xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/combine.c (revision e6c7e151de239c49d2e38720a061ed9d1fa99309)
1 /* Optimize by combining instructions for GNU compiler.
2    Copyright (C) 1987-2017 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21    Portable Optimizer, but redone to work on our list-structured
22    representation for RTL instead of their string representation.
23 
24    The LOG_LINKS of each insn identify the most recent assignment
25    to each REG used in the insn.  It is a list of previous insns,
26    each of which contains a SET for a REG that is used in this insn
27    and not used or set in between.  LOG_LINKs never cross basic blocks.
28    They were set up by the preceding pass (lifetime analysis).
29 
30    We try to combine each pair of insns joined by a logical link.
31    We also try to combine triplets of insns A, B and C when C has
32    a link back to B and B has a link back to A.  Likewise for a
33    small number of quadruplets of insns A, B, C and D for which
34    there's high likelihood of success.
35 
36    LOG_LINKS does not have links for use of the CC0.  They don't
37    need to, because the insn that sets the CC0 is always immediately
38    before the insn that tests it.  So we always regard a branch
39    insn as having a logical link to the preceding insn.  The same is true
40    for an insn explicitly using CC0.
41 
42    We check (with use_crosses_set_p) to avoid combining in such a way
43    as to move a computation to a place where its value would be different.
44 
45    Combination is done by mathematically substituting the previous
46    insn(s) values for the regs they set into the expressions in
47    the later insns that refer to these regs.  If the result is a valid insn
48    for our target machine, according to the machine description,
49    we install it, delete the earlier insns, and update the data flow
50    information (LOG_LINKS and REG_NOTES) for what we did.
51 
52    There are a few exceptions where the dataflow information isn't
53    completely updated (however this is only a local issue since it is
54    regenerated before the next pass that uses it):
55 
56    - reg_live_length is not updated
57    - reg_n_refs is not adjusted in the rare case when a register is
58      no longer required in a computation
59    - there are extremely rare cases (see distribute_notes) when a
60      REG_DEAD note is lost
61    - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62      removed because there is no way to know which register it was
63      linking
64 
65    To simplify substitution, we combine only when the earlier insn(s)
66    consist of only a single assignment.  To simplify updating afterward,
67    we never combine when a subroutine call appears in the middle.
68 
69    Since we do not represent assignments to CC0 explicitly except when that
70    is all an insn does, there is no LOG_LINKS entry in an insn that uses
71    the condition code for the insn that set the condition code.
72    Fortunately, these two insns must be consecutive.
73    Therefore, every JUMP_INSN is taken to have an implicit logical link
74    to the preceding insn.  This is not quite right, since non-jumps can
75    also use the condition code; but in practice such insns would not
76    combine anyway.  */
77 
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move.  */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "params.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
107 
108 /* Number of attempts to combine instructions in this function.  */
109 
110 static int combine_attempts;
111 
112 /* Number of attempts that got as far as substitution in this function.  */
113 
114 static int combine_merges;
115 
116 /* Number of instructions combined with added SETs in this function.  */
117 
118 static int combine_extras;
119 
120 /* Number of instructions combined in this function.  */
121 
122 static int combine_successes;
123 
124 /* Totals over entire compilation.  */
125 
126 static int total_attempts, total_merges, total_extras, total_successes;
127 
128 /* combine_instructions may try to replace the right hand side of the
129    second instruction with the value of an associated REG_EQUAL note
130    before throwing it at try_combine.  That is problematic when there
131    is a REG_DEAD note for a register used in the old right hand side
132    and can cause distribute_notes to do wrong things.  This is the
133    second instruction if it has been so modified, null otherwise.  */
134 
135 static rtx_insn *i2mod;
136 
137 /* When I2MOD is nonnull, this is a copy of the old right hand side.  */
138 
139 static rtx i2mod_old_rhs;
140 
141 /* When I2MOD is nonnull, this is a copy of the new right hand side.  */
142 
143 static rtx i2mod_new_rhs;
144 
145 struct reg_stat_type {
146   /* Record last point of death of (hard or pseudo) register n.  */
147   rtx_insn			*last_death;
148 
149   /* Record last point of modification of (hard or pseudo) register n.  */
150   rtx_insn			*last_set;
151 
152   /* The next group of fields allows the recording of the last value assigned
153      to (hard or pseudo) register n.  We use this information to see if an
154      operation being processed is redundant given a prior operation performed
155      on the register.  For example, an `and' with a constant is redundant if
156      all the zero bits are already known to be turned off.
157 
158      We use an approach similar to that used by cse, but change it in the
159      following ways:
160 
161      (1) We do not want to reinitialize at each label.
162      (2) It is useful, but not critical, to know the actual value assigned
163 	 to a register.  Often just its form is helpful.
164 
165      Therefore, we maintain the following fields:
166 
167      last_set_value		the last value assigned
168      last_set_label		records the value of label_tick when the
169 				register was assigned
170      last_set_table_tick	records the value of label_tick when a
171 				value using the register is assigned
172      last_set_invalid		set to nonzero when it is not valid
173 				to use the value of this register in some
174 				register's value
175 
176      To understand the usage of these tables, it is important to understand
177      the distinction between the value in last_set_value being valid and
178      the register being validly contained in some other expression in the
179      table.
180 
181      (The next two parameters are out of date).
182 
183      reg_stat[i].last_set_value is valid if it is nonzero, and either
184      reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
185 
186      Register I may validly appear in any expression returned for the value
187      of another register if reg_n_sets[i] is 1.  It may also appear in the
188      value for register J if reg_stat[j].last_set_invalid is zero, or
189      reg_stat[i].last_set_label < reg_stat[j].last_set_label.
190 
191      If an expression is found in the table containing a register which may
192      not validly appear in an expression, the register is replaced by
193      something that won't match, (clobber (const_int 0)).  */
194 
195   /* Record last value assigned to (hard or pseudo) register n.  */
196 
197   rtx				last_set_value;
198 
199   /* Record the value of label_tick when an expression involving register n
200      is placed in last_set_value.  */
201 
202   int				last_set_table_tick;
203 
204   /* Record the value of label_tick when the value for register n is placed in
205      last_set_value.  */
206 
207   int				last_set_label;
208 
209   /* These fields are maintained in parallel with last_set_value and are
210      used to store the mode in which the register was last set, the bits
211      that were known to be zero when it was last set, and the number of
212      sign bits copies it was known to have when it was last set.  */
213 
214   unsigned HOST_WIDE_INT	last_set_nonzero_bits;
215   char				last_set_sign_bit_copies;
216   ENUM_BITFIELD(machine_mode)	last_set_mode : 8;
217 
218   /* Set nonzero if references to register n in expressions should not be
219      used.  last_set_invalid is set nonzero when this register is being
220      assigned to and last_set_table_tick == label_tick.  */
221 
222   char				last_set_invalid;
223 
224   /* Some registers that are set more than once and used in more than one
225      basic block are nevertheless always set in similar ways.  For example,
226      a QImode register may be loaded from memory in two places on a machine
227      where byte loads zero extend.
228 
229      We record in the following fields if a register has some leading bits
230      that are always equal to the sign bit, and what we know about the
231      nonzero bits of a register, specifically which bits are known to be
232      zero.
233 
234      If an entry is zero, it means that we don't know anything special.  */
235 
236   unsigned char			sign_bit_copies;
237 
238   unsigned HOST_WIDE_INT	nonzero_bits;
239 
240   /* Record the value of the label_tick when the last truncation
241      happened.  The field truncated_to_mode is only valid if
242      truncation_label == label_tick.  */
243 
244   int				truncation_label;
245 
246   /* Record the last truncation seen for this register.  If truncation
247      is not a nop to this mode we might be able to save an explicit
248      truncation if we know that value already contains a truncated
249      value.  */
250 
251   ENUM_BITFIELD(machine_mode)	truncated_to_mode : 8;
252 };
253 
254 
255 static vec<reg_stat_type> reg_stat;
256 
257 /* One plus the highest pseudo for which we track REG_N_SETS.
258    regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
259    but during combine_split_insns new pseudos can be created.  As we don't have
260    updated DF information in that case, it is hard to initialize the array
261    after growing.  The combiner only cares about REG_N_SETS (regno) == 1,
262    so instead of growing the arrays, just assume all newly created pseudos
263    during combine might be set multiple times.  */
264 
265 static unsigned int reg_n_sets_max;
266 
267 /* Record the luid of the last insn that invalidated memory
268    (anything that writes memory, and subroutine calls, but not pushes).  */
269 
270 static int mem_last_set;
271 
272 /* Record the luid of the last CALL_INSN
273    so we can tell whether a potential combination crosses any calls.  */
274 
275 static int last_call_luid;
276 
277 /* When `subst' is called, this is the insn that is being modified
278    (by combining in a previous insn).  The PATTERN of this insn
279    is still the old pattern partially modified and it should not be
280    looked at, but this may be used to examine the successors of the insn
281    to judge whether a simplification is valid.  */
282 
283 static rtx_insn *subst_insn;
284 
285 /* This is the lowest LUID that `subst' is currently dealing with.
286    get_last_value will not return a value if the register was set at or
287    after this LUID.  If not for this mechanism, we could get confused if
288    I2 or I1 in try_combine were an insn that used the old value of a register
289    to obtain a new value.  In that case, we might erroneously get the
290    new value of the register when we wanted the old one.  */
291 
292 static int subst_low_luid;
293 
294 /* This contains any hard registers that are used in newpat; reg_dead_at_p
295    must consider all these registers to be always live.  */
296 
297 static HARD_REG_SET newpat_used_regs;
298 
299 /* This is an insn to which a LOG_LINKS entry has been added.  If this
300    insn is the earlier than I2 or I3, combine should rescan starting at
301    that location.  */
302 
303 static rtx_insn *added_links_insn;
304 
305 /* Basic block in which we are performing combines.  */
306 static basic_block this_basic_block;
307 static bool optimize_this_for_speed_p;
308 
309 
310 /* Length of the currently allocated uid_insn_cost array.  */
311 
312 static int max_uid_known;
313 
314 /* The following array records the insn_rtx_cost for every insn
315    in the instruction stream.  */
316 
317 static int *uid_insn_cost;
318 
319 /* The following array records the LOG_LINKS for every insn in the
320    instruction stream as struct insn_link pointers.  */
321 
322 struct insn_link {
323   rtx_insn *insn;
324   unsigned int regno;
325   struct insn_link *next;
326 };
327 
328 static struct insn_link **uid_log_links;
329 
330 static inline int
331 insn_uid_check (const_rtx insn)
332 {
333   int uid = INSN_UID (insn);
334   gcc_checking_assert (uid <= max_uid_known);
335   return uid;
336 }
337 
338 #define INSN_COST(INSN)		(uid_insn_cost[insn_uid_check (INSN)])
339 #define LOG_LINKS(INSN)		(uid_log_links[insn_uid_check (INSN)])
340 
341 #define FOR_EACH_LOG_LINK(L, INSN)				\
342   for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
343 
344 /* Links for LOG_LINKS are allocated from this obstack.  */
345 
346 static struct obstack insn_link_obstack;
347 
348 /* Allocate a link.  */
349 
350 static inline struct insn_link *
351 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
352 {
353   struct insn_link *l
354     = (struct insn_link *) obstack_alloc (&insn_link_obstack,
355 					  sizeof (struct insn_link));
356   l->insn = insn;
357   l->regno = regno;
358   l->next = next;
359   return l;
360 }
361 
362 /* Incremented for each basic block.  */
363 
364 static int label_tick;
365 
366 /* Reset to label_tick for each extended basic block in scanning order.  */
367 
368 static int label_tick_ebb_start;
369 
370 /* Mode used to compute significance in reg_stat[].nonzero_bits.  It is the
371    largest integer mode that can fit in HOST_BITS_PER_WIDE_INT.  */
372 
373 static machine_mode nonzero_bits_mode;
374 
375 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
376    be safely used.  It is zero while computing them and after combine has
377    completed.  This former test prevents propagating values based on
378    previously set values, which can be incorrect if a variable is modified
379    in a loop.  */
380 
381 static int nonzero_sign_valid;
382 
383 
384 /* Record one modification to rtl structure
385    to be undone by storing old_contents into *where.  */
386 
387 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
388 
389 struct undo
390 {
391   struct undo *next;
392   enum undo_kind kind;
393   union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
394   union { rtx *r; int *i; struct insn_link **l; } where;
395 };
396 
397 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
398    num_undo says how many are currently recorded.
399 
400    other_insn is nonzero if we have modified some other insn in the process
401    of working on subst_insn.  It must be verified too.  */
402 
403 struct undobuf
404 {
405   struct undo *undos;
406   struct undo *frees;
407   rtx_insn *other_insn;
408 };
409 
410 static struct undobuf undobuf;
411 
412 /* Number of times the pseudo being substituted for
413    was found and replaced.  */
414 
415 static int n_occurrences;
416 
417 static rtx reg_nonzero_bits_for_combine (const_rtx, machine_mode, const_rtx,
418 					 machine_mode,
419 					 unsigned HOST_WIDE_INT,
420 					 unsigned HOST_WIDE_INT *);
421 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, machine_mode, const_rtx,
422 						machine_mode,
423 						unsigned int, unsigned int *);
424 static void do_SUBST (rtx *, rtx);
425 static void do_SUBST_INT (int *, int);
426 static void init_reg_last (void);
427 static void setup_incoming_promotions (rtx_insn *);
428 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
429 static int cant_combine_insn_p (rtx_insn *);
430 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
431 			  rtx_insn *, rtx_insn *, rtx *, rtx *);
432 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
433 static int contains_muldiv (rtx);
434 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
435 			      int *, rtx_insn *);
436 static void undo_all (void);
437 static void undo_commit (void);
438 static rtx *find_split_point (rtx *, rtx_insn *, bool);
439 static rtx subst (rtx, rtx, rtx, int, int, int);
440 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
441 static rtx simplify_if_then_else (rtx);
442 static rtx simplify_set (rtx);
443 static rtx simplify_logical (rtx);
444 static rtx expand_compound_operation (rtx);
445 static const_rtx expand_field_assignment (const_rtx);
446 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
447 			    rtx, unsigned HOST_WIDE_INT, int, int, int);
448 static rtx extract_left_shift (rtx, int);
449 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
450 			      unsigned HOST_WIDE_INT *);
451 static rtx canon_reg_for_combine (rtx, rtx);
452 static rtx force_to_mode (rtx, machine_mode,
453 			  unsigned HOST_WIDE_INT, int);
454 static rtx if_then_else_cond (rtx, rtx *, rtx *);
455 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
456 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
457 static rtx make_field_assignment (rtx);
458 static rtx apply_distributive_law (rtx);
459 static rtx distribute_and_simplify_rtx (rtx, int);
460 static rtx simplify_and_const_int_1 (machine_mode, rtx,
461 				     unsigned HOST_WIDE_INT);
462 static rtx simplify_and_const_int (rtx, machine_mode, rtx,
463 				   unsigned HOST_WIDE_INT);
464 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
465 			    HOST_WIDE_INT, machine_mode, int *);
466 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
467 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
468 				 int);
469 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
470 static rtx gen_lowpart_for_combine (machine_mode, rtx);
471 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
472 					     rtx, rtx *);
473 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
474 static void update_table_tick (rtx);
475 static void record_value_for_reg (rtx, rtx_insn *, rtx);
476 static void check_promoted_subreg (rtx_insn *, rtx);
477 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
478 static void record_dead_and_set_regs (rtx_insn *);
479 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
480 static rtx get_last_value (const_rtx);
481 static int use_crosses_set_p (const_rtx, int);
482 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
483 static int reg_dead_at_p (rtx, rtx_insn *);
484 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
485 static int reg_bitfield_target_p (rtx, rtx);
486 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
487 static void distribute_links (struct insn_link *);
488 static void mark_used_regs_combine (rtx);
489 static void record_promoted_value (rtx_insn *, rtx);
490 static bool unmentioned_reg_p (rtx, rtx);
491 static void record_truncated_values (rtx *, void *);
492 static bool reg_truncated_to_mode (machine_mode, const_rtx);
493 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
494 
495 
496 /* It is not safe to use ordinary gen_lowpart in combine.
497    See comments in gen_lowpart_for_combine.  */
498 #undef RTL_HOOKS_GEN_LOWPART
499 #define RTL_HOOKS_GEN_LOWPART              gen_lowpart_for_combine
500 
501 /* Our implementation of gen_lowpart never emits a new pseudo.  */
502 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
503 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT      gen_lowpart_for_combine
504 
505 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
506 #define RTL_HOOKS_REG_NONZERO_REG_BITS     reg_nonzero_bits_for_combine
507 
508 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
509 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES  reg_num_sign_bit_copies_for_combine
510 
511 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
512 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE    reg_truncated_to_mode
513 
514 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
515 
516 
517 /* Convenience wrapper for the canonicalize_comparison target hook.
518    Target hooks cannot use enum rtx_code.  */
519 static inline void
520 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
521 				bool op0_preserve_value)
522 {
523   int code_int = (int)*code;
524   targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
525   *code = (enum rtx_code)code_int;
526 }
527 
528 /* Try to split PATTERN found in INSN.  This returns NULL_RTX if
529    PATTERN can not be split.  Otherwise, it returns an insn sequence.
530    This is a wrapper around split_insns which ensures that the
531    reg_stat vector is made larger if the splitter creates a new
532    register.  */
533 
534 static rtx_insn *
535 combine_split_insns (rtx pattern, rtx_insn *insn)
536 {
537   rtx_insn *ret;
538   unsigned int nregs;
539 
540   ret = split_insns (pattern, insn);
541   nregs = max_reg_num ();
542   if (nregs > reg_stat.length ())
543     reg_stat.safe_grow_cleared (nregs);
544   return ret;
545 }
546 
547 /* This is used by find_single_use to locate an rtx in LOC that
548    contains exactly one use of DEST, which is typically either a REG
549    or CC0.  It returns a pointer to the innermost rtx expression
550    containing DEST.  Appearances of DEST that are being used to
551    totally replace it are not counted.  */
552 
553 static rtx *
554 find_single_use_1 (rtx dest, rtx *loc)
555 {
556   rtx x = *loc;
557   enum rtx_code code = GET_CODE (x);
558   rtx *result = NULL;
559   rtx *this_result;
560   int i;
561   const char *fmt;
562 
563   switch (code)
564     {
565     case CONST:
566     case LABEL_REF:
567     case SYMBOL_REF:
568     CASE_CONST_ANY:
569     case CLOBBER:
570       return 0;
571 
572     case SET:
573       /* If the destination is anything other than CC0, PC, a REG or a SUBREG
574 	 of a REG that occupies all of the REG, the insn uses DEST if
575 	 it is mentioned in the destination or the source.  Otherwise, we
576 	 need just check the source.  */
577       if (GET_CODE (SET_DEST (x)) != CC0
578 	  && GET_CODE (SET_DEST (x)) != PC
579 	  && !REG_P (SET_DEST (x))
580 	  && ! (GET_CODE (SET_DEST (x)) == SUBREG
581 		&& REG_P (SUBREG_REG (SET_DEST (x)))
582 		&& (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
583 		      + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
584 		    == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
585 			 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
586 	break;
587 
588       return find_single_use_1 (dest, &SET_SRC (x));
589 
590     case MEM:
591     case SUBREG:
592       return find_single_use_1 (dest, &XEXP (x, 0));
593 
594     default:
595       break;
596     }
597 
598   /* If it wasn't one of the common cases above, check each expression and
599      vector of this code.  Look for a unique usage of DEST.  */
600 
601   fmt = GET_RTX_FORMAT (code);
602   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
603     {
604       if (fmt[i] == 'e')
605 	{
606 	  if (dest == XEXP (x, i)
607 	      || (REG_P (dest) && REG_P (XEXP (x, i))
608 		  && REGNO (dest) == REGNO (XEXP (x, i))))
609 	    this_result = loc;
610 	  else
611 	    this_result = find_single_use_1 (dest, &XEXP (x, i));
612 
613 	  if (result == NULL)
614 	    result = this_result;
615 	  else if (this_result)
616 	    /* Duplicate usage.  */
617 	    return NULL;
618 	}
619       else if (fmt[i] == 'E')
620 	{
621 	  int j;
622 
623 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
624 	    {
625 	      if (XVECEXP (x, i, j) == dest
626 		  || (REG_P (dest)
627 		      && REG_P (XVECEXP (x, i, j))
628 		      && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
629 		this_result = loc;
630 	      else
631 		this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
632 
633 	      if (result == NULL)
634 		result = this_result;
635 	      else if (this_result)
636 		return NULL;
637 	    }
638 	}
639     }
640 
641   return result;
642 }
643 
644 
645 /* See if DEST, produced in INSN, is used only a single time in the
646    sequel.  If so, return a pointer to the innermost rtx expression in which
647    it is used.
648 
649    If PLOC is nonzero, *PLOC is set to the insn containing the single use.
650 
651    If DEST is cc0_rtx, we look only at the next insn.  In that case, we don't
652    care about REG_DEAD notes or LOG_LINKS.
653 
654    Otherwise, we find the single use by finding an insn that has a
655    LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST.  If DEST is
656    only referenced once in that insn, we know that it must be the first
657    and last insn referencing DEST.  */
658 
659 static rtx *
660 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
661 {
662   basic_block bb;
663   rtx_insn *next;
664   rtx *result;
665   struct insn_link *link;
666 
667   if (dest == cc0_rtx)
668     {
669       next = NEXT_INSN (insn);
670       if (next == 0
671 	  || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
672 	return 0;
673 
674       result = find_single_use_1 (dest, &PATTERN (next));
675       if (result && ploc)
676 	*ploc = next;
677       return result;
678     }
679 
680   if (!REG_P (dest))
681     return 0;
682 
683   bb = BLOCK_FOR_INSN (insn);
684   for (next = NEXT_INSN (insn);
685        next && BLOCK_FOR_INSN (next) == bb;
686        next = NEXT_INSN (next))
687     if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
688       {
689 	FOR_EACH_LOG_LINK (link, next)
690 	  if (link->insn == insn && link->regno == REGNO (dest))
691 	    break;
692 
693 	if (link)
694 	  {
695 	    result = find_single_use_1 (dest, &PATTERN (next));
696 	    if (ploc)
697 	      *ploc = next;
698 	    return result;
699 	  }
700       }
701 
702   return 0;
703 }
704 
705 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
706    insn.  The substitution can be undone by undo_all.  If INTO is already
707    set to NEWVAL, do not record this change.  Because computing NEWVAL might
708    also call SUBST, we have to compute it before we put anything into
709    the undo table.  */
710 
711 static void
712 do_SUBST (rtx *into, rtx newval)
713 {
714   struct undo *buf;
715   rtx oldval = *into;
716 
717   if (oldval == newval)
718     return;
719 
720   /* We'd like to catch as many invalid transformations here as
721      possible.  Unfortunately, there are way too many mode changes
722      that are perfectly valid, so we'd waste too much effort for
723      little gain doing the checks here.  Focus on catching invalid
724      transformations involving integer constants.  */
725   if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
726       && CONST_INT_P (newval))
727     {
728       /* Sanity check that we're replacing oldval with a CONST_INT
729 	 that is a valid sign-extension for the original mode.  */
730       gcc_assert (INTVAL (newval)
731 		  == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
732 
733       /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
734 	 CONST_INT is not valid, because after the replacement, the
735 	 original mode would be gone.  Unfortunately, we can't tell
736 	 when do_SUBST is called to replace the operand thereof, so we
737 	 perform this test on oldval instead, checking whether an
738 	 invalid replacement took place before we got here.  */
739       gcc_assert (!(GET_CODE (oldval) == SUBREG
740 		    && CONST_INT_P (SUBREG_REG (oldval))));
741       gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
742 		    && CONST_INT_P (XEXP (oldval, 0))));
743     }
744 
745   if (undobuf.frees)
746     buf = undobuf.frees, undobuf.frees = buf->next;
747   else
748     buf = XNEW (struct undo);
749 
750   buf->kind = UNDO_RTX;
751   buf->where.r = into;
752   buf->old_contents.r = oldval;
753   *into = newval;
754 
755   buf->next = undobuf.undos, undobuf.undos = buf;
756 }
757 
758 #define SUBST(INTO, NEWVAL)	do_SUBST (&(INTO), (NEWVAL))
759 
760 /* Similar to SUBST, but NEWVAL is an int expression.  Note that substitution
761    for the value of a HOST_WIDE_INT value (including CONST_INT) is
762    not safe.  */
763 
764 static void
765 do_SUBST_INT (int *into, int newval)
766 {
767   struct undo *buf;
768   int oldval = *into;
769 
770   if (oldval == newval)
771     return;
772 
773   if (undobuf.frees)
774     buf = undobuf.frees, undobuf.frees = buf->next;
775   else
776     buf = XNEW (struct undo);
777 
778   buf->kind = UNDO_INT;
779   buf->where.i = into;
780   buf->old_contents.i = oldval;
781   *into = newval;
782 
783   buf->next = undobuf.undos, undobuf.undos = buf;
784 }
785 
786 #define SUBST_INT(INTO, NEWVAL)  do_SUBST_INT (&(INTO), (NEWVAL))
787 
788 /* Similar to SUBST, but just substitute the mode.  This is used when
789    changing the mode of a pseudo-register, so that any other
790    references to the entry in the regno_reg_rtx array will change as
791    well.  */
792 
793 static void
794 do_SUBST_MODE (rtx *into, machine_mode newval)
795 {
796   struct undo *buf;
797   machine_mode oldval = GET_MODE (*into);
798 
799   if (oldval == newval)
800     return;
801 
802   if (undobuf.frees)
803     buf = undobuf.frees, undobuf.frees = buf->next;
804   else
805     buf = XNEW (struct undo);
806 
807   buf->kind = UNDO_MODE;
808   buf->where.r = into;
809   buf->old_contents.m = oldval;
810   adjust_reg_mode (*into, newval);
811 
812   buf->next = undobuf.undos, undobuf.undos = buf;
813 }
814 
815 #define SUBST_MODE(INTO, NEWVAL)  do_SUBST_MODE (&(INTO), (NEWVAL))
816 
817 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression.  */
818 
819 static void
820 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
821 {
822   struct undo *buf;
823   struct insn_link * oldval = *into;
824 
825   if (oldval == newval)
826     return;
827 
828   if (undobuf.frees)
829     buf = undobuf.frees, undobuf.frees = buf->next;
830   else
831     buf = XNEW (struct undo);
832 
833   buf->kind = UNDO_LINKS;
834   buf->where.l = into;
835   buf->old_contents.l = oldval;
836   *into = newval;
837 
838   buf->next = undobuf.undos, undobuf.undos = buf;
839 }
840 
841 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
842 
843 /* Subroutine of try_combine.  Determine whether the replacement patterns
844    NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
845    than the original sequence I0, I1, I2, I3 and undobuf.other_insn.  Note
846    that I0, I1 and/or NEWI2PAT may be NULL_RTX.  Similarly, NEWOTHERPAT and
847    undobuf.other_insn may also both be NULL_RTX.  Return false if the cost
848    of all the instructions can be estimated and the replacements are more
849    expensive than the original sequence.  */
850 
851 static bool
852 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
853 		       rtx newpat, rtx newi2pat, rtx newotherpat)
854 {
855   int i0_cost, i1_cost, i2_cost, i3_cost;
856   int new_i2_cost, new_i3_cost;
857   int old_cost, new_cost;
858 
859   /* Lookup the original insn_rtx_costs.  */
860   i2_cost = INSN_COST (i2);
861   i3_cost = INSN_COST (i3);
862 
863   if (i1)
864     {
865       i1_cost = INSN_COST (i1);
866       if (i0)
867 	{
868 	  i0_cost = INSN_COST (i0);
869 	  old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
870 		      ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
871 	}
872       else
873 	{
874 	  old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
875 		      ? i1_cost + i2_cost + i3_cost : 0);
876 	  i0_cost = 0;
877 	}
878     }
879   else
880     {
881       old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
882       i1_cost = i0_cost = 0;
883     }
884 
885   /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
886      correct that.  */
887   if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
888     old_cost -= i1_cost;
889 
890 
891   /* Calculate the replacement insn_rtx_costs.  */
892   new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
893   if (newi2pat)
894     {
895       new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
896       new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
897 		 ? new_i2_cost + new_i3_cost : 0;
898     }
899   else
900     {
901       new_cost = new_i3_cost;
902       new_i2_cost = 0;
903     }
904 
905   if (undobuf.other_insn)
906     {
907       int old_other_cost, new_other_cost;
908 
909       old_other_cost = INSN_COST (undobuf.other_insn);
910       new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
911       if (old_other_cost > 0 && new_other_cost > 0)
912 	{
913 	  old_cost += old_other_cost;
914 	  new_cost += new_other_cost;
915 	}
916       else
917 	old_cost = 0;
918     }
919 
920   /* Disallow this combination if both new_cost and old_cost are greater than
921      zero, and new_cost is greater than old cost.  */
922   int reject = old_cost > 0 && new_cost > old_cost;
923 
924   if (dump_file)
925     {
926       fprintf (dump_file, "%s combination of insns ",
927 	       reject ? "rejecting" : "allowing");
928       if (i0)
929 	fprintf (dump_file, "%d, ", INSN_UID (i0));
930       if (i1 && INSN_UID (i1) != INSN_UID (i2))
931 	fprintf (dump_file, "%d, ", INSN_UID (i1));
932       fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
933 
934       fprintf (dump_file, "original costs ");
935       if (i0)
936 	fprintf (dump_file, "%d + ", i0_cost);
937       if (i1 && INSN_UID (i1) != INSN_UID (i2))
938 	fprintf (dump_file, "%d + ", i1_cost);
939       fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
940 
941       if (newi2pat)
942 	fprintf (dump_file, "replacement costs %d + %d = %d\n",
943 		 new_i2_cost, new_i3_cost, new_cost);
944       else
945 	fprintf (dump_file, "replacement cost %d\n", new_cost);
946     }
947 
948   if (reject)
949     return false;
950 
951   /* Update the uid_insn_cost array with the replacement costs.  */
952   INSN_COST (i2) = new_i2_cost;
953   INSN_COST (i3) = new_i3_cost;
954   if (i1)
955     {
956       INSN_COST (i1) = 0;
957       if (i0)
958 	INSN_COST (i0) = 0;
959     }
960 
961   return true;
962 }
963 
964 
965 /* Delete any insns that copy a register to itself.  */
966 
967 static void
968 delete_noop_moves (void)
969 {
970   rtx_insn *insn, *next;
971   basic_block bb;
972 
973   FOR_EACH_BB_FN (bb, cfun)
974     {
975       for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
976 	{
977 	  next = NEXT_INSN (insn);
978 	  if (INSN_P (insn) && noop_move_p (insn))
979 	    {
980 	      if (dump_file)
981 		fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
982 
983 	      delete_insn_and_edges (insn);
984 	    }
985 	}
986     }
987 }
988 
989 
990 /* Return false if we do not want to (or cannot) combine DEF.  */
991 static bool
992 can_combine_def_p (df_ref def)
993 {
994   /* Do not consider if it is pre/post modification in MEM.  */
995   if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
996     return false;
997 
998   unsigned int regno = DF_REF_REGNO (def);
999 
1000   /* Do not combine frame pointer adjustments.  */
1001   if ((regno == FRAME_POINTER_REGNUM
1002        && (!reload_completed || frame_pointer_needed))
1003       || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1004 	  && regno == HARD_FRAME_POINTER_REGNUM
1005 	  && (!reload_completed || frame_pointer_needed))
1006       || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1007 	  && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1008     return false;
1009 
1010   return true;
1011 }
1012 
1013 /* Return false if we do not want to (or cannot) combine USE.  */
1014 static bool
1015 can_combine_use_p (df_ref use)
1016 {
1017   /* Do not consider the usage of the stack pointer by function call.  */
1018   if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1019     return false;
1020 
1021   return true;
1022 }
1023 
1024 /* Fill in log links field for all insns.  */
1025 
1026 static void
1027 create_log_links (void)
1028 {
1029   basic_block bb;
1030   rtx_insn **next_use;
1031   rtx_insn *insn;
1032   df_ref def, use;
1033 
1034   next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1035 
1036   /* Pass through each block from the end, recording the uses of each
1037      register and establishing log links when def is encountered.
1038      Note that we do not clear next_use array in order to save time,
1039      so we have to test whether the use is in the same basic block as def.
1040 
1041      There are a few cases below when we do not consider the definition or
1042      usage -- these are taken from original flow.c did. Don't ask me why it is
1043      done this way; I don't know and if it works, I don't want to know.  */
1044 
1045   FOR_EACH_BB_FN (bb, cfun)
1046     {
1047       FOR_BB_INSNS_REVERSE (bb, insn)
1048         {
1049           if (!NONDEBUG_INSN_P (insn))
1050             continue;
1051 
1052 	  /* Log links are created only once.  */
1053 	  gcc_assert (!LOG_LINKS (insn));
1054 
1055 	  FOR_EACH_INSN_DEF (def, insn)
1056             {
1057               unsigned int regno = DF_REF_REGNO (def);
1058               rtx_insn *use_insn;
1059 
1060               if (!next_use[regno])
1061                 continue;
1062 
1063 	      if (!can_combine_def_p (def))
1064 		continue;
1065 
1066 	      use_insn = next_use[regno];
1067 	      next_use[regno] = NULL;
1068 
1069 	      if (BLOCK_FOR_INSN (use_insn) != bb)
1070 		continue;
1071 
1072 	      /* flow.c claimed:
1073 
1074 		 We don't build a LOG_LINK for hard registers contained
1075 		 in ASM_OPERANDs.  If these registers get replaced,
1076 		 we might wind up changing the semantics of the insn,
1077 		 even if reload can make what appear to be valid
1078 		 assignments later.  */
1079 	      if (regno < FIRST_PSEUDO_REGISTER
1080 		  && asm_noperands (PATTERN (use_insn)) >= 0)
1081 		continue;
1082 
1083 	      /* Don't add duplicate links between instructions.  */
1084 	      struct insn_link *links;
1085 	      FOR_EACH_LOG_LINK (links, use_insn)
1086 	        if (insn == links->insn && regno == links->regno)
1087 		  break;
1088 
1089 	      if (!links)
1090 		LOG_LINKS (use_insn)
1091 		  = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1092             }
1093 
1094 	  FOR_EACH_INSN_USE (use, insn)
1095 	    if (can_combine_use_p (use))
1096 	      next_use[DF_REF_REGNO (use)] = insn;
1097         }
1098     }
1099 
1100   free (next_use);
1101 }
1102 
1103 /* Walk the LOG_LINKS of insn B to see if we find a reference to A.  Return
1104    true if we found a LOG_LINK that proves that A feeds B.  This only works
1105    if there are no instructions between A and B which could have a link
1106    depending on A, since in that case we would not record a link for B.
1107    We also check the implicit dependency created by a cc0 setter/user
1108    pair.  */
1109 
1110 static bool
1111 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1112 {
1113   struct insn_link *links;
1114   FOR_EACH_LOG_LINK (links, b)
1115     if (links->insn == a)
1116       return true;
1117   if (HAVE_cc0 && sets_cc0_p (a))
1118     return true;
1119   return false;
1120 }
1121 
1122 /* Main entry point for combiner.  F is the first insn of the function.
1123    NREGS is the first unused pseudo-reg number.
1124 
1125    Return nonzero if the combiner has turned an indirect jump
1126    instruction into a direct jump.  */
1127 static int
1128 combine_instructions (rtx_insn *f, unsigned int nregs)
1129 {
1130   rtx_insn *insn, *next;
1131   rtx_insn *prev;
1132   struct insn_link *links, *nextlinks;
1133   rtx_insn *first;
1134   basic_block last_bb;
1135 
1136   int new_direct_jump_p = 0;
1137 
1138   for (first = f; first && !NONDEBUG_INSN_P (first); )
1139     first = NEXT_INSN (first);
1140   if (!first)
1141     return 0;
1142 
1143   combine_attempts = 0;
1144   combine_merges = 0;
1145   combine_extras = 0;
1146   combine_successes = 0;
1147 
1148   rtl_hooks = combine_rtl_hooks;
1149 
1150   reg_stat.safe_grow_cleared (nregs);
1151 
1152   init_recog_no_volatile ();
1153 
1154   /* Allocate array for insn info.  */
1155   max_uid_known = get_max_uid ();
1156   uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1157   uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1158   gcc_obstack_init (&insn_link_obstack);
1159 
1160   nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1161 
1162   /* Don't use reg_stat[].nonzero_bits when computing it.  This can cause
1163      problems when, for example, we have j <<= 1 in a loop.  */
1164 
1165   nonzero_sign_valid = 0;
1166   label_tick = label_tick_ebb_start = 1;
1167 
1168   /* Scan all SETs and see if we can deduce anything about what
1169      bits are known to be zero for some registers and how many copies
1170      of the sign bit are known to exist for those registers.
1171 
1172      Also set any known values so that we can use it while searching
1173      for what bits are known to be set.  */
1174 
1175   setup_incoming_promotions (first);
1176   /* Allow the entry block and the first block to fall into the same EBB.
1177      Conceptually the incoming promotions are assigned to the entry block.  */
1178   last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1179 
1180   create_log_links ();
1181   FOR_EACH_BB_FN (this_basic_block, cfun)
1182     {
1183       optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1184       last_call_luid = 0;
1185       mem_last_set = -1;
1186 
1187       label_tick++;
1188       if (!single_pred_p (this_basic_block)
1189 	  || single_pred (this_basic_block) != last_bb)
1190 	label_tick_ebb_start = label_tick;
1191       last_bb = this_basic_block;
1192 
1193       FOR_BB_INSNS (this_basic_block, insn)
1194         if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1195 	  {
1196             rtx links;
1197 
1198             subst_low_luid = DF_INSN_LUID (insn);
1199             subst_insn = insn;
1200 
1201 	    note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1202 		         insn);
1203 	    record_dead_and_set_regs (insn);
1204 
1205 	    if (AUTO_INC_DEC)
1206 	      for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1207 		if (REG_NOTE_KIND (links) == REG_INC)
1208 		  set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1209 						    insn);
1210 
1211 	    /* Record the current insn_rtx_cost of this instruction.  */
1212 	    if (NONJUMP_INSN_P (insn))
1213 	      INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1214 	      					optimize_this_for_speed_p);
1215 	    if (dump_file)
1216 	      fprintf (dump_file, "insn_cost %d: %d\n",
1217 		       INSN_UID (insn), INSN_COST (insn));
1218 	  }
1219     }
1220 
1221   nonzero_sign_valid = 1;
1222 
1223   /* Now scan all the insns in forward order.  */
1224   label_tick = label_tick_ebb_start = 1;
1225   init_reg_last ();
1226   setup_incoming_promotions (first);
1227   last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1228   int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1229 
1230   FOR_EACH_BB_FN (this_basic_block, cfun)
1231     {
1232       rtx_insn *last_combined_insn = NULL;
1233       optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1234       last_call_luid = 0;
1235       mem_last_set = -1;
1236 
1237       label_tick++;
1238       if (!single_pred_p (this_basic_block)
1239 	  || single_pred (this_basic_block) != last_bb)
1240 	label_tick_ebb_start = label_tick;
1241       last_bb = this_basic_block;
1242 
1243       rtl_profile_for_bb (this_basic_block);
1244       for (insn = BB_HEAD (this_basic_block);
1245 	   insn != NEXT_INSN (BB_END (this_basic_block));
1246 	   insn = next ? next : NEXT_INSN (insn))
1247 	{
1248 	  next = 0;
1249 	  if (!NONDEBUG_INSN_P (insn))
1250 	    continue;
1251 
1252 	  while (last_combined_insn
1253 		 && (!NONDEBUG_INSN_P (last_combined_insn)
1254 		     || last_combined_insn->deleted ()))
1255 	    last_combined_insn = PREV_INSN (last_combined_insn);
1256 	  if (last_combined_insn == NULL_RTX
1257 	      || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1258 	      || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1259 	    last_combined_insn = insn;
1260 
1261 	  /* See if we know about function return values before this
1262 	     insn based upon SUBREG flags.  */
1263 	  check_promoted_subreg (insn, PATTERN (insn));
1264 
1265 	  /* See if we can find hardregs and subreg of pseudos in
1266 	     narrower modes.  This could help turning TRUNCATEs
1267 	     into SUBREGs.  */
1268 	  note_uses (&PATTERN (insn), record_truncated_values, NULL);
1269 
1270 	  /* Try this insn with each insn it links back to.  */
1271 
1272 	  FOR_EACH_LOG_LINK (links, insn)
1273 	    if ((next = try_combine (insn, links->insn, NULL,
1274 				     NULL, &new_direct_jump_p,
1275 				     last_combined_insn)) != 0)
1276 	      {
1277 		statistics_counter_event (cfun, "two-insn combine", 1);
1278 		goto retry;
1279 	      }
1280 
1281 	  /* Try each sequence of three linked insns ending with this one.  */
1282 
1283 	  if (max_combine >= 3)
1284 	    FOR_EACH_LOG_LINK (links, insn)
1285 	      {
1286 		rtx_insn *link = links->insn;
1287 
1288 		/* If the linked insn has been replaced by a note, then there
1289 		   is no point in pursuing this chain any further.  */
1290 		if (NOTE_P (link))
1291 		  continue;
1292 
1293 		FOR_EACH_LOG_LINK (nextlinks, link)
1294 		  if ((next = try_combine (insn, link, nextlinks->insn,
1295 					   NULL, &new_direct_jump_p,
1296 					   last_combined_insn)) != 0)
1297 		    {
1298 		      statistics_counter_event (cfun, "three-insn combine", 1);
1299 		      goto retry;
1300 		    }
1301 	      }
1302 
1303 	  /* Try to combine a jump insn that uses CC0
1304 	     with a preceding insn that sets CC0, and maybe with its
1305 	     logical predecessor as well.
1306 	     This is how we make decrement-and-branch insns.
1307 	     We need this special code because data flow connections
1308 	     via CC0 do not get entered in LOG_LINKS.  */
1309 
1310 	  if (HAVE_cc0
1311 	      && JUMP_P (insn)
1312 	      && (prev = prev_nonnote_insn (insn)) != 0
1313 	      && NONJUMP_INSN_P (prev)
1314 	      && sets_cc0_p (PATTERN (prev)))
1315 	    {
1316 	      if ((next = try_combine (insn, prev, NULL, NULL,
1317 				       &new_direct_jump_p,
1318 				       last_combined_insn)) != 0)
1319 		goto retry;
1320 
1321 	      FOR_EACH_LOG_LINK (nextlinks, prev)
1322 		  if ((next = try_combine (insn, prev, nextlinks->insn,
1323 					   NULL, &new_direct_jump_p,
1324 					   last_combined_insn)) != 0)
1325 		    goto retry;
1326 	    }
1327 
1328 	  /* Do the same for an insn that explicitly references CC0.  */
1329 	  if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1330 	      && (prev = prev_nonnote_insn (insn)) != 0
1331 	      && NONJUMP_INSN_P (prev)
1332 	      && sets_cc0_p (PATTERN (prev))
1333 	      && GET_CODE (PATTERN (insn)) == SET
1334 	      && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1335 	    {
1336 	      if ((next = try_combine (insn, prev, NULL, NULL,
1337 				       &new_direct_jump_p,
1338 				       last_combined_insn)) != 0)
1339 		goto retry;
1340 
1341 	      FOR_EACH_LOG_LINK (nextlinks, prev)
1342 		  if ((next = try_combine (insn, prev, nextlinks->insn,
1343 					   NULL, &new_direct_jump_p,
1344 					   last_combined_insn)) != 0)
1345 		    goto retry;
1346 	    }
1347 
1348 	  /* Finally, see if any of the insns that this insn links to
1349 	     explicitly references CC0.  If so, try this insn, that insn,
1350 	     and its predecessor if it sets CC0.  */
1351 	  if (HAVE_cc0)
1352 	    {
1353 	      FOR_EACH_LOG_LINK (links, insn)
1354 		if (NONJUMP_INSN_P (links->insn)
1355 		    && GET_CODE (PATTERN (links->insn)) == SET
1356 		    && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1357 		    && (prev = prev_nonnote_insn (links->insn)) != 0
1358 		    && NONJUMP_INSN_P (prev)
1359 		    && sets_cc0_p (PATTERN (prev))
1360 		    && (next = try_combine (insn, links->insn,
1361 					    prev, NULL, &new_direct_jump_p,
1362 					    last_combined_insn)) != 0)
1363 		  goto retry;
1364 	    }
1365 
1366 	  /* Try combining an insn with two different insns whose results it
1367 	     uses.  */
1368 	  if (max_combine >= 3)
1369 	    FOR_EACH_LOG_LINK (links, insn)
1370 	      for (nextlinks = links->next; nextlinks;
1371 		   nextlinks = nextlinks->next)
1372 		if ((next = try_combine (insn, links->insn,
1373 					 nextlinks->insn, NULL,
1374 					 &new_direct_jump_p,
1375 					 last_combined_insn)) != 0)
1376 
1377 		  {
1378 		    statistics_counter_event (cfun, "three-insn combine", 1);
1379 		    goto retry;
1380 		  }
1381 
1382 	  /* Try four-instruction combinations.  */
1383 	  if (max_combine >= 4)
1384 	    FOR_EACH_LOG_LINK (links, insn)
1385 	      {
1386 		struct insn_link *next1;
1387 		rtx_insn *link = links->insn;
1388 
1389 		/* If the linked insn has been replaced by a note, then there
1390 		   is no point in pursuing this chain any further.  */
1391 		if (NOTE_P (link))
1392 		  continue;
1393 
1394 		FOR_EACH_LOG_LINK (next1, link)
1395 		  {
1396 		    rtx_insn *link1 = next1->insn;
1397 		    if (NOTE_P (link1))
1398 		      continue;
1399 		    /* I0 -> I1 -> I2 -> I3.  */
1400 		    FOR_EACH_LOG_LINK (nextlinks, link1)
1401 		      if ((next = try_combine (insn, link, link1,
1402 					       nextlinks->insn,
1403 					       &new_direct_jump_p,
1404 					       last_combined_insn)) != 0)
1405 			{
1406 			  statistics_counter_event (cfun, "four-insn combine", 1);
1407 			  goto retry;
1408 			}
1409 		    /* I0, I1 -> I2, I2 -> I3.  */
1410 		    for (nextlinks = next1->next; nextlinks;
1411 			 nextlinks = nextlinks->next)
1412 		      if ((next = try_combine (insn, link, link1,
1413 					       nextlinks->insn,
1414 					       &new_direct_jump_p,
1415 					       last_combined_insn)) != 0)
1416 			{
1417 			  statistics_counter_event (cfun, "four-insn combine", 1);
1418 			  goto retry;
1419 			}
1420 		  }
1421 
1422 		for (next1 = links->next; next1; next1 = next1->next)
1423 		  {
1424 		    rtx_insn *link1 = next1->insn;
1425 		    if (NOTE_P (link1))
1426 		      continue;
1427 		    /* I0 -> I2; I1, I2 -> I3.  */
1428 		    FOR_EACH_LOG_LINK (nextlinks, link)
1429 		      if ((next = try_combine (insn, link, link1,
1430 					       nextlinks->insn,
1431 					       &new_direct_jump_p,
1432 					       last_combined_insn)) != 0)
1433 			{
1434 			  statistics_counter_event (cfun, "four-insn combine", 1);
1435 			  goto retry;
1436 			}
1437 		    /* I0 -> I1; I1, I2 -> I3.  */
1438 		    FOR_EACH_LOG_LINK (nextlinks, link1)
1439 		      if ((next = try_combine (insn, link, link1,
1440 					       nextlinks->insn,
1441 					       &new_direct_jump_p,
1442 					       last_combined_insn)) != 0)
1443 			{
1444 			  statistics_counter_event (cfun, "four-insn combine", 1);
1445 			  goto retry;
1446 			}
1447 		  }
1448 	      }
1449 
1450 	  /* Try this insn with each REG_EQUAL note it links back to.  */
1451 	  FOR_EACH_LOG_LINK (links, insn)
1452 	    {
1453 	      rtx set, note;
1454 	      rtx_insn *temp = links->insn;
1455 	      if ((set = single_set (temp)) != 0
1456 		  && (note = find_reg_equal_equiv_note (temp)) != 0
1457 		  && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1458 		  /* Avoid using a register that may already been marked
1459 		     dead by an earlier instruction.  */
1460 		  && ! unmentioned_reg_p (note, SET_SRC (set))
1461 		  && (GET_MODE (note) == VOIDmode
1462 		      ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1463 		      : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1464 			 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1465 			     || (GET_MODE (XEXP (SET_DEST (set), 0))
1466 				 == GET_MODE (note))))))
1467 		{
1468 		  /* Temporarily replace the set's source with the
1469 		     contents of the REG_EQUAL note.  The insn will
1470 		     be deleted or recognized by try_combine.  */
1471 		  rtx orig_src = SET_SRC (set);
1472 		  rtx orig_dest = SET_DEST (set);
1473 		  if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1474 		    SET_DEST (set) = XEXP (SET_DEST (set), 0);
1475 		  SET_SRC (set) = note;
1476 		  i2mod = temp;
1477 		  i2mod_old_rhs = copy_rtx (orig_src);
1478 		  i2mod_new_rhs = copy_rtx (note);
1479 		  next = try_combine (insn, i2mod, NULL, NULL,
1480 				      &new_direct_jump_p,
1481 				      last_combined_insn);
1482 		  i2mod = NULL;
1483 		  if (next)
1484 		    {
1485 		      statistics_counter_event (cfun, "insn-with-note combine", 1);
1486 		      goto retry;
1487 		    }
1488 		  SET_SRC (set) = orig_src;
1489 		  SET_DEST (set) = orig_dest;
1490 		}
1491 	    }
1492 
1493 	  if (!NOTE_P (insn))
1494 	    record_dead_and_set_regs (insn);
1495 
1496 retry:
1497 	  ;
1498 	}
1499     }
1500 
1501   default_rtl_profile ();
1502   clear_bb_flags ();
1503   new_direct_jump_p |= purge_all_dead_edges ();
1504   delete_noop_moves ();
1505 
1506   /* Clean up.  */
1507   obstack_free (&insn_link_obstack, NULL);
1508   free (uid_log_links);
1509   free (uid_insn_cost);
1510   reg_stat.release ();
1511 
1512   {
1513     struct undo *undo, *next;
1514     for (undo = undobuf.frees; undo; undo = next)
1515       {
1516 	next = undo->next;
1517 	free (undo);
1518       }
1519     undobuf.frees = 0;
1520   }
1521 
1522   total_attempts += combine_attempts;
1523   total_merges += combine_merges;
1524   total_extras += combine_extras;
1525   total_successes += combine_successes;
1526 
1527   nonzero_sign_valid = 0;
1528   rtl_hooks = general_rtl_hooks;
1529 
1530   /* Make recognizer allow volatile MEMs again.  */
1531   init_recog ();
1532 
1533   return new_direct_jump_p;
1534 }
1535 
1536 /* Wipe the last_xxx fields of reg_stat in preparation for another pass.  */
1537 
1538 static void
1539 init_reg_last (void)
1540 {
1541   unsigned int i;
1542   reg_stat_type *p;
1543 
1544   FOR_EACH_VEC_ELT (reg_stat, i, p)
1545     memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1546 }
1547 
1548 /* Set up any promoted values for incoming argument registers.  */
1549 
1550 static void
1551 setup_incoming_promotions (rtx_insn *first)
1552 {
1553   tree arg;
1554   bool strictly_local = false;
1555 
1556   for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1557        arg = DECL_CHAIN (arg))
1558     {
1559       rtx x, reg = DECL_INCOMING_RTL (arg);
1560       int uns1, uns3;
1561       machine_mode mode1, mode2, mode3, mode4;
1562 
1563       /* Only continue if the incoming argument is in a register.  */
1564       if (!REG_P (reg))
1565 	continue;
1566 
1567       /* Determine, if possible, whether all call sites of the current
1568          function lie within the current compilation unit.  (This does
1569 	 take into account the exporting of a function via taking its
1570 	 address, and so forth.)  */
1571       strictly_local = cgraph_node::local_info (current_function_decl)->local;
1572 
1573       /* The mode and signedness of the argument before any promotions happen
1574          (equal to the mode of the pseudo holding it at that stage).  */
1575       mode1 = TYPE_MODE (TREE_TYPE (arg));
1576       uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1577 
1578       /* The mode and signedness of the argument after any source language and
1579          TARGET_PROMOTE_PROTOTYPES-driven promotions.  */
1580       mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1581       uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1582 
1583       /* The mode and signedness of the argument as it is actually passed,
1584          see assign_parm_setup_reg in function.c.  */
1585       mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1586 				     TREE_TYPE (cfun->decl), 0);
1587 
1588       /* The mode of the register in which the argument is being passed.  */
1589       mode4 = GET_MODE (reg);
1590 
1591       /* Eliminate sign extensions in the callee when:
1592 	 (a) A mode promotion has occurred;  */
1593       if (mode1 == mode3)
1594 	continue;
1595       /* (b) The mode of the register is the same as the mode of
1596 	     the argument as it is passed; */
1597       if (mode3 != mode4)
1598 	continue;
1599       /* (c) There's no language level extension;  */
1600       if (mode1 == mode2)
1601 	;
1602       /* (c.1) All callers are from the current compilation unit.  If that's
1603 	 the case we don't have to rely on an ABI, we only have to know
1604 	 what we're generating right now, and we know that we will do the
1605 	 mode1 to mode2 promotion with the given sign.  */
1606       else if (!strictly_local)
1607 	continue;
1608       /* (c.2) The combination of the two promotions is useful.  This is
1609 	 true when the signs match, or if the first promotion is unsigned.
1610 	 In the later case, (sign_extend (zero_extend x)) is the same as
1611 	 (zero_extend (zero_extend x)), so make sure to force UNS3 true.  */
1612       else if (uns1)
1613 	uns3 = true;
1614       else if (uns3)
1615 	continue;
1616 
1617       /* Record that the value was promoted from mode1 to mode3,
1618 	 so that any sign extension at the head of the current
1619 	 function may be eliminated.  */
1620       x = gen_rtx_CLOBBER (mode1, const0_rtx);
1621       x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1622       record_value_for_reg (reg, first, x);
1623     }
1624 }
1625 
1626 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1627    that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1628    because some machines (maybe most) will actually do the sign-extension and
1629    this is the conservative approach.
1630 
1631    ??? For 2.5, try to tighten up the MD files in this regard instead of this
1632    kludge.  */
1633 
1634 static rtx
1635 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1636 {
1637   if (GET_MODE_PRECISION (mode) < prec
1638       && CONST_INT_P (src)
1639       && INTVAL (src) > 0
1640       && val_signbit_known_set_p (mode, INTVAL (src)))
1641     src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (mode));
1642 
1643   return src;
1644 }
1645 
1646 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1647    and SET.  */
1648 
1649 static void
1650 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1651 			   rtx x)
1652 {
1653   rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1654   unsigned HOST_WIDE_INT bits = 0;
1655   rtx reg_equal = NULL, src = SET_SRC (set);
1656   unsigned int num = 0;
1657 
1658   if (reg_equal_note)
1659     reg_equal = XEXP (reg_equal_note, 0);
1660 
1661   if (SHORT_IMMEDIATES_SIGN_EXTEND)
1662     {
1663       src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1664       if (reg_equal)
1665 	reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1666     }
1667 
1668   /* Don't call nonzero_bits if it cannot change anything.  */
1669   if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1670     {
1671       bits = nonzero_bits (src, nonzero_bits_mode);
1672       if (reg_equal && bits)
1673 	bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1674       rsp->nonzero_bits |= bits;
1675     }
1676 
1677   /* Don't call num_sign_bit_copies if it cannot change anything.  */
1678   if (rsp->sign_bit_copies != 1)
1679     {
1680       num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1681       if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1682 	{
1683 	  unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1684 	  if (num == 0 || numeq > num)
1685 	    num = numeq;
1686 	}
1687       if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1688 	rsp->sign_bit_copies = num;
1689     }
1690 }
1691 
1692 /* Called via note_stores.  If X is a pseudo that is narrower than
1693    HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1694 
1695    If we are setting only a portion of X and we can't figure out what
1696    portion, assume all bits will be used since we don't know what will
1697    be happening.
1698 
1699    Similarly, set how many bits of X are known to be copies of the sign bit
1700    at all locations in the function.  This is the smallest number implied
1701    by any set of X.  */
1702 
1703 static void
1704 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1705 {
1706   rtx_insn *insn = (rtx_insn *) data;
1707 
1708   if (REG_P (x)
1709       && REGNO (x) >= FIRST_PSEUDO_REGISTER
1710       /* If this register is undefined at the start of the file, we can't
1711 	 say what its contents were.  */
1712       && ! REGNO_REG_SET_P
1713 	   (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1714       && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1715     {
1716       reg_stat_type *rsp = &reg_stat[REGNO (x)];
1717 
1718       if (set == 0 || GET_CODE (set) == CLOBBER)
1719 	{
1720 	  rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1721 	  rsp->sign_bit_copies = 1;
1722 	  return;
1723 	}
1724 
1725       /* If this register is being initialized using itself, and the
1726 	 register is uninitialized in this basic block, and there are
1727 	 no LOG_LINKS which set the register, then part of the
1728 	 register is uninitialized.  In that case we can't assume
1729 	 anything about the number of nonzero bits.
1730 
1731 	 ??? We could do better if we checked this in
1732 	 reg_{nonzero_bits,num_sign_bit_copies}_for_combine.  Then we
1733 	 could avoid making assumptions about the insn which initially
1734 	 sets the register, while still using the information in other
1735 	 insns.  We would have to be careful to check every insn
1736 	 involved in the combination.  */
1737 
1738       if (insn
1739 	  && reg_referenced_p (x, PATTERN (insn))
1740 	  && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1741 			       REGNO (x)))
1742 	{
1743 	  struct insn_link *link;
1744 
1745 	  FOR_EACH_LOG_LINK (link, insn)
1746 	    if (dead_or_set_p (link->insn, x))
1747 	      break;
1748 	  if (!link)
1749 	    {
1750 	      rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1751 	      rsp->sign_bit_copies = 1;
1752 	      return;
1753 	    }
1754 	}
1755 
1756       /* If this is a complex assignment, see if we can convert it into a
1757 	 simple assignment.  */
1758       set = expand_field_assignment (set);
1759 
1760       /* If this is a simple assignment, or we have a paradoxical SUBREG,
1761 	 set what we know about X.  */
1762 
1763       if (SET_DEST (set) == x
1764 	  || (paradoxical_subreg_p (SET_DEST (set))
1765 	      && SUBREG_REG (SET_DEST (set)) == x))
1766 	update_rsp_from_reg_equal (rsp, insn, set, x);
1767       else
1768 	{
1769 	  rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1770 	  rsp->sign_bit_copies = 1;
1771 	}
1772     }
1773 }
1774 
1775 /* See if INSN can be combined into I3.  PRED, PRED2, SUCC and SUCC2 are
1776    optionally insns that were previously combined into I3 or that will be
1777    combined into the merger of INSN and I3.  The order is PRED, PRED2,
1778    INSN, SUCC, SUCC2, I3.
1779 
1780    Return 0 if the combination is not allowed for any reason.
1781 
1782    If the combination is allowed, *PDEST will be set to the single
1783    destination of INSN and *PSRC to the single source, and this function
1784    will return 1.  */
1785 
1786 static int
1787 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1788 	       rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1789 	       rtx *pdest, rtx *psrc)
1790 {
1791   int i;
1792   const_rtx set = 0;
1793   rtx src, dest;
1794   rtx_insn *p;
1795   rtx link;
1796   bool all_adjacent = true;
1797   int (*is_volatile_p) (const_rtx);
1798 
1799   if (succ)
1800     {
1801       if (succ2)
1802 	{
1803 	  if (next_active_insn (succ2) != i3)
1804 	    all_adjacent = false;
1805 	  if (next_active_insn (succ) != succ2)
1806 	    all_adjacent = false;
1807 	}
1808       else if (next_active_insn (succ) != i3)
1809 	all_adjacent = false;
1810       if (next_active_insn (insn) != succ)
1811 	all_adjacent = false;
1812     }
1813   else if (next_active_insn (insn) != i3)
1814     all_adjacent = false;
1815 
1816   /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1817      or a PARALLEL consisting of such a SET and CLOBBERs.
1818 
1819      If INSN has CLOBBER parallel parts, ignore them for our processing.
1820      By definition, these happen during the execution of the insn.  When it
1821      is merged with another insn, all bets are off.  If they are, in fact,
1822      needed and aren't also supplied in I3, they may be added by
1823      recog_for_combine.  Otherwise, it won't match.
1824 
1825      We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1826      note.
1827 
1828      Get the source and destination of INSN.  If more than one, can't
1829      combine.  */
1830 
1831   if (GET_CODE (PATTERN (insn)) == SET)
1832     set = PATTERN (insn);
1833   else if (GET_CODE (PATTERN (insn)) == PARALLEL
1834 	   && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1835     {
1836       for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1837 	{
1838 	  rtx elt = XVECEXP (PATTERN (insn), 0, i);
1839 
1840 	  switch (GET_CODE (elt))
1841 	    {
1842 	    /* This is important to combine floating point insns
1843 	       for the SH4 port.  */
1844 	    case USE:
1845 	      /* Combining an isolated USE doesn't make sense.
1846 		 We depend here on combinable_i3pat to reject them.  */
1847 	      /* The code below this loop only verifies that the inputs of
1848 		 the SET in INSN do not change.  We call reg_set_between_p
1849 		 to verify that the REG in the USE does not change between
1850 		 I3 and INSN.
1851 		 If the USE in INSN was for a pseudo register, the matching
1852 		 insn pattern will likely match any register; combining this
1853 		 with any other USE would only be safe if we knew that the
1854 		 used registers have identical values, or if there was
1855 		 something to tell them apart, e.g. different modes.  For
1856 		 now, we forgo such complicated tests and simply disallow
1857 		 combining of USES of pseudo registers with any other USE.  */
1858 	      if (REG_P (XEXP (elt, 0))
1859 		  && GET_CODE (PATTERN (i3)) == PARALLEL)
1860 		{
1861 		  rtx i3pat = PATTERN (i3);
1862 		  int i = XVECLEN (i3pat, 0) - 1;
1863 		  unsigned int regno = REGNO (XEXP (elt, 0));
1864 
1865 		  do
1866 		    {
1867 		      rtx i3elt = XVECEXP (i3pat, 0, i);
1868 
1869 		      if (GET_CODE (i3elt) == USE
1870 			  && REG_P (XEXP (i3elt, 0))
1871 			  && (REGNO (XEXP (i3elt, 0)) == regno
1872 			      ? reg_set_between_p (XEXP (elt, 0),
1873 						   PREV_INSN (insn), i3)
1874 			      : regno >= FIRST_PSEUDO_REGISTER))
1875 			return 0;
1876 		    }
1877 		  while (--i >= 0);
1878 		}
1879 	      break;
1880 
1881 	      /* We can ignore CLOBBERs.  */
1882 	    case CLOBBER:
1883 	      break;
1884 
1885 	    case SET:
1886 	      /* Ignore SETs whose result isn't used but not those that
1887 		 have side-effects.  */
1888 	      if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1889 		  && insn_nothrow_p (insn)
1890 		  && !side_effects_p (elt))
1891 		break;
1892 
1893 	      /* If we have already found a SET, this is a second one and
1894 		 so we cannot combine with this insn.  */
1895 	      if (set)
1896 		return 0;
1897 
1898 	      set = elt;
1899 	      break;
1900 
1901 	    default:
1902 	      /* Anything else means we can't combine.  */
1903 	      return 0;
1904 	    }
1905 	}
1906 
1907       if (set == 0
1908 	  /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1909 	     so don't do anything with it.  */
1910 	  || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1911 	return 0;
1912     }
1913   else
1914     return 0;
1915 
1916   if (set == 0)
1917     return 0;
1918 
1919   /* The simplification in expand_field_assignment may call back to
1920      get_last_value, so set safe guard here.  */
1921   subst_low_luid = DF_INSN_LUID (insn);
1922 
1923   set = expand_field_assignment (set);
1924   src = SET_SRC (set), dest = SET_DEST (set);
1925 
1926   /* Do not eliminate user-specified register if it is in an
1927      asm input because we may break the register asm usage defined
1928      in GCC manual if allow to do so.
