xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/config/alpha/alpha.h (revision c38e7cc395b1472a774ff828e46123de44c628e9)
1 /* Definitions of target machine for GNU compiler, for DEC Alpha.
2    Copyright (C) 1992-2015 Free Software Foundation, Inc.
3    Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 /* Target CPU builtins.  */
22 #define TARGET_CPU_CPP_BUILTINS()			\
23   do							\
24     {							\
25 	builtin_define ("__alpha");			\
26 	builtin_define ("__alpha__");			\
27 	builtin_assert ("cpu=alpha");			\
28 	builtin_assert ("machine=alpha");		\
29 	if (TARGET_CIX)					\
30 	  {						\
31 	    builtin_define ("__alpha_cix__");		\
32 	    builtin_assert ("cpu=cix");			\
33 	  }						\
34 	if (TARGET_FIX)					\
35 	  {						\
36 	    builtin_define ("__alpha_fix__");		\
37 	    builtin_assert ("cpu=fix");			\
38 	  }						\
39 	if (TARGET_BWX)					\
40 	  {						\
41 	    builtin_define ("__alpha_bwx__");		\
42 	    builtin_assert ("cpu=bwx");			\
43 	  }						\
44 	if (TARGET_MAX)					\
45 	  {						\
46 	    builtin_define ("__alpha_max__");		\
47 	    builtin_assert ("cpu=max");			\
48 	  }						\
49 	if (alpha_cpu == PROCESSOR_EV6)			\
50 	  {						\
51 	    builtin_define ("__alpha_ev6__");		\
52 	    builtin_assert ("cpu=ev6");			\
53 	  }						\
54 	else if (alpha_cpu == PROCESSOR_EV5)		\
55 	  {						\
56 	    builtin_define ("__alpha_ev5__");		\
57 	    builtin_assert ("cpu=ev5");			\
58 	  }						\
59 	else	/* Presumably ev4.  */			\
60 	  {						\
61 	    builtin_define ("__alpha_ev4__");		\
62 	    builtin_assert ("cpu=ev4");			\
63 	  }						\
64 	if (TARGET_IEEE || TARGET_IEEE_WITH_INEXACT)	\
65 	  builtin_define ("_IEEE_FP");			\
66 	if (TARGET_IEEE_WITH_INEXACT)			\
67 	  builtin_define ("_IEEE_FP_INEXACT");		\
68 	if (TARGET_LONG_DOUBLE_128)			\
69 	  builtin_define ("__LONG_DOUBLE_128__");	\
70 							\
71 	/* Macros dependent on the C dialect.  */	\
72 	SUBTARGET_LANGUAGE_CPP_BUILTINS();		\
73 } while (0)
74 
75 #ifndef SUBTARGET_LANGUAGE_CPP_BUILTINS
76 #define SUBTARGET_LANGUAGE_CPP_BUILTINS()		\
77   do							\
78     {							\
79       if (preprocessing_asm_p ())			\
80 	builtin_define_std ("LANGUAGE_ASSEMBLY");	\
81       else if (c_dialect_cxx ())			\
82 	{						\
83 	  builtin_define ("__LANGUAGE_C_PLUS_PLUS");	\
84 	  builtin_define ("__LANGUAGE_C_PLUS_PLUS__");	\
85 	}						\
86       else						\
87 	builtin_define_std ("LANGUAGE_C");		\
88       if (c_dialect_objc ())				\
89 	{						\
90 	  builtin_define ("__LANGUAGE_OBJECTIVE_C");	\
91 	  builtin_define ("__LANGUAGE_OBJECTIVE_C__");	\
92 	}						\
93     }							\
94   while (0)
95 #endif
96 
97 /* Run-time compilation parameters selecting different hardware subsets.  */
98 
99 /* Which processor to schedule for. The cpu attribute defines a list that
100    mirrors this list, so changes to alpha.md must be made at the same time.  */
101 
102 enum processor_type
103 {
104   PROCESSOR_EV4,			/* 2106[46]{a,} */
105   PROCESSOR_EV5,			/* 21164{a,pc,} */
106   PROCESSOR_EV6,			/* 21264 */
107   PROCESSOR_MAX
108 };
109 
110 extern enum processor_type alpha_cpu;
111 extern enum processor_type alpha_tune;
112 
113 enum alpha_trap_precision
114 {
115   ALPHA_TP_PROG,	/* No precision (default).  */
116   ALPHA_TP_FUNC,      	/* Trap contained within originating function.  */
117   ALPHA_TP_INSN		/* Instruction accuracy and code is resumption safe.  */
118 };
119 
120 enum alpha_fp_rounding_mode
121 {
122   ALPHA_FPRM_NORM,	/* Normal rounding mode.  */
123   ALPHA_FPRM_MINF,	/* Round towards minus-infinity.  */
124   ALPHA_FPRM_CHOP,	/* Chopped rounding mode (towards 0).  */
125   ALPHA_FPRM_DYN	/* Dynamic rounding mode.  */
126 };
127 
128 enum alpha_fp_trap_mode
129 {
130   ALPHA_FPTM_N,		/* Normal trap mode.  */
131   ALPHA_FPTM_U,		/* Underflow traps enabled.  */
132   ALPHA_FPTM_SU,	/* Software completion, w/underflow traps */
133   ALPHA_FPTM_SUI	/* Software completion, w/underflow & inexact traps */
134 };
135 
136 extern enum alpha_trap_precision alpha_tp;
137 extern enum alpha_fp_rounding_mode alpha_fprm;
138 extern enum alpha_fp_trap_mode alpha_fptm;
139 
140 /* Invert the easy way to make options work.  */
141 #define TARGET_FP	(!TARGET_SOFT_FP)
