xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/config/arc/arc.h (revision 4f645668ed707e1f969c546666f8c8e45e6f8888)
1 /* Definitions of target machine for GNU compiler, Synopsys DesignWare ARC cpu.
2    Copyright (C) 1994-2019 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10 
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #ifndef GCC_ARC_H
21 #define GCC_ARC_H
22 
23 #include <stdbool.h>
24 
25 /* Things to do:
26 
27    - incscc, decscc?
28 
29 */
30 
31 #define SYMBOL_FLAG_SHORT_CALL	(SYMBOL_FLAG_MACH_DEP << 0)
32 #define SYMBOL_FLAG_MEDIUM_CALL	(SYMBOL_FLAG_MACH_DEP << 1)
33 #define SYMBOL_FLAG_LONG_CALL	(SYMBOL_FLAG_MACH_DEP << 2)
34 #define SYMBOL_FLAG_CMEM	(SYMBOL_FLAG_MACH_DEP << 3)
35 
36 #ifndef TARGET_CPU_DEFAULT
37 #define TARGET_CPU_DEFAULT	PROCESSOR_arc700
38 #endif
39 
40 /* Check if this symbol has a long_call attribute in its declaration */
41 #define SYMBOL_REF_LONG_CALL_P(X)	\
42 	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
43 
44 /* Check if this symbol has a medium_call attribute in its declaration */
45 #define SYMBOL_REF_MEDIUM_CALL_P(X)	\
46 	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_MEDIUM_CALL) != 0)
47 
48 /* Check if this symbol has a short_call attribute in its declaration */
49 #define SYMBOL_REF_SHORT_CALL_P(X)	\
50 	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SHORT_CALL) != 0)
51 
52 /* Names to predefine in the preprocessor for this target machine.  */
53 #define TARGET_CPU_CPP_BUILTINS() arc_cpu_cpp_builtins (pfile)
54 
55 /* Macros enabled by specific command line option.  FIXME: to be
56    deprecatd.  */
57 #define CPP_SPEC "\
58 %{msimd:-D__Xsimd} %{mno-mpy:-D__Xno_mpy} %{mswap:-D__Xswap} \
59 %{mmin-max:-D__Xmin_max} %{mEA:-D__Xea} \
60 %{mspfp*:-D__Xspfp} %{mdpfp*:-D__Xdpfp} \
61 %{mmac-d16:-D__Xxmac_d16} %{mmac-24:-D__Xxmac_24} \
62 %{mdsp-packa:-D__Xdsp_packa} %{mcrc:-D__Xcrc} %{mdvbf:-D__Xdvbf} \
63 %{mtelephony:-D__Xtelephony} %{mxy:-D__Xxy} %{mmul64: -D__Xmult32} \
64 %{mlock:-D__Xlock} %{mswape:-D__Xswape} %{mrtsc:-D__Xrtsc} \
65 %(subtarget_cpp_spec)"
66 
67 #undef CC1_SPEC
68 #define CC1_SPEC "%{EB:%{EL:%emay not use both -EB and -EL}}	\
69 %{EB:-mbig-endian} %{EL:-mlittle-endian}			\
70 %{G*}								\
71 "
72 extern const char *arc_cpu_to_as (int argc, const char **argv);
73 
74 #define EXTRA_SPEC_FUNCTIONS			\
75   { "cpu_to_as", arc_cpu_to_as },
76 
77 /* This macro defines names of additional specifications to put in the specs
78    that can be used in various specifications like CC1_SPEC.  Its definition
79    is an initializer with a subgrouping for each command option.
80 
81    Each subgrouping contains a string constant, that defines the
82    specification name, and a string constant that used by the GCC driver
83    program.
84 
85    Do not define this macro if it does not need to do anything.  */
86 #define EXTRA_SPECS				      \
87   { "subtarget_cpp_spec",	SUBTARGET_CPP_SPEC }, \
88   SUBTARGET_EXTRA_SPECS
89 
90 #ifndef SUBTARGET_EXTRA_SPECS
91 #define SUBTARGET_EXTRA_SPECS
92 #endif
93 
94 #ifndef SUBTARGET_CPP_SPEC
95 #define SUBTARGET_CPP_SPEC ""
96 #endif
97 
98 #undef ASM_SPEC
99 #define ASM_SPEC  "%{mbig-endian|EB:-EB} %{EL} "			\
100   "%:cpu_to_as(%{mcpu=*:%*}) %{mspfp*} %{mdpfp*} %{mfpu=fpuda*:-mfpuda}"
101 
102 #define OPTION_DEFAULT_SPECS						\
103   {"cpu", "%{!mcpu=*:%{!mARC*:%{!marc*:%{!mA7:%{!mA6:-mcpu=%(VALUE)}}}}}" }
104 
105 #ifndef DRIVER_ENDIAN_SELF_SPECS
106 #define DRIVER_ENDIAN_SELF_SPECS ""
107 #endif
108 
109 #define DRIVER_SELF_SPECS DRIVER_ENDIAN_SELF_SPECS		   \
110   "%{mARC600|mA6: -mcpu=arc600 %<mARC600 %<mA6 %<mARC600}"	   \
111   "%{mARC601: -mcpu=arc601 %<mARC601}"				   \
112   "%{mARC700|mA7: -mcpu=arc700 %<mARC700 %<mA7}"		   \
113   "%{mEA: -mea %<mEA}"
114 
115 /* Run-time compilation parameters selecting different hardware subsets.  */
116 
117 #define TARGET_MIXED_CODE (TARGET_MIXED_CODE_SET)
118 
119 #define TARGET_SPFP (TARGET_SPFP_FAST_SET || TARGET_SPFP_COMPACT_SET)
120 #define TARGET_DPFP (TARGET_DPFP_FAST_SET || TARGET_DPFP_COMPACT_SET	\
121 		     || TARGET_FP_DP_AX)
122 
123 #define SUBTARGET_SWITCHES
124 
125 /* Instruction set characteristics.
126    These are internal macros, set by the appropriate -m option.  */
127 
128 /* Non-zero means the cpu supports norm instruction.  This flag is set by
129    default for A7, and only for pre A7 cores when -mnorm is given.  */
130 #define TARGET_NORM (TARGET_ARC700 || TARGET_NORM_SET || TARGET_HS)
131 /* Indicate if an optimized floating point emulation library is available.  */
132 #define TARGET_OPTFPE (TARGET_ARC700 || TARGET_FPX_QUARK)
133 
134 /* Non-zero means the cpu supports swap instruction.  This flag is set by
135    default for A7, and only for pre A7 cores when -mswap is given.  */
136 #define TARGET_SWAP (TARGET_ARC700 || TARGET_SWAP_SET)
137 
138 /* Provide some macros for size / scheduling features of the ARC700, so
139    that we can pick & choose features if we get a new cpu family member.  */
140 
141 /* Should we try to unalign likely taken branches without a delay slot.  */
142 #define TARGET_UNALIGN_BRANCH (TARGET_ARC700 && !optimize_size)
143 
144 /* Should we add padding before a return insn to avoid mispredict?  */
145 #define TARGET_PAD_RETURN (TARGET_ARC700 && !optimize_size)
146 
147 /* For an anulled-true delay slot insn for a delayed branch, should we only
148    use conditional execution?  */
149 #define TARGET_AT_DBR_CONDEXEC  (!TARGET_ARC700 && !TARGET_V2)
150 
151 #define TARGET_ARC600 ((arc_selected_cpu->arch_info->arch_id	\
152 			== BASE_ARCH_6xx)			\
153 		       && (TARGET_BARREL_SHIFTER))
154 #define TARGET_ARC601 ((arc_selected_cpu->arch_info->arch_id	\
155 			== BASE_ARCH_6xx)			\
156 		       && (!TARGET_BARREL_SHIFTER))
157 #define TARGET_ARC700 (arc_selected_cpu->arch_info->arch_id	\
158 		       == BASE_ARCH_700)
159 /* An NPS400 is a specialisation of ARC700, so it is correct for NPS400
160    TARGET_ARC700 is true, and TARGET_NPS400 is true.  */
161 #define TARGET_NPS400 ((arc_selected_cpu->arch_info->arch_id	\
162 			== BASE_ARCH_700)			\
163 		       && (arc_selected_cpu->processor		\
164 			   == PROCESSOR_nps400))
165 #define TARGET_EM (arc_selected_cpu->arch_info->arch_id == BASE_ARCH_em)
166 #define TARGET_HS (arc_selected_cpu->arch_info->arch_id == BASE_ARCH_hs)
167 #define TARGET_V2 (TARGET_EM || TARGET_HS)
168 
169 #ifndef UNALIGNED_ACCESS_DEFAULT
170 #define UNALIGNED_ACCESS_DEFAULT 0
171 #endif
172 
173 #ifndef TARGET_NPS_BITOPS_DEFAULT
174 #define TARGET_NPS_BITOPS_DEFAULT 0
175 #endif
176 
177 #ifndef TARGET_NPS_CMEM_DEFAULT
178 #define TARGET_NPS_CMEM_DEFAULT 0
179 #endif
180 
181 /* Enable the RRQ instruction alternatives.  */
182 
183 #define TARGET_RRQ_CLASS TARGET_NPS_BITOPS
184 
185 /* Target machine storage layout.  */
186 
187 /* We want zero_extract to mean the same
188    no matter what the byte endianness is.  */
189 #define BITS_BIG_ENDIAN 0
190 
191 /* Define this if most significant byte of a word is the lowest numbered.  */
192 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN)
193 
194 /* Define this if most significant word of a multiword number is the lowest
195    numbered.  */
196 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN)
197 
198 /* Width in bits of a "word", which is the contents of a machine register.
199    Note that this is not necessarily the width of data type `int';
200    if using 16-bit ints on a 68000, this would still be 32.