1929      Be aware that this may cover more cases than we expect but this
1930      should be harmless.  */
1931   if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1932       && extract_asm_operands (PATTERN (i3)))
1933     return 0;
1934 
1935   /* Don't eliminate a store in the stack pointer.  */
1936   if (dest == stack_pointer_rtx
1937       /* Don't combine with an insn that sets a register to itself if it has
1938 	 a REG_EQUAL note.  This may be part of a LIBCALL sequence.  */
1939       || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1940       /* Can't merge an ASM_OPERANDS.  */
1941       || GET_CODE (src) == ASM_OPERANDS
1942       /* Can't merge a function call.  */
1943       || GET_CODE (src) == CALL
1944       /* Don't eliminate a function call argument.  */
1945       || (CALL_P (i3)
1946 	  && (find_reg_fusage (i3, USE, dest)
1947 	      || (REG_P (dest)
1948 		  && REGNO (dest) < FIRST_PSEUDO_REGISTER
1949 		  && global_regs[REGNO (dest)])))
1950       /* Don't substitute into an incremented register.  */
1951       || FIND_REG_INC_NOTE (i3, dest)
1952       || (succ && FIND_REG_INC_NOTE (succ, dest))
1953       || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1954       /* Don't substitute into a non-local goto, this confuses CFG.  */
1955       || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1956       /* Make sure that DEST is not used after INSN but before SUCC, or
1957 	 after SUCC and before SUCC2, or after SUCC2 but before I3.  */
1958       || (!all_adjacent
1959 	  && ((succ2
1960 	       && (reg_used_between_p (dest, succ2, i3)
1961 		   || reg_used_between_p (dest, succ, succ2)))
1962 	      || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
1963 	      || (succ
1964 		  /* SUCC and SUCC2 can be split halves from a PARALLEL; in
1965 		     that case SUCC is not in the insn stream, so use SUCC2
1966 		     instead for this test.  */
1967 		  && reg_used_between_p (dest, insn,
1968 					 succ2
1969 					 && INSN_UID (succ) == INSN_UID (succ2)
1970 					 ? succ2 : succ))))
1971       /* Make sure that the value that is to be substituted for the register
1972 	 does not use any registers whose values alter in between.  However,
1973 	 If the insns are adjacent, a use can't cross a set even though we
1974 	 think it might (this can happen for a sequence of insns each setting
1975 	 the same destination; last_set of that register might point to
1976 	 a NOTE).  If INSN has a REG_EQUIV note, the register is always
1977 	 equivalent to the memory so the substitution is valid even if there
1978 	 are intervening stores.  Also, don't move a volatile asm or
1979 	 UNSPEC_VOLATILE across any other insns.  */
1980       || (! all_adjacent
1981 	  && (((!MEM_P (src)
1982 		|| ! find_reg_note (insn, REG_EQUIV, src))
1983 	       && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1984 	      || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1985 	      || GET_CODE (src) == UNSPEC_VOLATILE))
1986       /* Don't combine across a CALL_INSN, because that would possibly
1987 	 change whether the life span of some REGs crosses calls or not,
1988 	 and it is a pain to update that information.
1989 	 Exception: if source is a constant, moving it later can't hurt.
1990 	 Accept that as a special case.  */
1991       || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1992     return 0;
1993 
1994   /* DEST must either be a REG or CC0.  */
1995   if (REG_P (dest))
1996     {
1997       /* If register alignment is being enforced for multi-word items in all
1998 	 cases except for parameters, it is possible to have a register copy
1999 	 insn referencing a hard register that is not allowed to contain the
2000 	 mode being copied and which would not be valid as an operand of most
2001 	 insns.  Eliminate this problem by not combining with such an insn.
2002 
2003 	 Also, on some machines we don't want to extend the life of a hard
2004 	 register.  */
2005 
2006       if (REG_P (src)
2007 	  && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2008 	       && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
2009 	      /* Don't extend the life of a hard register unless it is
2010 		 user variable (if we have few registers) or it can't
2011 		 fit into the desired register (meaning something special
2012 		 is going on).
2013 		 Also avoid substituting a return register into I3, because
2014 		 reload can't handle a conflict with constraints of other
2015 		 inputs.  */
2016 	      || (REGNO (src) < FIRST_PSEUDO_REGISTER
2017 		  && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
2018 	return 0;
2019     }
2020   else if (GET_CODE (dest) != CC0)
2021     return 0;
2022 
2023 
2024   if (GET_CODE (PATTERN (i3)) == PARALLEL)
2025     for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2026       if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2027 	{
2028 	  rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2029 
2030 	  /* If the clobber represents an earlyclobber operand, we must not
2031 	     substitute an expression containing the clobbered register.
2032 	     As we do not analyze the constraint strings here, we have to
2033 	     make the conservative assumption.  However, if the register is
2034 	     a fixed hard reg, the clobber cannot represent any operand;
2035 	     we leave it up to the machine description to either accept or
2036 	     reject use-and-clobber patterns.  */
2037 	  if (!REG_P (reg)
2038 	      || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2039 	      || !fixed_regs[REGNO (reg)])
2040 	    if (reg_overlap_mentioned_p (reg, src))
2041 	      return 0;
2042 	}
2043 
2044   /* If INSN contains anything volatile, or is an `asm' (whether volatile
2045      or not), reject, unless nothing volatile comes between it and I3 */
2046 
2047   if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2048     {
2049       /* Make sure neither succ nor succ2 contains a volatile reference.  */
2050       if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2051 	return 0;
2052       if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2053 	return 0;
2054       /* We'll check insns between INSN and I3 below.  */
2055     }
2056 
2057   /* If INSN is an asm, and DEST is a hard register, reject, since it has
2058      to be an explicit register variable, and was chosen for a reason.  */
2059 
2060   if (GET_CODE (src) == ASM_OPERANDS
2061       && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2062     return 0;
2063 
2064   /* If INSN contains volatile references (specifically volatile MEMs),
2065      we cannot combine across any other volatile references.
2066      Even if INSN doesn't contain volatile references, any intervening
2067      volatile insn might affect machine state.  */
2068 
2069   is_volatile_p = volatile_refs_p (PATTERN (insn))
2070     ? volatile_refs_p
2071     : volatile_insn_p;
2072 
2073   for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2074     if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2075       return 0;
2076 
2077   /* If INSN contains an autoincrement or autodecrement, make sure that
2078      register is not used between there and I3, and not already used in
2079      I3 either.  Neither must it be used in PRED or SUCC, if they exist.
2080      Also insist that I3 not be a jump; if it were one
2081      and the incremented register were spilled, we would lose.  */
2082 
2083   if (AUTO_INC_DEC)
2084     for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2085       if (REG_NOTE_KIND (link) == REG_INC
2086 	  && (JUMP_P (i3)
2087 	      || reg_used_between_p (XEXP (link, 0), insn, i3)
2088 	      || (pred != NULL_RTX
2089 		  && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2090 	      || (pred2 != NULL_RTX
2091 		  && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2092 	      || (succ != NULL_RTX
2093 		  && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2094 	      || (succ2 != NULL_RTX
2095 		  && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2096 	      || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2097 	return 0;
2098 
2099   /* Don't combine an insn that follows a CC0-setting insn.
2100      An insn that uses CC0 must not be separated from the one that sets it.
2101      We do, however, allow I2 to follow a CC0-setting insn if that insn
2102      is passed as I1; in that case it will be deleted also.
2103      We also allow combining in this case if all the insns are adjacent
2104      because that would leave the two CC0 insns adjacent as well.
2105      It would be more logical to test whether CC0 occurs inside I1 or I2,
2106      but that would be much slower, and this ought to be equivalent.  */
2107 
2108   if (HAVE_cc0)
2109     {
2110       p = prev_nonnote_insn (insn);
2111       if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2112 	  && ! all_adjacent)
2113 	return 0;
2114     }
2115 
2116   /* If we get here, we have passed all the tests and the combination is
2117      to be allowed.  */
2118 
2119   *pdest = dest;
2120   *psrc = src;
2121 
2122   return 1;
2123 }
2124 
2125 /* LOC is the location within I3 that contains its pattern or the component
2126    of a PARALLEL of the pattern.  We validate that it is valid for combining.
2127 
2128    One problem is if I3 modifies its output, as opposed to replacing it
2129    entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2130    doing so would produce an insn that is not equivalent to the original insns.
2131 
2132    Consider:
2133 
2134 	 (set (reg:DI 101) (reg:DI 100))
2135 	 (set (subreg:SI (reg:DI 101) 0) <foo>)
2136 
2137    This is NOT equivalent to:
2138 
2139 	 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2140 		    (set (reg:DI 101) (reg:DI 100))])
2141 
2142    Not only does this modify 100 (in which case it might still be valid
2143    if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2144 
2145    We can also run into a problem if I2 sets a register that I1
2146    uses and I1 gets directly substituted into I3 (not via I2).  In that
2147    case, we would be getting the wrong value of I2DEST into I3, so we
2148    must reject the combination.  This case occurs when I2 and I1 both
2149    feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2150    If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2151    of a SET must prevent combination from occurring.  The same situation
2152    can occur for I0, in which case I0_NOT_IN_SRC is set.
2153 
2154    Before doing the above check, we first try to expand a field assignment
2155    into a set of logical operations.
2156 
2157    If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2158    we place a register that is both set and used within I3.  If more than one
2159    such register is detected, we fail.
2160 
2161    Return 1 if the combination is valid, zero otherwise.  */
2162 
2163 static int
2164 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2165 		  int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2166 {
2167   rtx x = *loc;
2168 
2169   if (GET_CODE (x) == SET)
2170     {
2171       rtx set = x ;
2172       rtx dest = SET_DEST (set);
2173       rtx src = SET_SRC (set);
2174       rtx inner_dest = dest;
2175       rtx subdest;
2176 
2177       while (GET_CODE (inner_dest) == STRICT_LOW_PART
2178 	     || GET_CODE (inner_dest) == SUBREG
2179 	     || GET_CODE (inner_dest) == ZERO_EXTRACT)
2180 	inner_dest = XEXP (inner_dest, 0);
2181 
2182       /* Check for the case where I3 modifies its output, as discussed
2183 	 above.  We don't want to prevent pseudos from being combined
2184 	 into the address of a MEM, so only prevent the combination if
2185 	 i1 or i2 set the same MEM.  */
2186       if ((inner_dest != dest &&
2187 	   (!MEM_P (inner_dest)
2188 	    || rtx_equal_p (i2dest, inner_dest)
2189 	    || (i1dest && rtx_equal_p (i1dest, inner_dest))
2190 	    || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2191 	   && (reg_overlap_mentioned_p (i2dest, inner_dest)
2192 	       || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2193 	       || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2194 
2195 	  /* This is the same test done in can_combine_p except we can't test
2196 	     all_adjacent; we don't have to, since this instruction will stay
2197 	     in place, thus we are not considering increasing the lifetime of
2198 	     INNER_DEST.
2199 
2200 	     Also, if this insn sets a function argument, combining it with
2201 	     something that might need a spill could clobber a previous
2202 	     function argument; the all_adjacent test in can_combine_p also
2203 	     checks this; here, we do a more specific test for this case.  */
2204 
2205 	  || (REG_P (inner_dest)
2206 	      && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2207 	      && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2208 					GET_MODE (inner_dest))))
2209 	  || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2210 	  || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2211 	return 0;
2212 
2213       /* If DEST is used in I3, it is being killed in this insn, so
2214 	 record that for later.  We have to consider paradoxical
2215 	 subregs here, since they kill the whole register, but we
2216 	 ignore partial subregs, STRICT_LOW_PART, etc.
2217 	 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2218 	 STACK_POINTER_REGNUM, since these are always considered to be
2219 	 live.  Similarly for ARG_POINTER_REGNUM if it is fixed.  */
2220       subdest = dest;
2221       if (GET_CODE (subdest) == SUBREG
2222 	  && (GET_MODE_SIZE (GET_MODE (subdest))
2223 	      >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2224 	subdest = SUBREG_REG (subdest);
2225       if (pi3dest_killed
2226 	  && REG_P (subdest)
2227 	  && reg_referenced_p (subdest, PATTERN (i3))
2228 	  && REGNO (subdest) != FRAME_POINTER_REGNUM
2229 	  && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2230 	      || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2231 	  && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2232 	      || (REGNO (subdest) != ARG_POINTER_REGNUM
2233 		  || ! fixed_regs [REGNO (subdest)]))
2234 	  && REGNO (subdest) != STACK_POINTER_REGNUM)
2235 	{
2236 	  if (*pi3dest_killed)
2237 	    return 0;
2238 
2239 	  *pi3dest_killed = subdest;
2240 	}
2241     }
2242 
2243   else if (GET_CODE (x) == PARALLEL)
2244     {
2245       int i;
2246 
2247       for (i = 0; i < XVECLEN (x, 0); i++)
2248 	if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2249 				i1_not_in_src, i0_not_in_src, pi3dest_killed))
2250 	  return 0;
2251     }
2252 
2253   return 1;
2254 }
2255 
2256 /* Return 1 if X is an arithmetic expression that contains a multiplication
2257    and division.  We don't count multiplications by powers of two here.  */
2258 
2259 static int
2260 contains_muldiv (rtx x)
2261 {
2262   switch (GET_CODE (x))
2263     {
2264     case MOD:  case DIV:  case UMOD:  case UDIV:
2265       return 1;
2266 
2267     case MULT:
2268       return ! (CONST_INT_P (XEXP (x, 1))
2269 		&& pow2p_hwi (UINTVAL (XEXP (x, 1))));
2270     default:
2271       if (BINARY_P (x))
2272 	return contains_muldiv (XEXP (x, 0))
2273 	    || contains_muldiv (XEXP (x, 1));
2274 
2275       if (UNARY_P (x))
2276 	return contains_muldiv (XEXP (x, 0));
2277 
2278       return 0;
2279     }
2280 }
2281 
2282 /* Determine whether INSN can be used in a combination.  Return nonzero if
2283    not.  This is used in try_combine to detect early some cases where we
2284    can't perform combinations.  */
2285 
2286 static int
2287 cant_combine_insn_p (rtx_insn *insn)
2288 {
2289   rtx set;
2290   rtx src, dest;
2291 
2292   /* If this isn't really an insn, we can't do anything.
2293      This can occur when flow deletes an insn that it has merged into an
2294      auto-increment address.  */
2295   if (!NONDEBUG_INSN_P (insn))
2296     return 1;
2297 
2298   /* Never combine loads and stores involving hard regs that are likely
2299      to be spilled.  The register allocator can usually handle such
2300      reg-reg moves by tying.  If we allow the combiner to make
2301      substitutions of likely-spilled regs, reload might die.
2302      As an exception, we allow combinations involving fixed regs; these are
2303      not available to the register allocator so there's no risk involved.  */
2304 
2305   set = single_set (insn);
2306   if (! set)
2307     return 0;
2308   src = SET_SRC (set);
2309   dest = SET_DEST (set);
2310   if (GET_CODE (src) == SUBREG)
2311     src = SUBREG_REG (src);
2312   if (GET_CODE (dest) == SUBREG)
2313     dest = SUBREG_REG (dest);
2314   if (REG_P (src) && REG_P (dest)
2315       && ((HARD_REGISTER_P (src)
2316 	   && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2317 	   && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2318 	  || (HARD_REGISTER_P (dest)
2319 	      && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2320 	      && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2321     return 1;
2322 
2323   return 0;
2324 }
2325 
2326 struct likely_spilled_retval_info
2327 {
2328   unsigned regno, nregs;
2329   unsigned mask;
2330 };
2331 
2332 /* Called via note_stores by likely_spilled_retval_p.  Remove from info->mask
2333    hard registers that are known to be written to / clobbered in full.  */
2334 static void
2335 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2336 {
2337   struct likely_spilled_retval_info *const info =
2338     (struct likely_spilled_retval_info *) data;
2339   unsigned regno, nregs;
2340   unsigned new_mask;
2341 
2342   if (!REG_P (XEXP (set, 0)))
2343     return;
2344   regno = REGNO (x);
2345   if (regno >= info->regno + info->nregs)
2346     return;
2347   nregs = REG_NREGS (x);
2348   if (regno + nregs <= info->regno)
2349     return;
2350   new_mask = (2U << (nregs - 1)) - 1;
2351   if (regno < info->regno)
2352     new_mask >>= info->regno - regno;
2353   else
2354     new_mask <<= regno - info->regno;
2355   info->mask &= ~new_mask;
2356 }
2357 
2358 /* Return nonzero iff part of the return value is live during INSN, and
2359    it is likely spilled.  This can happen when more than one insn is needed
2360    to copy the return value, e.g. when we consider to combine into the
2361    second copy insn for a complex value.  */
2362 
2363 static int
2364 likely_spilled_retval_p (rtx_insn *insn)
2365 {
2366   rtx_insn *use = BB_END (this_basic_block);
2367   rtx reg;
2368   rtx_insn *p;
2369   unsigned regno, nregs;
2370   /* We assume here that no machine mode needs more than
2371      32 hard registers when the value overlaps with a register
2372      for which TARGET_FUNCTION_VALUE_REGNO_P is true.  */
2373   unsigned mask;
2374   struct likely_spilled_retval_info info;
2375 
2376   if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2377     return 0;
2378   reg = XEXP (PATTERN (use), 0);
2379   if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2380     return 0;
2381   regno = REGNO (reg);
2382   nregs = REG_NREGS (reg);
2383   if (nregs == 1)
2384     return 0;
2385   mask = (2U << (nregs - 1)) - 1;
2386 
2387   /* Disregard parts of the return value that are set later.  */
2388   info.regno = regno;
2389   info.nregs = nregs;
2390   info.mask = mask;
2391   for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2392     if (INSN_P (p))
2393       note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2394   mask = info.mask;
2395 
2396   /* Check if any of the (probably) live return value registers is
2397      likely spilled.  */
2398   nregs --;
2399   do
2400     {
2401       if ((mask & 1 << nregs)
2402 	  && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2403 	return 1;
2404     } while (nregs--);
2405   return 0;
2406 }
2407 
2408 /* Adjust INSN after we made a change to its destination.
2409 
2410    Changing the destination can invalidate notes that say something about
2411    the results of the insn and a LOG_LINK pointing to the insn.  */
2412 
2413 static void
2414 adjust_for_new_dest (rtx_insn *insn)
2415 {
2416   /* For notes, be conservative and simply remove them.  */
2417   remove_reg_equal_equiv_notes (insn);
2418 
2419   /* The new insn will have a destination that was previously the destination
2420      of an insn just above it.  Call distribute_links to make a LOG_LINK from
2421      the next use of that destination.  */
2422 
2423   rtx set = single_set (insn);
2424   gcc_assert (set);
2425 
2426   rtx reg = SET_DEST (set);
2427 
2428   while (GET_CODE (reg) == ZERO_EXTRACT
2429 	 || GET_CODE (reg) == STRICT_LOW_PART
2430 	 || GET_CODE (reg) == SUBREG)
2431     reg = XEXP (reg, 0);
2432   gcc_assert (REG_P (reg));
2433 
2434   distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2435 
2436   df_insn_rescan (insn);
2437 }
2438 
2439 /* Return TRUE if combine can reuse reg X in mode MODE.
2440    ADDED_SETS is nonzero if the original set is still required.  */
2441 static bool
2442 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2443 {
2444   unsigned int regno;
2445 
2446   if (!REG_P (x))
2447     return false;
2448 
2449   regno = REGNO (x);
2450   /* Allow hard registers if the new mode is legal, and occupies no more
2451      registers than the old mode.  */
2452   if (regno < FIRST_PSEUDO_REGISTER)
2453     return (HARD_REGNO_MODE_OK (regno, mode)
2454 	    && REG_NREGS (x) >= hard_regno_nregs[regno][mode]);
2455 
2456   /* Or a pseudo that is only used once.  */
2457   return (regno < reg_n_sets_max
2458 	  && REG_N_SETS (regno) == 1
2459 	  && !added_sets
2460 	  && !REG_USERVAR_P (x));
2461 }
2462 
2463 
2464 /* Check whether X, the destination of a set, refers to part of
2465    the register specified by REG.  */
2466 
2467 static bool
2468 reg_subword_p (rtx x, rtx reg)
2469 {
2470   /* Check that reg is an integer mode register.  */
2471   if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2472     return false;
2473 
2474   if (GET_CODE (x) == STRICT_LOW_PART
2475       || GET_CODE (x) == ZERO_EXTRACT)
2476     x = XEXP (x, 0);
2477 
2478   return GET_CODE (x) == SUBREG
2479 	 && SUBREG_REG (x) == reg
2480 	 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2481 }
2482 
2483 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2484    Note that the INSN should be deleted *after* removing dead edges, so
2485    that the kept edge is the fallthrough edge for a (set (pc) (pc))
2486    but not for a (set (pc) (label_ref FOO)).  */
2487 
2488 static void
2489 update_cfg_for_uncondjump (rtx_insn *insn)
2490 {
2491   basic_block bb = BLOCK_FOR_INSN (insn);
2492   gcc_assert (BB_END (bb) == insn);
2493 
2494   purge_dead_edges (bb);
2495 
2496   delete_insn (insn);
2497   if (EDGE_COUNT (bb->succs) == 1)
2498     {
2499       rtx_insn *insn;
2500 
2501       single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2502 
2503       /* Remove barriers from the footer if there are any.  */
2504       for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2505 	if (BARRIER_P (insn))
2506 	  {
2507 	    if (PREV_INSN (insn))
2508 	      SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2509 	    else
2510 	      BB_FOOTER (bb) = NEXT_INSN (insn);
2511 	    if (NEXT_INSN (insn))
2512 	      SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2513 	  }
2514 	else if (LABEL_P (insn))
2515 	  break;
2516     }
2517 }
2518 
2519 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2520    by an arbitrary number of CLOBBERs.  */
2521 static bool
2522 is_parallel_of_n_reg_sets (rtx pat, int n)
2523 {
2524   if (GET_CODE (pat) != PARALLEL)
2525     return false;
2526 
2527   int len = XVECLEN (pat, 0);
2528   if (len < n)
2529     return false;
2530 
2531   int i;
2532   for (i = 0; i < n; i++)
2533     if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2534 	|| !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2535       return false;
2536   for ( ; i < len; i++)
2537     if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2538 	|| XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2539       return false;
2540 
2541   return true;
2542 }
2543 
2544 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2545    CLOBBERs), can be split into individual SETs in that order, without
2546    changing semantics.  */
2547 static bool
2548 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2549 {
2550   if (!insn_nothrow_p (insn))
2551     return false;
2552 
2553   rtx pat = PATTERN (insn);
2554 
2555   int i, j;
2556   for (i = 0; i < n; i++)
2557     {
2558       if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2559 	return false;
2560 
2561       rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2562 
2563       for (j = i + 1; j < n; j++)
2564 	if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2565 	  return false;
2566     }
2567 
2568   return true;
2569 }
2570 
2571 /* Try to combine the insns I0, I1 and I2 into I3.
2572    Here I0, I1 and I2 appear earlier than I3.
2573    I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2574    I3.
2575 
2576    If we are combining more than two insns and the resulting insn is not
2577    recognized, try splitting it into two insns.  If that happens, I2 and I3
2578    are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2579    Otherwise, I0, I1 and I2 are pseudo-deleted.
2580 
2581    Return 0 if the combination does not work.  Then nothing is changed.
2582    If we did the combination, return the insn at which combine should
2583    resume scanning.
2584 
2585    Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2586    new direct jump instruction.
2587 
2588    LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2589    been I3 passed to an earlier try_combine within the same basic
2590    block.  */
2591 
2592 static rtx_insn *
2593 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2594 	     int *new_direct_jump_p, rtx_insn *last_combined_insn)
2595 {
2596   /* New patterns for I3 and I2, respectively.  */
2597   rtx newpat, newi2pat = 0;
2598   rtvec newpat_vec_with_clobbers = 0;
2599   int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2600   /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2601      dead.  */
2602   int added_sets_0, added_sets_1, added_sets_2;
2603   /* Total number of SETs to put into I3.  */
2604   int total_sets;
2605   /* Nonzero if I2's or I1's body now appears in I3.  */
2606   int i2_is_used = 0, i1_is_used = 0;
2607   /* INSN_CODEs for new I3, new I2, and user of condition code.  */
2608   int insn_code_number, i2_code_number = 0, other_code_number = 0;
2609   /* Contains I3 if the destination of I3 is used in its source, which means
2610      that the old life of I3 is being killed.  If that usage is placed into
2611      I2 and not in I3, a REG_DEAD note must be made.  */
2612   rtx i3dest_killed = 0;
2613   /* SET_DEST and SET_SRC of I2, I1 and I0.  */
2614   rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2615   /* Copy of SET_SRC of I1 and I0, if needed.  */
2616   rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2617   /* Set if I2DEST was reused as a scratch register.  */
2618   bool i2scratch = false;
2619   /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases.  */
2620   rtx i0pat = 0, i1pat = 0, i2pat = 0;
2621   /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC.  */
2622   int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2623   int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2624   int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2625   int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2626   /* Notes that must be added to REG_NOTES in I3 and I2.  */
2627   rtx new_i3_notes, new_i2_notes;
2628   /* Notes that we substituted I3 into I2 instead of the normal case.  */
2629   int i3_subst_into_i2 = 0;
2630   /* Notes that I1, I2 or I3 is a MULT operation.  */
2631   int have_mult = 0;
2632   int swap_i2i3 = 0;
2633   int changed_i3_dest = 0;
2634 
2635   int maxreg;
2636   rtx_insn *temp_insn;
2637   rtx temp_expr;
2638   struct insn_link *link;
2639   rtx other_pat = 0;
2640   rtx new_other_notes;
2641   int i;
2642 
2643   /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2644      never be).  */
2645   if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2646     return 0;
2647 
2648   /* Only try four-insn combinations when there's high likelihood of
2649      success.  Look for simple insns, such as loads of constants or
2650      binary operations involving a constant.  */
2651   if (i0)
2652     {
2653       int i;
2654       int ngood = 0;
2655       int nshift = 0;
2656       rtx set0, set3;
2657 
2658       if (!flag_expensive_optimizations)
2659 	return 0;
2660 
2661       for (i = 0; i < 4; i++)
2662 	{
2663 	  rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2664 	  rtx set = single_set (insn);
2665 	  rtx src;
2666 	  if (!set)
2667 	    continue;
2668 	  src = SET_SRC (set);
2669 	  if (CONSTANT_P (src))
2670 	    {
2671 	      ngood += 2;
2672 	      break;
2673 	    }
2674 	  else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2675 	    ngood++;
2676 	  else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2677 		   || GET_CODE (src) == LSHIFTRT)
2678 	    nshift++;
2679 	}
2680 
2681       /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2682 	 are likely manipulating its value.  Ideally we'll be able to combine
2683 	 all four insns into a bitfield insertion of some kind.
2684 
2685 	 Note the source in I0 might be inside a sign/zero extension and the
2686 	 memory modes in I0 and I3 might be different.  So extract the address
2687 	 from the destination of I3 and search for it in the source of I0.
2688 
2689 	 In the event that there's a match but the source/dest do not actually
2690 	 refer to the same memory, the worst that happens is we try some
2691 	 combinations that we wouldn't have otherwise.  */
2692       if ((set0 = single_set (i0))
2693 	  /* Ensure the source of SET0 is a MEM, possibly buried inside
2694 	     an extension.  */
2695 	  && (GET_CODE (SET_SRC (set0)) == MEM
2696 	      || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2697 		   || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2698 		  && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2699 	  && (set3 = single_set (i3))
2700 	  /* Ensure the destination of SET3 is a MEM.  */
2701 	  && GET_CODE (SET_DEST (set3)) == MEM
2702 	  /* Would it be better to extract the base address for the MEM
2703 	     in SET3 and look for that?  I don't have cases where it matters
2704 	     but I could envision such cases.  */
2705 	  && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2706 	ngood += 2;
2707 
2708       if (ngood < 2 && nshift < 2)
2709 	return 0;
2710     }
2711 
2712   /* Exit early if one of the insns involved can't be used for
2713      combinations.  */
2714   if (CALL_P (i2)
2715       || (i1 && CALL_P (i1))
2716       || (i0 && CALL_P (i0))
2717       || cant_combine_insn_p (i3)
2718       || cant_combine_insn_p (i2)
2719       || (i1 && cant_combine_insn_p (i1))
2720       || (i0 && cant_combine_insn_p (i0))
2721       || likely_spilled_retval_p (i3))
2722     return 0;
2723 
2724   combine_attempts++;
2725   undobuf.other_insn = 0;
2726 
2727   /* Reset the hard register usage information.  */
2728   CLEAR_HARD_REG_SET (newpat_used_regs);
2729 
2730   if (dump_file && (dump_flags & TDF_DETAILS))
2731     {
2732       if (i0)
2733 	fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2734 		 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2735       else if (i1)
2736 	fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2737 		 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2738       else
2739 	fprintf (dump_file, "\nTrying %d -> %d:\n",
2740 		 INSN_UID (i2), INSN_UID (i3));
2741     }
2742 
2743   /* If multiple insns feed into one of I2 or I3, they can be in any
2744      order.  To simplify the code below, reorder them in sequence.  */
2745   if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2746     std::swap (i0, i2);
2747   if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2748     std::swap (i0, i1);
2749   if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2750     std::swap (i1, i2);
2751 
2752   added_links_insn = 0;
2753 
2754   /* First check for one important special case that the code below will
2755      not handle.  Namely, the case where I1 is zero, I2 is a PARALLEL
2756      and I3 is a SET whose SET_SRC is a SET_DEST in I2.  In that case,
2757      we may be able to replace that destination with the destination of I3.
2758      This occurs in the common code where we compute both a quotient and
2759      remainder into a structure, in which case we want to do the computation
2760      directly into the structure to avoid register-register copies.
2761 
2762      Note that this case handles both multiple sets in I2 and also cases
2763      where I2 has a number of CLOBBERs inside the PARALLEL.
2764 
2765      We make very conservative checks below and only try to handle the
2766      most common cases of this.  For example, we only handle the case
2767      where I2 and I3 are adjacent to avoid making difficult register
2768      usage tests.  */
2769 
2770   if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2771       && REG_P (SET_SRC (PATTERN (i3)))
2772       && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2773       && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2774       && GET_CODE (PATTERN (i2)) == PARALLEL
2775       && ! side_effects_p (SET_DEST (PATTERN (i3)))
2776       /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2777 	 below would need to check what is inside (and reg_overlap_mentioned_p
2778 	 doesn't support those codes anyway).  Don't allow those destinations;
2779 	 the resulting insn isn't likely to be recognized anyway.  */
2780       && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2781       && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2782       && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2783 				    SET_DEST (PATTERN (i3)))
2784       && next_active_insn (i2) == i3)
2785     {
2786       rtx p2 = PATTERN (i2);
2787 
2788       /* Make sure that the destination of I3,
2789 	 which we are going to substitute into one output of I2,
2790 	 is not used within another output of I2.  We must avoid making this:
2791 	 (parallel [(set (mem (reg 69)) ...)
2792 		    (set (reg 69) ...)])
2793 	 which is not well-defined as to order of actions.
2794 	 (Besides, reload can't handle output reloads for this.)
2795 
2796 	 The problem can also happen if the dest of I3 is a memory ref,
2797 	 if another dest in I2 is an indirect memory ref.
2798 
2799 	 Neither can this PARALLEL be an asm.  We do not allow combining
2800 	 that usually (see can_combine_p), so do not here either.  */
2801       bool ok = true;
2802       for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2803 	{
2804 	  if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2805 	       || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2806 	      && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2807 					  SET_DEST (XVECEXP (p2, 0, i))))
2808 	    ok = false;
2809 	  else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2810 		   && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2811 	    ok = false;
2812 	}
2813 
2814       if (ok)
2815 	for (i = 0; i < XVECLEN (p2, 0); i++)
2816 	  if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2817 	      && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2818 	    {
2819 	      combine_merges++;
2820 
2821 	      subst_insn = i3;
2822 	      subst_low_luid = DF_INSN_LUID (i2);
2823 
2824 	      added_sets_2 = added_sets_1 = added_sets_0 = 0;
2825 	      i2src = SET_SRC (XVECEXP (p2, 0, i));
2826 	      i2dest = SET_DEST (XVECEXP (p2, 0, i));
2827 	      i2dest_killed = dead_or_set_p (i2, i2dest);
2828 
2829 	      /* Replace the dest in I2 with our dest and make the resulting
2830 		 insn the new pattern for I3.  Then skip to where we validate
2831 		 the pattern.  Everything was set up above.  */
2832 	      SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2833 	      newpat = p2;
2834 	      i3_subst_into_i2 = 1;
2835 	      goto validate_replacement;
2836 	    }
2837     }
2838 
2839   /* If I2 is setting a pseudo to a constant and I3 is setting some
2840      sub-part of it to another constant, merge them by making a new
2841      constant.  */
2842   if (i1 == 0
2843       && (temp_expr = single_set (i2)) != 0
2844       && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2845       && GET_CODE (PATTERN (i3)) == SET
2846       && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2847       && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2848     {
2849       rtx dest = SET_DEST (PATTERN (i3));
2850       int offset = -1;
2851       int width = 0;
2852 
2853       if (GET_CODE (dest) == ZERO_EXTRACT)
2854 	{
2855 	  if (CONST_INT_P (XEXP (dest, 1))
2856 	      && CONST_INT_P (XEXP (dest, 2)))
2857 	    {
2858 	      width = INTVAL (XEXP (dest, 1));
2859 	      offset = INTVAL (XEXP (dest, 2));
2860 	      dest = XEXP (dest, 0);
2861 	      if (BITS_BIG_ENDIAN)
2862 		offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2863 	    }
2864 	}
2865       else
2866 	{
2867 	  if (GET_CODE (dest) == STRICT_LOW_PART)
2868 	    dest = XEXP (dest, 0);
2869 	  width = GET_MODE_PRECISION (GET_MODE (dest));
2870 	  offset = 0;
2871 	}
2872 
2873       if (offset >= 0)
2874 	{
2875 	  /* If this is the low part, we're done.  */
2876 	  if (subreg_lowpart_p (dest))
2877 	    ;
2878 	  /* Handle the case where inner is twice the size of outer.  */
2879 	  else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr)))
2880 		   == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2881 	    offset += GET_MODE_PRECISION (GET_MODE (dest));
2882 	  /* Otherwise give up for now.  */
2883 	  else
2884 	    offset = -1;
2885 	}
2886 
2887       if (offset >= 0)
2888 	{
2889 	  rtx inner = SET_SRC (PATTERN (i3));
2890 	  rtx outer = SET_SRC (temp_expr);
2891 
2892 	  wide_int o
2893 	    = wi::insert (rtx_mode_t (outer, GET_MODE (SET_DEST (temp_expr))),
2894 			  rtx_mode_t (inner, GET_MODE (dest)),
2895 			  offset, width);
2896 
2897 	  combine_merges++;
2898 	  subst_insn = i3;
2899 	  subst_low_luid = DF_INSN_LUID (i2);
2900 	  added_sets_2 = added_sets_1 = added_sets_0 = 0;
2901 	  i2dest = SET_DEST (temp_expr);
2902 	  i2dest_killed = dead_or_set_p (i2, i2dest);
2903 
2904 	  /* Replace the source in I2 with the new constant and make the
2905 	     resulting insn the new pattern for I3.  Then skip to where we
2906 	     validate the pattern.  Everything was set up above.  */
2907 	  SUBST (SET_SRC (temp_expr),
2908 		 immed_wide_int_const (o, GET_MODE (SET_DEST (temp_expr))));
2909 
2910 	  newpat = PATTERN (i2);
2911 
2912           /* The dest of I3 has been replaced with the dest of I2.  */
2913           changed_i3_dest = 1;
2914 	  goto validate_replacement;
2915 	}
2916     }
2917 
2918   /* If we have no I1 and I2 looks like:
2919 	(parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2920 		   (set Y OP)])
2921      make up a dummy I1 that is
2922 	(set Y OP)
2923      and change I2 to be
2924 	(set (reg:CC X) (compare:CC Y (const_int 0)))
2925 
2926      (We can ignore any trailing CLOBBERs.)
2927 
2928      This undoes a previous combination and allows us to match a branch-and-
2929      decrement insn.  */
2930 
2931   if (!HAVE_cc0 && i1 == 0
2932       && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2933       && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2934 	  == MODE_CC)
2935       && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2936       && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2937       && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2938 		      SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2939       && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2940       && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2941     {
2942       /* We make I1 with the same INSN_UID as I2.  This gives it
2943 	 the same DF_INSN_LUID for value tracking.  Our fake I1 will
2944 	 never appear in the insn stream so giving it the same INSN_UID
2945 	 as I2 will not cause a problem.  */
2946 
2947       i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2948 			 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2949 			 -1, NULL_RTX);
2950       INSN_UID (i1) = INSN_UID (i2);
2951 
2952       SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2953       SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2954 	     SET_DEST (PATTERN (i1)));
2955       unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2956       SUBST_LINK (LOG_LINKS (i2),
2957 		  alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2958     }
2959 
2960   /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2961      make those two SETs separate I1 and I2 insns, and make an I0 that is
2962      the original I1.  */
2963   if (!HAVE_cc0 && i0 == 0
2964       && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2965       && can_split_parallel_of_n_reg_sets (i2, 2)
2966       && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2967       && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
2968       && !find_reg_note (i2, REG_UNUSED, 0))
2969     {
2970       /* If there is no I1, there is no I0 either.  */
2971       i0 = i1;
2972 
2973       /* We make I1 with the same INSN_UID as I2.  This gives it
2974 	 the same DF_INSN_LUID for value tracking.  Our fake I1 will
2975 	 never appear in the insn stream so giving it the same INSN_UID
2976 	 as I2 will not cause a problem.  */
2977 
2978       i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2979 			 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2980 			 -1, NULL_RTX);
2981       INSN_UID (i1) = INSN_UID (i2);
2982 
2983       SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2984     }
2985 
2986   /* Verify that I2 and I1 are valid for combining.  */
2987   if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
2988       || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
2989 				 &i1dest, &i1src))
2990       || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
2991 				 &i0dest, &i0src)))
2992     {
2993       undo_all ();
2994       return 0;
2995     }
2996 
2997   /* Record whether I2DEST is used in I2SRC and similarly for the other
2998      cases.  Knowing this will help in register status updating below.  */
2999   i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3000   i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3001   i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3002   i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3003   i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3004   i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3005   i2dest_killed = dead_or_set_p (i2, i2dest);
3006   i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3007   i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3008 
3009   /* For the earlier insns, determine which of the subsequent ones they
3010      feed.  */
3011   i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3012   i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3013   i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3014 			  : (!reg_overlap_mentioned_p (i1dest, i0dest)
3015 			     && reg_overlap_mentioned_p (i0dest, i2src))));
3016 
3017   /* Ensure that I3's pattern can be the destination of combines.  */
3018   if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3019 			  i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3020 			  i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3021 				 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3022 			  &i3dest_killed))
3023     {
3024       undo_all ();
3025       return 0;
3026     }
3027 
3028   /* See if any of the insns is a MULT operation.  Unless one is, we will
3029      reject a combination that is, since it must be slower.  Be conservative
3030      here.  */
3031   if (GET_CODE (i2src) == MULT
3032       || (i1 != 0 && GET_CODE (i1src) == MULT)
3033       || (i0 != 0 && GET_CODE (i0src) == MULT)
3034       || (GET_CODE (PATTERN (i3)) == SET
3035 	  && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3036     have_mult = 1;
3037 
3038   /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3039      We used to do this EXCEPT in one case: I3 has a post-inc in an
3040      output operand.  However, that exception can give rise to insns like
3041 	mov r3,(r3)+
3042      which is a famous insn on the PDP-11 where the value of r3 used as the
3043      source was model-dependent.  Avoid this sort of thing.  */
3044 
3045 #if 0
3046   if (!(GET_CODE (PATTERN (i3)) == SET
3047 	&& REG_P (SET_SRC (PATTERN (i3)))
3048 	&& MEM_P (SET_DEST (PATTERN (i3)))
3049 	&& (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3050 	    || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3051     /* It's not the exception.  */
3052 #endif
3053     if (AUTO_INC_DEC)
3054       {
3055 	rtx link;
3056 	for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3057 	  if (REG_NOTE_KIND (link) == REG_INC
3058 	      && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3059 		  || (i1 != 0
3060 		      && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3061 	    {
3062 	      undo_all ();
3063 	      return 0;
3064 	    }
3065       }
3066 
3067   /* See if the SETs in I1 or I2 need to be kept around in the merged
3068      instruction: whenever the value set there is still needed past I3.
3069      For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3070 
3071      For the SET in I1, we have two cases: if I1 and I2 independently feed
3072      into I3, the set in I1 needs to be kept around unless I1DEST dies
3073      or is set in I3.  Otherwise (if I1 feeds I2 which feeds I3), the set
3074      in I1 needs to be kept around unless I1DEST dies or is set in either
3075      I2 or I3.  The same considerations apply to I0.  */
3076 
3077   added_sets_2 = !dead_or_set_p (i3, i2dest);
3078 
3079   if (i1)
3080     added_sets_1 = !(dead_or_set_p (i3, i1dest)
3081 		     || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3082   else
3083     added_sets_1 = 0;
3084 
3085   if (i0)
3086     added_sets_0 =  !(dead_or_set_p (i3, i0dest)
3087 		      || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3088 		      || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3089 			  && dead_or_set_p (i2, i0dest)));
3090   else
3091     added_sets_0 = 0;
3092 
3093   /* We are about to copy insns for the case where they need to be kept
3094      around.  Check that they can be copied in the merged instruction.  */
3095 
3096   if (targetm.cannot_copy_insn_p
3097       && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3098 	  || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3099 	  || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3100     {
3101       undo_all ();
3102       return 0;
3103     }
3104 
3105   /* If the set in I2 needs to be kept around, we must make a copy of
3106      PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3107      PATTERN (I2), we are only substituting for the original I1DEST, not into
3108      an already-substituted copy.  This also prevents making self-referential
3109      rtx.  If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3110      I2DEST.  */
3111 
3112   if (added_sets_2)
3113     {
3114       if (GET_CODE (PATTERN (i2)) == PARALLEL)
3115 	i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3116       else
3117 	i2pat = copy_rtx (PATTERN (i2));
3118     }
3119 
3120   if (added_sets_1)
3121     {
3122       if (GET_CODE (PATTERN (i1)) == PARALLEL)
3123 	i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3124       else
3125 	i1pat = copy_rtx (PATTERN (i1));
3126     }
3127 
3128   if (added_sets_0)
3129     {
3130       if (GET_CODE (PATTERN (i0)) == PARALLEL)
3131 	i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3132       else
3133 	i0pat = copy_rtx (PATTERN (i0));
3134     }
3135 
3136   combine_merges++;
3137 
3138   /* Substitute in the latest insn for the regs set by the earlier ones.  */
3139 
3140   maxreg = max_reg_num ();
3141 
3142   subst_insn = i3;
3143 
3144   /* Many machines that don't use CC0 have insns that can both perform an
3145      arithmetic operation and set the condition code.  These operations will
3146      be represented as a PARALLEL with the first element of the vector
3147      being a COMPARE of an arithmetic operation with the constant zero.
3148      The second element of the vector will set some pseudo to the result
3149      of the same arithmetic operation.  If we simplify the COMPARE, we won't
3150      match such a pattern and so will generate an extra insn.   Here we test
3151      for this case, where both the comparison and the operation result are
3152      needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3153      I2SRC.  Later we will make the PARALLEL that contains I2.  */
3154 
3155   if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3156       && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3157       && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3158       && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3159     {
3160       rtx newpat_dest;
3161       rtx *cc_use_loc = NULL;
3162       rtx_insn *cc_use_insn = NULL;
3163       rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3164       machine_mode compare_mode, orig_compare_mode;
3165       enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3166 
3167       newpat = PATTERN (i3);
3168       newpat_dest = SET_DEST (newpat);
3169       compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3170 
3171       if (undobuf.other_insn == 0
3172 	  && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3173 					    &cc_use_insn)))
3174 	{
3175 	  compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3176 	  compare_code = simplify_compare_const (compare_code,
3177 						 GET_MODE (i2dest), op0, &op1);
3178 	  target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3179 	}
3180 
3181       /* Do the rest only if op1 is const0_rtx, which may be the
3182 	 result of simplification.  */
3183       if (op1 == const0_rtx)
3184 	{
3185 	  /* If a single use of the CC is found, prepare to modify it
3186 	     when SELECT_CC_MODE returns a new CC-class mode, or when
3187 	     the above simplify_compare_const() returned a new comparison
3188 	     operator.  undobuf.other_insn is assigned the CC use insn
3189 	     when modifying it.  */
3190 	  if (cc_use_loc)
3191 	    {
3192 #ifdef SELECT_CC_MODE
3193 	      machine_mode new_mode
3194 		= SELECT_CC_MODE (compare_code, op0, op1);
3195 	      if (new_mode != orig_compare_mode
3196 		  && can_change_dest_mode (SET_DEST (newpat),
3197 					   added_sets_2, new_mode))
3198 		{
3199 		  unsigned int regno = REGNO (newpat_dest);
3200 		  compare_mode = new_mode;
3201 		  if (regno < FIRST_PSEUDO_REGISTER)
3202 		    newpat_dest = gen_rtx_REG (compare_mode, regno);
3203 		  else
3204 		    {
3205 		      SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3206 		      newpat_dest = regno_reg_rtx[regno];
3207 		    }
3208 		}
3209 #endif
3210 	      /* Cases for modifying the CC-using comparison.  */
3211 	      if (compare_code != orig_compare_code
3212 		  /* ??? Do we need to verify the zero rtx?  */
3213 		  && XEXP (*cc_use_loc, 1) == const0_rtx)
3214 		{
3215 		  /* Replace cc_use_loc with entire new RTX.  */
3216 		  SUBST (*cc_use_loc,
3217 			 gen_rtx_fmt_ee (compare_code, compare_mode,
3218 					 newpat_dest, const0_rtx));
3219 		  undobuf.other_insn = cc_use_insn;
3220 		}
3221 	      else if (compare_mode != orig_compare_mode)
3222 		{
3223 		  /* Just replace the CC reg with a new mode.  */
3224 		  SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3225 		  undobuf.other_insn = cc_use_insn;
3226 		}
3227 	    }
3228 
3229 	  /* Now we modify the current newpat:
3230 	     First, SET_DEST(newpat) is updated if the CC mode has been
3231 	     altered. For targets without SELECT_CC_MODE, this should be
3232 	     optimized away.  */
3233 	  if (compare_mode != orig_compare_mode)
3234 	    SUBST (SET_DEST (newpat), newpat_dest);
3235 	  /* This is always done to propagate i2src into newpat.  */
3236 	  SUBST (SET_SRC (newpat),
3237 		 gen_rtx_COMPARE (compare_mode, op0, op1));
3238 	  /* Create new version of i2pat if needed; the below PARALLEL
3239 	     creation needs this to work correctly.  */
3240 	  if (! rtx_equal_p (i2src, op0))
3241 	    i2pat = gen_rtx_SET (i2dest, op0);
3242 	  i2_is_used = 1;
3243 	}
3244     }
3245 
3246   if (i2_is_used == 0)
3247     {
3248       /* It is possible that the source of I2 or I1 may be performing
3249 	 an unneeded operation, such as a ZERO_EXTEND of something
3250 	 that is known to have the high part zero.  Handle that case
3251 	 by letting subst look at the inner insns.
3252 
3253 	 Another way to do this would be to have a function that tries
3254 	 to simplify a single insn instead of merging two or more
3255 	 insns.  We don't do this because of the potential of infinite
3256 	 loops and because of the potential extra memory required.
3257 	 However, doing it the way we are is a bit of a kludge and
3258 	 doesn't catch all cases.
3259 
3260 	 But only do this if -fexpensive-optimizations since it slows
3261 	 things down and doesn't usually win.
3262 
3263 	 This is not done in the COMPARE case above because the
3264 	 unmodified I2PAT is used in the PARALLEL and so a pattern
3265 	 with a modified I2SRC would not match.  */
3266 
3267       if (flag_expensive_optimizations)
3268 	{
3269 	  /* Pass pc_rtx so no substitutions are done, just
3270 	     simplifications.  */
3271 	  if (i1)
3272 	    {
3273 	      subst_low_luid = DF_INSN_LUID (i1);
3274 	      i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3275 	    }
3276 
3277 	  subst_low_luid = DF_INSN_LUID (i2);
3278 	  i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3279 	}
3280 
3281       n_occurrences = 0;		/* `subst' counts here */
3282       subst_low_luid = DF_INSN_LUID (i2);
3283 
3284       /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3285 	 copy of I2SRC each time we substitute it, in order to avoid creating
3286 	 self-referential RTL when we will be substituting I1SRC for I1DEST
3287 	 later.  Likewise if I0 feeds into I2, either directly or indirectly
3288 	 through I1, and I0DEST is in I0SRC.  */
3289       newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3290 		      (i1_feeds_i2_n && i1dest_in_i1src)
3291 		      || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3292 			  && i0dest_in_i0src));
3293       substed_i2 = 1;
3294 
3295       /* Record whether I2's body now appears within I3's body.  */
3296       i2_is_used = n_occurrences;
3297     }
3298 
3299   /* If we already got a failure, don't try to do more.  Otherwise, try to
3300      substitute I1 if we have it.  */
3301 
3302   if (i1 && GET_CODE (newpat) != CLOBBER)
3303     {
3304       /* Check that an autoincrement side-effect on I1 has not been lost.
3305 	 This happens if I1DEST is mentioned in I2 and dies there, and
3306 	 has disappeared from the new pattern.  */
3307       if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3308 	   && i1_feeds_i2_n
3309 	   && dead_or_set_p (i2, i1dest)
3310 	   && !reg_overlap_mentioned_p (i1dest, newpat))
3311 	   /* Before we can do this substitution, we must redo the test done
3312 	      above (see detailed comments there) that ensures I1DEST isn't
3313 	      mentioned in any SETs in NEWPAT that are field assignments.  */
3314 	  || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3315 				0, 0, 0))
3316 	{
3317 	  undo_all ();
3318 	  return 0;
3319 	}
3320 
3321       n_occurrences = 0;
3322       subst_low_luid = DF_INSN_LUID (i1);
3323 
3324       /* If the following substitution will modify I1SRC, make a copy of it
3325 	 for the case where it is substituted for I1DEST in I2PAT later.  */
3326       if (added_sets_2 && i1_feeds_i2_n)
3327 	i1src_copy = copy_rtx (i1src);
3328 
3329       /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3330 	 copy of I1SRC each time we substitute it, in order to avoid creating
3331 	 self-referential RTL when we will be substituting I0SRC for I0DEST
3332 	 later.  */
3333       newpat = subst (newpat, i1dest, i1src, 0, 0,
3334 		      i0_feeds_i1_n && i0dest_in_i0src);
3335       substed_i1 = 1;
3336 
3337       /* Record whether I1's body now appears within I3's body.  */
3338       i1_is_used = n_occurrences;
3339     }
3340 
3341   /* Likewise for I0 if we have it.  */
3342 
3343   if (i0 && GET_CODE (newpat) != CLOBBER)
3344     {
3345       if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3346 	   && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3347 	       || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3348 	   && !reg_overlap_mentioned_p (i0dest, newpat))
3349 	  || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3350 				0, 0, 0))
3351 	{
3352 	  undo_all ();
3353 	  return 0;
3354 	}
3355 
3356       /* If the following substitution will modify I0SRC, make a copy of it
3357 	 for the case where it is substituted for I0DEST in I1PAT later.  */
3358       if (added_sets_1 && i0_feeds_i1_n)
3359 	i0src_copy = copy_rtx (i0src);
3360       /* And a copy for I0DEST in I2PAT substitution.  */
3361       if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3362 			   || (i0_feeds_i2_n)))
3363 	i0src_copy2 = copy_rtx (i0src);
3364 
3365       n_occurrences = 0;
3366       subst_low_luid = DF_INSN_LUID (i0);
3367       newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3368       substed_i0 = 1;
3369     }
3370 
3371   /* Fail if an autoincrement side-effect has been duplicated.  Be careful
3372      to count all the ways that I2SRC and I1SRC can be used.  */
3373   if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3374        && i2_is_used + added_sets_2 > 1)
3375       || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3376 	  && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3377 	      > 1))
3378       || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3379 	  && (n_occurrences + added_sets_0
3380 	      + (added_sets_1 && i0_feeds_i1_n)
3381 	      + (added_sets_2 && i0_feeds_i2_n)
3382 	      > 1))
3383       /* Fail if we tried to make a new register.  */
3384       || max_reg_num () != maxreg
3385       /* Fail if we couldn't do something and have a CLOBBER.  */
3386       || GET_CODE (newpat) == CLOBBER
3387       /* Fail if this new pattern is a MULT and we didn't have one before
3388 	 at the outer level.  */
3389       || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3390 	  && ! have_mult))
3391     {
3392       undo_all ();
3393       return 0;
3394     }
3395 
3396   /* If the actions of the earlier insns must be kept
3397      in addition to substituting them into the latest one,
3398      we must make a new PARALLEL for the latest insn
3399      to hold additional the SETs.  */
3400 
3401   if (added_sets_0 || added_sets_1 || added_sets_2)
3402     {
3403       int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3404       combine_extras++;
3405 
3406       if (GET_CODE (newpat) == PARALLEL)
3407 	{
3408 	  rtvec old = XVEC (newpat, 0);
3409 	  total_sets = XVECLEN (newpat, 0) + extra_sets;
3410 	  newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3411 	  memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3412 		  sizeof (old->elem[0]) * old->num_elem);
3413 	}
3414       else
3415 	{
3416 	  rtx old = newpat;
3417 	  total_sets = 1 + extra_sets;
3418 	  newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3419 	  XVECEXP (newpat, 0, 0) = old;
3420 	}
3421 
3422       if (added_sets_0)
3423 	XVECEXP (newpat, 0, --total_sets) = i0pat;
3424 
3425       if (added_sets_1)
3426 	{
3427 	  rtx t = i1pat;
3428 	  if (i0_feeds_i1_n)
3429 	    t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3430 
3431 	  XVECEXP (newpat, 0, --total_sets) = t;
3432 	}
3433       if (added_sets_2)
3434 	{
3435 	  rtx t = i2pat;
3436 	  if (i1_feeds_i2_n)
3437 	    t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3438 		       i0_feeds_i1_n && i0dest_in_i0src);
3439 	  if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3440 	    t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3441 
3442 	  XVECEXP (newpat, 0, --total_sets) = t;
3443 	}
3444     }
3445 
3446  validate_replacement:
3447 
3448   /* Note which hard regs this insn has as inputs.  */
3449   mark_used_regs_combine (newpat);
3450 
3451   /* If recog_for_combine fails, it strips existing clobbers.  If we'll
3452      consider splitting this pattern, we might need these clobbers.  */
3453   if (i1 && GET_CODE (newpat) == PARALLEL
3454       && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3455     {
3456       int len = XVECLEN (newpat, 0);
3457 
3458       newpat_vec_with_clobbers = rtvec_alloc (len);
3459       for (i = 0; i < len; i++)
3460 	RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3461     }
3462 
3463   /* We have recognized nothing yet.  */
3464   insn_code_number = -1;
3465 
3466   /* See if this is a PARALLEL of two SETs where one SET's destination is
3467      a register that is unused and this isn't marked as an instruction that
3468      might trap in an EH region.  In that case, we just need the other SET.
3469      We prefer this over the PARALLEL.
3470 
3471      This can occur when simplifying a divmod insn.  We *must* test for this
3472      case here because the code below that splits two independent SETs doesn't
3473      handle this case correctly when it updates the register status.
3474 
3475      It's pointless doing this if we originally had two sets, one from
3476      i3, and one from i2.  Combining then splitting the parallel results
3477      in the original i2 again plus an invalid insn (which we delete).
3478      The net effect is only to move instructions around, which makes
3479      debug info less accurate.  */
3480 
3481   if (!(added_sets_2 && i1 == 0)
3482       && is_parallel_of_n_reg_sets (newpat, 2)
3483       && asm_noperands (newpat) < 0)
3484     {
3485       rtx set0 = XVECEXP (newpat, 0, 0);
3486       rtx set1 = XVECEXP (newpat, 0, 1);
3487       rtx oldpat = newpat;
3488 
3489       if (((REG_P (SET_DEST (set1))
3490 	    && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3491 	   || (GET_CODE (SET_DEST (set1)) == SUBREG
3492 	       && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3493 	  && insn_nothrow_p (i3)
3494 	  && !side_effects_p (SET_SRC (set1)))
3495 	{
3496 	  newpat = set0;
3497 	  insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3498 	}
3499 
3500       else if (((REG_P (SET_DEST (set0))
3501 		 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3502 		|| (GET_CODE (SET_DEST (set0)) == SUBREG
3503 		    && find_reg_note (i3, REG_UNUSED,
3504 				      SUBREG_REG (SET_DEST (set0)))))
3505 	       && insn_nothrow_p (i3)
3506 	       && !side_effects_p (SET_SRC (set0)))
3507 	{
3508 	  newpat = set1;
3509 	  insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3510 
3511 	  if (insn_code_number >= 0)
3512 	    changed_i3_dest = 1;
3513 	}
3514 
3515       if (insn_code_number < 0)
3516 	newpat = oldpat;
3517     }
3518 
3519   /* Is the result of combination a valid instruction?  */
3520   if (insn_code_number < 0)
3521     insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3522 
3523   /* If we were combining three insns and the result is a simple SET
3524      with no ASM_OPERANDS that wasn't recognized, try to split it into two
3525      insns.  There are two ways to do this.  It can be split using a
3526      machine-specific method (like when you have an addition of a large
3527      constant) or by combine in the function find_split_point.  */
3528 
3529   if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3530       && asm_noperands (newpat) < 0)
3531     {
3532       rtx parallel, *split;
3533       rtx_insn *m_split_insn;
3534 
3535       /* See if the MD file can split NEWPAT.  If it can't, see if letting it
3536 	 use I2DEST as a scratch register will help.  In the latter case,
3537 	 convert I2DEST to the mode of the source of NEWPAT if we can.  */
3538 
3539       m_split_insn = combine_split_insns (newpat, i3);
3540 
3541       /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3542 	 inputs of NEWPAT.  */
3543 
3544       /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3545 	 possible to try that as a scratch reg.  This would require adding
3546 	 more code to make it work though.  */
3547 
3548       if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3549 	{
3550 	  machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3551 
3552 	  /* ??? Reusing i2dest without resetting the reg_stat entry for it
3553 	     (temporarily, until we are committed to this instruction
3554 	     combination) does not work: for example, any call to nonzero_bits
3555 	     on the register (from a splitter in the MD file, for example)
3556 	     will get the old information, which is invalid.
3557 
3558 	     Since nowadays we can create registers during combine just fine,
3559 	     we should just create a new one here, not reuse i2dest.  */
3560 
3561 	  /* First try to split using the original register as a
3562 	     scratch register.  */
3563 	  parallel = gen_rtx_PARALLEL (VOIDmode,
3564 				       gen_rtvec (2, newpat,
3565 						  gen_rtx_CLOBBER (VOIDmode,
3566 								   i2dest)));
3567 	  m_split_insn = combine_split_insns (parallel, i3);
3568 
3569 	  /* If that didn't work, try changing the mode of I2DEST if
3570 	     we can.  */
3571 	  if (m_split_insn == 0
3572 	      && new_mode != GET_MODE (i2dest)
3573 	      && new_mode != VOIDmode
3574 	      && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3575 	    {
3576 	      machine_mode old_mode = GET_MODE (i2dest);
3577 	      rtx ni2dest;
3578 
3579 	      if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3580 		ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3581 	      else
3582 		{
3583 		  SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3584 		  ni2dest = regno_reg_rtx[REGNO (i2dest)];
3585 		}
3586 
3587 	      parallel = (gen_rtx_PARALLEL
3588 			  (VOIDmode,
3589 			   gen_rtvec (2, newpat,
3590 				      gen_rtx_CLOBBER (VOIDmode,
3591 						       ni2dest))));
3592 	      m_split_insn = combine_split_insns (parallel, i3);
3593 
3594 	      if (m_split_insn == 0
3595 		  && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3596 		{
3597 		  struct undo *buf;
3598 
3599 		  adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3600 		  buf = undobuf.undos;
3601 		  undobuf.undos = buf->next;
3602 		  buf->next = undobuf.frees;
3603 		  undobuf.frees = buf;
3604 		}
3605 	    }
3606 
3607 	  i2scratch = m_split_insn != 0;
3608 	}
3609 
3610       /* If recog_for_combine has discarded clobbers, try to use them
3611 	 again for the split.  */
3612       if (m_split_insn == 0 && newpat_vec_with_clobbers)
3613 	{
3614 	  parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3615 	  m_split_insn = combine_split_insns (parallel, i3);
3616 	}
3617 
3618       if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3619 	{
3620 	  rtx m_split_pat = PATTERN (m_split_insn);
3621 	  insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3622 	  if (insn_code_number >= 0)
3623 	    newpat = m_split_pat;
3624 	}
3625       else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3626 	       && (next_nonnote_nondebug_insn (i2) == i3
3627 		   || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3628 	{
3629 	  rtx i2set, i3set;
3630 	  rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3631 	  newi2pat = PATTERN (m_split_insn);
3632 
3633 	  i3set = single_set (NEXT_INSN (m_split_insn));
3634 	  i2set = single_set (m_split_insn);
3635 
3636 	  i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3637 
3638 	  /* If I2 or I3 has multiple SETs, we won't know how to track
3639 	     register status, so don't use these insns.  If I2's destination
3640 	     is used between I2 and I3, we also can't use these insns.  */
3641 
3642 	  if (i2_code_number >= 0 && i2set && i3set
3643 	      && (next_nonnote_nondebug_insn (i2) == i3
3644 		  || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3645 	    insn_code_number = recog_for_combine (&newi3pat, i3,
3646 						  &new_i3_notes);
3647 	  if (insn_code_number >= 0)
3648 	    newpat = newi3pat;
3649 
3650 	  /* It is possible that both insns now set the destination of I3.
3651 	     If so, we must show an extra use of it.  */
3652 
3653 	  if (insn_code_number >= 0)
3654 	    {
3655 	      rtx new_i3_dest = SET_DEST (i3set);
3656 	      rtx new_i2_dest = SET_DEST (i2set);
3657 
3658 	      while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3659 		     || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3660 		     || GET_CODE (new_i3_dest) == SUBREG)
3661 		new_i3_dest = XEXP (new_i3_dest, 0);
3662 
3663 	      while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3664 		     || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3665 		     || GET_CODE (new_i2_dest) == SUBREG)
3666 		new_i2_dest = XEXP (new_i2_dest, 0);
3667 
3668 	      if (REG_P (new_i3_dest)
3669 		  && REG_P (new_i2_dest)
3670 		  && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3671 		  && REGNO (new_i2_dest) < reg_n_sets_max)
3672 		INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3673 	    }
3674 	}
3675 
3676       /* If we can split it and use I2DEST, go ahead and see if that
3677 	 helps things be recognized.  Verify that none of the registers
3678 	 are set between I2 and I3.  */
3679       if (insn_code_number < 0
3680           && (split = find_split_point (&newpat, i3, false)) != 0
3681 	  && (!HAVE_cc0 || REG_P (i2dest))
3682 	  /* We need I2DEST in the proper mode.  If it is a hard register
3683 	     or the only use of a pseudo, we can change its mode.
3684 	     Make sure we don't change a hard register to have a mode that
3685 	     isn't valid for it, or change the number of registers.  */
3686 	  && (GET_MODE (*split) == GET_MODE (i2dest)
3687 	      || GET_MODE (*split) == VOIDmode
3688 	      || can_change_dest_mode (i2dest, added_sets_2,
3689 				       GET_MODE (*split)))
3690 	  && (next_nonnote_nondebug_insn (i2) == i3
3691 	      || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3692 	  /* We can't overwrite I2DEST if its value is still used by
3693 	     NEWPAT.  */
3694 	  && ! reg_referenced_p (i2dest, newpat))
3695 	{
3696 	  rtx newdest = i2dest;
3697 	  enum rtx_code split_code = GET_CODE (*split);
3698 	  machine_mode split_mode = GET_MODE (*split);
3699 	  bool subst_done = false;
3700 	  newi2pat = NULL_RTX;
3701 
3702 	  i2scratch = true;
3703 
3704 	  /* *SPLIT may be part of I2SRC, so make sure we have the
3705 	     original expression around for later debug processing.
