xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/config/arm/arm.h (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* Definitions of target machine for GNU compiler, for ARM.
2    Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3    2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4    Free Software Foundation, Inc.
5    Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
6    and Martin Simmons (@harleqn.co.uk).
7    More major hacks by Richard Earnshaw (rearnsha@arm.com)
8    Minor hacks by Nick Clifton (nickc@cygnus.com)
9 
10    This file is part of GCC.
11 
12    GCC is free software; you can redistribute it and/or modify it
13    under the terms of the GNU General Public License as published
14    by the Free Software Foundation; either version 3, or (at your
15    option) any later version.
16 
17    GCC is distributed in the hope that it will be useful, but WITHOUT
18    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
19    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
20    License for more details.
21 
22    You should have received a copy of the GNU General Public License
23    along with GCC; see the file COPYING3.  If not see
24    <http://www.gnu.org/licenses/>.  */
25 
26 #ifndef GCC_ARM_H
27 #define GCC_ARM_H
28 
29 /* We can't use enum machine_mode inside a generator file because it
30    hasn't been created yet; we shouldn't be using any code that
31    needs the real definition though, so this ought to be safe.  */
32 #ifdef GENERATOR_FILE
33 #define MACHMODE int
34 #else
35 #include "insn-modes.h"
36 #define MACHMODE enum machine_mode
37 #endif
38 
39 #include "config/vxworks-dummy.h"
40 
41 /* The architecture define.  */
42 extern char arm_arch_name[];
43 
44 /* Target CPU builtins.  */
45 #define TARGET_CPU_CPP_BUILTINS()			\
46   do							\
47     {							\
48 	/* Define __arm__ even when in thumb mode, for	\
49 	   consistency with armcc.  */			\
50 	builtin_define ("__arm__");			\
51 	builtin_define ("__APCS_32__");			\
52 	if (TARGET_THUMB)				\
53 	  builtin_define ("__thumb__");			\
54 	if (TARGET_THUMB2)				\
55 	  builtin_define ("__thumb2__");		\
56 							\
57 	if (TARGET_BIG_END)				\
58 	  {						\
59 	    builtin_define ("__ARMEB__");		\
60 	    if (TARGET_THUMB)				\
61 	      builtin_define ("__THUMBEB__");		\
62 	    if (TARGET_LITTLE_WORDS)			\
63 	      builtin_define ("__ARMWEL__");		\
64 	  }						\
65         else						\
66 	  {						\
67 	    builtin_define ("__ARMEL__");		\
68 	    if (TARGET_THUMB)				\
69 	      builtin_define ("__THUMBEL__");		\
70 	  }						\
71 							\
72 	if (TARGET_SOFT_FLOAT)				\
73 	  builtin_define ("__SOFTFP__");		\
74 							\
75 	if (TARGET_VFP)					\
76 	  builtin_define ("__VFP_FP__");		\
77 							\
78 	if (TARGET_NEON)				\
79 	  builtin_define ("__ARM_NEON__");		\
80 							\
81 	/* Add a define for interworking.		\
82 	   Needed when building libgcc.a.  */		\
83 	if (arm_cpp_interwork)				\
84 	  builtin_define ("__THUMB_INTERWORK__");	\
85 							\
86 	builtin_assert ("cpu=arm");			\
87 	builtin_assert ("machine=arm");			\
88 							\
89 	builtin_define (arm_arch_name);			\
90 	if (arm_arch_cirrus)				\
91 	  builtin_define ("__MAVERICK__");		\
92 	if (arm_arch_xscale)				\
93 	  builtin_define ("__XSCALE__");		\
94 	if (arm_arch_iwmmxt)				\
95 	  builtin_define ("__IWMMXT__");		\
96 	if (TARGET_AAPCS_BASED)				\
97 	  {						\
98 	    builtin_define ("__ARM_EABI__");		\
99 	    builtin_define ("__ARM_PCS");		\
100 	    if (TARGET_HARD_FLOAT && TARGET_VFP)	\
101 	      builtin_define ("__ARM_PCS_VFP");		\
102 	  }						\
103 	if (TARGET_IDIV)				\
104 	  builtin_define ("__ARM_ARCH_EXT_IDIV__");	\
105     } while (0)
106 
107 /* The various ARM cores.  */
108 enum processor_type
109 {
110 #define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \
111   IDENT,
112 #include "arm-cores.def"
113 #undef ARM_CORE
114   /* Used to indicate that no processor has been specified.  */
115   arm_none
116 };
117 
118 enum target_cpus
119 {
120 #define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \
121   TARGET_CPU_##IDENT,
122 #include "arm-cores.def"
123 #undef ARM_CORE
124   TARGET_CPU_generic
125 };
126 
127 /* The processor for which instructions should be scheduled.  */
128 extern enum processor_type arm_tune;
129 
130 typedef enum arm_cond_code
131 {
132   ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
133   ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
134 }
135 arm_cc;
136 
137 extern arm_cc arm_current_cc;
138 
139 #define ARM_INVERSE_CONDITION_CODE(X)  ((arm_cc) (((int)X) ^ 1))
140 
141 extern int arm_target_label;
142 extern int arm_ccfsm_state;
143 extern GTY(()) rtx arm_target_insn;
144 /* The label of the current constant pool.  */
145 extern rtx pool_vector_label;
146 /* Set to 1 when a return insn is output, this means that the epilogue
147    is not needed.  */
148 extern int return_used_this_function;
149 /* Callback to output language specific object attributes.  */
150 extern void (*arm_lang_output_object_attributes_hook)(void);
151 
152 /* Just in case configure has failed to define anything.  */
153 #ifndef TARGET_CPU_DEFAULT
154 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
155 #endif
156 
157 
158 #undef  CPP_SPEC
159 #define CPP_SPEC "%(subtarget_cpp_spec)					\
160 %{msoft-float:%{mhard-float:						\
161 	%e-msoft-float and -mhard_float may not be used together}}	\
162 %{mbig-endian:%{mlittle-endian:						\
163 	%e-mbig-endian and -mlittle-endian may not be used together}}"
164 
165 #ifndef CC1_SPEC
166 #define CC1_SPEC ""
167 #endif
168 
169 /* This macro defines names of additional specifications to put in the specs
170    that can be used in various specifications like CC1_SPEC.  Its definition
171    is an initializer with a subgrouping for each command option.
172 
173    Each subgrouping contains a string constant, that defines the
174    specification name, and a string constant that used by the GCC driver
175    program.
176 
177    Do not define this macro if it does not need to do anything.  */
178 #define EXTRA_SPECS						\
179   { "subtarget_cpp_spec",	SUBTARGET_CPP_SPEC },           \
180   SUBTARGET_EXTRA_SPECS
181 
182 #ifndef SUBTARGET_EXTRA_SPECS
183 #define SUBTARGET_EXTRA_SPECS
184 #endif
185 
186 #ifndef SUBTARGET_CPP_SPEC
187 #define SUBTARGET_CPP_SPEC      ""
188 #endif
189 
190 /* Run-time Target Specification.  */
191 #ifndef TARGET_VERSION
192 #define TARGET_VERSION fputs (" (ARM/generic)", stderr);
193 #endif
194 
195 #define TARGET_SOFT_FLOAT		(arm_float_abi == ARM_FLOAT_ABI_SOFT)
196 /* Use hardware floating point instructions. */
197 #define TARGET_HARD_FLOAT		(arm_float_abi != ARM_FLOAT_ABI_SOFT)
198 /* Use hardware floating point calling convention.  */
199 #define TARGET_HARD_FLOAT_ABI		(arm_float_abi == ARM_FLOAT_ABI_HARD)
200 #define TARGET_FPA		(arm_fpu_desc->model == ARM_FP_MODEL_FPA)
201 #define TARGET_MAVERICK		(arm_fpu_desc->model == ARM_FP_MODEL_MAVERICK)
202 #define TARGET_VFP		(arm_fpu_desc->model == ARM_FP_MODEL_VFP)
203 #define TARGET_IWMMXT			(arm_arch_iwmmxt)
204 #define TARGET_REALLY_IWMMXT		(TARGET_IWMMXT && TARGET_32BIT)
205 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
206 #define TARGET_ARM                      (! TARGET_THUMB)
207 #define TARGET_EITHER			1 /* (TARGET_ARM | TARGET_THUMB) */
208 #define TARGET_BACKTRACE	        (leaf_function_p () \
209 				         ? TARGET_TPCS_LEAF_FRAME \
210 				         : TARGET_TPCS_FRAME)
211 #define TARGET_LDRD			(arm_arch5e && ARM_DOUBLEWORD_ALIGN)
212 #define TARGET_AAPCS_BASED \
213     (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
214 
215 #define TARGET_HARD_TP			(target_thread_pointer == TP_CP15)
216 #define TARGET_SOFT_TP			(target_thread_pointer == TP_SOFT)
217 
218 /* Only 16-bit thumb code.  */
219 #define TARGET_THUMB1			(TARGET_THUMB && !arm_arch_thumb2)
220 /* Arm or Thumb-2 32-bit code.  */
221 #define TARGET_32BIT			(TARGET_ARM || arm_arch_thumb2)
222 /* 32-bit Thumb-2 code.  */
223 #define TARGET_THUMB2			(TARGET_THUMB && arm_arch_thumb2)
224 /* Thumb-1 only.  */
225 #define TARGET_THUMB1_ONLY		(TARGET_THUMB1 && !arm_arch_notm)
226 /* FPA emulator without LFM.  */
227 #define TARGET_FPA_EMU2			(TARGET_FPA && arm_fpu_desc->rev == 2)
228 
229 /* The following two macros concern the ability to execute coprocessor
230    instructions for VFPv3 or NEON.  TARGET_VFP3/TARGET_VFPD32 are currently
231    only ever tested when we know we are generating for VFP hardware; we need
232    to be more careful with TARGET_NEON as noted below.  */
233 
234 /* FPU is has the full VFPv3/NEON register file of 32 D registers.  */
235 #define TARGET_VFPD32 (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_D32)
236 
237 /* FPU supports VFPv3 instructions.  */
238 #define TARGET_VFP3 (TARGET_VFP && arm_fpu_desc->rev >= 3)
239 
240 /* FPU only supports VFP single-precision instructions.  */
241 #define TARGET_VFP_SINGLE (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_SINGLE)
242 
243 /* FPU supports VFP double-precision instructions.  */
244 #define TARGET_VFP_DOUBLE (TARGET_VFP && arm_fpu_desc->regs != VFP_REG_SINGLE)
245 
246 /* FPU supports half-precision floating-point with NEON element load/store.  */
247 #define TARGET_NEON_FP16 \
248   (TARGET_VFP && arm_fpu_desc->neon && arm_fpu_desc->fp16)
249 
250 /* FPU supports VFP half-precision floating-point.  */
251 #define TARGET_FP16 (TARGET_VFP && arm_fpu_desc->fp16)
252 
253 /* FPU supports Neon instructions.  The setting of this macro gets
254    revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
255    and TARGET_HARD_FLOAT to ensure that NEON instructions are
256    available.  */
257 #define TARGET_NEON (TARGET_32BIT && TARGET_HARD_FLOAT \
258 		     && TARGET_VFP && arm_fpu_desc->neon)
259 
260 /* "DSP" multiply instructions, eg. SMULxy.  */
261 #define TARGET_DSP_MULTIPLY \
262   (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7em))
263 /* Integer SIMD instructions, and extend-accumulate instructions.  */
264 #define TARGET_INT_SIMD \
265   (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
266 
267 /* Should MOVW/MOVT be used in preference to a constant pool.  */
268 #define TARGET_USE_MOVT (arm_arch_thumb2 && !optimize_size)
269 
270 /* We could use unified syntax for arm mode, but for now we just use it
271    for Thumb-2.  */
272 #define TARGET_UNIFIED_ASM TARGET_THUMB2
273 
274 /* Nonzero if integer division instructions supported.  */
275 #define TARGET_IDIV (arm_arch_hwdiv)
276 
277 /* True iff the full BPABI is being used.  If TARGET_BPABI is true,
278    then TARGET_AAPCS_BASED must be true -- but the converse does not
279    hold.  TARGET_BPABI implies the use of the BPABI runtime library,
280    etc., in addition to just the AAPCS calling conventions.  */
281 #ifndef TARGET_BPABI
282 #define TARGET_BPABI false
283 #endif
284 
285 /* Support for a compile-time default CPU, et cetera.  The rules are:
286    --with-arch is ignored if -march or -mcpu are specified.
287    --with-cpu is ignored if -march or -mcpu are specified, and is overridden
288     by --with-arch.
289    --with-tune is ignored if -mtune or -mcpu are specified (but not affected
290      by -march).
291    --with-float is ignored if -mhard-float, -msoft-float or -mfloat-abi are
292    specified.
293    --with-fpu is ignored if -mfpu is specified.
294    --with-abi is ignored is -mabi is specified.  */
295 #define OPTION_DEFAULT_SPECS \
296   {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
297   {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
298   {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
299   {"float", \
300     "%{!msoft-float:%{!mhard-float:%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}}}" }, \
301   {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
302   {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
303   {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"},
304 
305 /* Which floating point model to use.  */
306 enum arm_fp_model
307 {
308   ARM_FP_MODEL_UNKNOWN,
309   /* FPA model (Hardware or software).  */
310   ARM_FP_MODEL_FPA,
311   /* Cirrus Maverick floating point model.  */
312   ARM_FP_MODEL_MAVERICK,
313   /* VFP floating point model.  */
314   ARM_FP_MODEL_VFP
315 };
316 
317 enum vfp_reg_type
318 {
319   VFP_NONE = 0,
320   VFP_REG_D16,
321   VFP_REG_D32,
322   VFP_REG_SINGLE
323 };
324 
325 extern const struct arm_fpu_desc
326 {
327   const char *name;
328   enum arm_fp_model model;
329   int rev;
330   enum vfp_reg_type regs;
331   int neon;
332   int fp16;
333 } *arm_fpu_desc;
334 
335 /* Which floating point hardware to schedule for.  */
336 extern int arm_fpu_attr;
337 
338 enum float_abi_type
339 {
340   ARM_FLOAT_ABI_SOFT,
341   ARM_FLOAT_ABI_SOFTFP,
342   ARM_FLOAT_ABI_HARD
343 };
344 
345 extern enum float_abi_type arm_float_abi;
346 
347 #ifndef TARGET_DEFAULT_FLOAT_ABI
348 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
349 #endif
350 
351 /* Which __fp16 format to use.
