define NUM_GPRS		(TARGET_GPR_32? 32 : 64)
273 #define NUM_FPRS		(!TARGET_HAS_FPRS? 0 : TARGET_FPR_32? 32 : 64)
274 #define NUM_ACCS		(!TARGET_MEDIA? 0 : TARGET_ACC_4? 4 : 8)
275 
276 /* X is a valid accumulator number if (X & ACC_MASK) == X.  */
277 #define ACC_MASK						\
278   (!TARGET_MEDIA ? 0						\
279    : TARGET_ACC_4 ? 3						\
280    : frv_cpu_type == FRV_CPU_FR450 ? 11				\
281    : 7)
282 
283 /* Macros to identify the blend of media instructions available.  Revision 1
284    is the one found on the FR500.  Revision 2 includes the changes made for
285    the FR400.
286 
287    Treat the generic processor as a revision 1 machine for now, for
288    compatibility with earlier releases.  */
289 
290 #define TARGET_MEDIA_REV1					\
291   (TARGET_MEDIA							\
292    && (frv_cpu_type == FRV_CPU_GENERIC				\
293        || frv_cpu_type == FRV_CPU_FR500))
294 
295 #define TARGET_MEDIA_REV2					\
296   (TARGET_MEDIA							\
297    && (frv_cpu_type == FRV_CPU_FR400				\
298        || frv_cpu_type == FRV_CPU_FR405				\
299        || frv_cpu_type == FRV_CPU_FR450				\
300        || frv_cpu_type == FRV_CPU_FR550))
301 
302 #define TARGET_MEDIA_FR450					\
303   (frv_cpu_type == FRV_CPU_FR450)
304 
305 #define TARGET_FR500_FR550_BUILTINS				\
306    (frv_cpu_type == FRV_CPU_FR500				\
307     || frv_cpu_type == FRV_CPU_FR550)
308 
309 #define TARGET_FR405_BUILTINS					\
310   (frv_cpu_type == FRV_CPU_FR405				\
311    || frv_cpu_type == FRV_CPU_FR450)
312 
313 #ifndef HAVE_AS_TLS
314 #define HAVE_AS_TLS 0
315 #endif
316 
317 /* This macro is a C statement to print on `stderr' a string describing the
318    particular machine description choice.  Every machine description should
319    define `TARGET_VERSION'.  For example:
320 
321         #ifdef MOTOROLA
322         #define TARGET_VERSION \
323           fprintf (stderr, " (68k, Motorola syntax)");
324         #else
325         #define TARGET_VERSION \
326           fprintf (stderr, " (68k, MIT syntax)");
327         #endif  */
328 #define TARGET_VERSION fprintf (stderr, _(" (frv)"))
329 
330 /* Sometimes certain combinations of command options do not make sense on a
331    particular target machine.  You can define a macro `OVERRIDE_OPTIONS' to
332    take account of this.  This macro, if defined, is executed once just after
333    all the command options have been parsed.
334 
335    Don't use this macro to turn on various extra optimizations for `-O'.  That
336    is what `OPTIMIZATION_OPTIONS' is for.  */
337 
338 #define OVERRIDE_OPTIONS frv_override_options ()
339 
340 /* Some machines may desire to change what optimizations are performed for
341    various optimization levels.  This macro, if defined, is executed once just
342    after the optimization level is determined and before the remainder of the
343    command options have been parsed.  Values set in this macro are used as the
344    default values for the other command line options.
345 
346    LEVEL is the optimization level specified; 2 if `-O2' is specified, 1 if
347    `-O' is specified, and 0 if neither is specified.
348 
349    SIZE is nonzero if `-Os' is specified, 0 otherwise.
350 
351    You should not use this macro to change options that are not
352    machine-specific.  These should uniformly selected by the same optimization
353    level on all supported machines.  Use this macro to enable machine-specific
354    optimizations.
355 
356    *Do not examine `write_symbols' in this macro!* The debugging options are
357    *not supposed to alter the generated code.  */
358 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) frv_optimization_options (LEVEL, SIZE)
359 
360 
361 /* Define this macro if debugging can be performed even without a frame
362    pointer.  If this macro is defined, GCC will turn on the
363    `-fomit-frame-pointer' option whenever `-O' is specified.  */
364 /* Frv needs a specific frame layout that includes the frame pointer.  */
365 
366 #define CAN_DEBUG_WITHOUT_FP
367 
368 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) (TARGET_ALIGN_LABELS ? 3 : 0)
369 
370 /* Small Data Area Support.  */
371 /* Maximum size of variables that go in .sdata/.sbss.
372    The -msdata=foo switch also controls how small variables are handled.  */
373 #ifndef SDATA_DEFAULT_SIZE
374 #define SDATA_DEFAULT_SIZE 8
375 #endif
376 
377 
378 /* Storage Layout */
379 
380 /* Define this macro to have the value 1 if the most significant bit in a byte
381    has the lowest number; otherwise define it to have the value zero.  This
382    means that bit-field instructions count from the most significant bit.  If
383    the machine has no bit-field instructions, then this must still be defined,
384    but it doesn't matter which value it is defined to.  This macro need not be
385    a constant.
386 
387    This macro does not affect the way structure fields are packed into bytes or
388    words; that is controlled by `BYTES_BIG_ENDIAN'.  */
389 #define BITS_BIG_ENDIAN 1
390 
391 /* Define this macro to have the value 1 if the most significant byte in a word
392    has the lowest number.  This macro need not be a constant.  */
393 #define BYTES_BIG_ENDIAN 1
394 
395 /* Define this macro to have the value 1 if, in a multiword object, the most
396    significant word has the lowest number.  This applies to both memory
397    locations and registers; GCC fundamentally assumes that the order of
398    words in memory is the same as the order in registers.  This macro need not
399    be a constant.  */
400 #define WORDS_BIG_ENDIAN 1
401 
402 /* Number of storage units in a word; normally 4.  */
403 #define UNITS_PER_WORD 4
404 
405 /* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
406    which has the specified mode and signedness is to be stored in a register.
407    This macro is only called when TYPE is a scalar type.
408 
409    On most RISC machines, which only have operations that operate on a full
410    register, define this macro to set M to `word_mode' if M is an integer mode
411    narrower than `BITS_PER_WORD'.  In most cases, only integer modes should be
412    widened because wider-precision floating-point operations are usually more
413    expensive than their narrower counterparts.
414 
415    For most machines, the macro definition does not change UNSIGNEDP.  However,
416    some machines, have instructions that preferentially handle either signed or
417    unsigned quantities of certain modes.  For example, on the DEC Alpha, 32-bit
418    loads from memory and 32-bit add instructions sign-extend the result to 64
419    bits.  On such machines, set UNSIGNEDP according to which kind of extension
420    is more efficient.
421 
422    Do not define this macro if it would never modify MODE.  */
423 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
424   do						\
425     {						\
426       if (GET_MODE_CLASS (MODE) == MODE_INT	\
427 	  && GET_MODE_SIZE (MODE) < 4)		\
428 	(MODE) = SImode;			\
429     }						\
430   while (0)
431 
432 /* Normal alignment required for function parameters on the stack, in bits.
433    All stack parameters receive at least this much alignment regardless of data
434    type.  On most machines, this is the same as the size of an integer.  */
435 #define PARM_BOUNDARY 32
436 
437 /* Define this macro if you wish to preserve a certain alignment for the stack
438    pointer.  The definition is a C expression for the desired alignment
439    (measured in bits).
440 
441    If `PUSH_ROUNDING' is not defined, the stack will always be aligned to the
442    specified boundary.  If `PUSH_ROUNDING' is defined and specifies a less
443    strict alignment than `STACK_BOUNDARY', the stack may be momentarily
444    unaligned while pushing arguments.  */
445 #define STACK_BOUNDARY 64
446 
447 /* Alignment required for a function entry point, in bits.  */
448 #define FUNCTION_BOUNDARY 128
449 
450 /* Biggest alignment that any data type can require on this machine,
451    in bits.  */
452 #define BIGGEST_ALIGNMENT 64
453 
454 /* @@@ A hack, needed because libobjc wants to use ADJUST_FIELD_ALIGN for
455    some reason.  */
456 #ifdef IN_TARGET_LIBS
457 #define BIGGEST_FIELD_ALIGNMENT 64
458 #else
459 /* An expression for the alignment of a structure field FIELD if the
460    alignment computed in the usual way is COMPUTED.  GCC uses this
461    value instead of the value in `BIGGEST_ALIGNMENT' or
462    `BIGGEST_FIELD_ALIGNMENT', if defined, for structure fields only.  */
463 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) 				\
464   frv_adjust_field_align (FIELD, COMPUTED)
465 #endif
466 
467 /* If defined, a C expression to compute the alignment for a static variable.
468    TYPE is the data type, and ALIGN is the alignment that the object
469    would ordinarily have.  The value of this macro is used instead of that
470    alignment to align the object.
471 
472    If this macro is not defined, then ALIGN is used.
473 
474    One use of this macro is to increase alignment of medium-size data to make
475    it all fit in fewer cache lines.  Another is to cause character arrays to be
476    word-aligned so that `strcpy' calls that copy constants to character arrays
477    can be done inline.  */
478 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
479   (TREE_CODE (TYPE) == ARRAY_TYPE		\
480    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
481    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
482 
483 /* If defined, a C expression to compute the alignment given to a constant that
484    is being placed in memory.  CONSTANT is the constant and ALIGN is the
485    alignment that the object would ordinarily have.  The value of this macro is
486    used instead of that alignment to align the object.
487 
488    If this macro is not defined, then ALIGN is used.
489 
490    The typical use of this macro is to increase alignment for string constants
491    to be word aligned so that `strcpy' calls that copy constants can be done
492    inline.  */
493 #define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
494   (TREE_CODE (EXP) == STRING_CST	\
495    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
496 
497 /* Define this macro to be the value 1 if instructions will fail to work if
498    given data not on the nominal alignment.  If instructions will merely go
499    slower in that case, define this macro as 0.  */
500 #define STRICT_ALIGNMENT 1
501 
502 /* Define this if you wish to imitate the way many other C compilers handle
503    alignment of bitfields and the structures that contain them.
504 
505    The behavior is that the type written for a bit-field (`int', `short', or
506    other integer type) imposes an alignment for the entire structure, as if the
507    structure really did contain an ordinary field of that type.  In addition,
508    the bit-field is placed within the structure so that it would fit within such
509    a field, not crossing a boundary for it.
510 
511    Thus, on most machines, a bit-field whose type is written as `int' would not
512    cross a four-byte boundary, and would force four-byte alignment for the
513    whole structure.  (The alignment used may not be four bytes; it is
514    controlled by the other alignment parameters.)
515 
516    If the macro is defined, its definition should be a C expression; a nonzero
517    value for the expression enables this behavior.
518 
519    Note that if this macro is not defined, or its value is zero, some bitfields
520    may cross more than one alignment boundary.  The compiler can support such
521    references if there are `insv', `extv', and `extzv' insns that can directly
522    reference memory.
523 
524    The other known way of making bitfields work is to define
525    `STRUCTURE_SIZE_BOUNDARY' as large as `BIGGEST_ALIGNMENT'.  Then every
526    structure can be accessed with fullwords.
527 
528    Unless the machine has bit-field instructions or you define
529    `STRUCTURE_SIZE_BOUNDARY' that way, you must define
530    `PCC_BITFIELD_TYPE_MATTERS' to have a nonzero value.
531 
532    If your aim is to make GCC use the same conventions for laying out
533    bitfields as are used by another compiler, here is how to investigate what
534    the other compiler does.  Compile and run this program:
535 
536         struct foo1
537         {
538           char x;
539           char :0;
540           char y;
541         };
542 
543         struct foo2
544         {
545           char x;
546           int :0;
547           char y;
548         };
549 
550         main ()
551         {
552           printf ("Size of foo1 is %d\n",
553                   sizeof (struct foo1));
554           printf ("Size of foo2 is %d\n",
555                   sizeof (struct foo2));
556           exit (0);
557         }
558 
559    If this prints 2 and 5, then the compiler's behavior is what you would get
560    from `PCC_BITFIELD_TYPE_MATTERS'.
