1 /* Definitions of target machine for GNU compiler, for ARM. 2 Copyright (C) 1991-2013 Free Software Foundation, Inc. 3 Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl) 4 and Martin Simmons (@harleqn.co.uk). 5 More major hacks by Richard Earnshaw (rearnsha@arm.com) 6 Minor hacks by Nick Clifton (nickc@cygnus.com) 7 8 This file is part of GCC. 9 10 GCC is free software; you can redistribute it and/or modify it 11 under the terms of the GNU General Public License as published 12 by the Free Software Foundation; either version 3, or (at your 13 option) any later version. 14 15 GCC is distributed in the hope that it will be useful, but WITHOUT 16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 17 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public 18 License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with GCC; see the file COPYING3. If not see 22 <http://www.gnu.org/licenses/>. */ 23 24 #ifndef GCC_ARM_H 25 #define GCC_ARM_H 26 27 /* We can't use enum machine_mode inside a generator file because it 28 hasn't been created yet; we shouldn't be using any code that 29 needs the real definition though, so this ought to be safe. */ 30 #ifdef GENERATOR_FILE 31 #define MACHMODE int 32 #else 33 #include "insn-modes.h" 34 #define MACHMODE enum machine_mode 35 #endif 36 37 #include "config/vxworks-dummy.h" 38 39 /* The architecture define. */ 40 extern char arm_arch_name[]; 41 42 /* Target CPU builtins. */ 43 #define TARGET_CPU_CPP_BUILTINS() \ 44 do \ 45 { \ 46 if (TARGET_DSP_MULTIPLY) \ 47 builtin_define ("__ARM_FEATURE_DSP"); \ 48 if (TARGET_ARM_QBIT) \ 49 builtin_define ("__ARM_FEATURE_QBIT"); \ 50 if (TARGET_ARM_SAT) \ 51 builtin_define ("__ARM_FEATURE_SAT"); \ 52 if (unaligned_access) \ 53 builtin_define ("__ARM_FEATURE_UNALIGNED"); \ 54 if (TARGET_ARM_FEATURE_LDREX) \ 55 builtin_define_with_int_value ( \ 56 "__ARM_FEATURE_LDREX", TARGET_ARM_FEATURE_LDREX); \ 57 if ((TARGET_ARM_ARCH >= 5 && !TARGET_THUMB) \ 58 || TARGET_ARM_ARCH_ISA_THUMB >=2) \ 59 builtin_define ("__ARM_FEATURE_CLZ"); \ 60 if (TARGET_INT_SIMD) \ 61 builtin_define ("__ARM_FEATURE_SIMD32"); \ 62 \ 63 builtin_define_with_int_value ( \ 64 "__ARM_SIZEOF_MINIMAL_ENUM", \ 65 flag_short_enums ? 1 : 4); \ 66 builtin_define_type_sizeof ("__ARM_SIZEOF_WCHAR_T", \ 67 wchar_type_node); \ 68 if (TARGET_ARM_ARCH_PROFILE) \ 69 builtin_define_with_int_value ( \ 70 "__ARM_ARCH_PROFILE", TARGET_ARM_ARCH_PROFILE); \ 71 \ 72 /* Define __arm__ even when in thumb mode, for \ 73 consistency with armcc. */ \ 74 builtin_define ("__arm__"); \ 75 if (TARGET_ARM_ARCH) \ 76 builtin_define_with_int_value ( \ 77 "__ARM_ARCH", TARGET_ARM_ARCH); \ 78 if (arm_arch_notm) \ 79 builtin_define ("__ARM_ARCH_ISA_ARM"); \ 80 builtin_define ("__APCS_32__"); \ 81 if (TARGET_THUMB) \ 82 builtin_define ("__thumb__"); \ 83 if (TARGET_THUMB2) \ 84 builtin_define ("__thumb2__"); \ 85 if (TARGET_ARM_ARCH_ISA_THUMB) \ 86 builtin_define_with_int_value ( \ 87 "__ARM_ARCH_ISA_THUMB", \ 88 TARGET_ARM_ARCH_ISA_THUMB); \ 89 \ 90 if (TARGET_BIG_END) \ 91 { \ 92 builtin_define ("__ARMEB__"); \ 93 builtin_define ("__ARM_BIG_ENDIAN"); \ 94 if (TARGET_THUMB) \ 95 builtin_define ("__THUMBEB__"); \ 96 if (TARGET_LITTLE_WORDS) \ 97 builtin_define ("__ARMWEL__"); \ 98 } \ 99 else \ 100 { \ 101 builtin_define ("__ARMEL__"); \ 102 if (TARGET_THUMB) \ 103 builtin_define ("__THUMBEL__"); \ 104 } \ 105 \ 106 if (TARGET_SOFT_FLOAT) \ 107 builtin_define ("__SOFTFP__"); \ 108 \ 109 if (TARGET_VFP) \ 110 builtin_define ("__VFP_FP__"); \ 111 \ 112 if (TARGET_ARM_FP) \ 113 builtin_define_with_int_value ( \ 114 "__ARM_FP", TARGET_ARM_FP); \ 115 if (arm_fp16_format == ARM_FP16_FORMAT_IEEE) \ 116 builtin_define ("__ARM_FP16_FORMAT_IEEE"); \ 117 if (arm_fp16_format == ARM_FP16_FORMAT_ALTERNATIVE) \ 118 builtin_define ("__ARM_FP16_FORMAT_ALTERNATIVE"); \ 119 if (TARGET_FMA) \ 120 builtin_define ("__ARM_FEATURE_FMA"); \ 121 \ 122 if (TARGET_NEON) \ 123 { \ 124 builtin_define ("__ARM_NEON__"); \ 125 builtin_define ("__ARM_NEON"); \ 126 } \ 127 if (TARGET_NEON_FP) \ 128 builtin_define_with_int_value ( \ 129 "__ARM_NEON_FP", TARGET_NEON_FP); \ 130 \ 131 /* Add a define for interworking. \ 132 Needed when building libgcc.a. */ \ 133 if (arm_cpp_interwork) \ 134 builtin_define ("__THUMB_INTERWORK__"); \ 135 \ 136 builtin_assert ("cpu=arm"); \ 137 builtin_assert ("machine=arm"); \ 138 \ 139 builtin_define (arm_arch_name); \ 140 if (arm_arch_xscale) \ 141 builtin_define ("__XSCALE__"); \ 142 if (arm_arch_iwmmxt) \ 143 { \ 144 builtin_define ("__IWMMXT__"); \ 145 builtin_define ("__ARM_WMMX"); \ 146 } \ 147 if (arm_arch_iwmmxt2) \ 148 builtin_define ("__IWMMXT2__"); \ 149 if (TARGET_AAPCS_BASED) \ 150 { \ 151 if (arm_pcs_default == ARM_PCS_AAPCS_VFP) \ 152 builtin_define ("__ARM_PCS_VFP"); \ 153 else if (arm_pcs_default == ARM_PCS_AAPCS) \ 154 builtin_define ("__ARM_PCS"); \ 155 builtin_define ("__ARM_EABI__"); \ 156 } \ 157 if (TARGET_IDIV) \ 158 builtin_define ("__ARM_ARCH_EXT_IDIV__"); \ 159 } while (0) 160 161 #include "config/arm/arm-opts.h" 162 163 enum target_cpus 164 { 165 #define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \ 166 TARGET_CPU_##IDENT, 167 #include "arm-cores.def" 168 #undef ARM_CORE 169 TARGET_CPU_generic 170 }; 171 172 /* The processor for which instructions should be scheduled. */ 173 extern enum processor_type arm_tune; 174 175 typedef enum arm_cond_code 176 { 177 ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC, 178 ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV 179 } 180 arm_cc; 181 182 extern arm_cc arm_current_cc; 183 184 #define ARM_INVERSE_CONDITION_CODE(X) ((arm_cc) (((int)X) ^ 1)) 185 186 extern int arm_target_label; 187 extern int arm_ccfsm_state; 188 extern GTY(()) rtx arm_target_insn; 189 /* The label of the current constant pool. */ 190 extern rtx pool_vector_label; 191 /* Set to 1 when a return insn is output, this means that the epilogue 192 is not needed. */ 193 extern int return_used_this_function; 194 /* Callback to output language specific object attributes. */ 195 extern void (*arm_lang_output_object_attributes_hook)(void); 196 197 /* Just in case configure has failed to define anything. */ 198 #ifndef TARGET_CPU_DEFAULT 199 #define TARGET_CPU_DEFAULT TARGET_CPU_generic 200 #endif 201 202 203 #undef CPP_SPEC 204 #define CPP_SPEC "%(subtarget_cpp_spec) \ 205 %{mfloat-abi=soft:%{mfloat-abi=hard: \ 206 %e-mfloat-abi=soft and -mfloat-abi=hard may not be used together}} \ 207 %{mbig-endian:%{mlittle-endian: \ 208 %e-mbig-endian and -mlittle-endian may not be used together}}" 209 210 #ifndef CC1_SPEC 211 #define CC1_SPEC "" 212 #endif 213 214 /* This macro defines names of additional specifications to put in the specs 215 that can be used in various specifications like CC1_SPEC. Its definition 216 is an initializer with a subgrouping for each command option. 217 218 Each subgrouping contains a string constant, that defines the 219 specification name, and a string constant that used by the GCC driver 220 program. 221 222 Do not define this macro if it does not need to do anything. */ 223 #define EXTRA_SPECS \ 224 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \ 225 { "asm_cpu_spec", ASM_CPU_SPEC }, \ 226 SUBTARGET_EXTRA_SPECS 227 228 #ifndef SUBTARGET_EXTRA_SPECS 229 #define SUBTARGET_EXTRA_SPECS 230 #endif 231 232 #ifndef SUBTARGET_CPP_SPEC 233 #define SUBTARGET_CPP_SPEC "" 234 #endif 235 236 /* Run-time Target Specification. */ 237 #define TARGET_SOFT_FLOAT (arm_float_abi == ARM_FLOAT_ABI_SOFT) 238 /* Use hardware floating point instructions. */ 239 #define TARGET_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT) 240 /* Use hardware floating point calling convention. */ 241 #define TARGET_HARD_FLOAT_ABI (arm_float_abi == ARM_FLOAT_ABI_HARD) 242 #define TARGET_VFP (arm_fpu_desc->model == ARM_FP_MODEL_VFP) 243 #define TARGET_IWMMXT (arm_arch_iwmmxt) 244 #define TARGET_IWMMXT2 (arm_arch_iwmmxt2) 245 #define TARGET_REALLY_IWMMXT (TARGET_IWMMXT && TARGET_32BIT) 246 #define TARGET_REALLY_IWMMXT2 (TARGET_IWMMXT2 && TARGET_32BIT) 247 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT) 248 #define TARGET_ARM (! TARGET_THUMB) 249 #define TARGET_EITHER 1 /* (TARGET_ARM | TARGET_THUMB) */ 250 #define TARGET_BACKTRACE (leaf_function_p () \ 251 ? TARGET_TPCS_LEAF_FRAME \ 252 : TARGET_TPCS_FRAME) 253 #define TARGET_AAPCS_BASED \ 254 (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS) 255 256 #define TARGET_HARD_TP (target_thread_pointer == TP_CP15) 257 #define TARGET_SOFT_TP (target_thread_pointer == TP_SOFT) 258 #define TARGET_GNU2_TLS (target_tls_dialect == TLS_GNU2) 259 260 /* Only 16-bit thumb code. */ 261 #define TARGET_THUMB1 (TARGET_THUMB && !arm_arch_thumb2) 262 /* Arm or Thumb-2 32-bit code. */ 263 #define TARGET_32BIT (TARGET_ARM || arm_arch_thumb2) 264 /* 32-bit Thumb-2 code. */ 265 #define TARGET_THUMB2 (TARGET_THUMB && arm_arch_thumb2) 266 /* Thumb-1 only. */ 267 #define TARGET_THUMB1_ONLY (TARGET_THUMB1 && !arm_arch_notm) 268 269 #define TARGET_LDRD (arm_arch5e && ARM_DOUBLEWORD_ALIGN \ 270 && !TARGET_THUMB1) 271 272 /* The following two macros concern the ability to execute coprocessor 273 instructions for VFPv3 or NEON. TARGET_VFP3/TARGET_VFPD32 are currently 274 only ever tested when we know we are generating for VFP hardware; we need 275 to be more careful with TARGET_NEON as noted below. */ 276 277 /* FPU is has the full VFPv3/NEON register file of 32 D registers. */ 278 #define TARGET_VFPD32 (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_D32) 279 280 /* FPU supports VFPv3 instructions. */ 281 #define TARGET_VFP3 (TARGET_VFP && arm_fpu_desc->rev >= 3) 282 283 /* FPU only supports VFP single-precision instructions. */ 284 #define TARGET_VFP_SINGLE (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_SINGLE) 285 286 /* FPU supports VFP double-precision instructions. */ 287 #define TARGET_VFP_DOUBLE (TARGET_VFP && arm_fpu_desc->regs != VFP_REG_SINGLE) 288 289 /* FPU supports half-precision floating-point with NEON element load/store. */ 290 #define TARGET_NEON_FP16 \ 291 (TARGET_VFP && arm_fpu_desc->neon && arm_fpu_desc->fp16) 292 293 /* FPU supports VFP half-precision floating-point. */ 294 #define TARGET_FP16 (TARGET_VFP && arm_fpu_desc->fp16) 295 296 /* FPU supports fused-multiply-add operations. */ 297 #define TARGET_FMA (TARGET_VFP && arm_fpu_desc->rev >= 4) 298 299 /* FPU is ARMv8 compatible. */ 300 #define TARGET_FPU_ARMV8 (TARGET_VFP && arm_fpu_desc->rev >= 8) 301 302 /* FPU supports Crypto extensions. */ 303 #define TARGET_CRYPTO (TARGET_VFP && arm_fpu_desc->crypto) 304 305 /* FPU supports Neon instructions. The setting of this macro gets 306 revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT 307 and TARGET_HARD_FLOAT to ensure that NEON instructions are 308 available. */ 309 #define TARGET_NEON (TARGET_32BIT && TARGET_HARD_FLOAT \ 310 && TARGET_VFP && arm_fpu_desc->neon) 311 312 /* Q-bit is present. */ 313 #define TARGET_ARM_QBIT \ 314 (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7)) 315 /* Saturation operation, e.g. SSAT. */ 316 #define TARGET_ARM_SAT \ 317 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7)) 318 /* "DSP" multiply instructions, eg. SMULxy. */ 319 #define TARGET_DSP_MULTIPLY \ 320 (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7em)) 321 /* Integer SIMD instructions, and extend-accumulate instructions. */ 322 #define TARGET_INT_SIMD \ 323 