xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/config/fr30/fr30.h (revision 63aea4bd5b445e491ff0389fe27ec78b3099dba3)
1 /*{{{  Comment.  */
2 
3 /* Definitions of FR30 target.
4    Copyright (C) 1998-2013 Free Software Foundation, Inc.
5    Contributed by Cygnus Solutions.
6 
7 This file is part of GCC.
8 
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13 
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 GNU General Public License for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3.  If not see
21 <http://www.gnu.org/licenses/>.  */
22 
23 /*}}}*/
24 /*{{{  Run-time target specifications.  */
25 
26 #undef  ASM_SPEC
27 #define ASM_SPEC ""
28 
29 /* Define this to be a string constant containing `-D' options to define the
30    predefined macros that identify this machine and system.  These macros will
31    be predefined unless the `-ansi' option is specified.  */
32 
33 #define TARGET_CPU_CPP_BUILTINS()		\
34   do						\
35     {						\
36       builtin_define_std ("fr30");		\
37       builtin_assert ("machine=fr30");		\
38     }						\
39    while (0)
40 
41 #undef  STARTFILE_SPEC
42 #define STARTFILE_SPEC "crt0.o%s crti.o%s crtbegin.o%s"
43 
44 /* Include the OS stub library, so that the code can be simulated.
45    This is not the right way to do this.  Ideally this kind of thing
46    should be done in the linker script - but I have not worked out how
47    to specify the location of a linker script in a gcc command line yet... */
48 #undef  ENDFILE_SPEC
49 #define ENDFILE_SPEC  "%{!mno-lsim:-lsim} crtend.o%s crtn.o%s"
50 
51 #undef  LIB_SPEC
52 #define LIB_SPEC "-lc"
53 
54 #undef  LINK_SPEC
55 #define LINK_SPEC "%{h*} %{v:-V} \
56 		   %{static:-Bstatic} %{shared:-shared} %{symbolic:-Bsymbolic}"
57 
58 /*}}}*/
59 /*{{{  Storage Layout.  */
60 
61 #define BITS_BIG_ENDIAN 1
62 
63 #define BYTES_BIG_ENDIAN 1
64 
65 #define WORDS_BIG_ENDIAN 1
66 
67 #define UNITS_PER_WORD 	4
68 
69 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)	\
70   do						\
71     {						\
72       if (GET_MODE_CLASS (MODE) == MODE_INT	\
73 	  && GET_MODE_SIZE (MODE) < 4)		\
74 	(MODE) = SImode;			\
75     }						\
76   while (0)
77 
78 #define PARM_BOUNDARY 32
79 
80 #define STACK_BOUNDARY 32
81 
82 #define FUNCTION_BOUNDARY 32
83 
84 #define BIGGEST_ALIGNMENT 32
85 
86 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
87   (TREE_CODE (TYPE) == ARRAY_TYPE		\
88    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
89    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
90 
91 #define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
92   (TREE_CODE (EXP) == STRING_CST	\
93    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
94 
95 #define STRICT_ALIGNMENT 1
96 
97 #define PCC_BITFIELD_TYPE_MATTERS 1
98 
99 /*}}}*/
100 /*{{{  Layout of Source Language Data Types.  */
101 
102 #define SHORT_TYPE_SIZE 	16
103 #define INT_TYPE_SIZE 		32
104 #define LONG_TYPE_SIZE 		32
105 #define LONG_LONG_TYPE_SIZE 	64
106 #define FLOAT_TYPE_SIZE 	32
107 #define DOUBLE_TYPE_SIZE 	64
108 #define LONG_DOUBLE_TYPE_SIZE 	64
109 
110 #define DEFAULT_SIGNED_CHAR 1
111 
112 #undef  SIZE_TYPE
113 #define SIZE_TYPE "unsigned int"
114 
115 #undef  PTRDIFF_TYPE
116 #define PTRDIFF_TYPE "int"
117 
118 #undef  WCHAR_TYPE
119 #define WCHAR_TYPE "long int"
120 
121 #undef  WCHAR_TYPE_SIZE
122 #define WCHAR_TYPE_SIZE BITS_PER_WORD
123 
124 /*}}}*/
125 /*{{{  REGISTER BASICS.  */
126 
127 /* Number of hardware registers known to the compiler.  They receive numbers 0
128    through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number
129    really is assigned the number `FIRST_PSEUDO_REGISTER'.  */
130 #define FIRST_PSEUDO_REGISTER	21
131 
132 /* Fixed register assignments: */
133 
134 /* Here we do a BAD THING - reserve a register for use by the machine
135    description file.  There are too many places in compiler where it
136    assumes that it can issue a branch or jump instruction without
137    providing a scratch register for it, and reload just cannot cope, so
138    we keep a register back for these situations.  */
139 #define COMPILER_SCRATCH_REGISTER 0
140 
141 /* The register that contains the result of a function call.  */
142 #define RETURN_VALUE_REGNUM	 4
143 
144 /* The first register that can contain the arguments to a function.  */
145 #define FIRST_ARG_REGNUM	 4
146 
147 /* A call-used register that can be used during the function prologue.  */
148 #define PROLOGUE_TMP_REGNUM	 COMPILER_SCRATCH_REGISTER
149 
150 /* Register numbers used for passing a function's static chain pointer.  If
151    register windows are used, the register number as seen by the called
152    function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as
153    seen by the calling function is `STATIC_CHAIN_REGNUM'.  If these registers