352    The enumeration values correspond to the numbering for the
353    Tag_ABI_FP_16bit_format attribute.
354  */
355 enum arm_fp16_format_type
356 {
357   ARM_FP16_FORMAT_NONE = 0,
358   ARM_FP16_FORMAT_IEEE = 1,
359   ARM_FP16_FORMAT_ALTERNATIVE = 2
360 };
361 
362 extern enum arm_fp16_format_type arm_fp16_format;
363 #define LARGEST_EXPONENT_IS_NORMAL(bits) \
364     ((bits) == 16 && arm_fp16_format == ARM_FP16_FORMAT_ALTERNATIVE)
365 
366 /* Which ABI to use.  */
367 enum arm_abi_type
368 {
369   ARM_ABI_APCS,
370   ARM_ABI_ATPCS,
371   ARM_ABI_AAPCS,
372   ARM_ABI_IWMMXT,
373   ARM_ABI_AAPCS_LINUX
374 };
375 
376 extern enum arm_abi_type arm_abi;
377 
378 #ifndef ARM_DEFAULT_ABI
379 #define ARM_DEFAULT_ABI ARM_ABI_APCS
380 #endif
381 
382 /* Which thread pointer access sequence to use.  */
383 enum arm_tp_type {
384   TP_AUTO,
385   TP_SOFT,
386   TP_CP15
387 };
388 
389 extern enum arm_tp_type target_thread_pointer;
390 
391 /* Nonzero if this chip supports the ARM Architecture 3M extensions.  */
392 extern int arm_arch3m;
393 
394 /* Nonzero if this chip supports the ARM Architecture 4 extensions.  */
395 extern int arm_arch4;
396 
397 /* Nonzero if this chip supports the ARM Architecture 4T extensions.  */
398 extern int arm_arch4t;
399 
400 /* Nonzero if this chip supports the ARM Architecture 5 extensions.  */
401 extern int arm_arch5;
402 
403 /* Nonzero if this chip supports the ARM Architecture 5E extensions.  */
404 extern int arm_arch5e;
405 
406 /* Nonzero if this chip supports the ARM Architecture 6 extensions.  */
407 extern int arm_arch6;
408 
409 /* Nonzero if instructions not present in the 'M' profile can be used.  */
410 extern int arm_arch_notm;
411 
412 /* Nonzero if instructions present in ARMv7E-M can be used.  */
413 extern int arm_arch7em;
414 
415 /* Nonzero if this chip can benefit from load scheduling.  */
416 extern int arm_ld_sched;
417 
418 /* Nonzero if generating thumb code.  */
419 extern int thumb_code;
420 
421 /* Nonzero if this chip is a StrongARM.  */
422 extern int arm_tune_strongarm;
423 
424 /* Nonzero if this chip is a Cirrus variant.  */
425 extern int arm_arch_cirrus;
426 
427 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology.  */
428 extern int arm_arch_iwmmxt;
429 
430 /* Nonzero if this chip is an XScale.  */
431 extern int arm_arch_xscale;
432 
433 /* Nonzero if tuning for XScale.  */
434 extern int arm_tune_xscale;
435 
436 /* Nonzero if tuning for stores via the write buffer.  */
437 extern int arm_tune_wbuf;
438 
439 /* Nonzero if tuning for Cortex-A9.  */
440 extern int arm_tune_cortex_a9;
441 
442 /* Nonzero if we should define __THUMB_INTERWORK__ in the
443    preprocessor.
444    XXX This is a bit of a hack, it's intended to help work around
445    problems in GLD which doesn't understand that armv5t code is
446    interworking clean.  */
447 extern int arm_cpp_interwork;
448 
449 /* Nonzero if chip supports Thumb 2.  */
450 extern int arm_arch_thumb2;
451 
452 /* Nonzero if chip supports integer division instruction.  */
453 extern int arm_arch_hwdiv;
454 
455 #ifndef TARGET_DEFAULT
456 #define TARGET_DEFAULT  (MASK_APCS_FRAME)
457 #endif
458 
459 /* The frame pointer register used in gcc has nothing to do with debugging;
460    that is controlled by the APCS-FRAME option.  */
461 #define CAN_DEBUG_WITHOUT_FP
462 
463 #define OVERRIDE_OPTIONS  arm_override_options ()
464 
465 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE)		\
466 	arm_optimization_options ((LEVEL), (SIZE))
467 
468 /* Nonzero if PIC code requires explicit qualifiers to generate
469    PLT and GOT relocs rather than the assembler doing so implicitly.
470    Subtargets can override these if required.  */
471 #ifndef NEED_GOT_RELOC
472 #define NEED_GOT_RELOC	0
473 #endif
474 #ifndef NEED_PLT_RELOC
475 #define NEED_PLT_RELOC	0
476 #endif
477 
478 /* Nonzero if we need to refer to the GOT with a PC-relative
479    offset.  In other words, generate
480 
481    .word	_GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
482 
483    rather than
484 
485    .word	_GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
486 
487    The default is true, which matches NetBSD.  Subtargets can
488    override this if required.  */
489 #ifndef GOT_PCREL
490 #define GOT_PCREL   1
491 #endif
492 
493 /* Target machine storage Layout.  */
494 
495 
496 /* Define this macro if it is advisable to hold scalars in registers
497    in a wider mode than that declared by the program.  In such cases,
498    the value is constrained to be within the bounds of the declared
499    type, but kept valid in the wider mode.  The signedness of the
500    extension may differ from that of the type.  */
501 
502 /* It is far faster to zero extend chars than to sign extend them */
503 
504 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
505   if (GET_MODE_CLASS (MODE) == MODE_INT		\
506       && GET_MODE_SIZE (MODE) < 4)      	\
507     {						\
508       if (MODE == QImode)			\
509 	UNSIGNEDP = 1;				\
510       else if (MODE == HImode)			\
511 	UNSIGNEDP = 1;				\
512       (MODE) = SImode;				\
513     }
514 
515 /* Define this if most significant bit is lowest numbered
516    in instructions that operate on numbered bit-fields.  */
517 #define BITS_BIG_ENDIAN  0
518 
519 /* Define this if most significant byte of a word is the lowest numbered.
520    Most ARM processors are run in little endian mode, so that is the default.
521    If you want to have it run-time selectable, change the definition in a
522    cover file to be TARGET_BIG_ENDIAN.  */
523 #define BYTES_BIG_ENDIAN  (TARGET_BIG_END != 0)
524 
525 /* Define this if most significant word of a multiword number is the lowest
526    numbered.
527    This is always false, even when in big-endian mode.  */
528 #define WORDS_BIG_ENDIAN  (BYTES_BIG_ENDIAN && ! TARGET_LITTLE_WORDS)
529 
530 /* LIBGCC2_WORDS_BIG_ENDIAN has to be a constant, so we define this based
531    on processor pre-defineds when compiling libgcc2.c.  */
532 #if defined(__ARMEB__) && !defined(__ARMWEL__)
533 #define LIBGCC2_WORDS_BIG_ENDIAN 1
534 #else
535 #define LIBGCC2_WORDS_BIG_ENDIAN 0
536 #endif
537 
538 /* Define this if most significant word of doubles is the lowest numbered.
539    The rules are different based on whether or not we use FPA-format,
540    VFP-format or some other floating point co-processor's format doubles.  */
541 #define FLOAT_WORDS_BIG_ENDIAN (arm_float_words_big_endian ())
542 
543 #define UNITS_PER_WORD	4
544 
545 /* Use the option -mvectorize-with-neon-quad to override the use of doubleword
546    registers when autovectorizing for Neon, at least until multiple vector
547    widths are supported properly by the middle-end.  */
548 #define UNITS_PER_SIMD_WORD(MODE) \
549   (TARGET_NEON ? (TARGET_NEON_VECTORIZE_QUAD ? 16 : 8) : UNITS_PER_WORD)
550 
551 /* True if natural alignment is used for doubleword types.  */
552 #define ARM_DOUBLEWORD_ALIGN	TARGET_AAPCS_BASED
553 
554 #define DOUBLEWORD_ALIGNMENT 64
555 
556 #define PARM_BOUNDARY  	32
557 
558 #define STACK_BOUNDARY  (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
559 
560 #define PREFERRED_STACK_BOUNDARY \
561     (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
562 
563 #define FUNCTION_BOUNDARY  ((TARGET_THUMB && optimize_size) ? 16 : 32)
564 
565 /* The lowest bit is used to indicate Thumb-mode functions, so the
566    vbit must go into the delta field of pointers to member
567    functions.  */
568 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
569 
570 #define EMPTY_FIELD_BOUNDARY  32
571 
572 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
573 
574 /* XXX Blah -- this macro is used directly by libobjc.  Since it
575    supports no vector modes, cut out the complexity and fall back
576    on BIGGEST_FIELD_ALIGNMENT.  */
577 #ifdef IN_TARGET_LIBS
578 #define BIGGEST_FIELD_ALIGNMENT 64
579 #endif
580 
581 /* Make strings word-aligned so strcpy from constants will be faster.  */
582 #define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_tune_xscale ? 1 : 2)
583 
584 #define CONSTANT_ALIGNMENT(EXP, ALIGN)				\
585    ((TREE_CODE (EXP) == STRING_CST				\
586      && !optimize_size						\
587      && (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR)	\
588     ? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN))
589 
590 /* Align definitions of arrays, unions and structures so that
591    initializations and copies can be made more efficient.  This is not
592    ABI-changing, so it only affects places where we can see the
593    definition.  */
594 #define DATA_ALIGNMENT(EXP, ALIGN)					\
595   ((((ALIGN) < BITS_PER_WORD)                                           \
596     && (TREE_CODE (EXP) == ARRAY_TYPE					\
597 	|| TREE_CODE (EXP) == UNION_TYPE				\
598 	|| TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
599 
600 /* Similarly, make sure that objects on the stack are sensibly aligned.  */
601 #define LOCAL_ALIGNMENT(EXP, ALIGN) DATA_ALIGNMENT(EXP, ALIGN)
602 
603 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
604    value set in previous versions of this toolchain was 8, which produces more
605    compact structures.  The command line option -mstructure_size_boundary=<n>
606    can be used to change this value.  For compatibility with the ARM SDK
607    however the value should be left at 32.  ARM SDT Reference Manual (ARM DUI
608    0020D) page 2-20 says "Structures are aligned on word boundaries".
609    The AAPCS specifies a value of 8.  */
610 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
611 extern int arm_structure_size_boundary;
612 
613 /* This is the value used to initialize arm_structure_size_boundary.  If a
614    particular arm target wants to change the default value it should change
615    the definition of this macro, not STRUCTURE_SIZE_BOUNDARY.  See netbsd.h
616    for an example of this.  */
617 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
618 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
619 #endif
620 
621 /* Nonzero if move instructions will actually fail to work
622    when given unaligned data.  */
623 #define STRICT_ALIGNMENT 1
624 
625 /* wchar_t is unsigned under the AAPCS.  */
626 #ifndef WCHAR_TYPE
627 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
628 
629 #define WCHAR_TYPE_SIZE BITS_PER_WORD
630 #endif
631 
632 #ifndef SIZE_TYPE
633 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
634 #endif
635 
636 #ifndef PTRDIFF_TYPE
637 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
638 #endif
639 
640 /* AAPCS requires that structure alignment is affected by bitfields.  */
641 #ifndef PCC_BITFIELD_TYPE_MATTERS
642 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
643 #endif
644 
645 
646 /* Standard register usage.  */
647 
648 /* Register allocation in ARM Procedure Call Standard (as used on RISCiX):
649    (S - saved over call).
650 
651 	r0	   *	argument word/integer result
652 	r1-r3		argument word
653 
654 	r4-r8	     S	register variable
655 	r9	     S	(rfp) register variable (real frame pointer)
656 
657 	r10  	   F S	(sl) stack limit (used by -mapcs-stack-check)
658 	r11 	   F S	(fp) argument pointer
659 	r12		(ip) temp workspace
660 	r13  	   F S	(sp) lower end of current stack frame
661 	r14		(lr) link address/workspace
662 	r15	   F	(pc) program counter
663 
664 	f0		floating point result
665 	f1-f3		floating point scratch
666 
667 	f4-f7	     S	floating point variable
668 
669 	cc		This is NOT a real register, but is used internally
670 	                to represent things that use or set the condition
671 			codes.
672 	sfp             This isn't either.  It is used during rtl generation
673 	                since the offset between the frame pointer and the
674 			auto's isn't known until after register allocation.
675 	afp		Nor this, we only need this because of non-local
676 	                goto.  Without it fp appears to be used and the
677 			elimination code won't get rid of sfp.  It tracks
678 			fp exactly at all times.
679 
680    *: See CONDITIONAL_REGISTER_USAGE  */
681 
682 /*
683   	mvf0		Cirrus floating point result
684 	mvf1-mvf3	Cirrus floating point scratch
685 	mvf4-mvf15   S	Cirrus floating point variable.  */
686 
687 /*	s0-s15		VFP scratch (aka d0-d7).
688 	s16-s31	      S	VFP variable (aka d8-d15).
689 	vfpcc		Not a real register.  Represents the VFP condition
690 			code flags.  */
691 
692 /* The stack backtrace structure is as follows:
693   fp points to here:  |  save code pointer  |      [fp]
694                       |  return link value  |      [fp, #-4]
695                       |  return sp value    |      [fp, #-8]
696                       |  return fp value    |      [fp, #-12]
697                      [|  saved r10 value    |]
698                      [|  saved r9 value     |]
699                      [|  saved r8 value     |]
700                      [|  saved r7 value     |]
701                      [|  saved r6 value     |]
702                      [|  saved r5 value     |]
703                      [|  saved r4 value     |]
704                      [|  saved r3 value     |]
705                      [|  saved r2 value     |]
706                      [|  saved r1 value     |]
707                      [|  saved r0 value     |]
708                      [|  saved f7 value     |]     three words
709                      [|  saved f6 value     |]     three words
710                      [|  saved f5 value     |]     three words
711                      [|  saved f4 value     |]     three words
712   r0-r3 are not normally saved in a C function.  */
713 
714 /* 1 for registers that have pervasive standard uses
715    and are not available for the register allocator.  */
716 #define FIXED_REGISTERS \
717 {                       \
718   0,0,0,0,0,0,0,0,	\
719   0,0,0,0,0,1,0,1,	\
720   0,0,0,0,0,0,0,0,	\
721   1,1,1,		\
722   1,1,1,1,1,1,1,1,	\
723   1,1,1,1,1,1,1,1,	\
724   1,1,1,1,1,1,1,1,	\
725   1,1,1,1,1,1,1,1,	\
726   1,1,1,1,		\
727   1,1,1,1,1,1,1,1,	\
728   1,1,1,1,1,1,1,1,	\
729   1,1,1,1,1,1,1,1,	\
730   1,1,1,1,1,1,1,1,	\
731   1,1,1,1,1,1,1,1,	\
732   1,1,1,1,1,1,1,1,	\
733   1,1,1,1,1,1,1,1,	\
734   1,1,1,1,1,1,1,1,	\
735   1			\
736 }
737 
738 /* 1 for registers not available across function calls.
739    These must include the FIXED_REGISTERS and also any
740    registers that can be used without being saved.
741    The latter must include the registers where values are returned
742    and the register where structure-value addresses are passed.
