xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/config/arm/arm1020e.md (revision 92e958de60c71aa0f2452bd7074cbb006fe6546b)
1;; ARM 1020E & ARM 1022E Pipeline Description
2;; Copyright (C) 2005-2013 Free Software Foundation, Inc.
3;; Contributed by Richard Earnshaw (richard.earnshaw@arm.com)
4;;
5;; This file is part of GCC.
6;;
7;; GCC is free software; you can redistribute it and/or modify it
8;; under the terms of the GNU General Public License as published by
9;; the Free Software Foundation; either version 3, or (at your option)
10;; any later version.
11;;
12;; GCC is distributed in the hope that it will be useful, but
13;; WITHOUT ANY WARRANTY; without even the implied warranty of
14;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15;; General Public License for more details.
16;;
17;; You should have received a copy of the GNU General Public License
18;; along with GCC; see the file COPYING3.  If not see
19;; <http://www.gnu.org/licenses/>.  */
20
21;; These descriptions are based on the information contained in the
22;; ARM1020E Technical Reference Manual, Copyright (c) 2003 ARM
23;; Limited.
24;;
25
26;; This automaton provides a pipeline description for the ARM
27;; 1020E core.
28;;
29;; The model given here assumes that the condition for all conditional
30;; instructions is "true", i.e., that all of the instructions are
31;; actually executed.
32
33(define_automaton "arm1020e")
34
35;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
36;; Pipelines
37;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
38
39;; There are two pipelines:
40;;
41;; - An Arithmetic Logic Unit (ALU) pipeline.
42;;
43;;   The ALU pipeline has fetch, issue, decode, execute, memory, and
44;;   write stages. We only need to model the execute, memory and write
45;;   stages.
46;;
47;; - A Load-Store Unit (LSU) pipeline.
48;;
49;;   The LSU pipeline has decode, execute, memory, and write stages.
50;;   We only model the execute, memory and write stages.
51
52(define_cpu_unit "1020a_e,1020a_m,1020a_w" "arm1020e")
53(define_cpu_unit "1020l_e,1020l_m,1020l_w" "arm1020e")
54
55;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
56;; ALU Instructions
57;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
58
59;; ALU instructions require three cycles to execute, and use the ALU
60;; pipeline in each of the three stages.  The results are available
61;; after the execute stage stage has finished.
62;;
63;; If the destination register is the PC, the pipelines are stalled
64;; for several cycles.  That case is not modeled here.
65
66;; ALU operations with no shifted operand
67(define_insn_reservation "1020alu_op" 1
68 (and (eq_attr "tune" "arm1020e,arm1022e")
69      (eq_attr "type" "alu_reg,simple_alu_imm"))
70 "1020a_e,1020a_m,1020a_w")
71
72;; ALU operations with a shift-by-constant operand
73(define_insn_reservation "1020alu_shift_op" 1
74 (and (eq_attr "tune" "arm1020e,arm1022e")
75      (eq_attr "type" "simple_alu_shift,alu_shift"))
76 "1020a_e,1020a_m,1020a_w")
77
78;; ALU operations with a shift-by-register operand
79;; These really stall in the decoder, in order to read
80;; the shift value in a second cycle. Pretend we take two cycles in
81;; the execute stage.
82(define_insn_reservation "1020alu_shift_reg_op" 2
83 (and (eq_attr "tune" "arm1020e,arm1022e")
84      (eq_attr "type" "alu_shift_reg"))
85 "1020a_e*2,1020a_m,1020a_w")
86
87;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
88;; Multiplication Instructions
89;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
90
91;; Multiplication instructions loop in the execute stage until the
92;; instruction has been passed through the multiplier array enough
93;; times.
94
95;; The result of the "smul" and "smulw" instructions is not available
96;; until after the memory stage.