3706 	     We should not need I2SRC any more in other cases.  */
3707 	  if (MAY_HAVE_DEBUG_INSNS)
3708 	    i2src = copy_rtx (i2src);
3709 	  else
3710 	    i2src = NULL;
3711 
3712 	  /* Get NEWDEST as a register in the proper mode.  We have already
3713 	     validated that we can do this.  */
3714 	  if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3715 	    {
3716 	      if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3717 		newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3718 	      else
3719 		{
3720 		  SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3721 		  newdest = regno_reg_rtx[REGNO (i2dest)];
3722 		}
3723 	    }
3724 
3725 	  /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3726 	     an ASHIFT.  This can occur if it was inside a PLUS and hence
3727 	     appeared to be a memory address.  This is a kludge.  */
3728 	  if (split_code == MULT
3729 	      && CONST_INT_P (XEXP (*split, 1))
3730 	      && INTVAL (XEXP (*split, 1)) > 0
3731 	      && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3732 	    {
3733 	      SUBST (*split, gen_rtx_ASHIFT (split_mode,
3734 					     XEXP (*split, 0), GEN_INT (i)));
3735 	      /* Update split_code because we may not have a multiply
3736 		 anymore.  */
3737 	      split_code = GET_CODE (*split);
3738 	    }
3739 
3740 	  /* Similarly for (plus (mult FOO (const_int pow2))).  */
3741 	  if (split_code == PLUS
3742 	      && GET_CODE (XEXP (*split, 0)) == MULT
3743 	      && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3744 	      && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3745 	      && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3746 	    {
3747 	      rtx nsplit = XEXP (*split, 0);
3748 	      SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3749 					     XEXP (nsplit, 0), GEN_INT (i)));
3750 	      /* Update split_code because we may not have a multiply
3751 		 anymore.  */
3752 	      split_code = GET_CODE (*split);
3753 	    }
3754 
3755 #ifdef INSN_SCHEDULING
3756 	  /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3757 	     be written as a ZERO_EXTEND.  */
3758 	  if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3759 	    {
3760 	      /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3761 		 what it really is.  */
3762 	      if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3763 		  == SIGN_EXTEND)
3764 		SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3765 						    SUBREG_REG (*split)));
3766 	      else
3767 		SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3768 						    SUBREG_REG (*split)));
3769 	    }
3770 #endif
3771 
3772 	  /* Attempt to split binary operators using arithmetic identities.  */
3773 	  if (BINARY_P (SET_SRC (newpat))
3774 	      && split_mode == GET_MODE (SET_SRC (newpat))
3775 	      && ! side_effects_p (SET_SRC (newpat)))
3776 	    {
3777 	      rtx setsrc = SET_SRC (newpat);
3778 	      machine_mode mode = GET_MODE (setsrc);
3779 	      enum rtx_code code = GET_CODE (setsrc);
3780 	      rtx src_op0 = XEXP (setsrc, 0);
3781 	      rtx src_op1 = XEXP (setsrc, 1);
3782 
3783 	      /* Split "X = Y op Y" as "Z = Y; X = Z op Z".  */
3784 	      if (rtx_equal_p (src_op0, src_op1))
3785 		{
3786 		  newi2pat = gen_rtx_SET (newdest, src_op0);
3787 		  SUBST (XEXP (setsrc, 0), newdest);
3788 		  SUBST (XEXP (setsrc, 1), newdest);
3789 		  subst_done = true;
3790 		}
3791 	      /* Split "((P op Q) op R) op S" where op is PLUS or MULT.  */
3792 	      else if ((code == PLUS || code == MULT)
3793 		       && GET_CODE (src_op0) == code
3794 		       && GET_CODE (XEXP (src_op0, 0)) == code
3795 		       && (INTEGRAL_MODE_P (mode)
3796 			   || (FLOAT_MODE_P (mode)
3797 			       && flag_unsafe_math_optimizations)))
3798 		{
3799 		  rtx p = XEXP (XEXP (src_op0, 0), 0);
3800 		  rtx q = XEXP (XEXP (src_op0, 0), 1);
3801 		  rtx r = XEXP (src_op0, 1);
3802 		  rtx s = src_op1;
3803 
3804 		  /* Split both "((X op Y) op X) op Y" and
3805 		     "((X op Y) op Y) op X" as "T op T" where T is
3806 		     "X op Y".  */
3807 		  if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3808 		       || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3809 		    {
3810 		      newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3811 		      SUBST (XEXP (setsrc, 0), newdest);
3812 		      SUBST (XEXP (setsrc, 1), newdest);
3813 		      subst_done = true;
3814 		    }
3815 		  /* Split "((X op X) op Y) op Y)" as "T op T" where
3816 		     T is "X op Y".  */
3817 		  else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3818 		    {
3819 		      rtx tmp = simplify_gen_binary (code, mode, p, r);
3820 		      newi2pat = gen_rtx_SET (newdest, tmp);
3821 		      SUBST (XEXP (setsrc, 0), newdest);
3822 		      SUBST (XEXP (setsrc, 1), newdest);
3823 		      subst_done = true;
3824 		    }
3825 		}
3826 	    }
3827 
3828 	  if (!subst_done)
3829 	    {
3830 	      newi2pat = gen_rtx_SET (newdest, *split);
3831 	      SUBST (*split, newdest);
3832 	    }
3833 
3834 	  i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3835 
3836 	  /* recog_for_combine might have added CLOBBERs to newi2pat.
3837 	     Make sure NEWPAT does not depend on the clobbered regs.  */
3838 	  if (GET_CODE (newi2pat) == PARALLEL)
3839 	    for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3840 	      if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3841 		{
3842 		  rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3843 		  if (reg_overlap_mentioned_p (reg, newpat))
3844 		    {
3845 		      undo_all ();
3846 		      return 0;
3847 		    }
3848 		}
3849 
3850 	  /* If the split point was a MULT and we didn't have one before,
3851 	     don't use one now.  */
3852 	  if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3853 	    insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3854 	}
3855     }
3856 
3857   /* Check for a case where we loaded from memory in a narrow mode and
3858      then sign extended it, but we need both registers.  In that case,
3859      we have a PARALLEL with both loads from the same memory location.
3860      We can split this into a load from memory followed by a register-register
3861      copy.  This saves at least one insn, more if register allocation can
3862      eliminate the copy.
3863 
3864      We cannot do this if the destination of the first assignment is a
3865      condition code register or cc0.  We eliminate this case by making sure
3866      the SET_DEST and SET_SRC have the same mode.
3867 
3868      We cannot do this if the destination of the second assignment is
3869      a register that we have already assumed is zero-extended.  Similarly
3870      for a SUBREG of such a register.  */
3871 
3872   else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3873 	   && GET_CODE (newpat) == PARALLEL
3874 	   && XVECLEN (newpat, 0) == 2
3875 	   && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3876 	   && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3877 	   && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3878 	       == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3879 	   && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3880 	   && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3881 			   XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3882 	   && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3883 				   DF_INSN_LUID (i2))
3884 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3885 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3886 	   && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3887 		 (REG_P (temp_expr)
3888 		  && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3889 		  && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3890 		  && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3891 		  && (reg_stat[REGNO (temp_expr)].nonzero_bits
3892 		      != GET_MODE_MASK (word_mode))))
3893 	   && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3894 		 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3895 		     (REG_P (temp_expr)
3896 		      && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3897 		      && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3898 		      && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3899 		      && (reg_stat[REGNO (temp_expr)].nonzero_bits
3900 			  != GET_MODE_MASK (word_mode)))))
3901 	   && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3902 					 SET_SRC (XVECEXP (newpat, 0, 1)))
3903 	   && ! find_reg_note (i3, REG_UNUSED,
3904 			       SET_DEST (XVECEXP (newpat, 0, 0))))
3905     {
3906       rtx ni2dest;
3907 
3908       newi2pat = XVECEXP (newpat, 0, 0);
3909       ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3910       newpat = XVECEXP (newpat, 0, 1);
3911       SUBST (SET_SRC (newpat),
3912 	     gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3913       i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3914 
3915       if (i2_code_number >= 0)
3916 	insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3917 
3918       if (insn_code_number >= 0)
3919 	swap_i2i3 = 1;
3920     }
3921 
3922   /* Similarly, check for a case where we have a PARALLEL of two independent
3923      SETs but we started with three insns.  In this case, we can do the sets
3924      as two separate insns.  This case occurs when some SET allows two
3925      other insns to combine, but the destination of that SET is still live.
3926 
3927      Also do this if we started with two insns and (at least) one of the
3928      resulting sets is a noop; this noop will be deleted later.  */
3929 
3930   else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3931 	   && GET_CODE (newpat) == PARALLEL
3932 	   && XVECLEN (newpat, 0) == 2
3933 	   && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3934 	   && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3935 	   && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3936 		  || set_noop_p (XVECEXP (newpat, 0, 1)))
3937 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3938 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3939 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3940 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3941 	   && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3942 				  XVECEXP (newpat, 0, 0))
3943 	   && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3944 				  XVECEXP (newpat, 0, 1))
3945 	   && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3946 		 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3947     {
3948       rtx set0 = XVECEXP (newpat, 0, 0);
3949       rtx set1 = XVECEXP (newpat, 0, 1);
3950 
3951       /* Normally, it doesn't matter which of the two is done first,
3952 	 but the one that references cc0 can't be the second, and
3953 	 one which uses any regs/memory set in between i2 and i3 can't
3954 	 be first.  The PARALLEL might also have been pre-existing in i3,
3955 	 so we need to make sure that we won't wrongly hoist a SET to i2
3956 	 that would conflict with a death note present in there.  */
3957       if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3958 	  && !(REG_P (SET_DEST (set1))
3959 	       && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3960 	  && !(GET_CODE (SET_DEST (set1)) == SUBREG
3961 	       && find_reg_note (i2, REG_DEAD,
3962 				 SUBREG_REG (SET_DEST (set1))))
3963 	  && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
3964 	  /* If I3 is a jump, ensure that set0 is a jump so that
3965 	     we do not create invalid RTL.  */
3966 	  && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
3967 	 )
3968 	{
3969 	  newi2pat = set1;
3970 	  newpat = set0;
3971 	}
3972       else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3973 	       && !(REG_P (SET_DEST (set0))
3974 		    && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3975 	       && !(GET_CODE (SET_DEST (set0)) == SUBREG
3976 		    && find_reg_note (i2, REG_DEAD,
3977 				      SUBREG_REG (SET_DEST (set0))))
3978 	       && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
3979 	       /* If I3 is a jump, ensure that set1 is a jump so that
3980 		  we do not create invalid RTL.  */
3981 	       && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
3982 	      )
3983 	{
3984 	  newi2pat = set0;
3985 	  newpat = set1;
3986 	}
3987       else
3988 	{
3989 	  undo_all ();
3990 	  return 0;
3991 	}
3992 
3993       i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3994 
3995       if (i2_code_number >= 0)
3996 	{
3997 	  /* recog_for_combine might have added CLOBBERs to newi2pat.
3998 	     Make sure NEWPAT does not depend on the clobbered regs.  */
3999 	  if (GET_CODE (newi2pat) == PARALLEL)
4000 	    {
4001 	      for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4002 		if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4003 		  {
4004 		    rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4005 		    if (reg_overlap_mentioned_p (reg, newpat))
4006 		      {
4007 			undo_all ();
4008 			return 0;
4009 		      }
4010 		  }
4011 	    }
4012 
4013 	  insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4014 	}
4015     }
4016 
4017   /* If it still isn't recognized, fail and change things back the way they
4018      were.  */
4019   if ((insn_code_number < 0
4020        /* Is the result a reasonable ASM_OPERANDS?  */
4021        && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4022     {
4023       undo_all ();
4024       return 0;
4025     }
4026 
4027   /* If we had to change another insn, make sure it is valid also.  */
4028   if (undobuf.other_insn)
4029     {
4030       CLEAR_HARD_REG_SET (newpat_used_regs);
4031 
4032       other_pat = PATTERN (undobuf.other_insn);
4033       other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4034 					     &new_other_notes);
4035 
4036       if (other_code_number < 0 && ! check_asm_operands (other_pat))
4037 	{
4038 	  undo_all ();
4039 	  return 0;
4040 	}
4041     }
4042 
4043   /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4044      they are adjacent to each other or not.  */
4045   if (HAVE_cc0)
4046     {
4047       rtx_insn *p = prev_nonnote_insn (i3);
4048       if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4049 	  && sets_cc0_p (newi2pat))
4050 	{
4051 	  undo_all ();
4052 	  return 0;
4053 	}
4054     }
4055 
4056   /* Only allow this combination if insn_rtx_costs reports that the
4057      replacement instructions are cheaper than the originals.  */
4058   if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4059     {
4060       undo_all ();
4061       return 0;
4062     }
4063 
4064   if (MAY_HAVE_DEBUG_INSNS)
4065     {
4066       struct undo *undo;
4067 
4068       for (undo = undobuf.undos; undo; undo = undo->next)
4069 	if (undo->kind == UNDO_MODE)
4070 	  {
4071 	    rtx reg = *undo->where.r;
4072 	    machine_mode new_mode = GET_MODE (reg);
4073 	    machine_mode old_mode = undo->old_contents.m;
4074 
4075 	    /* Temporarily revert mode back.  */
4076 	    adjust_reg_mode (reg, old_mode);
4077 
4078 	    if (reg == i2dest && i2scratch)
4079 	      {
4080 		/* If we used i2dest as a scratch register with a
4081 		   different mode, substitute it for the original
4082 		   i2src while its original mode is temporarily
4083 		   restored, and then clear i2scratch so that we don't
4084 		   do it again later.  */
4085 		propagate_for_debug (i2, last_combined_insn, reg, i2src,
4086 				     this_basic_block);
4087 		i2scratch = false;
4088 		/* Put back the new mode.  */
4089 		adjust_reg_mode (reg, new_mode);
4090 	      }
4091 	    else
4092 	      {
4093 		rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4094 		rtx_insn *first, *last;
4095 
4096 		if (reg == i2dest)
4097 		  {
4098 		    first = i2;
4099 		    last = last_combined_insn;
4100 		  }
4101 		else
4102 		  {
4103 		    first = i3;
4104 		    last = undobuf.other_insn;
4105 		    gcc_assert (last);
4106 		    if (DF_INSN_LUID (last)
4107 			< DF_INSN_LUID (last_combined_insn))
4108 		      last = last_combined_insn;
4109 		  }
4110 
4111 		/* We're dealing with a reg that changed mode but not
4112 		   meaning, so we want to turn it into a subreg for
4113 		   the new mode.  However, because of REG sharing and
4114 		   because its mode had already changed, we have to do
4115 		   it in two steps.  First, replace any debug uses of
4116 		   reg, with its original mode temporarily restored,
4117 		   with this copy we have created; then, replace the
4118 		   copy with the SUBREG of the original shared reg,
4119 		   once again changed to the new mode.  */
4120 		propagate_for_debug (first, last, reg, tempreg,
4121 				     this_basic_block);
4122 		adjust_reg_mode (reg, new_mode);
4123 		propagate_for_debug (first, last, tempreg,
4124 				     lowpart_subreg (old_mode, reg, new_mode),
4125 				     this_basic_block);
4126 	      }
4127 	  }
4128     }
4129 
4130   /* If we will be able to accept this, we have made a
4131      change to the destination of I3.  This requires us to
4132      do a few adjustments.  */
4133 
4134   if (changed_i3_dest)
4135     {
4136       PATTERN (i3) = newpat;
4137       adjust_for_new_dest (i3);
4138     }
4139 
4140   /* We now know that we can do this combination.  Merge the insns and
4141      update the status of registers and LOG_LINKS.  */
4142 
4143   if (undobuf.other_insn)
4144     {
4145       rtx note, next;
4146 
4147       PATTERN (undobuf.other_insn) = other_pat;
4148 
4149       /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4150 	 ensure that they are still valid.  Then add any non-duplicate
4151 	 notes added by recog_for_combine.  */
4152       for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4153 	{
4154 	  next = XEXP (note, 1);
4155 
4156 	  if ((REG_NOTE_KIND (note) == REG_DEAD
4157 	       && !reg_referenced_p (XEXP (note, 0),
4158 				     PATTERN (undobuf.other_insn)))
4159 	      ||(REG_NOTE_KIND (note) == REG_UNUSED
4160 		 && !reg_set_p (XEXP (note, 0),
4161 				PATTERN (undobuf.other_insn)))
4162 	      /* Simply drop equal note since it may be no longer valid
4163 		 for other_insn.  It may be possible to record that CC
4164 		 register is changed and only discard those notes, but
4165 		 in practice it's unnecessary complication and doesn't
4166 		 give any meaningful improvement.
4167 
4168 		 See PR78559.  */
4169 	      || REG_NOTE_KIND (note) == REG_EQUAL
4170 	      || REG_NOTE_KIND (note) == REG_EQUIV)
4171 	    remove_note (undobuf.other_insn, note);
4172 	}
4173 
4174       distribute_notes  (new_other_notes, undobuf.other_insn,
4175 			undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4176 			NULL_RTX);
4177     }
4178 
4179   if (swap_i2i3)
4180     {
4181       rtx_insn *insn;
4182       struct insn_link *link;
4183       rtx ni2dest;
4184 
4185       /* I3 now uses what used to be its destination and which is now
4186 	 I2's destination.  This requires us to do a few adjustments.  */
4187       PATTERN (i3) = newpat;
4188       adjust_for_new_dest (i3);
4189 
4190       /* We need a LOG_LINK from I3 to I2.  But we used to have one,
4191 	 so we still will.
4192 
4193 	 However, some later insn might be using I2's dest and have
4194 	 a LOG_LINK pointing at I3.  We must remove this link.
4195 	 The simplest way to remove the link is to point it at I1,
4196 	 which we know will be a NOTE.  */
4197 
4198       /* newi2pat is usually a SET here; however, recog_for_combine might
4199 	 have added some clobbers.  */
4200       if (GET_CODE (newi2pat) == PARALLEL)
4201 	ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4202       else
4203 	ni2dest = SET_DEST (newi2pat);
4204 
4205       for (insn = NEXT_INSN (i3);
4206 	   insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4207 		    || insn != BB_HEAD (this_basic_block->next_bb));
4208 	   insn = NEXT_INSN (insn))
4209 	{
4210 	  if (NONDEBUG_INSN_P (insn)
4211 	      && reg_referenced_p (ni2dest, PATTERN (insn)))
4212 	    {
4213 	      FOR_EACH_LOG_LINK (link, insn)
4214 		if (link->insn == i3)
4215 		  link->insn = i1;
4216 
4217 	      break;
4218 	    }
4219 	}
4220     }
4221 
4222   {
4223     rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4224     struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4225     rtx midnotes = 0;
4226     int from_luid;
4227     /* Compute which registers we expect to eliminate.  newi2pat may be setting
4228        either i3dest or i2dest, so we must check it.  */
4229     rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4230 		   || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4231 		   || !i2dest_killed
4232 		   ? 0 : i2dest);
4233     /* For i1, we need to compute both local elimination and global
4234        elimination information with respect to newi2pat because i1dest
4235        may be the same as i3dest, in which case newi2pat may be setting
4236        i1dest.  Global information is used when distributing REG_DEAD
4237        note for i2 and i3, in which case it does matter if newi2pat sets
4238        i1dest or not.
4239 
4240        Local information is used when distributing REG_DEAD note for i1,
4241        in which case it doesn't matter if newi2pat sets i1dest or not.
4242        See PR62151, if we have four insns combination:
4243 	   i0: r0 <- i0src
4244 	   i1: r1 <- i1src (using r0)
4245 		     REG_DEAD (r0)
4246 	   i2: r0 <- i2src (using r1)
4247 	   i3: r3 <- i3src (using r0)
4248 	   ix: using r0
4249        From i1's point of view, r0 is eliminated, no matter if it is set
4250        by newi2pat or not.  In other words, REG_DEAD info for r0 in i1
4251        should be discarded.
4252 
4253        Note local information only affects cases in forms like "I1->I2->I3",
4254        "I0->I1->I2->I3" or "I0&I1->I2, I2->I3".  For other cases like
4255        "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4256        i0dest anyway.  */
4257     rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4258 			 || !i1dest_killed
4259 			 ? 0 : i1dest);
4260     rtx elim_i1 = (local_elim_i1 == 0
4261 		   || (newi2pat && reg_set_p (i1dest, newi2pat))
4262 		   ? 0 : i1dest);
4263     /* Same case as i1.  */
4264     rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4265 			 ? 0 : i0dest);
4266     rtx elim_i0 = (local_elim_i0 == 0
4267 		   || (newi2pat && reg_set_p (i0dest, newi2pat))
4268 		   ? 0 : i0dest);
4269 
4270     /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4271        clear them.  */
4272     i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4273     i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4274     if (i1)
4275       i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4276     if (i0)
4277       i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4278 
4279     /* Ensure that we do not have something that should not be shared but
4280        occurs multiple times in the new insns.  Check this by first
4281        resetting all the `used' flags and then copying anything is shared.  */
4282 
4283     reset_used_flags (i3notes);
4284     reset_used_flags (i2notes);
4285     reset_used_flags (i1notes);
4286     reset_used_flags (i0notes);
4287     reset_used_flags (newpat);
4288     reset_used_flags (newi2pat);
4289     if (undobuf.other_insn)
4290       reset_used_flags (PATTERN (undobuf.other_insn));
4291 
4292     i3notes = copy_rtx_if_shared (i3notes);
4293     i2notes = copy_rtx_if_shared (i2notes);
4294     i1notes = copy_rtx_if_shared (i1notes);
4295     i0notes = copy_rtx_if_shared (i0notes);
4296     newpat = copy_rtx_if_shared (newpat);
4297     newi2pat = copy_rtx_if_shared (newi2pat);
4298     if (undobuf.other_insn)
4299       reset_used_flags (PATTERN (undobuf.other_insn));
4300 
4301     INSN_CODE (i3) = insn_code_number;
4302     PATTERN (i3) = newpat;
4303 
4304     if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4305       {
4306 	for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4307 	     link = XEXP (link, 1))
4308 	  {
4309 	    if (substed_i2)
4310 	      {
4311 		/* I2SRC must still be meaningful at this point.  Some
4312 		   splitting operations can invalidate I2SRC, but those
4313 		   operations do not apply to calls.  */
4314 		gcc_assert (i2src);
4315 		XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4316 						       i2dest, i2src);
4317 	      }
4318 	    if (substed_i1)
4319 	      XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4320 						     i1dest, i1src);
4321 	    if (substed_i0)
4322 	      XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4323 						     i0dest, i0src);
4324 	  }
4325       }
4326 
4327     if (undobuf.other_insn)
4328       INSN_CODE (undobuf.other_insn) = other_code_number;
4329 
4330     /* We had one special case above where I2 had more than one set and
4331        we replaced a destination of one of those sets with the destination
4332        of I3.  In that case, we have to update LOG_LINKS of insns later
4333        in this basic block.  Note that this (expensive) case is rare.
4334 
4335        Also, in this case, we must pretend that all REG_NOTEs for I2
4336        actually came from I3, so that REG_UNUSED notes from I2 will be
4337        properly handled.  */
4338 
4339     if (i3_subst_into_i2)
4340       {
4341 	for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4342 	  if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4343 	       || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4344 	      && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4345 	      && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4346 	      && ! find_reg_note (i2, REG_UNUSED,
4347 				  SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4348 	    for (temp_insn = NEXT_INSN (i2);
4349 		 temp_insn
4350 		 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4351 		     || BB_HEAD (this_basic_block) != temp_insn);
4352 		 temp_insn = NEXT_INSN (temp_insn))
4353 	      if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4354 		FOR_EACH_LOG_LINK (link, temp_insn)
4355 		  if (link->insn == i2)
4356 		    link->insn = i3;
4357 
4358 	if (i3notes)
4359 	  {
4360 	    rtx link = i3notes;
4361 	    while (XEXP (link, 1))
4362 	      link = XEXP (link, 1);
4363 	    XEXP (link, 1) = i2notes;
4364 	  }
4365 	else
4366 	  i3notes = i2notes;
4367 	i2notes = 0;
4368       }
4369 
4370     LOG_LINKS (i3) = NULL;
4371     REG_NOTES (i3) = 0;
4372     LOG_LINKS (i2) = NULL;
4373     REG_NOTES (i2) = 0;
4374 
4375     if (newi2pat)
4376       {
4377 	if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4378 	  propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4379 			       this_basic_block);
4380 	INSN_CODE (i2) = i2_code_number;
4381 	PATTERN (i2) = newi2pat;
4382       }
4383     else
4384       {
4385 	if (MAY_HAVE_DEBUG_INSNS && i2src)
4386 	  propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4387 			       this_basic_block);
4388 	SET_INSN_DELETED (i2);
4389       }
4390 
4391     if (i1)
4392       {
4393 	LOG_LINKS (i1) = NULL;
4394 	REG_NOTES (i1) = 0;
4395 	if (MAY_HAVE_DEBUG_INSNS)
4396 	  propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4397 			       this_basic_block);
4398 	SET_INSN_DELETED (i1);
4399       }
4400 
4401     if (i0)
4402       {
4403 	LOG_LINKS (i0) = NULL;
4404 	REG_NOTES (i0) = 0;
4405 	if (MAY_HAVE_DEBUG_INSNS)
4406 	  propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4407 			       this_basic_block);
4408 	SET_INSN_DELETED (i0);
4409       }
4410 
4411     /* Get death notes for everything that is now used in either I3 or
4412        I2 and used to die in a previous insn.  If we built two new
4413        patterns, move from I1 to I2 then I2 to I3 so that we get the
4414        proper movement on registers that I2 modifies.  */
4415 
4416     if (i0)
4417       from_luid = DF_INSN_LUID (i0);
4418     else if (i1)
4419       from_luid = DF_INSN_LUID (i1);
4420     else
4421       from_luid = DF_INSN_LUID (i2);
4422     if (newi2pat)
4423       move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4424     move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4425 
4426     /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3.  */
4427     if (i3notes)
4428       distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4429 			elim_i2, elim_i1, elim_i0);
4430     if (i2notes)
4431       distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4432 			elim_i2, elim_i1, elim_i0);
4433     if (i1notes)
4434       distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4435 			elim_i2, local_elim_i1, local_elim_i0);
4436     if (i0notes)
4437       distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4438 			elim_i2, elim_i1, local_elim_i0);
4439     if (midnotes)
4440       distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4441 			elim_i2, elim_i1, elim_i0);
4442 
4443     /* Distribute any notes added to I2 or I3 by recog_for_combine.  We
4444        know these are REG_UNUSED and want them to go to the desired insn,
4445        so we always pass it as i3.  */
4446 
4447     if (newi2pat && new_i2_notes)
4448       distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4449 			NULL_RTX);
4450 
4451     if (new_i3_notes)
4452       distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4453 			NULL_RTX);
4454 
4455     /* If I3DEST was used in I3SRC, it really died in I3.  We may need to
4456        put a REG_DEAD note for it somewhere.  If NEWI2PAT exists and sets
4457        I3DEST, the death must be somewhere before I2, not I3.  If we passed I3
4458        in that case, it might delete I2.  Similarly for I2 and I1.
4459        Show an additional death due to the REG_DEAD note we make here.  If
4460        we discard it in distribute_notes, we will decrement it again.  */
4461 
4462     if (i3dest_killed)
4463       {
4464 	rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4465 	if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4466 	  distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4467 			    elim_i1, elim_i0);
4468 	else
4469 	  distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4470 			    elim_i2, elim_i1, elim_i0);
4471       }
4472 
4473     if (i2dest_in_i2src)
4474       {
4475 	rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4476 	if (newi2pat && reg_set_p (i2dest, newi2pat))
4477 	  distribute_notes (new_note,  NULL, i2, NULL, NULL_RTX,
4478 			    NULL_RTX, NULL_RTX);
4479 	else
4480 	  distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4481 			    NULL_RTX, NULL_RTX, NULL_RTX);
4482       }
4483 
4484     if (i1dest_in_i1src)
4485       {
4486 	rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4487 	if (newi2pat && reg_set_p (i1dest, newi2pat))
4488 	  distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4489 			    NULL_RTX, NULL_RTX);
4490 	else
4491 	  distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4492 			    NULL_RTX, NULL_RTX, NULL_RTX);
4493       }
4494 
4495     if (i0dest_in_i0src)
4496       {
4497 	rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4498 	if (newi2pat && reg_set_p (i0dest, newi2pat))
4499 	  distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4500 			    NULL_RTX, NULL_RTX);
4501 	else
4502 	  distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4503 			    NULL_RTX, NULL_RTX, NULL_RTX);
4504       }
4505 
4506     distribute_links (i3links);
4507     distribute_links (i2links);
4508     distribute_links (i1links);
4509     distribute_links (i0links);
4510 
4511     if (REG_P (i2dest))
4512       {
4513 	struct insn_link *link;
4514 	rtx_insn *i2_insn = 0;
4515 	rtx i2_val = 0, set;
4516 
4517 	/* The insn that used to set this register doesn't exist, and
4518 	   this life of the register may not exist either.  See if one of
4519 	   I3's links points to an insn that sets I2DEST.  If it does,
4520 	   that is now the last known value for I2DEST. If we don't update
4521 	   this and I2 set the register to a value that depended on its old
4522 	   contents, we will get confused.  If this insn is used, thing
4523 	   will be set correctly in combine_instructions.  */
4524 	FOR_EACH_LOG_LINK (link, i3)
4525 	  if ((set = single_set (link->insn)) != 0
4526 	      && rtx_equal_p (i2dest, SET_DEST (set)))
4527 	    i2_insn = link->insn, i2_val = SET_SRC (set);
4528 
4529 	record_value_for_reg (i2dest, i2_insn, i2_val);
4530 
4531 	/* If the reg formerly set in I2 died only once and that was in I3,
4532 	   zero its use count so it won't make `reload' do any work.  */
4533 	if (! added_sets_2
4534 	    && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4535 	    && ! i2dest_in_i2src
4536 	    && REGNO (i2dest) < reg_n_sets_max)
4537 	  INC_REG_N_SETS (REGNO (i2dest), -1);
4538       }
4539 
4540     if (i1 && REG_P (i1dest))
4541       {
4542 	struct insn_link *link;
4543 	rtx_insn *i1_insn = 0;
4544 	rtx i1_val = 0, set;
4545 
4546 	FOR_EACH_LOG_LINK (link, i3)
4547 	  if ((set = single_set (link->insn)) != 0
4548 	      && rtx_equal_p (i1dest, SET_DEST (set)))
4549 	    i1_insn = link->insn, i1_val = SET_SRC (set);
4550 
4551 	record_value_for_reg (i1dest, i1_insn, i1_val);
4552 
4553 	if (! added_sets_1
4554 	    && ! i1dest_in_i1src
4555 	    && REGNO (i1dest) < reg_n_sets_max)
4556 	  INC_REG_N_SETS (REGNO (i1dest), -1);
4557       }
4558 
4559     if (i0 && REG_P (i0dest))
4560       {
4561 	struct insn_link *link;
4562 	rtx_insn *i0_insn = 0;
4563 	rtx i0_val = 0, set;
4564 
4565 	FOR_EACH_LOG_LINK (link, i3)
4566 	  if ((set = single_set (link->insn)) != 0
4567 	      && rtx_equal_p (i0dest, SET_DEST (set)))
4568 	    i0_insn = link->insn, i0_val = SET_SRC (set);
4569 
4570 	record_value_for_reg (i0dest, i0_insn, i0_val);
4571 
4572 	if (! added_sets_0
4573 	    && ! i0dest_in_i0src
4574 	    && REGNO (i0dest) < reg_n_sets_max)
4575 	  INC_REG_N_SETS (REGNO (i0dest), -1);
4576       }
4577 
4578     /* Update reg_stat[].nonzero_bits et al for any changes that may have
4579        been made to this insn.  The order is important, because newi2pat
4580        can affect nonzero_bits of newpat.  */
4581     if (newi2pat)
4582       note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4583     note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4584   }
4585 
4586   if (undobuf.other_insn != NULL_RTX)
4587     {
4588       if (dump_file)
4589 	{
4590 	  fprintf (dump_file, "modifying other_insn ");
4591 	  dump_insn_slim (dump_file, undobuf.other_insn);
4592 	}
4593       df_insn_rescan (undobuf.other_insn);
4594     }
4595 
4596   if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4597     {
4598       if (dump_file)
4599 	{
4600 	  fprintf (dump_file, "modifying insn i0 ");
4601 	  dump_insn_slim (dump_file, i0);
4602 	}
4603       df_insn_rescan (i0);
4604     }
4605 
4606   if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4607     {
4608       if (dump_file)
4609 	{
4610 	  fprintf (dump_file, "modifying insn i1 ");
4611 	  dump_insn_slim (dump_file, i1);
4612 	}
4613       df_insn_rescan (i1);
4614     }
4615 
4616   if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4617     {
4618       if (dump_file)
4619 	{
4620 	  fprintf (dump_file, "modifying insn i2 ");
4621 	  dump_insn_slim (dump_file, i2);
4622 	}
4623       df_insn_rescan (i2);
4624     }
4625 
4626   if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4627     {
4628       if (dump_file)
4629 	{
4630 	  fprintf (dump_file, "modifying insn i3 ");
4631 	  dump_insn_slim (dump_file, i3);
4632 	}
4633       df_insn_rescan (i3);
4634     }
4635 
4636   /* Set new_direct_jump_p if a new return or simple jump instruction
4637      has been created.  Adjust the CFG accordingly.  */
4638   if (returnjump_p (i3) || any_uncondjump_p (i3))
4639     {
4640       *new_direct_jump_p = 1;
4641       mark_jump_label (PATTERN (i3), i3, 0);
4642       update_cfg_for_uncondjump (i3);
4643     }
4644 
4645   if (undobuf.other_insn != NULL_RTX
4646       && (returnjump_p (undobuf.other_insn)
4647 	  || any_uncondjump_p (undobuf.other_insn)))
4648     {
4649       *new_direct_jump_p = 1;
4650       update_cfg_for_uncondjump (undobuf.other_insn);
4651     }
4652 
4653   if (GET_CODE (PATTERN (i3)) == TRAP_IF
4654       && XEXP (PATTERN (i3), 0) == const1_rtx)
4655     {
4656       basic_block bb = BLOCK_FOR_INSN (i3);
4657       gcc_assert (bb);
4658       remove_edge (split_block (bb, i3));
4659       emit_barrier_after_bb (bb);
4660       *new_direct_jump_p = 1;
4661     }
4662 
4663   if (undobuf.other_insn
4664       && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4665       && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4666     {
4667       basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4668       gcc_assert (bb);
4669       remove_edge (split_block (bb, undobuf.other_insn));
4670       emit_barrier_after_bb (bb);
4671       *new_direct_jump_p = 1;
4672     }
4673 
4674   /* A noop might also need cleaning up of CFG, if it comes from the
4675      simplification of a jump.  */
4676   if (JUMP_P (i3)
4677       && GET_CODE (newpat) == SET
4678       && SET_SRC (newpat) == pc_rtx
4679       && SET_DEST (newpat) == pc_rtx)
4680     {
4681       *new_direct_jump_p = 1;
4682       update_cfg_for_uncondjump (i3);
4683     }
4684 
4685   if (undobuf.other_insn != NULL_RTX
4686       && JUMP_P (undobuf.other_insn)
4687       && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4688       && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4689       && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4690     {
4691       *new_direct_jump_p = 1;
4692       update_cfg_for_uncondjump (undobuf.other_insn);
4693     }
4694 
4695   combine_successes++;
4696   undo_commit ();
4697 
4698   if (added_links_insn
4699       && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4700       && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4701     return added_links_insn;
4702   else
4703     return newi2pat ? i2 : i3;
4704 }
4705 
4706 /* Get a marker for undoing to the current state.  */
4707 
4708 static void *
4709 get_undo_marker (void)
4710 {
4711   return undobuf.undos;
4712 }
4713 
4714 /* Undo the modifications up to the marker.  */
4715 
4716 static void
4717 undo_to_marker (void *marker)
4718 {
4719   struct undo *undo, *next;
4720 
4721   for (undo = undobuf.undos; undo != marker; undo = next)
4722     {
4723       gcc_assert (undo);
4724 
4725       next = undo->next;
4726       switch (undo->kind)
4727 	{
4728 	case UNDO_RTX:
4729 	  *undo->where.r = undo->old_contents.r;
4730 	  break;
4731 	case UNDO_INT:
4732 	  *undo->where.i = undo->old_contents.i;
4733 	  break;
4734 	case UNDO_MODE:
4735 	  adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4736 	  break;
4737 	case UNDO_LINKS:
4738 	  *undo->where.l = undo->old_contents.l;
4739 	  break;
4740 	default:
4741 	  gcc_unreachable ();
4742 	}
4743 
4744       undo->next = undobuf.frees;
4745       undobuf.frees = undo;
4746     }
4747 
4748   undobuf.undos = (struct undo *) marker;
4749 }
4750 
4751 /* Undo all the modifications recorded in undobuf.  */
4752 
4753 static void
4754 undo_all (void)
4755 {
4756   undo_to_marker (0);
4757 }
4758 
4759 /* We've committed to accepting the changes we made.  Move all
4760    of the undos to the free list.  */
4761 
4762 static void
4763 undo_commit (void)
4764 {
4765   struct undo *undo, *next;
4766 
4767   for (undo = undobuf.undos; undo; undo = next)
4768     {
4769       next = undo->next;
4770       undo->next = undobuf.frees;
4771       undobuf.frees = undo;
4772     }
4773   undobuf.undos = 0;
4774 }
4775 
4776 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4777    where we have an arithmetic expression and return that point.  LOC will
4778    be inside INSN.
4779 
4780    try_combine will call this function to see if an insn can be split into
4781    two insns.  */
4782 
4783 static rtx *
4784 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4785 {
4786   rtx x = *loc;
4787   enum rtx_code code = GET_CODE (x);
4788   rtx *split;
4789   unsigned HOST_WIDE_INT len = 0;
4790   HOST_WIDE_INT pos = 0;
4791   int unsignedp = 0;
4792   rtx inner = NULL_RTX;
4793 
4794   /* First special-case some codes.  */
4795   switch (code)
4796     {
4797     case SUBREG:
4798 #ifdef INSN_SCHEDULING
4799       /* If we are making a paradoxical SUBREG invalid, it becomes a split
4800 	 point.  */
4801       if (MEM_P (SUBREG_REG (x)))
4802 	return loc;
4803 #endif
4804       return find_split_point (&SUBREG_REG (x), insn, false);
4805 
4806     case MEM:
4807       /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4808 	 using LO_SUM and HIGH.  */
4809       if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4810 			  || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4811 	{
4812 	  machine_mode address_mode = get_address_mode (x);
4813 
4814 	  SUBST (XEXP (x, 0),
4815 		 gen_rtx_LO_SUM (address_mode,
4816 				 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4817 				 XEXP (x, 0)));
4818 	  return &XEXP (XEXP (x, 0), 0);
4819 	}
4820 
4821       /* If we have a PLUS whose second operand is a constant and the
4822 	 address is not valid, perhaps will can split it up using
4823 	 the machine-specific way to split large constants.  We use
4824 	 the first pseudo-reg (one of the virtual regs) as a placeholder;
4825 	 it will not remain in the result.  */
4826       if (GET_CODE (XEXP (x, 0)) == PLUS
4827 	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4828 	  && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4829 					    MEM_ADDR_SPACE (x)))
4830 	{
4831 	  rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4832 	  rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4833 					       subst_insn);
4834 
4835 	  /* This should have produced two insns, each of which sets our
4836 	     placeholder.  If the source of the second is a valid address,
4837 	     we can make put both sources together and make a split point
4838 	     in the middle.  */
4839 
4840 	  if (seq
4841 	      && NEXT_INSN (seq) != NULL_RTX
4842 	      && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4843 	      && NONJUMP_INSN_P (seq)
4844 	      && GET_CODE (PATTERN (seq)) == SET
4845 	      && SET_DEST (PATTERN (seq)) == reg
4846 	      && ! reg_mentioned_p (reg,
4847 				    SET_SRC (PATTERN (seq)))
4848 	      && NONJUMP_INSN_P (NEXT_INSN (seq))
4849 	      && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4850 	      && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4851 	      && memory_address_addr_space_p
4852 		   (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4853 		    MEM_ADDR_SPACE (x)))
4854 	    {
4855 	      rtx src1 = SET_SRC (PATTERN (seq));
4856 	      rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4857 
4858 	      /* Replace the placeholder in SRC2 with SRC1.  If we can
4859 		 find where in SRC2 it was placed, that can become our
4860 		 split point and we can replace this address with SRC2.
4861 		 Just try two obvious places.  */
4862 
4863 	      src2 = replace_rtx (src2, reg, src1);
4864 	      split = 0;
4865 	      if (XEXP (src2, 0) == src1)
4866 		split = &XEXP (src2, 0);
4867 	      else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4868 		       && XEXP (XEXP (src2, 0), 0) == src1)
4869 		split = &XEXP (XEXP (src2, 0), 0);
4870 
4871 	      if (split)
4872 		{
4873 		  SUBST (XEXP (x, 0), src2);
4874 		  return split;
4875 		}
4876 	    }
4877 
4878 	  /* If that didn't work, perhaps the first operand is complex and
4879 	     needs to be computed separately, so make a split point there.
4880 	     This will occur on machines that just support REG + CONST
4881 	     and have a constant moved through some previous computation.  */
4882 
4883 	  else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4884 		   && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4885 			 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4886 	    return &XEXP (XEXP (x, 0), 0);
4887 	}
4888 
4889       /* If we have a PLUS whose first operand is complex, try computing it
4890          separately by making a split there.  */
4891       if (GET_CODE (XEXP (x, 0)) == PLUS
4892           && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4893 					    MEM_ADDR_SPACE (x))
4894           && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4895           && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4896                 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4897         return &XEXP (XEXP (x, 0), 0);
4898       break;
4899 
4900     case SET:
4901       /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4902 	 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4903 	 we need to put the operand into a register.  So split at that
4904 	 point.  */
4905 
4906       if (SET_DEST (x) == cc0_rtx
4907 	  && GET_CODE (SET_SRC (x)) != COMPARE
4908 	  && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4909 	  && !OBJECT_P (SET_SRC (x))
4910 	  && ! (GET_CODE (SET_SRC (x)) == SUBREG
4911 		&& OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4912 	return &SET_SRC (x);
4913 
4914       /* See if we can split SET_SRC as it stands.  */
4915       split = find_split_point (&SET_SRC (x), insn, true);
4916       if (split && split != &SET_SRC (x))
4917 	return split;
4918 
4919       /* See if we can split SET_DEST as it stands.  */
4920       split = find_split_point (&SET_DEST (x), insn, false);
4921       if (split && split != &SET_DEST (x))
4922 	return split;
4923 
4924       /* See if this is a bitfield assignment with everything constant.  If
4925 	 so, this is an IOR of an AND, so split it into that.  */
4926       if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4927 	  && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4928 	  && CONST_INT_P (XEXP (SET_DEST (x), 1))
4929 	  && CONST_INT_P (XEXP (SET_DEST (x), 2))
4930 	  && CONST_INT_P (SET_SRC (x))
4931 	  && ((INTVAL (XEXP (SET_DEST (x), 1))
4932 	       + INTVAL (XEXP (SET_DEST (x), 2)))
4933 	      <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4934 	  && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4935 	{
4936 	  HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4937 	  unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4938 	  unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4939 	  rtx dest = XEXP (SET_DEST (x), 0);
4940 	  machine_mode mode = GET_MODE (dest);
4941 	  unsigned HOST_WIDE_INT mask
4942 	    = (HOST_WIDE_INT_1U << len) - 1;
4943 	  rtx or_mask;
4944 
4945 	  if (BITS_BIG_ENDIAN)
4946 	    pos = GET_MODE_PRECISION (mode) - len - pos;
4947 
4948 	  or_mask = gen_int_mode (src << pos, mode);
4949 	  if (src == mask)
4950 	    SUBST (SET_SRC (x),
4951 		   simplify_gen_binary (IOR, mode, dest, or_mask));
4952 	  else
4953 	    {
4954 	      rtx negmask = gen_int_mode (~(mask << pos), mode);
4955 	      SUBST (SET_SRC (x),
4956 		     simplify_gen_binary (IOR, mode,
4957 					  simplify_gen_binary (AND, mode,
4958 							       dest, negmask),
4959 					  or_mask));
4960 	    }
4961 
4962 	  SUBST (SET_DEST (x), dest);
4963 
4964 	  split = find_split_point (&SET_SRC (x), insn, true);
4965 	  if (split && split != &SET_SRC (x))
4966 	    return split;
4967 	}
4968 
4969       /* Otherwise, see if this is an operation that we can split into two.
4970 	 If so, try to split that.  */
4971       code = GET_CODE (SET_SRC (x));
4972 
4973       switch (code)
4974 	{
4975 	case AND:
4976 	  /* If we are AND'ing with a large constant that is only a single
4977 	     bit and the result is only being used in a context where we
4978 	     need to know if it is zero or nonzero, replace it with a bit
4979 	     extraction.  This will avoid the large constant, which might
4980 	     have taken more than one insn to make.  If the constant were
4981 	     not a valid argument to the AND but took only one insn to make,
4982 	     this is no worse, but if it took more than one insn, it will
4983 	     be better.  */
4984 
4985 	  if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4986 	      && REG_P (XEXP (SET_SRC (x), 0))
4987 	      && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4988 	      && REG_P (SET_DEST (x))
4989 	      && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
4990 	      && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4991 	      && XEXP (*split, 0) == SET_DEST (x)
4992 	      && XEXP (*split, 1) == const0_rtx)
4993 	    {
4994 	      rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4995 						XEXP (SET_SRC (x), 0),
4996 						pos, NULL_RTX, 1, 1, 0, 0);
4997 	      if (extraction != 0)
4998 		{
4999 		  SUBST (SET_SRC (x), extraction);
5000 		  return find_split_point (loc, insn, false);
5001 		}
5002 	    }
5003 	  break;
5004 
5005 	case NE:
5006 	  /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5007 	     is known to be on, this can be converted into a NEG of a shift.  */
5008 	  if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5009 	      && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5010 	      && 1 <= (pos = exact_log2
5011 		       (nonzero_bits (XEXP (SET_SRC (x), 0),
5012 				      GET_MODE (XEXP (SET_SRC (x), 0))))))
5013 	    {
5014 	      machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5015 
5016 	      SUBST (SET_SRC (x),
5017 		     gen_rtx_NEG (mode,
5018 				  gen_rtx_LSHIFTRT (mode,
5019 						    XEXP (SET_SRC (x), 0),
5020 						    GEN_INT (pos))));
5021 
5022 	      split = find_split_point (&SET_SRC (x), insn, true);
5023 	      if (split && split != &SET_SRC (x))
5024 		return split;
5025 	    }
5026 	  break;
5027 
5028 	case SIGN_EXTEND:
5029 	  inner = XEXP (SET_SRC (x), 0);
5030 
5031 	  /* We can't optimize if either mode is a partial integer
5032 	     mode as we don't know how many bits are significant
5033 	     in those modes.  */
5034 	  if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
5035 	      || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5036 	    break;
5037 
5038 	  pos = 0;
5039 	  len = GET_MODE_PRECISION (GET_MODE (inner));
5040 	  unsignedp = 0;
5041 	  break;
5042 
5043 	case SIGN_EXTRACT:
5044 	case ZERO_EXTRACT:
5045 	  if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5046 	      && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5047 	    {
5048 	      inner = XEXP (SET_SRC (x), 0);
5049 	      len = INTVAL (XEXP (SET_SRC (x), 1));
5050 	      pos = INTVAL (XEXP (SET_SRC (x), 2));
5051 
5052 	      if (BITS_BIG_ENDIAN)
5053 		pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
5054 	      unsignedp = (code == ZERO_EXTRACT);
5055 	    }
5056 	  break;
5057 
5058 	default:
5059 	  break;
5060 	}
5061 
5062       if (len && pos >= 0
5063 	  && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
5064 	{
5065 	  machine_mode mode = GET_MODE (SET_SRC (x));
5066 
5067 	  /* For unsigned, we have a choice of a shift followed by an
5068 	     AND or two shifts.  Use two shifts for field sizes where the
5069 	     constant might be too large.  We assume here that we can
5070 	     always at least get 8-bit constants in an AND insn, which is
5071 	     true for every current RISC.  */
5072 
5073 	  if (unsignedp && len <= 8)
5074 	    {
5075 	      unsigned HOST_WIDE_INT mask
5076 		= (HOST_WIDE_INT_1U << len) - 1;
5077 	      SUBST (SET_SRC (x),
5078 		     gen_rtx_AND (mode,
5079 				  gen_rtx_LSHIFTRT
5080 				  (mode, gen_lowpart (mode, inner),
5081 				   GEN_INT (pos)),
5082 				  gen_int_mode (mask, mode)));
5083 
5084 	      split = find_split_point (&SET_SRC (x), insn, true);
5085 	      if (split && split != &SET_SRC (x))
5086 		return split;
5087 	    }
5088 	  else
5089 	    {
5090 	      SUBST (SET_SRC (x),
5091 		     gen_rtx_fmt_ee
5092 		     (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5093 		      gen_rtx_ASHIFT (mode,
5094 				      gen_lowpart (mode, inner),
5095 				      GEN_INT (GET_MODE_PRECISION (mode)
5096 					       - len - pos)),
5097 		      GEN_INT (GET_MODE_PRECISION (mode) - len)));
5098 
5099 	      split = find_split_point (&SET_SRC (x), insn, true);
5100 	      if (split && split != &SET_SRC (x))
5101 		return split;
5102 	    }
5103 	}
5104 
5105       /* See if this is a simple operation with a constant as the second
5106 	 operand.  It might be that this constant is out of range and hence
5107 	 could be used as a split point.  */
5108       if (BINARY_P (SET_SRC (x))
5109 	  && CONSTANT_P (XEXP (SET_SRC (x), 1))
5110 	  && (OBJECT_P (XEXP (SET_SRC (x), 0))
5111 	      || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5112 		  && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5113 	return &XEXP (SET_SRC (x), 1);
5114 
5115       /* Finally, see if this is a simple operation with its first operand
5116 	 not in a register.  The operation might require this operand in a
5117 	 register, so return it as a split point.  We can always do this
5118 	 because if the first operand were another operation, we would have
5119 	 already found it as a split point.  */
5120       if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5121 	  && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5122 	return &XEXP (SET_SRC (x), 0);
5123 
5124       return 0;
5125 
5126     case AND:
5127     case IOR:
5128       /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5129 	 it is better to write this as (not (ior A B)) so we can split it.
5130 	 Similarly for IOR.  */
5131       if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5132 	{
5133 	  SUBST (*loc,
5134 		 gen_rtx_NOT (GET_MODE (x),
5135 			      gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5136 					      GET_MODE (x),
5137 					      XEXP (XEXP (x, 0), 0),
5138 					      XEXP (XEXP (x, 1), 0))));
5139 	  return find_split_point (loc, insn, set_src);
5140 	}
5141 
5142       /* Many RISC machines have a large set of logical insns.  If the
5143 	 second operand is a NOT, put it first so we will try to split the
5144 	 other operand first.  */
5145       if (GET_CODE (XEXP (x, 1)) == NOT)
5146 	{
5147 	  rtx tem = XEXP (x, 0);
5148 	  SUBST (XEXP (x, 0), XEXP (x, 1));
5149 	  SUBST (XEXP (x, 1), tem);
5150 	}
5151       break;
5152 
5153     case PLUS:
5154     case MINUS:
5155       /* Canonicalization can produce (minus A (mult B C)), where C is a
5156 	 constant.  It may be better to try splitting (plus (mult B -C) A)
5157 	 instead if this isn't a multiply by a power of two.  */
5158       if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5159 	  && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5160 	  && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5161 	{
5162 	  machine_mode mode = GET_MODE (x);
5163 	  unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5164 	  HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5165 	  SUBST (*loc, gen_rtx_PLUS (mode,
5166 				     gen_rtx_MULT (mode,
5167 						   XEXP (XEXP (x, 1), 0),
5168 						   gen_int_mode (other_int,
5169 								 mode)),
5170 				     XEXP (x, 0)));
5171 	  return find_split_point (loc, insn, set_src);
5172 	}
5173 
5174       /* Split at a multiply-accumulate instruction.  However if this is
5175          the SET_SRC, we likely do not have such an instruction and it's
5176          worthless to try this split.  */
5177       if (!set_src
5178 	  && (GET_CODE (XEXP (x, 0)) == MULT
5179 	      || (GET_CODE (XEXP (x, 0)) == ASHIFT
5180 		  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5181         return loc;
5182 
5183     default:
5184       break;
5185     }
5186 
5187   /* Otherwise, select our actions depending on our rtx class.  */
5188   switch (GET_RTX_CLASS (code))
5189     {
5190     case RTX_BITFIELD_OPS:		/* This is ZERO_EXTRACT and SIGN_EXTRACT.  */
5191     case RTX_TERNARY:
5192       split = find_split_point (&XEXP (x, 2), insn, false);
5193       if (split)
5194 	return split;
5195       /* fall through */
5196     case RTX_BIN_ARITH:
5197     case RTX_COMM_ARITH:
5198     case RTX_COMPARE:
5199     case RTX_COMM_COMPARE:
5200       split = find_split_point (&XEXP (x, 1), insn, false);
5201       if (split)
5202 	return split;
5203       /* fall through */
5204     case RTX_UNARY:
5205       /* Some machines have (and (shift ...) ...) insns.  If X is not
5206 	 an AND, but XEXP (X, 0) is, use it as our split point.  */
5207       if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5208 	return &XEXP (x, 0);
5209 
5210       split = find_split_point (&XEXP (x, 0), insn, false);
5211       if (split)
5212 	return split;
5213       return loc;
5214 
5215     default:
5216       /* Otherwise, we don't have a split point.  */
5217       return 0;
5218     }
5219 }
5220 
5221 /* Throughout X, replace FROM with TO, and return the result.
5222    The result is TO if X is FROM;
5223    otherwise the result is X, but its contents may have been modified.
5224    If they were modified, a record was made in undobuf so that
5225    undo_all will (among other things) return X to its original state.
5226 
5227    If the number of changes necessary is too much to record to undo,
5228    the excess changes are not made, so the result is invalid.
5229    The changes already made can still be undone.
5230    undobuf.num_undo is incremented for such changes, so by testing that
5231    the caller can tell whether the result is valid.
5232 
5233    `n_occurrences' is incremented each time FROM is replaced.
5234 
5235    IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5236 
5237    IN_COND is nonzero if we are at the top level of a condition.
5238 
5239    UNIQUE_COPY is nonzero if each substitution must be unique.  We do this
5240    by copying if `n_occurrences' is nonzero.  */
5241 
5242 static rtx
5243 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5244 {
5245   enum rtx_code code = GET_CODE (x);
5246   machine_mode op0_mode = VOIDmode;
5247   const char *fmt;
5248   int len, i;
5249   rtx new_rtx;
5250 
5251 /* Two expressions are equal if they are identical copies of a shared
5252    RTX or if they are both registers with the same register number
5253    and mode.  */
5254 
5255 #define COMBINE_RTX_EQUAL_P(X,Y)			\
5256   ((X) == (Y)						\
5257    || (REG_P (X) && REG_P (Y)	\
5258        && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5259 
5260   /* Do not substitute into clobbers of regs -- this will never result in
5261      valid RTL.  */
5262   if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5263     return x;
5264 
5265   if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5266     {
5267       n_occurrences++;
5268       return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5269     }
5270 
5271   /* If X and FROM are the same register but different modes, they
5272      will not have been seen as equal above.  However, the log links code
5273      will make a LOG_LINKS entry for that case.  If we do nothing, we
5274      will try to rerecognize our original insn and, when it succeeds,
5275      we will delete the feeding insn, which is incorrect.
5276 
5277      So force this insn not to match in this (rare) case.  */
5278   if (! in_dest && code == REG && REG_P (from)
5279       && reg_overlap_mentioned_p (x, from))
5280     return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5281 
5282   /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5283      of which may contain things that can be combined.  */
5284   if (code != MEM && code != LO_SUM && OBJECT_P (x))
5285     return x;
5286 
5287   /* It is possible to have a subexpression appear twice in the insn.
5288      Suppose that FROM is a register that appears within TO.
5289      Then, after that subexpression has been scanned once by `subst',
5290      the second time it is scanned, TO may be found.  If we were
5291      to scan TO here, we would find FROM within it and create a
5292      self-referent rtl structure which is completely wrong.  */
5293   if (COMBINE_RTX_EQUAL_P (x, to))
5294     return to;
5295 
5296   /* Parallel asm_operands need special attention because all of the
5297      inputs are shared across the arms.  Furthermore, unsharing the
5298      rtl results in recognition failures.  Failure to handle this case
5299      specially can result in circular rtl.
5300 
5301      Solve this by doing a normal pass across the first entry of the
5302      parallel, and only processing the SET_DESTs of the subsequent
5303      entries.  Ug.  */
5304 
5305   if (code == PARALLEL
5306       && GET_CODE (XVECEXP (x, 0, 0)) == SET
5307       && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5308     {
5309       new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5310 
5311       /* If this substitution failed, this whole thing fails.  */
5312       if (GET_CODE (new_rtx) == CLOBBER
5313 	  && XEXP (new_rtx, 0) == const0_rtx)
5314 	return new_rtx;
5315 
5316       SUBST (XVECEXP (x, 0, 0), new_rtx);
5317 
5318       for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5319 	{
5320 	  rtx dest = SET_DEST (XVECEXP (x, 0, i));
5321 
5322 	  if (!REG_P (dest)
5323 	      && GET_CODE (dest) != CC0
5324 	      && GET_CODE (dest) != PC)
5325 	    {
5326 	      new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5327 
5328 	      /* If this substitution failed, this whole thing fails.  */
5329 	      if (GET_CODE (new_rtx) == CLOBBER
5330 		  && XEXP (new_rtx, 0) == const0_rtx)
5331 		return new_rtx;
5332 
5333 	      SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5334 	    }
5335 	}
5336     }
5337   else
5338     {
5339       len = GET_RTX_LENGTH (code);
5340       fmt = GET_RTX_FORMAT (code);
5341 
5342       /* We don't need to process a SET_DEST that is a register, CC0,
5343 	 or PC, so set up to skip this common case.  All other cases
5344 	 where we want to suppress replacing something inside a
5345 	 SET_SRC are handled via the IN_DEST operand.  */
5346       if (code == SET
5347 	  && (REG_P (SET_DEST (x))
5348 	      || GET_CODE (SET_DEST (x)) == CC0
5349 	      || GET_CODE (SET_DEST (x)) == PC))
5350 	fmt = "ie";
5351 
5352       /* Trying to simplify the operands of a widening MULT is not likely
5353 	 to create RTL matching a machine insn.  */
5354       if (code == MULT
5355 	  && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5356 	      || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5357 	  && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5358 	      || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5359 	  && REG_P (XEXP (XEXP (x, 0), 0))
5360 	  && REG_P (XEXP (XEXP (x, 1), 0))
5361 	  && from == to)
5362 	return x;
5363 
5364 
5365       /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5366 	 constant.  */
5367       if (fmt[0] == 'e')
5368 	op0_mode = GET_MODE (XEXP (x, 0));
5369 
5370       for (i = 0; i < len; i++)
5371 	{
5372 	  if (fmt[i] == 'E')
5373 	    {
5374 	      int j;
5375 	      for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5376 		{
5377 		  if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5378 		    {
5379 		      new_rtx = (unique_copy && n_occurrences
5380 			     ? copy_rtx (to) : to);
5381 		      n_occurrences++;
5382 		    }
5383 		  else
5384 		    {
5385 		      new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5386 				       unique_copy);
5387 
5388 		      /* If this substitution failed, this whole thing
5389 			 fails.  */
5390 		      if (GET_CODE (new_rtx) == CLOBBER
5391 			  && XEXP (new_rtx, 0) == const0_rtx)
5392 			return new_rtx;
5393 		    }
5394 
5395 		  SUBST (XVECEXP (x, i, j), new_rtx);
5396 		}
5397 	    }
5398 	  else if (fmt[i] == 'e')
5399 	    {
5400 	      /* If this is a register being set, ignore it.  */
5401 	      new_rtx = XEXP (x, i);
5402 	      if (in_dest
5403 		  && i == 0
5404 		  && (((code == SUBREG || code == ZERO_EXTRACT)
5405 		       && REG_P (new_rtx))
5406 		      || code == STRICT_LOW_PART))
5407 		;
5408 
5409 	      else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5410 		{
5411 		  /* In general, don't install a subreg involving two
5412 		     modes not tieable.  It can worsen register
5413 		     allocation, and can even make invalid reload
5414 		     insns, since the reg inside may need to be copied
5415 		     from in the outside mode, and that may be invalid
5416 		     if it is an fp reg copied in integer mode.
5417 
5418 		     We allow two exceptions to this: It is valid if
5419 		     it is inside another SUBREG and the mode of that
5420 		     SUBREG and the mode of the inside of TO is
5421 		     tieable and it is valid if X is a SET that copies
5422 		     FROM to CC0.  */
5423 
5424 		  if (GET_CODE (to) == SUBREG
5425 		      && ! MODES_TIEABLE_P (GET_MODE (to),
5426 					    GET_MODE (SUBREG_REG (to)))
5427 		      && ! (code == SUBREG
5428 			    && MODES_TIEABLE_P (GET_MODE (x),
5429 						GET_MODE (SUBREG_REG (to))))
5430 		      && (!HAVE_cc0
5431 			  || (! (code == SET
5432 				 && i == 1
5433 				 && XEXP (x, 0) == cc0_rtx))))
5434 		    return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5435 
5436 		  if (code == SUBREG
5437 		      && REG_P (to)
5438 		      && REGNO (to) < FIRST_PSEUDO_REGISTER
5439 		      && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5440 						SUBREG_BYTE (x),
5441 						GET_MODE (x)) < 0)
5442 		    return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5443 
5444 		  new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5445 		  n_occurrences++;
5446 		}
5447 	      else
5448 		/* If we are in a SET_DEST, suppress most cases unless we
5449 		   have gone inside a MEM, in which case we want to
5450 		   simplify the address.  We assume here that things that
5451 		   are actually part of the destination have their inner
5452 		   parts in the first expression.  This is true for SUBREG,
5453 		   STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5454 		   things aside from REG and MEM that should appear in a
5455 		   SET_DEST.  */
5456 		new_rtx = subst (XEXP (x, i), from, to,
5457 			     (((in_dest
5458 				&& (code == SUBREG || code == STRICT_LOW_PART
5459 				    || code == ZERO_EXTRACT))
5460 			       || code == SET)
5461 			      && i == 0),
5462 				 code == IF_THEN_ELSE && i == 0,
5463 				 unique_copy);
5464 
5465 	      /* If we found that we will have to reject this combination,
5466 		 indicate that by returning the CLOBBER ourselves, rather than
5467 		 an expression containing it.  This will speed things up as
5468 		 well as prevent accidents where two CLOBBERs are considered
5469 		 to be equal, thus producing an incorrect simplification.  */
5470 
5471 	      if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5472 		return new_rtx;
5473 
5474 	      if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5475 		{
5476 		  machine_mode mode = GET_MODE (x);
5477 
5478 		  x = simplify_subreg (GET_MODE (x), new_rtx,
5479 				       GET_MODE (SUBREG_REG (x)),
5480 				       SUBREG_BYTE (x));
5481 		  if (! x)
5482 		    x = gen_rtx_CLOBBER (mode, const0_rtx);
5483 		}
5484 	      else if (CONST_SCALAR_INT_P (new_rtx)
5485 		       && (GET_CODE (x) == ZERO_EXTEND
5486 			   || GET_CODE (x) == FLOAT
5487 			   || GET_CODE (x) == UNSIGNED_FLOAT))
5488 		{
5489 		  x = simplify_unary_operation (GET_CODE (x), GET_MODE (x),
5490 						new_rtx,
5491 						GET_MODE (XEXP (x, 0)));
5492 		  if (!x)
5493 		    return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5494 		}
5495 	      else
5496 		SUBST (XEXP (x, i), new_rtx);
5497 	    }
5498 	}
5499     }
5500 
5501   /* Check if we are loading something from the constant pool via float
5502      extension; in this case we would undo compress_float_constant
5503      optimization and degenerate constant load to an immediate value.  */
5504   if (GET_CODE (x) == FLOAT_EXTEND
5505       && MEM_P (XEXP (x, 0))
5506       && MEM_READONLY_P (XEXP (x, 0)))
5507     {
5508       rtx tmp = avoid_constant_pool_reference (x);
5509       if (x != tmp)
5510         return x;
5511     }
5512 
5513   /* Try to simplify X.  If the simplification changed the code, it is likely
5514      that further simplification will help, so loop, but limit the number
5515      of repetitions that will be performed.  */
5516 
5517   for (i = 0; i < 4; i++)
5518     {
5519       /* If X is sufficiently simple, don't bother trying to do anything
5520 	 with it.  */
5521       if (code != CONST_INT && code != REG && code != CLOBBER)
5522 	x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5523 
5524       if (GET_CODE (x) == code)
5525 	break;
5526 
5527       code = GET_CODE (x);
5528 
5529       /* We no longer know the original mode of operand 0 since we
5530 	 have changed the form of X)  */
5531       op0_mode = VOIDmode;
5532     }
5533 
5534   return x;
5535 }
5536 
5537 /* If X is a commutative operation whose operands are not in the canonical
5538    order, use substitutions to swap them.  */
5539 
5540 static void
5541 maybe_swap_commutative_operands (rtx x)
5542 {
5543   if (COMMUTATIVE_ARITH_P (x)
5544       && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5545     {
5546       rtx temp = XEXP (x, 0);
5547       SUBST (XEXP (x, 0), XEXP (x, 1));
5548       SUBST (XEXP (x, 1), temp);
5549     }
5550 }
5551 
5552 /* Simplify X, a piece of RTL.  We just operate on the expression at the
5553    outer level; call `subst' to simplify recursively.  Return the new
5554    expression.