743    Aside from that, you can include as many other registers as you like.
744    The CC is not preserved over function calls on the ARM 6, so it is
745    easier to assume this for all.  SFP is preserved, since FP is.  */
746 #define CALL_USED_REGISTERS  \
747 {                            \
748   1,1,1,1,0,0,0,0,	     \
749   0,0,0,0,1,1,1,1,	     \
750   1,1,1,1,0,0,0,0,	     \
751   1,1,1,		     \
752   1,1,1,1,1,1,1,1,	     \
753   1,1,1,1,1,1,1,1,	     \
754   1,1,1,1,1,1,1,1,	     \
755   1,1,1,1,1,1,1,1,	     \
756   1,1,1,1,		     \
757   1,1,1,1,1,1,1,1,	     \
758   1,1,1,1,1,1,1,1,	     \
759   1,1,1,1,1,1,1,1,	     \
760   1,1,1,1,1,1,1,1,	     \
761   1,1,1,1,1,1,1,1,	     \
762   1,1,1,1,1,1,1,1,	     \
763   1,1,1,1,1,1,1,1,	     \
764   1,1,1,1,1,1,1,1,	     \
765   1			     \
766 }
767 
768 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
769 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
770 #endif
771 
772 #define CONDITIONAL_REGISTER_USAGE				\
773 {								\
774   int regno;							\
775 								\
776   if (TARGET_SOFT_FLOAT || TARGET_THUMB1 || !TARGET_FPA)	\
777     {								\
778       for (regno = FIRST_FPA_REGNUM;				\
779 	   regno <= LAST_FPA_REGNUM; ++regno)			\
780 	fixed_regs[regno] = call_used_regs[regno] = 1;		\
781     }								\
782 								\
783   if (TARGET_THUMB && optimize_size)				\
784     {								\
785       /* When optimizing for size, it's better not to use	\
786 	 the HI regs, because of the overhead of stacking 	\
787 	 them.  */						\
788       /* ??? Is this still true for thumb2?  */			\
789       for (regno = FIRST_HI_REGNUM;				\
790 	   regno <= LAST_HI_REGNUM; ++regno)			\
791 	fixed_regs[regno] = call_used_regs[regno] = 1;		\
792     }								\
793 								\
794   /* The link register can be clobbered by any branch insn,	\
795      but we have no way to track that at present, so mark	\
796      it as unavailable.  */					\
797   if (TARGET_THUMB1)						\
798     fixed_regs[LR_REGNUM] = call_used_regs[LR_REGNUM] = 1;	\
799 								\
800   if (TARGET_32BIT && TARGET_HARD_FLOAT)			\
801     {								\
802       if (TARGET_MAVERICK)					\
803 	{							\
804 	  for (regno = FIRST_FPA_REGNUM;			\
805 	       regno <= LAST_FPA_REGNUM; ++ regno)		\
806 	    fixed_regs[regno] = call_used_regs[regno] = 1;	\
807 	  for (regno = FIRST_CIRRUS_FP_REGNUM;			\
808 	       regno <= LAST_CIRRUS_FP_REGNUM; ++ regno)	\
809 	    {							\
810 	      fixed_regs[regno] = 0;				\
811 	      call_used_regs[regno] = regno < FIRST_CIRRUS_FP_REGNUM + 4; \
812 	    }							\
813 	}							\
814       if (TARGET_VFP)						\
815 	{							\
816 	  /* VFPv3 registers are disabled when earlier VFP	\
817 	     versions are selected due to the definition of	\
818 	     LAST_VFP_REGNUM.  */				\
819 	  for (regno = FIRST_VFP_REGNUM;			\
820 	       regno <= LAST_VFP_REGNUM; ++ regno)		\
821 	    {							\
822 	      fixed_regs[regno] = 0;				\
823 	      call_used_regs[regno] = regno < FIRST_VFP_REGNUM + 16 \
824 	      	|| regno >= FIRST_VFP_REGNUM + 32;		\
825 	    }							\
826 	}							\
827     }								\
828 								\
829   if (TARGET_REALLY_IWMMXT)					\
830     {								\
831       regno = FIRST_IWMMXT_GR_REGNUM;				\
832       /* The 2002/10/09 revision of the XScale ABI has wCG0     \
833          and wCG1 as call-preserved registers.  The 2002/11/21  \
834          revision changed this so that all wCG registers are    \
835          scratch registers.  */					\
836       for (regno = FIRST_IWMMXT_GR_REGNUM;			\
837 	   regno <= LAST_IWMMXT_GR_REGNUM; ++ regno)		\
838 	fixed_regs[regno] = 0;					\
839       /* The XScale ABI has wR0 - wR9 as scratch registers,     \
840 	 the rest as call-preserved registers.  */		\
841       for (regno = FIRST_IWMMXT_REGNUM;				\
842 	   regno <= LAST_IWMMXT_REGNUM; ++ regno)		\
843 	{							\
844 	  fixed_regs[regno] = 0;				\
845 	  call_used_regs[regno] = regno < FIRST_IWMMXT_REGNUM + 10; \
846 	}							\
847     }								\
848 								\
849   if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)	\
850     {								\
851       fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
852       call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;		\
853     }								\
854   else if (TARGET_APCS_STACK)					\
855     {								\
856       fixed_regs[10]     = 1;					\
857       call_used_regs[10] = 1;					\
858     }								\
859   /* -mcaller-super-interworking reserves r11 for calls to	\
860      _interwork_r11_call_via_rN().  Making the register global	\
861      is an easy way of ensuring that it remains valid for all	\
862      calls.  */							\
863   if (TARGET_APCS_FRAME || TARGET_CALLER_INTERWORKING		\
864       || TARGET_TPCS_FRAME || TARGET_TPCS_LEAF_FRAME)		\
865     {								\
866       fixed_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1;		\
867       call_used_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1;	\
868       if (TARGET_CALLER_INTERWORKING)				\
869 	global_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1;		\
870     }								\
871   SUBTARGET_CONDITIONAL_REGISTER_USAGE				\
872 }
873 
874 /* These are a couple of extensions to the formats accepted
875    by asm_fprintf:
876      %@ prints out ASM_COMMENT_START
877      %r prints out REGISTER_PREFIX reg_names[arg]  */
878 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P)		\
879   case '@':						\
880     fputs (ASM_COMMENT_START, FILE);			\
881     break;						\
882 							\
883   case 'r':						\
884     fputs (REGISTER_PREFIX, FILE);			\
885     fputs (reg_names [va_arg (ARGS, int)], FILE);	\
886     break;
887 
888 /* Round X up to the nearest word.  */
889 #define ROUND_UP_WORD(X) (((X) + 3) & ~3)
890 
891 /* Convert fron bytes to ints.  */
892 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
893 
894 /* The number of (integer) registers required to hold a quantity of type MODE.
895    Also used for VFP registers.  */
896 #define ARM_NUM_REGS(MODE)				\
897   ARM_NUM_INTS (GET_MODE_SIZE (MODE))
898 
899 /* The number of (integer) registers required to hold a quantity of TYPE MODE.  */
900 #define ARM_NUM_REGS2(MODE, TYPE)                   \
901   ARM_NUM_INTS ((MODE) == BLKmode ? 		\
902   int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
903 
904 /* The number of (integer) argument register available.  */
905 #define NUM_ARG_REGS		4
906 
907 /* And similarly for the VFP.  */
908 #define NUM_VFP_ARG_REGS	16
909 
910 /* Return the register number of the N'th (integer) argument.  */
911 #define ARG_REGISTER(N) 	(N - 1)
912 
913 /* Specify the registers used for certain standard purposes.
914    The values of these macros are register numbers.  */
915 
916 /* The number of the last argument register.  */
917 #define LAST_ARG_REGNUM 	ARG_REGISTER (NUM_ARG_REGS)
918 
919 /* The numbers of the Thumb register ranges.  */
920 #define FIRST_LO_REGNUM  	0
921 #define LAST_LO_REGNUM  	7
922 #define FIRST_HI_REGNUM		8
923 #define LAST_HI_REGNUM		11
924 
925 #ifndef TARGET_UNWIND_INFO
926 /* We use sjlj exceptions for backwards compatibility.  */
927 #define MUST_USE_SJLJ_EXCEPTIONS 1
928 #endif
929 
930 /* We can generate DWARF2 Unwind info, even though we don't use it.  */
931 #define DWARF2_UNWIND_INFO 1
932 
933 /* Use r0 and r1 to pass exception handling information.  */
934 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
935 
936 /* The register that holds the return address in exception handlers.  */
937 #define ARM_EH_STACKADJ_REGNUM	2
938 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
939 
940 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
941    as an invisible last argument (possible since varargs don't exist in
942    Pascal), so the following is not true.  */
943 #define STATIC_CHAIN_REGNUM	12
944 
945 /* Define this to be where the real frame pointer is if it is not possible to
946    work out the offset between the frame pointer and the automatic variables
947    until after register allocation has taken place.  FRAME_POINTER_REGNUM
948    should point to a special register that we will make sure is eliminated.
949 
950    For the Thumb we have another problem.  The TPCS defines the frame pointer
951    as r11, and GCC believes that it is always possible to use the frame pointer
952    as base register for addressing purposes.  (See comments in
953    find_reloads_address()).  But - the Thumb does not allow high registers,
954    including r11, to be used as base address registers.  Hence our problem.
955 
956    The solution used here, and in the old thumb port is to use r7 instead of
957    r11 as the hard frame pointer and to have special code to generate
958    backtrace structures on the stack (if required to do so via a command line
959    option) using r11.  This is the only 'user visible' use of r11 as a frame
960    pointer.  */
961 #define ARM_HARD_FRAME_POINTER_REGNUM	11
962 #define THUMB_HARD_FRAME_POINTER_REGNUM	 7
963 
964 #define HARD_FRAME_POINTER_REGNUM		\
965   (TARGET_ARM					\
966    ? ARM_HARD_FRAME_POINTER_REGNUM		\
967    : THUMB_HARD_FRAME_POINTER_REGNUM)
968 
969 #define FP_REGNUM	                HARD_FRAME_POINTER_REGNUM
970 
971 /* Register to use for pushing function arguments.  */
972 #define STACK_POINTER_REGNUM	SP_REGNUM
973 
974 /* ARM floating pointer registers.  */
975 #define FIRST_FPA_REGNUM 	16
976 #define LAST_FPA_REGNUM  	23
977 #define IS_FPA_REGNUM(REGNUM) \
978   (((REGNUM) >= FIRST_FPA_REGNUM) && ((REGNUM) <= LAST_FPA_REGNUM))
979 
980 #define FIRST_IWMMXT_GR_REGNUM	43
981 #define LAST_IWMMXT_GR_REGNUM	46
982 #define FIRST_IWMMXT_REGNUM	47
983 #define LAST_IWMMXT_REGNUM	62
984 #define IS_IWMMXT_REGNUM(REGNUM) \
985   (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
986 #define IS_IWMMXT_GR_REGNUM(REGNUM) \
987   (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
988 
989 /* Base register for access to local variables of the function.  */
990 #define FRAME_POINTER_REGNUM	25
991 
992 /* Base register for access to arguments of the function.  */
993 #define ARG_POINTER_REGNUM	26
994 
995 #define FIRST_CIRRUS_FP_REGNUM	27
996 #define LAST_CIRRUS_FP_REGNUM	42
997 #define IS_CIRRUS_REGNUM(REGNUM) \
998   (((REGNUM) >= FIRST_CIRRUS_FP_REGNUM) && ((REGNUM) <= LAST_CIRRUS_FP_REGNUM))
999 
1000 #define FIRST_VFP_REGNUM	63
1001 #define D7_VFP_REGNUM		78  /* Registers 77 and 78 == VFP reg D7.  */
1002 #define LAST_VFP_REGNUM	\
1003   (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
1004 
1005 #define IS_VFP_REGNUM(REGNUM) \
1006   (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
1007 
1008 /* VFP registers are split into two types: those defined by VFP versions < 3
1009    have D registers overlaid on consecutive pairs of S registers. VFP version 3
1010    defines 16 new D registers (d16-d31) which, for simplicity and correctness
1011    in various parts of the backend, we implement as "fake" single-precision
1012    registers (which would be S32-S63, but cannot be used in that way).  The
1013    following macros define these ranges of registers.  */
1014 #define LAST_LO_VFP_REGNUM	94
1015 #define FIRST_HI_VFP_REGNUM	95
1016 #define LAST_HI_VFP_REGNUM	126
1017 
1018 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
1019   ((REGNUM) <= LAST_LO_VFP_REGNUM)
1020 
1021 /* DFmode values are only valid in even register pairs.  */
1022 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
1023   ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
1024 
1025 /* Neon Quad values must start at a multiple of four registers.  */
1026 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
1027   ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
1028 
1029 /* Neon structures of vectors must be in even register pairs and there
1030    must be enough registers available.  Because of various patterns
1031    requiring quad registers, we require them to start at a multiple of
1032    four.  */
1033 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
1034   ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
1035    && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
1036 
1037 /* The number of hard registers is 16 ARM + 8 FPA + 1 CC + 1 SFP + 1 AFP.  */
1038 /* + 16 Cirrus registers take us up to 43.  */
1039 /* Intel Wireless MMX Technology registers add 16 + 4 more.  */
1040 /* VFP (VFP3) adds 32 (64) + 1 more.  */
1041 #define FIRST_PSEUDO_REGISTER   128
1042 
1043 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
1044 
1045 /* Value should be nonzero if functions must have frame pointers.
1046    Zero means the frame pointer need not be set up (and parms may be accessed
1047    via the stack pointer) in functions that seem suitable.
1048    If we have to have a frame pointer we might as well make use of it.
1049    APCS says that the frame pointer does not need to be pushed in leaf
1050    functions, or simple tail call functions.  */
1051 
1052 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1053 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1054 #endif
1055 
1056 /* Return number of consecutive hard regs needed starting at reg REGNO
1057    to hold something of mode MODE.
1058    This is ordinarily the length in words of a value of mode MODE
1059    but can be less for certain modes in special long registers.
1060 
1061    On the ARM regs are UNITS_PER_WORD bits wide; FPA regs can hold any FP
1062    mode.  */
1063 #define HARD_REGNO_NREGS(REGNO, MODE)  	\
1064   ((TARGET_32BIT			\
1065     && REGNO >= FIRST_FPA_REGNUM	\
1066     && REGNO != FRAME_POINTER_REGNUM	\
1067     && REGNO != ARG_POINTER_REGNUM)	\
1068     && !IS_VFP_REGNUM (REGNO)		\
1069    ? 1 : ARM_NUM_REGS (MODE))
1070 
1071 /* Return true if REGNO is suitable for holding a quantity of type MODE.  */
1072 #define HARD_REGNO_MODE_OK(REGNO, MODE)					\
1073   arm_hard_regno_mode_ok ((REGNO), (MODE))
1074 
1075 /* Value is 1 if it is a good idea to tie two pseudo registers
1076    when one has mode MODE1 and one has mode MODE2.
1077    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1078    for any hard reg, then this must be 0 for correct output.  */
1079 #define MODES_TIEABLE_P(MODE1, MODE2)  \
1080   (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
1081 
1082 #define VALID_IWMMXT_REG_MODE(MODE) \
1083  (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
1084 
1085 /* Modes valid for Neon D registers.  */
1086 #define VALID_NEON_DREG_MODE(MODE) \
1087   ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
1088    || (MODE) == V2SFmode || (MODE) == DImode)
1089 
1090 /* Modes valid for Neon Q registers.  */
1091 #define VALID_NEON_QREG_MODE(MODE) \
1092   ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
1093    || (MODE) == V4SFmode || (MODE) == V2DImode)
1094 
1095 /* Structure modes valid for Neon registers.  */
1096 #define VALID_NEON_STRUCT_MODE(MODE) \
1097   ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
1098    || (MODE) == CImode || (MODE) == XImode)
1099 
1100 /* The order in which register should be allocated.  It is good to use ip
1101    since no saving is required (though calls clobber it) and it never contains
1102    function parameters.  It is quite good to use lr since other calls may
1103    clobber it anyway.  Allocate r0 through r3 in reverse order since r3 is
1104    least likely to contain a function parameter; in addition results are
1105    returned in r0.
