xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/config/frv/frv.h (revision 1580a27b92f58fcdcb23fdfbc04a7c2b54a0b7c8)
1 /* Target macros for the FRV port of GCC.
2    Copyright (C) 1999-2015 Free Software Foundation, Inc.
3    Contributed by Red Hat Inc.
4 
5    This file is part of GCC.
6 
7    GCC is free software; you can redistribute it and/or modify it
8    under the terms of the GNU General Public License as published
9    by the Free Software Foundation; either version 3, or (at your
10    option) any later version.
11 
12    GCC is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15    License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with GCC; see the file COPYING3.  If not see
19    <http://www.gnu.org/licenses/>.  */
20 
21 #ifndef __FRV_H__
22 #define __FRV_H__
23 
24 /* Frv general purpose macros.  */
25 /* Align an address.  */
26 #define ADDR_ALIGN(addr,align) (((addr) + (align) - 1) & ~((align) - 1))
27 
28 /* Driver configuration.  */
29 
30 /* -fpic and -fPIC used to imply the -mlibrary-pic multilib, but with
31     FDPIC which multilib to use depends on whether FDPIC is in use or
32     not.  The trick we use is to introduce -multilib-library-pic as a
33     pseudo-flag that selects the library-pic multilib, and map fpic
34     and fPIC to it only if fdpic is not selected.  Also, if fdpic is
35     selected and no PIC/PIE options are present, we imply -fPIE.
36     Otherwise, if -fpic or -fPIC are enabled and we're optimizing for
37     speed, or if we have -On with n>=3, enable inlining of PLTs.  As
38     for -mgprel-ro, we want to enable it by default, but not for -fpic or
39     -fpie.  */
40 
41 #define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS \
42 "%{mno-pack:\
43    %{!mhard-float:-msoft-float}\
44    %{!mmedia:-mno-media}}\
45  %{!mfdpic:%{fpic|fPIC: -multilib-library-pic}}\
46  %{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
47    	    %{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fPIE}}}}}}}} \
48 	  %{!mno-inline-plt:%{O*:%{!O0:%{!Os:%{fpic|fPIC:-minline-plt} \
49                     %{!fpic:%{!fPIC:%{!O:%{!O1:%{!O2:-minline-plt}}}}}}}}} \
50 	  %{!mno-gprel-ro:%{!fpic:%{!fpie:-mgprel-ro}}}} \
51 "
52 #ifndef SUBTARGET_DRIVER_SELF_SPECS
53 # define SUBTARGET_DRIVER_SELF_SPECS
54 #endif
55 
56 #undef  ASM_SPEC
57 #define ASM_SPEC "\
58 %{G*} \
59 %{mtomcat-stats} \
60 %{!mno-eflags: \
61     %{mcpu=*} \
62     %{mgpr-*} %{mfpr-*} \
63     %{msoft-float} %{mhard-float} \
64     %{mdword} %{mno-dword} \
65     %{mdouble} %{mno-double} \
66     %{mmedia} %{mno-media} \
67     %{mmuladd} %{mno-muladd} \
68     %{mpack} %{mno-pack} \
69     %{mno-fdpic:-mnopic} %{mfdpic} \
70     %{fpic|fpie: -mpic} %{fPIC|fPIE: -mPIC} %{mlibrary-pic}}"
71 
72 #undef  STARTFILE_SPEC
73 #define STARTFILE_SPEC "crt0%O%s frvbegin%O%s"
74 
75 #undef  ENDFILE_SPEC
76 #define ENDFILE_SPEC "frvend%O%s"
77 
78 
79 #define MASK_DEFAULT_FRV	\
80   (MASK_MEDIA			\
81    | MASK_DOUBLE		\
82    | MASK_MULADD		\
83    | MASK_DWORD			\
84    | MASK_PACK)
85 
86 #define MASK_DEFAULT_FR500 \
87   (MASK_MEDIA | MASK_DWORD | MASK_PACK)
88 
89 #define MASK_DEFAULT_FR550 \
90   (MASK_MEDIA | MASK_DWORD | MASK_PACK)
91 
92 #define MASK_DEFAULT_FR450	\
93   (MASK_GPR_32			\
94    | MASK_FPR_32		\
95    | MASK_MEDIA			\
96    | MASK_SOFT_FLOAT		\
97    | MASK_DWORD			\
98    | MASK_PACK)
99 
100 #define MASK_DEFAULT_FR400	\
101   (MASK_GPR_32			\
102    | MASK_FPR_32		\
103    | MASK_MEDIA			\
104    | MASK_ACC_4			\
105    | MASK_SOFT_FLOAT		\
106    | MASK_DWORD			\
107    | MASK_PACK)
108 
109 #define MASK_DEFAULT_SIMPLE \
110   (MASK_GPR_32 | MASK_SOFT_FLOAT)
111 
112 /* A C string constant that tells the GCC driver program options to pass to
113    `cc1'.  It can also specify how to translate options you give to GCC into
114    options for GCC to pass to the `cc1'.
115 
116    Do not define this macro if it does not need to do anything.  */
117 /* For ABI compliance, we need to put bss data into the normal data section.  */
118 #define CC1_SPEC "%{G*}"
119 
120 #undef	LINK_SPEC
121 #define LINK_SPEC "\
122 %{h*} %{v:-V} \
123 %{mfdpic:-melf32frvfd -z text} \
124 %{static:-dn -Bstatic} \
125 %{shared:-Bdynamic} \
126 %{symbolic:-Bsymbolic} \
127 %{G*}"
128 
129 #undef  LIB_SPEC
130 #define LIB_SPEC "--start-group -lc -lsim --end-group"
131 
132 #ifndef CPU_TYPE
133 #define CPU_TYPE		FRV_CPU_FR500
134 #endif
135 
136 /* Run-time target specifications */
137 
138 #define TARGET_CPU_CPP_BUILTINS()					\
139   do									\
140     {									\
141       int issue_rate;							\
142 									\
143       builtin_define ("__frv__");					\
144       builtin_assert ("machine=frv");					\
145 									\
146       issue_rate = frv_issue_rate ();					\
147       if (issue_rate > 1)						\
148 	builtin_define_with_int_value ("__FRV_VLIW__", issue_rate);	\
149       builtin_define_with_int_value ("__FRV_GPR__", NUM_GPRS);		\
150       builtin_define_with_int_value ("__FRV_FPR__", NUM_FPRS);		\
151       builtin_define_with_int_value ("__FRV_ACC__", NUM_ACCS);		\
152 									\
153       switch (frv_cpu_type)						\
154 	{								\
155 	case FRV_CPU_GENERIC:						\
156 	  builtin_define ("__CPU_GENERIC__");				\
157 	  break;							\
158 	case FRV_CPU_FR550:						\
159 	  builtin_define ("__CPU_FR550__");				\
160 	  break;							\
161 	case FRV_CPU_FR500:						\
162 	case FRV_CPU_TOMCAT:						\
163 	  builtin_define ("__CPU_FR500__");				\
164 	  break;							\
165 	case FRV_CPU_FR450:						\
166 	  builtin_define ("__CPU_FR450__");				\
167 	  break;							\
168 	case FRV_CPU_FR405:						\
169 	  builtin_define ("__CPU_FR405__");				\
170 	  break;							\
171 	case FRV_CPU_FR400:						\
172 	  builtin_define ("__CPU_FR400__");				\
173 	  break;							\
174 	case FRV_CPU_FR300:						\
175 	case FRV_CPU_SIMPLE:						\
176 	  builtin_define ("__CPU_FR300__");				\
177 	  break;							\
178 	}								\
179 									\
180       if (TARGET_HARD_FLOAT)						\
181 	builtin_define ("__FRV_HARD_FLOAT__");				\
182       if (TARGET_DWORD)							\
183 	builtin_define ("__FRV_DWORD__");				\
184       if (TARGET_FDPIC)							\
185 	builtin_define ("__FRV_FDPIC__");				\
186       if (flag_leading_underscore > 0)					\
187 	builtin_define ("__FRV_UNDERSCORE__");				\
188     }									\
189   while (0)
190 
191 
192 #define TARGET_HAS_FPRS		(TARGET_HARD_FLOAT || TARGET_MEDIA)
193 
194 #define NUM_GPRS		(TARGET_GPR_32? 32 : 64)
195 #define NUM_FPRS		(!TARGET_HAS_FPRS? 0 : TARGET_FPR_32? 32 : 64)
196 #define NUM_ACCS		(!TARGET_MEDIA? 0 : TARGET_ACC_4? 4 : 8)
197 
198 /* X is a valid accumulator number if (X & ACC_MASK) == X.  */
199 #define ACC_MASK						\
200   (!TARGET_MEDIA ? 0						\
201    : TARGET_ACC_4 ? 3						\
202    : frv_cpu_type == FRV_CPU_FR450 ? 11				\
203    : 7)
204 
205 /* Macros to identify the blend of media instructions available.  Revision 1
206    is the one found on the FR500.  Revision 2 includes the changes made for
207    the FR400.
208 
209    Treat the generic processor as a revision 1 machine for now, for
210    compatibility with earlier releases.  */
211 
212 #define TARGET_MEDIA_REV1					\
213   (TARGET_MEDIA							\
214    && (frv_cpu_type == FRV_CPU_GENERIC				\
215        || frv_cpu_type == FRV_CPU_FR500))
216 
217 #define TARGET_MEDIA_REV2					\
218   (TARGET_MEDIA							\
219    && (frv_cpu_type == FRV_CPU_FR400				\
220        || frv_cpu_type == FRV_CPU_FR405				\
221        || frv_cpu_type == FRV_CPU_FR450				\
222        || frv_cpu_type == FRV_CPU_FR550))
223 
224 #define TARGET_MEDIA_FR450					\
225   (frv_cpu_type == FRV_CPU_FR450)
226 
227 #define TARGET_FR500_FR550_BUILTINS				\
228    (frv_cpu_type == FRV_CPU_FR500				\
229     || frv_cpu_type == FRV_CPU_FR550)
230 
231 #define TARGET_FR405_BUILTINS					\
232   (frv_cpu_type == FRV_CPU_FR405				\
233    || frv_cpu_type == FRV_CPU_FR450)
234 
235 #ifndef HAVE_AS_TLS
236 #define HAVE_AS_TLS 0
237 #endif
238 
239 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) (TARGET_ALIGN_LABELS ? 3 : 0)
240 
241 /* Small Data Area Support.  */
242 /* Maximum size of variables that go in .sdata/.sbss.
243    The -msdata=foo switch also controls how small variables are handled.  */
244 #ifndef SDATA_DEFAULT_SIZE
245 #define SDATA_DEFAULT_SIZE 8
246 #endif
247 
248 
249 /* Storage Layout */
250 
251 /* Define this macro to have the value 1 if the most significant bit in a byte
252    has the lowest number; otherwise define it to have the value zero.  This
253    means that bit-field instructions count from the most significant bit.  If
254    the machine has no bit-field instructions, then this must still be defined,
255    but it doesn't matter which value it is defined to.  This macro need not be
256    a constant.
257 
258    This macro does not affect the way structure fields are packed into bytes or
259    words; that is controlled by `BYTES_BIG_ENDIAN'.  */
260 #define BITS_BIG_ENDIAN 1
261 
262 /* Define this macro to have the value 1 if the most significant byte in a word
263    has the lowest number.  This macro need not be a constant.  */
264 #define BYTES_BIG_ENDIAN 1
265 
266 /* Define this macro to have the value 1 if, in a multiword object, the most
267    significant word has the lowest number.  This applies to both memory
268    locations and registers; GCC fundamentally assumes that the order of
269    words in memory is the same as the order in registers.  This macro need not
270    be a constant.  */
271 #define WORDS_BIG_ENDIAN 1
272 
273 /* Number of storage units in a word; normally 4.  */
274 #define UNITS_PER_WORD 4
275 
276 /* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
277    which has the specified mode and signedness is to be stored in a register.
278    This macro is only called when TYPE is a scalar type.
279 
280    On most RISC machines, which only have operations that operate on a full
281    register, define this macro to set M to `word_mode' if M is an integer mode
282    narrower than `BITS_PER_WORD'.  In most cases, only integer modes should be
283    widened because wider-precision floating-point operations are usually more
284    expensive than their narrower counterparts.
285 
286    For most machines, the macro definition does not change UNSIGNEDP.  However,
287    some machines, have instructions that preferentially handle either signed or
288    unsigned quantities of certain modes.  For example, on the DEC Alpha, 32-bit
289    loads from memory and 32-bit add instructions sign-extend the result to 64
290    bits.  On such machines, set UNSIGNEDP according to which kind of extension
291    is more efficient.
292 
293    Do not define this macro if it would never modify MODE.  */
294 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
295   do						\
296     {						\
297       if (GET_MODE_CLASS (MODE) == MODE_INT	\
298 	  && GET_MODE_SIZE (MODE) < 4)		\
299 	(MODE) = SImode;			\
300     }						\
301   while (0)
302 
303 /* Normal alignment required for function parameters on the stack, in bits.
304    All stack parameters receive at least this much alignment regardless of data
305    type.  On most machines, this is the same as the size of an integer.  */
306 #define PARM_BOUNDARY 32
307 
308 /* Define this macro if you wish to preserve a certain alignment for the stack
309    pointer.  The definition is a C expression for the desired alignment
310    (measured in bits).