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em)) 324 325 /* Should MOVW/MOVT be used in preference to a constant pool. */ 326 #define TARGET_USE_MOVT \ 327 (arm_arch_thumb2 && !optimize_size && !current_tune->prefer_constant_pool) 328 329 /* We could use unified syntax for arm mode, but for now we just use it 330 for Thumb-2. */ 331 #define TARGET_UNIFIED_ASM TARGET_THUMB2 332 333 /* Nonzero if this chip provides the DMB instruction. */ 334 #define TARGET_HAVE_DMB (arm_arch6m || arm_arch7) 335 336 /* Nonzero if this chip implements a memory barrier via CP15. */ 337 #define TARGET_HAVE_DMB_MCR (arm_arch6 && ! TARGET_HAVE_DMB \ 338 && ! TARGET_THUMB1) 339 340 /* Nonzero if this chip implements a memory barrier instruction. */ 341 #define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR) 342 343 /* Nonzero if this chip supports ldrex and strex */ 344 #define TARGET_HAVE_LDREX ((arm_arch6 && TARGET_ARM) || arm_arch7) 345 346 /* Nonzero if this chip supports ldrex{bh} and strex{bh}. */ 347 #define TARGET_HAVE_LDREXBH ((arm_arch6k && TARGET_ARM) || arm_arch7) 348 349 /* Nonzero if this chip supports ldrexd and strexd. */ 350 #define TARGET_HAVE_LDREXD (((arm_arch6k && TARGET_ARM) || arm_arch7) \ 351 && arm_arch_notm) 352 353 /* Nonzero if integer division instructions supported. */ 354 #define TARGET_IDIV ((TARGET_ARM && arm_arch_arm_hwdiv) \ 355 || (TARGET_THUMB2 && arm_arch_thumb_hwdiv)) 356 357 /* True iff the full BPABI is being used. If TARGET_BPABI is true, 358 then TARGET_AAPCS_BASED must be true -- but the converse does not 359 hold. TARGET_BPABI implies the use of the BPABI runtime library, 360 etc., in addition to just the AAPCS calling conventions. */ 361 #ifndef TARGET_BPABI 362 #define TARGET_BPABI false 363 #endif 364 365 /* Support for a compile-time default CPU, et cetera. The rules are: 366 --with-arch is ignored if -march or -mcpu are specified. 367 --with-cpu is ignored if -march or -mcpu are specified, and is overridden 368 by --with-arch. 369 --with-tune is ignored if -mtune or -mcpu are specified (but not affected 370 by -march). 371 --with-float is ignored if -mfloat-abi is specified. 372 --with-fpu is ignored if -mfpu is specified. 373 --with-abi is ignored if -mabi is specified. 374 --with-tls is ignored if -mtls-dialect is specified. */ 375 #define OPTION_DEFAULT_SPECS \ 376 {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \ 377 {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \ 378 {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \ 379 {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \ 380 {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \ 381 {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \ 382 {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"}, \ 383 {"tls", "%{!mtls-dialect=*:-mtls-dialect=%(VALUE)}"}, 384 385 /* Which floating point model to use. */ 386 enum arm_fp_model 387 { 388 ARM_FP_MODEL_UNKNOWN, 389 /* VFP floating point model. */ 390 ARM_FP_MODEL_VFP 391 }; 392 393 enum vfp_reg_type 394 { 395 VFP_NONE = 0, 396 VFP_REG_D16, 397 VFP_REG_D32, 398 VFP_REG_SINGLE 399 }; 400 401 extern const struct arm_fpu_desc 402 { 403 const char *name; 404 enum arm_fp_model model; 405 int rev; 406 enum vfp_reg_type regs; 407 int neon; 408 int fp16; 409 int crypto; 410 } *arm_fpu_desc; 411 412 /* Which floating point hardware to schedule for. */ 413 extern int arm_fpu_attr; 414 415 #ifndef TARGET_DEFAULT_FLOAT_ABI 416 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT 417 #endif 418 419 #define LARGEST_EXPONENT_IS_NORMAL(bits) \ 420 ((bits) == 16 && arm_fp16_format == ARM_FP16_FORMAT_ALTERNATIVE) 421 422 #ifndef ARM_DEFAULT_ABI 423 #define ARM_DEFAULT_ABI ARM_ABI_APCS 424 #endif 425 426 /* Map each of the micro-architecture variants to their corresponding 427 major architecture revision. */ 428 429 enum base_architecture 430 { 431 BASE_ARCH_0 = 0, 432 BASE_ARCH_2 = 2, 433 BASE_ARCH_3 = 3, 434 BASE_ARCH_3M = 3, 435 BASE_ARCH_4 = 4, 436 BASE_ARCH_4T = 4, 437 BASE_ARCH_5 = 5, 438 BASE_ARCH_5E = 5, 439 BASE_ARCH_5T = 5, 440 BASE_ARCH_5TE = 5, 441 BASE_ARCH_5TEJ = 5, 442 BASE_ARCH_6 = 6, 443 BASE_ARCH_6J = 6, 444 BASE_ARCH_6ZK = 6, 445 BASE_ARCH_6K = 6, 446 BASE_ARCH_6T2 = 6, 447 BASE_ARCH_6M = 6, 448 BASE_ARCH_6Z = 6, 449 BASE_ARCH_7 = 7, 450 BASE_ARCH_7A = 7, 451 BASE_ARCH_7R = 7, 452 BASE_ARCH_7M = 7, 453 BASE_ARCH_7EM = 7, 454 BASE_ARCH_8A = 8 455 }; 456 457 /* The major revision number of the ARM Architecture implemented by the target. */ 458 extern enum base_architecture arm_base_arch; 459 460 /* Nonzero if this chip supports the ARM Architecture 3M extensions. */ 461 extern int arm_arch3m; 462 463 /* Nonzero if this chip supports the ARM Architecture 4 extensions. */ 464 extern int arm_arch4; 465 466 /* Nonzero if this chip supports the ARM Architecture 4T extensions. */ 467 extern int arm_arch4t; 468 469 /* Nonzero if this chip supports the ARM Architecture 5 extensions. */ 470 extern int arm_arch5; 471 472 /* Nonzero if this chip supports the ARM Architecture 5E extensions. */ 473 extern int arm_arch5e; 474 475 /* Nonzero if this chip supports the ARM Architecture 6 extensions. */ 476 extern int arm_arch6; 477 478 /* Nonzero if this chip supports the ARM Architecture 6k extensions. */ 479 extern int arm_arch6k; 480 481 /* Nonzero if instructions present in ARMv6-M can be used. */ 482 extern int arm_arch6m; 483 484 /* Nonzero if this chip supports the ARM Architecture 7 extensions. */ 485 extern int arm_arch7; 486 487 /* Nonzero if instructions not present in the 'M' profile can be used. */ 488 extern int arm_arch_notm; 489 490 /* Nonzero if instructions present in ARMv7E-M can be used. */ 491 extern int arm_arch7em; 492 493 /* Nonzero if this chip supports the ARM Architecture 8 extensions. */ 494 extern int arm_arch8; 495 496 /* Nonzero if this chip can benefit from load scheduling. */ 497 extern int arm_ld_sched; 498 499 /* Nonzero if generating Thumb code, either Thumb-1 or Thumb-2. */ 500 extern int thumb_code; 501 502 /* Nonzero if generating Thumb-1 code. */ 503 extern int thumb1_code; 504 505 /* Nonzero if this chip is a StrongARM. */ 506 extern int arm_tune_strongarm; 507 508 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology. */ 509 extern int arm_arch_iwmmxt; 510 511 /* Nonzero if this chip supports Intel Wireless MMX2 technology. */ 512 extern int arm_arch_iwmmxt2; 513 514 /* Nonzero if this chip is an XScale. */ 515 extern int arm_arch_xscale; 516 517 /* Nonzero if tuning for XScale. */ 518 extern int arm_tune_xscale; 519 520 /* Nonzero if tuning for stores via the write buffer. */ 521 extern int arm_tune_wbuf; 522 523 /* Nonzero if tuning for Cortex-A9. */ 524 extern int arm_tune_cortex_a9; 525 526 /* Nonzero if we should define __THUMB_INTERWORK__ in the 527 preprocessor. 528 XXX This is a bit of a hack, it's intended to help work around 529 problems in GLD which doesn't understand that armv5t code is 530 interworking clean. */ 531 extern int arm_cpp_interwork; 532 533 /* Nonzero if chip supports Thumb 2. */ 534 extern int arm_arch_thumb2; 535 536 /* Nonzero if chip supports integer division instruction in ARM mode. */ 537 extern int arm_arch_arm_hwdiv; 538 539 /* Nonzero if chip supports integer division instruction in Thumb mode. */ 540 extern int arm_arch_thumb_hwdiv; 541 542 #ifndef TARGET_DEFAULT 543 #define TARGET_DEFAULT (MASK_APCS_FRAME) 544 #endif 545 546 /* Nonzero if PIC code requires explicit qualifiers to generate 547 PLT and GOT relocs rather than the assembler doing so implicitly. 548 Subtargets can override these if required. */ 549 #ifndef NEED_GOT_RELOC 550 #define NEED_GOT_RELOC 0 551 #endif 552 #ifndef NEED_PLT_RELOC 553 #define NEED_PLT_RELOC 0 554 #endif 555 556 /* Nonzero if we need to refer to the GOT with a PC-relative 557 offset. In other words, generate 558 559 .word _GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)] 560 561 rather than 562 563 .word _GLOBAL_OFFSET_TABLE_ - (.Lxx + 8) 564 565 The default is true, which matches NetBSD. Subtargets can 566 override this if required. */ 567 #ifndef GOT_PCREL 568 #define GOT_PCREL 1 569 #endif 570 571 /* Target machine storage Layout. */ 572 573 574 /* Define this macro if it is advisable to hold scalars in registers 575 in a wider mode than that declared by the program. In such cases, 576 the value is constrained to be within the bounds of the declared 577 type, but kept valid in the wider mode. The signedness of the 578 extension may differ from that of the type. */ 579 580 /* It is far faster to zero extend chars than to sign extend them */ 581 582 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \ 583 if (GET_MODE_CLASS (MODE) == MODE_INT \ 584 && GET_MODE_SIZE (MODE) < 4) \ 585 { \ 586 if (MODE == QImode) \ 587 UNSIGNEDP = 1; \ 588 else if (MODE == HImode) \ 589 UNSIGNEDP = 1; \ 590 (MODE) = SImode; \ 591 } 592 593 /* Define this if most significant bit is lowest numbered 594 in instructions that operate on numbered bit-fields. */ 595 #define BITS_BIG_ENDIAN 0 596 597 /* Define this if most significant byte of a word is the lowest numbered. 598 Most ARM processors are run in little endian mode, so that is the default. 599 If you want to have it run-time selectable, change the definition in a 600 cover file to be TARGET_BIG_ENDIAN. */ 601 #define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0) 602 603 /* Define this if most significant word of a multiword number is the lowest 604 numbered. 605 This is always false, even when in big-endian mode. */ 606 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN && ! TARGET_LITTLE_WORDS) 607 608 #define UNITS_PER_WORD 4 609 610 /* True if natural alignment is used for doubleword types. */ 611 #define ARM_DOUBLEWORD_ALIGN TARGET_AAPCS_BASED 612 613 #define DOUBLEWORD_ALIGNMENT 64 614 615 #define PARM_BOUNDARY 32 616 617 #define STACK_BOUNDARY (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32) 618 619 #define PREFERRED_STACK_BOUNDARY \ 620 (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY) 621 622 #define FUNCTION_BOUNDARY ((TARGET_THUMB && optimize_size) ? 16 : 32) 623 624 /* The lowest bit is used to indicate Thumb-mode functions, so the 625 vbit must go into the delta field of pointers to member 626 functions. */ 627 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta 628 629 #define EMPTY_FIELD_BOUNDARY 32 630 631 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32) 632 633 /* XXX Blah -- this macro is used directly by libobjc. Since it 634 supports no vector modes, cut out the complexity and fall back 635 on BIGGEST_FIELD_ALIGNMENT. */ 636 #ifdef IN_TARGET_LIBS 637 #define BIGGEST_FIELD_ALIGNMENT 64 638 #endif 639 640 /* Make strings word-aligned so strcpy from constants will be faster. */ 641 #define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_tune_xscale ? 1 : 2) 642 643 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \ 644 ((TREE_CODE (EXP) == STRING_CST \ 645 && !optimize_size \ 646 && (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR) \ 647 ? