xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/combine.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Optimize by combining instructions for GNU compiler.
2    Copyright (C) 1987-2015 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21    Portable Optimizer, but redone to work on our list-structured
22    representation for RTL instead of their string representation.
23 
24    The LOG_LINKS of each insn identify the most recent assignment
25    to each REG used in the insn.  It is a list of previous insns,
26    each of which contains a SET for a REG that is used in this insn
27    and not used or set in between.  LOG_LINKs never cross basic blocks.
28    They were set up by the preceding pass (lifetime analysis).
29 
30    We try to combine each pair of insns joined by a logical link.
31    We also try to combine triplets of insns A, B and C when C has
32    a link back to B and B has a link back to A.  Likewise for a
33    small number of quadruplets of insns A, B, C and D for which
34    there's high likelihood of of success.
35 
36    LOG_LINKS does not have links for use of the CC0.  They don't
37    need to, because the insn that sets the CC0 is always immediately
38    before the insn that tests it.  So we always regard a branch
39    insn as having a logical link to the preceding insn.  The same is true
40    for an insn explicitly using CC0.
41 
42    We check (with use_crosses_set_p) to avoid combining in such a way
43    as to move a computation to a place where its value would be different.
44 
45    Combination is done by mathematically substituting the previous
46    insn(s) values for the regs they set into the expressions in
47    the later insns that refer to these regs.  If the result is a valid insn
48    for our target machine, according to the machine description,
49    we install it, delete the earlier insns, and update the data flow
50    information (LOG_LINKS and REG_NOTES) for what we did.
51 
52    There are a few exceptions where the dataflow information isn't
53    completely updated (however this is only a local issue since it is
54    regenerated before the next pass that uses it):
55 
56    - reg_live_length is not updated
57    - reg_n_refs is not adjusted in the rare case when a register is
58      no longer required in a computation
59    - there are extremely rare cases (see distribute_notes) when a
60      REG_DEAD note is lost
61    - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62      removed because there is no way to know which register it was
63      linking
64 
65    To simplify substitution, we combine only when the earlier insn(s)
66    consist of only a single assignment.  To simplify updating afterward,
67    we never combine when a subroutine call appears in the middle.
68 
69    Since we do not represent assignments to CC0 explicitly except when that
70    is all an insn does, there is no LOG_LINKS entry in an insn that uses
71    the condition code for the insn that set the condition code.
72    Fortunately, these two insns must be consecutive.
73    Therefore, every JUMP_INSN is taken to have an implicit logical link
74    to the preceding insn.  This is not quite right, since non-jumps can
75    also use the condition code; but in practice such insns would not
76    combine anyway.  */
77 
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "hash-set.h"
84 #include "machmode.h"
85 #include "vec.h"
86 #include "double-int.h"
87 #include "input.h"
88 #include "alias.h"
89 #include "symtab.h"
90 #include "wide-int.h"
91 #include "inchash.h"
92 #include "tree.h"
93 #include "stor-layout.h"
94 #include "tm_p.h"
95 #include "flags.h"
96 #include "regs.h"
97 #include "hard-reg-set.h"
98 #include "predict.h"
99 #include "function.h"
100 #include "dominance.h"
101 #include "cfg.h"
102 #include "cfgrtl.h"
103 #include "cfgcleanup.h"
104 #include "basic-block.h"
105 #include "insn-config.h"
106 /* Include expr.h after insn-config.h so we get HAVE_conditional_move.  */
107 #include "hashtab.h"
108 #include "statistics.h"
109 #include "real.h"
110 #include "fixed-value.h"
111 #include "expmed.h"
112 #include "dojump.h"
113 #include "explow.h"
114 #include "calls.h"
115 #include "emit-rtl.h"
116 #include "varasm.h"
117 #include "stmt.h"
118 #include "expr.h"
119 #include "insn-attr.h"
120 #include "recog.h"
121 #include "diagnostic-core.h"
122 #include "target.h"
123 #include "insn-codes.h"
124 #include "optabs.h"
125 #include "rtlhooks-def.h"
126 #include "params.h"
127 #include "tree-pass.h"
128 #include "df.h"
129 #include "valtrack.h"
130 #include "hash-map.h"
131 #include "is-a.h"
132 #include "plugin-api.h"
133 #include "ipa-ref.h"
134 #include "cgraph.h"
135 #include "obstack.h"
136 #include "rtl-iter.h"
137 
138 /* Number of attempts to combine instructions in this function.  */
139 
140 static int combine_attempts;
141 
142 /* Number of attempts that got as far as substitution in this function.  */
143 
144 static int combine_merges;
145 
146 /* Number of instructions combined with added SETs in this function.  */
147 
148 static int combine_extras;
149 
150 /* Number of instructions combined in this function.  */
151 
152 static int combine_successes;
153 
154 /* Totals over entire compilation.  */
155 
156 static int total_attempts, total_merges, total_extras, total_successes;
157 
158 /* combine_instructions may try to replace the right hand side of the
159    second instruction with the value of an associated REG_EQUAL note
160    before throwing it at try_combine.  That is problematic when there
161    is a REG_DEAD note for a register used in the old right hand side
162    and can cause distribute_notes to do wrong things.  This is the
163    second instruction if it has been so modified, null otherwise.  */
164 
165 static rtx_insn *i2mod;
166 
167 /* When I2MOD is nonnull, this is a copy of the old right hand side.  */
168 
169 static rtx i2mod_old_rhs;
170 
171 /* When I2MOD is nonnull, this is a copy of the new right hand side.  */
172 
173 static rtx i2mod_new_rhs;
174 
175 typedef struct reg_stat_struct {
176   /* Record last point of death of (hard or pseudo) register n.  */
177   rtx_insn			*last_death;
178 
179   /* Record last point of modification of (hard or pseudo) register n.  */
180   rtx_insn			*last_set;
181 
182   /* The next group of fields allows the recording of the last value assigned
183      to (hard or pseudo) register n.  We use this information to see if an
184      operation being processed is redundant given a prior operation performed
185      on the register.  For example, an `and' with a constant is redundant if
186      all the zero bits are already known to be turned off.
187 
188      We use an approach similar to that used by cse, but change it in the
189      following ways:
190 
191      (1) We do not want to reinitialize at each label.
192      (2) It is useful, but not critical, to know the actual value assigned
193 	 to a register.  Often just its form is helpful.
194 
195      Therefore, we maintain the following fields:
196 
197      last_set_value		the last value assigned
198      last_set_label		records the value of label_tick when the
199 				register was assigned
200      last_set_table_tick	records the value of label_tick when a
201 				value using the register is assigned
202      last_set_invalid		set to nonzero when it is not valid
203 				to use the value of this register in some
204 				register's value
205 
206      To understand the usage of these tables, it is important to understand
207      the distinction between the value in last_set_value being valid and
208      the register being validly contained in some other expression in the
209      table.
210 
211      (The next two parameters are out of date).
212 
213      reg_stat[i].last_set_value is valid if it is nonzero, and either
214      reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
215 
216      Register I may validly appear in any expression returned for the value
217      of another register if reg_n_sets[i] is 1.  It may also appear in the
218      value for register J if reg_stat[j].last_set_invalid is zero, or
219      reg_stat[i].last_set_label < reg_stat[j].last_set_label.
220 
221      If an expression is found in the table containing a register which may
222      not validly appear in an expression, the register is replaced by
223      something that won't match, (clobber (const_int 0)).  */
224 
225   /* Record last value assigned to (hard or pseudo) register n.  */
226 
227   rtx				last_set_value;
228 
229   /* Record the value of label_tick when an expression involving register n
230      is placed in last_set_value.  */
231 
232   int				last_set_table_tick;
233 
234   /* Record the value of label_tick when the value for register n is placed in
235      last_set_value.  */
236 
237   int				last_set_label;
238 
239   /* These fields are maintained in parallel with last_set_value and are
240      used to store the mode in which the register was last set, the bits
241      that were known to be zero when it was last set, and the number of
242      sign bits copies it was known to have when it was last set.  */
243 
244   unsigned HOST_WIDE_INT	last_set_nonzero_bits;
245   char				last_set_sign_bit_copies;
246   ENUM_BITFIELD(machine_mode)	last_set_mode : 8;
247 
248   /* Set nonzero if references to register n in expressions should not be
249      used.  last_set_invalid is set nonzero when this register is being
250      assigned to and last_set_table_tick == label_tick.  */
251 
252   char				last_set_invalid;
253 
254   /* Some registers that are set more than once and used in more than one
255      basic block are nevertheless always set in similar ways.  For example,
256      a QImode register may be loaded from memory in two places on a machine
257      where byte loads zero extend.
258 
259      We record in the following fields if a register has some leading bits
260      that are always equal to the sign bit, and what we know about the
261      nonzero bits of a register, specifically which bits are known to be
262      zero.
263 
264      If an entry is zero, it means that we don't know anything special.  */
265 
266   unsigned char			sign_bit_copies;
267 
268   unsigned HOST_WIDE_INT	nonzero_bits;
269 
270   /* Record the value of the label_tick when the last truncation
271      happened.  The field truncated_to_mode is only valid if
272      truncation_label == label_tick.  */
273 
274   int				truncation_label;
275 
276   /* Record the last truncation seen for this register.  If truncation
277      is not a nop to this mode we might be able to save an explicit
278      truncation if we know that value already contains a truncated
279      value.  */
280 
281   ENUM_BITFIELD(machine_mode)	truncated_to_mode : 8;
282 } reg_stat_type;
283 
284 
285 static vec<reg_stat_type> reg_stat;
286 
287 /* One plus the highest pseudo for which we track REG_N_SETS.
288    regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
289    but during combine_split_insns new pseudos can be created.  As we don't have
290    updated DF information in that case, it is hard to initialize the array
291    after growing.  The combiner only cares about REG_N_SETS (regno) == 1,
292    so instead of growing the arrays, just assume all newly created pseudos
293    during combine might be set multiple times.  */
294 
295 static unsigned int reg_n_sets_max;
296 
297 /* Record the luid of the last insn that invalidated memory
298    (anything that writes memory, and subroutine calls, but not pushes).  */
299 
300 static int mem_last_set;
301 
302 /* Record the luid of the last CALL_INSN
303    so we can tell whether a potential combination crosses any calls.  */
304 
305 static int last_call_luid;
306 
307 /* When `subst' is called, this is the insn that is being modified
308    (by combining in a previous insn).  The PATTERN of this insn
309    is still the old pattern partially modified and it should not be
310    looked at, but this may be used to examine the successors of the insn
311    to judge whether a simplification is valid.  */
312 
313 static rtx_insn *subst_insn;
314 
315 /* This is the lowest LUID that `subst' is currently dealing with.
316    get_last_value will not return a value if the register was set at or
317    after this LUID.  If not for this mechanism, we could get confused if
318    I2 or I1 in try_combine were an insn that used the old value of a register
319    to obtain a new value.  In that case, we might erroneously get the
320    new value of the register when we wanted the old one.  */
321 
322 static int subst_low_luid;
323 
324 /* This contains any hard registers that are used in newpat; reg_dead_at_p
325    must consider all these registers to be always live.  */
326 
327 static HARD_REG_SET newpat_used_regs;
328 
329 /* This is an insn to which a LOG_LINKS entry has been added.  If this
330    insn is the earlier than I2 or I3, combine should rescan starting at
331    that location.  */
332 
333 static rtx_insn *added_links_insn;
334 
335 /* Basic block in which we are performing combines.  */
336 static basic_block this_basic_block;
337 static bool optimize_this_for_speed_p;
338 
339 
340 /* Length of the currently allocated uid_insn_cost array.  */
341 
342 static int max_uid_known;
343 
344 /* The following array records the insn_rtx_cost for every insn
345    in the instruction stream.  */
346 
347 static int *uid_insn_cost;
348 
349 /* The following array records the LOG_LINKS for every insn in the
350    instruction stream as struct insn_link pointers.  */
351 
352 struct insn_link {
353   rtx_insn *insn;
354   unsigned int regno;
355   struct insn_link *next;
356 };
357 
358 static struct insn_link **uid_log_links;
359 
360 #define INSN_COST(INSN)		(uid_insn_cost[INSN_UID (INSN)])
361 #define LOG_LINKS(INSN)		(uid_log_links[INSN_UID (INSN)])
362 
363 #define FOR_EACH_LOG_LINK(L, INSN)				\
364   for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
365 
366 /* Links for LOG_LINKS are allocated from this obstack.  */
367 
368 static struct obstack insn_link_obstack;
369 
370 /* Allocate a link.  */
371 
372 static inline struct insn_link *
373 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
374 {
375   struct insn_link *l
376     = (struct insn_link *) obstack_alloc (&insn_link_obstack,
377 					  sizeof (struct insn_link));
378   l->insn = insn;
379   l->regno = regno;
380   l->next = next;
381   return l;
382 }
383 
384 /* Incremented for each basic block.  */
385 
386 static int label_tick;
387 
388 /* Reset to label_tick for each extended basic block in scanning order.  */
389 
390 static int label_tick_ebb_start;
391 
392 /* Mode used to compute significance in reg_stat[].nonzero_bits.  It is the
393    largest integer mode that can fit in HOST_BITS_PER_WIDE_INT.  */
394 
395 static machine_mode nonzero_bits_mode;
396 
397 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
398    be safely used.  It is zero while computing them and after combine has
399    completed.  This former test prevents propagating values based on
400    previously set values, which can be incorrect if a variable is modified
401    in a loop.  */
402 
403 static int nonzero_sign_valid;
404 
405 
406 /* Record one modification to rtl structure
407    to be undone by storing old_contents into *where.  */
408 
409 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
410 
411 struct undo
412 {
413   struct undo *next;
414   enum undo_kind kind;
415   union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
416   union { rtx *r; int *i; struct insn_link **l; } where;
417 };
418 
419 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
420    num_undo says how many are currently recorded.
421 
422    other_insn is nonzero if we have modified some other insn in the process
423    of working on subst_insn.  It must be verified too.  */
424 
425 struct undobuf
426 {
427   struct undo *undos;
428   struct undo *frees;
429   rtx_insn *other_insn;
430 };
431 
432 static struct undobuf undobuf;
433 
434 /* Number of times the pseudo being substituted for
435    was found and replaced.  */
436 
437 static int n_occurrences;
438 
439 static rtx reg_nonzero_bits_for_combine (const_rtx, machine_mode, const_rtx,
440 					 machine_mode,
441 					 unsigned HOST_WIDE_INT,
442 					 unsigned HOST_WIDE_INT *);
443 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, machine_mode, const_rtx,
444 						machine_mode,
445 						unsigned int, unsigned int *);
446 static void do_SUBST (rtx *, rtx);
447 static void do_SUBST_INT (int *, int);
448 static void init_reg_last (void);
449 static void setup_incoming_promotions (rtx_insn *);
450 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
451 static int cant_combine_insn_p (rtx_insn *);
452 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
453 			  rtx_insn *, rtx_insn *, rtx *, rtx *);
454 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
455 static int contains_muldiv (rtx);
456 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
457 			      int *, rtx_insn *);
458 static void undo_all (void);
459 static void undo_commit (void);
460 static rtx *find_split_point (rtx *, rtx_insn *, bool);
461 static rtx subst (rtx, rtx, rtx, int, int, int);
462 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
463 static rtx simplify_if_then_else (rtx);
464 static rtx simplify_set (rtx);
465 static rtx simplify_logical (rtx);
466 static rtx expand_compound_operation (rtx);
467 static const_rtx expand_field_assignment (const_rtx);
468 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
469 			    rtx, unsigned HOST_WIDE_INT, int, int, int);
470 static rtx extract_left_shift (rtx, int);
471 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
472 			      unsigned HOST_WIDE_INT *);
473 static rtx canon_reg_for_combine (rtx, rtx);
474 static rtx force_to_mode (rtx, machine_mode,
475 			  unsigned HOST_WIDE_INT, int);
476 static rtx if_then_else_cond (rtx, rtx *, rtx *);
477 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
478 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
479 static rtx make_field_assignment (rtx);
480 static rtx apply_distributive_law (rtx);
481 static rtx distribute_and_simplify_rtx (rtx, int);
482 static rtx simplify_and_const_int_1 (machine_mode, rtx,
483 				     unsigned HOST_WIDE_INT);
484 static rtx simplify_and_const_int (rtx, machine_mode, rtx,
485 				   unsigned HOST_WIDE_INT);
486 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
487 			    HOST_WIDE_INT, machine_mode, int *);
488 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
489 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
490 				 int);
491 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
492 static rtx gen_lowpart_for_combine (machine_mode, rtx);
493 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
494 					     rtx, rtx *);
495 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
496 static void update_table_tick (rtx);
497 static void record_value_for_reg (rtx, rtx_insn *, rtx);
498 static void check_promoted_subreg (rtx_insn *, rtx);
499 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
500 static void record_dead_and_set_regs (rtx_insn *);
501 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
502 static rtx get_last_value (const_rtx);
503 static int use_crosses_set_p (const_rtx, int);
504 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
505 static int reg_dead_at_p (rtx, rtx_insn *);
506 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
507 static int reg_bitfield_target_p (rtx, rtx);
508 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
509 static void distribute_links (struct insn_link *);
510 static void mark_used_regs_combine (rtx);
511 static void record_promoted_value (rtx_insn *, rtx);
512 static bool unmentioned_reg_p (rtx, rtx);
513 static void record_truncated_values (rtx *, void *);
514 static bool reg_truncated_to_mode (machine_mode, const_rtx);
515 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
516 
517 
518 /* It is not safe to use ordinary gen_lowpart in combine.
519    See comments in gen_lowpart_for_combine.  */
520 #undef RTL_HOOKS_GEN_LOWPART
521 #define RTL_HOOKS_GEN_LOWPART              gen_lowpart_for_combine
522 
523 /* Our implementation of gen_lowpart never emits a new pseudo.  */
524 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
525 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT      gen_lowpart_for_combine
526 
527 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
528 #define RTL_HOOKS_REG_NONZERO_REG_BITS     reg_nonzero_bits_for_combine
529 
530 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
531 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES  reg_num_sign_bit_copies_for_combine
532 
533 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
534 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE    reg_truncated_to_mode
535 
536 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
537 
538 
539 /* Convenience wrapper for the canonicalize_comparison target hook.
540    Target hooks cannot use enum rtx_code.  */
541 static inline void
542 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
543 				bool op0_preserve_value)
544 {
545   int code_int = (int)*code;
546   targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
547   *code = (enum rtx_code)code_int;
548 }
549 
550 /* Try to split PATTERN found in INSN.  This returns NULL_RTX if
551    PATTERN can not be split.  Otherwise, it returns an insn sequence.
552    This is a wrapper around split_insns which ensures that the
553    reg_stat vector is made larger if the splitter creates a new
554    register.  */
555 
556 static rtx_insn *
557 combine_split_insns (rtx pattern, rtx insn)
558 {
559   rtx_insn *ret;
560   unsigned int nregs;
561 
562   ret = safe_as_a <rtx_insn *> (split_insns (pattern, insn));
563   nregs = max_reg_num ();
564   if (nregs > reg_stat.length ())
565     reg_stat.safe_grow_cleared (nregs);
566   return ret;
567 }
568 
569 /* This is used by find_single_use to locate an rtx in LOC that
570    contains exactly one use of DEST, which is typically either a REG
571    or CC0.  It returns a pointer to the innermost rtx expression
572    containing DEST.  Appearances of DEST that are being used to
573    totally replace it are not counted.  */
574 
575 static rtx *
576 find_single_use_1 (rtx dest, rtx *loc)
577 {
578   rtx x = *loc;
579   enum rtx_code code = GET_CODE (x);
580   rtx *result = NULL;
581   rtx *this_result;
582   int i;
583   const char *fmt;
584 
585   switch (code)
586     {
587     case CONST:
588     case LABEL_REF:
589     case SYMBOL_REF:
590     CASE_CONST_ANY:
591     case CLOBBER:
592       return 0;
593 
594     case SET:
595       /* If the destination is anything other than CC0, PC, a REG or a SUBREG
596 	 of a REG that occupies all of the REG, the insn uses DEST if
597 	 it is mentioned in the destination or the source.  Otherwise, we
598 	 need just check the source.  */
599       if (GET_CODE (SET_DEST (x)) != CC0
600 	  && GET_CODE (SET_DEST (x)) != PC
601 	  && !REG_P (SET_DEST (x))
602 	  && ! (GET_CODE (SET_DEST (x)) == SUBREG
603 		&& REG_P (SUBREG_REG (SET_DEST (x)))
604 		&& (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
605 		      + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
606 		    == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
607 			 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
608 	break;
609 
610       return find_single_use_1 (dest, &SET_SRC (x));
611 
612     case MEM:
613     case SUBREG:
614       return find_single_use_1 (dest, &XEXP (x, 0));
615 
616     default:
617       break;
618     }
619 
620   /* If it wasn't one of the common cases above, check each expression and
621      vector of this code.  Look for a unique usage of DEST.  */
622 
623   fmt = GET_RTX_FORMAT (code);
624   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
625     {
626       if (fmt[i] == 'e')
627 	{
628 	  if (dest == XEXP (x, i)
629 	      || (REG_P (dest) && REG_P (XEXP (x, i))
630 		  && REGNO (dest) == REGNO (XEXP (x, i))))
631 	    this_result = loc;
632 	  else
633 	    this_result = find_single_use_1 (dest, &XEXP (x, i));
634 
635 	  if (result == NULL)
636 	    result = this_result;
637 	  else if (this_result)
638 	    /* Duplicate usage.  */
639 	    return NULL;
640 	}
641       else if (fmt[i] == 'E')
642 	{
643 	  int j;
644 
645 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
646 	    {
647 	      if (XVECEXP (x, i, j) == dest
648 		  || (REG_P (dest)
649 		      && REG_P (XVECEXP (x, i, j))
650 		      && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
651 		this_result = loc;
652 	      else
653 		this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
654 
655 	      if (result == NULL)
656 		result = this_result;
657 	      else if (this_result)
658 		return NULL;
659 	    }
660 	}
661     }
662 
663   return result;
664 }
665 
666 
667 /* See if DEST, produced in INSN, is used only a single time in the
668    sequel.  If so, return a pointer to the innermost rtx expression in which
669    it is used.
670 
671    If PLOC is nonzero, *PLOC is set to the insn containing the single use.
672 
673    If DEST is cc0_rtx, we look only at the next insn.  In that case, we don't
674    care about REG_DEAD notes or LOG_LINKS.
675 
676    Otherwise, we find the single use by finding an insn that has a
677    LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST.  If DEST is
678    only referenced once in that insn, we know that it must be the first
679    and last insn referencing DEST.  */
680 
681 static rtx *
682 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
683 {
684   basic_block bb;
685   rtx_insn *next;
686   rtx *result;
687   struct insn_link *link;
688 
689 #ifdef HAVE_cc0
690   if (dest == cc0_rtx)
691     {
692       next = NEXT_INSN (insn);
693       if (next == 0
694 	  || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
695 	return 0;
696 
697       result = find_single_use_1 (dest, &PATTERN (next));
698       if (result && ploc)
699 	*ploc = next;
700       return result;
701     }
702 #endif
703 
704   if (!REG_P (dest))
705     return 0;
706 
707   bb = BLOCK_FOR_INSN (insn);
708   for (next = NEXT_INSN (insn);
709        next && BLOCK_FOR_INSN (next) == bb;
710        next = NEXT_INSN (next))
711     if (INSN_P (next) && dead_or_set_p (next, dest))
712       {
713 	FOR_EACH_LOG_LINK (link, next)
714 	  if (link->insn == insn && link->regno == REGNO (dest))
715 	    break;
716 
717 	if (link)
718 	  {
719 	    result = find_single_use_1 (dest, &PATTERN (next));
720 	    if (ploc)
721 	      *ploc = next;
722 	    return result;
723 	  }
724       }
725 
726   return 0;
727 }
728 
729 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
730    insn.  The substitution can be undone by undo_all.  If INTO is already
731    set to NEWVAL, do not record this change.  Because computing NEWVAL might
732    also call SUBST, we have to compute it before we put anything into
733    the undo table.  */
734 
735 static void
736 do_SUBST (rtx *into, rtx newval)
737 {
738   struct undo *buf;
739   rtx oldval = *into;
740 
741   if (oldval == newval)
742     return;
743 
744   /* We'd like to catch as many invalid transformations here as
745      possible.  Unfortunately, there are way too many mode changes
746      that are perfectly valid, so we'd waste too much effort for
747      little gain doing the checks here.  Focus on catching invalid
748      transformations involving integer constants.  */
749   if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
750       && CONST_INT_P (newval))
751     {
752       /* Sanity check that we're replacing oldval with a CONST_INT
753 	 that is a valid sign-extension for the original mode.  */
754       gcc_assert (INTVAL (newval)
755 		  == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
756 
757       /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
758 	 CONST_INT is not valid, because after the replacement, the
759 	 original mode would be gone.  Unfortunately, we can't tell
760 	 when do_SUBST is called to replace the operand thereof, so we
761 	 perform this test on oldval instead, checking whether an
762 	 invalid replacement took place before we got here.  */
763       gcc_assert (!(GET_CODE (oldval) == SUBREG
764 		    && CONST_INT_P (SUBREG_REG (oldval))));
765       gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
766 		    && CONST_INT_P (XEXP (oldval, 0))));
767     }
768 
769   if (undobuf.frees)
770     buf = undobuf.frees, undobuf.frees = buf->next;
771   else
772     buf = XNEW (struct undo);
773 
774   buf->kind = UNDO_RTX;
775   buf->where.r = into;
776   buf->old_contents.r = oldval;
777   *into = newval;
778 
779   buf->next = undobuf.undos, undobuf.undos = buf;
780 }
781 
782 #define SUBST(INTO, NEWVAL)	do_SUBST (&(INTO), (NEWVAL))
783 
784 /* Similar to SUBST, but NEWVAL is an int expression.  Note that substitution
785    for the value of a HOST_WIDE_INT value (including CONST_INT) is
786    not safe.  */
787 
788 static void
789 do_SUBST_INT (int *into, int newval)
790 {
791   struct undo *buf;
792   int oldval = *into;
793 
794   if (oldval == newval)
795     return;
796 
797   if (undobuf.frees)
798     buf = undobuf.frees, undobuf.frees = buf->next;
799   else
800     buf = XNEW (struct undo);
801 
802   buf->kind = UNDO_INT;
803   buf->where.i = into;
804   buf->old_contents.i = oldval;
805   *into = newval;
806 
807   buf->next = undobuf.undos, undobuf.undos = buf;
808 }
809 
810 #define SUBST_INT(INTO, NEWVAL)  do_SUBST_INT (&(INTO), (NEWVAL))
811 
812 /* Similar to SUBST, but just substitute the mode.  This is used when
813    changing the mode of a pseudo-register, so that any other
814    references to the entry in the regno_reg_rtx array will change as
815    well.  */
816 
817 static void
818 do_SUBST_MODE (rtx *into, machine_mode newval)
819 {
820   struct undo *buf;
821   machine_mode oldval = GET_MODE (*into);
822 
823   if (oldval == newval)
824     return;
825 
826   if (undobuf.frees)
827     buf = undobuf.frees, undobuf.frees = buf->next;
828   else
829     buf = XNEW (struct undo);
830 
831   buf->kind = UNDO_MODE;
832   buf->where.r = into;
833   buf->old_contents.m = oldval;
834   adjust_reg_mode (*into, newval);
835 
836   buf->next = undobuf.undos, undobuf.undos = buf;
837 }
838 
839 #define SUBST_MODE(INTO, NEWVAL)  do_SUBST_MODE (&(INTO), (NEWVAL))
840 
841 #ifndef HAVE_cc0
842 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression.  */
843 
844 static void
845 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
846 {
847   struct undo *buf;
848   struct insn_link * oldval = *into;
849 
850   if (oldval == newval)
851     return;
852 
853   if (undobuf.frees)
854     buf = undobuf.frees, undobuf.frees = buf->next;
855   else
856     buf = XNEW (struct undo);
857 
858   buf->kind = UNDO_LINKS;
859   buf->where.l = into;
860   buf->old_contents.l = oldval;
861   *into = newval;
862 
863   buf->next = undobuf.undos, undobuf.undos = buf;
864 }
865 
866 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
867 #endif
868 
869 /* Subroutine of try_combine.  Determine whether the replacement patterns
870    NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
871    than the original sequence I0, I1, I2, I3 and undobuf.other_insn.  Note
872    that I0, I1 and/or NEWI2PAT may be NULL_RTX.  Similarly, NEWOTHERPAT and
873    undobuf.other_insn may also both be NULL_RTX.  Return false if the cost
874    of all the instructions can be estimated and the replacements are more
875    expensive than the original sequence.  */
876 
877 static bool
878 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
879 		       rtx newpat, rtx newi2pat, rtx newotherpat)
880 {
881   int i0_cost, i1_cost, i2_cost, i3_cost;
882   int new_i2_cost, new_i3_cost;
883   int old_cost, new_cost;
884 
885   /* Lookup the original insn_rtx_costs.  */
886   i2_cost = INSN_COST (i2);
887   i3_cost = INSN_COST (i3);
888 
889   if (i1)
890     {
891       i1_cost = INSN_COST (i1);
892       if (i0)
893 	{
894 	  i0_cost = INSN_COST (i0);
895 	  old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
896 		      ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
897 	}
898       else
899 	{
900 	  old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
901 		      ? i1_cost + i2_cost + i3_cost : 0);
902 	  i0_cost = 0;
903 	}
904     }
905   else
906     {
907       old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
908       i1_cost = i0_cost = 0;
909     }
910 
911   /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
912      correct that.  */
913   if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
914     old_cost -= i1_cost;
915 
916 
917   /* Calculate the replacement insn_rtx_costs.  */
918   new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
919   if (newi2pat)
920     {
921       new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
922       new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
923 		 ? new_i2_cost + new_i3_cost : 0;
924     }
925   else
926     {
927       new_cost = new_i3_cost;
928       new_i2_cost = 0;
929     }
930 
931   if (undobuf.other_insn)
932     {
933       int old_other_cost, new_other_cost;
934 
935       old_other_cost = INSN_COST (undobuf.other_insn);
936       new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
937       if (old_other_cost > 0 && new_other_cost > 0)
938 	{
939 	  old_cost += old_other_cost;
940 	  new_cost += new_other_cost;
941 	}
942       else
943 	old_cost = 0;
944     }
945 
946   /* Disallow this combination if both new_cost and old_cost are greater than
947      zero, and new_cost is greater than old cost.  */
948   int reject = old_cost > 0 && new_cost > old_cost;
949 
950   if (dump_file)
951     {
952       fprintf (dump_file, "%s combination of insns ",
953 	       reject ? "rejecting" : "allowing");
954       if (i0)
955 	fprintf (dump_file, "%d, ", INSN_UID (i0));
956       if (i1 && INSN_UID (i1) != INSN_UID (i2))
957 	fprintf (dump_file, "%d, ", INSN_UID (i1));
958       fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
959 
960       fprintf (dump_file, "original costs ");
961       if (i0)
962 	fprintf (dump_file, "%d + ", i0_cost);
963       if (i1 && INSN_UID (i1) != INSN_UID (i2))
964 	fprintf (dump_file, "%d + ", i1_cost);
965       fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
966 
967       if (newi2pat)
968 	fprintf (dump_file, "replacement costs %d + %d = %d\n",
969 		 new_i2_cost, new_i3_cost, new_cost);
970       else
971 	fprintf (dump_file, "replacement cost %d\n", new_cost);
972     }
973 
974   if (reject)
975     return false;
976 
977   /* Update the uid_insn_cost array with the replacement costs.  */
978   INSN_COST (i2) = new_i2_cost;
979   INSN_COST (i3) = new_i3_cost;
980   if (i1)
981     {
982       INSN_COST (i1) = 0;
983       if (i0)
984 	INSN_COST (i0) = 0;
985     }
986 
987   return true;
988 }
989 
990 
991 /* Delete any insns that copy a register to itself.  */
992 
993 static void
994 delete_noop_moves (void)
995 {
996   rtx_insn *insn, *next;
997   basic_block bb;
998 
999   FOR_EACH_BB_FN (bb, cfun)
1000     {
1001       for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
1002 	{
1003 	  next = NEXT_INSN (insn);
1004 	  if (INSN_P (insn) && noop_move_p (insn))
1005 	    {
1006 	      if (dump_file)
1007 		fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
1008 
1009 	      delete_insn_and_edges (insn);
1010 	    }
1011 	}
1012     }
1013 }
1014 
1015 
1016 /* Return false if we do not want to (or cannot) combine DEF.  */
1017 static bool
1018 can_combine_def_p (df_ref def)
1019 {
1020   /* Do not consider if it is pre/post modification in MEM.  */
1021   if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1022     return false;
1023 
1024   unsigned int regno = DF_REF_REGNO (def);
1025 
1026   /* Do not combine frame pointer adjustments.  */
1027   if ((regno == FRAME_POINTER_REGNUM
1028        && (!reload_completed || frame_pointer_needed))
1029 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1030       || (regno == HARD_FRAME_POINTER_REGNUM
1031 	  && (!reload_completed || frame_pointer_needed))
1032 #endif
1033 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1034       || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1035 #endif
1036       )
1037     return false;
1038 
1039   return true;
1040 }
1041 
1042 /* Return false if we do not want to (or cannot) combine USE.  */
1043 static bool
1044 can_combine_use_p (df_ref use)
1045 {
1046   /* Do not consider the usage of the stack pointer by function call.  */
1047   if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1048     return false;
1049 
1050   return true;
1051 }
1052 
1053 /* Fill in log links field for all insns.  */
1054 
1055 static void
1056 create_log_links (void)
1057 {
1058   basic_block bb;
1059   rtx_insn **next_use;
1060   rtx_insn *insn;
1061   df_ref def, use;
1062 
1063   next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1064 
1065   /* Pass through each block from the end, recording the uses of each
1066      register and establishing log links when def is encountered.
1067      Note that we do not clear next_use array in order to save time,
1068      so we have to test whether the use is in the same basic block as def.
1069 
1070      There are a few cases below when we do not consider the definition or
1071      usage -- these are taken from original flow.c did. Don't ask me why it is
1072      done this way; I don't know and if it works, I don't want to know.  */
1073 
1074   FOR_EACH_BB_FN (bb, cfun)
1075     {
1076       FOR_BB_INSNS_REVERSE (bb, insn)
1077         {
1078           if (!NONDEBUG_INSN_P (insn))
1079             continue;
1080 
1081 	  /* Log links are created only once.  */
1082 	  gcc_assert (!LOG_LINKS (insn));
1083 
1084 	  FOR_EACH_INSN_DEF (def, insn)
1085             {
1086               unsigned int regno = DF_REF_REGNO (def);
1087               rtx_insn *use_insn;
1088 
1089               if (!next_use[regno])
1090                 continue;
1091 
1092 	      if (!can_combine_def_p (def))
1093 		continue;
1094 
1095 	      use_insn = next_use[regno];
1096 	      next_use[regno] = NULL;
1097 
1098 	      if (BLOCK_FOR_INSN (use_insn) != bb)
1099 		continue;
1100 
1101 	      /* flow.c claimed:
1102 
1103 		 We don't build a LOG_LINK for hard registers contained
1104 		 in ASM_OPERANDs.  If these registers get replaced,
1105 		 we might wind up changing the semantics of the insn,
1106 		 even if reload can make what appear to be valid
1107 		 assignments later.  */
1108 	      if (regno < FIRST_PSEUDO_REGISTER
1109 		  && asm_noperands (PATTERN (use_insn)) >= 0)
1110 		continue;
1111 
1112 	      /* Don't add duplicate links between instructions.  */
1113 	      struct insn_link *links;
1114 	      FOR_EACH_LOG_LINK (links, use_insn)
1115 	        if (insn == links->insn && regno == links->regno)
1116 		  break;
1117 
1118 	      if (!links)
1119 		LOG_LINKS (use_insn)
1120 		  = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1121             }
1122 
1123 	  FOR_EACH_INSN_USE (use, insn)
1124 	    if (can_combine_use_p (use))
1125 	      next_use[DF_REF_REGNO (use)] = insn;
1126         }
1127     }
1128 
1129   free (next_use);
1130 }
1131 
1132 /* Walk the LOG_LINKS of insn B to see if we find a reference to A.  Return
1133    true if we found a LOG_LINK that proves that A feeds B.  This only works
1134    if there are no instructions between A and B which could have a link
1135    depending on A, since in that case we would not record a link for B.
1136    We also check the implicit dependency created by a cc0 setter/user
1137    pair.  */
1138 
1139 static bool
1140 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1141 {
1142   struct insn_link *links;
1143   FOR_EACH_LOG_LINK (links, b)
1144     if (links->insn == a)
1145       return true;
1146 #ifdef HAVE_cc0
1147   if (sets_cc0_p (a))
1148     return true;
1149 #endif
1150   return false;
1151 }
1152 
1153 /* Main entry point for combiner.  F is the first insn of the function.
1154    NREGS is the first unused pseudo-reg number.
1155 
1156    Return nonzero if the combiner has turned an indirect jump
1157    instruction into a direct jump.  */
1158 static int
1159 combine_instructions (rtx_insn *f, unsigned int nregs)
1160 {
1161   rtx_insn *insn, *next;
1162 #ifdef HAVE_cc0
1163   rtx_insn *prev;
1164 #endif
1165   struct insn_link *links, *nextlinks;
1166   rtx_insn *first;
1167   basic_block last_bb;
1168 
1169   int new_direct_jump_p = 0;
1170 
1171   for (first = f; first && !INSN_P (first); )
1172     first = NEXT_INSN (first);
1173   if (!first)
1174     return 0;
1175 
1176   combine_attempts = 0;
1177   combine_merges = 0;
1178   combine_extras = 0;
1179   combine_successes = 0;
1180 
1181   rtl_hooks = combine_rtl_hooks;
1182 
1183   reg_stat.safe_grow_cleared (nregs);
1184 
1185   init_recog_no_volatile ();
1186 
1187   /* Allocate array for insn info.  */
1188   max_uid_known = get_max_uid ();
1189   uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1190   uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1191   gcc_obstack_init (&insn_link_obstack);
1192 
1193   nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1194 
1195   /* Don't use reg_stat[].nonzero_bits when computing it.  This can cause
1196      problems when, for example, we have j <<= 1 in a loop.  */
1197 
1198   nonzero_sign_valid = 0;
1199   label_tick = label_tick_ebb_start = 1;
1200 
1201   /* Scan all SETs and see if we can deduce anything about what
1202      bits are known to be zero for some registers and how many copies
1203      of the sign bit are known to exist for those registers.
1204 
1205      Also set any known values so that we can use it while searching
1206      for what bits are known to be set.  */
1207 
1208   setup_incoming_promotions (first);
1209   /* Allow the entry block and the first block to fall into the same EBB.
1210      Conceptually the incoming promotions are assigned to the entry block.  */
1211   last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1212 
1213   create_log_links ();
1214   FOR_EACH_BB_FN (this_basic_block, cfun)
1215     {
1216       optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1217       last_call_luid = 0;
1218       mem_last_set = -1;
1219 
1220       label_tick++;
1221       if (!single_pred_p (this_basic_block)
1222 	  || single_pred (this_basic_block) != last_bb)
1223 	label_tick_ebb_start = label_tick;
1224       last_bb = this_basic_block;
1225 
1226       FOR_BB_INSNS (this_basic_block, insn)
1227         if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1228 	  {
1229 #ifdef AUTO_INC_DEC
1230             rtx links;
1231 #endif
1232 
1233             subst_low_luid = DF_INSN_LUID (insn);
1234             subst_insn = insn;
1235 
1236 	    note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1237 		         insn);
1238 	    record_dead_and_set_regs (insn);
1239 
1240 #ifdef AUTO_INC_DEC
1241 	    for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1242 	      if (REG_NOTE_KIND (links) == REG_INC)
1243 	        set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1244 						  insn);
1245 #endif
1246 
1247 	    /* Record the current insn_rtx_cost of this instruction.  */
1248 	    if (NONJUMP_INSN_P (insn))
1249 	      INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1250 	      					optimize_this_for_speed_p);
1251 	    if (dump_file)
1252 	      fprintf (dump_file, "insn_cost %d: %d\n",
1253 		       INSN_UID (insn), INSN_COST (insn));
1254 	  }
1255     }
1256 
1257   nonzero_sign_valid = 1;
1258 
1259   /* Now scan all the insns in forward order.  */
1260   label_tick = label_tick_ebb_start = 1;
1261   init_reg_last ();
1262   setup_incoming_promotions (first);
1263   last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1264   int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1265 
1266   FOR_EACH_BB_FN (this_basic_block, cfun)
1267     {
1268       rtx_insn *last_combined_insn = NULL;
1269       optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1270       last_call_luid = 0;
1271       mem_last_set = -1;
1272 
1273       label_tick++;
1274       if (!single_pred_p (this_basic_block)
1275 	  || single_pred (this_basic_block) != last_bb)
1276 	label_tick_ebb_start = label_tick;
1277       last_bb = this_basic_block;
1278 
1279       rtl_profile_for_bb (this_basic_block);
1280       for (insn = BB_HEAD (this_basic_block);
1281 	   insn != NEXT_INSN (BB_END (this_basic_block));
1282 	   insn = next ? next : NEXT_INSN (insn))
1283 	{
1284 	  next = 0;
1285 	  if (!NONDEBUG_INSN_P (insn))
1286 	    continue;
1287 
1288 	  while (last_combined_insn
1289 		 && last_combined_insn->deleted ())
1290 	    last_combined_insn = PREV_INSN (last_combined_insn);
1291 	  if (last_combined_insn == NULL_RTX
1292 	      || BARRIER_P (last_combined_insn)
1293 	      || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1294 	      || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1295 	    last_combined_insn = insn;
1296 
1297 	  /* See if we know about function return values before this
1298 	     insn based upon SUBREG flags.  */
1299 	  check_promoted_subreg (insn, PATTERN (insn));
1300 
1301 	  /* See if we can find hardregs and subreg of pseudos in
1302 	     narrower modes.  This could help turning TRUNCATEs
1303 	     into SUBREGs.  */
1304 	  note_uses (&PATTERN (insn), record_truncated_values, NULL);
1305 
1306 	  /* Try this insn with each insn it links back to.  */
1307 
1308 	  FOR_EACH_LOG_LINK (links, insn)
1309 	    if ((next = try_combine (insn, links->insn, NULL,
1310 				     NULL, &new_direct_jump_p,
1311 				     last_combined_insn)) != 0)
1312 	      {
1313 		statistics_counter_event (cfun, "two-insn combine", 1);
1314 		goto retry;
1315 	      }
1316 
1317 	  /* Try each sequence of three linked insns ending with this one.  */
1318 
1319 	  if (max_combine >= 3)
1320 	    FOR_EACH_LOG_LINK (links, insn)
1321 	      {
1322 		rtx_insn *link = links->insn;
1323 
1324 		/* If the linked insn has been replaced by a note, then there
1325 		   is no point in pursuing this chain any further.  */
1326 		if (NOTE_P (link))
1327 		  continue;
1328 
1329 		FOR_EACH_LOG_LINK (nextlinks, link)
1330 		  if ((next = try_combine (insn, link, nextlinks->insn,
1331 					   NULL, &new_direct_jump_p,
1332 					   last_combined_insn)) != 0)
1333 		    {
1334 		      statistics_counter_event (cfun, "three-insn combine", 1);
1335 		      goto retry;
1336 		    }
1337 	      }
1338 
1339 #ifdef HAVE_cc0
1340 	  /* Try to combine a jump insn that uses CC0
1341 	     with a preceding insn that sets CC0, and maybe with its
1342 	     logical predecessor as well.