1106    For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
1107    then D8-D15.  The reason for doing this is to attempt to reduce register
1108    pressure when both single- and double-precision registers are used in a
1109    function.  */
1110 
1111 #define REG_ALLOC_ORDER				\
1112 {						\
1113      3,  2,  1,  0, 12, 14,  4,  5,		\
1114      6,  7,  8, 10,  9, 11, 13, 15,		\
1115     16, 17, 18, 19, 20, 21, 22, 23,		\
1116     27, 28, 29, 30, 31, 32, 33, 34,		\
1117     35, 36, 37, 38, 39, 40, 41, 42,		\
1118     43, 44, 45, 46, 47, 48, 49, 50,		\
1119     51, 52, 53, 54, 55, 56, 57, 58,		\
1120     59, 60, 61, 62,				\
1121     24, 25, 26,					\
1122     95,  96,  97,  98,  99, 100, 101, 102,	\
1123    103, 104, 105, 106, 107, 108, 109, 110,	\
1124    111, 112, 113, 114, 115, 116, 117, 118,	\
1125    119, 120, 121, 122, 123, 124, 125, 126,	\
1126     78,  77,  76,  75,  74,  73,  72,  71,	\
1127     70,  69,  68,  67,  66,  65,  64,  63,	\
1128     79,  80,  81,  82,  83,  84,  85,  86,	\
1129     87,  88,  89,  90,  91,  92,  93,  94,	\
1130    127						\
1131 }
1132 
1133 /* Use different register alloc ordering for Thumb.  */
1134 #define ORDER_REGS_FOR_LOCAL_ALLOC arm_order_regs_for_local_alloc ()
1135 
1136 /* Interrupt functions can only use registers that have already been
1137    saved by the prologue, even if they would normally be
1138    call-clobbered.  */
1139 #define HARD_REGNO_RENAME_OK(SRC, DST)					\
1140 	(! IS_INTERRUPT (cfun->machine->func_type) ||			\
1141 	 df_regs_ever_live_p (DST))
1142 
1143 /* Register and constant classes.  */
1144 
1145 /* Register classes: used to be simple, just all ARM regs or all FPA regs
1146    Now that the Thumb is involved it has become more complicated.  */
1147 enum reg_class
1148 {
1149   NO_REGS,
1150   FPA_REGS,
1151   CIRRUS_REGS,
1152   VFP_D0_D7_REGS,
1153   VFP_LO_REGS,
1154   VFP_HI_REGS,
1155   VFP_REGS,
1156   IWMMXT_GR_REGS,
1157   IWMMXT_REGS,
1158   LO_REGS,
1159   STACK_REG,
1160   BASE_REGS,
1161   HI_REGS,
1162   CC_REG,
1163   VFPCC_REG,
1164   GENERAL_REGS,
1165   CORE_REGS,
1166   ALL_REGS,
1167   LIM_REG_CLASSES
1168 };
1169 
1170 #define N_REG_CLASSES  (int) LIM_REG_CLASSES
1171 
1172 /* Give names of register classes as strings for dump file.  */
1173 #define REG_CLASS_NAMES  \
1174 {			\
1175   "NO_REGS",		\
1176   "FPA_REGS",		\
1177   "CIRRUS_REGS",	\
1178   "VFP_D0_D7_REGS",	\
1179   "VFP_LO_REGS",	\
1180   "VFP_HI_REGS",	\
1181   "VFP_REGS",		\
1182   "IWMMXT_GR_REGS",	\
1183   "IWMMXT_REGS",	\
1184   "LO_REGS",		\
1185   "STACK_REG",		\
1186   "BASE_REGS",		\
1187   "HI_REGS",		\
1188   "CC_REG",		\
1189   "VFPCC_REG",		\
1190   "GENERAL_REGS",	\
1191   "CORE_REGS",		\
1192   "ALL_REGS",		\
1193 }
1194 
1195 /* Define which registers fit in which classes.
1196    This is an initializer for a vector of HARD_REG_SET
1197    of length N_REG_CLASSES.  */
1198 #define REG_CLASS_CONTENTS						\
1199 {									\
1200   { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS  */	\
1201   { 0x00FF0000, 0x00000000, 0x00000000, 0x00000000 }, /* FPA_REGS */	\
1202   { 0xF8000000, 0x000007FF, 0x00000000, 0x00000000 }, /* CIRRUS_REGS */	\
1203   { 0x00000000, 0x80000000, 0x00007FFF, 0x00000000 }, /* VFP_D0_D7_REGS  */ \
1204   { 0x00000000, 0x80000000, 0x7FFFFFFF, 0x00000000 }, /* VFP_LO_REGS  */ \
1205   { 0x00000000, 0x00000000, 0x80000000, 0x7FFFFFFF }, /* VFP_HI_REGS  */ \
1206   { 0x00000000, 0x80000000, 0xFFFFFFFF, 0x7FFFFFFF }, /* VFP_REGS  */	\
1207   { 0x00000000, 0x00007800, 0x00000000, 0x00000000 }, /* IWMMXT_GR_REGS */ \
1208   { 0x00000000, 0x7FFF8000, 0x00000000, 0x00000000 }, /* IWMMXT_REGS */	\
1209   { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */	\
1210   { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */	\
1211   { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */	\
1212   { 0x0000DF00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */	\
1213   { 0x01000000, 0x00000000, 0x00000000, 0x00000000 }, /* CC_REG */	\
1214   { 0x00000000, 0x00000000, 0x00000000, 0x80000000 }, /* VFPCC_REG */	\
1215   { 0x0200DFFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1216   { 0x0200FFFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */	\
1217   { 0xFAFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF }  /* ALL_REGS */	\
1218 }
1219 
1220 /* Any of the VFP register classes.  */
1221 #define IS_VFP_CLASS(X) \
1222   ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1223    || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1224 
1225 /* The same information, inverted:
1226    Return the class number of the smallest class containing
1227    reg number REGNO.  This could be a conditional expression
1228    or could index an array.  */
1229 #define REGNO_REG_CLASS(REGNO)  arm_regno_class (REGNO)
1230 
1231 /* The following macro defines cover classes for Integrated Register
1232    Allocator.  Cover classes is a set of non-intersected register
1233    classes covering all hard registers used for register allocation
1234    purpose.  Any move between two registers of a cover class should be
1235    cheaper than load or store of the registers.  The macro value is
1236    array of register classes with LIM_REG_CLASSES used as the end
1237    marker.  */
1238 
1239 #define IRA_COVER_CLASSES						     \
1240 {									     \
1241   GENERAL_REGS, FPA_REGS, CIRRUS_REGS, VFP_REGS, IWMMXT_GR_REGS, IWMMXT_REGS,\
1242   LIM_REG_CLASSES							     \
1243 }
1244 
1245 /* FPA registers can't do subreg as all values are reformatted to internal
1246    precision.  VFP registers may only be accessed in the mode they
1247    were set.  */
1248 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)	\
1249   (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)		\
1250    ? reg_classes_intersect_p (FPA_REGS, (CLASS))	\
1251      || reg_classes_intersect_p (VFP_REGS, (CLASS))	\
1252    : 0)
1253 
1254 /* We need to define this for LO_REGS on thumb.  Otherwise we can end up
1255    using r0-r4 for function arguments, r7 for the stack frame and don't
1256    have enough left over to do doubleword arithmetic.  */
1257 #define CLASS_LIKELY_SPILLED_P(CLASS)	\
1258     ((TARGET_THUMB && (CLASS) == LO_REGS)	\
1259      || (CLASS) == CC_REG)
1260 
1261 /* The class value for index registers, and the one for base regs.  */
1262 #define INDEX_REG_CLASS  (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1263 #define BASE_REG_CLASS   (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1264 
1265 /* For the Thumb the high registers cannot be used as base registers
1266    when addressing quantities in QI or HI mode; if we don't know the
1267    mode, then we must be conservative.  */
1268 #define MODE_BASE_REG_CLASS(MODE)					\
1269     (TARGET_32BIT ? CORE_REGS :					\
1270      (((MODE) == SImode) ? BASE_REGS : LO_REGS))
1271 
1272 /* For Thumb we can not support SP+reg addressing, so we return LO_REGS
1273    instead of BASE_REGS.  */
1274 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1275 
1276 /* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
1277    registers explicitly used in the rtl to be used as spill registers
1278    but prevents the compiler from extending the lifetime of these
1279    registers.  */
1280 #define SMALL_REGISTER_CLASSES   TARGET_THUMB1
1281 
1282 /* Given an rtx X being reloaded into a reg required to be
1283    in class CLASS, return the class of reg to actually use.
1284    In general this is just CLASS, but for the Thumb core registers and
1285    immediate constants we prefer a LO_REGS class or a subset.  */
1286 #define PREFERRED_RELOAD_CLASS(X, CLASS)		\
1287   (TARGET_32BIT ? (CLASS) :				\
1288    ((CLASS) == GENERAL_REGS || (CLASS) == HI_REGS	\
1289     || (CLASS) == NO_REGS || (CLASS) == STACK_REG	\
1290    ? LO_REGS : (CLASS)))
1291 
1292 /* Must leave BASE_REGS reloads alone */
1293 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1294   ((CLASS) != LO_REGS && (CLASS) != BASE_REGS				\
1295    ? ((true_regnum (X) == -1 ? LO_REGS					\
1296        : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS	\
1297        : NO_REGS)) 							\
1298    : NO_REGS)
1299 
1300 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1301   ((CLASS) != LO_REGS && (CLASS) != BASE_REGS				\
1302    ? ((true_regnum (X) == -1 ? LO_REGS					\
1303        : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS	\
1304        : NO_REGS)) 							\
1305    : NO_REGS)
1306 
1307 /* Return the register class of a scratch register needed to copy IN into
1308    or out of a register in CLASS in MODE.  If it can be done directly,
1309    NO_REGS is returned.  */
1310 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1311   /* Restrict which direct reloads are allowed for VFP/iWMMXt regs.  */ \
1312   ((TARGET_VFP && TARGET_HARD_FLOAT				\
1313     && IS_VFP_CLASS (CLASS))					\
1314    ? coproc_secondary_reload_class (MODE, X, FALSE)		\
1315    : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS)			\
1316    ? coproc_secondary_reload_class (MODE, X, TRUE)		\
1317    : TARGET_32BIT						\
1318    ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1319     ? GENERAL_REGS : NO_REGS)					\
1320    : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1321 
1322 /* If we need to load shorts byte-at-a-time, then we need a scratch.  */
1323 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1324   /* Restrict which direct reloads are allowed for VFP/iWMMXt regs.  */ \
1325   ((TARGET_VFP && TARGET_HARD_FLOAT				\
1326     && IS_VFP_CLASS (CLASS))					\
1327     ? coproc_secondary_reload_class (MODE, X, FALSE) :		\
1328     (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ?			\
1329     coproc_secondary_reload_class (MODE, X, TRUE) :		\
1330   /* Cannot load constants into Cirrus registers.  */		\
1331    (TARGET_MAVERICK && TARGET_HARD_FLOAT			\
1332      && (CLASS) == CIRRUS_REGS					\
1333      && (CONSTANT_P (X) || GET_CODE (X) == SYMBOL_REF))		\
1334     ? GENERAL_REGS :						\
1335   (TARGET_32BIT ?						\
1336    (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS)	\
1337       && CONSTANT_P (X))					\
1338    ? GENERAL_REGS :						\
1339    (((MODE) == HImode && ! arm_arch4				\
1340      && (GET_CODE (X) == MEM					\
1341 	 || ((GET_CODE (X) == REG || GET_CODE (X) == SUBREG)	\
1342 	     && true_regnum (X) == -1)))			\
1343     ? GENERAL_REGS : NO_REGS)					\
1344    : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1345 
1346 /* Try a machine-dependent way of reloading an illegitimate address
1347    operand.  If we find one, push the reload and jump to WIN.  This
1348    macro is used in only one place: `find_reloads_address' in reload.c.
1349 
1350    For the ARM, we wish to handle large displacements off a base
1351    register by splitting the addend across a MOV and the mem insn.
1352    This can cut the number of reloads needed.  */
1353 #define ARM_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND, WIN)	   \
1354   do									   \
1355     {									   \
1356       if (GET_CODE (X) == PLUS						   \
1357 	  && GET_CODE (XEXP (X, 0)) == REG				   \
1358 	  && REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER		   \
1359 	  && REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE)			   \
1360 	  && GET_CODE (XEXP (X, 1)) == CONST_INT)			   \
1361 	{								   \
1362 	  HOST_WIDE_INT val = INTVAL (XEXP (X, 1));			   \
1363 	  HOST_WIDE_INT low, high;					   \
1364 									   \
1365 	  if (MODE == DImode || (MODE == DFmode && TARGET_SOFT_FLOAT))	   \
1366 	    low = ((val & 0xf) ^ 0x8) - 0x8;				   \
1367 	  else if (TARGET_MAVERICK && TARGET_HARD_FLOAT)		   \
1368 	    /* Need to be careful, -256 is not a valid offset.  */	   \
1369 	    low = val >= 0 ? (val & 0xff) : -((-val) & 0xff);		   \
1370 	  else if (MODE == SImode					   \
1371 		   || (MODE == SFmode && TARGET_SOFT_FLOAT)		   \
1372 		   || ((MODE == HImode || MODE == QImode) && ! arm_arch4)) \
1373 	    /* Need to be careful, -4096 is not a valid offset.  */	   \
1374 	    low = val >= 0 ? (val & 0xfff) : -((-val) & 0xfff);		   \
1375 	  else if ((MODE == HImode || MODE == QImode) && arm_arch4)	   \
1376 	    /* Need to be careful, -256 is not a valid offset.  */	   \
1377 	    low = val >= 0 ? (val & 0xff) : -((-val) & 0xff);		   \
1378 	  else if (GET_MODE_CLASS (MODE) == MODE_FLOAT			   \
1379 		   && TARGET_HARD_FLOAT && TARGET_FPA)			   \
1380 	    /* Need to be careful, -1024 is not a valid offset.  */	   \
1381 	    low = val >= 0 ? (val & 0x3ff) : -((-val) & 0x3ff);		   \
1382 	  else								   \
1383 	    break;							   \
1384 									   \
1385 	  high = ((((val - low) & (unsigned HOST_WIDE_INT) 0xffffffff)	   \
1386 		   ^ (unsigned HOST_WIDE_INT) 0x80000000)		   \
1387 		  - (unsigned HOST_WIDE_INT) 0x80000000);		   \
1388 	  /* Check for overflow or zero */				   \
1389 	  if (low == 0 || high == 0 || (high + low != val))		   \
1390 	    break;							   \
1391 									   \
1392 	  /* Reload the high part into a base reg; leave the low part	   \
1393 	     in the mem.  */						   \
1394 	  X = gen_rtx_PLUS (GET_MODE (X),				   \
1395 			    gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0),	   \
1396 					  GEN_INT (high)),		   \
1397 			    GEN_INT (low));				   \
1398 	  push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL,	   \
1399 		       MODE_BASE_REG_CLASS (MODE), GET_MODE (X), 	   \
1400 		       VOIDmode, 0, 0, OPNUM, TYPE);			   \
1401 	  goto WIN;							   \
1402 	}								   \
1403     }									   \
1404   while (0)
1405 
1406 /* XXX If an HImode FP+large_offset address is converted to an HImode
1407    SP+large_offset address, then reload won't know how to fix it.  It sees
1408    only that SP isn't valid for HImode, and so reloads the SP into an index
1409    register, but the resulting address is still invalid because the offset
1410    is too big.  We fix it here instead by reloading the entire address.  */
1411 /* We could probably achieve better results by defining PROMOTE_MODE to help
1412    cope with the variances between the Thumb's signed and unsigned byte and
1413    halfword load instructions.  */
1414 /* ??? This should be safe for thumb2, but we may be able to do better.  */
1415 #define THUMB_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_L, WIN)     \
1416 do {									      \
1417   rtx new_x = thumb_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND_L); \
1418   if (new_x)								      \
1419     {									      \
1420       X = new_x;							      \
1421       goto WIN;								      \
1422     }									      \
1423 } while (0)
1424 
1425 #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)   \
1426   if (TARGET_ARM)							   \
1427     ARM_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN); \
1428   else									   \
1429     THUMB_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)
1430 
1431 /* Return the maximum number of consecutive registers
1432    needed to represent mode MODE in a register of class CLASS.
1433    ARM regs are UNITS_PER_WORD bits while FPA regs can hold any FP mode */
1434 #define CLASS_MAX_NREGS(CLASS, MODE)  \
1435   (((CLASS) == FPA_REGS || (CLASS) == CIRRUS_REGS) ? 1 : ARM_NUM_REGS (MODE))
1436 
1437 /* If defined, gives a class of registers that cannot be used as the
1438    operand of a SUBREG that changes the mode of the object illegally.  */
1439 
1440 /* Moves between FPA_REGS and GENERAL_REGS are two memory insns.