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN)) 648 649 /* Align definitions of arrays, unions and structures so that 650 initializations and copies can be made more efficient. This is not 651 ABI-changing, so it only affects places where we can see the 652 definition. Increasing the alignment tends to introduce padding, 653 so don't do this when optimizing for size/conserving stack space. */ 654 #define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN) \ 655 (((COND) && ((ALIGN) < BITS_PER_WORD) \ 656 && (TREE_CODE (EXP) == ARRAY_TYPE \ 657 || TREE_CODE (EXP) == UNION_TYPE \ 658 || TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN)) 659 660 /* Align global data. */ 661 #define DATA_ALIGNMENT(EXP, ALIGN) \ 662 ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN) 663 664 /* Similarly, make sure that objects on the stack are sensibly aligned. */ 665 #define LOCAL_ALIGNMENT(EXP, ALIGN) \ 666 ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN) 667 668 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the 669 value set in previous versions of this toolchain was 8, which produces more 670 compact structures. The command line option -mstructure_size_boundary=<n> 671 can be used to change this value. For compatibility with the ARM SDK 672 however the value should be left at 32. ARM SDT Reference Manual (ARM DUI 673 0020D) page 2-20 says "Structures are aligned on word boundaries". 674 The AAPCS specifies a value of 8. */ 675 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary 676 677 /* This is the value used to initialize arm_structure_size_boundary. If a 678 particular arm target wants to change the default value it should change 679 the definition of this macro, not STRUCTURE_SIZE_BOUNDARY. See netbsd.h 680 for an example of this. */ 681 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY 682 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32 683 #endif 684 685 /* Nonzero if move instructions will actually fail to work 686 when given unaligned data. */ 687 #define STRICT_ALIGNMENT 1 688 689 /* wchar_t is unsigned under the AAPCS. */ 690 #ifndef WCHAR_TYPE 691 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int") 692 693 #define WCHAR_TYPE_SIZE BITS_PER_WORD 694 #endif 695 696 /* Sized for fixed-point types. */ 697 698 #define SHORT_FRACT_TYPE_SIZE 8 699 #define FRACT_TYPE_SIZE 16 700 #define LONG_FRACT_TYPE_SIZE 32 701 #define LONG_LONG_FRACT_TYPE_SIZE 64 702 703 #define SHORT_ACCUM_TYPE_SIZE 16 704 #define ACCUM_TYPE_SIZE 32 705 #define LONG_ACCUM_TYPE_SIZE 64 706 #define LONG_LONG_ACCUM_TYPE_SIZE 64 707 708 #define MAX_FIXED_MODE_SIZE 64 709 710 #ifndef SIZE_TYPE 711 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int") 712 #endif 713 714 #ifndef PTRDIFF_TYPE 715 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int") 716 #endif 717 718 /* AAPCS requires that structure alignment is affected by bitfields. */ 719 #ifndef PCC_BITFIELD_TYPE_MATTERS 720 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED 721 #endif 722 723 724 /* Standard register usage. */ 725 726 /* Register allocation in ARM Procedure Call Standard 727 (S - saved over call). 728 729 r0 * argument word/integer result 730 r1-r3 argument word 731 732 r4-r8 S register variable 733 r9 S (rfp) register variable (real frame pointer) 734 735 r10 F S (sl) stack limit (used by -mapcs-stack-check) 736 r11 F S (fp) argument pointer 737 r12 (ip) temp workspace 738 r13 F S (sp) lower end of current stack frame 739 r14 (lr) link address/workspace 740 r15 F (pc) program counter 741 742 cc This is NOT a real register, but is used internally 743 to represent things that use or set the condition 744 codes. 745 sfp This isn't either. It is used during rtl generation 746 since the offset between the frame pointer and the 747 auto's isn't known until after register allocation. 748 afp Nor this, we only need this because of non-local 749 goto. Without it fp appears to be used and the 750 elimination code won't get rid of sfp. It tracks 751 fp exactly at all times. 752 753 *: See TARGET_CONDITIONAL_REGISTER_USAGE */ 754 755 /* s0-s15 VFP scratch (aka d0-d7). 756 s16-s31 S VFP variable (aka d8-d15). 757 vfpcc Not a real register. Represents the VFP condition 758 code flags. */ 759 760 /* The stack backtrace structure is as follows: 761 fp points to here: | save code pointer | [fp] 762 | return link value | [fp, #-4] 763 | return sp value | [fp, #-8] 764 | return fp value | [fp, #-12] 765 [| saved r10 value |] 766 [| saved r9 value |] 767 [| saved r8 value |] 768 [| saved r7 value |] 769 [| saved r6 value |] 770 [| saved r5 value |] 771 [| saved r4 value |] 772 [| saved r3 value |] 773 [| saved r2 value |] 774 [| saved r1 value |] 775 [| saved r0 value |] 776 r0-r3 are not normally saved in a C function. */ 777 778 /* 1 for registers that have pervasive standard uses 779 and are not available for the register allocator. */ 780 #define FIXED_REGISTERS \ 781 { \ 782 /* Core regs. */ \ 783 0,0,0,0,0,0,0,0, \ 784 0,0,0,0,0,1,0,1, \ 785 /* VFP regs. */ \ 786 1,1,1,1,1,1,1,1, \ 787 1,1,1,1,1,1,1,1, \ 788 1,1,1,1,1,1,1,1, \ 789 1,1,1,1,1,1,1,1, \ 790 1,1,1,1,1,1,1,1, \ 791 1,1,1,1,1,1,1,1, \ 792 1,1,1,1,1,1,1,1, \ 793 1,1,1,1,1,1,1,1, \ 794 /* IWMMXT regs. */ \ 795 1,1,1,1,1,1,1,1, \ 796 1,1,1,1,1,1,1,1, \ 797 1,1,1,1, \ 798 /* Specials. */ \ 799 1,1,1,1 \ 800 } 801 802 /* 1 for registers not available across function calls. 803 These must include the FIXED_REGISTERS and also any 804 registers that can be used without being saved. 805 The latter must include the registers where values are returned 806 and the register where structure-value addresses are passed. 807 Aside from that, you can include as many other registers as you like. 808 The CC is not preserved over function calls on the ARM 6, so it is 809 easier to assume this for all. SFP is preserved, since FP is. */ 810 #define CALL_USED_REGISTERS \ 811 { \ 812 /* Core regs. */ \ 813 1,1,1,1,0,0,0,0, \ 814 0,0,0,0,1,1,1,1, \ 815 /* VFP Regs. */ \ 816 1,1,1,1,1,1,1,1, \ 817 1,1,1,1,1,1,1,1, \ 818 1,1,1,1,1,1,1,1, \ 819 1,1,1,1,1,1,1,1, \ 820 1,1,1,1,1,1,1,1, \ 821 1,1,1,1,1,1,1,1, \ 822 1,1,1,1,1,1,1,1, \ 823 1,1,1,1,1,1,1,1, \ 824 /* IWMMXT regs. */ \ 825 1,1,1,1,1,1,1,1, \ 826 1,1,1,1,1,1,1,1, \ 827 1,1,1,1, \ 828 /* Specials. */ \ 829 1,1,1,1 \ 830 } 831 832 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE 833 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE 834 #endif 835 836 /* These are a couple of extensions to the formats accepted 837 by asm_fprintf: 838 %@ prints out ASM_COMMENT_START 839 %r prints out REGISTER_PREFIX reg_names[arg] */ 840 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \ 841 case '@': \ 842 fputs (ASM_COMMENT_START, FILE); \ 843 break; \ 844 \ 845 case 'r': \ 846 fputs (REGISTER_PREFIX, FILE); \ 847 fputs (reg_names [va_arg (ARGS, int)], FILE); \ 848 break; 849 850 /* Round X up to the nearest word. */ 851 #define ROUND_UP_WORD(X) (((X) + 3) & ~3) 852 853 /* Convert fron bytes to ints. */ 854 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) 855 856 /* The number of (integer) registers required to hold a quantity of type MODE. 857 Also used for VFP registers. */ 858 #define ARM_NUM_REGS(MODE) \ 859 ARM_NUM_INTS (GET_MODE_SIZE (MODE)) 860 861 /* The number of (integer) registers required to hold a quantity of TYPE MODE. */ 862 #define ARM_NUM_REGS2(MODE, TYPE) \ 863 ARM_NUM_INTS ((MODE) == BLKmode ? \ 864 int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) 865 866 /* The number of (integer) argument register available. */ 867 #define NUM_ARG_REGS 4 868 869 /* And similarly for the VFP. */ 870 #define NUM_VFP_ARG_REGS 16 871 872 /* Return the register number of the N'th (integer) argument. */ 873 #define ARG_REGISTER(N) (N - 1) 874 875 /* Specify the registers used for certain standard purposes. 876 The values of these macros are register numbers. */ 877 878 /* The number of the last argument register. */ 879 #define LAST_ARG_REGNUM ARG_REGISTER (NUM_ARG_REGS) 880 881 /* The numbers of the Thumb register ranges. */ 882 #define FIRST_LO_REGNUM 0 883 #define LAST_LO_REGNUM 7 884 #define FIRST_HI_REGNUM 8 885 #define LAST_HI_REGNUM 11 886 887 /* Overridden by config/arm/bpabi.h. */ 888 #ifndef ARM_UNWIND_INFO 889 #define ARM_UNWIND_INFO 0 890 #endif 891 892 /* Overriden by config/arm/netbsd-eabi.h. */ 893 #ifndef ARM_DWARF_UNWIND_TABLES 894 #define ARM_DWARF_UNWIND_TABLES 0 895 #endif 896 897 /* Use r0 and r1 to pass exception handling information. */ 898 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM) 899 900 /* The register that holds the return address in exception handlers. */ 901 #define ARM_EH_STACKADJ_REGNUM 2 902 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM) 903 904 #ifndef ARM_TARGET2_DWARF_FORMAT 905 #define ARM_TARGET2_DWARF_FORMAT DW_EH_PE_pcrel 906 907 # if ARM_DWARF_UNWIND_TABLES 908 /* DWARF unwinding uses the normal indirect/pcrel vs absptr format 909 for 32bit platforms. */ 910 # define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \ 911 ((flag_pic \ 912 && ((GLOBAL) || (CODE))) \ 913 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \ 914 : DW_EH_PE_absptr) 915 # else 916 /* ttype entries (the only interesting data references used) 917 use TARGET2 relocations. */ 918 # define ASM_PREFERRED_EH_DATA_FORMAT(code, data) \ 919 (((code) == 0 && (data) == 1 && ARM_UNWIND_INFO) ? ARM_TARGET2_DWARF_FORMAT \ 920 : DW_EH_PE_absptr) 921 # endif 922 #endif 923 924 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain 925 as an invisible last argument (possible since varargs don't exist in 926 Pascal), so the following is not true. */ 927 #define STATIC_CHAIN_REGNUM 12 928 929 /* Define this to be where the real frame pointer is if it is not possible to 930 work out the offset between the frame pointer and the automatic variables 931 until after register allocation has taken place. FRAME_POINTER_REGNUM 932 should point to a special register that we will make sure is eliminated. 933 934 For the Thumb we have another problem. The TPCS defines the frame pointer 935 as r11, and GCC believes that it is always possible to use the frame pointer 936 as base register for addressing purposes. (See comments in 937 find_reloads_address()). But - the Thumb does not allow high registers, 938 including r11, to be used as base address registers. Hence our problem. 