xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/config/arm/arm.h (revision 63aea4bd5b445e491ff0389fe27ec78b3099dba3)
1 /* Definitions of target machine for GNU compiler, for ARM.
2    Copyright (C) 1991-2013 Free Software Foundation, Inc.
3    Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
4    and Martin Simmons (@harleqn.co.uk).
5    More major hacks by Richard Earnshaw (rearnsha@arm.com)
6    Minor hacks by Nick Clifton (nickc@cygnus.com)
7 
8    This file is part of GCC.
9 
10    GCC is free software; you can redistribute it and/or modify it
11    under the terms of the GNU General Public License as published
12    by the Free Software Foundation; either version 3, or (at your
13    option) any later version.
14 
15    GCC is distributed in the hope that it will be useful, but WITHOUT
16    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
18    License for more details.
19 
20    You should have received a copy of the GNU General Public License
21    along with GCC; see the file COPYING3.  If not see
22    <http://www.gnu.org/licenses/>.  */
23 
24 #ifndef GCC_ARM_H
25 #define GCC_ARM_H
26 
27 /* We can't use enum machine_mode inside a generator file because it
28    hasn't been created yet; we shouldn't be using any code that
29    needs the real definition though, so this ought to be safe.  */
30 #ifdef GENERATOR_FILE
31 #define MACHMODE int
32 #else
33 #include "insn-modes.h"
34 #define MACHMODE enum machine_mode
35 #endif
36 
37 #include "config/vxworks-dummy.h"
38 
39 /* The architecture define.  */
40 extern char arm_arch_name[];
41 
42 /* Target CPU builtins.  */
43 #define TARGET_CPU_CPP_BUILTINS()			\
44   do							\
45     {							\
46 	if (TARGET_DSP_MULTIPLY)			\
47 	   builtin_define ("__ARM_FEATURE_DSP");	\
48         if (TARGET_ARM_QBIT)				\
49            builtin_define ("__ARM_FEATURE_QBIT");	\
50         if (TARGET_ARM_SAT)				\
51            builtin_define ("__ARM_FEATURE_SAT");	\
52 	if (unaligned_access)				\
53 	  builtin_define ("__ARM_FEATURE_UNALIGNED");	\
54 	if (TARGET_ARM_FEATURE_LDREX)				\
55 	  builtin_define_with_int_value (			\
56 	    "__ARM_FEATURE_LDREX", TARGET_ARM_FEATURE_LDREX);	\
57 	if ((TARGET_ARM_ARCH >= 5 && !TARGET_THUMB)		\
58 	     || TARGET_ARM_ARCH_ISA_THUMB >=2)			\
59 	  builtin_define ("__ARM_FEATURE_CLZ");			\
60 	if (TARGET_INT_SIMD)					\
61 	  builtin_define ("__ARM_FEATURE_SIMD32");		\
62 								\
63 	builtin_define_with_int_value (				\
64 	  "__ARM_SIZEOF_MINIMAL_ENUM",				\
65 	  flag_short_enums ? 1 : 4);				\
66 	builtin_define_type_sizeof ("__ARM_SIZEOF_WCHAR_T",	\
67 				    wchar_type_node);		\
68 	if (TARGET_ARM_ARCH_PROFILE)				\
69 	  builtin_define_with_int_value (			\
70 	    "__ARM_ARCH_PROFILE", TARGET_ARM_ARCH_PROFILE);	\
71 								\
72 	/* Define __arm__ even when in thumb mode, for	\
73 	   consistency with armcc.  */			\
74 	builtin_define ("__arm__");			\
75 	if (TARGET_ARM_ARCH)				\
76 	  builtin_define_with_int_value (		\
77 	    "__ARM_ARCH", TARGET_ARM_ARCH);		\
78 	if (arm_arch_notm)				\
79 	  builtin_define ("__ARM_ARCH_ISA_ARM");	\
80 	builtin_define ("__APCS_32__");			\
81 	if (TARGET_THUMB)				\
82 	  builtin_define ("__thumb__");			\
83 	if (TARGET_THUMB2)				\
84 	  builtin_define ("__thumb2__");		\
85 	if (TARGET_ARM_ARCH_ISA_THUMB)			\
86 	  builtin_define_with_int_value (		\
87 	    "__ARM_ARCH_ISA_THUMB",			\
88 	    TARGET_ARM_ARCH_ISA_THUMB);			\
89 							\
90 	if (TARGET_BIG_END)				\
91 	  {						\
92 	    builtin_define ("__ARMEB__");		\
93 	    builtin_define ("__ARM_BIG_ENDIAN");	\
94 	    if (TARGET_THUMB)				\
95 	      builtin_define ("__THUMBEB__");		\
96 	    if (TARGET_LITTLE_WORDS)			\
97 	      builtin_define ("__ARMWEL__");		\
98 	  }						\
99         else						\
100 	  {						\
101 	    builtin_define ("__ARMEL__");		\
102 	    if (TARGET_THUMB)				\
103 	      builtin_define ("__THUMBEL__");		\
104 	  }						\
105 							\
106 	if (TARGET_SOFT_FLOAT)				\
107 	  builtin_define ("__SOFTFP__");		\
108 							\
109 	if (TARGET_VFP)					\
110 	  builtin_define ("__VFP_FP__");		\
111 							\
112 	if (TARGET_ARM_FP)				\
113 	  builtin_define_with_int_value (		\
114 	    "__ARM_FP", TARGET_ARM_FP);			\
115 	if (arm_fp16_format == ARM_FP16_FORMAT_IEEE)		\
116 	  builtin_define ("__ARM_FP16_FORMAT_IEEE");		\
117 	if (arm_fp16_format == ARM_FP16_FORMAT_ALTERNATIVE)	\
118 	  builtin_define ("__ARM_FP16_FORMAT_ALTERNATIVE");	\
119         if (TARGET_FMA)					\
120           builtin_define ("__ARM_FEATURE_FMA");		\
121 							\
122 	if (TARGET_NEON)				\
123 	  {						\
124 	    builtin_define ("__ARM_NEON__");		\
125 	    builtin_define ("__ARM_NEON");		\
126 	  }						\
127 	if (TARGET_NEON_FP)				\
128 	  builtin_define_with_int_value (		\
129 	    "__ARM_NEON_FP", TARGET_NEON_FP);		\
130 							\
131 	/* Add a define for interworking.		\
132 	   Needed when building libgcc.a.  */		\
133 	if (arm_cpp_interwork)				\
134 	  builtin_define ("__THUMB_INTERWORK__");	\
135 							\
136 	builtin_assert ("cpu=arm");			\
137 	builtin_assert ("machine=arm");			\
138 							\
139 	builtin_define (arm_arch_name);			\
140 	if (arm_arch_xscale)				\
141 	  builtin_define ("__XSCALE__");		\
142 	if (arm_arch_iwmmxt)				\
143           {						\
144 	    builtin_define ("__IWMMXT__");		\
145 	    builtin_define ("__ARM_WMMX");		\
146 	  }						\
147 	if (arm_arch_iwmmxt2)				\
148 	  builtin_define ("__IWMMXT2__");		\
149 	if (TARGET_AAPCS_BASED)				\
150 	  {						\
151 	    if (arm_pcs_default == ARM_PCS_AAPCS_VFP)	\
152 	      builtin_define ("__ARM_PCS_VFP");		\
153 	    else if (arm_pcs_default == ARM_PCS_AAPCS)	\
154 	      builtin_define ("__ARM_PCS");		\
155 	    builtin_define ("__ARM_EABI__");		\
156 	  }						\
157 	if (TARGET_IDIV)				\
158 	  builtin_define ("__ARM_ARCH_EXT_IDIV__");	\
159     } while (0)
160 
161 #include "config/arm/arm-opts.h"
162 
163 enum target_cpus
164 {
165 #define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \
166   TARGET_CPU_##IDENT,
167 #include "arm-cores.def"
168 #undef ARM_CORE
169   TARGET_CPU_generic
170 };
171 
172 /* The processor for which instructions should be scheduled.  */
173 extern enum processor_type arm_tune;
174 
175 typedef enum arm_cond_code
176 {
177   ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
178   ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
179 }
180 arm_cc;
181 
182 extern arm_cc arm_current_cc;
183 
184 #define ARM_INVERSE_CONDITION_CODE(X)  ((arm_cc) (((int)X) ^ 1))
185 
186 extern int arm_target_label;
187 extern int arm_ccfsm_state;
188 extern GTY(()) rtx arm_target_insn;
189 /* The label of the current constant pool.  */
190 extern rtx pool_vector_label;
191 /* Set to 1 when a return insn is output, this means that the epilogue
192    is not needed.  */
193 extern int return_used_this_function;
194 /* Callback to output language specific object attributes.  */
195 extern void (*arm_lang_output_object_attributes_hook)(void);
196 
197 /* Just in case configure has failed to define anything.  */
198 #ifndef TARGET_CPU_DEFAULT
199 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
200 #endif
201 
202 
203 #undef  CPP_SPEC
204 #define CPP_SPEC "%(subtarget_cpp_spec)					\
205 %{mfloat-abi=soft:%{mfloat-abi=hard:					\
206 	%e-mfloat-abi=soft and -mfloat-abi=hard may not be used together}} \
207 %{mbig-endian:%{mlittle-endian:						\
208 	%e-mbig-endian and -mlittle-endian may not be used together}}"
209 
210 #ifndef CC1_SPEC
211 #define CC1_SPEC ""
212 #endif
213 
214 /* This macro defines names of additional specifications to put in the specs
215    that can be used in various specifications like CC1_SPEC.  Its definition
216    is an initializer with a subgrouping for each command option.
217 
218    Each subgrouping contains a string constant, that defines the
219    specification name, and a string constant that used by the GCC driver
220    program.
