xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/config/arm/arm.h (revision fc4f42693f9b1c31f39f9cf50af1bf2010325808)
1 /* Definitions of target machine for GNU compiler, for ARM.
2    Copyright (C) 1991-2015 Free Software Foundation, Inc.
3    Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
4    and Martin Simmons (@harleqn.co.uk).
5    More major hacks by Richard Earnshaw (rearnsha@arm.com)
6    Minor hacks by Nick Clifton (nickc@cygnus.com)
7 
8    This file is part of GCC.
9 
10    GCC is free software; you can redistribute it and/or modify it
11    under the terms of the GNU General Public License as published
12    by the Free Software Foundation; either version 3, or (at your
13    option) any later version.
14 
15    GCC is distributed in the hope that it will be useful, but WITHOUT
16    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
18    License for more details.
19 
20    Under Section 7 of GPL version 3, you are granted additional
21    permissions described in the GCC Runtime Library Exception, version
22    3.1, as published by the Free Software Foundation.
23 
24    You should have received a copy of the GNU General Public License and
25    a copy of the GCC Runtime Library Exception along with this program;
26    see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
27    <http://www.gnu.org/licenses/>.  */
28 
29 #ifndef GCC_ARM_H
30 #define GCC_ARM_H
31 
32 /* We can't use machine_mode inside a generator file because it
33    hasn't been created yet; we shouldn't be using any code that
34    needs the real definition though, so this ought to be safe.  */
35 #ifdef GENERATOR_FILE
36 #define MACHMODE int
37 #else
38 #include "insn-modes.h"
39 #define MACHMODE machine_mode
40 #endif
41 
42 #include "config/vxworks-dummy.h"
43 
44 /* The architecture define.  */
45 extern char arm_arch_name[];
46 
47 /* Target CPU builtins.  */
48 #define TARGET_CPU_CPP_BUILTINS()			\
49   do							\
50     {							\
51 	if (TARGET_DSP_MULTIPLY)			\
52 	   builtin_define ("__ARM_FEATURE_DSP");	\
53         if (TARGET_ARM_QBIT)				\
54            builtin_define ("__ARM_FEATURE_QBIT");	\
55         if (TARGET_ARM_SAT)				\
56            builtin_define ("__ARM_FEATURE_SAT");	\
57         if (TARGET_CRYPTO)				\
58 	   builtin_define ("__ARM_FEATURE_CRYPTO");	\
59 	if (unaligned_access)				\
60 	  builtin_define ("__ARM_FEATURE_UNALIGNED");	\
61 	if (TARGET_CRC32)				\
62 	  builtin_define ("__ARM_FEATURE_CRC32");	\
63 	if (TARGET_32BIT)				\
64 	  builtin_define ("__ARM_32BIT_STATE");		\
65 	if (TARGET_ARM_FEATURE_LDREX)				\
66 	  builtin_define_with_int_value (			\
67 	    "__ARM_FEATURE_LDREX", TARGET_ARM_FEATURE_LDREX);	\
68 	if ((TARGET_ARM_ARCH >= 5 && !TARGET_THUMB)		\
69 	     || TARGET_ARM_ARCH_ISA_THUMB >=2)			\
70 	  builtin_define ("__ARM_FEATURE_CLZ");			\
71 	if (TARGET_INT_SIMD)					\
72 	  builtin_define ("__ARM_FEATURE_SIMD32");		\
73 								\
74 	builtin_define_with_int_value (				\
75 	  "__ARM_SIZEOF_MINIMAL_ENUM",				\
76 	  flag_short_enums ? 1 : 4);				\
77 	builtin_define_type_sizeof ("__ARM_SIZEOF_WCHAR_T",	\
78 				    wchar_type_node);		\
79 	if (TARGET_ARM_ARCH_PROFILE)				\
80 	  builtin_define_with_int_value (			\
81 	    "__ARM_ARCH_PROFILE", TARGET_ARM_ARCH_PROFILE);	\
82 								\
83 	/* Define __arm__ even when in thumb mode, for	\
84 	   consistency with armcc.  */			\
85 	builtin_define ("__arm__");			\
86 	if (TARGET_ARM_ARCH)				\
87 	  builtin_define_with_int_value (		\
88 	    "__ARM_ARCH", TARGET_ARM_ARCH);		\
89 	if (arm_arch_notm)				\
90 	  builtin_define ("__ARM_ARCH_ISA_ARM");	\
91 	builtin_define ("__APCS_32__");			\
92 	if (TARGET_THUMB)				\
93 	  builtin_define ("__thumb__");			\
94 	if (TARGET_THUMB2)				\
95 	  builtin_define ("__thumb2__");		\
96 	if (TARGET_ARM_ARCH_ISA_THUMB)			\
97 	  builtin_define_with_int_value (		\
98 	    "__ARM_ARCH_ISA_THUMB",			\
99 	    TARGET_ARM_ARCH_ISA_THUMB);			\
100 							\
101 	if (TARGET_BIG_END)				\
102 	  {						\
103 	    builtin_define ("__ARMEB__");		\
104 	    builtin_define ("__ARM_BIG_ENDIAN");	\
105 	    if (TARGET_THUMB)				\
106 	      builtin_define ("__THUMBEB__");		\
107 	  }						\
108         else						\
109 	  {						\
110 	    builtin_define ("__ARMEL__");		\
111 	    if (TARGET_THUMB)				\
112 	      builtin_define ("__THUMBEL__");		\
113 	  }						\
114 							\
115 	if (TARGET_SOFT_FLOAT)				\
116 	  builtin_define ("__SOFTFP__");		\
117 							\
118 	if (TARGET_VFP)					\
119 	  builtin_define ("__VFP_FP__");		\
120 							\
121 	if (TARGET_ARM_FP)				\
122 	  builtin_define_with_int_value (		\
123 	    "__ARM_FP", TARGET_ARM_FP);			\
124 	if (arm_fp16_format == ARM_FP16_FORMAT_IEEE)		\
125 	  builtin_define ("__ARM_FP16_FORMAT_IEEE");		\
126 	if (arm_fp16_format == ARM_FP16_FORMAT_ALTERNATIVE)	\
127 	  builtin_define ("__ARM_FP16_FORMAT_ALTERNATIVE");	\
128         if (TARGET_FMA)					\
129           builtin_define ("__ARM_FEATURE_FMA");		\
130 							\
131 	if (TARGET_NEON)				\
132 	  {						\
133 	    builtin_define ("__ARM_NEON__");		\
134 	    builtin_define ("__ARM_NEON");		\
135 	  }						\
136 	if (TARGET_NEON_FP)				\
137 	  builtin_define_with_int_value (		\
138 	    "__ARM_NEON_FP", TARGET_NEON_FP);		\
139 							\
140 	/* Add a define for interworking.		\
141 	   Needed when building libgcc.a.  */		\
142 	if (arm_cpp_interwork)				\
143 	  builtin_define ("__THUMB_INTERWORK__");	\
144 							\
145 	builtin_assert ("cpu=arm");			\
146 	builtin_assert ("machine=arm");			\
147 							\
148 	builtin_define (arm_arch_name);			\
149 	if (arm_arch_xscale)				\
150 	  builtin_define ("__XSCALE__");		\
151 	if (arm_arch_iwmmxt)				\
152           {						\
153 	    builtin_define ("__IWMMXT__");		\
154 	    builtin_define ("__ARM_WMMX");		\
155 	  }						\
156 	if (arm_arch_iwmmxt2)				\
157 	  builtin_define ("__IWMMXT2__");		\
158 	if (TARGET_AAPCS_BASED)				\
159 	  {						\
160 	    if (arm_pcs_default == ARM_PCS_AAPCS_VFP)	\
161 	      builtin_define ("__ARM_PCS_VFP");		\
162 	    else if (arm_pcs_default == ARM_PCS_AAPCS)	\
163 	      builtin_define ("__ARM_PCS");		\
164 	    builtin_define ("__ARM_EABI__");		\
165 	  }						\
166 	if (TARGET_IDIV)				\
167          {						\
168             builtin_define ("__ARM_ARCH_EXT_IDIV__");	\
169             builtin_define ("__ARM_FEATURE_IDIV");	\
170          }						\
171 	if (inline_asm_unified)				\
172 	  builtin_define ("__ARM_ASM_SYNTAX_UNIFIED__");\
173     } while (0)
174 
175 #include "config/arm/arm-opts.h"
176 
177 enum target_cpus
178 {
179 #define ARM_CORE(NAME, INTERNAL_IDENT, IDENT, ARCH, FLAGS, COSTS) \
180   TARGET_CPU_##INTERNAL_IDENT,
181 #include "arm-cores.def"
182 #undef ARM_CORE
183   TARGET_CPU_generic
184 };
185 
186 /* The processor for which instructions should be scheduled.  */
187 extern enum processor_type arm_tune;
188 
189 typedef enum arm_cond_code
190 {
191   ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
192   ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
193 }
194 arm_cc;
195 
196 extern arm_cc arm_current_cc;
197 
198 #define ARM_INVERSE_CONDITION_CODE(X)  ((arm_cc) (((int)X) ^ 1))
199 
200 /* The maximum number of instructions that is beneficial to
201    conditionally execute. */
202 #undef MAX_CONDITIONAL_EXECUTE
203 #define MAX_CONDITIONAL_EXECUTE arm_max_conditional_execute ()
204 
205 extern int arm_target_label;
206 extern int arm_ccfsm_state;
207 extern GTY(()) rtx arm_target_insn;
208 /* The label of the current constant pool.  */
209 extern rtx pool_vector_label;
210 /* Set to 1 when a return insn is output, this means that the epilogue
211    is not needed.  */
212 extern int return_used_this_function;
213 /* Callback to output language specific object attributes.  */
214 extern void (*arm_lang_output_object_attributes_hook)(void);
215 
216 /* Just in case configure has failed to define anything.  */
217 #ifndef TARGET_CPU_DEFAULT
218 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
219 #endif
220 
221 
222 #undef  CPP_SPEC
223 #define CPP_SPEC "%(subtarget_cpp_spec)					\
224 %{mfloat-abi=soft:%{mfloat-abi=hard:					\
225 	%e-mfloat-abi=soft and -mfloat-abi=hard may not be used together}} \
226 %{mbig-endian:%{mlittle-endian:						\
227 	%e-mbig-endian and -mlittle-endian may not be used together}}"
228 
229 #ifndef CC1_SPEC
230 #define CC1_SPEC ""
231 #endif
232 
233 /* This macro defines names of additional specifications to put in the specs
234    that can be used in various specifications like CC1_SPEC.  Its definition
235    is an initializer with a subgrouping for each command option.
236 
237    Each subgrouping contains a string constant, that defines the
238    specification name, and a string constant that used by the GCC driver
239    program.