5555 
5556    OP0_MODE is the original mode of XEXP (x, 0).  IN_DEST is nonzero
5557    if we are inside a SET_DEST.  IN_COND is nonzero if we are at the top level
5558    of a condition.  */
5559 
5560 static rtx
5561 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5562 		      int in_cond)
5563 {
5564   enum rtx_code code = GET_CODE (x);
5565   machine_mode mode = GET_MODE (x);
5566   rtx temp;
5567   int i;
5568 
5569   /* If this is a commutative operation, put a constant last and a complex
5570      expression first.  We don't need to do this for comparisons here.  */
5571   maybe_swap_commutative_operands (x);
5572 
5573   /* Try to fold this expression in case we have constants that weren't
5574      present before.  */
5575   temp = 0;
5576   switch (GET_RTX_CLASS (code))
5577     {
5578     case RTX_UNARY:
5579       if (op0_mode == VOIDmode)
5580 	op0_mode = GET_MODE (XEXP (x, 0));
5581       temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5582       break;
5583     case RTX_COMPARE:
5584     case RTX_COMM_COMPARE:
5585       {
5586 	machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5587 	if (cmp_mode == VOIDmode)
5588 	  {
5589 	    cmp_mode = GET_MODE (XEXP (x, 1));
5590 	    if (cmp_mode == VOIDmode)
5591 	      cmp_mode = op0_mode;
5592 	  }
5593 	temp = simplify_relational_operation (code, mode, cmp_mode,
5594 					      XEXP (x, 0), XEXP (x, 1));
5595       }
5596       break;
5597     case RTX_COMM_ARITH:
5598     case RTX_BIN_ARITH:
5599       temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5600       break;
5601     case RTX_BITFIELD_OPS:
5602     case RTX_TERNARY:
5603       temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5604 					 XEXP (x, 1), XEXP (x, 2));
5605       break;
5606     default:
5607       break;
5608     }
5609 
5610   if (temp)
5611     {
5612       x = temp;
5613       code = GET_CODE (temp);
5614       op0_mode = VOIDmode;
5615       mode = GET_MODE (temp);
5616     }
5617 
5618   /* If this is a simple operation applied to an IF_THEN_ELSE, try
5619      applying it to the arms of the IF_THEN_ELSE.  This often simplifies
5620      things.  Check for cases where both arms are testing the same
5621      condition.
5622 
5623      Don't do anything if all operands are very simple.  */
5624 
5625   if ((BINARY_P (x)
5626        && ((!OBJECT_P (XEXP (x, 0))
5627 	    && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5628 		  && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5629 	   || (!OBJECT_P (XEXP (x, 1))
5630 	       && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5631 		     && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5632       || (UNARY_P (x)
5633 	  && (!OBJECT_P (XEXP (x, 0))
5634 	       && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5635 		     && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5636     {
5637       rtx cond, true_rtx, false_rtx;
5638 
5639       cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5640       if (cond != 0
5641 	  /* If everything is a comparison, what we have is highly unlikely
5642 	     to be simpler, so don't use it.  */
5643 	  && ! (COMPARISON_P (x)
5644 		&& (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx)))
5645 	  /* Similarly, if we end up with one of the expressions the same
5646 	     as the original, it is certainly not simpler.  */
5647 	  && ! rtx_equal_p (x, true_rtx)
5648 	  && ! rtx_equal_p (x, false_rtx))
5649 	{
5650 	  rtx cop1 = const0_rtx;
5651 	  enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5652 
5653 	  if (cond_code == NE && COMPARISON_P (cond))
5654 	    return x;
5655 
5656 	  /* Simplify the alternative arms; this may collapse the true and
5657 	     false arms to store-flag values.  Be careful to use copy_rtx
5658 	     here since true_rtx or false_rtx might share RTL with x as a
5659 	     result of the if_then_else_cond call above.  */
5660 	  true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5661 	  false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5662 
5663 	  /* If true_rtx and false_rtx are not general_operands, an if_then_else
5664 	     is unlikely to be simpler.  */
5665 	  if (general_operand (true_rtx, VOIDmode)
5666 	      && general_operand (false_rtx, VOIDmode))
5667 	    {
5668 	      enum rtx_code reversed;
5669 
5670 	      /* Restarting if we generate a store-flag expression will cause
5671 		 us to loop.  Just drop through in this case.  */
5672 
5673 	      /* If the result values are STORE_FLAG_VALUE and zero, we can
5674 		 just make the comparison operation.  */
5675 	      if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5676 		x = simplify_gen_relational (cond_code, mode, VOIDmode,
5677 					     cond, cop1);
5678 	      else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5679 		       && ((reversed = reversed_comparison_code_parts
5680 					(cond_code, cond, cop1, NULL))
5681 			   != UNKNOWN))
5682 		x = simplify_gen_relational (reversed, mode, VOIDmode,
5683 					     cond, cop1);
5684 
5685 	      /* Likewise, we can make the negate of a comparison operation
5686 		 if the result values are - STORE_FLAG_VALUE and zero.  */
5687 	      else if (CONST_INT_P (true_rtx)
5688 		       && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5689 		       && false_rtx == const0_rtx)
5690 		x = simplify_gen_unary (NEG, mode,
5691 					simplify_gen_relational (cond_code,
5692 								 mode, VOIDmode,
5693 								 cond, cop1),
5694 					mode);
5695 	      else if (CONST_INT_P (false_rtx)
5696 		       && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5697 		       && true_rtx == const0_rtx
5698 		       && ((reversed = reversed_comparison_code_parts
5699 					(cond_code, cond, cop1, NULL))
5700 			   != UNKNOWN))
5701 		x = simplify_gen_unary (NEG, mode,
5702 					simplify_gen_relational (reversed,
5703 								 mode, VOIDmode,
5704 								 cond, cop1),
5705 					mode);
5706 	      else
5707 		return gen_rtx_IF_THEN_ELSE (mode,
5708 					     simplify_gen_relational (cond_code,
5709 								      mode,
5710 								      VOIDmode,
5711 								      cond,
5712 								      cop1),
5713 					     true_rtx, false_rtx);
5714 
5715 	      code = GET_CODE (x);
5716 	      op0_mode = VOIDmode;
5717 	    }
5718 	}
5719     }
5720 
5721   /* First see if we can apply the inverse distributive law.  */
5722   if (code == PLUS || code == MINUS
5723       || code == AND || code == IOR || code == XOR)
5724     {
5725       x = apply_distributive_law (x);
5726       code = GET_CODE (x);
5727       op0_mode = VOIDmode;
5728     }
5729 
5730   /* If CODE is an associative operation not otherwise handled, see if we
5731      can associate some operands.  This can win if they are constants or
5732      if they are logically related (i.e. (a & b) & a).  */
5733   if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5734        || code == AND || code == IOR || code == XOR
5735        || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5736       && ((INTEGRAL_MODE_P (mode) && code != DIV)
5737 	  || (flag_associative_math && FLOAT_MODE_P (mode))))
5738     {
5739       if (GET_CODE (XEXP (x, 0)) == code)
5740 	{
5741 	  rtx other = XEXP (XEXP (x, 0), 0);
5742 	  rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5743 	  rtx inner_op1 = XEXP (x, 1);
5744 	  rtx inner;
5745 
5746 	  /* Make sure we pass the constant operand if any as the second
5747 	     one if this is a commutative operation.  */
5748 	  if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5749 	    std::swap (inner_op0, inner_op1);
5750 	  inner = simplify_binary_operation (code == MINUS ? PLUS
5751 					     : code == DIV ? MULT
5752 					     : code,
5753 					     mode, inner_op0, inner_op1);
5754 
5755 	  /* For commutative operations, try the other pair if that one
5756 	     didn't simplify.  */
5757 	  if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5758 	    {
5759 	      other = XEXP (XEXP (x, 0), 1);
5760 	      inner = simplify_binary_operation (code, mode,
5761 						 XEXP (XEXP (x, 0), 0),
5762 						 XEXP (x, 1));
5763 	    }
5764 
5765 	  if (inner)
5766 	    return simplify_gen_binary (code, mode, other, inner);
5767 	}
5768     }
5769 
5770   /* A little bit of algebraic simplification here.  */
5771   switch (code)
5772     {
5773     case MEM:
5774       /* Ensure that our address has any ASHIFTs converted to MULT in case
5775 	 address-recognizing predicates are called later.  */
5776       temp = make_compound_operation (XEXP (x, 0), MEM);
5777       SUBST (XEXP (x, 0), temp);
5778       break;
5779 
5780     case SUBREG:
5781       if (op0_mode == VOIDmode)
5782 	op0_mode = GET_MODE (SUBREG_REG (x));
5783 
5784       /* See if this can be moved to simplify_subreg.  */
5785       if (CONSTANT_P (SUBREG_REG (x))
5786 	  && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5787 	     /* Don't call gen_lowpart if the inner mode
5788 		is VOIDmode and we cannot simplify it, as SUBREG without
5789 		inner mode is invalid.  */
5790 	  && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5791 	      || gen_lowpart_common (mode, SUBREG_REG (x))))
5792 	return gen_lowpart (mode, SUBREG_REG (x));
5793 
5794       if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5795 	break;
5796       {
5797 	rtx temp;
5798 	temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5799 				SUBREG_BYTE (x));
5800 	if (temp)
5801 	  return temp;
5802 
5803 	/* If op is known to have all lower bits zero, the result is zero.  */
5804 	if (!in_dest
5805 	    && SCALAR_INT_MODE_P (mode)
5806 	    && SCALAR_INT_MODE_P (op0_mode)
5807 	    && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5808 	    && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5809 	    && HWI_COMPUTABLE_MODE_P (op0_mode)
5810 	    && (nonzero_bits (SUBREG_REG (x), op0_mode)
5811 		& GET_MODE_MASK (mode)) == 0)
5812 	  return CONST0_RTX (mode);
5813       }
5814 
5815       /* Don't change the mode of the MEM if that would change the meaning
5816 	 of the address.  */
5817       if (MEM_P (SUBREG_REG (x))
5818 	  && (MEM_VOLATILE_P (SUBREG_REG (x))
5819 	      || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5820 					   MEM_ADDR_SPACE (SUBREG_REG (x)))))
5821 	return gen_rtx_CLOBBER (mode, const0_rtx);
5822 
5823       /* Note that we cannot do any narrowing for non-constants since
5824 	 we might have been counting on using the fact that some bits were
5825 	 zero.  We now do this in the SET.  */
5826 
5827       break;
5828 
5829     case NEG:
5830       temp = expand_compound_operation (XEXP (x, 0));
5831 
5832       /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5833 	 replaced by (lshiftrt X C).  This will convert
5834 	 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y).  */
5835 
5836       if (GET_CODE (temp) == ASHIFTRT
5837 	  && CONST_INT_P (XEXP (temp, 1))
5838 	  && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5839 	return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5840 				     INTVAL (XEXP (temp, 1)));
5841 
5842       /* If X has only a single bit that might be nonzero, say, bit I, convert
5843 	 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5844 	 MODE minus 1.  This will convert (neg (zero_extract X 1 Y)) to
5845 	 (sign_extract X 1 Y).  But only do this if TEMP isn't a register
5846 	 or a SUBREG of one since we'd be making the expression more
5847 	 complex if it was just a register.  */
5848 
5849       if (!REG_P (temp)
5850 	  && ! (GET_CODE (temp) == SUBREG
5851 		&& REG_P (SUBREG_REG (temp)))
5852 	  && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5853 	{
5854 	  rtx temp1 = simplify_shift_const
5855 	    (NULL_RTX, ASHIFTRT, mode,
5856 	     simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5857 				   GET_MODE_PRECISION (mode) - 1 - i),
5858 	     GET_MODE_PRECISION (mode) - 1 - i);
5859 
5860 	  /* If all we did was surround TEMP with the two shifts, we
5861 	     haven't improved anything, so don't use it.  Otherwise,
5862 	     we are better off with TEMP1.  */
5863 	  if (GET_CODE (temp1) != ASHIFTRT
5864 	      || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5865 	      || XEXP (XEXP (temp1, 0), 0) != temp)
5866 	    return temp1;
5867 	}
5868       break;
5869 
5870     case TRUNCATE:
5871       /* We can't handle truncation to a partial integer mode here
5872 	 because we don't know the real bitsize of the partial
5873 	 integer mode.  */
5874       if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5875 	break;
5876 
5877       if (HWI_COMPUTABLE_MODE_P (mode))
5878 	SUBST (XEXP (x, 0),
5879 	       force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5880 			      GET_MODE_MASK (mode), 0));
5881 
5882       /* We can truncate a constant value and return it.  */
5883       if (CONST_INT_P (XEXP (x, 0)))
5884 	return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5885 
5886       /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5887 	 whose value is a comparison can be replaced with a subreg if
5888 	 STORE_FLAG_VALUE permits.  */
5889       if (HWI_COMPUTABLE_MODE_P (mode)
5890 	  && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5891 	  && (temp = get_last_value (XEXP (x, 0)))
5892 	  && COMPARISON_P (temp))
5893 	return gen_lowpart (mode, XEXP (x, 0));
5894       break;
5895 
5896     case CONST:
5897       /* (const (const X)) can become (const X).  Do it this way rather than
5898 	 returning the inner CONST since CONST can be shared with a
5899 	 REG_EQUAL note.  */
5900       if (GET_CODE (XEXP (x, 0)) == CONST)
5901 	SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5902       break;
5903 
5904     case LO_SUM:
5905       /* Convert (lo_sum (high FOO) FOO) to FOO.  This is necessary so we
5906 	 can add in an offset.  find_split_point will split this address up
5907 	 again if it doesn't match.  */
5908       if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5909 	  && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5910 	return XEXP (x, 1);
5911       break;
5912 
5913     case PLUS:
5914       /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5915 	 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5916 	 bit-field and can be replaced by either a sign_extend or a
5917 	 sign_extract.  The `and' may be a zero_extend and the two
5918 	 <c>, -<c> constants may be reversed.  */
5919       if (GET_CODE (XEXP (x, 0)) == XOR
5920 	  && CONST_INT_P (XEXP (x, 1))
5921 	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5922 	  && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5923 	  && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5924 	      || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5925 	  && HWI_COMPUTABLE_MODE_P (mode)
5926 	  && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5927 	       && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5928 	       && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5929 		   == (HOST_WIDE_INT_1U << (i + 1)) - 1))
5930 	      || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5931 		  && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5932 		      == (unsigned int) i + 1))))
5933 	return simplify_shift_const
5934 	  (NULL_RTX, ASHIFTRT, mode,
5935 	   simplify_shift_const (NULL_RTX, ASHIFT, mode,
5936 				 XEXP (XEXP (XEXP (x, 0), 0), 0),
5937 				 GET_MODE_PRECISION (mode) - (i + 1)),
5938 	   GET_MODE_PRECISION (mode) - (i + 1));
5939 
5940       /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5941 	 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5942 	 the bitsize of the mode - 1.  This allows simplification of
5943 	 "a = (b & 8) == 0;"  */
5944       if (XEXP (x, 1) == constm1_rtx
5945 	  && !REG_P (XEXP (x, 0))
5946 	  && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5947 		&& REG_P (SUBREG_REG (XEXP (x, 0))))
5948 	  && nonzero_bits (XEXP (x, 0), mode) == 1)
5949 	return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5950 	   simplify_shift_const (NULL_RTX, ASHIFT, mode,
5951 				 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5952 				 GET_MODE_PRECISION (mode) - 1),
5953 	   GET_MODE_PRECISION (mode) - 1);
5954 
5955       /* If we are adding two things that have no bits in common, convert
5956 	 the addition into an IOR.  This will often be further simplified,
5957 	 for example in cases like ((a & 1) + (a & 2)), which can
5958 	 become a & 3.  */
5959 
5960       if (HWI_COMPUTABLE_MODE_P (mode)
5961 	  && (nonzero_bits (XEXP (x, 0), mode)
5962 	      & nonzero_bits (XEXP (x, 1), mode)) == 0)
5963 	{
5964 	  /* Try to simplify the expression further.  */
5965 	  rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5966 	  temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5967 
5968 	  /* If we could, great.  If not, do not go ahead with the IOR
5969 	     replacement, since PLUS appears in many special purpose
5970 	     address arithmetic instructions.  */
5971 	  if (GET_CODE (temp) != CLOBBER
5972 	      && (GET_CODE (temp) != IOR
5973 		  || ((XEXP (temp, 0) != XEXP (x, 0)
5974 		       || XEXP (temp, 1) != XEXP (x, 1))
5975 		      && (XEXP (temp, 0) != XEXP (x, 1)
5976 			  || XEXP (temp, 1) != XEXP (x, 0)))))
5977 	    return temp;
5978 	}
5979 
5980       /* Canonicalize x + x into x << 1.  */
5981       if (GET_MODE_CLASS (mode) == MODE_INT
5982 	  && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
5983 	  && !side_effects_p (XEXP (x, 0)))
5984 	return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
5985 
5986       break;
5987 
5988     case MINUS:
5989       /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5990 	 (and <foo> (const_int pow2-1))  */
5991       if (GET_CODE (XEXP (x, 1)) == AND
5992 	  && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5993 	  && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
5994 	  && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5995 	return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5996 				       -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5997       break;
5998 
5999     case MULT:
6000       /* If we have (mult (plus A B) C), apply the distributive law and then
6001 	 the inverse distributive law to see if things simplify.  This
6002 	 occurs mostly in addresses, often when unrolling loops.  */
6003 
6004       if (GET_CODE (XEXP (x, 0)) == PLUS)
6005 	{
6006 	  rtx result = distribute_and_simplify_rtx (x, 0);
6007 	  if (result)
6008 	    return result;
6009 	}
6010 
6011       /* Try simplify a*(b/c) as (a*b)/c.  */
6012       if (FLOAT_MODE_P (mode) && flag_associative_math
6013 	  && GET_CODE (XEXP (x, 0)) == DIV)
6014 	{
6015 	  rtx tem = simplify_binary_operation (MULT, mode,
6016 					       XEXP (XEXP (x, 0), 0),
6017 					       XEXP (x, 1));
6018 	  if (tem)
6019 	    return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6020 	}
6021       break;
6022 
6023     case UDIV:
6024       /* If this is a divide by a power of two, treat it as a shift if
6025 	 its first operand is a shift.  */
6026       if (CONST_INT_P (XEXP (x, 1))
6027 	  && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6028 	  && (GET_CODE (XEXP (x, 0)) == ASHIFT
6029 	      || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6030 	      || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6031 	      || GET_CODE (XEXP (x, 0)) == ROTATE
6032 	      || GET_CODE (XEXP (x, 0)) == ROTATERT))
6033 	return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
6034       break;
6035 
6036     case EQ:  case NE:
6037     case GT:  case GTU:  case GE:  case GEU:
6038     case LT:  case LTU:  case LE:  case LEU:
6039     case UNEQ:  case LTGT:
6040     case UNGT:  case UNGE:
6041     case UNLT:  case UNLE:
6042     case UNORDERED: case ORDERED:
6043       /* If the first operand is a condition code, we can't do anything
6044 	 with it.  */
6045       if (GET_CODE (XEXP (x, 0)) == COMPARE
6046 	  || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6047 	      && ! CC0_P (XEXP (x, 0))))
6048 	{
6049 	  rtx op0 = XEXP (x, 0);
6050 	  rtx op1 = XEXP (x, 1);
6051 	  enum rtx_code new_code;
6052 
6053 	  if (GET_CODE (op0) == COMPARE)
6054 	    op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6055 
6056 	  /* Simplify our comparison, if possible.  */
6057 	  new_code = simplify_comparison (code, &op0, &op1);
6058 
6059 	  /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6060 	     if only the low-order bit is possibly nonzero in X (such as when
6061 	     X is a ZERO_EXTRACT of one bit).  Similarly, we can convert EQ to
6062 	     (xor X 1) or (minus 1 X); we use the former.  Finally, if X is
6063 	     known to be either 0 or -1, NE becomes a NEG and EQ becomes
6064 	     (plus X 1).
6065 
6066 	     Remove any ZERO_EXTRACT we made when thinking this was a
6067 	     comparison.  It may now be simpler to use, e.g., an AND.  If a
6068 	     ZERO_EXTRACT is indeed appropriate, it will be placed back by
6069 	     the call to make_compound_operation in the SET case.
6070 
6071 	     Don't apply these optimizations if the caller would
6072 	     prefer a comparison rather than a value.
6073 	     E.g., for the condition in an IF_THEN_ELSE most targets need
6074 	     an explicit comparison.  */
6075 
6076 	  if (in_cond)
6077 	    ;
6078 
6079 	  else if (STORE_FLAG_VALUE == 1
6080 	      && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6081 	      && op1 == const0_rtx
6082 	      && mode == GET_MODE (op0)
6083 	      && nonzero_bits (op0, mode) == 1)
6084 	    return gen_lowpart (mode,
6085 				expand_compound_operation (op0));
6086 
6087 	  else if (STORE_FLAG_VALUE == 1
6088 		   && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6089 		   && op1 == const0_rtx
6090 		   && mode == GET_MODE (op0)
6091 		   && (num_sign_bit_copies (op0, mode)
6092 		       == GET_MODE_PRECISION (mode)))
6093 	    {
6094 	      op0 = expand_compound_operation (op0);
6095 	      return simplify_gen_unary (NEG, mode,
6096 					 gen_lowpart (mode, op0),
6097 					 mode);
6098 	    }
6099 
6100 	  else if (STORE_FLAG_VALUE == 1
6101 		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6102 		   && op1 == const0_rtx
6103 		   && mode == GET_MODE (op0)
6104 		   && nonzero_bits (op0, mode) == 1)
6105 	    {
6106 	      op0 = expand_compound_operation (op0);
6107 	      return simplify_gen_binary (XOR, mode,
6108 					  gen_lowpart (mode, op0),
6109 					  const1_rtx);
6110 	    }
6111 
6112 	  else if (STORE_FLAG_VALUE == 1
6113 		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6114 		   && op1 == const0_rtx
6115 		   && mode == GET_MODE (op0)
6116 		   && (num_sign_bit_copies (op0, mode)
6117 		       == GET_MODE_PRECISION (mode)))
6118 	    {
6119 	      op0 = expand_compound_operation (op0);
6120 	      return plus_constant (mode, gen_lowpart (mode, op0), 1);
6121 	    }
6122 
6123 	  /* If STORE_FLAG_VALUE is -1, we have cases similar to
6124 	     those above.  */
6125 	  if (in_cond)
6126 	    ;
6127 
6128 	  else if (STORE_FLAG_VALUE == -1
6129 		   && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6130 		   && op1 == const0_rtx
6131 		   && mode == GET_MODE (op0)
6132 		   && (num_sign_bit_copies (op0, mode)
6133 		       == GET_MODE_PRECISION (mode)))
6134 	    return gen_lowpart (mode,
6135 				expand_compound_operation (op0));
6136 
6137 	  else if (STORE_FLAG_VALUE == -1
6138 		   && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6139 		   && op1 == const0_rtx
6140 		   && mode == GET_MODE (op0)
6141 		   && nonzero_bits (op0, mode) == 1)
6142 	    {
6143 	      op0 = expand_compound_operation (op0);
6144 	      return simplify_gen_unary (NEG, mode,
6145 					 gen_lowpart (mode, op0),
6146 					 mode);
6147 	    }
6148 
6149 	  else if (STORE_FLAG_VALUE == -1
6150 		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6151 		   && op1 == const0_rtx
6152 		   && mode == GET_MODE (op0)
6153 		   && (num_sign_bit_copies (op0, mode)
6154 		       == GET_MODE_PRECISION (mode)))
6155 	    {
6156 	      op0 = expand_compound_operation (op0);
6157 	      return simplify_gen_unary (NOT, mode,
6158 					 gen_lowpart (mode, op0),
6159 					 mode);
6160 	    }
6161 
6162 	  /* If X is 0/1, (eq X 0) is X-1.  */
6163 	  else if (STORE_FLAG_VALUE == -1
6164 		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6165 		   && op1 == const0_rtx
6166 		   && mode == GET_MODE (op0)
6167 		   && nonzero_bits (op0, mode) == 1)
6168 	    {
6169 	      op0 = expand_compound_operation (op0);
6170 	      return plus_constant (mode, gen_lowpart (mode, op0), -1);
6171 	    }
6172 
6173 	  /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6174 	     one bit that might be nonzero, we can convert (ne x 0) to
6175 	     (ashift x c) where C puts the bit in the sign bit.  Remove any
6176 	     AND with STORE_FLAG_VALUE when we are done, since we are only
6177 	     going to test the sign bit.  */
6178 	  if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6179 	      && HWI_COMPUTABLE_MODE_P (mode)
6180 	      && val_signbit_p (mode, STORE_FLAG_VALUE)
6181 	      && op1 == const0_rtx
6182 	      && mode == GET_MODE (op0)
6183 	      && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
6184 	    {
6185 	      x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6186 					expand_compound_operation (op0),
6187 					GET_MODE_PRECISION (mode) - 1 - i);
6188 	      if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6189 		return XEXP (x, 0);
6190 	      else
6191 		return x;
6192 	    }
6193 
6194 	  /* If the code changed, return a whole new comparison.
6195 	     We also need to avoid using SUBST in cases where
6196 	     simplify_comparison has widened a comparison with a CONST_INT,
6197 	     since in that case the wider CONST_INT may fail the sanity
6198 	     checks in do_SUBST.  */
6199 	  if (new_code != code
6200 	      || (CONST_INT_P (op1)
6201 		  && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6202 		  && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6203 	    return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6204 
6205 	  /* Otherwise, keep this operation, but maybe change its operands.
6206 	     This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR).  */
6207 	  SUBST (XEXP (x, 0), op0);
6208 	  SUBST (XEXP (x, 1), op1);
6209 	}
6210       break;
6211 
6212     case IF_THEN_ELSE:
6213       return simplify_if_then_else (x);
6214 
6215     case ZERO_EXTRACT:
6216     case SIGN_EXTRACT:
6217     case ZERO_EXTEND:
6218     case SIGN_EXTEND:
6219       /* If we are processing SET_DEST, we are done.  */
6220       if (in_dest)
6221 	return x;
6222 
6223       return expand_compound_operation (x);
6224 
6225     case SET:
6226       return simplify_set (x);
6227 
6228     case AND:
6229     case IOR:
6230       return simplify_logical (x);
6231 
6232     case ASHIFT:
6233     case LSHIFTRT:
6234     case ASHIFTRT:
6235     case ROTATE:
6236     case ROTATERT:
6237       /* If this is a shift by a constant amount, simplify it.  */
6238       if (CONST_INT_P (XEXP (x, 1)))
6239 	return simplify_shift_const (x, code, mode, XEXP (x, 0),
6240 				     INTVAL (XEXP (x, 1)));
6241 
6242       else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6243 	SUBST (XEXP (x, 1),
6244 	       force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6245 			      (HOST_WIDE_INT_1U
6246 			       << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
6247 			      - 1,
6248 			      0));
6249       break;
6250 
6251     default:
6252       break;
6253     }
6254 
6255   return x;
6256 }
6257 
6258 /* Simplify X, an IF_THEN_ELSE expression.  Return the new expression.  */
6259 
6260 static rtx
6261 simplify_if_then_else (rtx x)
6262 {
6263   machine_mode mode = GET_MODE (x);
6264   rtx cond = XEXP (x, 0);
6265   rtx true_rtx = XEXP (x, 1);
6266   rtx false_rtx = XEXP (x, 2);
6267   enum rtx_code true_code = GET_CODE (cond);
6268   int comparison_p = COMPARISON_P (cond);
6269   rtx temp;
6270   int i;
6271   enum rtx_code false_code;
6272   rtx reversed;
6273 
6274   /* Simplify storing of the truth value.  */
6275   if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6276     return simplify_gen_relational (true_code, mode, VOIDmode,
6277 				    XEXP (cond, 0), XEXP (cond, 1));
6278 
6279   /* Also when the truth value has to be reversed.  */
6280   if (comparison_p
6281       && true_rtx == const0_rtx && false_rtx == const_true_rtx
6282       && (reversed = reversed_comparison (cond, mode)))
6283     return reversed;
6284 
6285   /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6286      in it is being compared against certain values.  Get the true and false
6287      comparisons and see if that says anything about the value of each arm.  */
6288 
6289   if (comparison_p
6290       && ((false_code = reversed_comparison_code (cond, NULL))
6291 	  != UNKNOWN)
6292       && REG_P (XEXP (cond, 0)))
6293     {
6294       HOST_WIDE_INT nzb;
6295       rtx from = XEXP (cond, 0);
6296       rtx true_val = XEXP (cond, 1);
6297       rtx false_val = true_val;
6298       int swapped = 0;
6299 
6300       /* If FALSE_CODE is EQ, swap the codes and arms.  */
6301 
6302       if (false_code == EQ)
6303 	{
6304 	  swapped = 1, true_code = EQ, false_code = NE;
6305 	  std::swap (true_rtx, false_rtx);
6306 	}
6307 
6308       /* If we are comparing against zero and the expression being tested has
6309 	 only a single bit that might be nonzero, that is its value when it is
6310 	 not equal to zero.  Similarly if it is known to be -1 or 0.  */
6311 
6312       if (true_code == EQ && true_val == const0_rtx
6313 	  && pow2p_hwi (nzb = nonzero_bits (from, GET_MODE (from))))
6314 	{
6315 	  false_code = EQ;
6316 	  false_val = gen_int_mode (nzb, GET_MODE (from));
6317 	}
6318       else if (true_code == EQ && true_val == const0_rtx
6319 	       && (num_sign_bit_copies (from, GET_MODE (from))
6320 		   == GET_MODE_PRECISION (GET_MODE (from))))
6321 	{
6322 	  false_code = EQ;
6323 	  false_val = constm1_rtx;
6324 	}
6325 
6326       /* Now simplify an arm if we know the value of the register in the
6327 	 branch and it is used in the arm.  Be careful due to the potential
6328 	 of locally-shared RTL.  */
6329 
6330       if (reg_mentioned_p (from, true_rtx))
6331 	true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6332 				      from, true_val),
6333 			  pc_rtx, pc_rtx, 0, 0, 0);
6334       if (reg_mentioned_p (from, false_rtx))
6335 	false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6336 				       from, false_val),
6337 			   pc_rtx, pc_rtx, 0, 0, 0);
6338 
6339       SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6340       SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6341 
6342       true_rtx = XEXP (x, 1);
6343       false_rtx = XEXP (x, 2);
6344       true_code = GET_CODE (cond);
6345     }
6346 
6347   /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6348      reversed, do so to avoid needing two sets of patterns for
6349      subtract-and-branch insns.  Similarly if we have a constant in the true
6350      arm, the false arm is the same as the first operand of the comparison, or
6351      the false arm is more complicated than the true arm.  */
6352 
6353   if (comparison_p
6354       && reversed_comparison_code (cond, NULL) != UNKNOWN
6355       && (true_rtx == pc_rtx
6356 	  || (CONSTANT_P (true_rtx)
6357 	      && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6358 	  || true_rtx == const0_rtx
6359 	  || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6360 	  || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6361 	      && !OBJECT_P (false_rtx))
6362 	  || reg_mentioned_p (true_rtx, false_rtx)
6363 	  || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6364     {
6365       true_code = reversed_comparison_code (cond, NULL);
6366       SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6367       SUBST (XEXP (x, 1), false_rtx);
6368       SUBST (XEXP (x, 2), true_rtx);
6369 
6370       std::swap (true_rtx, false_rtx);
6371       cond = XEXP (x, 0);
6372 
6373       /* It is possible that the conditional has been simplified out.  */
6374       true_code = GET_CODE (cond);
6375       comparison_p = COMPARISON_P (cond);
6376     }
6377 
6378   /* If the two arms are identical, we don't need the comparison.  */
6379 
6380   if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6381     return true_rtx;
6382 
6383   /* Convert a == b ? b : a to "a".  */
6384   if (true_code == EQ && ! side_effects_p (cond)
6385       && !HONOR_NANS (mode)
6386       && rtx_equal_p (XEXP (cond, 0), false_rtx)
6387       && rtx_equal_p (XEXP (cond, 1), true_rtx))
6388     return false_rtx;
6389   else if (true_code == NE && ! side_effects_p (cond)
6390 	   && !HONOR_NANS (mode)
6391 	   && rtx_equal_p (XEXP (cond, 0), true_rtx)
6392 	   && rtx_equal_p (XEXP (cond, 1), false_rtx))
6393     return true_rtx;
6394 
6395   /* Look for cases where we have (abs x) or (neg (abs X)).  */
6396 
6397   if (GET_MODE_CLASS (mode) == MODE_INT
6398       && comparison_p
6399       && XEXP (cond, 1) == const0_rtx
6400       && GET_CODE (false_rtx) == NEG
6401       && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6402       && rtx_equal_p (true_rtx, XEXP (cond, 0))
6403       && ! side_effects_p (true_rtx))
6404     switch (true_code)
6405       {
6406       case GT:
6407       case GE:
6408 	return simplify_gen_unary (ABS, mode, true_rtx, mode);
6409       case LT:
6410       case LE:
6411 	return
6412 	  simplify_gen_unary (NEG, mode,
6413 			      simplify_gen_unary (ABS, mode, true_rtx, mode),
6414 			      mode);
6415       default:
6416 	break;
6417       }
6418 
6419   /* Look for MIN or MAX.  */
6420 
6421   if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6422       && comparison_p
6423       && rtx_equal_p (XEXP (cond, 0), true_rtx)
6424       && rtx_equal_p (XEXP (cond, 1), false_rtx)
6425       && ! side_effects_p (cond))
6426     switch (true_code)
6427       {
6428       case GE:
6429       case GT:
6430 	return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6431       case LE:
6432       case LT:
6433 	return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6434       case GEU:
6435       case GTU:
6436 	return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6437       case LEU:
6438       case LTU:
6439 	return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6440       default:
6441 	break;
6442       }
6443 
6444   /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6445      second operand is zero, this can be done as (OP Z (mult COND C2)) where
6446      C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6447      SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6448      We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6449      neither 1 or -1, but it isn't worth checking for.  */
6450 
6451   if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6452       && comparison_p
6453       && GET_MODE_CLASS (mode) == MODE_INT
6454       && ! side_effects_p (x))
6455     {
6456       rtx t = make_compound_operation (true_rtx, SET);
6457       rtx f = make_compound_operation (false_rtx, SET);
6458       rtx cond_op0 = XEXP (cond, 0);
6459       rtx cond_op1 = XEXP (cond, 1);
6460       enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6461       machine_mode m = mode;
6462       rtx z = 0, c1 = NULL_RTX;
6463 
6464       if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6465 	   || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6466 	   || GET_CODE (t) == ASHIFT
6467 	   || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6468 	  && rtx_equal_p (XEXP (t, 0), f))
6469 	c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6470 
6471       /* If an identity-zero op is commutative, check whether there
6472 	 would be a match if we swapped the operands.  */
6473       else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6474 		|| GET_CODE (t) == XOR)
6475 	       && rtx_equal_p (XEXP (t, 1), f))
6476 	c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6477       else if (GET_CODE (t) == SIGN_EXTEND
6478 	       && (GET_CODE (XEXP (t, 0)) == PLUS
6479 		   || GET_CODE (XEXP (t, 0)) == MINUS
6480 		   || GET_CODE (XEXP (t, 0)) == IOR
6481 		   || GET_CODE (XEXP (t, 0)) == XOR
6482 		   || GET_CODE (XEXP (t, 0)) == ASHIFT
6483 		   || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6484 		   || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6485 	       && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6486 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6487 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6488 	       && (num_sign_bit_copies (f, GET_MODE (f))
6489 		   > (unsigned int)
6490 		     (GET_MODE_PRECISION (mode)
6491 		      - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6492 	{
6493 	  c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6494 	  extend_op = SIGN_EXTEND;
6495 	  m = GET_MODE (XEXP (t, 0));
6496 	}
6497       else if (GET_CODE (t) == SIGN_EXTEND
6498 	       && (GET_CODE (XEXP (t, 0)) == PLUS
6499 		   || GET_CODE (XEXP (t, 0)) == IOR
6500 		   || GET_CODE (XEXP (t, 0)) == XOR)
6501 	       && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6502 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6503 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6504 	       && (num_sign_bit_copies (f, GET_MODE (f))
6505 		   > (unsigned int)
6506 		     (GET_MODE_PRECISION (mode)
6507 		      - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6508 	{
6509 	  c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6510 	  extend_op = SIGN_EXTEND;
6511 	  m = GET_MODE (XEXP (t, 0));
6512 	}
6513       else if (GET_CODE (t) == ZERO_EXTEND
6514 	       && (GET_CODE (XEXP (t, 0)) == PLUS
6515 		   || GET_CODE (XEXP (t, 0)) == MINUS
6516 		   || GET_CODE (XEXP (t, 0)) == IOR
6517 		   || GET_CODE (XEXP (t, 0)) == XOR
6518 		   || GET_CODE (XEXP (t, 0)) == ASHIFT
6519 		   || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6520 		   || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6521 	       && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6522 	       && HWI_COMPUTABLE_MODE_P (mode)
6523 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6524 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6525 	       && ((nonzero_bits (f, GET_MODE (f))
6526 		    & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6527 		   == 0))
6528 	{
6529 	  c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6530 	  extend_op = ZERO_EXTEND;
6531 	  m = GET_MODE (XEXP (t, 0));
6532 	}
6533       else if (GET_CODE (t) == ZERO_EXTEND
6534 	       && (GET_CODE (XEXP (t, 0)) == PLUS
6535 		   || GET_CODE (XEXP (t, 0)) == IOR
6536 		   || GET_CODE (XEXP (t, 0)) == XOR)
6537 	       && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6538 	       && HWI_COMPUTABLE_MODE_P (mode)
6539 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6540 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6541 	       && ((nonzero_bits (f, GET_MODE (f))
6542 		    & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6543 		   == 0))
6544 	{
6545 	  c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6546 	  extend_op = ZERO_EXTEND;
6547 	  m = GET_MODE (XEXP (t, 0));
6548 	}
6549 
6550       if (z)
6551 	{
6552 	  machine_mode cm = m;
6553 	  if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6554 	      && GET_MODE (c1) != VOIDmode)
6555 	    cm = GET_MODE (c1);
6556 	  temp = subst (simplify_gen_relational (true_code, cm, VOIDmode,
6557 						 cond_op0, cond_op1),
6558 			pc_rtx, pc_rtx, 0, 0, 0);
6559 	  temp = simplify_gen_binary (MULT, cm, temp,
6560 				      simplify_gen_binary (MULT, cm, c1,
6561 							   const_true_rtx));
6562 	  temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6563 	  temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6564 
6565 	  if (extend_op != UNKNOWN)
6566 	    temp = simplify_gen_unary (extend_op, mode, temp, m);
6567 
6568 	  return temp;
6569 	}
6570     }
6571 
6572   /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6573      1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6574      negation of a single bit, we can convert this operation to a shift.  We
6575      can actually do this more generally, but it doesn't seem worth it.  */
6576 
6577   if (true_code == NE && XEXP (cond, 1) == const0_rtx
6578       && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6579       && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6580 	   && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6581 	  || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6582 	       == GET_MODE_PRECISION (mode))
6583 	      && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6584     return
6585       simplify_shift_const (NULL_RTX, ASHIFT, mode,
6586 			    gen_lowpart (mode, XEXP (cond, 0)), i);
6587 
6588   /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6589      non-zero bit in A is C1.  */
6590   if (true_code == NE && XEXP (cond, 1) == const0_rtx
6591       && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6592       && INTEGRAL_MODE_P (GET_MODE (XEXP (cond, 0)))
6593       && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6594 	  == nonzero_bits (XEXP (cond, 0), GET_MODE (XEXP (cond, 0)))
6595       && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6596     {
6597       rtx val = XEXP (cond, 0);
6598       enum machine_mode val_mode = GET_MODE (val);
6599       if (val_mode == mode)
6600         return val;
6601       else if (GET_MODE_PRECISION (val_mode) < GET_MODE_PRECISION (mode))
6602         return simplify_gen_unary (ZERO_EXTEND, mode, val, val_mode);
6603     }
6604 
6605   return x;
6606 }
6607 
6608 /* Simplify X, a SET expression.  Return the new expression.  */
6609 
6610 static rtx
6611 simplify_set (rtx x)
6612 {
6613   rtx src = SET_SRC (x);
6614   rtx dest = SET_DEST (x);
6615   machine_mode mode
6616     = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6617   rtx_insn *other_insn;
6618   rtx *cc_use;
6619 
6620   /* (set (pc) (return)) gets written as (return).  */
6621   if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6622     return src;
6623 
6624   /* Now that we know for sure which bits of SRC we are using, see if we can
6625      simplify the expression for the object knowing that we only need the
6626      low-order bits.  */
6627 
6628   if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6629     {
6630       src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6631       SUBST (SET_SRC (x), src);
6632     }
6633 
6634   /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6635      the comparison result and try to simplify it unless we already have used
6636      undobuf.other_insn.  */
6637   if ((GET_MODE_CLASS (mode) == MODE_CC
6638        || GET_CODE (src) == COMPARE
6639        || CC0_P (dest))
6640       && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6641       && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6642       && COMPARISON_P (*cc_use)
6643       && rtx_equal_p (XEXP (*cc_use, 0), dest))
6644     {
6645       enum rtx_code old_code = GET_CODE (*cc_use);
6646       enum rtx_code new_code;
6647       rtx op0, op1, tmp;
6648       int other_changed = 0;
6649       rtx inner_compare = NULL_RTX;
6650       machine_mode compare_mode = GET_MODE (dest);
6651 
6652       if (GET_CODE (src) == COMPARE)
6653 	{
6654 	  op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6655 	  if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6656 	    {
6657 	      inner_compare = op0;
6658 	      op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6659 	    }
6660 	}
6661       else
6662 	op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6663 
6664       tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6665 					   op0, op1);
6666       if (!tmp)
6667 	new_code = old_code;
6668       else if (!CONSTANT_P (tmp))
6669 	{
6670 	  new_code = GET_CODE (tmp);
6671 	  op0 = XEXP (tmp, 0);
6672 	  op1 = XEXP (tmp, 1);
6673 	}
6674       else
6675 	{
6676 	  rtx pat = PATTERN (other_insn);
6677 	  undobuf.other_insn = other_insn;
6678 	  SUBST (*cc_use, tmp);
6679 
6680 	  /* Attempt to simplify CC user.  */
6681 	  if (GET_CODE (pat) == SET)
6682 	    {
6683 	      rtx new_rtx = simplify_rtx (SET_SRC (pat));
6684 	      if (new_rtx != NULL_RTX)
6685 		SUBST (SET_SRC (pat), new_rtx);
6686 	    }
6687 
6688 	  /* Convert X into a no-op move.  */
6689 	  SUBST (SET_DEST (x), pc_rtx);
6690 	  SUBST (SET_SRC (x), pc_rtx);
6691 	  return x;
6692 	}
6693 
6694       /* Simplify our comparison, if possible.  */
6695       new_code = simplify_comparison (new_code, &op0, &op1);
6696 
6697 #ifdef SELECT_CC_MODE
6698       /* If this machine has CC modes other than CCmode, check to see if we
6699 	 need to use a different CC mode here.  */
6700       if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6701 	compare_mode = GET_MODE (op0);
6702       else if (inner_compare
6703 	       && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6704 	       && new_code == old_code
6705 	       && op0 == XEXP (inner_compare, 0)
6706 	       && op1 == XEXP (inner_compare, 1))
6707 	compare_mode = GET_MODE (inner_compare);
6708       else
6709 	compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6710 
6711       /* If the mode changed, we have to change SET_DEST, the mode in the
6712 	 compare, and the mode in the place SET_DEST is used.  If SET_DEST is
6713 	 a hard register, just build new versions with the proper mode.  If it
6714 	 is a pseudo, we lose unless it is only time we set the pseudo, in
6715 	 which case we can safely change its mode.  */
6716       if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6717 	{
6718 	  if (can_change_dest_mode (dest, 0, compare_mode))
6719 	    {
6720 	      unsigned int regno = REGNO (dest);
6721 	      rtx new_dest;
6722 
6723 	      if (regno < FIRST_PSEUDO_REGISTER)
6724 		new_dest = gen_rtx_REG (compare_mode, regno);
6725 	      else
6726 		{
6727 		  SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6728 		  new_dest = regno_reg_rtx[regno];
6729 		}
6730 
6731 	      SUBST (SET_DEST (x), new_dest);
6732 	      SUBST (XEXP (*cc_use, 0), new_dest);
6733 	      other_changed = 1;
6734 
6735 	      dest = new_dest;
6736 	    }
6737 	}
6738 #endif  /* SELECT_CC_MODE */
6739 
6740       /* If the code changed, we have to build a new comparison in
6741 	 undobuf.other_insn.  */
6742       if (new_code != old_code)
6743 	{
6744 	  int other_changed_previously = other_changed;
6745 	  unsigned HOST_WIDE_INT mask;
6746 	  rtx old_cc_use = *cc_use;
6747 
6748 	  SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6749 					  dest, const0_rtx));
6750 	  other_changed = 1;
6751 
6752 	  /* If the only change we made was to change an EQ into an NE or
6753 	     vice versa, OP0 has only one bit that might be nonzero, and OP1
6754 	     is zero, check if changing the user of the condition code will
6755 	     produce a valid insn.  If it won't, we can keep the original code
6756 	     in that insn by surrounding our operation with an XOR.  */
6757 
6758 	  if (((old_code == NE && new_code == EQ)
6759 	       || (old_code == EQ && new_code == NE))
6760 	      && ! other_changed_previously && op1 == const0_rtx
6761 	      && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6762 	      && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6763 	    {
6764 	      rtx pat = PATTERN (other_insn), note = 0;
6765 
6766 	      if ((recog_for_combine (&pat, other_insn, &note) < 0
6767 		   && ! check_asm_operands (pat)))
6768 		{
6769 		  *cc_use = old_cc_use;
6770 		  other_changed = 0;
6771 
6772 		  op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6773 					     gen_int_mode (mask,
6774 							   GET_MODE (op0)));
6775 		}
6776 	    }
6777 	}
6778 
6779       if (other_changed)
6780 	undobuf.other_insn = other_insn;
6781 
6782       /* Don't generate a compare of a CC with 0, just use that CC.  */
6783       if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6784 	{
6785 	  SUBST (SET_SRC (x), op0);
6786 	  src = SET_SRC (x);
6787 	}
6788       /* Otherwise, if we didn't previously have the same COMPARE we
6789 	 want, create it from scratch.  */
6790       else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6791 	       || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6792 	{
6793 	  SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6794 	  src = SET_SRC (x);
6795 	}
6796     }
6797   else
6798     {
6799       /* Get SET_SRC in a form where we have placed back any
6800 	 compound expressions.  Then do the checks below.  */
6801       src = make_compound_operation (src, SET);
6802       SUBST (SET_SRC (x), src);
6803     }
6804 
6805   /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6806      and X being a REG or (subreg (reg)), we may be able to convert this to
6807      (set (subreg:m2 x) (op)).
6808 
6809      We can always do this if M1 is narrower than M2 because that means that
6810      we only care about the low bits of the result.
6811 
6812      However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6813      perform a narrower operation than requested since the high-order bits will
6814      be undefined.  On machine where it is defined, this transformation is safe
6815      as long as M1 and M2 have the same number of words.  */
6816 
6817   if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6818       && !OBJECT_P (SUBREG_REG (src))
6819       && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6820 	   / UNITS_PER_WORD)
6821 	  == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6822 	       + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6823       && (WORD_REGISTER_OPERATIONS
6824 	  || (GET_MODE_SIZE (GET_MODE (src))
6825 	      <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
6826 #ifdef CANNOT_CHANGE_MODE_CLASS
6827       && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6828 	    && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6829 					 GET_MODE (SUBREG_REG (src)),
6830 					 GET_MODE (src)))
6831 #endif
6832       && (REG_P (dest)
6833 	  || (GET_CODE (dest) == SUBREG
6834 	      && REG_P (SUBREG_REG (dest)))))
6835     {
6836       SUBST (SET_DEST (x),
6837 	     gen_lowpart (GET_MODE (SUBREG_REG (src)),
6838 				      dest));
6839       SUBST (SET_SRC (x), SUBREG_REG (src));
6840 
6841       src = SET_SRC (x), dest = SET_DEST (x);
6842     }
6843 
6844   /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6845      in SRC.  */
6846   if (dest == cc0_rtx
6847       && GET_CODE (src) == SUBREG
6848       && subreg_lowpart_p (src)
6849       && (GET_MODE_PRECISION (GET_MODE (src))
6850 	  < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6851     {
6852       rtx inner = SUBREG_REG (src);
6853       machine_mode inner_mode = GET_MODE (inner);
6854 
6855       /* Here we make sure that we don't have a sign bit on.  */
6856       if (val_signbit_known_clear_p (GET_MODE (src),
6857 				     nonzero_bits (inner, inner_mode)))
6858 	{
6859 	  SUBST (SET_SRC (x), inner);
6860 	  src = SET_SRC (x);
6861 	}
6862     }
6863 
6864   /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6865      would require a paradoxical subreg.  Replace the subreg with a
6866      zero_extend to avoid the reload that would otherwise be required.  */
6867 
6868   enum rtx_code extend_op;
6869   if (paradoxical_subreg_p (src)
6870       && MEM_P (SUBREG_REG (src))
6871       && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
6872     {
6873       SUBST (SET_SRC (x),
6874 	     gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
6875 
6876       src = SET_SRC (x);
6877     }
6878 
6879   /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6880      are comparing an item known to be 0 or -1 against 0, use a logical
6881      operation instead. Check for one of the arms being an IOR of the other
6882      arm with some value.  We compute three terms to be IOR'ed together.  In
6883      practice, at most two will be nonzero.  Then we do the IOR's.  */
6884 
6885   if (GET_CODE (dest) != PC
6886       && GET_CODE (src) == IF_THEN_ELSE
6887       && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6888       && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6889       && XEXP (XEXP (src, 0), 1) == const0_rtx
6890       && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6891       && (!HAVE_conditional_move
6892 	  || ! can_conditionally_move_p (GET_MODE (src)))
6893       && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6894 			       GET_MODE (XEXP (XEXP (src, 0), 0)))
6895 	  == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6896       && ! side_effects_p (src))
6897     {
6898       rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6899 		      ? XEXP (src, 1) : XEXP (src, 2));
6900       rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6901 		   ? XEXP (src, 2) : XEXP (src, 1));
6902       rtx term1 = const0_rtx, term2, term3;
6903 
6904       if (GET_CODE (true_rtx) == IOR
6905 	  && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6906 	term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6907       else if (GET_CODE (true_rtx) == IOR
6908 	       && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6909 	term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6910       else if (GET_CODE (false_rtx) == IOR
6911 	       && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6912 	term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6913       else if (GET_CODE (false_rtx) == IOR
6914 	       && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6915 	term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6916 
6917       term2 = simplify_gen_binary (AND, GET_MODE (src),
6918 				   XEXP (XEXP (src, 0), 0), true_rtx);
6919       term3 = simplify_gen_binary (AND, GET_MODE (src),
6920 				   simplify_gen_unary (NOT, GET_MODE (src),
6921 						       XEXP (XEXP (src, 0), 0),
6922 						       GET_MODE (src)),
6923 				   false_rtx);
6924 
6925       SUBST (SET_SRC (x),
6926 	     simplify_gen_binary (IOR, GET_MODE (src),
6927 				  simplify_gen_binary (IOR, GET_MODE (src),
6928 						       term1, term2),
6929 				  term3));
6930 
6931       src = SET_SRC (x);
6932     }
6933 
6934   /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6935      whole thing fail.  */
6936   if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6937     return src;
6938   else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6939     return dest;
6940   else
6941     /* Convert this into a field assignment operation, if possible.  */
6942     return make_field_assignment (x);
6943 }
6944 
6945 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6946    result.  */
6947 
6948 static rtx
6949 simplify_logical (rtx x)
6950 {
6951   machine_mode mode = GET_MODE (x);
6952   rtx op0 = XEXP (x, 0);
6953   rtx op1 = XEXP (x, 1);
6954 
6955   switch (GET_CODE (x))
6956     {
6957     case AND:
6958       /* We can call simplify_and_const_int only if we don't lose
6959 	 any (sign) bits when converting INTVAL (op1) to
6960 	 "unsigned HOST_WIDE_INT".  */
6961       if (CONST_INT_P (op1)
6962 	  && (HWI_COMPUTABLE_MODE_P (mode)
6963 	      || INTVAL (op1) > 0))
6964 	{
6965 	  x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6966 	  if (GET_CODE (x) != AND)
6967 	    return x;
6968 
6969 	  op0 = XEXP (x, 0);
6970 	  op1 = XEXP (x, 1);
6971 	}
6972 
6973       /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6974 	 apply the distributive law and then the inverse distributive
6975 	 law to see if things simplify.  */
6976       if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6977 	{
6978 	  rtx result = distribute_and_simplify_rtx (x, 0);
6979 	  if (result)
6980 	    return result;
6981 	}
6982       if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6983 	{
6984 	  rtx result = distribute_and_simplify_rtx (x, 1);
6985 	  if (result)
6986 	    return result;
6987 	}
6988       break;
6989 
6990     case IOR:
6991       /* If we have (ior (and A B) C), apply the distributive law and then
6992 	 the inverse distributive law to see if things simplify.  */
6993 
6994       if (GET_CODE (op0) == AND)
6995 	{
6996 	  rtx result = distribute_and_simplify_rtx (x, 0);
6997 	  if (result)
6998 	    return result;
6999 	}
7000 
7001       if (GET_CODE (op1) == AND)
7002 	{
7003 	  rtx result = distribute_and_simplify_rtx (x, 1);
7004 	  if (result)
7005 	    return result;
7006 	}
7007       break;
7008 
7009     default:
7010       gcc_unreachable ();
7011     }
7012 
7013   return x;
7014 }
7015 
7016 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7017    operations" because they can be replaced with two more basic operations.
7018    ZERO_EXTEND is also considered "compound" because it can be replaced with
7019    an AND operation, which is simpler, though only one operation.
7020 
7021    The function expand_compound_operation is called with an rtx expression
7022    and will convert it to the appropriate shifts and AND operations,
7023    simplifying at each stage.
7024 
7025    The function make_compound_operation is called to convert an expression
7026    consisting of shifts and ANDs into the equivalent compound expression.
7027    It is the inverse of this function, loosely speaking.  */
7028 
7029 static rtx
7030 expand_compound_operation (rtx x)
7031 {
7032   unsigned HOST_WIDE_INT pos = 0, len;
7033   int unsignedp = 0;
7034   unsigned int modewidth;
7035   rtx tem;
7036 
7037   switch (GET_CODE (x))
7038     {
7039     case ZERO_EXTEND:
7040       unsignedp = 1;
7041       /* FALLTHRU */
7042     case SIGN_EXTEND:
7043       /* We can't necessarily use a const_int for a multiword mode;
7044 	 it depends on implicitly extending the value.
7045 	 Since we don't know the right way to extend it,
7046 	 we can't tell whether the implicit way is right.
7047 
7048 	 Even for a mode that is no wider than a const_int,
7049 	 we can't win, because we need to sign extend one of its bits through
7050 	 the rest of it, and we don't know which bit.  */
7051       if (CONST_INT_P (XEXP (x, 0)))
7052 	return x;
7053 
7054       /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7055 	 (zero_extend:MODE FROM) or (sign_extend:MODE FROM).  It is for any MEM
7056 	 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7057 	 reloaded. If not for that, MEM's would very rarely be safe.
7058 
7059 	 Reject MODEs bigger than a word, because we might not be able
7060 	 to reference a two-register group starting with an arbitrary register
7061 	 (and currently gen_lowpart might crash for a SUBREG).  */
7062 
7063       if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
7064 	return x;
7065 
7066       /* Reject MODEs that aren't scalar integers because turning vector
7067 	 or complex modes into shifts causes problems.  */
7068 
7069       if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7070 	return x;
7071 
7072       len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
7073       /* If the inner object has VOIDmode (the only way this can happen
7074 	 is if it is an ASM_OPERANDS), we can't do anything since we don't
7075 	 know how much masking to do.  */
7076       if (len == 0)
7077 	return x;
7078 
7079       break;
7080 
7081     case ZERO_EXTRACT:
7082       unsignedp = 1;
7083 
7084       /* fall through */
7085 
7086     case SIGN_EXTRACT:
7087       /* If the operand is a CLOBBER, just return it.  */
7088       if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7089 	return XEXP (x, 0);
7090 
7091       if (!CONST_INT_P (XEXP (x, 1))
7092 	  || !CONST_INT_P (XEXP (x, 2))
7093 	  || GET_MODE (XEXP (x, 0)) == VOIDmode)
7094 	return x;
7095 
7096       /* Reject MODEs that aren't scalar integers because turning vector
7097 	 or complex modes into shifts causes problems.  */
7098 
7099       if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7100 	return x;
7101 
7102       len = INTVAL (XEXP (x, 1));
7103       pos = INTVAL (XEXP (x, 2));
7104 
7105       /* This should stay within the object being extracted, fail otherwise.  */
7106       if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
7107 	return x;
7108 
7109       if (BITS_BIG_ENDIAN)
7110 	pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
7111 
7112       break;
7113 
7114     default:
7115       return x;
7116     }
7117   /* Convert sign extension to zero extension, if we know that the high
7118      bit is not set, as this is easier to optimize.  It will be converted
7119      back to cheaper alternative in make_extraction.  */
7120   if (GET_CODE (x) == SIGN_EXTEND
7121       && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7122 	  && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7123 		& ~(((unsigned HOST_WIDE_INT)
7124 		      GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
7125 		     >> 1))
7126 	       == 0)))
7127     {
7128       machine_mode mode = GET_MODE (x);
7129       rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7130       rtx temp2 = expand_compound_operation (temp);
7131 
7132       /* Make sure this is a profitable operation.  */
7133       if (set_src_cost (x, mode, optimize_this_for_speed_p)
7134           > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7135        return temp2;
7136       else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7137                > set_src_cost (temp, mode, optimize_this_for_speed_p))
7138        return temp;
7139       else
7140        return x;
7141     }
7142 
7143   /* We can optimize some special cases of ZERO_EXTEND.  */
7144   if (GET_CODE (x) == ZERO_EXTEND)
7145     {
7146       /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7147 	 know that the last value didn't have any inappropriate bits
7148 	 set.  */
7149       if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7150 	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7151 	  && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7152 	  && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
7153 	      & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7154 	return XEXP (XEXP (x, 0), 0);
7155 
7156       /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)).  */
7157       if (GET_CODE (XEXP (x, 0)) == SUBREG
7158 	  && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7159 	  && subreg_lowpart_p (XEXP (x, 0))
7160 	  && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7161 	  && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
7162 	      & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7163 	return SUBREG_REG (XEXP (x, 0));
7164 
7165       /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7166 	 is a comparison and STORE_FLAG_VALUE permits.  This is like
7167 	 the first case, but it works even when GET_MODE (x) is larger
7168 	 than HOST_WIDE_INT.  */
7169       if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7170 	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7171 	  && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7172 	  && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7173 	      <= HOST_BITS_PER_WIDE_INT)
7174 	  && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7175 	return XEXP (XEXP (x, 0), 0);
7176 
7177       /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)).  */
7178       if (GET_CODE (XEXP (x, 0)) == SUBREG
7179 	  && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7180 	  && subreg_lowpart_p (XEXP (x, 0))
7181 	  && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7182 	  && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7183 	      <= HOST_BITS_PER_WIDE_INT)
7184 	  && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7185 	return SUBREG_REG (XEXP (x, 0));
7186 
7187     }
7188 
7189   /* If we reach here, we want to return a pair of shifts.  The inner
7190      shift is a left shift of BITSIZE - POS - LEN bits.  The outer
7191      shift is a right shift of BITSIZE - LEN bits.  It is arithmetic or
7192      logical depending on the value of UNSIGNEDP.
7193 
7194      If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7195      converted into an AND of a shift.
7196 
7197      We must check for the case where the left shift would have a negative
7198      count.  This can happen in a case like (x >> 31) & 255 on machines
7199      that can't shift by a constant.  On those machines, we would first
7200      combine the shift with the AND to produce a variable-position
7201      extraction.  Then the constant of 31 would be substituted in
7202      to produce such a position.  */
7203 
7204   modewidth = GET_MODE_PRECISION (GET_MODE (x));
7205   if (modewidth >= pos + len)
7206     {
7207       machine_mode mode = GET_MODE (x);
7208       tem = gen_lowpart (mode, XEXP (x, 0));
7209       if (!tem || GET_CODE (tem) == CLOBBER)
7210 	return x;
7211       tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7212 				  tem, modewidth - pos - len);
7213       tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7214 				  mode, tem, modewidth - len);
7215     }
7216   else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7217     tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
7218 				  simplify_shift_const (NULL_RTX, LSHIFTRT,
7219 							GET_MODE (x),
7220 							XEXP (x, 0), pos),
7221 				  (HOST_WIDE_INT_1U << len) - 1);
7222   else
7223     /* Any other cases we can't handle.  */
7224     return x;
7225 
7226   /* If we couldn't do this for some reason, return the original
7227      expression.  */
7228   if (GET_CODE (tem) == CLOBBER)
7229     return x;
7230 
7231   return tem;
7232 }
7233 
7234 /* X is a SET which contains an assignment of one object into
7235    a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7236    or certain SUBREGS). If possible, convert it into a series of
7237    logical operations.
7238 
7239    We half-heartedly support variable positions, but do not at all
7240    support variable lengths.  */
7241 
7242 static const_rtx
7243 expand_field_assignment (const_rtx x)
7244 {
7245   rtx inner;
7246   rtx pos;			/* Always counts from low bit.  */
7247   int len;
7248   rtx mask, cleared, masked;
7249   machine_mode compute_mode;
7250 
7251   /* Loop until we find something we can't simplify.  */
7252   while (1)
7253     {
7254       if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7255 	  && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7256 	{
7257 	  inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7258 	  len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7259 	  pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7260 	}
7261       else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7262 	       && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7263 	{
7264 	  inner = XEXP (SET_DEST (x), 0);
7265 	  len = INTVAL (XEXP (SET_DEST (x), 1));
7266 	  pos = XEXP (SET_DEST (x), 2);
7267 
7268 	  /* A constant position should stay within the width of INNER.  */
7269 	  if (CONST_INT_P (pos)
7270 	      && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7271 	    break;
7272 
7273 	  if (BITS_BIG_ENDIAN)
7274 	    {
7275 	      if (CONST_INT_P (pos))
7276 		pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7277 			       - INTVAL (pos));
7278 	      else if (GET_CODE (pos) == MINUS
7279 		       && CONST_INT_P (XEXP (pos, 1))
7280 		       && (INTVAL (XEXP (pos, 1))
7281 			   == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7282 		/* If position is ADJUST - X, new position is X.  */
7283 		pos = XEXP (pos, 0);
7284 	      else
7285 		{
7286 		  HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7287 		  pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7288 					     gen_int_mode (prec - len,
7289 							   GET_MODE (pos)),
7290 					     pos);
7291 		}
7292 	    }
7293 	}
7294 
7295       /* A SUBREG between two modes that occupy the same numbers of words
7296 	 can be done by moving the SUBREG to the source.  */
7297       else if (GET_CODE (SET_DEST (x)) == SUBREG
7298 	       /* We need SUBREGs to compute nonzero_bits properly.  */
7299 	       && nonzero_sign_valid
7300 	       && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7301 		     + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7302 		   == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7303 			+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7304 	{
7305 	  x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7306 			   gen_lowpart
7307 			   (GET_MODE (SUBREG_REG (SET_DEST (x))),
7308 			    SET_SRC (x)));
7309 	  continue;
7310 	}
7311       else
7312 	break;
7313 
7314       while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7315 	inner = SUBREG_REG (inner);
7316 
7317       compute_mode = GET_MODE (inner);
7318 
7319       /* Don't attempt bitwise arithmetic on non scalar integer modes.  */
7320       if (! SCALAR_INT_MODE_P (compute_mode))
7321 	{
7322 	  machine_mode imode;
7323 
7324 	  /* Don't do anything for vector or complex integral types.  */
7325 	  if (! FLOAT_MODE_P (compute_mode))
7326 	    break;
7327 
7328 	  /* Try to find an integral mode to pun with.  */
7329 	  imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7330 	  if (imode == BLKmode)
7331 	    break;
7332 
7333 	  compute_mode = imode;
7334 	  inner = gen_lowpart (imode, inner);
7335 	}
7336 
7337       /* Compute a mask of LEN bits, if we can do this on the host machine.  */
7338       if (len >= HOST_BITS_PER_WIDE_INT)
7339 	break;
7340 
7341       /* Don't try to compute in too wide unsupported modes.  */
7342       if (!targetm.scalar_mode_supported_p (compute_mode))
7343 	break;
7344 
7345       /* Now compute the equivalent expression.  Make a copy of INNER
7346 	 for the SET_DEST in case it is a MEM into which we will substitute;
7347 	 we don't want shared RTL in that case.  */
7348       mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7349 			   compute_mode);
7350       cleared = simplify_gen_binary (AND, compute_mode,
7351 				     simplify_gen_unary (NOT, compute_mode,
7352 				       simplify_gen_binary (ASHIFT,
7353 							    compute_mode,
7354 							    mask, pos),
7355 				       compute_mode),
7356 				     inner);
7357       masked = simplify_gen_binary (ASHIFT, compute_mode,
7358 				    simplify_gen_binary (
7359 				      AND, compute_mode,
7360 				      gen_lowpart (compute_mode, SET_SRC (x)),
7361 				      mask),
7362 				    pos);
7363 
7364       x = gen_rtx_SET (copy_rtx (inner),
7365 		       simplify_gen_binary (IOR, compute_mode,
7366 					    cleared, masked));
7367     }
7368 
7369   return x;
7370 }
7371 
7372 /* Return an RTX for a reference to LEN bits of INNER.  If POS_RTX is nonzero,
7373    it is an RTX that represents the (variable) starting position; otherwise,
7374    POS is the (constant) starting bit position.  Both are counted from the LSB.
7375 
7376    UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7377 
7378    IN_DEST is nonzero if this is a reference in the destination of a SET.
7379    This is used when a ZERO_ or SIGN_EXTRACT isn't needed.  If nonzero,
7380    a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7381    be used.