221 
222    Do not define this macro if it does not need to do anything.  */
223 #define EXTRA_SPECS						\
224   { "subtarget_cpp_spec",	SUBTARGET_CPP_SPEC },           \
225   { "asm_cpu_spec",		ASM_CPU_SPEC },			\
226   SUBTARGET_EXTRA_SPECS
227 
228 #ifndef SUBTARGET_EXTRA_SPECS
229 #define SUBTARGET_EXTRA_SPECS
230 #endif
231 
232 #ifndef SUBTARGET_CPP_SPEC
233 #define SUBTARGET_CPP_SPEC      ""
234 #endif
235 
236 /* Run-time Target Specification.  */
237 #define TARGET_SOFT_FLOAT		(arm_float_abi == ARM_FLOAT_ABI_SOFT)
238 /* Use hardware floating point instructions. */
239 #define TARGET_HARD_FLOAT		(arm_float_abi != ARM_FLOAT_ABI_SOFT)
240 /* Use hardware floating point calling convention.  */
241 #define TARGET_HARD_FLOAT_ABI		(arm_float_abi == ARM_FLOAT_ABI_HARD)
242 #define TARGET_VFP		(arm_fpu_desc->model == ARM_FP_MODEL_VFP)
243 #define TARGET_IWMMXT			(arm_arch_iwmmxt)
244 #define TARGET_IWMMXT2			(arm_arch_iwmmxt2)
245 #define TARGET_REALLY_IWMMXT		(TARGET_IWMMXT && TARGET_32BIT)
246 #define TARGET_REALLY_IWMMXT2		(TARGET_IWMMXT2 && TARGET_32BIT)
247 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
248 #define TARGET_ARM                      (! TARGET_THUMB)
249 #define TARGET_EITHER			1 /* (TARGET_ARM | TARGET_THUMB) */
250 #define TARGET_BACKTRACE	        (leaf_function_p () \
251 				         ? TARGET_TPCS_LEAF_FRAME \
252 				         : TARGET_TPCS_FRAME)
253 #define TARGET_AAPCS_BASED \
254     (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
255 
256 #define TARGET_HARD_TP			(target_thread_pointer == TP_CP15)
257 #define TARGET_SOFT_TP			(target_thread_pointer == TP_SOFT)
258 #define TARGET_GNU2_TLS			(target_tls_dialect == TLS_GNU2)
259 
260 /* Only 16-bit thumb code.  */
261 #define TARGET_THUMB1			(TARGET_THUMB && !arm_arch_thumb2)
262 /* Arm or Thumb-2 32-bit code.  */
263 #define TARGET_32BIT			(TARGET_ARM || arm_arch_thumb2)
264 /* 32-bit Thumb-2 code.  */
265 #define TARGET_THUMB2			(TARGET_THUMB && arm_arch_thumb2)
266 /* Thumb-1 only.  */
267 #define TARGET_THUMB1_ONLY		(TARGET_THUMB1 && !arm_arch_notm)
268 
269 #define TARGET_LDRD			(arm_arch5e && ARM_DOUBLEWORD_ALIGN \
270                                          && !TARGET_THUMB1)
271 
272 /* The following two macros concern the ability to execute coprocessor
273    instructions for VFPv3 or NEON.  TARGET_VFP3/TARGET_VFPD32 are currently
274    only ever tested when we know we are generating for VFP hardware; we need
275    to be more careful with TARGET_NEON as noted below.  */
276 
277 /* FPU is has the full VFPv3/NEON register file of 32 D registers.  */
278 #define TARGET_VFPD32 (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_D32)
279 
280 /* FPU supports VFPv3 instructions.  */
281 #define TARGET_VFP3 (TARGET_VFP && arm_fpu_desc->rev >= 3)
282 
283 /* FPU only supports VFP single-precision instructions.  */
284 #define TARGET_VFP_SINGLE (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_SINGLE)
285 
286 /* FPU supports VFP double-precision instructions.  */
287 #define TARGET_VFP_DOUBLE (TARGET_VFP && arm_fpu_desc->regs != VFP_REG_SINGLE)
288 
289 /* FPU supports half-precision floating-point with NEON element load/store.  */
290 #define TARGET_NEON_FP16 \
291   (TARGET_VFP && arm_fpu_desc->neon && arm_fpu_desc->fp16)
292 
293 /* FPU supports VFP half-precision floating-point.  */
294 #define TARGET_FP16 (TARGET_VFP && arm_fpu_desc->fp16)
295 
296 /* FPU supports fused-multiply-add operations.  */
297 #define TARGET_FMA (TARGET_VFP && arm_fpu_desc->rev >= 4)
298 
299 /* FPU is ARMv8 compatible.  */
300 #define TARGET_FPU_ARMV8 (TARGET_VFP && arm_fpu_desc->rev >= 8)
301 
302 /* FPU supports Crypto extensions.  */
303 #define TARGET_CRYPTO (TARGET_VFP && arm_fpu_desc->crypto)
304 
305 /* FPU supports Neon instructions.  The setting of this macro gets
306    revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
307    and TARGET_HARD_FLOAT to ensure that NEON instructions are
308    available.  */
309 #define TARGET_NEON (TARGET_32BIT && TARGET_HARD_FLOAT \
310 		     && TARGET_VFP && arm_fpu_desc->neon)
311 
312 /* Q-bit is present.  */
313 #define TARGET_ARM_QBIT \
314   (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7))
315 /* Saturation operation, e.g. SSAT.  */
316 #define TARGET_ARM_SAT \
317   (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7))
318 /* "DSP" multiply instructions, eg. SMULxy.  */
319 #define TARGET_DSP_MULTIPLY \
320   (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7em))
321 /* Integer SIMD instructions, and extend-accumulate instructions.  */
322 #define TARGET_INT_SIMD \
323   (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
324 
325 /* Should MOVW/MOVT be used in preference to a constant pool.  */
326 #define TARGET_USE_MOVT \
327   (arm_arch_thumb2 && !optimize_size && !current_tune->prefer_constant_pool)
328 
329 /* We could use unified syntax for arm mode, but for now we just use it
330    for Thumb-2.  */
331 #define TARGET_UNIFIED_ASM TARGET_THUMB2
332 
333 /* Nonzero if this chip provides the DMB instruction.  */
334 #define TARGET_HAVE_DMB		(arm_arch6m || arm_arch7)
335 
336 /* Nonzero if this chip implements a memory barrier via CP15.  */
337 #define TARGET_HAVE_DMB_MCR	(arm_arch6 && ! TARGET_HAVE_DMB \
338 				 && ! TARGET_THUMB1)
339 
340 /* Nonzero if this chip implements a memory barrier instruction.  */
341 #define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR)
342 
343 /* Nonzero if this chip supports ldrex and strex */
344 #define TARGET_HAVE_LDREX	((arm_arch6 && TARGET_ARM) || arm_arch7)
345 
346 /* Nonzero if this chip supports ldrex{bh} and strex{bh}.  */
347 #define TARGET_HAVE_LDREXBH	((arm_arch6k && TARGET_ARM) || arm_arch7)
348 
349 /* Nonzero if this chip supports ldrexd and strexd.  */
350 #define TARGET_HAVE_LDREXD	(((arm_arch6k && TARGET_ARM) || arm_arch7) \
351 				 && arm_arch_notm)
352 
353 /* Nonzero if integer division instructions supported.  */
354 #define TARGET_IDIV		((TARGET_ARM && arm_arch_arm_hwdiv) \
355 				 || (TARGET_THUMB2 && arm_arch_thumb_hwdiv))
356 
357 /* True iff the full BPABI is being used.  If TARGET_BPABI is true,
358    then TARGET_AAPCS_BASED must be true -- but the converse does not
359    hold.  TARGET_BPABI implies the use of the BPABI runtime library,
360    etc., in addition to just the AAPCS calling conventions.  */
361 #ifndef TARGET_BPABI
362 #define TARGET_BPABI false
363 #endif
364 
365 /* Support for a compile-time default CPU, et cetera.  The rules are:
366    --with-arch is ignored if -march or -mcpu are specified.
367    --with-cpu is ignored if -march or -mcpu are specified, and is overridden
368     by --with-arch.
369    --with-tune is ignored if -mtune or -mcpu are specified (but not affected
370      by -march).
371    --with-float is ignored if -mfloat-abi is specified.
372    --with-fpu is ignored if -mfpu is specified.
373    --with-abi is ignored if -mabi is specified.
374    --with-tls is ignored if -mtls-dialect is specified. */
375 #define OPTION_DEFAULT_SPECS \
376   {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
377   {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
378   {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
379   {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \
380   {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
381   {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
382   {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"}, \
383   {"tls", "%{!mtls-dialect=*:-mtls-dialect=%(VALUE)}"},
384 
385 /* Which floating point model to use.  */
386 enum arm_fp_model
387 {
388   ARM_FP_MODEL_UNKNOWN,
389   /* VFP floating point model.  */
390   ARM_FP_MODEL_VFP
391 };
392 
393 enum vfp_reg_type
394 {
395   VFP_NONE = 0,
396   VFP_REG_D16,
397   VFP_REG_D32,
398   VFP_REG_SINGLE
399 };
400 
401 extern const struct arm_fpu_desc
402 {
403   const char *name;
404   enum arm_fp_model model;
405   int rev;
406   enum vfp_reg_type regs;
407   int neon;
408   int fp16;
409   int crypto;
410 } *arm_fpu_desc;
411 
412 /* Which floating point hardware to schedule for.  */
413 extern int arm_fpu_attr;
414 
415 #ifndef TARGET_DEFAULT_FLOAT_ABI
416 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
417 #endif
418 
419 #define LARGEST_EXPONENT_IS_NORMAL(bits) \
420     ((bits) == 16 && arm_fp16_format == ARM_FP16_FORMAT_ALTERNATIVE)
421 
422 #ifndef ARM_DEFAULT_ABI
423 #define ARM_DEFAULT_ABI ARM_ABI_APCS
424 #endif
425 
426 /* Map each of the micro-architecture variants to their corresponding
427    major architecture revision.  */
428 
429 enum base_architecture
430 {
431   BASE_ARCH_0 = 0,
432   BASE_ARCH_2 = 2,
433   BASE_ARCH_3 = 3,
434   BASE_ARCH_3M = 3,
435   BASE_ARCH_4 = 4,
436   BASE_ARCH_4T = 4,
437   BASE_ARCH_5 = 5,
438   BASE_ARCH_5E = 5,
439   BASE_ARCH_5T = 5,
440   BASE_ARCH_5TE = 5,
441   BASE_ARCH_5TEJ = 5,
442   BASE_ARCH_6 = 6,
443   BASE_ARCH_6J = 6,
444   BASE_ARCH_6ZK = 6,
445   BASE_ARCH_6K = 6,
446   BASE_ARCH_6T2 = 6,
447   BASE_ARCH_6M = 6,
448   BASE_ARCH_6Z = 6,
449   BASE_ARCH_7 = 7,
450   BASE_ARCH_7A = 7,
451   BASE_ARCH_7R = 7,
452   BASE_ARCH_7M = 7,
453   BASE_ARCH_7EM = 7,
454   BASE_ARCH_8A = 8
455 };
456 
457 /* The major revision number of the ARM Architecture implemented by the target.  */
458 extern enum base_architecture arm_base_arch;
459 
460 /* Nonzero if this chip supports the ARM Architecture 3M extensions.  */
461 extern int arm_arch3m;
462 
463 /* Nonzero if this chip supports the ARM Architecture 4 extensions.  */
464 extern int arm_arch4;
465 
466 /* Nonzero if this chip supports the ARM Architecture 4T extensions.  */
467 extern int arm_arch4t;
468 
469 /* Nonzero if this chip supports the ARM Architecture 5 extensions.  */
470 extern int arm_arch5;
471 
472 /* Nonzero if this chip supports the ARM Architecture 5E extensions.  */
473 extern int arm_arch5e;
474 
475 /* Nonzero if this chip supports the ARM Architecture 6 extensions.  */
476 extern int arm_arch6;
477 
478 /* Nonzero if this chip supports the ARM Architecture 6k extensions.  */
479 extern int arm_arch6k;
480 
481 /* Nonzero if instructions present in ARMv6-M can be used.  */
482 extern int arm_arch6m;
483 
484 /* Nonzero if this chip supports the ARM Architecture 7 extensions.  */
485 extern int arm_arch7;
486 
487 /* Nonzero if instructions not present in the 'M' profile can be used.  */
488 extern int arm_arch_notm;
489 
490 /* Nonzero if instructions present in ARMv7E-M can be used.  */
491 extern int arm_arch7em;
492 
493 /* Nonzero if this chip supports the ARM Architecture 8 extensions.  */
494 extern int arm_arch8;
495 
496 /* Nonzero if this chip can benefit from load scheduling.  */
497 extern int arm_ld_sched;
498 
499 /* Nonzero if generating Thumb code, either Thumb-1 or Thumb-2.  */
500 extern int thumb_code;
501 
502 /* Nonzero if generating Thumb-1 code.  */
503 extern int thumb1_code;
504 
505 /* Nonzero if this chip is a StrongARM.  */
506 extern int arm_tune_strongarm;
507 
508 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology.  */
509 extern int arm_arch_iwmmxt;
510 
511 /* Nonzero if this chip supports Intel Wireless MMX2 technology.  */
512 extern int arm_arch_iwmmxt2;
513 
514 /* Nonzero if this chip is an XScale.  */
515 extern int arm_arch_xscale;
516 
517 /* Nonzero if tuning for XScale.  */
518 extern int arm_tune_xscale;
519 
520 /* Nonzero if tuning for stores via the write buffer.  */
521 extern int arm_tune_wbuf;
522 
523 /* Nonzero if tuning for Cortex-A9.  */
524 extern int arm_tune_cortex_a9;
525 
526 /* Nonzero if we should define __THUMB_INTERWORK__ in the
527    preprocessor.
528    XXX This is a bit of a hack, it's intended to help work around
529    problems in GLD which doesn't understand that armv5t code is
530    interworking clean.  */
531 extern int arm_cpp_interwork;
532 
533 /* Nonzero if chip supports Thumb 2.  */
534 extern int arm_arch_thumb2;
535 
536 /* Nonzero if chip supports integer division instruction in ARM mode.  */
537 extern int arm_arch_arm_hwdiv;
538 
539 /* Nonzero if chip supports integer division instruction in Thumb mode.  */
540 extern int arm_arch_thumb_hwdiv;
541 
542 #ifndef TARGET_DEFAULT
543 #define TARGET_DEFAULT  (MASK_APCS_FRAME)
544 #endif
545 
546 /* Nonzero if PIC code requires explicit qualifiers to generate
547    PLT and GOT relocs rather than the assembler doing so implicitly.
548    Subtargets can override these if required.  */
549 #ifndef NEED_GOT_RELOC
550 #define NEED_GOT_RELOC	0
551 #endif
552 #ifndef NEED_PLT_RELOC
553 #define NEED_PLT_RELOC	0
554 #endif
555 
556 /* Nonzero if we need to refer to the GOT with a PC-relative
557    offset.  In other words, generate
558 
559    .word	_GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
560 
561    rather than
562 
563    .word	_GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
564 
565    The default is true, which matches NetBSD.  Subtargets can
566    override this if required.  */
567 #ifndef GOT_PCREL
568 #define GOT_PCREL   1
569 #endif
570 
571 /* Target machine storage Layout.  */
572 
573 
574 /* Define this macro if it is advisable to hold scalars in registers
575    in a wider mode than that declared by the program.  In such cases,
576    the value is constrained to be within the bounds of the declared
577    type, but kept valid in the wider mode.  The signedness of the
578    extension may differ from that of the type.  */
579 
580 /* It is far faster to zero extend chars than to sign extend them */
581 
582 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
583   if (GET_MODE_CLASS (MODE) == MODE_INT		\
584       && GET_MODE_SIZE (MODE) < 4)      	\
585     {						\
586       if (MODE == QImode)			\
587 	UNSIGNEDP = 1;				\
588       else if (MODE == HImode)			\
589 	UNSIGNEDP = 1;				\
590       (MODE) = SImode;				\
591     }
592 
593 /* Define this if most significant bit is lowest numbered
594    in instructions that operate on numbered bit-fields.  */
595 #define BITS_BIG_ENDIAN  0
596 
597 /* Define this if most significant byte of a word is the lowest numbered.