142 
143 /* These are for target os support and cannot be changed at runtime.  */
144 #define TARGET_ABI_OPEN_VMS	0
145 #define TARGET_ABI_OSF		(!TARGET_ABI_OPEN_VMS)
146 
147 #ifndef TARGET_CAN_FAULT_IN_PROLOGUE
148 #define TARGET_CAN_FAULT_IN_PROLOGUE 0
149 #endif
150 #ifndef TARGET_HAS_XFLOATING_LIBS
151 #define TARGET_HAS_XFLOATING_LIBS TARGET_LONG_DOUBLE_128
152 #endif
153 #ifndef TARGET_PROFILING_NEEDS_GP
154 #define TARGET_PROFILING_NEEDS_GP 0
155 #endif
156 #ifndef TARGET_FIXUP_EV5_PREFETCH
157 #define TARGET_FIXUP_EV5_PREFETCH 0
158 #endif
159 #ifndef HAVE_AS_TLS
160 #define HAVE_AS_TLS 0
161 #endif
162 
163 #define TARGET_DEFAULT MASK_FPREGS
164 
165 #ifndef TARGET_CPU_DEFAULT
166 #define TARGET_CPU_DEFAULT 0
167 #endif
168 
169 #ifndef TARGET_DEFAULT_EXPLICIT_RELOCS
170 #ifdef HAVE_AS_EXPLICIT_RELOCS
171 #define TARGET_DEFAULT_EXPLICIT_RELOCS MASK_EXPLICIT_RELOCS
172 #define TARGET_SUPPORT_ARCH 1
173 #else
174 #define TARGET_DEFAULT_EXPLICIT_RELOCS 0
175 #endif
176 #endif
177 
178 #ifndef TARGET_SUPPORT_ARCH
179 #define TARGET_SUPPORT_ARCH 0
180 #endif
181 
182 /* Support for a compile-time default CPU, et cetera.  The rules are:
183    --with-cpu is ignored if -mcpu is specified.
184    --with-tune is ignored if -mtune is specified.  */
185 #define OPTION_DEFAULT_SPECS \
186   {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
187   {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }
188 
189 
190 /* target machine storage layout */
191 
192 /* Define the size of `int'.  The default is the same as the word size.  */
193 #define INT_TYPE_SIZE 32
194 
195 /* Define the size of `long long'.  The default is the twice the word size.  */
196 #define LONG_LONG_TYPE_SIZE 64
197 
198 /* The two floating-point formats we support are S-floating, which is
199    4 bytes, and T-floating, which is 8 bytes.  `float' is S and `double'
200    and `long double' are T.  */
201 
202 #define FLOAT_TYPE_SIZE 32
203 #define DOUBLE_TYPE_SIZE 64
204 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
205 
206 /* Work around target_flags dependency in ada/targtyps.c.  */
207 #define WIDEST_HARDWARE_FP_SIZE 64
208 
209 #define	WCHAR_TYPE "unsigned int"
210 #define	WCHAR_TYPE_SIZE 32
211 
212 /* Define this macro if it is advisable to hold scalars in registers
213    in a wider mode than that declared by the program.  In such cases,
214    the value is constrained to be within the bounds of the declared
215    type, but kept valid in the wider mode.  The signedness of the
216    extension may differ from that of the type.
217 
218    For Alpha, we always store objects in a full register.  32-bit integers
219    are always sign-extended, but smaller objects retain their signedness.
220 
221    Note that small vector types can get mapped onto integer modes at the
222    whim of not appearing in alpha-modes.def.  We never promoted these
223    values before; don't do so now that we've trimmed the set of modes to
224    those actually implemented in the backend.  */
225 
226 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)			\
227   if (GET_MODE_CLASS (MODE) == MODE_INT				\
228       && (TYPE == NULL || TREE_CODE (TYPE) != VECTOR_TYPE)	\
229       && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)			\
230     {								\
231       if ((MODE) == SImode)					\
232 	(UNSIGNEDP) = 0;					\
233       (MODE) = DImode;						\
234     }
235 
236 /* Define this if most significant bit is lowest numbered
237    in instructions that operate on numbered bit-fields.
238 
239    There are no such instructions on the Alpha, but the documentation
240    is little endian.  */
241 #define BITS_BIG_ENDIAN 0
242 
243 /* Define this if most significant byte of a word is the lowest numbered.
244    This is false on the Alpha.  */
245 #define BYTES_BIG_ENDIAN 0
246 
247 /* Define this if most significant word of a multiword number is lowest
248    numbered.
249 
250    For Alpha we can decide arbitrarily since there are no machine instructions
251    for them.  Might as well be consistent with bytes.  */
252 #define WORDS_BIG_ENDIAN 0
253 
254 /* Width of a word, in units (bytes).  */
255 #define UNITS_PER_WORD 8
256 
257 /* Width in bits of a pointer.