201    But on a machine with 16-bit registers, this would be 16.  */
202 #define BITS_PER_WORD 32
203 
204 /* Width of a word, in units (bytes).  */
205 #define UNITS_PER_WORD 4
206 
207 /* Define this macro if it is advisable to hold scalars in registers
208    in a wider mode than that declared by the program.  In such cases,
209    the value is constrained to be within the bounds of the declared
210    type, but kept valid in the wider mode.  The signedness of the
211    extension may differ from that of the type.  */
212 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
213 if (GET_MODE_CLASS (MODE) == MODE_INT		\
214     && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)	\
215 {						\
216   (MODE) = SImode;				\
217 }
218 
219 /* Width in bits of a pointer.
220    See also the macro `Pmode' defined below.  */
221 #define POINTER_SIZE 32
222 
223 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
224 #define PARM_BOUNDARY 32
225 
226 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
227 /* TOCHECK: Changed from 64 to 32 */
228 #define STACK_BOUNDARY 32
229 
230 /* ALIGN FRAMES on word boundaries.  */
231 #define ARC_STACK_ALIGN(LOC) \
232   (((LOC) + STACK_BOUNDARY / BITS_PER_UNIT - 1) & -STACK_BOUNDARY/BITS_PER_UNIT)
233 
234 /* Allocation boundary (in *bits*) for the code of a function.  */
235 #define FUNCTION_BOUNDARY 32
236 
237 /* Alignment of field after `int : 0' in a structure.  */
238 #define EMPTY_FIELD_BOUNDARY 32
239 
240 /* Every structure's size must be a multiple of this.  */
241 #define STRUCTURE_SIZE_BOUNDARY 8
242 
243 /* A bitfield declared as `int' forces `int' alignment for the struct.  */
244 #define PCC_BITFIELD_TYPE_MATTERS 1
245 
246 /* An expression for the alignment of a structure field FIELD if the
247    alignment computed in the usual way (including applying of
248    `BIGGEST_ALIGNMENT' and `BIGGEST_FIELD_ALIGNMENT' to the
249    alignment) is COMPUTED.  It overrides alignment only if the field
250    alignment has not been set by the `__attribute__ ((aligned (N)))'
251    construct.
252 */
253 
254 #define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
255 (TYPE_MODE (strip_array_types (TYPE)) == DFmode \
256  ? MIN ((COMPUTED), 32) : (COMPUTED))
257 
258 
259 
260 /* No data type wants to be aligned rounder than this.  */
261 /* This is bigger than currently necessary for the ARC.  If 8 byte floats are
262    ever added it's not clear whether they'll need such alignment or not.  For
263    now we assume they will.  We can always relax it if necessary but the
264    reverse isn't true.  */
265 /* TOCHECK: Changed from 64 to 32 */
266 #define BIGGEST_ALIGNMENT 32
267 
268 /* The best alignment to use in cases where we have a choice.  */
269 #define FASTEST_ALIGNMENT 32
270 
271 /* Make arrays of chars word-aligned for the same reasons.  */
272 #define LOCAL_ALIGNMENT(TYPE, ALIGN)             \
273   (TREE_CODE (TYPE) == ARRAY_TYPE               \
274    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode    \
275    && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
276 
277 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
278   (TREE_CODE (TYPE) == ARRAY_TYPE		\
279    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
280    && arc_size_opt_level < 3			\
281    && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
282 
283 /* Set this nonzero if move instructions will actually fail to work
284    when given unaligned data.  */
285 /* On the ARC the lower address bits are masked to 0 as necessary.  The chip
286    won't croak when given an unaligned address, but the insn will still fail
287    to produce the correct result.  */
288 #define STRICT_ALIGNMENT (!unaligned_access)
289 
290 /* Layout of source language data types.  */
291 
292 #define SHORT_TYPE_SIZE		16
293 #define INT_TYPE_SIZE		32
294 #define LONG_TYPE_SIZE		32
295 #define LONG_LONG_TYPE_SIZE	64
296 #define FLOAT_TYPE_SIZE		32
297 #define DOUBLE_TYPE_SIZE	64
298 #define LONG_DOUBLE_TYPE_SIZE	64
299 
300 /* Define this as 1 if `char' should by default be signed; else as 0.  */
301 #define DEFAULT_SIGNED_CHAR 0
302 
303 #undef SIZE_TYPE
304 #define SIZE_TYPE "unsigned int"
305 
306 #undef PTRDIFF_TYPE
307 #define PTRDIFF_TYPE "int"
308 
309 #undef WCHAR_TYPE
310 #define WCHAR_TYPE "int"
311 
312 #undef WCHAR_TYPE_SIZE
313 #define WCHAR_TYPE_SIZE 32
314 
315 /* Standard register usage.  */
316 
317 /* Number of actual hardware registers.
318    The hardware registers are assigned numbers for the compiler
319    from 0 to just below FIRST_PSEUDO_REGISTER.
320    All registers that the compiler knows about must be given numbers,
321    even those that are not normally considered general registers.
322 
323    Registers 61, 62, and 63 are not really registers and we needn't treat
324    them as such.  We still need a register for the condition code and
325    argument pointer.  */
326 
327 /* r63 is pc, r64-r127 = simd vregs, r128-r143 = simd dma config regs
328    r144, r145 = ARG_POINTER, FRAME_POINTER
329    and therefore the pseudo registers start from r146. */
330 #define FIRST_PSEUDO_REGISTER 146
331 
332 /* 1 for registers that have pervasive standard uses
333    and are not available for the register allocator.
334 
335    0-28  - general purpose registers
336    29    - ilink1 (interrupt link register)
337    30    - ilink2 (interrupt link register)
338    31    - blink (branch link register)
339    32-59 - reserved for extensions
340    60    - LP_COUNT
341    61    - condition code
342    62    - argument pointer
343    63    - program counter
344 
345    FWIW, this is how the 61-63 encodings are used by the hardware:
346    61    - reserved
347    62    - long immediate data indicator
348    63    - PCL (program counter aligned to 32 bit, read-only)
349 
350    The general purpose registers are further broken down into:
351 
352    0-7   - arguments/results
353    8-12  - call used (r11 - static chain pointer)
354    13-25 - call saved
355    26    - global pointer
356    27    - frame pointer
357    28    - stack pointer
358    29    - ilink1
359    30    - ilink2
360    31    - return address register
361 
362    By default, the extension registers are not available.  */
363 /* Present implementations only have VR0-VR23 only.  */
364 #define FIXED_REGISTERS \
365 { 0, 0, 0, 0, 0, 0, 0, 0,	\
366   0, 0, 0, 0, 0, 0, 0, 0,	\
367   0, 0, 0, 0, 0, 0, 0, 0,	\
368   0, 0, 1, 0, 1, 1, 1, 1,	\
369 				\
370   1, 1, 1, 1, 1, 1, 1, 1,	\
371   0, 0, 0, 0, 1, 1, 1, 1,	\
372   1, 1, 1, 1, 1, 1, 1, 1,	\
373   1, 1, 1, 1, 1, 1, 1, 1,       \
374 				\
375   0, 0, 0, 0, 0, 0, 0, 0,       \
376   0, 0, 0, 0, 0, 0, 0, 0,       \
377   0, 0, 0, 0, 0, 0, 0, 0,       \
378   1, 1, 1, 1, 1, 1, 1, 1,       \
379 				\
380   1, 1, 1, 1, 1, 1, 1, 1,       \
381   1, 1, 1, 1, 1, 1, 1, 1,       \
382   1, 1, 1, 1, 1, 1, 1, 1,       \
383   1, 1, 1, 1, 1, 1, 1, 1,       \
384 				\
385   0, 0, 0, 0, 0, 0, 0, 0,       \
386   0, 0, 0, 0, 0, 0, 0, 0,	\
387   1, 1}
388 
389 /* 1 for registers not available across function calls.
390    These must include the FIXED_REGISTERS and also any
391    registers that can be used without being saved.
392    The latter must include the registers where values are returned
393    and the register where structure-value addresses are passed.
394    Aside from that, you can include as many other registers as you like.  */
395 #define CALL_USED_REGISTERS     \
396 {                               \
397   1, 1, 1, 1, 1, 1, 1, 1,	\
398   1, 1, 1, 1, 1, 0, 0, 0,	\
399   0, 0, 0, 0, 0, 0, 0, 0,	\
400   0, 0, 1, 0, 1, 1, 1, 1,	\
401 				\
402   1, 1, 1, 1, 1, 1, 1, 1,	\
403   1, 1, 1, 1, 1, 1, 1, 1,	\
404   1, 1, 1, 1, 1, 1, 1, 1,	\
405   1, 1, 1, 1, 1, 1, 1, 1,       \
406 				\
407   0, 0, 0, 0, 0, 0, 0, 0,       \
408   0, 0, 0, 0, 0, 0, 0, 0,       \
409   0, 0, 0, 0, 0, 0, 0, 0,       \
410   1, 1, 1, 1, 1, 1, 1, 1,       \
411 				\
412   1, 1, 1, 1, 1, 1, 1, 1,       \
413   1, 1, 1, 1, 1, 1, 1, 1,       \
414   1, 1, 1, 1, 1, 1, 1, 1,       \
415   1, 1, 1, 1, 1, 1, 1, 1,       \
416 				\
417   0, 0, 0, 0, 0, 0, 0, 0,       \
418   0, 0, 0, 0, 0, 0, 0, 0,	\
419   1, 1}
420 
421 /* If defined, an initializer for a vector of integers, containing the
422    numbers of hard registers in the order in which GCC should
423    prefer to use them (from most preferred to least).  */
424 #define REG_ALLOC_ORDER							\
425 {									\
426   /* General registers.  */						\
427   2, 3, 12, 13, 14, 15, 1, 0, 4, 5, 6, 7, 8, 9, 10, 11,			\
428   16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30,			\
429   /* Extension core registers.  */					\
430   32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,	\
431   48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,			\
432   /* VR regs.  */							\
433   64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,	\
434   80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,	\
435   96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109,	\
436   110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, \
437   124, 125, 126, 127,							\
438   /* DMA registers.  */							\
439   128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, \
440   142, 143,								\
441   /* Register not used for general use.  */				\
442   62, FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM,				\
443   SP_REG, ILINK1_REG, RETURN_ADDR_REGNUM, LP_COUNT, CC_REG, PCL_REG	\
444 }
445 
446 /* Use different register alloc ordering for Thumb.  */
447 #define ADJUST_REG_ALLOC_ORDER arc_adjust_reg_alloc_order ()
448 
449 /* Tell IRA to use the order we define rather than messing it up with its
450    own cost calculations.  */
451 #define HONOR_REG_ALLOC_ORDER 1
452 
453 /* Internal macros to classify a register number as to whether it's a
454    general purpose register for compact insns (r0-r3,r12-r15), or
455    stack pointer (r28).  */
456 
457 #define COMPACT_GP_REG_P(REGNO) \
458    (((signed)(REGNO) >= 0 && (REGNO) <= 3) || ((REGNO) >= 12 && (REGNO) <= 15))
459 #define SP_REG_P(REGNO)  ((REGNO) == 28)
460 
461 
462 
463 /* Register classes and constants.  */
464 
465 /* Define the classes of registers for register constraints in the
466    machine description.  Also define ranges of constants.
