xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/config/arm/arm.h (revision e670fd5c413e99c2f6a37901bb21c537fcd322d2)
1 /* Definitions of target machine for GNU compiler, for ARM.
2    Copyright (C) 1991-2019 Free Software Foundation, Inc.
3    Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
4    and Martin Simmons (@harleqn.co.uk).
5    More major hacks by Richard Earnshaw (rearnsha@arm.com)
6    Minor hacks by Nick Clifton (nickc@cygnus.com)
7 
8    This file is part of GCC.
9 
10    GCC is free software; you can redistribute it and/or modify it
11    under the terms of the GNU General Public License as published
12    by the Free Software Foundation; either version 3, or (at your
13    option) any later version.
14 
15    GCC is distributed in the hope that it will be useful, but WITHOUT
16    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
18    License for more details.
19 
20    Under Section 7 of GPL version 3, you are granted additional
21    permissions described in the GCC Runtime Library Exception, version
22    3.1, as published by the Free Software Foundation.
23 
24    You should have received a copy of the GNU General Public License and
25    a copy of the GCC Runtime Library Exception along with this program;
26    see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
27    <http://www.gnu.org/licenses/>.  */
28 
29 #ifndef GCC_ARM_H
30 #define GCC_ARM_H
31 
32 /* We can't use machine_mode inside a generator file because it
33    hasn't been created yet; we shouldn't be using any code that
34    needs the real definition though, so this ought to be safe.  */
35 #ifdef GENERATOR_FILE
36 #define MACHMODE int
37 #else
38 #include "insn-modes.h"
39 #define MACHMODE machine_mode
40 #endif
41 
42 #include "config/vxworks-dummy.h"
43 
44 /* The architecture define.  */
45 extern char arm_arch_name[];
46 
47 /* Target CPU builtins.  */
48 #define TARGET_CPU_CPP_BUILTINS() arm_cpu_cpp_builtins (pfile)
49 
50 /* Target CPU versions for D.  */
51 #define TARGET_D_CPU_VERSIONS arm_d_target_versions
52 
53 #include "config/arm/arm-opts.h"
54 
55 /* The processor for which instructions should be scheduled.  */
56 extern enum processor_type arm_tune;
57 
58 typedef enum arm_cond_code
59 {
60   ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
61   ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
62 }
63 arm_cc;
64 
65 extern arm_cc arm_current_cc;
66 
67 #define ARM_INVERSE_CONDITION_CODE(X)  ((arm_cc) (((int)X) ^ 1))
68 
69 /* The maximum number of instructions that is beneficial to
70    conditionally execute. */
71 #undef MAX_CONDITIONAL_EXECUTE
72 #define MAX_CONDITIONAL_EXECUTE arm_max_conditional_execute ()
73 
74 extern int arm_target_label;
75 extern int arm_ccfsm_state;
76 extern GTY(()) rtx arm_target_insn;
77 /* Callback to output language specific object attributes.  */
78 extern void (*arm_lang_output_object_attributes_hook)(void);
79 
80 /* This type is the user-visible __fp16.  We need it in a few places in
81    the backend.  Defined in arm-builtins.c.  */
82 extern tree arm_fp16_type_node;
83 
84 
85 #undef  CPP_SPEC
86 #define CPP_SPEC "%(subtarget_cpp_spec)					\
87 %{mfloat-abi=soft:%{mfloat-abi=hard:					\
88 	%e-mfloat-abi=soft and -mfloat-abi=hard may not be used together}} \
89 %{mbig-endian:%{mlittle-endian:						\
90 	%e-mbig-endian and -mlittle-endian may not be used together}}"
91 
92 #ifndef CC1_SPEC
93 #define CC1_SPEC ""
94 #endif
95 
96 /* This macro defines names of additional specifications to put in the specs
97    that can be used in various specifications like CC1_SPEC.  Its definition
98    is an initializer with a subgrouping for each command option.
99 
100    Each subgrouping contains a string constant, that defines the
101    specification name, and a string constant that used by the GCC driver
102    program.
103 
104    Do not define this macro if it does not need to do anything.  */
105 #define EXTRA_SPECS						\
106   { "subtarget_cpp_spec",	SUBTARGET_CPP_SPEC },           \
107   { "asm_cpu_spec",		ASM_CPU_SPEC },			\
108   SUBTARGET_EXTRA_SPECS
109 
110 #ifndef SUBTARGET_EXTRA_SPECS
111 #define SUBTARGET_EXTRA_SPECS
112 #endif
113 
114 #ifndef SUBTARGET_CPP_SPEC
115 #define SUBTARGET_CPP_SPEC      ""
116 #endif
117 
118 /* Tree Target Specification.  */
119 #define TARGET_ARM_P(flags)    (!TARGET_THUMB_P (flags))
120 #define TARGET_THUMB1_P(flags) (TARGET_THUMB_P (flags) && !arm_arch_thumb2)
121 #define TARGET_THUMB2_P(flags) (TARGET_THUMB_P (flags) && arm_arch_thumb2)
122 #define TARGET_32BIT_P(flags)  (TARGET_ARM_P (flags) || TARGET_THUMB2_P (flags))
123 
124 /* Run-time Target Specification.  */
125 /* Use hardware floating point instructions. -mgeneral-regs-only prevents
126 the use of floating point instructions and registers but does not prevent
127 emission of floating point pcs attributes.  */
128 #define TARGET_HARD_FLOAT_SUB	(arm_float_abi != ARM_FLOAT_ABI_SOFT	\
129 				 && bitmap_bit_p (arm_active_target.isa, \
130 						  isa_bit_vfpv2) \
131 				 && TARGET_32BIT)
132 
133 #define TARGET_HARD_FLOAT	(TARGET_HARD_FLOAT_SUB		\
134 				 && !TARGET_GENERAL_REGS_ONLY)
135 
136 #define TARGET_SOFT_FLOAT	(!TARGET_HARD_FLOAT_SUB)
137 /* User has permitted use of FP instructions, if they exist for this
138    target.  */
139 #define TARGET_MAYBE_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT)
140 /* Use hardware floating point calling convention.  */
141 #define TARGET_HARD_FLOAT_ABI		(arm_float_abi == ARM_FLOAT_ABI_HARD)
142 #define TARGET_IWMMXT			(arm_arch_iwmmxt)
143 #define TARGET_IWMMXT2			(arm_arch_iwmmxt2)
144 #define TARGET_REALLY_IWMMXT		(TARGET_IWMMXT && TARGET_32BIT \
145 					 && !TARGET_GENERAL_REGS_ONLY)
146 #define TARGET_REALLY_IWMMXT2		(TARGET_IWMMXT2 && TARGET_32BIT \
147 					 && !TARGET_GENERAL_REGS_ONLY)
148 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
149 #define TARGET_ARM                      (! TARGET_THUMB)
150 #define TARGET_EITHER			1 /* (TARGET_ARM | TARGET_THUMB) */
151 #define TARGET_BACKTRACE	        (crtl->is_leaf \
152 				         ? TARGET_TPCS_LEAF_FRAME \
153 				         : TARGET_TPCS_FRAME)
154 #define TARGET_AAPCS_BASED \
155     (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
156 
157 #define TARGET_HARD_TP			(target_thread_pointer == TP_CP15)
158 #define TARGET_SOFT_TP			(target_thread_pointer == TP_SOFT)
159 #define TARGET_GNU2_TLS			(target_tls_dialect == TLS_GNU2)
160 
161 /* Only 16-bit thumb code.  */
162 #define TARGET_THUMB1			(TARGET_THUMB && !arm_arch_thumb2)
163 /* Arm or Thumb-2 32-bit code.  */
164 #define TARGET_32BIT			(TARGET_ARM || arm_arch_thumb2)
165 /* 32-bit Thumb-2 code.  */
166 #define TARGET_THUMB2			(TARGET_THUMB && arm_arch_thumb2)
167 /* Thumb-1 only.  */
168 #define TARGET_THUMB1_ONLY		(TARGET_THUMB1 && !arm_arch_notm)
169 
170 #define TARGET_LDRD			(arm_arch5te && ARM_DOUBLEWORD_ALIGN \
171                                          && !TARGET_THUMB1)
172 
173 #define TARGET_CRC32			(arm_arch_crc)
174 
175 /* The following two macros concern the ability to execute coprocessor
176    instructions for VFPv3 or NEON.  TARGET_VFP3/TARGET_VFPD32 are currently
177    only ever tested when we know we are generating for VFP hardware; we need
178    to be more careful with TARGET_NEON as noted below.  */
179 
180 /* FPU is has the full VFPv3/NEON register file of 32 D registers.  */
181 #define TARGET_VFPD32 (bitmap_bit_p (arm_active_target.isa, isa_bit_fp_d32))
182 
183 /* FPU supports VFPv3 instructions.  */
184 #define TARGET_VFP3 (bitmap_bit_p (arm_active_target.isa, isa_bit_vfpv3))
185 
186 /* FPU supports FPv5 instructions.  */
187 #define TARGET_VFP5 (bitmap_bit_p (arm_active_target.isa, isa_bit_fpv5))
188 
189 /* FPU only supports VFP single-precision instructions.  */
190 #define TARGET_VFP_SINGLE (!TARGET_VFP_DOUBLE)
191 
192 /* FPU supports VFP double-precision instructions.  */
193 #define TARGET_VFP_DOUBLE (bitmap_bit_p (arm_active_target.isa, isa_bit_fp_dbl))
194 
195 /* FPU supports half-precision floating-point with NEON element load/store.  */
196 #define TARGET_NEON_FP16					\
197   (bitmap_bit_p (arm_active_target.isa, isa_bit_neon)		\
198    && bitmap_bit_p (arm_active_target.isa, isa_bit_fp16conv))
199 
200 /* FPU supports VFP half-precision floating-point conversions.  */
201 #define TARGET_FP16 (bitmap_bit_p (arm_active_target.isa, isa_bit_fp16conv))
202 
203 /* FPU supports converting between HFmode and DFmode in a single hardware
204    step.  */
205 #define TARGET_FP16_TO_DOUBLE						\
206   (TARGET_HARD_FLOAT && TARGET_FP16 && TARGET_VFP5 && TARGET_VFP_DOUBLE)
207 
208 /* FPU supports fused-multiply-add operations.  */
209 #define TARGET_FMA (bitmap_bit_p (arm_active_target.isa, isa_bit_vfpv4))
210 
211 /* FPU supports Crypto extensions.  */
212 #define TARGET_CRYPTO (bitmap_bit_p (arm_active_target.isa, isa_bit_crypto))
213 
214 /* FPU supports Neon instructions.  The setting of this macro gets
215    revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
216    and TARGET_HARD_FLOAT to ensure that NEON instructions are
217    available.  */
218 #define TARGET_NEON							\
219   (TARGET_32BIT && TARGET_HARD_FLOAT					\
220    && bitmap_bit_p (arm_active_target.isa, isa_bit_neon))
221 
222 /* FPU supports ARMv8.1 Adv.SIMD extensions.  */
223 #define TARGET_NEON_RDMA (TARGET_NEON && arm_arch8_1)
224 
225 /* Supports the Dot Product AdvSIMD extensions.  */
226 #define TARGET_DOTPROD (TARGET_NEON && TARGET_VFP5			\
227 			&& bitmap_bit_p (arm_active_target.isa,		\
228 					isa_bit_dotprod)		\
229 			&& arm_arch8_2)
230 
231 /* Supports the Armv8.3-a Complex number AdvSIMD extensions.  */
232 #define TARGET_COMPLEX (TARGET_NEON && arm_arch8_3)
233 
234 /* FPU supports the floating point FP16 instructions for ARMv8.2-A
235    and later.  */
236 #define TARGET_VFP_FP16INST \
237   (TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP5 && arm_fp16_inst)
238 
239 /* Target supports the floating point FP16 instructions from ARMv8.2-A
240    and later.  */
241 #define TARGET_FP16FML (TARGET_NEON					\
242 			&& bitmap_bit_p (arm_active_target.isa,	\
243 					isa_bit_fp16fml)		\
244 			&& arm_arch8_2)
245 
246 /* FPU supports the AdvSIMD FP16 instructions for ARMv8.2 and later.  */
247 #define TARGET_NEON_FP16INST (TARGET_VFP_FP16INST && TARGET_NEON_RDMA)
248 
249 /* Q-bit is present.  */
250 #define TARGET_ARM_QBIT \
251   (TARGET_32BIT && arm_arch5te && (arm_arch_notm || arm_arch7))
252 /* Saturation operation, e.g. SSAT.  */
253 #define TARGET_ARM_SAT \
254   (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7))
255 /* "DSP" multiply instructions, eg. SMULxy.  */
256 #define TARGET_DSP_MULTIPLY \
257   (TARGET_32BIT && arm_arch5te && (arm_arch_notm || arm_arch7em))
258 /* Integer SIMD instructions, and extend-accumulate instructions.  */
259 #define TARGET_INT_SIMD \
260   (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
261 
262 /* Should MOVW/MOVT be used in preference to a constant pool.  */
263 #define TARGET_USE_MOVT \
264   (TARGET_HAVE_MOVT \
265    && (arm_disable_literal_pool \
266        || (!optimize_size && !current_tune->prefer_constant_pool)))
267 
268 /* Nonzero if this chip provides the DMB instruction.  */