939 940 The solution used here, and in the old thumb port is to use r7 instead of 941 r11 as the hard frame pointer and to have special code to generate 942 backtrace structures on the stack (if required to do so via a command line 943 option) using r11. This is the only 'user visible' use of r11 as a frame 944 pointer. */ 945 #define ARM_HARD_FRAME_POINTER_REGNUM 11 946 #define THUMB_HARD_FRAME_POINTER_REGNUM 7 947 948 #define HARD_FRAME_POINTER_REGNUM \ 949 (TARGET_ARM \ 950 ? ARM_HARD_FRAME_POINTER_REGNUM \ 951 : THUMB_HARD_FRAME_POINTER_REGNUM) 952 953 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0 954 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0 955 956 #define FP_REGNUM HARD_FRAME_POINTER_REGNUM 957 958 /* Register to use for pushing function arguments. */ 959 #define STACK_POINTER_REGNUM SP_REGNUM 960 961 #define FIRST_IWMMXT_REGNUM (LAST_HI_VFP_REGNUM + 1) 962 #define LAST_IWMMXT_REGNUM (FIRST_IWMMXT_REGNUM + 15) 963 #define FIRST_IWMMXT_GR_REGNUM (LAST_IWMMXT_REGNUM + 1) 964 #define LAST_IWMMXT_GR_REGNUM (FIRST_IWMMXT_GR_REGNUM + 3) 965 966 #define IS_IWMMXT_REGNUM(REGNUM) \ 967 (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM)) 968 #define IS_IWMMXT_GR_REGNUM(REGNUM) \ 969 (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM)) 970 971 /* Base register for access to local variables of the function. */ 972 #define FRAME_POINTER_REGNUM 102 973 974 /* Base register for access to arguments of the function. */ 975 #define ARG_POINTER_REGNUM 103 976 977 #define FIRST_VFP_REGNUM 16 978 #define D7_VFP_REGNUM (FIRST_VFP_REGNUM + 15) 979 #define LAST_VFP_REGNUM \ 980 (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM) 981 982 #define IS_VFP_REGNUM(REGNUM) \ 983 (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM)) 984 985 /* VFP registers are split into two types: those defined by VFP versions < 3 986 have D registers overlaid on consecutive pairs of S registers. VFP version 3 987 defines 16 new D registers (d16-d31) which, for simplicity and correctness 988 in various parts of the backend, we implement as "fake" single-precision 989 registers (which would be S32-S63, but cannot be used in that way). The 990 following macros define these ranges of registers. */ 991 #define LAST_LO_VFP_REGNUM (FIRST_VFP_REGNUM + 31) 992 #define FIRST_HI_VFP_REGNUM (LAST_LO_VFP_REGNUM + 1) 993 #define LAST_HI_VFP_REGNUM (FIRST_HI_VFP_REGNUM + 31) 994 995 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \ 996 ((REGNUM) <= LAST_LO_VFP_REGNUM) 997 998 /* DFmode values are only valid in even register pairs. */ 999 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \ 1000 ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0) 1001 1002 /* Neon Quad values must start at a multiple of four registers. */ 1003 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \ 1004 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0) 1005 1006 /* Neon structures of vectors must be in even register pairs and there 1007 must be enough registers available. Because of various patterns 1008 requiring quad registers, we require them to start at a multiple of 1009 four. */ 1010 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \ 1011 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \ 1012 && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1)) 1013 1014 /* The number of hard registers is 16 ARM + 1 CC + 1 SFP + 1 AFP. */ 1015 /* Intel Wireless MMX Technology registers add 16 + 4 more. */ 1016 /* VFP (VFP3) adds 32 (64) + 1 VFPCC. */ 1017 #define FIRST_PSEUDO_REGISTER 104 1018 1019 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO) 1020 1021 /* Value should be nonzero if functions must have frame pointers. 1022 Zero means the frame pointer need not be set up (and parms may be accessed 1023 via the stack pointer) in functions that seem suitable. 1024 If we have to have a frame pointer we might as well make use of it. 1025 APCS says that the frame pointer does not need to be pushed in leaf 1026 functions, or simple tail call functions. */ 1027 1028 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED 1029 #define SUBTARGET_FRAME_POINTER_REQUIRED 0 1030 #endif 1031 1032 /* Return number of consecutive hard regs needed starting at reg REGNO 1033 to hold something of mode MODE. 1034 This is ordinarily the length in words of a value of mode MODE 1035 but can be less for certain modes in special long registers. 1036 1037 On the ARM core regs are UNITS_PER_WORD bits wide. */ 1038 #define HARD_REGNO_NREGS(REGNO, MODE) \ 1039 ((TARGET_32BIT \ 1040 && REGNO > PC_REGNUM \ 1041 && REGNO != FRAME_POINTER_REGNUM \ 1042 && REGNO != ARG_POINTER_REGNUM) \ 1043 && !IS_VFP_REGNUM (REGNO) \ 1044 ? 1 : ARM_NUM_REGS (MODE)) 1045 1046 /* Return true if REGNO is suitable for holding a quantity of type MODE. */ 1047 #define HARD_REGNO_MODE_OK(REGNO, MODE) \ 1048 arm_hard_regno_mode_ok ((REGNO), (MODE)) 1049 1050 #define MODES_TIEABLE_P(MODE1, MODE2) arm_modes_tieable_p (MODE1, MODE2) 1051 1052 #define VALID_IWMMXT_REG_MODE(MODE) \ 1053 (arm_vector_mode_supported_p (MODE) || (MODE) == DImode) 1054 1055 /* Modes valid for Neon D registers. */ 1056 #define VALID_NEON_DREG_MODE(MODE) \ 1057 ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \ 1058 || (MODE) == V2SFmode || (MODE) == DImode) 1059 1060 /* Modes valid for Neon Q registers. */ 1061 #define VALID_NEON_QREG_MODE(MODE) \ 1062 ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \ 1063 || (MODE) == V4SFmode || (MODE) == V2DImode) 1064 1065 /* Structure modes valid for Neon registers. */ 1066 #define VALID_NEON_STRUCT_MODE(MODE) \ 1067 ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \ 1068 || (MODE) == CImode || (MODE) == XImode) 1069 1070 /* The register numbers in sequence, for passing to arm_gen_load_multiple. */ 1071 extern int arm_regs_in_sequence[]; 1072 1073 /* The order in which register should be allocated. It is good to use ip 1074 since no saving is required (though calls clobber it) and it never contains 1075 function parameters. It is quite good to use lr since other calls may 1076 clobber it anyway. Allocate r0 through r3 in reverse order since r3 is 1077 least likely to contain a function parameter; in addition results are 1078 returned in r0. 1079 For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7), 1080 then D8-D15. The reason for doing this is to attempt to reduce register 1081 pressure when both single- and double-precision registers are used in a 1082 function. */ 1083 1084 #define VREG(X) (FIRST_VFP_REGNUM + (X)) 1085 #define WREG(X) (FIRST_IWMMXT_REGNUM + (X)) 1086 #define WGREG(X) (FIRST_IWMMXT_GR_REGNUM + (X)) 1087 1088 #define REG_ALLOC_ORDER \ 1089 { \ 1090 /* General registers. */ \ 1091 3, 2, 1, 0, 12, 14, 4, 5, \ 1092 6, 7, 8, 9, 10, 11, \ 1093 /* High VFP registers. */ \ 1094 VREG(32), VREG(33), VREG(34), VREG(35), \ 1095 VREG(36), VREG(37), VREG(38), VREG(39), \ 1096 VREG(40), VREG(41), VREG(42), VREG(43), \ 1097 VREG(44), VREG(45), VREG(46), VREG(47), \ 1098 VREG(48), VREG(49), VREG(50), VREG(51), \ 1099 VREG(52), VREG(53), VREG(54), VREG(55), \ 1100 VREG(56), VREG(57), VREG(58), VREG(59), \ 1101 VREG(60), VREG(61), VREG(62), VREG(63), \ 1102 /* VFP argument registers. */ \ 1103 VREG(15), VREG(14), VREG(13), VREG(12), \ 1104 VREG(11), VREG(10), VREG(9), VREG(8), \ 1105 VREG(7), VREG(6), VREG(5), VREG(4), \ 1106 VREG(3), VREG(2), VREG(1), VREG(0), \ 1107 /* VFP call-saved registers. */ \ 1108 VREG(16), VREG(17), VREG(18), VREG(19), \ 1109 VREG(20), VREG(21), VREG(22), VREG(23), \ 1110 VREG(24), VREG(25), VREG(26), VREG(27), \ 1111 VREG(28), VREG(29), VREG(30), VREG(31), \ 1112 /* IWMMX registers. */ \ 1113 WREG(0), WREG(1), WREG(2), WREG(3), \ 1114 WREG(4), WREG(5), WREG(6), WREG(7), \ 1115 WREG(8), WREG(9), WREG(10), WREG(11), \ 1116 WREG(12), WREG(13), WREG(14), WREG(15), \ 1117 WGREG(0), WGREG(1), WGREG(2), WGREG(3), \ 1118 /* Registers not for general use. */ \ 1119 CC_REGNUM, VFPCC_REGNUM, \ 1120 FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM, \ 1121 SP_REGNUM, PC_REGNUM \ 1122 } 1123 1124 /* Use different register alloc ordering for Thumb. */ 1125 #define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc () 1126 1127 /* Tell IRA to use the order we define rather than messing it up with its 1128 own cost calculations. */ 1129 #define HONOR_REG_ALLOC_ORDER 1130 1131 /* Interrupt functions can only use registers that have already been 1132 saved by the prologue, even if they would normally be 1133 call-clobbered. */ 1134 #define HARD_REGNO_RENAME_OK(SRC, DST) \ 1135 (! IS_INTERRUPT (cfun->machine->func_type) || \ 1136 df_regs_ever_live_p (DST)) 1137 1138 /* Register and constant classes. */ 1139 1140 /* Register classes. */ 1141 enum reg_class 1142 { 1143 NO_REGS, 1144 LO_REGS, 1145 STACK_REG, 1146 BASE_REGS, 1147 HI_REGS, 1148 GENERAL_REGS, 1149 CORE_REGS, 1150 VFP_D0_D7_REGS, 1151 VFP_LO_REGS, 1152 VFP_HI_REGS, 1153 VFP_REGS, 1154 IWMMXT_REGS, 1155 IWMMXT_GR_REGS, 1156 CC_REG, 1157 VFPCC_REG, 1158 SFP_REG, 1159 AFP_REG, 1160 ALL_REGS, 1161 LIM_REG_CLASSES 1162 }; 1163 1164 #define N_REG_CLASSES (int) LIM_REG_CLASSES 1165 1166 /* Give names of register classes as strings for dump file. */ 1167 #define REG_CLASS_NAMES \ 1168 { \ 1169 "NO_REGS", \ 1170 "LO_REGS", \ 1171 "STACK_REG", \ 1172 "BASE_REGS", \ 1173 "HI_REGS", \ 1174 "GENERAL_REGS", \ 1175 "CORE_REGS", \ 1176 "VFP_D0_D7_REGS", \ 1177 "VFP_LO_REGS", \ 1178 "VFP_HI_REGS", \ 1179 "VFP_REGS", \ 1180 "IWMMXT_REGS", \ 1181 "IWMMXT_GR_REGS", \ 1182 "CC_REG", \ 1183 "VFPCC_REG", \ 1184 "SFP_REG", \ 1185 "AFP_REG", \ 1186 "ALL_REGS" \ 1187 } 1188 1189 /* Define which registers fit in which classes. 1190 This is an initializer for a vector of HARD_REG_SET 1191 of length N_REG_CLASSES. */ 1192 #define REG_CLASS_CONTENTS \ 1193 { \ 1194 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \ 1195 { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */ \ 1196 { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */ \ 1197 { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */ \ 1198 { 0x00005F00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */ \ 1199 { 0x00005FFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \ 1200 { 0x00007FFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */ \ 1201 { 0xFFFF0000, 0x00000000, 0x00000000, 0x00000000 }, /* VFP_D0_D7_REGS */ \ 1202 { 0xFFFF0000, 0x0000FFFF, 0x00000000, 0x00000000 }, /* VFP_LO_REGS */ \ 1203 { 0x00000000, 0xFFFF0000, 0x0000FFFF, 0x00000000 }, /* VFP_HI_REGS */ \ 1204 { 0xFFFF0000, 0xFFFFFFFF, 0x0000FFFF, 0x00000000 }, /* VFP_REGS */ \ 1205 { 0x00000000, 0x00000000, 0xFFFF0000, 0x00000000 }, /* IWMMXT_REGS */ \ 1206 { 0x00000000, 0x00000000, 0x00000000, 0x0000000F }, /* IWMMXT_GR_REGS */ \ 1207 { 0x00000000, 0x00000000, 0x00000000, 0x00000010 }, /* CC_REG */ \ 1208 { 0x00000000, 0x00000000, 0x00000000, 0x00000020 }, /* VFPCC_REG */ \ 1209 { 0x00000000, 0x00000000, 0x00000000, 0x00000040 }, /* SFP_REG */ \ 1210 { 0x00000000, 0x00000000, 0x00000000, 0x00000080 }, /* AFP_REG */ \ 1211 { 0xFFFF7FFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000 } /* ALL_REGS */ \ 1212 } 1213 1214 /* Any of the VFP register classes. */ 1215 #define IS_VFP_CLASS(X) \ 1216 ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \ 1217 || (X) == VFP_HI_REGS || (X) == VFP_REGS) 1218 1219 /* The same information, inverted: 1220 Return the class number of the smallest class containing 1221 reg number REGNO. This could be a conditional expression 1222 or could index an array. */ 1223 #define REGNO_REG_CLASS(REGNO) arm_regno_class (REGNO) 1224 1225 /* In VFPv1, VFP registers could only be accessed in the mode they 1226 were set, so subregs would be invalid there. However, we don't 1227 support VFPv1 at the moment, and the restriction was lifted in 1228 VFPv2. 1229 In big-endian mode, modes greater than word size (i.e. DFmode) are stored in 1230 VFP registers in little-endian order. We can't describe that accurately to 1231 GCC, so avoid taking subregs of such values. 1232 The only exception is going from a 128-bit to a 64-bit type. In that case 1233 the data layout happens to be consistent for big-endian, so we explicitly allow 1234 that case. */ 1235 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \ 1236 (TARGET_VFP && TARGET_BIG_END \ 1237 && !