154    are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
155 
156    The static chain register need not be a fixed register.
157 
158    If the static chain is passed in memory, these macros should not be defined;
159    instead, the next two macros should be defined.  */
160 #define STATIC_CHAIN_REGNUM 	12
161 /* #define STATIC_CHAIN_INCOMING_REGNUM */
162 
163 /* An FR30 specific hardware register.  */
164 #define ACCUMULATOR_REGNUM	13
165 
166 /* The register number of the frame pointer register, which is used to access
167    automatic variables in the stack frame.  On some machines, the hardware
168    determines which register this is.  On other machines, you can choose any
169    register you wish for this purpose.  */
170 #define FRAME_POINTER_REGNUM	14
171 
172 /* The register number of the stack pointer register, which must also be a
173    fixed register according to `FIXED_REGISTERS'.  On most machines, the
174    hardware determines which register this is.  */
175 #define STACK_POINTER_REGNUM	15
176 
177 /* The following a fake hard registers that describe some of the dedicated
178    registers on the FR30.  */
179 #define CONDITION_CODE_REGNUM	16
180 #define RETURN_POINTER_REGNUM	17
181 #define MD_HIGH_REGNUM		18
182 #define MD_LOW_REGNUM		19
183 
184 /* An initializer that says which registers are used for fixed purposes all
185    throughout the compiled code and are therefore not available for general
186    allocation.  These would include the stack pointer, the frame pointer
187    (except on machines where that can be used as a general register when no
188    frame pointer is needed), the program counter on machines where that is
189    considered one of the addressable registers, and any other numbered register
190    with a standard use.
191 
192    This information is expressed as a sequence of numbers, separated by commas
193    and surrounded by braces.  The Nth number is 1 if register N is fixed, 0
194    otherwise.
195 
196    The table initialized from this macro, and the table initialized by the
197    following one, may be overridden at run time either automatically, by the
198    actions of the macro `TARGET_CONDITIONAL_REGISTER_USAGE', or by the user
199    with the command options `-ffixed-REG', `-fcall-used-REG' and
200    `-fcall-saved-REG'.  */
201 #define FIXED_REGISTERS 			\
202   { 1, 0, 0, 0, 0, 0, 0, 0, 	/*  0 -  7 */ 	\
203     0, 0, 0, 0, 0, 0, 0, 1,	/*  8 - 15 */ 	\
204     1, 1, 1, 1, 1 }		/* 16 - 20 */
205 
206 /* XXX - MDL and MDH set as fixed for now - this is until I can get the
207    mul patterns working.  */
208 
209 /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
210    general) by function calls as well as for fixed registers.  This macro
211    therefore identifies the registers that are not available for general
212    allocation of values that must live across function calls.
213 
214    If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
215    saves it on function entry and restores it on function exit, if the register
216    is used within the function.  */
217 #define CALL_USED_REGISTERS 			\
218   { 1, 1, 1, 1, 1, 1, 1, 1,	/*  0 -  7 */ 	\
219     0, 0, 0, 0, 1, 1, 0, 1,	/*  8 - 15 */ 	\
220     1, 1, 1, 1, 1 }		/* 16 - 20 */
221 
222 /* A C initializer containing the assembler's names for the machine registers,
223    each one as a C string constant.  This is what translates register numbers
224    in the compiler into assembler language.  */
225 #define REGISTER_NAMES 						\
226 {   "r0", "r1", "r2",  "r3",  "r4",  "r5", "r6", "r7",	\
227     "r8", "r9", "r10", "r11", "r12", "ac", "fp", "sp",	\
228     "cc", "rp", "mdh", "mdl", "ap"			\
229 }
230 
231 /* If defined, a C initializer for an array of structures containing a name and
232    a register number.  This macro defines additional names for hard registers,
233    thus allowing the `asm' option in declarations to refer to registers using
234    alternate names.  */
235 #define ADDITIONAL_REGISTER_NAMES 				\
236 {								\
237   {"r13", 13}, {"r14", 14}, {"r15", 15}, {"usp", 15}, {"ps", 16}\
238 }
239 
240 /*}}}*/
241 /*{{{  How Values Fit in Registers.  */
242 
243 /* A C expression for the number of consecutive hard registers, starting at
244    register number REGNO, required to hold a value of mode MODE.  */
245 
246 #define HARD_REGNO_NREGS(REGNO, MODE) 			\
247   ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
248 
249 /* A C expression that is nonzero if it is permissible to store a value of mode
250    MODE in hard register number REGNO (or in several registers starting with
251    that one).  */
252 
253 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
254 
255 /* A C expression that is nonzero if it is desirable to choose register
256    allocation so as to avoid move instructions between a value of mode MODE1
257    and a value of mode MODE2.