311 
312    If `PUSH_ROUNDING' is not defined, the stack will always be aligned to the
313    specified boundary.  If `PUSH_ROUNDING' is defined and specifies a less
314    strict alignment than `STACK_BOUNDARY', the stack may be momentarily
315    unaligned while pushing arguments.  */
316 #define STACK_BOUNDARY 64
317 
318 /* Alignment required for a function entry point, in bits.  */
319 #define FUNCTION_BOUNDARY 128
320 
321 /* Biggest alignment that any data type can require on this machine,
322    in bits.  */
323 #define BIGGEST_ALIGNMENT 64
324 
325 /* @@@ A hack, needed because libobjc wants to use ADJUST_FIELD_ALIGN for
326    some reason.  */
327 #ifdef IN_TARGET_LIBS
328 #define BIGGEST_FIELD_ALIGNMENT 64
329 #else
330 /* An expression for the alignment of a structure field FIELD if the
331    alignment computed in the usual way is COMPUTED.  GCC uses this
332    value instead of the value in `BIGGEST_ALIGNMENT' or
333    `BIGGEST_FIELD_ALIGNMENT', if defined, for structure fields only.  */
334 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) 				\
335   frv_adjust_field_align (FIELD, COMPUTED)
336 #endif
337 
338 /* If defined, a C expression to compute the alignment for a static variable.
339    TYPE is the data type, and ALIGN is the alignment that the object
340    would ordinarily have.  The value of this macro is used instead of that
341    alignment to align the object.
342 
343    If this macro is not defined, then ALIGN is used.
344 
345    One use of this macro is to increase alignment of medium-size data to make
346    it all fit in fewer cache lines.  Another is to cause character arrays to be
347    word-aligned so that `strcpy' calls that copy constants to character arrays
348    can be done inline.  */
349 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
350   (TREE_CODE (TYPE) == ARRAY_TYPE		\
351    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
352    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
353 
354 /* If defined, a C expression to compute the alignment given to a constant that
355    is being placed in memory.  CONSTANT is the constant and ALIGN is the
356    alignment that the object would ordinarily have.  The value of this macro is
357    used instead of that alignment to align the object.
358 
359    If this macro is not defined, then ALIGN is used.
360 
361    The typical use of this macro is to increase alignment for string constants
362    to be word aligned so that `strcpy' calls that copy constants can be done
363    inline.  */
364 #define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
365   (TREE_CODE (EXP) == STRING_CST	\
366    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
367 
368 /* Define this macro to be the value 1 if instructions will fail to work if
369    given data not on the nominal alignment.  If instructions will merely go
370    slower in that case, define this macro as 0.  */
371 #define STRICT_ALIGNMENT 1
372 
373 #define PCC_BITFIELD_TYPE_MATTERS 1
374 
375 
376 /* Layout of Source Language Data Types.  */
377 
378 #define CHAR_TYPE_SIZE         8
379 #define SHORT_TYPE_SIZE       16
380 #define INT_TYPE_SIZE         32
381 #define LONG_TYPE_SIZE        32
382 #define LONG_LONG_TYPE_SIZE   64
383 #define FLOAT_TYPE_SIZE       32
384 #define DOUBLE_TYPE_SIZE      64
385 #define LONG_DOUBLE_TYPE_SIZE 64
386 
387 /* An expression whose value is 1 or 0, according to whether the type `char'
388    should be signed or unsigned by default.  The user can always override this
389    default with the options `-fsigned-char' and `-funsigned-char'.  */
390 #define DEFAULT_SIGNED_CHAR 1
391 
392 #undef  SIZE_TYPE
393 #define SIZE_TYPE "unsigned int"
394 
395 #undef  PTRDIFF_TYPE
396 #define PTRDIFF_TYPE "int"
397 
398 #undef  WCHAR_TYPE
399 #define WCHAR_TYPE "long int"
400 
401 #undef  WCHAR_TYPE_SIZE
402 #define WCHAR_TYPE_SIZE BITS_PER_WORD
403 
404 
405 /* General purpose registers.  */
406 #define GPR_FIRST       0                       /* First gpr */
407 #define GPR_LAST        (GPR_FIRST + 63)        /* Last gpr */
408 #define GPR_R0          GPR_FIRST               /* R0, constant 0 */
409 #define GPR_FP          (GPR_FIRST + 2)         /* Frame pointer */
410 #define GPR_SP          (GPR_FIRST + 1)         /* Stack pointer */
411 						/* small data register */
412 #define SDA_BASE_REG    ((unsigned)(TARGET_FDPIC ? -1 : flag_pic ? PIC_REGNO : (GPR_FIRST + 16)))
413 #define PIC_REGNO       (GPR_FIRST + (TARGET_FDPIC?15:17))        /* PIC register.  */
414 #define FDPIC_FPTR_REGNO  (GPR_FIRST + 14)        /* uClinux PIC function pointer register.  */
415 #define FDPIC_REGNO   (GPR_FIRST + 15)        /* uClinux PIC register.  */
416 
417 #define HARD_REGNO_RENAME_OK(from,to) (TARGET_FDPIC ? ((to) != FDPIC_REG) : 1)
418 
419 #define OUR_FDPIC_REG	get_hard_reg_initial_val (SImode, FDPIC_REGNO)
420 
421 #define FPR_FIRST       64			/* First FP reg */
422 #define FPR_LAST        127			/* Last  FP reg */
423 
424 #define GPR_TEMP_NUM	frv_condexec_temps	/* # gprs to reserve for temps */
425 
426 /* We reserve the last CR and CCR in each category to be used as a reload
427    register to reload the CR/CCR registers.  This is a kludge.  */
428 #define CC_FIRST	128			/* First ICC/FCC reg */
429 #define CC_LAST		135			/* Last  ICC/FCC reg */
430 #define ICC_FIRST	(CC_FIRST + 4)		/* First ICC reg */
431 #define ICC_LAST	(CC_FIRST + 7)		/* Last  ICC reg */
432 #define ICC_TEMP	(CC_FIRST + 7)		/* Temporary ICC reg */
433 #define FCC_FIRST	(CC_FIRST)		/* First FCC reg */
434 #define FCC_LAST	(CC_FIRST + 3)		/* Last  FCC reg */
435 
436 /* Amount to shift a value to locate a ICC or FCC register in the CCR
437    register and shift it to the bottom 4 bits.  */
438 #define CC_SHIFT_RIGHT(REGNO) (((REGNO) - CC_FIRST) << 2)
439 
440 /* Mask to isolate a single ICC/FCC value.  */
441 #define CC_MASK		0xf
442 
443 /* Masks to isolate the various bits in an ICC field.  */
444 #define ICC_MASK_N	0x8	/* negative */
445 #define ICC_MASK_Z	0x4	/* zero */
446 #define ICC_MASK_V	0x2	/* overflow */
447 #define ICC_MASK_C	0x1	/* carry */
448 
449 /* Mask to isolate the N/Z flags in an ICC.  */
450 #define ICC_MASK_NZ (ICC_MASK_N | ICC_MASK_Z)
451 
452 /* Mask to isolate the Z/C flags in an ICC.  */
453 #define ICC_MASK_ZC (ICC_MASK_Z | ICC_MASK_C)
454 
455 /* Masks to isolate the various bits in a FCC field.  */
456 #define FCC_MASK_E	0x8	/* equal */
457 #define FCC_MASK_L	0x4	/* less than */
458 #define FCC_MASK_G	0x2	/* greater than */
459 #define FCC_MASK_U	0x1	/* unordered */
460 
461 /* For CCR registers, the machine wants CR4..CR7 to be used for integer
462    code and CR0..CR3 to be used for floating point.  */
463 #define CR_FIRST	136			/* First CCR */
464 #define CR_LAST		143			/* Last  CCR */
465 #define CR_NUM		(CR_LAST-CR_FIRST+1)	/* # of CCRs (8) */
466 #define ICR_FIRST	(CR_FIRST + 4)		/* First integer CCR */
467 #define ICR_LAST	(CR_FIRST + 7)		/* Last  integer CCR */
468 #define ICR_TEMP	ICR_LAST		/* Temp  integer CCR */
469 #define FCR_FIRST	(CR_FIRST + 0)		/* First float CCR */
470 #define FCR_LAST	(CR_FIRST + 3)		/* Last  float CCR */
471 
472 /* Amount to shift a value to locate a CR register in the CCCR special purpose
473    register and shift it to the bottom 2 bits.  */
474 #define CR_SHIFT_RIGHT(REGNO) (((REGNO) - CR_FIRST) << 1)
475 
476 /* Mask to isolate a single CR value.  */
477 #define CR_MASK		0x3
478 
479 #define ACC_FIRST	144			/* First acc register */
480 #define ACC_LAST	155			/* Last  acc register */
481 
482 #define ACCG_FIRST	156			/* First accg register */
483 #define ACCG_LAST	167			/* Last  accg register */
484 
485 #define AP_FIRST	168			/* fake argument pointer */
486 
487 #define SPR_FIRST	169
488 #define SPR_LAST	172
489 #define LR_REGNO	(SPR_FIRST)
490 #define LCR_REGNO	(SPR_FIRST + 1)
491 #define IACC_FIRST	(SPR_FIRST + 2)
492 #define IACC_LAST	(SPR_FIRST + 3)
493 
494 #define GPR_P(R)	IN_RANGE (R, GPR_FIRST, GPR_LAST)
495 #define GPR_OR_AP_P(R)	(GPR_P (R) || (R) == ARG_POINTER_REGNUM)
496 #define FPR_P(R)	IN_RANGE (R, FPR_FIRST, FPR_LAST)
497 #define CC_P(R)		IN_RANGE (R, CC_FIRST, CC_LAST)
498 #define ICC_P(R)	IN_RANGE (R, ICC_FIRST, ICC_LAST)
499 #define FCC_P(R)	IN_RANGE (R, FCC_FIRST, FCC_LAST)
500 #define CR_P(R)		IN_RANGE (R, CR_FIRST, CR_LAST)
501 #define ICR_P(R)	IN_RANGE (R, ICR_FIRST, ICR_LAST)
502 #define FCR_P(R)	IN_RANGE (R, FCR_FIRST, FCR_LAST)
503 #define ACC_P(R)	IN_RANGE (R, ACC_FIRST, ACC_LAST)
504 #define ACCG_P(R)	IN_RANGE (R, ACCG_FIRST, ACCG_LAST)
505 #define SPR_P(R)	IN_RANGE (R, SPR_FIRST, SPR_LAST)
506 
507 #define GPR_OR_PSEUDO_P(R)	(GPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
508 #define FPR_OR_PSEUDO_P(R)	(FPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
509 #define GPR_AP_OR_PSEUDO_P(R)	(GPR_OR_AP_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
510 #define CC_OR_PSEUDO_P(R)	(CC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
511 #define ICC_OR_PSEUDO_P(R)	(ICC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
512 #define FCC_OR_PSEUDO_P(R)	(FCC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
513 #define CR_OR_PSEUDO_P(R)	(CR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
514 #define ICR_OR_PSEUDO_P(R)	(ICR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
515 #define FCR_OR_PSEUDO_P(R)	(FCR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
516 #define ACC_OR_PSEUDO_P(R)	(ACC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
517 #define ACCG_OR_PSEUDO_P(R)	(ACCG_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
518 
519 #define MAX_STACK_IMMEDIATE_OFFSET 2047
520 
521 
522 /* Register Basics.  */
523 
524 /* Number of hardware registers known to the compiler.  They receive numbers 0
525    through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number
526    really is assigned the number `FIRST_PSEUDO_REGISTER'.  */
527 #define FIRST_PSEUDO_REGISTER (SPR_LAST + 1)
528 
529 /* The first/last register that can contain the arguments to a function.  */
530 #define FIRST_ARG_REGNUM	(GPR_FIRST + 8)
531 #define LAST_ARG_REGNUM		(FIRST_ARG_REGNUM + FRV_NUM_ARG_REGS - 1)
532 
533 /* Registers used by the exception handling functions.  These should be
534    registers that are not otherwise used by the calling sequence.  */
535 #define FIRST_EH_REGNUM		14
536 #define LAST_EH_REGNUM		15
537 
538 /* Scratch registers used in the prologue, epilogue and thunks.
539    OFFSET_REGNO is for loading constant addends that are too big for a
540    single instruction.  TEMP_REGNO is used for transferring SPRs to and from
541    the stack, and various other activities.  */
542 #define OFFSET_REGNO		4
543 #define TEMP_REGNO		5
544 
545 /* Registers used in the prologue.  OLD_SP_REGNO is the old stack pointer,
546    which is sometimes used to set up the frame pointer.  */
547 #define OLD_SP_REGNO		6
548 
549 /* Registers used in the epilogue.  STACKADJ_REGNO stores the exception
550    handler's stack adjustment.  */
551 #define STACKADJ_REGNO		6
552 
553 /* Registers used in thunks.  JMP_REGNO is used for loading the target
554    address.  */
555 #define JUMP_REGNO		6
556 
557 #define EH_RETURN_DATA_REGNO(N)	((N) <= (LAST_EH_REGNUM - FIRST_EH_REGNUM)? \
558 				 (N) + FIRST_EH_REGNUM : INVALID_REGNUM)
559 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (SImode, STACKADJ_REGNO)
560 #define EH_RETURN_HANDLER_RTX   RETURN_ADDR_RTX (0, frame_pointer_rtx)
561 
562 #define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNO)
563 
564 /* An initializer that says which registers are used for fixed purposes all
565    throughout the compiled code and are therefore not available for general
566    allocation.  These would include the stack pointer, the frame pointer
567    (except on machines where that can be used as a general register when no
568    frame pointer is needed), the program counter on machines where that is
569    considered one of the addressable registers, and any other numbered register
570    with a standard use.