561 
562    Defined in svr4.h.  */
563 #define PCC_BITFIELD_TYPE_MATTERS 1
564 
565 
566 /* Layout of Source Language Data Types.  */
567 
568 #define CHAR_TYPE_SIZE         8
569 #define SHORT_TYPE_SIZE       16
570 #define INT_TYPE_SIZE         32
571 #define LONG_TYPE_SIZE        32
572 #define LONG_LONG_TYPE_SIZE   64
573 #define FLOAT_TYPE_SIZE       32
574 #define DOUBLE_TYPE_SIZE      64
575 #define LONG_DOUBLE_TYPE_SIZE 64
576 
577 /* An expression whose value is 1 or 0, according to whether the type `char'
578    should be signed or unsigned by default.  The user can always override this
579    default with the options `-fsigned-char' and `-funsigned-char'.  */
580 #define DEFAULT_SIGNED_CHAR 1
581 
582 
583 /* General purpose registers.  */
584 #define GPR_FIRST       0                       /* First gpr */
585 #define GPR_LAST        (GPR_FIRST + 63)        /* Last gpr */
586 #define GPR_R0          GPR_FIRST               /* R0, constant 0 */
587 #define GPR_FP          (GPR_FIRST + 2)         /* Frame pointer */
588 #define GPR_SP          (GPR_FIRST + 1)         /* Stack pointer */
589 						/* small data register */
590 #define SDA_BASE_REG    ((unsigned)(TARGET_FDPIC ? -1 : flag_pic ? PIC_REGNO : (GPR_FIRST + 16)))
591 #define PIC_REGNO       (GPR_FIRST + (TARGET_FDPIC?15:17))        /* PIC register.  */
592 #define FDPIC_FPTR_REGNO  (GPR_FIRST + 14)        /* uClinux PIC function pointer register.  */
593 #define FDPIC_REGNO   (GPR_FIRST + 15)        /* uClinux PIC register.  */
594 
595 #define HARD_REGNO_RENAME_OK(from,to) (TARGET_FDPIC ? ((to) != FDPIC_REG) : 1)
596 
597 #define OUR_FDPIC_REG	get_hard_reg_initial_val (SImode, FDPIC_REGNO)
598 
599 #define FPR_FIRST       64			/* First FP reg */
600 #define FPR_LAST        127			/* Last  FP reg */
601 
602 #define GPR_TEMP_NUM	frv_condexec_temps	/* # gprs to reserve for temps */
603 
604 /* We reserve the last CR and CCR in each category to be used as a reload
605    register to reload the CR/CCR registers.  This is a kludge.  */
606 #define CC_FIRST	128			/* First ICC/FCC reg */
607 #define CC_LAST		135			/* Last  ICC/FCC reg */
608 #define ICC_FIRST	(CC_FIRST + 4)		/* First ICC reg */
609 #define ICC_LAST	(CC_FIRST + 7)		/* Last  ICC reg */
610 #define ICC_TEMP	(CC_FIRST + 7)		/* Temporary ICC reg */
611 #define FCC_FIRST	(CC_FIRST)		/* First FCC reg */
612 #define FCC_LAST	(CC_FIRST + 3)		/* Last  FCC reg */
613 
614 /* Amount to shift a value to locate a ICC or FCC register in the CCR
615    register and shift it to the bottom 4 bits.  */
616 #define CC_SHIFT_RIGHT(REGNO) (((REGNO) - CC_FIRST) << 2)
617 
618 /* Mask to isolate a single ICC/FCC value.  */
619 #define CC_MASK		0xf
620 
621 /* Masks to isolate the various bits in an ICC field.  */
622 #define ICC_MASK_N	0x8	/* negative */
623 #define ICC_MASK_Z	0x4	/* zero */
624 #define ICC_MASK_V	0x2	/* overflow */
625 #define ICC_MASK_C	0x1	/* carry */
626 
627 /* Mask to isolate the N/Z flags in an ICC.  */
628 #define ICC_MASK_NZ (ICC_MASK_N | ICC_MASK_Z)
629 
630 /* Mask to isolate the Z/C flags in an ICC.  */
631 #define ICC_MASK_ZC (ICC_MASK_Z | ICC_MASK_C)
632 
633 /* Masks to isolate the various bits in a FCC field.  */
634 #define FCC_MASK_E	0x8	/* equal */
635 #define FCC_MASK_L	0x4	/* less than */
636 #define FCC_MASK_G	0x2	/* greater than */
637 #define FCC_MASK_U	0x1	/* unordered */
638 
639 /* For CCR registers, the machine wants CR4..CR7 to be used for integer
640    code and CR0..CR3 to be used for floating point.  */
641 #define CR_FIRST	136			/* First CCR */
642 #define CR_LAST		143			/* Last  CCR */
643 #define CR_NUM		(CR_LAST-CR_FIRST+1)	/* # of CCRs (8) */
644 #define ICR_FIRST	(CR_FIRST + 4)		/* First integer CCR */
645 #define ICR_LAST	(CR_FIRST + 7)		/* Last  integer CCR */
646 #define ICR_TEMP	ICR_LAST		/* Temp  integer CCR */
647 #define FCR_FIRST	(CR_FIRST + 0)		/* First float CCR */
648 #define FCR_LAST	(CR_FIRST + 3)		/* Last  float CCR */
649 
650 /* Amount to shift a value to locate a CR register in the CCCR special purpose
651    register and shift it to the bottom 2 bits.  */
652 #define CR_SHIFT_RIGHT(REGNO) (((REGNO) - CR_FIRST) << 1)
653 
654 /* Mask to isolate a single CR value.  */
655 #define CR_MASK		0x3
656 
657 #define ACC_FIRST	144			/* First acc register */
658 #define ACC_LAST	155			/* Last  acc register */
659 
660 #define ACCG_FIRST	156			/* First accg register */
661 #define ACCG_LAST	167			/* Last  accg register */
662 
663 #define AP_FIRST	168			/* fake argument pointer */
664 
665 #define SPR_FIRST	169
666 #define SPR_LAST	172
667 #define LR_REGNO	(SPR_FIRST)
668 #define LCR_REGNO	(SPR_FIRST + 1)
669 #define IACC_FIRST	(SPR_FIRST + 2)
670 #define IACC_LAST	(SPR_FIRST + 3)
671 
672 #define GPR_P(R)	IN_RANGE_P (R, GPR_FIRST, GPR_LAST)
673 #define GPR_OR_AP_P(R)	(GPR_P (R) || (R) == ARG_POINTER_REGNUM)
674 #define FPR_P(R)	IN_RANGE_P (R, FPR_FIRST, FPR_LAST)
675 #define CC_P(R)		IN_RANGE_P (R, CC_FIRST, CC_LAST)
676 #define ICC_P(R)	IN_RANGE_P (R, ICC_FIRST, ICC_LAST)
677 #define FCC_P(R)	IN_RANGE_P (R, FCC_FIRST, FCC_LAST)
678 #define CR_P(R)		IN_RANGE_P (R, CR_FIRST, CR_LAST)
679 #define ICR_P(R)	IN_RANGE_P (R, ICR_FIRST, ICR_LAST)
680 #define FCR_P(R)	IN_RANGE_P (R, FCR_FIRST, FCR_LAST)
681 #define ACC_P(R)	IN_RANGE_P (R, ACC_FIRST, ACC_LAST)
682 #define ACCG_P(R)	IN_RANGE_P (R, ACCG_FIRST, ACCG_LAST)
683 #define SPR_P(R)	IN_RANGE_P (R, SPR_FIRST, SPR_LAST)
684 
685 #define GPR_OR_PSEUDO_P(R)	(GPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
686 #define FPR_OR_PSEUDO_P(R)	(FPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
687 #define GPR_AP_OR_PSEUDO_P(R)	(GPR_OR_AP_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
688 #define CC_OR_PSEUDO_P(R)	(CC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
689 #define ICC_OR_PSEUDO_P(R)	(ICC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
690 #define FCC_OR_PSEUDO_P(R)	(FCC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
691 #define CR_OR_PSEUDO_P(R)	(CR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
692 #define ICR_OR_PSEUDO_P(R)	(ICR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
693 #define FCR_OR_PSEUDO_P(R)	(FCR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
694 #define ACC_OR_PSEUDO_P(R)	(ACC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
695 #define ACCG_OR_PSEUDO_P(R)	(ACCG_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
696 
697 #define MAX_STACK_IMMEDIATE_OFFSET 2047
698 
699 
700 /* Register Basics.  */
701 
702 /* Number of hardware registers known to the compiler.  They receive numbers 0
703    through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number
704    really is assigned the number `FIRST_PSEUDO_REGISTER'.  */
705 #define FIRST_PSEUDO_REGISTER (SPR_LAST + 1)
706 
707 /* The first/last register that can contain the arguments to a function.  */
708 #define FIRST_ARG_REGNUM	(GPR_FIRST + 8)
709 #define LAST_ARG_REGNUM		(FIRST_ARG_REGNUM + FRV_NUM_ARG_REGS - 1)
710 
711 /* Registers used by the exception handling functions.  These should be
712    registers that are not otherwise used by the calling sequence.  */
713 #define FIRST_EH_REGNUM		14
714 #define LAST_EH_REGNUM		15
715 
716 /* Scratch registers used in the prologue, epilogue and thunks.
717    OFFSET_REGNO is for loading constant addends that are too big for a
718    single instruction.  TEMP_REGNO is used for transferring SPRs to and from
719    the stack, and various other activities.  */
720 #define OFFSET_REGNO		4
721 #define TEMP_REGNO		5
722 
723 /* Registers used in the prologue.  OLD_SP_REGNO is the old stack pointer,
724    which is sometimes used to set up the frame pointer.  */
725 #define OLD_SP_REGNO		6
726 
727 /* Registers used in the epilogue.  STACKADJ_REGNO stores the exception
728    handler's stack adjustment.  */
729 #define STACKADJ_REGNO		6
730 
731 /* Registers used in thunks.  JMP_REGNO is used for loading the target
732    address.  */
733 #define JUMP_REGNO		6
734 
735 #define EH_RETURN_DATA_REGNO(N)	((N) <= (LAST_EH_REGNUM - FIRST_EH_REGNUM)? \
736 				 (N) + FIRST_EH_REGNUM : INVALID_REGNUM)
737 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (SImode, STACKADJ_REGNO)
738 #define EH_RETURN_HANDLER_RTX   RETURN_ADDR_RTX (0, frame_pointer_rtx)
739 
740 #define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNO)
741 
742 /* An initializer that says which registers are used for fixed purposes all
743    throughout the compiled code and are therefore not available for general
744    allocation.  These would include the stack pointer, the frame pointer
745    (except on machines where that can be used as a general register when no
746    frame pointer is needed), the program counter on machines where that is
747    considered one of the addressable registers, and any other numbered register
748    with a standard use.
749 
750    This information is expressed as a sequence of numbers, separated by commas
751    and surrounded by braces.  The Nth number is 1 if register N is fixed, 0
752    otherwise.
753 
754    The table initialized from this macro, and the table initialized by the
755    following one, may be overridden at run time either automatically, by the
756    actions of the macro `CONDITIONAL_REGISTER_USAGE', or by the user with the
757    command options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'.  */
758 
759 /* gr0  -- Hard Zero
760    gr1  -- Stack Pointer
761    gr2  -- Frame Pointer
762    gr3  -- Hidden Parameter
763    gr16 -- Small Data reserved
764    gr17 -- Pic reserved
765    gr28 -- OS reserved
766    gr29 -- OS reserved
767    gr30 -- OS reserved
768    gr31 -- OS reserved
769    cr3  -- reserved to reload FCC registers.
770    cr7  -- reserved to reload ICC registers.  */
771 #define FIXED_REGISTERS							\
772 {	/* Integer Registers */						\
773 	1, 1, 1, 1, 0, 0, 0, 0,		/* 000-007, gr0  - gr7  */	\
774 	0, 0, 0, 0, 0, 0, 0, 0,		/* 008-015, gr8  - gr15 */	\
775 	1, 1, 0, 0, 0, 0, 0, 0,		/* 016-023, gr16 - gr23 */	\
776 	0, 0, 0, 0, 1, 1, 1, 1,		/* 024-031, gr24 - gr31 */	\
777 	0, 0, 0, 0, 0, 0, 0, 0,		/* 032-039, gr32 - gr39 */	\
778 	0, 0, 0, 0, 0, 0, 0, 0,		/* 040-040, gr48 - gr47 */	\
779 	0, 0, 0, 0, 0, 0, 0, 0,		/* 048-055, gr48 - gr55 */	\
780 	0, 0, 0, 0, 0, 0, 0, 0,		/* 056-063, gr56 - gr63 */	\
781 	/* Float Registers */						\
782 	0, 0, 0, 0, 0, 0, 0, 0,		/* 064-071, fr0  - fr7  */	\
783 	0, 0, 0, 0, 0, 0, 0, 0,		/* 072-079, fr8  - fr15 */	\
784 	0, 0, 0, 0, 0, 0, 0, 0,		/* 080-087, fr16 - fr23 */	\
785 	0, 0, 0, 0, 0, 0, 0, 0,		/* 088-095, fr24 - fr31 */	\
786 	0, 0, 0, 0, 0, 0, 0, 0,		/* 096-103, fr32 - fr39 */	\
787 	0, 0, 0, 0, 0, 0, 0, 0,		/* 104-111, fr48 - fr47 */	\
788 	0, 0, 0, 0, 0, 0, 0, 0,		/* 112-119, fr48 - fr55 */	\
789 	0, 0, 0, 0, 0, 0, 0, 0,		/* 120-127, fr56 - fr63 */	\
790 	/* Condition Code Registers */					\
791 	0, 0, 0, 0,			/* 128-131, fcc0 - fcc3  */	\
792 	0, 0, 0, 1,			/* 132-135, icc0 - icc3 */	\
793 	/* Conditional execution Registers (CCR) */			\
794 	0, 0, 0, 0, 0, 0, 0, 1,		/* 136-143, cr0 - cr7 */	\
795 	/* Accumulators */						\
796 	1, 1, 1, 1, 1, 1, 1, 1,		/* 144-151, acc0  - acc7 */	\
797 	1, 1, 1, 1,			/* 152-155, acc8  - acc11 */	\
798 	1, 1, 1, 1, 1, 1, 1, 1,		/* 156-163, accg0 - accg7 */	\
799 	1, 1, 1, 1,			/* 164-167, accg8 - accg11 */	\
800 	/* Other registers */						\
801 	1,				/* 168, AP   - fake arg ptr */	\
802 	1,				/* 169, LR   - Link register*/	\
803 	0,				/* 170, LCR  - Loop count reg*/	\
804 	1, 1				/* 171-172, iacc0 */		\
805 }
806 
807 /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
808    general) by function calls as well as for fixed registers.  This macro
809    therefore identifies the registers that are not available for general
810    allocation of values that must live across function calls.
811 
812    If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
813    saves it on function entry and restores it on function exit, if the register
814    is used within the function.  */
815 #define CALL_USED_REGISTERS						\
816 {	/* Integer Registers */						\
817 	1, 1, 1, 1, 1, 1, 1, 1,		/* 000-007, gr0  - gr7  */	\
818 	1, 1, 1, 1, 1, 1, 1, 1,		/* 008-015, gr8  - gr15 */	\
819 	1, 1, 0, 0, 0, 0, 0, 0,		/* 016-023, gr16 - gr23 */	\
820 	0, 0, 0, 0, 1, 1, 1, 1,		/* 024-031, gr24 - gr31 */	\
821 	1, 1, 1, 1, 1, 1, 1, 1,		/* 032-039, gr32 - gr39 */	\
822 	1, 1, 1, 1, 1, 1, 1, 1,		/* 040-040, gr48 - gr47 */	\
823 	0, 0, 0, 0, 0, 0, 0, 0,		/* 048-055, gr48 - gr55 */	\
824 	0, 0, 0, 0, 0, 0, 0, 0,		/* 056-063, gr56 - gr63 */	\
825 	/* Float Registers */						\
826 	1, 1, 1, 1, 1, 1, 1, 1,		/* 064-071, fr0  - fr7  */	\
827 	1, 1, 1, 1, 1, 1, 1, 1,		/* 072-079, fr8  - fr15 */	\
828 	0, 0, 0, 0, 0, 0, 0, 0,		/* 080-087, fr16 - fr23 */	\
829 	0, 0, 0, 0, 0, 0, 0, 0,		/* 088-095, fr24 - fr31 */	\
830 	1, 1, 1, 1, 1, 1, 1, 1,		/* 096-103, fr32 - fr39 */	\
831 	1, 1, 1, 1, 1, 1, 1, 1,		/* 104-111, fr48 - fr47 */	\
832 	0, 0, 0, 0, 0, 0, 0, 0,		/* 112-119, fr48 - fr55 */	\
833 	0, 0, 0, 0, 0, 0, 0, 0,		/* 120-127, fr56 - fr63 */	\
834 	/* Condition Code Registers */					\
835 	1, 1, 1, 1,			/* 128-131, fcc0 - fcc3 */	\
836 	1, 1, 1, 1,			/* 132-135, icc0 - icc3  */	\
837 	/* Conditional execution Registers (CCR) */			\
838 	1, 1, 1, 1, 1, 1, 1, 1,		/* 136-143, cr0 - cr7 */	\
839 	/* Accumulators */						\
840 	1, 1, 1, 1, 1, 1, 1, 1,		/* 144-151, acc0 - acc7 */	\
841 	1, 1, 1, 1,			/* 152-155, acc8 - acc11 */	\
842 	1, 1, 1, 1, 1, 1, 1, 1,		/* 156-163, accg0 - accg7 */	\
843 	1, 1, 1, 1,			/* 164-167, accg8 - accg11 */	\
844 	/* Other registers */						\
845 	1,				/* 168, AP  - fake arg ptr */	\
846 	1,				/* 169, LR  - Link register*/	\
847 	1,				/* 170, LCR - Loop count reg */	\
848 	1, 1				/* 171-172, iacc0 */		\
849 }
850 
851 /* Zero or more C statements that may conditionally modify two variables
852    `fixed_regs' and `call_used_regs' (both of type `char []') after they have
853    been initialized from the two preceding macros.
854 
855    This is necessary in case the fixed or call-clobbered registers depend on
856    target flags.
857 
858    You need not define this macro if it has no work to do.
859 
860    If the usage of an entire class of registers depends on the target flags,
861    you may indicate this to GCC by using this macro to modify `fixed_regs' and
862    `call_used_regs' to 1 for each of the registers in the classes which should
863    not be used by GCC.  Also define the macro `REG_CLASS_FROM_LETTER' to return
864    `NO_REGS' if it is called with a letter for a class that shouldn't be used.
865 
866    (However, if this class is not included in `GENERAL_REGS' and all of the
867    insn patterns whose constraints permit this class are controlled by target
868    switches, then GCC will automatically avoid using these registers when the
869    target switches are opposed to them.)  */
870 
871 #define CONDITIONAL_REGISTER_USAGE frv_conditional_register_usage ()
872 
873 
874 /* Order of allocation of registers.  */
875 
876 /* If defined, an initializer for a vector of integers, containing the numbers
877    of hard registers in the order in which GCC should prefer to use them
878    (from most preferred to least).
879 
880    If this macro is not defined, registers are used lowest numbered first (all
881    else being equal).