598    Most ARM processors are run in little endian mode, so that is the default.
599    If you want to have it run-time selectable, change the definition in a
600    cover file to be TARGET_BIG_ENDIAN.  */
601 #define BYTES_BIG_ENDIAN  (TARGET_BIG_END != 0)
602 
603 /* Define this if most significant word of a multiword number is the lowest
604    numbered.
605    This is always false, even when in big-endian mode.  */
606 #define WORDS_BIG_ENDIAN  (BYTES_BIG_ENDIAN && ! TARGET_LITTLE_WORDS)
607 
608 #define UNITS_PER_WORD	4
609 
610 /* True if natural alignment is used for doubleword types.  */
611 #define ARM_DOUBLEWORD_ALIGN	TARGET_AAPCS_BASED
612 
613 #define DOUBLEWORD_ALIGNMENT 64
614 
615 #define PARM_BOUNDARY  	32
616 
617 #define STACK_BOUNDARY  (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
618 
619 #define PREFERRED_STACK_BOUNDARY \
620     (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
621 
622 #define FUNCTION_BOUNDARY  ((TARGET_THUMB && optimize_size) ? 16 : 32)
623 
624 /* The lowest bit is used to indicate Thumb-mode functions, so the
625    vbit must go into the delta field of pointers to member
626    functions.  */
627 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
628 
629 #define EMPTY_FIELD_BOUNDARY  32
630 
631 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
632 
633 /* XXX Blah -- this macro is used directly by libobjc.  Since it
634    supports no vector modes, cut out the complexity and fall back
635    on BIGGEST_FIELD_ALIGNMENT.  */
636 #ifdef IN_TARGET_LIBS
637 #define BIGGEST_FIELD_ALIGNMENT 64
638 #endif
639 
640 /* Make strings word-aligned so strcpy from constants will be faster.  */
641 #define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_tune_xscale ? 1 : 2)
642 
643 #define CONSTANT_ALIGNMENT(EXP, ALIGN)				\
644    ((TREE_CODE (EXP) == STRING_CST				\
645      && !optimize_size						\
646      && (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR)	\
647     ? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN))
648 
649 /* Align definitions of arrays, unions and structures so that
650    initializations and copies can be made more efficient.  This is not
651    ABI-changing, so it only affects places where we can see the
652    definition. Increasing the alignment tends to introduce padding,
653    so don't do this when optimizing for size/conserving stack space. */
654 #define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN)				\
655   (((COND) && ((ALIGN) < BITS_PER_WORD)					\
656     && (TREE_CODE (EXP) == ARRAY_TYPE					\
657 	|| TREE_CODE (EXP) == UNION_TYPE				\
658 	|| TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
659 
660 /* Align global data. */
661 #define DATA_ALIGNMENT(EXP, ALIGN)			\
662   ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN)
663 
664 /* Similarly, make sure that objects on the stack are sensibly aligned.  */
665 #define LOCAL_ALIGNMENT(EXP, ALIGN)				\
666   ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN)
667 
668 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
669    value set in previous versions of this toolchain was 8, which produces more
670    compact structures.  The command line option -mstructure_size_boundary=<n>
671    can be used to change this value.  For compatibility with the ARM SDK
672    however the value should be left at 32.  ARM SDT Reference Manual (ARM DUI
673    0020D) page 2-20 says "Structures are aligned on word boundaries".
674    The AAPCS specifies a value of 8.  */
675 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
676 
677 /* This is the value used to initialize arm_structure_size_boundary.  If a
678    particular arm target wants to change the default value it should change
679    the definition of this macro, not STRUCTURE_SIZE_BOUNDARY.  See netbsd.h
680    for an example of this.  */
681 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
682 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
683 #endif
684 
685 /* Nonzero if move instructions will actually fail to work
686    when given unaligned data.  */
687 #define STRICT_ALIGNMENT 1
688 
689 /* wchar_t is unsigned under the AAPCS.  */
690 #ifndef WCHAR_TYPE
691 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
692 
693 #define WCHAR_TYPE_SIZE BITS_PER_WORD
694 #endif
695 
696 /* Sized for fixed-point types.  */
697 
698 #define SHORT_FRACT_TYPE_SIZE 8
699 #define FRACT_TYPE_SIZE 16
700 #define LONG_FRACT_TYPE_SIZE 32
701 #define LONG_LONG_FRACT_TYPE_SIZE 64
702 
703 #define SHORT_ACCUM_TYPE_SIZE 16
704 #define ACCUM_TYPE_SIZE 32
705 #define LONG_ACCUM_TYPE_SIZE 64
706 #define LONG_LONG_ACCUM_TYPE_SIZE 64
707 
708 #define MAX_FIXED_MODE_SIZE 64
709 
710 #ifndef SIZE_TYPE
711 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
712 #endif
713 
714 #ifndef PTRDIFF_TYPE
715 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
716 #endif
717 
718 /* AAPCS requires that structure alignment is affected by bitfields.  */
719 #ifndef PCC_BITFIELD_TYPE_MATTERS
720 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
721 #endif
722 
723 
724 /* Standard register usage.  */
725 
726 /* Register allocation in ARM Procedure Call Standard
727    (S - saved over call).
728 
729 	r0	   *	argument word/integer result
730 	r1-r3		argument word
731 
732 	r4-r8	     S	register variable
733 	r9	     S	(rfp) register variable (real frame pointer)
734 
735 	r10  	   F S	(sl) stack limit (used by -mapcs-stack-check)
736 	r11 	   F S	(fp) argument pointer
737 	r12		(ip) temp workspace
738 	r13  	   F S	(sp) lower end of current stack frame
739 	r14		(lr) link address/workspace
740 	r15	   F	(pc) program counter
741 
742 	cc		This is NOT a real register, but is used internally
743 	                to represent things that use or set the condition
744 			codes.
745 	sfp             This isn't either.  It is used during rtl generation
746 	                since the offset between the frame pointer and the
747 			auto's isn't known until after register allocation.
748 	afp		Nor this, we only need this because of non-local
749 	                goto.  Without it fp appears to be used and the
750 			elimination code won't get rid of sfp.  It tracks
751 			fp exactly at all times.
752 
753    *: See TARGET_CONDITIONAL_REGISTER_USAGE  */
754 
755 /*	s0-s15		VFP scratch (aka d0-d7).
756 	s16-s31	      S	VFP variable (aka d8-d15).
757 	vfpcc		Not a real register.  Represents the VFP condition
758 			code flags.  */
759 
760 /* The stack backtrace structure is as follows:
761   fp points to here:  |  save code pointer  |      [fp]
762                       |  return link value  |      [fp, #-4]
763                       |  return sp value    |      [fp, #-8]
764                       |  return fp value    |      [fp, #-12]
765                      [|  saved r10 value    |]
766                      [|  saved r9 value     |]
767                      [|  saved r8 value     |]
768                      [|  saved r7 value     |]
769                      [|  saved r6 value     |]
770                      [|  saved r5 value     |]
771                      [|  saved r4 value     |]
772                      [|  saved r3 value     |]
773                      [|  saved r2 value     |]
774                      [|  saved r1 value     |]
775                      [|  saved r0 value     |]
776   r0-r3 are not normally saved in a C function.  */
777 
778 /* 1 for registers that have pervasive standard uses
779    and are not available for the register allocator.  */
780 #define FIXED_REGISTERS 	\
781 {				\
782   /* Core regs.  */		\
783   0,0,0,0,0,0,0,0,		\
784   0,0,0,0,0,1,0,1,		\
785   /* VFP regs.  */		\
786   1,1,1,1,1,1,1,1,		\
787   1,1,1,1,1,1,1,1,		\
788   1,1,1,1,1,1,1,1,		\
789   1,1,1,1,1,1,1,1,		\
790   1,1,1,1,1,1,1,1,		\
791   1,1,1,1,1,1,1,1,		\
792   1,1,1,1,1,1,1,1,		\
793   1,1,1,1,1,1,1,1,		\
794   /* IWMMXT regs.  */		\
795   1,1,1,1,1,1,1,1,		\
796   1,1,1,1,1,1,1,1,		\
797   1,1,1,1,			\
798   /* Specials.  */		\
799   1,1,1,1			\
800 }
801 
802 /* 1 for registers not available across function calls.
803    These must include the FIXED_REGISTERS and also any
804    registers that can be used without being saved.
805    The latter must include the registers where values are returned
806    and the register where structure-value addresses are passed.
807    Aside from that, you can include as many other registers as you like.
808    The CC is not preserved over function calls on the ARM 6, so it is
809    easier to assume this for all.  SFP is preserved, since FP is.  */
810 #define CALL_USED_REGISTERS	\
811 {				\
812   /* Core regs.  */		\
813   1,1,1,1,0,0,0,0,		\
814   0,0,0,0,1,1,1,1,		\
815   /* VFP Regs.  */		\
816   1,1,1,1,1,1,1,1,		\
817   1,1,1,1,1,1,1,1,		\
818   1,1,1,1,1,1,1,1,		\
819   1,1,1,1,1,1,1,1,		\
820   1,1,1,1,1,1,1,1,		\
821   1,1,1,1,1,1,1,1,		\
822   1,1,1,1,1,1,1,1,		\
823   1,1,1,1,1,1,1,1,		\
824   /* IWMMXT regs.  */		\
825   1,1,1,1,1,1,1,1,		\
826   1,1,1,1,1,1,1,1,		\
827   1,1,1,1,			\
828   /* Specials.  */		\
829   1,1,1,1			\
830 }
831 
832 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
833 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
834 #endif
835 
836 /* These are a couple of extensions to the formats accepted
837    by asm_fprintf:
838      %@ prints out ASM_COMMENT_START
839      %r prints out REGISTER_PREFIX reg_names[arg]  */
840 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P)		\
841   case '@':						\
842     fputs (ASM_COMMENT_START, FILE);			\
843     break;						\
844 							\
845   case 'r':						\
846     fputs (REGISTER_PREFIX, FILE);			\
847     fputs (reg_names [va_arg (ARGS, int)], FILE);	\
848     break;
849 
850 /* Round X up to the nearest word.  */
851 #define ROUND_UP_WORD(X) (((X) + 3) & ~3)
852 
853 /* Convert fron bytes to ints.  */
854 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
855 
856 /* The number of (integer) registers required to hold a quantity of type MODE.
857    Also used for VFP registers.  */
858 #define ARM_NUM_REGS(MODE)				\
859   ARM_NUM_INTS (GET_MODE_SIZE (MODE))
860 
861 /* The number of (integer) registers required to hold a quantity of TYPE MODE.  */
862 #define ARM_NUM_REGS2(MODE, TYPE)                   \
863   ARM_NUM_INTS ((MODE) == BLKmode ? 		\
864   int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
865 
866 /* The number of (integer) argument register available.  */
867 #define NUM_ARG_REGS		4
868 
869 /* And similarly for the VFP.  */
870 #define NUM_VFP_ARG_REGS	16
871 
872 /* Return the register number of the N'th (integer) argument.  */
873 #define ARG_REGISTER(N) 	(N - 1)
874 
875 /* Specify the registers used for certain standard purposes.
876    The values of these macros are register numbers.  */
877 
878 /* The number of the last argument register.  */
879 #define LAST_ARG_REGNUM 	ARG_REGISTER (NUM_ARG_REGS)
880 
881 /* The numbers of the Thumb register ranges.  */
882 #define FIRST_LO_REGNUM  	0
883 #define LAST_LO_REGNUM  	7
884 #define FIRST_HI_REGNUM		8
885 #define LAST_HI_REGNUM		11
886 
887 /* Overridden by config/arm/bpabi.h.  */
888 #ifndef ARM_UNWIND_INFO
889 #define ARM_UNWIND_INFO  0
890 #endif
891 
892 /* Overriden by config/arm/netbsd-eabi.h.  */
893 #ifndef ARM_DWARF_UNWIND_TABLES
894 #define ARM_DWARF_UNWIND_TABLES 0
895 #endif
896 
897 /* Use r0 and r1 to pass exception handling information.  */
898 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
899 
900 /* The register that holds the return address in exception handlers.  */
901 #define ARM_EH_STACKADJ_REGNUM	2
902 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
903 
904 #ifndef ARM_TARGET2_DWARF_FORMAT
905 #define ARM_TARGET2_DWARF_FORMAT DW_EH_PE_pcrel
906 
907 #  if ARM_DWARF_UNWIND_TABLES
908 /* DWARF unwinding uses the normal indirect/pcrel vs absptr format
909    for 32bit platforms. */
910 #  define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
911     ((flag_pic \
912      && ((GLOBAL) || (CODE))) \
913      ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
914      : DW_EH_PE_absptr)
915 #  else
916 /* ttype entries (the only interesting data references used)
917    use TARGET2 relocations.  */
918 #  define ASM_PREFERRED_EH_DATA_FORMAT(code, data) \
919     (((code) == 0 && (data) == 1 && ARM_UNWIND_INFO) ? ARM_TARGET2_DWARF_FORMAT \
920      : DW_EH_PE_absptr)
921 #  endif
922 #endif
923 
924 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
925    as an invisible last argument (possible since varargs don't exist in
926    Pascal), so the following is not true.  */
927 #define STATIC_CHAIN_REGNUM	12
928 
929 /* Define this to be where the real frame pointer is if it is not possible to
930    work out the offset between the frame pointer and the automatic variables
931    until after register allocation has taken place.  FRAME_POINTER_REGNUM
932    should point to a special register that we will make sure is eliminated.