240 
241    Do not define this macro if it does not need to do anything.  */
242 #define EXTRA_SPECS						\
243   { "subtarget_cpp_spec",	SUBTARGET_CPP_SPEC },           \
244   { "asm_cpu_spec",		ASM_CPU_SPEC },			\
245   SUBTARGET_EXTRA_SPECS
246 
247 #ifndef SUBTARGET_EXTRA_SPECS
248 #define SUBTARGET_EXTRA_SPECS
249 #endif
250 
251 #ifndef SUBTARGET_CPP_SPEC
252 #define SUBTARGET_CPP_SPEC      ""
253 #endif
254 
255 /* Run-time Target Specification.  */
256 #define TARGET_SOFT_FLOAT		(arm_float_abi == ARM_FLOAT_ABI_SOFT)
257 /* Use hardware floating point instructions. */
258 #define TARGET_HARD_FLOAT		(arm_float_abi != ARM_FLOAT_ABI_SOFT)
259 /* Use hardware floating point calling convention.  */
260 #define TARGET_HARD_FLOAT_ABI		(arm_float_abi == ARM_FLOAT_ABI_HARD)
261 #define TARGET_VFP		(arm_fpu_desc->model == ARM_FP_MODEL_VFP)
262 #define TARGET_IWMMXT			(arm_arch_iwmmxt)
263 #define TARGET_IWMMXT2			(arm_arch_iwmmxt2)
264 #define TARGET_REALLY_IWMMXT		(TARGET_IWMMXT && TARGET_32BIT)
265 #define TARGET_REALLY_IWMMXT2		(TARGET_IWMMXT2 && TARGET_32BIT)
266 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
267 #define TARGET_ARM                      (! TARGET_THUMB)
268 #define TARGET_EITHER			1 /* (TARGET_ARM | TARGET_THUMB) */
269 #define TARGET_BACKTRACE	        (leaf_function_p () \
270 				         ? TARGET_TPCS_LEAF_FRAME \
271 				         : TARGET_TPCS_FRAME)
272 #define TARGET_AAPCS_BASED \
273     (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
274 
275 #define TARGET_HARD_TP			(target_thread_pointer == TP_CP15)
276 #define TARGET_SOFT_TP			(target_thread_pointer == TP_SOFT)
277 #define TARGET_GNU2_TLS			(target_tls_dialect == TLS_GNU2)
278 
279 /* Only 16-bit thumb code.  */
280 #define TARGET_THUMB1			(TARGET_THUMB && !arm_arch_thumb2)
281 /* Arm or Thumb-2 32-bit code.  */
282 #define TARGET_32BIT			(TARGET_ARM || arm_arch_thumb2)
283 /* 32-bit Thumb-2 code.  */
284 #define TARGET_THUMB2			(TARGET_THUMB && arm_arch_thumb2)
285 /* Thumb-1 only.  */
286 #define TARGET_THUMB1_ONLY		(TARGET_THUMB1 && !arm_arch_notm)
287 
288 #define TARGET_LDRD			(arm_arch5e && ARM_DOUBLEWORD_ALIGN \
289                                          && !TARGET_THUMB1)
290 
291 #define TARGET_CRC32			(arm_arch_crc)
292 
293 /* The following two macros concern the ability to execute coprocessor
294    instructions for VFPv3 or NEON.  TARGET_VFP3/TARGET_VFPD32 are currently
295    only ever tested when we know we are generating for VFP hardware; we need
296    to be more careful with TARGET_NEON as noted below.  */
297 
298 /* FPU is has the full VFPv3/NEON register file of 32 D registers.  */
299 #define TARGET_VFPD32 (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_D32)
300 
301 /* FPU supports VFPv3 instructions.  */
302 #define TARGET_VFP3 (TARGET_VFP && arm_fpu_desc->rev >= 3)
303 
304 /* FPU supports FPv5 instructions.  */
305 #define TARGET_VFP5 (TARGET_VFP && arm_fpu_desc->rev >= 5)
306 
307 /* FPU only supports VFP single-precision instructions.  */
308 #define TARGET_VFP_SINGLE (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_SINGLE)
309 
310 /* FPU supports VFP double-precision instructions.  */
311 #define TARGET_VFP_DOUBLE (TARGET_VFP && arm_fpu_desc->regs != VFP_REG_SINGLE)
312 
313 /* FPU supports half-precision floating-point with NEON element load/store.  */
314 #define TARGET_NEON_FP16 \
315   (TARGET_VFP && arm_fpu_desc->neon && arm_fpu_desc->fp16)
316 
317 /* FPU supports VFP half-precision floating-point.  */
318 #define TARGET_FP16 (TARGET_VFP && arm_fpu_desc->fp16)
319 
320 /* FPU supports fused-multiply-add operations.  */
321 #define TARGET_FMA (TARGET_VFP && arm_fpu_desc->rev >= 4)
322 
323 /* FPU is ARMv8 compatible.  */
324 #define TARGET_FPU_ARMV8 (TARGET_VFP && arm_fpu_desc->rev >= 8)
325 
326 /* FPU supports Crypto extensions.  */
327 #define TARGET_CRYPTO (TARGET_VFP && arm_fpu_desc->crypto)
328 
329 /* FPU supports Neon instructions.  The setting of this macro gets
330    revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
331    and TARGET_HARD_FLOAT to ensure that NEON instructions are
332    available.  */
333 #define TARGET_NEON (TARGET_32BIT && TARGET_HARD_FLOAT \
334 		     && TARGET_VFP && arm_fpu_desc->neon)
335 
336 /* Q-bit is present.  */
337 #define TARGET_ARM_QBIT \
338   (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7))
339 /* Saturation operation, e.g. SSAT.  */
340 #define TARGET_ARM_SAT \
341   (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7))
342 /* "DSP" multiply instructions, eg. SMULxy.  */
343 #define TARGET_DSP_MULTIPLY \
344   (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7em))
345 /* Integer SIMD instructions, and extend-accumulate instructions.  */
346 #define TARGET_INT_SIMD \
347   (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
348 
349 /* Should MOVW/MOVT be used in preference to a constant pool.  */
350 #define TARGET_USE_MOVT \
351   (arm_arch_thumb2 \
352    && (arm_disable_literal_pool \
353        || (!optimize_size && !current_tune->prefer_constant_pool)))
354 
355 /* We could use unified syntax for arm mode, but for now we just use it
356    for thumb mode.  */
357 #define TARGET_UNIFIED_ASM (TARGET_THUMB)
358 
359 /* Nonzero if this chip provides the DMB instruction.  */
360 #define TARGET_HAVE_DMB		(arm_arch6m || arm_arch7)
361 
362 /* Nonzero if this chip implements a memory barrier via CP15.  */
363 #define TARGET_HAVE_DMB_MCR	(arm_arch6 && ! TARGET_HAVE_DMB \
364 				 && ! TARGET_THUMB1)
365 
366 /* Nonzero if this chip implements a memory barrier instruction.  */
367 #define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR)
368 
369 /* Nonzero if this chip supports ldrex and strex */
370 #define TARGET_HAVE_LDREX	((arm_arch6 && TARGET_ARM) || arm_arch7)
371 
372 /* Nonzero if this chip supports LPAE.  */
373 #define TARGET_HAVE_LPAE	(arm_arch_lpae)
374 
375 /* Nonzero if this chip supports ldrex{bh} and strex{bh}.  */
376 #define TARGET_HAVE_LDREXBH	((arm_arch6k && TARGET_ARM) || arm_arch7)
377 
378 /* Nonzero if this chip supports ldrexd and strexd.  */
379 #define TARGET_HAVE_LDREXD	(((arm_arch6k && TARGET_ARM) || arm_arch7) \
380 				 && arm_arch_notm)
381 
382 /* Nonzero if this chip supports load-acquire and store-release.  */
383 #define TARGET_HAVE_LDACQ	(TARGET_ARM_ARCH >= 8)
384 
385 /* Nonzero if integer division instructions supported.  */
386 #define TARGET_IDIV		((TARGET_ARM && arm_arch_arm_hwdiv) \
387 				 || (TARGET_THUMB2 && arm_arch_thumb_hwdiv))
388 
389 /* Nonzero if disallow volatile memory access in IT block.  */
390 #define TARGET_NO_VOLATILE_CE		(arm_arch_no_volatile_ce)
391 
392 /* Should NEON be used for 64-bits bitops.  */
393 #define TARGET_PREFER_NEON_64BITS (prefer_neon_for_64bits)
394 
395 /* True iff the full BPABI is being used.  If TARGET_BPABI is true,
396    then TARGET_AAPCS_BASED must be true -- but the converse does not
397    hold.  TARGET_BPABI implies the use of the BPABI runtime library,
398    etc., in addition to just the AAPCS calling conventions.  */
399 #ifndef TARGET_BPABI
400 #define TARGET_BPABI false
401 #endif
402 
403 /* Support for a compile-time default CPU, et cetera.  The rules are:
404    --with-arch is ignored if -march or -mcpu are specified.
405    --with-cpu is ignored if -march or -mcpu are specified, and is overridden
406     by --with-arch.
407    --with-tune is ignored if -mtune or -mcpu are specified (but not affected
408      by -march).
409    --with-float is ignored if -mfloat-abi is specified.
410    --with-fpu is ignored if -mfpu is specified.
411    --with-abi is ignored if -mabi is specified.
412    --with-tls is ignored if -mtls-dialect is specified. */
413 #define OPTION_DEFAULT_SPECS \
414   {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
415   {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
416   {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
417   {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \
418   {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
419   {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
420   {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"}, \
421   {"tls", "%{!mtls-dialect=*:-mtls-dialect=%(VALUE)}"},
422 
423 /* Which floating point model to use.  */
424 enum arm_fp_model
425 {
426   ARM_FP_MODEL_UNKNOWN,
427   /* VFP floating point model.  */
428   ARM_FP_MODEL_VFP
429 };
430 
431 enum vfp_reg_type
432 {
433   VFP_NONE = 0,
434   VFP_REG_D16,
435   VFP_REG_D32,
436   VFP_REG_SINGLE
437 };
438 
439 extern const struct arm_fpu_desc
440 {
441   const char *name;
442   enum arm_fp_model model;
443   int rev;
444   enum vfp_reg_type regs;
445   int neon;
446   int fp16;
447   int crypto;
448 } *arm_fpu_desc;
449 
450 /* Which floating point hardware to schedule for.  */
451 extern int arm_fpu_attr;
452 
453 #ifndef TARGET_DEFAULT_FLOAT_ABI
454 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
455 #endif
456 
457 #ifndef ARM_DEFAULT_ABI
458 #define ARM_DEFAULT_ABI ARM_ABI_APCS
459 #endif
460 
461 /* Map each of the micro-architecture variants to their corresponding
462    major architecture revision.  */
463 
464 enum base_architecture
465 {
466   BASE_ARCH_0 = 0,
467   BASE_ARCH_2 = 2,
468   BASE_ARCH_3 = 3,
469   BASE_ARCH_3M = 3,
470   BASE_ARCH_4 = 4,
471   BASE_ARCH_4T = 4,
472   BASE_ARCH_5 = 5,
473   BASE_ARCH_5E = 5,
474   BASE_ARCH_5T = 5,
475   BASE_ARCH_5TE = 5,
476   BASE_ARCH_5TEJ = 5,
477   BASE_ARCH_6 = 6,
478   BASE_ARCH_6J = 6,
479   BASE_ARCH_6ZK = 6,
480   BASE_ARCH_6K = 6,
481   BASE_ARCH_6T2 = 6,
482   BASE_ARCH_6M = 6,
483   BASE_ARCH_6Z = 6,
484   BASE_ARCH_7 = 7,
485   BASE_ARCH_7A = 7,
486   BASE_ARCH_7R = 7,
487   BASE_ARCH_7M = 7,
488   BASE_ARCH_7EM = 7,
489   BASE_ARCH_8A = 8
490 };
491 
492 /* The major revision number of the ARM Architecture implemented by the target.  */
493 extern enum base_architecture arm_base_arch;
494 
495 /* Nonzero if this chip supports the ARM Architecture 3M extensions.  */
496 extern int arm_arch3m;
497 
498 /* Nonzero if this chip supports the ARM Architecture 4 extensions.  */
499 extern int arm_arch4;
500 
501 /* Nonzero if this chip supports the ARM Architecture 4T extensions.  */
502 extern int arm_arch4t;
503 
504 /* Nonzero if this chip supports the ARM Architecture 5 extensions.  */
505 extern int arm_arch5;
506 
507 /* Nonzero if this chip supports the ARM Architecture 5E extensions.  */
508 extern int arm_arch5e;
509 
510 /* Nonzero if this chip supports the ARM Architecture 6 extensions.  */
511 extern int arm_arch6;
512 
513 /* Nonzero if this chip supports the ARM Architecture 6k extensions.  */
514 extern int arm_arch6k;
515 
516 /* Nonzero if instructions present in ARMv6-M can be used.  */
517 extern int arm_arch6m;
518 
519 /* Nonzero if this chip supports the ARM Architecture 7 extensions.  */
520 extern int arm_arch7;
521 
522 /* Nonzero if instructions not present in the 'M' profile can be used.  */
523 extern int arm_arch_notm;
524 
525 /* Nonzero if instructions present in ARMv7E-M can be used.  */
526 extern int arm_arch7em;
527 
528 /* Nonzero if this chip supports the ARM Architecture 8 extensions.  */
529 extern int arm_arch8;
530 
531 /* Nonzero if this chip can benefit from load scheduling.  */
532 extern int arm_ld_sched;
533 
534 /* Nonzero if generating Thumb code, either Thumb-1 or Thumb-2.  */
535 extern int thumb_code;
536 
537 /* Nonzero if generating Thumb-1 code.  */
538 extern int thumb1_code;
539 
540 /* Nonzero if this chip is a StrongARM.  */
541 extern int arm_tune_strongarm;
542 
543 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology.  */
544 extern int arm_arch_iwmmxt;
545 
546 /* Nonzero if this chip supports Intel Wireless MMX2 technology.  */
547 extern int arm_arch_iwmmxt2;
548 
549 /* Nonzero if this chip is an XScale.  */
550 extern int arm_arch_xscale;
551 
552 /* Nonzero if tuning for XScale.  */
553 extern int arm_tune_xscale;
554 
555 /* Nonzero if tuning for stores via the write buffer.  */
556 extern int arm_tune_wbuf;
557 
558 /* Nonzero if tuning for Cortex-A9.  */
559 extern int arm_tune_cortex_a9;
560 
561 /* Nonzero if we should define __THUMB_INTERWORK__ in the
562    preprocessor.
563    XXX This is a bit of a hack, it's intended to help work around
564    problems in GLD which doesn't understand that armv5t code is
565    interworking clean.  */
566 extern int arm_cpp_interwork;
567 
568 /* Nonzero if chip supports Thumb 2.  */
569 extern int arm_arch_thumb2;
570 
571 /* Nonzero if chip supports integer division instruction in ARM mode.  */
572 extern int arm_arch_arm_hwdiv;
573 
574 /* Nonzero if chip supports integer division instruction in Thumb mode.  */
575 extern int arm_arch_thumb_hwdiv;
576 
577 /* Nonzero if chip disallows volatile memory access in IT block.  */
578 extern int arm_arch_no_volatile_ce;
579 
580 /* Nonzero if we should use Neon to handle 64-bits operations rather
581    than core registers.  */
582 extern int prefer_neon_for_64bits;
583 
584 /* Nonzero if we shouldn't use literal pools.  */
585 #ifndef USED_FOR_TARGET
586 extern bool arm_disable_literal_pool;
587 #endif
588 
589 /* Nonzero if chip supports the ARMv8 CRC instructions.  */
590 extern int arm_arch_crc;
591 
592 #ifndef TARGET_DEFAULT
593 #define TARGET_DEFAULT  (MASK_APCS_FRAME)
594 #endif
595 
596 /* Nonzero if PIC code requires explicit qualifiers to generate
597    PLT and GOT relocs rather than the assembler doing so implicitly.
598    Subtargets can override these if required.  */
599 #ifndef NEED_GOT_RELOC
600 #define NEED_GOT_RELOC	0
601 #endif
602 #ifndef NEED_PLT_RELOC
603 #define NEED_PLT_RELOC	0
604 #endif
605 
606 #ifndef TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE
607 #define TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE 1
608 #endif
609 
610 /* Nonzero if we need to refer to the GOT with a PC-relative
611    offset.  In other words, generate
612 
613    .word	_GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
614 
615    rather than
616 
617    .word	_GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
618 
619    The default is true, which matches NetBSD.  Subtargets can
620    override this if required.  */
621 #ifndef GOT_PCREL
622 #define GOT_PCREL   1
623 #endif
624 
625 /* Target machine storage Layout.  */
626 
627 
628 /* Define this macro if it is advisable to hold scalars in registers
629    in a wider mode than that declared by the program.  In such cases,
630    the value is constrained to be within the bounds of the declared
631    type, but kept valid in the wider mode.  The signedness of the
632    extension may differ from that of the type.  */
633 
634 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
635   if (GET_MODE_CLASS (MODE) == MODE_INT		\
636       && GET_MODE_SIZE (MODE) < 4)      	\
637     {						\
638       (MODE) = SImode;				\
639     }
640 
641 /* Define this if most significant bit is lowest numbered
642    in instructions that operate on numbered bit-fields.  */
643 #define BITS_BIG_ENDIAN  0
644 
645 /* Define this if most significant byte of a word is the lowest numbered.