882 
883    One use of this macro is on machines where the highest numbered registers
884    must always be saved and the save-multiple-registers instruction supports
885    only sequences of consecutive registers.  On such machines, define
886    `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
887    allocatable register first.  */
888 
889 /* On the FRV, allocate GR16 and GR17 after other saved registers so that we
890    have a better chance of allocating 2 registers at a time and can use the
891    double word load/store instructions in the prologue.  */
892 #define REG_ALLOC_ORDER							\
893 {									\
894   /* volatile registers */						\
895   GPR_FIRST  +  4, GPR_FIRST  +  5, GPR_FIRST  +  6, GPR_FIRST 	+  7,	\
896   GPR_FIRST  +  8, GPR_FIRST  +  9, GPR_FIRST  + 10, GPR_FIRST 	+ 11,	\
897   GPR_FIRST  + 12, GPR_FIRST  + 13, GPR_FIRST  + 14, GPR_FIRST 	+ 15,	\
898   GPR_FIRST  + 32, GPR_FIRST  + 33, GPR_FIRST  + 34, GPR_FIRST 	+ 35,	\
899   GPR_FIRST  + 36, GPR_FIRST  + 37, GPR_FIRST  + 38, GPR_FIRST 	+ 39,	\
900   GPR_FIRST  + 40, GPR_FIRST  + 41, GPR_FIRST  + 42, GPR_FIRST 	+ 43,	\
901   GPR_FIRST  + 44, GPR_FIRST  + 45, GPR_FIRST  + 46, GPR_FIRST 	+ 47,	\
902 									\
903   FPR_FIRST  +  0, FPR_FIRST  +  1, FPR_FIRST  +  2, FPR_FIRST 	+  3,	\
904   FPR_FIRST  +  4, FPR_FIRST  +  5, FPR_FIRST  +  6, FPR_FIRST 	+  7,	\
905   FPR_FIRST  +  8, FPR_FIRST  +  9, FPR_FIRST  + 10, FPR_FIRST 	+ 11,	\
906   FPR_FIRST  + 12, FPR_FIRST  + 13, FPR_FIRST  + 14, FPR_FIRST 	+ 15,	\
907   FPR_FIRST  + 32, FPR_FIRST  + 33, FPR_FIRST  + 34, FPR_FIRST 	+ 35,	\
908   FPR_FIRST  + 36, FPR_FIRST  + 37, FPR_FIRST  + 38, FPR_FIRST 	+ 39,	\
909   FPR_FIRST  + 40, FPR_FIRST  + 41, FPR_FIRST  + 42, FPR_FIRST 	+ 43,	\
910   FPR_FIRST  + 44, FPR_FIRST  + 45, FPR_FIRST  + 46, FPR_FIRST 	+ 47,	\
911 									\
912   ICC_FIRST  +  0, ICC_FIRST  +  1, ICC_FIRST  +  2, ICC_FIRST 	+  3,	\
913   FCC_FIRST  +  0, FCC_FIRST  +  1, FCC_FIRST  +  2, FCC_FIRST 	+  3,	\
914   CR_FIRST   +  0, CR_FIRST   +  1, CR_FIRST   +  2, CR_FIRST  	+  3,	\
915   CR_FIRST   +  4, CR_FIRST   +  5, CR_FIRST   +  6, CR_FIRST  	+  7,	\
916 									\
917   /* saved registers */							\
918   GPR_FIRST  + 18, GPR_FIRST  + 19,					\
919   GPR_FIRST  + 20, GPR_FIRST  + 21, GPR_FIRST  + 22, GPR_FIRST 	+ 23,	\
920   GPR_FIRST  + 24, GPR_FIRST  + 25, GPR_FIRST  + 26, GPR_FIRST 	+ 27,	\
921   GPR_FIRST  + 48, GPR_FIRST  + 49, GPR_FIRST  + 50, GPR_FIRST 	+ 51,	\
922   GPR_FIRST  + 52, GPR_FIRST  + 53, GPR_FIRST  + 54, GPR_FIRST 	+ 55,	\
923   GPR_FIRST  + 56, GPR_FIRST  + 57, GPR_FIRST  + 58, GPR_FIRST 	+ 59,	\
924   GPR_FIRST  + 60, GPR_FIRST  + 61, GPR_FIRST  + 62, GPR_FIRST 	+ 63,	\
925   GPR_FIRST  + 16, GPR_FIRST  + 17,					\
926 									\
927   FPR_FIRST  + 16, FPR_FIRST  + 17, FPR_FIRST  + 18, FPR_FIRST 	+ 19,	\
928   FPR_FIRST  + 20, FPR_FIRST  + 21, FPR_FIRST  + 22, FPR_FIRST 	+ 23,	\
929   FPR_FIRST  + 24, FPR_FIRST  + 25, FPR_FIRST  + 26, FPR_FIRST 	+ 27,	\
930   FPR_FIRST  + 28, FPR_FIRST  + 29, FPR_FIRST  + 30, FPR_FIRST 	+ 31,	\
931   FPR_FIRST  + 48, FPR_FIRST  + 49, FPR_FIRST  + 50, FPR_FIRST 	+ 51,	\
932   FPR_FIRST  + 52, FPR_FIRST  + 53, FPR_FIRST  + 54, FPR_FIRST 	+ 55,	\
933   FPR_FIRST  + 56, FPR_FIRST  + 57, FPR_FIRST  + 58, FPR_FIRST 	+ 59,	\
934   FPR_FIRST  + 60, FPR_FIRST  + 61, FPR_FIRST  + 62, FPR_FIRST 	+ 63,	\
935 									\
936   /* special or fixed registers */					\
937   GPR_FIRST  +  0, GPR_FIRST  +  1, GPR_FIRST  +  2, GPR_FIRST 	+  3,	\
938   GPR_FIRST  + 28, GPR_FIRST  + 29, GPR_FIRST  + 30, GPR_FIRST 	+ 31,	\
939   ACC_FIRST  +  0, ACC_FIRST  +  1, ACC_FIRST  +  2, ACC_FIRST 	+  3,	\
940   ACC_FIRST  +  4, ACC_FIRST  +  5, ACC_FIRST  +  6, ACC_FIRST 	+  7,	\
941   ACC_FIRST  +  8, ACC_FIRST  +  9, ACC_FIRST  + 10, ACC_FIRST 	+ 11,	\
942   ACCG_FIRST +  0, ACCG_FIRST +  1, ACCG_FIRST +  2, ACCG_FIRST	+  3,	\
943   ACCG_FIRST +  4, ACCG_FIRST +  5, ACCG_FIRST +  6, ACCG_FIRST	+  7,	\
944   ACCG_FIRST +  8, ACCG_FIRST +  9, ACCG_FIRST + 10, ACCG_FIRST	+ 11,	\
945   AP_FIRST, 	   LR_REGNO,       LCR_REGNO,				\
946   IACC_FIRST +  0, IACC_FIRST +  1					\
947 }
948 
949 
950 /* How Values Fit in Registers.  */
951 
952 /* A C expression for the number of consecutive hard registers, starting at
953    register number REGNO, required to hold a value of mode MODE.
954 
955    On a machine where all registers are exactly one word, a suitable definition
956    of this macro is
957 
958         #define HARD_REGNO_NREGS(REGNO, MODE)            \
959            ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1)  \
960             / UNITS_PER_WORD))  */
961 
962 /* On the FRV, make the CC modes take 3 words in the integer registers, so that
963    we can build the appropriate instructions to properly reload the values.  */
964 #define HARD_REGNO_NREGS(REGNO, MODE) frv_hard_regno_nregs (REGNO, MODE)
965 
966 /* A C expression that is nonzero if it is permissible to store a value of mode
967    MODE in hard register number REGNO (or in several registers starting with
968    that one).  For a machine where all registers are equivalent, a suitable
969    definition is
970 
971         #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
972 
973    It is not necessary for this macro to check for the numbers of fixed
974    registers, because the allocation mechanism considers them to be always
975    occupied.
976 
977    On some machines, double-precision values must be kept in even/odd register
978    pairs.  The way to implement that is to define this macro to reject odd
979    register numbers for such modes.
980 
981    The minimum requirement for a mode to be OK in a register is that the
982    `movMODE' instruction pattern support moves between the register and any
983    other hard register for which the mode is OK; and that moving a value into
984    the register and back out not alter it.
985 
986    Since the same instruction used to move `SImode' will work for all narrower
987    integer modes, it is not necessary on any machine for `HARD_REGNO_MODE_OK'
988    to distinguish between these modes, provided you define patterns `movhi',
989    etc., to take advantage of this.  This is useful because of the interaction
990    between `HARD_REGNO_MODE_OK' and `MODES_TIEABLE_P'; it is very desirable for
991    all integer modes to be tieable.
992 
993    Many machines have special registers for floating point arithmetic.  Often
994    people assume that floating point machine modes are allowed only in floating
995    point registers.  This is not true.  Any registers that can hold integers
996    can safely *hold* a floating point machine mode, whether or not floating
997    arithmetic can be done on it in those registers.  Integer move instructions
998    can be used to move the values.
999 
1000    On some machines, though, the converse is true: fixed-point machine modes
1001    may not go in floating registers.  This is true if the floating registers
1002    normalize any value stored in them, because storing a non-floating value
1003    there would garble it.  In this case, `HARD_REGNO_MODE_OK' should reject
1004    fixed-point machine modes in floating registers.  But if the floating
1005    registers do not automatically normalize, if you can store any bit pattern
1006    in one and retrieve it unchanged without a trap, then any machine mode may
1007    go in a floating register, so you can define this macro to say so.
1008 
1009    The primary significance of special floating registers is rather that they
1010    are the registers acceptable in floating point arithmetic instructions.
1011    However, this is of no concern to `HARD_REGNO_MODE_OK'.  You handle it by
1012    writing the proper constraints for those instructions.
1013 
1014    On some machines, the floating registers are especially slow to access, so
1015    that it is better to store a value in a stack frame than in such a register
1016    if floating point arithmetic is not being done.  As long as the floating
1017    registers are not in class `GENERAL_REGS', they will not be used unless some
1018    pattern's constraint asks for one.  */
1019 #define HARD_REGNO_MODE_OK(REGNO, MODE) frv_hard_regno_mode_ok (REGNO, MODE)
1020 
1021 /* A C expression that is nonzero if it is desirable to choose register
1022    allocation so as to avoid move instructions between a value of mode MODE1
1023    and a value of mode MODE2.
1024 
1025    If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
1026    ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
1027    zero.  */
1028 #define MODES_TIEABLE_P(MODE1, MODE2) (MODE1 == MODE2)
1029 
1030 /* Define this macro if the compiler should avoid copies to/from CCmode
1031    registers.  You should only define this macro if support fo copying to/from
1032    CCmode is incomplete.  */
1033 #define AVOID_CCMODE_COPIES
1034 
1035 
1036 /* Register Classes.  */
1037 
1038 /* An enumeral type that must be defined with all the register class names as
1039    enumeral values.  `NO_REGS' must be first.  `ALL_REGS' must be the last
1040    register class, followed by one more enumeral value, `LIM_REG_CLASSES',
1041    which is not a register class but rather tells how many classes there are.
1042 
1043    Each register class has a number, which is the value of casting the class
1044    name to type `int'.  The number serves as an index in many of the tables
1045    described below.  */
1046 enum reg_class
1047 {
1048   NO_REGS,
1049   ICC_REGS,
1050   FCC_REGS,
1051   CC_REGS,
1052   ICR_REGS,
1053   FCR_REGS,
1054   CR_REGS,
1055   LCR_REG,
1056   LR_REG,
1057   GR8_REGS,
1058   GR9_REGS,
1059   GR89_REGS,
1060   FDPIC_REGS,
1061   FDPIC_FPTR_REGS,
1062   FDPIC_CALL_REGS,
1063   SPR_REGS,
1064   QUAD_ACC_REGS,
1065   EVEN_ACC_REGS,
1066   ACC_REGS,
1067   ACCG_REGS,
1068   QUAD_FPR_REGS,
1069   FEVEN_REGS,
1070   FPR_REGS,
1071   QUAD_REGS,
1072   EVEN_REGS,
1073   GPR_REGS,
1074   ALL_REGS,
1075   LIM_REG_CLASSES
1076 };
1077 
1078 #define GENERAL_REGS GPR_REGS
1079 
1080 /* The number of distinct register classes, defined as follows:
1081 
1082         #define N_REG_CLASSES (int) LIM_REG_CLASSES  */
1083 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1084 
1085 /* An initializer containing the names of the register classes as C string
1086    constants.  These names are used in writing some of the debugging dumps.  */
1087 #define REG_CLASS_NAMES {						\
1088    "NO_REGS",								\
1089    "ICC_REGS",								\
1090    "FCC_REGS",								\
1091    "CC_REGS",								\
1092    "ICR_REGS",								\
1093    "FCR_REGS",								\
1094    "CR_REGS",								\
1095    "LCR_REG",								\
1096    "LR_REG",								\
1097    "GR8_REGS",                                                          \
1098    "GR9_REGS",                                                          \
1099    "GR89_REGS",                                                         \
1100    "FDPIC_REGS",							\
1101    "FDPIC_FPTR_REGS",							\
1102    "FDPIC_CALL_REGS",							\
1103    "SPR_REGS",								\
1104    "QUAD_ACC_REGS",							\
1105    "EVEN_ACC_REGS",							\
1106    "ACC_REGS",								\
1107    "ACCG_REGS",								\
1108    "QUAD_FPR_REGS",							\
1109    "FEVEN_REGS",							\
1110    "FPR_REGS",								\
1111    "QUAD_REGS",								\
1112    "EVEN_REGS",								\
1113    "GPR_REGS",								\
1114    "ALL_REGS"								\
1115 }
1116 
1117 /* An initializer containing the contents of the register classes, as integers
1118    which are bit masks.  The Nth integer specifies the contents of class N.
1119    The way the integer MASK is interpreted is that register R is in the class
1120    if `MASK & (1 << R)' is 1.
1121 
1122    When the machine has more than 32 registers, an integer does not suffice.
1123    Then the integers are replaced by sub-initializers, braced groupings
1124    containing several integers.  Each sub-initializer must be suitable as an
1125    initializer for the type `HARD_REG_SET' which is defined in
1126    `hard-reg-set.h'.  */
1127 #define REG_CLASS_CONTENTS						       \
1128 {  /* gr0-gr31 gr32-gr63  fr0-fr31   fr32-fr-63 cc/ccr/acc ap/spr */	       \
1129   { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* NO_REGS  */\
1130   { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000f0,0x0}, /* ICC_REGS */\
1131   { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000000f,0x0}, /* FCC_REGS */\
1132   { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000ff,0x0}, /* CC_REGS  */\
1133   { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000f000,0x0}, /* ICR_REGS */\
1134   { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000f00,0x0}, /* FCR_REGS */\
1135   { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000ff00,0x0}, /* CR_REGS  */\
1136   { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x400}, /* LCR_REGS */\
1137   { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x200}, /* LR_REGS  */\
1138   { 0x00000100,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR8_REGS */\
1139   { 0x00000200,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR9_REGS */\
1140   { 0x00000300,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR89_REGS */\
1141   { 0x00008000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_REGS */\
1142   { 0x00004000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_FPTR_REGS */\
1143   { 0x0000c000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_CALL_REGS */\
1144   { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x1e00}, /* SPR_REGS */\
1145   { 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* QUAD_ACC */\
1146   { 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* EVEN_ACC */\
1147   { 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* ACC_REGS */\
1148   { 0x00000000,0x00000000,0x00000000,0x00000000,0xf0000000,0xff}, /* ACCG_REGS*/\
1149   { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* QUAD_FPR */\
1150   { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* FEVEN_REG*/\
1151   { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* FPR_REGS */\
1152   { 0x0ffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* QUAD_REGS*/\
1153   { 0xfffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* EVEN_REGS*/\
1154   { 0xffffffff,0xffffffff,0x00000000,0x00000000,0x00000000,0x100}, /* GPR_REGS */\
1155   { 0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0x1fff}, /* ALL_REGS */\
1156 }
1157 
1158 /* The following macro defines cover classes for Integrated Register
1159    Allocator.  Cover classes is a set of non-intersected register
1160    classes covering all hard registers used for register allocation
1161    purpose.  Any move between two registers of a cover class should be
1162    cheaper than load or store of the registers.  The macro value is
1163    array of register classes with LIM_REG_CLASSES used as the end
1164    marker.  */
1165 
1166 #define IRA_COVER_CLASSES						\
1167 {									\
1168   GPR_REGS, FPR_REGS, ACC_REGS, ICR_REGS, FCR_REGS, ICC_REGS, FCC_REGS, \
1169   ACCG_REGS, SPR_REGS,							\
1170   LIM_REG_CLASSES							\
1171 }
1172 
1173 /* A C expression whose value is a register class containing hard register
1174    REGNO.  In general there is more than one such class; choose a class which
1175    is "minimal", meaning that no smaller class also contains the register.  */
1176 
1177 extern enum reg_class regno_reg_class[];
1178 #define REGNO_REG_CLASS(REGNO) regno_reg_class [REGNO]
1179 
1180 /* A macro whose definition is the name of the class to which a valid base
1181    register must belong.  A base register is one used in an address which is
1182    the register value plus a displacement.  */
1183 #define BASE_REG_CLASS GPR_REGS
1184 
1185 /* A macro whose definition is the name of the class to which a valid index
1186    register must belong.  An index register is one used in an address where its
1187    value is either multiplied by a scale factor or added to another register
1188    (as well as added to a displacement).  */
1189 #define INDEX_REG_CLASS GPR_REGS
1190 
1191 /* A C expression which defines the machine-dependent operand constraint
1192    letters for register classes.  If CHAR is such a letter, the value should be
1193    the register class corresponding to it.  Otherwise, the value should be
1194    `NO_REGS'.  The register letter `r', corresponding to class `GENERAL_REGS',
1195    will not be passed to this macro; you do not need to handle it.