97(define_insn_reservation "1020mult1" 2
98 (and (eq_attr "tune" "arm1020e,arm1022e")
99      (eq_attr "insn" "smulxy,smulwy"))
100 "1020a_e,1020a_m,1020a_w")
101
102;; The "smlaxy" and "smlawx" instructions require two iterations through
103;; the execute stage; the result is available immediately following
104;; the execute stage.
105(define_insn_reservation "1020mult2" 2
106 (and (eq_attr "tune" "arm1020e,arm1022e")
107      (eq_attr "insn" "smlaxy,smlalxy,smlawx"))
108 "1020a_e*2,1020a_m,1020a_w")
109
110;; The "smlalxy", "mul", and "mla" instructions require two iterations
111;; through the execute stage; the result is not available until after
112;; the memory stage.
113(define_insn_reservation "1020mult3" 3
114 (and (eq_attr "tune" "arm1020e,arm1022e")
115      (eq_attr "insn" "smlalxy,mul,mla"))
116 "1020a_e*2,1020a_m,1020a_w")
117
118;; The "muls" and "mlas" instructions loop in the execute stage for
119;; four iterations in order to set the flags.  The value result is
120;; available after three iterations.
121(define_insn_reservation "1020mult4" 3
122 (and (eq_attr "tune" "arm1020e,arm1022e")
123      (eq_attr "insn" "muls,mlas"))
124 "1020a_e*4,1020a_m,1020a_w")
125
126;; Long multiply instructions that produce two registers of
127;; output (such as umull) make their results available in two cycles;
128;; the least significant word is available before the most significant
129;; word.  That fact is not modeled; instead, the instructions are
130;; described.as if the entire result was available at the end of the
131;; cycle in which both words are available.
132
133;; The "umull", "umlal", "smull", and "smlal" instructions all take
134;; three iterations through the execute cycle, and make their results
135;; available after the memory cycle.
136(define_insn_reservation "1020mult5" 4
137 (and (eq_attr "tune" "arm1020e,arm1022e")
138      (eq_attr "insn" "umull,umlal,smull,smlal"))
139 "1020a_e*3,1020a_m,1020a_w")
140
141;; The "umulls", "umlals", "smulls", and "smlals" instructions loop in
142;; the execute stage for five iterations in order to set the flags.
143;; The value result is available after four iterations.
144(define_insn_reservation "1020mult6" 4
145 (and (eq_attr "tune" "arm1020e,arm1022e")
146      (eq_attr "insn" "umulls,umlals,smulls,smlals"))
147 "1020a_e*5,1020a_m,1020a_w")
148
149;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
150;; Load/Store Instructions
151;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
152
153;; The models for load/store instructions do not accurately describe
154;; the difference between operations with a base register writeback
155;; (such as "ldm!").  These models assume that all memory references
156;; hit in dcache.
157
158;; LSU instructions require six cycles to execute.  They use the ALU
159;; pipeline in all but the 5th cycle, and the LSU pipeline in cycles
160;; three through six.
161;; Loads and stores which use a scaled register offset or scaled
162;; register pre-indexed addressing mode take three cycles EXCEPT for
163;; those that are base + offset with LSL of 0 or 2, or base - offset
164;; with LSL of zero.  The remainder take 1 cycle to execute.
165;; For 4byte loads there is a bypass from the load stage
166
167(define_insn_reservation "1020load1_op" 2
168 (and (eq_attr "tune" "arm1020e,arm1022e")
169      (eq_attr "type" "load_byte,load1"))
170 "1020a_e+1020l_e,1020l_m,1020l_w")
171
172(define_insn_reservation "1020store1_op" 0
173 (and (eq_attr "tune" "arm1020e,arm1022e")
174      (eq_attr "type" "store1"))
175 "1020a_e+1020l_e,1020l_m,1020l_w")
176
177;; A load's result can be stored by an immediately following store
178(define_bypass 1 "1020load1_op" "1020store1_op" "arm_no_early_store_addr_dep")
179
180;; On a LDM/STM operation, the LSU pipeline iterates until all of the
181;; registers have been processed.