269 #define TARGET_HAVE_DMB		(arm_arch6m || arm_arch7)
270 
271 /* Nonzero if this chip implements a memory barrier via CP15.  */
272 #define TARGET_HAVE_DMB_MCR	(arm_arch6 && ! TARGET_HAVE_DMB \
273 				 && ! TARGET_THUMB1)
274 
275 /* Nonzero if this chip implements a memory barrier instruction.  */
276 #define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR)
277 
278 /* Nonzero if this chip supports ldrex and strex */
279 #define TARGET_HAVE_LDREX        ((arm_arch6 && TARGET_ARM)	\
280 				  || arm_arch7			\
281 				  || (arm_arch8 && !arm_arch_notm))
282 
283 /* Nonzero if this chip supports LPAE.  */
284 #define TARGET_HAVE_LPAE (arm_arch_lpae)
285 
286 /* Nonzero if this chip supports ldrex{bh} and strex{bh}.  */
287 #define TARGET_HAVE_LDREXBH ((arm_arch6k && TARGET_ARM)		\
288 			     || arm_arch7			\
289 			     || (arm_arch8 && !arm_arch_notm))
290 
291 /* Nonzero if this chip supports ldrexd and strexd.  */
292 #define TARGET_HAVE_LDREXD (((arm_arch6k && TARGET_ARM) \
293 			     || arm_arch7) && arm_arch_notm)
294 
295 /* Nonzero if this chip supports load-acquire and store-release.  */
296 #define TARGET_HAVE_LDACQ	(TARGET_ARM_ARCH >= 8)
297 
298 /* Nonzero if this chip supports LDAEXD and STLEXD.  */
299 #define TARGET_HAVE_LDACQEXD	(TARGET_ARM_ARCH >= 8	\
300 				 && TARGET_32BIT	\
301 				 && arm_arch_notm)
302 
303 /* Nonzero if this chip provides the MOVW and MOVT instructions.  */
304 #define TARGET_HAVE_MOVT	(arm_arch_thumb2 || arm_arch8)
305 
306 /* Nonzero if this chip provides the CBZ and CBNZ instructions.  */
307 #define TARGET_HAVE_CBZ		(arm_arch_thumb2 || arm_arch8)
308 
309 /* Nonzero if integer division instructions supported.  */
310 #define TARGET_IDIV	((TARGET_ARM && arm_arch_arm_hwdiv)	\
311 			 || (TARGET_THUMB && arm_arch_thumb_hwdiv))
312 
313 /* Nonzero if disallow volatile memory access in IT block.  */
314 #define TARGET_NO_VOLATILE_CE		(arm_arch_no_volatile_ce)
315 
316 /* Should NEON be used for 64-bits bitops.  */
317 #define TARGET_PREFER_NEON_64BITS (prefer_neon_for_64bits)
318 
319 /* Should constant I be slplit for OP.  */
320 #define DONT_EARLY_SPLIT_CONSTANT(i, op) \
321 				((optimize >= 2) \
322 				 && can_create_pseudo_p () \
323 				 && !const_ok_for_op (i, op))
324 
325 /* True iff the full BPABI is being used.  If TARGET_BPABI is true,
326    then TARGET_AAPCS_BASED must be true -- but the converse does not
327    hold.  TARGET_BPABI implies the use of the BPABI runtime library,
328    etc., in addition to just the AAPCS calling conventions.  */
329 #ifndef TARGET_BPABI
330 #define TARGET_BPABI false
331 #endif
332 
333 /* Transform lane numbers on big endian targets. This is used to allow for the
334    endianness difference between NEON architectural lane numbers and those
335    used in RTL */
336 #define NEON_ENDIAN_LANE_N(mode, n)  \
337   (BYTES_BIG_ENDIAN ? GET_MODE_NUNITS (mode) - 1 - n : n)
338 
339 /* Support for a compile-time default CPU, et cetera.  The rules are:
340    --with-arch is ignored if -march or -mcpu are specified.
341    --with-cpu is ignored if -march or -mcpu are specified, and is overridden
342     by --with-arch.
343    --with-tune is ignored if -mtune or -mcpu are specified (but not affected
344      by -march).
345    --with-float is ignored if -mfloat-abi is specified.
346    --with-fpu is ignored if -mfpu is specified.
347    --with-abi is ignored if -mabi is specified.
348    --with-tls is ignored if -mtls-dialect is specified. */
349 #define OPTION_DEFAULT_SPECS \
350   {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
351   {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
352   {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
353   {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \
354   {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
355   {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
356   {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"}, \
357   {"tls", "%{!mtls-dialect=*:-mtls-dialect=%(VALUE)}"},
358 
359 extern const struct arm_fpu_desc
360 {
361   const char *name;
362   enum isa_feature isa_bits[isa_num_bits];
363 } all_fpus[];
364 
365 /* Which floating point hardware to schedule for.  */
366 extern int arm_fpu_attr;
367 
368 #ifndef TARGET_DEFAULT_FLOAT_ABI
369 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
370 #endif
371 
372 #ifndef ARM_DEFAULT_ABI
373 #define ARM_DEFAULT_ABI ARM_ABI_APCS
374 #endif
375 
376 /* AAPCS based ABIs use short enums by default.  */
377 #ifndef ARM_DEFAULT_SHORT_ENUMS
378 #define ARM_DEFAULT_SHORT_ENUMS \
379   (TARGET_AAPCS_BASED && arm_abi != ARM_ABI_AAPCS_LINUX)
380 #endif
381 
382 /* Map each of the micro-architecture variants to their corresponding
383    major architecture revision.  */
384 
385 enum base_architecture
386 {
387   BASE_ARCH_0 = 0,
388   BASE_ARCH_2 = 2,
389   BASE_ARCH_3 = 3,
390   BASE_ARCH_3M = 3,
391   BASE_ARCH_4 = 4,
392   BASE_ARCH_4T = 4,
393   BASE_ARCH_5T = 5,
394   BASE_ARCH_5TE = 5,
395   BASE_ARCH_5TEJ = 5,
396   BASE_ARCH_6 = 6,
397   BASE_ARCH_6J = 6,
398   BASE_ARCH_6KZ = 6,
399   BASE_ARCH_6K = 6,
400   BASE_ARCH_6T2 = 6,
401   BASE_ARCH_6M = 6,
402   BASE_ARCH_6Z = 6,
403   BASE_ARCH_7 = 7,
404   BASE_ARCH_7A = 7,
405   BASE_ARCH_7R = 7,
406   BASE_ARCH_7M = 7,
407   BASE_ARCH_7EM = 7,
408   BASE_ARCH_8A = 8,
409   BASE_ARCH_8M_BASE = 8,
410   BASE_ARCH_8M_MAIN = 8,
411   BASE_ARCH_8R = 8
412 };
413 
414 /* The major revision number of the ARM Architecture implemented by the target.  */
415 extern enum base_architecture arm_base_arch;
416 
417 /* Nonzero if this chip supports the ARM Architecture 4 extensions.  */
418 extern int arm_arch4;
419 
420 /* Nonzero if this chip supports the ARM Architecture 4T extensions.  */
421 extern int arm_arch4t;
422 
423 /* Nonzero if this chip supports the ARM Architecture 5T extensions.  */
424 extern int arm_arch5t;
425 
426 /* Nonzero if this chip supports the ARM Architecture 5TE extensions.  */
427 extern int arm_arch5te;
428 
429 /* Nonzero if this chip supports the ARM Architecture 6 extensions.  */
430 extern int arm_arch6;
431 
432 /* Nonzero if this chip supports the ARM Architecture 6k extensions.  */
433 extern int arm_arch6k;
434 
435 /* Nonzero if instructions present in ARMv6-M can be used.  */
436 extern int arm_arch6m;
437 
438 /* Nonzero if this chip supports the ARM Architecture 7 extensions.  */
439 extern int arm_arch7;
440 
441 /* Nonzero if instructions not present in the 'M' profile can be used.  */
442 extern int arm_arch_notm;
443 
444 /* Nonzero if instructions present in ARMv7E-M can be used.  */
445 extern int arm_arch7em;
446 
447 /* Nonzero if this chip supports the ARM Architecture 8 extensions.  */
448 extern int arm_arch8;
449 
450 /* Nonzero if this chip supports the ARM Architecture 8.1 extensions.  */
451 extern int arm_arch8_1;
452 
453 /* Nonzero if this chip supports the ARM Architecture 8.2 extensions.  */
454 extern int arm_arch8_2;
455 
456 /* Nonzero if this chip supports the ARM Architecture 8.3 extensions.  */
457 extern int arm_arch8_3;
458 
459 /* Nonzero if this chip supports the ARM Architecture 8.4 extensions.  */
460 extern int arm_arch8_4;
461 
462 /* Nonzero if this chip supports the FP16 instructions extension of ARM
463    Architecture 8.2.  */
464 extern int arm_fp16_inst;
465 
466 /* Nonzero if this chip can benefit from load scheduling.  */
467 extern int arm_ld_sched;
468 
469 /* Nonzero if this chip is a StrongARM.  */
470 extern int arm_tune_strongarm;
471 
472 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology.  */
473 extern int arm_arch_iwmmxt;
474 
475 /* Nonzero if this chip supports Intel Wireless MMX2 technology.  */
476 extern int arm_arch_iwmmxt2;
477 
478 /* Nonzero if this chip is an XScale.  */
479 extern int arm_arch_xscale;
480 
481 /* Nonzero if tuning for XScale.  */
482 extern int arm_tune_xscale;
483 
484 /* Nonzero if tuning for stores via the write buffer.  */
485 extern int arm_tune_wbuf;
486 
487 /* Nonzero if tuning for Cortex-A9.  */
488 extern int arm_tune_cortex_a9;
489 
490 /* Nonzero if we should define __THUMB_INTERWORK__ in the
491    preprocessor.
492    XXX This is a bit of a hack, it's intended to help work around
493    problems in GLD which doesn't understand that armv5t code is
494    interworking clean.  */
495 extern int arm_cpp_interwork;
496 
497 /* Nonzero if chip supports Thumb 1.  */
498 extern int arm_arch_thumb1;
499 
500 /* Nonzero if chip supports Thumb 2.  */
501 extern int arm_arch_thumb2;
502 
503 /* Nonzero if chip supports integer division instruction in ARM mode.  */
504 extern int arm_arch_arm_hwdiv;
505 
506 /* Nonzero if chip supports integer division instruction in Thumb mode.  */
507 extern int arm_arch_thumb_hwdiv;
508 
509 /* Nonzero if chip disallows volatile memory access in IT block.  */
510 extern int arm_arch_no_volatile_ce;
511 
512 /* Nonzero if we should use Neon to handle 64-bits operations rather
513    than core registers.  */
514 extern int prefer_neon_for_64bits;
515 
516 /* Nonzero if we shouldn't use literal pools.  */
517 #ifndef USED_FOR_TARGET
518 extern bool arm_disable_literal_pool;
519 #endif
520 
521 /* Nonzero if chip supports the ARMv8 CRC instructions.  */
522 extern int arm_arch_crc;
523 
524 /* Nonzero if chip supports the ARMv8-M Security Extensions.  */
525 extern int arm_arch_cmse;
526 
527 #ifndef TARGET_DEFAULT
528 #define TARGET_DEFAULT  (MASK_APCS_FRAME)
529 #endif
530 
531 /* Nonzero if PIC code requires explicit qualifiers to generate
532    PLT and GOT relocs rather than the assembler doing so implicitly.
533    Subtargets can override these if required.  */
534 #ifndef NEED_GOT_RELOC
535 #define NEED_GOT_RELOC	0
536 #endif
537 #ifndef NEED_PLT_RELOC
538 #define NEED_PLT_RELOC	0
539 #endif
540 
541 #ifndef TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE
542 #define TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE 1
543 #endif
544 
545 /* Nonzero if we need to refer to the GOT with a PC-relative
546    offset.  In other words, generate
547 
548    .word	_GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
549 
550    rather than
551 
552    .word	_GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
553 
554    The default is true, which matches NetBSD.  Subtargets can
555    override this if required.  */
556 #ifndef GOT_PCREL
557 #define GOT_PCREL   1
558 #endif
559 
560 /* Target machine storage Layout.  */
561 
562 
563 /* Define this macro if it is advisable to hold scalars in registers
564    in a wider mode than that declared by the program.  In such cases,
565    the value is constrained to be within the bounds of the declared
566    type, but kept valid in the wider mode.  The signedness of the
567    extension may differ from that of the type.  */
568 
569 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
570   if (GET_MODE_CLASS (MODE) == MODE_INT		\
571       && GET_MODE_SIZE (MODE) < 4)      	\
572     {						\
573       (MODE) = SImode;				\
574     }
575 
576 /* Define this if most significant bit is lowest numbered
577    in instructions that operate on numbered bit-fields.  */
578 #define BITS_BIG_ENDIAN  0
579 
580 /* Define this if most significant byte of a word is the lowest numbered.