571 
572    This information is expressed as a sequence of numbers, separated by commas
573    and surrounded by braces.  The Nth number is 1 if register N is fixed, 0
574    otherwise.
575 
576    The table initialized from this macro, and the table initialized by the
577    following one, may be overridden at run time either automatically, by the
578    actions of the macro `CONDITIONAL_REGISTER_USAGE', or by the user with the
579    command options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'.  */
580 
581 /* gr0  -- Hard Zero
582    gr1  -- Stack Pointer
583    gr2  -- Frame Pointer
584    gr3  -- Hidden Parameter
585    gr16 -- Small Data reserved
586    gr17 -- Pic reserved
587    gr28 -- OS reserved
588    gr29 -- OS reserved
589    gr30 -- OS reserved
590    gr31 -- OS reserved
591    cr3  -- reserved to reload FCC registers.
592    cr7  -- reserved to reload ICC registers.  */
593 #define FIXED_REGISTERS							\
594 {	/* Integer Registers */						\
595 	1, 1, 1, 1, 0, 0, 0, 0,		/* 000-007, gr0  - gr7  */	\
596 	0, 0, 0, 0, 0, 0, 0, 0,		/* 008-015, gr8  - gr15 */	\
597 	1, 1, 0, 0, 0, 0, 0, 0,		/* 016-023, gr16 - gr23 */	\
598 	0, 0, 0, 0, 1, 1, 1, 1,		/* 024-031, gr24 - gr31 */	\
599 	0, 0, 0, 0, 0, 0, 0, 0,		/* 032-039, gr32 - gr39 */	\
600 	0, 0, 0, 0, 0, 0, 0, 0,		/* 040-040, gr48 - gr47 */	\
601 	0, 0, 0, 0, 0, 0, 0, 0,		/* 048-055, gr48 - gr55 */	\
602 	0, 0, 0, 0, 0, 0, 0, 0,		/* 056-063, gr56 - gr63 */	\
603 	/* Float Registers */						\
604 	0, 0, 0, 0, 0, 0, 0, 0,		/* 064-071, fr0  - fr7  */	\
605 	0, 0, 0, 0, 0, 0, 0, 0,		/* 072-079, fr8  - fr15 */	\
606 	0, 0, 0, 0, 0, 0, 0, 0,		/* 080-087, fr16 - fr23 */	\
607 	0, 0, 0, 0, 0, 0, 0, 0,		/* 088-095, fr24 - fr31 */	\
608 	0, 0, 0, 0, 0, 0, 0, 0,		/* 096-103, fr32 - fr39 */	\
609 	0, 0, 0, 0, 0, 0, 0, 0,		/* 104-111, fr48 - fr47 */	\
610 	0, 0, 0, 0, 0, 0, 0, 0,		/* 112-119, fr48 - fr55 */	\
611 	0, 0, 0, 0, 0, 0, 0, 0,		/* 120-127, fr56 - fr63 */	\
612 	/* Condition Code Registers */					\
613 	0, 0, 0, 0,			/* 128-131, fcc0 - fcc3  */	\
614 	0, 0, 0, 1,			/* 132-135, icc0 - icc3 */	\
615 	/* Conditional execution Registers (CCR) */			\
616 	0, 0, 0, 0, 0, 0, 0, 1,		/* 136-143, cr0 - cr7 */	\
617 	/* Accumulators */						\
618 	1, 1, 1, 1, 1, 1, 1, 1,		/* 144-151, acc0  - acc7 */	\
619 	1, 1, 1, 1,			/* 152-155, acc8  - acc11 */	\
620 	1, 1, 1, 1, 1, 1, 1, 1,		/* 156-163, accg0 - accg7 */	\
621 	1, 1, 1, 1,			/* 164-167, accg8 - accg11 */	\
622 	/* Other registers */						\
623 	1,				/* 168, AP   - fake arg ptr */	\
624 	1,				/* 169, LR   - Link register*/	\
625 	0,				/* 170, LCR  - Loop count reg*/	\
626 	1, 1				/* 171-172, iacc0 */		\
627 }
628 
629 /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
630    general) by function calls as well as for fixed registers.  This macro
631    therefore identifies the registers that are not available for general
632    allocation of values that must live across function calls.
633 
634    If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
635    saves it on function entry and restores it on function exit, if the register
636    is used within the function.  */
637 #define CALL_USED_REGISTERS						\
638 {	/* Integer Registers */						\
639 	1, 1, 1, 1, 1, 1, 1, 1,		/* 000-007, gr0  - gr7  */	\
640 	1, 1, 1, 1, 1, 1, 1, 1,		/* 008-015, gr8  - gr15 */	\
641 	1, 1, 0, 0, 0, 0, 0, 0,		/* 016-023, gr16 - gr23 */	\
642 	0, 0, 0, 0, 1, 1, 1, 1,		/* 024-031, gr24 - gr31 */	\
643 	1, 1, 1, 1, 1, 1, 1, 1,		/* 032-039, gr32 - gr39 */	\
644 	1, 1, 1, 1, 1, 1, 1, 1,		/* 040-040, gr48 - gr47 */	\
645 	0, 0, 0, 0, 0, 0, 0, 0,		/* 048-055, gr48 - gr55 */	\
646 	0, 0, 0, 0, 0, 0, 0, 0,		/* 056-063, gr56 - gr63 */	\
647 	/* Float Registers */						\
648 	1, 1, 1, 1, 1, 1, 1, 1,		/* 064-071, fr0  - fr7  */	\
649 	1, 1, 1, 1, 1, 1, 1, 1,		/* 072-079, fr8  - fr15 */	\
650 	0, 0, 0, 0, 0, 0, 0, 0,		/* 080-087, fr16 - fr23 */	\
651 	0, 0, 0, 0, 0, 0, 0, 0,		/* 088-095, fr24 - fr31 */	\
652 	1, 1, 1, 1, 1, 1, 1, 1,		/* 096-103, fr32 - fr39 */	\
653 	1, 1, 1, 1, 1, 1, 1, 1,		/* 104-111, fr48 - fr47 */	\
654 	0, 0, 0, 0, 0, 0, 0, 0,		/* 112-119, fr48 - fr55 */	\
655 	0, 0, 0, 0, 0, 0, 0, 0,		/* 120-127, fr56 - fr63 */	\
656 	/* Condition Code Registers */					\
657 	1, 1, 1, 1,			/* 128-131, fcc0 - fcc3 */	\
658 	1, 1, 1, 1,			/* 132-135, icc0 - icc3  */	\
659 	/* Conditional execution Registers (CCR) */			\
660 	1, 1, 1, 1, 1, 1, 1, 1,		/* 136-143, cr0 - cr7 */	\
661 	/* Accumulators */						\
662 	1, 1, 1, 1, 1, 1, 1, 1,		/* 144-151, acc0 - acc7 */	\
663 	1, 1, 1, 1,			/* 152-155, acc8 - acc11 */	\
664 	1, 1, 1, 1, 1, 1, 1, 1,		/* 156-163, accg0 - accg7 */	\
665 	1, 1, 1, 1,			/* 164-167, accg8 - accg11 */	\
666 	/* Other registers */						\
667 	1,				/* 168, AP  - fake arg ptr */	\
668 	1,				/* 169, LR  - Link register*/	\
669 	1,				/* 170, LCR - Loop count reg */	\
670 	1, 1				/* 171-172, iacc0 */		\
671 }
672 
673 
674 /* Order of allocation of registers.  */
675 
676 /* If defined, an initializer for a vector of integers, containing the numbers
677    of hard registers in the order in which GCC should prefer to use them
678    (from most preferred to least).
679 
680    If this macro is not defined, registers are used lowest numbered first (all
681    else being equal).
682 
683    One use of this macro is on machines where the highest numbered registers
684    must always be saved and the save-multiple-registers instruction supports
685    only sequences of consecutive registers.  On such machines, define
686    `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
687    allocatable register first.  */
688 
689 /* On the FRV, allocate GR16 and GR17 after other saved registers so that we
690    have a better chance of allocating 2 registers at a time and can use the
691    double word load/store instructions in the prologue.  */
692 #define REG_ALLOC_ORDER							\
693 {									\
694   /* volatile registers */						\
695   GPR_FIRST  +  4, GPR_FIRST  +  5, GPR_FIRST  +  6, GPR_FIRST 	+  7,	\
696   GPR_FIRST  +  8, GPR_FIRST  +  9, GPR_FIRST  + 10, GPR_FIRST 	+ 11,	\
697   GPR_FIRST  + 12, GPR_FIRST  + 13, GPR_FIRST  + 14, GPR_FIRST 	+ 15,	\
698   GPR_FIRST  + 32, GPR_FIRST  + 33, GPR_FIRST  + 34, GPR_FIRST 	+ 35,	\
699   GPR_FIRST  + 36, GPR_FIRST  + 37, GPR_FIRST  + 38, GPR_FIRST 	+ 39,	\
700   GPR_FIRST  + 40, GPR_FIRST  + 41, GPR_FIRST  + 42, GPR_FIRST 	+ 43,	\
701   GPR_FIRST  + 44, GPR_FIRST  + 45, GPR_FIRST  + 46, GPR_FIRST 	+ 47,	\
702 									\
703   FPR_FIRST  +  0, FPR_FIRST  +  1, FPR_FIRST  +  2, FPR_FIRST 	+  3,	\
704   FPR_FIRST  +  4, FPR_FIRST  +  5, FPR_FIRST  +  6, FPR_FIRST 	+  7,	\
705   FPR_FIRST  +  8, FPR_FIRST  +  9, FPR_FIRST  + 10, FPR_FIRST 	+ 11,	\
706   FPR_FIRST  + 12, FPR_FIRST  + 13, FPR_FIRST  + 14, FPR_FIRST 	+ 15,	\
707   FPR_FIRST  + 32, FPR_FIRST  + 33, FPR_FIRST  + 34, FPR_FIRST 	+ 35,	\
708   FPR_FIRST  + 36, FPR_FIRST  + 37, FPR_FIRST  + 38, FPR_FIRST 	+ 39,	\
709   FPR_FIRST  + 40, FPR_FIRST  + 41, FPR_FIRST  + 42, FPR_FIRST 	+ 43,	\
710   FPR_FIRST  + 44, FPR_FIRST  + 45, FPR_FIRST  + 46, FPR_FIRST 	+ 47,	\
711 									\
712   ICC_FIRST  +  0, ICC_FIRST  +  1, ICC_FIRST  +  2, ICC_FIRST 	+  3,	\
713   FCC_FIRST  +  0, FCC_FIRST  +  1, FCC_FIRST  +  2, FCC_FIRST 	+  3,	\
714   CR_FIRST   +  0, CR_FIRST   +  1, CR_FIRST   +  2, CR_FIRST  	+  3,	\
715   CR_FIRST   +  4, CR_FIRST   +  5, CR_FIRST   +  6, CR_FIRST  	+  7,	\
716 									\
717   /* saved registers */							\
718   GPR_FIRST  + 18, GPR_FIRST  + 19,					\
719   GPR_FIRST  + 20, GPR_FIRST  + 21, GPR_FIRST  + 22, GPR_FIRST 	+ 23,	\
720   GPR_FIRST  + 24, GPR_FIRST  + 25, GPR_FIRST  + 26, GPR_FIRST 	+ 27,	\
721   GPR_FIRST  + 48, GPR_FIRST  + 49, GPR_FIRST  + 50, GPR_FIRST 	+ 51,	\
722   GPR_FIRST  + 52, GPR_FIRST  + 53, GPR_FIRST  + 54, GPR_FIRST 	+ 55,	\
723   GPR_FIRST  + 56, GPR_FIRST  + 57, GPR_FIRST  + 58, GPR_FIRST 	+ 59,	\
724   GPR_FIRST  + 60, GPR_FIRST  + 61, GPR_FIRST  + 62, GPR_FIRST 	+ 63,	\
725   GPR_FIRST  + 16, GPR_FIRST  + 17,					\
726 									\
727   FPR_FIRST  + 16, FPR_FIRST  + 17, FPR_FIRST  + 18, FPR_FIRST 	+ 19,	\
728   FPR_FIRST  + 20, FPR_FIRST  + 21, FPR_FIRST  + 22, FPR_FIRST 	+ 23,	\
729   FPR_FIRST  + 24, FPR_FIRST  + 25, FPR_FIRST  + 26, FPR_FIRST 	+ 27,	\
730   FPR_FIRST  + 28, FPR_FIRST  + 29, FPR_FIRST  + 30, FPR_FIRST 	+ 31,	\
731   FPR_FIRST  + 48, FPR_FIRST  + 49, FPR_FIRST  + 50, FPR_FIRST 	+ 51,	\
732   FPR_FIRST  + 52, FPR_FIRST  + 53, FPR_FIRST  + 54, FPR_FIRST 	+ 55,	\
733   FPR_FIRST  + 56, FPR_FIRST  + 57, FPR_FIRST  + 58, FPR_FIRST 	+ 59,	\
734   FPR_FIRST  + 60, FPR_FIRST  + 61, FPR_FIRST  + 62, FPR_FIRST 	+ 63,	\
735 									\
736   /* special or fixed registers */					\
737   GPR_FIRST  +  0, GPR_FIRST  +  1, GPR_FIRST  +  2, GPR_FIRST 	+  3,	\
738   GPR_FIRST  + 28, GPR_FIRST  + 29, GPR_FIRST  + 30, GPR_FIRST 	+ 31,	\
739   ACC_FIRST  +  0, ACC_FIRST  +  1, ACC_FIRST  +  2, ACC_FIRST 	+  3,	\
740   ACC_FIRST  +  4, ACC_FIRST  +  5, ACC_FIRST  +  6, ACC_FIRST 	+  7,	\
741   ACC_FIRST  +  8, ACC_FIRST  +  9, ACC_FIRST  + 10, ACC_FIRST 	+ 11,	\
742   ACCG_FIRST +  0, ACCG_FIRST +  1, ACCG_FIRST +  2, ACCG_FIRST	+  3,	\
743   ACCG_FIRST +  4, ACCG_FIRST +  5, ACCG_FIRST +  6, ACCG_FIRST	+  7,	\
744   ACCG_FIRST +  8, ACCG_FIRST +  9, ACCG_FIRST + 10, ACCG_FIRST	+ 11,	\
745   AP_FIRST, 	   LR_REGNO,       LCR_REGNO,				\
746   IACC_FIRST +  0, IACC_FIRST +  1					\
747 }
748 
749 
750 /* How Values Fit in Registers.  */
751 
752 /* A C expression for the number of consecutive hard registers, starting at
753    register number REGNO, required to hold a value of mode MODE.