1343 	     This is how we make decrement-and-branch insns.
1344 	     We need this special code because data flow connections
1345 	     via CC0 do not get entered in LOG_LINKS.  */
1346 
1347 	  if (JUMP_P (insn)
1348 	      && (prev = prev_nonnote_insn (insn)) != 0
1349 	      && NONJUMP_INSN_P (prev)
1350 	      && sets_cc0_p (PATTERN (prev)))
1351 	    {
1352 	      if ((next = try_combine (insn, prev, NULL, NULL,
1353 				       &new_direct_jump_p,
1354 				       last_combined_insn)) != 0)
1355 		goto retry;
1356 
1357 	      FOR_EACH_LOG_LINK (nextlinks, prev)
1358 		  if ((next = try_combine (insn, prev, nextlinks->insn,
1359 					   NULL, &new_direct_jump_p,
1360 					   last_combined_insn)) != 0)
1361 		    goto retry;
1362 	    }
1363 
1364 	  /* Do the same for an insn that explicitly references CC0.  */
1365 	  if (NONJUMP_INSN_P (insn)
1366 	      && (prev = prev_nonnote_insn (insn)) != 0
1367 	      && NONJUMP_INSN_P (prev)
1368 	      && sets_cc0_p (PATTERN (prev))
1369 	      && GET_CODE (PATTERN (insn)) == SET
1370 	      && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1371 	    {
1372 	      if ((next = try_combine (insn, prev, NULL, NULL,
1373 				       &new_direct_jump_p,
1374 				       last_combined_insn)) != 0)
1375 		goto retry;
1376 
1377 	      FOR_EACH_LOG_LINK (nextlinks, prev)
1378 		  if ((next = try_combine (insn, prev, nextlinks->insn,
1379 					   NULL, &new_direct_jump_p,
1380 					   last_combined_insn)) != 0)
1381 		    goto retry;
1382 	    }
1383 
1384 	  /* Finally, see if any of the insns that this insn links to
1385 	     explicitly references CC0.  If so, try this insn, that insn,
1386 	     and its predecessor if it sets CC0.  */
1387 	  FOR_EACH_LOG_LINK (links, insn)
1388 	      if (NONJUMP_INSN_P (links->insn)
1389 		  && GET_CODE (PATTERN (links->insn)) == SET
1390 		  && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1391 		  && (prev = prev_nonnote_insn (links->insn)) != 0
1392 		  && NONJUMP_INSN_P (prev)
1393 		  && sets_cc0_p (PATTERN (prev))
1394 		  && (next = try_combine (insn, links->insn,
1395 					  prev, NULL, &new_direct_jump_p,
1396 					  last_combined_insn)) != 0)
1397 		goto retry;
1398 #endif
1399 
1400 	  /* Try combining an insn with two different insns whose results it
1401 	     uses.  */
1402 	  if (max_combine >= 3)
1403 	    FOR_EACH_LOG_LINK (links, insn)
1404 	      for (nextlinks = links->next; nextlinks;
1405 		   nextlinks = nextlinks->next)
1406 		if ((next = try_combine (insn, links->insn,
1407 					 nextlinks->insn, NULL,
1408 					 &new_direct_jump_p,
1409 					 last_combined_insn)) != 0)
1410 
1411 		  {
1412 		    statistics_counter_event (cfun, "three-insn combine", 1);
1413 		    goto retry;
1414 		  }
1415 
1416 	  /* Try four-instruction combinations.  */
1417 	  if (max_combine >= 4)
1418 	    FOR_EACH_LOG_LINK (links, insn)
1419 	      {
1420 		struct insn_link *next1;
1421 		rtx_insn *link = links->insn;
1422 
1423 		/* If the linked insn has been replaced by a note, then there
1424 		   is no point in pursuing this chain any further.  */
1425 		if (NOTE_P (link))
1426 		  continue;
1427 
1428 		FOR_EACH_LOG_LINK (next1, link)
1429 		  {
1430 		    rtx_insn *link1 = next1->insn;
1431 		    if (NOTE_P (link1))
1432 		      continue;
1433 		    /* I0 -> I1 -> I2 -> I3.  */
1434 		    FOR_EACH_LOG_LINK (nextlinks, link1)
1435 		      if ((next = try_combine (insn, link, link1,
1436 					       nextlinks->insn,
1437 					       &new_direct_jump_p,
1438 					       last_combined_insn)) != 0)
1439 			{
1440 			  statistics_counter_event (cfun, "four-insn combine", 1);
1441 			  goto retry;
1442 			}
1443 		    /* I0, I1 -> I2, I2 -> I3.  */
1444 		    for (nextlinks = next1->next; nextlinks;
1445 			 nextlinks = nextlinks->next)
1446 		      if ((next = try_combine (insn, link, link1,
1447 					       nextlinks->insn,
1448 					       &new_direct_jump_p,
1449 					       last_combined_insn)) != 0)
1450 			{
1451 			  statistics_counter_event (cfun, "four-insn combine", 1);
1452 			  goto retry;
1453 			}
1454 		  }
1455 
1456 		for (next1 = links->next; next1; next1 = next1->next)
1457 		  {
1458 		    rtx_insn *link1 = next1->insn;
1459 		    if (NOTE_P (link1))
1460 		      continue;
1461 		    /* I0 -> I2; I1, I2 -> I3.  */
1462 		    FOR_EACH_LOG_LINK (nextlinks, link)
1463 		      if ((next = try_combine (insn, link, link1,
1464 					       nextlinks->insn,
1465 					       &new_direct_jump_p,
1466 					       last_combined_insn)) != 0)
1467 			{
1468 			  statistics_counter_event (cfun, "four-insn combine", 1);
1469 			  goto retry;
1470 			}
1471 		    /* I0 -> I1; I1, I2 -> I3.  */
1472 		    FOR_EACH_LOG_LINK (nextlinks, link1)
1473 		      if ((next = try_combine (insn, link, link1,
1474 					       nextlinks->insn,
1475 					       &new_direct_jump_p,
1476 					       last_combined_insn)) != 0)
1477 			{
1478 			  statistics_counter_event (cfun, "four-insn combine", 1);
1479 			  goto retry;
1480 			}
1481 		  }
1482 	      }
1483 
1484 	  /* Try this insn with each REG_EQUAL note it links back to.  */
1485 	  FOR_EACH_LOG_LINK (links, insn)
1486 	    {
1487 	      rtx set, note;
1488 	      rtx_insn *temp = links->insn;
1489 	      if ((set = single_set (temp)) != 0
1490 		  && (note = find_reg_equal_equiv_note (temp)) != 0
1491 		  && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1492 		  /* Avoid using a register that may already been marked
1493 		     dead by an earlier instruction.  */
1494 		  && ! unmentioned_reg_p (note, SET_SRC (set))
1495 		  && (GET_MODE (note) == VOIDmode
1496 		      ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1497 		      : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1498 		{
1499 		  /* Temporarily replace the set's source with the
1500 		     contents of the REG_EQUAL note.  The insn will
1501 		     be deleted or recognized by try_combine.  */
1502 		  rtx orig = SET_SRC (set);
1503 		  SET_SRC (set) = note;
1504 		  i2mod = temp;
1505 		  i2mod_old_rhs = copy_rtx (orig);
1506 		  i2mod_new_rhs = copy_rtx (note);
1507 		  next = try_combine (insn, i2mod, NULL, NULL,
1508 				      &new_direct_jump_p,
1509 				      last_combined_insn);
1510 		  i2mod = NULL;
1511 		  if (next)
1512 		    {
1513 		      statistics_counter_event (cfun, "insn-with-note combine", 1);
1514 		      goto retry;
1515 		    }
1516 		  SET_SRC (set) = orig;
1517 		}
1518 	    }
1519 
1520 	  if (!NOTE_P (insn))
1521 	    record_dead_and_set_regs (insn);
1522 
1523 retry:
1524 	  ;
1525 	}
1526     }
1527 
1528   default_rtl_profile ();
1529   clear_bb_flags ();
1530   new_direct_jump_p |= purge_all_dead_edges ();
1531   delete_noop_moves ();
1532 
1533   /* Clean up.  */
1534   obstack_free (&insn_link_obstack, NULL);
1535   free (uid_log_links);
1536   free (uid_insn_cost);
1537   reg_stat.release ();
1538 
1539   {
1540     struct undo *undo, *next;
1541     for (undo = undobuf.frees; undo; undo = next)
1542       {
1543 	next = undo->next;
1544 	free (undo);
1545       }
1546     undobuf.frees = 0;
1547   }
1548 
1549   total_attempts += combine_attempts;
1550   total_merges += combine_merges;
1551   total_extras += combine_extras;
1552   total_successes += combine_successes;
1553 
1554   nonzero_sign_valid = 0;
1555   rtl_hooks = general_rtl_hooks;
1556 
1557   /* Make recognizer allow volatile MEMs again.  */
1558   init_recog ();
1559 
1560   return new_direct_jump_p;
1561 }
1562 
1563 /* Wipe the last_xxx fields of reg_stat in preparation for another pass.  */
1564 
1565 static void
1566 init_reg_last (void)
1567 {
1568   unsigned int i;
1569   reg_stat_type *p;
1570 
1571   FOR_EACH_VEC_ELT (reg_stat, i, p)
1572     memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1573 }
1574 
1575 /* Set up any promoted values for incoming argument registers.  */
1576 
1577 static void
1578 setup_incoming_promotions (rtx_insn *first)
1579 {
1580   tree arg;
1581   bool strictly_local = false;
1582 
1583   for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1584        arg = DECL_CHAIN (arg))
1585     {
1586       rtx x, reg = DECL_INCOMING_RTL (arg);
1587       int uns1, uns3;
1588       machine_mode mode1, mode2, mode3, mode4;
1589 
1590       /* Only continue if the incoming argument is in a register.  */
1591       if (!REG_P (reg))
1592 	continue;
1593 
1594       /* Determine, if possible, whether all call sites of the current
1595          function lie within the current compilation unit.  (This does
1596 	 take into account the exporting of a function via taking its
1597 	 address, and so forth.)  */
1598       strictly_local = cgraph_node::local_info (current_function_decl)->local;
1599 
1600       /* The mode and signedness of the argument before any promotions happen
1601          (equal to the mode of the pseudo holding it at that stage).  */
1602       mode1 = TYPE_MODE (TREE_TYPE (arg));
1603       uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1604 
1605       /* The mode and signedness of the argument after any source language and
1606          TARGET_PROMOTE_PROTOTYPES-driven promotions.  */
1607       mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1608       uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1609 
1610       /* The mode and signedness of the argument as it is actually passed,
1611          see assign_parm_setup_reg in function.c.  */
1612       mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1613 				     TREE_TYPE (cfun->decl), 0);
1614 
1615       /* The mode of the register in which the argument is being passed.  */
1616       mode4 = GET_MODE (reg);
1617 
1618       /* Eliminate sign extensions in the callee when:
1619 	 (a) A mode promotion has occurred;  */
1620       if (mode1 == mode3)
1621 	continue;
1622       /* (b) The mode of the register is the same as the mode of
1623 	     the argument as it is passed; */
1624       if (mode3 != mode4)
1625 	continue;
1626       /* (c) There's no language level extension;  */
1627       if (mode1 == mode2)
1628 	;
1629       /* (c.1) All callers are from the current compilation unit.  If that's
1630 	 the case we don't have to rely on an ABI, we only have to know
1631 	 what we're generating right now, and we know that we will do the
1632 	 mode1 to mode2 promotion with the given sign.  */
1633       else if (!strictly_local)
1634 	continue;
1635       /* (c.2) The combination of the two promotions is useful.  This is
1636 	 true when the signs match, or if the first promotion is unsigned.
1637 	 In the later case, (sign_extend (zero_extend x)) is the same as
1638 	 (zero_extend (zero_extend x)), so make sure to force UNS3 true.  */
1639       else if (uns1)
1640 	uns3 = true;
1641       else if (uns3)
1642 	continue;
1643 
1644       /* Record that the value was promoted from mode1 to mode3,
1645 	 so that any sign extension at the head of the current
1646 	 function may be eliminated.  */
1647       x = gen_rtx_CLOBBER (mode1, const0_rtx);
1648       x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1649       record_value_for_reg (reg, first, x);
1650     }
1651 }
1652 
1653 /* Called via note_stores.  If X is a pseudo that is narrower than
1654    HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1655 
1656    If we are setting only a portion of X and we can't figure out what
1657    portion, assume all bits will be used since we don't know what will
1658    be happening.
1659 
1660    Similarly, set how many bits of X are known to be copies of the sign bit
1661    at all locations in the function.  This is the smallest number implied
1662    by any set of X.  */
1663 
1664 static void
1665 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1666 {
1667   rtx_insn *insn = (rtx_insn *) data;
1668   unsigned int num;
1669 
1670   if (REG_P (x)
1671       && REGNO (x) >= FIRST_PSEUDO_REGISTER
1672       /* If this register is undefined at the start of the file, we can't
1673 	 say what its contents were.  */
1674       && ! REGNO_REG_SET_P
1675 	   (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1676       && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1677     {
1678       reg_stat_type *rsp = &reg_stat[REGNO (x)];
1679 
1680       if (set == 0 || GET_CODE (set) == CLOBBER)
1681 	{
1682 	  rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1683 	  rsp->sign_bit_copies = 1;
1684 	  return;
1685 	}
1686 
1687       /* If this register is being initialized using itself, and the
1688 	 register is uninitialized in this basic block, and there are
1689 	 no LOG_LINKS which set the register, then part of the
1690 	 register is uninitialized.  In that case we can't assume
1691 	 anything about the number of nonzero bits.
1692 
1693 	 ??? We could do better if we checked this in
1694 	 reg_{nonzero_bits,num_sign_bit_copies}_for_combine.  Then we
1695 	 could avoid making assumptions about the insn which initially
1696 	 sets the register, while still using the information in other
1697 	 insns.  We would have to be careful to check every insn
1698 	 involved in the combination.  */
1699 
1700       if (insn
1701 	  && reg_referenced_p (x, PATTERN (insn))
1702 	  && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1703 			       REGNO (x)))
1704 	{
1705 	  struct insn_link *link;
1706 
1707 	  FOR_EACH_LOG_LINK (link, insn)
1708 	    if (dead_or_set_p (link->insn, x))
1709 	      break;
1710 	  if (!link)
1711 	    {
1712 	      rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1713 	      rsp->sign_bit_copies = 1;
1714 	      return;
1715 	    }
1716 	}
1717 
1718       /* If this is a complex assignment, see if we can convert it into a
1719 	 simple assignment.  */
1720       set = expand_field_assignment (set);
1721 
1722       /* If this is a simple assignment, or we have a paradoxical SUBREG,
1723 	 set what we know about X.  */
1724 
1725       if (SET_DEST (set) == x
1726 	  || (paradoxical_subreg_p (SET_DEST (set))
1727 	      && SUBREG_REG (SET_DEST (set)) == x))
1728 	{
1729 	  rtx src = SET_SRC (set);
1730 
1731 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1732 	  /* If X is narrower than a word and SRC is a non-negative
1733 	     constant that would appear negative in the mode of X,
1734 	     sign-extend it for use in reg_stat[].nonzero_bits because some
1735 	     machines (maybe most) will actually do the sign-extension
1736 	     and this is the conservative approach.
1737 
1738 	     ??? For 2.5, try to tighten up the MD files in this regard
1739 	     instead of this kludge.  */
1740 
1741 	  if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
1742 	      && CONST_INT_P (src)
1743 	      && INTVAL (src) > 0
1744 	      && val_signbit_known_set_p (GET_MODE (x), INTVAL (src)))
1745 	    src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (GET_MODE (x)));
1746 #endif
1747 
1748 	  /* Don't call nonzero_bits if it cannot change anything.  */
1749 	  if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1750 	    rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1751 	  num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1752 	  if (rsp->sign_bit_copies == 0
1753 	      || rsp->sign_bit_copies > num)
1754 	    rsp->sign_bit_copies = num;
1755 	}
1756       else
1757 	{
1758 	  rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1759 	  rsp->sign_bit_copies = 1;
1760 	}
1761     }
1762 }
1763 
1764 /* See if INSN can be combined into I3.  PRED, PRED2, SUCC and SUCC2 are
1765    optionally insns that were previously combined into I3 or that will be
1766    combined into the merger of INSN and I3.  The order is PRED, PRED2,
1767    INSN, SUCC, SUCC2, I3.
1768 
1769    Return 0 if the combination is not allowed for any reason.
1770 
1771    If the combination is allowed, *PDEST will be set to the single
1772    destination of INSN and *PSRC to the single source, and this function
1773    will return 1.  */
1774 
1775 static int
1776 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1777 	       rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1778 	       rtx *pdest, rtx *psrc)
1779 {
1780   int i;
1781   const_rtx set = 0;
1782   rtx src, dest;
1783   rtx_insn *p;
1784 #ifdef AUTO_INC_DEC
1785   rtx link;
1786 #endif
1787   bool all_adjacent = true;
1788   int (*is_volatile_p) (const_rtx);
1789 
1790   if (succ)
1791     {
1792       if (succ2)
1793 	{
1794 	  if (next_active_insn (succ2) != i3)
1795 	    all_adjacent = false;
1796 	  if (next_active_insn (succ) != succ2)
1797 	    all_adjacent = false;
1798 	}
1799       else if (next_active_insn (succ) != i3)
1800 	all_adjacent = false;
1801       if (next_active_insn (insn) != succ)
1802 	all_adjacent = false;
1803     }
1804   else if (next_active_insn (insn) != i3)
1805     all_adjacent = false;
1806 
1807   /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1808      or a PARALLEL consisting of such a SET and CLOBBERs.
1809 
1810      If INSN has CLOBBER parallel parts, ignore them for our processing.
1811      By definition, these happen during the execution of the insn.  When it
1812      is merged with another insn, all bets are off.  If they are, in fact,
1813      needed and aren't also supplied in I3, they may be added by
1814      recog_for_combine.  Otherwise, it won't match.
1815 
1816      We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1817      note.
1818 
1819      Get the source and destination of INSN.  If more than one, can't
1820      combine.  */
1821 
1822   if (GET_CODE (PATTERN (insn)) == SET)
1823     set = PATTERN (insn);
1824   else if (GET_CODE (PATTERN (insn)) == PARALLEL
1825 	   && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1826     {
1827       for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1828 	{
1829 	  rtx elt = XVECEXP (PATTERN (insn), 0, i);
1830 
1831 	  switch (GET_CODE (elt))
1832 	    {
1833 	    /* This is important to combine floating point insns
1834 	       for the SH4 port.  */
1835 	    case USE:
1836 	      /* Combining an isolated USE doesn't make sense.
1837 		 We depend here on combinable_i3pat to reject them.  */
1838 	      /* The code below this loop only verifies that the inputs of
1839 		 the SET in INSN do not change.  We call reg_set_between_p
1840 		 to verify that the REG in the USE does not change between
1841 		 I3 and INSN.
1842 		 If the USE in INSN was for a pseudo register, the matching
1843 		 insn pattern will likely match any register; combining this
1844 		 with any other USE would only be safe if we knew that the
1845 		 used registers have identical values, or if there was
1846 		 something to tell them apart, e.g. different modes.  For
1847 		 now, we forgo such complicated tests and simply disallow
1848 		 combining of USES of pseudo registers with any other USE.  */
1849 	      if (REG_P (XEXP (elt, 0))
1850 		  && GET_CODE (PATTERN (i3)) == PARALLEL)
1851 		{
1852 		  rtx i3pat = PATTERN (i3);
1853 		  int i = XVECLEN (i3pat, 0) - 1;
1854 		  unsigned int regno = REGNO (XEXP (elt, 0));
1855 
1856 		  do
1857 		    {
1858 		      rtx i3elt = XVECEXP (i3pat, 0, i);
1859 
1860 		      if (GET_CODE (i3elt) == USE
1861 			  && REG_P (XEXP (i3elt, 0))
1862 			  && (REGNO (XEXP (i3elt, 0)) == regno
1863 			      ? reg_set_between_p (XEXP (elt, 0),
1864 						   PREV_INSN (insn), i3)
1865 			      : regno >= FIRST_PSEUDO_REGISTER))
1866 			return 0;
1867 		    }
1868 		  while (--i >= 0);
1869 		}
1870 	      break;
1871 
1872 	      /* We can ignore CLOBBERs.  */
1873 	    case CLOBBER:
1874 	      break;
1875 
1876 	    case SET:
1877 	      /* Ignore SETs whose result isn't used but not those that
1878 		 have side-effects.  */
1879 	      if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1880 		  && insn_nothrow_p (insn)
1881 		  && !side_effects_p (elt))
1882 		break;
1883 
1884 	      /* If we have already found a SET, this is a second one and
1885 		 so we cannot combine with this insn.  */
1886 	      if (set)
1887 		return 0;
1888 
1889 	      set = elt;
1890 	      break;
1891 
1892 	    default:
1893 	      /* Anything else means we can't combine.  */
1894 	      return 0;
1895 	    }
1896 	}
1897 
1898       if (set == 0
1899 	  /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1900 	     so don't do anything with it.  */
1901 	  || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1902 	return 0;
1903     }
1904   else
1905     return 0;
1906 
1907   if (set == 0)
1908     return 0;
1909 
1910   /* The simplification in expand_field_assignment may call back to
1911      get_last_value, so set safe guard here.  */
1912   subst_low_luid = DF_INSN_LUID (insn);
1913 
1914   set = expand_field_assignment (set);
1915   src = SET_SRC (set), dest = SET_DEST (set);
1916 
1917   /* Don't eliminate a store in the stack pointer.  */
1918   if (dest == stack_pointer_rtx
1919       /* Don't combine with an insn that sets a register to itself if it has
1920 	 a REG_EQUAL note.  This may be part of a LIBCALL sequence.  */
1921       || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1922       /* Can't merge an ASM_OPERANDS.  */
1923       || GET_CODE (src) == ASM_OPERANDS
1924       /* Can't merge a function call.  */
1925       || GET_CODE (src) == CALL
1926       /* Don't eliminate a function call argument.  */
1927       || (CALL_P (i3)
1928 	  && (find_reg_fusage (i3, USE, dest)
1929 	      || (REG_P (dest)
1930 		  && REGNO (dest) < FIRST_PSEUDO_REGISTER
1931 		  && global_regs[REGNO (dest)])))
1932       /* Don't substitute into an incremented register.  */
1933       || FIND_REG_INC_NOTE (i3, dest)
1934       || (succ && FIND_REG_INC_NOTE (succ, dest))
1935       || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1936       /* Don't substitute into a non-local goto, this confuses CFG.  */
1937       || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1938       /* Make sure that DEST is not used after SUCC but before I3.  */
1939       || (!all_adjacent
1940 	  && ((succ2
1941 	       && (reg_used_between_p (dest, succ2, i3)
1942 		   || reg_used_between_p (dest, succ, succ2)))
1943 	      || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1944       /* Make sure that the value that is to be substituted for the register
1945 	 does not use any registers whose values alter in between.  However,
1946 	 If the insns are adjacent, a use can't cross a set even though we
1947 	 think it might (this can happen for a sequence of insns each setting
1948 	 the same destination; last_set of that register might point to
1949 	 a NOTE).  If INSN has a REG_EQUIV note, the register is always
1950 	 equivalent to the memory so the substitution is valid even if there
1951 	 are intervening stores.  Also, don't move a volatile asm or
1952 	 UNSPEC_VOLATILE across any other insns.  */
1953       || (! all_adjacent
1954 	  && (((!MEM_P (src)
1955 		|| ! find_reg_note (insn, REG_EQUIV, src))
1956 	       && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1957 	      || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1958 	      || GET_CODE (src) == UNSPEC_VOLATILE))
1959       /* Don't combine across a CALL_INSN, because that would possibly
1960 	 change whether the life span of some REGs crosses calls or not,
1961 	 and it is a pain to update that information.
1962 	 Exception: if source is a constant, moving it later can't hurt.
1963 	 Accept that as a special case.  */
1964       || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1965     return 0;
1966 
1967   /* DEST must either be a REG or CC0.  */
1968   if (REG_P (dest))
1969     {
1970       /* If register alignment is being enforced for multi-word items in all
1971 	 cases except for parameters, it is possible to have a register copy
1972 	 insn referencing a hard register that is not allowed to contain the
1973 	 mode being copied and which would not be valid as an operand of most
1974 	 insns.  Eliminate this problem by not combining with such an insn.
1975 
1976 	 Also, on some machines we don't want to extend the life of a hard
1977 	 register.  */
1978 
1979       if (REG_P (src)
1980 	  && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1981 	       && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1982 	      /* Don't extend the life of a hard register unless it is
1983 		 user variable (if we have few registers) or it can't
1984 		 fit into the desired register (meaning something special
1985 		 is going on).
1986 		 Also avoid substituting a return register into I3, because
1987 		 reload can't handle a conflict with constraints of other
1988 		 inputs.  */
1989 	      || (REGNO (src) < FIRST_PSEUDO_REGISTER
1990 		  && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1991 	return 0;
1992     }
1993   else if (GET_CODE (dest) != CC0)
1994     return 0;
1995 
1996 
1997   if (GET_CODE (PATTERN (i3)) == PARALLEL)
1998     for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1999       if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2000 	{
2001 	  rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2002 
2003 	  /* If the clobber represents an earlyclobber operand, we must not
2004 	     substitute an expression containing the clobbered register.
2005 	     As we do not analyze the constraint strings here, we have to
2006 	     make the conservative assumption.  However, if the register is
2007 	     a fixed hard reg, the clobber cannot represent any operand;
2008 	     we leave it up to the machine description to either accept or
2009 	     reject use-and-clobber patterns.  */
2010 	  if (!REG_P (reg)
2011 	      || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2012 	      || !fixed_regs[REGNO (reg)])
2013 	    if (reg_overlap_mentioned_p (reg, src))
2014 	      return 0;
2015 	}
2016 
2017   /* If INSN contains anything volatile, or is an `asm' (whether volatile
2018      or not), reject, unless nothing volatile comes between it and I3 */
2019 
2020   if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2021     {
2022       /* Make sure neither succ nor succ2 contains a volatile reference.  */
2023       if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2024 	return 0;
2025       if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2026 	return 0;
2027       /* We'll check insns between INSN and I3 below.  */
2028     }
2029 
2030   /* If INSN is an asm, and DEST is a hard register, reject, since it has
2031      to be an explicit register variable, and was chosen for a reason.  */
2032 
2033   if (GET_CODE (src) == ASM_OPERANDS
2034       && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2035     return 0;
2036 
2037   /* If INSN contains volatile references (specifically volatile MEMs),
2038      we cannot combine across any other volatile references.
2039      Even if INSN doesn't contain volatile references, any intervening
2040      volatile insn might affect machine state.  */
2041 
2042   is_volatile_p = volatile_refs_p (PATTERN (insn))
2043     ? volatile_refs_p
2044     : volatile_insn_p;
2045 
2046   for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2047     if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2048       return 0;
2049 
2050   /* If INSN contains an autoincrement or autodecrement, make sure that
2051      register is not used between there and I3, and not already used in
2052      I3 either.  Neither must it be used in PRED or SUCC, if they exist.
2053      Also insist that I3 not be a jump; if it were one
2054      and the incremented register were spilled, we would lose.  */
2055 
2056 #ifdef AUTO_INC_DEC
2057   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2058     if (REG_NOTE_KIND (link) == REG_INC
2059 	&& (JUMP_P (i3)
2060 	    || reg_used_between_p (XEXP (link, 0), insn, i3)
2061 	    || (pred != NULL_RTX
2062 		&& reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2063 	    || (pred2 != NULL_RTX
2064 		&& reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2065 	    || (succ != NULL_RTX
2066 		&& reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2067 	    || (succ2 != NULL_RTX
2068 		&& reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2069 	    || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2070       return 0;
2071 #endif
2072 
2073 #ifdef HAVE_cc0
2074   /* Don't combine an insn that follows a CC0-setting insn.
2075      An insn that uses CC0 must not be separated from the one that sets it.
2076      We do, however, allow I2 to follow a CC0-setting insn if that insn
2077      is passed as I1; in that case it will be deleted also.
2078      We also allow combining in this case if all the insns are adjacent
2079      because that would leave the two CC0 insns adjacent as well.
2080      It would be more logical to test whether CC0 occurs inside I1 or I2,
2081      but that would be much slower, and this ought to be equivalent.  */
2082 
2083   p = prev_nonnote_insn (insn);
2084   if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2085       && ! all_adjacent)
2086     return 0;
2087 #endif
2088 
2089   /* If we get here, we have passed all the tests and the combination is
2090      to be allowed.  */
2091 
2092   *pdest = dest;
2093   *psrc = src;
2094 
2095   return 1;
2096 }
2097 
2098 /* LOC is the location within I3 that contains its pattern or the component
2099    of a PARALLEL of the pattern.  We validate that it is valid for combining.
2100 
2101    One problem is if I3 modifies its output, as opposed to replacing it
2102    entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2103    doing so would produce an insn that is not equivalent to the original insns.
2104 
2105    Consider:
2106 
2107 	 (set (reg:DI 101) (reg:DI 100))
2108 	 (set (subreg:SI (reg:DI 101) 0) <foo>)
2109 
2110    This is NOT equivalent to:
2111 
2112 	 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2113 		    (set (reg:DI 101) (reg:DI 100))])
2114 
2115    Not only does this modify 100 (in which case it might still be valid
2116    if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2117 
2118    We can also run into a problem if I2 sets a register that I1
2119    uses and I1 gets directly substituted into I3 (not via I2).  In that
2120    case, we would be getting the wrong value of I2DEST into I3, so we
2121    must reject the combination.  This case occurs when I2 and I1 both
2122    feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2123    If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2124    of a SET must prevent combination from occurring.  The same situation
2125    can occur for I0, in which case I0_NOT_IN_SRC is set.
2126 
2127    Before doing the above check, we first try to expand a field assignment
2128    into a set of logical operations.
2129 
2130    If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2131    we place a register that is both set and used within I3.  If more than one
2132    such register is detected, we fail.
2133 
2134    Return 1 if the combination is valid, zero otherwise.  */
2135 
2136 static int
2137 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2138 		  int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2139 {
2140   rtx x = *loc;
2141 
2142   if (GET_CODE (x) == SET)
2143     {
2144       rtx set = x ;
2145       rtx dest = SET_DEST (set);
2146       rtx src = SET_SRC (set);
2147       rtx inner_dest = dest;
2148       rtx subdest;
2149 
2150       while (GET_CODE (inner_dest) == STRICT_LOW_PART
2151 	     || GET_CODE (inner_dest) == SUBREG
2152 	     || GET_CODE (inner_dest) == ZERO_EXTRACT)
2153 	inner_dest = XEXP (inner_dest, 0);
2154 
2155       /* Check for the case where I3 modifies its output, as discussed
2156 	 above.  We don't want to prevent pseudos from being combined
2157 	 into the address of a MEM, so only prevent the combination if
2158 	 i1 or i2 set the same MEM.  */
2159       if ((inner_dest != dest &&
2160 	   (!MEM_P (inner_dest)
2161 	    || rtx_equal_p (i2dest, inner_dest)
2162 	    || (i1dest && rtx_equal_p (i1dest, inner_dest))
2163 	    || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2164 	   && (reg_overlap_mentioned_p (i2dest, inner_dest)
2165 	       || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2166 	       || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2167 
2168 	  /* This is the same test done in can_combine_p except we can't test
2169 	     all_adjacent; we don't have to, since this instruction will stay
2170 	     in place, thus we are not considering increasing the lifetime of
2171 	     INNER_DEST.
2172 
2173 	     Also, if this insn sets a function argument, combining it with
2174 	     something that might need a spill could clobber a previous
2175 	     function argument; the all_adjacent test in can_combine_p also
2176 	     checks this; here, we do a more specific test for this case.  */
2177 
2178 	  || (REG_P (inner_dest)
2179 	      && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2180 	      && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2181 					GET_MODE (inner_dest))))
2182 	  || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2183 	  || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2184 	return 0;
2185 
2186       /* If DEST is used in I3, it is being killed in this insn, so
2187 	 record that for later.  We have to consider paradoxical
2188 	 subregs here, since they kill the whole register, but we
2189 	 ignore partial subregs, STRICT_LOW_PART, etc.
2190 	 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2191 	 STACK_POINTER_REGNUM, since these are always considered to be
2192 	 live.  Similarly for ARG_POINTER_REGNUM if it is fixed.  */
2193       subdest = dest;
2194       if (GET_CODE (subdest) == SUBREG
2195 	  && (GET_MODE_SIZE (GET_MODE (subdest))
2196 	      >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2197 	subdest = SUBREG_REG (subdest);
2198       if (pi3dest_killed
2199 	  && REG_P (subdest)
2200 	  && reg_referenced_p (subdest, PATTERN (i3))
2201 	  && REGNO (subdest) != FRAME_POINTER_REGNUM
2202 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2203 	  && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2204 #endif
2205 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2206 	  && (REGNO (subdest) != ARG_POINTER_REGNUM
2207 	      || ! fixed_regs [REGNO (subdest)])
2208 #endif
2209 	  && REGNO (subdest) != STACK_POINTER_REGNUM)
2210 	{
2211 	  if (*pi3dest_killed)
2212 	    return 0;
2213 
2214 	  *pi3dest_killed = subdest;
2215 	}
2216     }
2217 
2218   else if (GET_CODE (x) == PARALLEL)
2219     {
2220       int i;
2221 
2222       for (i = 0; i < XVECLEN (x, 0); i++)
2223 	if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2224 				i1_not_in_src, i0_not_in_src, pi3dest_killed))
2225 	  return 0;
2226     }
2227 
2228   return 1;
2229 }
2230 
2231 /* Return 1 if X is an arithmetic expression that contains a multiplication
2232    and division.  We don't count multiplications by powers of two here.  */
2233 
2234 static int
2235 contains_muldiv (rtx x)
2236 {
2237   switch (GET_CODE (x))
2238     {
2239     case MOD:  case DIV:  case UMOD:  case UDIV:
2240       return 1;
2241 
2242     case MULT:
2243       return ! (CONST_INT_P (XEXP (x, 1))
2244 		&& exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2245     default:
2246       if (BINARY_P (x))
2247 	return contains_muldiv (XEXP (x, 0))
2248 	    || contains_muldiv (XEXP (x, 1));
2249 
2250       if (UNARY_P (x))
2251 	return contains_muldiv (XEXP (x, 0));
2252 
2253       return 0;
2254     }
2255 }
2256 
2257 /* Determine whether INSN can be used in a combination.  Return nonzero if
2258    not.  This is used in try_combine to detect early some cases where we
2259    can't perform combinations.  */
2260 
2261 static int
2262 cant_combine_insn_p (rtx_insn *insn)
2263 {
2264   rtx set;
2265   rtx src, dest;
2266 
2267   /* If this isn't really an insn, we can't do anything.
2268      This can occur when flow deletes an insn that it has merged into an
2269      auto-increment address.  */
2270   if (! INSN_P (insn))
2271     return 1;
2272 
2273   /* Never combine loads and stores involving hard regs that are likely
2274      to be spilled.  The register allocator can usually handle such
2275      reg-reg moves by tying.  If we allow the combiner to make
2276      substitutions of likely-spilled regs, reload might die.
2277      As an exception, we allow combinations involving fixed regs; these are
2278      not available to the register allocator so there's no risk involved.  */
2279 
2280   set = single_set (insn);
2281   if (! set)
2282     return 0;
2283   src = SET_SRC (set);
2284   dest = SET_DEST (set);
2285   if (GET_CODE (src) == SUBREG)
2286     src = SUBREG_REG (src);
2287   if (GET_CODE (dest) == SUBREG)
2288     dest = SUBREG_REG (dest);
2289   if (REG_P (src) && REG_P (dest)
2290       && ((HARD_REGISTER_P (src)
2291 	   && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2292 	   && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2293 	  || (HARD_REGISTER_P (dest)
2294 	      && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2295 	      && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2296     return 1;
2297 
2298   return 0;
2299 }
2300 
2301 struct likely_spilled_retval_info
2302 {
2303   unsigned regno, nregs;
2304   unsigned mask;
2305 };
2306 
2307 /* Called via note_stores by likely_spilled_retval_p.  Remove from info->mask
2308    hard registers that are known to be written to / clobbered in full.  */
2309 static void
2310 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2311 {
2312   struct likely_spilled_retval_info *const info =
2313     (struct likely_spilled_retval_info *) data;
2314   unsigned regno, nregs;
2315   unsigned new_mask;
2316 
2317   if (!REG_P (XEXP (set, 0)))
2318     return;
2319   regno = REGNO (x);
2320   if (regno >= info->regno + info->nregs)
2321     return;
2322   nregs = hard_regno_nregs[regno][GET_MODE (x)];
2323   if (regno + nregs <= info->regno)
2324     return;
2325   new_mask = (2U << (nregs - 1)) - 1;
2326   if (regno < info->regno)
2327     new_mask >>= info->regno - regno;
2328   else
2329     new_mask <<= regno - info->regno;
2330   info->mask &= ~new_mask;
2331 }
2332 
2333 /* Return nonzero iff part of the return value is live during INSN, and
2334    it is likely spilled.  This can happen when more than one insn is needed
2335    to copy the return value, e.g. when we consider to combine into the
2336    second copy insn for a complex value.  */
2337 
2338 static int
2339 likely_spilled_retval_p (rtx_insn *insn)
2340 {
2341   rtx_insn *use = BB_END (this_basic_block);
2342   rtx reg;
2343   rtx_insn *p;
2344   unsigned regno, nregs;
2345   /* We assume here that no machine mode needs more than
2346      32 hard registers when the value overlaps with a register
2347      for which TARGET_FUNCTION_VALUE_REGNO_P is true.  */
2348   unsigned mask;
2349   struct likely_spilled_retval_info info;
2350 
2351   if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2352     return 0;
2353   reg = XEXP (PATTERN (use), 0);
2354   if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2355     return 0;
2356   regno = REGNO (reg);
2357   nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2358   if (nregs == 1)
2359     return 0;
2360   mask = (2U << (nregs - 1)) - 1;
2361 
2362   /* Disregard parts of the return value that are set later.  */
2363   info.regno = regno;
2364   info.nregs = nregs;
2365   info.mask = mask;
2366   for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2367     if (INSN_P (p))
2368       note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2369   mask = info.mask;
2370 
2371   /* Check if any of the (probably) live return value registers is
2372      likely spilled.  */
2373   nregs --;
2374   do
2375     {
2376       if ((mask & 1 << nregs)
2377 	  && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2378 	return 1;
2379     } while (nregs--);
2380   return 0;
2381 }
2382 
2383 /* Adjust INSN after we made a change to its destination.
2384 
2385    Changing the destination can invalidate notes that say something about
2386    the results of the insn and a LOG_LINK pointing to the insn.  */
2387 
2388 static void
2389 adjust_for_new_dest (rtx_insn *insn)
2390 {
2391   /* For notes, be conservative and simply remove them.  */
2392   remove_reg_equal_equiv_notes (insn);
2393 
2394   /* The new insn will have a destination that was previously the destination
2395      of an insn just above it.  Call distribute_links to make a LOG_LINK from
2396      the next use of that destination.  */
2397 
2398   rtx set = single_set (insn);
2399   gcc_assert (set);
2400 
2401   rtx reg = SET_DEST (set);
2402 
2403   while (GET_CODE (reg) == ZERO_EXTRACT
2404 	 || GET_CODE (reg) == STRICT_LOW_PART
2405 	 || GET_CODE (reg) == SUBREG)
2406     reg = XEXP (reg, 0);
2407   gcc_assert (REG_P (reg));
2408 
2409   distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2410 
2411   df_insn_rescan (insn);
2412 }
2413 
2414 /* Return TRUE if combine can reuse reg X in mode MODE.