258 
259    If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
260    ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
261    zero.  */
262 #define MODES_TIEABLE_P(MODE1, MODE2) 1
263 
264 /*}}}*/
265 /*{{{  Register Classes.  */
266 
267 /* An enumeral type that must be defined with all the register class names as
268    enumeral values.  `NO_REGS' must be first.  `ALL_REGS' must be the last
269    register class, followed by one more enumeral value, `LIM_REG_CLASSES',
270    which is not a register class but rather tells how many classes there are.
271 
272    Each register class has a number, which is the value of casting the class
273    name to type `int'.  The number serves as an index in many of the tables
274    described below.  */
275 enum reg_class
276 {
277   NO_REGS,
278   MULTIPLY_32_REG,	/* the MDL register as used by the MULH, MULUH insns */
279   MULTIPLY_64_REG,	/* the MDH,MDL register pair as used by MUL and MULU */
280   LOW_REGS,		/* registers 0 through 7 */
281   HIGH_REGS,		/* registers 8 through 15 */
282   REAL_REGS,		/* i.e. all the general hardware registers on the FR30 */
283   ALL_REGS,
284   LIM_REG_CLASSES
285 };
286 
287 #define GENERAL_REGS 	REAL_REGS
288 #define N_REG_CLASSES 	((int) LIM_REG_CLASSES)
289 
290 /* An initializer containing the names of the register classes as C string
291    constants.  These names are used in writing some of the debugging dumps.  */
292 #define REG_CLASS_NAMES \
293 {			\
294   "NO_REGS",		\
295   "MULTIPLY_32_REG",	\
296   "MULTIPLY_64_REG",	\
297   "LOW_REGS", 		\
298   "HIGH_REGS", 		\
299   "REAL_REGS",		\
300   "ALL_REGS"		\
301  }
302 
303 /* An initializer containing the contents of the register classes, as integers
304    which are bit masks.  The Nth integer specifies the contents of class N.
305    The way the integer MASK is interpreted is that register R is in the class
306    if `MASK & (1 << R)' is 1.
307 
308    When the machine has more than 32 registers, an integer does not suffice.
309    Then the integers are replaced by sub-initializers, braced groupings
310    containing several integers.  Each sub-initializer must be suitable as an
311    initializer for the type `HARD_REG_SET' which is defined in
312    `hard-reg-set.h'.  */
313 #define REG_CLASS_CONTENTS 				\
314 { 							\
315   { 0 },						\
316   { 1 << MD_LOW_REGNUM },				\
317   { (1 << MD_LOW_REGNUM) | (1 << MD_HIGH_REGNUM) },	\
318   { (1 << 8) - 1 },					\
319   { ((1 << 8) - 1) << 8 },				\
320   { (1 << CONDITION_CODE_REGNUM) - 1 },			\
321   { (1 << FIRST_PSEUDO_REGISTER) - 1 }			\
322 }
323 
324 /* A C expression whose value is a register class containing hard register
325    REGNO.  In general there is more than one such class; choose a class which
326    is "minimal", meaning that no smaller class also contains the register.  */
327 #define REGNO_REG_CLASS(REGNO) 			\
328   ( (REGNO) < 8 ? LOW_REGS			\
329   : (REGNO) < CONDITION_CODE_REGNUM ? HIGH_REGS	\
330   : (REGNO) == MD_LOW_REGNUM ? MULTIPLY_32_REG	\
331   : (REGNO) == MD_HIGH_REGNUM ? MULTIPLY_64_REG	\
332   : ALL_REGS)
333 
334 /* A macro whose definition is the name of the class to which a valid base
335    register must belong.  A base register is one used in an address which is
336    the register value plus a displacement.  */
337 #define BASE_REG_CLASS 	REAL_REGS
338 
339 /* A macro whose definition is the name of the class to which a valid index
340    register must belong.  An index register is one used in an address where its
341    value is either multiplied by a scale factor or added to another register
342    (as well as added to a displacement).  */
343 #define INDEX_REG_CLASS REAL_REGS
344 
345 /* A C expression which is nonzero if register number NUM is suitable for use
346    as a base register in operand addresses.  It may be either a suitable hard
347    register or a pseudo register that has been allocated such a hard register.  */
348 #define REGNO_OK_FOR_BASE_P(NUM) 1
349 
350 /* A C expression which is nonzero if register number NUM is suitable for use
351    as an index register in operand addresses.  It may be either a suitable hard
352    register or a pseudo register that has been allocated such a hard register.