754 
755    On a machine where all registers are exactly one word, a suitable definition
756    of this macro is
757 
758         #define HARD_REGNO_NREGS(REGNO, MODE)            \
759            ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1)  \
760             / UNITS_PER_WORD))  */
761 
762 /* On the FRV, make the CC modes take 3 words in the integer registers, so that
763    we can build the appropriate instructions to properly reload the values.  */
764 #define HARD_REGNO_NREGS(REGNO, MODE) frv_hard_regno_nregs (REGNO, MODE)
765 
766 /* A C expression that is nonzero if it is permissible to store a value of mode
767    MODE in hard register number REGNO (or in several registers starting with
768    that one).  For a machine where all registers are equivalent, a suitable
769    definition is
770 
771         #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
772 
773    It is not necessary for this macro to check for the numbers of fixed
774    registers, because the allocation mechanism considers them to be always
775    occupied.
776 
777    On some machines, double-precision values must be kept in even/odd register
778    pairs.  The way to implement that is to define this macro to reject odd
779    register numbers for such modes.
780 
781    The minimum requirement for a mode to be OK in a register is that the
782    `movMODE' instruction pattern support moves between the register and any
783    other hard register for which the mode is OK; and that moving a value into
784    the register and back out not alter it.
785 
786    Since the same instruction used to move `SImode' will work for all narrower
787    integer modes, it is not necessary on any machine for `HARD_REGNO_MODE_OK'
788    to distinguish between these modes, provided you define patterns `movhi',
789    etc., to take advantage of this.  This is useful because of the interaction
790    between `HARD_REGNO_MODE_OK' and `MODES_TIEABLE_P'; it is very desirable for
791    all integer modes to be tieable.
792 
793    Many machines have special registers for floating point arithmetic.  Often
794    people assume that floating point machine modes are allowed only in floating
795    point registers.  This is not true.  Any registers that can hold integers
796    can safely *hold* a floating point machine mode, whether or not floating
797    arithmetic can be done on it in those registers.  Integer move instructions
798    can be used to move the values.
799 
800    On some machines, though, the converse is true: fixed-point machine modes
801    may not go in floating registers.  This is true if the floating registers
802    normalize any value stored in them, because storing a non-floating value
803    there would garble it.  In this case, `HARD_REGNO_MODE_OK' should reject
804    fixed-point machine modes in floating registers.  But if the floating
805    registers do not automatically normalize, if you can store any bit pattern
806    in one and retrieve it unchanged without a trap, then any machine mode may
807    go in a floating register, so you can define this macro to say so.
808 
809    The primary significance of special floating registers is rather that they
810    are the registers acceptable in floating point arithmetic instructions.
811    However, this is of no concern to `HARD_REGNO_MODE_OK'.  You handle it by
812    writing the proper constraints for those instructions.
813 
814    On some machines, the floating registers are especially slow to access, so
815    that it is better to store a value in a stack frame than in such a register
816    if floating point arithmetic is not being done.  As long as the floating
817    registers are not in class `GENERAL_REGS', they will not be used unless some
818    pattern's constraint asks for one.  */
819 #define HARD_REGNO_MODE_OK(REGNO, MODE) frv_hard_regno_mode_ok (REGNO, MODE)
820 
821 /* A C expression that is nonzero if it is desirable to choose register
822    allocation so as to avoid move instructions between a value of mode MODE1
823    and a value of mode MODE2.
824 
825    If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
826    ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
827    zero.  */
828 #define MODES_TIEABLE_P(MODE1, MODE2) (MODE1 == MODE2)
829 
830 /* Define this macro if the compiler should avoid copies to/from CCmode
831    registers.  You should only define this macro if support fo copying to/from
832    CCmode is incomplete.  */
833 #define AVOID_CCMODE_COPIES
834 
835 
836 /* Register Classes.  */
837 
838 /* An enumeral type that must be defined with all the register class names as
839    enumeral values.  `NO_REGS' must be first.  `ALL_REGS' must be the last
840    register class, followed by one more enumeral value, `LIM_REG_CLASSES',
841    which is not a register class but rather tells how many classes there are.
842 
843    Each register class has a number, which is the value of casting the class
844    name to type `int'.  The number serves as an index in many of the tables
845    described below.  */
846 enum reg_class
847 {
848   NO_REGS,
849   ICC_REGS,
850   FCC_REGS,
851   CC_REGS,
852   ICR_REGS,
853   FCR_REGS,
854   CR_REGS,
855   LCR_REG,
856   LR_REG,
857   GR8_REGS,
858   GR9_REGS,
859   GR89_REGS,
860   FDPIC_REGS,
861   FDPIC_FPTR_REGS,
862   FDPIC_CALL_REGS,
863   SPR_REGS,
864   QUAD_ACC_REGS,
865   ACCG_REGS,
866   QUAD_FPR_REGS,
867   QUAD_REGS,
868   GPR_REGS,
869   ALL_REGS,
870   LIM_REG_CLASSES
871 };
872 
873 #define GENERAL_REGS GPR_REGS
874 
875 /* The number of distinct register classes, defined as follows:
876 
877         #define N_REG_CLASSES (int) LIM_REG_CLASSES  */
878 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
879 
880 /* An initializer containing the names of the register classes as C string
881    constants.  These names are used in writing some of the debugging dumps.  */
882 #define REG_CLASS_NAMES {						\
883    "NO_REGS",								\
884    "ICC_REGS",								\
885    "FCC_REGS",								\
886    "CC_REGS",								\
887    "ICR_REGS",								\
888    "FCR_REGS",								\
889    "CR_REGS",								\
890    "LCR_REG",								\
891    "LR_REG",								\
892    "GR8_REGS",                                                          \
893    "GR9_REGS",                                                          \
894    "GR89_REGS",                                                         \
895    "FDPIC_REGS",							\
896    "FDPIC_FPTR_REGS",							\
897    "FDPIC_CALL_REGS",							\
898    "SPR_REGS",								\
899    "QUAD_ACC_REGS",							\
900    "ACCG_REGS",								\
901    "QUAD_FPR_REGS",							\
902    "QUAD_REGS",								\
903    "GPR_REGS",								\
904    "ALL_REGS"								\
905 }
906 
907 /* An initializer containing the contents of the register classes, as integers
908    which are bit masks.  The Nth integer specifies the contents of class N.
909    The way the integer MASK is interpreted is that register R is in the class
910    if `MASK & (1 << R)' is 1.
911 
912    When the machine has more than 32 registers, an integer does not suffice.
913    Then the integers are replaced by sub-initializers, braced groupings
914    containing several integers.  Each sub-initializer must be suitable as an
915    initializer for the type `HARD_REG_SET' which is defined in
916    `hard-reg-set.h'.  */
917 #define REG_CLASS_CONTENTS						       \
918 {  /* gr0-gr31 gr32-gr63  fr0-fr31   fr32-fr-63 cc/ccr/acc ap/spr */	       \
919   { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* NO_REGS  */\
920   { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000f0,0x0}, /* ICC_REGS */\
921   { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000000f,0x0}, /* FCC_REGS */\
922   { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000ff,0x0}, /* CC_REGS  */\
923   { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000f000,0x0}, /* ICR_REGS */\
924   { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000f00,0x0}, /* FCR_REGS */\
925   { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000ff00,0x0}, /* CR_REGS  */\
926   { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x400}, /* LCR_REGS */\
927   { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x200}, /* LR_REGS  */\
928   { 0x00000100,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR8_REGS */\
929   { 0x00000200,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR9_REGS */\
930   { 0x00000300,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR89_REGS */\
931   { 0x00008000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_REGS */\
932   { 0x00004000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_FPTR_REGS */\
933   { 0x0000c000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_CALL_REGS */\
934   { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x1e00}, /* SPR_REGS */\
935   { 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* QUAD_ACC */\
936   { 0x00000000,0x00000000,0x00000000,0x00000000,0xf0000000,0xff}, /* ACCG_REGS*/\
937   { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* QUAD_FPR */\
938   { 0x0ffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* QUAD_REGS*/\
939   { 0xffffffff,0xffffffff,0x00000000,0x00000000,0x00000000,0x100}, /* GPR_REGS */\
940   { 0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0x1fff}, /* ALL_REGS */\
941 }
942 
943 #define EVEN_ACC_REGS   QUAD_ACC_REGS
944 #define ACC_REGS        QUAD_ACC_REGS
945 #define FEVEN_REGS      QUAD_FPR_REGS
946 #define FPR_REGS        QUAD_FPR_REGS
947 #define EVEN_REGS       QUAD_REGS
948 
949 /* A C expression whose value is a register class containing hard register
950    REGNO.  In general there is more than one such class; choose a class which
951    is "minimal", meaning that no smaller class also contains the register.  */
952 
953 extern enum reg_class regno_reg_class[];
954 #define REGNO_REG_CLASS(REGNO) regno_reg_class [REGNO]
955 
956 /* A macro whose definition is the name of the class to which a valid base
957    register must belong.  A base register is one used in an address which is
958    the register value plus a displacement.  */
959 #define BASE_REG_CLASS GPR_REGS
960 
961 /* A macro whose definition is the name of the class to which a valid index
962    register must belong.  An index register is one used in an address where its
963    value is either multiplied by a scale factor or added to another register
964    (as well as added to a displacement).  */
965 #define INDEX_REG_CLASS GPR_REGS
966 
967 /* A C expression which is nonzero if register number NUM is suitable for use
968    as a base register in operand addresses.  It may be either a suitable hard
969    register or a pseudo register that has been allocated such a hard register.  */
970 #define REGNO_OK_FOR_BASE_P(NUM)           \
971   ((NUM) < FIRST_PSEUDO_REGISTER           \
972    ? GPR_P (NUM)                           \
973    : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
974 
975 /* A C expression which is nonzero if register number NUM is suitable for use
976    as an index register in operand addresses.  It may be either a suitable hard
977    register or a pseudo register that has been allocated such a hard register.
978 
979    The difference between an index register and a base register is that the
980    index register may be scaled.  If an address involves the sum of two
981    registers, neither one of them scaled, then either one may be labeled the
982    "base" and the other the "index"; but whichever labeling is used must fit
983    the machine's constraints of which registers may serve in each capacity.
984    The compiler will try both labelings, looking for one that is valid, and
985    will reload one or both registers only if neither labeling works.  */
986 #define REGNO_OK_FOR_INDEX_P(NUM)                                       \
987   ((NUM) < FIRST_PSEUDO_REGISTER                                        \
988    ? GPR_P (NUM)                                                        \
989    : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
990 
991 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
992   frv_secondary_reload_class (CLASS, MODE, X)
993 
994 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
995   frv_secondary_reload_class (CLASS, MODE, X)
996 
997 /* A C expression for the maximum number of consecutive registers of
998    class CLASS needed to hold a value of mode MODE.
999 
1000    This is closely related to the macro `HARD_REGNO_NREGS'.  In fact, the value
1001    of the macro `CLASS_MAX_NREGS (CLASS, MODE)' should be the maximum value of
1002    `HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO values in the class CLASS.
1003 
1004    This macro helps control the handling of multiple-word values in
1005    the reload pass.