(GET_MODE_SIZE (FROM) == 16 && GET_MODE_SIZE (TO) == 8) \ 1238 && (GET_MODE_SIZE (FROM) > UNITS_PER_WORD \ 1239 || GET_MODE_SIZE (TO) > UNITS_PER_WORD) \ 1240 && reg_classes_intersect_p (VFP_REGS, (CLASS))) 1241 1242 /* The class value for index registers, and the one for base regs. */ 1243 #define INDEX_REG_CLASS (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS) 1244 #define BASE_REG_CLASS (TARGET_THUMB1 ? LO_REGS : CORE_REGS) 1245 1246 /* For the Thumb the high registers cannot be used as base registers 1247 when addressing quantities in QI or HI mode; if we don't know the 1248 mode, then we must be conservative. */ 1249 #define MODE_BASE_REG_CLASS(MODE) \ 1250 (TARGET_ARM || (TARGET_THUMB2 && !optimize_size) ? CORE_REGS : \ 1251 (((MODE) == SImode) ? BASE_REGS : LO_REGS)) 1252 1253 /* For Thumb we can not support SP+reg addressing, so we return LO_REGS 1254 instead of BASE_REGS. */ 1255 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS 1256 1257 /* When this hook returns true for MODE, the compiler allows 1258 registers explicitly used in the rtl to be used as spill registers 1259 but prevents the compiler from extending the lifetime of these 1260 registers. */ 1261 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \ 1262 arm_small_register_classes_for_mode_p 1263 1264 /* Must leave BASE_REGS reloads alone */ 1265 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \ 1266 ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \ 1267 ? ((true_regnum (X) == -1 ? LO_REGS \ 1268 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \ 1269 : NO_REGS)) \ 1270 : NO_REGS) 1271 1272 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \ 1273 ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \ 1274 ? ((true_regnum (X) == -1 ? LO_REGS \ 1275 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \ 1276 : NO_REGS)) \ 1277 : NO_REGS) 1278 1279 /* Return the register class of a scratch register needed to copy IN into 1280 or out of a register in CLASS in MODE. If it can be done directly, 1281 NO_REGS is returned. */ 1282 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \ 1283 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \ 1284 ((TARGET_VFP && TARGET_HARD_FLOAT \ 1285 && IS_VFP_CLASS (CLASS)) \ 1286 ? coproc_secondary_reload_class (MODE, X, FALSE) \ 1287 : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) \ 1288 ? coproc_secondary_reload_class (MODE, X, TRUE) \ 1289 : TARGET_32BIT \ 1290 ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \ 1291 ? GENERAL_REGS : NO_REGS) \ 1292 : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X)) 1293 1294 /* If we need to load shorts byte-at-a-time, then we need a scratch. */ 1295 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \ 1296 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \ 1297 ((TARGET_VFP && TARGET_HARD_FLOAT \ 1298 && IS_VFP_CLASS (CLASS)) \ 1299 ? coproc_secondary_reload_class (MODE, X, FALSE) : \ 1300 (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ? \ 1301 coproc_secondary_reload_class (MODE, X, TRUE) : \ 1302 (TARGET_32BIT ? \ 1303 (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS) \ 1304 && CONSTANT_P (X)) \ 1305 ? GENERAL_REGS : \ 1306 (((MODE) == HImode && ! arm_arch4 \ 1307 && (MEM_P (X) \ 1308 || ((REG_P (X) || GET_CODE (X) == SUBREG) \ 1309 && true_regnum (X) == -1))) \ 1310 ? GENERAL_REGS : NO_REGS) \ 1311 : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X))) 1312 1313 /* Try a machine-dependent way of reloading an illegitimate address 1314 operand. If we find one, push the reload and jump to WIN. This 1315 macro is used in only one place: `find_reloads_address' in reload.c. 1316 1317 For the ARM, we wish to handle large displacements off a base 1318 register by splitting the addend across a MOV and the mem insn. 1319 This can cut the number of reloads needed. */ 1320 #define ARM_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND, WIN) \ 1321 do \ 1322 { \ 1323 if (arm_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND)) \ 1324 goto WIN; \ 1325 } \ 1326 while (0) 1327 1328 /* XXX If an HImode FP+large_offset address is converted to an HImode 1329 SP+large_offset address, then reload won't know how to fix it. It sees 1330 only that SP isn't valid for HImode, and so reloads the SP into an index 1331 register, but the resulting address is still invalid because the offset 1332 is too big. We fix it here instead by reloading the entire address. */ 1333 /* We could probably achieve better results by defining PROMOTE_MODE to help 1334 cope with the variances between the Thumb's signed and unsigned byte and 1335 halfword load instructions. */ 1336 /* ??? This should be safe for thumb2, but we may be able to do better. */ 1337 #define THUMB_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_L, WIN) \ 1338 do { \ 1339 rtx new_x = thumb_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND_L); \ 1340 if (new_x) \ 1341 { \ 1342 X = new_x; \ 1343 goto WIN; \ 1344 } \ 1345 } while (0) 1346 1347 #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_LEVELS, WIN) \ 1348 if (TARGET_ARM) \ 1349 ARM_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN); \ 1350 else \ 1351 THUMB_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN) 1352 1353 /* Return the maximum number of consecutive registers 1354 needed to represent mode MODE in a register of class CLASS. 1355 ARM regs are UNITS_PER_WORD bits. 1356 FIXME: Is this true for iWMMX? */ 1357 #define CLASS_MAX_NREGS(CLASS, MODE) \ 1358 (ARM_NUM_REGS (MODE)) 1359 1360 /* If defined, gives a class of registers that cannot be used as the 1361 operand of a SUBREG that changes the mode of the object illegally. */ 1362 1363 /* Stack layout; function entry, exit and calling. */ 1364 1365 /* Define this if pushing a word on the stack 1366 makes the stack pointer a smaller address. */ 1367 #define STACK_GROWS_DOWNWARD 1 1368 1369 /* Define this to nonzero if the nominal address of the stack frame 1370 is at the high-address end of the local variables; 1371 that is, each additional local variable allocated 1372 goes at a more negative offset in the frame. */ 1373 #define FRAME_GROWS_DOWNWARD 1 1374 1375 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN(). 1376 When present, it is one word in size, and sits at the top of the frame, 1377 between the soft frame pointer and either r7 or r11. 1378 1379 We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking, 1380 and only then if some outgoing arguments are passed on the stack. It would 1381 be tempting to also check whether the stack arguments are passed by indirect 1382 calls, but there seems to be no reason in principle why a post-reload pass 1383 couldn't convert a direct call into an indirect one. */ 1384 #define CALLER_INTERWORKING_SLOT_SIZE \ 1385 (TARGET_CALLER_INTERWORKING \ 1386 && crtl->outgoing_args_size != 0 \ 1387 ? UNITS_PER_WORD : 0) 1388 1389 /* Offset within stack frame to start allocating local variables at. 1390 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the 1391 first local allocated. Otherwise, it is the offset to the BEGINNING 1392 of the first local allocated. */ 1393 #define STARTING_FRAME_OFFSET 0 1394 1395 /* If we generate an insn to push BYTES bytes, 1396 this says how many the stack pointer really advances by. */ 1397 /* The push insns do not do this rounding implicitly. 1398 So don't define this. */ 1399 /* #define PUSH_ROUNDING(NPUSHED) ROUND_UP_WORD (NPUSHED) */ 1400 1401 /* Define this if the maximum size of all the outgoing args is to be 1402 accumulated and pushed during the prologue. The amount can be 1403 found in the variable crtl->outgoing_args_size. */ 1404 #define ACCUMULATE_OUTGOING_ARGS 1 1405 1406 /* Offset of first parameter from the argument pointer register value. */ 1407 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_ARM ? 4 : 0) 1408 1409 /* Amount of memory needed for an untyped call to save all possible return 1410 registers. */ 1411 #define APPLY_RESULT_SIZE arm_apply_result_size() 1412 1413 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return 1414 values must be in memory. On the ARM, they need only do so if larger 1415 than a word, or if they contain elements offset from zero in the struct. */ 1416 #define DEFAULT_PCC_STRUCT_RETURN 0 1417 1418 /* These bits describe the different types of function supported 1419 by the ARM backend. They are exclusive. i.e. a function cannot be both a 1420 normal function and an interworked function, for example. Knowing the 1421 type of a function is important for determining its prologue and 1422 epilogue sequences. 1423 Note value 7 is currently unassigned. Also note that the interrupt 1424 function types all have bit 2 set, so that they can be tested for easily. 1425 Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the 1426 machine_function structure is initialized (to zero) func_type will 1427 default to unknown. This will force the first use of arm_current_func_type 1428 to call arm_compute_func_type. */ 1429 #define ARM_FT_UNKNOWN 0 /* Type has not yet been determined. */ 1430 #define ARM_FT_NORMAL 1 /* Your normal, straightforward function. */ 1431 #define ARM_FT_INTERWORKED 2 /* A function that supports interworking. */ 1432 #define ARM_FT_ISR 4 /* An interrupt service routine. */ 1433 #define ARM_FT_FIQ 5 /* A fast interrupt service routine. */ 1434 #define ARM_FT_EXCEPTION 6 /* An ARM exception handler (subcase of ISR). */ 1435 1436 #define ARM_FT_TYPE_MASK ((1 << 3) - 1) 1437 1438 /* In addition functions can have several type modifiers, 1439 outlined by these bit masks: */ 1440 #define ARM_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */ 1441 #define ARM_FT_NAKED (1 << 3) /* No prologue or epilogue. */ 1442 #define ARM_FT_VOLATILE (1 << 4) /* Does not return. */ 1443 #define ARM_FT_NESTED (1 << 5) /* Embedded inside another func. */ 1444 #define ARM_FT_STACKALIGN (1 << 6) /* Called with misaligned stack. */ 1445 1446 /* Some macros to test these flags. */ 1447 #define ARM_FUNC_TYPE(t) (t & ARM_FT_TYPE_MASK) 1448 #define IS_INTERRUPT(t) (t & ARM_FT_INTERRUPT) 1449 #define IS_VOLATILE(t) (t & ARM_FT_VOLATILE) 1450 #define IS_NAKED(t) (t & ARM_FT_NAKED) 1451 #define IS_NESTED(t) (t & ARM_FT_NESTED) 1452 #define IS_STACKALIGN(t) (t & ARM_FT_STACKALIGN) 1453 1454 1455 /* Structure used to hold the function stack frame layout. Offsets are 1456 relative to the stack pointer on function entry. Positive offsets are 1457 in the direction of stack growth. 