7382 
7383    IN_COMPARE is nonzero if we are in a COMPARE.  This means that a
7384    ZERO_EXTRACT should be built even for bits starting at bit 0.
7385 
7386    MODE is the desired mode of the result (if IN_DEST == 0).
7387 
7388    The result is an RTX for the extraction or NULL_RTX if the target
7389    can't handle it.  */
7390 
7391 static rtx
7392 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7393 		 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7394 		 int in_dest, int in_compare)
7395 {
7396   /* This mode describes the size of the storage area
7397      to fetch the overall value from.  Within that, we
7398      ignore the POS lowest bits, etc.  */
7399   machine_mode is_mode = GET_MODE (inner);
7400   machine_mode inner_mode;
7401   machine_mode wanted_inner_mode;
7402   machine_mode wanted_inner_reg_mode = word_mode;
7403   machine_mode pos_mode = word_mode;
7404   machine_mode extraction_mode = word_mode;
7405   machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7406   rtx new_rtx = 0;
7407   rtx orig_pos_rtx = pos_rtx;
7408   HOST_WIDE_INT orig_pos;
7409 
7410   if (pos_rtx && CONST_INT_P (pos_rtx))
7411     pos = INTVAL (pos_rtx), pos_rtx = 0;
7412 
7413   if (GET_CODE (inner) == SUBREG
7414       && subreg_lowpart_p (inner)
7415       && (paradoxical_subreg_p (inner)
7416 	  /* If trying or potentionally trying to extract
7417 	     bits outside of is_mode, don't look through
7418 	     non-paradoxical SUBREGs.  See PR82192.  */
7419 	  || (pos_rtx == NULL_RTX
7420 	      && pos + len <= GET_MODE_PRECISION (is_mode))))
7421     {
7422       /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7423 	 consider just the QI as the memory to extract from.
7424 	 The subreg adds or removes high bits; its mode is
7425 	 irrelevant to the meaning of this extraction,
7426 	 since POS and LEN count from the lsb.  */
7427       if (MEM_P (SUBREG_REG (inner)))
7428 	is_mode = GET_MODE (SUBREG_REG (inner));
7429       inner = SUBREG_REG (inner);
7430     }
7431   else if (GET_CODE (inner) == ASHIFT
7432 	   && CONST_INT_P (XEXP (inner, 1))
7433 	   && pos_rtx == 0 && pos == 0
7434 	   && len > UINTVAL (XEXP (inner, 1)))
7435     {
7436       /* We're extracting the least significant bits of an rtx
7437 	 (ashift X (const_int C)), where LEN > C.  Extract the
7438 	 least significant (LEN - C) bits of X, giving an rtx
7439 	 whose mode is MODE, then shift it left C times.  */
7440       new_rtx = make_extraction (mode, XEXP (inner, 0),
7441 			     0, 0, len - INTVAL (XEXP (inner, 1)),
7442 			     unsignedp, in_dest, in_compare);
7443       if (new_rtx != 0)
7444 	return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7445     }
7446   else if (GET_CODE (inner) == TRUNCATE
7447 	   /* If trying or potentionally trying to extract
7448 	      bits outside of is_mode, don't look through
7449 	      TRUNCATE.  See PR82192.  */
7450 	   && pos_rtx == NULL_RTX
7451 	   && pos + len <= GET_MODE_PRECISION (is_mode))
7452     inner = XEXP (inner, 0);
7453 
7454   inner_mode = GET_MODE (inner);
7455 
7456   /* See if this can be done without an extraction.  We never can if the
7457      width of the field is not the same as that of some integer mode. For
7458      registers, we can only avoid the extraction if the position is at the
7459      low-order bit and this is either not in the destination or we have the
7460      appropriate STRICT_LOW_PART operation available.
7461 
7462      For MEM, we can avoid an extract if the field starts on an appropriate
7463      boundary and we can change the mode of the memory reference.  */
7464 
7465   if (tmode != BLKmode
7466       && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7467 	   && !MEM_P (inner)
7468 	   && (pos == 0 || REG_P (inner))
7469 	   && (inner_mode == tmode
7470 	       || !REG_P (inner)
7471 	       || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7472 	       || reg_truncated_to_mode (tmode, inner))
7473 	   && (! in_dest
7474 	       || (REG_P (inner)
7475 		   && have_insn_for (STRICT_LOW_PART, tmode))))
7476 	  || (MEM_P (inner) && pos_rtx == 0
7477 	      && (pos
7478 		  % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7479 		     : BITS_PER_UNIT)) == 0
7480 	      /* We can't do this if we are widening INNER_MODE (it
7481 		 may not be aligned, for one thing).  */
7482 	      && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7483 	      && (inner_mode == tmode
7484 		  || (! mode_dependent_address_p (XEXP (inner, 0),
7485 						  MEM_ADDR_SPACE (inner))
7486 		      && ! MEM_VOLATILE_P (inner))))))
7487     {
7488       /* If INNER is a MEM, make a new MEM that encompasses just the desired
7489 	 field.  If the original and current mode are the same, we need not
7490 	 adjust the offset.  Otherwise, we do if bytes big endian.
7491 
7492 	 If INNER is not a MEM, get a piece consisting of just the field
7493 	 of interest (in this case POS % BITS_PER_WORD must be 0).  */
7494 
7495       if (MEM_P (inner))
7496 	{
7497 	  HOST_WIDE_INT offset;
7498 
7499 	  /* POS counts from lsb, but make OFFSET count in memory order.  */
7500 	  if (BYTES_BIG_ENDIAN)
7501 	    offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7502 	  else
7503 	    offset = pos / BITS_PER_UNIT;
7504 
7505 	  new_rtx = adjust_address_nv (inner, tmode, offset);
7506 	}
7507       else if (REG_P (inner))
7508 	{
7509 	  if (tmode != inner_mode)
7510 	    {
7511 	      /* We can't call gen_lowpart in a DEST since we
7512 		 always want a SUBREG (see below) and it would sometimes
7513 		 return a new hard register.  */
7514 	      if (pos || in_dest)
7515 		{
7516 		  HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7517 
7518 		  if (WORDS_BIG_ENDIAN
7519 		      && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7520 		    final_word = ((GET_MODE_SIZE (inner_mode)
7521 				   - GET_MODE_SIZE (tmode))
7522 				  / UNITS_PER_WORD) - final_word;
7523 
7524 		  final_word *= UNITS_PER_WORD;
7525 		  if (BYTES_BIG_ENDIAN &&
7526 		      GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7527 		    final_word += (GET_MODE_SIZE (inner_mode)
7528 				   - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7529 
7530 		  /* Avoid creating invalid subregs, for example when
7531 		     simplifying (x>>32)&255.  */
7532 		  if (!validate_subreg (tmode, inner_mode, inner, final_word))
7533 		    return NULL_RTX;
7534 
7535 		  new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7536 		}
7537 	      else
7538 		new_rtx = gen_lowpart (tmode, inner);
7539 	    }
7540 	  else
7541 	    new_rtx = inner;
7542 	}
7543       else
7544 	new_rtx = force_to_mode (inner, tmode,
7545 				 len >= HOST_BITS_PER_WIDE_INT
7546 				 ? HOST_WIDE_INT_M1U
7547 				 : (HOST_WIDE_INT_1U << len) - 1, 0);
7548 
7549       /* If this extraction is going into the destination of a SET,
7550 	 make a STRICT_LOW_PART unless we made a MEM.  */
7551 
7552       if (in_dest)
7553 	return (MEM_P (new_rtx) ? new_rtx
7554 		: (GET_CODE (new_rtx) != SUBREG
7555 		   ? gen_rtx_CLOBBER (tmode, const0_rtx)
7556 		   : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7557 
7558       if (mode == tmode)
7559 	return new_rtx;
7560 
7561       if (CONST_SCALAR_INT_P (new_rtx))
7562 	return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7563 					 mode, new_rtx, tmode);
7564 
7565       /* If we know that no extraneous bits are set, and that the high
7566 	 bit is not set, convert the extraction to the cheaper of
7567 	 sign and zero extension, that are equivalent in these cases.  */
7568       if (flag_expensive_optimizations
7569 	  && (HWI_COMPUTABLE_MODE_P (tmode)
7570 	      && ((nonzero_bits (new_rtx, tmode)
7571 		   & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7572 		  == 0)))
7573 	{
7574 	  rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7575 	  rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7576 
7577 	  /* Prefer ZERO_EXTENSION, since it gives more information to
7578 	     backends.  */
7579 	  if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7580 	      <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7581 	    return temp;
7582 	  return temp1;
7583 	}
7584 
7585       /* Otherwise, sign- or zero-extend unless we already are in the
7586 	 proper mode.  */
7587 
7588       return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7589 			     mode, new_rtx));
7590     }
7591 
7592   /* Unless this is a COMPARE or we have a funny memory reference,
7593      don't do anything with zero-extending field extracts starting at
7594      the low-order bit since they are simple AND operations.  */
7595   if (pos_rtx == 0 && pos == 0 && ! in_dest
7596       && ! in_compare && unsignedp)
7597     return 0;
7598 
7599   /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7600      if the position is not a constant and the length is not 1.  In all
7601      other cases, we would only be going outside our object in cases when
7602      an original shift would have been undefined.  */
7603   if (MEM_P (inner)
7604       && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7605 	  || (pos_rtx != 0 && len != 1)))
7606     return 0;
7607 
7608   enum extraction_pattern pattern = (in_dest ? EP_insv
7609 				     : unsignedp ? EP_extzv : EP_extv);
7610 
7611   /* If INNER is not from memory, we want it to have the mode of a register
7612      extraction pattern's structure operand, or word_mode if there is no
7613      such pattern.  The same applies to extraction_mode and pos_mode
7614      and their respective operands.
7615 
7616      For memory, assume that the desired extraction_mode and pos_mode
7617      are the same as for a register operation, since at present we don't
7618      have named patterns for aligned memory structures.  */
7619   struct extraction_insn insn;
7620   if (get_best_reg_extraction_insn (&insn, pattern,
7621 				    GET_MODE_BITSIZE (inner_mode), mode))
7622     {
7623       wanted_inner_reg_mode = insn.struct_mode;
7624       pos_mode = insn.pos_mode;
7625       extraction_mode = insn.field_mode;
7626     }
7627 
7628   /* Never narrow an object, since that might not be safe.  */
7629 
7630   if (mode != VOIDmode
7631       && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7632     extraction_mode = mode;
7633 
7634   if (!MEM_P (inner))
7635     wanted_inner_mode = wanted_inner_reg_mode;
7636   else
7637     {
7638       /* Be careful not to go beyond the extracted object and maintain the
7639 	 natural alignment of the memory.  */
7640       wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7641       while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7642 	     > GET_MODE_BITSIZE (wanted_inner_mode))
7643 	{
7644 	  wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7645 	  gcc_assert (wanted_inner_mode != VOIDmode);
7646 	}
7647     }
7648 
7649   orig_pos = pos;
7650 
7651   if (BITS_BIG_ENDIAN)
7652     {
7653       /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7654 	 BITS_BIG_ENDIAN style.  If position is constant, compute new
7655 	 position.  Otherwise, build subtraction.
7656 	 Note that POS is relative to the mode of the original argument.
7657 	 If it's a MEM we need to recompute POS relative to that.
7658 	 However, if we're extracting from (or inserting into) a register,
7659 	 we want to recompute POS relative to wanted_inner_mode.  */
7660       int width = (MEM_P (inner)
7661 		   ? GET_MODE_BITSIZE (is_mode)
7662 		   : GET_MODE_BITSIZE (wanted_inner_mode));
7663 
7664       if (pos_rtx == 0)
7665 	pos = width - len - pos;
7666       else
7667 	pos_rtx
7668 	  = gen_rtx_MINUS (GET_MODE (pos_rtx),
7669 			   gen_int_mode (width - len, GET_MODE (pos_rtx)),
7670 			   pos_rtx);
7671       /* POS may be less than 0 now, but we check for that below.
7672 	 Note that it can only be less than 0 if !MEM_P (inner).  */
7673     }
7674 
7675   /* If INNER has a wider mode, and this is a constant extraction, try to
7676      make it smaller and adjust the byte to point to the byte containing
7677      the value.  */
7678   if (wanted_inner_mode != VOIDmode
7679       && inner_mode != wanted_inner_mode
7680       && ! pos_rtx
7681       && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7682       && MEM_P (inner)
7683       && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7684       && ! MEM_VOLATILE_P (inner))
7685     {
7686       int offset = 0;
7687 
7688       /* The computations below will be correct if the machine is big
7689 	 endian in both bits and bytes or little endian in bits and bytes.
7690 	 If it is mixed, we must adjust.  */
7691 
7692       /* If bytes are big endian and we had a paradoxical SUBREG, we must
7693 	 adjust OFFSET to compensate.  */
7694       if (BYTES_BIG_ENDIAN
7695 	  && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7696 	offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7697 
7698       /* We can now move to the desired byte.  */
7699       offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7700 		* GET_MODE_SIZE (wanted_inner_mode);
7701       pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7702 
7703       if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7704 	  && is_mode != wanted_inner_mode)
7705 	offset = (GET_MODE_SIZE (is_mode)
7706 		  - GET_MODE_SIZE (wanted_inner_mode) - offset);
7707 
7708       inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7709     }
7710 
7711   /* If INNER is not memory, get it into the proper mode.  If we are changing
7712      its mode, POS must be a constant and smaller than the size of the new
7713      mode.  */
7714   else if (!MEM_P (inner))
7715     {
7716       /* On the LHS, don't create paradoxical subregs implicitely truncating
7717 	 the register unless TRULY_NOOP_TRUNCATION.  */
7718       if (in_dest
7719 	  && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7720 					     wanted_inner_mode))
7721 	return NULL_RTX;
7722 
7723       if (GET_MODE (inner) != wanted_inner_mode
7724 	  && (pos_rtx != 0
7725 	      || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7726 	return NULL_RTX;
7727 
7728       if (orig_pos < 0)
7729 	return NULL_RTX;
7730 
7731       inner = force_to_mode (inner, wanted_inner_mode,
7732 			     pos_rtx
7733 			     || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7734 			     ? HOST_WIDE_INT_M1U
7735 			     : (((HOST_WIDE_INT_1U << len) - 1)
7736 				<< orig_pos),
7737 			     0);
7738     }
7739 
7740   /* Adjust mode of POS_RTX, if needed.  If we want a wider mode, we
7741      have to zero extend.  Otherwise, we can just use a SUBREG.  */
7742   if (pos_rtx != 0
7743       && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7744     {
7745       rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7746 				     GET_MODE (pos_rtx));
7747 
7748       /* If we know that no extraneous bits are set, and that the high
7749 	 bit is not set, convert extraction to cheaper one - either
7750 	 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7751 	 cases.  */
7752       if (flag_expensive_optimizations
7753 	  && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7754 	      && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7755 		   & ~(((unsigned HOST_WIDE_INT)
7756 			GET_MODE_MASK (GET_MODE (pos_rtx)))
7757 		       >> 1))
7758 		  == 0)))
7759 	{
7760 	  rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7761 					  GET_MODE (pos_rtx));
7762 
7763 	  /* Prefer ZERO_EXTENSION, since it gives more information to
7764 	     backends.  */
7765 	  if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7766 	      < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7767 	    temp = temp1;
7768 	}
7769       pos_rtx = temp;
7770     }
7771 
7772   /* Make POS_RTX unless we already have it and it is correct.  If we don't
7773      have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7774      be a CONST_INT.  */
7775   if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7776     pos_rtx = orig_pos_rtx;
7777 
7778   else if (pos_rtx == 0)
7779     pos_rtx = GEN_INT (pos);
7780 
7781   /* Make the required operation.  See if we can use existing rtx.  */
7782   new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7783 			 extraction_mode, inner, GEN_INT (len), pos_rtx);
7784   if (! in_dest)
7785     new_rtx = gen_lowpart (mode, new_rtx);
7786 
7787   return new_rtx;
7788 }
7789 
7790 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7791    with any other operations in X.  Return X without that shift if so.  */
7792 
7793 static rtx
7794 extract_left_shift (rtx x, int count)
7795 {
7796   enum rtx_code code = GET_CODE (x);
7797   machine_mode mode = GET_MODE (x);
7798   rtx tem;
7799 
7800   switch (code)
7801     {
7802     case ASHIFT:
7803       /* This is the shift itself.  If it is wide enough, we will return
7804 	 either the value being shifted if the shift count is equal to
7805 	 COUNT or a shift for the difference.  */
7806       if (CONST_INT_P (XEXP (x, 1))
7807 	  && INTVAL (XEXP (x, 1)) >= count)
7808 	return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7809 				     INTVAL (XEXP (x, 1)) - count);
7810       break;
7811 
7812     case NEG:  case NOT:
7813       if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7814 	return simplify_gen_unary (code, mode, tem, mode);
7815 
7816       break;
7817 
7818     case PLUS:  case IOR:  case XOR:  case AND:
7819       /* If we can safely shift this constant and we find the inner shift,
7820 	 make a new operation.  */
7821       if (CONST_INT_P (XEXP (x, 1))
7822 	  && (UINTVAL (XEXP (x, 1))
7823 	      & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7824 	  && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7825 	{
7826 	  HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7827 	  return simplify_gen_binary (code, mode, tem,
7828 				      gen_int_mode (val, mode));
7829 	}
7830       break;
7831 
7832     default:
7833       break;
7834     }
7835 
7836   return 0;
7837 }
7838 
7839 /* Subroutine of make_compound_operation.  *X_PTR is the rtx at the current
7840    level of the expression and MODE is its mode.  IN_CODE is as for
7841    make_compound_operation.  *NEXT_CODE_PTR is the value of IN_CODE
7842    that should be used when recursing on operands of *X_PTR.
7843 
7844    There are two possible actions:
7845 
7846    - Return null.  This tells the caller to recurse on *X_PTR with IN_CODE
7847      equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7848 
7849    - Return a new rtx, which the caller returns directly.  */
7850 
7851 static rtx
7852 make_compound_operation_int (machine_mode mode, rtx *x_ptr,
7853 			     enum rtx_code in_code,
7854 			     enum rtx_code *next_code_ptr)
7855 {
7856   rtx x = *x_ptr;
7857   enum rtx_code next_code = *next_code_ptr;
7858   enum rtx_code code = GET_CODE (x);
7859   int mode_width = GET_MODE_PRECISION (mode);
7860   rtx rhs, lhs;
7861   rtx new_rtx = 0;
7862   int i;
7863   rtx tem;
7864   bool equality_comparison = false;
7865 
7866   if (in_code == EQ)
7867     {
7868       equality_comparison = true;
7869       in_code = COMPARE;
7870     }
7871 
7872   /* Process depending on the code of this operation.  If NEW is set
7873      nonzero, it will be returned.  */
7874 
7875   switch (code)
7876     {
7877     case ASHIFT:
7878       /* Convert shifts by constants into multiplications if inside
7879 	 an address.  */
7880       if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7881 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7882 	  && INTVAL (XEXP (x, 1)) >= 0)
7883 	{
7884 	  HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7885 	  HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
7886 
7887 	  new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7888 	  if (GET_CODE (new_rtx) == NEG)
7889 	    {
7890 	      new_rtx = XEXP (new_rtx, 0);
7891 	      multval = -multval;
7892 	    }
7893 	  multval = trunc_int_for_mode (multval, mode);
7894 	  new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7895 	}
7896       break;
7897 
7898     case PLUS:
7899       lhs = XEXP (x, 0);
7900       rhs = XEXP (x, 1);
7901       lhs = make_compound_operation (lhs, next_code);
7902       rhs = make_compound_operation (rhs, next_code);
7903       if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
7904 	{
7905 	  tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7906 				     XEXP (lhs, 1));
7907 	  new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7908 	}
7909       else if (GET_CODE (lhs) == MULT
7910 	       && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7911 	{
7912 	  tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7913 				     simplify_gen_unary (NEG, mode,
7914 							 XEXP (lhs, 1),
7915 							 mode));
7916 	  new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7917 	}
7918       else
7919 	{
7920 	  SUBST (XEXP (x, 0), lhs);
7921 	  SUBST (XEXP (x, 1), rhs);
7922 	}
7923       maybe_swap_commutative_operands (x);
7924       return x;
7925 
7926     case MINUS:
7927       lhs = XEXP (x, 0);
7928       rhs = XEXP (x, 1);
7929       lhs = make_compound_operation (lhs, next_code);
7930       rhs = make_compound_operation (rhs, next_code);
7931       if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
7932 	{
7933 	  tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7934 				     XEXP (rhs, 1));
7935 	  return simplify_gen_binary (PLUS, mode, tem, lhs);
7936 	}
7937       else if (GET_CODE (rhs) == MULT
7938 	       && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7939 	{
7940 	  tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7941 				     simplify_gen_unary (NEG, mode,
7942 							 XEXP (rhs, 1),
7943 							 mode));
7944 	  return simplify_gen_binary (PLUS, mode, tem, lhs);
7945 	}
7946       else
7947 	{
7948 	  SUBST (XEXP (x, 0), lhs);
7949 	  SUBST (XEXP (x, 1), rhs);
7950 	  return x;
7951 	}
7952 
7953     case AND:
7954       /* If the second operand is not a constant, we can't do anything
7955 	 with it.  */
7956       if (!CONST_INT_P (XEXP (x, 1)))
7957 	break;
7958 
7959       /* If the constant is a power of two minus one and the first operand
7960 	 is a logical right shift, make an extraction.  */
7961       if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7962 	  && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7963 	{
7964 	  new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7965 	  new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7966 				 0, in_code == COMPARE);
7967 	}
7968 
7969       /* Same as previous, but for (subreg (lshiftrt ...)) in first op.  */
7970       else if (GET_CODE (XEXP (x, 0)) == SUBREG
7971 	       && subreg_lowpart_p (XEXP (x, 0))
7972 	       && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7973 	       && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7974 	{
7975 	  rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
7976 	  machine_mode inner_mode = GET_MODE (inner_x0);
7977 	  new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
7978 	  new_rtx = make_extraction (inner_mode, new_rtx, 0,
7979 				     XEXP (inner_x0, 1),
7980 				     i, 1, 0, in_code == COMPARE);
7981 
7982 	  if (new_rtx)
7983 	    {
7984 	      /* If we narrowed the mode when dropping the subreg, then
7985 		 we must zero-extend to keep the semantics of the AND.  */
7986 	      if (GET_MODE_SIZE (inner_mode) >= GET_MODE_SIZE (mode))
7987 		;
7988 	      else if (SCALAR_INT_MODE_P (inner_mode))
7989 		new_rtx = simplify_gen_unary (ZERO_EXTEND, mode,
7990 					      new_rtx, inner_mode);
7991 	      else
7992 		new_rtx = NULL;
7993 	    }
7994 
7995 	  /* If that didn't give anything, see if the AND simplifies on
7996 	     its own.  */
7997 	  if (!new_rtx && i >= 0)
7998 	    {
7999 	      new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8000 	      new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
8001 					 0, in_code == COMPARE);
8002 	    }
8003 	}
8004       /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)).  */
8005       else if ((GET_CODE (XEXP (x, 0)) == XOR
8006 		|| GET_CODE (XEXP (x, 0)) == IOR)
8007 	       && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8008 	       && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8009 	       && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8010 	{
8011 	  /* Apply the distributive law, and then try to make extractions.  */
8012 	  new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8013 				gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8014 					     XEXP (x, 1)),
8015 				gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8016 					     XEXP (x, 1)));
8017 	  new_rtx = make_compound_operation (new_rtx, in_code);
8018 	}
8019 
8020       /* If we are have (and (rotate X C) M) and C is larger than the number
8021 	 of bits in M, this is an extraction.  */
8022 
8023       else if (GET_CODE (XEXP (x, 0)) == ROTATE
8024 	       && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8025 	       && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8026 	       && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8027 	{
8028 	  new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8029 	  new_rtx = make_extraction (mode, new_rtx,
8030 				 (GET_MODE_PRECISION (mode)
8031 				  - INTVAL (XEXP (XEXP (x, 0), 1))),
8032 				 NULL_RTX, i, 1, 0, in_code == COMPARE);
8033 	}
8034 
8035       /* On machines without logical shifts, if the operand of the AND is
8036 	 a logical shift and our mask turns off all the propagated sign
8037 	 bits, we can replace the logical shift with an arithmetic shift.  */
8038       else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8039 	       && !have_insn_for (LSHIFTRT, mode)
8040 	       && have_insn_for (ASHIFTRT, mode)
8041 	       && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8042 	       && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8043 	       && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8044 	       && mode_width <= HOST_BITS_PER_WIDE_INT)
8045 	{
8046 	  unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8047 
8048 	  mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8049 	  if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8050 	    SUBST (XEXP (x, 0),
8051 		   gen_rtx_ASHIFTRT (mode,
8052 				     make_compound_operation
8053 				     (XEXP (XEXP (x, 0), 0), next_code),
8054 				     XEXP (XEXP (x, 0), 1)));
8055 	}
8056 
8057       /* If the constant is one less than a power of two, this might be
8058 	 representable by an extraction even if no shift is present.
8059 	 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8060 	 we are in a COMPARE.  */
8061       else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8062 	new_rtx = make_extraction (mode,
8063 			       make_compound_operation (XEXP (x, 0),
8064 							next_code),
8065 			       0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8066 
8067       /* If we are in a comparison and this is an AND with a power of two,
8068 	 convert this into the appropriate bit extract.  */
8069       else if (in_code == COMPARE
8070 	       && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8071 	       && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8072 	new_rtx = make_extraction (mode,
8073 				   make_compound_operation (XEXP (x, 0),
8074 							    next_code),
8075 				   i, NULL_RTX, 1, 1, 0, 1);
8076 
8077       /* If the one operand is a paradoxical subreg of a register or memory and
8078 	 the constant (limited to the smaller mode) has only zero bits where
8079 	 the sub expression has known zero bits, this can be expressed as
8080 	 a zero_extend.  */
8081       else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8082 	{
8083 	  rtx sub;
8084 
8085 	  sub = XEXP (XEXP (x, 0), 0);
8086 	  machine_mode sub_mode = GET_MODE (sub);
8087 	  if ((REG_P (sub) || MEM_P (sub))
8088 	      && GET_MODE_PRECISION (sub_mode) < mode_width)
8089 	    {
8090 	      unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8091 	      unsigned HOST_WIDE_INT mask;
8092 
8093 	      /* original AND constant with all the known zero bits set */
8094 	      mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8095 	      if ((mask & mode_mask) == mode_mask)
8096 		{
8097 		  new_rtx = make_compound_operation (sub, next_code);
8098 		  new_rtx = make_extraction (mode, new_rtx, 0, 0,
8099 					     GET_MODE_PRECISION (sub_mode),
8100 					     1, 0, in_code == COMPARE);
8101 		}
8102 	    }
8103 	}
8104 
8105       break;
8106 
8107     case LSHIFTRT:
8108       /* If the sign bit is known to be zero, replace this with an
8109 	 arithmetic shift.  */
8110       if (have_insn_for (ASHIFTRT, mode)
8111 	  && ! have_insn_for (LSHIFTRT, mode)
8112 	  && mode_width <= HOST_BITS_PER_WIDE_INT
8113 	  && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8114 	{
8115 	  new_rtx = gen_rtx_ASHIFTRT (mode,
8116 				  make_compound_operation (XEXP (x, 0),
8117 							   next_code),
8118 				  XEXP (x, 1));
8119 	  break;
8120 	}
8121 
8122       /* fall through */
8123 
8124     case ASHIFTRT:
8125       lhs = XEXP (x, 0);
8126       rhs = XEXP (x, 1);
8127 
8128       /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8129 	 this is a SIGN_EXTRACT.  */
8130       if (CONST_INT_P (rhs)
8131 	  && GET_CODE (lhs) == ASHIFT
8132 	  && CONST_INT_P (XEXP (lhs, 1))
8133 	  && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8134 	  && INTVAL (XEXP (lhs, 1)) >= 0
8135 	  && INTVAL (rhs) < mode_width)
8136 	{
8137 	  new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8138 	  new_rtx = make_extraction (mode, new_rtx,
8139 				 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8140 				 NULL_RTX, mode_width - INTVAL (rhs),
8141 				 code == LSHIFTRT, 0, in_code == COMPARE);
8142 	  break;
8143 	}
8144 
8145       /* See if we have operations between an ASHIFTRT and an ASHIFT.
8146 	 If so, try to merge the shifts into a SIGN_EXTEND.  We could
8147 	 also do this for some cases of SIGN_EXTRACT, but it doesn't
8148 	 seem worth the effort; the case checked for occurs on Alpha.  */
8149 
8150       if (!OBJECT_P (lhs)
8151 	  && ! (GET_CODE (lhs) == SUBREG
8152 		&& (OBJECT_P (SUBREG_REG (lhs))))
8153 	  && CONST_INT_P (rhs)
8154 	  && INTVAL (rhs) >= 0
8155 	  && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8156 	  && INTVAL (rhs) < mode_width
8157 	  && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
8158 	new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
8159 			       0, NULL_RTX, mode_width - INTVAL (rhs),
8160 			       code == LSHIFTRT, 0, in_code == COMPARE);
8161 
8162       break;
8163 
8164     case SUBREG:
8165       /* Call ourselves recursively on the inner expression.  If we are
8166 	 narrowing the object and it has a different RTL code from
8167 	 what it originally did, do this SUBREG as a force_to_mode.  */
8168       {
8169 	rtx inner = SUBREG_REG (x), simplified;
8170 	enum rtx_code subreg_code = in_code;
8171 
8172 	/* If the SUBREG is masking of a logical right shift,
8173 	   make an extraction.  */
8174 	if (GET_CODE (inner) == LSHIFTRT
8175 	    && CONST_INT_P (XEXP (inner, 1))
8176 	    && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8177 	    && (UINTVAL (XEXP (inner, 1))
8178 		< GET_MODE_PRECISION (GET_MODE (inner)))
8179 	    && subreg_lowpart_p (x))
8180 	  {
8181 	    new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8182 	    int width = GET_MODE_PRECISION (GET_MODE (inner))
8183 			- INTVAL (XEXP (inner, 1));
8184 	    if (width > mode_width)
8185 	      width = mode_width;
8186 	    new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8187 				       width, 1, 0, in_code == COMPARE);
8188 	    break;
8189 	  }
8190 
8191 	/* If in_code is COMPARE, it isn't always safe to pass it through
8192 	   to the recursive make_compound_operation call.  */
8193 	if (subreg_code == COMPARE
8194 	    && (!subreg_lowpart_p (x)
8195 		|| GET_CODE (inner) == SUBREG
8196 		/* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8197 		   is (const_int 0), rather than
8198 		   (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8199 		   Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8200 		   for non-equality comparisons against 0 is not equivalent
8201 		   to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0).  */
8202 		|| (GET_CODE (inner) == AND
8203 		    && CONST_INT_P (XEXP (inner, 1))
8204 		    && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8205 		    && exact_log2 (UINTVAL (XEXP (inner, 1)))
8206 		       >= GET_MODE_BITSIZE (mode) - 1)))
8207 	  subreg_code = SET;
8208 
8209 	tem = make_compound_operation (inner, subreg_code);
8210 
8211 	simplified
8212 	  = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8213 	if (simplified)
8214 	  tem = simplified;
8215 
8216 	if (GET_CODE (tem) != GET_CODE (inner)
8217 	    && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8218 	    && subreg_lowpart_p (x))
8219 	  {
8220 	    rtx newer
8221 	      = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8222 
8223 	    /* If we have something other than a SUBREG, we might have
8224 	       done an expansion, so rerun ourselves.  */
8225 	    if (GET_CODE (newer) != SUBREG)
8226 	      newer = make_compound_operation (newer, in_code);
8227 
8228 	    /* force_to_mode can expand compounds.  If it just re-expanded the
8229 	       compound, use gen_lowpart to convert to the desired mode.  */
8230 	    if (rtx_equal_p (newer, x)
8231 		/* Likewise if it re-expanded the compound only partially.
8232 		   This happens for SUBREG of ZERO_EXTRACT if they extract
8233 		   the same number of bits.  */
8234 		|| (GET_CODE (newer) == SUBREG
8235 		    && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8236 			|| GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8237 		    && GET_CODE (inner) == AND
8238 		    && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8239 	      return gen_lowpart (GET_MODE (x), tem);
8240 
8241 	    return newer;
8242 	  }
8243 
8244 	if (simplified)
8245 	  return tem;
8246       }
8247       break;
8248 
8249     default:
8250       break;
8251     }
8252 
8253   if (new_rtx)
8254     *x_ptr = gen_lowpart (mode, new_rtx);
8255   *next_code_ptr = next_code;
8256   return NULL_RTX;
8257 }
8258 
8259 /* Look at the expression rooted at X.  Look for expressions
8260    equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8261    Form these expressions.
8262 
8263    Return the new rtx, usually just X.
8264 
8265    Also, for machines like the VAX that don't have logical shift insns,
8266    try to convert logical to arithmetic shift operations in cases where
8267    they are equivalent.  This undoes the canonicalizations to logical
8268    shifts done elsewhere.
8269 
8270    We try, as much as possible, to re-use rtl expressions to save memory.
8271 
8272    IN_CODE says what kind of expression we are processing.  Normally, it is
8273    SET.  In a memory address it is MEM.  When processing the arguments of
8274    a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8275    precisely it is an equality comparison against zero.  */
8276 
8277 rtx
8278 make_compound_operation (rtx x, enum rtx_code in_code)
8279 {
8280   enum rtx_code code = GET_CODE (x);
8281   const char *fmt;
8282   int i, j;
8283   enum rtx_code next_code;
8284   rtx new_rtx, tem;
8285 
8286   /* Select the code to be used in recursive calls.  Once we are inside an
8287      address, we stay there.  If we have a comparison, set to COMPARE,
8288      but once inside, go back to our default of SET.  */
8289 
8290   next_code = (code == MEM ? MEM
8291 	       : ((code == COMPARE || COMPARISON_P (x))
8292 		  && XEXP (x, 1) == const0_rtx) ? COMPARE
8293 	       : in_code == COMPARE || in_code == EQ ? SET : in_code);
8294 
8295   if (SCALAR_INT_MODE_P (GET_MODE (x)))
8296     {
8297       rtx new_rtx = make_compound_operation_int (GET_MODE (x), &x,
8298 						 in_code, &next_code);
8299       if (new_rtx)
8300 	return new_rtx;
8301       code = GET_CODE (x);
8302     }
8303 
8304   /* Now recursively process each operand of this operation.  We need to
8305      handle ZERO_EXTEND specially so that we don't lose track of the
8306      inner mode.  */
8307   if (code == ZERO_EXTEND)
8308     {
8309       new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8310       tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8311 					    new_rtx, GET_MODE (XEXP (x, 0)));
8312       if (tem)
8313 	return tem;
8314       SUBST (XEXP (x, 0), new_rtx);
8315       return x;
8316     }
8317 
8318   fmt = GET_RTX_FORMAT (code);
8319   for (i = 0; i < GET_RTX_LENGTH (code); i++)
8320     if (fmt[i] == 'e')
8321       {
8322 	new_rtx = make_compound_operation (XEXP (x, i), next_code);
8323 	SUBST (XEXP (x, i), new_rtx);
8324       }
8325     else if (fmt[i] == 'E')
8326       for (j = 0; j < XVECLEN (x, i); j++)
8327 	{
8328 	  new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8329 	  SUBST (XVECEXP (x, i, j), new_rtx);
8330 	}
8331 
8332   maybe_swap_commutative_operands (x);
8333   return x;
8334 }
8335 
8336 /* Given M see if it is a value that would select a field of bits
8337    within an item, but not the entire word.  Return -1 if not.
8338    Otherwise, return the starting position of the field, where 0 is the
8339    low-order bit.
8340 
8341    *PLEN is set to the length of the field.  */
8342 
8343 static int
8344 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8345 {
8346   /* Get the bit number of the first 1 bit from the right, -1 if none.  */
8347   int pos = m ? ctz_hwi (m) : -1;
8348   int len = 0;
8349 
8350   if (pos >= 0)
8351     /* Now shift off the low-order zero bits and see if we have a
8352        power of two minus 1.  */
8353     len = exact_log2 ((m >> pos) + 1);
8354 
8355   if (len <= 0)
8356     pos = -1;
8357 
8358   *plen = len;
8359   return pos;
8360 }
8361 
8362 /* If X refers to a register that equals REG in value, replace these
8363    references with REG.  */
8364 static rtx
8365 canon_reg_for_combine (rtx x, rtx reg)
8366 {
8367   rtx op0, op1, op2;
8368   const char *fmt;
8369   int i;
8370   bool copied;
8371 
8372   enum rtx_code code = GET_CODE (x);
8373   switch (GET_RTX_CLASS (code))
8374     {
8375     case RTX_UNARY:
8376       op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8377       if (op0 != XEXP (x, 0))
8378 	return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8379 				   GET_MODE (reg));
8380       break;
8381 
8382     case RTX_BIN_ARITH:
8383     case RTX_COMM_ARITH:
8384       op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8385       op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8386       if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8387 	return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8388       break;
8389 
8390     case RTX_COMPARE:
8391     case RTX_COMM_COMPARE:
8392       op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8393       op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8394       if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8395 	return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8396 					GET_MODE (op0), op0, op1);
8397       break;
8398 
8399     case RTX_TERNARY:
8400     case RTX_BITFIELD_OPS:
8401       op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8402       op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8403       op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8404       if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8405 	return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8406 				     GET_MODE (op0), op0, op1, op2);
8407       /* FALLTHRU */
8408 
8409     case RTX_OBJ:
8410       if (REG_P (x))
8411 	{
8412 	  if (rtx_equal_p (get_last_value (reg), x)
8413 	      || rtx_equal_p (reg, get_last_value (x)))
8414 	    return reg;
8415 	  else
8416 	    break;
8417 	}
8418 
8419       /* fall through */
8420 
8421     default:
8422       fmt = GET_RTX_FORMAT (code);
8423       copied = false;
8424       for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8425 	if (fmt[i] == 'e')
8426 	  {
8427 	    rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8428 	    if (op != XEXP (x, i))
8429 	      {
8430 		if (!copied)
8431 		  {
8432 		    copied = true;
8433 		    x = copy_rtx (x);
8434 		  }
8435 		XEXP (x, i) = op;
8436 	      }
8437 	  }
8438 	else if (fmt[i] == 'E')
8439 	  {
8440 	    int j;
8441 	    for (j = 0; j < XVECLEN (x, i); j++)
8442 	      {
8443 		rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8444 		if (op != XVECEXP (x, i, j))
8445 		  {
8446 		    if (!copied)
8447 		      {
8448 			copied = true;
8449 			x = copy_rtx (x);
8450 		      }
8451 		    XVECEXP (x, i, j) = op;
8452 		  }
8453 	      }
8454 	  }
8455 
8456       break;
8457     }
8458 
8459   return x;
8460 }
8461 
8462 /* Return X converted to MODE.  If the value is already truncated to
8463    MODE we can just return a subreg even though in the general case we
8464    would need an explicit truncation.  */
8465 
8466 static rtx
8467 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8468 {
8469   if (!CONST_INT_P (x)
8470       && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8471       && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8472       && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8473     {
8474       /* Bit-cast X into an integer mode.  */
8475       if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8476 	x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8477       x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8478 			      x, GET_MODE (x));
8479     }
8480 
8481   return gen_lowpart (mode, x);
8482 }
8483 
8484 /* See if X can be simplified knowing that we will only refer to it in
8485    MODE and will only refer to those bits that are nonzero in MASK.
8486    If other bits are being computed or if masking operations are done
8487    that select a superset of the bits in MASK, they can sometimes be
8488    ignored.
8489 
8490    Return a possibly simplified expression, but always convert X to
8491    MODE.  If X is a CONST_INT, AND the CONST_INT with MASK.
8492 
8493    If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8494    are all off in X.  This is used when X will be complemented, by either
8495    NOT, NEG, or XOR.  */
8496 
8497 static rtx
8498 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8499 	       int just_select)
8500 {
8501   enum rtx_code code = GET_CODE (x);
8502   int next_select = just_select || code == XOR || code == NOT || code == NEG;
8503   machine_mode op_mode;
8504   unsigned HOST_WIDE_INT fuller_mask, nonzero;
8505   rtx op0, op1, temp;
8506 
8507   /* If this is a CALL or ASM_OPERANDS, don't do anything.  Some of the
8508      code below will do the wrong thing since the mode of such an
8509      expression is VOIDmode.
8510 
8511      Also do nothing if X is a CLOBBER; this can happen if X was
8512      the return value from a call to gen_lowpart.  */
8513   if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8514     return x;
8515 
8516   /* We want to perform the operation in its present mode unless we know
8517      that the operation is valid in MODE, in which case we do the operation
8518      in MODE.  */
8519   op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8520 	      && have_insn_for (code, mode))
8521 	     ? mode : GET_MODE (x));
8522 
8523   /* It is not valid to do a right-shift in a narrower mode
8524      than the one it came in with.  */
8525   if ((code == LSHIFTRT || code == ASHIFTRT)
8526       && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8527     op_mode = GET_MODE (x);
8528 
8529   /* Truncate MASK to fit OP_MODE.  */
8530   if (op_mode)
8531     mask &= GET_MODE_MASK (op_mode);
8532 
8533   /* When we have an arithmetic operation, or a shift whose count we
8534      do not know, we need to assume that all bits up to the highest-order
8535      bit in MASK will be needed.  This is how we form such a mask.  */
8536   if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8537     fuller_mask = HOST_WIDE_INT_M1U;
8538   else
8539     fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8540 		   - 1);
8541 
8542   /* Determine what bits of X are guaranteed to be (non)zero.  */
8543   nonzero = nonzero_bits (x, mode);
8544 
8545   /* If none of the bits in X are needed, return a zero.  */
8546   if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8547     x = const0_rtx;
8548 
8549   /* If X is a CONST_INT, return a new one.  Do this here since the
8550      test below will fail.  */
8551   if (CONST_INT_P (x))
8552     {
8553       if (SCALAR_INT_MODE_P (mode))
8554 	return gen_int_mode (INTVAL (x) & mask, mode);
8555       else
8556 	{
8557 	  x = GEN_INT (INTVAL (x) & mask);
8558 	  return gen_lowpart_common (mode, x);
8559 	}
8560     }
8561 
8562   /* If X is narrower than MODE and we want all the bits in X's mode, just
8563      get X in the proper mode.  */
8564   if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8565       && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8566     return gen_lowpart (mode, x);
8567 
8568   /* We can ignore the effect of a SUBREG if it narrows the mode or
8569      if the constant masks to zero all the bits the mode doesn't have.  */
8570   if (GET_CODE (x) == SUBREG
8571       && subreg_lowpart_p (x)
8572       && ((GET_MODE_SIZE (GET_MODE (x))
8573 	   < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8574 	  || (0 == (mask
8575 		    & GET_MODE_MASK (GET_MODE (x))
8576 		    & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8577     return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8578 
8579   /* The arithmetic simplifications here only work for scalar integer modes.  */
8580   if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8581     return gen_lowpart_or_truncate (mode, x);
8582 
8583   switch (code)
8584     {
8585     case CLOBBER:
8586       /* If X is a (clobber (const_int)), return it since we know we are
8587 	 generating something that won't match.  */
8588       return x;
8589 
8590     case SIGN_EXTEND:
8591     case ZERO_EXTEND:
8592     case ZERO_EXTRACT:
8593     case SIGN_EXTRACT:
8594       x = expand_compound_operation (x);
8595       if (GET_CODE (x) != code)
8596 	return force_to_mode (x, mode, mask, next_select);
8597       break;
8598 
8599     case TRUNCATE:
8600       /* Similarly for a truncate.  */
8601       return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8602 
8603     case AND:
8604       /* If this is an AND with a constant, convert it into an AND
8605 	 whose constant is the AND of that constant with MASK.  If it
8606 	 remains an AND of MASK, delete it since it is redundant.  */
8607 
8608       if (CONST_INT_P (XEXP (x, 1)))
8609 	{
8610 	  x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8611 				      mask & INTVAL (XEXP (x, 1)));
8612 
8613 	  /* If X is still an AND, see if it is an AND with a mask that
8614 	     is just some low-order bits.  If so, and it is MASK, we don't
8615 	     need it.  */
8616 
8617 	  if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8618 	      && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8619 		  == mask))
8620 	    x = XEXP (x, 0);
8621 
8622 	  /* If it remains an AND, try making another AND with the bits
8623 	     in the mode mask that aren't in MASK turned on.  If the
8624 	     constant in the AND is wide enough, this might make a
8625 	     cheaper constant.  */
8626 
8627 	  if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8628 	      && GET_MODE_MASK (GET_MODE (x)) != mask
8629 	      && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8630 	    {
8631 	      unsigned HOST_WIDE_INT cval
8632 		= UINTVAL (XEXP (x, 1))
8633 		  | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8634 	      rtx y;
8635 
8636 	      y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8637 				       gen_int_mode (cval, GET_MODE (x)));
8638 	      if (set_src_cost (y, GET_MODE (x), optimize_this_for_speed_p)
8639 	          < set_src_cost (x, GET_MODE (x), optimize_this_for_speed_p))
8640 		x = y;
8641 	    }
8642 
8643 	  break;
8644 	}
8645 
8646       goto binop;
8647 
8648     case PLUS:
8649       /* In (and (plus FOO C1) M), if M is a mask that just turns off
8650 	 low-order bits (as in an alignment operation) and FOO is already
8651 	 aligned to that boundary, mask C1 to that boundary as well.
8652 	 This may eliminate that PLUS and, later, the AND.  */
8653 
8654       {
8655 	unsigned int width = GET_MODE_PRECISION (mode);
8656 	unsigned HOST_WIDE_INT smask = mask;
8657 
8658 	/* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8659 	   number, sign extend it.  */
8660 
8661 	if (width < HOST_BITS_PER_WIDE_INT
8662 	    && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8663 	  smask |= HOST_WIDE_INT_M1U << width;
8664 
8665 	if (CONST_INT_P (XEXP (x, 1))
8666 	    && pow2p_hwi (- smask)
8667 	    && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8668 	    && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8669 	  return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8670 					       (INTVAL (XEXP (x, 1)) & smask)),
8671 				mode, smask, next_select);
8672       }
8673 
8674       /* fall through */
8675 
8676     case MULT:
8677       /* Substituting into the operands of a widening MULT is not likely to
8678 	 create RTL matching a machine insn.  */
8679       if (code == MULT
8680 	  && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8681 	      || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8682 	  && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8683 	      || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8684 	  && REG_P (XEXP (XEXP (x, 0), 0))
8685 	  && REG_P (XEXP (XEXP (x, 1), 0)))
8686 	return gen_lowpart_or_truncate (mode, x);
8687 
8688       /* For PLUS, MINUS and MULT, we need any bits less significant than the
8689 	 most significant bit in MASK since carries from those bits will
8690 	 affect the bits we are interested in.  */
8691       mask = fuller_mask;
8692       goto binop;
8693 
8694     case MINUS:
8695       /* If X is (minus C Y) where C's least set bit is larger than any bit
8696 	 in the mask, then we may replace with (neg Y).  */
8697       if (CONST_INT_P (XEXP (x, 0))
8698 	  && least_bit_hwi (UINTVAL (XEXP (x, 0))) > mask)
8699 	{
8700 	  x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8701 				  GET_MODE (x));
8702 	  return force_to_mode (x, mode, mask, next_select);
8703 	}
8704 
8705       /* Similarly, if C contains every bit in the fuller_mask, then we may
8706 	 replace with (not Y).  */
8707       if (CONST_INT_P (XEXP (x, 0))
8708 	  && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8709 	{
8710 	  x = simplify_gen_unary (NOT, GET_MODE (x),
8711 				  XEXP (x, 1), GET_MODE (x));
8712 	  return force_to_mode (x, mode, mask, next_select);
8713 	}
8714 
8715       mask = fuller_mask;
8716       goto binop;
8717 
8718     case IOR:
8719     case XOR:
8720       /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8721 	 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8722 	 operation which may be a bitfield extraction.  Ensure that the
8723 	 constant we form is not wider than the mode of X.  */
8724 
8725       if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8726 	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8727 	  && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8728 	  && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8729 	  && CONST_INT_P (XEXP (x, 1))
8730 	  && ((INTVAL (XEXP (XEXP (x, 0), 1))
8731 	       + floor_log2 (INTVAL (XEXP (x, 1))))
8732 	      < GET_MODE_PRECISION (GET_MODE (x)))
8733 	  && (UINTVAL (XEXP (x, 1))
8734 	      & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8735 	{
8736 	  temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8737 			       << INTVAL (XEXP (XEXP (x, 0), 1)),
8738 			       GET_MODE (x));
8739 	  temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8740 				      XEXP (XEXP (x, 0), 0), temp);
8741 	  x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8742 				   XEXP (XEXP (x, 0), 1));
8743 	  return force_to_mode (x, mode, mask, next_select);
8744 	}
8745 
8746     binop:
8747       /* For most binary operations, just propagate into the operation and
8748 	 change the mode if we have an operation of that mode.  */
8749 
8750       op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8751       op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8752 
8753       /* If we ended up truncating both operands, truncate the result of the
8754 	 operation instead.  */
8755       if (GET_CODE (op0) == TRUNCATE
8756 	  && GET_CODE (op1) == TRUNCATE)
8757 	{
8758 	  op0 = XEXP (op0, 0);
8759 	  op1 = XEXP (op1, 0);
8760 	}
8761 
8762       op0 = gen_lowpart_or_truncate (op_mode, op0);
8763       op1 = gen_lowpart_or_truncate (op_mode, op1);
8764 
8765       if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8766 	x = simplify_gen_binary (code, op_mode, op0, op1);
8767       break;
8768 
8769     case ASHIFT:
8770       /* For left shifts, do the same, but just for the first operand.
8771 	 However, we cannot do anything with shifts where we cannot
8772 	 guarantee that the counts are smaller than the size of the mode
8773 	 because such a count will have a different meaning in a
8774 	 wider mode.  */
8775 
8776       if (! (CONST_INT_P (XEXP (x, 1))
8777 	     && INTVAL (XEXP (x, 1)) >= 0
8778 	     && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8779 	  && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8780 		&& (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8781 		    < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8782 	break;
8783 
8784       /* If the shift count is a constant and we can do arithmetic in
8785 	 the mode of the shift, refine which bits we need.  Otherwise, use the
8786 	 conservative form of the mask.  */
8787       if (CONST_INT_P (XEXP (x, 1))
8788 	  && INTVAL (XEXP (x, 1)) >= 0
8789 	  && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8790 	  && HWI_COMPUTABLE_MODE_P (op_mode))
8791 	mask >>= INTVAL (XEXP (x, 1));
8792       else
8793 	mask = fuller_mask;
8794 
8795       op0 = gen_lowpart_or_truncate (op_mode,
8796 				     force_to_mode (XEXP (x, 0), mode,
8797 						    mask, next_select));
8798 
8799       if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8800 	x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8801       break;
8802 
8803     case LSHIFTRT:
8804       /* Here we can only do something if the shift count is a constant,
8805 	 this shift constant is valid for the host, and we can do arithmetic
8806 	 in OP_MODE.  */
8807 
8808       if (CONST_INT_P (XEXP (x, 1))
8809 	  && INTVAL (XEXP (x, 1)) >= 0
8810 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8811 	  && HWI_COMPUTABLE_MODE_P (op_mode))
8812 	{
8813 	  rtx inner = XEXP (x, 0);
8814 	  unsigned HOST_WIDE_INT inner_mask;
8815 
8816 	  /* Select the mask of the bits we need for the shift operand.  */
8817 	  inner_mask = mask << INTVAL (XEXP (x, 1));
8818 
8819 	  /* We can only change the mode of the shift if we can do arithmetic
8820 	     in the mode of the shift and INNER_MASK is no wider than the
8821 	     width of X's mode.  */
8822 	  if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8823 	    op_mode = GET_MODE (x);
8824 
8825 	  inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8826 
8827 	  if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8828 	    x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8829 	}
8830 
8831       /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8832 	 shift and AND produces only copies of the sign bit (C2 is one less
8833 	 than a power of two), we can do this with just a shift.  */
8834 
8835       if (GET_CODE (x) == LSHIFTRT
8836 	  && CONST_INT_P (XEXP (x, 1))
8837 	  /* The shift puts one of the sign bit copies in the least significant
8838 	     bit.  */
8839 	  && ((INTVAL (XEXP (x, 1))
8840 	       + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8841 	      >= GET_MODE_PRECISION (GET_MODE (x)))
8842 	  && pow2p_hwi (mask + 1)
8843 	  /* Number of bits left after the shift must be more than the mask
8844 	     needs.  */
8845 	  && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8846 	      <= GET_MODE_PRECISION (GET_MODE (x)))
8847 	  /* Must be more sign bit copies than the mask needs.  */
8848 	  && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8849 	      >= exact_log2 (mask + 1)))
8850 	x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8851 				 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8852 					  - exact_log2 (mask + 1)));
8853 
8854       goto shiftrt;
8855 
8856     case ASHIFTRT:
8857       /* If we are just looking for the sign bit, we don't need this shift at
8858 	 all, even if it has a variable count.  */
8859       if (val_signbit_p (GET_MODE (x), mask))
8860 	return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8861 
8862       /* If this is a shift by a constant, get a mask that contains those bits
8863 	 that are not copies of the sign bit.  We then have two cases:  If
8864 	 MASK only includes those bits, this can be a logical shift, which may
8865 	 allow simplifications.  If MASK is a single-bit field not within
8866 	 those bits, we are requesting a copy of the sign bit and hence can
8867 	 shift the sign bit to the appropriate location.  */
8868 
8869       if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8870 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8871 	{
8872 	  int i;
8873 
8874 	  /* If the considered data is wider than HOST_WIDE_INT, we can't
8875 	     represent a mask for all its bits in a single scalar.
8876 	     But we only care about the lower bits, so calculate these.  */
8877 
8878 	  if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8879 	    {
8880 	      nonzero = HOST_WIDE_INT_M1U;
8881 
8882 	      /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8883 		 is the number of bits a full-width mask would have set.
8884 		 We need only shift if these are fewer than nonzero can
8885 		 hold.  If not, we must keep all bits set in nonzero.  */
8886 
8887 	      if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8888 		  < HOST_BITS_PER_WIDE_INT)
8889 		nonzero >>= INTVAL (XEXP (x, 1))
8890 			    + HOST_BITS_PER_WIDE_INT
8891 			    - GET_MODE_PRECISION (GET_MODE (x)) ;
8892 	    }
8893 	  else
8894 	    {
8895 	      nonzero = GET_MODE_MASK (GET_MODE (x));
8896 	      nonzero >>= INTVAL (XEXP (x, 1));
8897 	    }
8898 
8899 	  if ((mask & ~nonzero) == 0)
8900 	    {
8901 	      x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8902 					XEXP (x, 0), INTVAL (XEXP (x, 1)));
8903 	      if (GET_CODE (x) != ASHIFTRT)
8904 		return force_to_mode (x, mode, mask, next_select);
8905 	    }
8906 
8907 	  else if ((i = exact_log2 (mask)) >= 0)
8908 	    {
8909 	      x = simplify_shift_const
8910 		  (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8911 		   GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8912 
8913 	      if (GET_CODE (x) != ASHIFTRT)
8914 		return force_to_mode (x, mode, mask, next_select);
8915 	    }
8916 	}
8917 
8918       /* If MASK is 1, convert this to an LSHIFTRT.  This can be done
8919 	 even if the shift count isn't a constant.  */
8920       if (mask == 1)
8921 	x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8922 				 XEXP (x, 0), XEXP (x, 1));
8923 
8924     shiftrt:
8925 
8926       /* If this is a zero- or sign-extension operation that just affects bits
8927 	 we don't care about, remove it.  Be sure the call above returned
8928 	 something that is still a shift.  */
8929 
8930       if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8931 	  && CONST_INT_P (XEXP (x, 1))
8932 	  && INTVAL (XEXP (x, 1)) >= 0
8933 	  && (INTVAL (XEXP (x, 1))
8934 	      <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8935 	  && GET_CODE (XEXP (x, 0)) == ASHIFT
8936 	  && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8937 	return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8938 			      next_select);
8939 
8940       break;
8941 
8942     case ROTATE:
8943     case ROTATERT:
8944       /* If the shift count is constant and we can do computations
8945 	 in the mode of X, compute where the bits we care about are.
8946 	 Otherwise, we can't do anything.  Don't change the mode of
8947 	 the shift or propagate MODE into the shift, though.  */
8948       if (CONST_INT_P (XEXP (x, 1))
8949 	  && INTVAL (XEXP (x, 1)) >= 0)
8950 	{
8951 	  temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8952 					    GET_MODE (x),
8953 					    gen_int_mode (mask, GET_MODE (x)),
8954 					    XEXP (x, 1));
8955 	  if (temp && CONST_INT_P (temp))
8956 	    x = simplify_gen_binary (code, GET_MODE (x),
8957 				     force_to_mode (XEXP (x, 0), GET_MODE (x),
8958 						    INTVAL (temp), next_select),
8959 				     XEXP (x, 1));
8960 	}
8961       break;
8962 
8963     case NEG:
8964       /* If we just want the low-order bit, the NEG isn't needed since it
8965 	 won't change the low-order bit.  */
8966       if (mask == 1)
8967 	return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8968 
8969       /* We need any bits less significant than the most significant bit in
8970 	 MASK since carries from those bits will affect the bits we are
8971 	 interested in.  */
8972       mask = fuller_mask;
8973       goto unop;
8974 
8975     case NOT:
8976       /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8977 	 same as the XOR case above.  Ensure that the constant we form is not
8978 	 wider than the mode of X.  */
8979 
8980       if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8981 	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8982 	  && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8983 	  && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8984 	      < GET_MODE_PRECISION (GET_MODE (x)))
8985 	  && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8986 	{
8987 	  temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8988 			       GET_MODE (x));
8989 	  temp = simplify_gen_binary (XOR, GET_MODE (x),
8990 				      XEXP (XEXP (x, 0), 0), temp);
8991 	  x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8992 				   temp, XEXP (XEXP (x, 0), 1));
8993 
8994 	  return force_to_mode (x, mode, mask, next_select);
8995 	}
8996 
8997       /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8998 	 use the full mask inside the NOT.  */
8999       mask = fuller_mask;
9000 
9001     unop:
9002       op0 = gen_lowpart_or_truncate (op_mode,
9003 				     force_to_mode (XEXP (x, 0), mode, mask,
9004 						    next_select));
9005       if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
9006 	x = simplify_gen_unary (code, op_mode, op0, op_mode);
9007       break;
9008 
9009     case NE:
9010       /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9011 	 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9012 	 which is equal to STORE_FLAG_VALUE.  */
9013       if ((mask & ~STORE_FLAG_VALUE) == 0
9014 	  && XEXP (x, 1) == const0_rtx
9015 	  && GET_MODE (XEXP (x, 0)) == mode
9016 	  && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9017 	  && (nonzero_bits (XEXP (x, 0), mode)
9018 	      == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9019 	return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9020 
9021       break;
9022 
9023     case IF_THEN_ELSE:
9024       /* We have no way of knowing if the IF_THEN_ELSE can itself be
9025 	 written in a narrower mode.  We play it safe and do not do so.  */
9026 
9027       op0 = gen_lowpart_or_truncate (GET_MODE (x),
9028 				     force_to_mode (XEXP (x, 1), mode,
9029 						    mask, next_select));
9030       op1 = gen_lowpart_or_truncate (GET_MODE (x),
9031 				     force_to_mode (XEXP (x, 2), mode,
9032 						    mask, next_select));
9033       if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9034 	x = simplify_gen_ternary (IF_THEN_ELSE, GET_MODE (x),
9035 				  GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9036 				  op0, op1);
9037       break;
9038 
9039     default:
9040       break;
9041     }
9042 
9043   /* Ensure we return a value of the proper mode.  */
9044   return gen_lowpart_or_truncate (mode, x);
9045 }
9046 
9047 /* Return nonzero if X is an expression that has one of two values depending on
9048    whether some other value is zero or nonzero.  In that case, we return the
9049    value that is being tested, *PTRUE is set to the value if the rtx being
9050    returned has a nonzero value, and *PFALSE is set to the other alternative.
9051 
9052    If we return zero, we set *PTRUE and *PFALSE to X.  */
9053 
9054 static rtx
9055 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9056 {
9057   machine_mode mode = GET_MODE (x);
9058   enum rtx_code code = GET_CODE (x);
9059   rtx cond0, cond1, true0, true1, false0, false1;
9060   unsigned HOST_WIDE_INT nz;
9061 
9062   /* If we are comparing a value against zero, we are done.  */
9063   if ((code == NE || code == EQ)
9064       && XEXP (x, 1) == const0_rtx)
9065     {
9066       *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9067       *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9068       return XEXP (x, 0);
9069     }
9070 
9071   /* If this is a unary operation whose operand has one of two values, apply
9072      our opcode to compute those values.  */
9073   else if (UNARY_P (x)
9074 	   && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9075     {
9076       *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9077       *pfalse = simplify_gen_unary (code, mode, false0,
9078 				    GET_MODE (XEXP (x, 0)));
9079       return cond0;
9080     }
9081 
9082   /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9083      make can't possibly match and would suppress other optimizations.  */
9084   else if (code == COMPARE)
9085     ;
9086 
9087   /* If this is a binary operation, see if either side has only one of two
9088      values.  If either one does or if both do and they are conditional on
9089      the same value, compute the new true and false values.  */
9090   else if (BINARY_P (x))
9091     {
9092       rtx op0 = XEXP (x, 0);
9093       rtx op1 = XEXP (x, 1);
9094       cond0 = if_then_else_cond (op0, &true0, &false0);
9095       cond1 = if_then_else_cond (op1, &true1, &false1);
9096 
9097       if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9098 	  && (REG_P (op0) || REG_P (op1)))
9099 	{
9100 	  /* Try to enable a simplification by undoing work done by
9101 	     if_then_else_cond if it converted a REG into something more
9102 	     complex.  */
9103 	  if (REG_P (op0))
9104 	    {
9105 	      cond0 = 0;
9106 	      true0 = false0 = op0;
9107 	    }
9108 	  else
9109 	    {
9110 	      cond1 = 0;
9111 	      true1 = false1 = op1;
9112 	    }
9113 	}
9114 
9115       if ((cond0 != 0 || cond1 != 0)
9116 	  && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9117 	{
9118 	  /* If if_then_else_cond returned zero, then true/false are the
9119 	     same rtl.  We must copy one of them to prevent invalid rtl
9120 	     sharing.  */
9121 	  if (cond0 == 0)
9122 	    true0 = copy_rtx (true0);
9123 	  else if (cond1 == 0)
9124 	    true1 = copy_rtx (true1);
9125 
9126 	  if (COMPARISON_P (x))
9127 	    {
9128 	      *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9129 						true0, true1);
9130 	      *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9131 						 false0, false1);
9132 	     }
9133 	  else
9134 	    {
9135 	      *ptrue = simplify_gen_binary (code, mode, true0, true1);
9136 	      *pfalse = simplify_gen_binary (code, mode, false0, false1);
9137 	    }
9138 
9139 	  return cond0 ? cond0 : cond1;
9140 	}
9141 
9142       /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9143 	 operands is zero when the other is nonzero, and vice-versa,
9144 	 and STORE_FLAG_VALUE is 1 or -1.  */
9145 
9146       if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9147 	  && (code == PLUS || code == IOR || code == XOR || code == MINUS
9148 	      || code == UMAX)
9149 	  && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9150 	{
9151 	  rtx op0 = XEXP (XEXP (x, 0), 1);
9152 	  rtx op1 = XEXP (XEXP (x, 1), 1);
9153 
9154 	  cond0 = XEXP (XEXP (x, 0), 0);
9155 	  cond1 = XEXP (XEXP (x, 1), 0);
9156 
9157 	  if (COMPARISON_P (cond0)
9158 	      && COMPARISON_P (cond1)
9159 	      && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9160 		   && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9161 		   && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9162 		  || ((swap_condition (GET_CODE (cond0))
9163 		       == reversed_comparison_code (cond1, NULL))
9164 		      && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9165 		      && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9166 	      && ! side_effects_p (x))
9167 	    {
9168 	      *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9169 	      *pfalse = simplify_gen_binary (MULT, mode,
9170 					     (code == MINUS
9171 					      ? simplify_gen_unary (NEG, mode,
9172 								    op1, mode)
9173 					      : op1),
9174 					      const_true_rtx);
9175 	      return cond0;
9176 	    }
9177 	}
9178 
9179       /* Similarly for MULT, AND and UMIN, except that for these the result
9180 	 is always zero.  */
9181       if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9182 	  && (code == MULT || code == AND || code == UMIN)
9183 	  && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9184 	{
9185 	  cond0 = XEXP (XEXP (x, 0), 0);
9186 	  cond1 = XEXP (XEXP (x, 1), 0);
9187 
9188 	  if (COMPARISON_P (cond0)
9189 	      && COMPARISON_P (cond1)
9190 	      && SCALAR_INT_MODE_P (mode)
9191 	      && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9192 		   && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9193 		   && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9194 		  || ((swap_condition (GET_CODE (cond0))
9195 		       == reversed_comparison_code (cond1, NULL))
9196 		      && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9197 		      && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9198 	      && ! side_effects_p (x))
9199 	    {
9200 	      *ptrue = *pfalse = const0_rtx;
9201 	      return cond0;
9202 	    }
9203 	}
9204     }
9205 
9206   else if (code == IF_THEN_ELSE)
9207     {
9208       /* If we have IF_THEN_ELSE already, extract the condition and
9209 	 canonicalize it if it is NE or EQ.  */
9210       cond0 = XEXP (x, 0);
9211       *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9212       if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9213 	return XEXP (cond0, 0);
9214       else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9215 	{
9216 	  *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9217 	  return XEXP (cond0, 0);
9218 	}
9219       else
9220 	return cond0;
9221     }
9222 
9223   /* If X is a SUBREG, we can narrow both the true and false values
9224      if the inner expression, if there is a condition.  */
9225   else if (code == SUBREG
9226 	   && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
9227 					       &true0, &false0)))
9228     {
9229       true0 = simplify_gen_subreg (mode, true0,
9230 				   GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9231       false0 = simplify_gen_subreg (mode, false0,
9232 				    GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9233       if (true0 && false0)
9234 	{
9235 	  *ptrue = true0;
9236 	  *pfalse = false0;
9237 	  return cond0;
9238 	}
9239     }
9240 
9241   /* If X is a constant, this isn't special and will cause confusions
9242      if we treat it as such.  Likewise if it is equivalent to a constant.  */
9243   else if (CONSTANT_P (x)
9244 	   || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9245     ;
9246 
9247   /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9248      will be least confusing to the rest of the compiler.  */
9249   else if (mode == BImode)
9250     {
9251       *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9252       return x;
9253     }
9254 
9255   /* If X is known to be either 0 or -1, those are the true and
9256      false values when testing X.  */
9257   else if (x == constm1_rtx || x == const0_rtx
9258 	   || (mode != VOIDmode && mode != BLKmode
9259 	       && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
9260     {
9261       *ptrue = constm1_rtx, *pfalse = const0_rtx;
9262       return x;
9263     }
9264 
9265   /* Likewise for 0 or a single bit.  */
9266   else if (HWI_COMPUTABLE_MODE_P (mode)
9267 	   && pow2p_hwi (nz = nonzero_bits (x, mode)))
9268     {
9269       *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9270       return x;
9271     }
9272 
9273   /* Otherwise fail; show no condition with true and false values the same.  */
9274   *ptrue = *pfalse = x;
9275   return 0;
9276 }
9277 
9278 /* Return the value of expression X given the fact that condition COND
9279    is known to be true when applied to REG as its first operand and VAL
9280    as its second.  X is known to not be shared and so can be modified in
9281    place.