182;;
183;; The time it takes to load the data depends on whether or not the
184;; base address is 64-bit aligned; if it is not, an additional cycle
185;; is required.  This model assumes that the address is always 64-bit
186;; aligned.  Because the processor can load two registers per cycle,
187;; that assumption means that we use the same instruction reservations
188;; for loading 2k and 2k - 1 registers.
189;;
190;; The ALU pipeline is decoupled after the first cycle unless there is
191;; a register dependency; the dependency is cleared as soon as the LDM/STM
192;; has dealt with the corresponding register.  So for example,
193;;  stmia sp, {r0-r3}
194;;  add	r0, r0, #4
195;; will have one fewer stalls than
196;;  stmia sp, {r0-r3}
197;;  add r3, r3, #4
198;;
199;; As with ALU operations, if one of the destination registers is the
200;; PC, there are additional stalls; that is not modeled.
201
202(define_insn_reservation "1020load2_op" 2
203 (and (eq_attr "tune" "arm1020e,arm1022e")
204      (eq_attr "type" "load2"))
205 "1020a_e+1020l_e,1020l_m,1020l_w")
206
207(define_insn_reservation "1020store2_op" 0
208 (and (eq_attr "tune" "arm1020e,arm1022e")
209      (eq_attr "type" "store2"))
210 "1020a_e+1020l_e,1020l_m,1020l_w")
211
212(define_insn_reservation "1020load34_op" 3
213 (and (eq_attr "tune" "arm1020e,arm1022e")
214      (eq_attr "type" "load3,load4"))
215 "1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w")
216
217(define_insn_reservation "1020store34_op" 0
218 (and (eq_attr "tune" "arm1020e,arm1022e")
219      (eq_attr "type" "store3,store4"))
220 "1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w")
221
222;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
223;; Branch and Call Instructions
224;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
225
226;; Branch instructions are difficult to model accurately.  The ARM
227;; core can predict most branches.  If the branch is predicted
228;; correctly, and predicted early enough, the branch can be completely
229;; eliminated from the instruction stream.  Some branches can
230;; therefore appear to require zero cycles to execute.  We assume that
231;; all branches are predicted correctly, and that the latency is
232;; therefore the minimum value.
233
234(define_insn_reservation "1020branch_op" 0
235 (and (eq_attr "tune" "arm1020e,arm1022e")
236      (eq_attr "type" "branch"))
237 "1020a_e")
238
239;; The latency for a call is not predictable.  Therefore, we use 32 as
240;; roughly equivalent to positive infinity.
241
242(define_insn_reservation "1020call_op" 32
243 (and (eq_attr "tune" "arm1020e,arm1022e")
244      (eq_attr "type" "call"))
245 "1020a_e*32")
246
247;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
248;; VFP
249;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
250
251(define_cpu_unit "v10_fmac" "arm1020e")
252
253(define_cpu_unit "v10_ds" "arm1020e")
254
255(define_cpu_unit "v10_fmstat" "arm1020e")
256
257(define_cpu_unit "v10_ls1,v10_ls2,v10_ls3" "arm1020e")
258
259;; fmstat is a serializing instruction.  It will stall the core until
260;; the mac and ds units have completed.
261(exclusion_set "v10_fmac,v10_ds" "v10_fmstat")
262
263(define_attr "vfp10" "yes,no"
264  (const (if_then_else (and (eq_attr "tune" "arm1020e,arm1022e")
265			    (eq_attr "fpu" "vfp"))
266		       (const_string "yes") (const_string "no"))))
267
268;; Note, no instruction can issue to the VFP if the core is stalled in the
269;; first execute state.  We model this by using 1020a_e in the first cycle.