1196 
1197    The following letters are unavailable, due to being used as
1198    constraints:
1199 	'0'..'9'
1200 	'<', '>'
1201 	'E', 'F', 'G', 'H'
1202 	'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P'
1203 	'Q', 'R', 'S', 'T', 'U'
1204 	'V', 'X'
1205 	'g', 'i', 'm', 'n', 'o', 'p', 'r', 's' */
1206 
1207 extern enum reg_class reg_class_from_letter[];
1208 #define REG_CLASS_FROM_LETTER(CHAR) reg_class_from_letter [(unsigned char)(CHAR)]
1209 
1210 /* A C expression which is nonzero if register number NUM is suitable for use
1211    as a base register in operand addresses.  It may be either a suitable hard
1212    register or a pseudo register that has been allocated such a hard register.  */
1213 #define REGNO_OK_FOR_BASE_P(NUM)           \
1214   ((NUM) < FIRST_PSEUDO_REGISTER           \
1215    ? GPR_P (NUM)                           \
1216    : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
1217 
1218 /* A C expression which is nonzero if register number NUM is suitable for use
1219    as an index register in operand addresses.  It may be either a suitable hard
1220    register or a pseudo register that has been allocated such a hard register.
1221 
1222    The difference between an index register and a base register is that the
1223    index register may be scaled.  If an address involves the sum of two
1224    registers, neither one of them scaled, then either one may be labeled the
1225    "base" and the other the "index"; but whichever labeling is used must fit
1226    the machine's constraints of which registers may serve in each capacity.
1227    The compiler will try both labelings, looking for one that is valid, and
1228    will reload one or both registers only if neither labeling works.  */
1229 #define REGNO_OK_FOR_INDEX_P(NUM)                                       \
1230   ((NUM) < FIRST_PSEUDO_REGISTER                                        \
1231    ? GPR_P (NUM)                                                        \
1232    : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
1233 
1234 /* A C expression that places additional restrictions on the register class to
1235    use when it is necessary to copy value X into a register in class CLASS.
1236    The value is a register class; perhaps CLASS, or perhaps another, smaller
1237    class.  On many machines, the following definition is safe:
1238 
1239         #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
1240 
1241    Sometimes returning a more restrictive class makes better code.  For
1242    example, on the 68000, when X is an integer constant that is in range for a
1243    `moveq' instruction, the value of this macro is always `DATA_REGS' as long
1244    as CLASS includes the data registers.  Requiring a data register guarantees
1245    that a `moveq' will be used.
1246 
1247    If X is a `const_double', by returning `NO_REGS' you can force X into a
1248    memory constant.  This is useful on certain machines where immediate
1249    floating values cannot be loaded into certain kinds of registers.
1250 
1251    This declaration must be present.  */
1252 #define PREFERRED_RELOAD_CLASS(X, CLASS) CLASS
1253 
1254 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1255   frv_secondary_reload_class (CLASS, MODE, X)
1256 
1257 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1258   frv_secondary_reload_class (CLASS, MODE, X)
1259 
1260 /* A C expression whose value is nonzero if pseudos that have been assigned to
1261    registers of class CLASS would likely be spilled because registers of CLASS
1262    are needed for spill registers.
1263 
1264    The default value of this macro returns 1 if CLASS has exactly one register
1265    and zero otherwise.  On most machines, this default should be used.  Only
1266    define this macro to some other expression if pseudo allocated by
1267    `local-alloc.c' end up in memory because their hard registers were needed
1268    for spill registers.  If this macro returns nonzero for those classes, those
1269    pseudos will only be allocated by `global.c', which knows how to reallocate
1270    the pseudo to another register.  If there would not be another register
1271    available for reallocation, you should not change the definition of this
1272    macro since the only effect of such a definition would be to slow down
1273    register allocation.  */
1274 #define CLASS_LIKELY_SPILLED_P(CLASS) frv_class_likely_spilled_p (CLASS)
1275 
1276 /* A C expression for the maximum number of consecutive registers of
1277    class CLASS needed to hold a value of mode MODE.
1278 
1279    This is closely related to the macro `HARD_REGNO_NREGS'.  In fact, the value
1280    of the macro `CLASS_MAX_NREGS (CLASS, MODE)' should be the maximum value of
1281    `HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO values in the class CLASS.
1282 
1283    This macro helps control the handling of multiple-word values in
1284    the reload pass.
1285 
1286    This declaration is required.  */
1287 #define CLASS_MAX_NREGS(CLASS, MODE) frv_class_max_nregs (CLASS, MODE)
1288 
1289 #define ZERO_P(x) (x == CONST0_RTX (GET_MODE (x)))
1290 
1291 /* 6-bit signed immediate.  */
1292 #define CONST_OK_FOR_I(VALUE) IN_RANGE_P(VALUE, -32, 31)
1293 /* 10-bit signed immediate.  */
1294 #define CONST_OK_FOR_J(VALUE) IN_RANGE_P(VALUE, -512, 511)
1295 /* Unused */
1296 #define CONST_OK_FOR_K(VALUE)  0
1297 /* 16-bit signed immediate.  */
1298 #define CONST_OK_FOR_L(VALUE) IN_RANGE_P(VALUE, -32768, 32767)
1299 /* 16-bit unsigned immediate.  */
1300 #define CONST_OK_FOR_M(VALUE)  IN_RANGE_P (VALUE, 0, 65535)
1301 /* 12-bit signed immediate that is negative.  */
1302 #define CONST_OK_FOR_N(VALUE) IN_RANGE_P(VALUE, -2048, -1)
1303 /* Zero */
1304 #define CONST_OK_FOR_O(VALUE) ((VALUE) == 0)
1305 /* 12-bit signed immediate that is negative.  */
1306 #define CONST_OK_FOR_P(VALUE) IN_RANGE_P(VALUE, 1, 2047)
1307 
1308 /* A C expression that defines the machine-dependent operand constraint letters
1309    (`I', `J', `K', .. 'P') that specify particular ranges of integer values.
1310    If C is one of those letters, the expression should check that VALUE, an
1311    integer, is in the appropriate range and return 1 if so, 0 otherwise.  If C
1312    is not one of those letters, the value should be 0 regardless of VALUE.  */
1313 #define CONST_OK_FOR_LETTER_P(VALUE, C)		\
1314   (  (C) == 'I' ? CONST_OK_FOR_I (VALUE)        \
1315    : (C) == 'J' ? CONST_OK_FOR_J (VALUE)        \
1316    : (C) == 'K' ? CONST_OK_FOR_K (VALUE)        \
1317    : (C) == 'L' ? CONST_OK_FOR_L (VALUE)        \
1318    : (C) == 'M' ? CONST_OK_FOR_M (VALUE)        \
1319    : (C) == 'N' ? CONST_OK_FOR_N (VALUE)        \
1320    : (C) == 'O' ? CONST_OK_FOR_O (VALUE)        \
1321    : (C) == 'P' ? CONST_OK_FOR_P (VALUE)        \
1322    : 0)
1323 
1324 
1325 /* A C expression that defines the machine-dependent operand constraint letters
1326    (`G', `H') that specify particular ranges of `const_double' values.
1327 
1328    If C is one of those letters, the expression should check that VALUE, an RTX
1329    of code `const_double', is in the appropriate range and return 1 if so, 0
1330    otherwise.  If C is not one of those letters, the value should be 0
1331    regardless of VALUE.
1332 
1333    `const_double' is used for all floating-point constants and for `DImode'
1334    fixed-point constants.  A given letter can accept either or both kinds of
1335    values.  It can use `GET_MODE' to distinguish between these kinds.  */
1336 
1337 #define CONST_DOUBLE_OK_FOR_G(VALUE)					\
1338   ((GET_MODE (VALUE) == VOIDmode 					\
1339     && CONST_DOUBLE_LOW (VALUE) == 0					\
1340     && CONST_DOUBLE_HIGH (VALUE) == 0)					\
1341    || ((GET_MODE (VALUE) == SFmode					\
1342         || GET_MODE (VALUE) == DFmode)					\
1343        && (VALUE) == CONST0_RTX (GET_MODE (VALUE))))
1344 
1345 #define CONST_DOUBLE_OK_FOR_H(VALUE) 0
1346 
1347 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)				\
1348   (  (C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE)				\
1349    : (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE)				\
1350    : 0)
1351 
1352 /* A C expression that defines the optional machine-dependent constraint
1353    letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
1354    types of operands, usually memory references, for the target machine.
1355    Normally this macro will not be defined.  If it is required for a particular
1356    target machine, it should return 1 if VALUE corresponds to the operand type
1357    represented by the constraint letter C.  If C is not defined as an extra
1358    constraint, the value returned should be 0 regardless of VALUE.
1359 
1360    For example, on the ROMP, load instructions cannot have their output in r0
1361    if the memory reference contains a symbolic address.  Constraint letter `Q'
1362    is defined as representing a memory address that does *not* contain a
1363    symbolic address.  An alternative is specified with a `Q' constraint on the
1364    input and `r' on the output.  The next alternative specifies `m' on the
1365    input and a register class that does not include r0 on the output.  */
1366 
1367 /* 12-bit relocations.  */
1368 #define EXTRA_CONSTRAINT_FOR_Q(VALUE)					\
1369   (got12_operand (VALUE, GET_MODE (VALUE)))
1370 
1371 /* Double word memory ops that take one instruction.  */
1372 #define EXTRA_CONSTRAINT_FOR_R(VALUE)					\
1373   (dbl_memory_one_insn_operand (VALUE, GET_MODE (VALUE)))
1374 
1375 /* SYMBOL_REF */
1376 #define EXTRA_CONSTRAINT_FOR_S(VALUE) \
1377   (CONSTANT_P (VALUE) && call_operand (VALUE, VOIDmode))
1378 
1379 /* Double word memory ops that take two instructions.  */
1380 #define EXTRA_CONSTRAINT_FOR_T(VALUE)					\
1381   (dbl_memory_two_insn_operand (VALUE, GET_MODE (VALUE)))
1382 
1383 /* Memory operand for conditional execution.  */
1384 #define EXTRA_CONSTRAINT_FOR_U(VALUE)					\
1385   (condexec_memory_operand (VALUE, GET_MODE (VALUE)))
1386 
1387 #define EXTRA_CONSTRAINT(VALUE, C)					\
1388   (  (C) == 'Q'   ? EXTRA_CONSTRAINT_FOR_Q (VALUE)			\
1389    : (C) == 'R' ? EXTRA_CONSTRAINT_FOR_R (VALUE)			\
1390    : (C) == 'S' ? EXTRA_CONSTRAINT_FOR_S (VALUE)			\
1391    : (C) == 'T' ? EXTRA_CONSTRAINT_FOR_T (VALUE)			\
1392    : (C) == 'U' ? EXTRA_CONSTRAINT_FOR_U (VALUE)			\
1393    : 0)
1394 
1395 #define EXTRA_MEMORY_CONSTRAINT(C,STR) \
1396   ((C) == 'U' || (C) == 'R' || (C) == 'T')
1397 
1398 #define CONSTRAINT_LEN(C, STR) \
1399   ((C) == 'D' ? 3 : DEFAULT_CONSTRAINT_LEN ((C), (STR)))
1400 
1401 #define REG_CLASS_FROM_CONSTRAINT(C, STR) \
1402   (((C) == 'D' && (STR)[1] == '8' && (STR)[2] == '9') ? GR89_REGS : \
1403    ((C) == 'D' && (STR)[1] == '0' && (STR)[2] == '9') ? GR9_REGS : \
1404    ((C) == 'D' && (STR)[1] == '0' && (STR)[2] == '8') ? GR8_REGS : \
1405    ((C) == 'D' && (STR)[1] == '1' && (STR)[2] == '4') ? FDPIC_FPTR_REGS : \
1406    ((C) == 'D' && (STR)[1] == '1' && (STR)[2] == '5') ? FDPIC_REGS : \
1407    REG_CLASS_FROM_LETTER ((C)))
1408 
1409 
1410 /* Basic Stack Layout.  */
1411 
1412 /* Structure to describe information about a saved range of registers */
1413 
1414 typedef struct frv_stack_regs {
1415   const char * name;		/* name of the register ranges */
1416   int first;			/* first register in the range */
1417   int last;			/* last register in the range */
1418   int size_1word;		/* # of bytes to be stored via 1 word stores */
1419   int size_2words;		/* # of bytes to be stored via 2 word stores */
1420   unsigned char field_p;	/* true if the registers are a single SPR */
1421   unsigned char dword_p;	/* true if we can do dword stores */
1422   unsigned char special_p;	/* true if the regs have a fixed save loc.  */
1423 } frv_stack_regs_t;
1424 
1425 /* Register ranges to look into saving.  */
1426 #define STACK_REGS_GPR		0	/* Gprs (normally gr16..gr31, gr48..gr63) */
1427 #define STACK_REGS_FPR		1	/* Fprs (normally fr16..fr31, fr48..fr63) */
1428 #define STACK_REGS_LR		2	/* LR register */
1429 #define STACK_REGS_CC		3	/* CCrs (normally not saved) */
1430 #define STACK_REGS_LCR		5	/* lcr register */
1431 #define STACK_REGS_STDARG	6	/* stdarg registers */
1432 #define STACK_REGS_STRUCT	7	/* structure return (gr3) */
1433 #define STACK_REGS_FP		8	/* FP register */
1434 #define STACK_REGS_MAX		9	/* # of register ranges */
1435 
1436 /* Values for save_p field.  */
1437 #define REG_SAVE_NO_SAVE	0	/* register not saved */
1438 #define REG_SAVE_1WORD		1	/* save the register */
1439 #define REG_SAVE_2WORDS		2	/* save register and register+1 */
1440 
1441 /* Structure used to define the frv stack.  */
1442 
1443 typedef struct frv_stack {
1444   int total_size;		/* total bytes allocated for stack */
1445   int vars_size;		/* variable save area size */
1446   int parameter_size;		/* outgoing parameter size */
1447   int stdarg_size;		/* size of regs needed to be saved for stdarg */
1448   int regs_size;		/* size of the saved registers */
1449   int regs_size_1word;		/* # of bytes to be stored via 1 word stores */
1450   int regs_size_2words;		/* # of bytes to be stored via 2 word stores */
1451   int header_size;		/* size of the old FP, struct ret., LR save */
1452   int pretend_size;		/* size of pretend args */
1453   int vars_offset;		/* offset to save local variables from new SP*/
1454   int regs_offset;		/* offset to save registers from new SP */
1455 				/* register range information */
1456   frv_stack_regs_t regs[STACK_REGS_MAX];
1457 				/* offset to store each register */
1458   int reg_offset[FIRST_PSEUDO_REGISTER];
1459 				/* whether to save register (& reg+1) */
1460   unsigned char save_p[FIRST_PSEUDO_REGISTER];
1461 } frv_stack_t;
1462 
1463 /* Define this macro if pushing a word onto the stack moves the stack pointer
1464    to a smaller address.  */
1465 #define STACK_GROWS_DOWNWARD 1
1466 
1467 /* Define this macro to nonzero if the addresses of local variable slots
1468    are at negative offsets from the frame pointer.  */
1469 #define FRAME_GROWS_DOWNWARD 1
1470 
1471 /* Offset from the frame pointer to the first local variable slot to be
1472    allocated.