258    See also the macro `Pmode' defined below.  */
259 #define POINTER_SIZE 64
260 
261 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
262 #define PARM_BOUNDARY 64
263 
264 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
265 #define STACK_BOUNDARY 128
266 
267 /* Allocation boundary (in *bits*) for the code of a function.  */
268 #define FUNCTION_BOUNDARY 32
269 
270 /* Alignment of field after `int : 0' in a structure.  */
271 #define EMPTY_FIELD_BOUNDARY 64
272 
273 /* Every structure's size must be a multiple of this.  */
274 #define STRUCTURE_SIZE_BOUNDARY 8
275 
276 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
277 #undef PCC_BITFILED_TYPE_MATTERS
278 #define PCC_BITFIELD_TYPE_MATTERS 1
279 
280 /* No data type wants to be aligned rounder than this.  */
281 #define BIGGEST_ALIGNMENT 128
282 
283 /* For atomic access to objects, must have at least 32-bit alignment
284    unless the machine has byte operations.  */
285 #define MINIMUM_ATOMIC_ALIGNMENT ((unsigned int) (TARGET_BWX ? 8 : 32))
286 
287 /* Align all constants and variables to at least a word boundary so
288    we can pick up pieces of them faster.  */
289 /* ??? Only if block-move stuff knows about different source/destination
290    alignment.  */
291 #if 0
292 #define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
293 #define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
294 #endif
295 
296 /* Set this nonzero if move instructions will actually fail to work
297    when given unaligned data.
298 
299    Since we get an error message when we do one, call them invalid.  */
300 
301 #define STRICT_ALIGNMENT 1
302 
303 /* Set this nonzero if unaligned move instructions are extremely slow.
304 
305    On the Alpha, they trap.  */
306 
307 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
308 
309 /* Standard register usage.  */
310 
311 /* Number of actual hardware registers.
312    The hardware registers are assigned numbers for the compiler
313    from 0 to just below FIRST_PSEUDO_REGISTER.
314    All registers that the compiler knows about must be given numbers,
315    even those that are not normally considered general registers.
316 
317    We define all 32 integer registers, even though $31 is always zero,
318    and all 32 floating-point registers, even though $f31 is also
319    always zero.  We do not bother defining the FP status register and
320    there are no other registers.
321 
322    Since $31 is always zero, we will use register number 31 as the
323    argument pointer.  It will never appear in the generated code
324    because we will always be eliminating it in favor of the stack
325    pointer or hardware frame pointer.
326 
327    Likewise, we use $f31 for the frame pointer, which will always
328    be eliminated in favor of the hardware frame pointer or the
329    stack pointer.  */
330 
331 #define FIRST_PSEUDO_REGISTER 64
332 
333 /* 1 for registers that have pervasive standard uses
334    and are not available for the register allocator.  */
335 
336 #define FIXED_REGISTERS  \
337  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
338   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
339   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
340   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
341 
342 /* 1 for registers not available across function calls.
343    These must include the FIXED_REGISTERS and also any
344    registers that can be used without being saved.
345    The latter must include the registers where values are returned
346    and the register where structure-value addresses are passed.
347    Aside from that, you can include as many other registers as you like.  */
348 #define CALL_USED_REGISTERS  \
349  {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
350   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
351   1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
352   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
353 
354 /* List the order in which to allocate registers.  Each register must be
355    listed once, even those in FIXED_REGISTERS.  */
356 
357 #define REG_ALLOC_ORDER { \
358    1, 2, 3, 4, 5, 6, 7, 8,	/* nonsaved integer registers */	\
359    22, 23, 24, 25, 28,		/* likewise */				\
360    0,				/* likewise, but return value */	\
361    21, 20, 19, 18, 17, 16,	/* likewise, but input args */		\
362    27,				/* likewise, but OSF procedure value */	\
363 									\
364    42, 43, 44, 45, 46, 47,	/* nonsaved floating-point registers */	\
365    54, 55, 56, 57, 58, 59,	/* likewise */				\
366    60, 61, 62,			/* likewise */				\
367    32, 33,			/* likewise, but return values */	\
368    53, 52, 51, 50, 49, 48,	/* likewise, but input args */		\
369 									\
370    9, 10, 11, 12, 13, 14,	/* saved integer registers */		\
371    26,				/* return address */			\
372    15,				/* hard frame pointer */		\
373 									\
374    34, 35, 36, 37, 38, 39,	/* saved floating-point registers */	\
375    40, 41,			/* likewise */				\
376 									\
377    29, 30, 31, 63		/* gp, sp, ap, sfp */			\
378 }
379 
380 /* Return number of consecutive hard regs needed starting at reg REGNO
381    to hold something of mode MODE.
382    This is ordinarily the length in words of a value of mode MODE
383    but can be less for certain modes in special long registers.  */
384 
385 #define HARD_REGNO_NREGS(REGNO, MODE)   \
386   ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
387 
388 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
389    On Alpha, the integer registers can hold any mode.  The floating-point
390    registers can hold 64-bit integers as well, but not smaller values.  */
391 
392 #define HARD_REGNO_MODE_OK(REGNO, MODE) 				\
393   (IN_RANGE ((REGNO), 32, 62)						\
394    ? (MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode		\
395      || (MODE) == SCmode || (MODE) == DCmode				\
396    : 1)
397 
398 /* A C expression that is nonzero if a value of mode
399    MODE1 is accessible in mode MODE2 without copying.
400 
401    This asymmetric test is true when MODE1 could be put
402    in an FP register but MODE2 could not.  */
403 
404 #define MODES_TIEABLE_P(MODE1, MODE2) 				\
405   (HARD_REGNO_MODE_OK (32, (MODE1))				\
406    ? HARD_REGNO_MODE_OK (32, (MODE2))				\
407    : 1)
408 
409 /* Specify the registers used for certain standard purposes.