581    Most ARM processors are run in little endian mode, so that is the default.
582    If you want to have it run-time selectable, change the definition in a
583    cover file to be TARGET_BIG_ENDIAN.  */
584 #define BYTES_BIG_ENDIAN  (TARGET_BIG_END != 0)
585 
586 /* Define this if most significant word of a multiword number is the lowest
587    numbered.  */
588 #define WORDS_BIG_ENDIAN  (BYTES_BIG_ENDIAN)
589 
590 #define UNITS_PER_WORD	4
591 
592 /* True if natural alignment is used for doubleword types.  */
593 #define ARM_DOUBLEWORD_ALIGN	TARGET_AAPCS_BASED
594 
595 #define DOUBLEWORD_ALIGNMENT 64
596 
597 #define PARM_BOUNDARY  	32
598 
599 #define STACK_BOUNDARY  (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
600 
601 #define PREFERRED_STACK_BOUNDARY \
602     (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
603 
604 #define FUNCTION_BOUNDARY_P(flags)  (TARGET_THUMB_P (flags) ? 16 : 32)
605 #define FUNCTION_BOUNDARY           (FUNCTION_BOUNDARY_P (target_flags))
606 
607 /* The lowest bit is used to indicate Thumb-mode functions, so the
608    vbit must go into the delta field of pointers to member
609    functions.  */
610 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
611 
612 #define EMPTY_FIELD_BOUNDARY  32
613 
614 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
615 
616 #define MALLOC_ABI_ALIGNMENT  BIGGEST_ALIGNMENT
617 
618 /* XXX Blah -- this macro is used directly by libobjc.  Since it
619    supports no vector modes, cut out the complexity and fall back
620    on BIGGEST_FIELD_ALIGNMENT.  */
621 #ifdef IN_TARGET_LIBS
622 #define BIGGEST_FIELD_ALIGNMENT 64
623 #endif
624 
625 /* Align definitions of arrays, unions and structures so that
626    initializations and copies can be made more efficient.  This is not
627    ABI-changing, so it only affects places where we can see the
628    definition. Increasing the alignment tends to introduce padding,
629    so don't do this when optimizing for size/conserving stack space. */
630 #define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN)				\
631   (((COND) && ((ALIGN) < BITS_PER_WORD)					\
632     && (TREE_CODE (EXP) == ARRAY_TYPE					\
633 	|| TREE_CODE (EXP) == UNION_TYPE				\
634 	|| TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
635 
636 /* Align global data. */
637 #define DATA_ALIGNMENT(EXP, ALIGN)			\
638   ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN)
639 
640 /* Similarly, make sure that objects on the stack are sensibly aligned.  */
641 #define LOCAL_ALIGNMENT(EXP, ALIGN)				\
642   ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN)
643 
644 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
645    value set in previous versions of this toolchain was 8, which produces more
646    compact structures.  The command line option -mstructure_size_boundary=<n>
647    can be used to change this value.  For compatibility with the ARM SDK
648    however the value should be left at 32.  ARM SDT Reference Manual (ARM DUI
649    0020D) page 2-20 says "Structures are aligned on word boundaries".
650    The AAPCS specifies a value of 8.  */
651 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
652 
653 /* This is the value used to initialize arm_structure_size_boundary.  If a
654    particular arm target wants to change the default value it should change
655    the definition of this macro, not STRUCTURE_SIZE_BOUNDARY.  See netbsd.h
656    for an example of this.  */
657 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
658 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
659 #endif
660 
661 /* Nonzero if move instructions will actually fail to work
662    when given unaligned data.  */
663 #define STRICT_ALIGNMENT 1
664 
665 /* wchar_t is unsigned under the AAPCS.  */
666 #ifndef WCHAR_TYPE
667 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
668 
669 #define WCHAR_TYPE_SIZE BITS_PER_WORD
670 #endif
671 
672 /* Sized for fixed-point types.  */
673 
674 #define SHORT_FRACT_TYPE_SIZE 8
675 #define FRACT_TYPE_SIZE 16
676 #define LONG_FRACT_TYPE_SIZE 32
677 #define LONG_LONG_FRACT_TYPE_SIZE 64
678 
679 #define SHORT_ACCUM_TYPE_SIZE 16
680 #define ACCUM_TYPE_SIZE 32
681 #define LONG_ACCUM_TYPE_SIZE 64
682 #define LONG_LONG_ACCUM_TYPE_SIZE 64
683 
684 #define MAX_FIXED_MODE_SIZE 64
685 
686 #ifndef SIZE_TYPE
687 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
688 #endif
689 
690 #ifndef PTRDIFF_TYPE
691 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
692 #endif
693 
694 /* AAPCS requires that structure alignment is affected by bitfields.  */
695 #ifndef PCC_BITFIELD_TYPE_MATTERS
696 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
697 #endif
698 
699 /* The maximum size of the sync library functions supported.  */
700 #ifndef MAX_SYNC_LIBFUNC_SIZE
701 #define MAX_SYNC_LIBFUNC_SIZE (2 * UNITS_PER_WORD)
702 #endif
703 
704 
705 /* Standard register usage.  */
706 
707 /* Register allocation in ARM Procedure Call Standard
708    (S - saved over call, F - Frame-related).
709 
710 	r0	   *	argument word/integer result
711 	r1-r3		argument word
712 
713 	r4-r8	     S	register variable
714 	r9	     S	(rfp) register variable (real frame pointer)
715 
716 	r10  	   F S	(sl) stack limit (used by -mapcs-stack-check)
717 	r11 	   F S	(fp) argument pointer
718 	r12		(ip) temp workspace
719 	r13  	   F S	(sp) lower end of current stack frame
720 	r14		(lr) link address/workspace
721 	r15	   F	(pc) program counter
722 
723 	cc		This is NOT a real register, but is used internally
724 	                to represent things that use or set the condition
725 			codes.
726 	sfp             This isn't either.  It is used during rtl generation
727 	                since the offset between the frame pointer and the
728 			auto's isn't known until after register allocation.
729 	afp		Nor this, we only need this because of non-local
730 	                goto.  Without it fp appears to be used and the
731 			elimination code won't get rid of sfp.  It tracks
732 			fp exactly at all times.
733 
734    *: See TARGET_CONDITIONAL_REGISTER_USAGE  */
735 
736 /*	s0-s15		VFP scratch (aka d0-d7).
737 	s16-s31	      S	VFP variable (aka d8-d15).
738 	vfpcc		Not a real register.  Represents the VFP condition
739 			code flags.  */
740 
741 /* The stack backtrace structure is as follows:
742   fp points to here:  |  save code pointer  |      [fp]
743                       |  return link value  |      [fp, #-4]
744                       |  return sp value    |      [fp, #-8]
745                       |  return fp value    |      [fp, #-12]
746                      [|  saved r10 value    |]
747                      [|  saved r9 value     |]
748                      [|  saved r8 value     |]
749                      [|  saved r7 value     |]
750                      [|  saved r6 value     |]
751                      [|  saved r5 value     |]
752                      [|  saved r4 value     |]
753                      [|  saved r3 value     |]
754                      [|  saved r2 value     |]
755                      [|  saved r1 value     |]
756                      [|  saved r0 value     |]
757   r0-r3 are not normally saved in a C function.  */
758 
759 /* 1 for registers that have pervasive standard uses
760    and are not available for the register allocator.  */
761 #define FIXED_REGISTERS 	\
762 {				\
763   /* Core regs.  */		\
764   0,0,0,0,0,0,0,0,		\
765   0,0,0,0,0,1,0,1,		\
766   /* VFP regs.  */		\
767   1,1,1,1,1,1,1,1,		\
768   1,1,1,1,1,1,1,1,		\
769   1,1,1,1,1,1,1,1,		\
770   1,1,1,1,1,1,1,1,		\
771   1,1,1,1,1,1,1,1,		\
772   1,1,1,1,1,1,1,1,		\
773   1,1,1,1,1,1,1,1,		\
774   1,1,1,1,1,1,1,1,		\
775   /* IWMMXT regs.  */		\
776   1,1,1,1,1,1,1,1,		\
777   1,1,1,1,1,1,1,1,		\
778   1,1,1,1,			\
779   /* Specials.  */		\
780   1,1,1,1			\
781 }
782 
783 /* 1 for registers not available across function calls.
784    These must include the FIXED_REGISTERS and also any
785    registers that can be used without being saved.
786    The latter must include the registers where values are returned
787    and the register where structure-value addresses are passed.
788    Aside from that, you can include as many other registers as you like.
789    The CC is not preserved over function calls on the ARM 6, so it is
790    easier to assume this for all.  SFP is preserved, since FP is.  */
791 #define CALL_USED_REGISTERS	\
792 {				\
793   /* Core regs.  */		\
794   1,1,1,1,0,0,0,0,		\
795   0,0,0,0,1,1,1,1,		\
796   /* VFP Regs.  */		\
797   1,1,1,1,1,1,1,1,		\
798   1,1,1,1,1,1,1,1,		\
799   1,1,1,1,1,1,1,1,		\
800   1,1,1,1,1,1,1,1,		\
801   1,1,1,1,1,1,1,1,		\
802   1,1,1,1,1,1,1,1,		\
803   1,1,1,1,1,1,1,1,		\
804   1,1,1,1,1,1,1,1,		\
805   /* IWMMXT regs.  */		\
806   1,1,1,1,1,1,1,1,		\
807   1,1,1,1,1,1,1,1,		\
808   1,1,1,1,			\
809   /* Specials.  */		\
810   1,1,1,1			\
811 }
812 
813 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
814 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
815 #endif
816 
817 /* These are a couple of extensions to the formats accepted
818    by asm_fprintf:
819      %@ prints out ASM_COMMENT_START
820      %r prints out REGISTER_PREFIX reg_names[arg]  */
821 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P)		\
822   case '@':						\
823     fputs (ASM_COMMENT_START, FILE);			\
824     break;						\
825 							\
826   case 'r':						\
827     fputs (REGISTER_PREFIX, FILE);			\
828     fputs (reg_names [va_arg (ARGS, int)], FILE);	\
829     break;
830 
831 /* Round X up to the nearest word.  */
832 #define ROUND_UP_WORD(X) (((X) + 3) & ~3)
833 
834 /* Convert fron bytes to ints.  */
835 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
836 
837 /* The number of (integer) registers required to hold a quantity of type MODE.
838    Also used for VFP registers.  */
839 #define ARM_NUM_REGS(MODE)				\
840   ARM_NUM_INTS (GET_MODE_SIZE (MODE))
841 
842 /* The number of (integer) registers required to hold a quantity of TYPE MODE.  */
843 #define ARM_NUM_REGS2(MODE, TYPE)                   \
844   ARM_NUM_INTS ((MODE) == BLKmode ? 		\
845   int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
846 
847 /* The number of (integer) argument register available.  */
848 #define NUM_ARG_REGS		4
849 
850 /* And similarly for the VFP.  */
851 #define NUM_VFP_ARG_REGS	16
852 
853 /* Return the register number of the N'th (integer) argument.  */
854 #define ARG_REGISTER(N) 	(N - 1)
855 
856 /* Specify the registers used for certain standard purposes.
857    The values of these macros are register numbers.  */
858 
859 /* The number of the last argument register.  */
860 #define LAST_ARG_REGNUM 	ARG_REGISTER (NUM_ARG_REGS)
861 
862 /* The numbers of the Thumb register ranges.  */
863 #define FIRST_LO_REGNUM  	0
864 #define LAST_LO_REGNUM  	7
865 #define FIRST_HI_REGNUM		8
866 #define LAST_HI_REGNUM		11
867 
868 /* Overridden by config/arm/bpabi.h.  */
869 #ifndef ARM_UNWIND_INFO
870 #define ARM_UNWIND_INFO  0
871 #endif
872 
873 /* Overriden by config/arm/netbsd-eabi.h.  */
874 #ifndef ARM_DWARF_UNWIND_TABLES
875 #define ARM_DWARF_UNWIND_TABLES 0
876 #endif
877 
878 /* Use r0 and r1 to pass exception handling information.  */
879 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
880 
881 /* The register that holds the return address in exception handlers.  */
882 #define ARM_EH_STACKADJ_REGNUM	2
883 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
884 
885 #ifndef ARM_TARGET2_DWARF_FORMAT
886 #define ARM_TARGET2_DWARF_FORMAT DW_EH_PE_pcrel
887 #endif
888 
889 #if ARM_DWARF_UNWIND_TABLES
890 /* DWARF unwinding uses the normal indirect/pcrel vs absptr format
891    for 32bit platforms. */
892 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
893   (flag_pic ? (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
894             : DW_EH_PE_absptr)
895 #else
896 /* ttype entries (the only interesting data references used)
897    use TARGET2 relocations.  */
898 #define ASM_PREFERRED_EH_DATA_FORMAT(code, data) \
899     (((code) == 0 && (data) == 1 && ARM_UNWIND_INFO) ? ARM_TARGET2_DWARF_FORMAT \
900      : DW_EH_PE_absptr)
901 #endif
902 
903 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
904    as an invisible last argument (possible since varargs don't exist in
905    Pascal), so the following is not true.  */
906 #define STATIC_CHAIN_REGNUM	12
907 
908 /* Define this to be where the real frame pointer is if it is not possible to
909    work out the offset between the frame pointer and the automatic variables
910    until after register allocation has taken place.  FRAME_POINTER_REGNUM
911    should point to a special register that we will make sure is eliminated.