1458 Only soft_frame is used in thumb mode. */ 1459 1460 typedef struct GTY(()) arm_stack_offsets 1461 { 1462 int saved_args; /* ARG_POINTER_REGNUM. */ 1463 int frame; /* ARM_HARD_FRAME_POINTER_REGNUM. */ 1464 int saved_regs; 1465 int soft_frame; /* FRAME_POINTER_REGNUM. */ 1466 int locals_base; /* THUMB_HARD_FRAME_POINTER_REGNUM. */ 1467 int outgoing_args; /* STACK_POINTER_REGNUM. */ 1468 unsigned int saved_regs_mask; 1469 } 1470 arm_stack_offsets; 1471 1472 #ifndef GENERATOR_FILE 1473 /* A C structure for machine-specific, per-function data. 1474 This is added to the cfun structure. */ 1475 typedef struct GTY(()) machine_function 1476 { 1477 /* Additional stack adjustment in __builtin_eh_throw. */ 1478 rtx eh_epilogue_sp_ofs; 1479 /* Records if LR has to be saved for far jumps. */ 1480 int far_jump_used; 1481 /* Records if ARG_POINTER was ever live. */ 1482 int arg_pointer_live; 1483 /* Records if the save of LR has been eliminated. */ 1484 int lr_save_eliminated; 1485 /* The size of the stack frame. Only valid after reload. */ 1486 arm_stack_offsets stack_offsets; 1487 /* Records the type of the current function. */ 1488 unsigned long func_type; 1489 /* Record if the function has a variable argument list. */ 1490 int uses_anonymous_args; 1491 /* Records if sibcalls are blocked because an argument 1492 register is needed to preserve stack alignment. */ 1493 int sibcall_blocked; 1494 /* The PIC register for this function. This might be a pseudo. */ 1495 rtx pic_reg; 1496 /* Labels for per-function Thumb call-via stubs. One per potential calling 1497 register. We can never call via LR or PC. We can call via SP if a 1498 trampoline happens to be on the top of the stack. */ 1499 rtx call_via[14]; 1500 /* Set to 1 when a return insn is output, this means that the epilogue 1501 is not needed. */ 1502 int return_used_this_function; 1503 /* When outputting Thumb-1 code, record the last insn that provides 1504 information about condition codes, and the comparison operands. */ 1505 rtx thumb1_cc_insn; 1506 rtx thumb1_cc_op0; 1507 rtx thumb1_cc_op1; 1508 /* Also record the CC mode that is supported. */ 1509 enum machine_mode thumb1_cc_mode; 1510 } 1511 machine_function; 1512 #endif 1513 1514 /* As in the machine_function, a global set of call-via labels, for code 1515 that is in text_section. */ 1516 extern GTY(()) rtx thumb_call_via_label[14]; 1517 1518 /* The number of potential ways of assigning to a co-processor. */ 1519 #define ARM_NUM_COPROC_SLOTS 1 1520 1521 /* Enumeration of procedure calling standard variants. We don't really 1522 support all of these yet. */ 1523 enum arm_pcs 1524 { 1525 ARM_PCS_AAPCS, /* Base standard AAPCS. */ 1526 ARM_PCS_AAPCS_VFP, /* Use VFP registers for floating point values. */ 1527 ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors. */ 1528 /* This must be the last AAPCS variant. */ 1529 ARM_PCS_AAPCS_LOCAL, /* Private call within this compilation unit. */ 1530 ARM_PCS_ATPCS, /* ATPCS. */ 1531 ARM_PCS_APCS, /* APCS (legacy Linux etc). */ 1532 ARM_PCS_UNKNOWN 1533 }; 1534 1535 /* Default procedure calling standard of current compilation unit. */ 1536 extern enum arm_pcs arm_pcs_default; 1537 1538 /* A C type for declaring a variable that is used as the first argument of 1539 `FUNCTION_ARG' and other related values. */ 1540 typedef struct 1541 { 1542 /* This is the number of registers of arguments scanned so far. */ 1543 int nregs; 1544 /* This is the number of iWMMXt register arguments scanned so far. */ 1545 int iwmmxt_nregs; 1546 int named_count; 1547 int nargs; 1548 /* Which procedure call variant to use for this call. */ 1549 enum arm_pcs pcs_variant; 1550 1551 /* AAPCS related state tracking. */ 1552 int aapcs_arg_processed; /* No need to lay out this argument again. */ 1553 int aapcs_cprc_slot; /* Index of co-processor rules to handle 1554 this argument, or -1 if using core 1555 registers. */ 1556 int aapcs_ncrn; 1557 int aapcs_next_ncrn; 1558 rtx aapcs_reg; /* Register assigned to this argument. */ 1559 int aapcs_partial; /* How many bytes are passed in regs (if 1560 split between core regs and stack. 1561 Zero otherwise. */ 1562 int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS]; 1563 int can_split; /* Argument can be split between core regs 1564 and the stack. */ 1565 /* Private data for tracking VFP register allocation */ 1566 unsigned aapcs_vfp_regs_free; 1567 unsigned aapcs_vfp_reg_alloc; 1568 int aapcs_vfp_rcount; 1569 MACHMODE aapcs_vfp_rmode; 1570 } CUMULATIVE_ARGS; 1571 1572 #define FUNCTION_ARG_PADDING(MODE, TYPE) \ 1573 (arm_pad_arg_upward (MODE, TYPE) ? upward : downward) 1574 1575 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \ 1576 (arm_pad_reg_upward (MODE, TYPE, FIRST) ? upward : downward) 1577 1578 /* For AAPCS, padding should never be below the argument. For other ABIs, 1579 * mimic the default. */ 1580 #define PAD_VARARGS_DOWN \ 1581 ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN) 1582 1583 /* Initialize a variable CUM of type CUMULATIVE_ARGS 1584 for a call to a function whose data type is FNTYPE. 1585 For a library call, FNTYPE is 0. 1586 On the ARM, the offset starts at 0. */ 1587 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \ 1588 arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL)) 1589 1590 /* 1 if N is a possible register number for function argument passing. 1591 On the ARM, r0-r3 are used to pass args. */ 1592 #define FUNCTION_ARG_REGNO_P(REGNO) \ 1593 (IN_RANGE ((REGNO), 0, 3) \ 1594 || (TARGET_AAPCS_BASED && TARGET_VFP && TARGET_HARD_FLOAT \ 1595 && IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15)) \ 1596 || (TARGET_IWMMXT_ABI \ 1597 && IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9))) 1598 1599 1600 /* If your target environment doesn't prefix user functions with an 1601 underscore, you may wish to re-define this to prevent any conflicts. */ 1602 #ifndef ARM_MCOUNT_NAME 1603 #define ARM_MCOUNT_NAME "*mcount" 1604 #endif 1605 1606 /* Call the function profiler with a given profile label. The Acorn 1607 compiler puts this BEFORE the prolog but gcc puts it afterwards. 1608 On the ARM the full profile code will look like: 1609 .data 1610 LP1 1611 .word 0 1612 .text 1613 mov ip, lr 1614 bl mcount 1615 .word LP1 1616 1617 profile_function() in final.c outputs the .data section, FUNCTION_PROFILER 1618 will output the .text section. 1619 1620 The ``mov ip,lr'' seems like a good idea to stick with cc convention. 1621 ``prof'' doesn't seem to mind about this! 1622 1623 Note - this version of the code is designed to work in both ARM and 1624 Thumb modes. */ 1625 #ifndef ARM_FUNCTION_PROFILER 1626 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO) \ 1627 { \ 1628 char temp[20]; \ 1629 rtx sym; \ 1630 \ 1631 asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t", \ 1632 IP_REGNUM, LR_REGNUM); \ 1633 assemble_name (STREAM, ARM_MCOUNT_NAME); \ 1634 fputc ('\n', STREAM); \ 1635 ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO); \ 1636 sym = gen_rtx_SYMBOL_REF (Pmode, temp); \ 1637 assemble_aligned_integer (UNITS_PER_WORD, sym); \ 1638 } 1639 #endif 1640 1641 #ifdef THUMB_FUNCTION_PROFILER 1642 #define FUNCTION_PROFILER(STREAM, LABELNO) \ 1643 if (TARGET_ARM) \ 1644 ARM_FUNCTION_PROFILER (STREAM, LABELNO) \ 1645 else \ 1646 THUMB_FUNCTION_PROFILER (STREAM, LABELNO) 1647 #else 1648 #define FUNCTION_PROFILER(STREAM, LABELNO) \ 1649 ARM_FUNCTION_PROFILER (STREAM, LABELNO) 1650 #endif 1651 1652 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, 1653 the stack pointer does not matter. The value is tested only in 1654 functions that have frame pointers. 1655 No definition is equivalent to always zero. 1656 1657 On the ARM, the function epilogue recovers the stack pointer from the 1658 frame. */ 1659 #define EXIT_IGNORE_STACK 1 1660 1661 #define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNUM) 1662 1663 /* Determine if the epilogue should be output as RTL. 1664 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */ 1665 #define USE_RETURN_INSN(ISCOND) \ 1666 (TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0) 1667 1668 /* Definitions for register eliminations. 1669 1670 This is an array of structures. Each structure initializes one pair 1671 of eliminable registers. The "from" register number is given first, 1672 followed by "to". Eliminations of the same "from" register are listed 1673 in order of preference. 1674 1675 We have two registers that can be eliminated on the ARM. First, the 1676 arg pointer register can often be eliminated in favor of the stack 1677 pointer register. Secondly, the pseudo frame pointer register can always 1678 be eliminated; it is replaced with either the stack or the real frame 1679 pointer. Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM 1680 because the definition of HARD_FRAME_POINTER_REGNUM is not a constant. */ 1681 1682 #define ELIMINABLE_REGS \ 1683 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },\ 1684 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },\ 1685 { ARG_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\ 1686 { ARG_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM },\ 1687 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },\ 1688 { FRAME_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\ 1689 { FRAME_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM }} 1690 1691 /* Define the offset between two registers, one to be eliminated, and the 1692 other its replacement, at the start of a routine. */ 1693 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ 1694 if (TARGET_ARM) \ 1695 (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO); \ 1696 else \ 1697 (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO) 1698 1699 /* Special case handling of the location of arguments passed on the stack. */ 1700 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr) 1701 1702 /* Initialize data used by insn expanders. This is called from insn_emit, 1703 once for every function before code is generated. */ 1704 #define INIT_EXPANDERS arm_init_expanders () 1705 1706 /* Length in units of the trampoline for entering a nested function. */ 1707 #define TRAMPOLINE_SIZE (TARGET_32BIT ? 16 : 20) 1708 1709 /* Alignment required for a trampoline in bits. */ 1710 #define TRAMPOLINE_ALIGNMENT 32 1711 1712 /* Addressing modes, and classification of registers for them. */ 1713 #define HAVE_POST_INCREMENT 1 1714 #define HAVE_PRE_INCREMENT TARGET_32BIT 1715 #define HAVE_POST_DECREMENT TARGET_32BIT 1716 #define HAVE_PRE_DECREMENT TARGET_32BIT 1717 #define HAVE_PRE_MODIFY_DISP TARGET_32BIT 1718 #define HAVE_POST_MODIFY_DISP TARGET_32BIT 1719 #define HAVE_PRE_MODIFY_REG TARGET_32BIT 1720 #define HAVE_POST_MODIFY_REG TARGET_32BIT 1721 1722 enum arm_auto_incmodes 1723 { 1724 ARM_POST_INC, 1725 ARM_PRE_INC, 1726 ARM_POST_DEC, 1727 ARM_PRE_DEC 1728 }; 1729 1730 #define ARM_AUTOINC_VALID_FOR_MODE_P(mode, code) \ 1731 (TARGET_32BIT && arm_autoinc_modes_ok_p (mode, code)) 1732 #define USE_LOAD_POST_INCREMENT(mode) \ 1733 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_INC) 1734 #define USE_LOAD_PRE_INCREMENT(mode) \ 1735 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_INC) 1736 #define USE_LOAD_POST_DECREMENT(mode) \ 1737 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_DEC) 1738 #define USE_LOAD_PRE_DECREMENT(mode) \ 1739 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_DEC) 1740 1741 #define USE_STORE_PRE_DECREMENT(mode) USE_LOAD_PRE_DECREMENT(mode) 1742 #define USE_STORE_PRE_INCREMENT(mode) USE_LOAD_PRE_INCREMENT(mode) 1743 #define USE_STORE_POST_DECREMENT(mode) USE_LOAD_POST_DECREMENT(mode) 1744 #define USE_STORE_POST_INCREMENT(mode) USE_LOAD_POST_INCREMENT(mode) 1745 1746 /* Macros to check register numbers against specific register classes. */ 1747 1748 /* These assume that REGNO is a hard or pseudo reg number. 1749 They give nonzero only if REGNO is a hard reg of the suitable class 1750 or a pseudo reg currently allocated to a suitable hard reg. 1751 Since they use reg_renumber, they are safe only once reg_renumber 1752 has been allocated, which happens in reginfo.c during register 1753 allocation. */ 1754 #define TEST_REGNO(R, TEST, VALUE) \ 1755 ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE)) 1756 1757 /* Don't allow the pc to be used. */ 1758 #define ARM_REGNO_OK_FOR_BASE_P(REGNO) \ 1759 (TEST_REGNO (REGNO, <, PC_REGNUM) \ 1760 || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM) \ 1761 || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM)) 1762 1763 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \ 1764 (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM) \ 1765 || (GET_MODE_SIZE (MODE) >= 4 \ 1766 && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))) 1767 1768 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \ 1769 (TARGET_THUMB1 \ 1770 ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE) \ 1771 : ARM_REGNO_OK_FOR_BASE_P (REGNO)) 1772 1773 /* Nonzero if X can be the base register in a reg+reg addressing mode. 1774 For Thumb, we can not use SP + reg, so reject SP. */ 1775 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE) \ 1776 REGNO_MODE_OK_FOR_BASE_P (X, QImode) 1777 1778 /* For ARM code, we don't care about the mode, but for Thumb, the index 1779 must be suitable for use in a QImode load. */ 1780 #define REGNO_OK_FOR_INDEX_P(REGNO) \ 1781 (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \ 1782 && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)) 1783 1784 /* Maximum number of registers that can appear in a valid memory address. 