410    The values of these macros are register numbers.  */
411 
412 /* Alpha pc isn't overloaded on a register that the compiler knows about.  */
413 /* #define PC_REGNUM  */
414 
415 /* Register to use for pushing function arguments.  */
416 #define STACK_POINTER_REGNUM 30
417 
418 /* Base register for access to local variables of the function.  */
419 #define HARD_FRAME_POINTER_REGNUM 15
420 
421 /* Base register for access to arguments of the function.  */
422 #define ARG_POINTER_REGNUM 31
423 
424 /* Base register for access to local variables of function.  */
425 #define FRAME_POINTER_REGNUM 63
426 
427 /* Register in which static-chain is passed to a function.
428 
429    For the Alpha, this is based on an example; the calling sequence
430    doesn't seem to specify this.  */
431 #define STATIC_CHAIN_REGNUM 1
432 
433 /* The register number of the register used to address a table of
434    static data addresses in memory.  */
435 #define PIC_OFFSET_TABLE_REGNUM 29
436 
437 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM'
438    is clobbered by calls.  */
439 /* ??? It is and it isn't.  It's required to be valid for a given
440    function when the function returns.  It isn't clobbered by
441    current_file functions.  Moreover, we do not expose the ldgp
442    until after reload, so we're probably safe.  */
443 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
444 
445 /* Define the classes of registers for register constraints in the
446    machine description.  Also define ranges of constants.
447 
448    One of the classes must always be named ALL_REGS and include all hard regs.
449    If there is more than one class, another class must be named NO_REGS
450    and contain no registers.
451 
452    The name GENERAL_REGS must be the name of a class (or an alias for
453    another name such as ALL_REGS).  This is the class of registers
454    that is allowed by "g" or "r" in a register constraint.
455    Also, registers outside this class are allocated only when
456    instructions express preferences for them.
457 
458    The classes must be numbered in nondecreasing order; that is,
459    a larger-numbered class must never be contained completely
460    in a smaller-numbered class.
461 
462    For any two classes, it is very desirable that there be another
463    class that represents their union.  */
464 
465 enum reg_class {
466   NO_REGS, R0_REG, R24_REG, R25_REG, R27_REG,
467   GENERAL_REGS, FLOAT_REGS, ALL_REGS,
468   LIM_REG_CLASSES
469 };
470 
471 #define N_REG_CLASSES (int) LIM_REG_CLASSES
472 
473 /* Give names of register classes as strings for dump file.  */
474 
475 #define REG_CLASS_NAMES					\
476  {"NO_REGS", "R0_REG", "R24_REG", "R25_REG", "R27_REG",	\
477   "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
478 
479 /* Define which registers fit in which classes.
480    This is an initializer for a vector of HARD_REG_SET
481    of length N_REG_CLASSES.  */
482 
483 #define REG_CLASS_CONTENTS				\
484 { {0x00000000, 0x00000000},	/* NO_REGS */		\
485   {0x00000001, 0x00000000},	/* R0_REG */		\
486   {0x01000000, 0x00000000},	/* R24_REG */		\
487   {0x02000000, 0x00000000},	/* R25_REG */		\
488   {0x08000000, 0x00000000},	/* R27_REG */		\
489   {0xffffffff, 0x80000000},	/* GENERAL_REGS */	\
490   {0x00000000, 0x7fffffff},	/* FLOAT_REGS */	\
491   {0xffffffff, 0xffffffff} }
492 
493 /* The same information, inverted:
494    Return the class number of the smallest class containing
495    reg number REGNO.  This could be a conditional expression
496    or could index an array.  */
497 
498 #define REGNO_REG_CLASS(REGNO)			\
499  ((REGNO) == 0 ? R0_REG				\
500   : (REGNO) == 24 ? R24_REG			\
501   : (REGNO) == 25 ? R25_REG			\
502   : (REGNO) == 27 ? R27_REG			\
503   : IN_RANGE ((REGNO), 32, 62) ? FLOAT_REGS	\
504   : GENERAL_REGS)
505 
506 /* The class value for index registers, and the one for base regs.  */
507 #define INDEX_REG_CLASS NO_REGS
508 #define BASE_REG_CLASS GENERAL_REGS
509 
510 /* Given an rtx X being reloaded into a reg required to be
511    in class CLASS, return the class of reg to actually use.
512    In general this is just CLASS; but on some machines
513    in some cases it is preferable to use a more restrictive class.  */
514 
515 #define PREFERRED_RELOAD_CLASS  alpha_preferred_reload_class
516 
517 /* If we are copying between general and FP registers, we need a memory
518    location unless the FIX extension is available.  */
519 
520 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
521  (! TARGET_FIX && (((CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS) \
522                    || ((CLASS2) == FLOAT_REGS && (CLASS1) != FLOAT_REGS)))
523 
524 /* Specify the mode to be used for memory when a secondary memory
525    location is needed.  If MODE is floating-point, use it.  Otherwise,
526    widen to a word like the default.  This is needed because we always
527    store integers in FP registers in quadword format.  This whole
528    area is very tricky! */
529 #define SECONDARY_MEMORY_NEEDED_MODE(MODE)		\
530   (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE)		\
531    : GET_MODE_SIZE (MODE) >= 4 ? (MODE)			\
532    : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
533 
534 /* Return the class of registers that cannot change mode from FROM to TO.  */
535 
536 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)		\
537   (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)			\
538    ? reg_classes_intersect_p (FLOAT_REGS, CLASS) : 0)
539 
540 /* Define the cost of moving between registers of various classes.  Moving
541    between FLOAT_REGS and anything else except float regs is expensive.