646    Most ARM processors are run in little endian mode, so that is the default.
647    If you want to have it run-time selectable, change the definition in a
648    cover file to be TARGET_BIG_ENDIAN.  */
649 #define BYTES_BIG_ENDIAN  (TARGET_BIG_END != 0)
650 
651 /* Define this if most significant word of a multiword number is the lowest
652    numbered.  */
653 #define WORDS_BIG_ENDIAN  (BYTES_BIG_ENDIAN)
654 
655 #define UNITS_PER_WORD	4
656 
657 /* True if natural alignment is used for doubleword types.  */
658 #define ARM_DOUBLEWORD_ALIGN	TARGET_AAPCS_BASED
659 
660 #define DOUBLEWORD_ALIGNMENT 64
661 
662 #define PARM_BOUNDARY  	32
663 
664 #define STACK_BOUNDARY  (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
665 
666 #define PREFERRED_STACK_BOUNDARY \
667     (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
668 
669 #define FUNCTION_BOUNDARY  ((TARGET_THUMB && optimize_size) ? 16 : 32)
670 
671 /* The lowest bit is used to indicate Thumb-mode functions, so the
672    vbit must go into the delta field of pointers to member
673    functions.  */
674 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
675 
676 #define EMPTY_FIELD_BOUNDARY  32
677 
678 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
679 
680 #define MALLOC_ABI_ALIGNMENT  BIGGEST_ALIGNMENT
681 
682 /* XXX Blah -- this macro is used directly by libobjc.  Since it
683    supports no vector modes, cut out the complexity and fall back
684    on BIGGEST_FIELD_ALIGNMENT.  */
685 #ifdef IN_TARGET_LIBS
686 #define BIGGEST_FIELD_ALIGNMENT 64
687 #endif
688 
689 /* Make strings word-aligned so strcpy from constants will be faster.  */
690 #define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_tune_xscale ? 1 : 2)
691 
692 #define CONSTANT_ALIGNMENT(EXP, ALIGN)				\
693    ((TREE_CODE (EXP) == STRING_CST				\
694      && !optimize_size						\
695      && (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR)	\
696     ? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN))
697 
698 /* Align definitions of arrays, unions and structures so that
699    initializations and copies can be made more efficient.  This is not
700    ABI-changing, so it only affects places where we can see the
701    definition. Increasing the alignment tends to introduce padding,
702    so don't do this when optimizing for size/conserving stack space. */
703 #define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN)				\
704   (((COND) && ((ALIGN) < BITS_PER_WORD)					\
705     && (TREE_CODE (EXP) == ARRAY_TYPE					\
706 	|| TREE_CODE (EXP) == UNION_TYPE				\
707 	|| TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
708 
709 /* Align global data. */
710 #define DATA_ALIGNMENT(EXP, ALIGN)			\
711   ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN)
712 
713 /* Similarly, make sure that objects on the stack are sensibly aligned.  */
714 #define LOCAL_ALIGNMENT(EXP, ALIGN)				\
715   ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN)
716 
717 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
718    value set in previous versions of this toolchain was 8, which produces more
719    compact structures.  The command line option -mstructure_size_boundary=<n>
720    can be used to change this value.  For compatibility with the ARM SDK
721    however the value should be left at 32.  ARM SDT Reference Manual (ARM DUI
722    0020D) page 2-20 says "Structures are aligned on word boundaries".
723    The AAPCS specifies a value of 8.  */
724 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
725 
726 /* This is the value used to initialize arm_structure_size_boundary.  If a
727    particular arm target wants to change the default value it should change
728    the definition of this macro, not STRUCTURE_SIZE_BOUNDARY.  See netbsd.h
729    for an example of this.  */
730 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
731 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
732 #endif
733 
734 /* Nonzero if move instructions will actually fail to work
735    when given unaligned data.  */
736 #define STRICT_ALIGNMENT 1
737 
738 /* wchar_t is unsigned under the AAPCS.  */
739 #ifndef WCHAR_TYPE
740 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
741 
742 #define WCHAR_TYPE_SIZE BITS_PER_WORD
743 #endif
744 
745 /* Sized for fixed-point types.  */
746 
747 #define SHORT_FRACT_TYPE_SIZE 8
748 #define FRACT_TYPE_SIZE 16
749 #define LONG_FRACT_TYPE_SIZE 32
750 #define LONG_LONG_FRACT_TYPE_SIZE 64
751 
752 #define SHORT_ACCUM_TYPE_SIZE 16
753 #define ACCUM_TYPE_SIZE 32
754 #define LONG_ACCUM_TYPE_SIZE 64
755 #define LONG_LONG_ACCUM_TYPE_SIZE 64
756 
757 #define MAX_FIXED_MODE_SIZE 64
758 
759 #ifndef SIZE_TYPE
760 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
761 #endif
762 
763 #ifndef PTRDIFF_TYPE
764 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
765 #endif
766 
767 /* AAPCS requires that structure alignment is affected by bitfields.  */
768 #ifndef PCC_BITFIELD_TYPE_MATTERS
769 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
770 #endif
771 
772 /* The maximum size of the sync library functions supported.  */
773 #ifndef MAX_SYNC_LIBFUNC_SIZE
774 #define MAX_SYNC_LIBFUNC_SIZE (2 * UNITS_PER_WORD)
775 #endif
776 
777 
778 /* Standard register usage.  */
779 
780 /* Register allocation in ARM Procedure Call Standard
781    (S - saved over call).
782 
783 	r0	   *	argument word/integer result
784 	r1-r3		argument word
785 
786 	r4-r8	     S	register variable
787 	r9	     S	(rfp) register variable (real frame pointer)
788 
789 	r10  	   F S	(sl) stack limit (used by -mapcs-stack-check)
790 	r11 	   F S	(fp) argument pointer
791 	r12		(ip) temp workspace
792 	r13  	   F S	(sp) lower end of current stack frame
793 	r14		(lr) link address/workspace
794 	r15	   F	(pc) program counter
795 
796 	cc		This is NOT a real register, but is used internally
797 	                to represent things that use or set the condition
798 			codes.
799 	sfp             This isn't either.  It is used during rtl generation
800 	                since the offset between the frame pointer and the
801 			auto's isn't known until after register allocation.
802 	afp		Nor this, we only need this because of non-local
803 	                goto.  Without it fp appears to be used and the
804 			elimination code won't get rid of sfp.  It tracks
805 			fp exactly at all times.
806 
807    *: See TARGET_CONDITIONAL_REGISTER_USAGE  */
808 
809 /*	s0-s15		VFP scratch (aka d0-d7).
810 	s16-s31	      S	VFP variable (aka d8-d15).
811 	vfpcc		Not a real register.  Represents the VFP condition
812 			code flags.  */
813 
814 /* The stack backtrace structure is as follows:
815   fp points to here:  |  save code pointer  |      [fp]
816                       |  return link value  |      [fp, #-4]
817                       |  return sp value    |      [fp, #-8]
818                       |  return fp value    |      [fp, #-12]
819                      [|  saved r10 value    |]
820                      [|  saved r9 value     |]
821                      [|  saved r8 value     |]
822                      [|  saved r7 value     |]
823                      [|  saved r6 value     |]
824                      [|  saved r5 value     |]
825                      [|  saved r4 value     |]
826                      [|  saved r3 value     |]
827                      [|  saved r2 value     |]
828                      [|  saved r1 value     |]
829                      [|  saved r0 value     |]
830   r0-r3 are not normally saved in a C function.  */
831 
832 /* 1 for registers that have pervasive standard uses
833    and are not available for the register allocator.  */
834 #define FIXED_REGISTERS 	\
835 {				\
836   /* Core regs.  */		\
837   0,0,0,0,0,0,0,0,		\
838   0,0,0,0,0,1,0,1,		\
839   /* VFP regs.  */		\
840   1,1,1,1,1,1,1,1,		\
841   1,1,1,1,1,1,1,1,		\
842   1,1,1,1,1,1,1,1,		\
843   1,1,1,1,1,1,1,1,		\
844   1,1,1,1,1,1,1,1,		\
845   1,1,1,1,1,1,1,1,		\
846   1,1,1,1,1,1,1,1,		\
847   1,1,1,1,1,1,1,1,		\
848   /* IWMMXT regs.  */		\
849   1,1,1,1,1,1,1,1,		\
850   1,1,1,1,1,1,1,1,		\
851   1,1,1,1,			\
852   /* Specials.  */		\
853   1,1,1,1			\
854 }
855 
856 /* 1 for registers not available across function calls.
857    These must include the FIXED_REGISTERS and also any
858    registers that can be used without being saved.
859    The latter must include the registers where values are returned
860    and the register where structure-value addresses are passed.
861    Aside from that, you can include as many other registers as you like.
862    The CC is not preserved over function calls on the ARM 6, so it is
863    easier to assume this for all.  SFP is preserved, since FP is.  */
864 #define CALL_USED_REGISTERS	\
865 {				\
866   /* Core regs.  */		\
867   1,1,1,1,0,0,0,0,		\
868   0,0,0,0,1,1,1,1,		\
869   /* VFP Regs.  */		\
870   1,1,1,1,1,1,1,1,		\
871   1,1,1,1,1,1,1,1,		\
872   1,1,1,1,1,1,1,1,		\
873   1,1,1,1,1,1,1,1,		\
874   1,1,1,1,1,1,1,1,		\
875   1,1,1,1,1,1,1,1,		\
876   1,1,1,1,1,1,1,1,		\
877   1,1,1,1,1,1,1,1,		\
878   /* IWMMXT regs.  */		\
879   1,1,1,1,1,1,1,1,		\
880   1,1,1,1,1,1,1,1,		\
881   1,1,1,1,			\
882   /* Specials.  */		\
883   1,1,1,1			\
884 }
885 
886 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
887 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
888 #endif
889 
890 /* These are a couple of extensions to the formats accepted
891    by asm_fprintf:
892      %@ prints out ASM_COMMENT_START
893      %r prints out REGISTER_PREFIX reg_names[arg]  */
894 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P)		\
895   case '@':						\
896     fputs (ASM_COMMENT_START, FILE);			\
897     break;						\
898 							\
899   case 'r':						\
900     fputs (REGISTER_PREFIX, FILE);			\
901     fputs (reg_names [va_arg (ARGS, int)], FILE);	\
902     break;
903 
904 /* Round X up to the nearest word.  */
905 #define ROUND_UP_WORD(X) (((X) + 3) & ~3)
906 
907 /* Convert fron bytes to ints.  */
908 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
909 
910 /* The number of (integer) registers required to hold a quantity of type MODE.
911    Also used for VFP registers.  */
912 #define ARM_NUM_REGS(MODE)				\
913   ARM_NUM_INTS (GET_MODE_SIZE (MODE))
914 
915 /* The number of (integer) registers required to hold a quantity of TYPE MODE.  */
916 #define ARM_NUM_REGS2(MODE, TYPE)                   \
917   ARM_NUM_INTS ((MODE) == BLKmode ? 		\
918   int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
919 
920 /* The number of (integer) argument register available.  */
921 #define NUM_ARG_REGS		4
922 
923 /* And similarly for the VFP.  */
924 #define NUM_VFP_ARG_REGS	16
925 
926 /* Return the register number of the N'th (integer) argument.  */
927 #define ARG_REGISTER(N) 	(N - 1)
928 
929 /* Specify the registers used for certain standard purposes.
930    The values of these macros are register numbers.  */
931 
932 /* The number of the last argument register.  */
933 #define LAST_ARG_REGNUM 	ARG_REGISTER (NUM_ARG_REGS)
934 
935 /* The numbers of the Thumb register ranges.  */
936 #define FIRST_LO_REGNUM  	0
937 #define LAST_LO_REGNUM  	7
938 #define FIRST_HI_REGNUM		8
939 #define LAST_HI_REGNUM		11
940 
941 /* Overridden by config/arm/bpabi.h.  */
942 #ifndef ARM_UNWIND_INFO
943 #define ARM_UNWIND_INFO  0
944 #endif
945 
946 /* Overriden by config/arm/netbsd-eabi.h.  */
947 #ifndef ARM_DWARF_UNWIND_TABLES
948 #define ARM_DWARF_UNWIND_TABLES 0
949 #endif
950 
951 /* Use r0 and r1 to pass exception handling information.  */
952 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
953 
954 /* The register that holds the return address in exception handlers.  */
955 #define ARM_EH_STACKADJ_REGNUM	2
956 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
957 
958 #ifndef ARM_TARGET2_DWARF_FORMAT
959 #define ARM_TARGET2_DWARF_FORMAT DW_EH_PE_pcrel
960 #endif
961 
962 #if ARM_DWARF_UNWIND_TABLES
963 /* DWARF unwinding uses the normal indirect/pcrel vs absptr format
964    for 32bit platforms. */
965 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
966   (flag_pic ? (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
967             : DW_EH_PE_absptr)
968 #else
969 /* ttype entries (the only interesting data references used)
970    use TARGET2 relocations.  */
971 #define ASM_PREFERRED_EH_DATA_FORMAT(code, data) \
972     (((code) == 0 && (data) == 1 && ARM_UNWIND_INFO) ? ARM_TARGET2_DWARF_FORMAT \
973      : DW_EH_PE_absptr)
974 #endif
975 
976 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
977    as an invisible last argument (possible since varargs don't exist in
978    Pascal), so the following is not true.  */
979 #define STATIC_CHAIN_REGNUM	12
980 
981 /* Define this to be where the real frame pointer is if it is not possible to
982    work out the offset between the frame pointer and the automatic variables
983    until after register allocation has taken place.  FRAME_POINTER_REGNUM
984    should point to a special register that we will make sure is eliminated.