353 
354    The difference between an index register and a base register is that the
355    index register may be scaled.  If an address involves the sum of two
356    registers, neither one of them scaled, then either one may be labeled the
357    "base" and the other the "index"; but whichever labeling is used must fit
358    the machine's constraints of which registers may serve in each capacity.
359    The compiler will try both labelings, looking for one that is valid, and
360    will reload one or both registers only if neither labeling works.  */
361 #define REGNO_OK_FOR_INDEX_P(NUM) 1
362 
363 /* A C expression for the maximum number of consecutive registers of
364    class CLASS needed to hold a value of mode MODE.
365 
366    This is closely related to the macro `HARD_REGNO_NREGS'.  In fact, the value
367    of the macro `CLASS_MAX_NREGS (CLASS, MODE)' should be the maximum value of
368    `HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO values in the class CLASS.
369 
370    This macro helps control the handling of multiple-word values in
371    the reload pass.  */
372 #define CLASS_MAX_NREGS(CLASS, MODE) HARD_REGNO_NREGS (0, MODE)
373 
374 /*}}}*/
375 /*{{{  Basic Stack Layout.  */
376 
377 /* Define this macro if pushing a word onto the stack moves the stack pointer
378    to a smaller address.  */
379 #define STACK_GROWS_DOWNWARD 1
380 
381 /* Define this to macro nonzero if the addresses of local variable slots
382    are at negative offsets from the frame pointer.  */
383 #define FRAME_GROWS_DOWNWARD 1
384 
385 /* Offset from the frame pointer to the first local variable slot to be
386    allocated.
387 
388    If `FRAME_GROWS_DOWNWARD', find the next slot's offset by subtracting the
389    first slot's length from `STARTING_FRAME_OFFSET'.  Otherwise, it is found by
390    adding the length of the first slot to the value `STARTING_FRAME_OFFSET'.  */
391 /* #define STARTING_FRAME_OFFSET -4 */
392 #define STARTING_FRAME_OFFSET 0
393 
394 /* Offset from the stack pointer register to the first location at which
395    outgoing arguments are placed.  If not specified, the default value of zero
396    is used.  This is the proper value for most machines.
397 
398    If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
399    location at which outgoing arguments are placed.  */
400 #define STACK_POINTER_OFFSET 0
401 
402 /* Offset from the argument pointer register to the first argument's address.
403    On some machines it may depend on the data type of the function.
404 
405    If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
406    argument's address.  */
407 #define FIRST_PARM_OFFSET(FUNDECL) 0
408 
409 /* A C expression whose value is RTL representing the location of the incoming
410    return address at the beginning of any function, before the prologue.  This
411    RTL is either a `REG', indicating that the return value is saved in `REG',
412    or a `MEM' representing a location in the stack.
413 
414    You only need to define this macro if you want to support call frame
415    debugging information like that provided by DWARF 2.  */
416 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (SImode, RETURN_POINTER_REGNUM)
417 
418 /*}}}*/
419 /*{{{  Register That Address the Stack Frame.  */
420 
421 /* The register number of the arg pointer register, which is used to access the
422    function's argument list.  On some machines, this is the same as the frame
423    pointer register.  On some machines, the hardware determines which register
424    this is.  On other machines, you can choose any register you wish for this
425    purpose.  If this is not the same register as the frame pointer register,
426    then you must mark it as a fixed register according to `FIXED_REGISTERS', or
427    arrange to be able to eliminate it.  */
428 #define ARG_POINTER_REGNUM 20
429 
430 /*}}}*/
431 /*{{{  Eliminating the Frame Pointer and the Arg Pointer.  */
432 
433 /* If defined, this macro specifies a table of register pairs used to eliminate
434    unneeded registers that point into the stack frame.  If it is not defined,
435    the only elimination attempted by the compiler is to replace references to
436    the frame pointer with references to the stack pointer.