542    In fact, we make it quite expensive because we really don't want to
543    do these moves unless it is clearly worth it.  Optimizations may
544    reduce the impact of not being able to allocate a pseudo to a
545    hard register.  */
546 
547 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2)		\
548   (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS)	? 2	\
549    : TARGET_FIX ? ((CLASS1) == FLOAT_REGS ? 6 : 8)		\
550    : 4+2*alpha_memory_latency)
551 
552 /* A C expressions returning the cost of moving data of MODE from a register to
553    or from memory.
554 
555    On the Alpha, bump this up a bit.  */
556 
557 extern int alpha_memory_latency;
558 #define MEMORY_MOVE_COST(MODE,CLASS,IN)  (2*alpha_memory_latency)
559 
560 /* Provide the cost of a branch.  Exact meaning under development.  */
561 #define BRANCH_COST(speed_p, predictable_p) 5
562 
563 /* Stack layout; function entry, exit and calling.  */
564 
565 /* Define this if pushing a word on the stack
566    makes the stack pointer a smaller address.  */
567 #define STACK_GROWS_DOWNWARD
568 
569 /* Define this to nonzero if the nominal address of the stack frame
570    is at the high-address end of the local variables;
571    that is, each additional local variable allocated
572    goes at a more negative offset in the frame.  */
573 /* #define FRAME_GROWS_DOWNWARD 0 */
574 
575 /* Offset within stack frame to start allocating local variables at.
576    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
577    first local allocated.  Otherwise, it is the offset to the BEGINNING
578    of the first local allocated.  */
579 
580 #define STARTING_FRAME_OFFSET 0
581 
582 /* If we generate an insn to push BYTES bytes,
583    this says how many the stack pointer really advances by.
584    On Alpha, don't define this because there are no push insns.  */
585 /*  #define PUSH_ROUNDING(BYTES) */
586 
587 /* Define this to be nonzero if stack checking is built into the ABI.  */
588 #define STACK_CHECK_BUILTIN 1
589 
590 /* Define this if the maximum size of all the outgoing args is to be
591    accumulated and pushed during the prologue.  The amount can be
592    found in the variable crtl->outgoing_args_size.  */
593 #define ACCUMULATE_OUTGOING_ARGS 1
594 
595 /* Offset of first parameter from the argument pointer register value.  */
596 
597 #define FIRST_PARM_OFFSET(FNDECL) 0
598 
599 /* Definitions for register eliminations.
600 
601    We have two registers that can be eliminated on the Alpha.  First, the
602    frame pointer register can often be eliminated in favor of the stack
603    pointer register.  Secondly, the argument pointer register can always be
604    eliminated; it is replaced with either the stack or frame pointer.  */
605 
606 /* This is an array of structures.  Each structure initializes one pair
607    of eliminable registers.  The "from" register number is given first,
608    followed by "to".  Eliminations of the same "from" register are listed
609    in order of preference.  */
610 
611 #define ELIMINABLE_REGS				     \
612 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},	     \
613  { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},   \
614  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},	     \
615  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
616 
617 /* Round up to a multiple of 16 bytes.  */
618 #define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
619 
620 /* Define the offset between two registers, one to be eliminated, and the other
621    its replacement, at the start of a routine.  */
622 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
623   ((OFFSET) = alpha_initial_elimination_offset(FROM, TO))
624 
625 /* Define this if stack space is still allocated for a parameter passed
626    in a register.  */
627 /* #define REG_PARM_STACK_SPACE */
628 
629 /* Define how to find the value returned by a function.
630    VALTYPE is the data type of the value (as a tree).
631    If the precise function being called is known, FUNC is its FUNCTION_DECL;
632    otherwise, FUNC is 0.
633 
634    On Alpha the value is found in $0 for integer functions and
635    $f0 for floating-point functions.  */
636 
637 #define FUNCTION_VALUE(VALTYPE, FUNC) \
638   function_value (VALTYPE, FUNC, VOIDmode)
639 
640 /* Define how to find the value returned by a library function
641    assuming the value has mode MODE.  */
642 
643 #define LIBCALL_VALUE(MODE) \
644   function_value (NULL, NULL, MODE)
645 
646 /* 1 if N is a possible register number for a function value
647    as seen by the caller.  */
648 
649 #define FUNCTION_VALUE_REGNO_P(N)  \
650   ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
651 
652 /* 1 if N is a possible register number for function argument passing.
653    On Alpha, these are $16-$21 and $f16-$f21.  */
654 
655 #define FUNCTION_ARG_REGNO_P(N) \
656   (IN_RANGE ((N), 16, 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
657 
658 /* Define a data type for recording info about an argument list
659    during the scan of that argument list.  This data type should
660    hold all necessary information about the function itself
661    and about the args processed so far, enough to enable macros
662    such as FUNCTION_ARG to determine where the next arg should go.
663 
664    On Alpha, this is a single integer, which is a number of words
665    of arguments scanned so far.