912 
913    For the Thumb we have another problem.  The TPCS defines the frame pointer
914    as r11, and GCC believes that it is always possible to use the frame pointer
915    as base register for addressing purposes.  (See comments in
916    find_reloads_address()).  But - the Thumb does not allow high registers,
917    including r11, to be used as base address registers.  Hence our problem.
918 
919    The solution used here, and in the old thumb port is to use r7 instead of
920    r11 as the hard frame pointer and to have special code to generate
921    backtrace structures on the stack (if required to do so via a command line
922    option) using r11.  This is the only 'user visible' use of r11 as a frame
923    pointer.  */
924 #define ARM_HARD_FRAME_POINTER_REGNUM	11
925 #define THUMB_HARD_FRAME_POINTER_REGNUM	 7
926 
927 #define HARD_FRAME_POINTER_REGNUM		\
928   (TARGET_ARM					\
929    ? ARM_HARD_FRAME_POINTER_REGNUM		\
930    : THUMB_HARD_FRAME_POINTER_REGNUM)
931 
932 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
933 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
934 
935 #define FP_REGNUM	                HARD_FRAME_POINTER_REGNUM
936 
937 /* Register to use for pushing function arguments.  */
938 #define STACK_POINTER_REGNUM	SP_REGNUM
939 
940 #define FIRST_IWMMXT_REGNUM	(LAST_HI_VFP_REGNUM + 1)
941 #define LAST_IWMMXT_REGNUM	(FIRST_IWMMXT_REGNUM + 15)
942 
943 /* Need to sync with WCGR in iwmmxt.md.  */
944 #define FIRST_IWMMXT_GR_REGNUM	(LAST_IWMMXT_REGNUM + 1)
945 #define LAST_IWMMXT_GR_REGNUM	(FIRST_IWMMXT_GR_REGNUM + 3)
946 
947 #define IS_IWMMXT_REGNUM(REGNUM) \
948   (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
949 #define IS_IWMMXT_GR_REGNUM(REGNUM) \
950   (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
951 
952 /* Base register for access to local variables of the function.  */
953 #define FRAME_POINTER_REGNUM	102
954 
955 /* Base register for access to arguments of the function.  */
956 #define ARG_POINTER_REGNUM	103
957 
958 #define FIRST_VFP_REGNUM	16
959 #define D7_VFP_REGNUM		(FIRST_VFP_REGNUM + 15)
960 #define LAST_VFP_REGNUM	\
961   (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
962 
963 #define IS_VFP_REGNUM(REGNUM) \
964   (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
965 
966 /* VFP registers are split into two types: those defined by VFP versions < 3
967    have D registers overlaid on consecutive pairs of S registers. VFP version 3
968    defines 16 new D registers (d16-d31) which, for simplicity and correctness
969    in various parts of the backend, we implement as "fake" single-precision
970    registers (which would be S32-S63, but cannot be used in that way).  The
971    following macros define these ranges of registers.  */
972 #define LAST_LO_VFP_REGNUM	(FIRST_VFP_REGNUM + 31)
973 #define FIRST_HI_VFP_REGNUM	(LAST_LO_VFP_REGNUM + 1)
974 #define LAST_HI_VFP_REGNUM	(FIRST_HI_VFP_REGNUM + 31)
975 
976 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
977   ((REGNUM) <= LAST_LO_VFP_REGNUM)
978 
979 /* DFmode values are only valid in even register pairs.  */
980 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
981   ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
982 
983 /* Neon Quad values must start at a multiple of four registers.  */
984 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
985   ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
986 
987 /* Neon structures of vectors must be in even register pairs and there
988    must be enough registers available.  Because of various patterns
989    requiring quad registers, we require them to start at a multiple of
990    four.  */
991 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
992   ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
993    && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
994 
995 /* The number of hard registers is 16 ARM + 1 CC + 1 SFP + 1 AFP.  */
996 /* Intel Wireless MMX Technology registers add 16 + 4 more.  */
997 /* VFP (VFP3) adds 32 (64) + 1 VFPCC.  */
998 #define FIRST_PSEUDO_REGISTER   104
999 
1000 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
1001 
1002 /* Value should be nonzero if functions must have frame pointers.
1003    Zero means the frame pointer need not be set up (and parms may be accessed
1004    via the stack pointer) in functions that seem suitable.
1005    If we have to have a frame pointer we might as well make use of it.
1006    APCS says that the frame pointer does not need to be pushed in leaf
1007    functions, or simple tail call functions.  */
1008 
1009 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1010 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1011 #endif
1012 
1013 #define VALID_IWMMXT_REG_MODE(MODE) \
1014  (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
1015 
1016 /* Modes valid for Neon D registers.  */
1017 #define VALID_NEON_DREG_MODE(MODE) \
1018   ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
1019    || (MODE) == V4HFmode || (MODE) == V2SFmode || (MODE) == DImode)
1020 
1021 /* Modes valid for Neon Q registers.  */
1022 #define VALID_NEON_QREG_MODE(MODE) \
1023   ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
1024    || (MODE) == V8HFmode || (MODE) == V4SFmode || (MODE) == V2DImode)
1025 
1026 /* Structure modes valid for Neon registers.  */
1027 #define VALID_NEON_STRUCT_MODE(MODE) \
1028   ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
1029    || (MODE) == CImode || (MODE) == XImode)
1030 
1031 /* The register numbers in sequence, for passing to arm_gen_load_multiple.  */
1032 extern int arm_regs_in_sequence[];
1033 
1034 /* The order in which register should be allocated.  It is good to use ip
1035    since no saving is required (though calls clobber it) and it never contains
1036    function parameters.  It is quite good to use lr since other calls may
1037    clobber it anyway.  Allocate r0 through r3 in reverse order since r3 is
1038    least likely to contain a function parameter; in addition results are
1039    returned in r0.
1040    For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
1041    then D8-D15.  The reason for doing this is to attempt to reduce register
1042    pressure when both single- and double-precision registers are used in a
1043    function.  */
1044 
1045 #define VREG(X)  (FIRST_VFP_REGNUM + (X))
1046 #define WREG(X)  (FIRST_IWMMXT_REGNUM + (X))
1047 #define WGREG(X) (FIRST_IWMMXT_GR_REGNUM + (X))
1048 
1049 #define REG_ALLOC_ORDER				\
1050 {						\
1051   /* General registers.  */			\
1052   3,  2,  1,  0,  12, 14,  4,  5,		\
1053   6,  7,  8,  9,  10, 11,			\
1054   /* High VFP registers.  */			\
1055   VREG(32), VREG(33), VREG(34), VREG(35),	\
1056   VREG(36), VREG(37), VREG(38), VREG(39),	\
1057   VREG(40), VREG(41), VREG(42), VREG(43),	\
1058   VREG(44), VREG(45), VREG(46), VREG(47),	\
1059   VREG(48), VREG(49), VREG(50), VREG(51),	\
1060   VREG(52), VREG(53), VREG(54), VREG(55),	\
1061   VREG(56), VREG(57), VREG(58), VREG(59),	\
1062   VREG(60), VREG(61), VREG(62), VREG(63),	\
1063   /* VFP argument registers.  */		\
1064   VREG(15), VREG(14), VREG(13), VREG(12),	\
1065   VREG(11), VREG(10), VREG(9),  VREG(8),	\
1066   VREG(7),  VREG(6),  VREG(5),  VREG(4),	\
1067   VREG(3),  VREG(2),  VREG(1),  VREG(0),	\
1068   /* VFP call-saved registers.  */		\
1069   VREG(16), VREG(17), VREG(18), VREG(19),	\
1070   VREG(20), VREG(21), VREG(22), VREG(23),	\
1071   VREG(24), VREG(25), VREG(26), VREG(27),	\
1072   VREG(28), VREG(29), VREG(30), VREG(31),	\
1073   /* IWMMX registers.  */			\
1074   WREG(0),  WREG(1),  WREG(2),  WREG(3),	\
1075   WREG(4),  WREG(5),  WREG(6),  WREG(7),	\
1076   WREG(8),  WREG(9),  WREG(10), WREG(11),	\
1077   WREG(12), WREG(13), WREG(14), WREG(15),	\
1078   WGREG(0), WGREG(1), WGREG(2), WGREG(3),	\
1079   /* Registers not for general use.  */		\
1080   CC_REGNUM, VFPCC_REGNUM,			\
1081   FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM,	\
1082   SP_REGNUM, PC_REGNUM 				\
1083 }
1084 
1085 /* Use different register alloc ordering for Thumb.  */
1086 #define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc ()
1087 
1088 /* Tell IRA to use the order we define rather than messing it up with its
1089    own cost calculations.  */
1090 #define HONOR_REG_ALLOC_ORDER 1
1091 
1092 /* Interrupt functions can only use registers that have already been
1093    saved by the prologue, even if they would normally be
1094    call-clobbered.  */
1095 #define HARD_REGNO_RENAME_OK(SRC, DST)					\
1096 	(! IS_INTERRUPT (cfun->machine->func_type) ||			\
1097 	 df_regs_ever_live_p (DST))
1098 
1099 /* Register and constant classes.  */
1100 
1101 /* Register classes.  */
1102 enum reg_class
1103 {
1104   NO_REGS,
1105   LO_REGS,
1106   STACK_REG,
1107   BASE_REGS,
1108   HI_REGS,
1109   CALLER_SAVE_REGS,
1110   GENERAL_REGS,
1111   CORE_REGS,
1112   VFP_D0_D7_REGS,
1113   VFP_LO_REGS,
1114   VFP_HI_REGS,
1115   VFP_REGS,
1116   IWMMXT_REGS,
1117   IWMMXT_GR_REGS,
1118   CC_REG,
1119   VFPCC_REG,
1120   SFP_REG,
1121   AFP_REG,
1122   ALL_REGS,
1123   LIM_REG_CLASSES
1124 };
1125 
1126 #define N_REG_CLASSES  (int) LIM_REG_CLASSES
1127 
1128 /* Give names of register classes as strings for dump file.  */
1129 #define REG_CLASS_NAMES  \
1130 {			\
1131   "NO_REGS",		\
1132   "LO_REGS",		\
1133   "STACK_REG",		\
1134   "BASE_REGS",		\
1135   "HI_REGS",		\
1136   "CALLER_SAVE_REGS",	\
1137   "GENERAL_REGS",	\
1138   "CORE_REGS",		\
1139   "VFP_D0_D7_REGS",	\
1140   "VFP_LO_REGS",	\
1141   "VFP_HI_REGS",	\
1142   "VFP_REGS",		\
1143   "IWMMXT_REGS",	\
1144   "IWMMXT_GR_REGS",	\
1145   "CC_REG",		\
1146   "VFPCC_REG",		\
1147   "SFP_REG",		\
1148   "AFP_REG",		\
1149   "ALL_REGS"		\
1150 }
1151 
1152 /* Define which registers fit in which classes.
