xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/config/arm/arm1136jfs.md (revision b8ecfcfef0e343ad71faea7a54fb5fcb42ad4e27)
1;; ARM 1136J[F]-S Pipeline Description
2;; Copyright (C) 2003, 2007 Free Software Foundation, Inc.
3;; Written by CodeSourcery, LLC.
4;;
5;; This file is part of GCC.
6;;
7;; GCC is free software; you can redistribute it and/or modify it
8;; under the terms of the GNU General Public License as published by
9;; the Free Software Foundation; either version 3, or (at your option)
10;; any later version.
11;;
12;; GCC is distributed in the hope that it will be useful, but
13;; WITHOUT ANY WARRANTY; without even the implied warranty of
14;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15;; General Public License for more details.
16;;
17;; You should have received a copy of the GNU General Public License
18;; along with GCC; see the file COPYING3.  If not see
19;; <http://www.gnu.org/licenses/>.  */
20
21;; These descriptions are based on the information contained in the
22;; ARM1136JF-S Technical Reference Manual, Copyright (c) 2003 ARM
23;; Limited.
24;;
25
26;; This automaton provides a pipeline description for the ARM
27;; 1136J-S and 1136JF-S cores.
28;;
29;; The model given here assumes that the condition for all conditional
30;; instructions is "true", i.e., that all of the instructions are
31;; actually executed.
32
33(define_automaton "arm1136jfs")
34
35;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
36;; Pipelines
37;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
38
39;; There are three distinct pipelines (page 1-26 and following):
40;;
41;; - A 4-stage decode pipeline, shared by all three.  It has fetch (1),
42;;   fetch (2), decode, and issue stages.  Since this is always involved,
43;;   we do not model it in the scheduler.
44;;
45;; - A 4-stage ALU pipeline.  It has shifter, ALU (main integer operations),
46;;   and saturation stages.  The fourth stage is writeback; see below.
47;;
48;; - A 4-stage multiply-accumulate pipeline.  It has three stages, called
49;;   MAC1 through MAC3, and a fourth writeback stage.
50;;
51;;   The 4th-stage writeback is shared between the ALU and MAC pipelines,
52;;   which operate in lockstep.  Results from either pipeline will be
53;;   moved into the writeback stage.  Because the two pipelines operate
54;;   in lockstep, we schedule them as a single "execute" pipeline.
55;;
56;; - A 4-stage LSU pipeline.  It has address generation, data cache (1),
57;;   data cache (2), and writeback stages.  (Note that this pipeline,
58;;   including the writeback stage, is independent from the ALU & LSU pipes.)
59
60(define_cpu_unit "e_1,e_2,e_3,e_wb" "arm1136jfs")     ; ALU and MAC
61; e_1 = Sh/Mac1, e_2 = ALU/Mac2, e_3 = SAT/Mac3
62(define_cpu_unit "l_a,l_dc1,l_dc2,l_wb" "arm1136jfs") ; Load/Store
63
64;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
65;; ALU Instructions
66;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
67
68;; ALU instructions require eight cycles to execute, and use the ALU
69;; pipeline in each of the eight stages.  The results are available
70;; after the alu stage has finished.
71;;
72;; If the destination register is the PC, the pipelines are stalled
73;; for several cycles.  That case is not modelled here.
74
75;; ALU operations with no shifted operand
76(define_insn_reservation "11_alu_op" 2
77 (and (eq_attr "tune" "arm1136js,arm1136jfs")
78      (eq_attr "type" "alu"))
79 "e_1,e_2,e_3,e_wb")
80
81;; ALU operations with a shift-by-constant operand
82(define_insn_reservation "11_alu_shift_op" 2
83 (and (eq_attr "tune" "arm1136js,arm1136jfs")
84      (eq_attr "type" "alu_shift"))
85 "e_1,e_2,e_3,e_wb")
86
87;; ALU operations with a shift-by-register operand
88;; These really stall in the decoder, in order to read
89;; the shift value in a second cycle. Pretend we take two cycles in
90;; the shift stage.