666    Thus 6 or more means all following args should go on the stack.  */
667 
668 #define CUMULATIVE_ARGS int
669 
670 /* Initialize a variable CUM of type CUMULATIVE_ARGS
671    for a call to a function whose data type is FNTYPE.
672    For a library call, FNTYPE is 0.  */
673 
674 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
675   (CUM) = 0
676 
677 /* Define intermediate macro to compute the size (in registers) of an argument
678    for the Alpha.  */
679 
680 #define ALPHA_ARG_SIZE(MODE, TYPE, NAMED)				\
681   ((MODE) == TFmode || (MODE) == TCmode ? 1				\
682    : (((MODE) == BLKmode ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
683       + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
684 
685 /* Make (or fake) .linkage entry for function call.
686    IS_LOCAL is 0 if name is used in call, 1 if name is used in definition.  */
687 
688 /* This macro defines the start of an assembly comment.  */
689 
690 #define ASM_COMMENT_START " #"
691 
692 /* This macro produces the initial definition of a function.  */
693 
694 #undef ASM_DECLARE_FUNCTION_NAME
695 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
696   alpha_start_function(FILE,NAME,DECL);
697 
698 /* This macro closes up a function definition for the assembler.  */
699 
700 #undef ASM_DECLARE_FUNCTION_SIZE
701 #define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
702   alpha_end_function(FILE,NAME,DECL)
703 
704 /* Output any profiling code before the prologue.  */
705 
706 #define PROFILE_BEFORE_PROLOGUE 1
707 
708 /* Never use profile counters.  */
709 
710 #define NO_PROFILE_COUNTERS 1
711 
712 /* Output assembler code to FILE to increment profiler label # LABELNO
713    for profiling a function entry.  Under OSF/1, profiling is enabled
714    by simply passing -pg to the assembler and linker.  */
715 
716 #define FUNCTION_PROFILER(FILE, LABELNO)
717 
718 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
719    the stack pointer does not matter.  The value is tested only in
720    functions that have frame pointers.
721    No definition is equivalent to always zero.  */
722 
723 #define EXIT_IGNORE_STACK 1
724 
725 /* Define registers used by the epilogue and return instruction.  */
726 
727 #define EPILOGUE_USES(REGNO)	((REGNO) == 26)
728 
729 /* Length in units of the trampoline for entering a nested function.  */
730 
731 #define TRAMPOLINE_SIZE    32
732 
733 /* The alignment of a trampoline, in bits.  */
734 
735 #define TRAMPOLINE_ALIGNMENT  64
736 
737 /* A C expression whose value is RTL representing the value of the return
738    address for the frame COUNT steps up from the current frame.
739    FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
740    the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined.  */
741 
742 #define RETURN_ADDR_RTX  alpha_return_addr
743 
744 /* Provide a definition of DWARF_FRAME_REGNUM here so that fallback unwinders
745    can use DWARF_ALT_FRAME_RETURN_COLUMN defined below.  This is just the same
746    as the default definition in dwarf2out.c.  */
747 #undef DWARF_FRAME_REGNUM
748 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
749 
750 /* Before the prologue, RA lives in $26.  */
751 #define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (Pmode, 26)
752 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (26)
753 #define DWARF_ALT_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (64)
754 #define DWARF_ZERO_REG 31
755 
756 /* Describe how we implement __builtin_eh_return.  */
757 #define EH_RETURN_DATA_REGNO(N)	((N) < 4 ? (N) + 16 : INVALID_REGNUM)
758 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 28)
759 #define EH_RETURN_HANDLER_RTX \
760   gen_rtx_MEM (Pmode, plus_constant (Pmode, stack_pointer_rtx, \
761 				     crtl->outgoing_args_size))
762 
763 /* Addressing modes, and classification of registers for them.  */
764 
765 /* Macros to check register numbers against specific register classes.  */
766 
767 /* These assume that REGNO is a hard or pseudo reg number.
768    They give nonzero only if REGNO is a hard reg of the suitable class
769    or a pseudo reg currently allocated to a suitable hard reg.
770    Since they use reg_renumber, they are safe only once reg_renumber
771    has been allocated, which happens in reginfo.c during register
772    allocation.  */
773 
774 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
775 #define REGNO_OK_FOR_BASE_P(REGNO) \
776 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32  \
777  || (REGNO) == 63 || reg_renumber[REGNO] == 63)
778 
779 /* Maximum number of registers that can appear in a valid memory address.  */
780 #define MAX_REGS_PER_ADDRESS 1
781 
782 /* Recognize any constant value that is a valid address.  For the Alpha,
783    there are only constants none since we want to use LDA to load any
784    symbolic addresses into registers.  */
785 
786 #define CONSTANT_ADDRESS_P(X)   \
787   (CONST_INT_P (X)		\
788    && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
789 
790 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
791    and check its validity for a certain class.
792    We have two alternate definitions for each of them.
793    The usual definition accepts all pseudo regs; the other rejects
794    them unless they have been allocated suitable hard regs.
795    The symbol REG_OK_STRICT causes the latter definition to be used.
796 
797    Most source files want to accept pseudo regs in the hope that
798    they will get allocated to the class that the insn wants them to be in.