9282 
9283    We only handle the simplest cases, and specifically those cases that
9284    arise with IF_THEN_ELSE expressions.  */
9285 
9286 static rtx
9287 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9288 {
9289   enum rtx_code code = GET_CODE (x);
9290   const char *fmt;
9291   int i, j;
9292 
9293   if (side_effects_p (x))
9294     return x;
9295 
9296   /* If either operand of the condition is a floating point value,
9297      then we have to avoid collapsing an EQ comparison.  */
9298   if (cond == EQ
9299       && rtx_equal_p (x, reg)
9300       && ! FLOAT_MODE_P (GET_MODE (x))
9301       && ! FLOAT_MODE_P (GET_MODE (val)))
9302     return val;
9303 
9304   if (cond == UNEQ && rtx_equal_p (x, reg))
9305     return val;
9306 
9307   /* If X is (abs REG) and we know something about REG's relationship
9308      with zero, we may be able to simplify this.  */
9309 
9310   if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9311     switch (cond)
9312       {
9313       case GE:  case GT:  case EQ:
9314 	return XEXP (x, 0);
9315       case LT:  case LE:
9316 	return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9317 				   XEXP (x, 0),
9318 				   GET_MODE (XEXP (x, 0)));
9319       default:
9320 	break;
9321       }
9322 
9323   /* The only other cases we handle are MIN, MAX, and comparisons if the
9324      operands are the same as REG and VAL.  */
9325 
9326   else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9327     {
9328       if (rtx_equal_p (XEXP (x, 0), val))
9329         {
9330 	  std::swap (val, reg);
9331 	  cond = swap_condition (cond);
9332         }
9333 
9334       if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9335 	{
9336 	  if (COMPARISON_P (x))
9337 	    {
9338 	      if (comparison_dominates_p (cond, code))
9339 		return VECTOR_MODE_P (GET_MODE (x)) ? x : const_true_rtx;
9340 
9341 	      code = reversed_comparison_code (x, NULL);
9342 	      if (code != UNKNOWN
9343 		  && comparison_dominates_p (cond, code))
9344 		return CONST0_RTX (GET_MODE (x));
9345 	      else
9346 		return x;
9347 	    }
9348 	  else if (code == SMAX || code == SMIN
9349 		   || code == UMIN || code == UMAX)
9350 	    {
9351 	      int unsignedp = (code == UMIN || code == UMAX);
9352 
9353 	      /* Do not reverse the condition when it is NE or EQ.
9354 		 This is because we cannot conclude anything about
9355 		 the value of 'SMAX (x, y)' when x is not equal to y,
9356 		 but we can when x equals y.  */
9357 	      if ((code == SMAX || code == UMAX)
9358 		  && ! (cond == EQ || cond == NE))
9359 		cond = reverse_condition (cond);
9360 
9361 	      switch (cond)
9362 		{
9363 		case GE:   case GT:
9364 		  return unsignedp ? x : XEXP (x, 1);
9365 		case LE:   case LT:
9366 		  return unsignedp ? x : XEXP (x, 0);
9367 		case GEU:  case GTU:
9368 		  return unsignedp ? XEXP (x, 1) : x;
9369 		case LEU:  case LTU:
9370 		  return unsignedp ? XEXP (x, 0) : x;
9371 		default:
9372 		  break;
9373 		}
9374 	    }
9375 	}
9376     }
9377   else if (code == SUBREG)
9378     {
9379       machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9380       rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9381 
9382       if (SUBREG_REG (x) != r)
9383 	{
9384 	  /* We must simplify subreg here, before we lose track of the
9385 	     original inner_mode.  */
9386 	  new_rtx = simplify_subreg (GET_MODE (x), r,
9387 				     inner_mode, SUBREG_BYTE (x));
9388 	  if (new_rtx)
9389 	    return new_rtx;
9390 	  else
9391 	    SUBST (SUBREG_REG (x), r);
9392 	}
9393 
9394       return x;
9395     }
9396   /* We don't have to handle SIGN_EXTEND here, because even in the
9397      case of replacing something with a modeless CONST_INT, a
9398      CONST_INT is already (supposed to be) a valid sign extension for
9399      its narrower mode, which implies it's already properly
9400      sign-extended for the wider mode.  Now, for ZERO_EXTEND, the
9401      story is different.  */
9402   else if (code == ZERO_EXTEND)
9403     {
9404       machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9405       rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9406 
9407       if (XEXP (x, 0) != r)
9408 	{
9409 	  /* We must simplify the zero_extend here, before we lose
9410 	     track of the original inner_mode.  */
9411 	  new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9412 					      r, inner_mode);
9413 	  if (new_rtx)
9414 	    return new_rtx;
9415 	  else
9416 	    SUBST (XEXP (x, 0), r);
9417 	}
9418 
9419       return x;
9420     }
9421 
9422   fmt = GET_RTX_FORMAT (code);
9423   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9424     {
9425       if (fmt[i] == 'e')
9426 	SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9427       else if (fmt[i] == 'E')
9428 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9429 	  SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9430 						cond, reg, val));
9431     }
9432 
9433   return x;
9434 }
9435 
9436 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9437    assignment as a field assignment.  */
9438 
9439 static int
9440 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9441 {
9442   if (widen_x && GET_MODE (x) != GET_MODE (y))
9443     {
9444       if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (y)))
9445 	return 0;
9446       if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9447 	return 0;
9448       /* For big endian, adjust the memory offset.  */
9449       if (BYTES_BIG_ENDIAN)
9450 	x = adjust_address_nv (x, GET_MODE (y),
9451 			       -subreg_lowpart_offset (GET_MODE (x),
9452 						       GET_MODE (y)));
9453       else
9454 	x = adjust_address_nv (x, GET_MODE (y), 0);
9455     }
9456 
9457   if (x == y || rtx_equal_p (x, y))
9458     return 1;
9459 
9460   if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9461     return 0;
9462 
9463   /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9464      Note that all SUBREGs of MEM are paradoxical; otherwise they
9465      would have been rewritten.  */
9466   if (MEM_P (x) && GET_CODE (y) == SUBREG
9467       && MEM_P (SUBREG_REG (y))
9468       && rtx_equal_p (SUBREG_REG (y),
9469 		      gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9470     return 1;
9471 
9472   if (MEM_P (y) && GET_CODE (x) == SUBREG
9473       && MEM_P (SUBREG_REG (x))
9474       && rtx_equal_p (SUBREG_REG (x),
9475 		      gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9476     return 1;
9477 
9478   /* We used to see if get_last_value of X and Y were the same but that's
9479      not correct.  In one direction, we'll cause the assignment to have
9480      the wrong destination and in the case, we'll import a register into this
9481      insn that might have already have been dead.   So fail if none of the
9482      above cases are true.  */
9483   return 0;
9484 }
9485 
9486 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9487    Return that assignment if so.
9488 
9489    We only handle the most common cases.  */
9490 
9491 static rtx
9492 make_field_assignment (rtx x)
9493 {
9494   rtx dest = SET_DEST (x);
9495   rtx src = SET_SRC (x);
9496   rtx assign;
9497   rtx rhs, lhs;
9498   HOST_WIDE_INT c1;
9499   HOST_WIDE_INT pos;
9500   unsigned HOST_WIDE_INT len;
9501   rtx other;
9502   machine_mode mode;
9503 
9504   /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9505      a clear of a one-bit field.  We will have changed it to
9506      (and (rotate (const_int -2) POS) DEST), so check for that.  Also check
9507      for a SUBREG.  */
9508 
9509   if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9510       && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9511       && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9512       && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9513     {
9514       assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9515 				1, 1, 1, 0);
9516       if (assign != 0)
9517 	return gen_rtx_SET (assign, const0_rtx);
9518       return x;
9519     }
9520 
9521   if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9522       && subreg_lowpart_p (XEXP (src, 0))
9523       && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9524 	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9525       && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9526       && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9527       && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9528       && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9529     {
9530       assign = make_extraction (VOIDmode, dest, 0,
9531 				XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9532 				1, 1, 1, 0);
9533       if (assign != 0)
9534 	return gen_rtx_SET (assign, const0_rtx);
9535       return x;
9536     }
9537 
9538   /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9539      one-bit field.  */
9540   if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9541       && XEXP (XEXP (src, 0), 0) == const1_rtx
9542       && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9543     {
9544       assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9545 				1, 1, 1, 0);
9546       if (assign != 0)
9547 	return gen_rtx_SET (assign, const1_rtx);
9548       return x;
9549     }
9550 
9551   /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9552      SRC is an AND with all bits of that field set, then we can discard
9553      the AND.  */
9554   if (GET_CODE (dest) == ZERO_EXTRACT
9555       && CONST_INT_P (XEXP (dest, 1))
9556       && GET_CODE (src) == AND
9557       && CONST_INT_P (XEXP (src, 1)))
9558     {
9559       HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9560       unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9561       unsigned HOST_WIDE_INT ze_mask;
9562 
9563       if (width >= HOST_BITS_PER_WIDE_INT)
9564 	ze_mask = -1;
9565       else
9566 	ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9567 
9568       /* Complete overlap.  We can remove the source AND.  */
9569       if ((and_mask & ze_mask) == ze_mask)
9570 	return gen_rtx_SET (dest, XEXP (src, 0));
9571 
9572       /* Partial overlap.  We can reduce the source AND.  */
9573       if ((and_mask & ze_mask) != and_mask)
9574 	{
9575 	  mode = GET_MODE (src);
9576 	  src = gen_rtx_AND (mode, XEXP (src, 0),
9577 			     gen_int_mode (and_mask & ze_mask, mode));
9578 	  return gen_rtx_SET (dest, src);
9579 	}
9580     }
9581 
9582   /* The other case we handle is assignments into a constant-position
9583      field.  They look like (ior/xor (and DEST C1) OTHER).  If C1 represents
9584      a mask that has all one bits except for a group of zero bits and
9585      OTHER is known to have zeros where C1 has ones, this is such an
9586      assignment.  Compute the position and length from C1.  Shift OTHER
9587      to the appropriate position, force it to the required mode, and
9588      make the extraction.  Check for the AND in both operands.  */
9589 
9590   /* One or more SUBREGs might obscure the constant-position field
9591      assignment.  The first one we are likely to encounter is an outer
9592      narrowing SUBREG, which we can just strip for the purposes of
9593      identifying the constant-field assignment.  */
9594   if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src))
9595     src = SUBREG_REG (src);
9596 
9597   if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9598     return x;
9599 
9600   rhs = expand_compound_operation (XEXP (src, 0));
9601   lhs = expand_compound_operation (XEXP (src, 1));
9602 
9603   if (GET_CODE (rhs) == AND
9604       && CONST_INT_P (XEXP (rhs, 1))
9605       && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9606     c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9607   /* The second SUBREG that might get in the way is a paradoxical
9608      SUBREG around the first operand of the AND.  We want to
9609      pretend the operand is as wide as the destination here.   We
9610      do this by adjusting the MEM to wider mode for the sole
9611      purpose of the call to rtx_equal_for_field_assignment_p.   Also
9612      note this trick only works for MEMs.  */
9613   else if (GET_CODE (rhs) == AND
9614 	   && paradoxical_subreg_p (XEXP (rhs, 0))
9615 	   && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9616 	   && CONST_INT_P (XEXP (rhs, 1))
9617 	   && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9618 						dest, true))
9619     c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9620   else if (GET_CODE (lhs) == AND
9621 	   && CONST_INT_P (XEXP (lhs, 1))
9622 	   && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9623     c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9624   /* The second SUBREG that might get in the way is a paradoxical
9625      SUBREG around the first operand of the AND.  We want to
9626      pretend the operand is as wide as the destination here.   We
9627      do this by adjusting the MEM to wider mode for the sole
9628      purpose of the call to rtx_equal_for_field_assignment_p.   Also
9629      note this trick only works for MEMs.  */
9630   else if (GET_CODE (lhs) == AND
9631 	   && paradoxical_subreg_p (XEXP (lhs, 0))
9632 	   && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9633 	   && CONST_INT_P (XEXP (lhs, 1))
9634 	   && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9635 						dest, true))
9636     c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9637   else
9638     return x;
9639 
9640   pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9641   if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9642       || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9643       || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9644     return x;
9645 
9646   assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9647   if (assign == 0)
9648     return x;
9649 
9650   /* The mode to use for the source is the mode of the assignment, or of
9651      what is inside a possible STRICT_LOW_PART.  */
9652   mode = (GET_CODE (assign) == STRICT_LOW_PART
9653 	  ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9654 
9655   /* Shift OTHER right POS places and make it the source, restricting it
9656      to the proper length and mode.  */
9657 
9658   src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9659 						     GET_MODE (src),
9660 						     other, pos),
9661 			       dest);
9662   src = force_to_mode (src, mode,
9663 		       GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9664 		       ? HOST_WIDE_INT_M1U
9665 		       : (HOST_WIDE_INT_1U << len) - 1,
9666 		       0);
9667 
9668   /* If SRC is masked by an AND that does not make a difference in
9669      the value being stored, strip it.  */
9670   if (GET_CODE (assign) == ZERO_EXTRACT
9671       && CONST_INT_P (XEXP (assign, 1))
9672       && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9673       && GET_CODE (src) == AND
9674       && CONST_INT_P (XEXP (src, 1))
9675       && UINTVAL (XEXP (src, 1))
9676 	 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9677     src = XEXP (src, 0);
9678 
9679   return gen_rtx_SET (assign, src);
9680 }
9681 
9682 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9683    if so.  */
9684 
9685 static rtx
9686 apply_distributive_law (rtx x)
9687 {
9688   enum rtx_code code = GET_CODE (x);
9689   enum rtx_code inner_code;
9690   rtx lhs, rhs, other;
9691   rtx tem;
9692 
9693   /* Distributivity is not true for floating point as it can change the
9694      value.  So we don't do it unless -funsafe-math-optimizations.  */
9695   if (FLOAT_MODE_P (GET_MODE (x))
9696       && ! flag_unsafe_math_optimizations)
9697     return x;
9698 
9699   /* The outer operation can only be one of the following:  */
9700   if (code != IOR && code != AND && code != XOR
9701       && code != PLUS && code != MINUS)
9702     return x;
9703 
9704   lhs = XEXP (x, 0);
9705   rhs = XEXP (x, 1);
9706 
9707   /* If either operand is a primitive we can't do anything, so get out
9708      fast.  */
9709   if (OBJECT_P (lhs) || OBJECT_P (rhs))
9710     return x;
9711 
9712   lhs = expand_compound_operation (lhs);
9713   rhs = expand_compound_operation (rhs);
9714   inner_code = GET_CODE (lhs);
9715   if (inner_code != GET_CODE (rhs))
9716     return x;
9717 
9718   /* See if the inner and outer operations distribute.  */
9719   switch (inner_code)
9720     {
9721     case LSHIFTRT:
9722     case ASHIFTRT:
9723     case AND:
9724     case IOR:
9725       /* These all distribute except over PLUS.  */
9726       if (code == PLUS || code == MINUS)
9727 	return x;
9728       break;
9729 
9730     case MULT:
9731       if (code != PLUS && code != MINUS)
9732 	return x;
9733       break;
9734 
9735     case ASHIFT:
9736       /* This is also a multiply, so it distributes over everything.  */
9737       break;
9738 
9739     /* This used to handle SUBREG, but this turned out to be counter-
9740        productive, since (subreg (op ...)) usually is not handled by
9741        insn patterns, and this "optimization" therefore transformed
9742        recognizable patterns into unrecognizable ones.  Therefore the
9743        SUBREG case was removed from here.
9744 
9745        It is possible that distributing SUBREG over arithmetic operations
9746        leads to an intermediate result than can then be optimized further,
9747        e.g. by moving the outer SUBREG to the other side of a SET as done
9748        in simplify_set.  This seems to have been the original intent of
9749        handling SUBREGs here.
9750 
9751        However, with current GCC this does not appear to actually happen,
9752        at least on major platforms.  If some case is found where removing
9753        the SUBREG case here prevents follow-on optimizations, distributing
9754        SUBREGs ought to be re-added at that place, e.g. in simplify_set.  */
9755 
9756     default:
9757       return x;
9758     }
9759 
9760   /* Set LHS and RHS to the inner operands (A and B in the example
9761      above) and set OTHER to the common operand (C in the example).
9762      There is only one way to do this unless the inner operation is
9763      commutative.  */
9764   if (COMMUTATIVE_ARITH_P (lhs)
9765       && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9766     other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9767   else if (COMMUTATIVE_ARITH_P (lhs)
9768 	   && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9769     other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9770   else if (COMMUTATIVE_ARITH_P (lhs)
9771 	   && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9772     other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9773   else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9774     other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9775   else
9776     return x;
9777 
9778   /* Form the new inner operation, seeing if it simplifies first.  */
9779   tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9780 
9781   /* There is one exception to the general way of distributing:
9782      (a | c) ^ (b | c) -> (a ^ b) & ~c  */
9783   if (code == XOR && inner_code == IOR)
9784     {
9785       inner_code = AND;
9786       other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9787     }
9788 
9789   /* We may be able to continuing distributing the result, so call
9790      ourselves recursively on the inner operation before forming the
9791      outer operation, which we return.  */
9792   return simplify_gen_binary (inner_code, GET_MODE (x),
9793 			      apply_distributive_law (tem), other);
9794 }
9795 
9796 /* See if X is of the form (* (+ A B) C), and if so convert to
9797    (+ (* A C) (* B C)) and try to simplify.
9798 
9799    Most of the time, this results in no change.  However, if some of
9800    the operands are the same or inverses of each other, simplifications
9801    will result.
9802 
9803    For example, (and (ior A B) (not B)) can occur as the result of
9804    expanding a bit field assignment.  When we apply the distributive
9805    law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9806    which then simplifies to (and (A (not B))).
9807 
9808    Note that no checks happen on the validity of applying the inverse
9809    distributive law.  This is pointless since we can do it in the
9810    few places where this routine is called.
9811 
9812    N is the index of the term that is decomposed (the arithmetic operation,
9813    i.e. (+ A B) in the first example above).  !N is the index of the term that
9814    is distributed, i.e. of C in the first example above.  */
9815 static rtx
9816 distribute_and_simplify_rtx (rtx x, int n)
9817 {
9818   machine_mode mode;
9819   enum rtx_code outer_code, inner_code;
9820   rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9821 
9822   /* Distributivity is not true for floating point as it can change the
9823      value.  So we don't do it unless -funsafe-math-optimizations.  */
9824   if (FLOAT_MODE_P (GET_MODE (x))
9825       && ! flag_unsafe_math_optimizations)
9826     return NULL_RTX;
9827 
9828   decomposed = XEXP (x, n);
9829   if (!ARITHMETIC_P (decomposed))
9830     return NULL_RTX;
9831 
9832   mode = GET_MODE (x);
9833   outer_code = GET_CODE (x);
9834   distributed = XEXP (x, !n);
9835 
9836   inner_code = GET_CODE (decomposed);
9837   inner_op0 = XEXP (decomposed, 0);
9838   inner_op1 = XEXP (decomposed, 1);
9839 
9840   /* Special case (and (xor B C) (not A)), which is equivalent to
9841      (xor (ior A B) (ior A C))  */
9842   if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9843     {
9844       distributed = XEXP (distributed, 0);
9845       outer_code = IOR;
9846     }
9847 
9848   if (n == 0)
9849     {
9850       /* Distribute the second term.  */
9851       new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9852       new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9853     }
9854   else
9855     {
9856       /* Distribute the first term.  */
9857       new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9858       new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9859     }
9860 
9861   tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9862 						     new_op0, new_op1));
9863   if (GET_CODE (tmp) != outer_code
9864       && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
9865 	  < set_src_cost (x, mode, optimize_this_for_speed_p)))
9866     return tmp;
9867 
9868   return NULL_RTX;
9869 }
9870 
9871 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9872    in MODE.  Return an equivalent form, if different from (and VAROP
9873    (const_int CONSTOP)).  Otherwise, return NULL_RTX.  */
9874 
9875 static rtx
9876 simplify_and_const_int_1 (machine_mode mode, rtx varop,
9877 			  unsigned HOST_WIDE_INT constop)
9878 {
9879   unsigned HOST_WIDE_INT nonzero;
9880   unsigned HOST_WIDE_INT orig_constop;
9881   rtx orig_varop;
9882   int i;
9883 
9884   orig_varop = varop;
9885   orig_constop = constop;
9886   if (GET_CODE (varop) == CLOBBER)
9887     return NULL_RTX;
9888 
9889   /* Simplify VAROP knowing that we will be only looking at some of the
9890      bits in it.
9891 
9892      Note by passing in CONSTOP, we guarantee that the bits not set in
9893      CONSTOP are not significant and will never be examined.  We must
9894      ensure that is the case by explicitly masking out those bits
9895      before returning.  */
9896   varop = force_to_mode (varop, mode, constop, 0);
9897 
9898   /* If VAROP is a CLOBBER, we will fail so return it.  */
9899   if (GET_CODE (varop) == CLOBBER)
9900     return varop;
9901 
9902   /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9903      to VAROP and return the new constant.  */
9904   if (CONST_INT_P (varop))
9905     return gen_int_mode (INTVAL (varop) & constop, mode);
9906 
9907   /* See what bits may be nonzero in VAROP.  Unlike the general case of
9908      a call to nonzero_bits, here we don't care about bits outside
9909      MODE.  */
9910 
9911   nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9912 
9913   /* Turn off all bits in the constant that are known to already be zero.
9914      Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9915      which is tested below.  */
9916 
9917   constop &= nonzero;
9918 
9919   /* If we don't have any bits left, return zero.  */
9920   if (constop == 0)
9921     return const0_rtx;
9922 
9923   /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9924      a power of two, we can replace this with an ASHIFT.  */
9925   if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9926       && (i = exact_log2 (constop)) >= 0)
9927     return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9928 
9929   /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9930      or XOR, then try to apply the distributive law.  This may eliminate
9931      operations if either branch can be simplified because of the AND.
9932      It may also make some cases more complex, but those cases probably
9933      won't match a pattern either with or without this.  */
9934 
9935   if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9936     return
9937       gen_lowpart
9938 	(mode,
9939 	 apply_distributive_law
9940 	 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9941 			       simplify_and_const_int (NULL_RTX,
9942 						       GET_MODE (varop),
9943 						       XEXP (varop, 0),
9944 						       constop),
9945 			       simplify_and_const_int (NULL_RTX,
9946 						       GET_MODE (varop),
9947 						       XEXP (varop, 1),
9948 						       constop))));
9949 
9950   /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9951      the AND and see if one of the operands simplifies to zero.  If so, we
9952      may eliminate it.  */
9953 
9954   if (GET_CODE (varop) == PLUS
9955       && pow2p_hwi (constop + 1))
9956     {
9957       rtx o0, o1;
9958 
9959       o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9960       o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9961       if (o0 == const0_rtx)
9962 	return o1;
9963       if (o1 == const0_rtx)
9964 	return o0;
9965     }
9966 
9967   /* Make a SUBREG if necessary.  If we can't make it, fail.  */
9968   varop = gen_lowpart (mode, varop);
9969   if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9970     return NULL_RTX;
9971 
9972   /* If we are only masking insignificant bits, return VAROP.  */
9973   if (constop == nonzero)
9974     return varop;
9975 
9976   if (varop == orig_varop && constop == orig_constop)
9977     return NULL_RTX;
9978 
9979   /* Otherwise, return an AND.  */
9980   return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9981 }
9982 
9983 
9984 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9985    in MODE.
9986 
9987    Return an equivalent form, if different from X.  Otherwise, return X.  If
9988    X is zero, we are to always construct the equivalent form.  */
9989 
9990 static rtx
9991 simplify_and_const_int (rtx x, machine_mode mode, rtx varop,
9992 			unsigned HOST_WIDE_INT constop)
9993 {
9994   rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9995   if (tem)
9996     return tem;
9997 
9998   if (!x)
9999     x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10000 			     gen_int_mode (constop, mode));
10001   if (GET_MODE (x) != mode)
10002     x = gen_lowpart (mode, x);
10003   return x;
10004 }
10005 
10006 /* Given a REG, X, compute which bits in X can be nonzero.
10007    We don't care about bits outside of those defined in MODE.
10008 
10009    For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10010    a shift, AND, or zero_extract, we can do better.  */
10011 
10012 static rtx
10013 reg_nonzero_bits_for_combine (const_rtx x, machine_mode mode,
10014 			      const_rtx known_x ATTRIBUTE_UNUSED,
10015 			      machine_mode known_mode ATTRIBUTE_UNUSED,
10016 			      unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
10017 			      unsigned HOST_WIDE_INT *nonzero)
10018 {
10019   rtx tem;
10020   reg_stat_type *rsp;
10021 
10022   /* If X is a register whose nonzero bits value is current, use it.
10023      Otherwise, if X is a register whose value we can find, use that
10024      value.  Otherwise, use the previously-computed global nonzero bits
10025      for this register.  */
10026 
10027   rsp = &reg_stat[REGNO (x)];
10028   if (rsp->last_set_value != 0
10029       && (rsp->last_set_mode == mode
10030 	  || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10031 	      && GET_MODE_CLASS (mode) == MODE_INT))
10032       && ((rsp->last_set_label >= label_tick_ebb_start
10033 	   && rsp->last_set_label < label_tick)
10034 	  || (rsp->last_set_label == label_tick
10035               && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10036 	  || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10037 	      && REGNO (x) < reg_n_sets_max
10038 	      && REG_N_SETS (REGNO (x)) == 1
10039 	      && !REGNO_REG_SET_P
10040 		  (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10041 		   REGNO (x)))))
10042     {
10043       /* Note that, even if the precision of last_set_mode is lower than that
10044 	 of mode, record_value_for_reg invoked nonzero_bits on the register
10045 	 with nonzero_bits_mode (because last_set_mode is necessarily integral
10046 	 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10047 	 are all valid, hence in mode too since nonzero_bits_mode is defined
10048 	 to the largest HWI_COMPUTABLE_MODE_P mode.  */
10049       *nonzero &= rsp->last_set_nonzero_bits;
10050       return NULL;
10051     }
10052 
10053   tem = get_last_value (x);
10054   if (tem)
10055     {
10056       if (SHORT_IMMEDIATES_SIGN_EXTEND)
10057 	tem = sign_extend_short_imm (tem, GET_MODE (x),
10058 				     GET_MODE_PRECISION (mode));
10059 
10060       return tem;
10061     }
10062 
10063   if (nonzero_sign_valid && rsp->nonzero_bits)
10064     {
10065       unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10066 
10067       if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
10068 	/* We don't know anything about the upper bits.  */
10069 	mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
10070 
10071       *nonzero &= mask;
10072     }
10073 
10074   return NULL;
10075 }
10076 
10077 /* Return the number of bits at the high-order end of X that are known to
10078    be equal to the sign bit.  X will be used in mode MODE; if MODE is
10079    VOIDmode, X will be used in its own mode.  The returned value  will always
10080    be between 1 and the number of bits in MODE.  */
10081 
10082 static rtx
10083 reg_num_sign_bit_copies_for_combine (const_rtx x, machine_mode mode,
10084 				     const_rtx known_x ATTRIBUTE_UNUSED,
10085 				     machine_mode known_mode
10086 				     ATTRIBUTE_UNUSED,
10087 				     unsigned int known_ret ATTRIBUTE_UNUSED,
10088 				     unsigned int *result)
10089 {
10090   rtx tem;
10091   reg_stat_type *rsp;
10092 
10093   rsp = &reg_stat[REGNO (x)];
10094   if (rsp->last_set_value != 0
10095       && rsp->last_set_mode == mode
10096       && ((rsp->last_set_label >= label_tick_ebb_start
10097 	   && rsp->last_set_label < label_tick)
10098 	  || (rsp->last_set_label == label_tick
10099               && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10100 	  || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10101 	      && REGNO (x) < reg_n_sets_max
10102 	      && REG_N_SETS (REGNO (x)) == 1
10103 	      && !REGNO_REG_SET_P
10104 		  (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10105 		   REGNO (x)))))
10106     {
10107       *result = rsp->last_set_sign_bit_copies;
10108       return NULL;
10109     }
10110 
10111   tem = get_last_value (x);
10112   if (tem != 0)
10113     return tem;
10114 
10115   if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10116       && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
10117     *result = rsp->sign_bit_copies;
10118 
10119   return NULL;
10120 }
10121 
10122 /* Return the number of "extended" bits there are in X, when interpreted
10123    as a quantity in MODE whose signedness is indicated by UNSIGNEDP.  For
10124    unsigned quantities, this is the number of high-order zero bits.
10125    For signed quantities, this is the number of copies of the sign bit
10126    minus 1.  In both case, this function returns the number of "spare"
10127    bits.  For example, if two quantities for which this function returns
10128    at least 1 are added, the addition is known not to overflow.
10129 
10130    This function will always return 0 unless called during combine, which
10131    implies that it must be called from a define_split.  */
10132 
10133 unsigned int
10134 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10135 {
10136   if (nonzero_sign_valid == 0)
10137     return 0;
10138 
10139   return (unsignedp
10140 	  ? (HWI_COMPUTABLE_MODE_P (mode)
10141 	     ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
10142 			       - floor_log2 (nonzero_bits (x, mode)))
10143 	     : 0)
10144 	  : num_sign_bit_copies (x, mode) - 1);
10145 }
10146 
10147 /* This function is called from `simplify_shift_const' to merge two
10148    outer operations.  Specifically, we have already found that we need
10149    to perform operation *POP0 with constant *PCONST0 at the outermost
10150    position.  We would now like to also perform OP1 with constant CONST1
10151    (with *POP0 being done last).
10152 
10153    Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10154    the resulting operation.  *PCOMP_P is set to 1 if we would need to
10155    complement the innermost operand, otherwise it is unchanged.
10156 
10157    MODE is the mode in which the operation will be done.  No bits outside
10158    the width of this mode matter.  It is assumed that the width of this mode
10159    is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10160 
10161    If *POP0 or OP1 are UNKNOWN, it means no operation is required.  Only NEG, PLUS,
10162    IOR, XOR, and AND are supported.  We may set *POP0 to SET if the proper
10163    result is simply *PCONST0.
10164 
10165    If the resulting operation cannot be expressed as one operation, we
10166    return 0 and do not change *POP0, *PCONST0, and *PCOMP_P.  */
10167 
10168 static int
10169 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10170 {
10171   enum rtx_code op0 = *pop0;
10172   HOST_WIDE_INT const0 = *pconst0;
10173 
10174   const0 &= GET_MODE_MASK (mode);
10175   const1 &= GET_MODE_MASK (mode);
10176 
10177   /* If OP0 is an AND, clear unimportant bits in CONST1.  */
10178   if (op0 == AND)
10179     const1 &= const0;
10180 
10181   /* If OP0 or OP1 is UNKNOWN, this is easy.  Similarly if they are the same or
10182      if OP0 is SET.  */
10183 
10184   if (op1 == UNKNOWN || op0 == SET)
10185     return 1;
10186 
10187   else if (op0 == UNKNOWN)
10188     op0 = op1, const0 = const1;
10189 
10190   else if (op0 == op1)
10191     {
10192       switch (op0)
10193 	{
10194 	case AND:
10195 	  const0 &= const1;
10196 	  break;
10197 	case IOR:
10198 	  const0 |= const1;
10199 	  break;
10200 	case XOR:
10201 	  const0 ^= const1;
10202 	  break;
10203 	case PLUS:
10204 	  const0 += const1;
10205 	  break;
10206 	case NEG:
10207 	  op0 = UNKNOWN;
10208 	  break;
10209 	default:
10210 	  break;
10211 	}
10212     }
10213 
10214   /* Otherwise, if either is a PLUS or NEG, we can't do anything.  */
10215   else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10216     return 0;
10217 
10218   /* If the two constants aren't the same, we can't do anything.  The
10219      remaining six cases can all be done.  */
10220   else if (const0 != const1)
10221     return 0;
10222 
10223   else
10224     switch (op0)
10225       {
10226       case IOR:
10227 	if (op1 == AND)
10228 	  /* (a & b) | b == b */
10229 	  op0 = SET;
10230 	else /* op1 == XOR */
10231 	  /* (a ^ b) | b == a | b */
10232 	  {;}
10233 	break;
10234 
10235       case XOR:
10236 	if (op1 == AND)
10237 	  /* (a & b) ^ b == (~a) & b */
10238 	  op0 = AND, *pcomp_p = 1;
10239 	else /* op1 == IOR */
10240 	  /* (a | b) ^ b == a & ~b */
10241 	  op0 = AND, const0 = ~const0;
10242 	break;
10243 
10244       case AND:
10245 	if (op1 == IOR)
10246 	  /* (a | b) & b == b */
10247 	op0 = SET;
10248 	else /* op1 == XOR */
10249 	  /* (a ^ b) & b) == (~a) & b */
10250 	  *pcomp_p = 1;
10251 	break;
10252       default:
10253 	break;
10254       }
10255 
10256   /* Check for NO-OP cases.  */
10257   const0 &= GET_MODE_MASK (mode);
10258   if (const0 == 0
10259       && (op0 == IOR || op0 == XOR || op0 == PLUS))
10260     op0 = UNKNOWN;
10261   else if (const0 == 0 && op0 == AND)
10262     op0 = SET;
10263   else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10264 	   && op0 == AND)
10265     op0 = UNKNOWN;
10266 
10267   *pop0 = op0;
10268 
10269   /* ??? Slightly redundant with the above mask, but not entirely.
10270      Moving this above means we'd have to sign-extend the mode mask
10271      for the final test.  */
10272   if (op0 != UNKNOWN && op0 != NEG)
10273     *pconst0 = trunc_int_for_mode (const0, mode);
10274 
10275   return 1;
10276 }
10277 
10278 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10279    the shift in.  The original shift operation CODE is performed on OP in
10280    ORIG_MODE.  Return the wider mode MODE if we can perform the operation
10281    in that mode.  Return ORIG_MODE otherwise.  We can also assume that the
10282    result of the shift is subject to operation OUTER_CODE with operand
10283    OUTER_CONST.  */
10284 
10285 static machine_mode
10286 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10287 		      machine_mode orig_mode, machine_mode mode,
10288 		      enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10289 {
10290   if (orig_mode == mode)
10291     return mode;
10292   gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10293 
10294   /* In general we can't perform in wider mode for right shift and rotate.  */
10295   switch (code)
10296     {
10297     case ASHIFTRT:
10298       /* We can still widen if the bits brought in from the left are identical
10299 	 to the sign bit of ORIG_MODE.  */
10300       if (num_sign_bit_copies (op, mode)
10301 	  > (unsigned) (GET_MODE_PRECISION (mode)
10302 			- GET_MODE_PRECISION (orig_mode)))
10303 	return mode;
10304       return orig_mode;
10305 
10306     case LSHIFTRT:
10307       /* Similarly here but with zero bits.  */
10308       if (HWI_COMPUTABLE_MODE_P (mode)
10309 	  && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10310 	return mode;
10311 
10312       /* We can also widen if the bits brought in will be masked off.  This
10313 	 operation is performed in ORIG_MODE.  */
10314       if (outer_code == AND)
10315 	{
10316 	  int care_bits = low_bitmask_len (orig_mode, outer_const);
10317 
10318 	  if (care_bits >= 0
10319 	      && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10320 	    return mode;
10321 	}
10322       /* fall through */
10323 
10324     case ROTATE:
10325       return orig_mode;
10326 
10327     case ROTATERT:
10328       gcc_unreachable ();
10329 
10330     default:
10331       return mode;
10332     }
10333 }
10334 
10335 /* Simplify a shift of VAROP by ORIG_COUNT bits.  CODE says what kind
10336    of shift.  The result of the shift is RESULT_MODE.  Return NULL_RTX
10337    if we cannot simplify it.  Otherwise, return a simplified value.
10338 
10339    The shift is normally computed in the widest mode we find in VAROP, as
10340    long as it isn't a different number of words than RESULT_MODE.  Exceptions
10341    are ASHIFTRT and ROTATE, which are always done in their original mode.  */
10342 
10343 static rtx
10344 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10345 			rtx varop, int orig_count)
10346 {
10347   enum rtx_code orig_code = code;
10348   rtx orig_varop = varop;
10349   int count;
10350   machine_mode mode = result_mode;
10351   machine_mode shift_mode, tmode;
10352   unsigned int mode_words
10353     = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10354   /* We form (outer_op (code varop count) (outer_const)).  */
10355   enum rtx_code outer_op = UNKNOWN;
10356   HOST_WIDE_INT outer_const = 0;
10357   int complement_p = 0;
10358   rtx new_rtx, x;
10359 
10360   /* Make sure and truncate the "natural" shift on the way in.  We don't
10361      want to do this inside the loop as it makes it more difficult to
10362      combine shifts.  */
10363   if (SHIFT_COUNT_TRUNCATED)
10364     orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10365 
10366   /* If we were given an invalid count, don't do anything except exactly
10367      what was requested.  */
10368 
10369   if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10370     return NULL_RTX;
10371 
10372   count = orig_count;
10373 
10374   /* Unless one of the branches of the `if' in this loop does a `continue',
10375      we will `break' the loop after the `if'.  */
10376 
10377   while (count != 0)
10378     {
10379       /* If we have an operand of (clobber (const_int 0)), fail.  */
10380       if (GET_CODE (varop) == CLOBBER)
10381 	return NULL_RTX;
10382 
10383       /* Convert ROTATERT to ROTATE.  */
10384       if (code == ROTATERT)
10385 	{
10386 	  unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10387 	  code = ROTATE;
10388 	  count = bitsize - count;
10389 	}
10390 
10391       shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
10392 					 mode, outer_op, outer_const);
10393       machine_mode shift_unit_mode = GET_MODE_INNER (shift_mode);
10394 
10395       /* Handle cases where the count is greater than the size of the mode
10396 	 minus 1.  For ASHIFT, use the size minus one as the count (this can
10397 	 occur when simplifying (lshiftrt (ashiftrt ..))).  For rotates,
10398 	 take the count modulo the size.  For other shifts, the result is
10399 	 zero.
10400 
10401 	 Since these shifts are being produced by the compiler by combining
10402 	 multiple operations, each of which are defined, we know what the
10403 	 result is supposed to be.  */
10404 
10405       if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10406 	{
10407 	  if (code == ASHIFTRT)
10408 	    count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10409 	  else if (code == ROTATE || code == ROTATERT)
10410 	    count %= GET_MODE_PRECISION (shift_unit_mode);
10411 	  else
10412 	    {
10413 	      /* We can't simply return zero because there may be an
10414 		 outer op.  */
10415 	      varop = const0_rtx;
10416 	      count = 0;
10417 	      break;
10418 	    }
10419 	}
10420 
10421       /* If we discovered we had to complement VAROP, leave.  Making a NOT
10422 	 here would cause an infinite loop.  */
10423       if (complement_p)
10424 	break;
10425 
10426       if (shift_mode == shift_unit_mode)
10427 	{
10428 	  /* An arithmetic right shift of a quantity known to be -1 or 0
10429 	     is a no-op.  */
10430 	  if (code == ASHIFTRT
10431 	      && (num_sign_bit_copies (varop, shift_unit_mode)
10432 		  == GET_MODE_PRECISION (shift_unit_mode)))
10433 	    {
10434 	      count = 0;
10435 	      break;
10436 	    }
10437 
10438 	  /* If we are doing an arithmetic right shift and discarding all but
10439 	     the sign bit copies, this is equivalent to doing a shift by the
10440 	     bitsize minus one.  Convert it into that shift because it will
10441 	     often allow other simplifications.  */
10442 
10443 	  if (code == ASHIFTRT
10444 	      && (count + num_sign_bit_copies (varop, shift_unit_mode)
10445 		  >= GET_MODE_PRECISION (shift_unit_mode)))
10446 	    count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10447 
10448 	  /* We simplify the tests below and elsewhere by converting
10449 	     ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10450 	     `make_compound_operation' will convert it to an ASHIFTRT for
10451 	     those machines (such as VAX) that don't have an LSHIFTRT.  */
10452 	  if (code == ASHIFTRT
10453 	      && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10454 	      && val_signbit_known_clear_p (shift_unit_mode,
10455 					    nonzero_bits (varop,
10456 							  shift_unit_mode)))
10457 	    code = LSHIFTRT;
10458 
10459 	  if (((code == LSHIFTRT
10460 		&& HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10461 		&& !(nonzero_bits (varop, shift_unit_mode) >> count))
10462 	       || (code == ASHIFT
10463 		   && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10464 		   && !((nonzero_bits (varop, shift_unit_mode) << count)
10465 			& GET_MODE_MASK (shift_unit_mode))))
10466 	      && !side_effects_p (varop))
10467 	    varop = const0_rtx;
10468 	}
10469 
10470       switch (GET_CODE (varop))
10471 	{
10472 	case SIGN_EXTEND:
10473 	case ZERO_EXTEND:
10474 	case SIGN_EXTRACT:
10475 	case ZERO_EXTRACT:
10476 	  new_rtx = expand_compound_operation (varop);
10477 	  if (new_rtx != varop)
10478 	    {
10479 	      varop = new_rtx;
10480 	      continue;
10481 	    }
10482 	  break;
10483 
10484 	case MEM:
10485 	  /* The following rules apply only to scalars.  */
10486 	  if (shift_mode != shift_unit_mode)
10487 	    break;
10488 
10489 	  /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10490 	     minus the width of a smaller mode, we can do this with a
10491 	     SIGN_EXTEND or ZERO_EXTEND from the narrower memory location.  */
10492 	  if ((code == ASHIFTRT || code == LSHIFTRT)
10493 	      && ! mode_dependent_address_p (XEXP (varop, 0),
10494 					     MEM_ADDR_SPACE (varop))
10495 	      && ! MEM_VOLATILE_P (varop)
10496 	      && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10497 					 MODE_INT, 1)) != BLKmode)
10498 	    {
10499 	      new_rtx = adjust_address_nv (varop, tmode,
10500 				       BYTES_BIG_ENDIAN ? 0
10501 				       : count / BITS_PER_UNIT);
10502 
10503 	      varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10504 				     : ZERO_EXTEND, mode, new_rtx);
10505 	      count = 0;
10506 	      continue;
10507 	    }
10508 	  break;
10509 
10510 	case SUBREG:
10511 	  /* The following rules apply only to scalars.  */
10512 	  if (shift_mode != shift_unit_mode)
10513 	    break;
10514 
10515 	  /* If VAROP is a SUBREG, strip it as long as the inner operand has
10516 	     the same number of words as what we've seen so far.  Then store
10517 	     the widest mode in MODE.  */
10518 	  if (subreg_lowpart_p (varop)
10519 	      && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10520 		  > GET_MODE_SIZE (GET_MODE (varop)))
10521 	      && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10522 				  + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10523 		 == mode_words
10524 	      && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10525 	      && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10526 	    {
10527 	      varop = SUBREG_REG (varop);
10528 	      if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10529 		mode = GET_MODE (varop);
10530 	      continue;
10531 	    }
10532 	  break;
10533 
10534 	case MULT:
10535 	  /* Some machines use MULT instead of ASHIFT because MULT
10536 	     is cheaper.  But it is still better on those machines to
10537 	     merge two shifts into one.  */
10538 	  if (CONST_INT_P (XEXP (varop, 1))
10539 	      && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10540 	    {
10541 	      varop
10542 		= simplify_gen_binary (ASHIFT, GET_MODE (varop),
10543 				       XEXP (varop, 0),
10544 				       GEN_INT (exact_log2 (
10545 						UINTVAL (XEXP (varop, 1)))));
10546 	      continue;
10547 	    }
10548 	  break;
10549 
10550 	case UDIV:
10551 	  /* Similar, for when divides are cheaper.  */
10552 	  if (CONST_INT_P (XEXP (varop, 1))
10553 	      && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10554 	    {
10555 	      varop
10556 		= simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10557 				       XEXP (varop, 0),
10558 				       GEN_INT (exact_log2 (
10559 						UINTVAL (XEXP (varop, 1)))));
10560 	      continue;
10561 	    }
10562 	  break;
10563 
10564 	case ASHIFTRT:
10565 	  /* If we are extracting just the sign bit of an arithmetic
10566 	     right shift, that shift is not needed.  However, the sign
10567 	     bit of a wider mode may be different from what would be
10568 	     interpreted as the sign bit in a narrower mode, so, if
10569 	     the result is narrower, don't discard the shift.  */
10570 	  if (code == LSHIFTRT
10571 	      && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10572 	      && (GET_MODE_UNIT_BITSIZE (result_mode)
10573 		  >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10574 	    {
10575 	      varop = XEXP (varop, 0);
10576 	      continue;
10577 	    }
10578 
10579 	  /* fall through */
10580 
10581 	case LSHIFTRT:
10582 	case ASHIFT:
10583 	case ROTATE:
10584 	  /* The following rules apply only to scalars.  */
10585 	  if (shift_mode != shift_unit_mode)
10586 	    break;
10587 
10588 	  /* Here we have two nested shifts.  The result is usually the
10589 	     AND of a new shift with a mask.  We compute the result below.  */
10590 	  if (CONST_INT_P (XEXP (varop, 1))
10591 	      && INTVAL (XEXP (varop, 1)) >= 0
10592 	      && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10593 	      && HWI_COMPUTABLE_MODE_P (result_mode)
10594 	      && HWI_COMPUTABLE_MODE_P (mode))
10595 	    {
10596 	      enum rtx_code first_code = GET_CODE (varop);
10597 	      unsigned int first_count = INTVAL (XEXP (varop, 1));
10598 	      unsigned HOST_WIDE_INT mask;
10599 	      rtx mask_rtx;
10600 
10601 	      /* We have one common special case.  We can't do any merging if
10602 		 the inner code is an ASHIFTRT of a smaller mode.  However, if
10603 		 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10604 		 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10605 		 we can convert it to
10606 		 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10607 		 This simplifies certain SIGN_EXTEND operations.  */
10608 	      if (code == ASHIFT && first_code == ASHIFTRT
10609 		  && count == (GET_MODE_PRECISION (result_mode)
10610 			       - GET_MODE_PRECISION (GET_MODE (varop))))
10611 		{
10612 		  /* C3 has the low-order C1 bits zero.  */
10613 
10614 		  mask = GET_MODE_MASK (mode)
10615 			 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10616 
10617 		  varop = simplify_and_const_int (NULL_RTX, result_mode,
10618 						  XEXP (varop, 0), mask);
10619 		  varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10620 						varop, count);
10621 		  count = first_count;
10622 		  code = ASHIFTRT;
10623 		  continue;
10624 		}
10625 
10626 	      /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10627 		 than C1 high-order bits equal to the sign bit, we can convert
10628 		 this to either an ASHIFT or an ASHIFTRT depending on the
10629 		 two counts.
10630 
10631 		 We cannot do this if VAROP's mode is not SHIFT_MODE.  */
10632 
10633 	      if (code == ASHIFTRT && first_code == ASHIFT
10634 		  && GET_MODE (varop) == shift_mode
10635 		  && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10636 		      > first_count))
10637 		{
10638 		  varop = XEXP (varop, 0);
10639 		  count -= first_count;
10640 		  if (count < 0)
10641 		    {
10642 		      count = -count;
10643 		      code = ASHIFT;
10644 		    }
10645 
10646 		  continue;
10647 		}
10648 
10649 	      /* There are some cases we can't do.  If CODE is ASHIFTRT,
10650 		 we can only do this if FIRST_CODE is also ASHIFTRT.
10651 
10652 		 We can't do the case when CODE is ROTATE and FIRST_CODE is
10653 		 ASHIFTRT.
10654 
10655 		 If the mode of this shift is not the mode of the outer shift,
10656 		 we can't do this if either shift is a right shift or ROTATE.
10657 
10658 		 Finally, we can't do any of these if the mode is too wide
10659 		 unless the codes are the same.
10660 
10661 		 Handle the case where the shift codes are the same
10662 		 first.  */
10663 
10664 	      if (code == first_code)
10665 		{
10666 		  if (GET_MODE (varop) != result_mode
10667 		      && (code == ASHIFTRT || code == LSHIFTRT
10668 			  || code == ROTATE))
10669 		    break;
10670 
10671 		  count += first_count;
10672 		  varop = XEXP (varop, 0);
10673 		  continue;
10674 		}
10675 
10676 	      if (code == ASHIFTRT
10677 		  || (code == ROTATE && first_code == ASHIFTRT)
10678 		  || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10679 		  || (GET_MODE (varop) != result_mode
10680 		      && (first_code == ASHIFTRT || first_code == LSHIFTRT
10681 			  || first_code == ROTATE
10682 			  || code == ROTATE)))
10683 		break;
10684 
10685 	      /* To compute the mask to apply after the shift, shift the
10686 		 nonzero bits of the inner shift the same way the
10687 		 outer shift will.  */
10688 
10689 	      mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10690 				       result_mode);
10691 
10692 	      mask_rtx
10693 		= simplify_const_binary_operation (code, result_mode, mask_rtx,
10694 						   GEN_INT (count));
10695 
10696 	      /* Give up if we can't compute an outer operation to use.  */
10697 	      if (mask_rtx == 0
10698 		  || !CONST_INT_P (mask_rtx)
10699 		  || ! merge_outer_ops (&outer_op, &outer_const, AND,
10700 					INTVAL (mask_rtx),
10701 					result_mode, &complement_p))
10702 		break;
10703 
10704 	      /* If the shifts are in the same direction, we add the
10705 		 counts.  Otherwise, we subtract them.  */
10706 	      if ((code == ASHIFTRT || code == LSHIFTRT)
10707 		  == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10708 		count += first_count;
10709 	      else
10710 		count -= first_count;
10711 
10712 	      /* If COUNT is positive, the new shift is usually CODE,
10713 		 except for the two exceptions below, in which case it is
10714 		 FIRST_CODE.  If the count is negative, FIRST_CODE should
10715 		 always be used  */
10716 	      if (count > 0
10717 		  && ((first_code == ROTATE && code == ASHIFT)
10718 		      || (first_code == ASHIFTRT && code == LSHIFTRT)))
10719 		code = first_code;
10720 	      else if (count < 0)
10721 		code = first_code, count = -count;
10722 
10723 	      varop = XEXP (varop, 0);
10724 	      continue;
10725 	    }
10726 
10727 	  /* If we have (A << B << C) for any shift, we can convert this to
10728 	     (A << C << B).  This wins if A is a constant.  Only try this if
10729 	     B is not a constant.  */
10730 
10731 	  else if (GET_CODE (varop) == code
10732 		   && CONST_INT_P (XEXP (varop, 0))
10733 		   && !CONST_INT_P (XEXP (varop, 1)))
10734 	    {
10735 	      /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10736 		 sure the result will be masked.  See PR70222.  */
10737 	      if (code == LSHIFTRT
10738 		  && mode != result_mode
10739 		  && !merge_outer_ops (&outer_op, &outer_const, AND,
10740 				       GET_MODE_MASK (result_mode)
10741 				       >> orig_count, result_mode,
10742 				       &complement_p))
10743 		break;
10744 	      /* For ((int) (cstLL >> count)) >> cst2 just give up.  Queuing
10745 		 up outer sign extension (often left and right shift) is
10746 		 hardly more efficient than the original.  See PR70429.  */
10747 	      if (code == ASHIFTRT && mode != result_mode)
10748 		break;
10749 
10750 	      rtx new_rtx = simplify_const_binary_operation (code, mode,
10751 							     XEXP (varop, 0),
10752 							     GEN_INT (count));
10753 	      varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10754 	      count = 0;
10755 	      continue;
10756 	    }
10757 	  break;
10758 
10759 	case NOT:
10760 	  /* The following rules apply only to scalars.  */
10761 	  if (shift_mode != shift_unit_mode)
10762 	    break;
10763 
10764 	  /* Make this fit the case below.  */
10765 	  varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10766 	  continue;
10767 
10768 	case IOR:
10769 	case AND:
10770 	case XOR:
10771 	  /* The following rules apply only to scalars.  */
10772 	  if (shift_mode != shift_unit_mode)
10773 	    break;
10774 
10775 	  /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10776 	     with C the size of VAROP - 1 and the shift is logical if
10777 	     STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10778 	     we have an (le X 0) operation.   If we have an arithmetic shift
10779 	     and STORE_FLAG_VALUE is 1 or we have a logical shift with
10780 	     STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation.  */
10781 
10782 	  if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10783 	      && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10784 	      && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10785 	      && (code == LSHIFTRT || code == ASHIFTRT)
10786 	      && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10787 	      && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10788 	    {
10789 	      count = 0;
10790 	      varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10791 				  const0_rtx);
10792 
10793 	      if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10794 		varop = gen_rtx_NEG (GET_MODE (varop), varop);
10795 
10796 	      continue;
10797 	    }
10798 
10799 	  /* If we have (shift (logical)), move the logical to the outside
10800 	     to allow it to possibly combine with another logical and the
10801 	     shift to combine with another shift.  This also canonicalizes to
10802 	     what a ZERO_EXTRACT looks like.  Also, some machines have
10803 	     (and (shift)) insns.  */
10804 
10805 	  if (CONST_INT_P (XEXP (varop, 1))
10806 	      /* We can't do this if we have (ashiftrt (xor))  and the
10807 		 constant has its sign bit set in shift_mode with shift_mode
10808 		 wider than result_mode.  */
10809 	      && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10810 		   && result_mode != shift_mode
10811 		   && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10812 					      shift_mode))
10813 	      && (new_rtx = simplify_const_binary_operation
10814 		  (code, result_mode,
10815 		   gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10816 		   GEN_INT (count))) != 0
10817 	      && CONST_INT_P (new_rtx)
10818 	      && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10819 				  INTVAL (new_rtx), result_mode, &complement_p))
10820 	    {
10821 	      varop = XEXP (varop, 0);
10822 	      continue;
10823 	    }
10824 
10825 	  /* If we can't do that, try to simplify the shift in each arm of the
10826 	     logical expression, make a new logical expression, and apply
10827 	     the inverse distributive law.  This also can't be done for
10828 	     (ashiftrt (xor)) where we've widened the shift and the constant
10829 	     changes the sign bit.  */
10830 	  if (CONST_INT_P (XEXP (varop, 1))
10831 	     && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10832 		  && result_mode != shift_mode
10833 		  && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10834 					     shift_mode)))
10835 	    {
10836 	      rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10837 					      XEXP (varop, 0), count);
10838 	      rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10839 					      XEXP (varop, 1), count);
10840 
10841 	      varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10842 					   lhs, rhs);
10843 	      varop = apply_distributive_law (varop);
10844 
10845 	      count = 0;
10846 	      continue;
10847 	    }
10848 	  break;
10849 
10850 	case EQ:
10851 	  /* The following rules apply only to scalars.  */
10852 	  if (shift_mode != shift_unit_mode)
10853 	    break;
10854 
10855 	  /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10856 	     says that the sign bit can be tested, FOO has mode MODE, C is
10857 	     GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10858 	     that may be nonzero.  */
10859 	  if (code == LSHIFTRT
10860 	      && XEXP (varop, 1) == const0_rtx
10861 	      && GET_MODE (XEXP (varop, 0)) == result_mode
10862 	      && count == (GET_MODE_PRECISION (result_mode) - 1)
10863 	      && HWI_COMPUTABLE_MODE_P (result_mode)
10864 	      && STORE_FLAG_VALUE == -1
10865 	      && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10866 	      && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10867 				  &complement_p))
10868 	    {
10869 	      varop = XEXP (varop, 0);
10870 	      count = 0;
10871 	      continue;
10872 	    }
10873 	  break;
10874 
10875 	case NEG:
10876 	  /* The following rules apply only to scalars.  */
10877 	  if (shift_mode != shift_unit_mode)
10878 	    break;
10879 
10880 	  /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10881 	     than the number of bits in the mode is equivalent to A.  */
10882 	  if (code == LSHIFTRT
10883 	      && count == (GET_MODE_PRECISION (result_mode) - 1)
10884 	      && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10885 	    {
10886 	      varop = XEXP (varop, 0);
10887 	      count = 0;
10888 	      continue;
10889 	    }
10890 
10891 	  /* NEG commutes with ASHIFT since it is multiplication.  Move the
10892 	     NEG outside to allow shifts to combine.  */
10893 	  if (code == ASHIFT
10894 	      && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10895 				  &complement_p))
10896 	    {
10897 	      varop = XEXP (varop, 0);
10898 	      continue;
10899 	    }
10900 	  break;
10901 
10902 	case PLUS:
10903 	  /* The following rules apply only to scalars.  */
10904 	  if (shift_mode != shift_unit_mode)
10905 	    break;
10906 
10907 	  /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10908 	     is one less than the number of bits in the mode is
10909 	     equivalent to (xor A 1).  */
10910 	  if (code == LSHIFTRT
10911 	      && count == (GET_MODE_PRECISION (result_mode) - 1)
10912 	      && XEXP (varop, 1) == constm1_rtx
10913 	      && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10914 	      && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10915 				  &complement_p))
10916 	    {
10917 	      count = 0;
10918 	      varop = XEXP (varop, 0);
10919 	      continue;
10920 	    }
10921 
10922 	  /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10923 	     that might be nonzero in BAR are those being shifted out and those
10924 	     bits are known zero in FOO, we can replace the PLUS with FOO.
10925 	     Similarly in the other operand order.  This code occurs when
10926 	     we are computing the size of a variable-size array.  */
10927 
10928 	  if ((code == ASHIFTRT || code == LSHIFTRT)
10929 	      && count < HOST_BITS_PER_WIDE_INT
10930 	      && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10931 	      && (nonzero_bits (XEXP (varop, 1), result_mode)
10932 		  & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10933 	    {
10934 	      varop = XEXP (varop, 0);
10935 	      continue;
10936 	    }
10937 	  else if ((code == ASHIFTRT || code == LSHIFTRT)
10938 		   && count < HOST_BITS_PER_WIDE_INT
10939 		   && HWI_COMPUTABLE_MODE_P (result_mode)
10940 		   && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10941 			    >> count)
10942 		   && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10943 			    & nonzero_bits (XEXP (varop, 1),
10944 						 result_mode)))
10945 	    {
10946 	      varop = XEXP (varop, 1);
10947 	      continue;
10948 	    }
10949 
10950 	  /* (ashift (plus foo C) N) is (plus (ashift foo N) C').  */
10951 	  if (code == ASHIFT
10952 	      && CONST_INT_P (XEXP (varop, 1))
10953 	      && (new_rtx = simplify_const_binary_operation
10954 		  (ASHIFT, result_mode,
10955 		   gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10956 		   GEN_INT (count))) != 0
10957 	      && CONST_INT_P (new_rtx)
10958 	      && merge_outer_ops (&outer_op, &outer_const, PLUS,
10959 				  INTVAL (new_rtx), result_mode, &complement_p))
10960 	    {
10961 	      varop = XEXP (varop, 0);
10962 	      continue;
10963 	    }
10964 
10965 	  /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10966 	     signbit', and attempt to change the PLUS to an XOR and move it to
10967 	     the outer operation as is done above in the AND/IOR/XOR case
10968 	     leg for shift(logical). See details in logical handling above
10969 	     for reasoning in doing so.  */
10970 	  if (code == LSHIFTRT
10971 	      && CONST_INT_P (XEXP (varop, 1))
10972 	      && mode_signbit_p (result_mode, XEXP (varop, 1))
10973 	      && (new_rtx = simplify_const_binary_operation
10974 		  (code, result_mode,
10975 		   gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10976 		   GEN_INT (count))) != 0
10977 	      && CONST_INT_P (new_rtx)
10978 	      && merge_outer_ops (&outer_op, &outer_const, XOR,
10979 				  INTVAL (new_rtx), result_mode, &complement_p))
10980 	    {
10981 	      varop = XEXP (varop, 0);
10982 	      continue;
10983 	    }
10984 
10985 	  break;
10986 
10987 	case MINUS:
10988 	  /* The following rules apply only to scalars.  */
10989 	  if (shift_mode != shift_unit_mode)
10990 	    break;
10991 
10992 	  /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10993 	     with C the size of VAROP - 1 and the shift is logical if
10994 	     STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10995 	     we have a (gt X 0) operation.  If the shift is arithmetic with
10996 	     STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10997 	     we have a (neg (gt X 0)) operation.  */
10998 
10999 	  if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11000 	      && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11001 	      && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
11002 	      && (code == LSHIFTRT || code == ASHIFTRT)
11003 	      && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11004 	      && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11005 	      && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11006 	    {
11007 	      count = 0;
11008 	      varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
11009 				  const0_rtx);
11010 
11011 	      if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11012 		varop = gen_rtx_NEG (GET_MODE (varop), varop);
11013 
11014 	      continue;
11015 	    }
11016 	  break;
11017 
11018 	case TRUNCATE:
11019 	  /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11020 	     if the truncate does not affect the value.  */
11021 	  if (code == LSHIFTRT
11022 	      && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11023 	      && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11024 	      && (INTVAL (XEXP (XEXP (varop, 0), 1))
11025 		  >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11026 		      - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11027 	    {
11028 	      rtx varop_inner = XEXP (varop, 0);
11029 
11030 	      varop_inner
11031 		= gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11032 				    XEXP (varop_inner, 0),
11033 				    GEN_INT
11034 				    (count + INTVAL (XEXP (varop_inner, 1))));
11035 	      varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11036 	      count = 0;
11037 	      continue;
11038 	    }
11039 	  break;
11040 
11041 	default:
11042 	  break;
11043 	}
11044 
11045       break;
11046     }
11047 
11048   shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
11049 				     outer_op, outer_const);
11050 
11051   /* We have now finished analyzing the shift.  The result should be
11052      a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places.  If
11053      OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11054      to the result of the shift.  OUTER_CONST is the relevant constant,
11055      but we must turn off all bits turned off in the shift.  */
11056 
11057   if (outer_op == UNKNOWN
11058       && orig_code == code && orig_count == count
11059       && varop == orig_varop
11060       && shift_mode == GET_MODE (varop))
11061     return NULL_RTX;
11062 
11063   /* Make a SUBREG if necessary.  If we can't make it, fail.  */
11064   varop = gen_lowpart (shift_mode, varop);
11065   if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11066     return NULL_RTX;
11067 
11068   /* If we have an outer operation and we just made a shift, it is
11069      possible that we could have simplified the shift were it not
11070      for the outer operation.  So try to do the simplification
11071      recursively.  */
11072 
11073   if (outer_op != UNKNOWN)
11074     x = simplify_shift_const_1 (code, shift_mode, varop, count);
11075   else
11076     x = NULL_RTX;
11077 
11078   if (x == NULL_RTX)
11079     x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
11080 
11081   /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11082      turn off all the bits that the shift would have turned off.  */
11083   if (orig_code == LSHIFTRT && result_mode != shift_mode)
11084     x = simplify_and_const_int (NULL_RTX, shift_mode, x,
11085 				GET_MODE_MASK (result_mode) >> orig_count);
11086 
11087   /* Do the remainder of the processing in RESULT_MODE.  */
11088   x = gen_lowpart_or_truncate (result_mode, x);
11089 
11090   /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11091      operation.  */
11092   if (complement_p)
11093     x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11094 
11095   if (outer_op != UNKNOWN)
11096     {
11097       if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11098 	  && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
11099 	outer_const = trunc_int_for_mode (outer_const, result_mode);
11100 
11101       if (outer_op == AND)
11102 	x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
11103       else if (outer_op == SET)
11104 	{
11105 	  /* This means that we have determined that the result is
11106 	     equivalent to a constant.  This should be rare.  */
11107 	  if (!side_effects_p (x))
11108 	    x = GEN_INT (outer_const);
11109 	}
11110       else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11111 	x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
11112       else
11113 	x = simplify_gen_binary (outer_op, result_mode, x,
11114 				 GEN_INT (outer_const));
11115     }
11116 
11117   return x;
11118 }
11119 
11120 /* Simplify a shift of VAROP by COUNT bits.  CODE says what kind of shift.