91(define_insn_reservation "11_alu_shift_reg_op" 3
92 (and (eq_attr "tune" "arm1136js,arm1136jfs")
93      (eq_attr "type" "alu_shift_reg"))
94 "e_1*2,e_2,e_3,e_wb")
95
96;; alu_ops can start sooner, if there is no shifter dependency
97(define_bypass 1 "11_alu_op,11_alu_shift_op"
98	       "11_alu_op")
99(define_bypass 1 "11_alu_op,11_alu_shift_op"
100	       "11_alu_shift_op"
101	       "arm_no_early_alu_shift_value_dep")
102(define_bypass 1 "11_alu_op,11_alu_shift_op"
103	       "11_alu_shift_reg_op"
104	       "arm_no_early_alu_shift_dep")
105(define_bypass 2 "11_alu_shift_reg_op"
106	       "11_alu_op")
107(define_bypass 2 "11_alu_shift_reg_op"
108	       "11_alu_shift_op"
109	       "arm_no_early_alu_shift_value_dep")
110(define_bypass 2 "11_alu_shift_reg_op"
111	       "11_alu_shift_reg_op"
112	       "arm_no_early_alu_shift_dep")
113
114(define_bypass 1 "11_alu_op,11_alu_shift_op"
115	       "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
116	       "arm_no_early_mul_dep")
117(define_bypass 2 "11_alu_shift_reg_op"
118	       "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
119	       "arm_no_early_mul_dep")
120
121;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
122;; Multiplication Instructions
123;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
124
125;; Multiplication instructions loop in the first two execute stages until
126;; the instruction has been passed through the multiplier array enough
127;; times.
128
129;; Multiply and multiply-accumulate results are available after four stages.
130(define_insn_reservation "11_mult1" 4
131 (and (eq_attr "tune" "arm1136js,arm1136jfs")
132      (eq_attr "insn" "mul,mla"))
133 "e_1*2,e_2,e_3,e_wb")
134
135;; The *S variants set the condition flags, which requires three more cycles.
136(define_insn_reservation "11_mult2" 4
137 (and (eq_attr "tune" "arm1136js,arm1136jfs")
138      (eq_attr "insn" "muls,mlas"))
139 "e_1*2,e_2,e_3,e_wb")
140
141(define_bypass 3 "11_mult1,11_mult2"
142	       "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
143	       "arm_no_early_mul_dep")
144(define_bypass 3 "11_mult1,11_mult2"
145	       "11_alu_op")
146(define_bypass 3 "11_mult1,11_mult2"
147	       "11_alu_shift_op"
148	       "arm_no_early_alu_shift_value_dep")
149(define_bypass 3 "11_mult1,11_mult2"
150	       "11_alu_shift_reg_op"
151	       "arm_no_early_alu_shift_dep")
152(define_bypass 3 "11_mult1,11_mult2"
153	       "11_store1"
154	       "arm_no_early_store_addr_dep")
155
156;; Signed and unsigned multiply long results are available across two cycles;
157;; the less significant word is available one cycle before the more significant
158;; word.  Here we conservatively wait until both are available, which is
159;; after three iterations and the memory cycle.  The same is also true of
160;; the two multiply-accumulate instructions.
161(define_insn_reservation "11_mult3" 5
162 (and (eq_attr "tune" "arm1136js,arm1136jfs")
163      (eq_attr "insn" "smull,umull,smlal,umlal"))
164 "e_1*3,e_2,e_3,e_wb*2")
165
166;; The *S variants set the condition flags, which requires three more cycles.
167(define_insn_reservation "11_mult4" 5
168 (and (eq_attr "tune" "arm1136js,arm1136jfs")
169      (eq_attr "insn" "smulls,umulls,smlals,umlals"))
170 "e_1*3,e_2,e_3,e_wb*2")
171
172(define_bypass 4 "11_mult3,11_mult4"
173	       "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
174	       "arm_no_early_mul_dep")
175(define_bypass 4 "11_mult3,11_mult4"
176	       "11_alu_op")
177(define_bypass 4 "11_mult3,11_mult4"
178	       "11_alu_shift_op"
179	       "arm_no_early_alu_shift_value_dep")
180(define_bypass 4 "11_mult3,11_mult4"
181	       "11_alu_shift_reg_op"
182	       "arm_no_early_alu_shift_dep")
183(define_bypass 4 "11_mult3,11_mult4"
184	       "11_store1"
185	       "arm_no_early_store_addr_dep")
186
187;; Various 16x16->32 multiplies and multiply-accumulates, using combinations
188;; of high and low halves of the argument registers.  They take a single
189;; pass through the pipeline and make the result available after three
190;; cycles.