467 
468    One of the classes must always be named ALL_REGS and include all hard regs.
469    If there is more than one class, another class must be named NO_REGS
470    and contain no registers.
471 
472    The name GENERAL_REGS must be the name of a class (or an alias for
473    another name such as ALL_REGS).  This is the class of registers
474    that is allowed by "g" or "r" in a register constraint.
475    Also, registers outside this class are allocated only when
476    instructions express preferences for them.
477 
478    The classes must be numbered in nondecreasing order; that is,
479    a larger-numbered class must never be contained completely
480    in a smaller-numbered class.
481 
482    For any two classes, it is very desirable that there be another
483    class that represents their union.
484 
485    It is important that any condition codes have class NO_REGS.
486    See `register_operand'.  */
487 
488 enum reg_class
489 {
490    NO_REGS,
491    R0_REGS,			/* 'x' */
492    R0R1_CD_REGS,		/* 'Rsd' */
493    R0R3_CD_REGS,		/* 'Rcd' */
494    ARCOMPACT16_REGS,		/* 'q' */
495    SIBCALL_REGS,		/* "Rsc" */
496    AC16_H_REGS,			/* 'h' */
497    DOUBLE_REGS,			/* 'D' */
498    GENERAL_REGS,		/* 'r' */
499    SIMD_VR_REGS,		/* 'v' */
500    SIMD_DMA_CONFIG_REGS,	/* 'd' */
501    ALL_REGS,
502    LIM_REG_CLASSES
503 };
504 
505 #define N_REG_CLASSES (int) LIM_REG_CLASSES
506 
507 /* Give names of register classes as strings for dump file.   */
508 #define REG_CLASS_NAMES	  \
509 {			  \
510   "NO_REGS",		  \
511   "R0_REGS",		  \
512   "R0R1_CD_REGS",	  \
513   "R0R3_CD_REGS",	  \
514   "ARCOMPACT16_REGS",	  \
515   "SIBCALL_REGS",	  \
516   "AC16_H_REGS",	  \
517   "DOUBLE_REGS",	  \
518   "GENERAL_REGS",	  \
519   "SIMD_VR_REGS",	  \
520   "SIMD_DMA_CONFIG_REGS", \
521   "ALL_REGS"		  \
522 }
523 
524 /* Define which registers fit in which classes.
525    This is an initializer for a vector of HARD_REG_SET
526    of length N_REG_CLASSES.  */
527 
528 #define REG_CLASS_CONTENTS \
529 {									\
530   {0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* NO_REGS.  */\
531   {0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'x'.  */ \
532   {0x00000003, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'Rsd'.  */ \
533   {0x0000000f, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'Rcd'.  */ \
534   {0x0000f00f, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'q'.  */ \
535   {0x00001fff, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'Rsc'.  */ \
536   {0x9fffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'h'.  */ \
537   {0x00000000, 0x00000f00, 0x00000000, 0x00000000, 0x00000000}, /* 'D'.  */ \
538   {0xffffffff, 0x8fffffff, 0x00000000, 0x00000000, 0x00030000}, /* 'r'.  */ \
539   {0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x00000000}, /* 'v'.  */ \
540   {0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0000ffff}, /* 'd'.  */ \
541   {0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0003ffff} /* ALL_REGS.  */\
542 }
543 
544 /* Local macros to mark the first and last regs of different classes.  */
545 #define ARC_FIRST_SIMD_VR_REG              64
546 #define ARC_LAST_SIMD_VR_REG               127
547 
548 #define ARC_FIRST_SIMD_DMA_CONFIG_REG      128
549 #define ARC_FIRST_SIMD_DMA_CONFIG_IN_REG   128
550 #define ARC_FIRST_SIMD_DMA_CONFIG_OUT_REG  136
551 #define ARC_LAST_SIMD_DMA_CONFIG_REG       143
552 
553 /* ARCv2 double-register accumulator.  */
554 #define ACC_REG_FIRST 58
555 #define ACC_REG_LAST  59
556 #define ACCL_REGNO    (TARGET_BIG_ENDIAN ? ACC_REG_FIRST + 1 : ACC_REG_FIRST)
557 #define ACCH_REGNO    (TARGET_BIG_ENDIAN ? ACC_REG_FIRST : ACC_REG_FIRST + 1)
558 
559 /* The same information, inverted:
560    Return the class number of the smallest class containing
561    reg number REGNO.  This could be a conditional expression
562    or could index an array.  */
563 
564 extern enum reg_class arc_regno_reg_class[];
565 
566 #define REGNO_REG_CLASS(REGNO) (arc_regno_reg_class[REGNO])
567 
568 /* The class value for valid index registers. An index register is
569    one used in an address where its value is either multiplied by
570    a scale factor or added to another register (as well as added to a
571    displacement).  */
572 
573 #define INDEX_REG_CLASS (TARGET_MIXED_CODE ? ARCOMPACT16_REGS : GENERAL_REGS)
574 
575 /* The class value for valid base registers. A base register is one used in
576    an address which is the register value plus a displacement.  */
577 
578 #define BASE_REG_CLASS GENERAL_REGS
579 
580 /* These assume that REGNO is a hard or pseudo reg number.
581    They give nonzero only if REGNO is a hard reg of the suitable class
582    or a pseudo reg currently allocated to a suitable hard reg.
583    Since they use reg_renumber, they are safe only once reg_renumber
584    has been allocated, which happens in local-alloc.c.  */
585 #define REGNO_OK_FOR_BASE_P(REGNO)					\
586   ((REGNO) < 29								\
587    || ((REGNO) == ARG_POINTER_REGNUM)					\
588    || ((REGNO) == FRAME_POINTER_REGNUM)					\
589    || ((REGNO) == PCL_REG)						\
590    || ((unsigned) reg_renumber[REGNO] < 29)				\
591    || ((unsigned) (REGNO) == (unsigned) arc_tp_regno)			\
592    || (fixed_regs[REGNO] == 0 && IN_RANGE (REGNO, 32, 59))		\
593    || (fixed_regs[REGNO] == 0 && (REGNO) == R30_REG))
594 
595 #define REGNO_OK_FOR_INDEX_P(REGNO) REGNO_OK_FOR_BASE_P(REGNO)
596 
597 /* Given an rtx X being reloaded into a reg required to be
598    in class CLASS, return the class of reg to actually use.
599    In general this is just CLASS; but on some machines
600    in some cases it is preferable to use a more restrictive class.  */
601 
602 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
603   arc_preferred_reload_class((X), (CLASS))
604 
605   extern enum reg_class arc_preferred_reload_class (rtx, enum reg_class);
606 
607 /* Return the maximum number of consecutive registers
608    needed to represent mode MODE in a register of class CLASS.  */
609 
610 #define CLASS_MAX_NREGS(CLASS, MODE) \
611 (( GET_MODE_SIZE (MODE) == 16 && CLASS == SIMD_VR_REGS) ? 1: \
612 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
613 
614 #define SMALL_INT(X) ((unsigned) ((X) + 0x100) < 0x200)
615 #define SMALL_INT_RANGE(X, OFFSET, SHIFT) \
616   ((unsigned) (((X) >> (SHIFT)) + 0x100) \
617    < 0x200 - ((unsigned) (OFFSET) >> (SHIFT)))
618 #define SIGNED_INT12(X) ((unsigned) ((X) + 0x800) < 0x1000)
619 #define SIGNED_INT16(X) ((unsigned) ((X) + 0x8000) < 0x10000)
620 #define LARGE_INT(X) \
621 (((X) < 0) \
622  ? (X) >= (-(HOST_WIDE_INT) 0x7fffffff - 1) \
623  : (unsigned HOST_WIDE_INT) (X) <= (unsigned HOST_WIDE_INT) 0xffffffff)
624 #define UNSIGNED_INT3(X) ((unsigned) (X) < 0x8)
625 #define UNSIGNED_INT5(X) ((unsigned) (X) < 0x20)
626 #define UNSIGNED_INT6(X) ((unsigned) (X) < 0x40)
627 #define UNSIGNED_INT7(X) ((unsigned) (X) < 0x80)
628 #define UNSIGNED_INT8(X) ((unsigned) (X) < 0x100)
629 #define UNSIGNED_INT12(X) ((unsigned) (X) < 0x800)
630 #define UNSIGNED_INT16(X) ((unsigned) (X) < 0x10000)
631 #define IS_ONE(X) ((X) == 1)
632 #define IS_ZERO(X) ((X) == 0)
633 
634 /* Stack layout and stack pointer usage.  */
635 
636 /* Define this macro if pushing a word onto the stack moves the stack
637    pointer to a smaller address.  */
638 #define STACK_GROWS_DOWNWARD 1
639 
640 /* Define this if the nominal address of the stack frame
641    is at the high-address end of the local variables;
642    that is, each additional local variable allocated
643    goes at a more negative offset in the frame.  */
644 #define FRAME_GROWS_DOWNWARD 1
645 
646 /* Offset from the stack pointer register to the first location at which
647    outgoing arguments are placed.  */
648 #define STACK_POINTER_OFFSET (0)
649 
650 /* Offset of first parameter from the argument pointer register value.  */
651 #define FIRST_PARM_OFFSET(FNDECL) (0)
652 
653 /* A C expression whose value is RTL representing the address in a
654    stack frame where the pointer to the caller's frame is stored.