985 
986    For the Thumb we have another problem.  The TPCS defines the frame pointer
987    as r11, and GCC believes that it is always possible to use the frame pointer
988    as base register for addressing purposes.  (See comments in
989    find_reloads_address()).  But - the Thumb does not allow high registers,
990    including r11, to be used as base address registers.  Hence our problem.
991 
992    The solution used here, and in the old thumb port is to use r7 instead of
993    r11 as the hard frame pointer and to have special code to generate
994    backtrace structures on the stack (if required to do so via a command line
995    option) using r11.  This is the only 'user visible' use of r11 as a frame
996    pointer.  */
997 #define ARM_HARD_FRAME_POINTER_REGNUM	11
998 #define THUMB_HARD_FRAME_POINTER_REGNUM	 7
999 
1000 #define HARD_FRAME_POINTER_REGNUM		\
1001   (TARGET_ARM					\
1002    ? ARM_HARD_FRAME_POINTER_REGNUM		\
1003    : THUMB_HARD_FRAME_POINTER_REGNUM)
1004 
1005 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
1006 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
1007 
1008 #define FP_REGNUM	                HARD_FRAME_POINTER_REGNUM
1009 
1010 /* Register to use for pushing function arguments.  */
1011 #define STACK_POINTER_REGNUM	SP_REGNUM
1012 
1013 #define FIRST_IWMMXT_REGNUM	(LAST_HI_VFP_REGNUM + 1)
1014 #define LAST_IWMMXT_REGNUM	(FIRST_IWMMXT_REGNUM + 15)
1015 
1016 /* Need to sync with WCGR in iwmmxt.md.  */
1017 #define FIRST_IWMMXT_GR_REGNUM	(LAST_IWMMXT_REGNUM + 1)
1018 #define LAST_IWMMXT_GR_REGNUM	(FIRST_IWMMXT_GR_REGNUM + 3)
1019 
1020 #define IS_IWMMXT_REGNUM(REGNUM) \
1021   (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
1022 #define IS_IWMMXT_GR_REGNUM(REGNUM) \
1023   (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
1024 
1025 /* Base register for access to local variables of the function.  */
1026 #define FRAME_POINTER_REGNUM	102
1027 
1028 /* Base register for access to arguments of the function.  */
1029 #define ARG_POINTER_REGNUM	103
1030 
1031 #define FIRST_VFP_REGNUM	16
1032 #define D7_VFP_REGNUM		(FIRST_VFP_REGNUM + 15)
1033 #define LAST_VFP_REGNUM	\
1034   (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
1035 
1036 #define IS_VFP_REGNUM(REGNUM) \
1037   (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
1038 
1039 /* VFP registers are split into two types: those defined by VFP versions < 3
1040    have D registers overlaid on consecutive pairs of S registers. VFP version 3
1041    defines 16 new D registers (d16-d31) which, for simplicity and correctness
1042    in various parts of the backend, we implement as "fake" single-precision
1043    registers (which would be S32-S63, but cannot be used in that way).  The
1044    following macros define these ranges of registers.  */
1045 #define LAST_LO_VFP_REGNUM	(FIRST_VFP_REGNUM + 31)
1046 #define FIRST_HI_VFP_REGNUM	(LAST_LO_VFP_REGNUM + 1)
1047 #define LAST_HI_VFP_REGNUM	(FIRST_HI_VFP_REGNUM + 31)
1048 
1049 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
1050   ((REGNUM) <= LAST_LO_VFP_REGNUM)
1051 
1052 /* DFmode values are only valid in even register pairs.  */
1053 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
1054   ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
1055 
1056 /* Neon Quad values must start at a multiple of four registers.  */
1057 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
1058   ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
1059 
1060 /* Neon structures of vectors must be in even register pairs and there
1061    must be enough registers available.  Because of various patterns
1062    requiring quad registers, we require them to start at a multiple of
1063    four.  */
1064 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
1065   ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
1066    && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
1067 
1068 /* The number of hard registers is 16 ARM + 1 CC + 1 SFP + 1 AFP.  */
1069 /* Intel Wireless MMX Technology registers add 16 + 4 more.  */
1070 /* VFP (VFP3) adds 32 (64) + 1 VFPCC.  */
1071 #define FIRST_PSEUDO_REGISTER   104
1072 
1073 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
1074 
1075 /* Value should be nonzero if functions must have frame pointers.
1076    Zero means the frame pointer need not be set up (and parms may be accessed
1077    via the stack pointer) in functions that seem suitable.
1078    If we have to have a frame pointer we might as well make use of it.
1079    APCS says that the frame pointer does not need to be pushed in leaf
1080    functions, or simple tail call functions.  */
1081 
1082 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1083 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1084 #endif
1085 
1086 /* Return number of consecutive hard regs needed starting at reg REGNO
1087    to hold something of mode MODE.
1088    This is ordinarily the length in words of a value of mode MODE
1089    but can be less for certain modes in special long registers.
1090 
1091    On the ARM core regs are UNITS_PER_WORD bits wide.  */
1092 #define HARD_REGNO_NREGS(REGNO, MODE)  	\
1093   ((TARGET_32BIT			\
1094     && REGNO > PC_REGNUM		\
1095     && REGNO != FRAME_POINTER_REGNUM	\
1096     && REGNO != ARG_POINTER_REGNUM)	\
1097     && !IS_VFP_REGNUM (REGNO)		\
1098    ? 1 : ARM_NUM_REGS (MODE))
1099 
1100 /* Return true if REGNO is suitable for holding a quantity of type MODE.  */
1101 #define HARD_REGNO_MODE_OK(REGNO, MODE)					\
1102   arm_hard_regno_mode_ok ((REGNO), (MODE))
1103 
1104 #define MODES_TIEABLE_P(MODE1, MODE2) arm_modes_tieable_p (MODE1, MODE2)
1105 
1106 #define VALID_IWMMXT_REG_MODE(MODE) \
1107  (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
1108 
1109 /* Modes valid for Neon D registers.  */
1110 #define VALID_NEON_DREG_MODE(MODE) \
1111   ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
1112    || (MODE) == V4HFmode || (MODE) == V2SFmode || (MODE) == DImode)
1113 
1114 /* Modes valid for Neon Q registers.  */
1115 #define VALID_NEON_QREG_MODE(MODE) \
1116   ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
1117    || (MODE) == V4SFmode || (MODE) == V2DImode)
1118 
1119 /* Structure modes valid for Neon registers.  */
1120 #define VALID_NEON_STRUCT_MODE(MODE) \
1121   ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
1122    || (MODE) == CImode || (MODE) == XImode)
1123 
1124 /* The register numbers in sequence, for passing to arm_gen_load_multiple.  */
1125 extern int arm_regs_in_sequence[];
1126 
1127 /* The order in which register should be allocated.  It is good to use ip
1128    since no saving is required (though calls clobber it) and it never contains
1129    function parameters.  It is quite good to use lr since other calls may
1130    clobber it anyway.  Allocate r0 through r3 in reverse order since r3 is
1131    least likely to contain a function parameter; in addition results are
1132    returned in r0.
1133    For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
1134    then D8-D15.  The reason for doing this is to attempt to reduce register
1135    pressure when both single- and double-precision registers are used in a
1136    function.  */
1137 
1138 #define VREG(X)  (FIRST_VFP_REGNUM + (X))
1139 #define WREG(X)  (FIRST_IWMMXT_REGNUM + (X))
1140 #define WGREG(X) (FIRST_IWMMXT_GR_REGNUM + (X))
1141 
1142 #define REG_ALLOC_ORDER				\
1143 {						\
1144   /* General registers.  */			\
1145   3,  2,  1,  0,  12, 14,  4,  5,		\
1146   6,  7,  8,  9,  10, 11,			\
1147   /* High VFP registers.  */			\
1148   VREG(32), VREG(33), VREG(34), VREG(35),	\
1149   VREG(36), VREG(37), VREG(38), VREG(39),	\
1150   VREG(40), VREG(41), VREG(42), VREG(43),	\
1151   VREG(44), VREG(45), VREG(46), VREG(47),	\
1152   VREG(48), VREG(49), VREG(50), VREG(51),	\
1153   VREG(52), VREG(53), VREG(54), VREG(55),	\
1154   VREG(56), VREG(57), VREG(58), VREG(59),	\
1155   VREG(60), VREG(61), VREG(62), VREG(63),	\
1156   /* VFP argument registers.  */		\
1157   VREG(15), VREG(14), VREG(13), VREG(12),	\
1158   VREG(11), VREG(10), VREG(9),  VREG(8),	\
1159   VREG(7),  VREG(6),  VREG(5),  VREG(4),	\
1160   VREG(3),  VREG(2),  VREG(1),  VREG(0),	\
1161   /* VFP call-saved registers.  */		\
1162   VREG(16), VREG(17), VREG(18), VREG(19),	\
1163   VREG(20), VREG(21), VREG(22), VREG(23),	\
1164   VREG(24), VREG(25), VREG(26), VREG(27),	\
1165   VREG(28), VREG(29), VREG(30), VREG(31),	\
1166   /* IWMMX registers.  */			\
1167   WREG(0),  WREG(1),  WREG(2),  WREG(3),	\
1168   WREG(4),  WREG(5),  WREG(6),  WREG(7),	\
1169   WREG(8),  WREG(9),  WREG(10), WREG(11),	\
1170   WREG(12), WREG(13), WREG(14), WREG(15),	\
1171   WGREG(0), WGREG(1), WGREG(2), WGREG(3),	\
1172   /* Registers not for general use.  */		\
1173   CC_REGNUM, VFPCC_REGNUM,			\
1174   FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM,	\
1175   SP_REGNUM, PC_REGNUM 				\
1176 }
1177 
1178 /* Use different register alloc ordering for Thumb.  */
1179 #define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc ()
1180 
1181 /* Tell IRA to use the order we define rather than messing it up with its
1182    own cost calculations.  */
1183 #define HONOR_REG_ALLOC_ORDER 1
1184 
1185 /* Interrupt functions can only use registers that have already been
1186    saved by the prologue, even if they would normally be
1187    call-clobbered.  */
1188 #define HARD_REGNO_RENAME_OK(SRC, DST)					\
1189 	(! IS_INTERRUPT (cfun->machine->func_type) ||			\
1190 	 df_regs_ever_live_p (DST))
1191 
1192 /* Register and constant classes.  */
1193 
1194 /* Register classes.  */
1195 enum reg_class
1196 {
1197   NO_REGS,
1198   LO_REGS,
1199   STACK_REG,
1200   BASE_REGS,
1201   HI_REGS,
1202   CALLER_SAVE_REGS,
1203   GENERAL_REGS,
1204   CORE_REGS,
1205   VFP_D0_D7_REGS,
1206   VFP_LO_REGS,
1207   VFP_HI_REGS,
1208   VFP_REGS,
1209   IWMMXT_REGS,
1210   IWMMXT_GR_REGS,
1211   CC_REG,
1212   VFPCC_REG,
1213   SFP_REG,
1214   AFP_REG,
1215   ALL_REGS,
1216   LIM_REG_CLASSES
1217 };
1218 
1219 #define N_REG_CLASSES  (int) LIM_REG_CLASSES
1220 
1221 /* Give names of register classes as strings for dump file.  */
1222 #define REG_CLASS_NAMES  \
1223 {			\
1224   "NO_REGS",		\
1225   "LO_REGS",		\
1226   "STACK_REG",		\
1227   "BASE_REGS",		\
1228   "HI_REGS",		\
1229   "CALLER_SAVE_REGS",	\
1230   "GENERAL_REGS",	\
1231   "CORE_REGS",		\
1232   "VFP_D0_D7_REGS",	\
1233   "VFP_LO_REGS",	\
1234   "VFP_HI_REGS",	\
1235   "VFP_REGS",		\
1236   "IWMMXT_REGS",	\
1237   "IWMMXT_GR_REGS",	\
1238   "CC_REG",		\
1239   "VFPCC_REG",		\
1240   "SFP_REG",		\
1241   "AFP_REG",		\
1242   "ALL_REGS"		\
1243 }
1244 
1245 /* Define which registers fit in which classes.