2415    ADDED_SETS is nonzero if the original set is still required.  */
2416 static bool
2417 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2418 {
2419   unsigned int regno;
2420 
2421   if (!REG_P (x))
2422     return false;
2423 
2424   regno = REGNO (x);
2425   /* Allow hard registers if the new mode is legal, and occupies no more
2426      registers than the old mode.  */
2427   if (regno < FIRST_PSEUDO_REGISTER)
2428     return (HARD_REGNO_MODE_OK (regno, mode)
2429 	    && (hard_regno_nregs[regno][GET_MODE (x)]
2430 		>= hard_regno_nregs[regno][mode]));
2431 
2432   /* Or a pseudo that is only used once.  */
2433   return (regno < reg_n_sets_max
2434 	  && REG_N_SETS (regno) == 1
2435 	  && !added_sets
2436 	  && !REG_USERVAR_P (x));
2437 }
2438 
2439 
2440 /* Check whether X, the destination of a set, refers to part of
2441    the register specified by REG.  */
2442 
2443 static bool
2444 reg_subword_p (rtx x, rtx reg)
2445 {
2446   /* Check that reg is an integer mode register.  */
2447   if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2448     return false;
2449 
2450   if (GET_CODE (x) == STRICT_LOW_PART
2451       || GET_CODE (x) == ZERO_EXTRACT)
2452     x = XEXP (x, 0);
2453 
2454   return GET_CODE (x) == SUBREG
2455 	 && SUBREG_REG (x) == reg
2456 	 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2457 }
2458 
2459 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2460    Note that the INSN should be deleted *after* removing dead edges, so
2461    that the kept edge is the fallthrough edge for a (set (pc) (pc))
2462    but not for a (set (pc) (label_ref FOO)).  */
2463 
2464 static void
2465 update_cfg_for_uncondjump (rtx_insn *insn)
2466 {
2467   basic_block bb = BLOCK_FOR_INSN (insn);
2468   gcc_assert (BB_END (bb) == insn);
2469 
2470   purge_dead_edges (bb);
2471 
2472   delete_insn (insn);
2473   if (EDGE_COUNT (bb->succs) == 1)
2474     {
2475       rtx_insn *insn;
2476 
2477       single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2478 
2479       /* Remove barriers from the footer if there are any.  */
2480       for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2481 	if (BARRIER_P (insn))
2482 	  {
2483 	    if (PREV_INSN (insn))
2484 	      SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2485 	    else
2486 	      BB_FOOTER (bb) = NEXT_INSN (insn);
2487 	    if (NEXT_INSN (insn))
2488 	      SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2489 	  }
2490 	else if (LABEL_P (insn))
2491 	  break;
2492     }
2493 }
2494 
2495 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2496    by an arbitrary number of CLOBBERs.  */
2497 static bool
2498 is_parallel_of_n_reg_sets (rtx pat, int n)
2499 {
2500   if (GET_CODE (pat) != PARALLEL)
2501     return false;
2502 
2503   int len = XVECLEN (pat, 0);
2504   if (len < n)
2505     return false;
2506 
2507   int i;
2508   for (i = 0; i < n; i++)
2509     if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2510 	|| !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2511       return false;
2512   for ( ; i < len; i++)
2513     if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
2514       return false;
2515 
2516   return true;
2517 }
2518 
2519 #ifndef HAVE_cc0
2520 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2521    CLOBBERs), can be split into individual SETs in that order, without
2522    changing semantics.  */
2523 static bool
2524 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2525 {
2526   if (!insn_nothrow_p (insn))
2527     return false;
2528 
2529   rtx pat = PATTERN (insn);
2530 
2531   int i, j;
2532   for (i = 0; i < n; i++)
2533     {
2534       if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2535 	return false;
2536 
2537       rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2538 
2539       for (j = i + 1; j < n; j++)
2540 	if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2541 	  return false;
2542     }
2543 
2544   return true;
2545 }
2546 #endif
2547 
2548 /* Try to combine the insns I0, I1 and I2 into I3.
2549    Here I0, I1 and I2 appear earlier than I3.
2550    I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2551    I3.
2552 
2553    If we are combining more than two insns and the resulting insn is not
2554    recognized, try splitting it into two insns.  If that happens, I2 and I3
2555    are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2556    Otherwise, I0, I1 and I2 are pseudo-deleted.
2557 
2558    Return 0 if the combination does not work.  Then nothing is changed.
2559    If we did the combination, return the insn at which combine should
2560    resume scanning.
2561 
2562    Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2563    new direct jump instruction.
2564 
2565    LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2566    been I3 passed to an earlier try_combine within the same basic
2567    block.  */
2568 
2569 static rtx_insn *
2570 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2571 	     int *new_direct_jump_p, rtx_insn *last_combined_insn)
2572 {
2573   /* New patterns for I3 and I2, respectively.  */
2574   rtx newpat, newi2pat = 0;
2575   rtvec newpat_vec_with_clobbers = 0;
2576   int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2577   /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2578      dead.  */
2579   int added_sets_0, added_sets_1, added_sets_2;
2580   /* Total number of SETs to put into I3.  */
2581   int total_sets;
2582   /* Nonzero if I2's or I1's body now appears in I3.  */
2583   int i2_is_used = 0, i1_is_used = 0;
2584   /* INSN_CODEs for new I3, new I2, and user of condition code.  */
2585   int insn_code_number, i2_code_number = 0, other_code_number = 0;
2586   /* Contains I3 if the destination of I3 is used in its source, which means
2587      that the old life of I3 is being killed.  If that usage is placed into
2588      I2 and not in I3, a REG_DEAD note must be made.  */
2589   rtx i3dest_killed = 0;
2590   /* SET_DEST and SET_SRC of I2, I1 and I0.  */
2591   rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2592   /* Copy of SET_SRC of I1 and I0, if needed.  */
2593   rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2594   /* Set if I2DEST was reused as a scratch register.  */
2595   bool i2scratch = false;
2596   /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases.  */
2597   rtx i0pat = 0, i1pat = 0, i2pat = 0;
2598   /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC.  */
2599   int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2600   int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2601   int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2602   int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2603   /* Notes that must be added to REG_NOTES in I3 and I2.  */
2604   rtx new_i3_notes, new_i2_notes;
2605   /* Notes that we substituted I3 into I2 instead of the normal case.  */
2606   int i3_subst_into_i2 = 0;
2607   /* Notes that I1, I2 or I3 is a MULT operation.  */
2608   int have_mult = 0;
2609   int swap_i2i3 = 0;
2610   int changed_i3_dest = 0;
2611 
2612   int maxreg;
2613   rtx_insn *temp_insn;
2614   rtx temp_expr;
2615   struct insn_link *link;
2616   rtx other_pat = 0;
2617   rtx new_other_notes;
2618   int i;
2619 
2620   /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2621      never be).  */
2622   if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2623     return 0;
2624 
2625   /* Only try four-insn combinations when there's high likelihood of
2626      success.  Look for simple insns, such as loads of constants or
2627      binary operations involving a constant.  */
2628   if (i0)
2629     {
2630       int i;
2631       int ngood = 0;
2632       int nshift = 0;
2633       rtx set0, set3;
2634 
2635       if (!flag_expensive_optimizations)
2636 	return 0;
2637 
2638       for (i = 0; i < 4; i++)
2639 	{
2640 	  rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2641 	  rtx set = single_set (insn);
2642 	  rtx src;
2643 	  if (!set)
2644 	    continue;
2645 	  src = SET_SRC (set);
2646 	  if (CONSTANT_P (src))
2647 	    {
2648 	      ngood += 2;
2649 	      break;
2650 	    }
2651 	  else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2652 	    ngood++;
2653 	  else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2654 		   || GET_CODE (src) == LSHIFTRT)
2655 	    nshift++;
2656 	}
2657 
2658       /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2659 	 are likely manipulating its value.  Ideally we'll be able to combine
2660 	 all four insns into a bitfield insertion of some kind.
2661 
2662 	 Note the source in I0 might be inside a sign/zero extension and the
2663 	 memory modes in I0 and I3 might be different.  So extract the address
2664 	 from the destination of I3 and search for it in the source of I0.
2665 
2666 	 In the event that there's a match but the source/dest do not actually
2667 	 refer to the same memory, the worst that happens is we try some
2668 	 combinations that we wouldn't have otherwise.  */
2669       if ((set0 = single_set (i0))
2670 	  /* Ensure the source of SET0 is a MEM, possibly buried inside
2671 	     an extension.  */
2672 	  && (GET_CODE (SET_SRC (set0)) == MEM
2673 	      || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2674 		   || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2675 		  && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2676 	  && (set3 = single_set (i3))
2677 	  /* Ensure the destination of SET3 is a MEM.  */
2678 	  && GET_CODE (SET_DEST (set3)) == MEM
2679 	  /* Would it be better to extract the base address for the MEM
2680 	     in SET3 and look for that?  I don't have cases where it matters
2681 	     but I could envision such cases.  */
2682 	  && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2683 	ngood += 2;
2684 
2685       if (ngood < 2 && nshift < 2)
2686 	return 0;
2687     }
2688 
2689   /* Exit early if one of the insns involved can't be used for
2690      combinations.  */
2691   if (CALL_P (i2)
2692       || (i1 && CALL_P (i1))
2693       || (i0 && CALL_P (i0))
2694       || cant_combine_insn_p (i3)
2695       || cant_combine_insn_p (i2)
2696       || (i1 && cant_combine_insn_p (i1))
2697       || (i0 && cant_combine_insn_p (i0))
2698       || likely_spilled_retval_p (i3))
2699     return 0;
2700 
2701   combine_attempts++;
2702   undobuf.other_insn = 0;
2703 
2704   /* Reset the hard register usage information.  */
2705   CLEAR_HARD_REG_SET (newpat_used_regs);
2706 
2707   if (dump_file && (dump_flags & TDF_DETAILS))
2708     {
2709       if (i0)
2710 	fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2711 		 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2712       else if (i1)
2713 	fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2714 		 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2715       else
2716 	fprintf (dump_file, "\nTrying %d -> %d:\n",
2717 		 INSN_UID (i2), INSN_UID (i3));
2718     }
2719 
2720   /* If multiple insns feed into one of I2 or I3, they can be in any
2721      order.  To simplify the code below, reorder them in sequence.  */
2722   if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2723     temp_insn = i2, i2 = i0, i0 = temp_insn;
2724   if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2725     temp_insn = i1, i1 = i0, i0 = temp_insn;
2726   if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2727     temp_insn = i1, i1 = i2, i2 = temp_insn;
2728 
2729   added_links_insn = 0;
2730 
2731   /* First check for one important special case that the code below will
2732      not handle.  Namely, the case where I1 is zero, I2 is a PARALLEL
2733      and I3 is a SET whose SET_SRC is a SET_DEST in I2.  In that case,
2734      we may be able to replace that destination with the destination of I3.
2735      This occurs in the common code where we compute both a quotient and
2736      remainder into a structure, in which case we want to do the computation
2737      directly into the structure to avoid register-register copies.
2738 
2739      Note that this case handles both multiple sets in I2 and also cases
2740      where I2 has a number of CLOBBERs inside the PARALLEL.
2741 
2742      We make very conservative checks below and only try to handle the
2743      most common cases of this.  For example, we only handle the case
2744      where I2 and I3 are adjacent to avoid making difficult register
2745      usage tests.  */
2746 
2747   if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2748       && REG_P (SET_SRC (PATTERN (i3)))
2749       && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2750       && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2751       && GET_CODE (PATTERN (i2)) == PARALLEL
2752       && ! side_effects_p (SET_DEST (PATTERN (i3)))
2753       /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2754 	 below would need to check what is inside (and reg_overlap_mentioned_p
2755 	 doesn't support those codes anyway).  Don't allow those destinations;
2756 	 the resulting insn isn't likely to be recognized anyway.  */
2757       && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2758       && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2759       && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2760 				    SET_DEST (PATTERN (i3)))
2761       && next_active_insn (i2) == i3)
2762     {
2763       rtx p2 = PATTERN (i2);
2764 
2765       /* Make sure that the destination of I3,
2766 	 which we are going to substitute into one output of I2,
2767 	 is not used within another output of I2.  We must avoid making this:
2768 	 (parallel [(set (mem (reg 69)) ...)
2769 		    (set (reg 69) ...)])
2770 	 which is not well-defined as to order of actions.
2771 	 (Besides, reload can't handle output reloads for this.)
2772 
2773 	 The problem can also happen if the dest of I3 is a memory ref,
2774 	 if another dest in I2 is an indirect memory ref.  */
2775       for (i = 0; i < XVECLEN (p2, 0); i++)
2776 	if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2777 	     || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2778 	    && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2779 					SET_DEST (XVECEXP (p2, 0, i))))
2780 	  break;
2781 
2782       /* Make sure this PARALLEL is not an asm.  We do not allow combining
2783 	 that usually (see can_combine_p), so do not here either.  */
2784       for (i = 0; i < XVECLEN (p2, 0); i++)
2785 	if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2786 	    && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2787 	  break;
2788 
2789       if (i == XVECLEN (p2, 0))
2790 	for (i = 0; i < XVECLEN (p2, 0); i++)
2791 	  if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2792 	      && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2793 	    {
2794 	      combine_merges++;
2795 
2796 	      subst_insn = i3;
2797 	      subst_low_luid = DF_INSN_LUID (i2);
2798 
2799 	      added_sets_2 = added_sets_1 = added_sets_0 = 0;
2800 	      i2src = SET_SRC (XVECEXP (p2, 0, i));
2801 	      i2dest = SET_DEST (XVECEXP (p2, 0, i));
2802 	      i2dest_killed = dead_or_set_p (i2, i2dest);
2803 
2804 	      /* Replace the dest in I2 with our dest and make the resulting
2805 		 insn the new pattern for I3.  Then skip to where we validate
2806 		 the pattern.  Everything was set up above.  */
2807 	      SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2808 	      newpat = p2;
2809 	      i3_subst_into_i2 = 1;
2810 	      goto validate_replacement;
2811 	    }
2812     }
2813 
2814   /* If I2 is setting a pseudo to a constant and I3 is setting some
2815      sub-part of it to another constant, merge them by making a new
2816      constant.  */
2817   if (i1 == 0
2818       && (temp_expr = single_set (i2)) != 0
2819       && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2820       && GET_CODE (PATTERN (i3)) == SET
2821       && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2822       && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2823     {
2824       rtx dest = SET_DEST (PATTERN (i3));
2825       int offset = -1;
2826       int width = 0;
2827 
2828       if (GET_CODE (dest) == ZERO_EXTRACT)
2829 	{
2830 	  if (CONST_INT_P (XEXP (dest, 1))
2831 	      && CONST_INT_P (XEXP (dest, 2)))
2832 	    {
2833 	      width = INTVAL (XEXP (dest, 1));
2834 	      offset = INTVAL (XEXP (dest, 2));
2835 	      dest = XEXP (dest, 0);
2836 	      if (BITS_BIG_ENDIAN)
2837 		offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2838 	    }
2839 	}
2840       else
2841 	{
2842 	  if (GET_CODE (dest) == STRICT_LOW_PART)
2843 	    dest = XEXP (dest, 0);
2844 	  width = GET_MODE_PRECISION (GET_MODE (dest));
2845 	  offset = 0;
2846 	}
2847 
2848       if (offset >= 0)
2849 	{
2850 	  /* If this is the low part, we're done.  */
2851 	  if (subreg_lowpart_p (dest))
2852 	    ;
2853 	  /* Handle the case where inner is twice the size of outer.  */
2854 	  else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr)))
2855 		   == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2856 	    offset += GET_MODE_PRECISION (GET_MODE (dest));
2857 	  /* Otherwise give up for now.  */
2858 	  else
2859 	    offset = -1;
2860 	}
2861 
2862       if (offset >= 0)
2863 	{
2864 	  rtx inner = SET_SRC (PATTERN (i3));
2865 	  rtx outer = SET_SRC (temp_expr);
2866 
2867 	  wide_int o
2868 	    = wi::insert (std::make_pair (outer, GET_MODE (SET_DEST (temp_expr))),
2869 			  std::make_pair (inner, GET_MODE (dest)),
2870 			  offset, width);
2871 
2872 	  combine_merges++;
2873 	  subst_insn = i3;
2874 	  subst_low_luid = DF_INSN_LUID (i2);
2875 	  added_sets_2 = added_sets_1 = added_sets_0 = 0;
2876 	  i2dest = SET_DEST (temp_expr);
2877 	  i2dest_killed = dead_or_set_p (i2, i2dest);
2878 
2879 	  /* Replace the source in I2 with the new constant and make the
2880 	     resulting insn the new pattern for I3.  Then skip to where we
2881 	     validate the pattern.  Everything was set up above.  */
2882 	  SUBST (SET_SRC (temp_expr),
2883 		 immed_wide_int_const (o, GET_MODE (SET_DEST (temp_expr))));
2884 
2885 	  newpat = PATTERN (i2);
2886 
2887           /* The dest of I3 has been replaced with the dest of I2.  */
2888           changed_i3_dest = 1;
2889 	  goto validate_replacement;
2890 	}
2891     }
2892 
2893 #ifndef HAVE_cc0
2894   /* If we have no I1 and I2 looks like:
2895 	(parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2896 		   (set Y OP)])
2897      make up a dummy I1 that is
2898 	(set Y OP)
2899      and change I2 to be
2900 	(set (reg:CC X) (compare:CC Y (const_int 0)))
2901 
2902      (We can ignore any trailing CLOBBERs.)
2903 
2904      This undoes a previous combination and allows us to match a branch-and-
2905      decrement insn.  */
2906 
2907   if (i1 == 0
2908       && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2909       && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2910 	  == MODE_CC)
2911       && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2912       && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2913       && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2914 		      SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2915       && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2916       && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2917     {
2918       /* We make I1 with the same INSN_UID as I2.  This gives it
2919 	 the same DF_INSN_LUID for value tracking.  Our fake I1 will
2920 	 never appear in the insn stream so giving it the same INSN_UID
2921 	 as I2 will not cause a problem.  */
2922 
2923       i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2924 			 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2925 			 -1, NULL_RTX);
2926       INSN_UID (i1) = INSN_UID (i2);
2927 
2928       SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2929       SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2930 	     SET_DEST (PATTERN (i1)));
2931       unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2932       SUBST_LINK (LOG_LINKS (i2),
2933 		  alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2934     }
2935 
2936   /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2937      make those two SETs separate I1 and I2 insns, and make an I0 that is
2938      the original I1.  */
2939   if (i0 == 0
2940       && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2941       && can_split_parallel_of_n_reg_sets (i2, 2)
2942       && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2943       && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2944     {
2945       /* If there is no I1, there is no I0 either.  */
2946       i0 = i1;
2947 
2948       /* We make I1 with the same INSN_UID as I2.  This gives it
2949 	 the same DF_INSN_LUID for value tracking.  Our fake I1 will
2950 	 never appear in the insn stream so giving it the same INSN_UID
2951 	 as I2 will not cause a problem.  */
2952 
2953       i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2954 			 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2955 			 -1, NULL_RTX);
2956       INSN_UID (i1) = INSN_UID (i2);
2957 
2958       SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2959     }
2960 #endif
2961 
2962   /* Verify that I2 and I1 are valid for combining.  */
2963   if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
2964       || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
2965 				 &i1dest, &i1src))
2966       || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
2967 				 &i0dest, &i0src)))
2968     {
2969       undo_all ();
2970       return 0;
2971     }
2972 
2973   /* Record whether I2DEST is used in I2SRC and similarly for the other
2974      cases.  Knowing this will help in register status updating below.  */
2975   i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2976   i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2977   i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2978   i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2979   i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2980   i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2981   i2dest_killed = dead_or_set_p (i2, i2dest);
2982   i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2983   i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2984 
2985   /* For the earlier insns, determine which of the subsequent ones they
2986      feed.  */
2987   i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2988   i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2989   i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2990 			  : (!reg_overlap_mentioned_p (i1dest, i0dest)
2991 			     && reg_overlap_mentioned_p (i0dest, i2src))));
2992 
2993   /* Ensure that I3's pattern can be the destination of combines.  */
2994   if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2995 			  i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2996 			  i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2997 				 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2998 			  &i3dest_killed))
2999     {
3000       undo_all ();
3001       return 0;
3002     }
3003 
3004   /* See if any of the insns is a MULT operation.  Unless one is, we will
3005      reject a combination that is, since it must be slower.  Be conservative
3006      here.  */
3007   if (GET_CODE (i2src) == MULT
3008       || (i1 != 0 && GET_CODE (i1src) == MULT)
3009       || (i0 != 0 && GET_CODE (i0src) == MULT)
3010       || (GET_CODE (PATTERN (i3)) == SET
3011 	  && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3012     have_mult = 1;
3013 
3014   /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3015      We used to do this EXCEPT in one case: I3 has a post-inc in an
3016      output operand.  However, that exception can give rise to insns like
3017 	mov r3,(r3)+
3018      which is a famous insn on the PDP-11 where the value of r3 used as the
3019      source was model-dependent.  Avoid this sort of thing.  */
3020 
3021 #if 0
3022   if (!(GET_CODE (PATTERN (i3)) == SET
3023 	&& REG_P (SET_SRC (PATTERN (i3)))
3024 	&& MEM_P (SET_DEST (PATTERN (i3)))
3025 	&& (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3026 	    || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3027     /* It's not the exception.  */
3028 #endif
3029 #ifdef AUTO_INC_DEC
3030     {
3031       rtx link;
3032       for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3033 	if (REG_NOTE_KIND (link) == REG_INC
3034 	    && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3035 		|| (i1 != 0
3036 		    && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3037 	  {
3038 	    undo_all ();
3039 	    return 0;
3040 	  }
3041     }
3042 #endif
3043 
3044   /* See if the SETs in I1 or I2 need to be kept around in the merged
3045      instruction: whenever the value set there is still needed past I3.
3046      For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3047 
3048      For the SET in I1, we have two cases: if I1 and I2 independently feed
3049      into I3, the set in I1 needs to be kept around unless I1DEST dies
3050      or is set in I3.  Otherwise (if I1 feeds I2 which feeds I3), the set
3051      in I1 needs to be kept around unless I1DEST dies or is set in either
3052      I2 or I3.  The same considerations apply to I0.  */
3053 
3054   added_sets_2 = !dead_or_set_p (i3, i2dest);
3055 
3056   if (i1)
3057     added_sets_1 = !(dead_or_set_p (i3, i1dest)
3058 		     || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3059   else
3060     added_sets_1 = 0;
3061 
3062   if (i0)
3063     added_sets_0 =  !(dead_or_set_p (i3, i0dest)
3064 		      || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3065 		      || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3066 			  && dead_or_set_p (i2, i0dest)));
3067   else
3068     added_sets_0 = 0;
3069 
3070   /* We are about to copy insns for the case where they need to be kept
3071      around.  Check that they can be copied in the merged instruction.  */
3072 
3073   if (targetm.cannot_copy_insn_p
3074       && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3075 	  || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3076 	  || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3077     {
3078       undo_all ();
3079       return 0;
3080     }
3081 
3082   /* If the set in I2 needs to be kept around, we must make a copy of
3083      PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3084      PATTERN (I2), we are only substituting for the original I1DEST, not into
3085      an already-substituted copy.  This also prevents making self-referential
3086      rtx.  If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3087      I2DEST.  */
3088 
3089   if (added_sets_2)
3090     {
3091       if (GET_CODE (PATTERN (i2)) == PARALLEL)
3092 	i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
3093       else
3094 	i2pat = copy_rtx (PATTERN (i2));
3095     }
3096 
3097   if (added_sets_1)
3098     {
3099       if (GET_CODE (PATTERN (i1)) == PARALLEL)
3100 	i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
3101       else
3102 	i1pat = copy_rtx (PATTERN (i1));
3103     }
3104 
3105   if (added_sets_0)
3106     {
3107       if (GET_CODE (PATTERN (i0)) == PARALLEL)
3108 	i0pat = gen_rtx_SET (VOIDmode, i0dest, copy_rtx (i0src));
3109       else
3110 	i0pat = copy_rtx (PATTERN (i0));
3111     }
3112 
3113   combine_merges++;
3114 
3115   /* Substitute in the latest insn for the regs set by the earlier ones.  */
3116 
3117   maxreg = max_reg_num ();
3118 
3119   subst_insn = i3;
3120 
3121 #ifndef HAVE_cc0
3122   /* Many machines that don't use CC0 have insns that can both perform an
3123      arithmetic operation and set the condition code.  These operations will
3124      be represented as a PARALLEL with the first element of the vector
3125      being a COMPARE of an arithmetic operation with the constant zero.
3126      The second element of the vector will set some pseudo to the result
3127      of the same arithmetic operation.  If we simplify the COMPARE, we won't
3128      match such a pattern and so will generate an extra insn.   Here we test
3129      for this case, where both the comparison and the operation result are
3130      needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3131      I2SRC.  Later we will make the PARALLEL that contains I2.  */
3132 
3133   if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3134       && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3135       && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3136       && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3137     {
3138       rtx newpat_dest;
3139       rtx *cc_use_loc = NULL;
3140       rtx_insn *cc_use_insn = NULL;
3141       rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3142       machine_mode compare_mode, orig_compare_mode;
3143       enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3144 
3145       newpat = PATTERN (i3);
3146       newpat_dest = SET_DEST (newpat);
3147       compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3148 
3149       if (undobuf.other_insn == 0
3150 	  && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3151 					    &cc_use_insn)))
3152 	{
3153 	  compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3154 	  compare_code = simplify_compare_const (compare_code,
3155 						 GET_MODE (i2dest), op0, &op1);
3156 	  target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3157 	}
3158 
3159       /* Do the rest only if op1 is const0_rtx, which may be the
3160 	 result of simplification.  */
3161       if (op1 == const0_rtx)
3162 	{
3163 	  /* If a single use of the CC is found, prepare to modify it
3164 	     when SELECT_CC_MODE returns a new CC-class mode, or when
3165 	     the above simplify_compare_const() returned a new comparison
3166 	     operator.  undobuf.other_insn is assigned the CC use insn
3167 	     when modifying it.  */
3168 	  if (cc_use_loc)
3169 	    {
3170 #ifdef SELECT_CC_MODE
3171 	      machine_mode new_mode
3172 		= SELECT_CC_MODE (compare_code, op0, op1);
3173 	      if (new_mode != orig_compare_mode
3174 		  && can_change_dest_mode (SET_DEST (newpat),
3175 					   added_sets_2, new_mode))
3176 		{
3177 		  unsigned int regno = REGNO (newpat_dest);
3178 		  compare_mode = new_mode;
3179 		  if (regno < FIRST_PSEUDO_REGISTER)
3180 		    newpat_dest = gen_rtx_REG (compare_mode, regno);
3181 		  else
3182 		    {
3183 		      SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3184 		      newpat_dest = regno_reg_rtx[regno];
3185 		    }
3186 		}
3187 #endif
3188 	      /* Cases for modifying the CC-using comparison.  */
3189 	      if (compare_code != orig_compare_code
3190 		  /* ??? Do we need to verify the zero rtx?  */
3191 		  && XEXP (*cc_use_loc, 1) == const0_rtx)
3192 		{
3193 		  /* Replace cc_use_loc with entire new RTX.  */
3194 		  SUBST (*cc_use_loc,
3195 			 gen_rtx_fmt_ee (compare_code, compare_mode,
3196 					 newpat_dest, const0_rtx));
3197 		  undobuf.other_insn = cc_use_insn;
3198 		}
3199 	      else if (compare_mode != orig_compare_mode)
3200 		{
3201 		  /* Just replace the CC reg with a new mode.  */
3202 		  SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3203 		  undobuf.other_insn = cc_use_insn;
3204 		}
3205 	    }
3206 
3207 	  /* Now we modify the current newpat:
3208 	     First, SET_DEST(newpat) is updated if the CC mode has been
3209 	     altered. For targets without SELECT_CC_MODE, this should be
3210 	     optimized away.  */
3211 	  if (compare_mode != orig_compare_mode)
3212 	    SUBST (SET_DEST (newpat), newpat_dest);
3213 	  /* This is always done to propagate i2src into newpat.  */
3214 	  SUBST (SET_SRC (newpat),
3215 		 gen_rtx_COMPARE (compare_mode, op0, op1));
3216 	  /* Create new version of i2pat if needed; the below PARALLEL
3217 	     creation needs this to work correctly.  */
3218 	  if (! rtx_equal_p (i2src, op0))
3219 	    i2pat = gen_rtx_SET (VOIDmode, i2dest, op0);
3220 	  i2_is_used = 1;
3221 	}
3222     }
3223 #endif
3224 
3225   if (i2_is_used == 0)
3226     {
3227       /* It is possible that the source of I2 or I1 may be performing
3228 	 an unneeded operation, such as a ZERO_EXTEND of something
3229 	 that is known to have the high part zero.  Handle that case
3230 	 by letting subst look at the inner insns.
3231 
3232 	 Another way to do this would be to have a function that tries
3233 	 to simplify a single insn instead of merging two or more
3234 	 insns.  We don't do this because of the potential of infinite
3235 	 loops and because of the potential extra memory required.
3236 	 However, doing it the way we are is a bit of a kludge and
3237 	 doesn't catch all cases.
3238 
3239 	 But only do this if -fexpensive-optimizations since it slows
3240 	 things down and doesn't usually win.
3241 
3242 	 This is not done in the COMPARE case above because the
3243 	 unmodified I2PAT is used in the PARALLEL and so a pattern
3244 	 with a modified I2SRC would not match.  */
3245 
3246       if (flag_expensive_optimizations)
3247 	{
3248 	  /* Pass pc_rtx so no substitutions are done, just
3249 	     simplifications.  */
3250 	  if (i1)
3251 	    {
3252 	      subst_low_luid = DF_INSN_LUID (i1);
3253 	      i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3254 	    }
3255 
3256 	  subst_low_luid = DF_INSN_LUID (i2);
3257 	  i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3258 	}
3259 
3260       n_occurrences = 0;		/* `subst' counts here */
3261       subst_low_luid = DF_INSN_LUID (i2);
3262 
3263       /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3264 	 copy of I2SRC each time we substitute it, in order to avoid creating
3265 	 self-referential RTL when we will be substituting I1SRC for I1DEST
3266 	 later.  Likewise if I0 feeds into I2, either directly or indirectly
3267 	 through I1, and I0DEST is in I0SRC.  */
3268       newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3269 		      (i1_feeds_i2_n && i1dest_in_i1src)
3270 		      || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3271 			  && i0dest_in_i0src));
3272       substed_i2 = 1;
3273 
3274       /* Record whether I2's body now appears within I3's body.  */
3275       i2_is_used = n_occurrences;
3276     }
3277 
3278   /* If we already got a failure, don't try to do more.  Otherwise, try to
3279      substitute I1 if we have it.  */
3280 
3281   if (i1 && GET_CODE (newpat) != CLOBBER)
3282     {
3283       /* Check that an autoincrement side-effect on I1 has not been lost.
3284 	 This happens if I1DEST is mentioned in I2 and dies there, and
3285 	 has disappeared from the new pattern.  */
3286       if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3287 	   && i1_feeds_i2_n
3288 	   && dead_or_set_p (i2, i1dest)
3289 	   && !reg_overlap_mentioned_p (i1dest, newpat))
3290 	   /* Before we can do this substitution, we must redo the test done
3291 	      above (see detailed comments there) that ensures I1DEST isn't
3292 	      mentioned in any SETs in NEWPAT that are field assignments.  */
3293 	  || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3294 				0, 0, 0))
3295 	{
3296 	  undo_all ();
3297 	  return 0;
3298 	}
3299 
3300       n_occurrences = 0;
3301       subst_low_luid = DF_INSN_LUID (i1);
3302 
3303       /* If the following substitution will modify I1SRC, make a copy of it
3304 	 for the case where it is substituted for I1DEST in I2PAT later.  */
3305       if (added_sets_2 && i1_feeds_i2_n)
3306 	i1src_copy = copy_rtx (i1src);
3307 
3308       /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3309 	 copy of I1SRC each time we substitute it, in order to avoid creating
3310 	 self-referential RTL when we will be substituting I0SRC for I0DEST
3311 	 later.  */
3312       newpat = subst (newpat, i1dest, i1src, 0, 0,
3313 		      i0_feeds_i1_n && i0dest_in_i0src);
3314       substed_i1 = 1;
3315 
3316       /* Record whether I1's body now appears within I3's body.  */
3317       i1_is_used = n_occurrences;
3318     }
3319 
3320   /* Likewise for I0 if we have it.  */
3321 
3322   if (i0 && GET_CODE (newpat) != CLOBBER)
3323     {
3324       if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3325 	   && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3326 	       || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3327 	   && !reg_overlap_mentioned_p (i0dest, newpat))
3328 	  || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3329 				0, 0, 0))
3330 	{
3331 	  undo_all ();
3332 	  return 0;
3333 	}
3334 
3335       /* If the following substitution will modify I0SRC, make a copy of it
3336 	 for the case where it is substituted for I0DEST in I1PAT later.  */
3337       if (added_sets_1 && i0_feeds_i1_n)
3338 	i0src_copy = copy_rtx (i0src);
3339       /* And a copy for I0DEST in I2PAT substitution.  */
3340       if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3341 			   || (i0_feeds_i2_n)))
3342 	i0src_copy2 = copy_rtx (i0src);
3343 
3344       n_occurrences = 0;
3345       subst_low_luid = DF_INSN_LUID (i0);
3346       newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3347       substed_i0 = 1;
3348     }
3349 
3350   /* Fail if an autoincrement side-effect has been duplicated.  Be careful
3351      to count all the ways that I2SRC and I1SRC can be used.  */
3352   if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3353        && i2_is_used + added_sets_2 > 1)
3354       || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3355 	  && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3356 	      > 1))
3357       || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3358 	  && (n_occurrences + added_sets_0
3359 	      + (added_sets_1 && i0_feeds_i1_n)
3360 	      + (added_sets_2 && i0_feeds_i2_n)
3361 	      > 1))
3362       /* Fail if we tried to make a new register.  */
3363       || max_reg_num () != maxreg
3364       /* Fail if we couldn't do something and have a CLOBBER.  */
3365       || GET_CODE (newpat) == CLOBBER
3366       /* Fail if this new pattern is a MULT and we didn't have one before
3367 	 at the outer level.  */
3368       || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3369 	  && ! have_mult))
3370     {
3371       undo_all ();
3372       return 0;
3373     }
3374 
3375   /* If the actions of the earlier insns must be kept
3376      in addition to substituting them into the latest one,
3377      we must make a new PARALLEL for the latest insn
3378      to hold additional the SETs.  */
3379 
3380   if (added_sets_0 || added_sets_1 || added_sets_2)
3381     {
3382       int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3383       combine_extras++;
3384 
3385       if (GET_CODE (newpat) == PARALLEL)
3386 	{
3387 	  rtvec old = XVEC (newpat, 0);
3388 	  total_sets = XVECLEN (newpat, 0) + extra_sets;
3389 	  newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3390 	  memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3391 		  sizeof (old->elem[0]) * old->num_elem);
3392 	}
3393       else
3394 	{
3395 	  rtx old = newpat;
3396 	  total_sets = 1 + extra_sets;
3397 	  newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3398 	  XVECEXP (newpat, 0, 0) = old;
3399 	}
3400 
3401       if (added_sets_0)
3402 	XVECEXP (newpat, 0, --total_sets) = i0pat;
3403 
3404       if (added_sets_1)
3405 	{
3406 	  rtx t = i1pat;
3407 	  if (i0_feeds_i1_n)
3408 	    t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3409 
3410 	  XVECEXP (newpat, 0, --total_sets) = t;
3411 	}
3412       if (added_sets_2)
3413 	{
3414 	  rtx t = i2pat;
3415 	  if (i1_feeds_i2_n)
3416 	    t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3417 		       i0_feeds_i1_n && i0dest_in_i0src);
3418 	  if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3419 	    t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3420 
3421 	  XVECEXP (newpat, 0, --total_sets) = t;
3422 	}
3423     }
3424 
3425  validate_replacement:
3426 
3427   /* Note which hard regs this insn has as inputs.  */
3428   mark_used_regs_combine (newpat);
3429 
3430   /* If recog_for_combine fails, it strips existing clobbers.  If we'll
3431      consider splitting this pattern, we might need these clobbers.  */
3432   if (i1 && GET_CODE (newpat) == PARALLEL
3433       && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3434     {
3435       int len = XVECLEN (newpat, 0);
3436 
3437       newpat_vec_with_clobbers = rtvec_alloc (len);
3438       for (i = 0; i < len; i++)
3439 	RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3440     }
3441 
3442   /* We have recognized nothing yet.  */
3443   insn_code_number = -1;
3444 
3445   /* See if this is a PARALLEL of two SETs where one SET's destination is
3446      a register that is unused and this isn't marked as an instruction that
3447      might trap in an EH region.  In that case, we just need the other SET.
3448      We prefer this over the PARALLEL.
3449 
3450      This can occur when simplifying a divmod insn.  We *must* test for this
3451      case here because the code below that splits two independent SETs doesn't
3452      handle this case correctly when it updates the register status.
3453 
3454      It's pointless doing this if we originally had two sets, one from
3455      i3, and one from i2.  Combining then splitting the parallel results
3456      in the original i2 again plus an invalid insn (which we delete).
3457      The net effect is only to move instructions around, which makes
3458      debug info less accurate.  */
3459 
3460   if (!(added_sets_2 && i1 == 0)
3461       && is_parallel_of_n_reg_sets (newpat, 2)
3462       && asm_noperands (newpat) < 0)
3463     {
3464       rtx set0 = XVECEXP (newpat, 0, 0);
3465       rtx set1 = XVECEXP (newpat, 0, 1);
3466       rtx oldpat = newpat;
3467 
3468       if (((REG_P (SET_DEST (set1))
3469 	    && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3470 	   || (GET_CODE (SET_DEST (set1)) == SUBREG
3471 	       && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3472 	  && insn_nothrow_p (i3)
3473 	  && !side_effects_p (SET_SRC (set1)))
3474 	{
3475 	  newpat = set0;
3476 	  insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3477 	}
3478 
3479       else if (((REG_P (SET_DEST (set0))
3480 		 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3481 		|| (GET_CODE (SET_DEST (set0)) == SUBREG
3482 		    && find_reg_note (i3, REG_UNUSED,
3483 				      SUBREG_REG (SET_DEST (set0)))))
3484 	       && insn_nothrow_p (i3)
3485 	       && !side_effects_p (SET_SRC (set0)))
3486 	{
3487 	  newpat = set1;
3488 	  insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3489 
3490 	  if (insn_code_number >= 0)
3491 	    changed_i3_dest = 1;
3492 	}
3493 
3494       if (insn_code_number < 0)
3495 	newpat = oldpat;
3496     }
3497 
3498   /* Is the result of combination a valid instruction?  */
3499   if (insn_code_number < 0)
3500     insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3501 
3502   /* If we were combining three insns and the result is a simple SET
3503      with no ASM_OPERANDS that wasn't recognized, try to split it into two
3504      insns.  There are two ways to do this.  It can be split using a
3505      machine-specific method (like when you have an addition of a large
3506      constant) or by combine in the function find_split_point.  */
3507 
3508   if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3509       && asm_noperands (newpat) < 0)
3510     {
3511       rtx parallel, *split;
3512       rtx_insn *m_split_insn;
3513 
3514       /* See if the MD file can split NEWPAT.  If it can't, see if letting it
3515 	 use I2DEST as a scratch register will help.  In the latter case,
3516 	 convert I2DEST to the mode of the source of NEWPAT if we can.  */
3517 
3518       m_split_insn = combine_split_insns (newpat, i3);
3519 
3520       /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3521 	 inputs of NEWPAT.  */
3522 
3523       /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3524 	 possible to try that as a scratch reg.  This would require adding
3525 	 more code to make it work though.  */
3526 
3527       if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3528 	{
3529 	  machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3530 
3531 	  /* First try to split using the original register as a
3532 	     scratch register.  */
3533 	  parallel = gen_rtx_PARALLEL (VOIDmode,
3534 				       gen_rtvec (2, newpat,
3535 						  gen_rtx_CLOBBER (VOIDmode,
3536 								   i2dest)));
3537 	  m_split_insn = combine_split_insns (parallel, i3);
3538 
3539 	  /* If that didn't work, try changing the mode of I2DEST if
3540 	     we can.  */
3541 	  if (m_split_insn == 0
3542 	      && new_mode != GET_MODE (i2dest)
3543 	      && new_mode != VOIDmode
3544 	      && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3545 	    {
3546 	      machine_mode old_mode = GET_MODE (i2dest);
3547 	      rtx ni2dest;
3548 
3549 	      if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3550 		ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3551 	      else
3552 		{
3553 		  SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3554 		  ni2dest = regno_reg_rtx[REGNO (i2dest)];
3555 		}
3556 
3557 	      parallel = (gen_rtx_PARALLEL
3558 			  (VOIDmode,
3559 			   gen_rtvec (2, newpat,
3560 				      gen_rtx_CLOBBER (VOIDmode,
3561 						       ni2dest))));
3562 	      m_split_insn = combine_split_insns (parallel, i3);
3563 
3564 	      if (m_split_insn == 0
3565 		  && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3566 		{
3567 		  struct undo *buf;
3568 
3569 		  adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3570 		  buf = undobuf.undos;
3571 		  undobuf.undos = buf->next;
3572 		  buf->next = undobuf.frees;
3573 		  undobuf.frees = buf;
3574 		}
3575 	    }
3576 
3577 	  i2scratch = m_split_insn != 0;
3578 	}
3579 
3580       /* If recog_for_combine has discarded clobbers, try to use them
3581 	 again for the split.  */
3582       if (m_split_insn == 0 && newpat_vec_with_clobbers)
3583 	{
3584 	  parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3585 	  m_split_insn = combine_split_insns (parallel, i3);
3586 	}
3587 
3588       if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3589 	{
3590 	  rtx m_split_pat = PATTERN (m_split_insn);
3591 	  insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3592 	  if (insn_code_number >= 0)
3593 	    newpat = m_split_pat;
3594 	}
3595       else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3596 	       && (next_nonnote_nondebug_insn (i2) == i3
3597 		   || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3598 	{
3599 	  rtx i2set, i3set;
3600 	  rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3601 	  newi2pat = PATTERN (m_split_insn);
3602 
3603 	  i3set = single_set (NEXT_INSN (m_split_insn));
3604 	  i2set = single_set (m_split_insn);
3605 
3606 	  i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3607 
3608 	  /* If I2 or I3 has multiple SETs, we won't know how to track
3609 	     register status, so don't use these insns.  If I2's destination
3610 	     is used between I2 and I3, we also can't use these insns.  */
3611 
3612 	  if (i2_code_number >= 0 && i2set && i3set
3613 	      && (next_nonnote_nondebug_insn (i2) == i3
3614 		  || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3615 	    insn_code_number = recog_for_combine (&newi3pat, i3,
3616 						  &new_i3_notes);
3617 	  if (insn_code_number >= 0)
3618 	    newpat = newi3pat;
3619 
3620 	  /* It is possible that both insns now set the destination of I3.