1473 
1474    If `FRAME_GROWS_DOWNWARD', find the next slot's offset by subtracting the
1475    first slot's length from `STARTING_FRAME_OFFSET'.  Otherwise, it is found by
1476    adding the length of the first slot to the value `STARTING_FRAME_OFFSET'.  */
1477 #define STARTING_FRAME_OFFSET 0
1478 
1479 /* Offset from the stack pointer register to the first location at which
1480    outgoing arguments are placed.  If not specified, the default value of zero
1481    is used.  This is the proper value for most machines.
1482 
1483    If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
1484    location at which outgoing arguments are placed.  */
1485 #define STACK_POINTER_OFFSET 0
1486 
1487 /* Offset from the argument pointer register to the first argument's address.
1488    On some machines it may depend on the data type of the function.
1489 
1490    If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
1491    argument's address.  */
1492 #define FIRST_PARM_OFFSET(FUNDECL) 0
1493 
1494 /* A C expression whose value is RTL representing the address in a stack frame
1495    where the pointer to the caller's frame is stored.  Assume that FRAMEADDR is
1496    an RTL expression for the address of the stack frame itself.
1497 
1498    If you don't define this macro, the default is to return the value of
1499    FRAMEADDR--that is, the stack frame address is also the address of the stack
1500    word that points to the previous frame.  */
1501 #define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) frv_dynamic_chain_address (FRAMEADDR)
1502 
1503 /* A C expression whose value is RTL representing the value of the return
1504    address for the frame COUNT steps up from the current frame, after the
1505    prologue.  FRAMEADDR is the frame pointer of the COUNT frame, or the frame
1506    pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
1507    defined.
1508 
1509    The value of the expression must always be the correct address when COUNT is
1510    zero, but may be `NULL_RTX' if there is not way to determine the return
1511    address of other frames.  */
1512 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) frv_return_addr_rtx (COUNT, FRAMEADDR)
1513 
1514 #define RETURN_POINTER_REGNUM LR_REGNO
1515 
1516 /* A C expression whose value is RTL representing the location of the incoming
1517    return address at the beginning of any function, before the prologue.  This
1518    RTL is either a `REG', indicating that the return value is saved in `REG',
1519    or a `MEM' representing a location in the stack.
1520 
1521    You only need to define this macro if you want to support call frame
1522    debugging information like that provided by DWARF 2.  */
1523 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (SImode, RETURN_POINTER_REGNUM)
1524 
1525 
1526 /* Register That Address the Stack Frame.  */
1527 
1528 /* The register number of the stack pointer register, which must also be a
1529    fixed register according to `FIXED_REGISTERS'.  On most machines, the
1530    hardware determines which register this is.  */
1531 #define STACK_POINTER_REGNUM (GPR_FIRST + 1)
1532 
1533 /* The register number of the frame pointer register, which is used to access
1534    automatic variables in the stack frame.  On some machines, the hardware
1535    determines which register this is.  On other machines, you can choose any
1536    register you wish for this purpose.  */
1537 #define FRAME_POINTER_REGNUM (GPR_FIRST + 2)
1538 
1539 /* The register number of the arg pointer register, which is used to access the
1540    function's argument list.  On some machines, this is the same as the frame
1541    pointer register.  On some machines, the hardware determines which register
1542    this is.  On other machines, you can choose any register you wish for this
1543    purpose.  If this is not the same register as the frame pointer register,
1544    then you must mark it as a fixed register according to `FIXED_REGISTERS', or
1545    arrange to be able to eliminate it.  */
1546 
1547 /* On frv this is a fake register that is eliminated in
1548    terms of either the frame pointer or stack pointer.  */
1549 #define ARG_POINTER_REGNUM AP_FIRST
1550 
1551 /* Register numbers used for passing a function's static chain pointer.  If
1552    register windows are used, the register number as seen by the called
1553    function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as
1554    seen by the calling function is `STATIC_CHAIN_REGNUM'.  If these registers
1555    are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
1556 
1557    The static chain register need not be a fixed register.
1558 
1559    If the static chain is passed in memory, these macros should not be defined;
1560    instead, the next two macros should be defined.  */
1561 #define STATIC_CHAIN_REGNUM (GPR_FIRST + 7)
1562 #define STATIC_CHAIN_INCOMING_REGNUM (GPR_FIRST + 7)
1563 
1564 
1565 /* Eliminating the Frame Pointer and the Arg Pointer.  */
1566 
1567 /* If defined, this macro specifies a table of register pairs used to eliminate
1568    unneeded registers that point into the stack frame.  If it is not defined,
1569    the only elimination attempted by the compiler is to replace references to
1570    the frame pointer with references to the stack pointer.
1571 
1572    The definition of this macro is a list of structure initializations, each of
1573    which specifies an original and replacement register.
1574 
1575    On some machines, the position of the argument pointer is not known until
1576    the compilation is completed.  In such a case, a separate hard register must
1577    be used for the argument pointer.  This register can be eliminated by
1578    replacing it with either the frame pointer or the argument pointer,
1579    depending on whether or not the frame pointer has been eliminated.
1580 
1581    In this case, you might specify:
1582         #define ELIMINABLE_REGS  \
1583         {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1584          {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1585          {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1586 
1587    Note that the elimination of the argument pointer with the stack pointer is
1588    specified first since that is the preferred elimination.  */
1589 
1590 #define ELIMINABLE_REGS							\
1591 {									\
1592   {ARG_POINTER_REGNUM,	 STACK_POINTER_REGNUM},				\
1593   {ARG_POINTER_REGNUM,	 FRAME_POINTER_REGNUM},				\
1594   {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}				\
1595 }
1596 
1597 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'.  It specifies the
1598    initial difference between the specified pair of registers.  This macro must
1599    be defined if `ELIMINABLE_REGS' is defined.  */
1600 
1601 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
1602   (OFFSET) = frv_initial_elimination_offset (FROM, TO)
1603 
1604 
1605 /* Passing Function Arguments on the Stack.  */
1606 
1607 /* If defined, the maximum amount of space required for outgoing arguments will
1608    be computed and placed into the variable
1609    `crtl->outgoing_args_size'.  No space will be pushed onto the
1610    stack for each call; instead, the function prologue should increase the
1611    stack frame size by this amount.
1612 
1613    Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not
1614    proper.  */
1615 #define ACCUMULATE_OUTGOING_ARGS 1
1616 
1617 /* A C expression that should indicate the number of bytes of its own arguments
1618    that a function pops on returning, or 0 if the function pops no arguments
1619    and the caller must therefore pop them all after the function returns.
1620 
1621    FUNDECL is a C variable whose value is a tree node that describes the
1622    function in question.  Normally it is a node of type `FUNCTION_DECL' that
1623    describes the declaration of the function.  From this it is possible to
1624    obtain the DECL_ATTRIBUTES of the function.
1625 
1626    FUNTYPE is a C variable whose value is a tree node that describes the
1627    function in question.  Normally it is a node of type `FUNCTION_TYPE' that
1628    describes the data type of the function.  From this it is possible to obtain
1629    the data types of the value and arguments (if known).
1630 
1631    When a call to a library function is being considered, FUNTYPE will contain
1632    an identifier node for the library function.  Thus, if you need to
1633    distinguish among various library functions, you can do so by their names.
1634    Note that "library function" in this context means a function used to
1635    perform arithmetic, whose name is known specially in the compiler and was
1636    not mentioned in the C code being compiled.
1637 
1638    STACK-SIZE is the number of bytes of arguments passed on the stack.  If a
1639    variable number of bytes is passed, it is zero, and argument popping will
1640    always be the responsibility of the calling function.
1641 
1642    On the VAX, all functions always pop their arguments, so the definition of
1643    this macro is STACK-SIZE.  On the 68000, using the standard calling
1644    convention, no functions pop their arguments, so the value of the macro is
1645    always 0 in this case.  But an alternative calling convention is available
1646    in which functions that take a fixed number of arguments pop them but other
1647    functions (such as `printf') pop nothing (the caller pops all).  When this
1648    convention is in use, FUNTYPE is examined to determine whether a function
1649    takes a fixed number of arguments.  */
1650 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
1651 
1652 
1653 /* The number of register assigned to holding function arguments.  */
1654 
1655 #define FRV_NUM_ARG_REGS        6
1656 
1657 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED)                    \
1658   frv_function_arg (&CUM, MODE, TYPE, NAMED, FALSE)
1659 
1660 /* Define this macro if the target machine has "register windows", so that the
1661    register in which a function sees an arguments is not necessarily the same
1662    as the one in which the caller passed the argument.
1663 
1664    For such machines, `FUNCTION_ARG' computes the register in which the caller
1665    passes the value, and `FUNCTION_INCOMING_ARG' should be defined in a similar
1666    fashion to tell the function being called where the arguments will arrive.
1667 
1668    If `FUNCTION_INCOMING_ARG' is not defined, `FUNCTION_ARG' serves both
1669    purposes.  */
1670 
1671 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED)			\
1672   frv_function_arg (&CUM, MODE, TYPE, NAMED, TRUE)
1673 
1674 /* A C type for declaring a variable that is used as the first argument of
1675    `FUNCTION_ARG' and other related values.  For some target machines, the type
1676    `int' suffices and can hold the number of bytes of argument so far.
1677 
1678    There is no need to record in `CUMULATIVE_ARGS' anything about the arguments
1679    that have been passed on the stack.  The compiler has other variables to
1680    keep track of that.  For target machines on which all arguments are passed
1681    on the stack, there is no need to store anything in `CUMULATIVE_ARGS';
1682    however, the data structure must exist and should not be empty, so use
1683    `int'.  */
1684 #define CUMULATIVE_ARGS int
1685 
1686 /* A C statement (sans semicolon) for initializing the variable CUM for the
1687    state at the beginning of the argument list.  The variable has type
1688    `CUMULATIVE_ARGS'.  The value of FNTYPE is the tree node for the data type
1689    of the function which will receive the args, or 0 if the args are to a
1690    compiler support library function.  The value of INDIRECT is nonzero when
1691    processing an indirect call, for example a call through a function pointer.
1692    The value of INDIRECT is zero for a call to an explicitly named function, a
1693    library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
1694    arguments for the function being compiled.
1695 
1696    When processing a call to a compiler support library function, LIBNAME
1697    identifies which one.  It is a `symbol_ref' rtx which contains the name of
1698    the function, as a string.  LIBNAME is 0 when an ordinary C function call is
1699    being processed.  Thus, each time this macro is called, either LIBNAME or
1700    FNTYPE is nonzero, but never both of them at once.  */
1701 
1702 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1703   frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, FNDECL, FALSE)
1704 
1705 /* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1706    arguments for the function being compiled.  If this macro is undefined,
1707    `INIT_CUMULATIVE_ARGS' is used instead.
1708 
1709    The value passed for LIBNAME is always 0, since library routines with
1710    special calling conventions are never compiled with GCC.  The argument
1711    LIBNAME exists for symmetry with `INIT_CUMULATIVE_ARGS'.  */
1712 
1713 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1714   frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, NULL, TRUE)
1715 
1716 /* A C statement (sans semicolon) to update the summarizer variable CUM to
1717    advance past an argument in the argument list.  The values MODE, TYPE and
1718    NAMED describe that argument.  Once this is done, the variable CUM is
1719    suitable for analyzing the *following* argument with `FUNCTION_ARG', etc.
1720 
1721    This macro need not do anything if the argument in question was passed on
1722    the stack.  The compiler knows how to track the amount of stack space used
1723    for arguments without any special help.  */
1724 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)			\
1725   frv_function_arg_advance (&CUM, MODE, TYPE, NAMED)
1726 
1727 /* If defined, a C expression that gives the alignment boundary, in bits, of an
1728    argument with the specified mode and type.  If it is not defined,
1729    `PARM_BOUNDARY' is used for all arguments.  */
1730 
1731 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1732   frv_function_arg_boundary (MODE, TYPE)
1733 
1734 /* A C expression that is nonzero if REGNO is the number of a hard register in
1735    which function arguments are sometimes passed.  This does *not* include
1736    implicit arguments such as the static chain and the structure-value address.
1737    On many machines, no registers can be used for this purpose since all
1738    function arguments are pushed on the stack.  */
1739 #define FUNCTION_ARG_REGNO_P(REGNO) \
1740   ((REGNO) >= FIRST_ARG_REGNUM && ((REGNO) <= LAST_ARG_REGNUM))
1741 
1742 
1743 /* How Scalar Function Values are Returned.  */
1744 
1745 /* The number of the hard register that is used to return a scalar value from a
1746    function call.  */
1747 #define RETURN_VALUE_REGNUM	(GPR_FIRST + 8)
1748 
1749 #define FUNCTION_VALUE_REGNO_P(REGNO) frv_function_value_regno_p (REGNO)
1750 
1751 
1752 /* How Large Values are Returned.  */
1753 
1754 /* The number of the register that is used to pass the structure
1755    value address.  */
1756 #define FRV_STRUCT_VALUE_REGNUM (GPR_FIRST + 3)
1757 
1758 
1759 /* Function Entry and Exit.  */
1760 
1761 /* Define this macro as a C expression that is nonzero if the return
1762    instruction or the function epilogue ignores the value of the stack pointer;
1763    in other words, if it is safe to delete an instruction to adjust the stack
1764    pointer before a return from the function.
1765 
1766    Note that this macro's value is relevant only for functions for which frame
1767    pointers are maintained.  It is never safe to delete a final stack
1768    adjustment in a function that has no frame pointer, and the compiler knows
1769    this regardless of `EXIT_IGNORE_STACK'.  */
1770 #define EXIT_IGNORE_STACK 1
1771 
1772 /* Generating Code for Profiling.  */
1773 
1774 /* A C statement or compound statement to output to FILE some assembler code to
1775    call the profiling subroutine `mcount'.  Before calling, the assembler code
1776    must load the address of a counter variable into a register where `mcount'
1777    expects to find the address.  The name of this variable is `LP' followed by
1778    the number LABELNO, so you would generate the name using `LP%d' in a
1779    `fprintf'.
1780 
1781    The details of how the address should be passed to `mcount' are determined
1782    by your operating system environment, not by GCC.  To figure them out,
1783    compile a small program for profiling using the system's installed C
1784    compiler and look at the assembler code that results.
1785 
1786    This declaration must be present, but it can be an abort if profiling is
1787    not implemented.  */
1788 
1789 #define FUNCTION_PROFILER(FILE, LABELNO)
1790 
1791 /* Trampolines for Nested Functions.  */
1792 
1793 /* A C expression for the size in bytes of the trampoline, as an integer.  */
1794 #define TRAMPOLINE_SIZE frv_trampoline_size ()
1795 
1796 /* Alignment required for trampolines, in bits.