1441    Moves between VFP_REGS and GENERAL_REGS are a single insn, but
1442    it is typically more expensive than a single memory access.  We set
1443    the cost to less than two memory accesses so that floating
1444    point to integer conversion does not go through memory.  */
1445 #define REGISTER_MOVE_COST(MODE, FROM, TO)		\
1446   (TARGET_32BIT ?						\
1447    ((FROM) == FPA_REGS && (TO) != FPA_REGS ? 20 :	\
1448     (FROM) != FPA_REGS && (TO) == FPA_REGS ? 20 :	\
1449     IS_VFP_CLASS (FROM) && !IS_VFP_CLASS (TO) ? 15 :	\
1450     !IS_VFP_CLASS (FROM) && IS_VFP_CLASS (TO) ? 15 :	\
1451     (FROM) == IWMMXT_REGS && (TO) != IWMMXT_REGS ? 4 :  \
1452     (FROM) != IWMMXT_REGS && (TO) == IWMMXT_REGS ? 4 :  \
1453     (FROM) == IWMMXT_GR_REGS || (TO) == IWMMXT_GR_REGS ? 20 :  \
1454     (FROM) == CIRRUS_REGS && (TO) != CIRRUS_REGS ? 20 :	\
1455     (FROM) != CIRRUS_REGS && (TO) == CIRRUS_REGS ? 20 :	\
1456    2)							\
1457    :							\
1458    ((FROM) == HI_REGS || (TO) == HI_REGS) ? 4 : 2)
1459 
1460 /* Stack layout; function entry, exit and calling.  */
1461 
1462 /* Define this if pushing a word on the stack
1463    makes the stack pointer a smaller address.  */
1464 #define STACK_GROWS_DOWNWARD  1
1465 
1466 /* Define this to nonzero if the nominal address of the stack frame
1467    is at the high-address end of the local variables;
1468    that is, each additional local variable allocated
1469    goes at a more negative offset in the frame.  */
1470 #define FRAME_GROWS_DOWNWARD 1
1471 
1472 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1473    When present, it is one word in size, and sits at the top of the frame,
1474    between the soft frame pointer and either r7 or r11.
1475 
1476    We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1477    and only then if some outgoing arguments are passed on the stack.  It would
1478    be tempting to also check whether the stack arguments are passed by indirect
1479    calls, but there seems to be no reason in principle why a post-reload pass
1480    couldn't convert a direct call into an indirect one.  */
1481 #define CALLER_INTERWORKING_SLOT_SIZE			\
1482   (TARGET_CALLER_INTERWORKING				\
1483    && crtl->outgoing_args_size != 0		\
1484    ? UNITS_PER_WORD : 0)
1485 
1486 /* Offset within stack frame to start allocating local variables at.
1487    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1488    first local allocated.  Otherwise, it is the offset to the BEGINNING
1489    of the first local allocated.  */
1490 #define STARTING_FRAME_OFFSET  0
1491 
1492 /* If we generate an insn to push BYTES bytes,
1493    this says how many the stack pointer really advances by.  */
1494 /* The push insns do not do this rounding implicitly.
1495    So don't define this.  */
1496 /* #define PUSH_ROUNDING(NPUSHED)  ROUND_UP_WORD (NPUSHED) */
1497 
1498 /* Define this if the maximum size of all the outgoing args is to be
1499    accumulated and pushed during the prologue.  The amount can be
1500    found in the variable crtl->outgoing_args_size.  */
1501 #define ACCUMULATE_OUTGOING_ARGS 1
1502 
1503 /* Offset of first parameter from the argument pointer register value.  */
1504 #define FIRST_PARM_OFFSET(FNDECL)  (TARGET_ARM ? 4 : 0)
1505 
1506 /* Value is the number of byte of arguments automatically
1507    popped when returning from a subroutine call.
1508    FUNDECL is the declaration node of the function (as a tree),
1509    FUNTYPE is the data type of the function (as a tree),
1510    or for a library call it is an identifier node for the subroutine name.
1511    SIZE is the number of bytes of arguments passed on the stack.
1512 
1513    On the ARM, the caller does not pop any of its arguments that were passed
1514    on the stack.  */
1515 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE)  0
1516 
1517 /* Define how to find the value returned by a library function
1518    assuming the value has mode MODE.  */
1519 #define LIBCALL_VALUE(MODE)  						\
1520   (TARGET_AAPCS_BASED ? aapcs_libcall_value (MODE)			\
1521    : (TARGET_32BIT && TARGET_HARD_FLOAT_ABI && TARGET_FPA		\
1522       && GET_MODE_CLASS (MODE) == MODE_FLOAT)				\
1523    ? gen_rtx_REG (MODE, FIRST_FPA_REGNUM)				\
1524    : TARGET_32BIT && TARGET_HARD_FLOAT_ABI && TARGET_MAVERICK		\
1525      && GET_MODE_CLASS (MODE) == MODE_FLOAT				\
1526    ? gen_rtx_REG (MODE, FIRST_CIRRUS_FP_REGNUM) 			\
1527    : TARGET_IWMMXT_ABI && arm_vector_mode_supported_p (MODE)    	\
1528    ? gen_rtx_REG (MODE, FIRST_IWMMXT_REGNUM) 				\
1529    : gen_rtx_REG (MODE, ARG_REGISTER (1)))
1530 
1531 /* 1 if REGNO is a possible register number for a function value.  */
1532 #define FUNCTION_VALUE_REGNO_P(REGNO)				\
1533   ((REGNO) == ARG_REGISTER (1)					\
1534    || (TARGET_AAPCS_BASED && TARGET_32BIT 			\
1535        && TARGET_VFP && TARGET_HARD_FLOAT			\
1536        && (REGNO) == FIRST_VFP_REGNUM)				\
1537    || (TARGET_32BIT && ((REGNO) == FIRST_CIRRUS_FP_REGNUM)	\
1538        && TARGET_HARD_FLOAT_ABI && TARGET_MAVERICK)		\
1539    || ((REGNO) == FIRST_IWMMXT_REGNUM && TARGET_IWMMXT_ABI)	\
1540    || (TARGET_32BIT && ((REGNO) == FIRST_FPA_REGNUM)		\
1541        && TARGET_HARD_FLOAT_ABI && TARGET_FPA))
1542 
1543 /* Amount of memory needed for an untyped call to save all possible return
1544    registers.  */
1545 #define APPLY_RESULT_SIZE arm_apply_result_size()
1546 
1547 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1548    values must be in memory.  On the ARM, they need only do so if larger
1549    than a word, or if they contain elements offset from zero in the struct.  */
1550 #define DEFAULT_PCC_STRUCT_RETURN 0
1551 
1552 /* These bits describe the different types of function supported
1553    by the ARM backend.  They are exclusive.  i.e. a function cannot be both a
1554    normal function and an interworked function, for example.  Knowing the
1555    type of a function is important for determining its prologue and
1556    epilogue sequences.
1557    Note value 7 is currently unassigned.  Also note that the interrupt
1558    function types all have bit 2 set, so that they can be tested for easily.
1559    Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1560    machine_function structure is initialized (to zero) func_type will
1561    default to unknown.  This will force the first use of arm_current_func_type
1562    to call arm_compute_func_type.  */
1563 #define ARM_FT_UNKNOWN		 0 /* Type has not yet been determined.  */
1564 #define ARM_FT_NORMAL		 1 /* Your normal, straightforward function.  */
1565 #define ARM_FT_INTERWORKED	 2 /* A function that supports interworking.  */
1566 #define ARM_FT_ISR		 4 /* An interrupt service routine.  */
1567 #define ARM_FT_FIQ		 5 /* A fast interrupt service routine.  */
1568 #define ARM_FT_EXCEPTION	 6 /* An ARM exception handler (subcase of ISR).  */
1569 
1570 #define ARM_FT_TYPE_MASK	((1 << 3) - 1)
1571 
1572 /* In addition functions can have several type modifiers,
1573    outlined by these bit masks:  */
1574 #define ARM_FT_INTERRUPT	(1 << 2) /* Note overlap with FT_ISR and above.  */
1575 #define ARM_FT_NAKED		(1 << 3) /* No prologue or epilogue.  */
1576 #define ARM_FT_VOLATILE		(1 << 4) /* Does not return.  */
1577 #define ARM_FT_NESTED		(1 << 5) /* Embedded inside another func.  */
1578 #define ARM_FT_STACKALIGN	(1 << 6) /* Called with misaligned stack.  */
1579 
1580 /* Some macros to test these flags.  */
1581 #define ARM_FUNC_TYPE(t)	(t & ARM_FT_TYPE_MASK)
1582 #define IS_INTERRUPT(t)		(t & ARM_FT_INTERRUPT)
1583 #define IS_VOLATILE(t)     	(t & ARM_FT_VOLATILE)
1584 #define IS_NAKED(t)        	(t & ARM_FT_NAKED)
1585 #define IS_NESTED(t)       	(t & ARM_FT_NESTED)
1586 #define IS_STACKALIGN(t)       	(t & ARM_FT_STACKALIGN)
1587 
1588 
1589 /* Structure used to hold the function stack frame layout.  Offsets are
1590    relative to the stack pointer on function entry.  Positive offsets are
1591    in the direction of stack growth.
1592    Only soft_frame is used in thumb mode.  */
1593 
1594 typedef struct GTY(()) arm_stack_offsets
1595 {
1596   int saved_args;	/* ARG_POINTER_REGNUM.  */
1597   int frame;		/* ARM_HARD_FRAME_POINTER_REGNUM.  */
1598   int saved_regs;
1599   int soft_frame;	/* FRAME_POINTER_REGNUM.  */
1600   int locals_base;	/* THUMB_HARD_FRAME_POINTER_REGNUM.  */
1601   int outgoing_args;	/* STACK_POINTER_REGNUM.  */
1602   unsigned int saved_regs_mask;
1603 }
1604 arm_stack_offsets;
1605 
1606 /* A C structure for machine-specific, per-function data.
1607    This is added to the cfun structure.  */
1608 typedef struct GTY(()) machine_function
1609 {
1610   /* Additional stack adjustment in __builtin_eh_throw.  */
1611   rtx eh_epilogue_sp_ofs;
1612   /* Records if LR has to be saved for far jumps.  */
1613   int far_jump_used;
1614   /* Records if ARG_POINTER was ever live.  */
1615   int arg_pointer_live;
1616   /* Records if the save of LR has been eliminated.  */
1617   int lr_save_eliminated;
1618   /* The size of the stack frame.  Only valid after reload.  */
1619   arm_stack_offsets stack_offsets;
1620   /* Records the type of the current function.  */
1621   unsigned long func_type;
1622   /* Record if the function has a variable argument list.  */
1623   int uses_anonymous_args;
1624   /* Records if sibcalls are blocked because an argument
1625      register is needed to preserve stack alignment.  */
1626   int sibcall_blocked;
1627   /* The PIC register for this function.  This might be a pseudo.  */
1628   rtx pic_reg;
1629   /* Labels for per-function Thumb call-via stubs.  One per potential calling
1630      register.  We can never call via LR or PC.  We can call via SP if a
1631      trampoline happens to be on the top of the stack.  */
1632   rtx call_via[14];
1633   /* Set to 1 when a return insn is output, this means that the epilogue
1634      is not needed.  */
1635   int return_used_this_function;
1636 }
1637 machine_function;
1638 
1639 /* As in the machine_function, a global set of call-via labels, for code
1640    that is in text_section.  */
1641 extern GTY(()) rtx thumb_call_via_label[14];
1642 
1643 /* The number of potential ways of assigning to a co-processor.  */
1644 #define ARM_NUM_COPROC_SLOTS 1
1645 
1646 /* Enumeration of procedure calling standard variants.  We don't really
1647    support all of these yet.  */
1648 enum arm_pcs
1649 {
1650   ARM_PCS_AAPCS,	/* Base standard AAPCS.  */
1651   ARM_PCS_AAPCS_VFP,	/* Use VFP registers for floating point values.  */
1652   ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors.  */
1653   /* This must be the last AAPCS variant.  */
1654   ARM_PCS_AAPCS_LOCAL,	/* Private call within this compilation unit.  */
1655   ARM_PCS_ATPCS,	/* ATPCS.  */
1656   ARM_PCS_APCS,		/* APCS (legacy Linux etc).  */
1657   ARM_PCS_UNKNOWN
1658 };
1659 
1660 /* A C type for declaring a variable that is used as the first argument of
1661    `FUNCTION_ARG' and other related values.  */
1662 typedef struct
1663 {
1664   /* This is the number of registers of arguments scanned so far.  */
1665   int nregs;
1666   /* This is the number of iWMMXt register arguments scanned so far.  */
1667   int iwmmxt_nregs;
1668   int named_count;
1669   int nargs;
1670   /* Which procedure call variant to use for this call.  */
1671   enum arm_pcs pcs_variant;
1672 
1673   /* AAPCS related state tracking.  */
1674   int aapcs_arg_processed;  /* No need to lay out this argument again.  */
1675   int aapcs_cprc_slot;      /* Index of co-processor rules to handle
1676 			       this argument, or -1 if using core
1677 			       registers.  */
1678   int aapcs_ncrn;
1679   int aapcs_next_ncrn;
1680   rtx aapcs_reg;	    /* Register assigned to this argument.  */
1681   int aapcs_partial;	    /* How many bytes are passed in regs (if
1682 			       split between core regs and stack.
1683 			       Zero otherwise.  */
1684   int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1685   int can_split;	    /* Argument can be split between core regs
1686 			       and the stack.  */
1687   /* Private data for tracking VFP register allocation */
1688   unsigned aapcs_vfp_regs_free;
1689   unsigned aapcs_vfp_reg_alloc;
1690   int aapcs_vfp_rcount;
1691   MACHMODE aapcs_vfp_rmode;
1692 } CUMULATIVE_ARGS;
1693 
1694 /* Define where to put the arguments to a function.
1695    Value is zero to push the argument on the stack,
1696    or a hard register in which to store the argument.
1697 
1698    MODE is the argument's machine mode.
1699    TYPE is the data type of the argument (as a tree).
1700     This is null for libcalls where that information may
1701     not be available.
1702    CUM is a variable of type CUMULATIVE_ARGS which gives info about
1703     the preceding args and about the function being called.
1704    NAMED is nonzero if this argument is a named parameter
1705     (otherwise it is an extra parameter matching an ellipsis).
1706 
1707    On the ARM, normally the first 16 bytes are passed in registers r0-r3; all
1708    other arguments are passed on the stack.  If (NAMED == 0) (which happens
1709    only in assign_parms, since TARGET_SETUP_INCOMING_VARARGS is
1710    defined), say it is passed in the stack (function_prologue will
1711    indeed make it pass in the stack if necessary).  */
1712 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1713   arm_function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1714 
1715 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1716   (arm_pad_arg_upward (MODE, TYPE) ? upward : downward)
1717 
1718 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1719   (arm_pad_reg_upward (MODE, TYPE, FIRST) ? upward : downward)
1720 
1721 /* For AAPCS, padding should never be below the argument. For other ABIs,
1722  * mimic the default.  */
1723 #define PAD_VARARGS_DOWN \
1724   ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1725 
1726 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1727    for a call to a function whose data type is FNTYPE.
1728    For a library call, FNTYPE is 0.
1729    On the ARM, the offset starts at 0.  */
1730 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1731   arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1732 
1733 /* Update the data in CUM to advance over an argument
1734    of mode MODE and data type TYPE.
1735    (TYPE is null for libcalls where that information may not be available.)  */
1736 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)	\
1737   arm_function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1738 
1739 /* If defined, a C expression that gives the alignment boundary, in bits, of an
1740    argument with the specified mode and type.  If it is not defined,
1741    `PARM_BOUNDARY' is used for all arguments.  */
1742 #define FUNCTION_ARG_BOUNDARY(MODE,TYPE) \
1743    ((ARM_DOUBLEWORD_ALIGN && arm_needs_doubleword_align (MODE, TYPE)) \
1744    ? DOUBLEWORD_ALIGNMENT \
1745    : PARM_BOUNDARY )
1746 
1747 /* 1 if N is a possible register number for function argument passing.