1006 
1007    This declaration is required.  */
1008 #define CLASS_MAX_NREGS(CLASS, MODE) frv_class_max_nregs (CLASS, MODE)
1009 
1010 #define ZERO_P(x) (x == CONST0_RTX (GET_MODE (x)))
1011 
1012 
1013 /* Basic Stack Layout.  */
1014 
1015 /* Structure to describe information about a saved range of registers */
1016 
1017 typedef struct frv_stack_regs {
1018   const char * name;		/* name of the register ranges */
1019   int first;			/* first register in the range */
1020   int last;			/* last register in the range */
1021   int size_1word;		/* # of bytes to be stored via 1 word stores */
1022   int size_2words;		/* # of bytes to be stored via 2 word stores */
1023   unsigned char field_p;	/* true if the registers are a single SPR */
1024   unsigned char dword_p;	/* true if we can do dword stores */
1025   unsigned char special_p;	/* true if the regs have a fixed save loc.  */
1026 } frv_stack_regs_t;
1027 
1028 /* Register ranges to look into saving.  */
1029 #define STACK_REGS_GPR		0	/* Gprs (normally gr16..gr31, gr48..gr63) */
1030 #define STACK_REGS_FPR		1	/* Fprs (normally fr16..fr31, fr48..fr63) */
1031 #define STACK_REGS_LR		2	/* LR register */
1032 #define STACK_REGS_CC		3	/* CCrs (normally not saved) */
1033 #define STACK_REGS_LCR		5	/* lcr register */
1034 #define STACK_REGS_STDARG	6	/* stdarg registers */
1035 #define STACK_REGS_STRUCT	7	/* structure return (gr3) */
1036 #define STACK_REGS_FP		8	/* FP register */
1037 #define STACK_REGS_MAX		9	/* # of register ranges */
1038 
1039 /* Values for save_p field.  */
1040 #define REG_SAVE_NO_SAVE	0	/* register not saved */
1041 #define REG_SAVE_1WORD		1	/* save the register */
1042 #define REG_SAVE_2WORDS		2	/* save register and register+1 */
1043 
1044 /* Structure used to define the frv stack.  */
1045 
1046 typedef struct frv_stack {
1047   int total_size;		/* total bytes allocated for stack */
1048   int vars_size;		/* variable save area size */
1049   int parameter_size;		/* outgoing parameter size */
1050   int stdarg_size;		/* size of regs needed to be saved for stdarg */
1051   int regs_size;		/* size of the saved registers */
1052   int regs_size_1word;		/* # of bytes to be stored via 1 word stores */
1053   int regs_size_2words;		/* # of bytes to be stored via 2 word stores */
1054   int header_size;		/* size of the old FP, struct ret., LR save */
1055   int pretend_size;		/* size of pretend args */
1056   int vars_offset;		/* offset to save local variables from new SP*/
1057   int regs_offset;		/* offset to save registers from new SP */
1058 				/* register range information */
1059   frv_stack_regs_t regs[STACK_REGS_MAX];
1060 				/* offset to store each register */
1061   int reg_offset[FIRST_PSEUDO_REGISTER];
1062 				/* whether to save register (& reg+1) */
1063   unsigned char save_p[FIRST_PSEUDO_REGISTER];
1064 } frv_stack_t;
1065 
1066 /* Define this macro if pushing a word onto the stack moves the stack pointer
1067    to a smaller address.  */
1068 #define STACK_GROWS_DOWNWARD 1
1069 
1070 /* Define this macro to nonzero if the addresses of local variable slots
1071    are at negative offsets from the frame pointer.  */
1072 #define FRAME_GROWS_DOWNWARD 1
1073 
1074 /* Offset from the frame pointer to the first local variable slot to be
1075    allocated.
1076 
1077    If `FRAME_GROWS_DOWNWARD', find the next slot's offset by subtracting the
1078    first slot's length from `STARTING_FRAME_OFFSET'.  Otherwise, it is found by
1079    adding the length of the first slot to the value `STARTING_FRAME_OFFSET'.  */
1080 #define STARTING_FRAME_OFFSET 0
1081 
1082 /* Offset from the stack pointer register to the first location at which
1083    outgoing arguments are placed.  If not specified, the default value of zero
1084    is used.  This is the proper value for most machines.
1085 
1086    If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
1087    location at which outgoing arguments are placed.  */
1088 #define STACK_POINTER_OFFSET 0
1089 
1090 /* Offset from the argument pointer register to the first argument's address.
1091    On some machines it may depend on the data type of the function.
1092 
1093    If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
1094    argument's address.  */
1095 #define FIRST_PARM_OFFSET(FUNDECL) 0
1096 
1097 /* A C expression whose value is RTL representing the address in a stack frame
1098    where the pointer to the caller's frame is stored.  Assume that FRAMEADDR is
1099    an RTL expression for the address of the stack frame itself.
1100 
1101    If you don't define this macro, the default is to return the value of
1102    FRAMEADDR--that is, the stack frame address is also the address of the stack
1103    word that points to the previous frame.  */
1104 #define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) frv_dynamic_chain_address (FRAMEADDR)
1105 
1106 /* A C expression whose value is RTL representing the value of the return
1107    address for the frame COUNT steps up from the current frame, after the
1108    prologue.  FRAMEADDR is the frame pointer of the COUNT frame, or the frame
1109    pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
1110    defined.
1111 
1112    The value of the expression must always be the correct address when COUNT is
1113    zero, but may be `NULL_RTX' if there is not way to determine the return
1114    address of other frames.  */
1115 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) frv_return_addr_rtx (COUNT, FRAMEADDR)
1116 
1117 #define RETURN_POINTER_REGNUM LR_REGNO
1118 
1119 /* A C expression whose value is RTL representing the location of the incoming
1120    return address at the beginning of any function, before the prologue.  This
1121    RTL is either a `REG', indicating that the return value is saved in `REG',
1122    or a `MEM' representing a location in the stack.
1123 
1124    You only need to define this macro if you want to support call frame
1125    debugging information like that provided by DWARF 2.  */
1126 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (SImode, RETURN_POINTER_REGNUM)
1127 
1128 
1129 /* Register That Address the Stack Frame.  */
1130 
1131 /* The register number of the stack pointer register, which must also be a
1132    fixed register according to `FIXED_REGISTERS'.  On most machines, the
1133    hardware determines which register this is.  */
1134 #define STACK_POINTER_REGNUM (GPR_FIRST + 1)
1135 
1136 /* The register number of the frame pointer register, which is used to access
1137    automatic variables in the stack frame.  On some machines, the hardware
1138    determines which register this is.  On other machines, you can choose any
1139    register you wish for this purpose.  */
1140 #define FRAME_POINTER_REGNUM (GPR_FIRST + 2)
1141 
1142 /* The register number of the arg pointer register, which is used to access the
1143    function's argument list.  On some machines, this is the same as the frame
1144    pointer register.  On some machines, the hardware determines which register
1145    this is.  On other machines, you can choose any register you wish for this
1146    purpose.  If this is not the same register as the frame pointer register,
1147    then you must mark it as a fixed register according to `FIXED_REGISTERS', or
1148    arrange to be able to eliminate it.  */
1149 
1150 /* On frv this is a fake register that is eliminated in
1151    terms of either the frame pointer or stack pointer.  */
1152 #define ARG_POINTER_REGNUM AP_FIRST
1153 
1154 /* Register numbers used for passing a function's static chain pointer.  If
1155    register windows are used, the register number as seen by the called
1156    function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as
1157    seen by the calling function is `STATIC_CHAIN_REGNUM'.  If these registers
1158    are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
1159 
1160    The static chain register need not be a fixed register.
1161 
1162    If the static chain is passed in memory, these macros should not be defined;
1163    instead, the next two macros should be defined.  */
1164 #define STATIC_CHAIN_REGNUM (GPR_FIRST + 7)
1165 #define STATIC_CHAIN_INCOMING_REGNUM (GPR_FIRST + 7)
1166 
1167 
1168 /* Eliminating the Frame Pointer and the Arg Pointer.  */
1169 
1170 /* If defined, this macro specifies a table of register pairs used to eliminate
1171    unneeded registers that point into the stack frame.  If it is not defined,
1172    the only elimination attempted by the compiler is to replace references to
1173    the frame pointer with references to the stack pointer.
1174 
1175    The definition of this macro is a list of structure initializations, each of
1176    which specifies an original and replacement register.
1177 
1178    On some machines, the position of the argument pointer is not known until
1179    the compilation is completed.  In such a case, a separate hard register must
1180    be used for the argument pointer.  This register can be eliminated by
1181    replacing it with either the frame pointer or the argument pointer,
1182    depending on whether or not the frame pointer has been eliminated.
1183 
1184    In this case, you might specify:
1185         #define ELIMINABLE_REGS  \
1186         {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1187          {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1188          {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1189 
1190    Note that the elimination of the argument pointer with the stack pointer is
1191    specified first since that is the preferred elimination.  */
1192 
1193 #define ELIMINABLE_REGS							\
1194 {									\
1195   {ARG_POINTER_REGNUM,	 STACK_POINTER_REGNUM},				\
1196   {ARG_POINTER_REGNUM,	 FRAME_POINTER_REGNUM},				\
1197   {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}				\
1198 }
1199 
1200 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'.  It specifies the
1201    initial difference between the specified pair of registers.  This macro must
1202    be defined if `ELIMINABLE_REGS' is defined.  */
1203 
1204 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
1205   (OFFSET) = frv_initial_elimination_offset (FROM, TO)
1206 
1207 
1208 /* Passing Function Arguments on the Stack.  */
1209 
1210 /* If defined, the maximum amount of space required for outgoing arguments will
1211    be computed and placed into the variable
1212    `crtl->outgoing_args_size'.  No space will be pushed onto the
1213    stack for each call; instead, the function prologue should increase the
1214    stack frame size by this amount.
1215 
1216    Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not
1217    proper.  */
1218 #define ACCUMULATE_OUTGOING_ARGS 1
1219 
1220 
1221 /* The number of register assigned to holding function arguments.  */
1222 
1223 #define FRV_NUM_ARG_REGS        6
1224 
1225 /* A C type for declaring a variable that is used as the first argument of
1226    `FUNCTION_ARG' and other related values.  For some target machines, the type
1227    `int' suffices and can hold the number of bytes of argument so far.
1228 
1229    There is no need to record in `CUMULATIVE_ARGS' anything about the arguments
1230    that have been passed on the stack.  The compiler has other variables to
1231    keep track of that.  For target machines on which all arguments are passed
1232    on the stack, there is no need to store anything in `CUMULATIVE_ARGS';
1233    however, the data structure must exist and should not be empty, so use
1234    `int'.  */
1235 #define CUMULATIVE_ARGS int
1236 
1237 /* A C statement (sans semicolon) for initializing the variable CUM for the
1238    state at the beginning of the argument list.  The variable has type
1239    `CUMULATIVE_ARGS'.  The value of FNTYPE is the tree node for the data type
1240    of the function which will receive the args, or 0 if the args are to a
1241    compiler support library function.  The value of INDIRECT is nonzero when
1242    processing an indirect call, for example a call through a function pointer.
1243    The value of INDIRECT is zero for a call to an explicitly named function, a
1244    library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
1245    arguments for the function being compiled.
1246 
1247    When processing a call to a compiler support library function, LIBNAME
1248    identifies which one.  It is a `symbol_ref' rtx which contains the name of
1249    the function, as a string.  LIBNAME is 0 when an ordinary C function call is
1250    being processed.  Thus, each time this macro is called, either LIBNAME or
1251    FNTYPE is nonzero, but never both of them at once.  */
1252 
1253 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1254   frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, FNDECL, FALSE)
1255 
1256 /* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1257    arguments for the function being compiled.  If this macro is undefined,
1258    `INIT_CUMULATIVE_ARGS' is used instead.
1259 
1260    The value passed for LIBNAME is always 0, since library routines with
1261    special calling conventions are never compiled with GCC.  The argument
1262    LIBNAME exists for symmetry with `INIT_CUMULATIVE_ARGS'.  */
1263 
1264 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1265   frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, NULL, TRUE)
1266 
1267 /* A C expression that is nonzero if REGNO is the number of a hard register in
1268    which function arguments are sometimes passed.  This does *not* include
1269    implicit arguments such as the static chain and the structure-value address.
1270    On many machines, no registers can be used for this purpose since all
1271    function arguments are pushed on the stack.  */
1272 #define FUNCTION_ARG_REGNO_P(REGNO) \
1273   ((REGNO) >= FIRST_ARG_REGNUM && ((REGNO) <= LAST_ARG_REGNUM))
1274 
1275 
1276 /* How Scalar Function Values are Returned.  */
1277 
1278 /* The number of the hard register that is used to return a scalar value from a
1279    function call.  */
1280 #define RETURN_VALUE_REGNUM	(GPR_FIRST + 8)
1281 
1282 #define FUNCTION_VALUE_REGNO_P(REGNO) frv_function_value_regno_p (REGNO)
1283 
1284 
1285 /* How Large Values are Returned.  */
1286 
1287 /* The number of the register that is used to pass the structure
1288    value address.  */
1289 #define FRV_STRUCT_VALUE_REGNUM (GPR_FIRST + 3)
1290 
1291 
1292 /* Function Entry and Exit.  */
1293 
1294 /* Define this macro as a C expression that is nonzero if the return
1295    instruction or the function epilogue ignores the value of the stack pointer;
1296    in other words, if it is safe to delete an instruction to adjust the stack
1297    pointer before a return from the function.
1298 
1299    Note that this macro's value is relevant only for functions for which frame
1300    pointers are maintained.  It is never safe to delete a final stack
1301    adjustment in a function that has no frame pointer, and the compiler knows
1302    this regardless of `EXIT_IGNORE_STACK'.  */
1303 #define EXIT_IGNORE_STACK 1
1304 
1305 /* Generating Code for Profiling.  */
1306 
1307 /* A C statement or compound statement to output to FILE some assembler code to
1308    call the profiling subroutine `mcount'.  Before calling, the assembler code
1309    must load the address of a counter variable into a register where `mcount'
1310    expects to find the address.  The name of this variable is `LP' followed by
1311    the number LABELNO, so you would generate the name using `LP%d' in a
1312    `fprintf'.