799    Source files for reload pass need to be strict.
800    After reload, it makes no difference, since pseudo regs have
801    been eliminated by then.  */
802 
803 /* Nonzero if X is a hard reg that can be used as an index
804    or if it is a pseudo reg.  */
805 #define REG_OK_FOR_INDEX_P(X) 0
806 
807 /* Nonzero if X is a hard reg that can be used as a base reg
808    or if it is a pseudo reg.  */
809 #define NONSTRICT_REG_OK_FOR_BASE_P(X)  \
810   (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
811 
812 /* ??? Nonzero if X is the frame pointer, or some virtual register
813    that may eliminate to the frame pointer.  These will be allowed to
814    have offsets greater than 32K.  This is done because register
815    elimination offsets will change the hi/lo split, and if we split
816    before reload, we will require additional instructions.  */
817 #define NONSTRICT_REG_OK_FP_BASE_P(X)		\
818   (REGNO (X) == 31 || REGNO (X) == 63		\
819    || (REGNO (X) >= FIRST_PSEUDO_REGISTER	\
820        && REGNO (X) < LAST_VIRTUAL_POINTER_REGISTER))
821 
822 /* Nonzero if X is a hard reg that can be used as a base reg.  */
823 #define STRICT_REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
824 
825 #ifdef REG_OK_STRICT
826 #define REG_OK_FOR_BASE_P(X)	STRICT_REG_OK_FOR_BASE_P (X)
827 #else
828 #define REG_OK_FOR_BASE_P(X)	NONSTRICT_REG_OK_FOR_BASE_P (X)
829 #endif
830 
831 /* Try a machine-dependent way of reloading an illegitimate address
832    operand.  If we find one, push the reload and jump to WIN.  This
833    macro is used in only one place: `find_reloads_address' in reload.c.  */
834 
835 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN)		     \
836 do {									     \
837   rtx new_x = alpha_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
838   if (new_x)								     \
839     {									     \
840       X = new_x;							     \
841       goto WIN;								     \
842     }									     \
843 } while (0)
844 
845 
846 /* Specify the machine mode that this machine uses
847    for the index in the tablejump instruction.  */
848 #define CASE_VECTOR_MODE SImode
849 
850 /* Define as C expression which evaluates to nonzero if the tablejump
851    instruction expects the table to contain offsets from the address of the
852    table.
853 
854    Do not define this if the table should contain absolute addresses.
855    On the Alpha, the table is really GP-relative, not relative to the PC
856    of the table, but we pretend that it is PC-relative; this should be OK,
857    but we should try to find some better way sometime.  */
858 #define CASE_VECTOR_PC_RELATIVE 1
859 
860 /* Define this as 1 if `char' should by default be signed; else as 0.  */
861 #define DEFAULT_SIGNED_CHAR 1
862 
863 /* Max number of bytes we can move to or from memory
864    in one reasonably fast instruction.  */
865 
866 #define MOVE_MAX 8
867 
868 /* If a memory-to-memory move would take MOVE_RATIO or more simple
869    move-instruction pairs, we will do a movmem or libcall instead.
870 
871    Without byte/word accesses, we want no more than four instructions;
872    with, several single byte accesses are better.  */
873 
874 #define MOVE_RATIO(speed)  (TARGET_BWX ? 7 : 2)
875 
876 /* Largest number of bytes of an object that can be placed in a register.
877    On the Alpha we have plenty of registers, so use TImode.  */
878 #define MAX_FIXED_MODE_SIZE	GET_MODE_BITSIZE (TImode)
879 
880 /* Nonzero if access to memory by bytes is no faster than for words.
881    Also nonzero if doing byte operations (specifically shifts) in registers
882    is undesirable.
883 
884    On the Alpha, we want to not use the byte operation and instead use
885    masking operations to access fields; these will save instructions.  */
886 
887 #define SLOW_BYTE_ACCESS	1
888 
889 /* Define if operations between registers always perform the operation
890    on the full register even if a narrower mode is specified.  */
891 #define WORD_REGISTER_OPERATIONS
892 
893 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
894    will either zero-extend or sign-extend.  The value of this macro should
895    be the code that says which one of the two operations is implicitly
896    done, UNKNOWN if none.  */
897 #define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
898 
899 /* Define if loading short immediate values into registers sign extends.  */
900 #define SHORT_IMMEDIATES_SIGN_EXTEND
901 
902 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
903    is done just by pretending it is already truncated.  */
904 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
905 
906 /* The CIX ctlz and cttz instructions return 64 for zero.  */
907 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)  ((VALUE) = 64, \
908   TARGET_CIX ? 1 : 0)
909 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)  ((VALUE) = 64, \
910   TARGET_CIX ? 1 : 0)
911 
912 /* Define the value returned by a floating-point comparison instruction.  */
913 
914 #define FLOAT_STORE_FLAG_VALUE(MODE) \
915   REAL_VALUE_ATOF ((TARGET_FLOAT_VAX ? "0.5" : "2.0"), (MODE))
916 
917 /* Specify the machine mode that pointers have.
918    After generation of rtl, the compiler makes no further distinction
919    between pointers and any other objects of this machine mode.  */
920 #define Pmode DImode
921 
922 /* Mode of a function address in a call instruction (for indexing purposes).  */
923 
924 #define FUNCTION_MODE Pmode
925 
926 /* Define this if addresses of constant functions
927    shouldn't be put through pseudo regs where they can be cse'd.
928    Desirable on machines where ordinary constants are expensive
929    but a CALL with constant address is cheap.