933 
934    For the Thumb we have another problem.  The TPCS defines the frame pointer
935    as r11, and GCC believes that it is always possible to use the frame pointer
936    as base register for addressing purposes.  (See comments in
937    find_reloads_address()).  But - the Thumb does not allow high registers,
938    including r11, to be used as base address registers.  Hence our problem.
939 
940    The solution used here, and in the old thumb port is to use r7 instead of
941    r11 as the hard frame pointer and to have special code to generate
942    backtrace structures on the stack (if required to do so via a command line
943    option) using r11.  This is the only 'user visible' use of r11 as a frame
944    pointer.  */
945 #define ARM_HARD_FRAME_POINTER_REGNUM	11
946 #define THUMB_HARD_FRAME_POINTER_REGNUM	 7
947 
948 #define HARD_FRAME_POINTER_REGNUM		\
949   (TARGET_ARM					\
950    ? ARM_HARD_FRAME_POINTER_REGNUM		\
951    : THUMB_HARD_FRAME_POINTER_REGNUM)
952 
953 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
954 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
955 
956 #define FP_REGNUM	                HARD_FRAME_POINTER_REGNUM
957 
958 /* Register to use for pushing function arguments.  */
959 #define STACK_POINTER_REGNUM	SP_REGNUM
960 
961 #define FIRST_IWMMXT_REGNUM	(LAST_HI_VFP_REGNUM + 1)
962 #define LAST_IWMMXT_REGNUM	(FIRST_IWMMXT_REGNUM + 15)
963 #define FIRST_IWMMXT_GR_REGNUM	(LAST_IWMMXT_REGNUM + 1)
964 #define LAST_IWMMXT_GR_REGNUM	(FIRST_IWMMXT_GR_REGNUM + 3)
965 
966 #define IS_IWMMXT_REGNUM(REGNUM) \
967   (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
968 #define IS_IWMMXT_GR_REGNUM(REGNUM) \
969   (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
970 
971 /* Base register for access to local variables of the function.  */
972 #define FRAME_POINTER_REGNUM	102
973 
974 /* Base register for access to arguments of the function.  */
975 #define ARG_POINTER_REGNUM	103
976 
977 #define FIRST_VFP_REGNUM	16
978 #define D7_VFP_REGNUM		(FIRST_VFP_REGNUM + 15)
979 #define LAST_VFP_REGNUM	\
980   (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
981 
982 #define IS_VFP_REGNUM(REGNUM) \
983   (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
984 
985 /* VFP registers are split into two types: those defined by VFP versions < 3
986    have D registers overlaid on consecutive pairs of S registers. VFP version 3
987    defines 16 new D registers (d16-d31) which, for simplicity and correctness
988    in various parts of the backend, we implement as "fake" single-precision
989    registers (which would be S32-S63, but cannot be used in that way).  The
990    following macros define these ranges of registers.  */
991 #define LAST_LO_VFP_REGNUM	(FIRST_VFP_REGNUM + 31)
992 #define FIRST_HI_VFP_REGNUM	(LAST_LO_VFP_REGNUM + 1)
993 #define LAST_HI_VFP_REGNUM	(FIRST_HI_VFP_REGNUM + 31)
994 
995 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
996   ((REGNUM) <= LAST_LO_VFP_REGNUM)
997 
998 /* DFmode values are only valid in even register pairs.  */
999 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
1000   ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
1001 
1002 /* Neon Quad values must start at a multiple of four registers.  */
1003 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
1004   ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
1005 
1006 /* Neon structures of vectors must be in even register pairs and there
1007    must be enough registers available.  Because of various patterns
1008    requiring quad registers, we require them to start at a multiple of
1009    four.  */
1010 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
1011   ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
1012    && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
1013 
1014 /* The number of hard registers is 16 ARM + 1 CC + 1 SFP + 1 AFP.  */
1015 /* Intel Wireless MMX Technology registers add 16 + 4 more.  */
1016 /* VFP (VFP3) adds 32 (64) + 1 VFPCC.  */
1017 #define FIRST_PSEUDO_REGISTER   104
1018 
1019 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
1020 
1021 /* Value should be nonzero if functions must have frame pointers.
1022    Zero means the frame pointer need not be set up (and parms may be accessed
1023    via the stack pointer) in functions that seem suitable.
1024    If we have to have a frame pointer we might as well make use of it.
1025    APCS says that the frame pointer does not need to be pushed in leaf
1026    functions, or simple tail call functions.  */
1027 
1028 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1029 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1030 #endif
1031 
1032 /* Return number of consecutive hard regs needed starting at reg REGNO
1033    to hold something of mode MODE.
1034    This is ordinarily the length in words of a value of mode MODE
1035    but can be less for certain modes in special long registers.
1036 
1037    On the ARM core regs are UNITS_PER_WORD bits wide.  */
1038 #define HARD_REGNO_NREGS(REGNO, MODE)  	\
1039   ((TARGET_32BIT			\
1040     && REGNO > PC_REGNUM		\
1041     && REGNO != FRAME_POINTER_REGNUM	\
1042     && REGNO != ARG_POINTER_REGNUM)	\
1043     && !IS_VFP_REGNUM (REGNO)		\
1044    ? 1 : ARM_NUM_REGS (MODE))
1045 
1046 /* Return true if REGNO is suitable for holding a quantity of type MODE.  */
1047 #define HARD_REGNO_MODE_OK(REGNO, MODE)					\
1048   arm_hard_regno_mode_ok ((REGNO), (MODE))
1049 
1050 #define MODES_TIEABLE_P(MODE1, MODE2) arm_modes_tieable_p (MODE1, MODE2)
1051 
1052 #define VALID_IWMMXT_REG_MODE(MODE) \
1053  (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
1054 
1055 /* Modes valid for Neon D registers.  */
1056 #define VALID_NEON_DREG_MODE(MODE) \
1057   ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
1058    || (MODE) == V2SFmode || (MODE) == DImode)
1059 
1060 /* Modes valid for Neon Q registers.  */
1061 #define VALID_NEON_QREG_MODE(MODE) \
1062   ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
1063    || (MODE) == V4SFmode || (MODE) == V2DImode)
1064 
1065 /* Structure modes valid for Neon registers.  */
1066 #define VALID_NEON_STRUCT_MODE(MODE) \
1067   ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
1068    || (MODE) == CImode || (MODE) == XImode)
1069 
1070 /* The register numbers in sequence, for passing to arm_gen_load_multiple.  */
1071 extern int arm_regs_in_sequence[];
1072 
1073 /* The order in which register should be allocated.  It is good to use ip
1074    since no saving is required (though calls clobber it) and it never contains
1075    function parameters.  It is quite good to use lr since other calls may
1076    clobber it anyway.  Allocate r0 through r3 in reverse order since r3 is
1077    least likely to contain a function parameter; in addition results are
1078    returned in r0.
1079    For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
1080    then D8-D15.  The reason for doing this is to attempt to reduce register
1081    pressure when both single- and double-precision registers are used in a
1082    function.  */
1083 
1084 #define VREG(X)  (FIRST_VFP_REGNUM + (X))
1085 #define WREG(X)  (FIRST_IWMMXT_REGNUM + (X))
1086 #define WGREG(X) (FIRST_IWMMXT_GR_REGNUM + (X))
1087 
1088 #define REG_ALLOC_ORDER				\
1089 {						\
1090   /* General registers.  */			\
1091   3,  2,  1,  0,  12, 14,  4,  5,		\
1092   6,  7,  8,  9,  10, 11,			\
1093   /* High VFP registers.  */			\
1094   VREG(32), VREG(33), VREG(34), VREG(35),	\
1095   VREG(36), VREG(37), VREG(38), VREG(39),	\
1096   VREG(40), VREG(41), VREG(42), VREG(43),	\
1097   VREG(44), VREG(45), VREG(46), VREG(47),	\
1098   VREG(48), VREG(49), VREG(50), VREG(51),	\
1099   VREG(52), VREG(53), VREG(54), VREG(55),	\
1100   VREG(56), VREG(57), VREG(58), VREG(59),	\
1101   VREG(60), VREG(61), VREG(62), VREG(63),	\
1102   /* VFP argument registers.  */		\
1103   VREG(15), VREG(14), VREG(13), VREG(12),	\
1104   VREG(11), VREG(10), VREG(9),  VREG(8),	\
1105   VREG(7),  VREG(6),  VREG(5),  VREG(4),	\
1106   VREG(3),  VREG(2),  VREG(1),  VREG(0),	\
1107   /* VFP call-saved registers.  */		\
1108   VREG(16), VREG(17), VREG(18), VREG(19),	\
1109   VREG(20), VREG(21), VREG(22), VREG(23),	\
1110   VREG(24), VREG(25), VREG(26), VREG(27),	\
1111   VREG(28), VREG(29), VREG(30), VREG(31),	\
1112   /* IWMMX registers.  */			\
1113   WREG(0),  WREG(1),  WREG(2),  WREG(3),	\
1114   WREG(4),  WREG(5),  WREG(6),  WREG(7),	\
1115   WREG(8),  WREG(9),  WREG(10), WREG(11),	\
1116   WREG(12), WREG(13), WREG(14), WREG(15),	\
1117   WGREG(0), WGREG(1), WGREG(2), WGREG(3),	\
1118   /* Registers not for general use.  */		\
1119   CC_REGNUM, VFPCC_REGNUM,			\
1120   FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM,	\
1121   SP_REGNUM, PC_REGNUM 				\
1122 }
1123 
1124 /* Use different register alloc ordering for Thumb.  */
1125 #define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc ()
1126 
1127 /* Tell IRA to use the order we define rather than messing it up with its
1128    own cost calculations.  */
1129 #define HONOR_REG_ALLOC_ORDER
1130 
1131 /* Interrupt functions can only use registers that have already been
1132    saved by the prologue, even if they would normally be
1133    call-clobbered.  */
1134 #define HARD_REGNO_RENAME_OK(SRC, DST)					\
1135 	(! IS_INTERRUPT (cfun->machine->func_type) ||			\
1136 	 df_regs_ever_live_p (DST))
1137 
1138 /* Register and constant classes.  */
1139 
1140 /* Register classes.  */
1141 enum reg_class
1142 {
1143   NO_REGS,
1144   LO_REGS,
1145   STACK_REG,
1146   BASE_REGS,
1147   HI_REGS,
1148   GENERAL_REGS,
1149   CORE_REGS,
1150   VFP_D0_D7_REGS,
1151   VFP_LO_REGS,
1152   VFP_HI_REGS,
1153   VFP_REGS,
1154   IWMMXT_REGS,
1155   IWMMXT_GR_REGS,
1156   CC_REG,
1157   VFPCC_REG,
1158   SFP_REG,
1159   AFP_REG,
1160   ALL_REGS,
1161   LIM_REG_CLASSES
1162 };
1163 
1164 #define N_REG_CLASSES  (int) LIM_REG_CLASSES
1165 
1166 /* Give names of register classes as strings for dump file.  */
1167 #define REG_CLASS_NAMES  \
1168 {			\
1169   "NO_REGS",		\
1170   "LO_REGS",		\
1171   "STACK_REG",		\
1172   "BASE_REGS",		\
1173   "HI_REGS",		\
1174   "GENERAL_REGS",	\
1175   "CORE_REGS",		\
1176   "VFP_D0_D7_REGS",	\
1177   "VFP_LO_REGS",	\
1178   "VFP_HI_REGS",	\
1179   "VFP_REGS",		\
1180   "IWMMXT_REGS",	\
1181   "IWMMXT_GR_REGS",	\
1182   "CC_REG",		\
1183   "VFPCC_REG",		\
1184   "SFP_REG",		\
1185   "AFP_REG",		\
1186   "ALL_REGS"		\
1187 }
1188 
1189 /* Define which registers fit in which classes.