1785 Shifts in addresses can't be by a register. */ 1786 #define MAX_REGS_PER_ADDRESS 2 1787 1788 /* Recognize any constant value that is a valid address. */ 1789 /* XXX We can address any constant, eventually... */ 1790 /* ??? Should the TARGET_ARM here also apply to thumb2? */ 1791 #define CONSTANT_ADDRESS_P(X) \ 1792 (GET_CODE (X) == SYMBOL_REF \ 1793 && (CONSTANT_POOL_ADDRESS_P (X) \ 1794 || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X)))) 1795 1796 /* True if SYMBOL + OFFSET constants must refer to something within 1797 SYMBOL's section. */ 1798 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0 1799 1800 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32. */ 1801 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS 1802 #define TARGET_DEFAULT_WORD_RELOCATIONS 0 1803 #endif 1804 1805 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS 1806 #define SUBTARGET_NAME_ENCODING_LENGTHS 1807 #endif 1808 1809 /* This is a C fragment for the inside of a switch statement. 1810 Each case label should return the number of characters to 1811 be stripped from the start of a function's name, if that 1812 name starts with the indicated character. */ 1813 #define ARM_NAME_ENCODING_LENGTHS \ 1814 case '*': return 1; \ 1815 SUBTARGET_NAME_ENCODING_LENGTHS 1816 1817 /* This is how to output a reference to a user-level label named NAME. 1818 `assemble_name' uses this. */ 1819 #undef ASM_OUTPUT_LABELREF 1820 #define ASM_OUTPUT_LABELREF(FILE, NAME) \ 1821 arm_asm_output_labelref (FILE, NAME) 1822 1823 /* Output IT instructions for conditionally executed Thumb-2 instructions. */ 1824 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \ 1825 if (TARGET_THUMB2) \ 1826 thumb2_asm_output_opcode (STREAM); 1827 1828 /* The EABI specifies that constructors should go in .init_array. 1829 Other targets use .ctors for compatibility. */ 1830 #ifndef ARM_EABI_CTORS_SECTION_OP 1831 #define ARM_EABI_CTORS_SECTION_OP \ 1832 "\t.section\t.init_array,\"aw\",%init_array" 1833 #endif 1834 #ifndef ARM_EABI_DTORS_SECTION_OP 1835 #define ARM_EABI_DTORS_SECTION_OP \ 1836 "\t.section\t.fini_array,\"aw\",%fini_array" 1837 #endif 1838 #define ARM_CTORS_SECTION_OP \ 1839 "\t.section\t.ctors,\"aw\",%progbits" 1840 #define ARM_DTORS_SECTION_OP \ 1841 "\t.section\t.dtors,\"aw\",%progbits" 1842 1843 /* Define CTORS_SECTION_ASM_OP. */ 1844 #undef CTORS_SECTION_ASM_OP 1845 #undef DTORS_SECTION_ASM_OP 1846 #ifndef IN_LIBGCC2 1847 # define CTORS_SECTION_ASM_OP \ 1848 (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP) 1849 # define DTORS_SECTION_ASM_OP \ 1850 (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP) 1851 #else /* !defined (IN_LIBGCC2) */ 1852 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant, 1853 so we cannot use the definition above. */ 1854 # ifdef __ARM_EABI__ 1855 /* The .ctors section is not part of the EABI, so we do not define 1856 CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff 1857 from trying to use it. We do define it when doing normal 1858 compilation, as .init_array can be used instead of .ctors. */ 1859 /* There is no need to emit begin or end markers when using 1860 init_array; the dynamic linker will compute the size of the 1861 array itself based on special symbols created by the static 1862 linker. However, we do need to arrange to set up 1863 exception-handling here. */ 1864 # define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP) 1865 # define CTOR_LIST_END /* empty */ 1866 # define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP) 1867 # define DTOR_LIST_END /* empty */ 1868 # else /* !defined (__ARM_EABI__) */ 1869 # define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP 1870 # define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP 1871 # endif /* !defined (__ARM_EABI__) */ 1872 #endif /* !defined (IN_LIBCC2) */ 1873 1874 /* True if the operating system can merge entities with vague linkage 1875 (e.g., symbols in COMDAT group) during dynamic linking. */ 1876 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P 1877 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true 1878 #endif 1879 1880 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE) 1881 1882 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx 1883 and check its validity for a certain class. 1884 We have two alternate definitions for each of them. 1885 The usual definition accepts all pseudo regs; the other rejects 1886 them unless they have been allocated suitable hard regs. 1887 The symbol REG_OK_STRICT causes the latter definition to be used. 1888 Thumb-2 has the same restrictions as arm. */ 1889 #ifndef REG_OK_STRICT 1890 1891 #define ARM_REG_OK_FOR_BASE_P(X) \ 1892 (REGNO (X) <= LAST_ARM_REGNUM \ 1893 || REGNO (X) >= FIRST_PSEUDO_REGISTER \ 1894 || REGNO (X) == FRAME_POINTER_REGNUM \ 1895 || REGNO (X) == ARG_POINTER_REGNUM) 1896 1897 #define ARM_REG_OK_FOR_INDEX_P(X) \ 1898 ((REGNO (X) <= LAST_ARM_REGNUM \ 1899 && REGNO (X) != STACK_POINTER_REGNUM) \ 1900 || REGNO (X) >= FIRST_PSEUDO_REGISTER \ 1901 || REGNO (X) == FRAME_POINTER_REGNUM \ 1902 || REGNO (X) == ARG_POINTER_REGNUM) 1903 1904 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \ 1905 (REGNO (X) <= LAST_LO_REGNUM \ 1906 || REGNO (X) >= FIRST_PSEUDO_REGISTER \ 1907 || (GET_MODE_SIZE (MODE) >= 4 \ 1908 && (REGNO (X) == STACK_POINTER_REGNUM \ 1909 || (X) == hard_frame_pointer_rtx \ 1910 || (X) == arg_pointer_rtx))) 1911 1912 #define REG_STRICT_P 0 1913 1914 #else /* REG_OK_STRICT */ 1915 1916 #define ARM_REG_OK_FOR_BASE_P(X) \ 1917 ARM_REGNO_OK_FOR_BASE_P (REGNO (X)) 1918 1919 #define ARM_REG_OK_FOR_INDEX_P(X) \ 1920 ARM_REGNO_OK_FOR_INDEX_P (REGNO (X)) 1921 1922 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \ 1923 THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE) 1924 1925 #define REG_STRICT_P 1 1926 1927 #endif /* REG_OK_STRICT */ 1928 1929 /* Now define some helpers in terms of the above. */ 1930 1931 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \ 1932 (TARGET_THUMB1 \ 1933 ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE) \ 1934 : ARM_REG_OK_FOR_BASE_P (X)) 1935 1936 /* For 16-bit Thumb, a valid index register is anything that can be used in 1937 a byte load instruction. */ 1938 #define THUMB1_REG_OK_FOR_INDEX_P(X) \ 1939 THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode) 1940 1941 /* Nonzero if X is a hard reg that can be used as an index 1942 or if it is a pseudo reg. On the Thumb, the stack pointer 1943 is not suitable. */ 1944 #define REG_OK_FOR_INDEX_P(X) \ 1945 (TARGET_THUMB1 \ 1946 ? THUMB1_REG_OK_FOR_INDEX_P (X) \ 1947 : ARM_REG_OK_FOR_INDEX_P (X)) 1948 1949 /* Nonzero if X can be the base register in a reg+reg addressing mode. 1950 For Thumb, we can not use SP + reg, so reject SP. */ 1951 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE) \ 1952 REG_OK_FOR_INDEX_P (X) 1953 1954 #define ARM_BASE_REGISTER_RTX_P(X) \ 1955 (REG_P (X) && ARM_REG_OK_FOR_BASE_P (X)) 1956 1957 #define ARM_INDEX_REGISTER_RTX_P(X) \ 1958 (REG_P (X) && ARM_REG_OK_FOR_INDEX_P (X)) 1959 1960 /* Specify the machine mode that this machine uses 1961 for the index in the tablejump instruction. */ 1962 #define CASE_VECTOR_MODE Pmode 1963 1964 #define CASE_VECTOR_PC_RELATIVE (TARGET_THUMB2 \ 1965 || (TARGET_THUMB1 \ 1966 && (optimize_size || flag_pic))) 1967 1968 #define CASE_VECTOR_SHORTEN_MODE(min, max, body) \ 1969 (TARGET_THUMB1 \ 1970 ? (min >= 0 && max < 512 \ 1971 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode) \ 1972 : min >= -256 && max < 256 \ 1973 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode) \ 1974 : min >= 0 && max < 8192 \ 1975 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode) \ 1976 : min >= -4096 && max < 4096 \ 1977 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode) \ 1978 : SImode) \ 1979 : ((min < 0 || max >= 0x20000 || !TARGET_THUMB2) ? SImode \ 1980 : (max >= 0x200) ? HImode \ 1981 : QImode)) 1982 1983 /* signed 'char' is most compatible, but RISC OS wants it unsigned. 1984 unsigned is probably best, but may break some code. */ 1985 #ifndef DEFAULT_SIGNED_CHAR 1986 #define DEFAULT_SIGNED_CHAR 0 1987 #endif 1988 1989 /* Max number of bytes we can move from memory to memory 1990 in one reasonably fast instruction. */ 1991 #define MOVE_MAX 4 1992 1993 #undef MOVE_RATIO 1994 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2) 1995 1996 /* Define if operations between registers always perform the operation 1997 on the full register even if a narrower mode is specified. */ 1998 #define WORD_REGISTER_OPERATIONS 1999 2000 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD 2001 will either zero-extend or sign-extend. The value of this macro should 2002 be the code that says which one of the two operations is implicitly 2003 done, UNKNOWN if none. */ 2004 #define LOAD_EXTEND_OP(MODE) \ 2005 (TARGET_THUMB ? ZERO_EXTEND : \ 2006 ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \ 2007 : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN))) 2008 2009 /* Nonzero if access to memory by bytes is slow and undesirable. */ 2010 #define SLOW_BYTE_ACCESS 0 2011 2012 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1 2013 2014 /* Immediate shift counts are truncated by the output routines (or was it 2015 the assembler?). Shift counts in a register are truncated by ARM. Note 2016 that the native compiler puts too large (> 32) immediate shift counts 2017 into a register and shifts by the register, letting the ARM decide what 2018 to do instead of doing that itself. */ 2019 /* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that 2020 code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y). 2021 On the arm, Y in a register is used modulo 256 for the shift. Only for 2022 rotates is modulo 32 used. */ 2023 /* #define SHIFT_COUNT_TRUNCATED 1 */ 2024 2025 /* All integers have the same format so truncation is easy. */ 2026 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 2027 2028 /* Calling from registers is a massive pain. */ 2029 #define NO_FUNCTION_CSE 1 2030 2031 /* The machine modes of pointers and functions */ 2032 #define Pmode SImode 2033 #define FUNCTION_MODE Pmode 2034 2035 #define ARM_FRAME_RTX(X) \ 2036 ( (X) == frame_pointer_rtx || (X) == stack_pointer_rtx \ 2037 || (X) == arg_pointer_rtx) 2038 2039 /* Try to generate sequences that don't involve branches, we can then use 2040 conditional instructions. */ 2041 #define BRANCH_COST(speed_p, predictable_p) \ 2042 (current_tune->branch_cost (speed_p, predictable_p)) 2043 2044 /* False if short circuit operation is preferred. */ 2045 #define LOGICAL_OP_NON_SHORT_CIRCUIT \ 2046 ((optimize_size) \ 2047 ? (TARGET_THUMB ? false : true) \ 2048 : (current_tune->logical_op_non_short_circuit[TARGET_ARM])) 2049 2050 2051 /* Position Independent Code. */ 2052 /* We decide which register to use based on the compilation options and 2053 the assembler in use; this is more general than the APCS restriction of 2054 using sb (r9) all the time. */ 2055 extern unsigned arm_pic_register; 2056 2057 /* The register number of the register used to address a table of static 2058 data addresses in memory. */ 2059 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register 2060 2061 /* We can't directly access anything that contains a symbol, 2062 nor can we indirect via the constant pool. One exception is 2063 UNSPEC_TLS, which is always PIC. */ 2064 #define LEGITIMATE_PIC_OPERAND_P(X) \ 2065 (!