3621 	     If so, we must show an extra use of it.  */
3622 
3623 	  if (insn_code_number >= 0)
3624 	    {
3625 	      rtx new_i3_dest = SET_DEST (i3set);
3626 	      rtx new_i2_dest = SET_DEST (i2set);
3627 
3628 	      while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3629 		     || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3630 		     || GET_CODE (new_i3_dest) == SUBREG)
3631 		new_i3_dest = XEXP (new_i3_dest, 0);
3632 
3633 	      while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3634 		     || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3635 		     || GET_CODE (new_i2_dest) == SUBREG)
3636 		new_i2_dest = XEXP (new_i2_dest, 0);
3637 
3638 	      if (REG_P (new_i3_dest)
3639 		  && REG_P (new_i2_dest)
3640 		  && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3641 		  && REGNO (new_i2_dest) < reg_n_sets_max)
3642 		INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3643 	    }
3644 	}
3645 
3646       /* If we can split it and use I2DEST, go ahead and see if that
3647 	 helps things be recognized.  Verify that none of the registers
3648 	 are set between I2 and I3.  */
3649       if (insn_code_number < 0
3650           && (split = find_split_point (&newpat, i3, false)) != 0
3651 #ifdef HAVE_cc0
3652 	  && REG_P (i2dest)
3653 #endif
3654 	  /* We need I2DEST in the proper mode.  If it is a hard register
3655 	     or the only use of a pseudo, we can change its mode.
3656 	     Make sure we don't change a hard register to have a mode that
3657 	     isn't valid for it, or change the number of registers.  */
3658 	  && (GET_MODE (*split) == GET_MODE (i2dest)
3659 	      || GET_MODE (*split) == VOIDmode
3660 	      || can_change_dest_mode (i2dest, added_sets_2,
3661 				       GET_MODE (*split)))
3662 	  && (next_nonnote_nondebug_insn (i2) == i3
3663 	      || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3664 	  /* We can't overwrite I2DEST if its value is still used by
3665 	     NEWPAT.  */
3666 	  && ! reg_referenced_p (i2dest, newpat))
3667 	{
3668 	  rtx newdest = i2dest;
3669 	  enum rtx_code split_code = GET_CODE (*split);
3670 	  machine_mode split_mode = GET_MODE (*split);
3671 	  bool subst_done = false;
3672 	  newi2pat = NULL_RTX;
3673 
3674 	  i2scratch = true;
3675 
3676 	  /* *SPLIT may be part of I2SRC, so make sure we have the
3677 	     original expression around for later debug processing.
3678 	     We should not need I2SRC any more in other cases.  */
3679 	  if (MAY_HAVE_DEBUG_INSNS)
3680 	    i2src = copy_rtx (i2src);
3681 	  else
3682 	    i2src = NULL;
3683 
3684 	  /* Get NEWDEST as a register in the proper mode.  We have already
3685 	     validated that we can do this.  */
3686 	  if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3687 	    {
3688 	      if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3689 		newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3690 	      else
3691 		{
3692 		  SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3693 		  newdest = regno_reg_rtx[REGNO (i2dest)];
3694 		}
3695 	    }
3696 
3697 	  /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3698 	     an ASHIFT.  This can occur if it was inside a PLUS and hence
3699 	     appeared to be a memory address.  This is a kludge.  */
3700 	  if (split_code == MULT
3701 	      && CONST_INT_P (XEXP (*split, 1))
3702 	      && INTVAL (XEXP (*split, 1)) > 0
3703 	      && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3704 	    {
3705 	      SUBST (*split, gen_rtx_ASHIFT (split_mode,
3706 					     XEXP (*split, 0), GEN_INT (i)));
3707 	      /* Update split_code because we may not have a multiply
3708 		 anymore.  */
3709 	      split_code = GET_CODE (*split);
3710 	    }
3711 
3712 #ifdef INSN_SCHEDULING
3713 	  /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3714 	     be written as a ZERO_EXTEND.  */
3715 	  if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3716 	    {
3717 #ifdef LOAD_EXTEND_OP
3718 	      /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3719 		 what it really is.  */
3720 	      if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3721 		  == SIGN_EXTEND)
3722 		SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3723 						    SUBREG_REG (*split)));
3724 	      else
3725 #endif
3726 		SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3727 						    SUBREG_REG (*split)));
3728 	    }
3729 #endif
3730 
3731 	  /* Attempt to split binary operators using arithmetic identities.  */
3732 	  if (BINARY_P (SET_SRC (newpat))
3733 	      && split_mode == GET_MODE (SET_SRC (newpat))
3734 	      && ! side_effects_p (SET_SRC (newpat)))
3735 	    {
3736 	      rtx setsrc = SET_SRC (newpat);
3737 	      machine_mode mode = GET_MODE (setsrc);
3738 	      enum rtx_code code = GET_CODE (setsrc);
3739 	      rtx src_op0 = XEXP (setsrc, 0);
3740 	      rtx src_op1 = XEXP (setsrc, 1);
3741 
3742 	      /* Split "X = Y op Y" as "Z = Y; X = Z op Z".  */
3743 	      if (rtx_equal_p (src_op0, src_op1))
3744 		{
3745 		  newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3746 		  SUBST (XEXP (setsrc, 0), newdest);
3747 		  SUBST (XEXP (setsrc, 1), newdest);
3748 		  subst_done = true;
3749 		}
3750 	      /* Split "((P op Q) op R) op S" where op is PLUS or MULT.  */
3751 	      else if ((code == PLUS || code == MULT)
3752 		       && GET_CODE (src_op0) == code
3753 		       && GET_CODE (XEXP (src_op0, 0)) == code
3754 		       && (INTEGRAL_MODE_P (mode)
3755 			   || (FLOAT_MODE_P (mode)
3756 			       && flag_unsafe_math_optimizations)))
3757 		{
3758 		  rtx p = XEXP (XEXP (src_op0, 0), 0);
3759 		  rtx q = XEXP (XEXP (src_op0, 0), 1);
3760 		  rtx r = XEXP (src_op0, 1);
3761 		  rtx s = src_op1;
3762 
3763 		  /* Split both "((X op Y) op X) op Y" and
3764 		     "((X op Y) op Y) op X" as "T op T" where T is
3765 		     "X op Y".  */
3766 		  if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3767 		       || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3768 		    {
3769 		      newi2pat = gen_rtx_SET (VOIDmode, newdest,
3770 					      XEXP (src_op0, 0));
3771 		      SUBST (XEXP (setsrc, 0), newdest);
3772 		      SUBST (XEXP (setsrc, 1), newdest);
3773 		      subst_done = true;
3774 		    }
3775 		  /* Split "((X op X) op Y) op Y)" as "T op T" where
3776 		     T is "X op Y".  */
3777 		  else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3778 		    {
3779 		      rtx tmp = simplify_gen_binary (code, mode, p, r);
3780 		      newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3781 		      SUBST (XEXP (setsrc, 0), newdest);
3782 		      SUBST (XEXP (setsrc, 1), newdest);
3783 		      subst_done = true;
3784 		    }
3785 		}
3786 	    }
3787 
3788 	  if (!subst_done)
3789 	    {
3790 	      newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3791 	      SUBST (*split, newdest);
3792 	    }
3793 
3794 	  i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3795 
3796 	  /* recog_for_combine might have added CLOBBERs to newi2pat.
3797 	     Make sure NEWPAT does not depend on the clobbered regs.  */
3798 	  if (GET_CODE (newi2pat) == PARALLEL)
3799 	    for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3800 	      if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3801 		{
3802 		  rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3803 		  if (reg_overlap_mentioned_p (reg, newpat))
3804 		    {
3805 		      undo_all ();
3806 		      return 0;
3807 		    }
3808 		}
3809 
3810 	  /* If the split point was a MULT and we didn't have one before,
3811 	     don't use one now.  */
3812 	  if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3813 	    insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3814 	}
3815     }
3816 
3817   /* Check for a case where we loaded from memory in a narrow mode and
3818      then sign extended it, but we need both registers.  In that case,
3819      we have a PARALLEL with both loads from the same memory location.
3820      We can split this into a load from memory followed by a register-register
3821      copy.  This saves at least one insn, more if register allocation can
3822      eliminate the copy.
3823 
3824      We cannot do this if the destination of the first assignment is a
3825      condition code register or cc0.  We eliminate this case by making sure
3826      the SET_DEST and SET_SRC have the same mode.
3827 
3828      We cannot do this if the destination of the second assignment is
3829      a register that we have already assumed is zero-extended.  Similarly
3830      for a SUBREG of such a register.  */
3831 
3832   else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3833 	   && GET_CODE (newpat) == PARALLEL
3834 	   && XVECLEN (newpat, 0) == 2
3835 	   && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3836 	   && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3837 	   && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3838 	       == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3839 	   && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3840 	   && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3841 			   XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3842 	   && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3843 				   DF_INSN_LUID (i2))
3844 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3845 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3846 	   && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3847 		 (REG_P (temp_expr)
3848 		  && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3849 		  && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3850 		  && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3851 		  && (reg_stat[REGNO (temp_expr)].nonzero_bits
3852 		      != GET_MODE_MASK (word_mode))))
3853 	   && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3854 		 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3855 		     (REG_P (temp_expr)
3856 		      && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3857 		      && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3858 		      && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3859 		      && (reg_stat[REGNO (temp_expr)].nonzero_bits
3860 			  != GET_MODE_MASK (word_mode)))))
3861 	   && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3862 					 SET_SRC (XVECEXP (newpat, 0, 1)))
3863 	   && ! find_reg_note (i3, REG_UNUSED,
3864 			       SET_DEST (XVECEXP (newpat, 0, 0))))
3865     {
3866       rtx ni2dest;
3867 
3868       newi2pat = XVECEXP (newpat, 0, 0);
3869       ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3870       newpat = XVECEXP (newpat, 0, 1);
3871       SUBST (SET_SRC (newpat),
3872 	     gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3873       i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3874 
3875       if (i2_code_number >= 0)
3876 	insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3877 
3878       if (insn_code_number >= 0)
3879 	swap_i2i3 = 1;
3880     }
3881 
3882   /* Similarly, check for a case where we have a PARALLEL of two independent
3883      SETs but we started with three insns.  In this case, we can do the sets
3884      as two separate insns.  This case occurs when some SET allows two
3885      other insns to combine, but the destination of that SET is still live.
3886 
3887      Also do this if we started with two insns and (at least) one of the
3888      resulting sets is a noop; this noop will be deleted later.  */
3889 
3890   else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3891 	   && GET_CODE (newpat) == PARALLEL
3892 	   && XVECLEN (newpat, 0) == 2
3893 	   && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3894 	   && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3895 	   && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3896 		  || set_noop_p (XVECEXP (newpat, 0, 1)))
3897 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3898 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3899 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3900 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3901 	   && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3902 				  XVECEXP (newpat, 0, 0))
3903 	   && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3904 				  XVECEXP (newpat, 0, 1))
3905 	   && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3906 		 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3907     {
3908       rtx set0 = XVECEXP (newpat, 0, 0);
3909       rtx set1 = XVECEXP (newpat, 0, 1);
3910 
3911       /* Normally, it doesn't matter which of the two is done first,
3912 	 but the one that references cc0 can't be the second, and
3913 	 one which uses any regs/memory set in between i2 and i3 can't
3914 	 be first.  The PARALLEL might also have been pre-existing in i3,
3915 	 so we need to make sure that we won't wrongly hoist a SET to i2
3916 	 that would conflict with a death note present in there.  */
3917       if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3918 	  && !(REG_P (SET_DEST (set1))
3919 	       && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3920 	  && !(GET_CODE (SET_DEST (set1)) == SUBREG
3921 	       && find_reg_note (i2, REG_DEAD,
3922 				 SUBREG_REG (SET_DEST (set1))))
3923 #ifdef HAVE_cc0
3924 	  && !reg_referenced_p (cc0_rtx, set0)
3925 #endif
3926 	  /* If I3 is a jump, ensure that set0 is a jump so that
3927 	     we do not create invalid RTL.  */
3928 	  && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
3929 	 )
3930 	{
3931 	  newi2pat = set1;
3932 	  newpat = set0;
3933 	}
3934       else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3935 	       && !(REG_P (SET_DEST (set0))
3936 		    && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3937 	       && !(GET_CODE (SET_DEST (set0)) == SUBREG
3938 		    && find_reg_note (i2, REG_DEAD,
3939 				      SUBREG_REG (SET_DEST (set0))))
3940 #ifdef HAVE_cc0
3941 	       && !reg_referenced_p (cc0_rtx, set1)
3942 #endif
3943 	       /* If I3 is a jump, ensure that set1 is a jump so that
3944 		  we do not create invalid RTL.  */
3945 	       && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
3946 	      )
3947 	{
3948 	  newi2pat = set0;
3949 	  newpat = set1;
3950 	}
3951       else
3952 	{
3953 	  undo_all ();
3954 	  return 0;
3955 	}
3956 
3957       i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3958 
3959       if (i2_code_number >= 0)
3960 	{
3961 	  /* recog_for_combine might have added CLOBBERs to newi2pat.
3962 	     Make sure NEWPAT does not depend on the clobbered regs.  */
3963 	  if (GET_CODE (newi2pat) == PARALLEL)
3964 	    {
3965 	      for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3966 		if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3967 		  {
3968 		    rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3969 		    if (reg_overlap_mentioned_p (reg, newpat))
3970 		      {
3971 			undo_all ();
3972 			return 0;
3973 		      }
3974 		  }
3975 	    }
3976 
3977 	  insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3978 	}
3979     }
3980 
3981   /* If it still isn't recognized, fail and change things back the way they
3982      were.  */
3983   if ((insn_code_number < 0
3984        /* Is the result a reasonable ASM_OPERANDS?  */
3985        && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3986     {
3987       undo_all ();
3988       return 0;
3989     }
3990 
3991   /* If we had to change another insn, make sure it is valid also.  */
3992   if (undobuf.other_insn)
3993     {
3994       CLEAR_HARD_REG_SET (newpat_used_regs);
3995 
3996       other_pat = PATTERN (undobuf.other_insn);
3997       other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3998 					     &new_other_notes);
3999 
4000       if (other_code_number < 0 && ! check_asm_operands (other_pat))
4001 	{
4002 	  undo_all ();
4003 	  return 0;
4004 	}
4005     }
4006 
4007 #ifdef HAVE_cc0
4008   /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4009      they are adjacent to each other or not.  */
4010   {
4011     rtx_insn *p = prev_nonnote_insn (i3);
4012     if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4013 	&& sets_cc0_p (newi2pat))
4014       {
4015 	undo_all ();
4016 	return 0;
4017       }
4018   }
4019 #endif
4020 
4021   /* Only allow this combination if insn_rtx_costs reports that the
4022      replacement instructions are cheaper than the originals.  */
4023   if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4024     {
4025       undo_all ();
4026       return 0;
4027     }
4028 
4029   if (MAY_HAVE_DEBUG_INSNS)
4030     {
4031       struct undo *undo;
4032 
4033       for (undo = undobuf.undos; undo; undo = undo->next)
4034 	if (undo->kind == UNDO_MODE)
4035 	  {
4036 	    rtx reg = *undo->where.r;
4037 	    machine_mode new_mode = GET_MODE (reg);
4038 	    machine_mode old_mode = undo->old_contents.m;
4039 
4040 	    /* Temporarily revert mode back.  */
4041 	    adjust_reg_mode (reg, old_mode);
4042 
4043 	    if (reg == i2dest && i2scratch)
4044 	      {
4045 		/* If we used i2dest as a scratch register with a
4046 		   different mode, substitute it for the original
4047 		   i2src while its original mode is temporarily
4048 		   restored, and then clear i2scratch so that we don't
4049 		   do it again later.  */
4050 		propagate_for_debug (i2, last_combined_insn, reg, i2src,
4051 				     this_basic_block);
4052 		i2scratch = false;
4053 		/* Put back the new mode.  */
4054 		adjust_reg_mode (reg, new_mode);
4055 	      }
4056 	    else
4057 	      {
4058 		rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4059 		rtx_insn *first, *last;
4060 
4061 		if (reg == i2dest)
4062 		  {
4063 		    first = i2;
4064 		    last = last_combined_insn;
4065 		  }
4066 		else
4067 		  {
4068 		    first = i3;
4069 		    last = undobuf.other_insn;
4070 		    gcc_assert (last);
4071 		    if (DF_INSN_LUID (last)
4072 			< DF_INSN_LUID (last_combined_insn))
4073 		      last = last_combined_insn;
4074 		  }
4075 
4076 		/* We're dealing with a reg that changed mode but not
4077 		   meaning, so we want to turn it into a subreg for
4078 		   the new mode.  However, because of REG sharing and
4079 		   because its mode had already changed, we have to do
4080 		   it in two steps.  First, replace any debug uses of
4081 		   reg, with its original mode temporarily restored,
4082 		   with this copy we have created; then, replace the
4083 		   copy with the SUBREG of the original shared reg,
4084 		   once again changed to the new mode.  */
4085 		propagate_for_debug (first, last, reg, tempreg,
4086 				     this_basic_block);
4087 		adjust_reg_mode (reg, new_mode);
4088 		propagate_for_debug (first, last, tempreg,
4089 				     lowpart_subreg (old_mode, reg, new_mode),
4090 				     this_basic_block);
4091 	      }
4092 	  }
4093     }
4094 
4095   /* If we will be able to accept this, we have made a
4096      change to the destination of I3.  This requires us to
4097      do a few adjustments.  */
4098 
4099   if (changed_i3_dest)
4100     {
4101       PATTERN (i3) = newpat;
4102       adjust_for_new_dest (i3);
4103     }
4104 
4105   /* We now know that we can do this combination.  Merge the insns and
4106      update the status of registers and LOG_LINKS.  */
4107 
4108   if (undobuf.other_insn)
4109     {
4110       rtx note, next;
4111 
4112       PATTERN (undobuf.other_insn) = other_pat;
4113 
4114       /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4115 	 ensure that they are still valid.  Then add any non-duplicate
4116 	 notes added by recog_for_combine.  */
4117       for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4118 	{
4119 	  next = XEXP (note, 1);
4120 
4121 	  if ((REG_NOTE_KIND (note) == REG_DEAD
4122 	       && !reg_referenced_p (XEXP (note, 0),
4123 				     PATTERN (undobuf.other_insn)))
4124 	      ||(REG_NOTE_KIND (note) == REG_UNUSED
4125 		 && !reg_set_p (XEXP (note, 0),
4126 				PATTERN (undobuf.other_insn))))
4127 	    remove_note (undobuf.other_insn, note);
4128 	}
4129 
4130       distribute_notes  (new_other_notes, undobuf.other_insn,
4131 			undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4132 			NULL_RTX);
4133     }
4134 
4135   if (swap_i2i3)
4136     {
4137       rtx_insn *insn;
4138       struct insn_link *link;
4139       rtx ni2dest;
4140 
4141       /* I3 now uses what used to be its destination and which is now
4142 	 I2's destination.  This requires us to do a few adjustments.  */
4143       PATTERN (i3) = newpat;
4144       adjust_for_new_dest (i3);
4145 
4146       /* We need a LOG_LINK from I3 to I2.  But we used to have one,
4147 	 so we still will.
4148 
4149 	 However, some later insn might be using I2's dest and have
4150 	 a LOG_LINK pointing at I3.  We must remove this link.
4151 	 The simplest way to remove the link is to point it at I1,
4152 	 which we know will be a NOTE.  */
4153 
4154       /* newi2pat is usually a SET here; however, recog_for_combine might
4155 	 have added some clobbers.  */
4156       if (GET_CODE (newi2pat) == PARALLEL)
4157 	ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4158       else
4159 	ni2dest = SET_DEST (newi2pat);
4160 
4161       for (insn = NEXT_INSN (i3);
4162 	   insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4163 		    || insn != BB_HEAD (this_basic_block->next_bb));
4164 	   insn = NEXT_INSN (insn))
4165 	{
4166 	  if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
4167 	    {
4168 	      FOR_EACH_LOG_LINK (link, insn)
4169 		if (link->insn == i3)
4170 		  link->insn = i1;
4171 
4172 	      break;
4173 	    }
4174 	}
4175     }
4176 
4177   {
4178     rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4179     struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4180     rtx midnotes = 0;
4181     int from_luid;
4182     /* Compute which registers we expect to eliminate.  newi2pat may be setting
4183        either i3dest or i2dest, so we must check it.  */
4184     rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4185 		   || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4186 		   || !i2dest_killed
4187 		   ? 0 : i2dest);
4188     /* For i1, we need to compute both local elimination and global
4189        elimination information with respect to newi2pat because i1dest
4190        may be the same as i3dest, in which case newi2pat may be setting
4191        i1dest.  Global information is used when distributing REG_DEAD
4192        note for i2 and i3, in which case it does matter if newi2pat sets
4193        i1dest or not.
4194 
4195        Local information is used when distributing REG_DEAD note for i1,
4196        in which case it doesn't matter if newi2pat sets i1dest or not.
4197        See PR62151, if we have four insns combination:
4198 	   i0: r0 <- i0src
4199 	   i1: r1 <- i1src (using r0)
4200 		     REG_DEAD (r0)
4201 	   i2: r0 <- i2src (using r1)
4202 	   i3: r3 <- i3src (using r0)
4203 	   ix: using r0
4204        From i1's point of view, r0 is eliminated, no matter if it is set
4205        by newi2pat or not.  In other words, REG_DEAD info for r0 in i1
4206        should be discarded.
4207 
4208        Note local information only affects cases in forms like "I1->I2->I3",
4209        "I0->I1->I2->I3" or "I0&I1->I2, I2->I3".  For other cases like
4210        "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4211        i0dest anyway.  */
4212     rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4213 			 || !i1dest_killed
4214 			 ? 0 : i1dest);
4215     rtx elim_i1 = (local_elim_i1 == 0
4216 		   || (newi2pat && reg_set_p (i1dest, newi2pat))
4217 		   ? 0 : i1dest);
4218     /* Same case as i1.  */
4219     rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4220 			 ? 0 : i0dest);
4221     rtx elim_i0 = (local_elim_i0 == 0
4222 		   || (newi2pat && reg_set_p (i0dest, newi2pat))
4223 		   ? 0 : i0dest);
4224 
4225     /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4226        clear them.  */
4227     i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4228     i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4229     if (i1)
4230       i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4231     if (i0)
4232       i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4233 
4234     /* Ensure that we do not have something that should not be shared but
4235        occurs multiple times in the new insns.  Check this by first
4236        resetting all the `used' flags and then copying anything is shared.  */
4237 
4238     reset_used_flags (i3notes);
4239     reset_used_flags (i2notes);
4240     reset_used_flags (i1notes);
4241     reset_used_flags (i0notes);
4242     reset_used_flags (newpat);
4243     reset_used_flags (newi2pat);
4244     if (undobuf.other_insn)
4245       reset_used_flags (PATTERN (undobuf.other_insn));
4246 
4247     i3notes = copy_rtx_if_shared (i3notes);
4248     i2notes = copy_rtx_if_shared (i2notes);
4249     i1notes = copy_rtx_if_shared (i1notes);
4250     i0notes = copy_rtx_if_shared (i0notes);
4251     newpat = copy_rtx_if_shared (newpat);
4252     newi2pat = copy_rtx_if_shared (newi2pat);
4253     if (undobuf.other_insn)
4254       reset_used_flags (PATTERN (undobuf.other_insn));
4255 
4256     INSN_CODE (i3) = insn_code_number;
4257     PATTERN (i3) = newpat;
4258 
4259     if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4260       {
4261 	rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4262 
4263 	reset_used_flags (call_usage);
4264 	call_usage = copy_rtx (call_usage);
4265 
4266 	if (substed_i2)
4267 	  {
4268 	    /* I2SRC must still be meaningful at this point.  Some splitting
4269 	       operations can invalidate I2SRC, but those operations do not
4270 	       apply to calls.  */
4271 	    gcc_assert (i2src);
4272 	    replace_rtx (call_usage, i2dest, i2src);
4273 	  }
4274 
4275 	if (substed_i1)
4276 	  replace_rtx (call_usage, i1dest, i1src);
4277 	if (substed_i0)
4278 	  replace_rtx (call_usage, i0dest, i0src);
4279 
4280 	CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4281       }
4282 
4283     if (undobuf.other_insn)
4284       INSN_CODE (undobuf.other_insn) = other_code_number;
4285 
4286     /* We had one special case above where I2 had more than one set and
4287        we replaced a destination of one of those sets with the destination
4288        of I3.  In that case, we have to update LOG_LINKS of insns later
4289        in this basic block.  Note that this (expensive) case is rare.
4290 
4291        Also, in this case, we must pretend that all REG_NOTEs for I2
4292        actually came from I3, so that REG_UNUSED notes from I2 will be
4293        properly handled.  */
4294 
4295     if (i3_subst_into_i2)
4296       {
4297 	for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4298 	  if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4299 	       || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4300 	      && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4301 	      && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4302 	      && ! find_reg_note (i2, REG_UNUSED,
4303 				  SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4304 	    for (temp_insn = NEXT_INSN (i2);
4305 		 temp_insn
4306 		 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4307 			  || BB_HEAD (this_basic_block) != temp_insn);
4308 		 temp_insn = NEXT_INSN (temp_insn))
4309 	      if (temp_insn != i3 && INSN_P (temp_insn))
4310 		FOR_EACH_LOG_LINK (link, temp_insn)
4311 		  if (link->insn == i2)
4312 		    link->insn = i3;
4313 
4314 	if (i3notes)
4315 	  {
4316 	    rtx link = i3notes;
4317 	    while (XEXP (link, 1))
4318 	      link = XEXP (link, 1);
4319 	    XEXP (link, 1) = i2notes;
4320 	  }
4321 	else
4322 	  i3notes = i2notes;
4323 	i2notes = 0;
4324       }
4325 
4326     LOG_LINKS (i3) = NULL;
4327     REG_NOTES (i3) = 0;
4328     LOG_LINKS (i2) = NULL;
4329     REG_NOTES (i2) = 0;
4330 
4331     if (newi2pat)
4332       {
4333 	if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4334 	  propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4335 			       this_basic_block);
4336 	INSN_CODE (i2) = i2_code_number;
4337 	PATTERN (i2) = newi2pat;
4338       }
4339     else
4340       {
4341 	if (MAY_HAVE_DEBUG_INSNS && i2src)
4342 	  propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4343 			       this_basic_block);
4344 	SET_INSN_DELETED (i2);
4345       }
4346 
4347     if (i1)
4348       {
4349 	LOG_LINKS (i1) = NULL;
4350 	REG_NOTES (i1) = 0;
4351 	if (MAY_HAVE_DEBUG_INSNS)
4352 	  propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4353 			       this_basic_block);
4354 	SET_INSN_DELETED (i1);
4355       }
4356 
4357     if (i0)
4358       {
4359 	LOG_LINKS (i0) = NULL;
4360 	REG_NOTES (i0) = 0;
4361 	if (MAY_HAVE_DEBUG_INSNS)
4362 	  propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4363 			       this_basic_block);
4364 	SET_INSN_DELETED (i0);
4365       }
4366 
4367     /* Get death notes for everything that is now used in either I3 or
4368        I2 and used to die in a previous insn.  If we built two new
4369        patterns, move from I1 to I2 then I2 to I3 so that we get the
4370        proper movement on registers that I2 modifies.  */
4371 
4372     if (i0)
4373       from_luid = DF_INSN_LUID (i0);
4374     else if (i1)
4375       from_luid = DF_INSN_LUID (i1);
4376     else
4377       from_luid = DF_INSN_LUID (i2);
4378     if (newi2pat)
4379       move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4380     move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4381 
4382     /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3.  */
4383     if (i3notes)
4384       distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4385 			elim_i2, elim_i1, elim_i0);
4386     if (i2notes)
4387       distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4388 			elim_i2, elim_i1, elim_i0);
4389     if (i1notes)
4390       distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4391 			elim_i2, local_elim_i1, local_elim_i0);
4392     if (i0notes)
4393       distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4394 			elim_i2, elim_i1, local_elim_i0);
4395     if (midnotes)
4396       distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4397 			elim_i2, elim_i1, elim_i0);
4398 
4399     /* Distribute any notes added to I2 or I3 by recog_for_combine.  We
4400        know these are REG_UNUSED and want them to go to the desired insn,
4401        so we always pass it as i3.  */
4402 
4403     if (newi2pat && new_i2_notes)
4404       distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4405 			NULL_RTX);
4406 
4407     if (new_i3_notes)
4408       distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4409 			NULL_RTX);
4410 
4411     /* If I3DEST was used in I3SRC, it really died in I3.  We may need to
4412        put a REG_DEAD note for it somewhere.  If NEWI2PAT exists and sets
4413        I3DEST, the death must be somewhere before I2, not I3.  If we passed I3
4414        in that case, it might delete I2.  Similarly for I2 and I1.
4415        Show an additional death due to the REG_DEAD note we make here.  If
4416        we discard it in distribute_notes, we will decrement it again.  */
4417 
4418     if (i3dest_killed)
4419       {
4420 	rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4421 	if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4422 	  distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4423 			    elim_i1, elim_i0);
4424 	else
4425 	  distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4426 			    elim_i2, elim_i1, elim_i0);
4427       }
4428 
4429     if (i2dest_in_i2src)
4430       {
4431 	rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4432 	if (newi2pat && reg_set_p (i2dest, newi2pat))
4433 	  distribute_notes (new_note,  NULL, i2, NULL, NULL_RTX,
4434 			    NULL_RTX, NULL_RTX);
4435 	else
4436 	  distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4437 			    NULL_RTX, NULL_RTX, NULL_RTX);
4438       }
4439 
4440     if (i1dest_in_i1src)
4441       {
4442 	rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4443 	if (newi2pat && reg_set_p (i1dest, newi2pat))
4444 	  distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4445 			    NULL_RTX, NULL_RTX);
4446 	else
4447 	  distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4448 			    NULL_RTX, NULL_RTX, NULL_RTX);
4449       }
4450 
4451     if (i0dest_in_i0src)
4452       {
4453 	rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4454 	if (newi2pat && reg_set_p (i0dest, newi2pat))
4455 	  distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4456 			    NULL_RTX, NULL_RTX);
4457 	else
4458 	  distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4459 			    NULL_RTX, NULL_RTX, NULL_RTX);
4460       }
4461 
4462     distribute_links (i3links);
4463     distribute_links (i2links);
4464     distribute_links (i1links);
4465     distribute_links (i0links);
4466 
4467     if (REG_P (i2dest))
4468       {
4469 	struct insn_link *link;
4470 	rtx_insn *i2_insn = 0;
4471 	rtx i2_val = 0, set;
4472 
4473 	/* The insn that used to set this register doesn't exist, and
4474 	   this life of the register may not exist either.  See if one of
4475 	   I3's links points to an insn that sets I2DEST.  If it does,
4476 	   that is now the last known value for I2DEST. If we don't update
4477 	   this and I2 set the register to a value that depended on its old
4478 	   contents, we will get confused.  If this insn is used, thing
4479 	   will be set correctly in combine_instructions.  */
4480 	FOR_EACH_LOG_LINK (link, i3)
4481 	  if ((set = single_set (link->insn)) != 0
4482 	      && rtx_equal_p (i2dest, SET_DEST (set)))
4483 	    i2_insn = link->insn, i2_val = SET_SRC (set);
4484 
4485 	record_value_for_reg (i2dest, i2_insn, i2_val);
4486 
4487 	/* If the reg formerly set in I2 died only once and that was in I3,
4488 	   zero its use count so it won't make `reload' do any work.  */
4489 	if (! added_sets_2
4490 	    && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4491 	    && ! i2dest_in_i2src
4492 	    && REGNO (i2dest) < reg_n_sets_max)
4493 	  INC_REG_N_SETS (REGNO (i2dest), -1);
4494       }
4495 
4496     if (i1 && REG_P (i1dest))
4497       {
4498 	struct insn_link *link;
4499 	rtx_insn *i1_insn = 0;
4500 	rtx i1_val = 0, set;
4501 
4502 	FOR_EACH_LOG_LINK (link, i3)
4503 	  if ((set = single_set (link->insn)) != 0
4504 	      && rtx_equal_p (i1dest, SET_DEST (set)))
4505 	    i1_insn = link->insn, i1_val = SET_SRC (set);
4506 
4507 	record_value_for_reg (i1dest, i1_insn, i1_val);
4508 
4509 	if (! added_sets_1
4510 	    && ! i1dest_in_i1src
4511 	    && REGNO (i1dest) < reg_n_sets_max)
4512 	  INC_REG_N_SETS (REGNO (i1dest), -1);
4513       }
4514 
4515     if (i0 && REG_P (i0dest))
4516       {
4517 	struct insn_link *link;
4518 	rtx_insn *i0_insn = 0;
4519 	rtx i0_val = 0, set;
4520 
4521 	FOR_EACH_LOG_LINK (link, i3)
4522 	  if ((set = single_set (link->insn)) != 0
4523 	      && rtx_equal_p (i0dest, SET_DEST (set)))
4524 	    i0_insn = link->insn, i0_val = SET_SRC (set);
4525 
4526 	record_value_for_reg (i0dest, i0_insn, i0_val);
4527 
4528 	if (! added_sets_0
4529 	    && ! i0dest_in_i0src
4530 	    && REGNO (i0dest) < reg_n_sets_max)
4531 	  INC_REG_N_SETS (REGNO (i0dest), -1);
4532       }
4533 
4534     /* Update reg_stat[].nonzero_bits et al for any changes that may have
4535        been made to this insn.  The order is important, because newi2pat
4536        can affect nonzero_bits of newpat.  */
4537     if (newi2pat)
4538       note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4539     note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4540   }
4541 
4542   if (undobuf.other_insn != NULL_RTX)
4543     {
4544       if (dump_file)
4545 	{
4546 	  fprintf (dump_file, "modifying other_insn ");
4547 	  dump_insn_slim (dump_file, undobuf.other_insn);
4548 	}
4549       df_insn_rescan (undobuf.other_insn);
4550     }
4551 
4552   if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4553     {
4554       if (dump_file)
4555 	{
4556 	  fprintf (dump_file, "modifying insn i0 ");
4557 	  dump_insn_slim (dump_file, i0);
4558 	}
4559       df_insn_rescan (i0);
4560     }
4561 
4562   if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4563     {
4564       if (dump_file)
4565 	{
4566 	  fprintf (dump_file, "modifying insn i1 ");
4567 	  dump_insn_slim (dump_file, i1);
4568 	}
4569       df_insn_rescan (i1);
4570     }
4571 
4572   if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4573     {
4574       if (dump_file)
4575 	{
4576 	  fprintf (dump_file, "modifying insn i2 ");
4577 	  dump_insn_slim (dump_file, i2);
4578 	}
4579       df_insn_rescan (i2);
4580     }
4581 
4582   if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4583     {
4584       if (dump_file)
4585 	{
4586 	  fprintf (dump_file, "modifying insn i3 ");
4587 	  dump_insn_slim (dump_file, i3);
4588 	}
4589       df_insn_rescan (i3);
4590     }
4591 
4592   /* Set new_direct_jump_p if a new return or simple jump instruction
4593      has been created.  Adjust the CFG accordingly.  */
4594   if (returnjump_p (i3) || any_uncondjump_p (i3))
4595     {
4596       *new_direct_jump_p = 1;
4597       mark_jump_label (PATTERN (i3), i3, 0);
4598       update_cfg_for_uncondjump (i3);
4599     }
4600 
4601   if (undobuf.other_insn != NULL_RTX
4602       && (returnjump_p (undobuf.other_insn)
4603 	  || any_uncondjump_p (undobuf.other_insn)))
4604     {
4605       *new_direct_jump_p = 1;
4606       update_cfg_for_uncondjump (undobuf.other_insn);
4607     }
4608 
4609   /* A noop might also need cleaning up of CFG, if it comes from the
4610      simplification of a jump.  */
4611   if (JUMP_P (i3)
4612       && GET_CODE (newpat) == SET
4613       && SET_SRC (newpat) == pc_rtx
4614       && SET_DEST (newpat) == pc_rtx)
4615     {
4616       *new_direct_jump_p = 1;
4617       update_cfg_for_uncondjump (i3);
4618     }
4619 
4620   if (undobuf.other_insn != NULL_RTX
4621       && JUMP_P (undobuf.other_insn)
4622       && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4623       && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4624       && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4625     {
4626       *new_direct_jump_p = 1;
4627       update_cfg_for_uncondjump (undobuf.other_insn);
4628     }
4629 
4630   combine_successes++;
4631   undo_commit ();
4632 
4633   if (added_links_insn
4634       && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4635       && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4636     return added_links_insn;
4637   else
4638     return newi2pat ? i2 : i3;
4639 }
4640 
4641 /* Undo all the modifications recorded in undobuf.  */
4642 
4643 static void
4644 undo_all (void)
4645 {
4646   struct undo *undo, *next;
4647 
4648   for (undo = undobuf.undos; undo; undo = next)
4649     {
4650       next = undo->next;
4651       switch (undo->kind)
4652 	{
4653 	case UNDO_RTX:
4654 	  *undo->where.r = undo->old_contents.r;
4655 	  break;
4656 	case UNDO_INT:
4657 	  *undo->where.i = undo->old_contents.i;
4658 	  break;
4659 	case UNDO_MODE:
4660 	  adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4661 	  break;
4662 	case UNDO_LINKS:
4663 	  *undo->where.l = undo->old_contents.l;
4664 	  break;
4665 	default:
4666 	  gcc_unreachable ();
4667 	}
4668 
4669       undo->next = undobuf.frees;
4670       undobuf.frees = undo;
4671     }
4672 
4673   undobuf.undos = 0;
4674 }
4675 
4676 /* We've committed to accepting the changes we made.  Move all
4677    of the undos to the free list.  */
4678 
4679 static void
4680 undo_commit (void)
4681 {
4682   struct undo *undo, *next;
4683 
4684   for (undo = undobuf.undos; undo; undo = next)
4685     {
4686       next = undo->next;
4687       undo->next = undobuf.frees;
4688       undobuf.frees = undo;
4689     }
4690   undobuf.undos = 0;
4691 }
4692 
4693 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4694    where we have an arithmetic expression and return that point.  LOC will
4695    be inside INSN.