437 
438    The definition of this macro is a list of structure initializations, each of
439    which specifies an original and replacement register.
440 
441    On some machines, the position of the argument pointer is not known until
442    the compilation is completed.  In such a case, a separate hard register must
443    be used for the argument pointer.  This register can be eliminated by
444    replacing it with either the frame pointer or the argument pointer,
445    depending on whether or not the frame pointer has been eliminated.
446 
447    In this case, you might specify:
448         #define ELIMINABLE_REGS  \
449         {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
450          {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
451          {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
452 
453    Note that the elimination of the argument pointer with the stack pointer is
454    specified first since that is the preferred elimination.  */
455 
456 #define ELIMINABLE_REGS				\
457 {						\
458   {ARG_POINTER_REGNUM,	 STACK_POINTER_REGNUM},	\
459   {ARG_POINTER_REGNUM,	 FRAME_POINTER_REGNUM},	\
460   {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}	\
461 }
462 
463 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'.  It specifies the
464    initial difference between the specified pair of registers.  This macro must
465    be defined if `ELIMINABLE_REGS' is defined.  */
466 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
467      (OFFSET) = fr30_compute_frame_size (FROM, TO)
468 
469 /*}}}*/
470 /*{{{  Passing Function Arguments on the Stack.  */
471 
472 /* If defined, the maximum amount of space required for outgoing arguments will
473    be computed and placed into the variable
474    `crtl->outgoing_args_size'.  No space will be pushed onto the
475    stack for each call; instead, the function prologue should increase the
476    stack frame size by this amount.
477 
478    Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not
479    proper.  */
480 #define ACCUMULATE_OUTGOING_ARGS 1
481 
482 /*}}}*/
483 /*{{{  Function Arguments in Registers.  */
484 
485 /* The number of register assigned to holding function arguments.  */
486 
487 #define FR30_NUM_ARG_REGS	 4
488 
489 /* A C type for declaring a variable that is used as the first argument of
490    `FUNCTION_ARG' and other related values.  For some target machines, the type
491    `int' suffices and can hold the number of bytes of argument so far.
492 
493    There is no need to record in `CUMULATIVE_ARGS' anything about the arguments
494    that have been passed on the stack.  The compiler has other variables to
495    keep track of that.  For target machines on which all arguments are passed
496    on the stack, there is no need to store anything in `CUMULATIVE_ARGS';
497    however, the data structure must exist and should not be empty, so use
498    `int'.  */
499 /* On the FR30 this value is an accumulating count of the number of argument
500    registers that have been filled with argument values, as opposed to say,
501    the number of bytes of argument accumulated so far.  */
502 #define CUMULATIVE_ARGS int
503 
504 /* A C statement (sans semicolon) for initializing the variable CUM for the
505    state at the beginning of the argument list.  The variable has type
506    `CUMULATIVE_ARGS'.  The value of FNTYPE is the tree node for the data type
507    of the function which will receive the args, or 0 if the args are to a
508    compiler support library function.  The value of INDIRECT is nonzero when
509    processing an indirect call, for example a call through a function pointer.
510    The value of INDIRECT is zero for a call to an explicitly named function, a
511    library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
512    arguments for the function being compiled.
513 
514    When processing a call to a compiler support library function, LIBNAME
515    identifies which one.  It is a `symbol_ref' rtx which contains the name of
516    the function, as a string.  LIBNAME is 0 when an ordinary C function call is
517    being processed.  Thus, each time this macro is called, either LIBNAME or
518    FNTYPE is nonzero, but never both of them at once.  */
519 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
520   (CUM) = 0
521 
522 /* A C expression that is nonzero if REGNO is the number of a hard register in
523    which function arguments are sometimes passed.  This does *not* include
524    implicit arguments such as the static chain and the structure-value address.
525    On many machines, no registers can be used for this purpose since all
526    function arguments are pushed on the stack.  */
527 #define FUNCTION_ARG_REGNO_P(REGNO) \
528   ((REGNO) >= FIRST_ARG_REGNUM && ((REGNO) < FIRST_ARG_REGNUM + FR30_NUM_ARG_REGS))
529 
530 /*}}}*/
531 /*{{{  How Large Values are Returned.  */
532 
533 /* Define this macro to be 1 if all structure and union return values must be
534    in memory.  Since this results in slower code, this should be defined only
535    if needed for compatibility with other compilers or with an ABI.  If you
536    define this macro to be 0, then the conventions used for structure and union
537    return values are decided by the `TARGET_RETURN_IN_MEMORY' macro.