191(define_insn_reservation "11_mult5" 3
192 (and (eq_attr "tune" "arm1136js,arm1136jfs")
193      (eq_attr "insn" "smulxy,smlaxy,smulwy,smlawy,smuad,smuadx,smlad,smladx,smusd,smusdx,smlsd,smlsdx"))
194 "e_1,e_2,e_3,e_wb")
195
196(define_bypass 2 "11_mult5"
197	       "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
198	       "arm_no_early_mul_dep")
199(define_bypass 2 "11_mult5"
200	       "11_alu_op")
201(define_bypass 2 "11_mult5"
202	       "11_alu_shift_op"
203	       "arm_no_early_alu_shift_value_dep")
204(define_bypass 2 "11_mult5"
205	       "11_alu_shift_reg_op"
206	       "arm_no_early_alu_shift_dep")
207(define_bypass 2 "11_mult5"
208	       "11_store1"
209	       "arm_no_early_store_addr_dep")
210
211;; The same idea, then the 32-bit result is added to a 64-bit quantity.
212(define_insn_reservation "11_mult6" 4
213 (and (eq_attr "tune" "arm1136js,arm1136jfs")
214      (eq_attr "insn" "smlalxy"))
215 "e_1*2,e_2,e_3,e_wb*2")
216
217;; Signed 32x32 multiply, then the most significant 32 bits are extracted
218;; and are available after the memory stage.
219(define_insn_reservation "11_mult7" 4
220 (and (eq_attr "tune" "arm1136js,arm1136jfs")
221      (eq_attr "insn" "smmul,smmulr"))
222 "e_1*2,e_2,e_3,e_wb")
223
224(define_bypass 3 "11_mult6,11_mult7"
225	       "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
226	       "arm_no_early_mul_dep")
227(define_bypass 3 "11_mult6,11_mult7"
228	       "11_alu_op")
229(define_bypass 3 "11_mult6,11_mult7"
230	       "11_alu_shift_op"
231	       "arm_no_early_alu_shift_value_dep")
232(define_bypass 3 "11_mult6,11_mult7"
233	       "11_alu_shift_reg_op"
234	       "arm_no_early_alu_shift_dep")
235(define_bypass 3 "11_mult6,11_mult7"
236	       "11_store1"
237	       "arm_no_early_store_addr_dep")
238
239;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
240;; Branch Instructions
241;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
242
243;; These vary greatly depending on their arguments and the results of
244;; stat prediction.  Cycle count ranges from zero (unconditional branch,
245;; folded dynamic prediction) to seven (incorrect predictions, etc).  We
246;; assume an optimal case for now, because the cost of a cache miss
247;; overwhelms the cost of everything else anyhow.
248
249(define_insn_reservation "11_branches" 0
250 (and (eq_attr "tune" "arm1136js,arm1136jfs")
251      (eq_attr "type" "branch"))
252 "nothing")
253
254;; Call latencies are not predictable.  A semi-arbitrary very large
255;; number is used as "positive infinity" so that everything should be
256;; finished by the time of return.
257(define_insn_reservation "11_call" 32
258 (and (eq_attr "tune" "arm1136js,arm1136jfs")
259      (eq_attr "type" "call"))
260 "nothing")
261
262;; Branches are predicted. A correctly predicted branch will be no
263;; cost, but we're conservative here, and use the timings a
264;; late-register would give us.
265(define_bypass 1 "11_alu_op,11_alu_shift_op"
266	       "11_branches")
267(define_bypass 2 "11_alu_shift_reg_op"
268	       "11_branches")
269(define_bypass 2 "11_load1,11_load2"
270	       "11_branches")
271(define_bypass 3 "11_load34"
272	       "11_branches")
273
274;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
275;; Load/Store Instructions
276;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
277
278;; The models for load/store instructions do not accurately describe
279;; the difference between operations with a base register writeback.