270(define_insn_reservation "v10_ffarith" 5
271 (and (eq_attr "vfp10" "yes")
272      (eq_attr "type" "fcpys,ffariths,ffarithd,fcmps,fcmpd"))
273 "1020a_e+v10_fmac")
274
275(define_insn_reservation "v10_farith" 5
276 (and (eq_attr "vfp10" "yes")
277      (eq_attr "type" "faddd,fadds"))
278 "1020a_e+v10_fmac")
279
280(define_insn_reservation "v10_cvt" 5
281 (and (eq_attr "vfp10" "yes")
282      (eq_attr "type" "f_cvt"))
283 "1020a_e+v10_fmac")
284
285(define_insn_reservation "v10_fmul" 6
286 (and (eq_attr "vfp10" "yes")
287      (eq_attr "type" "fmuls,fmacs,ffmas,fmuld,fmacd,ffmad"))
288 "1020a_e+v10_fmac*2")
289
290(define_insn_reservation "v10_fdivs" 18
291 (and (eq_attr "vfp10" "yes")
292      (eq_attr "type" "fdivs"))
293 "1020a_e+v10_ds*14")
294
295(define_insn_reservation "v10_fdivd" 32
296 (and (eq_attr "vfp10" "yes")
297      (eq_attr "type" "fdivd"))
298 "1020a_e+v10_fmac+v10_ds*28")
299
300(define_insn_reservation "v10_floads" 4
301 (and (eq_attr "vfp10" "yes")
302      (eq_attr "type" "f_loads"))
303 "1020a_e+1020l_e+v10_ls1,v10_ls2")
304
305;; We model a load of a double as needing all the vfp ls* stage in cycle 1.
306;; This gives the correct mix between single-and double loads where a flds
307;; followed by and fldd will stall for one cycle, but two back-to-back fldd
308;; insns stall for two cycles.
309(define_insn_reservation "v10_floadd" 5
310 (and (eq_attr "vfp10" "yes")
311      (eq_attr "type" "f_loadd"))
312 "1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3")
313
314;; Moves to/from arm regs also use the load/store pipeline.
315
316(define_insn_reservation "v10_c2v" 4
317 (and (eq_attr "vfp10" "yes")
318      (eq_attr "type" "r_2_f"))
319 "1020a_e+1020l_e+v10_ls1,v10_ls2")
320
321(define_insn_reservation "v10_fstores" 1
322 (and (eq_attr "vfp10" "yes")
323      (eq_attr "type" "f_stores"))
324 "1020a_e+1020l_e+v10_ls1,v10_ls2")
325
326(define_insn_reservation "v10_fstored" 1
327 (and (eq_attr "vfp10" "yes")
328      (eq_attr "type" "f_stored"))
329 "1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3")
330
331(define_insn_reservation "v10_v2c" 1
332 (and (eq_attr "vfp10" "yes")
333      (eq_attr "type" "f_2_r"))
334 "1020a_e+1020l_e,1020l_m,1020l_w")
335
336(define_insn_reservation "v10_to_cpsr" 2
337 (and (eq_attr "vfp10" "yes")
338      (eq_attr "type" "f_flag"))
339 "1020a_e+v10_fmstat,1020a_e+1020l_e,1020l_m,1020l_w")
340
341;; VFP bypasses
342
343;; There are bypasses for most operations other than store
344
345(define_bypass 3
346 "v10_c2v,v10_floads"
347 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd,v10_cvt")
348
349(define_bypass 4
350 "v10_floadd"
351 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
352
353;; Arithmetic to other arithmetic saves a cycle due to forwarding
354(define_bypass 4
355 "v10_ffarith,v10_farith"
356 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
357
358(define_bypass 5
359 "v10_fmul"
360 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
361
362(define_bypass 17
363 "v10_fdivs"
364 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
365
366(define_bypass 31
367 "v10_fdivd"
368 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
369
370;; VFP anti-dependencies.
371
372;; There is one anti-dependence in the following case (not yet modelled):
373;; - After a store: one extra cycle for both fsts and fstd
374;; Note, back-to-back fstd instructions will overload the load/store datapath
375;; causing a two-cycle stall.
376