655    Assume that FRAMEADDR is an RTL expression for the address of the
656    stack frame itself.
657 
658    If you don't define this macro, the default is to return the value
659    of FRAMEADDR--that is, the stack frame address is also the address
660    of the stack word that points to the previous frame.  */
661 /* ??? unfinished */
662 /*define DYNAMIC_CHAIN_ADDRESS (FRAMEADDR)*/
663 
664 /* A C expression whose value is RTL representing the value of the
665    return address for the frame COUNT steps up from the current frame.
666    FRAMEADDR is the frame pointer of the COUNT frame, or the frame
667    pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME'
668    is defined.  */
669 /* The current return address is in r31.  The return address of anything
670    farther back is at [%fp,4].  */
671 
672 #define RETURN_ADDR_RTX(COUNT, FRAME) \
673 arc_return_addr_rtx(COUNT,FRAME)
674 
675 /* Register to use for pushing function arguments.  */
676 #define STACK_POINTER_REGNUM 28
677 
678 /* Base register for access to local variables of the function.  */
679 #define FRAME_POINTER_REGNUM 145
680 #define HARD_FRAME_POINTER_REGNUM 27
681 
682 /* Base register for access to arguments of the function. This register
683    will be eliminated into either fp or sp.  */
684 #define ARG_POINTER_REGNUM 144
685 
686 #define RETURN_ADDR_REGNUM 31
687 
688 /* TODO - check usage of STATIC_CHAIN_REGNUM with a testcase */
689 /* Register in which static-chain is passed to a function.  This must
690    not be a register used by the prologue.  */
691 #define STATIC_CHAIN_REGNUM  11
692 
693 /* Function argument passing.  */
694 
695 /* If defined, the maximum amount of space required for outgoing
696    arguments will be computed and placed into the variable
697    `crtl->outgoing_args_size'.  No space will be pushed
698    onto the stack for each call; instead, the function prologue should
699    increase the stack frame size by this amount.  */
700 #define ACCUMULATE_OUTGOING_ARGS 1
701 
702 /* Define a data type for recording info about an argument list
703    during the scan of that argument list.  This data type should
704    hold all necessary information about the function itself
705    and about the args processed so far, enough to enable macros
706    such as FUNCTION_ARG to determine where the next arg should go.  */
707 #define CUMULATIVE_ARGS int
708 
709 /* Initialize a variable CUM of type CUMULATIVE_ARGS
710    for a call to a function whose data type is FNTYPE.
711    For a library call, FNTYPE is 0.  */
712 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT,N_NAMED_ARGS) \
713   ((CUM) = 0)
714 
715 /* The number of registers used for parameter passing.  Local to this file.  */
716 #define MAX_ARC_PARM_REGS (TARGET_RF16 ? 4 : 8)
717 
718 /* 1 if N is a possible register number for function argument passing.  */
719 #define FUNCTION_ARG_REGNO_P(N) \
720 ((unsigned) (N) < MAX_ARC_PARM_REGS)
721 
722 /* The ROUND_ADVANCE* macros are local to this file.  */
723 /* Round SIZE up to a word boundary.  */
724 #define ROUND_ADVANCE(SIZE) \
725 (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
726 
727 /* Round arg MODE/TYPE up to the next word boundary.  */
728 #define ROUND_ADVANCE_ARG(MODE, TYPE) \
729 ((MODE) == BLKmode				\
730  ? ROUND_ADVANCE (int_size_in_bytes (TYPE))	\
731  : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))
732 
733 #define ARC_FUNCTION_ARG_BOUNDARY(MODE,TYPE) PARM_BOUNDARY
734 /* Round CUM up to the necessary point for argument MODE/TYPE.  */
735 /* N.B. Vectors have alignment exceeding BIGGEST_ALIGNMENT.
736    ARC_FUNCTION_ARG_BOUNDARY reduces this to no more than 32 bit.  */
737 #define ROUND_ADVANCE_CUM(CUM, MODE, TYPE) \
738   ((((CUM) - 1) | (ARC_FUNCTION_ARG_BOUNDARY ((MODE), (TYPE)) - 1)/BITS_PER_WORD)\
739    + 1)
740 
741 /* Return boolean indicating arg of type TYPE and mode MODE will be passed in
742    a reg.  This includes arguments that have to be passed by reference as the
743    pointer to them is passed in a reg if one is available (and that is what
744    we're given).
745    When passing arguments NAMED is always 1.  When receiving arguments NAMED
746    is 1 for each argument except the last in a stdarg/varargs function.  In
747    a stdarg function we want to treat the last named arg as named.  In a
748    varargs function we want to treat the last named arg (which is
749    `__builtin_va_alist') as unnamed.
750    This macro is only used in this file.  */
751 #define PASS_IN_REG_P(CUM, MODE, TYPE) \
752 ((CUM) < MAX_ARC_PARM_REGS)
753 
754 
755 /* Function results.  */
756 
757 /* Define how to find the value returned by a library function
758    assuming the value has mode MODE.  */
759 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 0)
760 
761 /* 1 if N is a possible register number for a function value
762    as seen by the caller.  */
763 /* ??? What about r1 in DI/DF values.  */
764 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
765 
766 /* Tell GCC to use RETURN_IN_MEMORY.  */
767 #define DEFAULT_PCC_STRUCT_RETURN 0
768 
769 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
770    the stack pointer does not matter.  The value is tested only in
771    functions that have frame pointers.
772    No definition is equivalent to always zero.  */
773 #define EXIT_IGNORE_STACK 0
774 
775 #define EPILOGUE_USES(REGNO) arc_epilogue_uses ((REGNO))
776 
777 #define EH_USES(REGNO) arc_eh_uses((REGNO))
778 
779 /* Definitions for register eliminations.
780 
781    This is an array of structures.  Each structure initializes one pair
782    of eliminable registers.  The "from" register number is given first,
783    followed by "to".  Eliminations of the same "from" register are listed
784    in order of preference.
785 
786    We have two registers that can be eliminated on the ARC.  First, the
787    argument pointer register can always be eliminated in favor of the stack
788    pointer register or frame pointer register.  Secondly, the frame pointer
789    register can often be eliminated in favor of the stack pointer register.
790 */
791 
792 #define ELIMINABLE_REGS					\
793 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
794  {ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
795  {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
796  {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
797 
798 /* Define the offset between two registers, one to be eliminated, and the other
799    its replacement, at the start of a routine.  */
800 extern int arc_initial_elimination_offset(int from, int to);
801 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)                    \
802   (OFFSET) = arc_initial_elimination_offset ((FROM), (TO))
803 
804 /* All the work done in PROFILE_HOOK, but still required.  */
805 #undef FUNCTION_PROFILER
806 #define FUNCTION_PROFILER(STREAM, LABELNO) do { } while (0)
807 
808 #define NO_PROFILE_COUNTERS  1
809 
810 /* Trampolines.  */
811 
812 /* Length in units of the trampoline for entering a nested function.  */
813 #define TRAMPOLINE_SIZE 16
814 
815 /* Alignment required for a trampoline in bits .  */
816 /* For actual data alignment we just need 32, no more than the stack;
817    however, to reduce cache coherency issues, we want to make sure that
818    trampoline instructions always appear the same in any given cache line.  */
819 #define TRAMPOLINE_ALIGNMENT 256
820 
821 /* Library calls.  */
822 
823 /* Addressing modes, and classification of registers for them.  */
824 
825 /* Maximum number of registers that can appear in a valid memory address.  */
826 /* The `ld' insn allows 2, but the `st' insn only allows 1.  */
827 #define MAX_REGS_PER_ADDRESS 1
828 
829 /* We have pre inc/dec (load/store with update).  */
830 #define HAVE_PRE_INCREMENT 1
831 #define HAVE_PRE_DECREMENT 1
832 #define HAVE_POST_INCREMENT 1
833 #define HAVE_POST_DECREMENT 1
834 #define HAVE_PRE_MODIFY_DISP 1
835 #define HAVE_POST_MODIFY_DISP 1
836 #define HAVE_PRE_MODIFY_REG 1
837 #define HAVE_POST_MODIFY_REG 1
838 /* ??? should also do PRE_MODIFY_REG / POST_MODIFY_REG, but that requires
839    a special predicate for the memory operand of stores, like for the SH.  */
840 
841 /* Recognize any constant value that is a valid address.  */
842 #define CONSTANT_ADDRESS_P(X)					\
843   (flag_pic ? (arc_legitimate_pic_addr_p (X) || LABEL_P (X)):	\
844    (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF	\
845     || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST))
846 
847 /* Is the argument a const_int rtx, containing an exact power of 2 */
848 #define  IS_POWEROF2_P(X) (! ( (X) & ((X) - 1)) && (X))
849 #define  IS_POWEROF2_OR_0_P(X) (! ( (X) & ((X) - 1)))
850 
851 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
852    and check its validity for a certain class.
853    We have two alternate definitions for each of them.
854    The *_NONSTRICT definition accepts all pseudo regs; the other rejects
855    them unless they have been allocated suitable hard regs.
856 
857    Most source files want to accept pseudo regs in the hope that
858    they will get allocated to the class that the insn wants them to be in.