1797 
1798    If you don't define this macro, the value of `BIGGEST_ALIGNMENT' is used for
1799    aligning trampolines.  */
1800 #define TRAMPOLINE_ALIGNMENT (TARGET_FDPIC ? 64 : 32)
1801 
1802 /* Define this macro if trampolines need a special subroutine to do their work.
1803    The macro should expand to a series of `asm' statements which will be
1804    compiled with GCC.  They go in a library function named
1805    `__transfer_from_trampoline'.
1806 
1807    If you need to avoid executing the ordinary prologue code of a compiled C
1808    function when you jump to the subroutine, you can do so by placing a special
1809    label of your own in the assembler code.  Use one `asm' statement to
1810    generate an assembler label, and another to make the label global.  Then
1811    trampolines can use that label to jump directly to your special assembler
1812    code.  */
1813 
1814 #ifdef __FRV_UNDERSCORE__
1815 #define TRAMPOLINE_TEMPLATE_NAME "___trampoline_template"
1816 #else
1817 #define TRAMPOLINE_TEMPLATE_NAME "__trampoline_template"
1818 #endif
1819 
1820 #define Twrite _write
1821 
1822 #if ! __FRV_FDPIC__
1823 #define TRANSFER_FROM_TRAMPOLINE					\
1824 extern int Twrite (int, const void *, unsigned);			\
1825 									\
1826 void									\
1827 __trampoline_setup (short * addr, int size, int fnaddr, int sc)		\
1828 {									\
1829   extern short __trampoline_template[];					\
1830   short * to = addr;							\
1831   short * from = &__trampoline_template[0];				\
1832   int i;								\
1833 									\
1834   if (size < 20)							\
1835     {									\
1836       Twrite (2, "__trampoline_setup bad size\n",			\
1837 	      sizeof ("__trampoline_setup bad size\n") - 1);		\
1838       exit (-1);							\
1839     }									\
1840 									\
1841   to[0] = from[0];							\
1842   to[1] = (short)(fnaddr);						\
1843   to[2] = from[2];							\
1844   to[3] = (short)(sc);							\
1845   to[4] = from[4];							\
1846   to[5] = (short)(fnaddr >> 16);					\
1847   to[6] = from[6];							\
1848   to[7] = (short)(sc >> 16);						\
1849   to[8] = from[8];							\
1850   to[9] = from[9];							\
1851 									\
1852   for (i = 0; i < 20; i++)						\
1853     __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
1854 }									\
1855 									\
1856 __asm__("\n"								\
1857 	"\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n"			\
1858 	"\t.text\n"							\
1859 	TRAMPOLINE_TEMPLATE_NAME ":\n"					\
1860 	"\tsetlos #0, gr6\n"	/* jump register */			\
1861 	"\tsetlos #0, gr7\n"	/* static chain */			\
1862 	"\tsethi #0, gr6\n"						\
1863 	"\tsethi #0, gr7\n"						\
1864 	"\tjmpl @(gr0,gr6)\n");
1865 #else
1866 #define TRANSFER_FROM_TRAMPOLINE					\
1867 extern int Twrite (int, const void *, unsigned);			\
1868 									\
1869 void									\
1870 __trampoline_setup (addr, size, fnaddr, sc)				\
1871      short * addr;							\
1872      int size;								\
1873      int fnaddr;							\
1874      int sc;								\
1875 {									\
1876   extern short __trampoline_template[];					\
1877   short * from = &__trampoline_template[0];				\
1878   int i;								\
1879   short **desc = (short **)addr;					\
1880   short * to = addr + 4;						\
1881 									\
1882   if (size != 32)							\
1883     {									\
1884       Twrite (2, "__trampoline_setup bad size\n",			\
1885 	      sizeof ("__trampoline_setup bad size\n") - 1);		\
1886       exit (-1);							\
1887     }									\
1888 									\
1889   /* Create a function descriptor with the address of the code below
1890      and NULL as the FDPIC value.  We don't need the real GOT value
1891      here, since we don't use it, so we use NULL, that is just as
1892      good.  */								\
1893   desc[0] = to;								\
1894   desc[1] = NULL;							\
1895   size -= 8;								\
1896 									\
1897   to[0] = from[0];							\
1898   to[1] = (short)(fnaddr);						\
1899   to[2] = from[2];							\
1900   to[3] = (short)(sc);							\
1901   to[4] = from[4];							\
1902   to[5] = (short)(fnaddr >> 16);					\
1903   to[6] = from[6];							\
1904   to[7] = (short)(sc >> 16);						\
1905   to[8] = from[8];							\
1906   to[9] = from[9];							\
1907   to[10] = from[10];							\
1908   to[11] = from[11];							\
1909 									\
1910   for (i = 0; i < size; i++)						\
1911     __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
1912 }									\
1913 									\
1914 __asm__("\n"								\
1915 	"\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n"			\
1916 	"\t.text\n"							\
1917 	TRAMPOLINE_TEMPLATE_NAME ":\n"					\
1918 	"\tsetlos #0, gr6\n"	/* Jump register.  */			\
1919 	"\tsetlos #0, gr7\n"	/* Static chain.  */			\
1920 	"\tsethi #0, gr6\n"						\
1921 	"\tsethi #0, gr7\n"						\
1922 	"\tldd @(gr6,gr0),gr14\n"					\
1923 	"\tjmpl @(gr14,gr0)\n"						\
1924 	);
1925 #endif
1926 
1927 
1928 /* Addressing Modes.  */
1929 
1930 /* A number, the maximum number of registers that can appear in a valid memory
1931    address.  Note that it is up to you to specify a value equal to the maximum
1932    number that `TARGET_LEGITIMATE_ADDRESS_P' would ever accept.  */
1933 #define MAX_REGS_PER_ADDRESS 2
1934 
1935 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1936    use as a base register.  For hard registers, it should always accept those
1937    which the hardware permits and reject the others.  Whether the macro accepts
1938    or rejects pseudo registers must be controlled by `REG_OK_STRICT' as
1939    described above.  This usually requires two variant definitions, of which
1940    `REG_OK_STRICT' controls the one actually used.  */
1941 #ifdef REG_OK_STRICT
1942 #define REG_OK_FOR_BASE_P(X) GPR_P (REGNO (X))
1943 #else
1944 #define REG_OK_FOR_BASE_P(X) GPR_AP_OR_PSEUDO_P (REGNO (X))
1945 #endif
1946 
1947 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1948    use as an index register.
1949 
1950    The difference between an index register and a base register is that the
1951    index register may be scaled.  If an address involves the sum of two
1952    registers, neither one of them scaled, then either one may be labeled the
1953    "base" and the other the "index"; but whichever labeling is used must fit
1954    the machine's constraints of which registers may serve in each capacity.
1955    The compiler will try both labelings, looking for one that is valid, and
1956    will reload one or both registers only if neither labeling works.  */
1957 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1958 
1959 #define FIND_BASE_TERM frv_find_base_term
1960 
1961 /* A C expression that is nonzero if X is a legitimate constant for an
1962    immediate operand on the target machine.  You can assume that X satisfies
1963    `CONSTANT_P', so you need not check this.  In fact, `1' is a suitable
1964    definition for this macro on machines where anything `CONSTANT_P' is valid.  */
1965 #define LEGITIMATE_CONSTANT_P(X) frv_legitimate_constant_p (X)
1966 
1967 /* The load-and-update commands allow pre-modification in addresses.
1968    The index has to be in a register.  */
1969 #define HAVE_PRE_MODIFY_REG 1
1970 
1971 
1972 /* We define extra CC modes in frv-modes.def so we need a selector.  */
1973 
1974 #define SELECT_CC_MODE frv_select_cc_mode
1975 
1976 /* A C expression whose value is one if it is always safe to reverse a
1977    comparison whose mode is MODE.  If `SELECT_CC_MODE' can ever return MODE for
1978    a floating-point inequality comparison, then `REVERSIBLE_CC_MODE (MODE)'
1979    must be zero.
1980 
1981    You need not define this macro if it would always returns zero or if the
1982    floating-point format is anything other than `IEEE_FLOAT_FORMAT'.  For
1983    example, here is the definition used on the SPARC, where floating-point
1984    inequality comparisons are always given `CCFPEmode':
1985 
1986         #define REVERSIBLE_CC_MODE(MODE)  ((MODE) != CCFPEmode)  */
1987 
1988 /* On frv, don't consider floating point comparisons to be reversible.  In
1989    theory, fp equality comparisons can be reversible.  */
1990 #define REVERSIBLE_CC_MODE(MODE) \
1991   ((MODE) == CCmode || (MODE) == CC_UNSmode || (MODE) == CC_NZmode)
1992 
1993 /* Frv CCR_MODE's are not reversible.  */
1994 #define REVERSE_CONDEXEC_PREDICATES_P(x,y)      0
1995 
1996 
1997 /* Describing Relative Costs of Operations.  */
1998 
1999 /* A C expression for the cost of moving data from a register in class FROM to
2000    one in class TO.  The classes are expressed using the enumeration values
2001    such as `GENERAL_REGS'.  A value of 4 is the default; other values are
2002    interpreted relative to that.
2003 
2004    It is not required that the cost always equal 2 when FROM is the same as TO;
2005    on some machines it is expensive to move between registers if they are not
2006    general registers.
2007 
2008    If reload sees an insn consisting of a single `set' between two hard
2009    registers, and if `REGISTER_MOVE_COST' applied to their classes returns a
2010    value of 2, reload does not check to ensure that the constraints of the insn
2011    are met.  Setting a cost of other than 2 will allow reload to verify that
2012    the constraints are met.  You should do this if the `movM' pattern's
2013    constraints do not allow such copying.  */
2014 #define REGISTER_MOVE_COST(MODE, FROM, TO) frv_register_move_cost (FROM, TO)
2015 
2016 /* A C expression for the cost of moving data of mode M between a register and
2017    memory.  A value of 2 is the default; this cost is relative to those in
2018    `REGISTER_MOVE_COST'.
2019 
2020    If moving between registers and memory is more expensive than between two
2021    registers, you should define this macro to express the relative cost.  */
2022 #define MEMORY_MOVE_COST(M,C,I) 4
2023 
2024 /* A C expression for the cost of a branch instruction.  A value of 1 is the
2025    default; other values are interpreted relative to that.  */
2026 #define BRANCH_COST(speed_p, predictable_p) frv_branch_cost_int
2027 
2028 /* Define this macro as a C expression which is nonzero if accessing less than
2029    a word of memory (i.e. a `char' or a `short') is no faster than accessing a
2030    word of memory, i.e., if such access require more than one instruction or if
2031    there is no difference in cost between byte and (aligned) word loads.
2032 
2033    When this macro is not defined, the compiler will access a field by finding
2034    the smallest containing object; when it is defined, a fullword load will be
2035    used if alignment permits.  Unless bytes accesses are faster than word
2036    accesses, using word accesses is preferable since it may eliminate
2037    subsequent memory access if subsequent accesses occur to other fields in the
2038    same word of the structure, but to different bytes.  */
2039 #define SLOW_BYTE_ACCESS 1
2040 
2041 /* Define this macro if it is as good or better to call a constant function
2042    address than to call an address kept in a register.  */
2043 #define NO_FUNCTION_CSE
2044 
2045 
2046 /* Dividing the output into sections.  */
2047 
2048 /* A C expression whose value is a string containing the assembler operation
2049    that should precede instructions and read-only data.  Normally `".text"' is
2050    right.  */
2051 #define TEXT_SECTION_ASM_OP "\t.text"
2052 
2053 /* A C expression whose value is a string containing the assembler operation to
2054    identify the following data as writable initialized data.  Normally
2055    `".data"' is right.  */
2056 #define DATA_SECTION_ASM_OP "\t.data"
2057 
2058 /* If defined, a C expression whose value is a string containing the
2059    assembler operation to identify the following data as
2060    uninitialized global data.  If not defined, and neither
2061    `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
2062    uninitialized global data will be output in the data section if
2063    `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
2064    used.  */
2065 #define BSS_SECTION_ASM_OP "\t.section .bss,\"aw\""
2066 
2067 /* Short Data Support */
2068 #define SDATA_SECTION_ASM_OP	"\t.section .sdata,\"aw\""
2069 
2070 /* On svr4, we *do* have support for the .init and .fini sections, and we
2071    can put stuff in there to be executed before and after `main'.  We let
2072    crtstuff.c and other files know this by defining the following symbols.
2073    The definitions say how to change sections to the .init and .fini
2074    sections.  This is the same for all known svr4 assemblers.
2075 
2076    The standard System V.4 macros will work, but they look ugly in the
2077    assembly output, so redefine them.  */
2078 
2079 #undef	INIT_SECTION_ASM_OP
2080 #undef	FINI_SECTION_ASM_OP
2081 #define INIT_SECTION_ASM_OP	"\t.section .init,\"ax\""
2082 #define FINI_SECTION_ASM_OP	"\t.section .fini,\"ax\""
2083 
2084 #undef CTORS_SECTION_ASM_OP
2085 #undef DTORS_SECTION_ASM_OP
2086 #define CTORS_SECTION_ASM_OP	"\t.section\t.ctors,\"a\""
2087 #define DTORS_SECTION_ASM_OP	"\t.section\t.dtors,\"a\""
2088 
2089 /* A C expression whose value is a string containing the assembler operation to
2090    switch to the fixup section that records all initialized pointers in a -fpic
2091    program so they can be changed program startup time if the program is loaded
2092    at a different address than linked for.  */
2093 #define FIXUP_SECTION_ASM_OP	"\t.section .rofixup,\"a\""
2094 
2095 /* Position Independent Code.  */
2096 
2097 /* A C expression that is nonzero if X is a legitimate immediate operand on the
2098    target machine when generating position independent code.  You can assume
2099    that X satisfies `CONSTANT_P', so you need not check this.  You can also
2100    assume FLAG_PIC is true, so you need not check it either.  You need not
2101    define this macro if all constants (including `SYMBOL_REF') can be immediate
2102    operands when generating position independent code.  */
2103 #define LEGITIMATE_PIC_OPERAND_P(X)					\
2104   (   GET_CODE (X) == CONST_INT						\
2105    || GET_CODE (X) == CONST_DOUBLE					\
2106    || (GET_CODE (X) == HIGH && GET_CODE (XEXP (X, 0)) == CONST_INT)	\
2107    || got12_operand (X, VOIDmode))					\
2108 
2109 
2110 /* The Overall Framework of an Assembler File.  */
2111 
2112 /* A C string constant describing how to begin a comment in the target
2113    assembler language.  The compiler assumes that the comment will end at the
2114    end of the line.  */
2115 #define ASM_COMMENT_START ";"
2116 
2117 /* A C string constant for text to be output before each `asm' statement or
2118    group of consecutive ones.  Normally this is `"#APP"', which is a comment
2119    that has no effect on most assemblers but tells the GNU assembler that it
2120    must check the lines that follow for all valid assembler constructs.  */
2121 #define ASM_APP_ON "#APP\n"
2122 
2123 /* A C string constant for text to be output after each `asm' statement or
2124    group of consecutive ones.  Normally this is `"#NO_APP"', which tells the
2125    GNU assembler to resume making the time-saving assumptions that are valid
2126    for ordinary compiler output.  */
2127 #define ASM_APP_OFF "#NO_APP\n"
2128 
2129 
2130 /* Output of Data.  */
2131 
2132 /* This is how to output a label to dwarf/dwarf2.  */
2133 #define ASM_OUTPUT_DWARF_ADDR(STREAM, LABEL)				\
2134 do {									\
2135   fprintf (STREAM, "\t.picptr\t");					\
2136   assemble_name (STREAM, LABEL);					\
2137 } while (0)
2138 
2139 /* Whether to emit the gas specific dwarf2 line number support.  */
2140 #define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DEBUG_LOC)
2141 
2142 /* Output of Uninitialized Variables.  */
2143 
2144 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
2145    assembler definition of a local-common-label named NAME whose size is SIZE
2146    bytes.  The variable ROUNDED is the size rounded up to whatever alignment
2147    the caller wants.