1246    This is an initializer for a vector of HARD_REG_SET
1247    of length N_REG_CLASSES.  */
1248 #define REG_CLASS_CONTENTS						\
1249 {									\
1250   { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS  */	\
1251   { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */	\
1252   { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */	\
1253   { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */	\
1254   { 0x00005F00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */	\
1255   { 0x0000100F, 0x00000000, 0x00000000, 0x00000000 }, /* CALLER_SAVE_REGS */ \
1256   { 0x00005FFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1257   { 0x00007FFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */	\
1258   { 0xFFFF0000, 0x00000000, 0x00000000, 0x00000000 }, /* VFP_D0_D7_REGS  */ \
1259   { 0xFFFF0000, 0x0000FFFF, 0x00000000, 0x00000000 }, /* VFP_LO_REGS  */ \
1260   { 0x00000000, 0xFFFF0000, 0x0000FFFF, 0x00000000 }, /* VFP_HI_REGS  */ \
1261   { 0xFFFF0000, 0xFFFFFFFF, 0x0000FFFF, 0x00000000 }, /* VFP_REGS  */	\
1262   { 0x00000000, 0x00000000, 0xFFFF0000, 0x00000000 }, /* IWMMXT_REGS */	\
1263   { 0x00000000, 0x00000000, 0x00000000, 0x0000000F }, /* IWMMXT_GR_REGS */ \
1264   { 0x00000000, 0x00000000, 0x00000000, 0x00000010 }, /* CC_REG */	\
1265   { 0x00000000, 0x00000000, 0x00000000, 0x00000020 }, /* VFPCC_REG */	\
1266   { 0x00000000, 0x00000000, 0x00000000, 0x00000040 }, /* SFP_REG */	\
1267   { 0x00000000, 0x00000000, 0x00000000, 0x00000080 }, /* AFP_REG */	\
1268   { 0xFFFF7FFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0000000F }  /* ALL_REGS */	\
1269 }
1270 
1271 /* Any of the VFP register classes.  */
1272 #define IS_VFP_CLASS(X) \
1273   ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1274    || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1275 
1276 /* The same information, inverted:
1277    Return the class number of the smallest class containing
1278    reg number REGNO.  This could be a conditional expression
1279    or could index an array.  */
1280 #define REGNO_REG_CLASS(REGNO)  arm_regno_class (REGNO)
1281 
1282 /* In VFPv1, VFP registers could only be accessed in the mode they
1283    were set, so subregs would be invalid there.  However, we don't
1284    support VFPv1 at the moment, and the restriction was lifted in
1285    VFPv2.
1286    In big-endian mode, modes greater than word size (i.e. DFmode) are stored in
1287    VFP registers in little-endian order.  We can't describe that accurately to
1288    GCC, so avoid taking subregs of such values.
1289    The only exception is going from a 128-bit to a 64-bit type.  In that case
1290    the data layout happens to be consistent for big-endian, so we explicitly allow
1291    that case.  */
1292 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)		\
1293   (TARGET_VFP && TARGET_BIG_END					\
1294    && !(GET_MODE_SIZE (FROM) == 16 && GET_MODE_SIZE (TO) == 8)	\
1295    && (GET_MODE_SIZE (FROM) > UNITS_PER_WORD			\
1296        || GET_MODE_SIZE (TO) > UNITS_PER_WORD)			\
1297    && reg_classes_intersect_p (VFP_REGS, (CLASS)))
1298 
1299 /* The class value for index registers, and the one for base regs.  */
1300 #define INDEX_REG_CLASS  (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1301 #define BASE_REG_CLASS   (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1302 
1303 /* For the Thumb the high registers cannot be used as base registers
1304    when addressing quantities in QI or HI mode; if we don't know the
1305    mode, then we must be conservative.  */
1306 #define MODE_BASE_REG_CLASS(MODE)				\
1307   (TARGET_32BIT ? CORE_REGS					\
1308    : GET_MODE_SIZE (MODE) >= 4 ? BASE_REGS			\
1309    : LO_REGS)
1310 
1311 /* For Thumb we can not support SP+reg addressing, so we return LO_REGS
1312    instead of BASE_REGS.  */
1313 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1314 
1315 /* When this hook returns true for MODE, the compiler allows
1316    registers explicitly used in the rtl to be used as spill registers
1317    but prevents the compiler from extending the lifetime of these
1318    registers.  */
1319 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1320   arm_small_register_classes_for_mode_p
1321 
1322 /* Must leave BASE_REGS reloads alone */
1323 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1324   (lra_in_progress ? NO_REGS						\
1325    : ((CLASS) != LO_REGS && (CLASS) != BASE_REGS			\
1326       ? ((true_regnum (X) == -1 ? LO_REGS				\
1327          : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS	\
1328          : NO_REGS)) 							\
1329       : NO_REGS))
1330 
1331 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1332   (lra_in_progress ? NO_REGS						\
1333    : (CLASS) != LO_REGS && (CLASS) != BASE_REGS				\
1334       ? ((true_regnum (X) == -1 ? LO_REGS				\
1335          : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS	\
1336          : NO_REGS)) 							\
1337       : NO_REGS)
1338 
1339 /* Return the register class of a scratch register needed to copy IN into
1340    or out of a register in CLASS in MODE.  If it can be done directly,
1341    NO_REGS is returned.  */
1342 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1343   /* Restrict which direct reloads are allowed for VFP/iWMMXt regs.  */ \
1344   ((TARGET_VFP && TARGET_HARD_FLOAT				\
1345     && IS_VFP_CLASS (CLASS))					\
1346    ? coproc_secondary_reload_class (MODE, X, FALSE)		\
1347    : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS)			\
1348    ? coproc_secondary_reload_class (MODE, X, TRUE)		\
1349    : TARGET_32BIT						\
1350    ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1351     ? GENERAL_REGS : NO_REGS)					\
1352    : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1353 
1354 /* If we need to load shorts byte-at-a-time, then we need a scratch.  */
1355 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1356   /* Restrict which direct reloads are allowed for VFP/iWMMXt regs.  */ \
1357   ((TARGET_VFP && TARGET_HARD_FLOAT				\
1358     && IS_VFP_CLASS (CLASS))					\
1359     ? coproc_secondary_reload_class (MODE, X, FALSE) :		\
1360     (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ?			\
1361     coproc_secondary_reload_class (MODE, X, TRUE) :		\
1362    (TARGET_32BIT ?						\
1363     (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS)	\
1364      && CONSTANT_P (X))						\
1365     ? GENERAL_REGS :						\
1366     (((MODE) == HImode && ! arm_arch4				\
1367       && (MEM_P (X)					\
1368 	  || ((REG_P (X) || GET_CODE (X) == SUBREG)	\
1369 	      && true_regnum (X) == -1)))			\
1370      ? GENERAL_REGS : NO_REGS)					\
1371     : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1372 
1373 /* Try a machine-dependent way of reloading an illegitimate address
1374    operand.  If we find one, push the reload and jump to WIN.  This
1375    macro is used in only one place: `find_reloads_address' in reload.c.
1376 
1377    For the ARM, we wish to handle large displacements off a base
1378    register by splitting the addend across a MOV and the mem insn.
1379    This can cut the number of reloads needed.  */
1380 #define ARM_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND, WIN)	   \
1381   do									   \
1382     {									   \
1383       if (arm_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND))	   \
1384 	goto WIN;							   \
1385     }									   \
1386   while (0)
1387 
1388 /* XXX If an HImode FP+large_offset address is converted to an HImode
1389    SP+large_offset address, then reload won't know how to fix it.  It sees
1390    only that SP isn't valid for HImode, and so reloads the SP into an index
1391    register, but the resulting address is still invalid because the offset
1392    is too big.  We fix it here instead by reloading the entire address.  */
1393 /* We could probably achieve better results by defining PROMOTE_MODE to help
1394    cope with the variances between the Thumb's signed and unsigned byte and
1395    halfword load instructions.  */
1396 /* ??? This should be safe for thumb2, but we may be able to do better.  */
1397 #define THUMB_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_L, WIN)     \
1398 do {									      \
1399   rtx new_x = thumb_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND_L); \
1400   if (new_x)								      \
1401     {									      \
1402       X = new_x;							      \
1403       goto WIN;								      \
1404     }									      \
1405 } while (0)
1406 
1407 #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)   \
1408   if (TARGET_ARM)							   \
1409     ARM_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN); \
1410   else									   \
1411     THUMB_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)
1412 
1413 /* Return the maximum number of consecutive registers
1414    needed to represent mode MODE in a register of class CLASS.
1415    ARM regs are UNITS_PER_WORD bits.
1416    FIXME: Is this true for iWMMX?  */
1417 #define CLASS_MAX_NREGS(CLASS, MODE)  \
1418   (ARM_NUM_REGS (MODE))
1419 
1420 /* If defined, gives a class of registers that cannot be used as the
1421    operand of a SUBREG that changes the mode of the object illegally.  */
1422 
1423 /* Stack layout; function entry, exit and calling.  */
1424 
1425 /* Define this if pushing a word on the stack
1426    makes the stack pointer a smaller address.  */
1427 #define STACK_GROWS_DOWNWARD  1
1428 
1429 /* Define this to nonzero if the nominal address of the stack frame
1430    is at the high-address end of the local variables;
1431    that is, each additional local variable allocated
1432    goes at a more negative offset in the frame.  */
1433 #define FRAME_GROWS_DOWNWARD 1
1434 
1435 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1436    When present, it is one word in size, and sits at the top of the frame,
1437    between the soft frame pointer and either r7 or r11.
1438 
1439    We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1440    and only then if some outgoing arguments are passed on the stack.  It would
1441    be tempting to also check whether the stack arguments are passed by indirect
1442    calls, but there seems to be no reason in principle why a post-reload pass
1443    couldn't convert a direct call into an indirect one.  */
1444 #define CALLER_INTERWORKING_SLOT_SIZE			\
1445   (TARGET_CALLER_INTERWORKING				\
1446    && crtl->outgoing_args_size != 0		\
1447    ? UNITS_PER_WORD : 0)
1448 
1449 /* Offset within stack frame to start allocating local variables at.
1450    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1451    first local allocated.  Otherwise, it is the offset to the BEGINNING
1452    of the first local allocated.  */
1453 #define STARTING_FRAME_OFFSET  0
1454 
1455 /* If we generate an insn to push BYTES bytes,
1456    this says how many the stack pointer really advances by.  */
1457 /* The push insns do not do this rounding implicitly.
1458    So don't define this.  */
1459 /* #define PUSH_ROUNDING(NPUSHED)  ROUND_UP_WORD (NPUSHED) */
1460 
1461 /* Define this if the maximum size of all the outgoing args is to be
1462    accumulated and pushed during the prologue.  The amount can be
1463    found in the variable crtl->outgoing_args_size.  */
1464 #define ACCUMULATE_OUTGOING_ARGS 1
1465 
1466 /* Offset of first parameter from the argument pointer register value.  */
1467 #define FIRST_PARM_OFFSET(FNDECL)  (TARGET_ARM ? 4 : 0)
1468 
1469 /* Amount of memory needed for an untyped call to save all possible return
1470    registers.  */
1471 #define APPLY_RESULT_SIZE arm_apply_result_size()
1472 
1473 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1474    values must be in memory.  On the ARM, they need only do so if larger
1475    than a word, or if they contain elements offset from zero in the struct.  */
1476 #define DEFAULT_PCC_STRUCT_RETURN 0
1477 
1478 /* These bits describe the different types of function supported
1479    by the ARM backend.  They are exclusive.  i.e. a function cannot be both a
1480    normal function and an interworked function, for example.  Knowing the
1481    type of a function is important for determining its prologue and
1482    epilogue sequences.
1483    Note value 7 is currently unassigned.  Also note that the interrupt
1484    function types all have bit 2 set, so that they can be tested for easily.
1485    Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1486    machine_function structure is initialized (to zero) func_type will
1487    default to unknown.  This will force the first use of arm_current_func_type
1488    to call arm_compute_func_type.  */
1489 #define ARM_FT_UNKNOWN		 0 /* Type has not yet been determined.  */
1490 #define ARM_FT_NORMAL		 1 /* Your normal, straightforward function.  */
1491 #define ARM_FT_INTERWORKED	 2 /* A function that supports interworking.  */
1492 #define ARM_FT_ISR		 4 /* An interrupt service routine.  */
1493 #define ARM_FT_FIQ		 5 /* A fast interrupt service routine.  */
1494 #define ARM_FT_EXCEPTION	 6 /* An ARM exception handler (subcase of ISR).  */
1495 
1496 #define ARM_FT_TYPE_MASK	((1 << 3) - 1)
1497 
1498 /* In addition functions can have several type modifiers,
1499    outlined by these bit masks:  */
1500 #define ARM_FT_INTERRUPT	(1 << 2) /* Note overlap with FT_ISR and above.  */
1501 #define ARM_FT_NAKED		(1 << 3) /* No prologue or epilogue.  */
1502 #define ARM_FT_VOLATILE		(1 << 4) /* Does not return.  */
1503 #define ARM_FT_NESTED		(1 << 5) /* Embedded inside another func.  */
1504 #define ARM_FT_STACKALIGN	(1 << 6) /* Called with misaligned stack.  */
1505 
1506 /* Some macros to test these flags.  */
1507 #define ARM_FUNC_TYPE(t)	(t & ARM_FT_TYPE_MASK)
1508 #define IS_INTERRUPT(t)		(t & ARM_FT_INTERRUPT)
1509 #define IS_VOLATILE(t)     	(t & ARM_FT_VOLATILE)
1510 #define IS_NAKED(t)        	(t & ARM_FT_NAKED)
1511 #define IS_NESTED(t)       	(t & ARM_FT_NESTED)
1512 #define IS_STACKALIGN(t)       	(t & ARM_FT_STACKALIGN)
1513 
1514 
1515 /* Structure used to hold the function stack frame layout.  Offsets are
1516    relative to the stack pointer on function entry.  Positive offsets are
1517    in the direction of stack growth.