859    Source files for reload pass need to be strict.
860    After reload, it makes no difference, since pseudo regs have
861    been eliminated by then.  */
862 
863 /* Nonzero if X is a hard reg that can be used as an index
864    or if it is a pseudo reg.  */
865 #define REG_OK_FOR_INDEX_P_NONSTRICT(X)			\
866   ((unsigned) REGNO (X) >= FIRST_PSEUDO_REGISTER	\
867    || REGNO_OK_FOR_BASE_P (REGNO (X)))
868 
869 /* Nonzero if X is a hard reg that can be used as a base reg
870    or if it is a pseudo reg.  */
871 #define REG_OK_FOR_BASE_P_NONSTRICT(X)			\
872   ((unsigned) REGNO (X) >= FIRST_PSEUDO_REGISTER	\
873    || REGNO_OK_FOR_BASE_P (REGNO (X)))
874 
875 /* Nonzero if X is a hard reg that can be used as an index.  */
876 #define REG_OK_FOR_INDEX_P_STRICT(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
877 /* Nonzero if X is a hard reg that can be used as a base reg.  */
878 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
879 
880 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
881    that is a valid memory address for an instruction.
882    The MODE argument is the machine mode for the MEM expression
883    that wants to use this address.  */
884 /* The `ld' insn allows [reg],[reg+shimm],[reg+limm],[reg+reg],[limm]
885    but the `st' insn only allows [reg],[reg+shimm],[limm].
886    The only thing we can do is only allow the most strict case `st' and hope
887    other parts optimize out the restrictions for `ld'.  */
888 
889 #define RTX_OK_FOR_BASE_P(X, STRICT) \
890 (REG_P (X) \
891  && ((STRICT) ? REG_OK_FOR_BASE_P_STRICT (X) : REG_OK_FOR_BASE_P_NONSTRICT (X)))
892 
893 #define RTX_OK_FOR_INDEX_P(X, STRICT) \
894 (REG_P (X) \
895  && ((STRICT) ? REG_OK_FOR_INDEX_P_STRICT (X) : REG_OK_FOR_INDEX_P_NONSTRICT (X)))
896 
897 /* A C compound statement that attempts to replace X, which is an address
898    that needs reloading, with a valid memory address for an operand of
899    mode MODE.  WIN is a C statement label elsewhere in the code.
900 
901    We try to get a normal form
902    of the address.  That will allow inheritance of the address reloads.  */
903 
904 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)	\
905   do {									\
906     if (arc_legitimize_reload_address (&(X), (MODE), (OPNUM), (TYPE)))	\
907       goto WIN;								\
908   } while (0)
909 
910 /* Reading lp_count for anything but the lp instruction is very slow on the
911    ARC700.  */
912 #define DONT_REALLOC(REGNO,MODE) \
913   (TARGET_ARC700 && (REGNO) == 60)
914 
915 
916 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
917    return the mode to be used for the comparison.  */
918 /*extern machine_mode arc_select_cc_mode ();*/
919 #define SELECT_CC_MODE(OP, X, Y) \
920 arc_select_cc_mode (OP, X, Y)
921 
922 /* Return non-zero if SELECT_CC_MODE will never return MODE for a
923    floating point inequality comparison.  */
924 #define REVERSIBLE_CC_MODE(MODE) 1 /*???*/
925 
926 /* Costs.  */
927 
928 /* The cost of a branch insn.  */
929 /* ??? What's the right value here?  Branches are certainly more
930    expensive than reg->reg moves.  */
931 #define BRANCH_COST(speed_p, predictable_p) 2
932 
933 /* Scc sets the destination to 1 and then conditionally zeroes it.
934    Best case, ORed SCCs can be made into clear - condset - condset.
935    But it could also end up as five insns.  So say it costs four on
936    average.
937    These extra instructions - and the second comparison - will also be
938    an extra cost if the first comparison would have been decisive.
939    So get an average saving, with a probability of the first branch
940    beging decisive of p0, we want:
941    p0 * (branch_cost - 4) > (1 - p0) * 5
942    ??? We don't get to see that probability to evaluate, so we can
943    only wildly guess that it might be 50%.
944    ??? The compiler also lacks the notion of branch predictability.  */
945 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
946   (BRANCH_COST (optimize_function_for_speed_p (cfun), \
947 		false) > 9)
948 
949 /* Nonzero if access to memory by bytes is slow and undesirable.
950    For RISC chips, it means that access to memory by bytes is no
951    better than access by words when possible, so grab a whole word
952    and maybe make use of that.  */
953 #define SLOW_BYTE_ACCESS  0
954 
955 /* Define this macro if it is as good or better to call a constant
956    function address than to call an address kept in a register.  */
957 /* On the ARC, calling through registers is slow.  */
958 #define NO_FUNCTION_CSE 1
959 
960 /* Section selection.  */
961 /* WARNING: These section names also appear in dwarfout.c.  */
962 
963 #define TEXT_SECTION_ASM_OP	"\t.section\t.text"
964 #define DATA_SECTION_ASM_OP	"\t.section\t.data"
965 
966 #define BSS_SECTION_ASM_OP	"\t.section\t.bss"
967 #define SDATA_SECTION_ASM_OP	"\t.section\t.sdata"
968 #define SBSS_SECTION_ASM_OP	"\t.section\t.sbss"
969 
970 /* Expression whose value is a string, including spacing, containing the
971    assembler operation to identify the following data as initialization/termination
972    code. If not defined, GCC will assume such a section does not exist. */
973 #define INIT_SECTION_ASM_OP "\t.section\t.init"
974 #define FINI_SECTION_ASM_OP "\t.section\t.fini"
975 
976 /* Define this macro if jump tables (for tablejump insns) should be
977    output in the text section, along with the assembler instructions.
978    Otherwise, the readonly data section is used.
979    This macro is irrelevant if there is no separate readonly data section.  */
980 #define JUMP_TABLES_IN_TEXT_SECTION  (flag_pic || CASE_VECTOR_PC_RELATIVE)
981 
982 /* For DWARF.  Marginally different than default so output is "prettier"
983    (and consistent with above).  */
984 #define PUSHSECTION_FORMAT "\t%s %s\n"
985 
986 /* Tell crtstuff.c we're using ELF.  */
987 #define OBJECT_FORMAT_ELF
988 
989 /* PIC */
990 
991 /* The register number of the register used to address a table of static
992    data addresses in memory.  In some cases this register is defined by a
993    processor's ``application binary interface'' (ABI).  When this macro
994    is defined, RTL is generated for this register once, as with the stack
995    pointer and frame pointer registers.  If this macro is not defined, it
996    is up to the machine-dependent files to allocate such a register (if
997    necessary).  */
998 #define PIC_OFFSET_TABLE_REGNUM 26
999 
1000 /* Define this macro if the register defined by PIC_OFFSET_TABLE_REGNUM is
1001    clobbered by calls.  Do not define this macro if PIC_OFFSET_TABLE_REGNUM
1002    is not defined.  */
1003 /* This register is call-saved on the ARC.  */
1004 /*#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED*/
1005 
1006 /* A C expression that is nonzero if X is a legitimate immediate
1007    operand on the target machine when generating position independent code.
1008    You can assume that X satisfies CONSTANT_P, so you need not
1009    check this.  You can also assume `flag_pic' is true, so you need not
1010    check it either.  You need not define this macro if all constants
1011    (including SYMBOL_REF) can be immediate operands when generating
1012    position independent code.  */
1013 #define LEGITIMATE_PIC_OPERAND_P(X)  \
1014   (!arc_raw_symbolic_reference_mentioned_p ((X), true))
1015 
1016 /* PIC and small data don't mix on ARC because they use the same register.  */
1017 #define SDATA_BASE_REGNUM 26
1018 
1019 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
1020   (flag_pic \
1021    ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
1022    : DW_EH_PE_absptr)
1023 
1024 /* Control the assembler format that we output.  */
1025 
1026 /* A C string constant describing how to begin a comment in the target
1027    assembler language.  The compiler assumes that the comment will
1028    end at the end of the line.  */
1029 /* Gas needs this to be "#" in order to recognize line directives.  */
1030 #define ASM_COMMENT_START "#"
1031 
1032 /* Output to assembler file text saying following lines
1033    may contain character constants, extra white space, comments, etc.  */
1034 #undef ASM_APP_ON
1035 #define ASM_APP_ON ""
1036 
1037 /* Output to assembler file text saying following lines
1038    no longer contain unusual constructs.  */
1039 #undef ASM_APP_OFF
1040 #define ASM_APP_OFF ""
1041 
1042 /* Globalizing directive for a label.  */
1043 #define GLOBAL_ASM_OP "\t.global\t"
1044 
1045 /* This is how to output an assembler line defining a `char' constant.  */
1046 #define ASM_OUTPUT_CHAR(FILE, VALUE) \
1047 ( fprintf (FILE, "\t.byte\t"),			\
1048   output_addr_const (FILE, (VALUE)),		\
1049   fprintf (FILE, "\n"))
1050 
1051 /* This is how to output an assembler line defining a `short' constant.  */
1052 #define ASM_OUTPUT_SHORT(FILE, VALUE) \
1053 ( fprintf (FILE, "\t.hword\t"),			\
1054   output_addr_const (FILE, (VALUE)),		\
1055   fprintf (FILE, "\n"))
1056 
1057 /* This is how to output an assembler line defining an `int' constant.