1190    This is an initializer for a vector of HARD_REG_SET
1191    of length N_REG_CLASSES.  */
1192 #define REG_CLASS_CONTENTS						\
1193 {									\
1194   { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS  */	\
1195   { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */	\
1196   { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */	\
1197   { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */	\
1198   { 0x00005F00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */	\
1199   { 0x00005FFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1200   { 0x00007FFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */	\
1201   { 0xFFFF0000, 0x00000000, 0x00000000, 0x00000000 }, /* VFP_D0_D7_REGS  */ \
1202   { 0xFFFF0000, 0x0000FFFF, 0x00000000, 0x00000000 }, /* VFP_LO_REGS  */ \
1203   { 0x00000000, 0xFFFF0000, 0x0000FFFF, 0x00000000 }, /* VFP_HI_REGS  */ \
1204   { 0xFFFF0000, 0xFFFFFFFF, 0x0000FFFF, 0x00000000 }, /* VFP_REGS  */	\
1205   { 0x00000000, 0x00000000, 0xFFFF0000, 0x00000000 }, /* IWMMXT_REGS */	\
1206   { 0x00000000, 0x00000000, 0x00000000, 0x0000000F }, /* IWMMXT_GR_REGS */ \
1207   { 0x00000000, 0x00000000, 0x00000000, 0x00000010 }, /* CC_REG */	\
1208   { 0x00000000, 0x00000000, 0x00000000, 0x00000020 }, /* VFPCC_REG */	\
1209   { 0x00000000, 0x00000000, 0x00000000, 0x00000040 }, /* SFP_REG */	\
1210   { 0x00000000, 0x00000000, 0x00000000, 0x00000080 }, /* AFP_REG */	\
1211   { 0xFFFF7FFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000 }  /* ALL_REGS */	\
1212 }
1213 
1214 /* Any of the VFP register classes.  */
1215 #define IS_VFP_CLASS(X) \
1216   ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1217    || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1218 
1219 /* The same information, inverted:
1220    Return the class number of the smallest class containing
1221    reg number REGNO.  This could be a conditional expression
1222    or could index an array.  */
1223 #define REGNO_REG_CLASS(REGNO)  arm_regno_class (REGNO)
1224 
1225 /* In VFPv1, VFP registers could only be accessed in the mode they
1226    were set, so subregs would be invalid there.  However, we don't
1227    support VFPv1 at the moment, and the restriction was lifted in
1228    VFPv2.
1229    In big-endian mode, modes greater than word size (i.e. DFmode) are stored in
1230    VFP registers in little-endian order.  We can't describe that accurately to
1231    GCC, so avoid taking subregs of such values.
1232    The only exception is going from a 128-bit to a 64-bit type.  In that case
1233    the data layout happens to be consistent for big-endian, so we explicitly allow
1234    that case.  */
1235 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)		\
1236   (TARGET_VFP && TARGET_BIG_END					\
1237    && !(GET_MODE_SIZE (FROM) == 16 && GET_MODE_SIZE (TO) == 8)	\
1238    && (GET_MODE_SIZE (FROM) > UNITS_PER_WORD			\
1239        || GET_MODE_SIZE (TO) > UNITS_PER_WORD)			\
1240    && reg_classes_intersect_p (VFP_REGS, (CLASS)))
1241 
1242 /* The class value for index registers, and the one for base regs.  */
1243 #define INDEX_REG_CLASS  (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1244 #define BASE_REG_CLASS   (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1245 
1246 /* For the Thumb the high registers cannot be used as base registers
1247    when addressing quantities in QI or HI mode; if we don't know the
1248    mode, then we must be conservative.  */
1249 #define MODE_BASE_REG_CLASS(MODE)					\
1250     (TARGET_ARM || (TARGET_THUMB2 && !optimize_size) ? CORE_REGS :      \
1251      (((MODE) == SImode) ? BASE_REGS : LO_REGS))
1252 
1253 /* For Thumb we can not support SP+reg addressing, so we return LO_REGS
1254    instead of BASE_REGS.  */
1255 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1256 
1257 /* When this hook returns true for MODE, the compiler allows
1258    registers explicitly used in the rtl to be used as spill registers
1259    but prevents the compiler from extending the lifetime of these
1260    registers.  */
1261 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1262   arm_small_register_classes_for_mode_p
1263 
1264 /* Must leave BASE_REGS reloads alone */
1265 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1266   ((CLASS) != LO_REGS && (CLASS) != BASE_REGS				\
1267    ? ((true_regnum (X) == -1 ? LO_REGS					\
1268        : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS	\
1269        : NO_REGS)) 							\
1270    : NO_REGS)
1271 
1272 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1273   ((CLASS) != LO_REGS && (CLASS) != BASE_REGS				\
1274    ? ((true_regnum (X) == -1 ? LO_REGS					\
1275        : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS	\
1276        : NO_REGS)) 							\
1277    : NO_REGS)
1278 
1279 /* Return the register class of a scratch register needed to copy IN into
1280    or out of a register in CLASS in MODE.  If it can be done directly,
1281    NO_REGS is returned.  */
1282 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1283   /* Restrict which direct reloads are allowed for VFP/iWMMXt regs.  */ \
1284   ((TARGET_VFP && TARGET_HARD_FLOAT				\
1285     && IS_VFP_CLASS (CLASS))					\
1286    ? coproc_secondary_reload_class (MODE, X, FALSE)		\
1287    : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS)			\
1288    ? coproc_secondary_reload_class (MODE, X, TRUE)		\
1289    : TARGET_32BIT						\
1290    ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1291     ? GENERAL_REGS : NO_REGS)					\
1292    : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1293 
1294 /* If we need to load shorts byte-at-a-time, then we need a scratch.  */
1295 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1296   /* Restrict which direct reloads are allowed for VFP/iWMMXt regs.  */ \
1297   ((TARGET_VFP && TARGET_HARD_FLOAT				\
1298     && IS_VFP_CLASS (CLASS))					\
1299     ? coproc_secondary_reload_class (MODE, X, FALSE) :		\
1300     (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ?			\
1301     coproc_secondary_reload_class (MODE, X, TRUE) :		\
1302    (TARGET_32BIT ?						\
1303     (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS)	\
1304      && CONSTANT_P (X))						\
1305     ? GENERAL_REGS :						\
1306     (((MODE) == HImode && ! arm_arch4				\
1307       && (MEM_P (X)					\
1308 	  || ((REG_P (X) || GET_CODE (X) == SUBREG)	\
1309 	      && true_regnum (X) == -1)))			\
1310      ? GENERAL_REGS : NO_REGS)					\
1311     : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1312 
1313 /* Try a machine-dependent way of reloading an illegitimate address
1314    operand.  If we find one, push the reload and jump to WIN.  This
1315    macro is used in only one place: `find_reloads_address' in reload.c.
1316 
1317    For the ARM, we wish to handle large displacements off a base
1318    register by splitting the addend across a MOV and the mem insn.
1319    This can cut the number of reloads needed.  */
1320 #define ARM_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND, WIN)	   \
1321   do									   \
1322     {									   \
1323       if (arm_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND))	   \
1324 	goto WIN;							   \
1325     }									   \
1326   while (0)
1327 
1328 /* XXX If an HImode FP+large_offset address is converted to an HImode
1329    SP+large_offset address, then reload won't know how to fix it.  It sees
1330    only that SP isn't valid for HImode, and so reloads the SP into an index
1331    register, but the resulting address is still invalid because the offset
1332    is too big.  We fix it here instead by reloading the entire address.  */
1333 /* We could probably achieve better results by defining PROMOTE_MODE to help
1334    cope with the variances between the Thumb's signed and unsigned byte and
1335    halfword load instructions.  */
1336 /* ??? This should be safe for thumb2, but we may be able to do better.  */
1337 #define THUMB_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_L, WIN)     \
1338 do {									      \
1339   rtx new_x = thumb_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND_L); \
1340   if (new_x)								      \
1341     {									      \
1342       X = new_x;							      \
1343       goto WIN;								      \
1344     }									      \
1345 } while (0)
1346 
1347 #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)   \
1348   if (TARGET_ARM)							   \
1349     ARM_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN); \
1350   else									   \
1351     THUMB_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)
1352 
1353 /* Return the maximum number of consecutive registers
1354    needed to represent mode MODE in a register of class CLASS.
1355    ARM regs are UNITS_PER_WORD bits.
1356    FIXME: Is this true for iWMMX?  */
1357 #define CLASS_MAX_NREGS(CLASS, MODE)  \
1358   (ARM_NUM_REGS (MODE))
1359 
1360 /* If defined, gives a class of registers that cannot be used as the
1361    operand of a SUBREG that changes the mode of the object illegally.  */
1362 
1363 /* Stack layout; function entry, exit and calling.  */
1364 
1365 /* Define this if pushing a word on the stack
1366    makes the stack pointer a smaller address.  */
1367 #define STACK_GROWS_DOWNWARD  1
1368 
1369 /* Define this to nonzero if the nominal address of the stack frame
1370    is at the high-address end of the local variables;
1371    that is, each additional local variable allocated
1372    goes at a more negative offset in the frame.  */
1373 #define FRAME_GROWS_DOWNWARD 1
1374 
1375 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1376    When present, it is one word in size, and sits at the top of the frame,
1377    between the soft frame pointer and either r7 or r11.
1378 
1379    We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1380    and only then if some outgoing arguments are passed on the stack.  It would
1381    be tempting to also check whether the stack arguments are passed by indirect
1382    calls, but there seems to be no reason in principle why a post-reload pass
1383    couldn't convert a direct call into an indirect one.  */
1384 #define CALLER_INTERWORKING_SLOT_SIZE			\
1385   (TARGET_CALLER_INTERWORKING				\
1386    && crtl->outgoing_args_size != 0		\
1387    ? UNITS_PER_WORD : 0)
1388 
1389 /* Offset within stack frame to start allocating local variables at.
1390    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1391    first local allocated.  Otherwise, it is the offset to the BEGINNING
1392    of the first local allocated.  */
1393 #define STARTING_FRAME_OFFSET  0
1394 
1395 /* If we generate an insn to push BYTES bytes,
1396    this says how many the stack pointer really advances by.  */
1397 /* The push insns do not do this rounding implicitly.
1398    So don't define this.  */
1399 /* #define PUSH_ROUNDING(NPUSHED)  ROUND_UP_WORD (NPUSHED) */
1400 
1401 /* Define this if the maximum size of all the outgoing args is to be
1402    accumulated and pushed during the prologue.  The amount can be
1403    found in the variable crtl->outgoing_args_size.  */
1404 #define ACCUMULATE_OUTGOING_ARGS 1
1405 
1406 /* Offset of first parameter from the argument pointer register value.  */
1407 #define FIRST_PARM_OFFSET(FNDECL)  (TARGET_ARM ? 4 : 0)
1408 
1409 /* Amount of memory needed for an untyped call to save all possible return
1410    registers.  */
1411 #define APPLY_RESULT_SIZE arm_apply_result_size()
1412 
1413 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1414    values must be in memory.  On the ARM, they need only do so if larger
1415    than a word, or if they contain elements offset from zero in the struct.  */
1416 #define DEFAULT_PCC_STRUCT_RETURN 0
1417 
1418 /* These bits describe the different types of function supported
1419    by the ARM backend.  They are exclusive.  i.e. a function cannot be both a
1420    normal function and an interworked function, for example.  Knowing the
1421    type of a function is important for determining its prologue and
1422    epilogue sequences.
1423    Note value 7 is currently unassigned.  Also note that the interrupt
1424    function types all have bit 2 set, so that they can be tested for easily.
1425    Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1426    machine_function structure is initialized (to zero) func_type will
1427    default to unknown.  This will force the first use of arm_current_func_type
1428    to call arm_compute_func_type.  */
1429 #define ARM_FT_UNKNOWN		 0 /* Type has not yet been determined.  */
1430 #define ARM_FT_NORMAL		 1 /* Your normal, straightforward function.  */
1431 #define ARM_FT_INTERWORKED	 2 /* A function that supports interworking.  */
1432 #define ARM_FT_ISR		 4 /* An interrupt service routine.  */
1433 #define ARM_FT_FIQ		 5 /* A fast interrupt service routine.  */
1434 #define ARM_FT_EXCEPTION	 6 /* An ARM exception handler (subcase of ISR).  */
1435 
1436 #define ARM_FT_TYPE_MASK	((1 << 3) - 1)
1437 
1438 /* In addition functions can have several type modifiers,
1439    outlined by these bit masks:  */
1440 #define ARM_FT_INTERRUPT	(1 << 2) /* Note overlap with FT_ISR and above.  */
1441 #define ARM_FT_NAKED		(1 << 3) /* No prologue or epilogue.  */
1442 #define ARM_FT_VOLATILE		(1 << 4) /* Does not return.  */
1443 #define ARM_FT_NESTED		(1 << 5) /* Embedded inside another func.  */
1444 #define ARM_FT_STACKALIGN	(1 << 6) /* Called with misaligned stack.  */
1445 
1446 /* Some macros to test these flags.  */
1447 #define ARM_FUNC_TYPE(t)	(t & ARM_FT_TYPE_MASK)
1448 #define IS_INTERRUPT(t)		(t & ARM_FT_INTERRUPT)
1449 #define IS_VOLATILE(t)     	(t & ARM_FT_VOLATILE)
1450 #define IS_NAKED(t)        	(t & ARM_FT_NAKED)
1451 #define IS_NESTED(t)       	(t & ARM_FT_NESTED)
1452 #define IS_STACKALIGN(t)       	(t & ARM_FT_STACKALIGN)
1453 
1454 
1455 /* Structure used to hold the function stack frame layout.  Offsets are
1456    relative to the stack pointer on function entry.  Positive offsets are
1457    in the direction of stack growth.