1518    Only soft_frame is used in thumb mode.  */
1519 
1520 typedef struct GTY(()) arm_stack_offsets
1521 {
1522   int saved_args;	/* ARG_POINTER_REGNUM.  */
1523   int frame;		/* ARM_HARD_FRAME_POINTER_REGNUM.  */
1524   int saved_regs;
1525   int soft_frame;	/* FRAME_POINTER_REGNUM.  */
1526   int locals_base;	/* THUMB_HARD_FRAME_POINTER_REGNUM.  */
1527   int outgoing_args;	/* STACK_POINTER_REGNUM.  */
1528   unsigned int saved_regs_mask;
1529 }
1530 arm_stack_offsets;
1531 
1532 #if !defined(GENERATOR_FILE) && !defined (USED_FOR_TARGET)
1533 /* A C structure for machine-specific, per-function data.
1534    This is added to the cfun structure.  */
1535 typedef struct GTY(()) machine_function
1536 {
1537   /* Additional stack adjustment in __builtin_eh_throw.  */
1538   rtx eh_epilogue_sp_ofs;
1539   /* Records if LR has to be saved for far jumps.  */
1540   int far_jump_used;
1541   /* Records if ARG_POINTER was ever live.  */
1542   int arg_pointer_live;
1543   /* Records if the save of LR has been eliminated.  */
1544   int lr_save_eliminated;
1545   /* The size of the stack frame.  Only valid after reload.  */
1546   arm_stack_offsets stack_offsets;
1547   /* Records the type of the current function.  */
1548   unsigned long func_type;
1549   /* Record if the function has a variable argument list.  */
1550   int uses_anonymous_args;
1551   /* Records if sibcalls are blocked because an argument
1552      register is needed to preserve stack alignment.  */
1553   int sibcall_blocked;
1554   /* The PIC register for this function.  This might be a pseudo.  */
1555   rtx pic_reg;
1556   /* Labels for per-function Thumb call-via stubs.  One per potential calling
1557      register.  We can never call via LR or PC.  We can call via SP if a
1558      trampoline happens to be on the top of the stack.  */
1559   rtx call_via[14];
1560   /* Set to 1 when a return insn is output, this means that the epilogue
1561      is not needed.  */
1562   int return_used_this_function;
1563   /* When outputting Thumb-1 code, record the last insn that provides
1564      information about condition codes, and the comparison operands.  */
1565   rtx thumb1_cc_insn;
1566   rtx thumb1_cc_op0;
1567   rtx thumb1_cc_op1;
1568   /* Also record the CC mode that is supported.  */
1569   machine_mode thumb1_cc_mode;
1570   /* Set to 1 after arm_reorg has started.  */
1571   int after_arm_reorg;
1572 }
1573 machine_function;
1574 #endif
1575 
1576 /* As in the machine_function, a global set of call-via labels, for code
1577    that is in text_section.  */
1578 extern GTY(()) rtx thumb_call_via_label[14];
1579 
1580 /* The number of potential ways of assigning to a co-processor.  */
1581 #define ARM_NUM_COPROC_SLOTS 1
1582 
1583 /* Enumeration of procedure calling standard variants.  We don't really
1584    support all of these yet.  */
1585 enum arm_pcs
1586 {
1587   ARM_PCS_AAPCS,	/* Base standard AAPCS.  */
1588   ARM_PCS_AAPCS_VFP,	/* Use VFP registers for floating point values.  */
1589   ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors.  */
1590   /* This must be the last AAPCS variant.  */
1591   ARM_PCS_AAPCS_LOCAL,	/* Private call within this compilation unit.  */
1592   ARM_PCS_ATPCS,	/* ATPCS.  */
1593   ARM_PCS_APCS,		/* APCS (legacy Linux etc).  */
1594   ARM_PCS_UNKNOWN
1595 };
1596 
1597 /* Default procedure calling standard of current compilation unit. */
1598 extern enum arm_pcs arm_pcs_default;
1599 
1600 #if !defined (USED_FOR_TARGET)
1601 /* A C type for declaring a variable that is used as the first argument of
1602    `FUNCTION_ARG' and other related values.  */
1603 typedef struct
1604 {
1605   /* This is the number of registers of arguments scanned so far.  */
1606   int nregs;
1607   /* This is the number of iWMMXt register arguments scanned so far.  */
1608   int iwmmxt_nregs;
1609   int named_count;
1610   int nargs;
1611   /* Which procedure call variant to use for this call.  */
1612   enum arm_pcs pcs_variant;
1613 
1614   /* AAPCS related state tracking.  */
1615   int aapcs_arg_processed;  /* No need to lay out this argument again.  */
1616   int aapcs_cprc_slot;      /* Index of co-processor rules to handle
1617 			       this argument, or -1 if using core
1618 			       registers.  */
1619   int aapcs_ncrn;
1620   int aapcs_next_ncrn;
1621   rtx aapcs_reg;	    /* Register assigned to this argument.  */
1622   int aapcs_partial;	    /* How many bytes are passed in regs (if
1623 			       split between core regs and stack.
1624 			       Zero otherwise.  */
1625   int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1626   int can_split;	    /* Argument can be split between core regs
1627 			       and the stack.  */
1628   /* Private data for tracking VFP register allocation */
1629   unsigned aapcs_vfp_regs_free;
1630   unsigned aapcs_vfp_reg_alloc;
1631   int aapcs_vfp_rcount;
1632   MACHMODE aapcs_vfp_rmode;
1633 } CUMULATIVE_ARGS;
1634 #endif
1635 
1636 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1637   (arm_pad_arg_upward (MODE, TYPE) ? upward : downward)
1638 
1639 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1640   (arm_pad_reg_upward (MODE, TYPE, FIRST) ? upward : downward)
1641 
1642 /* For AAPCS, padding should never be below the argument. For other ABIs,
1643  * mimic the default.  */
1644 #define PAD_VARARGS_DOWN \
1645   ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1646 
1647 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1648    for a call to a function whose data type is FNTYPE.
1649    For a library call, FNTYPE is 0.
1650    On the ARM, the offset starts at 0.  */
1651 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1652   arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1653 
1654 /* 1 if N is a possible register number for function argument passing.
1655    On the ARM, r0-r3 are used to pass args.  */
1656 #define FUNCTION_ARG_REGNO_P(REGNO)					\
1657    (IN_RANGE ((REGNO), 0, 3)						\
1658     || (TARGET_AAPCS_BASED && TARGET_VFP && TARGET_HARD_FLOAT		\
1659 	&& IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15))	\
1660     || (TARGET_IWMMXT_ABI						\
1661 	&& IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1662 
1663 
1664 /* If your target environment doesn't prefix user functions with an
1665    underscore, you may wish to re-define this to prevent any conflicts.  */
1666 #ifndef ARM_MCOUNT_NAME
1667 #define ARM_MCOUNT_NAME "*mcount"
1668 #endif
1669 
1670 /* Call the function profiler with a given profile label.  The Acorn
1671    compiler puts this BEFORE the prolog but gcc puts it afterwards.
1672    On the ARM the full profile code will look like:
1673 	.data
1674 	LP1
1675 		.word	0
1676 	.text
1677 		mov	ip, lr
1678 		bl	mcount
1679 		.word	LP1
1680 
1681    profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1682    will output the .text section.
1683 
1684    The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1685    ``prof'' doesn't seem to mind about this!
1686 
1687    Note - this version of the code is designed to work in both ARM and
1688    Thumb modes.  */
1689 #ifndef ARM_FUNCTION_PROFILER
1690 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO)  	\
1691 {							\
1692   char temp[20];					\
1693   rtx sym;						\
1694 							\
1695   asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t",		\
1696 	   IP_REGNUM, LR_REGNUM);			\
1697   assemble_name (STREAM, ARM_MCOUNT_NAME);		\
1698   fputc ('\n', STREAM);					\
1699   ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO);	\
1700   sym = gen_rtx_SYMBOL_REF (Pmode, temp);		\
1701   assemble_aligned_integer (UNITS_PER_WORD, sym);	\
1702 }
1703 #endif
1704 
1705 #ifdef THUMB_FUNCTION_PROFILER
1706 #define FUNCTION_PROFILER(STREAM, LABELNO)		\
1707   if (TARGET_ARM)					\
1708     ARM_FUNCTION_PROFILER (STREAM, LABELNO)		\
1709   else							\
1710     THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1711 #else
1712 #define FUNCTION_PROFILER(STREAM, LABELNO)		\
1713     ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1714 #endif
1715 
1716 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1717    the stack pointer does not matter.  The value is tested only in
1718    functions that have frame pointers.
1719    No definition is equivalent to always zero.
1720 
1721    On the ARM, the function epilogue recovers the stack pointer from the
1722    frame.  */
1723 #define EXIT_IGNORE_STACK 1
1724 
1725 #define EPILOGUE_USES(REGNO) (epilogue_completed && (REGNO) == LR_REGNUM)
1726 
1727 /* Determine if the epilogue should be output as RTL.
1728    You should override this if you define FUNCTION_EXTRA_EPILOGUE.  */
1729 #define USE_RETURN_INSN(ISCOND)				\
1730   (TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0)
1731 
1732 /* Definitions for register eliminations.
1733 
1734    This is an array of structures.  Each structure initializes one pair
1735    of eliminable registers.  The "from" register number is given first,
1736    followed by "to".  Eliminations of the same "from" register are listed
1737    in order of preference.
1738 
1739    We have two registers that can be eliminated on the ARM.  First, the
1740    arg pointer register can often be eliminated in favor of the stack
1741    pointer register.  Secondly, the pseudo frame pointer register can always
1742    be eliminated; it is replaced with either the stack or the real frame
1743    pointer.  Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1744    because the definition of HARD_FRAME_POINTER_REGNUM is not a constant.  */
1745 
1746 #define ELIMINABLE_REGS						\
1747 {{ ARG_POINTER_REGNUM,        STACK_POINTER_REGNUM            },\
1748  { ARG_POINTER_REGNUM,        FRAME_POINTER_REGNUM            },\
1749  { ARG_POINTER_REGNUM,        ARM_HARD_FRAME_POINTER_REGNUM   },\
1750  { ARG_POINTER_REGNUM,        THUMB_HARD_FRAME_POINTER_REGNUM },\
1751  { FRAME_POINTER_REGNUM,      STACK_POINTER_REGNUM            },\
1752  { FRAME_POINTER_REGNUM,      ARM_HARD_FRAME_POINTER_REGNUM   },\
1753  { FRAME_POINTER_REGNUM,      THUMB_HARD_FRAME_POINTER_REGNUM }}
1754 
1755 /* Define the offset between two registers, one to be eliminated, and the
1756    other its replacement, at the start of a routine.  */
1757 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
1758   if (TARGET_ARM)							\
1759     (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO);	\
1760   else									\
1761     (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1762 
1763 /* Special case handling of the location of arguments passed on the stack.  */
1764 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1765 
1766 /* Initialize data used by insn expanders.  This is called from insn_emit,
1767    once for every function before code is generated.  */
1768 #define INIT_EXPANDERS  arm_init_expanders ()
1769 
1770 /* Length in units of the trampoline for entering a nested function.  */
1771 #define TRAMPOLINE_SIZE  (TARGET_32BIT ? 16 : 20)
1772 
1773 /* Alignment required for a trampoline in bits.  */
1774 #define TRAMPOLINE_ALIGNMENT  32
1775 
1776 /* Addressing modes, and classification of registers for them.  */
1777 #define HAVE_POST_INCREMENT   1
1778 #define HAVE_PRE_INCREMENT    TARGET_32BIT
1779 #define HAVE_POST_DECREMENT   TARGET_32BIT
1780 #define HAVE_PRE_DECREMENT    TARGET_32BIT
1781 #define HAVE_PRE_MODIFY_DISP  TARGET_32BIT
1782 #define HAVE_POST_MODIFY_DISP TARGET_32BIT
1783 #define HAVE_PRE_MODIFY_REG   TARGET_32BIT
1784 #define HAVE_POST_MODIFY_REG  TARGET_32BIT
1785 
1786 enum arm_auto_incmodes
1787   {
1788     ARM_POST_INC,
1789     ARM_PRE_INC,
1790     ARM_POST_DEC,
1791     ARM_PRE_DEC
1792   };
1793 
1794 #define ARM_AUTOINC_VALID_FOR_MODE_P(mode, code) \
1795   (TARGET_32BIT && arm_autoinc_modes_ok_p (mode, code))
1796 #define USE_LOAD_POST_INCREMENT(mode) \
1797   ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_INC)
1798 #define USE_LOAD_PRE_INCREMENT(mode)  \
1799   ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_INC)
1800 #define USE_LOAD_POST_DECREMENT(mode) \
1801   ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_DEC)
1802 #define USE_LOAD_PRE_DECREMENT(mode)  \
1803   ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_DEC)
1804 
1805 #define USE_STORE_PRE_DECREMENT(mode) USE_LOAD_PRE_DECREMENT(mode)
1806 #define USE_STORE_PRE_INCREMENT(mode) USE_LOAD_PRE_INCREMENT(mode)
1807 #define USE_STORE_POST_DECREMENT(mode) USE_LOAD_POST_DECREMENT(mode)
1808 #define USE_STORE_POST_INCREMENT(mode) USE_LOAD_POST_INCREMENT(mode)
1809 
1810 /* Macros to check register numbers against specific register classes.  */
1811 
1812 /* These assume that REGNO is a hard or pseudo reg number.
1813    They give nonzero only if REGNO is a hard reg of the suitable class
1814    or a pseudo reg currently allocated to a suitable hard reg.