11121    The result of the shift is RESULT_MODE.  If we cannot simplify it,
11122    return X or, if it is NULL, synthesize the expression with
11123    simplify_gen_binary.  Otherwise, return a simplified value.
11124 
11125    The shift is normally computed in the widest mode we find in VAROP, as
11126    long as it isn't a different number of words than RESULT_MODE.  Exceptions
11127    are ASHIFTRT and ROTATE, which are always done in their original mode.  */
11128 
11129 static rtx
11130 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11131 		      rtx varop, int count)
11132 {
11133   rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11134   if (tem)
11135     return tem;
11136 
11137   if (!x)
11138     x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
11139   if (GET_MODE (x) != result_mode)
11140     x = gen_lowpart (result_mode, x);
11141   return x;
11142 }
11143 
11144 
11145 /* A subroutine of recog_for_combine.  See there for arguments and
11146    return value.  */
11147 
11148 static int
11149 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11150 {
11151   rtx pat = *pnewpat;
11152   rtx pat_without_clobbers;
11153   int insn_code_number;
11154   int num_clobbers_to_add = 0;
11155   int i;
11156   rtx notes = NULL_RTX;
11157   rtx old_notes, old_pat;
11158   int old_icode;
11159 
11160   /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11161      we use to indicate that something didn't match.  If we find such a
11162      thing, force rejection.  */
11163   if (GET_CODE (pat) == PARALLEL)
11164     for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11165       if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11166 	  && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11167 	return -1;
11168 
11169   old_pat = PATTERN (insn);
11170   old_notes = REG_NOTES (insn);
11171   PATTERN (insn) = pat;
11172   REG_NOTES (insn) = NULL_RTX;
11173 
11174   insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11175   if (dump_file && (dump_flags & TDF_DETAILS))
11176     {
11177       if (insn_code_number < 0)
11178 	fputs ("Failed to match this instruction:\n", dump_file);
11179       else
11180 	fputs ("Successfully matched this instruction:\n", dump_file);
11181       print_rtl_single (dump_file, pat);
11182     }
11183 
11184   /* If it isn't, there is the possibility that we previously had an insn
11185      that clobbered some register as a side effect, but the combined
11186      insn doesn't need to do that.  So try once more without the clobbers
11187      unless this represents an ASM insn.  */
11188 
11189   if (insn_code_number < 0 && ! check_asm_operands (pat)
11190       && GET_CODE (pat) == PARALLEL)
11191     {
11192       int pos;
11193 
11194       for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11195 	if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11196 	  {
11197 	    if (i != pos)
11198 	      SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11199 	    pos++;
11200 	  }
11201 
11202       SUBST_INT (XVECLEN (pat, 0), pos);
11203 
11204       if (pos == 1)
11205 	pat = XVECEXP (pat, 0, 0);
11206 
11207       PATTERN (insn) = pat;
11208       insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11209       if (dump_file && (dump_flags & TDF_DETAILS))
11210 	{
11211 	  if (insn_code_number < 0)
11212 	    fputs ("Failed to match this instruction:\n", dump_file);
11213 	  else
11214 	    fputs ("Successfully matched this instruction:\n", dump_file);
11215 	  print_rtl_single (dump_file, pat);
11216 	}
11217     }
11218 
11219   pat_without_clobbers = pat;
11220 
11221   PATTERN (insn) = old_pat;
11222   REG_NOTES (insn) = old_notes;
11223 
11224   /* Recognize all noop sets, these will be killed by followup pass.  */
11225   if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11226     insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11227 
11228   /* If we had any clobbers to add, make a new pattern than contains
11229      them.  Then check to make sure that all of them are dead.  */
11230   if (num_clobbers_to_add)
11231     {
11232       rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11233 				     rtvec_alloc (GET_CODE (pat) == PARALLEL
11234 						  ? (XVECLEN (pat, 0)
11235 						     + num_clobbers_to_add)
11236 						  : num_clobbers_to_add + 1));
11237 
11238       if (GET_CODE (pat) == PARALLEL)
11239 	for (i = 0; i < XVECLEN (pat, 0); i++)
11240 	  XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11241       else
11242 	XVECEXP (newpat, 0, 0) = pat;
11243 
11244       add_clobbers (newpat, insn_code_number);
11245 
11246       for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11247 	   i < XVECLEN (newpat, 0); i++)
11248 	{
11249 	  if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11250 	      && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11251 	    return -1;
11252 	  if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11253 	    {
11254 	      gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11255 	      notes = alloc_reg_note (REG_UNUSED,
11256 				      XEXP (XVECEXP (newpat, 0, i), 0), notes);
11257 	    }
11258 	}
11259       pat = newpat;
11260     }
11261 
11262   if (insn_code_number >= 0
11263       && insn_code_number != NOOP_MOVE_INSN_CODE)
11264     {
11265       old_pat = PATTERN (insn);
11266       old_notes = REG_NOTES (insn);
11267       old_icode = INSN_CODE (insn);
11268       PATTERN (insn) = pat;
11269       REG_NOTES (insn) = notes;
11270       INSN_CODE (insn) = insn_code_number;
11271 
11272       /* Allow targets to reject combined insn.  */
11273       if (!targetm.legitimate_combined_insn (insn))
11274 	{
11275 	  if (dump_file && (dump_flags & TDF_DETAILS))
11276 	    fputs ("Instruction not appropriate for target.",
11277 		   dump_file);
11278 
11279 	  /* Callers expect recog_for_combine to strip
11280 	     clobbers from the pattern on failure.  */
11281 	  pat = pat_without_clobbers;
11282 	  notes = NULL_RTX;
11283 
11284 	  insn_code_number = -1;
11285 	}
11286 
11287       PATTERN (insn) = old_pat;
11288       REG_NOTES (insn) = old_notes;
11289       INSN_CODE (insn) = old_icode;
11290     }
11291 
11292   *pnewpat = pat;
11293   *pnotes = notes;
11294 
11295   return insn_code_number;
11296 }
11297 
11298 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11299    expressed as an AND and maybe an LSHIFTRT, to that formulation.
11300    Return whether anything was so changed.  */
11301 
11302 static bool
11303 change_zero_ext (rtx pat)
11304 {
11305   bool changed = false;
11306   rtx *src = &SET_SRC (pat);
11307 
11308   subrtx_ptr_iterator::array_type array;
11309   FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11310     {
11311       rtx x = **iter;
11312       machine_mode mode = GET_MODE (x);
11313       int size;
11314 
11315       if (GET_CODE (x) == ZERO_EXTRACT
11316 	  && CONST_INT_P (XEXP (x, 1))
11317 	  && CONST_INT_P (XEXP (x, 2))
11318 	  && GET_MODE (XEXP (x, 0)) != VOIDmode
11319 	  && GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
11320 	      <= GET_MODE_PRECISION (mode))
11321 	{
11322 	  machine_mode inner_mode = GET_MODE (XEXP (x, 0));
11323 
11324 	  size = INTVAL (XEXP (x, 1));
11325 
11326 	  int start = INTVAL (XEXP (x, 2));
11327 	  if (BITS_BIG_ENDIAN)
11328 	    start = GET_MODE_PRECISION (inner_mode) - size - start;
11329 
11330 	  if (start)
11331 	    x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0), GEN_INT (start));
11332 	  else
11333 	    x = XEXP (x, 0);
11334 
11335 	  if (mode != inner_mode)
11336 	    {
11337 	      if (REG_P (x) && HARD_REGISTER_P (x)
11338 		  && !can_change_dest_mode (x, 0, mode))
11339 		continue;
11340 
11341 	      x = gen_lowpart_SUBREG (mode, x);
11342 	    }
11343 	}
11344       else if (GET_CODE (x) == ZERO_EXTEND
11345 	       && SCALAR_INT_MODE_P (mode)
11346 	       && GET_CODE (XEXP (x, 0)) == SUBREG
11347 	       && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11348 	       && !paradoxical_subreg_p (XEXP (x, 0))
11349 	       && subreg_lowpart_p (XEXP (x, 0)))
11350 	{
11351 	  size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11352 	  x = SUBREG_REG (XEXP (x, 0));
11353 	  if (GET_MODE (x) != mode)
11354 	    {
11355 	      if (REG_P (x) && HARD_REGISTER_P (x)
11356 		  && !can_change_dest_mode (x, 0, mode))
11357 		continue;
11358 
11359 	      x = gen_lowpart_SUBREG (mode, x);
11360 	    }
11361 	}
11362       else if (GET_CODE (x) == ZERO_EXTEND
11363 	       && SCALAR_INT_MODE_P (mode)
11364 	       && REG_P (XEXP (x, 0))
11365 	       && HARD_REGISTER_P (XEXP (x, 0))
11366 	       && can_change_dest_mode (XEXP (x, 0), 0, mode))
11367 	{
11368 	  size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11369 	  x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11370 	}
11371       else
11372 	continue;
11373 
11374       if (!(GET_CODE (x) == LSHIFTRT
11375 	    && CONST_INT_P (XEXP (x, 1))
11376 	    && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11377 	{
11378 	  wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11379 	  x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11380 	}
11381 
11382       SUBST (**iter, x);
11383       changed = true;
11384     }
11385 
11386   if (changed)
11387     FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11388       maybe_swap_commutative_operands (**iter);
11389 
11390   rtx *dst = &SET_DEST (pat);
11391   if (GET_CODE (*dst) == ZERO_EXTRACT
11392       && REG_P (XEXP (*dst, 0))
11393       && CONST_INT_P (XEXP (*dst, 1))
11394       && CONST_INT_P (XEXP (*dst, 2)))
11395     {
11396       rtx reg = XEXP (*dst, 0);
11397       int width = INTVAL (XEXP (*dst, 1));
11398       int offset = INTVAL (XEXP (*dst, 2));
11399       machine_mode mode = GET_MODE (reg);
11400       int reg_width = GET_MODE_PRECISION (mode);
11401       if (BITS_BIG_ENDIAN)
11402 	offset = reg_width - width - offset;
11403 
11404       rtx x, y, z, w;
11405       wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11406       wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11407       x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11408       if (offset)
11409 	y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11410       else
11411 	y = SET_SRC (pat);
11412       z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11413       w = gen_rtx_IOR (mode, x, z);
11414       SUBST (SET_DEST (pat), reg);
11415       SUBST (SET_SRC (pat), w);
11416 
11417       changed = true;
11418     }
11419 
11420   return changed;
11421 }
11422 
11423 /* Like recog, but we receive the address of a pointer to a new pattern.
11424    We try to match the rtx that the pointer points to.
11425    If that fails, we may try to modify or replace the pattern,
11426    storing the replacement into the same pointer object.
11427 
11428    Modifications include deletion or addition of CLOBBERs.  If the
11429    instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11430    to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11431    (and undo if that fails).
11432 
11433    PNOTES is a pointer to a location where any REG_UNUSED notes added for
11434    the CLOBBERs are placed.
11435 
11436    The value is the final insn code from the pattern ultimately matched,
11437    or -1.  */
11438 
11439 static int
11440 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11441 {
11442   rtx pat = *pnewpat;
11443   int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11444   if (insn_code_number >= 0 || check_asm_operands (pat))
11445     return insn_code_number;
11446 
11447   void *marker = get_undo_marker ();
11448   bool changed = false;
11449 
11450   if (GET_CODE (pat) == SET)
11451     changed = change_zero_ext (pat);
11452   else if (GET_CODE (pat) == PARALLEL)
11453     {
11454       int i;
11455       for (i = 0; i < XVECLEN (pat, 0); i++)
11456 	{
11457 	  rtx set = XVECEXP (pat, 0, i);
11458 	  if (GET_CODE (set) == SET)
11459 	    changed |= change_zero_ext (set);
11460 	}
11461     }
11462 
11463   if (changed)
11464     {
11465       insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11466 
11467       if (insn_code_number < 0)
11468 	undo_to_marker (marker);
11469     }
11470 
11471   return insn_code_number;
11472 }
11473 
11474 /* Like gen_lowpart_general but for use by combine.  In combine it
11475    is not possible to create any new pseudoregs.  However, it is
11476    safe to create invalid memory addresses, because combine will
11477    try to recognize them and all they will do is make the combine
11478    attempt fail.
11479 
11480    If for some reason this cannot do its job, an rtx
11481    (clobber (const_int 0)) is returned.
11482    An insn containing that will not be recognized.  */
11483 
11484 static rtx
11485 gen_lowpart_for_combine (machine_mode omode, rtx x)
11486 {
11487   machine_mode imode = GET_MODE (x);
11488   unsigned int osize = GET_MODE_SIZE (omode);
11489   unsigned int isize = GET_MODE_SIZE (imode);
11490   rtx result;
11491 
11492   if (omode == imode)
11493     return x;
11494 
11495   /* We can only support MODE being wider than a word if X is a
11496      constant integer or has a mode the same size.  */
11497   if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11498       && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11499     goto fail;
11500 
11501   /* X might be a paradoxical (subreg (mem)).  In that case, gen_lowpart
11502      won't know what to do.  So we will strip off the SUBREG here and
11503      process normally.  */
11504   if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11505     {
11506       x = SUBREG_REG (x);
11507 
11508       /* For use in case we fall down into the address adjustments
11509 	 further below, we need to adjust the known mode and size of
11510 	 x; imode and isize, since we just adjusted x.  */
11511       imode = GET_MODE (x);
11512 
11513       if (imode == omode)
11514 	return x;
11515 
11516       isize = GET_MODE_SIZE (imode);
11517     }
11518 
11519   result = gen_lowpart_common (omode, x);
11520 
11521   if (result)
11522     return result;
11523 
11524   if (MEM_P (x))
11525     {
11526       int offset = 0;
11527 
11528       /* Refuse to work on a volatile memory ref or one with a mode-dependent
11529 	 address.  */
11530       if (MEM_VOLATILE_P (x)
11531 	  || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11532 	goto fail;
11533 
11534       /* If we want to refer to something bigger than the original memref,
11535 	 generate a paradoxical subreg instead.  That will force a reload
11536 	 of the original memref X.  */
11537       if (isize < osize)
11538 	return gen_rtx_SUBREG (omode, x, 0);
11539 
11540       if (WORDS_BIG_ENDIAN)
11541 	offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
11542 
11543       /* Adjust the address so that the address-after-the-data is
11544 	 unchanged.  */
11545       if (BYTES_BIG_ENDIAN)
11546 	offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
11547 
11548       return adjust_address_nv (x, omode, offset);
11549     }
11550 
11551   /* If X is a comparison operator, rewrite it in a new mode.  This
11552      probably won't match, but may allow further simplifications.  */
11553   else if (COMPARISON_P (x))
11554     return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11555 
11556   /* If we couldn't simplify X any other way, just enclose it in a
11557      SUBREG.  Normally, this SUBREG won't match, but some patterns may
11558      include an explicit SUBREG or we may simplify it further in combine.  */
11559   else
11560     {
11561       rtx res;
11562 
11563       if (imode == VOIDmode)
11564 	{
11565 	  imode = int_mode_for_mode (omode);
11566 	  x = gen_lowpart_common (imode, x);
11567 	  if (x == NULL)
11568 	    goto fail;
11569 	}
11570       res = lowpart_subreg (omode, x, imode);
11571       if (res)
11572 	return res;
11573     }
11574 
11575  fail:
11576   return gen_rtx_CLOBBER (omode, const0_rtx);
11577 }
11578 
11579 /* Try to simplify a comparison between OP0 and a constant OP1,
11580    where CODE is the comparison code that will be tested, into a
11581    (CODE OP0 const0_rtx) form.
11582 
11583    The result is a possibly different comparison code to use.
11584    *POP1 may be updated.  */
11585 
11586 static enum rtx_code
11587 simplify_compare_const (enum rtx_code code, machine_mode mode,
11588 			rtx op0, rtx *pop1)
11589 {
11590   unsigned int mode_width = GET_MODE_PRECISION (mode);
11591   HOST_WIDE_INT const_op = INTVAL (*pop1);
11592 
11593   /* Get the constant we are comparing against and turn off all bits
11594      not on in our mode.  */
11595   if (mode != VOIDmode)
11596     const_op = trunc_int_for_mode (const_op, mode);
11597 
11598   /* If we are comparing against a constant power of two and the value
11599      being compared can only have that single bit nonzero (e.g., it was
11600      `and'ed with that bit), we can replace this with a comparison
11601      with zero.  */
11602   if (const_op
11603       && (code == EQ || code == NE || code == GE || code == GEU
11604 	  || code == LT || code == LTU)
11605       && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11606       && pow2p_hwi (const_op & GET_MODE_MASK (mode))
11607       && (nonzero_bits (op0, mode)
11608 	  == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
11609     {
11610       code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11611       const_op = 0;
11612     }
11613 
11614   /* Similarly, if we are comparing a value known to be either -1 or
11615      0 with -1, change it to the opposite comparison against zero.  */
11616   if (const_op == -1
11617       && (code == EQ || code == NE || code == GT || code == LE
11618 	  || code == GEU || code == LTU)
11619       && num_sign_bit_copies (op0, mode) == mode_width)
11620     {
11621       code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11622       const_op = 0;
11623     }
11624 
11625   /* Do some canonicalizations based on the comparison code.  We prefer
11626      comparisons against zero and then prefer equality comparisons.
11627      If we can reduce the size of a constant, we will do that too.  */
11628   switch (code)
11629     {
11630     case LT:
11631       /* < C is equivalent to <= (C - 1) */
11632       if (const_op > 0)
11633 	{
11634 	  const_op -= 1;
11635 	  code = LE;
11636 	  /* ... fall through to LE case below.  */
11637 	  gcc_fallthrough ();
11638 	}
11639       else
11640 	break;
11641 
11642     case LE:
11643       /* <= C is equivalent to < (C + 1); we do this for C < 0  */
11644       if (const_op < 0)
11645 	{
11646 	  const_op += 1;
11647 	  code = LT;
11648 	}
11649 
11650       /* If we are doing a <= 0 comparison on a value known to have
11651 	 a zero sign bit, we can replace this with == 0.  */
11652       else if (const_op == 0
11653 	       && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11654 	       && (nonzero_bits (op0, mode)
11655 		   & (HOST_WIDE_INT_1U << (mode_width - 1)))
11656 	       == 0)
11657 	code = EQ;
11658       break;
11659 
11660     case GE:
11661       /* >= C is equivalent to > (C - 1).  */
11662       if (const_op > 0)
11663 	{
11664 	  const_op -= 1;
11665 	  code = GT;
11666 	  /* ... fall through to GT below.  */
11667 	  gcc_fallthrough ();
11668 	}
11669       else
11670 	break;
11671 
11672     case GT:
11673       /* > C is equivalent to >= (C + 1); we do this for C < 0.  */
11674       if (const_op < 0)
11675 	{
11676 	  const_op += 1;
11677 	  code = GE;
11678 	}
11679 
11680       /* If we are doing a > 0 comparison on a value known to have
11681 	 a zero sign bit, we can replace this with != 0.  */
11682       else if (const_op == 0
11683 	       && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11684 	       && (nonzero_bits (op0, mode)
11685 		   & (HOST_WIDE_INT_1U << (mode_width - 1)))
11686 	       == 0)
11687 	code = NE;
11688       break;
11689 
11690     case LTU:
11691       /* < C is equivalent to <= (C - 1).  */
11692       if (const_op > 0)
11693 	{
11694 	  const_op -= 1;
11695 	  code = LEU;
11696 	  /* ... fall through ...  */
11697 	}
11698       /* (unsigned) < 0x80000000 is equivalent to >= 0.  */
11699       else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11700 	       && (unsigned HOST_WIDE_INT) const_op
11701 	       == HOST_WIDE_INT_1U << (mode_width - 1))
11702 	{
11703 	  const_op = 0;
11704 	  code = GE;
11705 	  break;
11706 	}
11707       else
11708 	break;
11709 
11710     case LEU:
11711       /* unsigned <= 0 is equivalent to == 0 */
11712       if (const_op == 0)
11713 	code = EQ;
11714       /* (unsigned) <= 0x7fffffff is equivalent to >= 0.  */
11715       else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11716 	       && (unsigned HOST_WIDE_INT) const_op
11717 	       == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11718 	{
11719 	  const_op = 0;
11720 	  code = GE;
11721 	}
11722       break;
11723 
11724     case GEU:
11725       /* >= C is equivalent to > (C - 1).  */
11726       if (const_op > 1)
11727 	{
11728 	  const_op -= 1;
11729 	  code = GTU;
11730 	  /* ... fall through ...  */
11731 	}
11732 
11733       /* (unsigned) >= 0x80000000 is equivalent to < 0.  */
11734       else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11735 	       && (unsigned HOST_WIDE_INT) const_op
11736 	       == HOST_WIDE_INT_1U << (mode_width - 1))
11737 	{
11738 	  const_op = 0;
11739 	  code = LT;
11740 	  break;
11741 	}
11742       else
11743 	break;
11744 
11745     case GTU:
11746       /* unsigned > 0 is equivalent to != 0 */
11747       if (const_op == 0)
11748 	code = NE;
11749       /* (unsigned) > 0x7fffffff is equivalent to < 0.  */
11750       else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11751 	       && (unsigned HOST_WIDE_INT) const_op
11752 	       == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11753 	{
11754 	  const_op = 0;
11755 	  code = LT;
11756 	}
11757       break;
11758 
11759     default:
11760       break;
11761     }
11762 
11763   *pop1 = GEN_INT (const_op);
11764   return code;
11765 }
11766 
11767 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11768    comparison code that will be tested.
11769 
11770    The result is a possibly different comparison code to use.  *POP0 and
11771    *POP1 may be updated.
11772 
11773    It is possible that we might detect that a comparison is either always
11774    true or always false.  However, we do not perform general constant
11775    folding in combine, so this knowledge isn't useful.  Such tautologies
11776    should have been detected earlier.  Hence we ignore all such cases.  */
11777 
11778 static enum rtx_code
11779 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11780 {
11781   rtx op0 = *pop0;
11782   rtx op1 = *pop1;
11783   rtx tem, tem1;
11784   int i;
11785   machine_mode mode, tmode;
11786 
11787   /* Try a few ways of applying the same transformation to both operands.  */
11788   while (1)
11789     {
11790       /* The test below this one won't handle SIGN_EXTENDs on these machines,
11791 	 so check specially.  */
11792       if (!WORD_REGISTER_OPERATIONS
11793 	  && code != GTU && code != GEU && code != LTU && code != LEU
11794 	  && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11795 	  && GET_CODE (XEXP (op0, 0)) == ASHIFT
11796 	  && GET_CODE (XEXP (op1, 0)) == ASHIFT
11797 	  && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11798 	  && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11799 	  && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11800 	      == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11801 	  && CONST_INT_P (XEXP (op0, 1))
11802 	  && XEXP (op0, 1) == XEXP (op1, 1)
11803 	  && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11804 	  && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11805 	  && (INTVAL (XEXP (op0, 1))
11806 	      == (GET_MODE_PRECISION (GET_MODE (op0))
11807 		  - (GET_MODE_PRECISION
11808 		     (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11809 	{
11810 	  op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11811 	  op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11812 	}
11813 
11814       /* If both operands are the same constant shift, see if we can ignore the
11815 	 shift.  We can if the shift is a rotate or if the bits shifted out of
11816 	 this shift are known to be zero for both inputs and if the type of
11817 	 comparison is compatible with the shift.  */
11818       if (GET_CODE (op0) == GET_CODE (op1)
11819 	  && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11820 	  && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11821 	      || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11822 		  && (code != GT && code != LT && code != GE && code != LE))
11823 	      || (GET_CODE (op0) == ASHIFTRT
11824 		  && (code != GTU && code != LTU
11825 		      && code != GEU && code != LEU)))
11826 	  && CONST_INT_P (XEXP (op0, 1))
11827 	  && INTVAL (XEXP (op0, 1)) >= 0
11828 	  && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11829 	  && XEXP (op0, 1) == XEXP (op1, 1))
11830 	{
11831 	  machine_mode mode = GET_MODE (op0);
11832 	  unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11833 	  int shift_count = INTVAL (XEXP (op0, 1));
11834 
11835 	  if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11836 	    mask &= (mask >> shift_count) << shift_count;
11837 	  else if (GET_CODE (op0) == ASHIFT)
11838 	    mask = (mask & (mask << shift_count)) >> shift_count;
11839 
11840 	  if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11841 	      && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11842 	    op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11843 	  else
11844 	    break;
11845 	}
11846 
11847       /* If both operands are AND's of a paradoxical SUBREG by constant, the
11848 	 SUBREGs are of the same mode, and, in both cases, the AND would
11849 	 be redundant if the comparison was done in the narrower mode,
11850 	 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11851 	 and the operand's possibly nonzero bits are 0xffffff01; in that case
11852 	 if we only care about QImode, we don't need the AND).  This case
11853 	 occurs if the output mode of an scc insn is not SImode and
11854 	 STORE_FLAG_VALUE == 1 (e.g., the 386).
11855 
11856 	 Similarly, check for a case where the AND's are ZERO_EXTEND
11857 	 operations from some narrower mode even though a SUBREG is not
11858 	 present.  */
11859 
11860       else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11861 	       && CONST_INT_P (XEXP (op0, 1))
11862 	       && CONST_INT_P (XEXP (op1, 1)))
11863 	{
11864 	  rtx inner_op0 = XEXP (op0, 0);
11865 	  rtx inner_op1 = XEXP (op1, 0);
11866 	  HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11867 	  HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11868 	  int changed = 0;
11869 
11870 	  if (paradoxical_subreg_p (inner_op0)
11871 	      && GET_CODE (inner_op1) == SUBREG
11872 	      && (GET_MODE (SUBREG_REG (inner_op0))
11873 		  == GET_MODE (SUBREG_REG (inner_op1)))
11874 	      && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11875 		  <= HOST_BITS_PER_WIDE_INT)
11876 	      && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11877 					     GET_MODE (SUBREG_REG (inner_op0)))))
11878 	      && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11879 					     GET_MODE (SUBREG_REG (inner_op1))))))
11880 	    {
11881 	      op0 = SUBREG_REG (inner_op0);
11882 	      op1 = SUBREG_REG (inner_op1);
11883 
11884 	      /* The resulting comparison is always unsigned since we masked
11885 		 off the original sign bit.  */
11886 	      code = unsigned_condition (code);
11887 
11888 	      changed = 1;
11889 	    }
11890 
11891 	  else if (c0 == c1)
11892 	    for (tmode = GET_CLASS_NARROWEST_MODE
11893 		 (GET_MODE_CLASS (GET_MODE (op0)));
11894 		 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11895 	      if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11896 		{
11897 		  op0 = gen_lowpart_or_truncate (tmode, inner_op0);
11898 		  op1 = gen_lowpart_or_truncate (tmode, inner_op1);
11899 		  code = unsigned_condition (code);
11900 		  changed = 1;
11901 		  break;
11902 		}
11903 
11904 	  if (! changed)
11905 	    break;
11906 	}
11907 
11908       /* If both operands are NOT, we can strip off the outer operation
11909 	 and adjust the comparison code for swapped operands; similarly for
11910 	 NEG, except that this must be an equality comparison.  */
11911       else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11912 	       || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11913 		   && (code == EQ || code == NE)))
11914 	op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11915 
11916       else
11917 	break;
11918     }
11919 
11920   /* If the first operand is a constant, swap the operands and adjust the
11921      comparison code appropriately, but don't do this if the second operand
11922      is already a constant integer.  */
11923   if (swap_commutative_operands_p (op0, op1))
11924     {
11925       std::swap (op0, op1);
11926       code = swap_condition (code);
11927     }
11928 
11929   /* We now enter a loop during which we will try to simplify the comparison.
11930      For the most part, we only are concerned with comparisons with zero,
11931      but some things may really be comparisons with zero but not start
11932      out looking that way.  */
11933 
11934   while (CONST_INT_P (op1))
11935     {
11936       machine_mode mode = GET_MODE (op0);
11937       unsigned int mode_width = GET_MODE_PRECISION (mode);
11938       unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11939       int equality_comparison_p;
11940       int sign_bit_comparison_p;
11941       int unsigned_comparison_p;
11942       HOST_WIDE_INT const_op;
11943 
11944       /* We only want to handle integral modes.  This catches VOIDmode,
11945 	 CCmode, and the floating-point modes.  An exception is that we
11946 	 can handle VOIDmode if OP0 is a COMPARE or a comparison
11947 	 operation.  */
11948 
11949       if (GET_MODE_CLASS (mode) != MODE_INT
11950 	  && ! (mode == VOIDmode
11951 		&& (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11952 	break;
11953 
11954       /* Try to simplify the compare to constant, possibly changing the
11955 	 comparison op, and/or changing op1 to zero.  */
11956       code = simplify_compare_const (code, mode, op0, &op1);
11957       const_op = INTVAL (op1);
11958 
11959       /* Compute some predicates to simplify code below.  */
11960 
11961       equality_comparison_p = (code == EQ || code == NE);
11962       sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11963       unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11964 			       || code == GEU);
11965 
11966       /* If this is a sign bit comparison and we can do arithmetic in
11967 	 MODE, say that we will only be needing the sign bit of OP0.  */
11968       if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11969 	op0 = force_to_mode (op0, mode,
11970 			     HOST_WIDE_INT_1U
11971 			     << (GET_MODE_PRECISION (mode) - 1),
11972 			     0);
11973 
11974       /* Now try cases based on the opcode of OP0.  If none of the cases
11975 	 does a "continue", we exit this loop immediately after the
11976 	 switch.  */
11977 
11978       switch (GET_CODE (op0))
11979 	{
11980 	case ZERO_EXTRACT:
11981 	  /* If we are extracting a single bit from a variable position in
11982 	     a constant that has only a single bit set and are comparing it
11983 	     with zero, we can convert this into an equality comparison
11984 	     between the position and the location of the single bit.  */
11985 	  /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11986 	     have already reduced the shift count modulo the word size.  */
11987 	  if (!SHIFT_COUNT_TRUNCATED
11988 	      && CONST_INT_P (XEXP (op0, 0))
11989 	      && XEXP (op0, 1) == const1_rtx
11990 	      && equality_comparison_p && const_op == 0
11991 	      && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11992 	    {
11993 	      if (BITS_BIG_ENDIAN)
11994 		i = BITS_PER_WORD - 1 - i;
11995 
11996 	      op0 = XEXP (op0, 2);
11997 	      op1 = GEN_INT (i);
11998 	      const_op = i;
11999 
12000 	      /* Result is nonzero iff shift count is equal to I.  */
12001 	      code = reverse_condition (code);
12002 	      continue;
12003 	    }
12004 
12005 	  /* fall through */
12006 
12007 	case SIGN_EXTRACT:
12008 	  tem = expand_compound_operation (op0);
12009 	  if (tem != op0)
12010 	    {
12011 	      op0 = tem;
12012 	      continue;
12013 	    }
12014 	  break;
12015 
12016 	case NOT:
12017 	  /* If testing for equality, we can take the NOT of the constant.  */
12018 	  if (equality_comparison_p
12019 	      && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12020 	    {
12021 	      op0 = XEXP (op0, 0);
12022 	      op1 = tem;
12023 	      continue;
12024 	    }
12025 
12026 	  /* If just looking at the sign bit, reverse the sense of the
12027 	     comparison.  */
12028 	  if (sign_bit_comparison_p)
12029 	    {
12030 	      op0 = XEXP (op0, 0);
12031 	      code = (code == GE ? LT : GE);
12032 	      continue;
12033 	    }
12034 	  break;
12035 
12036 	case NEG:
12037 	  /* If testing for equality, we can take the NEG of the constant.  */
12038 	  if (equality_comparison_p
12039 	      && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12040 	    {
12041 	      op0 = XEXP (op0, 0);
12042 	      op1 = tem;
12043 	      continue;
12044 	    }
12045 
12046 	  /* The remaining cases only apply to comparisons with zero.  */
12047 	  if (const_op != 0)
12048 	    break;
12049 
12050 	  /* When X is ABS or is known positive,
12051 	     (neg X) is < 0 if and only if X != 0.  */
12052 
12053 	  if (sign_bit_comparison_p
12054 	      && (GET_CODE (XEXP (op0, 0)) == ABS
12055 		  || (mode_width <= HOST_BITS_PER_WIDE_INT
12056 		      && (nonzero_bits (XEXP (op0, 0), mode)
12057 			  & (HOST_WIDE_INT_1U << (mode_width - 1)))
12058 			 == 0)))
12059 	    {
12060 	      op0 = XEXP (op0, 0);
12061 	      code = (code == LT ? NE : EQ);
12062 	      continue;
12063 	    }
12064 
12065 	  /* If we have NEG of something whose two high-order bits are the
12066 	     same, we know that "(-a) < 0" is equivalent to "a > 0".  */
12067 	  if (num_sign_bit_copies (op0, mode) >= 2)
12068 	    {
12069 	      op0 = XEXP (op0, 0);
12070 	      code = swap_condition (code);
12071 	      continue;
12072 	    }
12073 	  break;
12074 
12075 	case ROTATE:
12076 	  /* If we are testing equality and our count is a constant, we
12077 	     can perform the inverse operation on our RHS.  */
12078 	  if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12079 	      && (tem = simplify_binary_operation (ROTATERT, mode,
12080 						   op1, XEXP (op0, 1))) != 0)
12081 	    {
12082 	      op0 = XEXP (op0, 0);
12083 	      op1 = tem;
12084 	      continue;
12085 	    }
12086 
12087 	  /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12088 	     a particular bit.  Convert it to an AND of a constant of that
12089 	     bit.  This will be converted into a ZERO_EXTRACT.  */
12090 	  if (const_op == 0 && sign_bit_comparison_p
12091 	      && CONST_INT_P (XEXP (op0, 1))
12092 	      && mode_width <= HOST_BITS_PER_WIDE_INT)
12093 	    {
12094 	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12095 					    (HOST_WIDE_INT_1U
12096 					     << (mode_width - 1
12097 						 - INTVAL (XEXP (op0, 1)))));
12098 	      code = (code == LT ? NE : EQ);
12099 	      continue;
12100 	    }
12101 
12102 	  /* Fall through.  */
12103 
12104 	case ABS:
12105 	  /* ABS is ignorable inside an equality comparison with zero.  */
12106 	  if (const_op == 0 && equality_comparison_p)
12107 	    {
12108 	      op0 = XEXP (op0, 0);
12109 	      continue;
12110 	    }
12111 	  break;
12112 
12113 	case SIGN_EXTEND:
12114 	  /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12115 	     (compare FOO CONST) if CONST fits in FOO's mode and we
12116 	     are either testing inequality or have an unsigned
12117 	     comparison with ZERO_EXTEND or a signed comparison with
12118 	     SIGN_EXTEND.  But don't do it if we don't have a compare
12119 	     insn of the given mode, since we'd have to revert it
12120 	     later on, and then we wouldn't know whether to sign- or
12121 	     zero-extend.  */
12122 	  mode = GET_MODE (XEXP (op0, 0));
12123 	  if (GET_MODE_CLASS (mode) == MODE_INT
12124 	      && ! unsigned_comparison_p
12125 	      && HWI_COMPUTABLE_MODE_P (mode)
12126 	      && trunc_int_for_mode (const_op, mode) == const_op
12127 	      && have_insn_for (COMPARE, mode))
12128 	    {
12129 	      op0 = XEXP (op0, 0);
12130 	      continue;
12131 	    }
12132 	  break;
12133 
12134 	case SUBREG:
12135 	  /* Check for the case where we are comparing A - C1 with C2, that is
12136 
12137 	       (subreg:MODE (plus (A) (-C1))) op (C2)
12138 
12139 	     with C1 a constant, and try to lift the SUBREG, i.e. to do the
12140 	     comparison in the wider mode.  One of the following two conditions
12141 	     must be true in order for this to be valid:
12142 
12143 	       1. The mode extension results in the same bit pattern being added
12144 		  on both sides and the comparison is equality or unsigned.  As
12145 		  C2 has been truncated to fit in MODE, the pattern can only be
12146 		  all 0s or all 1s.
12147 
12148 	       2. The mode extension results in the sign bit being copied on
12149 		  each side.
12150 
12151 	     The difficulty here is that we have predicates for A but not for
12152 	     (A - C1) so we need to check that C1 is within proper bounds so
12153 	     as to perturbate A as little as possible.  */
12154 
12155 	  if (mode_width <= HOST_BITS_PER_WIDE_INT
12156 	      && subreg_lowpart_p (op0)
12157 	      && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
12158 	      && GET_CODE (SUBREG_REG (op0)) == PLUS
12159 	      && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12160 	    {
12161 	      machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
12162 	      rtx a = XEXP (SUBREG_REG (op0), 0);
12163 	      HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12164 
12165 	      if ((c1 > 0
12166 		   && (unsigned HOST_WIDE_INT) c1
12167 		       < HOST_WIDE_INT_1U << (mode_width - 1)
12168 		   && (equality_comparison_p || unsigned_comparison_p)
12169 		   /* (A - C1) zero-extends if it is positive and sign-extends
12170 		      if it is negative, C2 both zero- and sign-extends.  */
12171 		   && ((0 == (nonzero_bits (a, inner_mode)
12172 			      & ~GET_MODE_MASK (mode))
12173 			&& const_op >= 0)
12174 		       /* (A - C1) sign-extends if it is positive and 1-extends
12175 			  if it is negative, C2 both sign- and 1-extends.  */
12176 		       || (num_sign_bit_copies (a, inner_mode)
12177 			   > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12178 					     - mode_width)
12179 			   && const_op < 0)))
12180 		  || ((unsigned HOST_WIDE_INT) c1
12181 		       < HOST_WIDE_INT_1U << (mode_width - 2)
12182 		      /* (A - C1) always sign-extends, like C2.  */
12183 		      && num_sign_bit_copies (a, inner_mode)
12184 			 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12185 					   - (mode_width - 1))))
12186 		{
12187 		  op0 = SUBREG_REG (op0);
12188 		  continue;
12189 		}
12190 	    }
12191 
12192 	  /* If the inner mode is narrower and we are extracting the low part,
12193 	     we can treat the SUBREG as if it were a ZERO_EXTEND.  */
12194 	  if (subreg_lowpart_p (op0)
12195 	      && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
12196 	    ;
12197 	  else if (subreg_lowpart_p (op0)
12198 		   && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12199 		   && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12200 		   && (code == NE || code == EQ)
12201 		   && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12202 		       <= HOST_BITS_PER_WIDE_INT)
12203 		   && !paradoxical_subreg_p (op0)
12204 		   && (nonzero_bits (SUBREG_REG (op0),
12205 				     GET_MODE (SUBREG_REG (op0)))
12206 		       & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12207 	    {
12208 	      /* Remove outer subregs that don't do anything.  */
12209 	      tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12210 
12211 	      if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12212 		   & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12213 		{
12214 		  op0 = SUBREG_REG (op0);
12215 		  op1 = tem;
12216 		  continue;
12217 		}
12218 	      break;
12219 	    }
12220 	  else
12221 	    break;
12222 
12223 	  /* FALLTHROUGH */
12224 
12225 	case ZERO_EXTEND:
12226 	  mode = GET_MODE (XEXP (op0, 0));
12227 	  if (GET_MODE_CLASS (mode) == MODE_INT
12228 	      && (unsigned_comparison_p || equality_comparison_p)
12229 	      && HWI_COMPUTABLE_MODE_P (mode)
12230 	      && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12231 	      && const_op >= 0
12232 	      && have_insn_for (COMPARE, mode))
12233 	    {
12234 	      op0 = XEXP (op0, 0);
12235 	      continue;
12236 	    }
12237 	  break;
12238 
12239 	case PLUS:
12240 	  /* (eq (plus X A) B) -> (eq X (minus B A)).  We can only do
12241 	     this for equality comparisons due to pathological cases involving
12242 	     overflows.  */
12243 	  if (equality_comparison_p
12244 	      && 0 != (tem = simplify_binary_operation (MINUS, mode,
12245 							op1, XEXP (op0, 1))))
12246 	    {
12247 	      op0 = XEXP (op0, 0);
12248 	      op1 = tem;
12249 	      continue;
12250 	    }
12251 
12252 	  /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0.  */
12253 	  if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12254 	      && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12255 	    {
12256 	      op0 = XEXP (XEXP (op0, 0), 0);
12257 	      code = (code == LT ? EQ : NE);
12258 	      continue;
12259 	    }
12260 	  break;
12261 
12262 	case MINUS:
12263 	  /* We used to optimize signed comparisons against zero, but that
12264 	     was incorrect.  Unsigned comparisons against zero (GTU, LEU)
12265 	     arrive here as equality comparisons, or (GEU, LTU) are
12266 	     optimized away.  No need to special-case them.  */
12267 
12268 	  /* (eq (minus A B) C) -> (eq A (plus B C)) or
12269 	     (eq B (minus A C)), whichever simplifies.  We can only do
12270 	     this for equality comparisons due to pathological cases involving
12271 	     overflows.  */
12272 	  if (equality_comparison_p
12273 	      && 0 != (tem = simplify_binary_operation (PLUS, mode,
12274 							XEXP (op0, 1), op1)))
12275 	    {
12276 	      op0 = XEXP (op0, 0);
12277 	      op1 = tem;
12278 	      continue;
12279 	    }
12280 
12281 	  if (equality_comparison_p
12282 	      && 0 != (tem = simplify_binary_operation (MINUS, mode,
12283 							XEXP (op0, 0), op1)))
12284 	    {
12285 	      op0 = XEXP (op0, 1);
12286 	      op1 = tem;
12287 	      continue;
12288 	    }
12289 
12290 	  /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12291 	     of bits in X minus 1, is one iff X > 0.  */
12292 	  if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12293 	      && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12294 	      && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12295 	      && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12296 	    {
12297 	      op0 = XEXP (op0, 1);
12298 	      code = (code == GE ? LE : GT);
12299 	      continue;
12300 	    }
12301 	  break;
12302 
12303 	case XOR:
12304 	  /* (eq (xor A B) C) -> (eq A (xor B C)).  This is a simplification
12305 	     if C is zero or B is a constant.  */
12306 	  if (equality_comparison_p
12307 	      && 0 != (tem = simplify_binary_operation (XOR, mode,
12308 							XEXP (op0, 1), op1)))
12309 	    {
12310 	      op0 = XEXP (op0, 0);
12311 	      op1 = tem;
12312 	      continue;
12313 	    }
12314 	  break;
12315 
12316 	case EQ:  case NE:
12317 	case UNEQ:  case LTGT:
12318 	case LT:  case LTU:  case UNLT:  case LE:  case LEU:  case UNLE:
12319 	case GT:  case GTU:  case UNGT:  case GE:  case GEU:  case UNGE:
12320 	case UNORDERED: case ORDERED:
12321 	  /* We can't do anything if OP0 is a condition code value, rather
12322 	     than an actual data value.  */
12323 	  if (const_op != 0
12324 	      || CC0_P (XEXP (op0, 0))
12325 	      || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12326 	    break;
12327 
12328 	  /* Get the two operands being compared.  */
12329 	  if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12330 	    tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12331 	  else
12332 	    tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12333 
12334 	  /* Check for the cases where we simply want the result of the
12335 	     earlier test or the opposite of that result.  */
12336 	  if (code == NE || code == EQ
12337 	      || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
12338 		  && (code == LT || code == GE)))
12339 	    {
12340 	      enum rtx_code new_code;
12341 	      if (code == LT || code == NE)
12342 		new_code = GET_CODE (op0);
12343 	      else
12344 		new_code = reversed_comparison_code (op0, NULL);
12345 
12346 	      if (new_code != UNKNOWN)
12347 		{
12348 		  code = new_code;
12349 		  op0 = tem;
12350 		  op1 = tem1;
12351 		  continue;
12352 		}
12353 	    }
12354 	  break;
12355 
12356 	case IOR:
12357 	  /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12358 	     iff X <= 0.  */
12359 	  if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12360 	      && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12361 	      && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12362 	    {
12363 	      op0 = XEXP (op0, 1);
12364 	      code = (code == GE ? GT : LE);
12365 	      continue;
12366 	    }
12367 	  break;
12368 
12369 	case AND:
12370 	  /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1).  This
12371 	     will be converted to a ZERO_EXTRACT later.  */
12372 	  if (const_op == 0 && equality_comparison_p
12373 	      && GET_CODE (XEXP (op0, 0)) == ASHIFT
12374 	      && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12375 	    {
12376 	      op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12377 				      XEXP (XEXP (op0, 0), 1));
12378 	      op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12379 	      continue;
12380 	    }
12381 
12382 	  /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12383 	     zero and X is a comparison and C1 and C2 describe only bits set
12384 	     in STORE_FLAG_VALUE, we can compare with X.  */
12385 	  if (const_op == 0 && equality_comparison_p
12386 	      && mode_width <= HOST_BITS_PER_WIDE_INT
12387 	      && CONST_INT_P (XEXP (op0, 1))
12388 	      && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12389 	      && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12390 	      && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12391 	      && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12392 	    {
12393 	      mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12394 		      << INTVAL (XEXP (XEXP (op0, 0), 1)));
12395 	      if ((~STORE_FLAG_VALUE & mask) == 0
12396 		  && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12397 		      || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12398 			  && COMPARISON_P (tem))))
12399 		{
12400 		  op0 = XEXP (XEXP (op0, 0), 0);
12401 		  continue;
12402 		}
12403 	    }
12404 
12405 	  /* If we are doing an equality comparison of an AND of a bit equal
12406 	     to the sign bit, replace this with a LT or GE comparison of
12407 	     the underlying value.  */
12408 	  if (equality_comparison_p
12409 	      && const_op == 0
12410 	      && CONST_INT_P (XEXP (op0, 1))
12411 	      && mode_width <= HOST_BITS_PER_WIDE_INT
12412 	      && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12413 		  == HOST_WIDE_INT_1U << (mode_width - 1)))
12414 	    {
12415 	      op0 = XEXP (op0, 0);
12416 	      code = (code == EQ ? GE : LT);
12417 	      continue;
12418 	    }
12419 
12420 	  /* If this AND operation is really a ZERO_EXTEND from a narrower
12421 	     mode, the constant fits within that mode, and this is either an
12422 	     equality or unsigned comparison, try to do this comparison in
12423 	     the narrower mode.
12424 
12425 	     Note that in:
12426 
12427 	     (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12428 	     -> (ne:DI (reg:SI 4) (const_int 0))
12429 
12430 	     unless TRULY_NOOP_TRUNCATION allows it or the register is
12431 	     known to hold a value of the required mode the
12432 	     transformation is invalid.  */
12433 	  if ((equality_comparison_p || unsigned_comparison_p)
12434 	      && CONST_INT_P (XEXP (op0, 1))
12435 	      && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12436 				   & GET_MODE_MASK (mode))
12437 				  + 1)) >= 0
12438 	      && const_op >> i == 0
12439 	      && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
12440 	    {
12441 	      op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12442 	      continue;
12443 	    }
12444 
12445 	  /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12446 	     fits in both M1 and M2 and the SUBREG is either paradoxical
12447 	     or represents the low part, permute the SUBREG and the AND
12448 	     and try again.  */
12449 	  if (GET_CODE (XEXP (op0, 0)) == SUBREG
12450 	      && CONST_INT_P (XEXP (op0, 1)))
12451 	    {
12452 	      tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
12453 	      unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12454 	      /* Require an integral mode, to avoid creating something like
12455 		 (AND:SF ...).  */
12456 	      if (SCALAR_INT_MODE_P (tmode)
12457 		  /* It is unsafe to commute the AND into the SUBREG if the
12458 		     SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12459 		     not defined.  As originally written the upper bits
12460 		     have a defined value due to the AND operation.
12461 		     However, if we commute the AND inside the SUBREG then
12462 		     they no longer have defined values and the meaning of
12463 		     the code has been changed.
12464 		     Also C1 should not change value in the smaller mode,
12465 		     see PR67028 (a positive C1 can become negative in the
12466 		     smaller mode, so that the AND does no longer mask the
12467 		     upper bits).  */
12468 		  && ((WORD_REGISTER_OPERATIONS
12469 		       && mode_width > GET_MODE_PRECISION (tmode)
12470 		       && mode_width <= BITS_PER_WORD
12471 		       && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12472 		      || (mode_width <= GET_MODE_PRECISION (tmode)
12473 			  && subreg_lowpart_p (XEXP (op0, 0))))
12474 		  && mode_width <= HOST_BITS_PER_WIDE_INT
12475 		  && HWI_COMPUTABLE_MODE_P (tmode)
12476 		  && (c1 & ~mask) == 0
12477 		  && (c1 & ~GET_MODE_MASK (tmode)) == 0
12478 		  && c1 != mask
12479 		  && c1 != GET_MODE_MASK (tmode))
12480 		{
12481 		  op0 = simplify_gen_binary (AND, tmode,
12482 					     SUBREG_REG (XEXP (op0, 0)),
12483 					     gen_int_mode (c1, tmode));
12484 		  op0 = gen_lowpart (mode, op0);
12485 		  continue;
12486 		}
12487 	    }
12488 
12489 	  /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0).  */
12490 	  if (const_op == 0 && equality_comparison_p
12491 	      && XEXP (op0, 1) == const1_rtx
12492 	      && GET_CODE (XEXP (op0, 0)) == NOT)
12493 	    {
12494 	      op0 = simplify_and_const_int (NULL_RTX, mode,
12495 					    XEXP (XEXP (op0, 0), 0), 1);
12496 	      code = (code == NE ? EQ : NE);
12497 	      continue;
12498 	    }
12499 
12500 	  /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12501 	     (eq (and (lshiftrt X) 1) 0).
12502 	     Also handle the case where (not X) is expressed using xor.  */
12503 	  if (const_op == 0 && equality_comparison_p
12504 	      && XEXP (op0, 1) == const1_rtx
12505 	      && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12506 	    {
12507 	      rtx shift_op = XEXP (XEXP (op0, 0), 0);
12508 	      rtx shift_count = XEXP (XEXP (op0, 0), 1);
12509 
12510 	      if (GET_CODE (shift_op) == NOT
12511 		  || (GET_CODE (shift_op) == XOR
12512 		      && CONST_INT_P (XEXP (shift_op, 1))
12513 		      && CONST_INT_P (shift_count)
12514 		      && HWI_COMPUTABLE_MODE_P (mode)
12515 		      && (UINTVAL (XEXP (shift_op, 1))
12516 			  == HOST_WIDE_INT_1U
12517 			       << INTVAL (shift_count))))
12518 		{
12519 		  op0
12520 		    = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12521 		  op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12522 		  code = (code == NE ? EQ : NE);
12523 		  continue;
12524 		}
12525 	    }
12526 	  break;
12527 
12528 	case ASHIFT:
12529 	  /* If we have (compare (ashift FOO N) (const_int C)) and
12530 	     the high order N bits of FOO (N+1 if an inequality comparison)
12531 	     are known to be zero, we can do this by comparing FOO with C
12532 	     shifted right N bits so long as the low-order N bits of C are
12533 	     zero.  */
12534 	  if (CONST_INT_P (XEXP (op0, 1))
12535 	      && INTVAL (XEXP (op0, 1)) >= 0
12536 	      && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12537 		  < HOST_BITS_PER_WIDE_INT)
12538 	      && (((unsigned HOST_WIDE_INT) const_op
12539 		   & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12540 		      - 1)) == 0)
12541 	      && mode_width <= HOST_BITS_PER_WIDE_INT
12542 	      && (nonzero_bits (XEXP (op0, 0), mode)
12543 		  & ~(mask >> (INTVAL (XEXP (op0, 1))
12544 			       + ! equality_comparison_p))) == 0)
12545 	    {
12546 	      /* We must perform a logical shift, not an arithmetic one,
12547 		 as we want the top N bits of C to be zero.  */
12548 	      unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12549 
12550 	      temp >>= INTVAL (XEXP (op0, 1));
12551 	      op1 = gen_int_mode (temp, mode);
12552 	      op0 = XEXP (op0, 0);
12553 	      continue;
12554 	    }
12555 
12556 	  /* If we are doing a sign bit comparison, it means we are testing
12557 	     a particular bit.  Convert it to the appropriate AND.  */
12558 	  if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12559 	      && mode_width <= HOST_BITS_PER_WIDE_INT)
12560 	    {
12561 	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12562 					    (HOST_WIDE_INT_1U
12563 					     << (mode_width - 1
12564 						 - INTVAL (XEXP (op0, 1)))));
12565 	      code = (code == LT ? NE : EQ);
12566 	      continue;
12567 	    }
12568 
12569 	  /* If this an equality comparison with zero and we are shifting
12570 	     the low bit to the sign bit, we can convert this to an AND of the
12571 	     low-order bit.  */
12572 	  if (const_op == 0 && equality_comparison_p
12573 	      && CONST_INT_P (XEXP (op0, 1))
12574 	      && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12575 	    {
12576 	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12577 	      continue;
12578 	    }
12579 	  break;
12580 
12581 	case ASHIFTRT:
12582 	  /* If this is an equality comparison with zero, we can do this
12583 	     as a logical shift, which might be much simpler.  */
12584 	  if (equality_comparison_p && const_op == 0
12585 	      && CONST_INT_P (XEXP (op0, 1)))
12586 	    {
12587 	      op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12588 					  XEXP (op0, 0),
12589 					  INTVAL (XEXP (op0, 1)));
12590 	      continue;
12591 	    }
12592 
12593 	  /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12594 	     do the comparison in a narrower mode.  */
12595 	  if (! unsigned_comparison_p
12596 	      && CONST_INT_P (XEXP (op0, 1))
12597 	      && GET_CODE (XEXP (op0, 0)) == ASHIFT
12598 	      && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12599 	      && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12600 					 MODE_INT, 1)) != BLKmode
12601 	      && (((unsigned HOST_WIDE_INT) const_op
12602 		   + (GET_MODE_MASK (tmode) >> 1) + 1)
12603 		  <= GET_MODE_MASK (tmode)))
12604 	    {
12605 	      op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12606 	      continue;
12607 	    }
12608 
12609 	  /* Likewise if OP0 is a PLUS of a sign extension with a
12610 	     constant, which is usually represented with the PLUS
12611 	     between the shifts.  */
12612 	  if (! unsigned_comparison_p
12613 	      && CONST_INT_P (XEXP (op0, 1))
12614 	      && GET_CODE (XEXP (op0, 0)) == PLUS
12615 	      && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12616 	      && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12617 	      && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12618 	      && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12619 					 MODE_INT, 1)) != BLKmode
12620 	      && (((unsigned HOST_WIDE_INT) const_op
12621 		   + (GET_MODE_MASK (tmode) >> 1) + 1)
12622 		  <= GET_MODE_MASK (tmode)))
12623 	    {
12624 	      rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12625 	      rtx add_const = XEXP (XEXP (op0, 0), 1);
12626 	      rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
12627 						   add_const, XEXP (op0, 1));
12628 
12629 	      op0 = simplify_gen_binary (PLUS, tmode,
12630 					 gen_lowpart (tmode, inner),
12631 					 new_const);
12632 	      continue;
12633 	    }
12634 
12635 	  /* FALLTHROUGH */
12636 	case LSHIFTRT:
12637 	  /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12638 	     the low order N bits of FOO are known to be zero, we can do this
12639 	     by comparing FOO with C shifted left N bits so long as no
12640 	     overflow occurs.  Even if the low order N bits of FOO aren't known
12641 	     to be zero, if the comparison is >= or < we can use the same
12642 	     optimization and for > or <= by setting all the low
12643 	     order N bits in the comparison constant.  */
12644 	  if (CONST_INT_P (XEXP (op0, 1))
12645 	      && INTVAL (XEXP (op0, 1)) > 0
12646 	      && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12647 	      && mode_width <= HOST_BITS_PER_WIDE_INT
12648 	      && (((unsigned HOST_WIDE_INT) const_op
12649 		   + (GET_CODE (op0) != LSHIFTRT
12650 		      ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12651 			 + 1)
12652 		      : 0))
12653 		  <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12654 	    {
12655 	      unsigned HOST_WIDE_INT low_bits
12656 		= (nonzero_bits (XEXP (op0, 0), mode)
12657 		   & ((HOST_WIDE_INT_1U
12658 		       << INTVAL (XEXP (op0, 1))) - 1));
12659 	      if (low_bits == 0 || !equality_comparison_p)
12660 		{
12661 		  /* If the shift was logical, then we must make the condition
12662 		     unsigned.  */
12663 		  if (GET_CODE (op0) == LSHIFTRT)
12664 		    code = unsigned_condition (code);
12665 
12666 		  const_op = (unsigned HOST_WIDE_INT) const_op
12667 			      << INTVAL (XEXP (op0, 1));
12668 		  if (low_bits != 0
12669 		      && (code == GT || code == GTU
12670 			  || code == LE || code == LEU))
12671 		    const_op
12672 		      |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12673 		  op1 = GEN_INT (const_op);
12674 		  op0 = XEXP (op0, 0);
12675 		  continue;
12676 		}
12677 	    }
12678 
12679 	  /* If we are using this shift to extract just the sign bit, we
12680 	     can replace this with an LT or GE comparison.  */
12681 	  if (const_op == 0
12682 	      && (equality_comparison_p || sign_bit_comparison_p)
12683 	      && CONST_INT_P (XEXP (op0, 1))
12684 	      && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12685 	    {
12686 	      op0 = XEXP (op0, 0);
12687 	      code = (code == NE || code == GT ? LT : GE);
12688 	      continue;
12689 	    }
12690 	  break;
12691 
12692 	default:
12693 	  break;
12694 	}
12695 
12696       break;
12697     }
12698 
12699   /* Now make any compound operations involved in this comparison.  Then,
12700      check for an outmost SUBREG on OP0 that is not doing anything or is
12701      paradoxical.  The latter transformation must only be performed when
12702      it is known that the "extra" bits will be the same in op0 and op1 or
12703      that they don't matter.  There are three cases to consider:
12704 
12705      1. SUBREG_REG (op0) is a register.  In this case the bits are don't
12706      care bits and we can assume they have any convenient value.  So
12707      making the transformation is safe.
12708 
12709      2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12710      In this case the upper bits of op0 are undefined.  We should not make
12711      the simplification in that case as we do not know the contents of
12712      those bits.
12713 
12714      3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12715      In that case we know those bits are zeros or ones.  We must also be
12716      sure that they are the same as the upper bits of op1.