4696 
4697    try_combine will call this function to see if an insn can be split into
4698    two insns.  */
4699 
4700 static rtx *
4701 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4702 {
4703   rtx x = *loc;
4704   enum rtx_code code = GET_CODE (x);
4705   rtx *split;
4706   unsigned HOST_WIDE_INT len = 0;
4707   HOST_WIDE_INT pos = 0;
4708   int unsignedp = 0;
4709   rtx inner = NULL_RTX;
4710 
4711   /* First special-case some codes.  */
4712   switch (code)
4713     {
4714     case SUBREG:
4715 #ifdef INSN_SCHEDULING
4716       /* If we are making a paradoxical SUBREG invalid, it becomes a split
4717 	 point.  */
4718       if (MEM_P (SUBREG_REG (x)))
4719 	return loc;
4720 #endif
4721       return find_split_point (&SUBREG_REG (x), insn, false);
4722 
4723     case MEM:
4724 #ifdef HAVE_lo_sum
4725       /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4726 	 using LO_SUM and HIGH.  */
4727       if (GET_CODE (XEXP (x, 0)) == CONST
4728 	  || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4729 	{
4730 	  machine_mode address_mode = get_address_mode (x);
4731 
4732 	  SUBST (XEXP (x, 0),
4733 		 gen_rtx_LO_SUM (address_mode,
4734 				 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4735 				 XEXP (x, 0)));
4736 	  return &XEXP (XEXP (x, 0), 0);
4737 	}
4738 #endif
4739 
4740       /* If we have a PLUS whose second operand is a constant and the
4741 	 address is not valid, perhaps will can split it up using
4742 	 the machine-specific way to split large constants.  We use
4743 	 the first pseudo-reg (one of the virtual regs) as a placeholder;
4744 	 it will not remain in the result.  */
4745       if (GET_CODE (XEXP (x, 0)) == PLUS
4746 	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4747 	  && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4748 					    MEM_ADDR_SPACE (x)))
4749 	{
4750 	  rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4751 	  rtx_insn *seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4752 							    XEXP (x, 0)),
4753 					       subst_insn);
4754 
4755 	  /* This should have produced two insns, each of which sets our
4756 	     placeholder.  If the source of the second is a valid address,
4757 	     we can make put both sources together and make a split point
4758 	     in the middle.  */
4759 
4760 	  if (seq
4761 	      && NEXT_INSN (seq) != NULL_RTX
4762 	      && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4763 	      && NONJUMP_INSN_P (seq)
4764 	      && GET_CODE (PATTERN (seq)) == SET
4765 	      && SET_DEST (PATTERN (seq)) == reg
4766 	      && ! reg_mentioned_p (reg,
4767 				    SET_SRC (PATTERN (seq)))
4768 	      && NONJUMP_INSN_P (NEXT_INSN (seq))
4769 	      && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4770 	      && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4771 	      && memory_address_addr_space_p
4772 		   (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4773 		    MEM_ADDR_SPACE (x)))
4774 	    {
4775 	      rtx src1 = SET_SRC (PATTERN (seq));
4776 	      rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4777 
4778 	      /* Replace the placeholder in SRC2 with SRC1.  If we can
4779 		 find where in SRC2 it was placed, that can become our
4780 		 split point and we can replace this address with SRC2.
4781 		 Just try two obvious places.  */
4782 
4783 	      src2 = replace_rtx (src2, reg, src1);
4784 	      split = 0;
4785 	      if (XEXP (src2, 0) == src1)
4786 		split = &XEXP (src2, 0);
4787 	      else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4788 		       && XEXP (XEXP (src2, 0), 0) == src1)
4789 		split = &XEXP (XEXP (src2, 0), 0);
4790 
4791 	      if (split)
4792 		{
4793 		  SUBST (XEXP (x, 0), src2);
4794 		  return split;
4795 		}
4796 	    }
4797 
4798 	  /* If that didn't work, perhaps the first operand is complex and
4799 	     needs to be computed separately, so make a split point there.
4800 	     This will occur on machines that just support REG + CONST
4801 	     and have a constant moved through some previous computation.  */
4802 
4803 	  else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4804 		   && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4805 			 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4806 	    return &XEXP (XEXP (x, 0), 0);
4807 	}
4808 
4809       /* If we have a PLUS whose first operand is complex, try computing it
4810          separately by making a split there.  */
4811       if (GET_CODE (XEXP (x, 0)) == PLUS
4812           && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4813 					    MEM_ADDR_SPACE (x))
4814           && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4815           && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4816                 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4817         return &XEXP (XEXP (x, 0), 0);
4818       break;
4819 
4820     case SET:
4821 #ifdef HAVE_cc0
4822       /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4823 	 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4824 	 we need to put the operand into a register.  So split at that
4825 	 point.  */
4826 
4827       if (SET_DEST (x) == cc0_rtx
4828 	  && GET_CODE (SET_SRC (x)) != COMPARE
4829 	  && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4830 	  && !OBJECT_P (SET_SRC (x))
4831 	  && ! (GET_CODE (SET_SRC (x)) == SUBREG
4832 		&& OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4833 	return &SET_SRC (x);
4834 #endif
4835 
4836       /* See if we can split SET_SRC as it stands.  */
4837       split = find_split_point (&SET_SRC (x), insn, true);
4838       if (split && split != &SET_SRC (x))
4839 	return split;
4840 
4841       /* See if we can split SET_DEST as it stands.  */
4842       split = find_split_point (&SET_DEST (x), insn, false);
4843       if (split && split != &SET_DEST (x))
4844 	return split;
4845 
4846       /* See if this is a bitfield assignment with everything constant.  If
4847 	 so, this is an IOR of an AND, so split it into that.  */
4848       if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4849 	  && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4850 	  && CONST_INT_P (XEXP (SET_DEST (x), 1))
4851 	  && CONST_INT_P (XEXP (SET_DEST (x), 2))
4852 	  && CONST_INT_P (SET_SRC (x))
4853 	  && ((INTVAL (XEXP (SET_DEST (x), 1))
4854 	       + INTVAL (XEXP (SET_DEST (x), 2)))
4855 	      <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4856 	  && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4857 	{
4858 	  HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4859 	  unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4860 	  unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4861 	  rtx dest = XEXP (SET_DEST (x), 0);
4862 	  machine_mode mode = GET_MODE (dest);
4863 	  unsigned HOST_WIDE_INT mask
4864 	    = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4865 	  rtx or_mask;
4866 
4867 	  if (BITS_BIG_ENDIAN)
4868 	    pos = GET_MODE_PRECISION (mode) - len - pos;
4869 
4870 	  or_mask = gen_int_mode (src << pos, mode);
4871 	  if (src == mask)
4872 	    SUBST (SET_SRC (x),
4873 		   simplify_gen_binary (IOR, mode, dest, or_mask));
4874 	  else
4875 	    {
4876 	      rtx negmask = gen_int_mode (~(mask << pos), mode);
4877 	      SUBST (SET_SRC (x),
4878 		     simplify_gen_binary (IOR, mode,
4879 					  simplify_gen_binary (AND, mode,
4880 							       dest, negmask),
4881 					  or_mask));
4882 	    }
4883 
4884 	  SUBST (SET_DEST (x), dest);
4885 
4886 	  split = find_split_point (&SET_SRC (x), insn, true);
4887 	  if (split && split != &SET_SRC (x))
4888 	    return split;
4889 	}
4890 
4891       /* Otherwise, see if this is an operation that we can split into two.
4892 	 If so, try to split that.  */
4893       code = GET_CODE (SET_SRC (x));
4894 
4895       switch (code)
4896 	{
4897 	case AND:
4898 	  /* If we are AND'ing with a large constant that is only a single
4899 	     bit and the result is only being used in a context where we
4900 	     need to know if it is zero or nonzero, replace it with a bit
4901 	     extraction.  This will avoid the large constant, which might
4902 	     have taken more than one insn to make.  If the constant were
4903 	     not a valid argument to the AND but took only one insn to make,
4904 	     this is no worse, but if it took more than one insn, it will
4905 	     be better.  */
4906 
4907 	  if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4908 	      && REG_P (XEXP (SET_SRC (x), 0))
4909 	      && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4910 	      && REG_P (SET_DEST (x))
4911 	      && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
4912 	      && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4913 	      && XEXP (*split, 0) == SET_DEST (x)
4914 	      && XEXP (*split, 1) == const0_rtx)
4915 	    {
4916 	      rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4917 						XEXP (SET_SRC (x), 0),
4918 						pos, NULL_RTX, 1, 1, 0, 0);
4919 	      if (extraction != 0)
4920 		{
4921 		  SUBST (SET_SRC (x), extraction);
4922 		  return find_split_point (loc, insn, false);
4923 		}
4924 	    }
4925 	  break;
4926 
4927 	case NE:
4928 	  /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4929 	     is known to be on, this can be converted into a NEG of a shift.  */
4930 	  if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4931 	      && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4932 	      && 1 <= (pos = exact_log2
4933 		       (nonzero_bits (XEXP (SET_SRC (x), 0),
4934 				      GET_MODE (XEXP (SET_SRC (x), 0))))))
4935 	    {
4936 	      machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4937 
4938 	      SUBST (SET_SRC (x),
4939 		     gen_rtx_NEG (mode,
4940 				  gen_rtx_LSHIFTRT (mode,
4941 						    XEXP (SET_SRC (x), 0),
4942 						    GEN_INT (pos))));
4943 
4944 	      split = find_split_point (&SET_SRC (x), insn, true);
4945 	      if (split && split != &SET_SRC (x))
4946 		return split;
4947 	    }
4948 	  break;
4949 
4950 	case SIGN_EXTEND:
4951 	  inner = XEXP (SET_SRC (x), 0);
4952 
4953 	  /* We can't optimize if either mode is a partial integer
4954 	     mode as we don't know how many bits are significant
4955 	     in those modes.  */
4956 	  if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4957 	      || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4958 	    break;
4959 
4960 	  pos = 0;
4961 	  len = GET_MODE_PRECISION (GET_MODE (inner));
4962 	  unsignedp = 0;
4963 	  break;
4964 
4965 	case SIGN_EXTRACT:
4966 	case ZERO_EXTRACT:
4967 	  if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4968 	      && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4969 	    {
4970 	      inner = XEXP (SET_SRC (x), 0);
4971 	      len = INTVAL (XEXP (SET_SRC (x), 1));
4972 	      pos = INTVAL (XEXP (SET_SRC (x), 2));
4973 
4974 	      if (BITS_BIG_ENDIAN)
4975 		pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
4976 	      unsignedp = (code == ZERO_EXTRACT);
4977 	    }
4978 	  break;
4979 
4980 	default:
4981 	  break;
4982 	}
4983 
4984       if (len && pos >= 0
4985 	  && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
4986 	{
4987 	  machine_mode mode = GET_MODE (SET_SRC (x));
4988 
4989 	  /* For unsigned, we have a choice of a shift followed by an
4990 	     AND or two shifts.  Use two shifts for field sizes where the
4991 	     constant might be too large.  We assume here that we can
4992 	     always at least get 8-bit constants in an AND insn, which is
4993 	     true for every current RISC.  */
4994 
4995 	  if (unsignedp && len <= 8)
4996 	    {
4997 	      unsigned HOST_WIDE_INT mask
4998 		= ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4999 	      SUBST (SET_SRC (x),
5000 		     gen_rtx_AND (mode,
5001 				  gen_rtx_LSHIFTRT
5002 				  (mode, gen_lowpart (mode, inner),
5003 				   GEN_INT (pos)),
5004 				  gen_int_mode (mask, mode)));
5005 
5006 	      split = find_split_point (&SET_SRC (x), insn, true);
5007 	      if (split && split != &SET_SRC (x))
5008 		return split;
5009 	    }
5010 	  else
5011 	    {
5012 	      SUBST (SET_SRC (x),
5013 		     gen_rtx_fmt_ee
5014 		     (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5015 		      gen_rtx_ASHIFT (mode,
5016 				      gen_lowpart (mode, inner),
5017 				      GEN_INT (GET_MODE_PRECISION (mode)
5018 					       - len - pos)),
5019 		      GEN_INT (GET_MODE_PRECISION (mode) - len)));
5020 
5021 	      split = find_split_point (&SET_SRC (x), insn, true);
5022 	      if (split && split != &SET_SRC (x))
5023 		return split;
5024 	    }
5025 	}
5026 
5027       /* See if this is a simple operation with a constant as the second
5028 	 operand.  It might be that this constant is out of range and hence
5029 	 could be used as a split point.  */
5030       if (BINARY_P (SET_SRC (x))
5031 	  && CONSTANT_P (XEXP (SET_SRC (x), 1))
5032 	  && (OBJECT_P (XEXP (SET_SRC (x), 0))
5033 	      || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5034 		  && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5035 	return &XEXP (SET_SRC (x), 1);
5036 
5037       /* Finally, see if this is a simple operation with its first operand
5038 	 not in a register.  The operation might require this operand in a
5039 	 register, so return it as a split point.  We can always do this
5040 	 because if the first operand were another operation, we would have
5041 	 already found it as a split point.  */
5042       if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5043 	  && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5044 	return &XEXP (SET_SRC (x), 0);
5045 
5046       return 0;
5047 
5048     case AND:
5049     case IOR:
5050       /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5051 	 it is better to write this as (not (ior A B)) so we can split it.
5052 	 Similarly for IOR.  */
5053       if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5054 	{
5055 	  SUBST (*loc,
5056 		 gen_rtx_NOT (GET_MODE (x),
5057 			      gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5058 					      GET_MODE (x),
5059 					      XEXP (XEXP (x, 0), 0),
5060 					      XEXP (XEXP (x, 1), 0))));
5061 	  return find_split_point (loc, insn, set_src);
5062 	}
5063 
5064       /* Many RISC machines have a large set of logical insns.  If the
5065 	 second operand is a NOT, put it first so we will try to split the
5066 	 other operand first.  */
5067       if (GET_CODE (XEXP (x, 1)) == NOT)
5068 	{
5069 	  rtx tem = XEXP (x, 0);
5070 	  SUBST (XEXP (x, 0), XEXP (x, 1));
5071 	  SUBST (XEXP (x, 1), tem);
5072 	}
5073       break;
5074 
5075     case PLUS:
5076     case MINUS:
5077       /* Canonicalization can produce (minus A (mult B C)), where C is a
5078 	 constant.  It may be better to try splitting (plus (mult B -C) A)
5079 	 instead if this isn't a multiply by a power of two.  */
5080       if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5081 	  && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5082 	  && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
5083 	{
5084 	  machine_mode mode = GET_MODE (x);
5085 	  unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5086 	  HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5087 	  SUBST (*loc, gen_rtx_PLUS (mode,
5088 				     gen_rtx_MULT (mode,
5089 						   XEXP (XEXP (x, 1), 0),
5090 						   gen_int_mode (other_int,
5091 								 mode)),
5092 				     XEXP (x, 0)));
5093 	  return find_split_point (loc, insn, set_src);
5094 	}
5095 
5096       /* Split at a multiply-accumulate instruction.  However if this is
5097          the SET_SRC, we likely do not have such an instruction and it's
5098          worthless to try this split.  */
5099       if (!set_src && GET_CODE (XEXP (x, 0)) == MULT)
5100         return loc;
5101 
5102     default:
5103       break;
5104     }
5105 
5106   /* Otherwise, select our actions depending on our rtx class.  */
5107   switch (GET_RTX_CLASS (code))
5108     {
5109     case RTX_BITFIELD_OPS:		/* This is ZERO_EXTRACT and SIGN_EXTRACT.  */
5110     case RTX_TERNARY:
5111       split = find_split_point (&XEXP (x, 2), insn, false);
5112       if (split)
5113 	return split;
5114       /* ... fall through ...  */
5115     case RTX_BIN_ARITH:
5116     case RTX_COMM_ARITH:
5117     case RTX_COMPARE:
5118     case RTX_COMM_COMPARE:
5119       split = find_split_point (&XEXP (x, 1), insn, false);
5120       if (split)
5121 	return split;
5122       /* ... fall through ...  */
5123     case RTX_UNARY:
5124       /* Some machines have (and (shift ...) ...) insns.  If X is not
5125 	 an AND, but XEXP (X, 0) is, use it as our split point.  */
5126       if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5127 	return &XEXP (x, 0);
5128 
5129       split = find_split_point (&XEXP (x, 0), insn, false);
5130       if (split)
5131 	return split;
5132       return loc;
5133 
5134     default:
5135       /* Otherwise, we don't have a split point.  */
5136       return 0;
5137     }
5138 }
5139 
5140 /* Throughout X, replace FROM with TO, and return the result.
5141    The result is TO if X is FROM;
5142    otherwise the result is X, but its contents may have been modified.
5143    If they were modified, a record was made in undobuf so that
5144    undo_all will (among other things) return X to its original state.
5145 
5146    If the number of changes necessary is too much to record to undo,
5147    the excess changes are not made, so the result is invalid.
5148    The changes already made can still be undone.
5149    undobuf.num_undo is incremented for such changes, so by testing that
5150    the caller can tell whether the result is valid.
5151 
5152    `n_occurrences' is incremented each time FROM is replaced.
5153 
5154    IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5155 
5156    IN_COND is nonzero if we are at the top level of a condition.
5157 
5158    UNIQUE_COPY is nonzero if each substitution must be unique.  We do this
5159    by copying if `n_occurrences' is nonzero.  */
5160 
5161 static rtx
5162 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5163 {
5164   enum rtx_code code = GET_CODE (x);
5165   machine_mode op0_mode = VOIDmode;
5166   const char *fmt;
5167   int len, i;
5168   rtx new_rtx;
5169 
5170 /* Two expressions are equal if they are identical copies of a shared
5171    RTX or if they are both registers with the same register number
5172    and mode.  */
5173 
5174 #define COMBINE_RTX_EQUAL_P(X,Y)			\
5175   ((X) == (Y)						\
5176    || (REG_P (X) && REG_P (Y)	\
5177        && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5178 
5179   /* Do not substitute into clobbers of regs -- this will never result in
5180      valid RTL.  */
5181   if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5182     return x;
5183 
5184   if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5185     {
5186       n_occurrences++;
5187       return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5188     }
5189 
5190   /* If X and FROM are the same register but different modes, they
5191      will not have been seen as equal above.  However, the log links code
5192      will make a LOG_LINKS entry for that case.  If we do nothing, we
5193      will try to rerecognize our original insn and, when it succeeds,
5194      we will delete the feeding insn, which is incorrect.
5195 
5196      So force this insn not to match in this (rare) case.  */
5197   if (! in_dest && code == REG && REG_P (from)
5198       && reg_overlap_mentioned_p (x, from))
5199     return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5200 
5201   /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5202      of which may contain things that can be combined.  */
5203   if (code != MEM && code != LO_SUM && OBJECT_P (x))
5204     return x;
5205 
5206   /* It is possible to have a subexpression appear twice in the insn.
5207      Suppose that FROM is a register that appears within TO.
5208      Then, after that subexpression has been scanned once by `subst',
5209      the second time it is scanned, TO may be found.  If we were
5210      to scan TO here, we would find FROM within it and create a
5211      self-referent rtl structure which is completely wrong.  */
5212   if (COMBINE_RTX_EQUAL_P (x, to))
5213     return to;
5214 
5215   /* Parallel asm_operands need special attention because all of the
5216      inputs are shared across the arms.  Furthermore, unsharing the
5217      rtl results in recognition failures.  Failure to handle this case
5218      specially can result in circular rtl.
5219 
5220      Solve this by doing a normal pass across the first entry of the
5221      parallel, and only processing the SET_DESTs of the subsequent
5222      entries.  Ug.  */
5223 
5224   if (code == PARALLEL
5225       && GET_CODE (XVECEXP (x, 0, 0)) == SET
5226       && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5227     {
5228       new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5229 
5230       /* If this substitution failed, this whole thing fails.  */
5231       if (GET_CODE (new_rtx) == CLOBBER
5232 	  && XEXP (new_rtx, 0) == const0_rtx)
5233 	return new_rtx;
5234 
5235       SUBST (XVECEXP (x, 0, 0), new_rtx);
5236 
5237       for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5238 	{
5239 	  rtx dest = SET_DEST (XVECEXP (x, 0, i));
5240 
5241 	  if (!REG_P (dest)
5242 	      && GET_CODE (dest) != CC0
5243 	      && GET_CODE (dest) != PC)
5244 	    {
5245 	      new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5246 
5247 	      /* If this substitution failed, this whole thing fails.  */
5248 	      if (GET_CODE (new_rtx) == CLOBBER
5249 		  && XEXP (new_rtx, 0) == const0_rtx)
5250 		return new_rtx;
5251 
5252 	      SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5253 	    }
5254 	}
5255     }
5256   else
5257     {
5258       len = GET_RTX_LENGTH (code);
5259       fmt = GET_RTX_FORMAT (code);
5260 
5261       /* We don't need to process a SET_DEST that is a register, CC0,
5262 	 or PC, so set up to skip this common case.  All other cases
5263 	 where we want to suppress replacing something inside a
5264 	 SET_SRC are handled via the IN_DEST operand.  */
5265       if (code == SET
5266 	  && (REG_P (SET_DEST (x))
5267 	      || GET_CODE (SET_DEST (x)) == CC0
5268 	      || GET_CODE (SET_DEST (x)) == PC))
5269 	fmt = "ie";
5270 
5271       /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5272 	 constant.  */
5273       if (fmt[0] == 'e')
5274 	op0_mode = GET_MODE (XEXP (x, 0));
5275 
5276       for (i = 0; i < len; i++)
5277 	{
5278 	  if (fmt[i] == 'E')
5279 	    {
5280 	      int j;
5281 	      for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5282 		{
5283 		  if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5284 		    {
5285 		      new_rtx = (unique_copy && n_occurrences
5286 			     ? copy_rtx (to) : to);
5287 		      n_occurrences++;
5288 		    }
5289 		  else
5290 		    {
5291 		      new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5292 				       unique_copy);
5293 
5294 		      /* If this substitution failed, this whole thing
5295 			 fails.  */
5296 		      if (GET_CODE (new_rtx) == CLOBBER
5297 			  && XEXP (new_rtx, 0) == const0_rtx)
5298 			return new_rtx;
5299 		    }
5300 
5301 		  SUBST (XVECEXP (x, i, j), new_rtx);
5302 		}
5303 	    }
5304 	  else if (fmt[i] == 'e')
5305 	    {
5306 	      /* If this is a register being set, ignore it.  */
5307 	      new_rtx = XEXP (x, i);
5308 	      if (in_dest
5309 		  && i == 0
5310 		  && (((code == SUBREG || code == ZERO_EXTRACT)
5311 		       && REG_P (new_rtx))
5312 		      || code == STRICT_LOW_PART))
5313 		;
5314 
5315 	      else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5316 		{
5317 		  /* In general, don't install a subreg involving two
5318 		     modes not tieable.  It can worsen register
5319 		     allocation, and can even make invalid reload
5320 		     insns, since the reg inside may need to be copied
5321 		     from in the outside mode, and that may be invalid
5322 		     if it is an fp reg copied in integer mode.
5323 
5324 		     We allow two exceptions to this: It is valid if
5325 		     it is inside another SUBREG and the mode of that
5326 		     SUBREG and the mode of the inside of TO is
5327 		     tieable and it is valid if X is a SET that copies
5328 		     FROM to CC0.  */
5329 
5330 		  if (GET_CODE (to) == SUBREG
5331 		      && ! MODES_TIEABLE_P (GET_MODE (to),
5332 					    GET_MODE (SUBREG_REG (to)))
5333 		      && ! (code == SUBREG
5334 			    && MODES_TIEABLE_P (GET_MODE (x),
5335 						GET_MODE (SUBREG_REG (to))))
5336 #ifdef HAVE_cc0
5337 		      && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5338 #endif
5339 		      )
5340 		    return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5341 
5342 		  if (code == SUBREG
5343 		      && REG_P (to)
5344 		      && REGNO (to) < FIRST_PSEUDO_REGISTER
5345 		      && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5346 						SUBREG_BYTE (x),
5347 						GET_MODE (x)) < 0)
5348 		    return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5349 
5350 		  new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5351 		  n_occurrences++;
5352 		}
5353 	      else
5354 		/* If we are in a SET_DEST, suppress most cases unless we
5355 		   have gone inside a MEM, in which case we want to
5356 		   simplify the address.  We assume here that things that
5357 		   are actually part of the destination have their inner
5358 		   parts in the first expression.  This is true for SUBREG,
5359 		   STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5360 		   things aside from REG and MEM that should appear in a
5361 		   SET_DEST.  */
5362 		new_rtx = subst (XEXP (x, i), from, to,
5363 			     (((in_dest
5364 				&& (code == SUBREG || code == STRICT_LOW_PART
5365 				    || code == ZERO_EXTRACT))
5366 			       || code == SET)
5367 			      && i == 0),
5368 				 code == IF_THEN_ELSE && i == 0,
5369 				 unique_copy);
5370 
5371 	      /* If we found that we will have to reject this combination,
5372 		 indicate that by returning the CLOBBER ourselves, rather than
5373 		 an expression containing it.  This will speed things up as
5374 		 well as prevent accidents where two CLOBBERs are considered
5375 		 to be equal, thus producing an incorrect simplification.  */
5376 
5377 	      if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5378 		return new_rtx;
5379 
5380 	      if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5381 		{
5382 		  machine_mode mode = GET_MODE (x);
5383 
5384 		  x = simplify_subreg (GET_MODE (x), new_rtx,
5385 				       GET_MODE (SUBREG_REG (x)),
5386 				       SUBREG_BYTE (x));
5387 		  if (! x)
5388 		    x = gen_rtx_CLOBBER (mode, const0_rtx);
5389 		}
5390 	      else if (CONST_SCALAR_INT_P (new_rtx)
5391 		       && GET_CODE (x) == ZERO_EXTEND)
5392 		{
5393 		  x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5394 						new_rtx, GET_MODE (XEXP (x, 0)));
5395 		  gcc_assert (x);
5396 		}
5397 	      else
5398 		SUBST (XEXP (x, i), new_rtx);
5399 	    }
5400 	}
5401     }
5402 
5403   /* Check if we are loading something from the constant pool via float
5404      extension; in this case we would undo compress_float_constant
5405      optimization and degenerate constant load to an immediate value.  */
5406   if (GET_CODE (x) == FLOAT_EXTEND
5407       && MEM_P (XEXP (x, 0))
5408       && MEM_READONLY_P (XEXP (x, 0)))
5409     {
5410       rtx tmp = avoid_constant_pool_reference (x);
5411       if (x != tmp)
5412         return x;
5413     }
5414 
5415   /* Try to simplify X.  If the simplification changed the code, it is likely
5416      that further simplification will help, so loop, but limit the number
5417      of repetitions that will be performed.  */
5418 
5419   for (i = 0; i < 4; i++)
5420     {
5421       /* If X is sufficiently simple, don't bother trying to do anything
5422 	 with it.  */
5423       if (code != CONST_INT && code != REG && code != CLOBBER)
5424 	x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5425 
5426       if (GET_CODE (x) == code)
5427 	break;
5428 
5429       code = GET_CODE (x);
5430 
5431       /* We no longer know the original mode of operand 0 since we
5432 	 have changed the form of X)  */
5433       op0_mode = VOIDmode;
5434     }
5435 
5436   return x;
5437 }
5438 
5439 /* Simplify X, a piece of RTL.  We just operate on the expression at the
5440    outer level; call `subst' to simplify recursively.  Return the new
5441    expression.
5442 
5443    OP0_MODE is the original mode of XEXP (x, 0).  IN_DEST is nonzero
5444    if we are inside a SET_DEST.  IN_COND is nonzero if we are at the top level
5445    of a condition.  */
5446 
5447 static rtx
5448 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5449 		      int in_cond)
5450 {
5451   enum rtx_code code = GET_CODE (x);
5452   machine_mode mode = GET_MODE (x);
5453   rtx temp;
5454   int i;
5455 
5456   /* If this is a commutative operation, put a constant last and a complex
5457      expression first.  We don't need to do this for comparisons here.  */
5458   if (COMMUTATIVE_ARITH_P (x)
5459       && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5460     {
5461       temp = XEXP (x, 0);
5462       SUBST (XEXP (x, 0), XEXP (x, 1));
5463       SUBST (XEXP (x, 1), temp);
5464     }
5465 
5466   /* If this is a simple operation applied to an IF_THEN_ELSE, try
5467      applying it to the arms of the IF_THEN_ELSE.  This often simplifies
5468      things.  Check for cases where both arms are testing the same
5469      condition.
5470 
5471      Don't do anything if all operands are very simple.  */
5472 
5473   if ((BINARY_P (x)
5474        && ((!OBJECT_P (XEXP (x, 0))
5475 	    && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5476 		  && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5477 	   || (!OBJECT_P (XEXP (x, 1))
5478 	       && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5479 		     && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5480       || (UNARY_P (x)
5481 	  && (!OBJECT_P (XEXP (x, 0))
5482 	       && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5483 		     && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5484     {
5485       rtx cond, true_rtx, false_rtx;
5486 
5487       cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5488       if (cond != 0
5489 	  /* If everything is a comparison, what we have is highly unlikely
5490 	     to be simpler, so don't use it.  */
5491 	  && ! (COMPARISON_P (x)
5492 		&& (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5493 	{
5494 	  rtx cop1 = const0_rtx;
5495 	  enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5496 
5497 	  if (cond_code == NE && COMPARISON_P (cond))
5498 	    return x;
5499 
5500 	  /* Simplify the alternative arms; this may collapse the true and
5501 	     false arms to store-flag values.  Be careful to use copy_rtx
5502 	     here since true_rtx or false_rtx might share RTL with x as a
5503 	     result of the if_then_else_cond call above.  */
5504 	  true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5505 	  false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5506 
5507 	  /* If true_rtx and false_rtx are not general_operands, an if_then_else
5508 	     is unlikely to be simpler.  */
5509 	  if (general_operand (true_rtx, VOIDmode)
5510 	      && general_operand (false_rtx, VOIDmode))
5511 	    {
5512 	      enum rtx_code reversed;
5513 
5514 	      /* Restarting if we generate a store-flag expression will cause
5515 		 us to loop.  Just drop through in this case.  */
5516 
5517 	      /* If the result values are STORE_FLAG_VALUE and zero, we can
5518 		 just make the comparison operation.  */
5519 	      if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5520 		x = simplify_gen_relational (cond_code, mode, VOIDmode,
5521 					     cond, cop1);
5522 	      else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5523 		       && ((reversed = reversed_comparison_code_parts
5524 					(cond_code, cond, cop1, NULL))
5525 			   != UNKNOWN))
5526 		x = simplify_gen_relational (reversed, mode, VOIDmode,
5527 					     cond, cop1);
5528 
5529 	      /* Likewise, we can make the negate of a comparison operation
5530 		 if the result values are - STORE_FLAG_VALUE and zero.  */
5531 	      else if (CONST_INT_P (true_rtx)
5532 		       && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5533 		       && false_rtx == const0_rtx)
5534 		x = simplify_gen_unary (NEG, mode,
5535 					simplify_gen_relational (cond_code,
5536 								 mode, VOIDmode,
5537 								 cond, cop1),
5538 					mode);
5539 	      else if (CONST_INT_P (false_rtx)
5540 		       && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5541 		       && true_rtx == const0_rtx
5542 		       && ((reversed = reversed_comparison_code_parts
5543 					(cond_code, cond, cop1, NULL))
5544 			   != UNKNOWN))
5545 		x = simplify_gen_unary (NEG, mode,
5546 					simplify_gen_relational (reversed,
5547 								 mode, VOIDmode,
5548 								 cond, cop1),
5549 					mode);
5550 	      else
5551 		return gen_rtx_IF_THEN_ELSE (mode,
5552 					     simplify_gen_relational (cond_code,
5553 								      mode,
5554 								      VOIDmode,
5555 								      cond,
5556 								      cop1),
5557 					     true_rtx, false_rtx);
5558 
5559 	      code = GET_CODE (x);
5560 	      op0_mode = VOIDmode;
5561 	    }
5562 	}
5563     }
5564 
5565   /* Try to fold this expression in case we have constants that weren't
5566      present before.  */
5567   temp = 0;
5568   switch (GET_RTX_CLASS (code))
5569     {
5570     case RTX_UNARY:
5571       if (op0_mode == VOIDmode)
5572 	op0_mode = GET_MODE (XEXP (x, 0));
5573       temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5574       break;
5575     case RTX_COMPARE:
5576     case RTX_COMM_COMPARE:
5577       {
5578 	machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5579 	if (cmp_mode == VOIDmode)
5580 	  {
5581 	    cmp_mode = GET_MODE (XEXP (x, 1));
5582 	    if (cmp_mode == VOIDmode)
5583 	      cmp_mode = op0_mode;
5584 	  }
5585 	temp = simplify_relational_operation (code, mode, cmp_mode,
5586 					      XEXP (x, 0), XEXP (x, 1));
5587       }
5588       break;
5589     case RTX_COMM_ARITH:
5590     case RTX_BIN_ARITH:
5591       temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5592       break;
5593     case RTX_BITFIELD_OPS:
5594     case RTX_TERNARY:
5595       temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5596 					 XEXP (x, 1), XEXP (x, 2));
5597       break;
5598     default:
5599       break;
5600     }
5601 
5602   if (temp)
5603     {
5604       x = temp;
5605       code = GET_CODE (temp);
5606       op0_mode = VOIDmode;
5607       mode = GET_MODE (temp);
5608     }
5609 
5610   /* First see if we can apply the inverse distributive law.  */
5611   if (code == PLUS || code == MINUS
5612       || code == AND || code == IOR || code == XOR)
5613     {
5614       x = apply_distributive_law (x);
5615       code = GET_CODE (x);
5616       op0_mode = VOIDmode;
5617     }
5618 
5619   /* If CODE is an associative operation not otherwise handled, see if we
5620      can associate some operands.  This can win if they are constants or
5621      if they are logically related (i.e. (a & b) & a).  */
5622   if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5623        || code == AND || code == IOR || code == XOR
5624        || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5625       && ((INTEGRAL_MODE_P (mode) && code != DIV)
5626 	  || (flag_associative_math && FLOAT_MODE_P (mode))))
5627     {
5628       if (GET_CODE (XEXP (x, 0)) == code)
5629 	{
5630 	  rtx other = XEXP (XEXP (x, 0), 0);
5631 	  rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5632 	  rtx inner_op1 = XEXP (x, 1);
5633 	  rtx inner;
5634 
5635 	  /* Make sure we pass the constant operand if any as the second
5636 	     one if this is a commutative operation.  */
5637 	  if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5638 	    {
5639 	      rtx tem = inner_op0;
5640 	      inner_op0 = inner_op1;
5641 	      inner_op1 = tem;
5642 	    }
5643 	  inner = simplify_binary_operation (code == MINUS ? PLUS
5644 					     : code == DIV ? MULT
5645 					     : code,
5646 					     mode, inner_op0, inner_op1);
5647 
5648 	  /* For commutative operations, try the other pair if that one
5649 	     didn't simplify.  */
5650 	  if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5651 	    {
5652 	      other = XEXP (XEXP (x, 0), 1);
5653 	      inner = simplify_binary_operation (code, mode,
5654 						 XEXP (XEXP (x, 0), 0),
5655 						 XEXP (x, 1));
5656 	    }
5657 
5658 	  if (inner)
5659 	    return simplify_gen_binary (code, mode, other, inner);
5660 	}
5661     }
5662 
5663   /* A little bit of algebraic simplification here.  */
5664   switch (code)
5665     {
5666     case MEM:
5667       /* Ensure that our address has any ASHIFTs converted to MULT in case
5668 	 address-recognizing predicates are called later.  */
5669       temp = make_compound_operation (XEXP (x, 0), MEM);
5670       SUBST (XEXP (x, 0), temp);
5671       break;
5672 
5673     case SUBREG:
5674       if (op0_mode == VOIDmode)
5675 	op0_mode = GET_MODE (SUBREG_REG (x));
5676 
5677       /* See if this can be moved to simplify_subreg.  */
5678       if (CONSTANT_P (SUBREG_REG (x))
5679 	  && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5680 	     /* Don't call gen_lowpart if the inner mode
5681 		is VOIDmode and we cannot simplify it, as SUBREG without
5682 		inner mode is invalid.  */
5683 	  && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5684 	      || gen_lowpart_common (mode, SUBREG_REG (x))))
5685 	return gen_lowpart (mode, SUBREG_REG (x));
5686 
5687       if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5688 	break;
5689       {
5690 	rtx temp;
5691 	temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5692 				SUBREG_BYTE (x));
5693 	if (temp)
5694 	  return temp;
5695 
5696 	/* If op is known to have all lower bits zero, the result is zero.  */
5697 	if (!in_dest
5698 	    && SCALAR_INT_MODE_P (mode)
5699 	    && SCALAR_INT_MODE_P (op0_mode)
5700 	    && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5701 	    && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5702 	    && HWI_COMPUTABLE_MODE_P (op0_mode)
5703 	    && (nonzero_bits (SUBREG_REG (x), op0_mode)
5704 		& GET_MODE_MASK (mode)) == 0)
5705 	  return CONST0_RTX (mode);
5706       }
5707 
5708       /* Don't change the mode of the MEM if that would change the meaning
5709 	 of the address.  */
5710       if (MEM_P (SUBREG_REG (x))
5711 	  && (MEM_VOLATILE_P (SUBREG_REG (x))
5712 	      || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5713 					   MEM_ADDR_SPACE (SUBREG_REG (x)))))
5714 	return gen_rtx_CLOBBER (mode, const0_rtx);
5715 
5716       /* Note that we cannot do any narrowing for non-constants since
5717 	 we might have been counting on using the fact that some bits were
5718 	 zero.  We now do this in the SET.  */
5719 
5720       break;
5721 
5722     case NEG:
5723       temp = expand_compound_operation (XEXP (x, 0));
5724 
5725       /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5726 	 replaced by (lshiftrt X C).  This will convert
5727 	 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y).  */
5728 
5729       if (GET_CODE (temp) == ASHIFTRT
5730 	  && CONST_INT_P (XEXP (temp, 1))
5731 	  && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5732 	return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5733 				     INTVAL (XEXP (temp, 1)));
5734 
5735       /* If X has only a single bit that might be nonzero, say, bit I, convert
5736 	 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5737 	 MODE minus 1.  This will convert (neg (zero_extract X 1 Y)) to
5738 	 (sign_extract X 1 Y).  But only do this if TEMP isn't a register
5739 	 or a SUBREG of one since we'd be making the expression more
5740 	 complex if it was just a register.  */
5741 
5742       if (!REG_P (temp)
5743 	  && ! (GET_CODE (temp) == SUBREG
5744 		&& REG_P (SUBREG_REG (temp)))
5745 	  && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5746 	{
5747 	  rtx temp1 = simplify_shift_const
5748 	    (NULL_RTX, ASHIFTRT, mode,
5749 	     simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5750 				   GET_MODE_PRECISION (mode) - 1 - i),
5751 	     GET_MODE_PRECISION (mode) - 1 - i);
5752 
5753 	  /* If all we did was surround TEMP with the two shifts, we
5754 	     haven't improved anything, so don't use it.  Otherwise,
5755 	     we are better off with TEMP1.  */
5756 	  if (GET_CODE (temp1) != ASHIFTRT
5757 	      || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5758 	      || XEXP (XEXP (temp1, 0), 0) != temp)
5759 	    return temp1;
5760 	}
5761       break;
5762 
5763     case TRUNCATE:
5764       /* We can't handle truncation to a partial integer mode here
5765 	 because we don't know the real bitsize of the partial
5766 	 integer mode.  */
5767       if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5768 	break;
5769 
5770       if (HWI_COMPUTABLE_MODE_P (mode))
5771 	SUBST (XEXP (x, 0),
5772 	       force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5773 			      GET_MODE_MASK (mode), 0));
5774 
5775       /* We can truncate a constant value and return it.  */
5776       if (CONST_INT_P (XEXP (x, 0)))
5777 	return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5778 
5779       /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5780 	 whose value is a comparison can be replaced with a subreg if
5781 	 STORE_FLAG_VALUE permits.  */
5782       if (HWI_COMPUTABLE_MODE_P (mode)
5783 	  && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5784 	  && (temp = get_last_value (XEXP (x, 0)))
5785 	  && COMPARISON_P (temp))
5786 	return gen_lowpart (mode, XEXP (x, 0));
5787       break;
5788 
5789     case CONST:
5790       /* (const (const X)) can become (const X).  Do it this way rather than
5791 	 returning the inner CONST since CONST can be shared with a
5792 	 REG_EQUAL note.  */
5793       if (GET_CODE (XEXP (x, 0)) == CONST)
5794 	SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5795       break;
5796 
5797 #ifdef HAVE_lo_sum
5798     case LO_SUM:
5799       /* Convert (lo_sum (high FOO) FOO) to FOO.  This is necessary so we
5800 	 can add in an offset.  find_split_point will split this address up
5801 	 again if it doesn't match.  */
5802       if (GET_CODE (XEXP (x, 0)) == HIGH
5803 	  && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5804 	return XEXP (x, 1);
5805       break;
5806 #endif
5807 
5808     case PLUS:
5809       /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5810 	 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5811 	 bit-field and can be replaced by either a sign_extend or a
5812 	 sign_extract.  The `and' may be a zero_extend and the two
5813 	 <c>, -<c> constants may be reversed.  */
5814       if (GET_CODE (XEXP (x, 0)) == XOR
5815 	  && CONST_INT_P (XEXP (x, 1))
5816 	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5817 	  && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5818 	  && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5819 	      || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5820 	  && HWI_COMPUTABLE_MODE_P (mode)
5821 	  && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5822 	       && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5823 	       && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5824 		   == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5825 	      || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5826 		  && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5827 		      == (unsigned int) i + 1))))
5828 	return simplify_shift_const
5829 	  (NULL_RTX, ASHIFTRT, mode,
5830 	   simplify_shift_const (NULL_RTX, ASHIFT, mode,
5831 				 XEXP (XEXP (XEXP (x, 0), 0), 0),
5832 				 GET_MODE_PRECISION (mode) - (i + 1)),
5833 	   GET_MODE_PRECISION (mode) - (i + 1));
5834 
5835       /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5836 	 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5837 	 the bitsize of the mode - 1.  This allows simplification of
5838 	 "a = (b & 8) == 0;"  */
5839       if (XEXP (x, 1) == constm1_rtx
5840 	  && !REG_P (XEXP (x, 0))
5841 	  && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5842 		&& REG_P (SUBREG_REG (XEXP (x, 0))))
5843 	  && nonzero_bits (XEXP (x, 0), mode) == 1)
5844 	return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5845 	   simplify_shift_const (NULL_RTX, ASHIFT, mode,
5846 				 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5847 				 GET_MODE_PRECISION (mode) - 1),
5848 	   GET_MODE_PRECISION (mode) - 1);
5849 
5850       /* If we are adding two things that have no bits in common, convert
5851 	 the addition into an IOR.  This will often be further simplified,
5852 	 for example in cases like ((a & 1) + (a & 2)), which can
5853 	 become a & 3.  */
5854 
5855       if (HWI_COMPUTABLE_MODE_P (mode)
5856 	  && (nonzero_bits (XEXP (x, 0), mode)
5857 	      & nonzero_bits (XEXP (x, 1), mode)) == 0)
5858 	{
5859 	  /* Try to simplify the expression further.  */
5860 	  rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5861 	  temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5862 
5863 	  /* If we could, great.  If not, do not go ahead with the IOR
5864 	     replacement, since PLUS appears in many special purpose
5865 	     address arithmetic instructions.  */
5866 	  if (GET_CODE (temp) != CLOBBER
5867 	      && (GET_CODE (temp) != IOR
5868 		  || ((XEXP (temp, 0) != XEXP (x, 0)
5869 		       || XEXP (temp, 1) != XEXP (x, 1))
5870 		      && (XEXP (temp, 0) != XEXP (x, 1)
5871 			  || XEXP (temp, 1) != XEXP (x, 0)))))
5872 	    return temp;
5873 	}
5874       break;
5875 
5876     case MINUS:
5877       /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5878 	 (and <foo> (const_int pow2-1))  */
5879       if (GET_CODE (XEXP (x, 1)) == AND
5880 	  && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5881 	  && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5882 	  && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5883 	return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5884 				       -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5885       break;
5886 
5887     case MULT:
5888       /* If we have (mult (plus A B) C), apply the distributive law and then
5889 	 the inverse distributive law to see if things simplify.  This
5890 	 occurs mostly in addresses, often when unrolling loops.  */
5891 
5892       if (GET_CODE (XEXP (x, 0)) == PLUS)
5893 	{
5894 	  rtx result = distribute_and_simplify_rtx (x, 0);
5895 	  if (result)
5896 	    return result;
5897 	}
5898 
5899       /* Try simplify a*(b/c) as (a*b)/c.  */
5900       if (FLOAT_MODE_P (mode) && flag_associative_math
5901 	  && GET_CODE (XEXP (x, 0)) == DIV)
5902 	{
5903 	  rtx tem = simplify_binary_operation (MULT, mode,
5904 					       XEXP (XEXP (x, 0), 0),
5905 					       XEXP (x, 1));
5906 	  if (tem)
5907 	    return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5908 	}
5909       break;
5910 
5911     case UDIV:
5912       /* If this is a divide by a power of two, treat it as a shift if
5913 	 its first operand is a shift.  */
5914       if (CONST_INT_P (XEXP (x, 1))
5915 	  && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5916 	  && (GET_CODE (XEXP (x, 0)) == ASHIFT
5917 	      || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5918 	      || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5919 	      || GET_CODE (XEXP (x, 0)) == ROTATE
5920 	      || GET_CODE (XEXP (x, 0)) == ROTATERT))
5921 	return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5922       break;
5923 
5924     case EQ:  case NE:
5925     case GT:  case GTU:  case GE:  case GEU:
5926     case LT:  case LTU:  case LE:  case LEU:
5927     case UNEQ:  case LTGT:
5928     case UNGT:  case UNGE:
5929     case UNLT:  case UNLE:
5930     case UNORDERED: case ORDERED:
5931       /* If the first operand is a condition code, we can't do anything
5932 	 with it.  */
5933       if (GET_CODE (XEXP (x, 0)) == COMPARE
5934 	  || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5935 	      && ! CC0_P (XEXP (x, 0))))
5936 	{
5937 	  rtx op0 = XEXP (x, 0);
5938 	  rtx op1 = XEXP (x, 1);
5939 	  enum rtx_code new_code;
5940 
5941 	  if (GET_CODE (op0) == COMPARE)
5942 	    op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5943 
5944 	  /* Simplify our comparison, if possible.  */
5945 	  new_code = simplify_comparison (code, &op0, &op1);
5946 
5947 	  /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5948 	     if only the low-order bit is possibly nonzero in X (such as when
5949 	     X is a ZERO_EXTRACT of one bit).  Similarly, we can convert EQ to
5950 	     (xor X 1) or (minus 1 X); we use the former.  Finally, if X is
5951 	     known to be either 0 or -1, NE becomes a NEG and EQ becomes
5952 	     (plus X 1).