1815    Since they use reg_renumber, they are safe only once reg_renumber
1816    has been allocated, which happens in reginfo.c during register
1817    allocation.  */
1818 #define TEST_REGNO(R, TEST, VALUE) \
1819   ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
1820 
1821 /* Don't allow the pc to be used.  */
1822 #define ARM_REGNO_OK_FOR_BASE_P(REGNO)			\
1823   (TEST_REGNO (REGNO, <, PC_REGNUM)			\
1824    || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM)	\
1825    || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1826 
1827 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE)		\
1828   (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM)			\
1829    || (GET_MODE_SIZE (MODE) >= 4				\
1830        && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1831 
1832 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE)		\
1833   (TARGET_THUMB1					\
1834    ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE)	\
1835    : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1836 
1837 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1838    For Thumb, we can not use SP + reg, so reject SP.  */
1839 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE)	\
1840   REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1841 
1842 /* For ARM code, we don't care about the mode, but for Thumb, the index
1843    must be suitable for use in a QImode load.  */
1844 #define REGNO_OK_FOR_INDEX_P(REGNO)	\
1845   (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1846    && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1847 
1848 /* Maximum number of registers that can appear in a valid memory address.
1849    Shifts in addresses can't be by a register.  */
1850 #define MAX_REGS_PER_ADDRESS 2
1851 
1852 /* Recognize any constant value that is a valid address.  */
1853 /* XXX We can address any constant, eventually...  */
1854 /* ??? Should the TARGET_ARM here also apply to thumb2?  */
1855 #define CONSTANT_ADDRESS_P(X)  			\
1856   (GET_CODE (X) == SYMBOL_REF 			\
1857    && (CONSTANT_POOL_ADDRESS_P (X)		\
1858        || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1859 
1860 /* True if SYMBOL + OFFSET constants must refer to something within
1861    SYMBOL's section.  */
1862 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1863 
1864 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32.  */
1865 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1866 #define TARGET_DEFAULT_WORD_RELOCATIONS 0
1867 #endif
1868 
1869 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1870 #define SUBTARGET_NAME_ENCODING_LENGTHS
1871 #endif
1872 
1873 /* This is a C fragment for the inside of a switch statement.
1874    Each case label should return the number of characters to
1875    be stripped from the start of a function's name, if that
1876    name starts with the indicated character.  */
1877 #define ARM_NAME_ENCODING_LENGTHS		\
1878   case '*':  return 1;				\
1879   SUBTARGET_NAME_ENCODING_LENGTHS
1880 
1881 /* This is how to output a reference to a user-level label named NAME.
1882    `assemble_name' uses this.  */
1883 #undef  ASM_OUTPUT_LABELREF
1884 #define ASM_OUTPUT_LABELREF(FILE, NAME)		\
1885    arm_asm_output_labelref (FILE, NAME)
1886 
1887 /* Output IT instructions for conditionally executed Thumb-2 instructions.  */
1888 #define ASM_OUTPUT_OPCODE(STREAM, PTR)	\
1889   if (TARGET_THUMB2)			\
1890     thumb2_asm_output_opcode (STREAM);
1891 
1892 /* The EABI specifies that constructors should go in .init_array.
1893    Other targets use .ctors for compatibility.  */
1894 #ifndef ARM_EABI_CTORS_SECTION_OP
1895 #define ARM_EABI_CTORS_SECTION_OP \
1896   "\t.section\t.init_array,\"aw\",%init_array"
1897 #endif
1898 #ifndef ARM_EABI_DTORS_SECTION_OP
1899 #define ARM_EABI_DTORS_SECTION_OP \
1900   "\t.section\t.fini_array,\"aw\",%fini_array"
1901 #endif
1902 #define ARM_CTORS_SECTION_OP \
1903   "\t.section\t.ctors,\"aw\",%progbits"
1904 #define ARM_DTORS_SECTION_OP \
1905   "\t.section\t.dtors,\"aw\",%progbits"
1906 
1907 /* Define CTORS_SECTION_ASM_OP.  */
1908 #undef CTORS_SECTION_ASM_OP
1909 #undef DTORS_SECTION_ASM_OP
1910 #ifndef IN_LIBGCC2
1911 # define CTORS_SECTION_ASM_OP \
1912    (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1913 # define DTORS_SECTION_ASM_OP \
1914    (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1915 #else /* !defined (IN_LIBGCC2) */
1916 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1917    so we cannot use the definition above.  */
1918 # ifdef __ARM_EABI__
1919 /* The .ctors section is not part of the EABI, so we do not define
1920    CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
1921    from trying to use it.  We do define it when doing normal
1922    compilation, as .init_array can be used instead of .ctors.  */
1923 /* There is no need to emit begin or end markers when using
1924    init_array; the dynamic linker will compute the size of the
1925    array itself based on special symbols created by the static
1926    linker.  However, we do need to arrange to set up
1927    exception-handling here.  */
1928 #   define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
1929 #   define CTOR_LIST_END /* empty */
1930 #   define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
1931 #   define DTOR_LIST_END /* empty */
1932 # else /* !defined (__ARM_EABI__) */
1933 #   define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
1934 #   define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
1935 # endif /* !defined (__ARM_EABI__) */
1936 #endif /* !defined (IN_LIBCC2) */
1937 
1938 /* True if the operating system can merge entities with vague linkage
1939    (e.g., symbols in COMDAT group) during dynamic linking.  */
1940 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
1941 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
1942 #endif
1943 
1944 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
1945 
1946 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1947    and check its validity for a certain class.
1948    We have two alternate definitions for each of them.
1949    The usual definition accepts all pseudo regs; the other rejects
1950    them unless they have been allocated suitable hard regs.
1951    The symbol REG_OK_STRICT causes the latter definition to be used.
1952    Thumb-2 has the same restrictions as arm.  */
1953 #ifndef REG_OK_STRICT
1954 
1955 #define ARM_REG_OK_FOR_BASE_P(X)		\
1956   (REGNO (X) <= LAST_ARM_REGNUM			\
1957    || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
1958    || REGNO (X) == FRAME_POINTER_REGNUM		\
1959    || REGNO (X) == ARG_POINTER_REGNUM)
1960 
1961 #define ARM_REG_OK_FOR_INDEX_P(X)		\
1962   ((REGNO (X) <= LAST_ARM_REGNUM		\
1963     && REGNO (X) != STACK_POINTER_REGNUM)	\
1964    || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
1965    || REGNO (X) == FRAME_POINTER_REGNUM		\
1966    || REGNO (X) == ARG_POINTER_REGNUM)
1967 
1968 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE)	\
1969   (REGNO (X) <= LAST_LO_REGNUM			\
1970    || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
1971    || (GET_MODE_SIZE (MODE) >= 4		\
1972        && (REGNO (X) == STACK_POINTER_REGNUM	\
1973 	   || (X) == hard_frame_pointer_rtx	\
1974 	   || (X) == arg_pointer_rtx)))
1975 
1976 #define REG_STRICT_P 0
1977 
1978 #else /* REG_OK_STRICT */
1979 
1980 #define ARM_REG_OK_FOR_BASE_P(X) 		\
1981   ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
1982 
1983 #define ARM_REG_OK_FOR_INDEX_P(X) 		\
1984   ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
1985 
1986 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE)	\
1987   THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
1988 
1989 #define REG_STRICT_P 1
1990 
1991 #endif /* REG_OK_STRICT */
1992 
1993 /* Now define some helpers in terms of the above.  */
1994 
1995 #define REG_MODE_OK_FOR_BASE_P(X, MODE)		\
1996   (TARGET_THUMB1				\
1997    ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE)	\
1998    : ARM_REG_OK_FOR_BASE_P (X))
1999 
2000 /* For 16-bit Thumb, a valid index register is anything that can be used in
2001    a byte load instruction.  */
2002 #define THUMB1_REG_OK_FOR_INDEX_P(X) \
2003   THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
2004 
2005 /* Nonzero if X is a hard reg that can be used as an index
2006    or if it is a pseudo reg.  On the Thumb, the stack pointer
2007    is not suitable.  */
2008 #define REG_OK_FOR_INDEX_P(X)			\
2009   (TARGET_THUMB1				\
2010    ? THUMB1_REG_OK_FOR_INDEX_P (X)		\
2011    : ARM_REG_OK_FOR_INDEX_P (X))
2012 
2013 /* Nonzero if X can be the base register in a reg+reg addressing mode.
2014    For Thumb, we can not use SP + reg, so reject SP.  */
2015 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE)	\
2016   REG_OK_FOR_INDEX_P (X)
2017 
2018 #define ARM_BASE_REGISTER_RTX_P(X)  \
2019   (REG_P (X) && ARM_REG_OK_FOR_BASE_P (X))
2020 
2021 #define ARM_INDEX_REGISTER_RTX_P(X)  \
2022   (REG_P (X) && ARM_REG_OK_FOR_INDEX_P (X))
2023 
2024 /* Specify the machine mode that this machine uses
2025    for the index in the tablejump instruction.  */
2026 #define CASE_VECTOR_MODE Pmode
2027 
2028 #define CASE_VECTOR_PC_RELATIVE (TARGET_THUMB2				\
2029 				 || (TARGET_THUMB1			\
2030 				     && (optimize_size || flag_pic)))
2031 
2032 #define CASE_VECTOR_SHORTEN_MODE(min, max, body)			\
2033   (TARGET_THUMB1							\
2034    ? (min >= 0 && max < 512						\
2035       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode)	\
2036       : min >= -256 && max < 256					\
2037       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode)	\
2038       : min >= 0 && max < 8192						\
2039       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode)	\
2040       : min >= -4096 && max < 4096					\
2041       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode)	\
2042       : SImode)								\
2043    : ((min < 0 || max >= 0x20000 || !TARGET_THUMB2) ? SImode		\
2044       : (max >= 0x200) ? HImode						\
2045       : QImode))
2046 
2047 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
2048    unsigned is probably best, but may break some code.  */
2049 #ifndef DEFAULT_SIGNED_CHAR
2050 #define DEFAULT_SIGNED_CHAR  0
2051 #endif
2052 
2053 /* Max number of bytes we can move from memory to memory
2054    in one reasonably fast instruction.  */
2055 #define MOVE_MAX 4
2056 
2057 #undef  MOVE_RATIO
2058 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
2059 
2060 /* Define if operations between registers always perform the operation
2061    on the full register even if a narrower mode is specified.  */
2062 #define WORD_REGISTER_OPERATIONS
2063 
2064 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2065    will either zero-extend or sign-extend.  The value of this macro should
2066    be the code that says which one of the two operations is implicitly
2067    done, UNKNOWN if none.  */
2068 #define LOAD_EXTEND_OP(MODE)						\
2069   (TARGET_THUMB ? ZERO_EXTEND :						\
2070    ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND			\
2071     : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
2072 
2073 /* Nonzero if access to memory by bytes is slow and undesirable.  */
2074 #define SLOW_BYTE_ACCESS 0
2075 
2076 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
2077 
2078 /* Immediate shift counts are truncated by the output routines (or was it
2079    the assembler?).  Shift counts in a register are truncated by ARM.  Note
2080    that the native compiler puts too large (> 32) immediate shift counts
2081    into a register and shifts by the register, letting the ARM decide what
2082    to do instead of doing that itself.  */
2083 /* This is all wrong.  Defining SHIFT_COUNT_TRUNCATED tells combine that
2084    code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
2085    On the arm, Y in a register is used modulo 256 for the shift. Only for
2086    rotates is modulo 32 used.  */
2087 /* #define SHIFT_COUNT_TRUNCATED 1 */
2088 
2089 /* All integers have the same format so truncation is easy.  */
2090 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC)  1
2091 
2092 /* Calling from registers is a massive pain.  */
2093 #define NO_FUNCTION_CSE 1
2094 
2095 /* The machine modes of pointers and functions */
2096 #define Pmode  SImode
2097 #define FUNCTION_MODE  Pmode
2098 
2099 #define ARM_FRAME_RTX(X)					\
2100   (   (X) == frame_pointer_rtx || (X) == stack_pointer_rtx	\
2101    || (X) == arg_pointer_rtx)
2102 
2103 /* Try to generate sequences that don't involve branches, we can then use
2104    conditional instructions.  */
2105 #define BRANCH_COST(speed_p, predictable_p) \
2106   (current_tune->branch_cost (speed_p, predictable_p))
2107 
2108 /* False if short circuit operation is preferred.  */
2109 #define LOGICAL_OP_NON_SHORT_CIRCUIT				\
2110   ((optimize_size)						\
2111    ? (TARGET_THUMB ? false : true)				\
2112    : (current_tune->logical_op_non_short_circuit[TARGET_ARM]))
2113 
2114 
2115 /* Position Independent Code.  */
2116 /* We decide which register to use based on the compilation options and
2117    the assembler in use; this is more general than the APCS restriction of
2118    using sb (r9) all the time.  */
2119 extern unsigned arm_pic_register;
2120 
2121 /* The register number of the register used to address a table of static
2122    data addresses in memory.  */
2123 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
2124 
2125 /* We can't directly access anything that contains a symbol,
2126    nor can we indirect via the constant pool.  One exception is
2127    UNSPEC_TLS, which is always PIC.  */
2128 #define LEGITIMATE_PIC_OPERAND_P(X)					\
2129 	(!(symbol_mentioned_p (X)					\
2130 	   || label_mentioned_p (X)					\
2131 	   || (GET_CODE (X) == SYMBOL_REF				\
2132 	       && CONSTANT_POOL_ADDRESS_P (X)				\
2133 	       && (symbol_mentioned_p (get_pool_constant (X))		\
2134 		   || label_mentioned_p (get_pool_constant (X)))))	\
2135 	 || tls_mentioned_p (X))
2136 
2137 /* We need to know when we are making a constant pool; this determines
2138    whether data needs to be in the GOT or can be referenced via a GOT
2139    offset.  */
2140 extern int making_const_table;
2141 
2142 /* Handle pragmas for compatibility with Intel's compilers.  */
2143 /* Also abuse this to register additional C specific EABI attributes.  */
2144 #define REGISTER_TARGET_PRAGMAS() do {					\
2145   c_register_pragma (0, "long_calls", arm_pr_long_calls);		\
2146   c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls);		\
2147   c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off);	\
2148   arm_lang_object_attributes_init(); \
2149 } while (0)
2150 
2151 /* Condition code information.  */
2152 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2153    return the mode to be used for the comparison.  */
2154 
2155 #define SELECT_CC_MODE(OP, X, Y)  arm_select_cc_mode (OP, X, Y)
2156 
2157 #define REVERSIBLE_CC_MODE(MODE) 1
2158 
2159 #define REVERSE_CONDITION(CODE,MODE) \
2160   (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
2161    ? reverse_condition_maybe_unordered (code) \
2162    : reverse_condition (code))
2163 
2164 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2165   ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
2166 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2167   ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
2168 
2169 #define CC_STATUS_INIT \
2170   do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0)
2171 
2172 #undef ASM_APP_ON
2173 #define ASM_APP_ON (inline_asm_unified ? "\t.syntax unified\n" : \
2174 		    "\t.syntax divided\n")
2175 
2176 #undef  ASM_APP_OFF
2177 #define ASM_APP_OFF (TARGET_ARM ? "\t.arm\n\t.syntax divided\n" : \
2178 		     "\t.thumb\n\t.syntax unified\n")
2179 
2180 /* Output a push or a pop instruction (only used when profiling).