1458    Only soft_frame is used in thumb mode.  */
1459 
1460 typedef struct GTY(()) arm_stack_offsets
1461 {
1462   int saved_args;	/* ARG_POINTER_REGNUM.  */
1463   int frame;		/* ARM_HARD_FRAME_POINTER_REGNUM.  */
1464   int saved_regs;
1465   int soft_frame;	/* FRAME_POINTER_REGNUM.  */
1466   int locals_base;	/* THUMB_HARD_FRAME_POINTER_REGNUM.  */
1467   int outgoing_args;	/* STACK_POINTER_REGNUM.  */
1468   unsigned int saved_regs_mask;
1469 }
1470 arm_stack_offsets;
1471 
1472 #ifndef GENERATOR_FILE
1473 /* A C structure for machine-specific, per-function data.
1474    This is added to the cfun structure.  */
1475 typedef struct GTY(()) machine_function
1476 {
1477   /* Additional stack adjustment in __builtin_eh_throw.  */
1478   rtx eh_epilogue_sp_ofs;
1479   /* Records if LR has to be saved for far jumps.  */
1480   int far_jump_used;
1481   /* Records if ARG_POINTER was ever live.  */
1482   int arg_pointer_live;
1483   /* Records if the save of LR has been eliminated.  */
1484   int lr_save_eliminated;
1485   /* The size of the stack frame.  Only valid after reload.  */
1486   arm_stack_offsets stack_offsets;
1487   /* Records the type of the current function.  */
1488   unsigned long func_type;
1489   /* Record if the function has a variable argument list.  */
1490   int uses_anonymous_args;
1491   /* Records if sibcalls are blocked because an argument
1492      register is needed to preserve stack alignment.  */
1493   int sibcall_blocked;
1494   /* The PIC register for this function.  This might be a pseudo.  */
1495   rtx pic_reg;
1496   /* Labels for per-function Thumb call-via stubs.  One per potential calling
1497      register.  We can never call via LR or PC.  We can call via SP if a
1498      trampoline happens to be on the top of the stack.  */
1499   rtx call_via[14];
1500   /* Set to 1 when a return insn is output, this means that the epilogue
1501      is not needed.  */
1502   int return_used_this_function;
1503   /* When outputting Thumb-1 code, record the last insn that provides
1504      information about condition codes, and the comparison operands.  */
1505   rtx thumb1_cc_insn;
1506   rtx thumb1_cc_op0;
1507   rtx thumb1_cc_op1;
1508   /* Also record the CC mode that is supported.  */
1509   enum machine_mode thumb1_cc_mode;
1510 }
1511 machine_function;
1512 #endif
1513 
1514 /* As in the machine_function, a global set of call-via labels, for code
1515    that is in text_section.  */
1516 extern GTY(()) rtx thumb_call_via_label[14];
1517 
1518 /* The number of potential ways of assigning to a co-processor.  */
1519 #define ARM_NUM_COPROC_SLOTS 1
1520 
1521 /* Enumeration of procedure calling standard variants.  We don't really
1522    support all of these yet.  */
1523 enum arm_pcs
1524 {
1525   ARM_PCS_AAPCS,	/* Base standard AAPCS.  */
1526   ARM_PCS_AAPCS_VFP,	/* Use VFP registers for floating point values.  */
1527   ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors.  */
1528   /* This must be the last AAPCS variant.  */
1529   ARM_PCS_AAPCS_LOCAL,	/* Private call within this compilation unit.  */
1530   ARM_PCS_ATPCS,	/* ATPCS.  */
1531   ARM_PCS_APCS,		/* APCS (legacy Linux etc).  */
1532   ARM_PCS_UNKNOWN
1533 };
1534 
1535 /* Default procedure calling standard of current compilation unit. */
1536 extern enum arm_pcs arm_pcs_default;
1537 
1538 /* A C type for declaring a variable that is used as the first argument of
1539    `FUNCTION_ARG' and other related values.  */
1540 typedef struct
1541 {
1542   /* This is the number of registers of arguments scanned so far.  */
1543   int nregs;
1544   /* This is the number of iWMMXt register arguments scanned so far.  */
1545   int iwmmxt_nregs;
1546   int named_count;
1547   int nargs;
1548   /* Which procedure call variant to use for this call.  */
1549   enum arm_pcs pcs_variant;
1550 
1551   /* AAPCS related state tracking.  */
1552   int aapcs_arg_processed;  /* No need to lay out this argument again.  */
1553   int aapcs_cprc_slot;      /* Index of co-processor rules to handle
1554 			       this argument, or -1 if using core
1555 			       registers.  */
1556   int aapcs_ncrn;
1557   int aapcs_next_ncrn;
1558   rtx aapcs_reg;	    /* Register assigned to this argument.  */
1559   int aapcs_partial;	    /* How many bytes are passed in regs (if
1560 			       split between core regs and stack.
1561 			       Zero otherwise.  */
1562   int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1563   int can_split;	    /* Argument can be split between core regs
1564 			       and the stack.  */
1565   /* Private data for tracking VFP register allocation */
1566   unsigned aapcs_vfp_regs_free;
1567   unsigned aapcs_vfp_reg_alloc;
1568   int aapcs_vfp_rcount;
1569   MACHMODE aapcs_vfp_rmode;
1570 } CUMULATIVE_ARGS;
1571 
1572 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1573   (arm_pad_arg_upward (MODE, TYPE) ? upward : downward)
1574 
1575 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1576   (arm_pad_reg_upward (MODE, TYPE, FIRST) ? upward : downward)
1577 
1578 /* For AAPCS, padding should never be below the argument. For other ABIs,
1579  * mimic the default.  */
1580 #define PAD_VARARGS_DOWN \
1581   ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1582 
1583 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1584    for a call to a function whose data type is FNTYPE.
1585    For a library call, FNTYPE is 0.
1586    On the ARM, the offset starts at 0.  */
1587 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1588   arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1589 
1590 /* 1 if N is a possible register number for function argument passing.
1591    On the ARM, r0-r3 are used to pass args.  */
1592 #define FUNCTION_ARG_REGNO_P(REGNO)					\
1593    (IN_RANGE ((REGNO), 0, 3)						\
1594     || (TARGET_AAPCS_BASED && TARGET_VFP && TARGET_HARD_FLOAT		\
1595 	&& IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15))	\
1596     || (TARGET_IWMMXT_ABI						\
1597 	&& IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1598 
1599 
1600 /* If your target environment doesn't prefix user functions with an
1601    underscore, you may wish to re-define this to prevent any conflicts.  */
1602 #ifndef ARM_MCOUNT_NAME
1603 #define ARM_MCOUNT_NAME "*mcount"
1604 #endif
1605 
1606 /* Call the function profiler with a given profile label.  The Acorn
1607    compiler puts this BEFORE the prolog but gcc puts it afterwards.
1608    On the ARM the full profile code will look like:
1609 	.data
1610 	LP1
1611 		.word	0
1612 	.text
1613 		mov	ip, lr
1614 		bl	mcount
1615 		.word	LP1
1616 
1617    profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1618    will output the .text section.
1619 
1620    The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1621    ``prof'' doesn't seem to mind about this!
1622 
1623    Note - this version of the code is designed to work in both ARM and
1624    Thumb modes.  */
1625 #ifndef ARM_FUNCTION_PROFILER
1626 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO)  	\
1627 {							\
1628   char temp[20];					\
1629   rtx sym;						\
1630 							\
1631   asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t",		\
1632 	   IP_REGNUM, LR_REGNUM);			\
1633   assemble_name (STREAM, ARM_MCOUNT_NAME);		\
1634   fputc ('\n', STREAM);					\
1635   ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO);	\
1636   sym = gen_rtx_SYMBOL_REF (Pmode, temp);		\
1637   assemble_aligned_integer (UNITS_PER_WORD, sym);	\
1638 }
1639 #endif
1640 
1641 #ifdef THUMB_FUNCTION_PROFILER
1642 #define FUNCTION_PROFILER(STREAM, LABELNO)		\
1643   if (TARGET_ARM)					\
1644     ARM_FUNCTION_PROFILER (STREAM, LABELNO)		\
1645   else							\
1646     THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1647 #else
1648 #define FUNCTION_PROFILER(STREAM, LABELNO)		\
1649     ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1650 #endif
1651 
1652 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1653    the stack pointer does not matter.  The value is tested only in
1654    functions that have frame pointers.
1655    No definition is equivalent to always zero.
1656 
1657    On the ARM, the function epilogue recovers the stack pointer from the
1658    frame.  */
1659 #define EXIT_IGNORE_STACK 1
1660 
1661 #define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNUM)
1662 
1663 /* Determine if the epilogue should be output as RTL.
1664    You should override this if you define FUNCTION_EXTRA_EPILOGUE.  */
1665 #define USE_RETURN_INSN(ISCOND)				\
1666   (TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0)
1667 
1668 /* Definitions for register eliminations.
1669 
1670    This is an array of structures.  Each structure initializes one pair
1671    of eliminable registers.  The "from" register number is given first,
1672    followed by "to".  Eliminations of the same "from" register are listed
1673    in order of preference.
1674 
1675    We have two registers that can be eliminated on the ARM.  First, the
1676    arg pointer register can often be eliminated in favor of the stack
1677    pointer register.  Secondly, the pseudo frame pointer register can always
1678    be eliminated; it is replaced with either the stack or the real frame
1679    pointer.  Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1680    because the definition of HARD_FRAME_POINTER_REGNUM is not a constant.  */
1681 
1682 #define ELIMINABLE_REGS						\
1683 {{ ARG_POINTER_REGNUM,        STACK_POINTER_REGNUM            },\
1684  { ARG_POINTER_REGNUM,        FRAME_POINTER_REGNUM            },\
1685  { ARG_POINTER_REGNUM,        ARM_HARD_FRAME_POINTER_REGNUM   },\
1686  { ARG_POINTER_REGNUM,        THUMB_HARD_FRAME_POINTER_REGNUM },\
1687  { FRAME_POINTER_REGNUM,      STACK_POINTER_REGNUM            },\
1688  { FRAME_POINTER_REGNUM,      ARM_HARD_FRAME_POINTER_REGNUM   },\
1689  { FRAME_POINTER_REGNUM,      THUMB_HARD_FRAME_POINTER_REGNUM }}
1690 
1691 /* Define the offset between two registers, one to be eliminated, and the
1692    other its replacement, at the start of a routine.  */
1693 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
1694   if (TARGET_ARM)							\
1695     (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO);	\
1696   else									\
1697     (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1698 
1699 /* Special case handling of the location of arguments passed on the stack.  */
1700 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1701 
1702 /* Initialize data used by insn expanders.  This is called from insn_emit,
1703    once for every function before code is generated.  */
1704 #define INIT_EXPANDERS  arm_init_expanders ()
1705 
1706 /* Length in units of the trampoline for entering a nested function.  */
1707 #define TRAMPOLINE_SIZE  (TARGET_32BIT ? 16 : 20)
1708 
1709 /* Alignment required for a trampoline in bits.  */
1710 #define TRAMPOLINE_ALIGNMENT  32
1711 
1712 /* Addressing modes, and classification of registers for them.  */
1713 #define HAVE_POST_INCREMENT   1
1714 #define HAVE_PRE_INCREMENT    TARGET_32BIT
1715 #define HAVE_POST_DECREMENT   TARGET_32BIT
1716 #define HAVE_PRE_DECREMENT    TARGET_32BIT
1717 #define HAVE_PRE_MODIFY_DISP  TARGET_32BIT
1718 #define HAVE_POST_MODIFY_DISP TARGET_32BIT
1719 #define HAVE_PRE_MODIFY_REG   TARGET_32BIT
1720 #define HAVE_POST_MODIFY_REG  TARGET_32BIT
1721 
1722 enum arm_auto_incmodes
1723   {
1724     ARM_POST_INC,
1725     ARM_PRE_INC,
1726     ARM_POST_DEC,
1727     ARM_PRE_DEC
1728   };
1729 
1730 #define ARM_AUTOINC_VALID_FOR_MODE_P(mode, code) \
1731   (TARGET_32BIT && arm_autoinc_modes_ok_p (mode, code))
1732 #define USE_LOAD_POST_INCREMENT(mode) \
1733   ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_INC)
1734 #define USE_LOAD_PRE_INCREMENT(mode)  \
1735   ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_INC)
1736 #define USE_LOAD_POST_DECREMENT(mode) \
1737   ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_DEC)
1738 #define USE_LOAD_PRE_DECREMENT(mode)  \
1739   ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_DEC)
1740 
1741 #define USE_STORE_PRE_DECREMENT(mode) USE_LOAD_PRE_DECREMENT(mode)
1742 #define USE_STORE_PRE_INCREMENT(mode) USE_LOAD_PRE_INCREMENT(mode)
1743 #define USE_STORE_POST_DECREMENT(mode) USE_LOAD_POST_DECREMENT(mode)
1744 #define USE_STORE_POST_INCREMENT(mode) USE_LOAD_POST_INCREMENT(mode)
1745 
1746 /* Macros to check register numbers against specific register classes.  */
1747 
1748 /* These assume that REGNO is a hard or pseudo reg number.
1749    They give nonzero only if REGNO is a hard reg of the suitable class
1750    or a pseudo reg currently allocated to a suitable hard reg.