280;; These models assume that all memory references hit in dcache.  Also,
281;; if the PC is one of the registers involved, there are additional stalls
282;; not modelled here.  Addressing modes are also not modelled.
283
284(define_insn_reservation "11_load1" 3
285 (and (eq_attr "tune" "arm1136js,arm1136jfs")
286      (eq_attr "type" "load1"))
287 "l_a+e_1,l_dc1,l_dc2,l_wb")
288
289;; Load byte results are not available until the writeback stage, where
290;; the correct byte is extracted.
291
292(define_insn_reservation "11_loadb" 4
293 (and (eq_attr "tune" "arm1136js,arm1136jfs")
294      (eq_attr "type" "load_byte"))
295 "l_a+e_1,l_dc1,l_dc2,l_wb")
296
297(define_insn_reservation "11_store1" 0
298 (and (eq_attr "tune" "arm1136js,arm1136jfs")
299      (eq_attr "type" "store1"))
300 "l_a+e_1,l_dc1,l_dc2,l_wb")
301
302;; Load/store double words into adjacent registers.  The timing and
303;; latencies are different depending on whether the address is 64-bit
304;; aligned.  This model assumes that it is.
305(define_insn_reservation "11_load2" 3
306 (and (eq_attr "tune" "arm1136js,arm1136jfs")
307      (eq_attr "type" "load2"))
308 "l_a+e_1,l_dc1,l_dc2,l_wb")
309
310(define_insn_reservation "11_store2" 0
311 (and (eq_attr "tune" "arm1136js,arm1136jfs")
312      (eq_attr "type" "store2"))
313 "l_a+e_1,l_dc1,l_dc2,l_wb")
314
315;; Load/store multiple registers.  Two registers are stored per cycle.
316;; Actual timing depends on how many registers are affected, so we
317;; optimistically schedule a low latency.
318(define_insn_reservation "11_load34" 4
319 (and (eq_attr "tune" "arm1136js,arm1136jfs")
320      (eq_attr "type" "load3,load4"))
321 "l_a+e_1,l_dc1*2,l_dc2,l_wb")
322
323(define_insn_reservation "11_store34" 0
324 (and (eq_attr "tune" "arm1136js,arm1136jfs")
325      (eq_attr "type" "store3,store4"))
326 "l_a+e_1,l_dc1*2,l_dc2,l_wb")
327
328;; A store can start immediately after an alu op, if that alu op does
329;; not provide part of the address to access.
330(define_bypass 1 "11_alu_op,11_alu_shift_op"
331	       "11_store1"
332	       "arm_no_early_store_addr_dep")
333(define_bypass 2 "11_alu_shift_reg_op"
334	       "11_store1"
335	       "arm_no_early_store_addr_dep")
336
337;; An alu op can start sooner after a load, if that alu op does not
338;; have an early register dependency on the load
339(define_bypass 2 "11_load1"
340	       "11_alu_op")
341(define_bypass 2 "11_load1"
342	       "11_alu_shift_op"
343	       "arm_no_early_alu_shift_value_dep")
344(define_bypass 2 "11_load1"
345	       "11_alu_shift_reg_op"
346	       "arm_no_early_alu_shift_dep")
347
348(define_bypass 3 "11_loadb"
349	       "11_alu_op")
350(define_bypass 3 "11_loadb"
351	       "11_alu_shift_op"
352	       "arm_no_early_alu_shift_value_dep")
353(define_bypass 3 "11_loadb"
354	       "11_alu_shift_reg_op"
355	       "arm_no_early_alu_shift_dep")
356
357;; A mul op can start sooner after a load, if that mul op does not
358;; have an early multiply dependency
359(define_bypass 2 "11_load1"
360	       "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
361	       "arm_no_early_mul_dep")
362(define_bypass 3 "11_load34"
363	       "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
364	       "arm_no_early_mul_dep")
365(define_bypass 3 "11_loadb"
366	       "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
367	       "arm_no_early_mul_dep")
368
369;; A store can start sooner after a load, if that load does not
370;; produce part of the address to access
371(define_bypass 2 "11_load1"
372	       "11_store1"
373	       "arm_no_early_store_addr_dep")
374(define_bypass 3 "11_loadb"
375	       "11_store1"
376	       "arm_no_early_store_addr_dep")
377