930 
931    We define this on the Alpha so that gen_call and gen_call_value
932    get to see the SYMBOL_REF (for the hint field of the jsr).  It will
933    then copy it into a register, thus actually letting the address be
934    cse'ed.  */
935 
936 #define NO_FUNCTION_CSE
937 
938 /* Define this to be nonzero if shift instructions ignore all but the low-order
939    few bits.  */
940 #define SHIFT_COUNT_TRUNCATED 1
941 
942 /* Control the assembler format that we output.  */
943 
944 /* Output to assembler file text saying following lines
945    may contain character constants, extra white space, comments, etc.  */
946 #define ASM_APP_ON (TARGET_EXPLICIT_RELOCS ? "\t.set\tmacro\n" : "")
947 
948 /* Output to assembler file text saying following lines
949    no longer contain unusual constructs.  */
950 #define ASM_APP_OFF (TARGET_EXPLICIT_RELOCS ? "\t.set\tnomacro\n" : "")
951 
952 #define TEXT_SECTION_ASM_OP "\t.text"
953 
954 /* Output before writable data.  */
955 
956 #define DATA_SECTION_ASM_OP "\t.data"
957 
958 /* How to refer to registers in assembler output.
959    This sequence is indexed by compiler's hard-register-number (see above).  */
960 
961 #define REGISTER_NAMES						\
962 {"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8",		\
963  "$9", "$10", "$11", "$12", "$13", "$14", "$15",		\
964  "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23",	\
965  "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP",		\
966  "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8",	\
967  "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",		\
968  "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
969  "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
970 
971 /* Strip name encoding when emitting labels.  */
972 
973 #define ASM_OUTPUT_LABELREF(STREAM, NAME)	\
974 do {						\
975   const char *name_ = NAME;			\
976   if (*name_ == '@' || *name_ == '%')		\
977     name_ += 2;					\
978   if (*name_ == '*')				\
979     name_++;					\
980   else						\
981     fputs (user_label_prefix, STREAM);		\
982   fputs (name_, STREAM);			\
983 } while (0)
984 
985 /* Globalizing directive for a label.  */
986 #define GLOBAL_ASM_OP "\t.globl "
987 
988 /* Use dollar signs rather than periods in special g++ assembler names.  */
989 
990 #undef NO_DOLLAR_IN_LABEL
991 
992 /* This is how to store into the string LABEL
993    the symbol_ref name of an internal numbered label where
994    PREFIX is the class of label and NUM is the number within the class.
995    This is suitable for output with `assemble_name'.  */
996 
997 #undef ASM_GENERATE_INTERNAL_LABEL
998 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
999   sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
1000 
1001 /* This is how to output an element of a case-vector that is relative.  */
1002 
1003 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1004   fprintf (FILE, "\t.gprel32 $L%d\n", (VALUE))
1005 
1006 
1007 /* Print operand X (an rtx) in assembler syntax to file FILE.
1008    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1009    For `%' followed by punctuation, CODE is the punctuation and X is null.  */
1010 
1011 #define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)
1012 
1013 /* Determine which codes are valid without a following integer.  These must
1014    not be alphabetic.
1015 
1016    ~    Generates the name of the current function.
1017 
1018    /	Generates the instruction suffix.  The TRAP_SUFFIX and ROUND_SUFFIX
1019 	attributes are examined to determine what is appropriate.
1020 
1021    ,    Generates single precision suffix for floating point
1022 	instructions (s for IEEE, f for VAX)
1023 
1024    -	Generates double precision suffix for floating point
1025 	instructions (t for IEEE, g for VAX)
1026    */
1027 
1028 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1029   ((CODE) == '/' || (CODE) == ',' || (CODE) == '-' || (CODE) == '~' \
1030    || (CODE) == '#' || (CODE) == '*' || (CODE) == '&')
1031 
1032 /* Print a memory address as an operand to reference that memory location.  */
1033 
1034 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1035   print_operand_address((FILE), (ADDR))
1036 
1037 /* If we use NM, pass -g to it so it only lists globals.  */
1038 #define NM_FLAGS "-pg"
1039 
1040 /* Definitions for debugging.  */
1041 
1042 /* Correct the offset of automatic variables and arguments.  Note that
1043    the Alpha debug format wants all automatic variables and arguments
1044    to be in terms of two different offsets from the virtual frame pointer,
1045    which is the stack pointer before any adjustment in the function.
1046    The offset for the argument pointer is fixed for the native compiler,
1047    it is either zero (for the no arguments case) or large enough to hold
1048    all argument registers.
1049    The offset for the auto pointer is the fourth argument to the .frame
1050    directive (local_offset).
1051    To stay compatible with the native tools we use the same offsets
1052    from the virtual frame pointer and adjust the debugger arg/auto offsets
1053    accordingly. These debugger offsets are set up in output_prolog.  */
1054 
1055 extern long alpha_arg_offset;
1056 extern long alpha_auto_offset;
1057 #define DEBUGGER_AUTO_OFFSET(X) \
1058   ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
1059 #define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
1060 
1061 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME)			\
1062   alpha_output_filename (STREAM, NAME)
1063 
1064 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)	\
1065   ( fputs (".comm ", (FILE)),				\
1066     assemble_name ((FILE), (NAME)),			\
1067     fprintf ((FILE), ",%u\n", (int)(ROUNDED)))
1068 
1069 
1070 /* By default, turn on GDB extensions.  */
1071 #define DEFAULT_GDB_EXTENSIONS 1
1072 
1073 /* The system headers under Alpha systems are generally C++-aware.  */
1074 #define NO_IMPLICIT_EXTERN_C
1075