1751    Since they use reg_renumber, they are safe only once reg_renumber
1752    has been allocated, which happens in reginfo.c during register
1753    allocation.  */
1754 #define TEST_REGNO(R, TEST, VALUE) \
1755   ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
1756 
1757 /* Don't allow the pc to be used.  */
1758 #define ARM_REGNO_OK_FOR_BASE_P(REGNO)			\
1759   (TEST_REGNO (REGNO, <, PC_REGNUM)			\
1760    || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM)	\
1761    || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1762 
1763 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE)		\
1764   (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM)			\
1765    || (GET_MODE_SIZE (MODE) >= 4				\
1766        && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1767 
1768 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE)		\
1769   (TARGET_THUMB1					\
1770    ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE)	\
1771    : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1772 
1773 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1774    For Thumb, we can not use SP + reg, so reject SP.  */
1775 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE)	\
1776   REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1777 
1778 /* For ARM code, we don't care about the mode, but for Thumb, the index
1779    must be suitable for use in a QImode load.  */
1780 #define REGNO_OK_FOR_INDEX_P(REGNO)	\
1781   (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1782    && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1783 
1784 /* Maximum number of registers that can appear in a valid memory address.
1785    Shifts in addresses can't be by a register.  */
1786 #define MAX_REGS_PER_ADDRESS 2
1787 
1788 /* Recognize any constant value that is a valid address.  */
1789 /* XXX We can address any constant, eventually...  */
1790 /* ??? Should the TARGET_ARM here also apply to thumb2?  */
1791 #define CONSTANT_ADDRESS_P(X)  			\
1792   (GET_CODE (X) == SYMBOL_REF 			\
1793    && (CONSTANT_POOL_ADDRESS_P (X)		\
1794        || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1795 
1796 /* True if SYMBOL + OFFSET constants must refer to something within
1797    SYMBOL's section.  */
1798 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1799 
1800 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32.  */
1801 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1802 #define TARGET_DEFAULT_WORD_RELOCATIONS 0
1803 #endif
1804 
1805 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1806 #define SUBTARGET_NAME_ENCODING_LENGTHS
1807 #endif
1808 
1809 /* This is a C fragment for the inside of a switch statement.
1810    Each case label should return the number of characters to
1811    be stripped from the start of a function's name, if that
1812    name starts with the indicated character.  */
1813 #define ARM_NAME_ENCODING_LENGTHS		\
1814   case '*':  return 1;				\
1815   SUBTARGET_NAME_ENCODING_LENGTHS
1816 
1817 /* This is how to output a reference to a user-level label named NAME.
1818    `assemble_name' uses this.  */
1819 #undef  ASM_OUTPUT_LABELREF
1820 #define ASM_OUTPUT_LABELREF(FILE, NAME)		\
1821    arm_asm_output_labelref (FILE, NAME)
1822 
1823 /* Output IT instructions for conditionally executed Thumb-2 instructions.  */
1824 #define ASM_OUTPUT_OPCODE(STREAM, PTR)	\
1825   if (TARGET_THUMB2)			\
1826     thumb2_asm_output_opcode (STREAM);
1827 
1828 /* The EABI specifies that constructors should go in .init_array.
1829    Other targets use .ctors for compatibility.  */
1830 #ifndef ARM_EABI_CTORS_SECTION_OP
1831 #define ARM_EABI_CTORS_SECTION_OP \
1832   "\t.section\t.init_array,\"aw\",%init_array"
1833 #endif
1834 #ifndef ARM_EABI_DTORS_SECTION_OP
1835 #define ARM_EABI_DTORS_SECTION_OP \
1836   "\t.section\t.fini_array,\"aw\",%fini_array"
1837 #endif
1838 #define ARM_CTORS_SECTION_OP \
1839   "\t.section\t.ctors,\"aw\",%progbits"
1840 #define ARM_DTORS_SECTION_OP \
1841   "\t.section\t.dtors,\"aw\",%progbits"
1842 
1843 /* Define CTORS_SECTION_ASM_OP.  */
1844 #undef CTORS_SECTION_ASM_OP
1845 #undef DTORS_SECTION_ASM_OP
1846 #ifndef IN_LIBGCC2
1847 # define CTORS_SECTION_ASM_OP \
1848    (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1849 # define DTORS_SECTION_ASM_OP \
1850    (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1851 #else /* !defined (IN_LIBGCC2) */
1852 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1853    so we cannot use the definition above.  */
1854 # ifdef __ARM_EABI__
1855 /* The .ctors section is not part of the EABI, so we do not define
1856    CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
1857    from trying to use it.  We do define it when doing normal
1858    compilation, as .init_array can be used instead of .ctors.  */
1859 /* There is no need to emit begin or end markers when using
1860    init_array; the dynamic linker will compute the size of the
1861    array itself based on special symbols created by the static
1862    linker.  However, we do need to arrange to set up
1863    exception-handling here.  */
1864 #   define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
1865 #   define CTOR_LIST_END /* empty */
1866 #   define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
1867 #   define DTOR_LIST_END /* empty */
1868 # else /* !defined (__ARM_EABI__) */
1869 #   define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
1870 #   define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
1871 # endif /* !defined (__ARM_EABI__) */
1872 #endif /* !defined (IN_LIBCC2) */
1873 
1874 /* True if the operating system can merge entities with vague linkage
1875    (e.g., symbols in COMDAT group) during dynamic linking.  */
1876 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
1877 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
1878 #endif
1879 
1880 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
1881 
1882 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1883    and check its validity for a certain class.
1884    We have two alternate definitions for each of them.
1885    The usual definition accepts all pseudo regs; the other rejects
1886    them unless they have been allocated suitable hard regs.
1887    The symbol REG_OK_STRICT causes the latter definition to be used.
1888    Thumb-2 has the same restrictions as arm.  */
1889 #ifndef REG_OK_STRICT
1890 
1891 #define ARM_REG_OK_FOR_BASE_P(X)		\
1892   (REGNO (X) <= LAST_ARM_REGNUM			\
1893    || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
1894    || REGNO (X) == FRAME_POINTER_REGNUM		\
1895    || REGNO (X) == ARG_POINTER_REGNUM)
1896 
1897 #define ARM_REG_OK_FOR_INDEX_P(X)		\
1898   ((REGNO (X) <= LAST_ARM_REGNUM		\
1899     && REGNO (X) != STACK_POINTER_REGNUM)	\
1900    || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
1901    || REGNO (X) == FRAME_POINTER_REGNUM		\
1902    || REGNO (X) == ARG_POINTER_REGNUM)
1903 
1904 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE)	\
1905   (REGNO (X) <= LAST_LO_REGNUM			\
1906    || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
1907    || (GET_MODE_SIZE (MODE) >= 4		\
1908        && (REGNO (X) == STACK_POINTER_REGNUM	\
1909 	   || (X) == hard_frame_pointer_rtx	\
1910 	   || (X) == arg_pointer_rtx)))
1911 
1912 #define REG_STRICT_P 0
1913 
1914 #else /* REG_OK_STRICT */
1915 
1916 #define ARM_REG_OK_FOR_BASE_P(X) 		\
1917   ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
1918 
1919 #define ARM_REG_OK_FOR_INDEX_P(X) 		\
1920   ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
1921 
1922 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE)	\
1923   THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
1924 
1925 #define REG_STRICT_P 1
1926 
1927 #endif /* REG_OK_STRICT */
1928 
1929 /* Now define some helpers in terms of the above.  */
1930 
1931 #define REG_MODE_OK_FOR_BASE_P(X, MODE)		\
1932   (TARGET_THUMB1				\
1933    ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE)	\
1934    : ARM_REG_OK_FOR_BASE_P (X))
1935 
1936 /* For 16-bit Thumb, a valid index register is anything that can be used in
1937    a byte load instruction.  */
1938 #define THUMB1_REG_OK_FOR_INDEX_P(X) \
1939   THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
1940 
1941 /* Nonzero if X is a hard reg that can be used as an index
1942    or if it is a pseudo reg.  On the Thumb, the stack pointer
1943    is not suitable.  */
1944 #define REG_OK_FOR_INDEX_P(X)			\
1945   (TARGET_THUMB1				\
1946    ? THUMB1_REG_OK_FOR_INDEX_P (X)		\
1947    : ARM_REG_OK_FOR_INDEX_P (X))
1948 
1949 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1950    For Thumb, we can not use SP + reg, so reject SP.  */
1951 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE)	\
1952   REG_OK_FOR_INDEX_P (X)
1953 
1954 #define ARM_BASE_REGISTER_RTX_P(X)  \
1955   (REG_P (X) && ARM_REG_OK_FOR_BASE_P (X))
1956 
1957 #define ARM_INDEX_REGISTER_RTX_P(X)  \
1958   (REG_P (X) && ARM_REG_OK_FOR_INDEX_P (X))
1959 
1960 /* Specify the machine mode that this machine uses
1961    for the index in the tablejump instruction.  */
1962 #define CASE_VECTOR_MODE Pmode
1963 
1964 #define CASE_VECTOR_PC_RELATIVE (TARGET_THUMB2				\
1965 				 || (TARGET_THUMB1			\
1966 				     && (optimize_size || flag_pic)))
1967 
1968 #define CASE_VECTOR_SHORTEN_MODE(min, max, body)			\
1969   (TARGET_THUMB1							\
1970    ? (min >= 0 && max < 512						\
1971       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode)	\
1972       : min >= -256 && max < 256					\
1973       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode)	\
1974       : min >= 0 && max < 8192						\
1975       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode)	\
1976       : min >= -4096 && max < 4096					\
1977       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode)	\
1978       : SImode)								\
1979    : ((min < 0 || max >= 0x20000 || !TARGET_THUMB2) ? SImode		\
1980       : (max >= 0x200) ? HImode						\
1981       : QImode))
1982 
1983 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
1984    unsigned is probably best, but may break some code.  */
1985 #ifndef DEFAULT_SIGNED_CHAR
1986 #define DEFAULT_SIGNED_CHAR  0
1987 #endif
1988 
1989 /* Max number of bytes we can move from memory to memory
1990    in one reasonably fast instruction.  */
1991 #define MOVE_MAX 4
1992 
1993 #undef  MOVE_RATIO
1994 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
1995 
1996 /* Define if operations between registers always perform the operation
1997    on the full register even if a narrower mode is specified.  */
1998 #define WORD_REGISTER_OPERATIONS
1999 
2000 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2001    will either zero-extend or sign-extend.  The value of this macro should
2002    be the code that says which one of the two operations is implicitly
2003    done, UNKNOWN if none.  */
2004 #define LOAD_EXTEND_OP(MODE)						\
2005   (TARGET_THUMB ? ZERO_EXTEND :						\
2006    ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND			\
2007     : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
2008 
2009 /* Nonzero if access to memory by bytes is slow and undesirable.  */
2010 #define SLOW_BYTE_ACCESS 0
2011 
2012 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
2013 
2014 /* Immediate shift counts are truncated by the output routines (or was it
2015    the assembler?).  Shift counts in a register are truncated by ARM.  Note
2016    that the native compiler puts too large (> 32) immediate shift counts
2017    into a register and shifts by the register, letting the ARM decide what
2018    to do instead of doing that itself.  */
2019 /* This is all wrong.  Defining SHIFT_COUNT_TRUNCATED tells combine that
2020    code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
2021    On the arm, Y in a register is used modulo 256 for the shift. Only for
2022    rotates is modulo 32 used.  */
2023 /* #define SHIFT_COUNT_TRUNCATED 1 */
2024 
2025 /* All integers have the same format so truncation is easy.  */
2026 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC)  1
2027 
2028 /* Calling from registers is a massive pain.  */
2029 #define NO_FUNCTION_CSE 1
2030 
2031 /* The machine modes of pointers and functions */
2032 #define Pmode  SImode
2033 #define FUNCTION_MODE  Pmode
2034 
2035 #define ARM_FRAME_RTX(X)					\
2036   (   (X) == frame_pointer_rtx || (X) == stack_pointer_rtx	\
2037    || (X) == arg_pointer_rtx)
2038 
2039 /* Try to generate sequences that don't involve branches, we can then use
2040    conditional instructions.  */
2041 #define BRANCH_COST(speed_p, predictable_p) \
2042   (current_tune->branch_cost (speed_p, predictable_p))
2043 
2044 /* False if short circuit operation is preferred.  */
2045 #define LOGICAL_OP_NON_SHORT_CIRCUIT				\
2046   ((optimize_size)						\
2047    ? (TARGET_THUMB ? false : true)				\
2048    : (current_tune->logical_op_non_short_circuit[TARGET_ARM]))
2049 
2050 
2051 /* Position Independent Code.  */
2052 /* We decide which register to use based on the compilation options and
2053    the assembler in use; this is more general than the APCS restriction of
2054    using sb (r9) all the time.  */
2055 extern unsigned arm_pic_register;
2056 
2057 /* The register number of the register used to address a table of static
2058    data addresses in memory.  */
2059 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
2060 
2061 /* We can't directly access anything that contains a symbol,
2062    nor can we indirect via the constant pool.  One exception is
2063    UNSPEC_TLS, which is always PIC.  */
2064 #define LEGITIMATE_PIC_OPERAND_P(X)					\
2065 	(!(symbol_mentioned_p (X)					\
2066 	   || label_mentioned_p (X)					\
2067 	   || (GET_CODE (X) == SYMBOL_REF				\
2068 	       && CONSTANT_POOL_ADDRESS_P (X)				\
2069 	       && (symbol_mentioned_p (get_pool_constant (X))		\
2070 		   || label_mentioned_p (get_pool_constant (X)))))	\
2071 	 || tls_mentioned_p (X))
2072 
2073 /* We need to know when we are making a constant pool; this determines
2074    whether data needs to be in the GOT or can be referenced via a GOT
2075    offset.  */
2076 extern int making_const_table;
2077 
2078 /* Handle pragmas for compatibility with Intel's compilers.  */
2079 /* Also abuse this to register additional C specific EABI attributes.  */
2080 #define REGISTER_TARGET_PRAGMAS() do {					\
2081   c_register_pragma (0, "long_calls", arm_pr_long_calls);		\
2082   c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls);		\
2083   c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off);	\
2084   arm_lang_object_attributes_init(); \
2085 } while (0)
2086 
2087 /* Condition code information.  */
2088 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2089    return the mode to be used for the comparison.  */
2090 
2091 #define SELECT_CC_MODE(OP, X, Y)  arm_select_cc_mode (OP, X, Y)
2092 
2093 #define REVERSIBLE_CC_MODE(MODE) 1
2094 
2095 #define REVERSE_CONDITION(CODE,MODE) \
2096   (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
2097    ? reverse_condition_maybe_unordered (code) \
2098    : reverse_condition (code))
2099 
2100 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2101   ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE))
2102 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2103   ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE))
2104 
2105 #define CC_STATUS_INIT \
2106   do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0)
2107 
2108 #undef  ASM_APP_OFF
2109 #define ASM_APP_OFF (TARGET_THUMB1 ? "\t.code\t16\n" : \
2110 		     TARGET_THUMB2 ? "\t.thumb\n" : "")
2111 
2112 /* Output a push or a pop instruction (only used when profiling).