1153    This is an initializer for a vector of HARD_REG_SET
1154    of length N_REG_CLASSES.  */
1155 #define REG_CLASS_CONTENTS						\
1156 {									\
1157   { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS  */	\
1158   { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */	\
1159   { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */	\
1160   { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */	\
1161   { 0x00005F00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */	\
1162   { 0x0000100F, 0x00000000, 0x00000000, 0x00000000 }, /* CALLER_SAVE_REGS */ \
1163   { 0x00005FFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1164   { 0x00007FFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */	\
1165   { 0xFFFF0000, 0x00000000, 0x00000000, 0x00000000 }, /* VFP_D0_D7_REGS  */ \
1166   { 0xFFFF0000, 0x0000FFFF, 0x00000000, 0x00000000 }, /* VFP_LO_REGS  */ \
1167   { 0x00000000, 0xFFFF0000, 0x0000FFFF, 0x00000000 }, /* VFP_HI_REGS  */ \
1168   { 0xFFFF0000, 0xFFFFFFFF, 0x0000FFFF, 0x00000000 }, /* VFP_REGS  */	\
1169   { 0x00000000, 0x00000000, 0xFFFF0000, 0x00000000 }, /* IWMMXT_REGS */	\
1170   { 0x00000000, 0x00000000, 0x00000000, 0x0000000F }, /* IWMMXT_GR_REGS */ \
1171   { 0x00000000, 0x00000000, 0x00000000, 0x00000010 }, /* CC_REG */	\
1172   { 0x00000000, 0x00000000, 0x00000000, 0x00000020 }, /* VFPCC_REG */	\
1173   { 0x00000000, 0x00000000, 0x00000000, 0x00000040 }, /* SFP_REG */	\
1174   { 0x00000000, 0x00000000, 0x00000000, 0x00000080 }, /* AFP_REG */	\
1175   { 0xFFFF7FFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0000000F }  /* ALL_REGS */	\
1176 }
1177 
1178 /* Any of the VFP register classes.  */
1179 #define IS_VFP_CLASS(X) \
1180   ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1181    || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1182 
1183 /* The same information, inverted:
1184    Return the class number of the smallest class containing
1185    reg number REGNO.  This could be a conditional expression
1186    or could index an array.  */
1187 #define REGNO_REG_CLASS(REGNO)  arm_regno_class (REGNO)
1188 
1189 /* The class value for index registers, and the one for base regs.  */
1190 #define INDEX_REG_CLASS  (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1191 #define BASE_REG_CLASS   (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1192 
1193 /* For the Thumb the high registers cannot be used as base registers
1194    when addressing quantities in QI or HI mode; if we don't know the
1195    mode, then we must be conservative.  */
1196 #define MODE_BASE_REG_CLASS(MODE)				\
1197   (TARGET_32BIT ? CORE_REGS					\
1198    : GET_MODE_SIZE (MODE) >= 4 ? BASE_REGS			\
1199    : LO_REGS)
1200 
1201 /* For Thumb we cannot support SP+reg addressing, so we return LO_REGS
1202    instead of BASE_REGS.  */
1203 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1204 
1205 /* When this hook returns true for MODE, the compiler allows
1206    registers explicitly used in the rtl to be used as spill registers
1207    but prevents the compiler from extending the lifetime of these
1208    registers.  */
1209 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1210   arm_small_register_classes_for_mode_p
1211 
1212 /* Must leave BASE_REGS reloads alone */
1213 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1214   (lra_in_progress ? NO_REGS						\
1215    : ((CLASS) != LO_REGS && (CLASS) != BASE_REGS			\
1216       ? ((true_regnum (X) == -1 ? LO_REGS				\
1217          : (true_regnum (X) + hard_regno_nregs (0, MODE) > 8) ? LO_REGS	\
1218          : NO_REGS)) 							\
1219       : NO_REGS))
1220 
1221 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1222   (lra_in_progress ? NO_REGS						\
1223    : (CLASS) != LO_REGS && (CLASS) != BASE_REGS				\
1224       ? ((true_regnum (X) == -1 ? LO_REGS				\
1225          : (true_regnum (X) + hard_regno_nregs (0, MODE) > 8) ? LO_REGS	\
1226          : NO_REGS)) 							\
1227       : NO_REGS)
1228 
1229 /* Return the register class of a scratch register needed to copy IN into
1230    or out of a register in CLASS in MODE.  If it can be done directly,
1231    NO_REGS is returned.  */
1232 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1233   /* Restrict which direct reloads are allowed for VFP/iWMMXt regs.  */ \
1234   ((TARGET_HARD_FLOAT && IS_VFP_CLASS (CLASS))			\
1235    ? coproc_secondary_reload_class (MODE, X, FALSE)		\
1236    : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS)			\
1237    ? coproc_secondary_reload_class (MODE, X, TRUE)		\
1238    : TARGET_32BIT						\
1239    ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1240     ? GENERAL_REGS : NO_REGS)					\
1241    : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1242 
1243 /* If we need to load shorts byte-at-a-time, then we need a scratch.  */
1244 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1245   /* Restrict which direct reloads are allowed for VFP/iWMMXt regs.  */ \
1246   ((TARGET_HARD_FLOAT && IS_VFP_CLASS (CLASS))			\
1247     ? coproc_secondary_reload_class (MODE, X, FALSE) :		\
1248     (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ?			\
1249     coproc_secondary_reload_class (MODE, X, TRUE) :		\
1250    (TARGET_32BIT ?						\
1251     (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS)	\
1252      && CONSTANT_P (X))						\
1253     ? GENERAL_REGS :						\
1254     (((MODE) == HImode && ! arm_arch4				\
1255       && (MEM_P (X)					\
1256 	  || ((REG_P (X) || GET_CODE (X) == SUBREG)	\
1257 	      && true_regnum (X) == -1)))			\
1258      ? GENERAL_REGS : NO_REGS)					\
1259     : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1260 
1261 /* Return the maximum number of consecutive registers
1262    needed to represent mode MODE in a register of class CLASS.
1263    ARM regs are UNITS_PER_WORD bits.
1264    FIXME: Is this true for iWMMX?  */
1265 #define CLASS_MAX_NREGS(CLASS, MODE)  \
1266   (ARM_NUM_REGS (MODE))
1267 
1268 /* If defined, gives a class of registers that cannot be used as the
1269    operand of a SUBREG that changes the mode of the object illegally.  */
1270 
1271 /* Stack layout; function entry, exit and calling.  */
1272 
1273 /* Define this if pushing a word on the stack
1274    makes the stack pointer a smaller address.  */
1275 #define STACK_GROWS_DOWNWARD  1
1276 
1277 /* Define this to nonzero if the nominal address of the stack frame
1278    is at the high-address end of the local variables;
1279    that is, each additional local variable allocated
1280    goes at a more negative offset in the frame.  */
1281 #define FRAME_GROWS_DOWNWARD 1
1282 
1283 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1284    When present, it is one word in size, and sits at the top of the frame,
1285    between the soft frame pointer and either r7 or r11.
1286 
1287    We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1288    and only then if some outgoing arguments are passed on the stack.  It would
1289    be tempting to also check whether the stack arguments are passed by indirect
1290    calls, but there seems to be no reason in principle why a post-reload pass
1291    couldn't convert a direct call into an indirect one.  */
1292 #define CALLER_INTERWORKING_SLOT_SIZE			\
1293   (TARGET_CALLER_INTERWORKING				\
1294    && maybe_ne (crtl->outgoing_args_size, 0)		\
1295    ? UNITS_PER_WORD : 0)
1296 
1297 /* If we generate an insn to push BYTES bytes,
1298    this says how many the stack pointer really advances by.  */
1299 /* The push insns do not do this rounding implicitly.
1300    So don't define this.  */
1301 /* #define PUSH_ROUNDING(NPUSHED)  ROUND_UP_WORD (NPUSHED) */
1302 
1303 /* Define this if the maximum size of all the outgoing args is to be
1304    accumulated and pushed during the prologue.  The amount can be
1305    found in the variable crtl->outgoing_args_size.  */
1306 #define ACCUMULATE_OUTGOING_ARGS 1
1307 
1308 /* Offset of first parameter from the argument pointer register value.  */
1309 #define FIRST_PARM_OFFSET(FNDECL)  (TARGET_ARM ? 4 : 0)
1310 
1311 /* Amount of memory needed for an untyped call to save all possible return
1312    registers.  */
1313 #define APPLY_RESULT_SIZE arm_apply_result_size()
1314 
1315 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1316    values must be in memory.  On the ARM, they need only do so if larger
1317    than a word, or if they contain elements offset from zero in the struct.  */
1318 #define DEFAULT_PCC_STRUCT_RETURN 0
1319 
1320 /* These bits describe the different types of function supported
1321    by the ARM backend.  They are exclusive.  i.e. a function cannot be both a
1322    normal function and an interworked function, for example.  Knowing the
1323    type of a function is important for determining its prologue and
1324    epilogue sequences.
1325    Note value 7 is currently unassigned.  Also note that the interrupt
1326    function types all have bit 2 set, so that they can be tested for easily.
1327    Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1328    machine_function structure is initialized (to zero) func_type will
1329    default to unknown.  This will force the first use of arm_current_func_type
1330    to call arm_compute_func_type.  */
1331 #define ARM_FT_UNKNOWN		 0 /* Type has not yet been determined.  */
1332 #define ARM_FT_NORMAL		 1 /* Your normal, straightforward function.  */
1333 #define ARM_FT_INTERWORKED	 2 /* A function that supports interworking.  */
1334 #define ARM_FT_ISR		 4 /* An interrupt service routine.  */
1335 #define ARM_FT_FIQ		 5 /* A fast interrupt service routine.  */
1336 #define ARM_FT_EXCEPTION	 6 /* An ARM exception handler (subcase of ISR).  */
1337 
1338 #define ARM_FT_TYPE_MASK	((1 << 3) - 1)
1339 
1340 /* In addition functions can have several type modifiers,
1341    outlined by these bit masks:  */
1342 #define ARM_FT_INTERRUPT	(1 << 2) /* Note overlap with FT_ISR and above.  */
1343 #define ARM_FT_NAKED		(1 << 3) /* No prologue or epilogue.  */
1344 #define ARM_FT_VOLATILE		(1 << 4) /* Does not return.  */
1345 #define ARM_FT_NESTED		(1 << 5) /* Embedded inside another func.  */
1346 #define ARM_FT_STACKALIGN	(1 << 6) /* Called with misaligned stack.  */
1347 #define ARM_FT_CMSE_ENTRY	(1 << 7) /* ARMv8-M non-secure entry function.  */
1348 
1349 /* Some macros to test these flags.  */
1350 #define ARM_FUNC_TYPE(t)	(t & ARM_FT_TYPE_MASK)
1351 #define IS_INTERRUPT(t)		(t & ARM_FT_INTERRUPT)
1352 #define IS_VOLATILE(t)     	(t & ARM_FT_VOLATILE)
1353 #define IS_NAKED(t)        	(t & ARM_FT_NAKED)
1354 #define IS_NESTED(t)       	(t & ARM_FT_NESTED)
1355 #define IS_STACKALIGN(t)       	(t & ARM_FT_STACKALIGN)
1356 #define IS_CMSE_ENTRY(t)	(t & ARM_FT_CMSE_ENTRY)
1357 
1358 
1359 /* Structure used to hold the function stack frame layout.  Offsets are
1360    relative to the stack pointer on function entry.  Positive offsets are
1361    in the direction of stack growth.
1362    Only soft_frame is used in thumb mode.  */
1363 
1364 typedef struct GTY(()) arm_stack_offsets
1365 {
1366   int saved_args;	/* ARG_POINTER_REGNUM.  */
1367   int frame;		/* ARM_HARD_FRAME_POINTER_REGNUM.  */
1368   int saved_regs;
1369   int soft_frame;	/* FRAME_POINTER_REGNUM.  */
1370   int locals_base;	/* THUMB_HARD_FRAME_POINTER_REGNUM.  */
1371   int outgoing_args;	/* STACK_POINTER_REGNUM.  */
1372   unsigned int saved_regs_mask;
1373 }
1374 arm_stack_offsets;
1375 
1376 #if !defined(GENERATOR_FILE) && !defined (USED_FOR_TARGET)
1377 /* A C structure for machine-specific, per-function data.
1378    This is added to the cfun structure.  */
1379 typedef struct GTY(()) machine_function
1380 {
1381   /* Additional stack adjustment in __builtin_eh_throw.  */
1382   rtx eh_epilogue_sp_ofs;
1383   /* Records if LR has to be saved for far jumps.  */
1384   int far_jump_used;
1385   /* Records if ARG_POINTER was ever live.  */
1386   int arg_pointer_live;
1387   /* Records if the save of LR has been eliminated.  */
1388   int lr_save_eliminated;
1389   /* The size of the stack frame.  Only valid after reload.  */
1390   arm_stack_offsets stack_offsets;
1391   /* Records the type of the current function.  */
1392   unsigned long func_type;
1393   /* Record if the function has a variable argument list.  */
1394   int uses_anonymous_args;
1395   /* Records if sibcalls are blocked because an argument
1396      register is needed to preserve stack alignment.  */
1397   int sibcall_blocked;
1398   /* The PIC register for this function.  This might be a pseudo.  */
1399   rtx pic_reg;
1400   /* Labels for per-function Thumb call-via stubs.  One per potential calling
1401      register.  We can never call via LR or PC.  We can call via SP if a
1402      trampoline happens to be on the top of the stack.  */
1403   rtx call_via[14];
1404   /* Set to 1 when a return insn is output, this means that the epilogue
1405      is not needed.  */
1406   int return_used_this_function;
1407   /* When outputting Thumb-1 code, record the last insn that provides
1408      information about condition codes, and the comparison operands.  */
1409   rtx thumb1_cc_insn;
1410   rtx thumb1_cc_op0;
1411   rtx thumb1_cc_op1;
1412   /* Also record the CC mode that is supported.  */
1413   machine_mode thumb1_cc_mode;
1414   /* Set to 1 after arm_reorg has started.  */
1415   int after_arm_reorg;
1416   /* The number of bytes used to store the static chain register on the
1417      stack, above the stack frame.  */
1418   int static_chain_stack_bytes;
1419 }
1420 machine_function;
1421 #endif
1422 
1423 /* As in the machine_function, a global set of call-via labels, for code
1424    that is in text_section.  */
1425 extern GTY(()) rtx thumb_call_via_label[14];
1426 
1427 /* The number of potential ways of assigning to a co-processor.  */
1428 #define ARM_NUM_COPROC_SLOTS 1
1429 
1430 /* Enumeration of procedure calling standard variants.  We don't really
1431    support all of these yet.  */
1432 enum arm_pcs
1433 {
1434   ARM_PCS_AAPCS,	/* Base standard AAPCS.  */
1435   ARM_PCS_AAPCS_VFP,	/* Use VFP registers for floating point values.  */
1436   ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors.  */
1437   /* This must be the last AAPCS variant.  */
1438   ARM_PCS_AAPCS_LOCAL,	/* Private call within this compilation unit.  */
1439   ARM_PCS_ATPCS,	/* ATPCS.  */
1440   ARM_PCS_APCS,		/* APCS (legacy Linux etc).  */
1441   ARM_PCS_UNKNOWN
1442 };
1443 
1444 /* Default procedure calling standard of current compilation unit. */
1445 extern enum arm_pcs arm_pcs_default;
1446 
1447 #if !defined (USED_FOR_TARGET)
1448 /* A C type for declaring a variable that is used as the first argument of
1449    `FUNCTION_ARG' and other related values.  */
1450 typedef struct
1451 {
1452   /* This is the number of registers of arguments scanned so far.  */
1453   int nregs;
1454   /* This is the number of iWMMXt register arguments scanned so far.  */
1455   int iwmmxt_nregs;
1456   int named_count;
1457   int nargs;
1458   /* Which procedure call variant to use for this call.  */
1459   enum arm_pcs pcs_variant;
1460 
1461   /* AAPCS related state tracking.  */
1462   int aapcs_arg_processed;  /* No need to lay out this argument again.  */
1463   int aapcs_cprc_slot;      /* Index of co-processor rules to handle
1464 			       this argument, or -1 if using core
1465 			       registers.  */
1466   int aapcs_ncrn;
1467   int aapcs_next_ncrn;
1468   rtx aapcs_reg;	    /* Register assigned to this argument.  */
1469   int aapcs_partial;	    /* How many bytes are passed in regs (if
1470 			       split between core regs and stack.