1058    We also handle symbol output here.  Code addresses must be right shifted
1059    by 2 because that's how the jump instruction wants them.  */
1060 #define ASM_OUTPUT_INT(FILE, VALUE) \
1061 do {									\
1062   fprintf (FILE, "\t.word\t");						\
1063   if (GET_CODE (VALUE) == LABEL_REF)					\
1064     {									\
1065       fprintf (FILE, "%%st(@");						\
1066       output_addr_const (FILE, (VALUE));				\
1067       fprintf (FILE, ")");						\
1068     }									\
1069   else									\
1070     output_addr_const (FILE, (VALUE));					\
1071   fprintf (FILE, "\n");					                \
1072 } while (0)
1073 
1074 /* This is how to output an assembler line defining a `float' constant.  */
1075 #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
1076 {							\
1077   long t;						\
1078   char str[30];						\
1079   REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t);		\
1080   REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str);	\
1081   fprintf (FILE, "\t.word\t0x%lx %s %s\n",		\
1082 	   t, ASM_COMMENT_START, str);			\
1083 }
1084 
1085 /* This is how to output an assembler line defining a `double' constant.  */
1086 #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
1087 {							\
1088   long t[2];						\
1089   char str[30];						\
1090   REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t);		\
1091   REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str);	\
1092   fprintf (FILE, "\t.word\t0x%lx %s %s\n\t.word\t0x%lx\n", \
1093 	   t[0], ASM_COMMENT_START, str, t[1]);		\
1094 }
1095 
1096 /* This is how to output the definition of a user-level label named NAME,
1097    such as the label on a static function or variable NAME.  */
1098 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1099 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1100 
1101 #define ASM_NAME_P(NAME) ( NAME[0]=='*')
1102 
1103 /* This is how to output a reference to a user-level label named NAME.
1104    `assemble_name' uses this.  */
1105 /* We work around a dwarfout.c deficiency by watching for labels from it and
1106    not adding the '_' prefix.  There is a comment in
1107    dwarfout.c that says it should be using ASM_OUTPUT_INTERNAL_LABEL.  */
1108 #define ASM_OUTPUT_LABELREF(FILE, NAME1) \
1109 do {							\
1110   const char *NAME;					\
1111   NAME = (*targetm.strip_name_encoding)(NAME1);		\
1112   if ((NAME)[0] == '.' && (NAME)[1] == 'L')		\
1113     fprintf (FILE, "%s", NAME);				\
1114   else							\
1115     {							\
1116       if (!ASM_NAME_P (NAME1))				\
1117 	fprintf (FILE, "%s", user_label_prefix);	\
1118       fprintf (FILE, "%s", NAME);			\
1119     }							\
1120 } while (0)
1121 
1122 /* This is how to output a reference to a symbol_ref / label_ref as
1123    (part of) an operand.  To disambiguate from register names like
1124    a1 / a2 / status etc, symbols are preceded by '@'.  */
1125 #define ASM_OUTPUT_SYMBOL_REF(FILE,SYM) \
1126   ASM_OUTPUT_LABEL_REF ((FILE), XSTR ((SYM), 0))
1127 #define ASM_OUTPUT_LABEL_REF(FILE,STR)			\
1128   do							\
1129     {							\
1130       fputc ('@', file);				\
1131       assemble_name ((FILE), (STR));			\
1132     }							\
1133   while (0)
1134 
1135 /* Store in OUTPUT a string (made with alloca) containing
1136    an assembler-name for a local static variable named NAME.
1137    LABELNO is an integer which is different for each call.  */
1138 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1139 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),	\
1140   sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1141 
1142 /* The following macro defines the format used to output the second
1143    operand of the .type assembler directive.  Different svr4 assemblers
1144    expect various different forms for this operand.  The one given here
1145    is just a default.  You may need to override it in your machine-
1146    specific tm.h file (depending upon the particulars of your assembler).  */
1147 
1148 #undef  TYPE_OPERAND_FMT
1149 #define TYPE_OPERAND_FMT	"@%s"
1150 
1151 /*  A C string containing the appropriate assembler directive to
1152     specify the size of a symbol, without any arguments.  On systems
1153     that use ELF, the default (in `config/elfos.h') is `"\t.size\t"';
1154     on other systems, the default is not to define this macro.  */
1155 #undef SIZE_ASM_OP
1156 #define SIZE_ASM_OP "\t.size\t"
1157 
1158 /* Assembler pseudo-op to equate one value with another.  */
1159 /* ??? This is needed because dwarfout.c provides a default definition too
1160    late for defaults.h (which contains the default definition of ASM_OTPUT_DEF
1161    that we use).  */
1162 #ifdef SET_ASM_OP
1163 #undef SET_ASM_OP
1164 #endif
1165 #define SET_ASM_OP "\t.set\t"
1166 
1167 extern char rname29[], rname30[];
1168 extern char rname56[], rname57[], rname58[], rname59[];
1169 /* How to refer to registers in assembler output.
1170    This sequence is indexed by compiler's hard-register-number (see above).  */
1171 #define REGISTER_NAMES								\
1172 {  "r0",   "r1",   "r2",   "r3",       "r4",     "r5",     "r6",    "r7",	\
1173    "r8",   "r9",  "r10",  "r11",      "r12",    "r13",    "r14",   "r15",	\
1174   "r16",  "r17",  "r18",  "r19",      "r20",    "r21",    "r22",   "r23",	\
1175   "r24",  "r25",   "gp",   "fp",       "sp",  rname29,  rname30, "blink",	\
1176   "r32",  "r33",  "r34",  "r35",      "r36",    "r37",    "r38",   "r39",	\
1177    "d1",   "d1",   "d2",   "d2",      "r44",    "r45",    "r46",   "r47",	\
1178   "r48",  "r49",  "r50",  "r51",      "r52",    "r53",    "r54",   "r55",	\
1179   rname56,rname57,rname58,rname59,"lp_count",    "cc",   "limm",   "pcl",	\
1180   "vr0",  "vr1",  "vr2",  "vr3",      "vr4",    "vr5",    "vr6",   "vr7",       \
1181   "vr8",  "vr9", "vr10", "vr11",     "vr12",   "vr13",   "vr14",  "vr15",	\
1182  "vr16", "vr17", "vr18", "vr19",     "vr20",   "vr21",   "vr22",  "vr23",	\
1183  "vr24", "vr25", "vr26", "vr27",     "vr28",   "vr29",   "vr30",  "vr31",	\
1184  "vr32", "vr33", "vr34", "vr35",     "vr36",   "vr37",   "vr38",  "vr39",	\
1185  "vr40", "vr41", "vr42", "vr43",     "vr44",   "vr45",   "vr46",  "vr47",	\
1186  "vr48", "vr49", "vr50", "vr51",     "vr52",   "vr53",   "vr54",  "vr55",	\
1187  "vr56", "vr57", "vr58", "vr59",     "vr60",   "vr61",   "vr62",  "vr63",	\
1188   "dr0",  "dr1",  "dr2",  "dr3",      "dr4",    "dr5",    "dr6",   "dr7",	\
1189   "dr0",  "dr1",  "dr2",  "dr3",      "dr4",    "dr5",    "dr6",   "dr7",	\
1190   "arg", "frame" \
1191 }
1192 
1193 #define ADDITIONAL_REGISTER_NAMES		\
1194 {						\
1195   {"ilink",  29},				\
1196   {"r29",    29},				\
1197   {"r30",    30},				\
1198   {"r40",    40},				\
1199   {"r41",    41},				\
1200   {"r42",    42},				\
1201   {"r43",    43},				\
1202   {"r56",    56},				\
1203   {"r57",    57},				\
1204   {"r58",    58},				\
1205   {"r59",    59}				\
1206 }
1207 
1208 /* Entry to the insn conditionalizer.  */
1209 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
1210   arc_final_prescan_insn (INSN, OPVEC, NOPERANDS)
1211 
1212 /* A C expression which evaluates to true if CODE is a valid
1213    punctuation character for use in the `PRINT_OPERAND' macro.  */
1214 extern char arc_punct_chars[];
1215 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1216 arc_punct_chars[(unsigned char) (CHAR)]
1217 
1218 /* Print operand X (an rtx) in assembler syntax to file FILE.
1219    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1220    For `%' followed by punctuation, CODE is the punctuation and X is null.  */
1221 #define PRINT_OPERAND(FILE, X, CODE) \
1222 arc_print_operand (FILE, X, CODE)
1223 
1224 /* A C compound statement to output to stdio stream STREAM the
1225    assembler syntax for an instruction operand that is a memory
1226    reference whose address is ADDR.  ADDR is an RTL expression.