2148 
2149    Use the expression `assemble_name (STREAM, NAME)' to output the name itself;
2150    before and after that, output the additional assembler syntax for defining
2151    the name, and a newline.
2152 
2153    This macro controls how the assembler definitions of uninitialized static
2154    variables are output.  */
2155 #undef ASM_OUTPUT_LOCAL
2156 
2157 /* Like `ASM_OUTPUT_LOCAL' except takes the required alignment as a separate,
2158    explicit argument.  If you define this macro, it is used in place of
2159    `ASM_OUTPUT_LOCAL', and gives you more flexibility in handling the required
2160    alignment of the variable.  The alignment is specified as the number of
2161    bits.
2162 
2163    Defined in svr4.h.  */
2164 #undef ASM_OUTPUT_ALIGNED_LOCAL
2165 
2166 /* This is for final.c, because it is used by ASM_DECLARE_OBJECT_NAME.  */
2167 extern int size_directive_output;
2168 
2169 /* Like `ASM_OUTPUT_ALIGNED_LOCAL' except that it takes an additional
2170    parameter - the DECL of variable to be output, if there is one.
2171    This macro can be called with DECL == NULL_TREE.  If you define
2172    this macro, it is used in place of `ASM_OUTPUT_LOCAL' and
2173    `ASM_OUTPUT_ALIGNED_LOCAL', and gives you more flexibility in
2174    handling the destination of the variable.  */
2175 #undef ASM_OUTPUT_ALIGNED_DECL_LOCAL
2176 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(STREAM, DECL, NAME, SIZE, ALIGN)	\
2177 do {                                                                   	\
2178   if ((SIZE) > 0 && (SIZE) <= g_switch_value)				\
2179     switch_to_section (get_named_section (NULL, ".sbss", 0));           \
2180   else                                                                 	\
2181     switch_to_section (bss_section);                                  	\
2182   ASM_OUTPUT_ALIGN (STREAM, floor_log2 ((ALIGN) / BITS_PER_UNIT));     	\
2183   ASM_DECLARE_OBJECT_NAME (STREAM, NAME, DECL);                        	\
2184   ASM_OUTPUT_SKIP (STREAM, (SIZE) ? (SIZE) : 1);                       	\
2185 } while (0)
2186 
2187 
2188 /* Output and Generation of Labels.  */
2189 
2190 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
2191    assembler definition of a label named NAME.  Use the expression
2192    `assemble_name (STREAM, NAME)' to output the name itself; before and after
2193    that, output the additional assembler syntax for defining the name, and a
2194    newline.  */
2195 #define ASM_OUTPUT_LABEL(STREAM, NAME)					\
2196 do {									\
2197   assemble_name (STREAM, NAME);						\
2198   fputs (":\n", STREAM);						\
2199 } while (0)
2200 
2201 /* Globalizing directive for a label.  */
2202 #define GLOBAL_ASM_OP "\t.globl "
2203 
2204 /* A C statement to store into the string STRING a label whose name is made
2205    from the string PREFIX and the number NUM.
2206 
2207    This string, when output subsequently by `assemble_name', should produce the
2208    output that `(*targetm.asm_out.internal_label)' would produce with the same PREFIX
2209    and NUM.
2210 
2211    If the string begins with `*', then `assemble_name' will output the rest of
2212    the string unchanged.  It is often convenient for
2213    `ASM_GENERATE_INTERNAL_LABEL' to use `*' in this way.  If the string doesn't
2214    start with `*', then `ASM_OUTPUT_LABELREF' gets to output the string, and
2215    may change it.  (Of course, `ASM_OUTPUT_LABELREF' is also part of your
2216    machine description, so you should know what it does on your machine.)
2217 
2218    Defined in svr4.h.  */
2219 #undef ASM_GENERATE_INTERNAL_LABEL
2220 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM)			\
2221 do {									\
2222   sprintf (LABEL, "*.%s%ld", PREFIX, (long)NUM);			\
2223 } while (0)
2224 
2225 
2226 /* Macros Controlling Initialization Routines.  */
2227 
2228 /* If defined, a C string constant for the assembler operation to identify the
2229    following data as initialization code.  If not defined, GCC will assume
2230    such a section does not exist.  When you are using special sections for
2231    initialization and termination functions, this macro also controls how
2232    `crtstuff.c' and `libgcc2.c' arrange to run the initialization functions.
2233 
2234    Defined in svr4.h.  */
2235 #undef INIT_SECTION_ASM_OP
2236 
2237 /* If defined, `main' will call `__main' despite the presence of
2238    `INIT_SECTION_ASM_OP'.  This macro should be defined for systems where the
2239    init section is not actually run automatically, but is still useful for
2240    collecting the lists of constructors and destructors.  */
2241 #define INVOKE__main
2242 
2243 /* Output of Assembler Instructions.  */
2244 
2245 /* A C initializer containing the assembler's names for the machine registers,
2246    each one as a C string constant.  This is what translates register numbers
2247    in the compiler into assembler language.  */
2248 #define REGISTER_NAMES							\
2249 {									\
2250  "gr0",  "sp",   "fp",   "gr3",  "gr4",  "gr5",  "gr6",  "gr7",		\
2251   "gr8",  "gr9",  "gr10", "gr11", "gr12", "gr13", "gr14", "gr15",	\
2252   "gr16", "gr17", "gr18", "gr19", "gr20", "gr21", "gr22", "gr23",	\
2253   "gr24", "gr25", "gr26", "gr27", "gr28", "gr29", "gr30", "gr31",	\
2254   "gr32", "gr33", "gr34", "gr35", "gr36", "gr37", "gr38", "gr39",	\
2255   "gr40", "gr41", "gr42", "gr43", "gr44", "gr45", "gr46", "gr47",	\
2256   "gr48", "gr49", "gr50", "gr51", "gr52", "gr53", "gr54", "gr55",	\
2257   "gr56", "gr57", "gr58", "gr59", "gr60", "gr61", "gr62", "gr63",	\
2258 									\
2259   "fr0",  "fr1",  "fr2",  "fr3",  "fr4",  "fr5",  "fr6",  "fr7",	\
2260   "fr8",  "fr9",  "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",	\
2261   "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",	\
2262   "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",	\
2263   "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",	\
2264   "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",	\
2265   "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",	\
2266   "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",	\
2267 									\
2268   "fcc0", "fcc1", "fcc2", "fcc3", "icc0", "icc1", "icc2", "icc3",	\
2269   "cc0",  "cc1",  "cc2",  "cc3",  "cc4",  "cc5",  "cc6",  "cc7",	\
2270   "acc0", "acc1", "acc2", "acc3", "acc4", "acc5", "acc6", "acc7",	\
2271   "acc8", "acc9", "acc10", "acc11",					\
2272   "accg0","accg1","accg2","accg3","accg4","accg5","accg6","accg7",	\
2273   "accg8", "accg9", "accg10", "accg11",					\
2274   "ap",   "lr",   "lcr",  "iacc0h", "iacc0l"				\
2275 }
2276 
2277 /* Define this macro if you are using an unusual assembler that
2278    requires different names for the machine instructions.
2279 
2280    The definition is a C statement or statements which output an
2281    assembler instruction opcode to the stdio stream STREAM.  The
2282    macro-operand PTR is a variable of type `char *' which points to
2283    the opcode name in its "internal" form--the form that is written
2284    in the machine description.  The definition should output the
2285    opcode name to STREAM, performing any translation you desire, and
2286    increment the variable PTR to point at the end of the opcode so
2287    that it will not be output twice.
2288 
2289    In fact, your macro definition may process less than the entire
2290    opcode name, or more than the opcode name; but if you want to
2291    process text that includes `%'-sequences to substitute operands,
2292    you must take care of the substitution yourself.  Just be sure to
2293    increment PTR over whatever text should not be output normally.
2294 
2295    If you need to look at the operand values, they can be found as the
2296    elements of `recog_operand'.
2297 
2298    If the macro definition does nothing, the instruction is output in
2299    the usual way.  */
2300 
2301 #define ASM_OUTPUT_OPCODE(STREAM, PTR)\
2302    (PTR) = frv_asm_output_opcode (STREAM, PTR)
2303 
2304 /* If defined, a C statement to be executed just prior to the output
2305    of assembler code for INSN, to modify the extracted operands so
2306    they will be output differently.
2307 
2308    Here the argument OPVEC is the vector containing the operands
2309    extracted from INSN, and NOPERANDS is the number of elements of
2310    the vector which contain meaningful data for this insn.  The
2311    contents of this vector are what will be used to convert the insn
2312    template into assembler code, so you can change the assembler
2313    output by changing the contents of the vector.
2314 
2315    This macro is useful when various assembler syntaxes share a single
2316    file of instruction patterns; by defining this macro differently,
2317    you can cause a large class of instructions to be output
2318    differently (such as with rearranged operands).  Naturally,
2319    variations in assembler syntax affecting individual insn patterns
2320    ought to be handled by writing conditional output routines in
2321    those patterns.
2322 
2323    If this macro is not defined, it is equivalent to a null statement.  */
2324 
2325 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)\
2326   frv_final_prescan_insn (INSN, OPVEC, NOPERANDS)
2327 
2328 
2329 /* A C compound statement to output to stdio stream STREAM the assembler syntax
2330    for an instruction operand X.  X is an RTL expression.
2331 
2332    CODE is a value that can be used to specify one of several ways of printing
2333    the operand.  It is used when identical operands must be printed differently
2334    depending on the context.  CODE comes from the `%' specification that was
2335    used to request printing of the operand.  If the specification was just
2336    `%DIGIT' then CODE is 0; if the specification was `%LTR DIGIT' then CODE is
2337    the ASCII code for LTR.
2338 
2339    If X is a register, this macro should print the register's name.  The names
2340    can be found in an array `reg_names' whose type is `char *[]'.  `reg_names'
2341    is initialized from `REGISTER_NAMES'.
2342 
2343    When the machine description has a specification `%PUNCT' (a `%' followed by
2344    a punctuation character), this macro is called with a null pointer for X and
2345    the punctuation character for CODE.  */
2346 #define PRINT_OPERAND(STREAM, X, CODE) frv_print_operand (STREAM, X, CODE)
2347 
2348 /* A C expression which evaluates to true if CODE is a valid punctuation
2349    character for use in the `PRINT_OPERAND' macro.  If
2350    `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no punctuation
2351    characters (except for the standard one, `%') are used in this way.  */
2352 /* . == gr0
2353    # == hint operand -- always zero for now
2354    @ == small data base register (gr16)
2355    ~ == pic register (gr17)
2356    * == temporary integer CCR register (cr3)
2357    & == temporary integer ICC register (icc3)  */
2358 #define PRINT_OPERAND_PUNCT_VALID_P(CODE)				\
2359 ((CODE) == '.' || (CODE) == '#' || (CODE) == '@' || (CODE) == '~'	\
2360  || (CODE) == '*' || (CODE) == '&')
2361 
2362 /* A C compound statement to output to stdio stream STREAM the assembler syntax
2363    for an instruction operand that is a memory reference whose address is X.  X
2364    is an RTL expression.
2365 
2366    On some machines, the syntax for a symbolic address depends on the section
2367    that the address refers to.  On these machines, define the macro
2368    `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and
2369    then check for it here.
2370 
2371    This declaration must be present.  */
2372 #define PRINT_OPERAND_ADDRESS(STREAM, X) frv_print_operand_address (STREAM, X)
2373 
2374 /* If defined, C string expressions to be used for the `%R', `%L', `%U', and
2375    `%I' options of `asm_fprintf' (see `final.c').  These are useful when a
2376    single `md' file must support multiple assembler formats.  In that case, the
2377    various `tm.h' files can define these macros differently.
2378 
2379    USER_LABEL_PREFIX is defined in svr4.h.  */
2380 #undef USER_LABEL_PREFIX
2381 #define USER_LABEL_PREFIX ""
2382 #define REGISTER_PREFIX ""
2383 #define LOCAL_LABEL_PREFIX "."
2384 #define IMMEDIATE_PREFIX "#"
2385 
2386 
2387 /* Output of dispatch tables.  */
2388 
2389 /* This macro should be provided on machines where the addresses in a dispatch
2390    table are relative to the table's own address.
2391 
2392    The definition should be a C statement to output to the stdio stream STREAM
2393    an assembler pseudo-instruction to generate a difference between two labels.
2394    VALUE and REL are the numbers of two internal labels.  The definitions of
2395    these labels are output using `(*targetm.asm_out.internal_label)', and they must be
2396    printed in the same way here.  For example,
2397 
2398         fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL)  */
2399 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2400 fprintf (STREAM, "\t.word .L%d-.L%d\n", VALUE, REL)
2401 
2402 /* This macro should be provided on machines where the addresses in a dispatch
2403    table are absolute.
2404 
2405    The definition should be a C statement to output to the stdio stream STREAM
2406    an assembler pseudo-instruction to generate a reference to a label.  VALUE
2407    is the number of an internal label whose definition is output using
2408    `(*targetm.asm_out.internal_label)'.  For example,
2409 
2410         fprintf (STREAM, "\t.word L%d\n", VALUE)  */
2411 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2412 fprintf (STREAM, "\t.word .L%d\n", VALUE)
2413 
2414 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
2415 
2416 /* Assembler Commands for Exception Regions.  */
2417 
2418 /* Define this macro to 0 if your target supports DWARF 2 frame unwind
2419    information, but it does not yet work with exception handling.  Otherwise,
2420    if your target supports this information (if it defines
2421    `INCOMING_RETURN_ADDR_RTX' and either `UNALIGNED_INT_ASM_OP' or
2422    `OBJECT_FORMAT_ELF'), GCC will provide a default definition of 1.
2423 
2424    If this macro is defined to 1, the DWARF 2 unwinder will be the default
2425    exception handling mechanism; otherwise, setjmp/longjmp will be used by
2426    default.
2427 
2428    If this macro is defined to anything, the DWARF 2 unwinder will be used
2429    instead of inline unwinders and __unwind_function in the non-setjmp case.  */
2430 #define DWARF2_UNWIND_INFO 1
2431 
2432 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2433 
2434 /* Assembler Commands for Alignment.  */
2435 
2436 /* A C statement to output to the stdio stream STREAM an assembler instruction
2437    to advance the location counter by NBYTES bytes.  Those bytes should be zero
2438    when loaded.  NBYTES will be a C expression of type `int'.
2439 
2440    Defined in svr4.h.  */
2441 #undef  ASM_OUTPUT_SKIP
2442 #define ASM_OUTPUT_SKIP(STREAM, NBYTES) \
2443   fprintf (STREAM, "\t.zero\t%u\n", (int)(NBYTES))
2444 
2445 /* A C statement to output to the stdio stream STREAM an assembler command to
2446    advance the location counter to a multiple of 2 to the POWER bytes.  POWER
2447    will be a C expression of type `int'.  */
2448 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
2449   fprintf ((STREAM), "\t.p2align %d\n", (POWER))
2450 
2451 /* Inside the text section, align with unpacked nops rather than zeros.  */
2452 #define ASM_OUTPUT_ALIGN_WITH_NOP(STREAM, POWER) \
2453   fprintf ((STREAM), "\t.p2alignl %d,0x80880000\n", (POWER))
2454 
2455 /* Macros Affecting all Debug Formats.  */
2456 
2457 /* A C expression that returns the DBX register number for the compiler
2458    register number REGNO.  In simple cases, the value of this expression may be
2459    REGNO itself.  But sometimes there are some registers that the compiler
2460    knows about and DBX does not, or vice versa.  In such cases, some register
2461    may need to have one number in the compiler and another for DBX.