1471 			       Zero otherwise.  */
1472   int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1473   int can_split;	    /* Argument can be split between core regs
1474 			       and the stack.  */
1475   /* Private data for tracking VFP register allocation */
1476   unsigned aapcs_vfp_regs_free;
1477   unsigned aapcs_vfp_reg_alloc;
1478   int aapcs_vfp_rcount;
1479   MACHMODE aapcs_vfp_rmode;
1480 } CUMULATIVE_ARGS;
1481 #endif
1482 
1483 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1484   (arm_pad_reg_upward (MODE, TYPE, FIRST) ? PAD_UPWARD : PAD_DOWNWARD)
1485 
1486 /* For AAPCS, padding should never be below the argument. For other ABIs,
1487  * mimic the default.  */
1488 #define PAD_VARARGS_DOWN \
1489   ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1490 
1491 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1492    for a call to a function whose data type is FNTYPE.
1493    For a library call, FNTYPE is 0.
1494    On the ARM, the offset starts at 0.  */
1495 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1496   arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1497 
1498 /* 1 if N is a possible register number for function argument passing.
1499    On the ARM, r0-r3 are used to pass args.  */
1500 #define FUNCTION_ARG_REGNO_P(REGNO)					\
1501    (IN_RANGE ((REGNO), 0, 3)						\
1502     || (TARGET_AAPCS_BASED && TARGET_HARD_FLOAT				\
1503 	&& IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15))	\
1504     || (TARGET_IWMMXT_ABI						\
1505 	&& IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1506 
1507 
1508 /* If your target environment doesn't prefix user functions with an
1509    underscore, you may wish to re-define this to prevent any conflicts.  */
1510 #ifndef ARM_MCOUNT_NAME
1511 #define ARM_MCOUNT_NAME "*mcount"
1512 #endif
1513 
1514 /* Call the function profiler with a given profile label.  The Acorn
1515    compiler puts this BEFORE the prolog but gcc puts it afterwards.
1516    On the ARM the full profile code will look like:
1517 	.data
1518 	LP1
1519 		.word	0
1520 	.text
1521 		mov	ip, lr
1522 		bl	mcount
1523 		.word	LP1
1524 
1525    profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1526    will output the .text section.
1527 
1528    The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1529    ``prof'' doesn't seem to mind about this!
1530 
1531    Note - this version of the code is designed to work in both ARM and
1532    Thumb modes.  */
1533 #ifndef ARM_FUNCTION_PROFILER
1534 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO)  	\
1535 {							\
1536   char temp[20];					\
1537   rtx sym;						\
1538 							\
1539   asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t",		\
1540 	   IP_REGNUM, LR_REGNUM);			\
1541   assemble_name (STREAM, ARM_MCOUNT_NAME);		\
1542   fputc ('\n', STREAM);					\
1543   ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO);	\
1544   sym = gen_rtx_SYMBOL_REF (Pmode, temp);		\
1545   assemble_aligned_integer (UNITS_PER_WORD, sym);	\
1546 }
1547 #endif
1548 
1549 #ifdef THUMB_FUNCTION_PROFILER
1550 #define FUNCTION_PROFILER(STREAM, LABELNO)		\
1551   if (TARGET_ARM)					\
1552     ARM_FUNCTION_PROFILER (STREAM, LABELNO)		\
1553   else							\
1554     THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1555 #else
1556 #define FUNCTION_PROFILER(STREAM, LABELNO)		\
1557     ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1558 #endif
1559 
1560 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1561    the stack pointer does not matter.  The value is tested only in
1562    functions that have frame pointers.
1563    No definition is equivalent to always zero.
1564 
1565    On the ARM, the function epilogue recovers the stack pointer from the
1566    frame.  */
1567 #define EXIT_IGNORE_STACK 1
1568 
1569 #define EPILOGUE_USES(REGNO) (epilogue_completed && (REGNO) == LR_REGNUM)
1570 
1571 /* Determine if the epilogue should be output as RTL.
1572    You should override this if you define FUNCTION_EXTRA_EPILOGUE.  */
1573 #define USE_RETURN_INSN(ISCOND)				\
1574   (TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0)
1575 
1576 /* Definitions for register eliminations.
1577 
1578    This is an array of structures.  Each structure initializes one pair
1579    of eliminable registers.  The "from" register number is given first,
1580    followed by "to".  Eliminations of the same "from" register are listed
1581    in order of preference.
1582 
1583    We have two registers that can be eliminated on the ARM.  First, the
1584    arg pointer register can often be eliminated in favor of the stack
1585    pointer register.  Secondly, the pseudo frame pointer register can always
1586    be eliminated; it is replaced with either the stack or the real frame
1587    pointer.  Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1588    because the definition of HARD_FRAME_POINTER_REGNUM is not a constant.  */
1589 
1590 #define ELIMINABLE_REGS						\
1591 {{ ARG_POINTER_REGNUM,        STACK_POINTER_REGNUM            },\
1592  { ARG_POINTER_REGNUM,        FRAME_POINTER_REGNUM            },\
1593  { ARG_POINTER_REGNUM,        ARM_HARD_FRAME_POINTER_REGNUM   },\
1594  { ARG_POINTER_REGNUM,        THUMB_HARD_FRAME_POINTER_REGNUM },\
1595  { FRAME_POINTER_REGNUM,      STACK_POINTER_REGNUM            },\
1596  { FRAME_POINTER_REGNUM,      ARM_HARD_FRAME_POINTER_REGNUM   },\
1597  { FRAME_POINTER_REGNUM,      THUMB_HARD_FRAME_POINTER_REGNUM }}
1598 
1599 /* Define the offset between two registers, one to be eliminated, and the
1600    other its replacement, at the start of a routine.  */
1601 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
1602   if (TARGET_ARM)							\
1603     (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO);	\
1604   else									\
1605     (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1606 
1607 /* Special case handling of the location of arguments passed on the stack.  */
1608 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1609 
1610 /* Initialize data used by insn expanders.  This is called from insn_emit,
1611    once for every function before code is generated.  */
1612 #define INIT_EXPANDERS  arm_init_expanders ()
1613 
1614 /* Length in units of the trampoline for entering a nested function.  */
1615 #define TRAMPOLINE_SIZE  (TARGET_32BIT ? 16 : 20)
1616 
1617 /* Alignment required for a trampoline in bits.  */
1618 #define TRAMPOLINE_ALIGNMENT  32
1619 
1620 /* Addressing modes, and classification of registers for them.  */
1621 #define HAVE_POST_INCREMENT   1
1622 #define HAVE_PRE_INCREMENT    TARGET_32BIT
1623 #define HAVE_POST_DECREMENT   TARGET_32BIT
1624 #define HAVE_PRE_DECREMENT    TARGET_32BIT
1625 #define HAVE_PRE_MODIFY_DISP  TARGET_32BIT
1626 #define HAVE_POST_MODIFY_DISP TARGET_32BIT
1627 #define HAVE_PRE_MODIFY_REG   TARGET_32BIT
1628 #define HAVE_POST_MODIFY_REG  TARGET_32BIT
1629 
1630 enum arm_auto_incmodes
1631   {
1632     ARM_POST_INC,
1633     ARM_PRE_INC,
1634     ARM_POST_DEC,
1635     ARM_PRE_DEC
1636   };
1637 
1638 #define ARM_AUTOINC_VALID_FOR_MODE_P(mode, code) \
1639   (TARGET_32BIT && arm_autoinc_modes_ok_p (mode, code))
1640 #define USE_LOAD_POST_INCREMENT(mode) \
1641   ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_INC)
1642 #define USE_LOAD_PRE_INCREMENT(mode)  \
1643   ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_INC)
1644 #define USE_LOAD_POST_DECREMENT(mode) \
1645   ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_DEC)
1646 #define USE_LOAD_PRE_DECREMENT(mode)  \
1647   ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_DEC)
1648 
1649 #define USE_STORE_PRE_DECREMENT(mode) USE_LOAD_PRE_DECREMENT(mode)
1650 #define USE_STORE_PRE_INCREMENT(mode) USE_LOAD_PRE_INCREMENT(mode)
1651 #define USE_STORE_POST_DECREMENT(mode) USE_LOAD_POST_DECREMENT(mode)
1652 #define USE_STORE_POST_INCREMENT(mode) USE_LOAD_POST_INCREMENT(mode)
1653 
1654 /* Macros to check register numbers against specific register classes.  */
1655 
1656 /* These assume that REGNO is a hard or pseudo reg number.
1657    They give nonzero only if REGNO is a hard reg of the suitable class
1658    or a pseudo reg currently allocated to a suitable hard reg.  */
1659 #define TEST_REGNO(R, TEST, VALUE) \
1660   ((R TEST VALUE)	\
1661     || (reg_renumber && ((unsigned) reg_renumber[R] TEST VALUE)))
1662 
1663 /* Don't allow the pc to be used.  */
1664 #define ARM_REGNO_OK_FOR_BASE_P(REGNO)			\
1665   (TEST_REGNO (REGNO, <, PC_REGNUM)			\
1666    || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM)	\
1667    || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1668 
1669 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE)		\
1670   (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM)			\
1671    || (GET_MODE_SIZE (MODE) >= 4				\
1672        && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1673 
1674 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE)		\
1675   (TARGET_THUMB1					\
1676    ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE)	\
1677    : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1678 
1679 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1680    For Thumb, we cannot use SP + reg, so reject SP.  */
1681 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE)	\
1682   REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1683 
1684 /* For ARM code, we don't care about the mode, but for Thumb, the index
1685    must be suitable for use in a QImode load.  */
1686 #define REGNO_OK_FOR_INDEX_P(REGNO)	\
1687   (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1688    && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1689 
1690 /* Maximum number of registers that can appear in a valid memory address.
1691    Shifts in addresses can't be by a register.  */
1692 #define MAX_REGS_PER_ADDRESS 2
1693 
1694 /* Recognize any constant value that is a valid address.  */
1695 /* XXX We can address any constant, eventually...  */
1696 /* ??? Should the TARGET_ARM here also apply to thumb2?  */
1697 #define CONSTANT_ADDRESS_P(X)  			\
1698   (GET_CODE (X) == SYMBOL_REF 			\
1699    && (CONSTANT_POOL_ADDRESS_P (X)		\
1700        || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1701 
1702 /* True if SYMBOL + OFFSET constants must refer to something within
1703    SYMBOL's section.  */
1704 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1705 
1706 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32.  */
1707 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1708 #define TARGET_DEFAULT_WORD_RELOCATIONS 0
1709 #endif
1710 
1711 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1712 #define SUBTARGET_NAME_ENCODING_LENGTHS
1713 #endif
1714 
1715 /* This is a C fragment for the inside of a switch statement.
1716    Each case label should return the number of characters to
1717    be stripped from the start of a function's name, if that
1718    name starts with the indicated character.  */
1719 #define ARM_NAME_ENCODING_LENGTHS		\
1720   case '*':  return 1;				\
1721   SUBTARGET_NAME_ENCODING_LENGTHS
1722 
1723 /* This is how to output a reference to a user-level label named NAME.