1227 
1228    On some machines, the syntax for a symbolic address depends on
1229    the section that the address refers to.  On these machines,
1230    define the macro `ENCODE_SECTION_INFO' to store the information
1231    into the `symbol_ref', and then check for it here.  */
1232 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1233 arc_print_operand_address (FILE, ADDR)
1234 
1235 /* This is how to output an element of a case-vector that is absolute.  */
1236 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1237 do {							\
1238   char label[30];					\
1239   ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE);	\
1240   fprintf (FILE, "\t.word ");				\
1241   assemble_name (FILE, label);				\
1242   fprintf (FILE, "\n");					\
1243 } while (0)
1244 
1245 /* This is how to output an element of a case-vector that is relative.  */
1246 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)	\
1247   do {								\
1248     char label[30];						\
1249     ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE);		\
1250     if (!TARGET_BI_BIH)						\
1251       {								\
1252 	switch (GET_MODE (BODY))				\
1253 	  {							\
1254 	  case E_QImode: fprintf (FILE, "\t.byte "); break;	\
1255 	  case E_HImode: fprintf (FILE, "\t.hword "); break;	\
1256 	  case E_SImode: fprintf (FILE, "\t.word "); break;	\
1257 	  default: gcc_unreachable ();				\
1258 	  }							\
1259 	assemble_name (FILE, label);				\
1260 	fprintf (FILE, "-");					\
1261 	ASM_GENERATE_INTERNAL_LABEL (label, "L", REL);		\
1262 	assemble_name (FILE, label);				\
1263 	fprintf (FILE, "\n");					\
1264       }								\
1265     else							\
1266       {								\
1267       switch (GET_MODE (BODY))					\
1268 	{							\
1269 	case E_SImode: fprintf (FILE, "\tb\t@"); break;		\
1270 	case E_HImode:						\
1271 	case E_QImode: fprintf (FILE, "\tb_s\t@"); break;	\
1272 	default: gcc_unreachable ();				\
1273 	}							\
1274       assemble_name (FILE, label);				\
1275       fprintf(FILE, "\n");					\
1276     }								\
1277   } while (0)
1278 
1279 /* Defined to also emit an .align in elfos.h.  We don't want that.  */
1280 #undef ASM_OUTPUT_CASE_LABEL
1281 
1282 /* ADDR_DIFF_VECs are in the text section and thus can affect the
1283    current alignment.  */
1284 #define ASM_OUTPUT_CASE_END(FILE, NUM, JUMPTABLE)       \
1285   do                                                    \
1286     {                                                   \
1287       if (GET_CODE (PATTERN (JUMPTABLE)) == ADDR_DIFF_VEC \
1288 	  && ((GET_MODE_SIZE (as_a <scalar_int_mode>	\
1289 			      (GET_MODE (PATTERN (JUMPTABLE)))) \
1290 	       * XVECLEN (PATTERN (JUMPTABLE), 1) + 1)	\
1291 	      & 2))					\
1292       arc_toggle_unalign ();				\
1293     }                                                   \
1294   while (0)
1295 
1296 #define JUMP_ALIGN(LABEL) (arc_size_opt_level < 2 ? 2 : 0)
1297 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) \
1298   (JUMP_ALIGN(LABEL) \
1299    ? JUMP_ALIGN(LABEL) \
1300    : GET_CODE (PATTERN (prev_active_insn (LABEL))) == ADDR_DIFF_VEC \
1301    ? 1 : 0)
1302 /* The desired alignment for the location counter at the beginning
1303    of a loop.  */
1304 /* On the ARC, align loops to 4 byte boundaries unless doing all-out size
1305    optimization.  */
1306 #define LOOP_ALIGN(X) 0
1307 
1308 #define LABEL_ALIGN(LABEL) (arc_label_align (LABEL))
1309 
1310 /* This is how to output an assembler line
1311    that says to advance the location counter
1312    to a multiple of 2**LOG bytes.  */
1313 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1314 do { \
1315   if ((LOG) != 0) fprintf (FILE, "\t.align %d\n", 1 << (LOG)); \
1316   if ((LOG)  > 1) \
1317     arc_clear_unalign (); \
1318 } while (0)
1319 
1320 /*  ASM_OUTPUT_ALIGNED_DECL_LOCAL (STREAM, DECL, NAME, SIZE, ALIGNMENT)
1321     Define this macro when you need to see the variable's decl in order to
1322     chose what to output.  */
1323 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(STREAM, DECL, NAME, SIZE, ALIGNMENT) \
1324   arc_asm_output_aligned_decl_local (STREAM, DECL, NAME, SIZE, ALIGNMENT, 0)
1325 
1326 /* Debugging information.  */
1327 
1328 /* Generate DBX and DWARF debugging information.  */
1329 #ifdef DBX_DEBUGGING_INFO
1330 #undef DBX_DEBUGGING_INFO
1331 #endif
1332 #define DBX_DEBUGGING_INFO
1333 
1334 #ifdef DWARF2_DEBUGGING_INFO
1335 #undef DWARF2_DEBUGGING_INFO
1336 #endif
1337 #define DWARF2_DEBUGGING_INFO
1338 
1339 /* Prefer STABS (for now).  */
1340 #undef PREFERRED_DEBUGGING_TYPE
1341 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1342 
1343 /* How to renumber registers for dbx and gdb.  */
1344 #define DBX_REGISTER_NUMBER(REGNO) \
1345   ((TARGET_MULMAC_32BY16_SET && (REGNO) >= 56 && (REGNO) <= 57) \
1346    ? ((REGNO) ^ !TARGET_BIG_ENDIAN) \
1347    : (TARGET_MUL64_SET && (REGNO) >= 57 && (REGNO) <= 59) \
1348    ? ((REGNO) == 57 \
1349       ? 58 /* MMED */ \
1350       : ((REGNO) & 1) ^ TARGET_BIG_ENDIAN \
1351       ? 59 /* MHI */ \
1352       : 57 + !!TARGET_MULMAC_32BY16_SET) /* MLO */ \
1353    : (REGNO))
1354 
1355 #define DWARF_FRAME_REGNUM(REG) (REG)
1356 
1357 #define DWARF_FRAME_RETURN_COLUMN 	DWARF_FRAME_REGNUM (31)
1358 
1359 #define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (Pmode, 31)
1360 
1361 /* Frame info.  */
1362 
1363 #define EH_RETURN_DATA_REGNO(N)  ((N) < 2 ? (N) : INVALID_REGNUM)
1364 
1365 #define EH_RETURN_STACKADJ_RTX   gen_rtx_REG (Pmode, 2)
1366 
1367 /* Turn off splitting of long stabs.  */
1368 #define DBX_CONTIN_LENGTH 0
1369 
1370 /* Miscellaneous.  */
1371 
1372 /* Specify the machine mode that this machine uses
1373    for the index in the tablejump instruction.
1374    If we have pc relative case vectors, we start the case vector shortening
1375    with QImode.  */
1376 #define CASE_VECTOR_MODE						\
1377   (TARGET_BI_BIH ? SImode						\
1378    : (optimize && (CASE_VECTOR_PC_RELATIVE || flag_pic)) ? QImode : Pmode)
1379 
1380 /* Define as C expression which evaluates to nonzero if the tablejump
1381    instruction expects the table to contain offsets from the address of the
1382    table.
1383    Do not define this if the table should contain absolute addresses.  */
1384 #define CASE_VECTOR_PC_RELATIVE					\
1385   (TARGET_CASE_VECTOR_PC_RELATIVE || TARGET_BI_BIH)
1386 
1387 #define CASE_VECTOR_SHORTEN_MODE(MIN_OFFSET, MAX_OFFSET, BODY)		\
1388   (TARGET_BI_BIH ?						\
1389    ((MIN_OFFSET) >= -512 && (MAX_OFFSET) <= 508 ? HImode : SImode)	\
1390    : ((MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 255				\
1391       ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, QImode)	\
1392       : (MIN_OFFSET) >= -128 && (MAX_OFFSET) <= 127			\
1393       ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, QImode)	\
1394       : (MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 65535			\
1395       ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, HImode)	\
1396       : (MIN_OFFSET) >= -32768 && (MAX_OFFSET) <= 32767			\
1397       ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, HImode)	\
1398       : SImode))
1399 
1400 #define ADDR_VEC_ALIGN(VEC_INSN)					\
1401   (TARGET_BI_BIH ? 0							\
1402    : exact_log2 (GET_MODE_SIZE (as_a <scalar_int_mode>			\
1403 				(GET_MODE (PATTERN (VEC_INSN))))))
1404 
1405 #define INSN_LENGTH_ALIGNMENT(INSN)		  \
1406   ((JUMP_TABLE_DATA_P (INSN)			  \
1407     && GET_CODE (PATTERN (INSN)) == ADDR_DIFF_VEC \
1408     && GET_MODE (PATTERN (INSN)) == QImode)	  \
1409    ? 0 : length_unit_log)
1410 
1411 /* Define if operations between registers always perform the operation
1412    on the full register even if a narrower mode is specified.  */
1413 #define WORD_REGISTER_OPERATIONS 1
1414 
1415 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1416    will either zero-extend or sign-extend.  The value of this macro should
1417    be the code that says which one of the two operations is implicitly
1418    done, NIL if none.  */
1419 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1420 
1421 
1422 /* Max number of bytes we can move from memory to memory
1423    in one reasonably fast instruction.  */
1424 #define MOVE_MAX 4
1425 
1426 /* Undo the effects of the movmem pattern presence on STORE_BY_PIECES_P .  */
1427 #define MOVE_RATIO(SPEED) ((SPEED) ? 15 : 3)
1428 
1429 /* Define this to be nonzero if shift instructions ignore all but the
1430    low-order few bits.
1431 */
1432 #define SHIFT_COUNT_TRUNCATED 1
1433 
1434 /* We assume that the store-condition-codes instructions store 0 for false
1435    and some other value for true.  This is the value stored for true.  */
1436 #define STORE_FLAG_VALUE 1
1437 
1438 /* Specify the machine mode that pointers have.