1313 
1314    The details of how the address should be passed to `mcount' are determined
1315    by your operating system environment, not by GCC.  To figure them out,
1316    compile a small program for profiling using the system's installed C
1317    compiler and look at the assembler code that results.
1318 
1319    This declaration must be present, but it can be an abort if profiling is
1320    not implemented.  */
1321 
1322 #define FUNCTION_PROFILER(FILE, LABELNO)
1323 
1324 /* Trampolines for Nested Functions.  */
1325 
1326 /* A C expression for the size in bytes of the trampoline, as an integer.  */
1327 #define TRAMPOLINE_SIZE frv_trampoline_size ()
1328 
1329 /* Alignment required for trampolines, in bits.
1330 
1331    If you don't define this macro, the value of `BIGGEST_ALIGNMENT' is used for
1332    aligning trampolines.  */
1333 #define TRAMPOLINE_ALIGNMENT (TARGET_FDPIC ? 64 : 32)
1334 
1335 /* Define this macro if trampolines need a special subroutine to do their work.
1336    The macro should expand to a series of `asm' statements which will be
1337    compiled with GCC.  They go in a library function named
1338    `__transfer_from_trampoline'.
1339 
1340    If you need to avoid executing the ordinary prologue code of a compiled C
1341    function when you jump to the subroutine, you can do so by placing a special
1342    label of your own in the assembler code.  Use one `asm' statement to
1343    generate an assembler label, and another to make the label global.  Then
1344    trampolines can use that label to jump directly to your special assembler
1345    code.  */
1346 
1347 #ifdef __FRV_UNDERSCORE__
1348 #define TRAMPOLINE_TEMPLATE_NAME "___trampoline_template"
1349 #else
1350 #define TRAMPOLINE_TEMPLATE_NAME "__trampoline_template"
1351 #endif
1352 
1353 #define Twrite _write
1354 
1355 #if ! __FRV_FDPIC__
1356 #define TRANSFER_FROM_TRAMPOLINE					\
1357 extern int Twrite (int, const void *, unsigned);			\
1358 									\
1359 void									\
1360 __trampoline_setup (short * addr, int size, int fnaddr, int sc)		\
1361 {									\
1362   extern short __trampoline_template[];					\
1363   short * to = addr;							\
1364   short * from = &__trampoline_template[0];				\
1365   int i;								\
1366 									\
1367   if (size < 20)							\
1368     {									\
1369       Twrite (2, "__trampoline_setup bad size\n",			\
1370 	      sizeof ("__trampoline_setup bad size\n") - 1);		\
1371       exit (-1);							\
1372     }									\
1373 									\
1374   to[0] = from[0];							\
1375   to[1] = (short)(fnaddr);						\
1376   to[2] = from[2];							\
1377   to[3] = (short)(sc);							\
1378   to[4] = from[4];							\
1379   to[5] = (short)(fnaddr >> 16);					\
1380   to[6] = from[6];							\
1381   to[7] = (short)(sc >> 16);						\
1382   to[8] = from[8];							\
1383   to[9] = from[9];							\
1384 									\
1385   for (i = 0; i < 20; i++)						\
1386     __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
1387 }									\
1388 									\
1389 __asm__("\n"								\
1390 	"\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n"			\
1391 	"\t.text\n"							\
1392 	TRAMPOLINE_TEMPLATE_NAME ":\n"					\
1393 	"\tsetlos #0, gr6\n"	/* jump register */			\
1394 	"\tsetlos #0, gr7\n"	/* static chain */			\
1395 	"\tsethi #0, gr6\n"						\
1396 	"\tsethi #0, gr7\n"						\
1397 	"\tjmpl @(gr0,gr6)\n");
1398 #else
1399 #define TRANSFER_FROM_TRAMPOLINE					\
1400 extern int Twrite (int, const void *, unsigned);			\
1401 									\
1402 void									\
1403 __trampoline_setup (addr, size, fnaddr, sc)				\
1404      short * addr;							\
1405      int size;								\
1406      int fnaddr;							\
1407      int sc;								\
1408 {									\
1409   extern short __trampoline_template[];					\
1410   short * from = &__trampoline_template[0];				\
1411   int i;								\
1412   short **desc = (short **)addr;					\
1413   short * to = addr + 4;						\
1414 									\
1415   if (size != 32)							\
1416     {									\
1417       Twrite (2, "__trampoline_setup bad size\n",			\
1418 	      sizeof ("__trampoline_setup bad size\n") - 1);		\
1419       exit (-1);							\
1420     }									\
1421 									\
1422   /* Create a function descriptor with the address of the code below	\
1423      and NULL as the FDPIC value.  We don't need the real GOT value	\
1424      here, since we don't use it, so we use NULL, that is just as	\
1425      good.  */								\
1426   desc[0] = to;								\
1427   desc[1] = NULL;							\
1428   size -= 8;								\
1429 									\
1430   to[0] = from[0];							\
1431   to[1] = (short)(fnaddr);						\
1432   to[2] = from[2];							\
1433   to[3] = (short)(sc);							\
1434   to[4] = from[4];							\
1435   to[5] = (short)(fnaddr >> 16);					\
1436   to[6] = from[6];							\
1437   to[7] = (short)(sc >> 16);						\
1438   to[8] = from[8];							\
1439   to[9] = from[9];							\
1440   to[10] = from[10];							\
1441   to[11] = from[11];							\
1442 									\
1443   for (i = 0; i < size; i++)						\
1444     __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
1445 }									\
1446 									\
1447 __asm__("\n"								\
1448 	"\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n"			\
1449 	"\t.text\n"							\
1450 	TRAMPOLINE_TEMPLATE_NAME ":\n"					\
1451 	"\tsetlos #0, gr6\n"	/* Jump register.  */			\
1452 	"\tsetlos #0, gr7\n"	/* Static chain.  */			\
1453 	"\tsethi #0, gr6\n"						\
1454 	"\tsethi #0, gr7\n"						\
1455 	"\tldd @(gr6,gr0),gr14\n"					\
1456 	"\tjmpl @(gr14,gr0)\n"						\
1457 	);
1458 #endif
1459 
1460 
1461 /* Addressing Modes.  */
1462 
1463 /* A number, the maximum number of registers that can appear in a valid memory
1464    address.  Note that it is up to you to specify a value equal to the maximum
1465    number that `TARGET_LEGITIMATE_ADDRESS_P' would ever accept.  */
1466 #define MAX_REGS_PER_ADDRESS 2
1467 
1468 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1469    use as a base register.  For hard registers, it should always accept those
1470    which the hardware permits and reject the others.  Whether the macro accepts
1471    or rejects pseudo registers must be controlled by `REG_OK_STRICT' as
1472    described above.  This usually requires two variant definitions, of which
1473    `REG_OK_STRICT' controls the one actually used.  */
1474 #ifdef REG_OK_STRICT
1475 #define REG_OK_FOR_BASE_P(X) GPR_P (REGNO (X))
1476 #else
1477 #define REG_OK_FOR_BASE_P(X) GPR_AP_OR_PSEUDO_P (REGNO (X))
1478 #endif
1479 
1480 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1481    use as an index register.
1482 
1483    The difference between an index register and a base register is that the
1484    index register may be scaled.  If an address involves the sum of two
1485    registers, neither one of them scaled, then either one may be labeled the
1486    "base" and the other the "index"; but whichever labeling is used must fit
1487    the machine's constraints of which registers may serve in each capacity.
1488    The compiler will try both labelings, looking for one that is valid, and
1489    will reload one or both registers only if neither labeling works.  */
1490 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1491 
1492 #define FIND_BASE_TERM frv_find_base_term
1493 
1494 /* The load-and-update commands allow pre-modification in addresses.
1495    The index has to be in a register.  */
1496 #define HAVE_PRE_MODIFY_REG 1
1497 
1498 
1499 /* We define extra CC modes in frv-modes.def so we need a selector.  */
1500 
1501 #define SELECT_CC_MODE frv_select_cc_mode
1502 
1503 /* A C expression whose value is one if it is always safe to reverse a
1504    comparison whose mode is MODE.  If `SELECT_CC_MODE' can ever return MODE for
1505    a floating-point inequality comparison, then `REVERSIBLE_CC_MODE (MODE)'
1506    must be zero.
1507 
1508    You need not define this macro if it would always returns zero or if the
1509    floating-point format is anything other than `IEEE_FLOAT_FORMAT'.  For
1510    example, here is the definition used on the SPARC, where floating-point
1511    inequality comparisons are always given `CCFPEmode':
1512 
1513         #define REVERSIBLE_CC_MODE(MODE)  ((MODE) != CCFPEmode)  */
1514 
1515 /* On frv, don't consider floating point comparisons to be reversible.  In
1516    theory, fp equality comparisons can be reversible.  */
1517 #define REVERSIBLE_CC_MODE(MODE) \
1518   ((MODE) == CCmode || (MODE) == CC_UNSmode || (MODE) == CC_NZmode)
1519 
1520 
1521 /* Describing Relative Costs of Operations.  */
1522 
1523 /* A C expression for the cost of a branch instruction.  A value of 1 is the
1524    default; other values are interpreted relative to that.  */
1525 #define BRANCH_COST(speed_p, predictable_p) frv_branch_cost_int
1526 
1527 /* Define this macro as a C expression which is nonzero if accessing less than
1528    a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1529    word of memory, i.e., if such access require more than one instruction or if
1530    there is no difference in cost between byte and (aligned) word loads.
1531 
1532    When this macro is not defined, the compiler will access a field by finding
1533    the smallest containing object; when it is defined, a fullword load will be
1534    used if alignment permits.  Unless bytes accesses are faster than word
1535    accesses, using word accesses is preferable since it may eliminate
1536    subsequent memory access if subsequent accesses occur to other fields in the
1537    same word of the structure, but to different bytes.  */
1538 #define SLOW_BYTE_ACCESS 1
1539 
1540 /* Define this macro if it is as good or better to call a constant function
1541    address than to call an address kept in a register.  */
1542 #define NO_FUNCTION_CSE
1543 
1544 
1545 /* Dividing the output into sections.  */
1546 
1547 /* A C expression whose value is a string containing the assembler operation
1548    that should precede instructions and read-only data.  Normally `".text"' is
1549    right.  */
1550 #define TEXT_SECTION_ASM_OP "\t.text"
1551 
1552 /* A C expression whose value is a string containing the assembler operation to
1553    identify the following data as writable initialized data.  Normally
1554    `".data"' is right.  */
1555 #define DATA_SECTION_ASM_OP "\t.data"
1556 
1557 #define BSS_SECTION_ASM_OP "\t.section .bss,\"aw\""
1558 
1559 /* Short Data Support */
1560 #define SDATA_SECTION_ASM_OP	"\t.section .sdata,\"aw\""
1561 
1562 #undef	INIT_SECTION_ASM_OP
1563 #undef	FINI_SECTION_ASM_OP
1564 #define INIT_SECTION_ASM_OP	"\t.section .init,\"ax\""
1565 #define FINI_SECTION_ASM_OP	"\t.section .fini,\"ax\""
1566 
1567 #undef CTORS_SECTION_ASM_OP
1568 #undef DTORS_SECTION_ASM_OP
1569 #define CTORS_SECTION_ASM_OP	"\t.section\t.ctors,\"a\""
1570 #define DTORS_SECTION_ASM_OP	"\t.section\t.dtors,\"a\""
1571 
1572 /* A C expression whose value is a string containing the assembler operation to
1573    switch to the fixup section that records all initialized pointers in a -fpic
1574    program so they can be changed program startup time if the program is loaded
1575    at a different address than linked for.  */
1576 #define FIXUP_SECTION_ASM_OP	"\t.section .rofixup,\"a\""
1577 
1578 /* Position Independent Code.  */
1579 
1580 /* A C expression that is nonzero if X is a legitimate immediate operand on the
1581    target machine when generating position independent code.  You can assume
1582    that X satisfies `CONSTANT_P', so you need not check this.  You can also
1583    assume FLAG_PIC is true, so you need not check it either.  You need not
1584    define this macro if all constants (including `SYMBOL_REF') can be immediate
1585    operands when generating position independent code.  */
1586 #define LEGITIMATE_PIC_OPERAND_P(X)					\
1587   (   GET_CODE (X) == CONST_INT						\
1588    || GET_CODE (X) == CONST_DOUBLE					\
1589    || (GET_CODE (X) == HIGH && GET_CODE (XEXP (X, 0)) == CONST_INT)	\
1590    || got12_operand (X, VOIDmode))					\
1591 
1592 
1593 /* The Overall Framework of an Assembler File.  */
1594 
1595 /* A C string constant describing how to begin a comment in the target
1596    assembler language.  The compiler assumes that the comment will end at the
1597    end of the line.  */
1598 #define ASM_COMMENT_START ";"
1599 
1600 /* A C string constant for text to be output before each `asm' statement or
1601    group of consecutive ones.  Normally this is `"#APP"', which is a comment
1602    that has no effect on most assemblers but tells the GNU assembler that it
1603    must check the lines that follow for all valid assembler constructs.  */
1604 #define ASM_APP_ON "#APP\n"
1605 
1606 /* A C string constant for text to be output after each `asm' statement or
1607    group of consecutive ones.  Normally this is `"#NO_APP"', which tells the
1608    GNU assembler to resume making the time-saving assumptions that are valid
1609    for ordinary compiler output.  */
1610 #define ASM_APP_OFF "#NO_APP\n"
1611 
1612 
1613 /* Output of Data.  */
1614 
1615 /* This is how to output a label to dwarf/dwarf2.  */
1616 #define ASM_OUTPUT_DWARF_ADDR(STREAM, LABEL)				\
1617 do {									\
1618   fprintf (STREAM, "\t.picptr\t");					\
1619   assemble_name (STREAM, LABEL);					\
1620 } while (0)
1621 
1622 /* Whether to emit the gas specific dwarf2 line number support.  */
1623 #define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DEBUG_LOC)
1624 
1625 /* Output of Uninitialized Variables.  */
1626 
1627 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
1628    assembler definition of a local-common-label named NAME whose size is SIZE
1629    bytes.  The variable ROUNDED is the size rounded up to whatever alignment
1630    the caller wants.