1748    On the ARM, r0-r3 are used to pass args.  */
1749 #define FUNCTION_ARG_REGNO_P(REGNO)					\
1750    (IN_RANGE ((REGNO), 0, 3)						\
1751     || (TARGET_AAPCS_BASED && TARGET_VFP && TARGET_HARD_FLOAT		\
1752 	&& IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15))	\
1753     || (TARGET_IWMMXT_ABI						\
1754 	&& IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1755 
1756 
1757 /* If your target environment doesn't prefix user functions with an
1758    underscore, you may wish to re-define this to prevent any conflicts.  */
1759 #ifndef ARM_MCOUNT_NAME
1760 #define ARM_MCOUNT_NAME "*mcount"
1761 #endif
1762 
1763 /* Call the function profiler with a given profile label.  The Acorn
1764    compiler puts this BEFORE the prolog but gcc puts it afterwards.
1765    On the ARM the full profile code will look like:
1766 	.data
1767 	LP1
1768 		.word	0
1769 	.text
1770 		mov	ip, lr
1771 		bl	mcount
1772 		.word	LP1
1773 
1774    profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1775    will output the .text section.
1776 
1777    The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1778    ``prof'' doesn't seem to mind about this!
1779 
1780    Note - this version of the code is designed to work in both ARM and
1781    Thumb modes.  */
1782 #ifndef ARM_FUNCTION_PROFILER
1783 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO)  	\
1784 {							\
1785   char temp[20];					\
1786   rtx sym;						\
1787 							\
1788   asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t",		\
1789 	   IP_REGNUM, LR_REGNUM);			\
1790   assemble_name (STREAM, ARM_MCOUNT_NAME);		\
1791   fputc ('\n', STREAM);					\
1792   ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO);	\
1793   sym = gen_rtx_SYMBOL_REF (Pmode, temp);		\
1794   assemble_aligned_integer (UNITS_PER_WORD, sym);	\
1795 }
1796 #endif
1797 
1798 #ifdef THUMB_FUNCTION_PROFILER
1799 #define FUNCTION_PROFILER(STREAM, LABELNO)		\
1800   if (TARGET_ARM)					\
1801     ARM_FUNCTION_PROFILER (STREAM, LABELNO)		\
1802   else							\
1803     THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1804 #else
1805 #define FUNCTION_PROFILER(STREAM, LABELNO)		\
1806     ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1807 #endif
1808 
1809 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1810    the stack pointer does not matter.  The value is tested only in
1811    functions that have frame pointers.
1812    No definition is equivalent to always zero.
1813 
1814    On the ARM, the function epilogue recovers the stack pointer from the
1815    frame.  */
1816 #define EXIT_IGNORE_STACK 1
1817 
1818 #define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNUM)
1819 
1820 /* Determine if the epilogue should be output as RTL.
1821    You should override this if you define FUNCTION_EXTRA_EPILOGUE.  */
1822 /* This is disabled for Thumb-2 because it will confuse the
1823    conditional insn counter.  */
1824 #define USE_RETURN_INSN(ISCOND)				\
1825   (TARGET_ARM ? use_return_insn (ISCOND, NULL) : 0)
1826 
1827 /* Definitions for register eliminations.
1828 
1829    This is an array of structures.  Each structure initializes one pair
1830    of eliminable registers.  The "from" register number is given first,
1831    followed by "to".  Eliminations of the same "from" register are listed
1832    in order of preference.
1833 
1834    We have two registers that can be eliminated on the ARM.  First, the
1835    arg pointer register can often be eliminated in favor of the stack
1836    pointer register.  Secondly, the pseudo frame pointer register can always
1837    be eliminated; it is replaced with either the stack or the real frame
1838    pointer.  Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1839    because the definition of HARD_FRAME_POINTER_REGNUM is not a constant.  */
1840 
1841 #define ELIMINABLE_REGS						\
1842 {{ ARG_POINTER_REGNUM,        STACK_POINTER_REGNUM            },\
1843  { ARG_POINTER_REGNUM,        FRAME_POINTER_REGNUM            },\
1844  { ARG_POINTER_REGNUM,        ARM_HARD_FRAME_POINTER_REGNUM   },\
1845  { ARG_POINTER_REGNUM,        THUMB_HARD_FRAME_POINTER_REGNUM },\
1846  { FRAME_POINTER_REGNUM,      STACK_POINTER_REGNUM            },\
1847  { FRAME_POINTER_REGNUM,      ARM_HARD_FRAME_POINTER_REGNUM   },\
1848  { FRAME_POINTER_REGNUM,      THUMB_HARD_FRAME_POINTER_REGNUM }}
1849 
1850 /* Define the offset between two registers, one to be eliminated, and the
1851    other its replacement, at the start of a routine.  */
1852 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
1853   if (TARGET_ARM)							\
1854     (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO);	\
1855   else									\
1856     (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1857 
1858 /* Special case handling of the location of arguments passed on the stack.  */
1859 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1860 
1861 /* Initialize data used by insn expanders.  This is called from insn_emit,
1862    once for every function before code is generated.  */
1863 #define INIT_EXPANDERS  arm_init_expanders ()
1864 
1865 /* Length in units of the trampoline for entering a nested function.  */
1866 #define TRAMPOLINE_SIZE  (TARGET_32BIT ? 16 : 20)
1867 
1868 /* Alignment required for a trampoline in bits.  */
1869 #define TRAMPOLINE_ALIGNMENT  32
1870 
1871 /* Addressing modes, and classification of registers for them.  */
1872 #define HAVE_POST_INCREMENT   1
1873 #define HAVE_PRE_INCREMENT    TARGET_32BIT
1874 #define HAVE_POST_DECREMENT   TARGET_32BIT
1875 #define HAVE_PRE_DECREMENT    TARGET_32BIT
1876 #define HAVE_PRE_MODIFY_DISP  TARGET_32BIT
1877 #define HAVE_POST_MODIFY_DISP TARGET_32BIT
1878 #define HAVE_PRE_MODIFY_REG   TARGET_32BIT
1879 #define HAVE_POST_MODIFY_REG  TARGET_32BIT
1880 
1881 /* Macros to check register numbers against specific register classes.  */
1882 
1883 /* These assume that REGNO is a hard or pseudo reg number.
1884    They give nonzero only if REGNO is a hard reg of the suitable class
1885    or a pseudo reg currently allocated to a suitable hard reg.
1886    Since they use reg_renumber, they are safe only once reg_renumber
1887    has been allocated, which happens in local-alloc.c.  */
1888 #define TEST_REGNO(R, TEST, VALUE) \
1889   ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
1890 
1891 /* Don't allow the pc to be used.  */
1892 #define ARM_REGNO_OK_FOR_BASE_P(REGNO)			\
1893   (TEST_REGNO (REGNO, <, PC_REGNUM)			\
1894    || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM)	\
1895    || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1896 
1897 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE)		\
1898   (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM)			\
1899    || (GET_MODE_SIZE (MODE) >= 4				\
1900        && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1901 
1902 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE)		\
1903   (TARGET_THUMB1					\
1904    ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE)	\
1905    : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1906 
1907 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1908    For Thumb, we can not use SP + reg, so reject SP.  */
1909 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE)	\
1910   REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1911 
1912 /* For ARM code, we don't care about the mode, but for Thumb, the index
1913    must be suitable for use in a QImode load.  */
1914 #define REGNO_OK_FOR_INDEX_P(REGNO)	\
1915   (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1916    && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1917 
1918 /* Maximum number of registers that can appear in a valid memory address.
1919    Shifts in addresses can't be by a register.  */
1920 #define MAX_REGS_PER_ADDRESS 2
1921 
1922 /* Recognize any constant value that is a valid address.  */
1923 /* XXX We can address any constant, eventually...  */
1924 /* ??? Should the TARGET_ARM here also apply to thumb2?  */
1925 #define CONSTANT_ADDRESS_P(X)  			\
1926   (GET_CODE (X) == SYMBOL_REF 			\
1927    && (CONSTANT_POOL_ADDRESS_P (X)		\
1928        || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1929 
1930 /* True if SYMBOL + OFFSET constants must refer to something within
1931    SYMBOL's section.  */
1932 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1933 
1934 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32.  */
1935 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1936 #define TARGET_DEFAULT_WORD_RELOCATIONS 0
1937 #endif
1938 
1939 /* Nonzero if the constant value X is a legitimate general operand.
1940    It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1941 
1942    On the ARM, allow any integer (invalid ones are removed later by insn
1943    patterns), nice doubles and symbol_refs which refer to the function's
1944    constant pool XXX.
1945 
1946    When generating pic allow anything.  */
1947 #define ARM_LEGITIMATE_CONSTANT_P(X)	(flag_pic || ! label_mentioned_p (X))
1948 
1949 #define THUMB_LEGITIMATE_CONSTANT_P(X)	\
1950  (   GET_CODE (X) == CONST_INT		\
1951   || GET_CODE (X) == CONST_DOUBLE	\
1952   || CONSTANT_ADDRESS_P (X)		\
1953   || flag_pic)
1954 
1955 #define LEGITIMATE_CONSTANT_P(X)			\
1956   (!arm_cannot_force_const_mem (X)			\
1957    && (TARGET_32BIT ? ARM_LEGITIMATE_CONSTANT_P (X)	\
1958 		    : THUMB_LEGITIMATE_CONSTANT_P (X)))
1959 
1960 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1961 #define SUBTARGET_NAME_ENCODING_LENGTHS
1962 #endif
1963 
1964 /* This is a C fragment for the inside of a switch statement.
1965    Each case label should return the number of characters to
1966    be stripped from the start of a function's name, if that
1967    name starts with the indicated character.  */
1968 #define ARM_NAME_ENCODING_LENGTHS		\
1969   case '*':  return 1;				\
1970   SUBTARGET_NAME_ENCODING_LENGTHS
1971 
1972 /* This is how to output a reference to a user-level label named NAME.
1973    `assemble_name' uses this.  */
1974 #undef  ASM_OUTPUT_LABELREF
1975 #define ASM_OUTPUT_LABELREF(FILE, NAME)		\
1976    arm_asm_output_labelref (FILE, NAME)
1977 
1978 /* Output IT instructions for conditionally executed Thumb-2 instructions.  */
1979 #define ASM_OUTPUT_OPCODE(STREAM, PTR)	\
1980   if (TARGET_THUMB2)			\
1981     thumb2_asm_output_opcode (STREAM);
1982 
1983 /* The EABI specifies that constructors should go in .init_array.
1984    Other targets use .ctors for compatibility.  */
1985 #ifndef ARM_EABI_CTORS_SECTION_OP
1986 #define ARM_EABI_CTORS_SECTION_OP \
1987   "\t.section\t.init_array,\"aw\",%init_array"
1988 #endif
1989 #ifndef ARM_EABI_DTORS_SECTION_OP
1990 #define ARM_EABI_DTORS_SECTION_OP \
1991   "\t.section\t.fini_array,\"aw\",%fini_array"
1992 #endif
1993 #define ARM_CTORS_SECTION_OP \
1994   "\t.section\t.ctors,\"aw\",%progbits"
1995 #define ARM_DTORS_SECTION_OP \
1996   "\t.section\t.dtors,\"aw\",%progbits"
1997 
1998 /* Define CTORS_SECTION_ASM_OP.  */
1999 #undef CTORS_SECTION_ASM_OP
2000 #undef DTORS_SECTION_ASM_OP
2001 #ifndef IN_LIBGCC2
2002 # define CTORS_SECTION_ASM_OP \
2003    (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
2004 # define DTORS_SECTION_ASM_OP \
2005    (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
2006 #else /* !defined (IN_LIBGCC2) */
2007 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
2008    so we cannot use the definition above.  */
2009 # ifdef __ARM_EABI__
2010 /* The .ctors section is not part of the EABI, so we do not define
2011    CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
2012    from trying to use it.  We do define it when doing normal
2013    compilation, as .init_array can be used instead of .ctors.  */
2014 /* There is no need to emit begin or end markers when using
2015    init_array; the dynamic linker will compute the size of the
2016    array itself based on special symbols created by the static
2017    linker.  However, we do need to arrange to set up
2018    exception-handling here.  */
2019 #   define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
2020 #   define CTOR_LIST_END /* empty */
2021 #   define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
2022 #   define DTOR_LIST_END /* empty */
2023 # else /* !defined (__ARM_EABI__) */
2024 #   define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
2025 #   define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
2026 # endif /* !defined (__ARM_EABI__) */
2027 #endif /* !defined (IN_LIBCC2) */
2028 
2029 /* True if the operating system can merge entities with vague linkage
2030    (e.g., symbols in COMDAT group) during dynamic linking.  */
2031 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
2032 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
2033 #endif
2034 
2035 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
2036 
2037 #ifdef TARGET_UNWIND_INFO
2038 #define ARM_EABI_UNWIND_TABLES \
2039   ((!USING_SJLJ_EXCEPTIONS && flag_exceptions) || flag_unwind_tables)
2040 #else
2041 #define ARM_EABI_UNWIND_TABLES 0
2042 #endif
2043 
2044 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2045    and check its validity for a certain class.
2046    We have two alternate definitions for each of them.
2047    The usual definition accepts all pseudo regs; the other rejects
2048    them unless they have been allocated suitable hard regs.
2049    The symbol REG_OK_STRICT causes the latter definition to be used.
2050    Thumb-2 has the same restrictions as arm.  */
2051 #ifndef REG_OK_STRICT
2052 
2053 #define ARM_REG_OK_FOR_BASE_P(X)		\
2054   (REGNO (X) <= LAST_ARM_REGNUM			\
2055    || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
2056    || REGNO (X) == FRAME_POINTER_REGNUM		\
2057    || REGNO (X) == ARG_POINTER_REGNUM)
2058 
2059 #define ARM_REG_OK_FOR_INDEX_P(X)		\
2060   ((REGNO (X) <= LAST_ARM_REGNUM		\
2061     && REGNO (X) != STACK_POINTER_REGNUM)	\
2062    || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
2063    || REGNO (X) == FRAME_POINTER_REGNUM		\
2064    || REGNO (X) == ARG_POINTER_REGNUM)
2065 
2066 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE)	\
2067   (REGNO (X) <= LAST_LO_REGNUM			\
2068    || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
2069    || (GET_MODE_SIZE (MODE) >= 4		\
2070        && (REGNO (X) == STACK_POINTER_REGNUM	\
2071 	   || (X) == hard_frame_pointer_rtx	\
2072 	   || (X) == arg_pointer_rtx)))
2073 
2074 #define REG_STRICT_P 0
2075 
2076 #else /* REG_OK_STRICT */
2077 
2078 #define ARM_REG_OK_FOR_BASE_P(X) 		\
2079   ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
2080 
2081 #define ARM_REG_OK_FOR_INDEX_P(X) 		\
2082   ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
2083 
2084 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE)	\
2085   THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
2086 
2087 #define REG_STRICT_P 1
2088 
2089 #endif /* REG_OK_STRICT */
2090 
2091 /* Now define some helpers in terms of the above.  */
2092 
2093 #define REG_MODE_OK_FOR_BASE_P(X, MODE)		\
2094   (TARGET_THUMB1				\
2095    ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE)	\
2096    : ARM_REG_OK_FOR_BASE_P (X))
2097 
2098 /* For 16-bit Thumb, a valid index register is anything that can be used in
2099    a byte load instruction.  */
2100 #define THUMB1_REG_OK_FOR_INDEX_P(X) \
2101   THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
2102 
2103 /* Nonzero if X is a hard reg that can be used as an index
2104    or if it is a pseudo reg.  On the Thumb, the stack pointer
2105    is not suitable.  */
2106 #define REG_OK_FOR_INDEX_P(X)			\
2107   (TARGET_THUMB1				\
2108    ? THUMB1_REG_OK_FOR_INDEX_P (X)		\
2109    : ARM_REG_OK_FOR_INDEX_P (X))
2110 
2111 /* Nonzero if X can be the base register in a reg+reg addressing mode.