2462 
2463    If two registers have consecutive numbers inside GCC, and they can be
2464    used as a pair to hold a multiword value, then they *must* have consecutive
2465    numbers after renumbering with `DBX_REGISTER_NUMBER'.  Otherwise, debuggers
2466    will be unable to access such a pair, because they expect register pairs to
2467    be consecutive in their own numbering scheme.
2468 
2469    If you find yourself defining `DBX_REGISTER_NUMBER' in way that does not
2470    preserve register pairs, then what you must do instead is redefine the
2471    actual register numbering scheme.
2472 
2473    This declaration is required.  */
2474 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2475 
2476 /* A C expression that returns the type of debugging output GCC produces
2477    when the user specifies `-g' or `-ggdb'.  Define this if you have arranged
2478    for GCC to support more than one format of debugging output.  Currently,
2479    the allowable values are `DBX_DEBUG', `SDB_DEBUG', `DWARF_DEBUG',
2480    `DWARF2_DEBUG', and `XCOFF_DEBUG'.
2481 
2482    The value of this macro only affects the default debugging output; the user
2483    can always get a specific type of output by using `-gstabs', `-gcoff',
2484    `-gdwarf-1', `-gdwarf-2', or `-gxcoff'.
2485 
2486    Defined in svr4.h.  */
2487 #undef  PREFERRED_DEBUGGING_TYPE
2488 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
2489 
2490 /* Miscellaneous Parameters.  */
2491 
2492 /* An alias for a machine mode name.  This is the machine mode that elements of
2493    a jump-table should have.  */
2494 #define CASE_VECTOR_MODE SImode
2495 
2496 /* Define this macro if operations between registers with integral mode smaller
2497    than a word are always performed on the entire register.  Most RISC machines
2498    have this property and most CISC machines do not.  */
2499 #define WORD_REGISTER_OPERATIONS
2500 
2501 /* Define this macro to be a C expression indicating when insns that read
2502    memory in MODE, an integral mode narrower than a word, set the bits outside
2503    of MODE to be either the sign-extension or the zero-extension of the data
2504    read.  Return `SIGN_EXTEND' for values of MODE for which the insn
2505    sign-extends, `ZERO_EXTEND' for which it zero-extends, and `UNKNOWN' for other
2506    modes.
2507 
2508    This macro is not called with MODE non-integral or with a width greater than
2509    or equal to `BITS_PER_WORD', so you may return any value in this case.  Do
2510    not define this macro if it would always return `UNKNOWN'.  On machines where
2511    this macro is defined, you will normally define it as the constant
2512    `SIGN_EXTEND' or `ZERO_EXTEND'.  */
2513 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
2514 
2515 /* Define if loading short immediate values into registers sign extends.  */
2516 #define SHORT_IMMEDIATES_SIGN_EXTEND
2517 
2518 /* The maximum number of bytes that a single instruction can move quickly from
2519    memory to memory.  */
2520 #define MOVE_MAX 8
2521 
2522 /* A C expression which is nonzero if on this machine it is safe to "convert"
2523    an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
2524    than INPREC) by merely operating on it as if it had only OUTPREC bits.
2525 
2526    On many machines, this expression can be 1.
2527 
2528    When `TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for modes for
2529    which `MODES_TIEABLE_P' is 0, suboptimal code can result.  If this is the
2530    case, making `TRULY_NOOP_TRUNCATION' return 0 in such cases may improve
2531    things.  */
2532 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2533 
2534 /* An alias for the machine mode for pointers.  On most machines, define this
2535    to be the integer mode corresponding to the width of a hardware pointer;
2536    `SImode' on 32-bit machine or `DImode' on 64-bit machines.  On some machines
2537    you must define this to be one of the partial integer modes, such as
2538    `PSImode'.
2539 
2540    The width of `Pmode' must be at least as large as the value of
2541    `POINTER_SIZE'.  If it is not equal, you must define the macro
2542    `POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to `Pmode'.  */
2543 #define Pmode SImode
2544 
2545 /* An alias for the machine mode used for memory references to functions being
2546    called, in `call' RTL expressions.  On most machines this should be
2547    `QImode'.  */
2548 #define FUNCTION_MODE QImode
2549 
2550 /* Define this macro to handle System V style pragmas: #pragma pack and
2551    #pragma weak.  Note, #pragma weak will only be supported if SUPPORT_WEAK is
2552    defined.
2553 
2554    Defined in svr4.h.  */
2555 #define HANDLE_SYSV_PRAGMA 1
2556 
2557 /* A C expression for the maximum number of instructions to execute via
2558    conditional execution instructions instead of a branch.  A value of
2559    BRANCH_COST+1 is the default if the machine does not use
2560    cc0, and 1 if it does use cc0.  */
2561 #define MAX_CONDITIONAL_EXECUTE frv_condexec_insns
2562 
2563 /* A C expression to modify the code described by the conditional if
2564    information CE_INFO, possibly updating the tests in TRUE_EXPR, and
2565    FALSE_EXPR for converting if-then and if-then-else code to conditional
2566    instructions.  Set either TRUE_EXPR or FALSE_EXPR to a null pointer if the
2567    tests cannot be converted.  */
2568 #define IFCVT_MODIFY_TESTS(CE_INFO, TRUE_EXPR, FALSE_EXPR)		\
2569 frv_ifcvt_modify_tests (CE_INFO, &TRUE_EXPR, &FALSE_EXPR)
2570 
2571 /* A C expression to modify the code described by the conditional if
2572    information CE_INFO, for the basic block BB, possibly updating the tests in
2573    TRUE_EXPR, and FALSE_EXPR for converting the && and || parts of if-then or
2574    if-then-else code to conditional instructions.  OLD_TRUE and OLD_FALSE are
2575    the previous tests.  Set either TRUE_EXPR or FALSE_EXPR to a null pointer if
2576    the tests cannot be converted.  */
2577 #define IFCVT_MODIFY_MULTIPLE_TESTS(CE_INFO, BB, TRUE_EXPR, FALSE_EXPR) \
2578 frv_ifcvt_modify_multiple_tests (CE_INFO, BB, &TRUE_EXPR, &FALSE_EXPR)
2579 
2580 /* A C expression to modify the code described by the conditional if
2581    information CE_INFO with the new PATTERN in INSN.  If PATTERN is a null
2582    pointer after the IFCVT_MODIFY_INSN macro executes, it is assumed that that
2583    insn cannot be converted to be executed conditionally.  */
2584 #define IFCVT_MODIFY_INSN(CE_INFO, PATTERN, INSN) \
2585 (PATTERN) = frv_ifcvt_modify_insn (CE_INFO, PATTERN, INSN)
2586 
2587 /* A C expression to perform any final machine dependent modifications in
2588    converting code to conditional execution in the code described by the
2589    conditional if information CE_INFO.  */
2590 #define IFCVT_MODIFY_FINAL(CE_INFO) frv_ifcvt_modify_final (CE_INFO)
2591 
2592 /* A C expression to cancel any machine dependent modifications in converting
2593    code to conditional execution in the code described by the conditional if
2594    information CE_INFO.  */
2595 #define IFCVT_MODIFY_CANCEL(CE_INFO) frv_ifcvt_modify_cancel (CE_INFO)
2596 
2597 /* Initialize the extra fields provided by IFCVT_EXTRA_FIELDS.  */
2598 #define IFCVT_INIT_EXTRA_FIELDS(CE_INFO) frv_ifcvt_init_extra_fields (CE_INFO)
2599 
2600 /* The definition of the following macro results in that the 2nd jump
2601    optimization (after the 2nd insn scheduling) is minimal.  It is
2602    necessary to define when start cycle marks of insns (TImode is used
2603    for this) is used for VLIW insn packing.  Some jump optimizations
2604    make such marks invalid.  These marks are corrected for some
2605    (minimal) optimizations.  ??? Probably the macro is temporary.
2606    Final solution could making the 2nd jump optimizations before the
2607    2nd instruction scheduling or corrections of the marks for all jump
2608    optimizations.  Although some jump optimizations are actually
2609    deoptimizations for VLIW (super-scalar) processors.  */
2610 
2611 #define MINIMAL_SECOND_JUMP_OPTIMIZATION
2612 
2613 
2614 /* If the following macro is defined and nonzero and deterministic
2615    finite state automata are used for pipeline hazard recognition, the
2616    code making resource-constrained software pipelining is on.  */
2617 #define RCSP_SOFTWARE_PIPELINING 1
2618 
2619 /* If the following macro is defined and nonzero and deterministic
2620    finite state automata are used for pipeline hazard recognition, we
2621    will try to exchange insns in queue ready to improve the schedule.
2622    The more macro value, the more tries will be made.  */
2623 #define FIRST_CYCLE_MULTIPASS_SCHEDULING 1
2624 
2625 /* The following macro is used only when value of
2626    FIRST_CYCLE_MULTIPASS_SCHEDULING is nonzero.  The more macro value,
2627    the more tries will be made to choose better schedule.  If the
2628    macro value is zero or negative there will be no multi-pass
2629    scheduling.  */
2630 #define FIRST_CYCLE_MULTIPASS_SCHEDULING_LOOKAHEAD frv_sched_lookahead
2631 
2632 enum frv_builtins
2633 {
2634   FRV_BUILTIN_MAND,
2635   FRV_BUILTIN_MOR,
2636   FRV_BUILTIN_MXOR,
2637   FRV_BUILTIN_MNOT,
2638   FRV_BUILTIN_MAVEH,
2639   FRV_BUILTIN_MSATHS,
2640   FRV_BUILTIN_MSATHU,
2641   FRV_BUILTIN_MADDHSS,
2642   FRV_BUILTIN_MADDHUS,
2643   FRV_BUILTIN_MSUBHSS,
2644   FRV_BUILTIN_MSUBHUS,
2645   FRV_BUILTIN_MPACKH,
2646   FRV_BUILTIN_MQADDHSS,
2647   FRV_BUILTIN_MQADDHUS,
2648   FRV_BUILTIN_MQSUBHSS,
2649   FRV_BUILTIN_MQSUBHUS,
2650   FRV_BUILTIN_MUNPACKH,
2651   FRV_BUILTIN_MDPACKH,
2652   FRV_BUILTIN_MBTOH,
2653   FRV_BUILTIN_MHTOB,
2654   FRV_BUILTIN_MCOP1,
2655   FRV_BUILTIN_MCOP2,
2656   FRV_BUILTIN_MROTLI,
2657   FRV_BUILTIN_MROTRI,
2658   FRV_BUILTIN_MWCUT,
2659   FRV_BUILTIN_MSLLHI,
2660   FRV_BUILTIN_MSRLHI,
2661   FRV_BUILTIN_MSRAHI,
2662   FRV_BUILTIN_MEXPDHW,
2663   FRV_BUILTIN_MEXPDHD,
2664   FRV_BUILTIN_MMULHS,
2665   FRV_BUILTIN_MMULHU,
2666   FRV_BUILTIN_MMULXHS,
2667   FRV_BUILTIN_MMULXHU,
2668   FRV_BUILTIN_MMACHS,
2669   FRV_BUILTIN_MMACHU,
2670   FRV_BUILTIN_MMRDHS,
2671   FRV_BUILTIN_MMRDHU,
2672   FRV_BUILTIN_MQMULHS,
2673   FRV_BUILTIN_MQMULHU,
2674   FRV_BUILTIN_MQMULXHU,
2675   FRV_BUILTIN_MQMULXHS,
2676   FRV_BUILTIN_MQMACHS,
2677   FRV_BUILTIN_MQMACHU,
2678   FRV_BUILTIN_MCPXRS,
2679   FRV_BUILTIN_MCPXRU,
2680   FRV_BUILTIN_MCPXIS,
2681   FRV_BUILTIN_MCPXIU,
2682   FRV_BUILTIN_MQCPXRS,
2683   FRV_BUILTIN_MQCPXRU,
2684   FRV_BUILTIN_MQCPXIS,
2685   FRV_BUILTIN_MQCPXIU,
2686   FRV_BUILTIN_MCUT,
2687   FRV_BUILTIN_MCUTSS,
2688   FRV_BUILTIN_MWTACC,
2689   FRV_BUILTIN_MWTACCG,
2690   FRV_BUILTIN_MRDACC,
2691   FRV_BUILTIN_MRDACCG,
2692   FRV_BUILTIN_MTRAP,
2693   FRV_BUILTIN_MCLRACC,
2694   FRV_BUILTIN_MCLRACCA,
2695   FRV_BUILTIN_MDUNPACKH,
2696   FRV_BUILTIN_MBTOHE,
2697   FRV_BUILTIN_MQXMACHS,
2698   FRV_BUILTIN_MQXMACXHS,
2699   FRV_BUILTIN_MQMACXHS,
2700   FRV_BUILTIN_MADDACCS,
2701   FRV_BUILTIN_MSUBACCS,
2702   FRV_BUILTIN_MASACCS,
2703   FRV_BUILTIN_MDADDACCS,
2704   FRV_BUILTIN_MDSUBACCS,
2705   FRV_BUILTIN_MDASACCS,
2706   FRV_BUILTIN_MABSHS,
2707   FRV_BUILTIN_MDROTLI,
2708   FRV_BUILTIN_MCPLHI,
2709   FRV_BUILTIN_MCPLI,
2710   FRV_BUILTIN_MDCUTSSI,
2711   FRV_BUILTIN_MQSATHS,
2712   FRV_BUILTIN_MQLCLRHS,
2713   FRV_BUILTIN_MQLMTHS,
2714   FRV_BUILTIN_MQSLLHI,
2715   FRV_BUILTIN_MQSRAHI,
2716   FRV_BUILTIN_MHSETLOS,
2717   FRV_BUILTIN_MHSETLOH,
2718   FRV_BUILTIN_MHSETHIS,
2719   FRV_BUILTIN_MHSETHIH,
2720   FRV_BUILTIN_MHDSETS,
2721   FRV_BUILTIN_MHDSETH,
2722   FRV_BUILTIN_SMUL,
2723   FRV_BUILTIN_UMUL,
2724   FRV_BUILTIN_PREFETCH0,
2725   FRV_BUILTIN_PREFETCH,
2726   FRV_BUILTIN_SMASS,
2727   FRV_BUILTIN_SMSSS,
2728   FRV_BUILTIN_SMU,
2729   FRV_BUILTIN_SCUTSS,
2730   FRV_BUILTIN_ADDSS,
2731   FRV_BUILTIN_SUBSS,
2732   FRV_BUILTIN_SLASS,
2733   FRV_BUILTIN_IACCreadll,
2734   FRV_BUILTIN_IACCreadl,
2735   FRV_BUILTIN_IACCsetll,
2736   FRV_BUILTIN_IACCsetl,
2737   FRV_BUILTIN_SCAN,
2738   FRV_BUILTIN_READ8,
2739   FRV_BUILTIN_READ16,
2740   FRV_BUILTIN_READ32,
2741   FRV_BUILTIN_READ64,
2742   FRV_BUILTIN_WRITE8,
2743   FRV_BUILTIN_WRITE16,
2744   FRV_BUILTIN_WRITE32,
2745   FRV_BUILTIN_WRITE64
2746 };
2747 #define FRV_BUILTIN_FIRST_NONMEDIA FRV_BUILTIN_SMUL
2748 
2749 /* Enable prototypes on the call rtl functions.  */
2750 #define MD_CALL_PROTOTYPES 1
2751 
2752 #define CPU_UNITS_QUERY 1
2753 
2754 #ifdef __FRV_FDPIC__
2755 #define CRT_GET_RFIB_DATA(dbase) \
2756   ({ extern void *_GLOBAL_OFFSET_TABLE_; (dbase) = &_GLOBAL_OFFSET_TABLE_; })
2757 #endif
2758 
2759 #endif /* __FRV_H__ */
2760