1631 
1632    Use the expression `assemble_name (STREAM, NAME)' to output the name itself;
1633    before and after that, output the additional assembler syntax for defining
1634    the name, and a newline.
1635 
1636    This macro controls how the assembler definitions of uninitialized static
1637    variables are output.  */
1638 #undef ASM_OUTPUT_LOCAL
1639 
1640 #undef ASM_OUTPUT_ALIGNED_LOCAL
1641 
1642 /* This is for final.c, because it is used by ASM_DECLARE_OBJECT_NAME.  */
1643 extern int size_directive_output;
1644 
1645 /* Like `ASM_OUTPUT_ALIGNED_LOCAL' except that it takes an additional
1646    parameter - the DECL of variable to be output, if there is one.
1647    This macro can be called with DECL == NULL_TREE.  If you define
1648    this macro, it is used in place of `ASM_OUTPUT_LOCAL' and
1649    `ASM_OUTPUT_ALIGNED_LOCAL', and gives you more flexibility in
1650    handling the destination of the variable.  */
1651 #undef ASM_OUTPUT_ALIGNED_DECL_LOCAL
1652 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(STREAM, DECL, NAME, SIZE, ALIGN)	\
1653 do {                                                                   	\
1654   if ((SIZE) > 0 && (SIZE) <= (unsigned HOST_WIDE_INT) g_switch_value)	\
1655     switch_to_section (get_named_section (NULL, ".sbss", 0));           \
1656   else                                                                 	\
1657     switch_to_section (bss_section);                                  	\
1658   ASM_OUTPUT_ALIGN (STREAM, floor_log2 ((ALIGN) / BITS_PER_UNIT));     	\
1659   ASM_DECLARE_OBJECT_NAME (STREAM, NAME, DECL);                        	\
1660   ASM_OUTPUT_SKIP (STREAM, (SIZE) ? (SIZE) : 1);                       	\
1661 } while (0)
1662 
1663 
1664 /* Output and Generation of Labels.  */
1665 
1666 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
1667    assembler definition of a label named NAME.  Use the expression
1668    `assemble_name (STREAM, NAME)' to output the name itself; before and after
1669    that, output the additional assembler syntax for defining the name, and a
1670    newline.  */
1671 #define ASM_OUTPUT_LABEL(STREAM, NAME)					\
1672 do {									\
1673   assemble_name (STREAM, NAME);						\
1674   fputs (":\n", STREAM);						\
1675 } while (0)
1676 
1677 /* Globalizing directive for a label.  */
1678 #define GLOBAL_ASM_OP "\t.globl "
1679 
1680 #undef ASM_GENERATE_INTERNAL_LABEL
1681 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM)			\
1682 do {									\
1683   sprintf (LABEL, "*.%s%ld", PREFIX, (long)NUM);			\
1684 } while (0)
1685 
1686 
1687 /* Macros Controlling Initialization Routines.  */
1688 
1689 #undef INIT_SECTION_ASM_OP
1690 
1691 /* If defined, `main' will call `__main' despite the presence of
1692    `INIT_SECTION_ASM_OP'.  This macro should be defined for systems where the
1693    init section is not actually run automatically, but is still useful for
1694    collecting the lists of constructors and destructors.  */
1695 #define INVOKE__main
1696 
1697 /* Output of Assembler Instructions.  */
1698 
1699 /* A C initializer containing the assembler's names for the machine registers,
1700    each one as a C string constant.  This is what translates register numbers
1701    in the compiler into assembler language.  */
1702 #define REGISTER_NAMES							\
1703 {									\
1704  "gr0",  "sp",   "fp",   "gr3",  "gr4",  "gr5",  "gr6",  "gr7",		\
1705   "gr8",  "gr9",  "gr10", "gr11", "gr12", "gr13", "gr14", "gr15",	\
1706   "gr16", "gr17", "gr18", "gr19", "gr20", "gr21", "gr22", "gr23",	\
1707   "gr24", "gr25", "gr26", "gr27", "gr28", "gr29", "gr30", "gr31",	\
1708   "gr32", "gr33", "gr34", "gr35", "gr36", "gr37", "gr38", "gr39",	\
1709   "gr40", "gr41", "gr42", "gr43", "gr44", "gr45", "gr46", "gr47",	\
1710   "gr48", "gr49", "gr50", "gr51", "gr52", "gr53", "gr54", "gr55",	\
1711   "gr56", "gr57", "gr58", "gr59", "gr60", "gr61", "gr62", "gr63",	\
1712 									\
1713   "fr0",  "fr1",  "fr2",  "fr3",  "fr4",  "fr5",  "fr6",  "fr7",	\
1714   "fr8",  "fr9",  "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",	\
1715   "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",	\
1716   "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",	\
1717   "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",	\
1718   "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",	\
1719   "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",	\
1720   "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",	\
1721 									\
1722   "fcc0", "fcc1", "fcc2", "fcc3", "icc0", "icc1", "icc2", "icc3",	\
1723   "cc0",  "cc1",  "cc2",  "cc3",  "cc4",  "cc5",  "cc6",  "cc7",	\
1724   "acc0", "acc1", "acc2", "acc3", "acc4", "acc5", "acc6", "acc7",	\
1725   "acc8", "acc9", "acc10", "acc11",					\
1726   "accg0","accg1","accg2","accg3","accg4","accg5","accg6","accg7",	\
1727   "accg8", "accg9", "accg10", "accg11",					\
1728   "ap",   "lr",   "lcr",  "iacc0h", "iacc0l"				\
1729 }
1730 
1731 /* Define this macro if you are using an unusual assembler that
1732    requires different names for the machine instructions.
1733 
1734    The definition is a C statement or statements which output an
1735    assembler instruction opcode to the stdio stream STREAM.  The
1736    macro-operand PTR is a variable of type `char *' which points to
1737    the opcode name in its "internal" form--the form that is written
1738    in the machine description.  The definition should output the
1739    opcode name to STREAM, performing any translation you desire, and
1740    increment the variable PTR to point at the end of the opcode so
1741    that it will not be output twice.
1742 
1743    In fact, your macro definition may process less than the entire
1744    opcode name, or more than the opcode name; but if you want to
1745    process text that includes `%'-sequences to substitute operands,
1746    you must take care of the substitution yourself.  Just be sure to
1747    increment PTR over whatever text should not be output normally.
1748 
1749    If you need to look at the operand values, they can be found as the
1750    elements of `recog_operand'.
1751 
1752    If the macro definition does nothing, the instruction is output in
1753    the usual way.  */
1754 
1755 #define ASM_OUTPUT_OPCODE(STREAM, PTR)\
1756    (PTR) = frv_asm_output_opcode (STREAM, PTR)
1757 
1758 /* If defined, a C statement to be executed just prior to the output
1759    of assembler code for INSN, to modify the extracted operands so
1760    they will be output differently.
1761 
1762    Here the argument OPVEC is the vector containing the operands
1763    extracted from INSN, and NOPERANDS is the number of elements of
1764    the vector which contain meaningful data for this insn.  The
1765    contents of this vector are what will be used to convert the insn
1766    template into assembler code, so you can change the assembler
1767    output by changing the contents of the vector.
1768 
1769    This macro is useful when various assembler syntaxes share a single
1770    file of instruction patterns; by defining this macro differently,
1771    you can cause a large class of instructions to be output
1772    differently (such as with rearranged operands).  Naturally,
1773    variations in assembler syntax affecting individual insn patterns
1774    ought to be handled by writing conditional output routines in
1775    those patterns.
1776 
1777    If this macro is not defined, it is equivalent to a null statement.  */
1778 
1779 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)\
1780   frv_final_prescan_insn (INSN, OPVEC, NOPERANDS)
1781 
1782 #undef USER_LABEL_PREFIX
1783 #define USER_LABEL_PREFIX ""
1784 #define REGISTER_PREFIX ""
1785 #define LOCAL_LABEL_PREFIX "."
1786 #define IMMEDIATE_PREFIX "#"
1787 
1788 
1789 /* Output of dispatch tables.  */
1790 
1791 /* This macro should be provided on machines where the addresses in a dispatch
1792    table are relative to the table's own address.
1793 
1794    The definition should be a C statement to output to the stdio stream STREAM
1795    an assembler pseudo-instruction to generate a difference between two labels.
1796    VALUE and REL are the numbers of two internal labels.  The definitions of
1797    these labels are output using `(*targetm.asm_out.internal_label)', and they must be
1798    printed in the same way here.  For example,
1799 
1800         fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL)  */
1801 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
1802 fprintf (STREAM, "\t.word .L%d-.L%d\n", VALUE, REL)
1803 
1804 /* This macro should be provided on machines where the addresses in a dispatch
1805    table are absolute.
1806 
1807    The definition should be a C statement to output to the stdio stream STREAM
1808    an assembler pseudo-instruction to generate a reference to a label.  VALUE
1809    is the number of an internal label whose definition is output using
1810    `(*targetm.asm_out.internal_label)'.  For example,
1811 
1812         fprintf (STREAM, "\t.word L%d\n", VALUE)  */
1813 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
1814 fprintf (STREAM, "\t.word .L%d\n", VALUE)
1815 
1816 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
1817 
1818 /* Assembler Commands for Exception Regions.  */
1819 
1820 /* Define this macro to 0 if your target supports DWARF 2 frame unwind
1821    information, but it does not yet work with exception handling.  Otherwise,
1822    if your target supports this information (if it defines
1823    `INCOMING_RETURN_ADDR_RTX' and `OBJECT_FORMAT_ELF'), GCC will provide
1824    a default definition of 1.
1825 
1826    If this macro is defined to 1, the DWARF 2 unwinder will be the default
1827    exception handling mechanism; otherwise, setjmp/longjmp will be used by
1828    default.
1829 
1830    If this macro is defined to anything, the DWARF 2 unwinder will be used
1831    instead of inline unwinders and __unwind_function in the non-setjmp case.  */
1832 #define DWARF2_UNWIND_INFO 1
1833 
1834 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
1835 
1836 /* Assembler Commands for Alignment.  */
1837 
1838 #undef  ASM_OUTPUT_SKIP
1839 #define ASM_OUTPUT_SKIP(STREAM, NBYTES) \
1840   fprintf (STREAM, "\t.zero\t%u\n", (int)(NBYTES))
1841 
1842 /* A C statement to output to the stdio stream STREAM an assembler command to
1843    advance the location counter to a multiple of 2 to the POWER bytes.  POWER
1844    will be a C expression of type `int'.  */
1845 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
1846   fprintf ((STREAM), "\t.p2align %d\n", (POWER))
1847 
1848 /* Inside the text section, align with unpacked nops rather than zeros.  */
1849 #define ASM_OUTPUT_ALIGN_WITH_NOP(STREAM, POWER) \
1850   fprintf ((STREAM), "\t.p2alignl %d,0x80880000\n", (POWER))
1851 
1852 /* Macros Affecting all Debug Formats.  */
1853 
1854 /* A C expression that returns the DBX register number for the compiler
1855    register number REGNO.  In simple cases, the value of this expression may be
1856    REGNO itself.  But sometimes there are some registers that the compiler
1857    knows about and DBX does not, or vice versa.  In such cases, some register
1858    may need to have one number in the compiler and another for DBX.
1859 
1860    If two registers have consecutive numbers inside GCC, and they can be
1861    used as a pair to hold a multiword value, then they *must* have consecutive
1862    numbers after renumbering with `DBX_REGISTER_NUMBER'.  Otherwise, debuggers
1863    will be unable to access such a pair, because they expect register pairs to
1864    be consecutive in their own numbering scheme.
1865 
1866    If you find yourself defining `DBX_REGISTER_NUMBER' in way that does not
1867    preserve register pairs, then what you must do instead is redefine the
1868    actual register numbering scheme.
1869 
1870    This declaration is required.  */
1871 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1872 
1873 #undef  PREFERRED_DEBUGGING_TYPE
1874 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1875 
1876 /* Miscellaneous Parameters.  */
1877 
1878 /* An alias for a machine mode name.  This is the machine mode that elements of
1879    a jump-table should have.  */
1880 #define CASE_VECTOR_MODE SImode
1881 
1882 /* Define this macro if operations between registers with integral mode smaller
1883    than a word are always performed on the entire register.  Most RISC machines
1884    have this property and most CISC machines do not.  */
1885 #define WORD_REGISTER_OPERATIONS
1886 
1887 /* Define this macro to be a C expression indicating when insns that read
1888    memory in MODE, an integral mode narrower than a word, set the bits outside
1889    of MODE to be either the sign-extension or the zero-extension of the data
1890    read.  Return `SIGN_EXTEND' for values of MODE for which the insn
1891    sign-extends, `ZERO_EXTEND' for which it zero-extends, and `UNKNOWN' for other
1892    modes.