538 
539    If not defined, this defaults to the value 1.  */
540 #define DEFAULT_PCC_STRUCT_RETURN 1
541 
542 /*}}}*/
543 /*{{{  Generating Code for Profiling.  */
544 
545 /* A C statement or compound statement to output to FILE some assembler code to
546    call the profiling subroutine `mcount'.  Before calling, the assembler code
547    must load the address of a counter variable into a register where `mcount'
548    expects to find the address.  The name of this variable is `LP' followed by
549    the number LABELNO, so you would generate the name using `LP%d' in a
550    `fprintf'.
551 
552    The details of how the address should be passed to `mcount' are determined
553    by your operating system environment, not by GCC.  To figure them out,
554    compile a small program for profiling using the system's installed C
555    compiler and look at the assembler code that results.  */
556 #define FUNCTION_PROFILER(FILE, LABELNO)	\
557 {						\
558   fprintf (FILE, "\t mov rp, r1\n" );		\
559   fprintf (FILE, "\t ldi:32 mcount, r0\n" );	\
560   fprintf (FILE, "\t call @r0\n" );		\
561   fprintf (FILE, ".word\tLP%d\n", LABELNO);	\
562 }
563 
564 /*}}}*/
565 /*{{{  Trampolines for Nested Functions.  */
566 
567 /* A C expression for the size in bytes of the trampoline, as an integer.  */
568 #define TRAMPOLINE_SIZE 18
569 
570 /* We want the trampoline to be aligned on a 32bit boundary so that we can
571    make sure the location of the static chain & target function within
572    the trampoline is also aligned on a 32bit boundary.  */
573 #define TRAMPOLINE_ALIGNMENT 32
574 
575 /*}}}*/
576 /*{{{  Addressing Modes.  */
577 
578 /* A number, the maximum number of registers that can appear in a valid memory
579    address.  Note that it is up to you to specify a value equal to the maximum
580    number that `GO_IF_LEGITIMATE_ADDRESS' would ever accept.  */
581 #define MAX_REGS_PER_ADDRESS 1
582 
583 /* A C compound statement with a conditional `goto LABEL;' executed if X (an
584    RTX) is a legitimate memory address on the target machine for a memory
585    operand of mode MODE.  */
586 
587 /* On the FR30 we only have one real addressing mode - an address in a
588    register.  There are three special cases however:
589 
590    * indexed addressing using small positive offsets from the stack pointer
591 
592    * indexed addressing using small signed offsets from the frame pointer
593 
594    * register plus register addressing using R13 as the base register.
595 
596    At the moment we only support the first two of these special cases.  */
597 
598 #ifdef REG_OK_STRICT
599 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL)			\
600   do									\
601     {									\
602       if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))			\
603         goto LABEL;							\
604       if (GET_CODE (X) == PLUS						\
605 	  && ((MODE) == SImode || (MODE) == SFmode)			\
606 	  && GET_CODE (XEXP (X, 0)) == REG				\
607           && REGNO (XEXP (X, 0)) == STACK_POINTER_REGNUM		\
608 	  && GET_CODE (XEXP (X, 1)) == CONST_INT			\
609 	  && IN_RANGE (INTVAL (XEXP (X, 1)), 0, (1 <<  6) - 4))		\
610 	goto LABEL;							\
611       if (GET_CODE (X) == PLUS						\
612 	  && ((MODE) == SImode || (MODE) == SFmode)			\
613 	  && GET_CODE (XEXP (X, 0)) == REG				\
614           && REGNO (XEXP (X, 0)) == FRAME_POINTER_REGNUM		\
615 	  && GET_CODE (XEXP (X, 1)) == CONST_INT			\
616 	  && IN_RANGE (INTVAL (XEXP (X, 1)), -(1 << 9), (1 <<  9) - 4))	\
617         goto LABEL;							\
618     }									\
619   while (0)
620 #else
621 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL)			\
622   do									\
623     {									\
624       if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))			\
625         goto LABEL;							\
626       if (GET_CODE (X) == PLUS						\
627 	  && ((MODE) == SImode || (MODE) == SFmode)			\
628 	  && GET_CODE (XEXP (X, 0)) == REG				\
629           && REGNO (XEXP (X, 0)) == STACK_POINTER_REGNUM		\
630 	  && GET_CODE (XEXP (X, 1)) == CONST_INT			\
631 	  && IN_RANGE (INTVAL (XEXP (X, 1)), 0, (1 <<  6) - 4))		\
632 	goto LABEL;							\
633       if (GET_CODE (X) == PLUS						\
634 	  && ((MODE) == SImode || (MODE) == SFmode)			\
635 	  && GET_CODE (XEXP (X, 0)) == REG				\
636           && (REGNO (XEXP (X, 0)) == FRAME_POINTER_REGNUM		\
637 	      || REGNO (XEXP (X, 0)) == ARG_POINTER_REGNUM)		\
638 	  && GET_CODE (XEXP (X, 1)) == CONST_INT			\
639 	  && IN_RANGE (INTVAL (XEXP (X, 1)), -(1 << 9), (1 <<  9) - 4))	\
640         goto LABEL;							\
641     }									\
642   while (0)
643 #endif
644 
645 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
646    use as a base register.  For hard registers, it should always accept those
647    which the hardware permits and reject the others.  Whether the macro accepts
648    or rejects pseudo registers must be controlled by `REG_OK_STRICT' as
649    described above.  This usually requires two variant definitions, of which
650    `REG_OK_STRICT' controls the one actually used.  */
651 #ifdef REG_OK_STRICT
652 #define REG_OK_FOR_BASE_P(X) (((unsigned) REGNO (X)) <= STACK_POINTER_REGNUM)
653 #else
654 #define REG_OK_FOR_BASE_P(X) 1
655 #endif
656 
657 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
658    use as an index register.