2112    For Thumb, we can not use SP + reg, so reject SP.  */
2113 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE)	\
2114   REG_OK_FOR_INDEX_P (X)
2115 
2116 #define ARM_BASE_REGISTER_RTX_P(X)  \
2117   (GET_CODE (X) == REG && ARM_REG_OK_FOR_BASE_P (X))
2118 
2119 #define ARM_INDEX_REGISTER_RTX_P(X)  \
2120   (GET_CODE (X) == REG && ARM_REG_OK_FOR_INDEX_P (X))
2121 
2122 /* Define this for compatibility reasons. */
2123 #define HANDLE_PRAGMA_PACK_PUSH_POP 1
2124 
2125 /* Specify the machine mode that this machine uses
2126    for the index in the tablejump instruction.  */
2127 #define CASE_VECTOR_MODE Pmode
2128 
2129 #define CASE_VECTOR_PC_RELATIVE (TARGET_THUMB2				\
2130 				 || (TARGET_THUMB1			\
2131 				     && (optimize_size || flag_pic)))
2132 
2133 #define CASE_VECTOR_SHORTEN_MODE(min, max, body)			\
2134   (TARGET_THUMB1							\
2135    ? (min >= 0 && max < 512						\
2136       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode)	\
2137       : min >= -256 && max < 256					\
2138       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode)	\
2139       : min >= 0 && max < 8192						\
2140       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode)	\
2141       : min >= -4096 && max < 4096					\
2142       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode)	\
2143       : SImode)								\
2144    : ((min < 0 || max >= 0x2000 || !TARGET_THUMB2) ? SImode		\
2145       : (max >= 0x200) ? HImode						\
2146       : QImode))
2147 
2148 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
2149    unsigned is probably best, but may break some code.  */
2150 #ifndef DEFAULT_SIGNED_CHAR
2151 #define DEFAULT_SIGNED_CHAR  0
2152 #endif
2153 
2154 /* Max number of bytes we can move from memory to memory
2155    in one reasonably fast instruction.  */
2156 #define MOVE_MAX 4
2157 
2158 #undef  MOVE_RATIO
2159 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
2160 
2161 /* Define if operations between registers always perform the operation
2162    on the full register even if a narrower mode is specified.  */
2163 #define WORD_REGISTER_OPERATIONS
2164 
2165 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2166    will either zero-extend or sign-extend.  The value of this macro should
2167    be the code that says which one of the two operations is implicitly
2168    done, UNKNOWN if none.  */
2169 #define LOAD_EXTEND_OP(MODE)						\
2170   (TARGET_THUMB ? ZERO_EXTEND :						\
2171    ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND			\
2172     : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
2173 
2174 /* Nonzero if access to memory by bytes is slow and undesirable.  */
2175 #define SLOW_BYTE_ACCESS 0
2176 
2177 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
2178 
2179 /* Immediate shift counts are truncated by the output routines (or was it
2180    the assembler?).  Shift counts in a register are truncated by ARM.  Note
2181    that the native compiler puts too large (> 32) immediate shift counts
2182    into a register and shifts by the register, letting the ARM decide what
2183    to do instead of doing that itself.  */
2184 /* This is all wrong.  Defining SHIFT_COUNT_TRUNCATED tells combine that
2185    code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
2186    On the arm, Y in a register is used modulo 256 for the shift. Only for
2187    rotates is modulo 32 used.  */
2188 /* #define SHIFT_COUNT_TRUNCATED 1 */
2189 
2190 /* All integers have the same format so truncation is easy.  */
2191 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC)  1
2192 
2193 /* Calling from registers is a massive pain.  */
2194 #define NO_FUNCTION_CSE 1
2195 
2196 /* The machine modes of pointers and functions */
2197 #define Pmode  SImode
2198 #define FUNCTION_MODE  Pmode
2199 
2200 #define ARM_FRAME_RTX(X)					\
2201   (   (X) == frame_pointer_rtx || (X) == stack_pointer_rtx	\
2202    || (X) == arg_pointer_rtx)
2203 
2204 /* Moves to and from memory are quite expensive */
2205 #define MEMORY_MOVE_COST(M, CLASS, IN)			\
2206   (TARGET_32BIT ? 10 :					\
2207    ((GET_MODE_SIZE (M) < 4 ? 8 : 2 * GET_MODE_SIZE (M))	\
2208     * (CLASS == LO_REGS ? 1 : 2)))
2209 
2210 /* Try to generate sequences that don't involve branches, we can then use
2211    conditional instructions */
2212 #define BRANCH_COST(speed_p, predictable_p) \
2213   (TARGET_32BIT ? 4 : (optimize > 0 ? 2 : 0))
2214 
2215 /* Position Independent Code.  */
2216 /* We decide which register to use based on the compilation options and
2217    the assembler in use; this is more general than the APCS restriction of
2218    using sb (r9) all the time.  */
2219 extern unsigned arm_pic_register;
2220 
2221 /* The register number of the register used to address a table of static
2222    data addresses in memory.  */
2223 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
2224 
2225 /* We can't directly access anything that contains a symbol,
2226    nor can we indirect via the constant pool.  One exception is
2227    UNSPEC_TLS, which is always PIC.  */
2228 #define LEGITIMATE_PIC_OPERAND_P(X)					\
2229 	(!(symbol_mentioned_p (X)					\
2230 	   || label_mentioned_p (X)					\
2231 	   || (GET_CODE (X) == SYMBOL_REF				\
2232 	       && CONSTANT_POOL_ADDRESS_P (X)				\
2233 	       && (symbol_mentioned_p (get_pool_constant (X))		\
2234 		   || label_mentioned_p (get_pool_constant (X)))))	\
2235 	 || tls_mentioned_p (X))
2236 
2237 /* We need to know when we are making a constant pool; this determines
2238    whether data needs to be in the GOT or can be referenced via a GOT
2239    offset.  */
2240 extern int making_const_table;
2241 
2242 /* Handle pragmas for compatibility with Intel's compilers.  */
2243 /* Also abuse this to register additional C specific EABI attributes.  */
2244 #define REGISTER_TARGET_PRAGMAS() do {					\
2245   c_register_pragma (0, "long_calls", arm_pr_long_calls);		\
2246   c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls);		\
2247   c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off);	\
2248   arm_lang_object_attributes_init(); \
2249 } while (0)
2250 
2251 /* Condition code information.  */
2252 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2253    return the mode to be used for the comparison.  */
2254 
2255 #define SELECT_CC_MODE(OP, X, Y)  arm_select_cc_mode (OP, X, Y)
2256 
2257 #define REVERSIBLE_CC_MODE(MODE) 1
2258 
2259 #define REVERSE_CONDITION(CODE,MODE) \
2260   (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
2261    ? reverse_condition_maybe_unordered (code) \
2262    : reverse_condition (code))
2263 
2264 #define CANONICALIZE_COMPARISON(CODE, OP0, OP1)				\
2265   do									\
2266     {									\
2267       if (GET_CODE (OP1) == CONST_INT					\
2268           && ! (const_ok_for_arm (INTVAL (OP1))				\
2269 	        || (const_ok_for_arm (- INTVAL (OP1)))))		\
2270         {								\
2271           rtx const_op = OP1;						\
2272           CODE = arm_canonicalize_comparison ((CODE), GET_MODE (OP0),	\
2273 					      &const_op);		\
2274           OP1 = const_op;						\
2275         }								\
2276     }									\
2277   while (0)
2278 
2279 /* The arm5 clz instruction returns 32.  */
2280 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)  ((VALUE) = 32, 1)
2281 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)  ((VALUE) = 32, 1)
2282 
2283 #undef  ASM_APP_OFF
2284 #define ASM_APP_OFF (TARGET_THUMB1 ? "\t.code\t16\n" : \
2285 		     TARGET_THUMB2 ? "\t.thumb\n" : "")
2286 
2287 /* Output a push or a pop instruction (only used when profiling).
2288    We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1.  We know
2289    that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
2290    that r7 isn't used by the function profiler, so we can use it as a
2291    scratch reg.  WARNING: This isn't safe in the general case!  It may be
2292    sensitive to future changes in final.c:profile_function.  */
2293 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO)		\
2294   do							\
2295     {							\
2296       if (TARGET_ARM)					\
2297 	asm_fprintf (STREAM,"\tstmfd\t%r!,{%r}\n",	\
2298 		     STACK_POINTER_REGNUM, REGNO);	\
2299       else if (TARGET_THUMB1				\
2300 	       && (REGNO) == STATIC_CHAIN_REGNUM)	\
2301 	{						\
2302 	  asm_fprintf (STREAM, "\tpush\t{r7}\n");	\
2303 	  asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
2304 	  asm_fprintf (STREAM, "\tpush\t{r7}\n");	\
2305 	}						\
2306       else						\
2307 	asm_fprintf (STREAM, "\tpush {%r}\n", REGNO);	\
2308     } while (0)
2309 
2310 
2311 /* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue.  */
2312 #define ASM_OUTPUT_REG_POP(STREAM, REGNO)		\
2313   do							\
2314     {							\
2315       if (TARGET_ARM)					\
2316 	asm_fprintf (STREAM, "\tldmfd\t%r!,{%r}\n",	\
2317 		     STACK_POINTER_REGNUM, REGNO);	\
2318       else if (TARGET_THUMB1				\
2319 	       && (REGNO) == STATIC_CHAIN_REGNUM)	\
2320 	{						\
2321 	  asm_fprintf (STREAM, "\tpop\t{r7}\n");	\
2322 	  asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2323 	  asm_fprintf (STREAM, "\tpop\t{r7}\n");	\
2324 	}						\
2325       else						\
2326 	asm_fprintf (STREAM, "\tpop {%r}\n", REGNO);	\
2327     } while (0)
2328 
2329 /* Jump table alignment is explicit in ASM_OUTPUT_CASE_LABEL.  */
2330 #define ADDR_VEC_ALIGN(JUMPTABLE) 0
2331 
2332 /* This is how to output a label which precedes a jumptable.  Since
2333    Thumb instructions are 2 bytes, we may need explicit alignment here.  */
2334 #undef  ASM_OUTPUT_CASE_LABEL
2335 #define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, JUMPTABLE)		\
2336   do									\
2337     {									\
2338       if (TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode)	\
2339         ASM_OUTPUT_ALIGN (FILE, 2);					\
2340       (*targetm.asm_out.internal_label) (FILE, PREFIX, NUM);		\
2341     }									\
2342   while (0)
2343 
2344 /* Make sure subsequent insns are aligned after a TBB.  */
2345 #define ASM_OUTPUT_CASE_END(FILE, NUM, JUMPTABLE)	\
2346   do							\
2347     {							\
2348       if (GET_MODE (PATTERN (JUMPTABLE)) == QImode)	\
2349 	ASM_OUTPUT_ALIGN (FILE, 1);			\
2350     }							\
2351   while (0)
2352 
2353 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) 	\
2354   do							\
2355     {							\
2356       if (TARGET_THUMB) 				\
2357         {						\
2358           if (is_called_in_ARM_mode (DECL)		\
2359 	      || (TARGET_THUMB1 && !TARGET_THUMB1_ONLY	\
2360 		  && cfun->is_thunk))	\
2361             fprintf (STREAM, "\t.code 32\n") ;		\
2362           else if (TARGET_THUMB1)			\
2363            fprintf (STREAM, "\t.code\t16\n\t.thumb_func\n") ;	\
2364           else						\
2365            fprintf (STREAM, "\t.thumb\n\t.thumb_func\n") ;	\
2366         }						\
2367       if (TARGET_POKE_FUNCTION_NAME)			\
2368         arm_poke_function_name (STREAM, (const char *) NAME);	\
2369     }							\
2370   while (0)
2371 
2372 /* For aliases of functions we use .thumb_set instead.  */
2373 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2)		\
2374   do						   		\
2375     {								\
2376       const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2377       const char *const LABEL2 = IDENTIFIER_POINTER (DECL2);	\
2378 								\
2379       if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL)	\
2380 	{							\
2381 	  fprintf (FILE, "\t.thumb_set ");			\
2382 	  assemble_name (FILE, LABEL1);			   	\
2383 	  fprintf (FILE, ",");			   		\
2384 	  assemble_name (FILE, LABEL2);		   		\
2385 	  fprintf (FILE, "\n");					\
2386 	}							\
2387       else							\
2388 	ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2);			\
2389     }								\
2390   while (0)
2391 
2392 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2393 /* To support -falign-* switches we need to use .p2align so
2394    that alignment directives in code sections will be padded
2395    with no-op instructions, rather than zeroes.  */
2396 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP)		\
2397   if ((LOG) != 0)						\
2398     {								\
2399       if ((MAX_SKIP) == 0)					\
2400         fprintf ((FILE), "\t.p2align %d\n", (int) (LOG));	\
2401       else							\
2402         fprintf ((FILE), "\t.p2align %d,,%d\n",			\
2403                  (int) (LOG), (int) (MAX_SKIP));		\
2404     }
2405 #endif
2406 