1893 
1894    This macro is not called with MODE non-integral or with a width greater than
1895    or equal to `BITS_PER_WORD', so you may return any value in this case.  Do
1896    not define this macro if it would always return `UNKNOWN'.  On machines where
1897    this macro is defined, you will normally define it as the constant
1898    `SIGN_EXTEND' or `ZERO_EXTEND'.  */
1899 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
1900 
1901 /* Define if loading short immediate values into registers sign extends.  */
1902 #define SHORT_IMMEDIATES_SIGN_EXTEND
1903 
1904 /* The maximum number of bytes that a single instruction can move quickly from
1905    memory to memory.  */
1906 #define MOVE_MAX 8
1907 
1908 /* A C expression which is nonzero if on this machine it is safe to "convert"
1909    an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
1910    than INPREC) by merely operating on it as if it had only OUTPREC bits.
1911 
1912    On many machines, this expression can be 1.
1913 
1914    When `TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for modes for
1915    which `MODES_TIEABLE_P' is 0, suboptimal code can result.  If this is the
1916    case, making `TRULY_NOOP_TRUNCATION' return 0 in such cases may improve
1917    things.  */
1918 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1919 
1920 /* An alias for the machine mode for pointers.  On most machines, define this
1921    to be the integer mode corresponding to the width of a hardware pointer;
1922    `SImode' on 32-bit machine or `DImode' on 64-bit machines.  On some machines
1923    you must define this to be one of the partial integer modes, such as
1924    `PSImode'.
1925 
1926    The width of `Pmode' must be at least as large as the value of
1927    `POINTER_SIZE'.  If it is not equal, you must define the macro
1928    `POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to `Pmode'.  */
1929 #define Pmode SImode
1930 
1931 /* An alias for the machine mode used for memory references to functions being
1932    called, in `call' RTL expressions.  On most machines this should be
1933    `QImode'.  */
1934 #define FUNCTION_MODE QImode
1935 
1936 /* A C expression for the maximum number of instructions to execute via
1937    conditional execution instructions instead of a branch.  A value of
1938    BRANCH_COST+1 is the default if the machine does not use
1939    cc0, and 1 if it does use cc0.  */
1940 #define MAX_CONDITIONAL_EXECUTE frv_condexec_insns
1941 
1942 /* A C expression to modify the code described by the conditional if
1943    information CE_INFO, possibly updating the tests in TRUE_EXPR, and
1944    FALSE_EXPR for converting if-then and if-then-else code to conditional
1945    instructions.  Set either TRUE_EXPR or FALSE_EXPR to a null pointer if the
1946    tests cannot be converted.  */
1947 #define IFCVT_MODIFY_TESTS(CE_INFO, TRUE_EXPR, FALSE_EXPR)		\
1948 frv_ifcvt_modify_tests (CE_INFO, &TRUE_EXPR, &FALSE_EXPR)
1949 
1950 /* A C expression to modify the code described by the conditional if
1951    information CE_INFO, for the basic block BB, possibly updating the tests in
1952    TRUE_EXPR, and FALSE_EXPR for converting the && and || parts of if-then or
1953    if-then-else code to conditional instructions.  OLD_TRUE and OLD_FALSE are
1954    the previous tests.  Set either TRUE_EXPR or FALSE_EXPR to a null pointer if
1955    the tests cannot be converted.  */
1956 #define IFCVT_MODIFY_MULTIPLE_TESTS(CE_INFO, BB, TRUE_EXPR, FALSE_EXPR) \
1957 frv_ifcvt_modify_multiple_tests (CE_INFO, BB, &TRUE_EXPR, &FALSE_EXPR)
1958 
1959 /* A C expression to modify the code described by the conditional if
1960    information CE_INFO with the new PATTERN in INSN.  If PATTERN is a null
1961    pointer after the IFCVT_MODIFY_INSN macro executes, it is assumed that that
1962    insn cannot be converted to be executed conditionally.  */
1963 #define IFCVT_MODIFY_INSN(CE_INFO, PATTERN, INSN) \
1964 (PATTERN) = frv_ifcvt_modify_insn (CE_INFO, PATTERN, INSN)
1965 
1966 /* A C expression to perform any final machine dependent modifications in
1967    converting code to conditional execution in the code described by the
1968    conditional if information CE_INFO.  */
1969 #define IFCVT_MODIFY_FINAL(CE_INFO) frv_ifcvt_modify_final (CE_INFO)
1970 
1971 /* A C expression to cancel any machine dependent modifications in converting
1972    code to conditional execution in the code described by the conditional if
1973    information CE_INFO.  */
1974 #define IFCVT_MODIFY_CANCEL(CE_INFO) frv_ifcvt_modify_cancel (CE_INFO)
1975 
1976 /* Initialize the machine-specific static data for if-conversion.  */
1977 #define IFCVT_MACHDEP_INIT(CE_INFO) frv_ifcvt_machdep_init (CE_INFO)
1978 
1979 /* The definition of the following macro results in that the 2nd jump
1980    optimization (after the 2nd insn scheduling) is minimal.  It is
1981    necessary to define when start cycle marks of insns (TImode is used
1982    for this) is used for VLIW insn packing.  Some jump optimizations
1983    make such marks invalid.  These marks are corrected for some
1984    (minimal) optimizations.  ??? Probably the macro is temporary.
1985    Final solution could making the 2nd jump optimizations before the
1986    2nd instruction scheduling or corrections of the marks for all jump
1987    optimizations.  Although some jump optimizations are actually
1988    deoptimizations for VLIW (super-scalar) processors.  */
1989 
1990 #define MINIMAL_SECOND_JUMP_OPTIMIZATION
1991 
1992 
1993 /* If the following macro is defined and nonzero and deterministic
1994    finite state automata are used for pipeline hazard recognition, we
1995    will try to exchange insns in queue ready to improve the schedule.
1996    The more macro value, the more tries will be made.  */
1997 #define FIRST_CYCLE_MULTIPASS_SCHEDULING 1
1998 
1999 /* The following macro is used only when value of
2000    FIRST_CYCLE_MULTIPASS_SCHEDULING is nonzero.  The more macro value,
2001    the more tries will be made to choose better schedule.  If the
2002    macro value is zero or negative there will be no multi-pass
2003    scheduling.  */
2004 #define FIRST_CYCLE_MULTIPASS_SCHEDULING_LOOKAHEAD frv_sched_lookahead
2005 
2006 enum frv_builtins
2007 {
2008   FRV_BUILTIN_MAND,
2009   FRV_BUILTIN_MOR,
2010   FRV_BUILTIN_MXOR,
2011   FRV_BUILTIN_MNOT,
2012   FRV_BUILTIN_MAVEH,
2013   FRV_BUILTIN_MSATHS,
2014   FRV_BUILTIN_MSATHU,
2015   FRV_BUILTIN_MADDHSS,
2016   FRV_BUILTIN_MADDHUS,
2017   FRV_BUILTIN_MSUBHSS,
2018   FRV_BUILTIN_MSUBHUS,
2019   FRV_BUILTIN_MPACKH,
2020   FRV_BUILTIN_MQADDHSS,
2021   FRV_BUILTIN_MQADDHUS,
2022   FRV_BUILTIN_MQSUBHSS,
2023   FRV_BUILTIN_MQSUBHUS,
2024   FRV_BUILTIN_MUNPACKH,
2025   FRV_BUILTIN_MDPACKH,
2026   FRV_BUILTIN_MBTOH,
2027   FRV_BUILTIN_MHTOB,
2028   FRV_BUILTIN_MCOP1,
2029   FRV_BUILTIN_MCOP2,
2030   FRV_BUILTIN_MROTLI,
2031   FRV_BUILTIN_MROTRI,
2032   FRV_BUILTIN_MWCUT,
2033   FRV_BUILTIN_MSLLHI,
2034   FRV_BUILTIN_MSRLHI,
2035   FRV_BUILTIN_MSRAHI,
2036   FRV_BUILTIN_MEXPDHW,
2037   FRV_BUILTIN_MEXPDHD,
2038   FRV_BUILTIN_MMULHS,
2039   FRV_BUILTIN_MMULHU,
2040   FRV_BUILTIN_MMULXHS,
2041   FRV_BUILTIN_MMULXHU,
2042   FRV_BUILTIN_MMACHS,
2043   FRV_BUILTIN_MMACHU,
2044   FRV_BUILTIN_MMRDHS,
2045   FRV_BUILTIN_MMRDHU,
2046   FRV_BUILTIN_MQMULHS,
2047   FRV_BUILTIN_MQMULHU,
2048   FRV_BUILTIN_MQMULXHU,
2049   FRV_BUILTIN_MQMULXHS,
2050   FRV_BUILTIN_MQMACHS,
2051   FRV_BUILTIN_MQMACHU,
2052   FRV_BUILTIN_MCPXRS,
2053   FRV_BUILTIN_MCPXRU,
2054   FRV_BUILTIN_MCPXIS,
2055   FRV_BUILTIN_MCPXIU,
2056   FRV_BUILTIN_MQCPXRS,
2057   FRV_BUILTIN_MQCPXRU,
2058   FRV_BUILTIN_MQCPXIS,
2059   FRV_BUILTIN_MQCPXIU,
2060   FRV_BUILTIN_MCUT,
2061   FRV_BUILTIN_MCUTSS,
2062   FRV_BUILTIN_MWTACC,
2063   FRV_BUILTIN_MWTACCG,
2064   FRV_BUILTIN_MRDACC,
2065   FRV_BUILTIN_MRDACCG,
2066   FRV_BUILTIN_MTRAP,
2067   FRV_BUILTIN_MCLRACC,
2068   FRV_BUILTIN_MCLRACCA,
2069   FRV_BUILTIN_MDUNPACKH,
2070   FRV_BUILTIN_MBTOHE,
2071   FRV_BUILTIN_MQXMACHS,
2072   FRV_BUILTIN_MQXMACXHS,
2073   FRV_BUILTIN_MQMACXHS,
2074   FRV_BUILTIN_MADDACCS,
2075   FRV_BUILTIN_MSUBACCS,
2076   FRV_BUILTIN_MASACCS,
2077   FRV_BUILTIN_MDADDACCS,
2078   FRV_BUILTIN_MDSUBACCS,
2079   FRV_BUILTIN_MDASACCS,
2080   FRV_BUILTIN_MABSHS,
2081   FRV_BUILTIN_MDROTLI,
2082   FRV_BUILTIN_MCPLHI,
2083   FRV_BUILTIN_MCPLI,
2084   FRV_BUILTIN_MDCUTSSI,
2085   FRV_BUILTIN_MQSATHS,
2086   FRV_BUILTIN_MQLCLRHS,
2087   FRV_BUILTIN_MQLMTHS,
2088   FRV_BUILTIN_MQSLLHI,
2089   FRV_BUILTIN_MQSRAHI,
2090   FRV_BUILTIN_MHSETLOS,
2091   FRV_BUILTIN_MHSETLOH,
2092   FRV_BUILTIN_MHSETHIS,
2093   FRV_BUILTIN_MHSETHIH,
2094   FRV_BUILTIN_MHDSETS,
2095   FRV_BUILTIN_MHDSETH,
2096   FRV_BUILTIN_SMUL,
2097   FRV_BUILTIN_UMUL,
2098   FRV_BUILTIN_PREFETCH0,
2099   FRV_BUILTIN_PREFETCH,
2100   FRV_BUILTIN_SMASS,
2101   FRV_BUILTIN_SMSSS,
2102   FRV_BUILTIN_SMU,
2103   FRV_BUILTIN_SCUTSS,
2104   FRV_BUILTIN_ADDSS,
2105   FRV_BUILTIN_SUBSS,
2106   FRV_BUILTIN_SLASS,
2107   FRV_BUILTIN_IACCreadll,
2108   FRV_BUILTIN_IACCreadl,
2109   FRV_BUILTIN_IACCsetll,
2110   FRV_BUILTIN_IACCsetl,
2111   FRV_BUILTIN_SCAN,
2112   FRV_BUILTIN_READ8,
2113   FRV_BUILTIN_READ16,
2114   FRV_BUILTIN_READ32,
2115   FRV_BUILTIN_READ64,
2116   FRV_BUILTIN_WRITE8,
2117   FRV_BUILTIN_WRITE16,
2118   FRV_BUILTIN_WRITE32,
2119   FRV_BUILTIN_WRITE64
2120 };
2121 #define FRV_BUILTIN_FIRST_NONMEDIA FRV_BUILTIN_SMUL
2122 
2123 /* Enable prototypes on the call rtl functions.  */
2124 #define MD_CALL_PROTOTYPES 1
2125 
2126 #define CPU_UNITS_QUERY 1
2127 
2128 #ifdef __FRV_FDPIC__
2129 #define CRT_GET_RFIB_DATA(dbase) \
2130   ({ extern void *_GLOBAL_OFFSET_TABLE_; (dbase) = &_GLOBAL_OFFSET_TABLE_; })
2131 #endif
2132 
2133 #endif /* __FRV_H__ */
2134