5953 
5954 	     Remove any ZERO_EXTRACT we made when thinking this was a
5955 	     comparison.  It may now be simpler to use, e.g., an AND.  If a
5956 	     ZERO_EXTRACT is indeed appropriate, it will be placed back by
5957 	     the call to make_compound_operation in the SET case.
5958 
5959 	     Don't apply these optimizations if the caller would
5960 	     prefer a comparison rather than a value.
5961 	     E.g., for the condition in an IF_THEN_ELSE most targets need
5962 	     an explicit comparison.  */
5963 
5964 	  if (in_cond)
5965 	    ;
5966 
5967 	  else if (STORE_FLAG_VALUE == 1
5968 	      && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5969 	      && op1 == const0_rtx
5970 	      && mode == GET_MODE (op0)
5971 	      && nonzero_bits (op0, mode) == 1)
5972 	    return gen_lowpart (mode,
5973 				expand_compound_operation (op0));
5974 
5975 	  else if (STORE_FLAG_VALUE == 1
5976 		   && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5977 		   && op1 == const0_rtx
5978 		   && mode == GET_MODE (op0)
5979 		   && (num_sign_bit_copies (op0, mode)
5980 		       == GET_MODE_PRECISION (mode)))
5981 	    {
5982 	      op0 = expand_compound_operation (op0);
5983 	      return simplify_gen_unary (NEG, mode,
5984 					 gen_lowpart (mode, op0),
5985 					 mode);
5986 	    }
5987 
5988 	  else if (STORE_FLAG_VALUE == 1
5989 		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5990 		   && op1 == const0_rtx
5991 		   && mode == GET_MODE (op0)
5992 		   && nonzero_bits (op0, mode) == 1)
5993 	    {
5994 	      op0 = expand_compound_operation (op0);
5995 	      return simplify_gen_binary (XOR, mode,
5996 					  gen_lowpart (mode, op0),
5997 					  const1_rtx);
5998 	    }
5999 
6000 	  else if (STORE_FLAG_VALUE == 1
6001 		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6002 		   && op1 == const0_rtx
6003 		   && mode == GET_MODE (op0)
6004 		   && (num_sign_bit_copies (op0, mode)
6005 		       == GET_MODE_PRECISION (mode)))
6006 	    {
6007 	      op0 = expand_compound_operation (op0);
6008 	      return plus_constant (mode, gen_lowpart (mode, op0), 1);
6009 	    }
6010 
6011 	  /* If STORE_FLAG_VALUE is -1, we have cases similar to
6012 	     those above.  */
6013 	  if (in_cond)
6014 	    ;
6015 
6016 	  else if (STORE_FLAG_VALUE == -1
6017 		   && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6018 		   && op1 == const0_rtx
6019 		   && mode == GET_MODE (op0)
6020 		   && (num_sign_bit_copies (op0, mode)
6021 		       == GET_MODE_PRECISION (mode)))
6022 	    return gen_lowpart (mode,
6023 				expand_compound_operation (op0));
6024 
6025 	  else if (STORE_FLAG_VALUE == -1
6026 		   && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6027 		   && op1 == const0_rtx
6028 		   && mode == GET_MODE (op0)
6029 		   && nonzero_bits (op0, mode) == 1)
6030 	    {
6031 	      op0 = expand_compound_operation (op0);
6032 	      return simplify_gen_unary (NEG, mode,
6033 					 gen_lowpart (mode, op0),
6034 					 mode);
6035 	    }
6036 
6037 	  else if (STORE_FLAG_VALUE == -1
6038 		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6039 		   && op1 == const0_rtx
6040 		   && mode == GET_MODE (op0)
6041 		   && (num_sign_bit_copies (op0, mode)
6042 		       == GET_MODE_PRECISION (mode)))
6043 	    {
6044 	      op0 = expand_compound_operation (op0);
6045 	      return simplify_gen_unary (NOT, mode,
6046 					 gen_lowpart (mode, op0),
6047 					 mode);
6048 	    }
6049 
6050 	  /* If X is 0/1, (eq X 0) is X-1.  */
6051 	  else if (STORE_FLAG_VALUE == -1
6052 		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6053 		   && op1 == const0_rtx
6054 		   && mode == GET_MODE (op0)
6055 		   && nonzero_bits (op0, mode) == 1)
6056 	    {
6057 	      op0 = expand_compound_operation (op0);
6058 	      return plus_constant (mode, gen_lowpart (mode, op0), -1);
6059 	    }
6060 
6061 	  /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6062 	     one bit that might be nonzero, we can convert (ne x 0) to
6063 	     (ashift x c) where C puts the bit in the sign bit.  Remove any
6064 	     AND with STORE_FLAG_VALUE when we are done, since we are only
6065 	     going to test the sign bit.  */
6066 	  if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6067 	      && HWI_COMPUTABLE_MODE_P (mode)
6068 	      && val_signbit_p (mode, STORE_FLAG_VALUE)
6069 	      && op1 == const0_rtx
6070 	      && mode == GET_MODE (op0)
6071 	      && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
6072 	    {
6073 	      x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6074 					expand_compound_operation (op0),
6075 					GET_MODE_PRECISION (mode) - 1 - i);
6076 	      if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6077 		return XEXP (x, 0);
6078 	      else
6079 		return x;
6080 	    }
6081 
6082 	  /* If the code changed, return a whole new comparison.
6083 	     We also need to avoid using SUBST in cases where
6084 	     simplify_comparison has widened a comparison with a CONST_INT,
6085 	     since in that case the wider CONST_INT may fail the sanity
6086 	     checks in do_SUBST.  */
6087 	  if (new_code != code
6088 	      || (CONST_INT_P (op1)
6089 		  && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6090 		  && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6091 	    return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6092 
6093 	  /* Otherwise, keep this operation, but maybe change its operands.
6094 	     This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR).  */
6095 	  SUBST (XEXP (x, 0), op0);
6096 	  SUBST (XEXP (x, 1), op1);
6097 	}
6098       break;
6099 
6100     case IF_THEN_ELSE:
6101       return simplify_if_then_else (x);
6102 
6103     case ZERO_EXTRACT:
6104     case SIGN_EXTRACT:
6105     case ZERO_EXTEND:
6106     case SIGN_EXTEND:
6107       /* If we are processing SET_DEST, we are done.  */
6108       if (in_dest)
6109 	return x;
6110 
6111       return expand_compound_operation (x);
6112 
6113     case SET:
6114       return simplify_set (x);
6115 
6116     case AND:
6117     case IOR:
6118       return simplify_logical (x);
6119 
6120     case ASHIFT:
6121     case LSHIFTRT:
6122     case ASHIFTRT:
6123     case ROTATE:
6124     case ROTATERT:
6125       /* If this is a shift by a constant amount, simplify it.  */
6126       if (CONST_INT_P (XEXP (x, 1)))
6127 	return simplify_shift_const (x, code, mode, XEXP (x, 0),
6128 				     INTVAL (XEXP (x, 1)));
6129 
6130       else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6131 	SUBST (XEXP (x, 1),
6132 	       force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6133 			      ((unsigned HOST_WIDE_INT) 1
6134 			       << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
6135 			      - 1,
6136 			      0));
6137       break;
6138 
6139     default:
6140       break;
6141     }
6142 
6143   return x;
6144 }
6145 
6146 /* Simplify X, an IF_THEN_ELSE expression.  Return the new expression.  */
6147 
6148 static rtx
6149 simplify_if_then_else (rtx x)
6150 {
6151   machine_mode mode = GET_MODE (x);
6152   rtx cond = XEXP (x, 0);
6153   rtx true_rtx = XEXP (x, 1);
6154   rtx false_rtx = XEXP (x, 2);
6155   enum rtx_code true_code = GET_CODE (cond);
6156   int comparison_p = COMPARISON_P (cond);
6157   rtx temp;
6158   int i;
6159   enum rtx_code false_code;
6160   rtx reversed;
6161 
6162   /* Simplify storing of the truth value.  */
6163   if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6164     return simplify_gen_relational (true_code, mode, VOIDmode,
6165 				    XEXP (cond, 0), XEXP (cond, 1));
6166 
6167   /* Also when the truth value has to be reversed.  */
6168   if (comparison_p
6169       && true_rtx == const0_rtx && false_rtx == const_true_rtx
6170       && (reversed = reversed_comparison (cond, mode)))
6171     return reversed;
6172 
6173   /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6174      in it is being compared against certain values.  Get the true and false
6175      comparisons and see if that says anything about the value of each arm.  */
6176 
6177   if (comparison_p
6178       && ((false_code = reversed_comparison_code (cond, NULL))
6179 	  != UNKNOWN)
6180       && REG_P (XEXP (cond, 0)))
6181     {
6182       HOST_WIDE_INT nzb;
6183       rtx from = XEXP (cond, 0);
6184       rtx true_val = XEXP (cond, 1);
6185       rtx false_val = true_val;
6186       int swapped = 0;
6187 
6188       /* If FALSE_CODE is EQ, swap the codes and arms.  */
6189 
6190       if (false_code == EQ)
6191 	{
6192 	  swapped = 1, true_code = EQ, false_code = NE;
6193 	  temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
6194 	}
6195 
6196       /* If we are comparing against zero and the expression being tested has
6197 	 only a single bit that might be nonzero, that is its value when it is
6198 	 not equal to zero.  Similarly if it is known to be -1 or 0.  */
6199 
6200       if (true_code == EQ && true_val == const0_rtx
6201 	  && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
6202 	{
6203 	  false_code = EQ;
6204 	  false_val = gen_int_mode (nzb, GET_MODE (from));
6205 	}
6206       else if (true_code == EQ && true_val == const0_rtx
6207 	       && (num_sign_bit_copies (from, GET_MODE (from))
6208 		   == GET_MODE_PRECISION (GET_MODE (from))))
6209 	{
6210 	  false_code = EQ;
6211 	  false_val = constm1_rtx;
6212 	}
6213 
6214       /* Now simplify an arm if we know the value of the register in the
6215 	 branch and it is used in the arm.  Be careful due to the potential
6216 	 of locally-shared RTL.  */
6217 
6218       if (reg_mentioned_p (from, true_rtx))
6219 	true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6220 				      from, true_val),
6221 			  pc_rtx, pc_rtx, 0, 0, 0);
6222       if (reg_mentioned_p (from, false_rtx))
6223 	false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6224 				   from, false_val),
6225 			   pc_rtx, pc_rtx, 0, 0, 0);
6226 
6227       SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6228       SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6229 
6230       true_rtx = XEXP (x, 1);
6231       false_rtx = XEXP (x, 2);
6232       true_code = GET_CODE (cond);
6233     }
6234 
6235   /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6236      reversed, do so to avoid needing two sets of patterns for
6237      subtract-and-branch insns.  Similarly if we have a constant in the true
6238      arm, the false arm is the same as the first operand of the comparison, or
6239      the false arm is more complicated than the true arm.  */
6240 
6241   if (comparison_p
6242       && reversed_comparison_code (cond, NULL) != UNKNOWN
6243       && (true_rtx == pc_rtx
6244 	  || (CONSTANT_P (true_rtx)
6245 	      && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6246 	  || true_rtx == const0_rtx
6247 	  || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6248 	  || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6249 	      && !OBJECT_P (false_rtx))
6250 	  || reg_mentioned_p (true_rtx, false_rtx)
6251 	  || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6252     {
6253       true_code = reversed_comparison_code (cond, NULL);
6254       SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6255       SUBST (XEXP (x, 1), false_rtx);
6256       SUBST (XEXP (x, 2), true_rtx);
6257 
6258       temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
6259       cond = XEXP (x, 0);
6260 
6261       /* It is possible that the conditional has been simplified out.  */
6262       true_code = GET_CODE (cond);
6263       comparison_p = COMPARISON_P (cond);
6264     }
6265 
6266   /* If the two arms are identical, we don't need the comparison.  */
6267 
6268   if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6269     return true_rtx;
6270 
6271   /* Convert a == b ? b : a to "a".  */
6272   if (true_code == EQ && ! side_effects_p (cond)
6273       && !HONOR_NANS (mode)
6274       && rtx_equal_p (XEXP (cond, 0), false_rtx)
6275       && rtx_equal_p (XEXP (cond, 1), true_rtx))
6276     return false_rtx;
6277   else if (true_code == NE && ! side_effects_p (cond)
6278 	   && !HONOR_NANS (mode)
6279 	   && rtx_equal_p (XEXP (cond, 0), true_rtx)
6280 	   && rtx_equal_p (XEXP (cond, 1), false_rtx))
6281     return true_rtx;
6282 
6283   /* Look for cases where we have (abs x) or (neg (abs X)).  */
6284 
6285   if (GET_MODE_CLASS (mode) == MODE_INT
6286       && comparison_p
6287       && XEXP (cond, 1) == const0_rtx
6288       && GET_CODE (false_rtx) == NEG
6289       && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6290       && rtx_equal_p (true_rtx, XEXP (cond, 0))
6291       && ! side_effects_p (true_rtx))
6292     switch (true_code)
6293       {
6294       case GT:
6295       case GE:
6296 	return simplify_gen_unary (ABS, mode, true_rtx, mode);
6297       case LT:
6298       case LE:
6299 	return
6300 	  simplify_gen_unary (NEG, mode,
6301 			      simplify_gen_unary (ABS, mode, true_rtx, mode),
6302 			      mode);
6303       default:
6304 	break;
6305       }
6306 
6307   /* Look for MIN or MAX.  */
6308 
6309   if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6310       && comparison_p
6311       && rtx_equal_p (XEXP (cond, 0), true_rtx)
6312       && rtx_equal_p (XEXP (cond, 1), false_rtx)
6313       && ! side_effects_p (cond))
6314     switch (true_code)
6315       {
6316       case GE:
6317       case GT:
6318 	return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6319       case LE:
6320       case LT:
6321 	return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6322       case GEU:
6323       case GTU:
6324 	return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6325       case LEU:
6326       case LTU:
6327 	return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6328       default:
6329 	break;
6330       }
6331 
6332   /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6333      second operand is zero, this can be done as (OP Z (mult COND C2)) where
6334      C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6335      SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6336      We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6337      neither 1 or -1, but it isn't worth checking for.  */
6338 
6339   if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6340       && comparison_p
6341       && GET_MODE_CLASS (mode) == MODE_INT
6342       && ! side_effects_p (x))
6343     {
6344       rtx t = make_compound_operation (true_rtx, SET);
6345       rtx f = make_compound_operation (false_rtx, SET);
6346       rtx cond_op0 = XEXP (cond, 0);
6347       rtx cond_op1 = XEXP (cond, 1);
6348       enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6349       machine_mode m = mode;
6350       rtx z = 0, c1 = NULL_RTX;
6351 
6352       if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6353 	   || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6354 	   || GET_CODE (t) == ASHIFT
6355 	   || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6356 	  && rtx_equal_p (XEXP (t, 0), f))
6357 	c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6358 
6359       /* If an identity-zero op is commutative, check whether there
6360 	 would be a match if we swapped the operands.  */
6361       else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6362 		|| GET_CODE (t) == XOR)
6363 	       && rtx_equal_p (XEXP (t, 1), f))
6364 	c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6365       else if (GET_CODE (t) == SIGN_EXTEND
6366 	       && (GET_CODE (XEXP (t, 0)) == PLUS
6367 		   || GET_CODE (XEXP (t, 0)) == MINUS
6368 		   || GET_CODE (XEXP (t, 0)) == IOR
6369 		   || GET_CODE (XEXP (t, 0)) == XOR
6370 		   || GET_CODE (XEXP (t, 0)) == ASHIFT
6371 		   || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6372 		   || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6373 	       && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6374 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6375 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6376 	       && (num_sign_bit_copies (f, GET_MODE (f))
6377 		   > (unsigned int)
6378 		     (GET_MODE_PRECISION (mode)
6379 		      - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6380 	{
6381 	  c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6382 	  extend_op = SIGN_EXTEND;
6383 	  m = GET_MODE (XEXP (t, 0));
6384 	}
6385       else if (GET_CODE (t) == SIGN_EXTEND
6386 	       && (GET_CODE (XEXP (t, 0)) == PLUS
6387 		   || GET_CODE (XEXP (t, 0)) == IOR
6388 		   || GET_CODE (XEXP (t, 0)) == XOR)
6389 	       && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6390 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6391 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6392 	       && (num_sign_bit_copies (f, GET_MODE (f))
6393 		   > (unsigned int)
6394 		     (GET_MODE_PRECISION (mode)
6395 		      - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6396 	{
6397 	  c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6398 	  extend_op = SIGN_EXTEND;
6399 	  m = GET_MODE (XEXP (t, 0));
6400 	}
6401       else if (GET_CODE (t) == ZERO_EXTEND
6402 	       && (GET_CODE (XEXP (t, 0)) == PLUS
6403 		   || GET_CODE (XEXP (t, 0)) == MINUS
6404 		   || GET_CODE (XEXP (t, 0)) == IOR
6405 		   || GET_CODE (XEXP (t, 0)) == XOR
6406 		   || GET_CODE (XEXP (t, 0)) == ASHIFT
6407 		   || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6408 		   || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6409 	       && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6410 	       && HWI_COMPUTABLE_MODE_P (mode)
6411 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6412 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6413 	       && ((nonzero_bits (f, GET_MODE (f))
6414 		    & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6415 		   == 0))
6416 	{
6417 	  c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6418 	  extend_op = ZERO_EXTEND;
6419 	  m = GET_MODE (XEXP (t, 0));
6420 	}
6421       else if (GET_CODE (t) == ZERO_EXTEND
6422 	       && (GET_CODE (XEXP (t, 0)) == PLUS
6423 		   || GET_CODE (XEXP (t, 0)) == IOR
6424 		   || GET_CODE (XEXP (t, 0)) == XOR)
6425 	       && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6426 	       && HWI_COMPUTABLE_MODE_P (mode)
6427 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6428 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6429 	       && ((nonzero_bits (f, GET_MODE (f))
6430 		    & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6431 		   == 0))
6432 	{
6433 	  c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6434 	  extend_op = ZERO_EXTEND;
6435 	  m = GET_MODE (XEXP (t, 0));
6436 	}
6437 
6438       if (z)
6439 	{
6440 	  temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6441 						 cond_op0, cond_op1),
6442 			pc_rtx, pc_rtx, 0, 0, 0);
6443 	  temp = simplify_gen_binary (MULT, m, temp,
6444 				      simplify_gen_binary (MULT, m, c1,
6445 							   const_true_rtx));
6446 	  temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6447 	  temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6448 
6449 	  if (extend_op != UNKNOWN)
6450 	    temp = simplify_gen_unary (extend_op, mode, temp, m);
6451 
6452 	  return temp;
6453 	}
6454     }
6455 
6456   /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6457      1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6458      negation of a single bit, we can convert this operation to a shift.  We
6459      can actually do this more generally, but it doesn't seem worth it.  */
6460 
6461   if (true_code == NE && XEXP (cond, 1) == const0_rtx
6462       && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6463       && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6464 	   && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6465 	  || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6466 	       == GET_MODE_PRECISION (mode))
6467 	      && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6468     return
6469       simplify_shift_const (NULL_RTX, ASHIFT, mode,
6470 			    gen_lowpart (mode, XEXP (cond, 0)), i);
6471 
6472   /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8.  */
6473   if (true_code == NE && XEXP (cond, 1) == const0_rtx
6474       && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6475       && GET_MODE (XEXP (cond, 0)) == mode
6476       && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6477 	  == nonzero_bits (XEXP (cond, 0), mode)
6478       && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6479     return XEXP (cond, 0);
6480 
6481   return x;
6482 }
6483 
6484 /* Simplify X, a SET expression.  Return the new expression.  */
6485 
6486 static rtx
6487 simplify_set (rtx x)
6488 {
6489   rtx src = SET_SRC (x);
6490   rtx dest = SET_DEST (x);
6491   machine_mode mode
6492     = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6493   rtx_insn *other_insn;
6494   rtx *cc_use;
6495 
6496   /* (set (pc) (return)) gets written as (return).  */
6497   if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6498     return src;
6499 
6500   /* Now that we know for sure which bits of SRC we are using, see if we can
6501      simplify the expression for the object knowing that we only need the
6502      low-order bits.  */
6503 
6504   if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6505     {
6506       src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6507       SUBST (SET_SRC (x), src);
6508     }
6509 
6510   /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6511      the comparison result and try to simplify it unless we already have used
6512      undobuf.other_insn.  */
6513   if ((GET_MODE_CLASS (mode) == MODE_CC
6514        || GET_CODE (src) == COMPARE
6515        || CC0_P (dest))
6516       && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6517       && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6518       && COMPARISON_P (*cc_use)
6519       && rtx_equal_p (XEXP (*cc_use, 0), dest))
6520     {
6521       enum rtx_code old_code = GET_CODE (*cc_use);
6522       enum rtx_code new_code;
6523       rtx op0, op1, tmp;
6524       int other_changed = 0;
6525       rtx inner_compare = NULL_RTX;
6526       machine_mode compare_mode = GET_MODE (dest);
6527 
6528       if (GET_CODE (src) == COMPARE)
6529 	{
6530 	  op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6531 	  if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6532 	    {
6533 	      inner_compare = op0;
6534 	      op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6535 	    }
6536 	}
6537       else
6538 	op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6539 
6540       tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6541 					   op0, op1);
6542       if (!tmp)
6543 	new_code = old_code;
6544       else if (!CONSTANT_P (tmp))
6545 	{
6546 	  new_code = GET_CODE (tmp);
6547 	  op0 = XEXP (tmp, 0);
6548 	  op1 = XEXP (tmp, 1);
6549 	}
6550       else
6551 	{
6552 	  rtx pat = PATTERN (other_insn);
6553 	  undobuf.other_insn = other_insn;
6554 	  SUBST (*cc_use, tmp);
6555 
6556 	  /* Attempt to simplify CC user.  */
6557 	  if (GET_CODE (pat) == SET)
6558 	    {
6559 	      rtx new_rtx = simplify_rtx (SET_SRC (pat));
6560 	      if (new_rtx != NULL_RTX)
6561 		SUBST (SET_SRC (pat), new_rtx);
6562 	    }
6563 
6564 	  /* Convert X into a no-op move.  */
6565 	  SUBST (SET_DEST (x), pc_rtx);
6566 	  SUBST (SET_SRC (x), pc_rtx);
6567 	  return x;
6568 	}
6569 
6570       /* Simplify our comparison, if possible.  */
6571       new_code = simplify_comparison (new_code, &op0, &op1);
6572 
6573 #ifdef SELECT_CC_MODE
6574       /* If this machine has CC modes other than CCmode, check to see if we
6575 	 need to use a different CC mode here.  */
6576       if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6577 	compare_mode = GET_MODE (op0);
6578       else if (inner_compare
6579 	       && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6580 	       && new_code == old_code
6581 	       && op0 == XEXP (inner_compare, 0)
6582 	       && op1 == XEXP (inner_compare, 1))
6583 	compare_mode = GET_MODE (inner_compare);
6584       else
6585 	compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6586 
6587 #ifndef HAVE_cc0
6588       /* If the mode changed, we have to change SET_DEST, the mode in the
6589 	 compare, and the mode in the place SET_DEST is used.  If SET_DEST is
6590 	 a hard register, just build new versions with the proper mode.  If it
6591 	 is a pseudo, we lose unless it is only time we set the pseudo, in
6592 	 which case we can safely change its mode.  */
6593       if (compare_mode != GET_MODE (dest))
6594 	{
6595 	  if (can_change_dest_mode (dest, 0, compare_mode))
6596 	    {
6597 	      unsigned int regno = REGNO (dest);
6598 	      rtx new_dest;
6599 
6600 	      if (regno < FIRST_PSEUDO_REGISTER)
6601 		new_dest = gen_rtx_REG (compare_mode, regno);
6602 	      else
6603 		{
6604 		  SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6605 		  new_dest = regno_reg_rtx[regno];
6606 		}
6607 
6608 	      SUBST (SET_DEST (x), new_dest);
6609 	      SUBST (XEXP (*cc_use, 0), new_dest);
6610 	      other_changed = 1;
6611 
6612 	      dest = new_dest;
6613 	    }
6614 	}
6615 #endif  /* cc0 */
6616 #endif  /* SELECT_CC_MODE */
6617 
6618       /* If the code changed, we have to build a new comparison in
6619 	 undobuf.other_insn.  */
6620       if (new_code != old_code)
6621 	{
6622 	  int other_changed_previously = other_changed;
6623 	  unsigned HOST_WIDE_INT mask;
6624 	  rtx old_cc_use = *cc_use;
6625 
6626 	  SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6627 					  dest, const0_rtx));
6628 	  other_changed = 1;
6629 
6630 	  /* If the only change we made was to change an EQ into an NE or
6631 	     vice versa, OP0 has only one bit that might be nonzero, and OP1
6632 	     is zero, check if changing the user of the condition code will
6633 	     produce a valid insn.  If it won't, we can keep the original code
6634 	     in that insn by surrounding our operation with an XOR.  */
6635 
6636 	  if (((old_code == NE && new_code == EQ)
6637 	       || (old_code == EQ && new_code == NE))
6638 	      && ! other_changed_previously && op1 == const0_rtx
6639 	      && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6640 	      && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6641 	    {
6642 	      rtx pat = PATTERN (other_insn), note = 0;
6643 
6644 	      if ((recog_for_combine (&pat, other_insn, &note) < 0
6645 		   && ! check_asm_operands (pat)))
6646 		{
6647 		  *cc_use = old_cc_use;
6648 		  other_changed = 0;
6649 
6650 		  op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6651 					     gen_int_mode (mask,
6652 							   GET_MODE (op0)));
6653 		}
6654 	    }
6655 	}
6656 
6657       if (other_changed)
6658 	undobuf.other_insn = other_insn;
6659 
6660       /* Otherwise, if we didn't previously have a COMPARE in the
6661 	 correct mode, we need one.  */
6662       if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6663 	{
6664 	  SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6665 	  src = SET_SRC (x);
6666 	}
6667       else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6668 	{
6669 	  SUBST (SET_SRC (x), op0);
6670 	  src = SET_SRC (x);
6671 	}
6672       /* Otherwise, update the COMPARE if needed.  */
6673       else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6674 	{
6675 	  SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6676 	  src = SET_SRC (x);
6677 	}
6678     }
6679   else
6680     {
6681       /* Get SET_SRC in a form where we have placed back any
6682 	 compound expressions.  Then do the checks below.  */
6683       src = make_compound_operation (src, SET);
6684       SUBST (SET_SRC (x), src);
6685     }
6686 
6687   /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6688      and X being a REG or (subreg (reg)), we may be able to convert this to
6689      (set (subreg:m2 x) (op)).
6690 
6691      We can always do this if M1 is narrower than M2 because that means that
6692      we only care about the low bits of the result.
6693 
6694      However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6695      perform a narrower operation than requested since the high-order bits will
6696      be undefined.  On machine where it is defined, this transformation is safe
6697      as long as M1 and M2 have the same number of words.  */
6698 
6699   if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6700       && !OBJECT_P (SUBREG_REG (src))
6701       && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6702 	   / UNITS_PER_WORD)
6703 	  == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6704 	       + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6705 #ifndef WORD_REGISTER_OPERATIONS
6706       && (GET_MODE_SIZE (GET_MODE (src))
6707 	< GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6708 #endif
6709 #ifdef CANNOT_CHANGE_MODE_CLASS
6710       && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6711 	    && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6712 					 GET_MODE (SUBREG_REG (src)),
6713 					 GET_MODE (src)))
6714 #endif
6715       && (REG_P (dest)
6716 	  || (GET_CODE (dest) == SUBREG
6717 	      && REG_P (SUBREG_REG (dest)))))
6718     {
6719       SUBST (SET_DEST (x),
6720 	     gen_lowpart (GET_MODE (SUBREG_REG (src)),
6721 				      dest));
6722       SUBST (SET_SRC (x), SUBREG_REG (src));
6723 
6724       src = SET_SRC (x), dest = SET_DEST (x);
6725     }
6726 
6727 #ifdef HAVE_cc0
6728   /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6729      in SRC.  */
6730   if (dest == cc0_rtx
6731       && GET_CODE (src) == SUBREG
6732       && subreg_lowpart_p (src)
6733       && (GET_MODE_PRECISION (GET_MODE (src))
6734 	  < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6735     {
6736       rtx inner = SUBREG_REG (src);
6737       machine_mode inner_mode = GET_MODE (inner);
6738 
6739       /* Here we make sure that we don't have a sign bit on.  */
6740       if (val_signbit_known_clear_p (GET_MODE (src),
6741 				     nonzero_bits (inner, inner_mode)))
6742 	{
6743 	  SUBST (SET_SRC (x), inner);
6744 	  src = SET_SRC (x);
6745 	}
6746     }
6747 #endif
6748 
6749 #ifdef LOAD_EXTEND_OP
6750   /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6751      would require a paradoxical subreg.  Replace the subreg with a
6752      zero_extend to avoid the reload that would otherwise be required.  */
6753 
6754   if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6755       && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6756       && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6757       && SUBREG_BYTE (src) == 0
6758       && paradoxical_subreg_p (src)
6759       && MEM_P (SUBREG_REG (src)))
6760     {
6761       SUBST (SET_SRC (x),
6762 	     gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6763 			    GET_MODE (src), SUBREG_REG (src)));
6764 
6765       src = SET_SRC (x);
6766     }
6767 #endif
6768 
6769   /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6770      are comparing an item known to be 0 or -1 against 0, use a logical
6771      operation instead. Check for one of the arms being an IOR of the other
6772      arm with some value.  We compute three terms to be IOR'ed together.  In
6773      practice, at most two will be nonzero.  Then we do the IOR's.  */
6774 
6775   if (GET_CODE (dest) != PC
6776       && GET_CODE (src) == IF_THEN_ELSE
6777       && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6778       && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6779       && XEXP (XEXP (src, 0), 1) == const0_rtx
6780       && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6781 #ifdef HAVE_conditional_move
6782       && ! can_conditionally_move_p (GET_MODE (src))
6783 #endif
6784       && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6785 			       GET_MODE (XEXP (XEXP (src, 0), 0)))
6786 	  == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6787       && ! side_effects_p (src))
6788     {
6789       rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6790 		      ? XEXP (src, 1) : XEXP (src, 2));
6791       rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6792 		   ? XEXP (src, 2) : XEXP (src, 1));
6793       rtx term1 = const0_rtx, term2, term3;
6794 
6795       if (GET_CODE (true_rtx) == IOR
6796 	  && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6797 	term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6798       else if (GET_CODE (true_rtx) == IOR
6799 	       && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6800 	term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6801       else if (GET_CODE (false_rtx) == IOR
6802 	       && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6803 	term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6804       else if (GET_CODE (false_rtx) == IOR
6805 	       && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6806 	term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6807 
6808       term2 = simplify_gen_binary (AND, GET_MODE (src),
6809 				   XEXP (XEXP (src, 0), 0), true_rtx);
6810       term3 = simplify_gen_binary (AND, GET_MODE (src),
6811 				   simplify_gen_unary (NOT, GET_MODE (src),
6812 						       XEXP (XEXP (src, 0), 0),
6813 						       GET_MODE (src)),
6814 				   false_rtx);
6815 
6816       SUBST (SET_SRC (x),
6817 	     simplify_gen_binary (IOR, GET_MODE (src),
6818 				  simplify_gen_binary (IOR, GET_MODE (src),
6819 						       term1, term2),
6820 				  term3));
6821 
6822       src = SET_SRC (x);
6823     }
6824 
6825   /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6826      whole thing fail.  */
6827   if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6828     return src;
6829   else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6830     return dest;
6831   else
6832     /* Convert this into a field assignment operation, if possible.  */
6833     return make_field_assignment (x);
6834 }
6835 
6836 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6837    result.  */
6838 
6839 static rtx
6840 simplify_logical (rtx x)
6841 {
6842   machine_mode mode = GET_MODE (x);
6843   rtx op0 = XEXP (x, 0);
6844   rtx op1 = XEXP (x, 1);
6845 
6846   switch (GET_CODE (x))
6847     {
6848     case AND:
6849       /* We can call simplify_and_const_int only if we don't lose
6850 	 any (sign) bits when converting INTVAL (op1) to
6851 	 "unsigned HOST_WIDE_INT".  */
6852       if (CONST_INT_P (op1)
6853 	  && (HWI_COMPUTABLE_MODE_P (mode)
6854 	      || INTVAL (op1) > 0))
6855 	{
6856 	  x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6857 	  if (GET_CODE (x) != AND)
6858 	    return x;
6859 
6860 	  op0 = XEXP (x, 0);
6861 	  op1 = XEXP (x, 1);
6862 	}
6863 
6864       /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6865 	 apply the distributive law and then the inverse distributive
6866 	 law to see if things simplify.  */
6867       if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6868 	{
6869 	  rtx result = distribute_and_simplify_rtx (x, 0);
6870 	  if (result)
6871 	    return result;
6872 	}
6873       if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6874 	{
6875 	  rtx result = distribute_and_simplify_rtx (x, 1);
6876 	  if (result)
6877 	    return result;
6878 	}
6879       break;
6880 
6881     case IOR:
6882       /* If we have (ior (and A B) C), apply the distributive law and then
6883 	 the inverse distributive law to see if things simplify.  */
6884 
6885       if (GET_CODE (op0) == AND)
6886 	{
6887 	  rtx result = distribute_and_simplify_rtx (x, 0);
6888 	  if (result)
6889 	    return result;
6890 	}
6891 
6892       if (GET_CODE (op1) == AND)
6893 	{
6894 	  rtx result = distribute_and_simplify_rtx (x, 1);
6895 	  if (result)
6896 	    return result;
6897 	}
6898       break;
6899 
6900     default:
6901       gcc_unreachable ();
6902     }
6903 
6904   return x;
6905 }
6906 
6907 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6908    operations" because they can be replaced with two more basic operations.
6909    ZERO_EXTEND is also considered "compound" because it can be replaced with
6910    an AND operation, which is simpler, though only one operation.
6911 
6912    The function expand_compound_operation is called with an rtx expression
6913    and will convert it to the appropriate shifts and AND operations,
6914    simplifying at each stage.
6915 
6916    The function make_compound_operation is called to convert an expression
6917    consisting of shifts and ANDs into the equivalent compound expression.
6918    It is the inverse of this function, loosely speaking.  */
6919 
6920 static rtx
6921 expand_compound_operation (rtx x)
6922 {
6923   unsigned HOST_WIDE_INT pos = 0, len;
6924   int unsignedp = 0;
6925   unsigned int modewidth;
6926   rtx tem;
6927 
6928   switch (GET_CODE (x))
6929     {
6930     case ZERO_EXTEND:
6931       unsignedp = 1;
6932     case SIGN_EXTEND:
6933       /* We can't necessarily use a const_int for a multiword mode;
6934 	 it depends on implicitly extending the value.
6935 	 Since we don't know the right way to extend it,
6936 	 we can't tell whether the implicit way is right.
6937 
6938 	 Even for a mode that is no wider than a const_int,
6939 	 we can't win, because we need to sign extend one of its bits through
6940 	 the rest of it, and we don't know which bit.  */
6941       if (CONST_INT_P (XEXP (x, 0)))
6942 	return x;
6943 
6944       /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6945 	 (zero_extend:MODE FROM) or (sign_extend:MODE FROM).  It is for any MEM
6946 	 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6947 	 reloaded. If not for that, MEM's would very rarely be safe.