1439    After generation of rtl, the compiler makes no further distinction
1440    between pointers and any other objects of this machine mode.  */
1441 /* ARCompact has full 32-bit pointers.  */
1442 #define Pmode SImode
1443 
1444 /* A function address in a call instruction.  */
1445 #define FUNCTION_MODE SImode
1446 
1447 /* Define the information needed to generate branch and scc insns.  This is
1448    stored from the compare operation.  Note that we can't use "rtx" here
1449    since it hasn't been defined!  */
1450 extern struct rtx_def *arc_compare_op0, *arc_compare_op1;
1451 
1452 /* ARC function types.   */
1453 enum arc_function_type {
1454   /* No function should have the unknown type.  This value is used to
1455    indicate the that function type has not yet been computed.  */
1456   ARC_FUNCTION_UNKNOWN  = 0,
1457 
1458   /* The normal function type indicates that the function has the
1459    standard prologue and epilogue.  */
1460   ARC_FUNCTION_NORMAL  = 1 << 0,
1461   /* These are interrupt handlers.  The name corresponds to the register
1462      name that contains the return address.  */
1463   ARC_FUNCTION_ILINK1  = 1 << 1,
1464   ARC_FUNCTION_ILINK2  = 1 << 2,
1465   /* Fast interrupt is only available on ARCv2 processors.  */
1466   ARC_FUNCTION_FIRQ    = 1 << 3,
1467   /* The naked function type indicates that the function does not have
1468    prologue or epilogue, and that no stack frame is available.  */
1469   ARC_FUNCTION_NAKED   = 1 << 4
1470 };
1471 
1472 /* Check if a function is an interrupt function.  */
1473 #define ARC_INTERRUPT_P(TYPE)					\
1474   (((TYPE) & (ARC_FUNCTION_ILINK1 | ARC_FUNCTION_ILINK2		\
1475 	      | ARC_FUNCTION_FIRQ)) != 0)
1476 
1477 /* Check if a function is a fast interrupt function.  */
1478 #define ARC_FAST_INTERRUPT_P(TYPE) (((TYPE) & ARC_FUNCTION_FIRQ) != 0)
1479 
1480 /* Check if a function is normal, that is, has standard prologue and
1481    epilogue.  */
1482 #define ARC_NORMAL_P(TYPE) (((TYPE) & ARC_FUNCTION_NORMAL) != 0)
1483 
1484 /* Check if a function is naked.  */
1485 #define ARC_NAKED_P(TYPE) (((TYPE) & ARC_FUNCTION_NAKED) != 0)
1486 
1487 /* Called by crtstuff.c to make calls to function FUNCTION that are defined in
1488    SECTION_OP, and then to switch back to text section.  */
1489 #undef CRT_CALL_STATIC_FUNCTION
1490 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)		\
1491   asm (SECTION_OP "\n\t"					\
1492        "add r12,pcl,@" USER_LABEL_PREFIX #FUNC "@pcl\n\t"	\
1493        "jl  [r12]\n"						\
1494        TEXT_SECTION_ASM_OP);
1495 
1496 /* This macro expands to the name of the scratch register r12, used for
1497    temporary calculations according to the ABI.  */
1498 #define ARC_TEMP_SCRATCH_REG "r12"
1499 
1500 /* The C++ compiler must use one bit to indicate whether the function
1501    that will be called through a pointer-to-member-function is
1502    virtual.  Normally, we assume that the low-order bit of a function
1503    pointer must always be zero.  Then, by ensuring that the
1504    vtable_index is odd, we can distinguish which variant of the union
1505    is in use.  But, on some platforms function pointers can be odd,
1506    and so this doesn't work.  In that case, we use the low-order bit
1507    of the `delta' field, and shift the remainder of the `delta' field
1508    to the left. We needed to do this for A4 because the address was always
1509    shifted and thus could be odd.  */
1510 #define TARGET_PTRMEMFUNC_VBIT_LOCATION \
1511   (ptrmemfunc_vbit_in_pfn)
1512 
1513 #define INSN_SETS_ARE_DELAYED(X)		\
1514   (GET_CODE (X) == INSN				\
1515    && GET_CODE (PATTERN (X)) != SEQUENCE	\
1516    && GET_CODE (PATTERN (X)) != USE		\
1517    && GET_CODE (PATTERN (X)) != CLOBBER		\
1518    && (get_attr_type (X) == TYPE_CALL || get_attr_type (X) == TYPE_SFUNC))
1519 
1520 #define INSN_REFERENCES_ARE_DELAYED(insn)				\
1521   (INSN_SETS_ARE_DELAYED (insn))
1522 
1523 #define CALL_ATTR(X, NAME) \
1524   ((CALL_P (X) || NONJUMP_INSN_P (X)) \
1525    && GET_CODE (PATTERN (X)) != USE \
1526    && GET_CODE (PATTERN (X)) != CLOBBER \
1527    && get_attr_is_##NAME (X) == IS_##NAME##_YES) \
1528 
1529 #define REVERSE_CONDITION(CODE,MODE)				 \
1530   (((MODE) == CC_FP_GTmode || (MODE) == CC_FP_GEmode		 \
1531     || (MODE) == CC_FP_UNEQmode || (MODE) == CC_FP_ORDmode	 \
1532     || (MODE) == CC_FPXmode || (MODE) == CC_FPU_UNEQmode	 \
1533     || (MODE) == CC_FPUmode || (MODE) == CC_FPUEmode)		 \
1534    ? reverse_condition_maybe_unordered ((CODE))			 \
1535    : reverse_condition ((CODE)))
1536 
1537 #define ADJUST_INSN_LENGTH(X, LENGTH) \
1538   ((LENGTH) \
1539    = (GET_CODE (PATTERN (X)) == SEQUENCE \
1540       ? ((LENGTH) \
1541 	 + arc_adjust_insn_length ( \
1542              as_a <rtx_sequence *> (PATTERN (X))->insn (0), \
1543 	     get_attr_length (as_a <rtx_sequence *> (PATTERN (X))->insn (0)), \
1544 	     true)							\
1545 	 - get_attr_length (as_a <rtx_sequence *> (PATTERN (X))->insn (0)) \
1546 	 + arc_adjust_insn_length ( \
1547 	     as_a <rtx_sequence *> (PATTERN (X))->insn (1), \
1548 	     get_attr_length (as_a <rtx_sequence *> (PATTERN (X))->insn (1)), \
1549 	     true)							\
1550 	 - get_attr_length (as_a <rtx_sequence *> (PATTERN (X))->insn (1))) \
1551       : arc_adjust_insn_length ((X), (LENGTH), false)))
1552 
1553 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C,STR) ((C) == '`')
1554 
1555 #define INIT_EXPANDERS arc_init_expanders ()
1556 
1557 enum
1558 {
1559   ARC_LRA_PRIORITY_NONE, ARC_LRA_PRIORITY_NONCOMPACT, ARC_LRA_PRIORITY_COMPACT
1560 };
1561 
1562 /* The define_cond_exec construct is rather crude, as we can't have
1563    different ones with different conditions apply to different sets
1564    of instructions.  We can't use an attribute test inside the condition,
1565    because that would lead to infinite recursion as the attribute test
1566    needs to recognize the insn.  So, instead we have a clause for
1567    the pattern condition of all sfunc patterns which is only relevant for
1568    the predicated varaint.  */
1569 #define SFUNC_CHECK_PREDICABLE \
1570   (GET_CODE (PATTERN (insn)) != COND_EXEC || !flag_pic || !TARGET_MEDIUM_CALLS)
1571 
1572 /* MPYW feature macro.  Only valid for ARCHS and ARCEM cores.  */
1573 #define TARGET_MPYW     ((arc_mpy_option > 0) && TARGET_V2)
1574 /* Full ARCv2 multiplication feature macro.  */
1575 #define TARGET_MULTI    ((arc_mpy_option > 1) && TARGET_V2)
1576 /* General MPY feature macro.  */
1577 #define TARGET_MPY      ((TARGET_ARC700 && (!TARGET_NOMPY_SET)) || TARGET_MULTI)
1578 /* ARC700 MPY feature macro.  */
1579 #define TARGET_ARC700_MPY (TARGET_ARC700 && (!TARGET_NOMPY_SET))
1580 /* Any multiplication feature macro.  */
1581 #define TARGET_ANY_MPY						\
1582   (TARGET_MPY || TARGET_MUL64_SET || TARGET_MULMAC_32BY16_SET)
1583 /* PLUS_DMPY feature macro.  */
1584 #define TARGET_PLUS_DMPY  ((arc_mpy_option > 6) && TARGET_HS)
1585 /* PLUS_MACD feature macro.  */
1586 #define TARGET_PLUS_MACD  ((arc_mpy_option > 7) && TARGET_HS)
1587 /* PLUS_QMACW feature macro.  */
1588 #define TARGET_PLUS_QMACW ((arc_mpy_option > 8) && TARGET_HS)
1589 
1590 /* ARC600 and ARC601 feature macro.  */
1591 #define TARGET_ARC600_FAMILY (TARGET_ARC600 || TARGET_ARC601)
1592 /* ARC600, ARC601 and ARC700 feature macro.  */
1593 #define TARGET_ARCOMPACT_FAMILY				\
1594   (TARGET_ARC600 || TARGET_ARC601 || TARGET_ARC700)
1595 /* Loop count register can be read in very next instruction after has
1596    been written to by an ordinary instruction.  */
1597 #define TARGET_LP_WR_INTERLOCK (!TARGET_ARC600_FAMILY)
1598 
1599 /* FPU defines.  */
1600 /* Any FPU support.  */
1601 #define TARGET_HARD_FLOAT   ((arc_fpu_build & (FPU_SP | FPU_DP)) != 0)
1602 /* Single precision floating point support.  */
1603 #define TARGET_FP_SP_BASE   ((arc_fpu_build & FPU_SP) != 0)
1604 /* Double precision floating point support.  */
1605 #define TARGET_FP_DP_BASE   ((arc_fpu_build & FPU_DP) != 0)
1606 /* Single precision floating point support with fused operation.  */
1607 #define TARGET_FP_SP_FUSED  ((arc_fpu_build & FPU_SF) != 0)
1608 /* Double precision floating point support with fused operation.  */
1609 #define TARGET_FP_DP_FUSED  ((arc_fpu_build & FPU_DF) != 0)
1610 /* Single precision floating point conversion instruction support.  */
1611 #define TARGET_FP_SP_CONV   ((arc_fpu_build & FPU_SC) != 0)
1612 /* Double precision floating point conversion instruction support.  */
1613 #define TARGET_FP_DP_CONV   ((arc_fpu_build & FPU_DC) != 0)
1614 /* Single precision floating point SQRT/DIV instruction support.  */
1615 #define TARGET_FP_SP_SQRT   ((arc_fpu_build & FPU_SD) != 0)
1616 /* Double precision floating point SQRT/DIV instruction support.  */
1617 #define TARGET_FP_DP_SQRT   ((arc_fpu_build & FPU_DD) != 0)
1618 /* Double precision floating point assist instruction support.  */
1619 #define TARGET_FP_DP_AX     ((arc_fpu_build & FPX_DP) != 0)
1620 /* Custom FP instructions used by QuarkSE EM cpu.  */
1621 #define TARGET_FPX_QUARK    (TARGET_EM && TARGET_SPFP		\
1622 			     && (arc_fpu_build == FPX_QK))
1623 /* DBNZ support is available for ARCv2 core3 and newer cpus.  */
1624 #define TARGET_DBNZ (TARGET_V2 && (arc_tune >= ARC_TUNE_CORE_3))
1625 
1626 /* BI/BIH feature macro.  */
1627 #define TARGET_BI_BIH (TARGET_BRANCH_INDEX && TARGET_CODE_DENSITY)
1628 
1629 /* The default option for BI/BIH instructions.  */
1630 #define DEFAULT_BRANCH_INDEX 0
1631 
1632 #ifndef TARGET_LRA
1633 #define TARGET_LRA arc_lra_p()
1634 #endif
1635 
1636 #endif /* GCC_ARC_H */
1637