12717 
12718      We can never remove a SUBREG for a non-equality comparison because
12719      the sign bit is in a different place in the underlying object.  */
12720 
12721   rtx_code op0_mco_code = SET;
12722   if (op1 == const0_rtx)
12723     op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12724 
12725   op0 = make_compound_operation (op0, op0_mco_code);
12726   op1 = make_compound_operation (op1, SET);
12727 
12728   if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12729       && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12730       && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12731       && (code == NE || code == EQ))
12732     {
12733       if (paradoxical_subreg_p (op0))
12734 	{
12735 	  /* For paradoxical subregs, allow case 1 as above.  Case 3 isn't
12736 	     implemented.  */
12737 	  if (REG_P (SUBREG_REG (op0)))
12738 	    {
12739 	      op0 = SUBREG_REG (op0);
12740 	      op1 = gen_lowpart (GET_MODE (op0), op1);
12741 	    }
12742 	}
12743       else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12744 		<= HOST_BITS_PER_WIDE_INT)
12745 	       && (nonzero_bits (SUBREG_REG (op0),
12746 				 GET_MODE (SUBREG_REG (op0)))
12747 		   & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12748 	{
12749 	  tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12750 
12751 	  if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12752 	       & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12753 	    op0 = SUBREG_REG (op0), op1 = tem;
12754 	}
12755     }
12756 
12757   /* We now do the opposite procedure: Some machines don't have compare
12758      insns in all modes.  If OP0's mode is an integer mode smaller than a
12759      word and we can't do a compare in that mode, see if there is a larger
12760      mode for which we can do the compare.  There are a number of cases in
12761      which we can use the wider mode.  */
12762 
12763   mode = GET_MODE (op0);
12764   if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12765       && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12766       && ! have_insn_for (COMPARE, mode))
12767     for (tmode = GET_MODE_WIDER_MODE (mode);
12768 	 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12769 	 tmode = GET_MODE_WIDER_MODE (tmode))
12770       if (have_insn_for (COMPARE, tmode))
12771 	{
12772 	  int zero_extended;
12773 
12774 	  /* If this is a test for negative, we can make an explicit
12775 	     test of the sign bit.  Test this first so we can use
12776 	     a paradoxical subreg to extend OP0.  */
12777 
12778 	  if (op1 == const0_rtx && (code == LT || code == GE)
12779 	      && HWI_COMPUTABLE_MODE_P (mode))
12780 	    {
12781 	      unsigned HOST_WIDE_INT sign
12782 		= HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
12783 	      op0 = simplify_gen_binary (AND, tmode,
12784 					 gen_lowpart (tmode, op0),
12785 					 gen_int_mode (sign, tmode));
12786 	      code = (code == LT) ? NE : EQ;
12787 	      break;
12788 	    }
12789 
12790 	  /* If the only nonzero bits in OP0 and OP1 are those in the
12791 	     narrower mode and this is an equality or unsigned comparison,
12792 	     we can use the wider mode.  Similarly for sign-extended
12793 	     values, in which case it is true for all comparisons.  */
12794 	  zero_extended = ((code == EQ || code == NE
12795 			    || code == GEU || code == GTU
12796 			    || code == LEU || code == LTU)
12797 			   && (nonzero_bits (op0, tmode)
12798 			       & ~GET_MODE_MASK (mode)) == 0
12799 			   && ((CONST_INT_P (op1)
12800 				|| (nonzero_bits (op1, tmode)
12801 				    & ~GET_MODE_MASK (mode)) == 0)));
12802 
12803 	  if (zero_extended
12804 	      || ((num_sign_bit_copies (op0, tmode)
12805 		   > (unsigned int) (GET_MODE_PRECISION (tmode)
12806 				     - GET_MODE_PRECISION (mode)))
12807 		  && (num_sign_bit_copies (op1, tmode)
12808 		      > (unsigned int) (GET_MODE_PRECISION (tmode)
12809 					- GET_MODE_PRECISION (mode)))))
12810 	    {
12811 	      /* If OP0 is an AND and we don't have an AND in MODE either,
12812 		 make a new AND in the proper mode.  */
12813 	      if (GET_CODE (op0) == AND
12814 		  && !have_insn_for (AND, mode))
12815 		op0 = simplify_gen_binary (AND, tmode,
12816 					   gen_lowpart (tmode,
12817 							XEXP (op0, 0)),
12818 					   gen_lowpart (tmode,
12819 							XEXP (op0, 1)));
12820 	      else
12821 		{
12822 		  if (zero_extended)
12823 		    {
12824 		      op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12825 		      op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12826 		    }
12827 		  else
12828 		    {
12829 		      op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12830 		      op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12831 		    }
12832 		  break;
12833 		}
12834 	    }
12835 	}
12836 
12837   /* We may have changed the comparison operands.  Re-canonicalize.  */
12838   if (swap_commutative_operands_p (op0, op1))
12839     {
12840       std::swap (op0, op1);
12841       code = swap_condition (code);
12842     }
12843 
12844   /* If this machine only supports a subset of valid comparisons, see if we
12845      can convert an unsupported one into a supported one.  */
12846   target_canonicalize_comparison (&code, &op0, &op1, 0);
12847 
12848   *pop0 = op0;
12849   *pop1 = op1;
12850 
12851   return code;
12852 }
12853 
12854 /* Utility function for record_value_for_reg.  Count number of
12855    rtxs in X.  */
12856 static int
12857 count_rtxs (rtx x)
12858 {
12859   enum rtx_code code = GET_CODE (x);
12860   const char *fmt;
12861   int i, j, ret = 1;
12862 
12863   if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12864       || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12865     {
12866       rtx x0 = XEXP (x, 0);
12867       rtx x1 = XEXP (x, 1);
12868 
12869       if (x0 == x1)
12870 	return 1 + 2 * count_rtxs (x0);
12871 
12872       if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12873 	   || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12874 	  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12875 	return 2 + 2 * count_rtxs (x0)
12876 	       + count_rtxs (x == XEXP (x1, 0)
12877 			     ? XEXP (x1, 1) : XEXP (x1, 0));
12878 
12879       if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12880 	   || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12881 	  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12882 	return 2 + 2 * count_rtxs (x1)
12883 	       + count_rtxs (x == XEXP (x0, 0)
12884 			     ? XEXP (x0, 1) : XEXP (x0, 0));
12885     }
12886 
12887   fmt = GET_RTX_FORMAT (code);
12888   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12889     if (fmt[i] == 'e')
12890       ret += count_rtxs (XEXP (x, i));
12891     else if (fmt[i] == 'E')
12892       for (j = 0; j < XVECLEN (x, i); j++)
12893 	ret += count_rtxs (XVECEXP (x, i, j));
12894 
12895   return ret;
12896 }
12897 
12898 /* Utility function for following routine.  Called when X is part of a value
12899    being stored into last_set_value.  Sets last_set_table_tick
12900    for each register mentioned.  Similar to mention_regs in cse.c  */
12901 
12902 static void
12903 update_table_tick (rtx x)
12904 {
12905   enum rtx_code code = GET_CODE (x);
12906   const char *fmt = GET_RTX_FORMAT (code);
12907   int i, j;
12908 
12909   if (code == REG)
12910     {
12911       unsigned int regno = REGNO (x);
12912       unsigned int endregno = END_REGNO (x);
12913       unsigned int r;
12914 
12915       for (r = regno; r < endregno; r++)
12916 	{
12917 	  reg_stat_type *rsp = &reg_stat[r];
12918 	  rsp->last_set_table_tick = label_tick;
12919 	}
12920 
12921       return;
12922     }
12923 
12924   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12925     if (fmt[i] == 'e')
12926       {
12927 	/* Check for identical subexpressions.  If x contains
12928 	   identical subexpression we only have to traverse one of
12929 	   them.  */
12930 	if (i == 0 && ARITHMETIC_P (x))
12931 	  {
12932 	    /* Note that at this point x1 has already been
12933 	       processed.  */
12934 	    rtx x0 = XEXP (x, 0);
12935 	    rtx x1 = XEXP (x, 1);
12936 
12937 	    /* If x0 and x1 are identical then there is no need to
12938 	       process x0.  */
12939 	    if (x0 == x1)
12940 	      break;
12941 
12942 	    /* If x0 is identical to a subexpression of x1 then while
12943 	       processing x1, x0 has already been processed.  Thus we
12944 	       are done with x.  */
12945 	    if (ARITHMETIC_P (x1)
12946 		&& (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12947 	      break;
12948 
12949 	    /* If x1 is identical to a subexpression of x0 then we
12950 	       still have to process the rest of x0.  */
12951 	    if (ARITHMETIC_P (x0)
12952 		&& (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12953 	      {
12954 		update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12955 		break;
12956 	      }
12957 	  }
12958 
12959 	update_table_tick (XEXP (x, i));
12960       }
12961     else if (fmt[i] == 'E')
12962       for (j = 0; j < XVECLEN (x, i); j++)
12963 	update_table_tick (XVECEXP (x, i, j));
12964 }
12965 
12966 /* Record that REG is set to VALUE in insn INSN.  If VALUE is zero, we
12967    are saying that the register is clobbered and we no longer know its
12968    value.  If INSN is zero, don't update reg_stat[].last_set; this is
12969    only permitted with VALUE also zero and is used to invalidate the
12970    register.  */
12971 
12972 static void
12973 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
12974 {
12975   unsigned int regno = REGNO (reg);
12976   unsigned int endregno = END_REGNO (reg);
12977   unsigned int i;
12978   reg_stat_type *rsp;
12979 
12980   /* If VALUE contains REG and we have a previous value for REG, substitute
12981      the previous value.  */
12982   if (value && insn && reg_overlap_mentioned_p (reg, value))
12983     {
12984       rtx tem;
12985 
12986       /* Set things up so get_last_value is allowed to see anything set up to
12987 	 our insn.  */
12988       subst_low_luid = DF_INSN_LUID (insn);
12989       tem = get_last_value (reg);
12990 
12991       /* If TEM is simply a binary operation with two CLOBBERs as operands,
12992 	 it isn't going to be useful and will take a lot of time to process,
12993 	 so just use the CLOBBER.  */
12994 
12995       if (tem)
12996 	{
12997 	  if (ARITHMETIC_P (tem)
12998 	      && GET_CODE (XEXP (tem, 0)) == CLOBBER
12999 	      && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13000 	    tem = XEXP (tem, 0);
13001 	  else if (count_occurrences (value, reg, 1) >= 2)
13002 	    {
13003 	      /* If there are two or more occurrences of REG in VALUE,
13004 		 prevent the value from growing too much.  */
13005 	      if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
13006 		tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13007 	    }
13008 
13009 	  value = replace_rtx (copy_rtx (value), reg, tem);
13010 	}
13011     }
13012 
13013   /* For each register modified, show we don't know its value, that
13014      we don't know about its bitwise content, that its value has been
13015      updated, and that we don't know the location of the death of the
13016      register.  */
13017   for (i = regno; i < endregno; i++)
13018     {
13019       rsp = &reg_stat[i];
13020 
13021       if (insn)
13022 	rsp->last_set = insn;
13023 
13024       rsp->last_set_value = 0;
13025       rsp->last_set_mode = VOIDmode;
13026       rsp->last_set_nonzero_bits = 0;
13027       rsp->last_set_sign_bit_copies = 0;
13028       rsp->last_death = 0;
13029       rsp->truncated_to_mode = VOIDmode;
13030     }
13031 
13032   /* Mark registers that are being referenced in this value.  */
13033   if (value)
13034     update_table_tick (value);
13035 
13036   /* Now update the status of each register being set.
13037      If someone is using this register in this block, set this register
13038      to invalid since we will get confused between the two lives in this
13039      basic block.  This makes using this register always invalid.  In cse, we
13040      scan the table to invalidate all entries using this register, but this
13041      is too much work for us.  */
13042 
13043   for (i = regno; i < endregno; i++)
13044     {
13045       rsp = &reg_stat[i];
13046       rsp->last_set_label = label_tick;
13047       if (!insn
13048 	  || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13049 	rsp->last_set_invalid = 1;
13050       else
13051 	rsp->last_set_invalid = 0;
13052     }
13053 
13054   /* The value being assigned might refer to X (like in "x++;").  In that
13055      case, we must replace it with (clobber (const_int 0)) to prevent
13056      infinite loops.  */
13057   rsp = &reg_stat[regno];
13058   if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13059     {
13060       value = copy_rtx (value);
13061       if (!get_last_value_validate (&value, insn, label_tick, 1))
13062 	value = 0;
13063     }
13064 
13065   /* For the main register being modified, update the value, the mode, the
13066      nonzero bits, and the number of sign bit copies.  */
13067 
13068   rsp->last_set_value = value;
13069 
13070   if (value)
13071     {
13072       machine_mode mode = GET_MODE (reg);
13073       subst_low_luid = DF_INSN_LUID (insn);
13074       rsp->last_set_mode = mode;
13075       if (GET_MODE_CLASS (mode) == MODE_INT
13076 	  && HWI_COMPUTABLE_MODE_P (mode))
13077 	mode = nonzero_bits_mode;
13078       rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13079       rsp->last_set_sign_bit_copies
13080 	= num_sign_bit_copies (value, GET_MODE (reg));
13081     }
13082 }
13083 
13084 /* Called via note_stores from record_dead_and_set_regs to handle one
13085    SET or CLOBBER in an insn.  DATA is the instruction in which the
13086    set is occurring.  */
13087 
13088 static void
13089 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13090 {
13091   rtx_insn *record_dead_insn = (rtx_insn *) data;
13092 
13093   if (GET_CODE (dest) == SUBREG)
13094     dest = SUBREG_REG (dest);
13095 
13096   if (!record_dead_insn)
13097     {
13098       if (REG_P (dest))
13099 	record_value_for_reg (dest, NULL, NULL_RTX);
13100       return;
13101     }
13102 
13103   if (REG_P (dest))
13104     {
13105       /* If we are setting the whole register, we know its value.  Otherwise
13106 	 show that we don't know the value.  We can handle a SUBREG if it's
13107 	 the low part, but we must be careful with paradoxical SUBREGs on
13108 	 RISC architectures because we cannot strip e.g. an extension around
13109 	 a load and record the naked load since the RTL middle-end considers
13110 	 that the upper bits are defined according to LOAD_EXTEND_OP.  */
13111       if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13112 	record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13113       else if (GET_CODE (setter) == SET
13114 	       && GET_CODE (SET_DEST (setter)) == SUBREG
13115 	       && SUBREG_REG (SET_DEST (setter)) == dest
13116 	       && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
13117 	       && subreg_lowpart_p (SET_DEST (setter)))
13118 	record_value_for_reg (dest, record_dead_insn,
13119 			      WORD_REGISTER_OPERATIONS
13120 			      && word_register_operation_p (SET_SRC (setter))
13121 			      && paradoxical_subreg_p (SET_DEST (setter))
13122 			      ? SET_SRC (setter)
13123 			      : gen_lowpart (GET_MODE (dest),
13124 					     SET_SRC (setter)));
13125       else
13126 	record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13127     }
13128   else if (MEM_P (dest)
13129 	   /* Ignore pushes, they clobber nothing.  */
13130 	   && ! push_operand (dest, GET_MODE (dest)))
13131     mem_last_set = DF_INSN_LUID (record_dead_insn);
13132 }
13133 
13134 /* Update the records of when each REG was most recently set or killed
13135    for the things done by INSN.  This is the last thing done in processing
13136    INSN in the combiner loop.
13137 
13138    We update reg_stat[], in particular fields last_set, last_set_value,
13139    last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13140    last_death, and also the similar information mem_last_set (which insn
13141    most recently modified memory) and last_call_luid (which insn was the
13142    most recent subroutine call).  */
13143 
13144 static void
13145 record_dead_and_set_regs (rtx_insn *insn)
13146 {
13147   rtx link;
13148   unsigned int i;
13149 
13150   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13151     {
13152       if (REG_NOTE_KIND (link) == REG_DEAD
13153 	  && REG_P (XEXP (link, 0)))
13154 	{
13155 	  unsigned int regno = REGNO (XEXP (link, 0));
13156 	  unsigned int endregno = END_REGNO (XEXP (link, 0));
13157 
13158 	  for (i = regno; i < endregno; i++)
13159 	    {
13160 	      reg_stat_type *rsp;
13161 
13162 	      rsp = &reg_stat[i];
13163 	      rsp->last_death = insn;
13164 	    }
13165 	}
13166       else if (REG_NOTE_KIND (link) == REG_INC)
13167 	record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13168     }
13169 
13170   if (CALL_P (insn))
13171     {
13172       hard_reg_set_iterator hrsi;
13173       EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
13174 	{
13175 	  reg_stat_type *rsp;
13176 
13177 	  rsp = &reg_stat[i];
13178 	  rsp->last_set_invalid = 1;
13179 	  rsp->last_set = insn;
13180 	  rsp->last_set_value = 0;
13181 	  rsp->last_set_mode = VOIDmode;
13182 	  rsp->last_set_nonzero_bits = 0;
13183 	  rsp->last_set_sign_bit_copies = 0;
13184 	  rsp->last_death = 0;
13185 	  rsp->truncated_to_mode = VOIDmode;
13186 	}
13187 
13188       last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13189 
13190       /* We can't combine into a call pattern.  Remember, though, that
13191 	 the return value register is set at this LUID.  We could
13192 	 still replace a register with the return value from the
13193 	 wrong subroutine call!  */
13194       note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
13195     }
13196   else
13197     note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
13198 }
13199 
13200 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13201    register present in the SUBREG, so for each such SUBREG go back and
13202    adjust nonzero and sign bit information of the registers that are
13203    known to have some zero/sign bits set.
13204 
13205    This is needed because when combine blows the SUBREGs away, the
13206    information on zero/sign bits is lost and further combines can be
13207    missed because of that.  */
13208 
13209 static void
13210 record_promoted_value (rtx_insn *insn, rtx subreg)
13211 {
13212   struct insn_link *links;
13213   rtx set;
13214   unsigned int regno = REGNO (SUBREG_REG (subreg));
13215   machine_mode mode = GET_MODE (subreg);
13216 
13217   if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
13218     return;
13219 
13220   for (links = LOG_LINKS (insn); links;)
13221     {
13222       reg_stat_type *rsp;
13223 
13224       insn = links->insn;
13225       set = single_set (insn);
13226 
13227       if (! set || !REG_P (SET_DEST (set))
13228 	  || REGNO (SET_DEST (set)) != regno
13229 	  || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13230 	{
13231 	  links = links->next;
13232 	  continue;
13233 	}
13234 
13235       rsp = &reg_stat[regno];
13236       if (rsp->last_set == insn)
13237 	{
13238 	  if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13239 	    rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13240 	}
13241 
13242       if (REG_P (SET_SRC (set)))
13243 	{
13244 	  regno = REGNO (SET_SRC (set));
13245 	  links = LOG_LINKS (insn);
13246 	}
13247       else
13248 	break;
13249     }
13250 }
13251 
13252 /* Check if X, a register, is known to contain a value already
13253    truncated to MODE.  In this case we can use a subreg to refer to
13254    the truncated value even though in the generic case we would need
13255    an explicit truncation.  */
13256 
13257 static bool
13258 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13259 {
13260   reg_stat_type *rsp = &reg_stat[REGNO (x)];
13261   machine_mode truncated = rsp->truncated_to_mode;
13262 
13263   if (truncated == 0
13264       || rsp->truncation_label < label_tick_ebb_start)
13265     return false;
13266   if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
13267     return true;
13268   if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13269     return true;
13270   return false;
13271 }
13272 
13273 /* If X is a hard reg or a subreg record the mode that the register is
13274    accessed in.  For non-TRULY_NOOP_TRUNCATION targets we might be able
13275    to turn a truncate into a subreg using this information.  Return true
13276    if traversing X is complete.  */
13277 
13278 static bool
13279 record_truncated_value (rtx x)
13280 {
13281   machine_mode truncated_mode;
13282   reg_stat_type *rsp;
13283 
13284   if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13285     {
13286       machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13287       truncated_mode = GET_MODE (x);
13288 
13289       if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
13290 	return true;
13291 
13292       if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13293 	return true;
13294 
13295       x = SUBREG_REG (x);
13296     }
13297   /* ??? For hard-regs we now record everything.  We might be able to
13298      optimize this using last_set_mode.  */
13299   else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13300     truncated_mode = GET_MODE (x);
13301   else
13302     return false;
13303 
13304   rsp = &reg_stat[REGNO (x)];
13305   if (rsp->truncated_to_mode == 0
13306       || rsp->truncation_label < label_tick_ebb_start
13307       || (GET_MODE_SIZE (truncated_mode)
13308 	  < GET_MODE_SIZE (rsp->truncated_to_mode)))
13309     {
13310       rsp->truncated_to_mode = truncated_mode;
13311       rsp->truncation_label = label_tick;
13312     }
13313 
13314   return true;
13315 }
13316 
13317 /* Callback for note_uses.  Find hardregs and subregs of pseudos and
13318    the modes they are used in.  This can help truning TRUNCATEs into
13319    SUBREGs.  */
13320 
13321 static void
13322 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13323 {
13324   subrtx_var_iterator::array_type array;
13325   FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13326     if (record_truncated_value (*iter))
13327       iter.skip_subrtxes ();
13328 }
13329 
13330 /* Scan X for promoted SUBREGs.  For each one found,
13331    note what it implies to the registers used in it.  */
13332 
13333 static void
13334 check_promoted_subreg (rtx_insn *insn, rtx x)
13335 {
13336   if (GET_CODE (x) == SUBREG
13337       && SUBREG_PROMOTED_VAR_P (x)
13338       && REG_P (SUBREG_REG (x)))
13339     record_promoted_value (insn, x);
13340   else
13341     {
13342       const char *format = GET_RTX_FORMAT (GET_CODE (x));
13343       int i, j;
13344 
13345       for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13346 	switch (format[i])
13347 	  {
13348 	  case 'e':
13349 	    check_promoted_subreg (insn, XEXP (x, i));
13350 	    break;
13351 	  case 'V':
13352 	  case 'E':
13353 	    if (XVEC (x, i) != 0)
13354 	      for (j = 0; j < XVECLEN (x, i); j++)
13355 		check_promoted_subreg (insn, XVECEXP (x, i, j));
13356 	    break;
13357 	  }
13358     }
13359 }
13360 
13361 /* Verify that all the registers and memory references mentioned in *LOC are
13362    still valid.  *LOC was part of a value set in INSN when label_tick was
13363    equal to TICK.  Return 0 if some are not.  If REPLACE is nonzero, replace
13364    the invalid references with (clobber (const_int 0)) and return 1.  This
13365    replacement is useful because we often can get useful information about
13366    the form of a value (e.g., if it was produced by a shift that always
13367    produces -1 or 0) even though we don't know exactly what registers it
13368    was produced from.  */
13369 
13370 static int
13371 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13372 {
13373   rtx x = *loc;
13374   const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13375   int len = GET_RTX_LENGTH (GET_CODE (x));
13376   int i, j;
13377 
13378   if (REG_P (x))
13379     {
13380       unsigned int regno = REGNO (x);
13381       unsigned int endregno = END_REGNO (x);
13382       unsigned int j;
13383 
13384       for (j = regno; j < endregno; j++)
13385 	{
13386 	  reg_stat_type *rsp = &reg_stat[j];
13387 	  if (rsp->last_set_invalid
13388 	      /* If this is a pseudo-register that was only set once and not
13389 		 live at the beginning of the function, it is always valid.  */
13390 	      || (! (regno >= FIRST_PSEUDO_REGISTER
13391 		     && regno < reg_n_sets_max
13392 		     && REG_N_SETS (regno) == 1
13393 		     && (!REGNO_REG_SET_P
13394 			 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13395 			  regno)))
13396 		  && rsp->last_set_label > tick))
13397 	  {
13398 	    if (replace)
13399 	      *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13400 	    return replace;
13401 	  }
13402 	}
13403 
13404       return 1;
13405     }
13406   /* If this is a memory reference, make sure that there were no stores after
13407      it that might have clobbered the value.  We don't have alias info, so we
13408      assume any store invalidates it.  Moreover, we only have local UIDs, so
13409      we also assume that there were stores in the intervening basic blocks.  */
13410   else if (MEM_P (x) && !MEM_READONLY_P (x)
13411 	   && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13412     {
13413       if (replace)
13414 	*loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13415       return replace;
13416     }
13417 
13418   for (i = 0; i < len; i++)
13419     {
13420       if (fmt[i] == 'e')
13421 	{
13422 	  /* Check for identical subexpressions.  If x contains
13423 	     identical subexpression we only have to traverse one of
13424 	     them.  */
13425 	  if (i == 1 && ARITHMETIC_P (x))
13426 	    {
13427 	      /* Note that at this point x0 has already been checked
13428 		 and found valid.  */
13429 	      rtx x0 = XEXP (x, 0);
13430 	      rtx x1 = XEXP (x, 1);
13431 
13432 	      /* If x0 and x1 are identical then x is also valid.  */
13433 	      if (x0 == x1)
13434 		return 1;
13435 
13436 	      /* If x1 is identical to a subexpression of x0 then
13437 		 while checking x0, x1 has already been checked.  Thus
13438 		 it is valid and so as x.  */
13439 	      if (ARITHMETIC_P (x0)
13440 		  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13441 		return 1;
13442 
13443 	      /* If x0 is identical to a subexpression of x1 then x is
13444 		 valid iff the rest of x1 is valid.  */
13445 	      if (ARITHMETIC_P (x1)
13446 		  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13447 		return
13448 		  get_last_value_validate (&XEXP (x1,
13449 						  x0 == XEXP (x1, 0) ? 1 : 0),
13450 					   insn, tick, replace);
13451 	    }
13452 
13453 	  if (get_last_value_validate (&XEXP (x, i), insn, tick,
13454 				       replace) == 0)
13455 	    return 0;
13456 	}
13457       else if (fmt[i] == 'E')
13458 	for (j = 0; j < XVECLEN (x, i); j++)
13459 	  if (get_last_value_validate (&XVECEXP (x, i, j),
13460 				       insn, tick, replace) == 0)
13461 	    return 0;
13462     }
13463 
13464   /* If we haven't found a reason for it to be invalid, it is valid.  */
13465   return 1;
13466 }
13467 
13468 /* Get the last value assigned to X, if known.  Some registers
13469    in the value may be replaced with (clobber (const_int 0)) if their value
13470    is known longer known reliably.  */
13471 
13472 static rtx
13473 get_last_value (const_rtx x)
13474 {
13475   unsigned int regno;
13476   rtx value;
13477   reg_stat_type *rsp;
13478 
13479   /* If this is a non-paradoxical SUBREG, get the value of its operand and
13480      then convert it to the desired mode.  If this is a paradoxical SUBREG,
13481      we cannot predict what values the "extra" bits might have.  */
13482   if (GET_CODE (x) == SUBREG
13483       && subreg_lowpart_p (x)
13484       && !paradoxical_subreg_p (x)
13485       && (value = get_last_value (SUBREG_REG (x))) != 0)
13486     return gen_lowpart (GET_MODE (x), value);
13487 
13488   if (!REG_P (x))
13489     return 0;
13490 
13491   regno = REGNO (x);
13492   rsp = &reg_stat[regno];
13493   value = rsp->last_set_value;
13494 
13495   /* If we don't have a value, or if it isn't for this basic block and
13496      it's either a hard register, set more than once, or it's a live
13497      at the beginning of the function, return 0.
13498 
13499      Because if it's not live at the beginning of the function then the reg
13500      is always set before being used (is never used without being set).
13501      And, if it's set only once, and it's always set before use, then all
13502      uses must have the same last value, even if it's not from this basic
13503      block.  */
13504 
13505   if (value == 0
13506       || (rsp->last_set_label < label_tick_ebb_start
13507 	  && (regno < FIRST_PSEUDO_REGISTER
13508 	      || regno >= reg_n_sets_max
13509 	      || REG_N_SETS (regno) != 1
13510 	      || REGNO_REG_SET_P
13511 		 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13512     return 0;
13513 
13514   /* If the value was set in a later insn than the ones we are processing,
13515      we can't use it even if the register was only set once.  */
13516   if (rsp->last_set_label == label_tick
13517       && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13518     return 0;
13519 
13520   /* If fewer bits were set than what we are asked for now, we cannot use
13521      the value.  */
13522   if (GET_MODE_PRECISION (rsp->last_set_mode)
13523       < GET_MODE_PRECISION (GET_MODE (x)))
13524     return 0;
13525 
13526   /* If the value has all its registers valid, return it.  */
13527   if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13528     return value;
13529 
13530   /* Otherwise, make a copy and replace any invalid register with
13531      (clobber (const_int 0)).  If that fails for some reason, return 0.  */
13532 
13533   value = copy_rtx (value);
13534   if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13535     return value;
13536 
13537   return 0;
13538 }
13539 
13540 /* Return nonzero if expression X refers to a REG or to memory
13541    that is set in an instruction more recent than FROM_LUID.  */
13542 
13543 static int
13544 use_crosses_set_p (const_rtx x, int from_luid)
13545 {
13546   const char *fmt;
13547   int i;
13548   enum rtx_code code = GET_CODE (x);
13549 
13550   if (code == REG)
13551     {
13552       unsigned int regno = REGNO (x);
13553       unsigned endreg = END_REGNO (x);
13554 
13555 #ifdef PUSH_ROUNDING
13556       /* Don't allow uses of the stack pointer to be moved,
13557 	 because we don't know whether the move crosses a push insn.  */
13558       if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13559 	return 1;
13560 #endif
13561       for (; regno < endreg; regno++)
13562 	{
13563 	  reg_stat_type *rsp = &reg_stat[regno];
13564 	  if (rsp->last_set
13565 	      && rsp->last_set_label == label_tick
13566 	      && DF_INSN_LUID (rsp->last_set) > from_luid)
13567 	    return 1;
13568 	}
13569       return 0;
13570     }
13571 
13572   if (code == MEM && mem_last_set > from_luid)
13573     return 1;
13574 
13575   fmt = GET_RTX_FORMAT (code);
13576 
13577   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13578     {
13579       if (fmt[i] == 'E')
13580 	{
13581 	  int j;
13582 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13583 	    if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13584 	      return 1;
13585 	}
13586       else if (fmt[i] == 'e'
13587 	       && use_crosses_set_p (XEXP (x, i), from_luid))
13588 	return 1;
13589     }
13590   return 0;
13591 }
13592 
13593 /* Define three variables used for communication between the following
13594    routines.  */
13595 
13596 static unsigned int reg_dead_regno, reg_dead_endregno;
13597 static int reg_dead_flag;
13598 
13599 /* Function called via note_stores from reg_dead_at_p.
13600 
13601    If DEST is within [reg_dead_regno, reg_dead_endregno), set
13602    reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET.  */
13603 
13604 static void
13605 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13606 {
13607   unsigned int regno, endregno;
13608 
13609   if (!REG_P (dest))
13610     return;
13611 
13612   regno = REGNO (dest);
13613   endregno = END_REGNO (dest);
13614   if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13615     reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13616 }
13617 
13618 /* Return nonzero if REG is known to be dead at INSN.
13619 
13620    We scan backwards from INSN.  If we hit a REG_DEAD note or a CLOBBER
13621    referencing REG, it is dead.  If we hit a SET referencing REG, it is
13622    live.  Otherwise, see if it is live or dead at the start of the basic
13623    block we are in.  Hard regs marked as being live in NEWPAT_USED_REGS
13624    must be assumed to be always live.  */
13625 
13626 static int
13627 reg_dead_at_p (rtx reg, rtx_insn *insn)
13628 {
13629   basic_block block;
13630   unsigned int i;
13631 
13632   /* Set variables for reg_dead_at_p_1.  */
13633   reg_dead_regno = REGNO (reg);
13634   reg_dead_endregno = END_REGNO (reg);
13635 
13636   reg_dead_flag = 0;
13637 
13638   /* Check that reg isn't mentioned in NEWPAT_USED_REGS.  For fixed registers
13639      we allow the machine description to decide whether use-and-clobber
13640      patterns are OK.  */
13641   if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13642     {
13643       for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13644 	if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13645 	  return 0;
13646     }
13647 
13648   /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13649      beginning of basic block.  */
13650   block = BLOCK_FOR_INSN (insn);
13651   for (;;)
13652     {
13653       if (INSN_P (insn))
13654         {
13655 	  if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13656 	    return 1;
13657 
13658 	  note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13659 	  if (reg_dead_flag)
13660 	    return reg_dead_flag == 1 ? 1 : 0;
13661 
13662 	  if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13663 	    return 1;
13664         }
13665 
13666       if (insn == BB_HEAD (block))
13667 	break;
13668 
13669       insn = PREV_INSN (insn);
13670     }
13671 
13672   /* Look at live-in sets for the basic block that we were in.  */
13673   for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13674     if (REGNO_REG_SET_P (df_get_live_in (block), i))
13675       return 0;
13676 
13677   return 1;
13678 }
13679 
13680 /* Note hard registers in X that are used.  */
13681 
13682 static void
13683 mark_used_regs_combine (rtx x)
13684 {
13685   RTX_CODE code = GET_CODE (x);
13686   unsigned int regno;
13687   int i;
13688 
13689   switch (code)
13690     {
13691     case LABEL_REF:
13692     case SYMBOL_REF:
13693     case CONST:
13694     CASE_CONST_ANY:
13695     case PC:
13696     case ADDR_VEC:
13697     case ADDR_DIFF_VEC:
13698     case ASM_INPUT:
13699     /* CC0 must die in the insn after it is set, so we don't need to take
13700        special note of it here.  */
13701     case CC0:
13702       return;
13703 
13704     case CLOBBER:
13705       /* If we are clobbering a MEM, mark any hard registers inside the
13706 	 address as used.  */
13707       if (MEM_P (XEXP (x, 0)))
13708 	mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13709       return;
13710 
13711     case REG:
13712       regno = REGNO (x);
13713       /* A hard reg in a wide mode may really be multiple registers.
13714 	 If so, mark all of them just like the first.  */
13715       if (regno < FIRST_PSEUDO_REGISTER)
13716 	{
13717 	  /* None of this applies to the stack, frame or arg pointers.  */
13718 	  if (regno == STACK_POINTER_REGNUM
13719 	      || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13720 		  && regno == HARD_FRAME_POINTER_REGNUM)
13721 	      || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13722 		  && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13723 	      || regno == FRAME_POINTER_REGNUM)
13724 	    return;
13725 
13726 	  add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13727 	}
13728       return;
13729 
13730     case SET:
13731       {
13732 	/* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13733 	   the address.  */
13734 	rtx testreg = SET_DEST (x);
13735 
13736 	while (GET_CODE (testreg) == SUBREG
13737 	       || GET_CODE (testreg) == ZERO_EXTRACT
13738 	       || GET_CODE (testreg) == STRICT_LOW_PART)
13739 	  testreg = XEXP (testreg, 0);
13740 
13741 	if (MEM_P (testreg))
13742 	  mark_used_regs_combine (XEXP (testreg, 0));
13743 
13744 	mark_used_regs_combine (SET_SRC (x));
13745       }
13746       return;
13747 
13748     default:
13749       break;
13750     }
13751 
13752   /* Recursively scan the operands of this expression.  */
13753 
13754   {
13755     const char *fmt = GET_RTX_FORMAT (code);
13756 
13757     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13758       {
13759 	if (fmt[i] == 'e')
13760 	  mark_used_regs_combine (XEXP (x, i));
13761 	else if (fmt[i] == 'E')
13762 	  {
13763 	    int j;
13764 
13765 	    for (j = 0; j < XVECLEN (x, i); j++)
13766 	      mark_used_regs_combine (XVECEXP (x, i, j));
13767 	  }
13768       }
13769   }
13770 }
13771 
13772 /* Remove register number REGNO from the dead registers list of INSN.
13773 
13774    Return the note used to record the death, if there was one.  */
13775 
13776 rtx
13777 remove_death (unsigned int regno, rtx_insn *insn)
13778 {
13779   rtx note = find_regno_note (insn, REG_DEAD, regno);
13780 
13781   if (note)
13782     remove_note (insn, note);
13783 
13784   return note;
13785 }
13786 
13787 /* For each register (hardware or pseudo) used within expression X, if its
13788    death is in an instruction with luid between FROM_LUID (inclusive) and
13789    TO_INSN (exclusive), put a REG_DEAD note for that register in the
13790    list headed by PNOTES.
13791 
13792    That said, don't move registers killed by maybe_kill_insn.
13793 
13794    This is done when X is being merged by combination into TO_INSN.  These
13795    notes will then be distributed as needed.  */
13796 
13797 static void
13798 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13799 	     rtx *pnotes)
13800 {
13801   const char *fmt;
13802   int len, i;
13803   enum rtx_code code = GET_CODE (x);
13804 
13805   if (code == REG)
13806     {
13807       unsigned int regno = REGNO (x);
13808       rtx_insn *where_dead = reg_stat[regno].last_death;
13809 
13810       /* Don't move the register if it gets killed in between from and to.  */
13811       if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13812 	  && ! reg_referenced_p (x, maybe_kill_insn))
13813 	return;
13814 
13815       if (where_dead
13816 	  && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13817 	  && DF_INSN_LUID (where_dead) >= from_luid
13818 	  && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13819 	{
13820 	  rtx note = remove_death (regno, where_dead);
13821 
13822 	  /* It is possible for the call above to return 0.  This can occur
13823 	     when last_death points to I2 or I1 that we combined with.
13824 	     In that case make a new note.
13825 
13826 	     We must also check for the case where X is a hard register
13827 	     and NOTE is a death note for a range of hard registers
13828 	     including X.  In that case, we must put REG_DEAD notes for
13829 	     the remaining registers in place of NOTE.  */
13830 
13831 	  if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13832 	      && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13833 		  > GET_MODE_SIZE (GET_MODE (x))))
13834 	    {
13835 	      unsigned int deadregno = REGNO (XEXP (note, 0));
13836 	      unsigned int deadend = END_REGNO (XEXP (note, 0));
13837 	      unsigned int ourend = END_REGNO (x);
13838 	      unsigned int i;
13839 
13840 	      for (i = deadregno; i < deadend; i++)
13841 		if (i < regno || i >= ourend)
13842 		  add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13843 	    }
13844 
13845 	  /* If we didn't find any note, or if we found a REG_DEAD note that
13846 	     covers only part of the given reg, and we have a multi-reg hard
13847 	     register, then to be safe we must check for REG_DEAD notes
13848 	     for each register other than the first.  They could have
13849 	     their own REG_DEAD notes lying around.  */
13850 	  else if ((note == 0
13851 		    || (note != 0
13852 			&& (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13853 			    < GET_MODE_SIZE (GET_MODE (x)))))
13854 		   && regno < FIRST_PSEUDO_REGISTER
13855 		   && REG_NREGS (x) > 1)
13856 	    {
13857 	      unsigned int ourend = END_REGNO (x);
13858 	      unsigned int i, offset;
13859 	      rtx oldnotes = 0;
13860 
13861 	      if (note)
13862 		offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13863 	      else
13864 		offset = 1;
13865 
13866 	      for (i = regno + offset; i < ourend; i++)
13867 		move_deaths (regno_reg_rtx[i],
13868 			     maybe_kill_insn, from_luid, to_insn, &oldnotes);
13869 	    }
13870 
13871 	  if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13872 	    {
13873 	      XEXP (note, 1) = *pnotes;
13874 	      *pnotes = note;
13875 	    }
13876 	  else
13877 	    *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13878 	}
13879 
13880       return;
13881     }
13882 
13883   else if (GET_CODE (x) == SET)
13884     {
13885       rtx dest = SET_DEST (x);
13886 
13887       move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13888 
13889       /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13890 	 that accesses one word of a multi-word item, some
13891 	 piece of everything register in the expression is used by
13892 	 this insn, so remove any old death.  */
13893       /* ??? So why do we test for equality of the sizes?  */
13894 
13895       if (GET_CODE (dest) == ZERO_EXTRACT
13896 	  || GET_CODE (dest) == STRICT_LOW_PART
13897 	  || (GET_CODE (dest) == SUBREG
13898 	      && (((GET_MODE_SIZE (GET_MODE (dest))
13899 		    + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13900 		  == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13901 		       + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13902 	{
13903 	  move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13904 	  return;
13905 	}
13906 
13907       /* If this is some other SUBREG, we know it replaces the entire
13908 	 value, so use that as the destination.  */
13909       if (GET_CODE (dest) == SUBREG)
13910 	dest = SUBREG_REG (dest);
13911 
13912       /* If this is a MEM, adjust deaths of anything used in the address.
13913 	 For a REG (the only other possibility), the entire value is
13914 	 being replaced so the old value is not used in this insn.  */
13915 
13916       if (MEM_P (dest))
13917 	move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13918 		     to_insn, pnotes);
13919       return;
13920     }
13921 
13922   else if (GET_CODE (x) == CLOBBER)
13923     return;
13924 
13925   len = GET_RTX_LENGTH (code);
13926   fmt = GET_RTX_FORMAT (code);
13927 
13928   for (i = 0; i < len; i++)
13929     {
13930       if (fmt[i] == 'E')
13931 	{
13932 	  int j;
13933 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13934 	    move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13935 			 to_insn, pnotes);
13936 	}
13937       else if (fmt[i] == 'e')
13938 	move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13939     }
13940 }
13941 
13942 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13943    pattern of an insn.  X must be a REG.  */
13944 
13945 static int
13946 reg_bitfield_target_p (rtx x, rtx body)
13947 {
13948   int i;
13949 
13950   if (GET_CODE (body) == SET)
13951     {
13952       rtx dest = SET_DEST (body);
13953       rtx target;
13954       unsigned int regno, tregno, endregno, endtregno;
13955 
13956       if (GET_CODE (dest) == ZERO_EXTRACT)
13957 	target = XEXP (dest, 0);
13958       else if (GET_CODE (dest) == STRICT_LOW_PART)
13959 	target = SUBREG_REG (XEXP (dest, 0));
13960       else
13961 	return 0;
13962 
13963       if (GET_CODE (target) == SUBREG)
13964 	target = SUBREG_REG (target);
13965 
13966       if (!REG_P (target))
13967 	return 0;
13968 
13969       tregno = REGNO (target), regno = REGNO (x);
13970       if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13971 	return target == x;
13972 
13973       endtregno = end_hard_regno (GET_MODE (target), tregno);
13974       endregno = end_hard_regno (GET_MODE (x), regno);
13975 
13976       return endregno > tregno && regno < endtregno;
13977     }
13978 
13979   else if (GET_CODE (body) == PARALLEL)
13980     for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13981       if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13982 	return 1;
13983 
13984   return 0;
13985 }
13986 
13987 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13988    as appropriate.  I3 and I2 are the insns resulting from the combination
13989    insns including FROM (I2 may be zero).
13990 
13991    ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13992    not need REG_DEAD notes because they are being substituted for.  This
13993    saves searching in the most common cases.
13994 
13995    Each note in the list is either ignored or placed on some insns, depending
13996    on the type of note.  */
13997 
13998 static void
13999 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14000 		  rtx elim_i2, rtx elim_i1, rtx elim_i0)
14001 {
14002   rtx note, next_note;
14003   rtx tem_note;
14004   rtx_insn *tem_insn;
14005 
14006   for (note = notes; note; note = next_note)
14007     {
14008       rtx_insn *place = 0, *place2 = 0;
14009 
14010       next_note = XEXP (note, 1);
14011       switch (REG_NOTE_KIND (note))
14012 	{
14013 	case REG_BR_PROB:
14014 	case REG_BR_PRED:
14015 	  /* Doesn't matter much where we put this, as long as it's somewhere.
14016 	     It is preferable to keep these notes on branches, which is most
14017 	     likely to be i3.  */
14018 	  place = i3;
14019 	  break;
14020 
14021 	case REG_NON_LOCAL_GOTO:
14022 	  if (JUMP_P (i3))
14023 	    place = i3;
14024 	  else
14025 	    {
14026 	      gcc_assert (i2 && JUMP_P (i2));
14027 	      place = i2;
14028 	    }
14029 	  break;
14030 
14031 	case REG_EH_REGION:
14032 	  /* These notes must remain with the call or trapping instruction.  */
14033 	  if (CALL_P (i3))
14034 	    place = i3;
14035 	  else if (i2 && CALL_P (i2))
14036 	    place = i2;
14037 	  else
14038 	    {
14039 	      gcc_assert (cfun->can_throw_non_call_exceptions);
14040 	      if (may_trap_p (i3))
14041 		place = i3;
14042 	      else if (i2 && may_trap_p (i2))
14043 		place = i2;
14044 	      /* ??? Otherwise assume we've combined things such that we
14045 		 can now prove that the instructions can't trap.  Drop the
14046 		 note in this case.  */
14047 	    }
14048 	  break;
14049 
14050 	case REG_ARGS_SIZE:
14051 	  /* ??? How to distribute between i3-i1.  Assume i3 contains the
14052 	     entire adjustment.  Assert i3 contains at least some adjust.  */
14053 	  if (!noop_move_p (i3))
14054 	    {
14055 	      int old_size, args_size = INTVAL (XEXP (note, 0));
14056 	      /* fixup_args_size_notes looks at REG_NORETURN note,
14057 		 so ensure the note is placed there first.  */
14058 	      if (CALL_P (i3))
14059 		{
14060 		  rtx *np;
14061 		  for (np = &next_note; *np; np = &XEXP (*np, 1))
14062 		    if (REG_NOTE_KIND (*np) == REG_NORETURN)
14063 		      {
14064 			rtx n = *np;
14065 			*np = XEXP (n, 1);
14066 			XEXP (n, 1) = REG_NOTES (i3);
14067 			REG_NOTES (i3) = n;
14068 			break;
14069 		      }
14070 		}
14071 	      old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14072 	      /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14073 		 REG_ARGS_SIZE note to all noreturn calls, allow that here.  */
14074 	      gcc_assert (old_size != args_size
14075 			  || (CALL_P (i3)
14076 			      && !ACCUMULATE_OUTGOING_ARGS
14077 			      && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14078 	    }
14079 	  break;
14080 
14081 	case REG_NORETURN:
14082 	case REG_SETJMP:
14083 	case REG_TM:
14084 	case REG_CALL_DECL:
14085 	  /* These notes must remain with the call.  It should not be
14086 	     possible for both I2 and I3 to be a call.  */
14087 	  if (CALL_P (i3))
14088 	    place = i3;
14089 	  else
14090 	    {
14091 	      gcc_assert (i2 && CALL_P (i2));
14092 	      place = i2;
14093 	    }
14094 	  break;
14095 
14096 	case REG_UNUSED:
14097 	  /* Any clobbers for i3 may still exist, and so we must process
14098 	     REG_UNUSED notes from that insn.
14099 
14100 	     Any clobbers from i2 or i1 can only exist if they were added by
14101 	     recog_for_combine.  In that case, recog_for_combine created the
14102 	     necessary REG_UNUSED notes.  Trying to keep any original
14103 	     REG_UNUSED notes from these insns can cause incorrect output
14104 	     if it is for the same register as the original i3 dest.
14105 	     In that case, we will notice that the register is set in i3,
14106 	     and then add a REG_UNUSED note for the destination of i3, which
14107 	     is wrong.  However, it is possible to have REG_UNUSED notes from
14108 	     i2 or i1 for register which were both used and clobbered, so
14109 	     we keep notes from i2 or i1 if they will turn into REG_DEAD
14110 	     notes.  */
14111 
14112 	  /* If this register is set or clobbered in I3, put the note there
14113 	     unless there is one already.  */
14114 	  if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14115 	    {
14116 	      if (from_insn != i3)
14117 		break;
14118 
14119 	      if (! (REG_P (XEXP (note, 0))
14120 		     ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14121 		     : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14122 		place = i3;
14123 	    }
14124 	  /* Otherwise, if this register is used by I3, then this register
14125 	     now dies here, so we must put a REG_DEAD note here unless there
14126 	     is one already.  */
14127 	  else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14128 		   && ! (REG_P (XEXP (note, 0))
14129 			 ? find_regno_note (i3, REG_DEAD,
14130 					    REGNO (XEXP (note, 0)))
14131 			 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14132 	    {
14133 	      PUT_REG_NOTE_KIND (note, REG_DEAD);
14134 	      place = i3;
14135 	    }
14136 	  break;
14137 
14138 	case REG_EQUAL:
14139 	case REG_EQUIV:
14140 	case REG_NOALIAS:
14141 	  /* These notes say something about results of an insn.  We can
14142 	     only support them if they used to be on I3 in which case they
14143 	     remain on I3.  Otherwise they are ignored.
14144 
14145 	     If the note refers to an expression that is not a constant, we
14146 	     must also ignore the note since we cannot tell whether the
14147 	     equivalence is still true.  It might be possible to do
14148 	     slightly better than this (we only have a problem if I2DEST
14149 	     or I1DEST is present in the expression), but it doesn't
14150 	     seem worth the trouble.  */
14151 
14152 	  if (from_insn == i3
14153 	      && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14154 	    place = i3;
14155 	  break;
14156 
14157 	case REG_INC:
14158 	  /* These notes say something about how a register is used.  They must
14159 	     be present on any use of the register in I2 or I3.  */
14160 	  if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14161 	    place = i3;
14162 
14163 	  if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14164 	    {
14165 	      if (place)
14166 		place2 = i2;
14167 	      else
14168 		place = i2;
14169 	    }
14170 	  break;
14171 
14172 	case REG_LABEL_TARGET:
14173 	case REG_LABEL_OPERAND:
14174 	  /* This can show up in several ways -- either directly in the
14175 	     pattern, or hidden off in the constant pool with (or without?)
14176 	     a REG_EQUAL note.  */
14177 	  /* ??? Ignore the without-reg_equal-note problem for now.  */
14178 	  if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14179 	      || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14180 		  && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14181 		  && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14182 	    place = i3;
14183 
14184 	  if (i2
14185 	      && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14186 		  || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14187 		      && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14188 		      && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14189 	    {
14190 	      if (place)
14191 		place2 = i2;
14192 	      else
14193 		place = i2;
14194 	    }
14195 
14196 	  /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14197 	     as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14198 	     there.  */
14199 	  if (place && JUMP_P (place)
14200 	      && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14201 	      && (JUMP_LABEL (place) == NULL
14202 		  || JUMP_LABEL (place) == XEXP (note, 0)))
14203 	    {
14204 	      rtx label = JUMP_LABEL (place);
14205 
14206 	      if (!label)
14207 		JUMP_LABEL (place) = XEXP (note, 0);
14208 	      else if (LABEL_P (label))
14209 		LABEL_NUSES (label)--;
14210 	    }
14211 
14212 	  if (place2 && JUMP_P (place2)
14213 	      && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14214 	      && (JUMP_LABEL (place2) == NULL
14215 		  || JUMP_LABEL (place2) == XEXP (note, 0)))
14216 	    {
14217 	      rtx label = JUMP_LABEL (place2);
14218 
14219 	      if (!label)
14220 		JUMP_LABEL (place2) = XEXP (note, 0);
14221 	      else if (LABEL_P (label))
14222 		LABEL_NUSES (label)--;
14223 	      place2 = 0;
14224 	    }
14225 	  break;
14226 
14227 	case REG_NONNEG:
14228 	  /* This note says something about the value of a register prior
14229 	     to the execution of an insn.  It is too much trouble to see
14230 	     if the note is still correct in all situations.  It is better
14231 	     to simply delete it.  */
14232 	  break;
14233 
14234 	case REG_DEAD:
14235 	  /* If we replaced the right hand side of FROM_INSN with a
14236 	     REG_EQUAL note, the original use of the dying register
14237 	     will not have been combined into I3 and I2.  In such cases,
14238 	     FROM_INSN is guaranteed to be the first of the combined
14239 	     instructions, so we simply need to search back before
14240 	     FROM_INSN for the previous use or set of this register,
14241 	     then alter the notes there appropriately.
14242 
14243 	     If the register is used as an input in I3, it dies there.
14244 	     Similarly for I2, if it is nonzero and adjacent to I3.
14245 
14246 	     If the register is not used as an input in either I3 or I2
14247 	     and it is not one of the registers we were supposed to eliminate,
14248 	     there are two possibilities.  We might have a non-adjacent I2
14249 	     or we might have somehow eliminated an additional register
14250 	     from a computation.  For example, we might have had A & B where
14251 	     we discover that B will always be zero.  In this case we will
14252 	     eliminate the reference to A.
14253 
14254 	     In both cases, we must search to see if we can find a previous
14255 	     use of A and put the death note there.  */
14256 
14257 	  if (from_insn
14258 	      && from_insn == i2mod
14259 	      && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14260 	    tem_insn = from_insn;
14261 	  else
14262 	    {
14263 	      if (from_insn
14264 		  && CALL_P (from_insn)
14265 		  && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14266 		place = from_insn;
14267 	      else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14268 		{
14269 		  /* If the new I2 sets the same register that is marked
14270 		     dead in the note, we do not in general know where to
14271 		     put the note.  One important case we _can_ handle is
14272 		     when the note comes from I3.  */
14273 		  if (from_insn == i3)
14274 		    place = i3;
14275 		  else
14276 		    break;
14277 		}
14278 	      else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14279 		place = i3;
14280 	      else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14281 		       && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14282 		place = i2;
14283 	      else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14284 			&& !(i2mod
14285 			     && reg_overlap_mentioned_p (XEXP (note, 0),
14286 							 i2mod_old_rhs)))
14287 		       || rtx_equal_p (XEXP (note, 0), elim_i1)
14288 		       || rtx_equal_p (XEXP (note, 0), elim_i0))
14289 		break;
14290 	      tem_insn = i3;
14291 	    }
14292 
14293 	  if (place == 0)
14294 	    {
14295 	      basic_block bb = this_basic_block;
14296 
14297 	      for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14298 		{
14299 		  if (!NONDEBUG_INSN_P (tem_insn))
14300 		    {
14301 		      if (tem_insn == BB_HEAD (bb))
14302 			break;
14303 		      continue;
14304 		    }
14305 
14306 		  /* If the register is being set at TEM_INSN, see if that is all
14307 		     TEM_INSN is doing.  If so, delete TEM_INSN.  Otherwise, make this
14308 		     into a REG_UNUSED note instead. Don't delete sets to
14309 		     global register vars.  */
14310 		  if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14311 		       || !global_regs[REGNO (XEXP (note, 0))])
14312 		      && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14313 		    {
14314 		      rtx set = single_set (tem_insn);
14315 		      rtx inner_dest = 0;
14316 		      rtx_insn *cc0_setter = NULL;
14317 
14318 		      if (set != 0)
14319 			for (inner_dest = SET_DEST (set);
14320 			     (GET_CODE (inner_dest) == STRICT_LOW_PART
14321 			      || GET_CODE (inner_dest) == SUBREG
14322 			      || GET_CODE (inner_dest) == ZERO_EXTRACT);
14323 			     inner_dest = XEXP (inner_dest, 0))
14324 			  ;
14325 
14326 		      /* Verify that it was the set, and not a clobber that
14327 			 modified the register.
14328 
14329 			 CC0 targets must be careful to maintain setter/user
14330 			 pairs.  If we cannot delete the setter due to side
14331 			 effects, mark the user with an UNUSED note instead
14332 			 of deleting it.  */
14333 
14334 		      if (set != 0 && ! side_effects_p (SET_SRC (set))
14335 			  && rtx_equal_p (XEXP (note, 0), inner_dest)
14336 			  && (!HAVE_cc0
14337 			      || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14338 				  || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14339 				      && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14340 			{
14341 			  /* Move the notes and links of TEM_INSN elsewhere.
14342 			     This might delete other dead insns recursively.
14343 			     First set the pattern to something that won't use
14344 			     any register.  */
14345 			  rtx old_notes = REG_NOTES (tem_insn);
14346 
14347 			  PATTERN (tem_insn) = pc_rtx;
14348 			  REG_NOTES (tem_insn) = NULL;
14349 
14350 			  distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14351 					    NULL_RTX, NULL_RTX, NULL_RTX);
14352 			  distribute_links (LOG_LINKS (tem_insn));
14353 
14354 			  unsigned int regno = REGNO (XEXP (note, 0));
14355 			  reg_stat_type *rsp = &reg_stat[regno];
14356 			  if (rsp->last_set == tem_insn)
14357 			    record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14358 
14359 			  SET_INSN_DELETED (tem_insn);
14360 			  if (tem_insn == i2)
14361 			    i2 = NULL;
14362 
14363 			  /* Delete the setter too.  */
14364 			  if (cc0_setter)
14365 			    {
14366 			      PATTERN (cc0_setter) = pc_rtx;
14367 			      old_notes = REG_NOTES (cc0_setter);
14368 			      REG_NOTES (cc0_setter) = NULL;
14369 
14370 			      distribute_notes (old_notes, cc0_setter,
14371 						cc0_setter, NULL,
14372 						NULL_RTX, NULL_RTX, NULL_RTX);
14373 			      distribute_links (LOG_LINKS (cc0_setter));
14374 
14375 			      SET_INSN_DELETED (cc0_setter);
14376 			      if (cc0_setter == i2)
14377 				i2 = NULL;
14378 			    }
14379 			}
14380 		      else
14381 			{
14382 			  PUT_REG_NOTE_KIND (note, REG_UNUSED);
14383 
14384 			  /*  If there isn't already a REG_UNUSED note, put one
14385 			      here.  Do not place a REG_DEAD note, even if
14386 			      the register is also used here; that would not
14387 			      match the algorithm used in lifetime analysis
14388 			      and can cause the consistency check in the
14389 			      scheduler to fail.  */
14390 			  if (! find_regno_note (tem_insn, REG_UNUSED,
14391 						 REGNO (XEXP (note, 0))))
14392 			    place = tem_insn;
14393 			  break;
14394 			}
14395 		    }
14396 		  else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14397 			   || (CALL_P (tem_insn)
14398 			       && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14399 		    {
14400 		      place = tem_insn;
14401 
14402 		      /* If we are doing a 3->2 combination, and we have a
14403 			 register which formerly died in i3 and was not used
14404 			 by i2, which now no longer dies in i3 and is used in
14405 			 i2 but does not die in i2, and place is between i2
14406 			 and i3, then we may need to move a link from place to
14407 			 i2.  */
14408 		      if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14409 			  && from_insn
14410 			  && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14411 			  && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14412 			{
14413 			  struct insn_link *links = LOG_LINKS (place);
14414 			  LOG_LINKS (place) = NULL;
14415 			  distribute_links (links);
14416 			}
14417 		      break;
14418 		    }
14419 
14420 		  if (tem_insn == BB_HEAD (bb))
14421 		    break;
14422 		}
14423 
14424 	    }
14425 
14426 	  /* If the register is set or already dead at PLACE, we needn't do
14427 	     anything with this note if it is still a REG_DEAD note.
14428 	     We check here if it is set at all, not if is it totally replaced,
14429 	     which is what `dead_or_set_p' checks, so also check for it being
14430 	     set partially.  */
14431 
14432 	  if (place && REG_NOTE_KIND (note) == REG_DEAD)
14433 	    {
14434 	      unsigned int regno = REGNO (XEXP (note, 0));
14435 	      reg_stat_type *rsp = &reg_stat[regno];
14436 
14437 	      if (dead_or_set_p (place, XEXP (note, 0))
14438 		  || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14439 		{
14440 		  /* Unless the register previously died in PLACE, clear
14441 		     last_death.  [I no longer understand why this is
14442 		     being done.] */
14443 		  if (rsp->last_death != place)
14444 		    rsp->last_death = 0;
14445 		  place = 0;
14446 		}
14447 	      else
14448 		rsp->last_death = place;
14449 
14450 	      /* If this is a death note for a hard reg that is occupying
14451 		 multiple registers, ensure that we are still using all
14452 		 parts of the object.  If we find a piece of the object
14453 		 that is unused, we must arrange for an appropriate REG_DEAD
14454 		 note to be added for it.  However, we can't just emit a USE
14455 		 and tag the note to it, since the register might actually
14456 		 be dead; so we recourse, and the recursive call then finds
14457 		 the previous insn that used this register.  */
14458 
14459 	      if (place && REG_NREGS (XEXP (note, 0)) > 1)
14460 		{
14461 		  unsigned int endregno = END_REGNO (XEXP (note, 0));
14462 		  bool all_used = true;
14463 		  unsigned int i;
14464 
14465 		  for (i = regno; i < endregno; i++)
14466 		    if ((! refers_to_regno_p (i, PATTERN (place))
14467 			 && ! find_regno_fusage (place, USE, i))
14468 			|| dead_or_set_regno_p (place, i))
14469 		      {
14470 			all_used = false;
14471 			break;
14472 		      }
14473 
14474 		  if (! all_used)
14475 		    {
14476 		      /* Put only REG_DEAD notes for pieces that are
14477 			 not already dead or set.  */
14478 
14479 		      for (i = regno; i < endregno;
14480 			   i += hard_regno_nregs[i][reg_raw_mode[i]])
14481 			{
14482 			  rtx piece = regno_reg_rtx[i];
14483 			  basic_block bb = this_basic_block;
14484 
14485 			  if (! dead_or_set_p (place, piece)
14486 			      && ! reg_bitfield_target_p (piece,
14487 							  PATTERN (place)))
14488 			    {
14489 			      rtx new_note = alloc_reg_note (REG_DEAD, piece,
14490 							     NULL_RTX);
14491 
14492 			      distribute_notes (new_note, place, place,
14493 						NULL, NULL_RTX, NULL_RTX,
14494 						NULL_RTX);
14495 			    }
14496 			  else if (! refers_to_regno_p (i, PATTERN (place))
14497 				   && ! find_regno_fusage (place, USE, i))
14498 			    for (tem_insn = PREV_INSN (place); ;
14499 				 tem_insn = PREV_INSN (tem_insn))
14500 			      {
14501 				if (!NONDEBUG_INSN_P (tem_insn))
14502 				  {
14503 				    if (tem_insn == BB_HEAD (bb))
14504 			 	      break;
14505 				    continue;
14506 				  }
14507 				if (dead_or_set_p (tem_insn, piece)
14508 				    || reg_bitfield_target_p (piece,
14509 							      PATTERN (tem_insn)))
14510 				  {
14511 				    add_reg_note (tem_insn, REG_UNUSED, piece);
14512 				    break;
14513 				  }
14514 			      }
14515 			}
14516 
14517 		      place = 0;
14518 		    }
14519 		}
14520 	    }
14521 	  break;
14522 
14523 	default:
14524 	  /* Any other notes should not be present at this point in the
14525 	     compilation.  */
14526 	  gcc_unreachable ();
14527 	}
14528 
14529       if (place)
14530 	{
14531 	  XEXP (note, 1) = REG_NOTES (place);
14532 	  REG_NOTES (place) = note;
14533 	}
14534 
14535       if (place2)
14536 	add_shallow_copy_of_reg_note (place2, note);
14537     }
14538 }
14539 
14540 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14541    I3, I2, and I1 to new locations.  This is also called to add a link
14542    pointing at I3 when I3's destination is changed.  */
14543 
14544 static void
14545 distribute_links (struct insn_link *links)
14546 {
14547   struct insn_link *link, *next_link;
14548 
14549   for (link = links; link; link = next_link)
14550     {
14551       rtx_insn *place = 0;
14552       rtx_insn *insn;
14553       rtx set, reg;
14554 
14555       next_link = link->next;
14556 
14557       /* If the insn that this link points to is a NOTE, ignore it.  */
14558       if (NOTE_P (link->insn))
14559 	continue;
14560 
14561       set = 0;
14562       rtx pat = PATTERN (link->insn);
14563       if (GET_CODE (pat) == SET)
14564 	set = pat;
14565       else if (GET_CODE (pat) == PARALLEL)
14566 	{
14567 	  int i;
14568 	  for (i = 0; i < XVECLEN (pat, 0); i++)
14569 	    {
14570 	      set = XVECEXP (pat, 0, i);
14571 	      if (GET_CODE (set) != SET)
14572 		continue;
14573 
14574 	      reg = SET_DEST (set);
14575 	      while (GET_CODE (reg) == ZERO_EXTRACT
14576 		     || GET_CODE (reg) == STRICT_LOW_PART
14577 		     || GET_CODE (reg) == SUBREG)
14578 		reg = XEXP (reg, 0);
14579 
14580 	      if (!REG_P (reg))
14581 		continue;
14582 
14583 	      if (REGNO (reg) == link->regno)
14584 		break;
14585 	    }
14586 	  if (i == XVECLEN (pat, 0))
14587 	    continue;
14588 	}
14589       else
14590 	continue;
14591 
14592       reg = SET_DEST (set);
14593 
14594       while (GET_CODE (reg) == ZERO_EXTRACT
14595 	     || GET_CODE (reg) == STRICT_LOW_PART
14596 	     || GET_CODE (reg) == SUBREG)
14597 	reg = XEXP (reg, 0);
14598 
14599       /* A LOG_LINK is defined as being placed on the first insn that uses
14600 	 a register and points to the insn that sets the register.  Start
14601 	 searching at the next insn after the target of the link and stop
14602 	 when we reach a set of the register or the end of the basic block.
14603 
14604 	 Note that this correctly handles the link that used to point from
14605 	 I3 to I2.  Also note that not much searching is typically done here
14606 	 since most links don't point very far away.  */
14607 
14608       for (insn = NEXT_INSN (link->insn);
14609 	   (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14610 		     || BB_HEAD (this_basic_block->next_bb) != insn));
14611 	   insn = NEXT_INSN (insn))
14612 	if (DEBUG_INSN_P (insn))
14613 	  continue;
14614 	else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14615 	  {
14616 	    if (reg_referenced_p (reg, PATTERN (insn)))
14617 	      place = insn;
14618 	    break;
14619 	  }
14620 	else if (CALL_P (insn)
14621 		 && find_reg_fusage (insn, USE, reg))
14622 	  {
14623 	    place = insn;
14624 	    break;
14625 	  }
14626 	else if (INSN_P (insn) && reg_set_p (reg, insn))
14627 	  break;
14628 
14629       /* If we found a place to put the link, place it there unless there
14630 	 is already a link to the same insn as LINK at that point.  */
14631 
14632       if (place)
14633 	{
14634 	  struct insn_link *link2;
14635 
14636 	  FOR_EACH_LOG_LINK (link2, place)
14637 	    if (link2->insn == link->insn && link2->regno == link->regno)
14638 	      break;
14639 
14640 	  if (link2 == NULL)
14641 	    {
14642 	      link->next = LOG_LINKS (place);
14643 	      LOG_LINKS (place) = link;
14644 
14645 	      /* Set added_links_insn to the earliest insn we added a
14646 		 link to.  */
14647 	      if (added_links_insn == 0
14648 		  || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14649 		added_links_insn = place;
14650 	    }
14651 	}
14652     }
14653 }
14654 
14655 /* Check for any register or memory mentioned in EQUIV that is not
14656    mentioned in EXPR.  This is used to restrict EQUIV to "specializations"
14657    of EXPR where some registers may have been replaced by constants.  */
14658 
14659 static bool
14660 unmentioned_reg_p (rtx equiv, rtx expr)
14661 {
14662   subrtx_iterator::array_type array;
14663   FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14664     {
14665       const_rtx x = *iter;
14666       if ((REG_P (x) || MEM_P (x))
14667 	  && !reg_mentioned_p (x, expr))
14668 	return true;
14669     }
14670   return false;
14671 }
14672 
14673 DEBUG_FUNCTION void
14674 dump_combine_stats (FILE *file)
14675 {
14676   fprintf
14677     (file,
14678      ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14679      combine_attempts, combine_merges, combine_extras, combine_successes);
14680 }
14681 
14682 void
14683 dump_combine_total_stats (FILE *file)
14684 {
14685   fprintf
14686     (file,
14687      "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14688      total_attempts, total_merges, total_extras, total_successes);
14689 }
14690 
14691 /* Try combining insns through substitution.  */
14692 static unsigned int
14693 rest_of_handle_combine (void)
14694 {
14695   int rebuild_jump_labels_after_combine;
14696 
14697   df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14698   df_note_add_problem ();
14699   df_analyze ();
14700 
14701   regstat_init_n_sets_and_refs ();
14702   reg_n_sets_max = max_reg_num ();
14703 
14704   rebuild_jump_labels_after_combine
14705     = combine_instructions (get_insns (), max_reg_num ());
14706 
14707   /* Combining insns may have turned an indirect jump into a
14708      direct jump.  Rebuild the JUMP_LABEL fields of jumping
14709      instructions.  */
14710   if (rebuild_jump_labels_after_combine)
14711     {
14712       if (dom_info_available_p (CDI_DOMINATORS))
14713 	free_dominance_info (CDI_DOMINATORS);
14714       timevar_push (TV_JUMP);
14715       rebuild_jump_labels (get_insns ());
14716       cleanup_cfg (0);
14717       timevar_pop (TV_JUMP);
14718     }
14719 
14720   regstat_free_n_sets_and_refs ();
14721   return 0;
14722 }
14723 
14724 namespace {
14725 
14726 const pass_data pass_data_combine =
14727 {
14728   RTL_PASS, /* type */
14729   "combine", /* name */
14730   OPTGROUP_NONE, /* optinfo_flags */
14731   TV_COMBINE, /* tv_id */
14732   PROP_cfglayout, /* properties_required */
14733   0, /* properties_provided */
14734   0, /* properties_destroyed */
14735   0, /* todo_flags_start */
14736   TODO_df_finish, /* todo_flags_finish */
14737 };
14738 
14739 class pass_combine : public rtl_opt_pass
14740 {
14741 public:
14742   pass_combine (gcc::context *ctxt)
14743     : rtl_opt_pass (pass_data_combine, ctxt)
14744   {}
14745 
14746   /* opt_pass methods: */
14747   virtual bool gate (function *) { return (optimize > 0); }
14748   virtual unsigned int execute (function *)
14749     {
14750       return rest_of_handle_combine ();
14751     }
14752 
14753 }; // class pass_combine
14754 
14755 } // anon namespace
14756 
14757 rtl_opt_pass *
14758 make_pass_combine (gcc::context *ctxt)
14759 {
14760   return new pass_combine (ctxt);
14761 }
14762