(symbol_mentioned_p (X) \ 2066 || label_mentioned_p (X) \ 2067 || (GET_CODE (X) == SYMBOL_REF \ 2068 && CONSTANT_POOL_ADDRESS_P (X) \ 2069 && (symbol_mentioned_p (get_pool_constant (X)) \ 2070 || label_mentioned_p (get_pool_constant (X))))) \ 2071 || tls_mentioned_p (X)) 2072 2073 /* We need to know when we are making a constant pool; this determines 2074 whether data needs to be in the GOT or can be referenced via a GOT 2075 offset. */ 2076 extern int making_const_table; 2077 2078 /* Handle pragmas for compatibility with Intel's compilers. */ 2079 /* Also abuse this to register additional C specific EABI attributes. */ 2080 #define REGISTER_TARGET_PRAGMAS() do { \ 2081 c_register_pragma (0, "long_calls", arm_pr_long_calls); \ 2082 c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls); \ 2083 c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off); \ 2084 arm_lang_object_attributes_init(); \ 2085 } while (0) 2086 2087 /* Condition code information. */ 2088 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, 2089 return the mode to be used for the comparison. */ 2090 2091 #define SELECT_CC_MODE(OP, X, Y) arm_select_cc_mode (OP, X, Y) 2092 2093 #define REVERSIBLE_CC_MODE(MODE) 1 2094 2095 #define REVERSE_CONDITION(CODE,MODE) \ 2096 (((MODE) == CCFPmode || (MODE) == CCFPEmode) \ 2097 ? reverse_condition_maybe_unordered (code) \ 2098 : reverse_condition (code)) 2099 2100 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \ 2101 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE)) 2102 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \ 2103 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE)) 2104 2105 #define CC_STATUS_INIT \ 2106 do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0) 2107 2108 #undef ASM_APP_OFF 2109 #define ASM_APP_OFF (TARGET_THUMB1 ? "\t.code\t16\n" : \ 2110 TARGET_THUMB2 ? "\t.thumb\n" : "") 2111 2112 /* Output a push or a pop instruction (only used when profiling). 2113 We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1. We know 2114 that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and 2115 that r7 isn't used by the function profiler, so we can use it as a 2116 scratch reg. WARNING: This isn't safe in the general case! It may be 2117 sensitive to future changes in final.c:profile_function. */ 2118 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO) \ 2119 do \ 2120 { \ 2121 if (TARGET_ARM) \ 2122 asm_fprintf (STREAM,"\tstmfd\t%r!,{%r}\n", \ 2123 STACK_POINTER_REGNUM, REGNO); \ 2124 else if (TARGET_THUMB1 \ 2125 && (REGNO) == STATIC_CHAIN_REGNUM) \ 2126 { \ 2127 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \ 2128 asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\ 2129 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \ 2130 } \ 2131 else \ 2132 asm_fprintf (STREAM, "\tpush {%r}\n", REGNO); \ 2133 } while (0) 2134 2135 2136 /* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue. */ 2137 #define ASM_OUTPUT_REG_POP(STREAM, REGNO) \ 2138 do \ 2139 { \ 2140 if (TARGET_ARM) \ 2141 asm_fprintf (STREAM, "\tldmfd\t%r!,{%r}\n", \ 2142 STACK_POINTER_REGNUM, REGNO); \ 2143 else if (TARGET_THUMB1 \ 2144 && (REGNO) == STATIC_CHAIN_REGNUM) \ 2145 { \ 2146 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \ 2147 asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\ 2148 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \ 2149 } \ 2150 else \ 2151 asm_fprintf (STREAM, "\tpop {%r}\n", REGNO); \ 2152 } while (0) 2153 2154 #define ADDR_VEC_ALIGN(JUMPTABLE) \ 2155 ((TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) ? 2 : 0) 2156 2157 /* Alignment for case labels comes from ADDR_VEC_ALIGN; avoid the 2158 default alignment from elfos.h. */ 2159 #undef ASM_OUTPUT_BEFORE_CASE_LABEL 2160 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE, PREFIX, NUM, TABLE) /* Empty. */ 2161 2162 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) \ 2163 (GET_CODE (PATTERN (prev_active_insn (LABEL))) == ADDR_DIFF_VEC \ 2164 ? 1 : 0) 2165 2166 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) \ 2167 do \ 2168 { \ 2169 if (TARGET_THUMB) \ 2170 { \ 2171 if (is_called_in_ARM_mode (DECL) \ 2172 || (TARGET_THUMB1 && !TARGET_THUMB1_ONLY \ 2173 && cfun->is_thunk)) \ 2174 fprintf (STREAM, "\t.code 32\n") ; \ 2175 else if (TARGET_THUMB1) \ 2176 fprintf (STREAM, "\t.code\t16\n\t.thumb_func\n") ; \ 2177 else \ 2178 fprintf (STREAM, "\t.thumb\n\t.thumb_func\n") ; \ 2179 } \ 2180 if (TARGET_POKE_FUNCTION_NAME) \ 2181 arm_poke_function_name (STREAM, (const char *) NAME); \ 2182 } \ 2183 while (0) 2184 2185 /* For aliases of functions we use .thumb_set instead. */ 2186 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2) \ 2187 do \ 2188 { \ 2189 const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \ 2190 const char *const LABEL2 = IDENTIFIER_POINTER (DECL2); \ 2191 \ 2192 if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL) \ 2193 { \ 2194 fprintf (FILE, "\t.thumb_set "); \ 2195 assemble_name (FILE, LABEL1); \ 2196 fprintf (FILE, ","); \ 2197 assemble_name (FILE, LABEL2); \ 2198 fprintf (FILE, "\n"); \ 2199 } \ 2200 else \ 2201 ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2); \ 2202 } \ 2203 while (0) 2204 2205 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN 2206 /* To support -falign-* switches we need to use .p2align so 2207 that alignment directives in code sections will be padded 2208 with no-op instructions, rather than zeroes. */ 2209 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP) \ 2210 if ((LOG) != 0) \ 2211 { \ 2212 if ((MAX_SKIP) == 0) \ 2213 fprintf ((FILE), "\t.p2align %d\n", (int) (LOG)); \ 2214 else \ 2215 fprintf ((FILE), "\t.p2align %d,,%d\n", \ 2216 (int) (LOG), (int) (MAX_SKIP)); \ 2217 } 2218 #endif 2219 2220 /* Add two bytes to the length of conditionally executed Thumb-2 2221 instructions for the IT instruction. */ 2222 #define ADJUST_INSN_LENGTH(insn, length) \ 2223 if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \ 2224 length += 2; 2225 2226 /* Only perform branch elimination (by making instructions conditional) if 2227 we're optimizing. For Thumb-2 check if any IT instructions need 2228 outputting. */ 2229 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \ 2230 if (TARGET_ARM && optimize) \ 2231 arm_final_prescan_insn (INSN); \ 2232 else if (TARGET_THUMB2) \ 2233 thumb2_final_prescan_insn (INSN); \ 2234 else if (TARGET_THUMB1) \ 2235 thumb1_final_prescan_insn (INSN) 2236 2237 #define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \ 2238 (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x) \ 2239 : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\ 2240 ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \ 2241 ? ((~ (unsigned HOST_WIDE_INT) 0) \ 2242 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) \ 2243 : 0)))) 2244 2245 /* A C expression whose value is RTL representing the value of the return 2246 address for the frame COUNT steps up from the current frame. */ 2247 2248 #define RETURN_ADDR_RTX(COUNT, FRAME) \ 2249 arm_return_addr (COUNT, FRAME) 2250 2251 /* Mask of the bits in the PC that contain the real return address 2252 when running in 26-bit mode. */ 2253 #define RETURN_ADDR_MASK26 (0x03fffffc) 2254 2255 /* Pick up the return address upon entry to a procedure. Used for 2256 dwarf2 unwind information. This also enables the table driven 2257 mechanism. */ 2258 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM) 2259 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM) 2260 2261 /* Used to mask out junk bits from the return address, such as 2262 processor state, interrupt status, condition codes and the like. */ 2263 #define MASK_RETURN_ADDR \ 2264 /* If we are generating code for an ARM2/ARM3 machine or for an ARM6 \ 2265 in 26 bit mode, the condition codes must be masked out of the \ 2266 return address. This does not apply to ARM6 and later processors \ 2267 when running in 32 bit mode. */ \ 2268 ((arm_arch4 || TARGET_THUMB) \ 2269 ? (gen_int_mode ((unsigned long)0xffffffff, Pmode)) \ 2270 : arm_gen_return_addr_mask ()) 2271 2272 2273 /* Do not emit .note.GNU-stack by default. */ 2274 #ifndef NEED_INDICATE_EXEC_STACK 2275 #define NEED_INDICATE_EXEC_STACK 0 2276 #endif 2277 2278 #define TARGET_ARM_ARCH \ 2279 (arm_base_arch) \ 2280 2281 #define TARGET_ARM_V6M (!arm_arch_notm && !arm_arch_thumb2) 2282 #define TARGET_ARM_V7M (!arm_arch_notm && arm_arch_thumb2) 2283 2284 /* The highest Thumb instruction set version supported by the chip. */ 2285 #define TARGET_ARM_ARCH_ISA_THUMB \ 2286 (arm_arch_thumb2 ? 2 \ 2287 : ((TARGET_ARM_ARCH >= 5 || arm_arch4t) ? 1 : 0)) 2288 2289 /* Expands to an upper-case char of the target's architectural 2290 profile. */ 2291 #define TARGET_ARM_ARCH_PROFILE \ 2292 (!arm_arch_notm \ 2293 ? 'M' \ 2294 : (arm_arch7 \ 2295 ? (strlen (arm_arch_name) >=3 \ 2296 ? (arm_arch_name[strlen (arm_arch_name) - 3]) \ 2297 : 0) \ 2298 : 0)) 2299 2300 /* Bit-field indicating what size LDREX/STREX loads/stores are available. 2301 Bit 0 for bytes, up to bit 3 for double-words. */ 2302 #define TARGET_ARM_FEATURE_LDREX \ 2303 ((TARGET_HAVE_LDREX ? 4 : 0) \ 2304 | (TARGET_HAVE_LDREXBH ? 3 : 0) \ 2305 | (TARGET_HAVE_LDREXD ? 8 : 0)) 2306 2307 /* Set as a bit mask indicating the available widths of hardware floating 2308 point types. Where bit 1 indicates 16-bit support, bit 2 indicates 2309 32-bit support, bit 3 indicates 64-bit support. */ 2310 #define TARGET_ARM_FP \ 2311 (TARGET_VFP_SINGLE ? 4 \ 2312 : (TARGET_VFP_DOUBLE ? (TARGET_FP16 ? 14 : 12) : 0)) 2313 2314 2315 /* Set as a bit mask indicating the available widths of floating point 2316 types for hardware NEON floating point. This is the same as 2317 TARGET_ARM_FP without the 64-bit bit set. */ 2318 #ifdef TARGET_NEON 2319 #define TARGET_NEON_FP \ 2320 (TARGET_ARM_FP & (0xff ^ 0x08)) 2321 #endif 2322 2323 /* The maximum number of parallel loads or stores we support in an ldm/stm 2324 instruction. */ 2325 #define MAX_LDM_STM_OPS 4 2326 2327 #define ASM_CPU_SPEC \ 2328 " %{mcpu=generic-*:-march=%*;" \ 2329 " :%{mcpu=*:-mcpu=%*} %{march=*:-march=%*}}" 2330 2331 /* -mcpu=native handling only makes sense with compiler running on 2332 an ARM chip. */ 2333 #if defined(__arm__) && defined(__linux__) 2334 extern const char *host_detect_local_cpu (int argc, const char **argv); 2335 # define EXTRA_SPEC_FUNCTIONS \ 2336 { "local_cpu_detect", host_detect_local_cpu }, 2337 2338 # define MCPU_MTUNE_NATIVE_SPECS \ 2339 " %{march=native:%<march=native %:local_cpu_detect(arch)}" \ 2340 " %{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)}" \ 2341 " %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}" 2342 #else 2343 # define MCPU_MTUNE_NATIVE_SPECS "" 2344 #endif 2345 2346 #define DRIVER_SELF_SPECS MCPU_MTUNE_NATIVE_SPECS 2347 2348 #endif /* ! GCC_ARM_H */ 2349