2113    We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1.  We know
2114    that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
2115    that r7 isn't used by the function profiler, so we can use it as a
2116    scratch reg.  WARNING: This isn't safe in the general case!  It may be
2117    sensitive to future changes in final.c:profile_function.  */
2118 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO)		\
2119   do							\
2120     {							\
2121       if (TARGET_ARM)					\
2122 	asm_fprintf (STREAM,"\tstmfd\t%r!,{%r}\n",	\
2123 		     STACK_POINTER_REGNUM, REGNO);	\
2124       else if (TARGET_THUMB1				\
2125 	       && (REGNO) == STATIC_CHAIN_REGNUM)	\
2126 	{						\
2127 	  asm_fprintf (STREAM, "\tpush\t{r7}\n");	\
2128 	  asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
2129 	  asm_fprintf (STREAM, "\tpush\t{r7}\n");	\
2130 	}						\
2131       else						\
2132 	asm_fprintf (STREAM, "\tpush {%r}\n", REGNO);	\
2133     } while (0)
2134 
2135 
2136 /* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue.  */
2137 #define ASM_OUTPUT_REG_POP(STREAM, REGNO)		\
2138   do							\
2139     {							\
2140       if (TARGET_ARM)					\
2141 	asm_fprintf (STREAM, "\tldmfd\t%r!,{%r}\n",	\
2142 		     STACK_POINTER_REGNUM, REGNO);	\
2143       else if (TARGET_THUMB1				\
2144 	       && (REGNO) == STATIC_CHAIN_REGNUM)	\
2145 	{						\
2146 	  asm_fprintf (STREAM, "\tpop\t{r7}\n");	\
2147 	  asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2148 	  asm_fprintf (STREAM, "\tpop\t{r7}\n");	\
2149 	}						\
2150       else						\
2151 	asm_fprintf (STREAM, "\tpop {%r}\n", REGNO);	\
2152     } while (0)
2153 
2154 #define ADDR_VEC_ALIGN(JUMPTABLE)	\
2155   ((TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) ? 2 : 0)
2156 
2157 /* Alignment for case labels comes from ADDR_VEC_ALIGN; avoid the
2158    default alignment from elfos.h.  */
2159 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
2160 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE, PREFIX, NUM, TABLE) /* Empty.  */
2161 
2162 #define LABEL_ALIGN_AFTER_BARRIER(LABEL)                \
2163    (GET_CODE (PATTERN (prev_active_insn (LABEL))) == ADDR_DIFF_VEC \
2164    ? 1 : 0)
2165 
2166 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) 	\
2167   do							\
2168     {							\
2169       if (TARGET_THUMB) 				\
2170         {						\
2171           if (is_called_in_ARM_mode (DECL)		\
2172 	      || (TARGET_THUMB1 && !TARGET_THUMB1_ONLY	\
2173 		  && cfun->is_thunk))	\
2174             fprintf (STREAM, "\t.code 32\n") ;		\
2175           else if (TARGET_THUMB1)			\
2176            fprintf (STREAM, "\t.code\t16\n\t.thumb_func\n") ;	\
2177           else						\
2178            fprintf (STREAM, "\t.thumb\n\t.thumb_func\n") ;	\
2179         }						\
2180       if (TARGET_POKE_FUNCTION_NAME)			\
2181         arm_poke_function_name (STREAM, (const char *) NAME);	\
2182     }							\
2183   while (0)
2184 
2185 /* For aliases of functions we use .thumb_set instead.  */
2186 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2)		\
2187   do						   		\
2188     {								\
2189       const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2190       const char *const LABEL2 = IDENTIFIER_POINTER (DECL2);	\
2191 								\
2192       if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL)	\
2193 	{							\
2194 	  fprintf (FILE, "\t.thumb_set ");			\
2195 	  assemble_name (FILE, LABEL1);			   	\
2196 	  fprintf (FILE, ",");			   		\
2197 	  assemble_name (FILE, LABEL2);		   		\
2198 	  fprintf (FILE, "\n");					\
2199 	}							\
2200       else							\
2201 	ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2);			\
2202     }								\
2203   while (0)
2204 
2205 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2206 /* To support -falign-* switches we need to use .p2align so
2207    that alignment directives in code sections will be padded
2208    with no-op instructions, rather than zeroes.  */
2209 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP)		\
2210   if ((LOG) != 0)						\
2211     {								\
2212       if ((MAX_SKIP) == 0)					\
2213         fprintf ((FILE), "\t.p2align %d\n", (int) (LOG));	\
2214       else							\
2215         fprintf ((FILE), "\t.p2align %d,,%d\n",			\
2216                  (int) (LOG), (int) (MAX_SKIP));		\
2217     }
2218 #endif
2219 
2220 /* Add two bytes to the length of conditionally executed Thumb-2
2221    instructions for the IT instruction.  */
2222 #define ADJUST_INSN_LENGTH(insn, length) \
2223   if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2224     length += 2;
2225 
2226 /* Only perform branch elimination (by making instructions conditional) if
2227    we're optimizing.  For Thumb-2 check if any IT instructions need
2228    outputting.  */
2229 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)	\
2230   if (TARGET_ARM && optimize)				\
2231     arm_final_prescan_insn (INSN);			\
2232   else if (TARGET_THUMB2)				\
2233     thumb2_final_prescan_insn (INSN);			\
2234   else if (TARGET_THUMB1)				\
2235     thumb1_final_prescan_insn (INSN)
2236 
2237 #define ARM_SIGN_EXTEND(x)  ((HOST_WIDE_INT)			\
2238   (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x)	\
2239    : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2240       ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2241        ? ((~ (unsigned HOST_WIDE_INT) 0)			\
2242 	  & ~ (unsigned HOST_WIDE_INT) 0xffffffff)		\
2243        : 0))))
2244 
2245 /* A C expression whose value is RTL representing the value of the return
2246    address for the frame COUNT steps up from the current frame.  */
2247 
2248 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2249   arm_return_addr (COUNT, FRAME)
2250 
2251 /* Mask of the bits in the PC that contain the real return address
2252    when running in 26-bit mode.  */
2253 #define RETURN_ADDR_MASK26 (0x03fffffc)
2254 
2255 /* Pick up the return address upon entry to a procedure. Used for
2256    dwarf2 unwind information.  This also enables the table driven
2257    mechanism.  */
2258 #define INCOMING_RETURN_ADDR_RTX	gen_rtx_REG (Pmode, LR_REGNUM)
2259 #define DWARF_FRAME_RETURN_COLUMN	DWARF_FRAME_REGNUM (LR_REGNUM)
2260 
2261 /* Used to mask out junk bits from the return address, such as
2262    processor state, interrupt status, condition codes and the like.  */
2263 #define MASK_RETURN_ADDR \
2264   /* If we are generating code for an ARM2/ARM3 machine or for an ARM6	\
2265      in 26 bit mode, the condition codes must be masked out of the	\
2266      return address.  This does not apply to ARM6 and later processors	\
2267      when running in 32 bit mode.  */					\
2268   ((arm_arch4 || TARGET_THUMB)						\
2269    ? (gen_int_mode ((unsigned long)0xffffffff, Pmode))			\
2270    : arm_gen_return_addr_mask ())
2271 
2272 
2273 /* Do not emit .note.GNU-stack by default.  */
2274 #ifndef NEED_INDICATE_EXEC_STACK
2275 #define NEED_INDICATE_EXEC_STACK	0
2276 #endif
2277 
2278 #define TARGET_ARM_ARCH	\
2279   (arm_base_arch)	\
2280 
2281 #define TARGET_ARM_V6M (!arm_arch_notm && !arm_arch_thumb2)
2282 #define TARGET_ARM_V7M (!arm_arch_notm && arm_arch_thumb2)
2283 
2284 /* The highest Thumb instruction set version supported by the chip.  */
2285 #define TARGET_ARM_ARCH_ISA_THUMB 		\
2286   (arm_arch_thumb2 ? 2				\
2287 	           : ((TARGET_ARM_ARCH >= 5 || arm_arch4t) ? 1 : 0))
2288 
2289 /* Expands to an upper-case char of the target's architectural
2290    profile.  */
2291 #define TARGET_ARM_ARCH_PROFILE				\
2292   (!arm_arch_notm					\
2293     ? 'M'						\
2294     : (arm_arch7					\
2295       ? (strlen (arm_arch_name) >=3			\
2296 	? (arm_arch_name[strlen (arm_arch_name) - 3])	\
2297       	: 0)						\
2298       : 0))
2299 
2300 /* Bit-field indicating what size LDREX/STREX loads/stores are available.
2301    Bit 0 for bytes, up to bit 3 for double-words.  */
2302 #define TARGET_ARM_FEATURE_LDREX				\
2303   ((TARGET_HAVE_LDREX ? 4 : 0)					\
2304    | (TARGET_HAVE_LDREXBH ? 3 : 0)				\
2305    | (TARGET_HAVE_LDREXD ? 8 : 0))
2306 
2307 /* Set as a bit mask indicating the available widths of hardware floating
2308    point types.  Where bit 1 indicates 16-bit support, bit 2 indicates
2309    32-bit support, bit 3 indicates 64-bit support.  */
2310 #define TARGET_ARM_FP			\
2311   (TARGET_VFP_SINGLE ? 4		\
2312   		     : (TARGET_VFP_DOUBLE ? (TARGET_FP16 ? 14 : 12) : 0))
2313 
2314 
2315 /* Set as a bit mask indicating the available widths of floating point
2316    types for hardware NEON floating point.  This is the same as
2317    TARGET_ARM_FP without the 64-bit bit set.  */
2318 #ifdef TARGET_NEON
2319 #define TARGET_NEON_FP		\
2320   (TARGET_ARM_FP & (0xff ^ 0x08))
2321 #endif
2322 
2323 /* The maximum number of parallel loads or stores we support in an ldm/stm
2324    instruction.  */
2325 #define MAX_LDM_STM_OPS 4
2326 
2327 #define ASM_CPU_SPEC \
2328    " %{mcpu=generic-*:-march=%*;"				\
2329    "   :%{mcpu=*:-mcpu=%*} %{march=*:-march=%*}}"
2330 
2331 /* -mcpu=native handling only makes sense with compiler running on
2332    an ARM chip.  */
2333 #if defined(__arm__) && defined(__linux__)
2334 extern const char *host_detect_local_cpu (int argc, const char **argv);
2335 # define EXTRA_SPEC_FUNCTIONS						\
2336   { "local_cpu_detect", host_detect_local_cpu },
2337 
2338 # define MCPU_MTUNE_NATIVE_SPECS					\
2339    " %{march=native:%<march=native %:local_cpu_detect(arch)}"		\
2340    " %{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)}"		\
2341    " %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
2342 #else
2343 # define MCPU_MTUNE_NATIVE_SPECS ""
2344 #endif
2345 
2346 #define DRIVER_SELF_SPECS MCPU_MTUNE_NATIVE_SPECS
2347 
2348 #endif /* ! GCC_ARM_H */
2349