1724    `assemble_name' uses this.  */
1725 #undef  ASM_OUTPUT_LABELREF
1726 #define ASM_OUTPUT_LABELREF(FILE, NAME)		\
1727    arm_asm_output_labelref (FILE, NAME)
1728 
1729 /* Output IT instructions for conditionally executed Thumb-2 instructions.  */
1730 #define ASM_OUTPUT_OPCODE(STREAM, PTR)	\
1731   if (TARGET_THUMB2)			\
1732     thumb2_asm_output_opcode (STREAM);
1733 
1734 /* The EABI specifies that constructors should go in .init_array.
1735    Other targets use .ctors for compatibility.  */
1736 #ifndef ARM_EABI_CTORS_SECTION_OP
1737 #define ARM_EABI_CTORS_SECTION_OP \
1738   "\t.section\t.init_array,\"aw\",%init_array"
1739 #endif
1740 #ifndef ARM_EABI_DTORS_SECTION_OP
1741 #define ARM_EABI_DTORS_SECTION_OP \
1742   "\t.section\t.fini_array,\"aw\",%fini_array"
1743 #endif
1744 #define ARM_CTORS_SECTION_OP \
1745   "\t.section\t.ctors,\"aw\",%progbits"
1746 #define ARM_DTORS_SECTION_OP \
1747   "\t.section\t.dtors,\"aw\",%progbits"
1748 
1749 /* Define CTORS_SECTION_ASM_OP.  */
1750 #undef CTORS_SECTION_ASM_OP
1751 #undef DTORS_SECTION_ASM_OP
1752 #ifndef IN_LIBGCC2
1753 # define CTORS_SECTION_ASM_OP \
1754    (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1755 # define DTORS_SECTION_ASM_OP \
1756    (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1757 #else /* !defined (IN_LIBGCC2) */
1758 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1759    so we cannot use the definition above.  */
1760 # ifdef __ARM_EABI__
1761 /* The .ctors section is not part of the EABI, so we do not define
1762    CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
1763    from trying to use it.  We do define it when doing normal
1764    compilation, as .init_array can be used instead of .ctors.  */
1765 /* There is no need to emit begin or end markers when using
1766    init_array; the dynamic linker will compute the size of the
1767    array itself based on special symbols created by the static
1768    linker.  However, we do need to arrange to set up
1769    exception-handling here.  */
1770 #   define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
1771 #   define CTOR_LIST_END /* empty */
1772 #   define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
1773 #   define DTOR_LIST_END /* empty */
1774 # else /* !defined (__ARM_EABI__) */
1775 #   define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
1776 #   define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
1777 # endif /* !defined (__ARM_EABI__) */
1778 #endif /* !defined (IN_LIBCC2) */
1779 
1780 /* True if the operating system can merge entities with vague linkage
1781    (e.g., symbols in COMDAT group) during dynamic linking.  */
1782 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
1783 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
1784 #endif
1785 
1786 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
1787 
1788 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1789    and check its validity for a certain class.
1790    We have two alternate definitions for each of them.
1791    The usual definition accepts all pseudo regs; the other rejects
1792    them unless they have been allocated suitable hard regs.
1793    The symbol REG_OK_STRICT causes the latter definition to be used.
1794    Thumb-2 has the same restrictions as arm.  */
1795 #ifndef REG_OK_STRICT
1796 
1797 #define ARM_REG_OK_FOR_BASE_P(X)		\
1798   (REGNO (X) <= LAST_ARM_REGNUM			\
1799    || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
1800    || REGNO (X) == FRAME_POINTER_REGNUM		\
1801    || REGNO (X) == ARG_POINTER_REGNUM)
1802 
1803 #define ARM_REG_OK_FOR_INDEX_P(X)		\
1804   ((REGNO (X) <= LAST_ARM_REGNUM		\
1805     && REGNO (X) != STACK_POINTER_REGNUM)	\
1806    || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
1807    || REGNO (X) == FRAME_POINTER_REGNUM		\
1808    || REGNO (X) == ARG_POINTER_REGNUM)
1809 
1810 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE)	\
1811   (REGNO (X) <= LAST_LO_REGNUM			\
1812    || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
1813    || (GET_MODE_SIZE (MODE) >= 4		\
1814        && (REGNO (X) == STACK_POINTER_REGNUM	\
1815 	   || (X) == hard_frame_pointer_rtx	\
1816 	   || (X) == arg_pointer_rtx)))
1817 
1818 #define REG_STRICT_P 0
1819 
1820 #else /* REG_OK_STRICT */
1821 
1822 #define ARM_REG_OK_FOR_BASE_P(X) 		\
1823   ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
1824 
1825 #define ARM_REG_OK_FOR_INDEX_P(X) 		\
1826   ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
1827 
1828 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE)	\
1829   THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
1830 
1831 #define REG_STRICT_P 1
1832 
1833 #endif /* REG_OK_STRICT */
1834 
1835 /* Now define some helpers in terms of the above.  */
1836 
1837 #define REG_MODE_OK_FOR_BASE_P(X, MODE)		\
1838   (TARGET_THUMB1				\
1839    ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE)	\
1840    : ARM_REG_OK_FOR_BASE_P (X))
1841 
1842 /* For 16-bit Thumb, a valid index register is anything that can be used in
1843    a byte load instruction.  */
1844 #define THUMB1_REG_OK_FOR_INDEX_P(X) \
1845   THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
1846 
1847 /* Nonzero if X is a hard reg that can be used as an index
1848    or if it is a pseudo reg.  On the Thumb, the stack pointer
1849    is not suitable.  */
1850 #define REG_OK_FOR_INDEX_P(X)			\
1851   (TARGET_THUMB1				\
1852    ? THUMB1_REG_OK_FOR_INDEX_P (X)		\
1853    : ARM_REG_OK_FOR_INDEX_P (X))
1854 
1855 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1856    For Thumb, we cannot use SP + reg, so reject SP.  */
1857 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE)	\
1858   REG_OK_FOR_INDEX_P (X)
1859 
1860 #define ARM_BASE_REGISTER_RTX_P(X)  \
1861   (REG_P (X) && ARM_REG_OK_FOR_BASE_P (X))
1862 
1863 #define ARM_INDEX_REGISTER_RTX_P(X)  \
1864   (REG_P (X) && ARM_REG_OK_FOR_INDEX_P (X))
1865 
1866 /* Specify the machine mode that this machine uses
1867    for the index in the tablejump instruction.  */
1868 #define CASE_VECTOR_MODE Pmode
1869 
1870 #define CASE_VECTOR_PC_RELATIVE ((TARGET_THUMB2				\
1871 				  || (TARGET_THUMB1			\
1872 				      && (optimize_size || flag_pic)))	\
1873 				 && (!target_pure_code))
1874 
1875 
1876 #define CASE_VECTOR_SHORTEN_MODE(min, max, body)			\
1877   (TARGET_THUMB1							\
1878    ? (min >= 0 && max < 512						\
1879       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode)	\
1880       : min >= -256 && max < 256					\
1881       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode)	\
1882       : min >= 0 && max < 8192						\
1883       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode)	\
1884       : min >= -4096 && max < 4096					\
1885       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode)	\
1886       : SImode)								\
1887    : ((min < 0 || max >= 0x20000 || !TARGET_THUMB2) ? SImode		\
1888       : (max >= 0x200) ? HImode						\
1889       : QImode))
1890 
1891 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
1892    unsigned is probably best, but may break some code.  */
1893 #ifndef DEFAULT_SIGNED_CHAR
1894 #define DEFAULT_SIGNED_CHAR  0
1895 #endif
1896 
1897 /* Max number of bytes we can move from memory to memory
1898    in one reasonably fast instruction.  */
1899 #define MOVE_MAX 4
1900 
1901 #undef  MOVE_RATIO
1902 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
1903 
1904 /* Define if operations between registers always perform the operation
1905    on the full register even if a narrower mode is specified.  */
1906 #define WORD_REGISTER_OPERATIONS 1
1907 
1908 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1909    will either zero-extend or sign-extend.  The value of this macro should
1910    be the code that says which one of the two operations is implicitly
1911    done, UNKNOWN if none.  */
1912 #define LOAD_EXTEND_OP(MODE)						\
1913   (TARGET_THUMB ? ZERO_EXTEND :						\
1914    ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND			\
1915     : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
1916 
1917 /* Nonzero if access to memory by bytes is slow and undesirable.  */
1918 #define SLOW_BYTE_ACCESS 0
1919 
1920 /* Immediate shift counts are truncated by the output routines (or was it
1921    the assembler?).  Shift counts in a register are truncated by ARM.  Note
1922    that the native compiler puts too large (> 32) immediate shift counts
1923    into a register and shifts by the register, letting the ARM decide what
1924    to do instead of doing that itself.  */
1925 /* This is all wrong.  Defining SHIFT_COUNT_TRUNCATED tells combine that
1926    code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
1927    On the arm, Y in a register is used modulo 256 for the shift. Only for
1928    rotates is modulo 32 used.  */
1929 /* #define SHIFT_COUNT_TRUNCATED 1 */
1930 
1931 /* Calling from registers is a massive pain.  */
1932 #define NO_FUNCTION_CSE 1
1933 
1934 /* The machine modes of pointers and functions */
1935 #define Pmode  SImode
1936 #define FUNCTION_MODE  Pmode
1937 
1938 #define ARM_FRAME_RTX(X)					\
1939   (   (X) == frame_pointer_rtx || (X) == stack_pointer_rtx	\
1940    || (X) == arg_pointer_rtx)
1941 
1942 /* Try to generate sequences that don't involve branches, we can then use
1943    conditional instructions.  */
1944 #define BRANCH_COST(speed_p, predictable_p)			\
1945   ((arm_branch_cost != -1) ? arm_branch_cost :			\
1946    (current_tune->branch_cost (speed_p, predictable_p)))
1947 
1948 /* False if short circuit operation is preferred.  */
1949 #define LOGICAL_OP_NON_SHORT_CIRCUIT					\
1950   ((optimize_size)							\
1951    ? (TARGET_THUMB ? false : true)					\
1952    : TARGET_THUMB ? static_cast<bool> (current_tune->logical_op_non_short_circuit_thumb) \
1953    : static_cast<bool> (current_tune->logical_op_non_short_circuit_arm))
1954 
1955 
1956 /* Position Independent Code.  */
1957 /* We decide which register to use based on the compilation options and
1958    the assembler in use; this is more general than the APCS restriction of
1959    using sb (r9) all the time.  */
1960 extern unsigned arm_pic_register;
1961 
1962 /* The register number of the register used to address a table of static
1963    data addresses in memory.  */
1964 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
1965 
1966 /* We can't directly access anything that contains a symbol,
1967    nor can we indirect via the constant pool.  One exception is
1968    UNSPEC_TLS, which is always PIC.  */
1969 #define LEGITIMATE_PIC_OPERAND_P(X)					\
1970 	(!(symbol_mentioned_p (X)					\
1971 	   || label_mentioned_p (X)					\
1972 	   || (GET_CODE (X) == SYMBOL_REF				\
1973 	       && CONSTANT_POOL_ADDRESS_P (X)				\
1974 	       && (symbol_mentioned_p (get_pool_constant (X))		\
1975 		   || label_mentioned_p (get_pool_constant (X)))))	\
1976 	 || tls_mentioned_p (X))
1977 
1978 /* We need to know when we are making a constant pool; this determines
1979    whether data needs to be in the GOT or can be referenced via a GOT
1980    offset.  */
1981 extern int making_const_table;
1982 
1983 /* Handle pragmas for compatibility with Intel's compilers.  */
1984 /* Also abuse this to register additional C specific EABI attributes.  */
1985 #define REGISTER_TARGET_PRAGMAS() do {					\
1986   c_register_pragma (0, "long_calls", arm_pr_long_calls);		\
1987   c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls);		\
1988   c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off);	\
1989   arm_lang_object_attributes_init();					\
1990   arm_register_target_pragmas();                                       \
1991 } while (0)
1992 
1993 /* Condition code information.  */
1994 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1995    return the mode to be used for the comparison.  */
1996 
1997 #define SELECT_CC_MODE(OP, X, Y)  arm_select_cc_mode (OP, X, Y)
1998 
1999 #define REVERSIBLE_CC_MODE(MODE) 1
2000 
2001 #define REVERSE_CONDITION(CODE,MODE) \
2002   (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
2003    ? reverse_condition_maybe_unordered (code) \
2004    : reverse_condition (code))
2005 
2006 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2007   ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
2008 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2009   ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
2010 
2011 #define CC_STATUS_INIT \
2012   do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0)
2013 
2014 #undef ASM_APP_ON
2015 #define ASM_APP_ON (inline_asm_unified ? "\t.syntax unified\n" : \
2016 		    "\t.syntax divided\n")
2017 
2018 #undef  ASM_APP_OFF
2019 #define ASM_APP_OFF (TARGET_ARM ? "\t.arm\n\t.syntax unified\n" : \
2020 		     "\t.thumb\n\t.syntax unified\n")
2021 
2022 /* Output a push or a pop instruction (only used when profiling).