659 
660    The difference between an index register and a base register is that the
661    index register may be scaled.  If an address involves the sum of two
662    registers, neither one of them scaled, then either one may be labeled the
663    "base" and the other the "index"; but whichever labeling is used must fit
664    the machine's constraints of which registers may serve in each capacity.
665    The compiler will try both labelings, looking for one that is valid, and
666    will reload one or both registers only if neither labeling works.  */
667 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
668 
669 /*}}}*/
670 /*{{{  Describing Relative Costs of Operations */
671 
672 /* Define this macro as a C expression which is nonzero if accessing less than
673    a word of memory (i.e. a `char' or a `short') is no faster than accessing a
674    word of memory, i.e., if such access require more than one instruction or if
675    there is no difference in cost between byte and (aligned) word loads.
676 
677    When this macro is not defined, the compiler will access a field by finding
678    the smallest containing object; when it is defined, a fullword load will be
679    used if alignment permits.  Unless bytes accesses are faster than word
680    accesses, using word accesses is preferable since it may eliminate
681    subsequent memory access if subsequent accesses occur to other fields in the
682    same word of the structure, but to different bytes.  */
683 #define SLOW_BYTE_ACCESS 1
684 
685 /*}}}*/
686 /*{{{  Dividing the output into sections.  */
687 
688 /* A C expression whose value is a string containing the assembler operation
689    that should precede instructions and read-only data.  Normally `".text"' is
690    right.  */
691 #define TEXT_SECTION_ASM_OP "\t.text"
692 
693 /* A C expression whose value is a string containing the assembler operation to
694    identify the following data as writable initialized data.  Normally
695    `".data"' is right.  */
696 #define DATA_SECTION_ASM_OP "\t.data"
697 
698 #define BSS_SECTION_ASM_OP "\t.section .bss"
699 
700 /*}}}*/
701 /*{{{  The Overall Framework of an Assembler File.  */
702 
703 /* A C string constant describing how to begin a comment in the target
704    assembler language.  The compiler assumes that the comment will end at the
705    end of the line.  */
706 #define ASM_COMMENT_START ";"
707 
708 /* A C string constant for text to be output before each `asm' statement or
709    group of consecutive ones.  Normally this is `"#APP"', which is a comment
710    that has no effect on most assemblers but tells the GNU assembler that it
711    must check the lines that follow for all valid assembler constructs.  */
712 #define ASM_APP_ON "#APP\n"
713 
714 /* A C string constant for text to be output after each `asm' statement or
715    group of consecutive ones.  Normally this is `"#NO_APP"', which tells the
716    GNU assembler to resume making the time-saving assumptions that are valid
717    for ordinary compiler output.  */
718 #define ASM_APP_OFF "#NO_APP\n"
719 
720 /*}}}*/
721 /*{{{  Output and Generation of Labels.  */
722 
723 /* Globalizing directive for a label.  */
724 #define GLOBAL_ASM_OP "\t.globl "
725 
726 /*}}}*/
727 /*{{{  Output of Assembler Instructions.  */
728 
729 /* A C compound statement to output to stdio stream STREAM the assembler syntax
730    for an instruction operand X.  X is an RTL expression.
731 
732    CODE is a value that can be used to specify one of several ways of printing
733    the operand.  It is used when identical operands must be printed differently
734    depending on the context.  CODE comes from the `%' specification that was
735    used to request printing of the operand.  If the specification was just
736    `%DIGIT' then CODE is 0; if the specification was `%LTR DIGIT' then CODE is
737    the ASCII code for LTR.