6948 
6949 	 Reject MODEs bigger than a word, because we might not be able
6950 	 to reference a two-register group starting with an arbitrary register
6951 	 (and currently gen_lowpart might crash for a SUBREG).  */
6952 
6953       if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6954 	return x;
6955 
6956       /* Reject MODEs that aren't scalar integers because turning vector
6957 	 or complex modes into shifts causes problems.  */
6958 
6959       if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6960 	return x;
6961 
6962       len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6963       /* If the inner object has VOIDmode (the only way this can happen
6964 	 is if it is an ASM_OPERANDS), we can't do anything since we don't
6965 	 know how much masking to do.  */
6966       if (len == 0)
6967 	return x;
6968 
6969       break;
6970 
6971     case ZERO_EXTRACT:
6972       unsignedp = 1;
6973 
6974       /* ... fall through ...  */
6975 
6976     case SIGN_EXTRACT:
6977       /* If the operand is a CLOBBER, just return it.  */
6978       if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6979 	return XEXP (x, 0);
6980 
6981       if (!CONST_INT_P (XEXP (x, 1))
6982 	  || !CONST_INT_P (XEXP (x, 2))
6983 	  || GET_MODE (XEXP (x, 0)) == VOIDmode)
6984 	return x;
6985 
6986       /* Reject MODEs that aren't scalar integers because turning vector
6987 	 or complex modes into shifts causes problems.  */
6988 
6989       if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6990 	return x;
6991 
6992       len = INTVAL (XEXP (x, 1));
6993       pos = INTVAL (XEXP (x, 2));
6994 
6995       /* This should stay within the object being extracted, fail otherwise.  */
6996       if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
6997 	return x;
6998 
6999       if (BITS_BIG_ENDIAN)
7000 	pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
7001 
7002       break;
7003 
7004     default:
7005       return x;
7006     }
7007   /* Convert sign extension to zero extension, if we know that the high
7008      bit is not set, as this is easier to optimize.  It will be converted
7009      back to cheaper alternative in make_extraction.  */
7010   if (GET_CODE (x) == SIGN_EXTEND
7011       && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7012 	  && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7013 		& ~(((unsigned HOST_WIDE_INT)
7014 		      GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
7015 		     >> 1))
7016 	       == 0)))
7017     {
7018       rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
7019       rtx temp2 = expand_compound_operation (temp);
7020 
7021       /* Make sure this is a profitable operation.  */
7022       if (set_src_cost (x, optimize_this_for_speed_p)
7023           > set_src_cost (temp2, optimize_this_for_speed_p))
7024        return temp2;
7025       else if (set_src_cost (x, optimize_this_for_speed_p)
7026                > set_src_cost (temp, optimize_this_for_speed_p))
7027        return temp;
7028       else
7029        return x;
7030     }
7031 
7032   /* We can optimize some special cases of ZERO_EXTEND.  */
7033   if (GET_CODE (x) == ZERO_EXTEND)
7034     {
7035       /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7036 	 know that the last value didn't have any inappropriate bits
7037 	 set.  */
7038       if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7039 	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7040 	  && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7041 	  && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
7042 	      & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7043 	return XEXP (XEXP (x, 0), 0);
7044 
7045       /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)).  */
7046       if (GET_CODE (XEXP (x, 0)) == SUBREG
7047 	  && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7048 	  && subreg_lowpart_p (XEXP (x, 0))
7049 	  && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7050 	  && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
7051 	      & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7052 	return SUBREG_REG (XEXP (x, 0));
7053 
7054       /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7055 	 is a comparison and STORE_FLAG_VALUE permits.  This is like
7056 	 the first case, but it works even when GET_MODE (x) is larger
7057 	 than HOST_WIDE_INT.  */
7058       if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7059 	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7060 	  && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7061 	  && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7062 	      <= HOST_BITS_PER_WIDE_INT)
7063 	  && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7064 	return XEXP (XEXP (x, 0), 0);
7065 
7066       /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)).  */
7067       if (GET_CODE (XEXP (x, 0)) == SUBREG
7068 	  && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7069 	  && subreg_lowpart_p (XEXP (x, 0))
7070 	  && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7071 	  && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7072 	      <= HOST_BITS_PER_WIDE_INT)
7073 	  && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7074 	return SUBREG_REG (XEXP (x, 0));
7075 
7076     }
7077 
7078   /* If we reach here, we want to return a pair of shifts.  The inner
7079      shift is a left shift of BITSIZE - POS - LEN bits.  The outer
7080      shift is a right shift of BITSIZE - LEN bits.  It is arithmetic or
7081      logical depending on the value of UNSIGNEDP.
7082 
7083      If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7084      converted into an AND of a shift.
7085 
7086      We must check for the case where the left shift would have a negative
7087      count.  This can happen in a case like (x >> 31) & 255 on machines
7088      that can't shift by a constant.  On those machines, we would first
7089      combine the shift with the AND to produce a variable-position
7090      extraction.  Then the constant of 31 would be substituted in
7091      to produce such a position.  */
7092 
7093   modewidth = GET_MODE_PRECISION (GET_MODE (x));
7094   if (modewidth >= pos + len)
7095     {
7096       machine_mode mode = GET_MODE (x);
7097       tem = gen_lowpart (mode, XEXP (x, 0));
7098       if (!tem || GET_CODE (tem) == CLOBBER)
7099 	return x;
7100       tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7101 				  tem, modewidth - pos - len);
7102       tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7103 				  mode, tem, modewidth - len);
7104     }
7105   else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7106     tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
7107 				  simplify_shift_const (NULL_RTX, LSHIFTRT,
7108 							GET_MODE (x),
7109 							XEXP (x, 0), pos),
7110 				  ((unsigned HOST_WIDE_INT) 1 << len) - 1);
7111   else
7112     /* Any other cases we can't handle.  */
7113     return x;
7114 
7115   /* If we couldn't do this for some reason, return the original
7116      expression.  */
7117   if (GET_CODE (tem) == CLOBBER)
7118     return x;
7119 
7120   return tem;
7121 }
7122 
7123 /* X is a SET which contains an assignment of one object into
7124    a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7125    or certain SUBREGS). If possible, convert it into a series of
7126    logical operations.
7127 
7128    We half-heartedly support variable positions, but do not at all
7129    support variable lengths.  */
7130 
7131 static const_rtx
7132 expand_field_assignment (const_rtx x)
7133 {
7134   rtx inner;
7135   rtx pos;			/* Always counts from low bit.  */
7136   int len;
7137   rtx mask, cleared, masked;
7138   machine_mode compute_mode;
7139 
7140   /* Loop until we find something we can't simplify.  */
7141   while (1)
7142     {
7143       if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7144 	  && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7145 	{
7146 	  inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7147 	  len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7148 	  pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7149 	}
7150       else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7151 	       && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7152 	{
7153 	  inner = XEXP (SET_DEST (x), 0);
7154 	  len = INTVAL (XEXP (SET_DEST (x), 1));
7155 	  pos = XEXP (SET_DEST (x), 2);
7156 
7157 	  /* A constant position should stay within the width of INNER.  */
7158 	  if (CONST_INT_P (pos)
7159 	      && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7160 	    break;
7161 
7162 	  if (BITS_BIG_ENDIAN)
7163 	    {
7164 	      if (CONST_INT_P (pos))
7165 		pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7166 			       - INTVAL (pos));
7167 	      else if (GET_CODE (pos) == MINUS
7168 		       && CONST_INT_P (XEXP (pos, 1))
7169 		       && (INTVAL (XEXP (pos, 1))
7170 			   == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7171 		/* If position is ADJUST - X, new position is X.  */
7172 		pos = XEXP (pos, 0);
7173 	      else
7174 		{
7175 		  HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7176 		  pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7177 					     gen_int_mode (prec - len,
7178 							   GET_MODE (pos)),
7179 					     pos);
7180 		}
7181 	    }
7182 	}
7183 
7184       /* A SUBREG between two modes that occupy the same numbers of words
7185 	 can be done by moving the SUBREG to the source.  */
7186       else if (GET_CODE (SET_DEST (x)) == SUBREG
7187 	       /* We need SUBREGs to compute nonzero_bits properly.  */
7188 	       && nonzero_sign_valid
7189 	       && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7190 		     + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7191 		   == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7192 			+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7193 	{
7194 	  x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
7195 			   gen_lowpart
7196 			   (GET_MODE (SUBREG_REG (SET_DEST (x))),
7197 			    SET_SRC (x)));
7198 	  continue;
7199 	}
7200       else
7201 	break;
7202 
7203       while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7204 	inner = SUBREG_REG (inner);
7205 
7206       compute_mode = GET_MODE (inner);
7207 
7208       /* Don't attempt bitwise arithmetic on non scalar integer modes.  */
7209       if (! SCALAR_INT_MODE_P (compute_mode))
7210 	{
7211 	  machine_mode imode;
7212 
7213 	  /* Don't do anything for vector or complex integral types.  */
7214 	  if (! FLOAT_MODE_P (compute_mode))
7215 	    break;
7216 
7217 	  /* Try to find an integral mode to pun with.  */
7218 	  imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7219 	  if (imode == BLKmode)
7220 	    break;
7221 
7222 	  compute_mode = imode;
7223 	  inner = gen_lowpart (imode, inner);
7224 	}
7225 
7226       /* Compute a mask of LEN bits, if we can do this on the host machine.  */
7227       if (len >= HOST_BITS_PER_WIDE_INT)
7228 	break;
7229 
7230       /* Don't try to compute in too wide unsupported modes.  */
7231       if (!targetm.scalar_mode_supported_p (compute_mode))
7232 	break;
7233 
7234       /* Now compute the equivalent expression.  Make a copy of INNER
7235 	 for the SET_DEST in case it is a MEM into which we will substitute;
7236 	 we don't want shared RTL in that case.  */
7237       mask = gen_int_mode (((unsigned HOST_WIDE_INT) 1 << len) - 1,
7238 			   compute_mode);
7239       cleared = simplify_gen_binary (AND, compute_mode,
7240 				     simplify_gen_unary (NOT, compute_mode,
7241 				       simplify_gen_binary (ASHIFT,
7242 							    compute_mode,
7243 							    mask, pos),
7244 				       compute_mode),
7245 				     inner);
7246       masked = simplify_gen_binary (ASHIFT, compute_mode,
7247 				    simplify_gen_binary (
7248 				      AND, compute_mode,
7249 				      gen_lowpart (compute_mode, SET_SRC (x)),
7250 				      mask),
7251 				    pos);
7252 
7253       x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
7254 		       simplify_gen_binary (IOR, compute_mode,
7255 					    cleared, masked));
7256     }
7257 
7258   return x;
7259 }
7260 
7261 /* Return an RTX for a reference to LEN bits of INNER.  If POS_RTX is nonzero,
7262    it is an RTX that represents the (variable) starting position; otherwise,
7263    POS is the (constant) starting bit position.  Both are counted from the LSB.
7264 
7265    UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7266 
7267    IN_DEST is nonzero if this is a reference in the destination of a SET.
7268    This is used when a ZERO_ or SIGN_EXTRACT isn't needed.  If nonzero,
7269    a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7270    be used.
7271 
7272    IN_COMPARE is nonzero if we are in a COMPARE.  This means that a
7273    ZERO_EXTRACT should be built even for bits starting at bit 0.
7274 
7275    MODE is the desired mode of the result (if IN_DEST == 0).
7276 
7277    The result is an RTX for the extraction or NULL_RTX if the target
7278    can't handle it.  */
7279 
7280 static rtx
7281 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7282 		 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7283 		 int in_dest, int in_compare)
7284 {
7285   /* This mode describes the size of the storage area
7286      to fetch the overall value from.  Within that, we
7287      ignore the POS lowest bits, etc.  */
7288   machine_mode is_mode = GET_MODE (inner);
7289   machine_mode inner_mode;
7290   machine_mode wanted_inner_mode;
7291   machine_mode wanted_inner_reg_mode = word_mode;
7292   machine_mode pos_mode = word_mode;
7293   machine_mode extraction_mode = word_mode;
7294   machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7295   rtx new_rtx = 0;
7296   rtx orig_pos_rtx = pos_rtx;
7297   HOST_WIDE_INT orig_pos;
7298 
7299   if (pos_rtx && CONST_INT_P (pos_rtx))
7300     pos = INTVAL (pos_rtx), pos_rtx = 0;
7301 
7302   if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7303     {
7304       /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7305 	 consider just the QI as the memory to extract from.
7306 	 The subreg adds or removes high bits; its mode is
7307 	 irrelevant to the meaning of this extraction,
7308 	 since POS and LEN count from the lsb.  */
7309       if (MEM_P (SUBREG_REG (inner)))
7310 	is_mode = GET_MODE (SUBREG_REG (inner));
7311       inner = SUBREG_REG (inner);
7312     }
7313   else if (GET_CODE (inner) == ASHIFT
7314 	   && CONST_INT_P (XEXP (inner, 1))
7315 	   && pos_rtx == 0 && pos == 0
7316 	   && len > UINTVAL (XEXP (inner, 1)))
7317     {
7318       /* We're extracting the least significant bits of an rtx
7319 	 (ashift X (const_int C)), where LEN > C.  Extract the
7320 	 least significant (LEN - C) bits of X, giving an rtx
7321 	 whose mode is MODE, then shift it left C times.  */
7322       new_rtx = make_extraction (mode, XEXP (inner, 0),
7323 			     0, 0, len - INTVAL (XEXP (inner, 1)),
7324 			     unsignedp, in_dest, in_compare);
7325       if (new_rtx != 0)
7326 	return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7327     }
7328   else if (GET_CODE (inner) == TRUNCATE)
7329     inner = XEXP (inner, 0);
7330 
7331   inner_mode = GET_MODE (inner);
7332 
7333   /* See if this can be done without an extraction.  We never can if the
7334      width of the field is not the same as that of some integer mode. For
7335      registers, we can only avoid the extraction if the position is at the
7336      low-order bit and this is either not in the destination or we have the
7337      appropriate STRICT_LOW_PART operation available.
7338 
7339      For MEM, we can avoid an extract if the field starts on an appropriate
7340      boundary and we can change the mode of the memory reference.  */
7341 
7342   if (tmode != BLKmode
7343       && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7344 	   && !MEM_P (inner)
7345 	   && (pos == 0 || REG_P (inner))
7346 	   && (inner_mode == tmode
7347 	       || !REG_P (inner)
7348 	       || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7349 	       || reg_truncated_to_mode (tmode, inner))
7350 	   && (! in_dest
7351 	       || (REG_P (inner)
7352 		   && have_insn_for (STRICT_LOW_PART, tmode))))
7353 	  || (MEM_P (inner) && pos_rtx == 0
7354 	      && (pos
7355 		  % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7356 		     : BITS_PER_UNIT)) == 0
7357 	      /* We can't do this if we are widening INNER_MODE (it
7358 		 may not be aligned, for one thing).  */
7359 	      && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7360 	      && (inner_mode == tmode
7361 		  || (! mode_dependent_address_p (XEXP (inner, 0),
7362 						  MEM_ADDR_SPACE (inner))
7363 		      && ! MEM_VOLATILE_P (inner))))))
7364     {
7365       /* If INNER is a MEM, make a new MEM that encompasses just the desired
7366 	 field.  If the original and current mode are the same, we need not
7367 	 adjust the offset.  Otherwise, we do if bytes big endian.
7368 
7369 	 If INNER is not a MEM, get a piece consisting of just the field
7370 	 of interest (in this case POS % BITS_PER_WORD must be 0).  */
7371 
7372       if (MEM_P (inner))
7373 	{
7374 	  HOST_WIDE_INT offset;
7375 
7376 	  /* POS counts from lsb, but make OFFSET count in memory order.  */
7377 	  if (BYTES_BIG_ENDIAN)
7378 	    offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7379 	  else
7380 	    offset = pos / BITS_PER_UNIT;
7381 
7382 	  new_rtx = adjust_address_nv (inner, tmode, offset);
7383 	}
7384       else if (REG_P (inner))
7385 	{
7386 	  if (tmode != inner_mode)
7387 	    {
7388 	      /* We can't call gen_lowpart in a DEST since we
7389 		 always want a SUBREG (see below) and it would sometimes
7390 		 return a new hard register.  */
7391 	      if (pos || in_dest)
7392 		{
7393 		  HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7394 
7395 		  if (WORDS_BIG_ENDIAN
7396 		      && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7397 		    final_word = ((GET_MODE_SIZE (inner_mode)
7398 				   - GET_MODE_SIZE (tmode))
7399 				  / UNITS_PER_WORD) - final_word;
7400 
7401 		  final_word *= UNITS_PER_WORD;
7402 		  if (BYTES_BIG_ENDIAN &&
7403 		      GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7404 		    final_word += (GET_MODE_SIZE (inner_mode)
7405 				   - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7406 
7407 		  /* Avoid creating invalid subregs, for example when
7408 		     simplifying (x>>32)&255.  */
7409 		  if (!validate_subreg (tmode, inner_mode, inner, final_word))
7410 		    return NULL_RTX;
7411 
7412 		  new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7413 		}
7414 	      else
7415 		new_rtx = gen_lowpart (tmode, inner);
7416 	    }
7417 	  else
7418 	    new_rtx = inner;
7419 	}
7420       else
7421 	new_rtx = force_to_mode (inner, tmode,
7422 				 len >= HOST_BITS_PER_WIDE_INT
7423 				 ? ~(unsigned HOST_WIDE_INT) 0
7424 				 : ((unsigned HOST_WIDE_INT) 1 << len) - 1, 0);
7425 
7426       /* If this extraction is going into the destination of a SET,
7427 	 make a STRICT_LOW_PART unless we made a MEM.  */
7428 
7429       if (in_dest)
7430 	return (MEM_P (new_rtx) ? new_rtx
7431 		: (GET_CODE (new_rtx) != SUBREG
7432 		   ? gen_rtx_CLOBBER (tmode, const0_rtx)
7433 		   : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7434 
7435       if (mode == tmode)
7436 	return new_rtx;
7437 
7438       if (CONST_SCALAR_INT_P (new_rtx))
7439 	return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7440 					 mode, new_rtx, tmode);
7441 
7442       /* If we know that no extraneous bits are set, and that the high
7443 	 bit is not set, convert the extraction to the cheaper of
7444 	 sign and zero extension, that are equivalent in these cases.  */
7445       if (flag_expensive_optimizations
7446 	  && (HWI_COMPUTABLE_MODE_P (tmode)
7447 	      && ((nonzero_bits (new_rtx, tmode)
7448 		   & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7449 		  == 0)))
7450 	{
7451 	  rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7452 	  rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7453 
7454 	  /* Prefer ZERO_EXTENSION, since it gives more information to
7455 	     backends.  */
7456 	  if (set_src_cost (temp, optimize_this_for_speed_p)
7457 	      <= set_src_cost (temp1, optimize_this_for_speed_p))
7458 	    return temp;
7459 	  return temp1;
7460 	}
7461 
7462       /* Otherwise, sign- or zero-extend unless we already are in the
7463 	 proper mode.  */
7464 
7465       return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7466 			     mode, new_rtx));
7467     }
7468 
7469   /* Unless this is a COMPARE or we have a funny memory reference,
7470      don't do anything with zero-extending field extracts starting at
7471      the low-order bit since they are simple AND operations.  */
7472   if (pos_rtx == 0 && pos == 0 && ! in_dest
7473       && ! in_compare && unsignedp)
7474     return 0;
7475 
7476   /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7477      if the position is not a constant and the length is not 1.  In all
7478      other cases, we would only be going outside our object in cases when
7479      an original shift would have been undefined.  */
7480   if (MEM_P (inner)
7481       && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7482 	  || (pos_rtx != 0 && len != 1)))
7483     return 0;
7484 
7485   enum extraction_pattern pattern = (in_dest ? EP_insv
7486 				     : unsignedp ? EP_extzv : EP_extv);
7487 
7488   /* If INNER is not from memory, we want it to have the mode of a register
7489      extraction pattern's structure operand, or word_mode if there is no
7490      such pattern.  The same applies to extraction_mode and pos_mode
7491      and their respective operands.
7492 
7493      For memory, assume that the desired extraction_mode and pos_mode
7494      are the same as for a register operation, since at present we don't
7495      have named patterns for aligned memory structures.  */
7496   struct extraction_insn insn;
7497   if (get_best_reg_extraction_insn (&insn, pattern,
7498 				    GET_MODE_BITSIZE (inner_mode), mode))
7499     {
7500       wanted_inner_reg_mode = insn.struct_mode;
7501       pos_mode = insn.pos_mode;
7502       extraction_mode = insn.field_mode;
7503     }
7504 
7505   /* Never narrow an object, since that might not be safe.  */
7506 
7507   if (mode != VOIDmode
7508       && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7509     extraction_mode = mode;
7510 
7511   if (!MEM_P (inner))
7512     wanted_inner_mode = wanted_inner_reg_mode;
7513   else
7514     {
7515       /* Be careful not to go beyond the extracted object and maintain the
7516 	 natural alignment of the memory.  */
7517       wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7518       while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7519 	     > GET_MODE_BITSIZE (wanted_inner_mode))
7520 	{
7521 	  wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7522 	  gcc_assert (wanted_inner_mode != VOIDmode);
7523 	}
7524     }
7525 
7526   orig_pos = pos;
7527 
7528   if (BITS_BIG_ENDIAN)
7529     {
7530       /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7531 	 BITS_BIG_ENDIAN style.  If position is constant, compute new
7532 	 position.  Otherwise, build subtraction.
7533 	 Note that POS is relative to the mode of the original argument.
7534 	 If it's a MEM we need to recompute POS relative to that.
7535 	 However, if we're extracting from (or inserting into) a register,
7536 	 we want to recompute POS relative to wanted_inner_mode.  */
7537       int width = (MEM_P (inner)
7538 		   ? GET_MODE_BITSIZE (is_mode)
7539 		   : GET_MODE_BITSIZE (wanted_inner_mode));
7540 
7541       if (pos_rtx == 0)
7542 	pos = width - len - pos;
7543       else
7544 	pos_rtx
7545 	  = gen_rtx_MINUS (GET_MODE (pos_rtx),
7546 			   gen_int_mode (width - len, GET_MODE (pos_rtx)),
7547 			   pos_rtx);
7548       /* POS may be less than 0 now, but we check for that below.
7549 	 Note that it can only be less than 0 if !MEM_P (inner).  */
7550     }
7551 
7552   /* If INNER has a wider mode, and this is a constant extraction, try to
7553      make it smaller and adjust the byte to point to the byte containing
7554      the value.  */
7555   if (wanted_inner_mode != VOIDmode
7556       && inner_mode != wanted_inner_mode
7557       && ! pos_rtx
7558       && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7559       && MEM_P (inner)
7560       && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7561       && ! MEM_VOLATILE_P (inner))
7562     {
7563       int offset = 0;
7564 
7565       /* The computations below will be correct if the machine is big
7566 	 endian in both bits and bytes or little endian in bits and bytes.
7567 	 If it is mixed, we must adjust.  */
7568 
7569       /* If bytes are big endian and we had a paradoxical SUBREG, we must
7570 	 adjust OFFSET to compensate.  */
7571       if (BYTES_BIG_ENDIAN
7572 	  && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7573 	offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7574 
7575       /* We can now move to the desired byte.  */
7576       offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7577 		* GET_MODE_SIZE (wanted_inner_mode);
7578       pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7579 
7580       if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7581 	  && is_mode != wanted_inner_mode)
7582 	offset = (GET_MODE_SIZE (is_mode)
7583 		  - GET_MODE_SIZE (wanted_inner_mode) - offset);
7584 
7585       inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7586     }
7587 
7588   /* If INNER is not memory, get it into the proper mode.  If we are changing
7589      its mode, POS must be a constant and smaller than the size of the new
7590      mode.  */
7591   else if (!MEM_P (inner))
7592     {
7593       /* On the LHS, don't create paradoxical subregs implicitely truncating
7594 	 the register unless TRULY_NOOP_TRUNCATION.  */
7595       if (in_dest
7596 	  && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7597 					     wanted_inner_mode))
7598 	return NULL_RTX;
7599 
7600       if (GET_MODE (inner) != wanted_inner_mode
7601 	  && (pos_rtx != 0
7602 	      || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7603 	return NULL_RTX;
7604 
7605       if (orig_pos < 0)
7606 	return NULL_RTX;
7607 
7608       inner = force_to_mode (inner, wanted_inner_mode,
7609 			     pos_rtx
7610 			     || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7611 			     ? ~(unsigned HOST_WIDE_INT) 0
7612 			     : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7613 				<< orig_pos),
7614 			     0);
7615     }
7616 
7617   /* Adjust mode of POS_RTX, if needed.  If we want a wider mode, we
7618      have to zero extend.  Otherwise, we can just use a SUBREG.  */
7619   if (pos_rtx != 0
7620       && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7621     {
7622       rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7623 				     GET_MODE (pos_rtx));
7624 
7625       /* If we know that no extraneous bits are set, and that the high
7626 	 bit is not set, convert extraction to cheaper one - either
7627 	 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7628 	 cases.  */
7629       if (flag_expensive_optimizations
7630 	  && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7631 	      && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7632 		   & ~(((unsigned HOST_WIDE_INT)
7633 			GET_MODE_MASK (GET_MODE (pos_rtx)))
7634 		       >> 1))
7635 		  == 0)))
7636 	{
7637 	  rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7638 					  GET_MODE (pos_rtx));
7639 
7640 	  /* Prefer ZERO_EXTENSION, since it gives more information to
7641 	     backends.  */
7642 	  if (set_src_cost (temp1, optimize_this_for_speed_p)
7643 	      < set_src_cost (temp, optimize_this_for_speed_p))
7644 	    temp = temp1;
7645 	}
7646       pos_rtx = temp;
7647     }
7648 
7649   /* Make POS_RTX unless we already have it and it is correct.  If we don't
7650      have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7651      be a CONST_INT.  */
7652   if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7653     pos_rtx = orig_pos_rtx;
7654 
7655   else if (pos_rtx == 0)
7656     pos_rtx = GEN_INT (pos);
7657 
7658   /* Make the required operation.  See if we can use existing rtx.  */
7659   new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7660 			 extraction_mode, inner, GEN_INT (len), pos_rtx);
7661   if (! in_dest)
7662     new_rtx = gen_lowpart (mode, new_rtx);
7663 
7664   return new_rtx;
7665 }
7666 
7667 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7668    with any other operations in X.  Return X without that shift if so.  */
7669 
7670 static rtx
7671 extract_left_shift (rtx x, int count)
7672 {
7673   enum rtx_code code = GET_CODE (x);
7674   machine_mode mode = GET_MODE (x);
7675   rtx tem;
7676 
7677   switch (code)
7678     {
7679     case ASHIFT:
7680       /* This is the shift itself.  If it is wide enough, we will return
7681 	 either the value being shifted if the shift count is equal to
7682 	 COUNT or a shift for the difference.  */
7683       if (CONST_INT_P (XEXP (x, 1))
7684 	  && INTVAL (XEXP (x, 1)) >= count)
7685 	return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7686 				     INTVAL (XEXP (x, 1)) - count);
7687       break;
7688 
7689     case NEG:  case NOT:
7690       if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7691 	return simplify_gen_unary (code, mode, tem, mode);
7692 
7693       break;
7694 
7695     case PLUS:  case IOR:  case XOR:  case AND:
7696       /* If we can safely shift this constant and we find the inner shift,
7697 	 make a new operation.  */
7698       if (CONST_INT_P (XEXP (x, 1))
7699 	  && (UINTVAL (XEXP (x, 1))
7700 	      & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7701 	  && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7702 	{
7703 	  HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7704 	  return simplify_gen_binary (code, mode, tem,
7705 				      gen_int_mode (val, mode));
7706 	}
7707       break;
7708 
7709     default:
7710       break;
7711     }
7712 
7713   return 0;
7714 }
7715 
7716 /* Look at the expression rooted at X.  Look for expressions
7717    equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7718    Form these expressions.
7719 
7720    Return the new rtx, usually just X.
7721 
7722    Also, for machines like the VAX that don't have logical shift insns,
7723    try to convert logical to arithmetic shift operations in cases where
7724    they are equivalent.  This undoes the canonicalizations to logical
7725    shifts done elsewhere.
7726 
7727    We try, as much as possible, to re-use rtl expressions to save memory.
7728 
7729    IN_CODE says what kind of expression we are processing.  Normally,
7730    it is SET.  In a memory address (inside a MEM, PLUS or minus, the
7731    latter two being kludges), it is MEM.  When processing the
7732    arguments of a comparison or a COMPARE against zero, it is COMPARE,
7733    or EQ if more + precisely it is an equality comparison against
7734    zero..  */
7735 
7736 rtx
7737 make_compound_operation (rtx x, enum rtx_code in_code)
7738 {
7739   enum rtx_code code = GET_CODE (x);
7740   machine_mode mode = GET_MODE (x);
7741   int mode_width = GET_MODE_PRECISION (mode);
7742   rtx rhs, lhs;
7743   enum rtx_code next_code;
7744   int i, j;
7745   rtx new_rtx = 0;
7746   rtx tem;
7747   const char *fmt;
7748   bool equality_comparison = false;
7749 
7750   /* Select the code to be used in recursive calls.  Once we are inside an
7751      address, we stay there.  If we have a comparison, set to COMPARE,
7752      but once inside, go back to our default of SET.  */
7753 
7754   if (in_code == EQ)
7755     {
7756       equality_comparison = true;
7757       in_code = COMPARE;
7758     }
7759   next_code = (code == MEM ? MEM
7760 	       : ((code == PLUS || code == MINUS)
7761 		  && SCALAR_INT_MODE_P (mode)) ? MEM
7762 	       : ((code == COMPARE || COMPARISON_P (x))
7763 		  && XEXP (x, 1) == const0_rtx) ? COMPARE
7764 	       : in_code == COMPARE ? SET : in_code);
7765 
7766   /* Process depending on the code of this operation.  If NEW is set
7767      nonzero, it will be returned.  */
7768 
7769   switch (code)
7770     {
7771     case ASHIFT:
7772       /* Convert shifts by constants into multiplications if inside
7773 	 an address.  */
7774       if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7775 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7776 	  && INTVAL (XEXP (x, 1)) >= 0
7777 	  && SCALAR_INT_MODE_P (mode))
7778 	{
7779 	  HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7780 	  HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7781 
7782 	  new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7783 	  if (GET_CODE (new_rtx) == NEG)
7784 	    {
7785 	      new_rtx = XEXP (new_rtx, 0);
7786 	      multval = -multval;
7787 	    }
7788 	  multval = trunc_int_for_mode (multval, mode);
7789 	  new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7790 	}
7791       break;
7792 
7793     case PLUS:
7794       lhs = XEXP (x, 0);
7795       rhs = XEXP (x, 1);
7796       lhs = make_compound_operation (lhs, next_code);
7797       rhs = make_compound_operation (rhs, next_code);
7798       if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7799 	  && SCALAR_INT_MODE_P (mode))
7800 	{
7801 	  tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7802 				     XEXP (lhs, 1));
7803 	  new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7804 	}
7805       else if (GET_CODE (lhs) == MULT
7806 	       && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7807 	{
7808 	  tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7809 				     simplify_gen_unary (NEG, mode,
7810 							 XEXP (lhs, 1),
7811 							 mode));
7812 	  new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7813 	}
7814       else
7815 	{
7816 	  SUBST (XEXP (x, 0), lhs);
7817 	  SUBST (XEXP (x, 1), rhs);
7818 	  goto maybe_swap;
7819 	}
7820       x = gen_lowpart (mode, new_rtx);
7821       goto maybe_swap;
7822 
7823     case MINUS:
7824       lhs = XEXP (x, 0);
7825       rhs = XEXP (x, 1);
7826       lhs = make_compound_operation (lhs, next_code);
7827       rhs = make_compound_operation (rhs, next_code);
7828       if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7829 	  && SCALAR_INT_MODE_P (mode))
7830 	{
7831 	  tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7832 				     XEXP (rhs, 1));
7833 	  new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7834 	}
7835       else if (GET_CODE (rhs) == MULT
7836 	       && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7837 	{
7838 	  tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7839 				     simplify_gen_unary (NEG, mode,
7840 							 XEXP (rhs, 1),
7841 							 mode));
7842 	  new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7843 	}
7844       else
7845 	{
7846 	  SUBST (XEXP (x, 0), lhs);
7847 	  SUBST (XEXP (x, 1), rhs);
7848 	  return x;
7849 	}
7850       return gen_lowpart (mode, new_rtx);
7851 
7852     case AND:
7853       /* If the second operand is not a constant, we can't do anything
7854 	 with it.  */
7855       if (!CONST_INT_P (XEXP (x, 1)))
7856 	break;
7857 
7858       /* If the constant is a power of two minus one and the first operand
7859 	 is a logical right shift, make an extraction.  */
7860       if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7861 	  && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7862 	{
7863 	  new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7864 	  new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7865 				 0, in_code == COMPARE);
7866 	}
7867 
7868       /* Same as previous, but for (subreg (lshiftrt ...)) in first op.  */
7869       else if (GET_CODE (XEXP (x, 0)) == SUBREG
7870 	       && subreg_lowpart_p (XEXP (x, 0))
7871 	       && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7872 	       && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7873 	{
7874 	  new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7875 					 next_code);
7876 	  new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7877 				 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7878 				 0, in_code == COMPARE);
7879 	}
7880       /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)).  */
7881       else if ((GET_CODE (XEXP (x, 0)) == XOR
7882 		|| GET_CODE (XEXP (x, 0)) == IOR)
7883 	       && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7884 	       && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7885 	       && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7886 	{
7887 	  /* Apply the distributive law, and then try to make extractions.  */
7888 	  new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7889 				gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7890 					     XEXP (x, 1)),
7891 				gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7892 					     XEXP (x, 1)));
7893 	  new_rtx = make_compound_operation (new_rtx, in_code);
7894 	}
7895 
7896       /* If we are have (and (rotate X C) M) and C is larger than the number
7897 	 of bits in M, this is an extraction.  */
7898 
7899       else if (GET_CODE (XEXP (x, 0)) == ROTATE
7900 	       && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7901 	       && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7902 	       && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7903 	{
7904 	  new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7905 	  new_rtx = make_extraction (mode, new_rtx,
7906 				 (GET_MODE_PRECISION (mode)
7907 				  - INTVAL (XEXP (XEXP (x, 0), 1))),
7908 				 NULL_RTX, i, 1, 0, in_code == COMPARE);
7909 	}
7910 
7911       /* On machines without logical shifts, if the operand of the AND is
7912 	 a logical shift and our mask turns off all the propagated sign
7913 	 bits, we can replace the logical shift with an arithmetic shift.  */
7914       else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7915 	       && !have_insn_for (LSHIFTRT, mode)
7916 	       && have_insn_for (ASHIFTRT, mode)
7917 	       && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7918 	       && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7919 	       && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7920 	       && mode_width <= HOST_BITS_PER_WIDE_INT)
7921 	{
7922 	  unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7923 
7924 	  mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7925 	  if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7926 	    SUBST (XEXP (x, 0),
7927 		   gen_rtx_ASHIFTRT (mode,
7928 				     make_compound_operation
7929 				     (XEXP (XEXP (x, 0), 0), next_code),
7930 				     XEXP (XEXP (x, 0), 1)));
7931 	}
7932 
7933       /* If the constant is one less than a power of two, this might be
7934 	 representable by an extraction even if no shift is present.
7935 	 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7936 	 we are in a COMPARE.  */
7937       else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7938 	new_rtx = make_extraction (mode,
7939 			       make_compound_operation (XEXP (x, 0),
7940 							next_code),
7941 			       0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7942 
7943       /* If we are in a comparison and this is an AND with a power of two,
7944 	 convert this into the appropriate bit extract.  */
7945       else if (in_code == COMPARE
7946 	       && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
7947 	       && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
7948 	new_rtx = make_extraction (mode,
7949 				   make_compound_operation (XEXP (x, 0),
7950 							    next_code),
7951 				   i, NULL_RTX, 1, 1, 0, 1);
7952 
7953       break;
7954 
7955     case LSHIFTRT:
7956       /* If the sign bit is known to be zero, replace this with an
7957 	 arithmetic shift.  */
7958       if (have_insn_for (ASHIFTRT, mode)
7959 	  && ! have_insn_for (LSHIFTRT, mode)
7960 	  && mode_width <= HOST_BITS_PER_WIDE_INT
7961 	  && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7962 	{
7963 	  new_rtx = gen_rtx_ASHIFTRT (mode,
7964 				  make_compound_operation (XEXP (x, 0),
7965 							   next_code),
7966 				  XEXP (x, 1));
7967 	  break;
7968 	}
7969 
7970       /* ... fall through ...  */
7971 
7972     case ASHIFTRT:
7973       lhs = XEXP (x, 0);
7974       rhs = XEXP (x, 1);
7975 
7976       /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7977 	 this is a SIGN_EXTRACT.  */
7978       if (CONST_INT_P (rhs)
7979 	  && GET_CODE (lhs) == ASHIFT
7980 	  && CONST_INT_P (XEXP (lhs, 1))
7981 	  && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7982 	  && INTVAL (XEXP (lhs, 1)) >= 0
7983 	  && INTVAL (rhs) < mode_width)
7984 	{
7985 	  new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7986 	  new_rtx = make_extraction (mode, new_rtx,
7987 				 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7988 				 NULL_RTX, mode_width - INTVAL (rhs),
7989 				 code == LSHIFTRT, 0, in_code == COMPARE);
7990 	  break;
7991 	}
7992 
7993       /* See if we have operations between an ASHIFTRT and an ASHIFT.
7994 	 If so, try to merge the shifts into a SIGN_EXTEND.  We could
7995 	 also do this for some cases of SIGN_EXTRACT, but it doesn't
7996 	 seem worth the effort; the case checked for occurs on Alpha.  */
7997 
7998       if (!OBJECT_P (lhs)
7999 	  && ! (GET_CODE (lhs) == SUBREG
8000 		&& (OBJECT_P (SUBREG_REG (lhs))))
8001 	  && CONST_INT_P (rhs)
8002 	  && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8003 	  && INTVAL (rhs) < mode_width
8004 	  && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
8005 	new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
8006 			       0, NULL_RTX, mode_width - INTVAL (rhs),
8007 			       code == LSHIFTRT, 0, in_code == COMPARE);
8008 
8009       break;
8010 
8011     case SUBREG:
8012       /* Call ourselves recursively on the inner expression.  If we are
8013 	 narrowing the object and it has a different RTL code from
8014 	 what it originally did, do this SUBREG as a force_to_mode.  */
8015       {
8016 	rtx inner = SUBREG_REG (x), simplified;
8017 	enum rtx_code subreg_code = in_code;
8018 
8019 	/* If in_code is COMPARE, it isn't always safe to pass it through
8020 	   to the recursive make_compound_operation call.  */
8021 	if (subreg_code == COMPARE
8022 	    && (!subreg_lowpart_p (x)
8023 		|| GET_CODE (inner) == SUBREG
8024 		/* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8025 		   is (const_int 0), rather than
8026 		   (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).  */
8027 		|| (GET_CODE (inner) == AND
8028 		    && CONST_INT_P (XEXP (inner, 1))
8029 		    && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8030 		    && exact_log2 (UINTVAL (XEXP (inner, 1)))
8031 		       >= GET_MODE_BITSIZE (mode))))
8032 	  subreg_code = SET;
8033 
8034 	tem = make_compound_operation (inner, subreg_code);
8035 
8036 	simplified
8037 	  = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8038 	if (simplified)
8039 	  tem = simplified;
8040 
8041 	if (GET_CODE (tem) != GET_CODE (inner)
8042 	    && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8043 	    && subreg_lowpart_p (x))
8044 	  {
8045 	    rtx newer
8046 	      = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
8047 
8048 	    /* If we have something other than a SUBREG, we might have
8049 	       done an expansion, so rerun ourselves.  */
8050 	    if (GET_CODE (newer) != SUBREG)
8051 	      newer = make_compound_operation (newer, in_code);
8052 
8053 	    /* force_to_mode can expand compounds.  If it just re-expanded the
8054 	       compound, use gen_lowpart to convert to the desired mode.  */
8055 	    if (rtx_equal_p (newer, x)
8056 		/* Likewise if it re-expanded the compound only partially.
8057 		   This happens for SUBREG of ZERO_EXTRACT if they extract
8058 		   the same number of bits.  */
8059 		|| (GET_CODE (newer) == SUBREG
8060 		    && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8061 			|| GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8062 		    && GET_CODE (inner) == AND
8063 		    && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8064 	      return gen_lowpart (GET_MODE (x), tem);
8065 
8066 	    return newer;
8067 	  }
8068 
8069 	if (simplified)
8070 	  return tem;
8071       }
8072       break;
8073 
8074     default:
8075       break;
8076     }
8077 
8078   if (new_rtx)
8079     {
8080       x = gen_lowpart (mode, new_rtx);
8081       code = GET_CODE (x);
8082     }
8083 
8084   /* Now recursively process each operand of this operation.  We need to
8085      handle ZERO_EXTEND specially so that we don't lose track of the
8086      inner mode.  */
8087   if (GET_CODE (x) == ZERO_EXTEND)
8088     {
8089       new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8090       tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8091 					    new_rtx, GET_MODE (XEXP (x, 0)));
8092       if (tem)
8093 	return tem;
8094       SUBST (XEXP (x, 0), new_rtx);
8095       return x;
8096     }
8097 
8098   fmt = GET_RTX_FORMAT (code);
8099   for (i = 0; i < GET_RTX_LENGTH (code); i++)
8100     if (fmt[i] == 'e')
8101       {
8102 	new_rtx = make_compound_operation (XEXP (x, i), next_code);
8103 	SUBST (XEXP (x, i), new_rtx);
8104       }
8105     else if (fmt[i] == 'E')
8106       for (j = 0; j < XVECLEN (x, i); j++)
8107 	{
8108 	  new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8109 	  SUBST (XVECEXP (x, i, j), new_rtx);
8110 	}
8111 
8112  maybe_swap:
8113   /* If this is a commutative operation, the changes to the operands
8114      may have made it noncanonical.  */
8115   if (COMMUTATIVE_ARITH_P (x)
8116       && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
8117     {
8118       tem = XEXP (x, 0);
8119       SUBST (XEXP (x, 0), XEXP (x, 1));
8120       SUBST (XEXP (x, 1), tem);
8121     }
8122 
8123   return x;
8124 }
8125 
8126 /* Given M see if it is a value that would select a field of bits
8127    within an item, but not the entire word.  Return -1 if not.
8128    Otherwise, return the starting position of the field, where 0 is the
8129    low-order bit.