2181    We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1.  We know
2182    that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
2183    that r7 isn't used by the function profiler, so we can use it as a
2184    scratch reg.  WARNING: This isn't safe in the general case!  It may be
2185    sensitive to future changes in final.c:profile_function.  */
2186 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO)		\
2187   do							\
2188     {							\
2189       if (TARGET_ARM)					\
2190 	asm_fprintf (STREAM,"\tstmfd\t%r!,{%r}\n",	\
2191 		     STACK_POINTER_REGNUM, REGNO);	\
2192       else if (TARGET_THUMB1				\
2193 	       && (REGNO) == STATIC_CHAIN_REGNUM)	\
2194 	{						\
2195 	  asm_fprintf (STREAM, "\tpush\t{r7}\n");	\
2196 	  asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
2197 	  asm_fprintf (STREAM, "\tpush\t{r7}\n");	\
2198 	}						\
2199       else						\
2200 	asm_fprintf (STREAM, "\tpush {%r}\n", REGNO);	\
2201     } while (0)
2202 
2203 
2204 /* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue.  */
2205 #define ASM_OUTPUT_REG_POP(STREAM, REGNO)		\
2206   do							\
2207     {							\
2208       if (TARGET_ARM)					\
2209 	asm_fprintf (STREAM, "\tldmfd\t%r!,{%r}\n",	\
2210 		     STACK_POINTER_REGNUM, REGNO);	\
2211       else if (TARGET_THUMB1				\
2212 	       && (REGNO) == STATIC_CHAIN_REGNUM)	\
2213 	{						\
2214 	  asm_fprintf (STREAM, "\tpop\t{r7}\n");	\
2215 	  asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2216 	  asm_fprintf (STREAM, "\tpop\t{r7}\n");	\
2217 	}						\
2218       else						\
2219 	asm_fprintf (STREAM, "\tpop {%r}\n", REGNO);	\
2220     } while (0)
2221 
2222 #define ADDR_VEC_ALIGN(JUMPTABLE)	\
2223   ((TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) ? 2 : 0)
2224 
2225 /* Alignment for case labels comes from ADDR_VEC_ALIGN; avoid the
2226    default alignment from elfos.h.  */
2227 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
2228 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE, PREFIX, NUM, TABLE) /* Empty.  */
2229 
2230 #define LABEL_ALIGN_AFTER_BARRIER(LABEL)                \
2231    (GET_CODE (PATTERN (prev_active_insn (LABEL))) == ADDR_DIFF_VEC \
2232    ? 1 : 0)
2233 
2234 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) 	\
2235   do							\
2236     {							\
2237       if (TARGET_THUMB) 				\
2238         {						\
2239           if (is_called_in_ARM_mode (DECL)		\
2240 	      || (TARGET_THUMB1 && !TARGET_THUMB1_ONLY	\
2241 		  && cfun->is_thunk))	\
2242             fprintf (STREAM, "\t.code 32\n") ;		\
2243           else if (TARGET_THUMB1)			\
2244            fprintf (STREAM, "\t.code\t16\n\t.thumb_func\n") ;	\
2245           else						\
2246            fprintf (STREAM, "\t.thumb\n\t.thumb_func\n") ;	\
2247         }						\
2248       if (TARGET_POKE_FUNCTION_NAME)			\
2249         arm_poke_function_name (STREAM, (const char *) NAME);	\
2250     }							\
2251   while (0)
2252 
2253 /* For aliases of functions we use .thumb_set instead.  */
2254 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2)		\
2255   do						   		\
2256     {								\
2257       const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2258       const char *const LABEL2 = IDENTIFIER_POINTER (DECL2);	\
2259 								\
2260       if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL)	\
2261 	{							\
2262 	  fprintf (FILE, "\t.thumb_set ");			\
2263 	  assemble_name (FILE, LABEL1);			   	\
2264 	  fprintf (FILE, ",");			   		\
2265 	  assemble_name (FILE, LABEL2);		   		\
2266 	  fprintf (FILE, "\n");					\
2267 	}							\
2268       else							\
2269 	ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2);			\
2270     }								\
2271   while (0)
2272 
2273 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2274 /* To support -falign-* switches we need to use .p2align so
2275    that alignment directives in code sections will be padded
2276    with no-op instructions, rather than zeroes.  */
2277 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP)		\
2278   if ((LOG) != 0)						\
2279     {								\
2280       if ((MAX_SKIP) == 0)					\
2281         fprintf ((FILE), "\t.p2align %d\n", (int) (LOG));	\
2282       else							\
2283         fprintf ((FILE), "\t.p2align %d,,%d\n",			\
2284                  (int) (LOG), (int) (MAX_SKIP));		\
2285     }
2286 #endif
2287 
2288 /* Add two bytes to the length of conditionally executed Thumb-2
2289    instructions for the IT instruction.  */
2290 #define ADJUST_INSN_LENGTH(insn, length) \
2291   if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2292     length += 2;
2293 
2294 /* Only perform branch elimination (by making instructions conditional) if
2295    we're optimizing.  For Thumb-2 check if any IT instructions need
2296    outputting.  */
2297 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)	\
2298   if (TARGET_ARM && optimize)				\
2299     arm_final_prescan_insn (INSN);			\
2300   else if (TARGET_THUMB2)				\
2301     thumb2_final_prescan_insn (INSN);			\
2302   else if (TARGET_THUMB1)				\
2303     thumb1_final_prescan_insn (INSN)
2304 
2305 #define ARM_SIGN_EXTEND(x)  ((HOST_WIDE_INT)			\
2306   (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x)	\
2307    : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2308       ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2309        ? ((~ (unsigned HOST_WIDE_INT) 0)			\
2310 	  & ~ (unsigned HOST_WIDE_INT) 0xffffffff)		\
2311        : 0))))
2312 
2313 /* A C expression whose value is RTL representing the value of the return
2314    address for the frame COUNT steps up from the current frame.  */
2315 
2316 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2317   arm_return_addr (COUNT, FRAME)
2318 
2319 /* Mask of the bits in the PC that contain the real return address
2320    when running in 26-bit mode.  */
2321 #define RETURN_ADDR_MASK26 (0x03fffffc)
2322 
2323 /* Pick up the return address upon entry to a procedure. Used for
2324    dwarf2 unwind information.  This also enables the table driven
2325    mechanism.  */
2326 #define INCOMING_RETURN_ADDR_RTX	gen_rtx_REG (Pmode, LR_REGNUM)
2327 #define DWARF_FRAME_RETURN_COLUMN	DWARF_FRAME_REGNUM (LR_REGNUM)
2328 
2329 /* Used to mask out junk bits from the return address, such as
2330    processor state, interrupt status, condition codes and the like.  */
2331 #define MASK_RETURN_ADDR \
2332   /* If we are generating code for an ARM2/ARM3 machine or for an ARM6	\
2333      in 26 bit mode, the condition codes must be masked out of the	\
2334      return address.  This does not apply to ARM6 and later processors	\
2335      when running in 32 bit mode.  */					\
2336   ((arm_arch4 || TARGET_THUMB)						\
2337    ? (gen_int_mode ((unsigned long)0xffffffff, Pmode))			\
2338    : arm_gen_return_addr_mask ())
2339 
2340 
2341 /* Do not emit .note.GNU-stack by default.  */
2342 #ifndef NEED_INDICATE_EXEC_STACK
2343 #define NEED_INDICATE_EXEC_STACK	0
2344 #endif
2345 
2346 #define TARGET_ARM_ARCH	\
2347   (arm_base_arch)	\
2348 
2349 #define TARGET_ARM_V6M (!arm_arch_notm && !arm_arch_thumb2)
2350 #define TARGET_ARM_V7M (!arm_arch_notm && arm_arch_thumb2)
2351 
2352 /* The highest Thumb instruction set version supported by the chip.  */
2353 #define TARGET_ARM_ARCH_ISA_THUMB 		\
2354   (arm_arch_thumb2 ? 2				\
2355 	           : ((TARGET_ARM_ARCH >= 5 || arm_arch4t) ? 1 : 0))
2356 
2357 /* Expands to an upper-case char of the target's architectural
2358    profile.  */
2359 #define TARGET_ARM_ARCH_PROFILE				\
2360   (!arm_arch_notm					\
2361     ? 'M'						\
2362     : (arm_arch7					\
2363       ? (strlen (arm_arch_name) >=3			\
2364 	? (arm_arch_name[strlen (arm_arch_name) - 3])	\
2365       	: 0)						\
2366       : 0))
2367 
2368 /* Bit-field indicating what size LDREX/STREX loads/stores are available.
2369    Bit 0 for bytes, up to bit 3 for double-words.  */
2370 #define TARGET_ARM_FEATURE_LDREX				\
2371   ((TARGET_HAVE_LDREX ? 4 : 0)					\
2372    | (TARGET_HAVE_LDREXBH ? 3 : 0)				\
2373    | (TARGET_HAVE_LDREXD ? 8 : 0))
2374 
2375 /* Set as a bit mask indicating the available widths of hardware floating
2376    point types.  Where bit 1 indicates 16-bit support, bit 2 indicates
2377    32-bit support, bit 3 indicates 64-bit support.  */
2378 #define TARGET_ARM_FP			\
2379   (!TARGET_SOFT_FLOAT ? (TARGET_VFP_SINGLE ? 4		\
2380 			: (TARGET_VFP_DOUBLE ? (TARGET_FP16 ? 14 : 12) : 0)) \
2381 		      : 0)
2382 
2383 
2384 /* Set as a bit mask indicating the available widths of floating point
2385    types for hardware NEON floating point.  This is the same as
2386    TARGET_ARM_FP without the 64-bit bit set.  */
2387 #define TARGET_NEON_FP				 \
2388   (TARGET_NEON ? (TARGET_ARM_FP & (0xff ^ 0x08)) \
2389 	       : 0)
2390 
2391 /* The maximum number of parallel loads or stores we support in an ldm/stm
2392    instruction.  */
2393 #define MAX_LDM_STM_OPS 4
2394 
2395 #define BIG_LITTLE_SPEC \
2396    " %{mcpu=*:-mcpu=%:rewrite_mcpu(%{mcpu=*:%*})}"
2397 
2398 extern const char *arm_rewrite_mcpu (int argc, const char **argv);
2399 #define BIG_LITTLE_CPU_SPEC_FUNCTIONS \
2400   { "rewrite_mcpu", arm_rewrite_mcpu },
2401 
2402 #define ASM_CPU_SPEC \
2403    " %{mcpu=generic-*:-march=%*;"				\
2404    "   :%{march=*:-march=%*}}"					\
2405    BIG_LITTLE_SPEC
2406 
2407 /* -mcpu=native handling only makes sense with compiler running on
2408    an ARM chip.  */
2409 #if defined(__arm__) && defined(__linux__)
2410 extern const char *host_detect_local_cpu (int argc, const char **argv);
2411 # define EXTRA_SPEC_FUNCTIONS						\
2412   { "local_cpu_detect", host_detect_local_cpu },			\
2413   BIG_LITTLE_CPU_SPEC_FUNCTIONS
2414 
2415 # define MCPU_MTUNE_NATIVE_SPECS					\
2416    " %{march=native:%<march=native %:local_cpu_detect(arch)}"		\
2417    " %{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)}"		\
2418    " %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
2419 #else
2420 # define MCPU_MTUNE_NATIVE_SPECS ""
2421 # define EXTRA_SPEC_FUNCTIONS BIG_LITTLE_CPU_SPEC_FUNCTIONS
2422 #endif
2423 
2424 #define DRIVER_SELF_SPECS MCPU_MTUNE_NATIVE_SPECS
2425 #define TARGET_SUPPORTS_WIDE_INT 1
2426 #endif /* ! GCC_ARM_H */
2427