738 
739    If X is a register, this macro should print the register's name.  The names
740    can be found in an array `reg_names' whose type is `char *[]'.  `reg_names'
741    is initialized from `REGISTER_NAMES'.
742 
743    When the machine description has a specification `%PUNCT' (a `%' followed by
744    a punctuation character), this macro is called with a null pointer for X and
745    the punctuation character for CODE.  */
746 #define PRINT_OPERAND(STREAM, X, CODE)	fr30_print_operand (STREAM, X, CODE)
747 
748 /* A C expression which evaluates to true if CODE is a valid punctuation
749    character for use in the `PRINT_OPERAND' macro.  If
750    `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no punctuation
751    characters (except for the standard one, `%') are used in this way.  */
752 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) (CODE == '#')
753 
754 /* A C compound statement to output to stdio stream STREAM the assembler syntax
755    for an instruction operand that is a memory reference whose address is X.  X
756    is an RTL expression.  */
757 
758 #define PRINT_OPERAND_ADDRESS(STREAM, X) fr30_print_operand_address (STREAM, X)
759 
760 #define REGISTER_PREFIX "%"
761 #define LOCAL_LABEL_PREFIX "."
762 #define USER_LABEL_PREFIX ""
763 #define IMMEDIATE_PREFIX ""
764 
765 /*}}}*/
766 /*{{{  Output of Dispatch Tables.  */
767 
768 /* This macro should be provided on machines where the addresses in a dispatch
769    table are relative to the table's own address.
770 
771    The definition should be a C statement to output to the stdio stream STREAM
772    an assembler pseudo-instruction to generate a difference between two labels.
773    VALUE and REL are the numbers of two internal labels.  The definitions of
774    these labels are output using `(*targetm.asm_out.internal_label)', and they must be
775    printed in the same way here.  For example,
776 
777         fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL)  */
778 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
779 fprintf (STREAM, "\t.word .L%d-.L%d\n", VALUE, REL)
780 
781 /* This macro should be provided on machines where the addresses in a dispatch
782    table are absolute.
783 
784    The definition should be a C statement to output to the stdio stream STREAM
785    an assembler pseudo-instruction to generate a reference to a label.  VALUE
786    is the number of an internal label whose definition is output using
787    `(*targetm.asm_out.internal_label)'.  For example,
788 
789         fprintf (STREAM, "\t.word L%d\n", VALUE)  */
790 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
791 fprintf (STREAM, "\t.word .L%d\n", VALUE)
792 
793 /*}}}*/
794 /*{{{  Assembler Commands for Alignment.  */
795 
796 /* A C statement to output to the stdio stream STREAM an assembler command to
797    advance the location counter to a multiple of 2 to the POWER bytes.  POWER
798    will be a C expression of type `int'.  */
799 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
800   fprintf ((STREAM), "\t.p2align %d\n", (POWER))
801 
802 /*}}}*/
803 /*{{{  Miscellaneous Parameters.  */
804 
805 /* An alias for a machine mode name.  This is the machine mode that elements of
806    a jump-table should have.  */
807 #define CASE_VECTOR_MODE SImode
808 
809 /* The maximum number of bytes that a single instruction can move quickly from
810    memory to memory.  */
811 #define MOVE_MAX 8
812 
813 /* A C expression which is nonzero if on this machine it is safe to "convert"
814    an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
815    than INPREC) by merely operating on it as if it had only OUTPREC bits.
816 
817    On many machines, this expression can be 1.
818 
819    When `TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for modes for
820    which `MODES_TIEABLE_P' is 0, suboptimal code can result.  If this is the
821    case, making `TRULY_NOOP_TRUNCATION' return 0 in such cases may improve
822    things.  */
823 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
824 
825 /* An alias for the machine mode for pointers.  On most machines, define this
826    to be the integer mode corresponding to the width of a hardware pointer;
827    `SImode' on 32-bit machine or `DImode' on 64-bit machines.  On some machines
828    you must define this to be one of the partial integer modes, such as
829    `PSImode'.
830 
831    The width of `Pmode' must be at least as large as the value of
832    `POINTER_SIZE'.  If it is not equal, you must define the macro
833    `POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to `Pmode'.  */
834 #define Pmode SImode
835 
836 /* An alias for the machine mode used for memory references to functions being
837    called, in `call' RTL expressions.  On most machines this should be
838    `QImode'.  */
839 #define FUNCTION_MODE QImode
840 
841 /*}}}*/
842 
843 /* Local Variables: */
844 /* folded-file: t   */
845 /* End:		    */
846