2407 /* Add two bytes to the length of conditionally executed Thumb-2
2408    instructions for the IT instruction.  */
2409 #define ADJUST_INSN_LENGTH(insn, length) \
2410   if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2411     length += 2;
2412 
2413 /* Only perform branch elimination (by making instructions conditional) if
2414    we're optimizing.  For Thumb-2 check if any IT instructions need
2415    outputting.  */
2416 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)	\
2417   if (TARGET_ARM && optimize)				\
2418     arm_final_prescan_insn (INSN);			\
2419   else if (TARGET_THUMB2)				\
2420     thumb2_final_prescan_insn (INSN);			\
2421   else if (TARGET_THUMB1)				\
2422     thumb1_final_prescan_insn (INSN)
2423 
2424 #define PRINT_OPERAND_PUNCT_VALID_P(CODE)	\
2425   (CODE == '@' || CODE == '|' || CODE == '.'	\
2426    || CODE == '(' || CODE == ')' || CODE == '#'	\
2427    || (TARGET_32BIT && (CODE == '?'))		\
2428    || (TARGET_THUMB2 && (CODE == '!'))		\
2429    || (TARGET_THUMB && (CODE == '_')))
2430 
2431 /* Output an operand of an instruction.  */
2432 #define PRINT_OPERAND(STREAM, X, CODE)  \
2433   arm_print_operand (STREAM, X, CODE)
2434 
2435 #define ARM_SIGN_EXTEND(x)  ((HOST_WIDE_INT)			\
2436   (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x)	\
2437    : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2438       ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2439        ? ((~ (unsigned HOST_WIDE_INT) 0)			\
2440 	  & ~ (unsigned HOST_WIDE_INT) 0xffffffff)		\
2441        : 0))))
2442 
2443 /* Output the address of an operand.  */
2444 #define ARM_PRINT_OPERAND_ADDRESS(STREAM, X)				\
2445 {									\
2446     int is_minus = GET_CODE (X) == MINUS;				\
2447 									\
2448     if (GET_CODE (X) == REG)						\
2449       asm_fprintf (STREAM, "[%r, #0]", REGNO (X));			\
2450     else if (GET_CODE (X) == PLUS || is_minus)				\
2451       {									\
2452 	rtx base = XEXP (X, 0);						\
2453 	rtx index = XEXP (X, 1);					\
2454 	HOST_WIDE_INT offset = 0;					\
2455 	if (GET_CODE (base) != REG					\
2456 	    || (GET_CODE (index) == REG && REGNO (index) == SP_REGNUM))	\
2457 	  {								\
2458 	    /* Ensure that BASE is a register.  */			\
2459             /* (one of them must be).  */				\
2460 	    /* Also ensure the SP is not used as in index register.  */ \
2461 	    rtx temp = base;						\
2462 	    base = index;						\
2463 	    index = temp;						\
2464 	  }								\
2465 	switch (GET_CODE (index))					\
2466 	  {								\
2467 	  case CONST_INT:						\
2468 	    offset = INTVAL (index);					\
2469 	    if (is_minus)						\
2470 	      offset = -offset;						\
2471 	    asm_fprintf (STREAM, "[%r, #%wd]",				\
2472 		         REGNO (base), offset);				\
2473 	    break;							\
2474 									\
2475 	  case REG:							\
2476 	    asm_fprintf (STREAM, "[%r, %s%r]",				\
2477 		     REGNO (base), is_minus ? "-" : "",			\
2478 		     REGNO (index));					\
2479 	    break;							\
2480 									\
2481 	  case MULT:							\
2482 	  case ASHIFTRT:						\
2483 	  case LSHIFTRT:						\
2484 	  case ASHIFT:							\
2485 	  case ROTATERT:						\
2486 	  {								\
2487 	    asm_fprintf (STREAM, "[%r, %s%r",				\
2488 		         REGNO (base), is_minus ? "-" : "",		\
2489                          REGNO (XEXP (index, 0)));			\
2490 	    arm_print_operand (STREAM, index, 'S');			\
2491 	    fputs ("]", STREAM);					\
2492 	    break;							\
2493 	  }								\
2494 									\
2495 	  default:							\
2496 	    gcc_unreachable ();						\
2497 	}								\
2498     }									\
2499   else if (GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC		\
2500 	   || GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC)	\
2501     {									\
2502       extern enum machine_mode output_memory_reference_mode;		\
2503 									\
2504       gcc_assert (GET_CODE (XEXP (X, 0)) == REG);			\
2505 									\
2506       if (GET_CODE (X) == PRE_DEC || GET_CODE (X) == PRE_INC)		\
2507 	asm_fprintf (STREAM, "[%r, #%s%d]!",				\
2508 		     REGNO (XEXP (X, 0)),				\
2509 		     GET_CODE (X) == PRE_DEC ? "-" : "",		\
2510 		     GET_MODE_SIZE (output_memory_reference_mode));	\
2511       else								\
2512 	asm_fprintf (STREAM, "[%r], #%s%d",				\
2513 		     REGNO (XEXP (X, 0)),				\
2514 		     GET_CODE (X) == POST_DEC ? "-" : "",		\
2515 		     GET_MODE_SIZE (output_memory_reference_mode));	\
2516     }									\
2517   else if (GET_CODE (X) == PRE_MODIFY)					\
2518     {									\
2519       asm_fprintf (STREAM, "[%r, ", REGNO (XEXP (X, 0)));		\
2520       if (GET_CODE (XEXP (XEXP (X, 1), 1)) == CONST_INT)		\
2521 	asm_fprintf (STREAM, "#%wd]!", 					\
2522 		     INTVAL (XEXP (XEXP (X, 1), 1)));			\
2523       else								\
2524 	asm_fprintf (STREAM, "%r]!", 					\
2525 		     REGNO (XEXP (XEXP (X, 1), 1)));			\
2526     }									\
2527   else if (GET_CODE (X) == POST_MODIFY)					\
2528     {									\
2529       asm_fprintf (STREAM, "[%r], ", REGNO (XEXP (X, 0)));		\
2530       if (GET_CODE (XEXP (XEXP (X, 1), 1)) == CONST_INT)		\
2531 	asm_fprintf (STREAM, "#%wd", 					\
2532 		     INTVAL (XEXP (XEXP (X, 1), 1)));			\
2533       else								\
2534 	asm_fprintf (STREAM, "%r", 					\
2535 		     REGNO (XEXP (XEXP (X, 1), 1)));			\
2536     }									\
2537   else output_addr_const (STREAM, X);					\
2538 }
2539 
2540 #define THUMB_PRINT_OPERAND_ADDRESS(STREAM, X)		\
2541 {							\
2542   if (GET_CODE (X) == REG)				\
2543     asm_fprintf (STREAM, "[%r]", REGNO (X));		\
2544   else if (GET_CODE (X) == POST_INC)			\
2545     asm_fprintf (STREAM, "%r!", REGNO (XEXP (X, 0)));	\
2546   else if (GET_CODE (X) == PLUS)			\
2547     {							\
2548       gcc_assert (GET_CODE (XEXP (X, 0)) == REG);	\
2549       if (GET_CODE (XEXP (X, 1)) == CONST_INT)		\
2550 	asm_fprintf (STREAM, "[%r, #%wd]", 		\
2551 		     REGNO (XEXP (X, 0)),		\
2552 		     INTVAL (XEXP (X, 1)));		\
2553       else						\
2554 	asm_fprintf (STREAM, "[%r, %r]",		\
2555 		     REGNO (XEXP (X, 0)),		\
2556 		     REGNO (XEXP (X, 1)));		\
2557     }							\
2558   else							\
2559     output_addr_const (STREAM, X);			\
2560 }
2561 
2562 #define PRINT_OPERAND_ADDRESS(STREAM, X)	\
2563   if (TARGET_32BIT)				\
2564     ARM_PRINT_OPERAND_ADDRESS (STREAM, X)	\
2565   else						\
2566     THUMB_PRINT_OPERAND_ADDRESS (STREAM, X)
2567 
2568 #define OUTPUT_ADDR_CONST_EXTRA(file, x, fail)		\
2569   if (arm_output_addr_const_extra (file, x) == FALSE)	\
2570     goto fail
2571 
2572 /* A C expression whose value is RTL representing the value of the return
2573    address for the frame COUNT steps up from the current frame.  */
2574 
2575 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2576   arm_return_addr (COUNT, FRAME)
2577 
2578 /* Mask of the bits in the PC that contain the real return address
2579    when running in 26-bit mode.  */
2580 #define RETURN_ADDR_MASK26 (0x03fffffc)
2581 
2582 /* Pick up the return address upon entry to a procedure. Used for
2583    dwarf2 unwind information.  This also enables the table driven
2584    mechanism.  */
2585 #define INCOMING_RETURN_ADDR_RTX	gen_rtx_REG (Pmode, LR_REGNUM)
2586 #define DWARF_FRAME_RETURN_COLUMN	DWARF_FRAME_REGNUM (LR_REGNUM)
2587 
2588 /* Used to mask out junk bits from the return address, such as
2589    processor state, interrupt status, condition codes and the like.  */
2590 #define MASK_RETURN_ADDR \
2591   /* If we are generating code for an ARM2/ARM3 machine or for an ARM6	\
2592      in 26 bit mode, the condition codes must be masked out of the	\
2593      return address.  This does not apply to ARM6 and later processors	\
2594      when running in 32 bit mode.  */					\
2595   ((arm_arch4 || TARGET_THUMB)						\
2596    ? (gen_int_mode ((unsigned long)0xffffffff, Pmode))			\
2597    : arm_gen_return_addr_mask ())
2598 
2599 
2600 /* Neon defines builtins from ARM_BUILTIN_MAX upwards, though they don't have
2601    symbolic names defined here (which would require too much duplication).
2602    FIXME?  */
2603 enum arm_builtins
2604 {
2605   ARM_BUILTIN_GETWCX,
2606   ARM_BUILTIN_SETWCX,
2607 
2608   ARM_BUILTIN_WZERO,
2609 
2610   ARM_BUILTIN_WAVG2BR,
2611   ARM_BUILTIN_WAVG2HR,
2612   ARM_BUILTIN_WAVG2B,
2613   ARM_BUILTIN_WAVG2H,
2614 
2615   ARM_BUILTIN_WACCB,
2616   ARM_BUILTIN_WACCH,
2617   ARM_BUILTIN_WACCW,
2618 
2619   ARM_BUILTIN_WMACS,
2620   ARM_BUILTIN_WMACSZ,
2621   ARM_BUILTIN_WMACU,
2622   ARM_BUILTIN_WMACUZ,
2623 
2624   ARM_BUILTIN_WSADB,
2625   ARM_BUILTIN_WSADBZ,
2626   ARM_BUILTIN_WSADH,
2627   ARM_BUILTIN_WSADHZ,
2628 
2629   ARM_BUILTIN_WALIGN,
2630 
2631   ARM_BUILTIN_TMIA,
2632   ARM_BUILTIN_TMIAPH,
2633   ARM_BUILTIN_TMIABB,
2634   ARM_BUILTIN_TMIABT,
2635   ARM_BUILTIN_TMIATB,
2636   ARM_BUILTIN_TMIATT,
2637 
2638   ARM_BUILTIN_TMOVMSKB,
2639   ARM_BUILTIN_TMOVMSKH,
2640   ARM_BUILTIN_TMOVMSKW,
2641 
2642   ARM_BUILTIN_TBCSTB,
2643   ARM_BUILTIN_TBCSTH,
2644   ARM_BUILTIN_TBCSTW,
2645 
2646   ARM_BUILTIN_WMADDS,
2647   ARM_BUILTIN_WMADDU,
2648 
2649   ARM_BUILTIN_WPACKHSS,
2650   ARM_BUILTIN_WPACKWSS,
2651   ARM_BUILTIN_WPACKDSS,
2652   ARM_BUILTIN_WPACKHUS,
2653   ARM_BUILTIN_WPACKWUS,
2654   ARM_BUILTIN_WPACKDUS,
2655 
2656   ARM_BUILTIN_WADDB,
2657   ARM_BUILTIN_WADDH,
2658   ARM_BUILTIN_WADDW,
2659   ARM_BUILTIN_WADDSSB,
2660   ARM_BUILTIN_WADDSSH,
2661   ARM_BUILTIN_WADDSSW,
2662   ARM_BUILTIN_WADDUSB,
2663   ARM_BUILTIN_WADDUSH,
2664   ARM_BUILTIN_WADDUSW,
2665   ARM_BUILTIN_WSUBB,
2666   ARM_BUILTIN_WSUBH,
2667   ARM_BUILTIN_WSUBW,
2668   ARM_BUILTIN_WSUBSSB,
2669   ARM_BUILTIN_WSUBSSH,
2670   ARM_BUILTIN_WSUBSSW,
2671   ARM_BUILTIN_WSUBUSB,
2672   ARM_BUILTIN_WSUBUSH,
2673   ARM_BUILTIN_WSUBUSW,
2674 
2675   ARM_BUILTIN_WAND,
2676   ARM_BUILTIN_WANDN,
2677   ARM_BUILTIN_WOR,
2678   ARM_BUILTIN_WXOR,
2679 
2680   ARM_BUILTIN_WCMPEQB,
2681   ARM_BUILTIN_WCMPEQH,
2682   ARM_BUILTIN_WCMPEQW,
2683   ARM_BUILTIN_WCMPGTUB,
2684   ARM_BUILTIN_WCMPGTUH,
2685   ARM_BUILTIN_WCMPGTUW,
2686   ARM_BUILTIN_WCMPGTSB,
2687   ARM_BUILTIN_WCMPGTSH,
2688   ARM_BUILTIN_WCMPGTSW,
2689 
2690   ARM_BUILTIN_TEXTRMSB,
2691   ARM_BUILTIN_TEXTRMSH,
2692   ARM_BUILTIN_TEXTRMSW,
2693   ARM_BUILTIN_TEXTRMUB,
2694   ARM_BUILTIN_TEXTRMUH,
2695   ARM_BUILTIN_TEXTRMUW,
2696   ARM_BUILTIN_TINSRB,
2697   ARM_BUILTIN_TINSRH,
2698   ARM_BUILTIN_TINSRW,
2699 
2700   ARM_BUILTIN_WMAXSW,
2701   ARM_BUILTIN_WMAXSH,
2702   ARM_BUILTIN_WMAXSB,
2703   ARM_BUILTIN_WMAXUW,
2704   ARM_BUILTIN_WMAXUH,
2705   ARM_BUILTIN_WMAXUB,
2706   ARM_BUILTIN_WMINSW,
2707   ARM_BUILTIN_WMINSH,
2708   ARM_BUILTIN_WMINSB,
2709   ARM_BUILTIN_WMINUW,
2710   ARM_BUILTIN_WMINUH,
2711   ARM_BUILTIN_WMINUB,
2712 
2713   ARM_BUILTIN_WMULUM,
2714   ARM_BUILTIN_WMULSM,
2715   ARM_BUILTIN_WMULUL,
2716 
2717   ARM_BUILTIN_PSADBH,
2718   ARM_BUILTIN_WSHUFH,
2719 
2720   ARM_BUILTIN_WSLLH,
2721   ARM_BUILTIN_WSLLW,
2722   ARM_BUILTIN_WSLLD,
2723   ARM_BUILTIN_WSRAH,
2724   ARM_BUILTIN_WSRAW,
2725   ARM_BUILTIN_WSRAD,
2726   ARM_BUILTIN_WSRLH,
2727   ARM_BUILTIN_WSRLW,
2728   ARM_BUILTIN_WSRLD,
2729   ARM_BUILTIN_WRORH,
2730   ARM_BUILTIN_WRORW,
2731   ARM_BUILTIN_WRORD,
2732   ARM_BUILTIN_WSLLHI,
2733   ARM_BUILTIN_WSLLWI,
2734   ARM_BUILTIN_WSLLDI,
2735   ARM_BUILTIN_WSRAHI,
2736   ARM_BUILTIN_WSRAWI,
2737   ARM_BUILTIN_WSRADI,
2738   ARM_BUILTIN_WSRLHI,
2739   ARM_BUILTIN_WSRLWI,
2740   ARM_BUILTIN_WSRLDI,
2741   ARM_BUILTIN_WRORHI,
2742   ARM_BUILTIN_WRORWI,
2743   ARM_BUILTIN_WRORDI,
2744 
2745   ARM_BUILTIN_WUNPCKIHB,
2746   ARM_BUILTIN_WUNPCKIHH,
2747   ARM_BUILTIN_WUNPCKIHW,
2748   ARM_BUILTIN_WUNPCKILB,
2749   ARM_BUILTIN_WUNPCKILH,
2750   ARM_BUILTIN_WUNPCKILW,
2751 
2752   ARM_BUILTIN_WUNPCKEHSB,
2753   ARM_BUILTIN_WUNPCKEHSH,
2754   ARM_BUILTIN_WUNPCKEHSW,
2755   ARM_BUILTIN_WUNPCKEHUB,
2756   ARM_BUILTIN_WUNPCKEHUH,
2757   ARM_BUILTIN_WUNPCKEHUW,
2758   ARM_BUILTIN_WUNPCKELSB,
2759   ARM_BUILTIN_WUNPCKELSH,
2760   ARM_BUILTIN_WUNPCKELSW,
2761   ARM_BUILTIN_WUNPCKELUB,
2762   ARM_BUILTIN_WUNPCKELUH,
2763   ARM_BUILTIN_WUNPCKELUW,
2764 
2765   ARM_BUILTIN_THREAD_POINTER,
2766 
2767   ARM_BUILTIN_NEON_BASE,
2768 
2769   ARM_BUILTIN_MAX = ARM_BUILTIN_NEON_BASE  /* FIXME: Wrong!  */
2770 };
2771 
2772 /* Do not emit .note.GNU-stack by default.  */
2773 #ifndef NEED_INDICATE_EXEC_STACK
2774 #define NEED_INDICATE_EXEC_STACK	0
2775 #endif
2776 
2777 #endif /* ! GCC_ARM_H */
2778