2023    We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1.  We know
2024    that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
2025    that r7 isn't used by the function profiler, so we can use it as a
2026    scratch reg.  WARNING: This isn't safe in the general case!  It may be
2027    sensitive to future changes in final.c:profile_function.  */
2028 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO)		\
2029   do							\
2030     {							\
2031       if (TARGET_THUMB1					\
2032 	       && (REGNO) == STATIC_CHAIN_REGNUM)	\
2033 	{						\
2034 	  asm_fprintf (STREAM, "\tpush\t{r7}\n");	\
2035 	  asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
2036 	  asm_fprintf (STREAM, "\tpush\t{r7}\n");	\
2037 	}						\
2038       else						\
2039 	asm_fprintf (STREAM, "\tpush {%r}\n", REGNO);	\
2040     } while (0)
2041 
2042 
2043 /* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue.  */
2044 #define ASM_OUTPUT_REG_POP(STREAM, REGNO)		\
2045   do							\
2046     {							\
2047       if (TARGET_THUMB1					\
2048 	  && (REGNO) == STATIC_CHAIN_REGNUM)		\
2049 	{						\
2050 	  asm_fprintf (STREAM, "\tpop\t{r7}\n");	\
2051 	  asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2052 	  asm_fprintf (STREAM, "\tpop\t{r7}\n");	\
2053 	}						\
2054       else						\
2055 	asm_fprintf (STREAM, "\tpop {%r}\n", REGNO);	\
2056     } while (0)
2057 
2058 #define ADDR_VEC_ALIGN(JUMPTABLE)	\
2059   ((TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) ? 2 : 0)
2060 
2061 /* Alignment for case labels comes from ADDR_VEC_ALIGN; avoid the
2062    default alignment from elfos.h.  */
2063 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
2064 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE, PREFIX, NUM, TABLE) /* Empty.  */
2065 
2066 #define LABEL_ALIGN_AFTER_BARRIER(LABEL)                \
2067    (GET_CODE (PATTERN (prev_active_insn (LABEL))) == ADDR_DIFF_VEC \
2068    ? 1 : 0)
2069 
2070 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) 	\
2071   arm_declare_function_name ((STREAM), (NAME), (DECL));
2072 
2073 /* For aliases of functions we use .thumb_set instead.  */
2074 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2)		\
2075   do						   		\
2076     {								\
2077       const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2078       const char *const LABEL2 = IDENTIFIER_POINTER (DECL2);	\
2079 								\
2080       if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL)	\
2081 	{							\
2082 	  fprintf (FILE, "\t.thumb_set ");			\
2083 	  assemble_name (FILE, LABEL1);			   	\
2084 	  fprintf (FILE, ",");			   		\
2085 	  assemble_name (FILE, LABEL2);		   		\
2086 	  fprintf (FILE, "\n");					\
2087 	}							\
2088       else							\
2089 	ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2);			\
2090     }								\
2091   while (0)
2092 
2093 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2094 /* To support -falign-* switches we need to use .p2align so
2095    that alignment directives in code sections will be padded
2096    with no-op instructions, rather than zeroes.  */
2097 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP)		\
2098   if ((LOG) != 0)						\
2099     {								\
2100       if ((MAX_SKIP) == 0)					\
2101         fprintf ((FILE), "\t.p2align %d\n", (int) (LOG));	\
2102       else							\
2103         fprintf ((FILE), "\t.p2align %d,,%d\n",			\
2104                  (int) (LOG), (int) (MAX_SKIP));		\
2105     }
2106 #endif
2107 
2108 /* Add two bytes to the length of conditionally executed Thumb-2
2109    instructions for the IT instruction.  */
2110 #define ADJUST_INSN_LENGTH(insn, length) \
2111   if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2112     length += 2;
2113 
2114 /* Only perform branch elimination (by making instructions conditional) if
2115    we're optimizing.  For Thumb-2 check if any IT instructions need
2116    outputting.  */
2117 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)	\
2118   if (TARGET_ARM && optimize)				\
2119     arm_final_prescan_insn (INSN);			\
2120   else if (TARGET_THUMB2)				\
2121     thumb2_final_prescan_insn (INSN);			\
2122   else if (TARGET_THUMB1)				\
2123     thumb1_final_prescan_insn (INSN)
2124 
2125 #define ARM_SIGN_EXTEND(x)  ((HOST_WIDE_INT)			\
2126   (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x)	\
2127    : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2128       ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2129        ? ((~ (unsigned HOST_WIDE_INT) 0)			\
2130 	  & ~ (unsigned HOST_WIDE_INT) 0xffffffff)		\
2131        : 0))))
2132 
2133 /* A C expression whose value is RTL representing the value of the return
2134    address for the frame COUNT steps up from the current frame.  */
2135 
2136 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2137   arm_return_addr (COUNT, FRAME)
2138 
2139 /* Mask of the bits in the PC that contain the real return address
2140    when running in 26-bit mode.  */
2141 #define RETURN_ADDR_MASK26 (0x03fffffc)
2142 
2143 /* Pick up the return address upon entry to a procedure. Used for
2144    dwarf2 unwind information.  This also enables the table driven
2145    mechanism.  */
2146 #define INCOMING_RETURN_ADDR_RTX	gen_rtx_REG (Pmode, LR_REGNUM)
2147 #define DWARF_FRAME_RETURN_COLUMN	DWARF_FRAME_REGNUM (LR_REGNUM)
2148 
2149 /* Used to mask out junk bits from the return address, such as
2150    processor state, interrupt status, condition codes and the like.  */
2151 #define MASK_RETURN_ADDR \
2152   /* If we are generating code for an ARM2/ARM3 machine or for an ARM6	\
2153      in 26 bit mode, the condition codes must be masked out of the	\
2154      return address.  This does not apply to ARM6 and later processors	\
2155      when running in 32 bit mode.  */					\
2156   ((arm_arch4 || TARGET_THUMB)						\
2157    ? (gen_int_mode ((unsigned long)0xffffffff, Pmode))			\
2158    : arm_gen_return_addr_mask ())
2159 
2160 
2161 /* Do not emit .note.GNU-stack by default.  */
2162 #ifndef NEED_INDICATE_EXEC_STACK
2163 #define NEED_INDICATE_EXEC_STACK	0
2164 #endif
2165 
2166 #define TARGET_ARM_ARCH	\
2167   (arm_base_arch)	\
2168 
2169 /* The highest Thumb instruction set version supported by the chip.  */
2170 #define TARGET_ARM_ARCH_ISA_THUMB		\
2171   (arm_arch_thumb2 ? 2 : (arm_arch_thumb1 ? 1 : 0))
2172 
2173 /* Expands to an upper-case char of the target's architectural
2174    profile.  */
2175 #define TARGET_ARM_ARCH_PROFILE				\
2176   (arm_active_target.profile)
2177 
2178 /* Bit-field indicating what size LDREX/STREX loads/stores are available.
2179    Bit 0 for bytes, up to bit 3 for double-words.  */
2180 #define TARGET_ARM_FEATURE_LDREX				\
2181   ((TARGET_HAVE_LDREX ? 4 : 0)					\
2182    | (TARGET_HAVE_LDREXBH ? 3 : 0)				\
2183    | (TARGET_HAVE_LDREXD ? 8 : 0))
2184 
2185 /* Set as a bit mask indicating the available widths of hardware floating
2186    point types.  Where bit 1 indicates 16-bit support, bit 2 indicates
2187    32-bit support, bit 3 indicates 64-bit support.  */
2188 #define TARGET_ARM_FP			\
2189   (!TARGET_SOFT_FLOAT ? (TARGET_VFP_SINGLE ? 4		\
2190 			: (TARGET_VFP_DOUBLE ? (TARGET_FP16 ? 14 : 12) : 0)) \
2191 		      : 0)
2192 
2193 
2194 /* Set as a bit mask indicating the available widths of floating point
2195    types for hardware NEON floating point.  This is the same as
2196    TARGET_ARM_FP without the 64-bit bit set.  */
2197 #define TARGET_NEON_FP				 \
2198   (TARGET_NEON ? (TARGET_ARM_FP & (0xff ^ 0x08)) \
2199 	       : 0)
2200 
2201 /* Name of the automatic fpu-selection option.  */
2202 #define FPUTYPE_AUTO "auto"
2203 
2204 /* The maximum number of parallel loads or stores we support in an ldm/stm
2205    instruction.  */
2206 #define MAX_LDM_STM_OPS 4
2207 
2208 extern const char *arm_rewrite_mcpu (int argc, const char **argv);
2209 extern const char *arm_rewrite_march (int argc, const char **argv);
2210 extern const char *arm_asm_auto_mfpu (int argc, const char **argv);
2211 #define ASM_CPU_SPEC_FUNCTIONS			\
2212   { "rewrite_mcpu", arm_rewrite_mcpu },	\
2213   { "rewrite_march", arm_rewrite_march },	\
2214   { "asm_auto_mfpu", arm_asm_auto_mfpu },
2215 
2216 #define ASM_CPU_SPEC							\
2217   " %{mfpu=auto:%<mfpu=auto %:asm_auto_mfpu(%{march=*: arch %*})}"	\
2218   " %{mcpu=generic-*:-march=%:rewrite_march(%{mcpu=generic-*:%*});"	\
2219   "   march=*:-march=%:rewrite_march(%{march=*:%*});"			\
2220   "   mcpu=*:-mcpu=%:rewrite_mcpu(%{mcpu=*:%*})"			\
2221   " }"
2222 
2223 extern const char *arm_target_thumb_only (int argc, const char **argv);
2224 #define TARGET_MODE_SPEC_FUNCTIONS			\
2225   { "target_mode_check", arm_target_thumb_only },
2226 
2227 /* -mcpu=native handling only makes sense with compiler running on
2228    an ARM chip.  */
2229 #if defined(__arm__) && defined(__linux__)
2230 extern const char *host_detect_local_cpu (int argc, const char **argv);
2231 #define HAVE_LOCAL_CPU_DETECT
2232 # define MCPU_MTUNE_NATIVE_FUNCTIONS			\
2233   { "local_cpu_detect", host_detect_local_cpu },
2234 # define MCPU_MTUNE_NATIVE_SPECS				\
2235    " %{march=native:%<march=native %:local_cpu_detect(arch)}"	\
2236    " %{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)}"	\
2237    " %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
2238 #else
2239 # define MCPU_MTUNE_NATIVE_FUNCTIONS
2240 # define MCPU_MTUNE_NATIVE_SPECS ""
2241 #endif
2242 
2243 const char *arm_canon_arch_option (int argc, const char **argv);
2244 
2245 #define CANON_ARCH_SPEC_FUNCTION		\
2246   { "canon_arch", arm_canon_arch_option },
2247 
2248 const char *arm_be8_option (int argc, const char **argv);
2249 #define BE8_SPEC_FUNCTION			\
2250   { "be8_linkopt", arm_be8_option },
2251 
2252 # define EXTRA_SPEC_FUNCTIONS			\
2253   MCPU_MTUNE_NATIVE_FUNCTIONS			\
2254   ASM_CPU_SPEC_FUNCTIONS			\
2255   CANON_ARCH_SPEC_FUNCTION			\
2256   TARGET_MODE_SPEC_FUNCTIONS			\
2257   BE8_SPEC_FUNCTION
2258 
2259 /* Automatically add -mthumb for Thumb-only targets if mode isn't specified
2260    via the configuration option --with-mode or via the command line. The
2261    function target_mode_check is called to do the check with either:
2262    - an array of -march values if any is given;
2263    - an array of -mcpu values if any is given;
2264    - an empty array.  */
2265 #define TARGET_MODE_SPECS						\
2266   " %{!marm:%{!mthumb:%:target_mode_check(%{march=*:arch %*;mcpu=*:cpu %*;:})}}"
2267 
2268 /* Generate a canonical string to represent the architecture selected.  */
2269 #define ARCH_CANONICAL_SPECS				\
2270   " -march=%:canon_arch(%{mcpu=*: cpu %*} "		\
2271   "                     %{march=*: arch %*} "		\
2272   "                     %{mfpu=*: fpu %*} "		\
2273   "                     %{mfloat-abi=*: abi %*}"	\
2274   "                     %<march=*) "
2275 
2276 /* Complete set of specs for the driver.  Commas separate the
2277    individual rules so that any option suppression (%<opt...)is
2278    completed before starting subsequent rules.  */
2279 #define DRIVER_SELF_SPECS			\
2280   MCPU_MTUNE_NATIVE_SPECS,			\
2281   TARGET_MODE_SPECS,				\
2282   ARCH_CANONICAL_SPECS
2283 
2284 #define TARGET_SUPPORTS_WIDE_INT 1
2285 
2286 /* For switching between functions with different target attributes.  */
2287 #define SWITCHABLE_TARGET 1
2288 
2289 /* Define SECTION_ARM_PURECODE as the ARM specific section attribute
2290    representation for SHF_ARM_PURECODE in GCC.  */
2291 #define SECTION_ARM_PURECODE SECTION_MACH_DEP
2292 
2293 #endif /* ! GCC_ARM_H */
2294