8130 
8131    *PLEN is set to the length of the field.  */
8132 
8133 static int
8134 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8135 {
8136   /* Get the bit number of the first 1 bit from the right, -1 if none.  */
8137   int pos = m ? ctz_hwi (m) : -1;
8138   int len = 0;
8139 
8140   if (pos >= 0)
8141     /* Now shift off the low-order zero bits and see if we have a
8142        power of two minus 1.  */
8143     len = exact_log2 ((m >> pos) + 1);
8144 
8145   if (len <= 0)
8146     pos = -1;
8147 
8148   *plen = len;
8149   return pos;
8150 }
8151 
8152 /* If X refers to a register that equals REG in value, replace these
8153    references with REG.  */
8154 static rtx
8155 canon_reg_for_combine (rtx x, rtx reg)
8156 {
8157   rtx op0, op1, op2;
8158   const char *fmt;
8159   int i;
8160   bool copied;
8161 
8162   enum rtx_code code = GET_CODE (x);
8163   switch (GET_RTX_CLASS (code))
8164     {
8165     case RTX_UNARY:
8166       op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8167       if (op0 != XEXP (x, 0))
8168 	return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8169 				   GET_MODE (reg));
8170       break;
8171 
8172     case RTX_BIN_ARITH:
8173     case RTX_COMM_ARITH:
8174       op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8175       op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8176       if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8177 	return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8178       break;
8179 
8180     case RTX_COMPARE:
8181     case RTX_COMM_COMPARE:
8182       op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8183       op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8184       if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8185 	return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8186 					GET_MODE (op0), op0, op1);
8187       break;
8188 
8189     case RTX_TERNARY:
8190     case RTX_BITFIELD_OPS:
8191       op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8192       op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8193       op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8194       if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8195 	return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8196 				     GET_MODE (op0), op0, op1, op2);
8197 
8198     case RTX_OBJ:
8199       if (REG_P (x))
8200 	{
8201 	  if (rtx_equal_p (get_last_value (reg), x)
8202 	      || rtx_equal_p (reg, get_last_value (x)))
8203 	    return reg;
8204 	  else
8205 	    break;
8206 	}
8207 
8208       /* fall through */
8209 
8210     default:
8211       fmt = GET_RTX_FORMAT (code);
8212       copied = false;
8213       for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8214 	if (fmt[i] == 'e')
8215 	  {
8216 	    rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8217 	    if (op != XEXP (x, i))
8218 	      {
8219 		if (!copied)
8220 		  {
8221 		    copied = true;
8222 		    x = copy_rtx (x);
8223 		  }
8224 		XEXP (x, i) = op;
8225 	      }
8226 	  }
8227 	else if (fmt[i] == 'E')
8228 	  {
8229 	    int j;
8230 	    for (j = 0; j < XVECLEN (x, i); j++)
8231 	      {
8232 		rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8233 		if (op != XVECEXP (x, i, j))
8234 		  {
8235 		    if (!copied)
8236 		      {
8237 			copied = true;
8238 			x = copy_rtx (x);
8239 		      }
8240 		    XVECEXP (x, i, j) = op;
8241 		  }
8242 	      }
8243 	  }
8244 
8245       break;
8246     }
8247 
8248   return x;
8249 }
8250 
8251 /* Return X converted to MODE.  If the value is already truncated to
8252    MODE we can just return a subreg even though in the general case we
8253    would need an explicit truncation.  */
8254 
8255 static rtx
8256 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8257 {
8258   if (!CONST_INT_P (x)
8259       && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8260       && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8261       && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8262     {
8263       /* Bit-cast X into an integer mode.  */
8264       if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8265 	x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8266       x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8267 			      x, GET_MODE (x));
8268     }
8269 
8270   return gen_lowpart (mode, x);
8271 }
8272 
8273 /* See if X can be simplified knowing that we will only refer to it in
8274    MODE and will only refer to those bits that are nonzero in MASK.
8275    If other bits are being computed or if masking operations are done
8276    that select a superset of the bits in MASK, they can sometimes be
8277    ignored.
8278 
8279    Return a possibly simplified expression, but always convert X to
8280    MODE.  If X is a CONST_INT, AND the CONST_INT with MASK.
8281 
8282    If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8283    are all off in X.  This is used when X will be complemented, by either
8284    NOT, NEG, or XOR.  */
8285 
8286 static rtx
8287 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8288 	       int just_select)
8289 {
8290   enum rtx_code code = GET_CODE (x);
8291   int next_select = just_select || code == XOR || code == NOT || code == NEG;
8292   machine_mode op_mode;
8293   unsigned HOST_WIDE_INT fuller_mask, nonzero;
8294   rtx op0, op1, temp;
8295 
8296   /* If this is a CALL or ASM_OPERANDS, don't do anything.  Some of the
8297      code below will do the wrong thing since the mode of such an
8298      expression is VOIDmode.
8299 
8300      Also do nothing if X is a CLOBBER; this can happen if X was
8301      the return value from a call to gen_lowpart.  */
8302   if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8303     return x;
8304 
8305   /* We want to perform the operation in its present mode unless we know
8306      that the operation is valid in MODE, in which case we do the operation
8307      in MODE.  */
8308   op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8309 	      && have_insn_for (code, mode))
8310 	     ? mode : GET_MODE (x));
8311 
8312   /* It is not valid to do a right-shift in a narrower mode
8313      than the one it came in with.  */
8314   if ((code == LSHIFTRT || code == ASHIFTRT)
8315       && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8316     op_mode = GET_MODE (x);
8317 
8318   /* Truncate MASK to fit OP_MODE.  */
8319   if (op_mode)
8320     mask &= GET_MODE_MASK (op_mode);
8321 
8322   /* When we have an arithmetic operation, or a shift whose count we
8323      do not know, we need to assume that all bits up to the highest-order
8324      bit in MASK will be needed.  This is how we form such a mask.  */
8325   if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8326     fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8327   else
8328     fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8329 		   - 1);
8330 
8331   /* Determine what bits of X are guaranteed to be (non)zero.  */
8332   nonzero = nonzero_bits (x, mode);
8333 
8334   /* If none of the bits in X are needed, return a zero.  */
8335   if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8336     x = const0_rtx;
8337 
8338   /* If X is a CONST_INT, return a new one.  Do this here since the
8339      test below will fail.  */
8340   if (CONST_INT_P (x))
8341     {
8342       if (SCALAR_INT_MODE_P (mode))
8343 	return gen_int_mode (INTVAL (x) & mask, mode);
8344       else
8345 	{
8346 	  x = GEN_INT (INTVAL (x) & mask);
8347 	  return gen_lowpart_common (mode, x);
8348 	}
8349     }
8350 
8351   /* If X is narrower than MODE and we want all the bits in X's mode, just
8352      get X in the proper mode.  */
8353   if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8354       && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8355     return gen_lowpart (mode, x);
8356 
8357   /* We can ignore the effect of a SUBREG if it narrows the mode or
8358      if the constant masks to zero all the bits the mode doesn't have.  */
8359   if (GET_CODE (x) == SUBREG
8360       && subreg_lowpart_p (x)
8361       && ((GET_MODE_SIZE (GET_MODE (x))
8362 	   < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8363 	  || (0 == (mask
8364 		    & GET_MODE_MASK (GET_MODE (x))
8365 		    & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8366     return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8367 
8368   /* The arithmetic simplifications here only work for scalar integer modes.  */
8369   if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8370     return gen_lowpart_or_truncate (mode, x);
8371 
8372   switch (code)
8373     {
8374     case CLOBBER:
8375       /* If X is a (clobber (const_int)), return it since we know we are
8376 	 generating something that won't match.  */
8377       return x;
8378 
8379     case SIGN_EXTEND:
8380     case ZERO_EXTEND:
8381     case ZERO_EXTRACT:
8382     case SIGN_EXTRACT:
8383       x = expand_compound_operation (x);
8384       if (GET_CODE (x) != code)
8385 	return force_to_mode (x, mode, mask, next_select);
8386       break;
8387 
8388     case TRUNCATE:
8389       /* Similarly for a truncate.  */
8390       return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8391 
8392     case AND:
8393       /* If this is an AND with a constant, convert it into an AND
8394 	 whose constant is the AND of that constant with MASK.  If it
8395 	 remains an AND of MASK, delete it since it is redundant.  */
8396 
8397       if (CONST_INT_P (XEXP (x, 1)))
8398 	{
8399 	  x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8400 				      mask & INTVAL (XEXP (x, 1)));
8401 
8402 	  /* If X is still an AND, see if it is an AND with a mask that
8403 	     is just some low-order bits.  If so, and it is MASK, we don't
8404 	     need it.  */
8405 
8406 	  if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8407 	      && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8408 		  == mask))
8409 	    x = XEXP (x, 0);
8410 
8411 	  /* If it remains an AND, try making another AND with the bits
8412 	     in the mode mask that aren't in MASK turned on.  If the
8413 	     constant in the AND is wide enough, this might make a
8414 	     cheaper constant.  */
8415 
8416 	  if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8417 	      && GET_MODE_MASK (GET_MODE (x)) != mask
8418 	      && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8419 	    {
8420 	      unsigned HOST_WIDE_INT cval
8421 		= UINTVAL (XEXP (x, 1))
8422 		  | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8423 	      rtx y;
8424 
8425 	      y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8426 				       gen_int_mode (cval, GET_MODE (x)));
8427 	      if (set_src_cost (y, optimize_this_for_speed_p)
8428 	          < set_src_cost (x, optimize_this_for_speed_p))
8429 		x = y;
8430 	    }
8431 
8432 	  break;
8433 	}
8434 
8435       goto binop;
8436 
8437     case PLUS:
8438       /* In (and (plus FOO C1) M), if M is a mask that just turns off
8439 	 low-order bits (as in an alignment operation) and FOO is already
8440 	 aligned to that boundary, mask C1 to that boundary as well.
8441 	 This may eliminate that PLUS and, later, the AND.  */
8442 
8443       {
8444 	unsigned int width = GET_MODE_PRECISION (mode);
8445 	unsigned HOST_WIDE_INT smask = mask;
8446 
8447 	/* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8448 	   number, sign extend it.  */
8449 
8450 	if (width < HOST_BITS_PER_WIDE_INT
8451 	    && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8452 	  smask |= HOST_WIDE_INT_M1U << width;
8453 
8454 	if (CONST_INT_P (XEXP (x, 1))
8455 	    && exact_log2 (- smask) >= 0
8456 	    && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8457 	    && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8458 	  return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8459 					       (INTVAL (XEXP (x, 1)) & smask)),
8460 				mode, smask, next_select);
8461       }
8462 
8463       /* ... fall through ...  */
8464 
8465     case MULT:
8466       /* For PLUS, MINUS and MULT, we need any bits less significant than the
8467 	 most significant bit in MASK since carries from those bits will
8468 	 affect the bits we are interested in.  */
8469       mask = fuller_mask;
8470       goto binop;
8471 
8472     case MINUS:
8473       /* If X is (minus C Y) where C's least set bit is larger than any bit
8474 	 in the mask, then we may replace with (neg Y).  */
8475       if (CONST_INT_P (XEXP (x, 0))
8476 	  && ((UINTVAL (XEXP (x, 0)) & -UINTVAL (XEXP (x, 0))) > mask))
8477 	{
8478 	  x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8479 				  GET_MODE (x));
8480 	  return force_to_mode (x, mode, mask, next_select);
8481 	}
8482 
8483       /* Similarly, if C contains every bit in the fuller_mask, then we may
8484 	 replace with (not Y).  */
8485       if (CONST_INT_P (XEXP (x, 0))
8486 	  && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8487 	{
8488 	  x = simplify_gen_unary (NOT, GET_MODE (x),
8489 				  XEXP (x, 1), GET_MODE (x));
8490 	  return force_to_mode (x, mode, mask, next_select);
8491 	}
8492 
8493       mask = fuller_mask;
8494       goto binop;
8495 
8496     case IOR:
8497     case XOR:
8498       /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8499 	 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8500 	 operation which may be a bitfield extraction.  Ensure that the
8501 	 constant we form is not wider than the mode of X.  */
8502 
8503       if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8504 	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8505 	  && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8506 	  && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8507 	  && CONST_INT_P (XEXP (x, 1))
8508 	  && ((INTVAL (XEXP (XEXP (x, 0), 1))
8509 	       + floor_log2 (INTVAL (XEXP (x, 1))))
8510 	      < GET_MODE_PRECISION (GET_MODE (x)))
8511 	  && (UINTVAL (XEXP (x, 1))
8512 	      & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8513 	{
8514 	  temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8515 			       << INTVAL (XEXP (XEXP (x, 0), 1)),
8516 			       GET_MODE (x));
8517 	  temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8518 				      XEXP (XEXP (x, 0), 0), temp);
8519 	  x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8520 				   XEXP (XEXP (x, 0), 1));
8521 	  return force_to_mode (x, mode, mask, next_select);
8522 	}
8523 
8524     binop:
8525       /* For most binary operations, just propagate into the operation and
8526 	 change the mode if we have an operation of that mode.  */
8527 
8528       op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8529       op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8530 
8531       /* If we ended up truncating both operands, truncate the result of the
8532 	 operation instead.  */
8533       if (GET_CODE (op0) == TRUNCATE
8534 	  && GET_CODE (op1) == TRUNCATE)
8535 	{
8536 	  op0 = XEXP (op0, 0);
8537 	  op1 = XEXP (op1, 0);
8538 	}
8539 
8540       op0 = gen_lowpart_or_truncate (op_mode, op0);
8541       op1 = gen_lowpart_or_truncate (op_mode, op1);
8542 
8543       if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8544 	x = simplify_gen_binary (code, op_mode, op0, op1);
8545       break;
8546 
8547     case ASHIFT:
8548       /* For left shifts, do the same, but just for the first operand.
8549 	 However, we cannot do anything with shifts where we cannot
8550 	 guarantee that the counts are smaller than the size of the mode
8551 	 because such a count will have a different meaning in a
8552 	 wider mode.  */
8553 
8554       if (! (CONST_INT_P (XEXP (x, 1))
8555 	     && INTVAL (XEXP (x, 1)) >= 0
8556 	     && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8557 	  && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8558 		&& (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8559 		    < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8560 	break;
8561 
8562       /* If the shift count is a constant and we can do arithmetic in
8563 	 the mode of the shift, refine which bits we need.  Otherwise, use the
8564 	 conservative form of the mask.  */
8565       if (CONST_INT_P (XEXP (x, 1))
8566 	  && INTVAL (XEXP (x, 1)) >= 0
8567 	  && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8568 	  && HWI_COMPUTABLE_MODE_P (op_mode))
8569 	mask >>= INTVAL (XEXP (x, 1));
8570       else
8571 	mask = fuller_mask;
8572 
8573       op0 = gen_lowpart_or_truncate (op_mode,
8574 				     force_to_mode (XEXP (x, 0), op_mode,
8575 						    mask, next_select));
8576 
8577       if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8578 	x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8579       break;
8580 
8581     case LSHIFTRT:
8582       /* Here we can only do something if the shift count is a constant,
8583 	 this shift constant is valid for the host, and we can do arithmetic
8584 	 in OP_MODE.  */
8585 
8586       if (CONST_INT_P (XEXP (x, 1))
8587 	  && INTVAL (XEXP (x, 1)) >= 0
8588 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8589 	  && HWI_COMPUTABLE_MODE_P (op_mode))
8590 	{
8591 	  rtx inner = XEXP (x, 0);
8592 	  unsigned HOST_WIDE_INT inner_mask;
8593 
8594 	  /* Select the mask of the bits we need for the shift operand.  */
8595 	  inner_mask = mask << INTVAL (XEXP (x, 1));
8596 
8597 	  /* We can only change the mode of the shift if we can do arithmetic
8598 	     in the mode of the shift and INNER_MASK is no wider than the
8599 	     width of X's mode.  */
8600 	  if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8601 	    op_mode = GET_MODE (x);
8602 
8603 	  inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8604 
8605 	  if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8606 	    x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8607 	}
8608 
8609       /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8610 	 shift and AND produces only copies of the sign bit (C2 is one less
8611 	 than a power of two), we can do this with just a shift.  */
8612 
8613       if (GET_CODE (x) == LSHIFTRT
8614 	  && CONST_INT_P (XEXP (x, 1))
8615 	  /* The shift puts one of the sign bit copies in the least significant
8616 	     bit.  */
8617 	  && ((INTVAL (XEXP (x, 1))
8618 	       + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8619 	      >= GET_MODE_PRECISION (GET_MODE (x)))
8620 	  && exact_log2 (mask + 1) >= 0
8621 	  /* Number of bits left after the shift must be more than the mask
8622 	     needs.  */
8623 	  && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8624 	      <= GET_MODE_PRECISION (GET_MODE (x)))
8625 	  /* Must be more sign bit copies than the mask needs.  */
8626 	  && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8627 	      >= exact_log2 (mask + 1)))
8628 	x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8629 				 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8630 					  - exact_log2 (mask + 1)));
8631 
8632       goto shiftrt;
8633 
8634     case ASHIFTRT:
8635       /* If we are just looking for the sign bit, we don't need this shift at
8636 	 all, even if it has a variable count.  */
8637       if (val_signbit_p (GET_MODE (x), mask))
8638 	return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8639 
8640       /* If this is a shift by a constant, get a mask that contains those bits
8641 	 that are not copies of the sign bit.  We then have two cases:  If
8642 	 MASK only includes those bits, this can be a logical shift, which may
8643 	 allow simplifications.  If MASK is a single-bit field not within
8644 	 those bits, we are requesting a copy of the sign bit and hence can
8645 	 shift the sign bit to the appropriate location.  */
8646 
8647       if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8648 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8649 	{
8650 	  int i;
8651 
8652 	  /* If the considered data is wider than HOST_WIDE_INT, we can't
8653 	     represent a mask for all its bits in a single scalar.
8654 	     But we only care about the lower bits, so calculate these.  */
8655 
8656 	  if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8657 	    {
8658 	      nonzero = ~(unsigned HOST_WIDE_INT) 0;
8659 
8660 	      /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8661 		 is the number of bits a full-width mask would have set.
8662 		 We need only shift if these are fewer than nonzero can
8663 		 hold.  If not, we must keep all bits set in nonzero.  */
8664 
8665 	      if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8666 		  < HOST_BITS_PER_WIDE_INT)
8667 		nonzero >>= INTVAL (XEXP (x, 1))
8668 			    + HOST_BITS_PER_WIDE_INT
8669 			    - GET_MODE_PRECISION (GET_MODE (x)) ;
8670 	    }
8671 	  else
8672 	    {
8673 	      nonzero = GET_MODE_MASK (GET_MODE (x));
8674 	      nonzero >>= INTVAL (XEXP (x, 1));
8675 	    }
8676 
8677 	  if ((mask & ~nonzero) == 0)
8678 	    {
8679 	      x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8680 					XEXP (x, 0), INTVAL (XEXP (x, 1)));
8681 	      if (GET_CODE (x) != ASHIFTRT)
8682 		return force_to_mode (x, mode, mask, next_select);
8683 	    }
8684 
8685 	  else if ((i = exact_log2 (mask)) >= 0)
8686 	    {
8687 	      x = simplify_shift_const
8688 		  (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8689 		   GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8690 
8691 	      if (GET_CODE (x) != ASHIFTRT)
8692 		return force_to_mode (x, mode, mask, next_select);
8693 	    }
8694 	}
8695 
8696       /* If MASK is 1, convert this to an LSHIFTRT.  This can be done
8697 	 even if the shift count isn't a constant.  */
8698       if (mask == 1)
8699 	x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8700 				 XEXP (x, 0), XEXP (x, 1));
8701 
8702     shiftrt:
8703 
8704       /* If this is a zero- or sign-extension operation that just affects bits
8705 	 we don't care about, remove it.  Be sure the call above returned
8706 	 something that is still a shift.  */
8707 
8708       if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8709 	  && CONST_INT_P (XEXP (x, 1))
8710 	  && INTVAL (XEXP (x, 1)) >= 0
8711 	  && (INTVAL (XEXP (x, 1))
8712 	      <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8713 	  && GET_CODE (XEXP (x, 0)) == ASHIFT
8714 	  && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8715 	return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8716 			      next_select);
8717 
8718       break;
8719 
8720     case ROTATE:
8721     case ROTATERT:
8722       /* If the shift count is constant and we can do computations
8723 	 in the mode of X, compute where the bits we care about are.
8724 	 Otherwise, we can't do anything.  Don't change the mode of
8725 	 the shift or propagate MODE into the shift, though.  */
8726       if (CONST_INT_P (XEXP (x, 1))
8727 	  && INTVAL (XEXP (x, 1)) >= 0)
8728 	{
8729 	  temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8730 					    GET_MODE (x),
8731 					    gen_int_mode (mask, GET_MODE (x)),
8732 					    XEXP (x, 1));
8733 	  if (temp && CONST_INT_P (temp))
8734 	    x = simplify_gen_binary (code, GET_MODE (x),
8735 				     force_to_mode (XEXP (x, 0), GET_MODE (x),
8736 						    INTVAL (temp), next_select),
8737 				     XEXP (x, 1));
8738 	}
8739       break;
8740 
8741     case NEG:
8742       /* If we just want the low-order bit, the NEG isn't needed since it
8743 	 won't change the low-order bit.  */
8744       if (mask == 1)
8745 	return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8746 
8747       /* We need any bits less significant than the most significant bit in
8748 	 MASK since carries from those bits will affect the bits we are
8749 	 interested in.  */
8750       mask = fuller_mask;
8751       goto unop;
8752 
8753     case NOT:
8754       /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8755 	 same as the XOR case above.  Ensure that the constant we form is not
8756 	 wider than the mode of X.  */
8757 
8758       if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8759 	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8760 	  && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8761 	  && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8762 	      < GET_MODE_PRECISION (GET_MODE (x)))
8763 	  && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8764 	{
8765 	  temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8766 			       GET_MODE (x));
8767 	  temp = simplify_gen_binary (XOR, GET_MODE (x),
8768 				      XEXP (XEXP (x, 0), 0), temp);
8769 	  x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8770 				   temp, XEXP (XEXP (x, 0), 1));
8771 
8772 	  return force_to_mode (x, mode, mask, next_select);
8773 	}
8774 
8775       /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8776 	 use the full mask inside the NOT.  */
8777       mask = fuller_mask;
8778 
8779     unop:
8780       op0 = gen_lowpart_or_truncate (op_mode,
8781 				     force_to_mode (XEXP (x, 0), mode, mask,
8782 						    next_select));
8783       if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8784 	x = simplify_gen_unary (code, op_mode, op0, op_mode);
8785       break;
8786 
8787     case NE:
8788       /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8789 	 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8790 	 which is equal to STORE_FLAG_VALUE.  */
8791       if ((mask & ~STORE_FLAG_VALUE) == 0
8792 	  && XEXP (x, 1) == const0_rtx
8793 	  && GET_MODE (XEXP (x, 0)) == mode
8794 	  && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8795 	  && (nonzero_bits (XEXP (x, 0), mode)
8796 	      == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8797 	return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8798 
8799       break;
8800 
8801     case IF_THEN_ELSE:
8802       /* We have no way of knowing if the IF_THEN_ELSE can itself be
8803 	 written in a narrower mode.  We play it safe and do not do so.  */
8804 
8805       op0 = gen_lowpart_or_truncate (GET_MODE (x),
8806 				     force_to_mode (XEXP (x, 1), mode,
8807 						    mask, next_select));
8808       op1 = gen_lowpart_or_truncate (GET_MODE (x),
8809 				     force_to_mode (XEXP (x, 2), mode,
8810 						    mask, next_select));
8811       if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
8812 	x = simplify_gen_ternary (IF_THEN_ELSE, GET_MODE (x),
8813 				  GET_MODE (XEXP (x, 0)), XEXP (x, 0),
8814 				  op0, op1);
8815       break;
8816 
8817     default:
8818       break;
8819     }
8820 
8821   /* Ensure we return a value of the proper mode.  */
8822   return gen_lowpart_or_truncate (mode, x);
8823 }
8824 
8825 /* Return nonzero if X is an expression that has one of two values depending on
8826    whether some other value is zero or nonzero.  In that case, we return the
8827    value that is being tested, *PTRUE is set to the value if the rtx being
8828    returned has a nonzero value, and *PFALSE is set to the other alternative.
8829 
8830    If we return zero, we set *PTRUE and *PFALSE to X.  */
8831 
8832 static rtx
8833 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8834 {
8835   machine_mode mode = GET_MODE (x);
8836   enum rtx_code code = GET_CODE (x);
8837   rtx cond0, cond1, true0, true1, false0, false1;
8838   unsigned HOST_WIDE_INT nz;
8839 
8840   /* If we are comparing a value against zero, we are done.  */
8841   if ((code == NE || code == EQ)
8842       && XEXP (x, 1) == const0_rtx)
8843     {
8844       *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8845       *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8846       return XEXP (x, 0);
8847     }
8848 
8849   /* If this is a unary operation whose operand has one of two values, apply
8850      our opcode to compute those values.  */
8851   else if (UNARY_P (x)
8852 	   && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8853     {
8854       *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8855       *pfalse = simplify_gen_unary (code, mode, false0,
8856 				    GET_MODE (XEXP (x, 0)));
8857       return cond0;
8858     }
8859 
8860   /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8861      make can't possibly match and would suppress other optimizations.  */
8862   else if (code == COMPARE)
8863     ;
8864 
8865   /* If this is a binary operation, see if either side has only one of two
8866      values.  If either one does or if both do and they are conditional on
8867      the same value, compute the new true and false values.  */
8868   else if (BINARY_P (x))
8869     {
8870       cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8871       cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8872 
8873       if ((cond0 != 0 || cond1 != 0)
8874 	  && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8875 	{
8876 	  /* If if_then_else_cond returned zero, then true/false are the
8877 	     same rtl.  We must copy one of them to prevent invalid rtl
8878 	     sharing.  */
8879 	  if (cond0 == 0)
8880 	    true0 = copy_rtx (true0);
8881 	  else if (cond1 == 0)
8882 	    true1 = copy_rtx (true1);
8883 
8884 	  if (COMPARISON_P (x))
8885 	    {
8886 	      *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8887 						true0, true1);
8888 	      *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8889 						 false0, false1);
8890 	     }
8891 	  else
8892 	    {
8893 	      *ptrue = simplify_gen_binary (code, mode, true0, true1);
8894 	      *pfalse = simplify_gen_binary (code, mode, false0, false1);
8895 	    }
8896 
8897 	  return cond0 ? cond0 : cond1;
8898 	}
8899 
8900       /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8901 	 operands is zero when the other is nonzero, and vice-versa,
8902 	 and STORE_FLAG_VALUE is 1 or -1.  */
8903 
8904       if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8905 	  && (code == PLUS || code == IOR || code == XOR || code == MINUS
8906 	      || code == UMAX)
8907 	  && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8908 	{
8909 	  rtx op0 = XEXP (XEXP (x, 0), 1);
8910 	  rtx op1 = XEXP (XEXP (x, 1), 1);
8911 
8912 	  cond0 = XEXP (XEXP (x, 0), 0);
8913 	  cond1 = XEXP (XEXP (x, 1), 0);
8914 
8915 	  if (COMPARISON_P (cond0)
8916 	      && COMPARISON_P (cond1)
8917 	      && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8918 		   && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8919 		   && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8920 		  || ((swap_condition (GET_CODE (cond0))
8921 		       == reversed_comparison_code (cond1, NULL))
8922 		      && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8923 		      && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8924 	      && ! side_effects_p (x))
8925 	    {
8926 	      *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8927 	      *pfalse = simplify_gen_binary (MULT, mode,
8928 					     (code == MINUS
8929 					      ? simplify_gen_unary (NEG, mode,
8930 								    op1, mode)
8931 					      : op1),
8932 					      const_true_rtx);
8933 	      return cond0;
8934 	    }
8935 	}
8936 
8937       /* Similarly for MULT, AND and UMIN, except that for these the result
8938 	 is always zero.  */
8939       if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8940 	  && (code == MULT || code == AND || code == UMIN)
8941 	  && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8942 	{
8943 	  cond0 = XEXP (XEXP (x, 0), 0);
8944 	  cond1 = XEXP (XEXP (x, 1), 0);
8945 
8946 	  if (COMPARISON_P (cond0)
8947 	      && COMPARISON_P (cond1)
8948 	      && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8949 		   && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8950 		   && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8951 		  || ((swap_condition (GET_CODE (cond0))
8952 		       == reversed_comparison_code (cond1, NULL))
8953 		      && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8954 		      && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8955 	      && ! side_effects_p (x))
8956 	    {
8957 	      *ptrue = *pfalse = const0_rtx;
8958 	      return cond0;
8959 	    }
8960 	}
8961     }
8962 
8963   else if (code == IF_THEN_ELSE)
8964     {
8965       /* If we have IF_THEN_ELSE already, extract the condition and
8966 	 canonicalize it if it is NE or EQ.  */
8967       cond0 = XEXP (x, 0);
8968       *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8969       if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8970 	return XEXP (cond0, 0);
8971       else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8972 	{
8973 	  *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8974 	  return XEXP (cond0, 0);
8975 	}
8976       else
8977 	return cond0;
8978     }
8979 
8980   /* If X is a SUBREG, we can narrow both the true and false values
8981      if the inner expression, if there is a condition.  */
8982   else if (code == SUBREG
8983 	   && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8984 					       &true0, &false0)))
8985     {
8986       true0 = simplify_gen_subreg (mode, true0,
8987 				   GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8988       false0 = simplify_gen_subreg (mode, false0,
8989 				    GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8990       if (true0 && false0)
8991 	{
8992 	  *ptrue = true0;
8993 	  *pfalse = false0;
8994 	  return cond0;
8995 	}
8996     }
8997 
8998   /* If X is a constant, this isn't special and will cause confusions
8999      if we treat it as such.  Likewise if it is equivalent to a constant.  */
9000   else if (CONSTANT_P (x)
9001 	   || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9002     ;
9003 
9004   /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9005      will be least confusing to the rest of the compiler.  */
9006   else if (mode == BImode)
9007     {
9008       *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9009       return x;
9010     }
9011 
9012   /* If X is known to be either 0 or -1, those are the true and
9013      false values when testing X.  */
9014   else if (x == constm1_rtx || x == const0_rtx
9015 	   || (mode != VOIDmode
9016 	       && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
9017     {
9018       *ptrue = constm1_rtx, *pfalse = const0_rtx;
9019       return x;
9020     }
9021 
9022   /* Likewise for 0 or a single bit.  */
9023   else if (HWI_COMPUTABLE_MODE_P (mode)
9024 	   && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
9025     {
9026       *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9027       return x;
9028     }
9029 
9030   /* Otherwise fail; show no condition with true and false values the same.  */
9031   *ptrue = *pfalse = x;
9032   return 0;
9033 }
9034 
9035 /* Return the value of expression X given the fact that condition COND
9036    is known to be true when applied to REG as its first operand and VAL
9037    as its second.  X is known to not be shared and so can be modified in
9038    place.
9039 
9040    We only handle the simplest cases, and specifically those cases that
9041    arise with IF_THEN_ELSE expressions.  */
9042 
9043 static rtx
9044 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9045 {
9046   enum rtx_code code = GET_CODE (x);
9047   rtx temp;
9048   const char *fmt;
9049   int i, j;
9050 
9051   if (side_effects_p (x))
9052     return x;
9053 
9054   /* If either operand of the condition is a floating point value,
9055      then we have to avoid collapsing an EQ comparison.  */
9056   if (cond == EQ
9057       && rtx_equal_p (x, reg)
9058       && ! FLOAT_MODE_P (GET_MODE (x))
9059       && ! FLOAT_MODE_P (GET_MODE (val)))
9060     return val;
9061 
9062   if (cond == UNEQ && rtx_equal_p (x, reg))
9063     return val;
9064 
9065   /* If X is (abs REG) and we know something about REG's relationship
9066      with zero, we may be able to simplify this.  */
9067 
9068   if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9069     switch (cond)
9070       {
9071       case GE:  case GT:  case EQ:
9072 	return XEXP (x, 0);
9073       case LT:  case LE:
9074 	return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9075 				   XEXP (x, 0),
9076 				   GET_MODE (XEXP (x, 0)));
9077       default:
9078 	break;
9079       }
9080 
9081   /* The only other cases we handle are MIN, MAX, and comparisons if the
9082      operands are the same as REG and VAL.  */
9083 
9084   else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9085     {
9086       if (rtx_equal_p (XEXP (x, 0), val))
9087 	cond = swap_condition (cond), temp = val, val = reg, reg = temp;
9088 
9089       if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9090 	{
9091 	  if (COMPARISON_P (x))
9092 	    {
9093 	      if (comparison_dominates_p (cond, code))
9094 		return const_true_rtx;
9095 
9096 	      code = reversed_comparison_code (x, NULL);
9097 	      if (code != UNKNOWN
9098 		  && comparison_dominates_p (cond, code))
9099 		return const0_rtx;
9100 	      else
9101 		return x;
9102 	    }
9103 	  else if (code == SMAX || code == SMIN
9104 		   || code == UMIN || code == UMAX)
9105 	    {
9106 	      int unsignedp = (code == UMIN || code == UMAX);
9107 
9108 	      /* Do not reverse the condition when it is NE or EQ.
9109 		 This is because we cannot conclude anything about
9110 		 the value of 'SMAX (x, y)' when x is not equal to y,
9111 		 but we can when x equals y.  */
9112 	      if ((code == SMAX || code == UMAX)
9113 		  && ! (cond == EQ || cond == NE))
9114 		cond = reverse_condition (cond);
9115 
9116 	      switch (cond)
9117 		{
9118 		case GE:   case GT:
9119 		  return unsignedp ? x : XEXP (x, 1);
9120 		case LE:   case LT:
9121 		  return unsignedp ? x : XEXP (x, 0);
9122 		case GEU:  case GTU:
9123 		  return unsignedp ? XEXP (x, 1) : x;
9124 		case LEU:  case LTU:
9125 		  return unsignedp ? XEXP (x, 0) : x;
9126 		default:
9127 		  break;
9128 		}
9129 	    }
9130 	}
9131     }
9132   else if (code == SUBREG)
9133     {
9134       machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9135       rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9136 
9137       if (SUBREG_REG (x) != r)
9138 	{
9139 	  /* We must simplify subreg here, before we lose track of the
9140 	     original inner_mode.  */
9141 	  new_rtx = simplify_subreg (GET_MODE (x), r,
9142 				 inner_mode, SUBREG_BYTE (x));
9143 	  if (new_rtx)
9144 	    return new_rtx;
9145 	  else
9146 	    SUBST (SUBREG_REG (x), r);
9147 	}
9148 
9149       return x;
9150     }
9151   /* We don't have to handle SIGN_EXTEND here, because even in the
9152      case of replacing something with a modeless CONST_INT, a
9153      CONST_INT is already (supposed to be) a valid sign extension for
9154      its narrower mode, which implies it's already properly
9155      sign-extended for the wider mode.  Now, for ZERO_EXTEND, the
9156      story is different.  */
9157   else if (code == ZERO_EXTEND)
9158     {
9159       machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9160       rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9161 
9162       if (XEXP (x, 0) != r)
9163 	{
9164 	  /* We must simplify the zero_extend here, before we lose
9165 	     track of the original inner_mode.  */
9166 	  new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9167 					  r, inner_mode);
9168 	  if (new_rtx)
9169 	    return new_rtx;
9170 	  else
9171 	    SUBST (XEXP (x, 0), r);
9172 	}
9173 
9174       return x;
9175     }
9176 
9177   fmt = GET_RTX_FORMAT (code);
9178   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9179     {
9180       if (fmt[i] == 'e')
9181 	SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9182       else if (fmt[i] == 'E')
9183 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9184 	  SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9185 						cond, reg, val));
9186     }
9187 
9188   return x;
9189 }
9190 
9191 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9192    assignment as a field assignment.  */
9193 
9194 static int
9195 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9196 {
9197   if (widen_x && GET_MODE (x) != GET_MODE (y))
9198     {
9199       if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (y)))
9200 	return 0;
9201       if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9202 	return 0;
9203       /* For big endian, adjust the memory offset.  */
9204       if (BYTES_BIG_ENDIAN)
9205 	x = adjust_address_nv (x, GET_MODE (y),
9206 			       -subreg_lowpart_offset (GET_MODE (x),
9207 						       GET_MODE (y)));
9208       else
9209 	x = adjust_address_nv (x, GET_MODE (y), 0);
9210     }
9211 
9212   if (x == y || rtx_equal_p (x, y))
9213     return 1;
9214 
9215   if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9216     return 0;
9217 
9218   /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9219      Note that all SUBREGs of MEM are paradoxical; otherwise they
9220      would have been rewritten.  */
9221   if (MEM_P (x) && GET_CODE (y) == SUBREG
9222       && MEM_P (SUBREG_REG (y))
9223       && rtx_equal_p (SUBREG_REG (y),
9224 		      gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9225     return 1;
9226 
9227   if (MEM_P (y) && GET_CODE (x) == SUBREG
9228       && MEM_P (SUBREG_REG (x))
9229       && rtx_equal_p (SUBREG_REG (x),
9230 		      gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9231     return 1;
9232 
9233   /* We used to see if get_last_value of X and Y were the same but that's
9234      not correct.  In one direction, we'll cause the assignment to have
9235      the wrong destination and in the case, we'll import a register into this
9236      insn that might have already have been dead.   So fail if none of the
9237      above cases are true.  */
9238   return 0;
9239 }
9240 
9241 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9242    Return that assignment if so.
9243 
9244    We only handle the most common cases.  */
9245 
9246 static rtx
9247 make_field_assignment (rtx x)
9248 {
9249   rtx dest = SET_DEST (x);
9250   rtx src = SET_SRC (x);
9251   rtx assign;
9252   rtx rhs, lhs;
9253   HOST_WIDE_INT c1;
9254   HOST_WIDE_INT pos;
9255   unsigned HOST_WIDE_INT len;
9256   rtx other;
9257   machine_mode mode;
9258 
9259   /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9260      a clear of a one-bit field.  We will have changed it to
9261      (and (rotate (const_int -2) POS) DEST), so check for that.  Also check
9262      for a SUBREG.  */
9263 
9264   if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9265       && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9266       && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9267       && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9268     {
9269       assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9270 				1, 1, 1, 0);
9271       if (assign != 0)
9272 	return gen_rtx_SET (VOIDmode, assign, const0_rtx);
9273       return x;
9274     }
9275 
9276   if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9277       && subreg_lowpart_p (XEXP (src, 0))
9278       && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9279 	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9280       && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9281       && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9282       && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9283       && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9284     {
9285       assign = make_extraction (VOIDmode, dest, 0,
9286 				XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9287 				1, 1, 1, 0);
9288       if (assign != 0)
9289 	return gen_rtx_SET (VOIDmode, assign, const0_rtx);
9290       return x;
9291     }
9292 
9293   /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9294      one-bit field.  */
9295   if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9296       && XEXP (XEXP (src, 0), 0) == const1_rtx
9297       && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9298     {
9299       assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9300 				1, 1, 1, 0);
9301       if (assign != 0)
9302 	return gen_rtx_SET (VOIDmode, assign, const1_rtx);
9303       return x;
9304     }
9305 
9306   /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9307      SRC is an AND with all bits of that field set, then we can discard
9308      the AND.  */
9309   if (GET_CODE (dest) == ZERO_EXTRACT
9310       && CONST_INT_P (XEXP (dest, 1))
9311       && GET_CODE (src) == AND
9312       && CONST_INT_P (XEXP (src, 1)))
9313     {
9314       HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9315       unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9316       unsigned HOST_WIDE_INT ze_mask;
9317 
9318       if (width >= HOST_BITS_PER_WIDE_INT)
9319 	ze_mask = -1;
9320       else
9321 	ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9322 
9323       /* Complete overlap.  We can remove the source AND.  */
9324       if ((and_mask & ze_mask) == ze_mask)
9325 	return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
9326 
9327       /* Partial overlap.  We can reduce the source AND.  */
9328       if ((and_mask & ze_mask) != and_mask)
9329 	{
9330 	  mode = GET_MODE (src);
9331 	  src = gen_rtx_AND (mode, XEXP (src, 0),
9332 			     gen_int_mode (and_mask & ze_mask, mode));
9333 	  return gen_rtx_SET (VOIDmode, dest, src);
9334 	}
9335     }
9336 
9337   /* The other case we handle is assignments into a constant-position
9338      field.  They look like (ior/xor (and DEST C1) OTHER).  If C1 represents
9339      a mask that has all one bits except for a group of zero bits and
9340      OTHER is known to have zeros where C1 has ones, this is such an
9341      assignment.  Compute the position and length from C1.  Shift OTHER
9342      to the appropriate position, force it to the required mode, and
9343      make the extraction.  Check for the AND in both operands.  */
9344 
9345   /* One or more SUBREGs might obscure the constant-position field
9346      assignment.  The first one we are likely to encounter is an outer
9347      narrowing SUBREG, which we can just strip for the purposes of
9348      identifying the constant-field assignment.  */
9349   if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src))
9350     src = SUBREG_REG (src);
9351 
9352   if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9353     return x;
9354 
9355   rhs = expand_compound_operation (XEXP (src, 0));
9356   lhs = expand_compound_operation (XEXP (src, 1));
9357 
9358   if (GET_CODE (rhs) == AND
9359       && CONST_INT_P (XEXP (rhs, 1))
9360       && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9361     c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9362   /* The second SUBREG that might get in the way is a paradoxical
9363      SUBREG around the first operand of the AND.  We want to
9364      pretend the operand is as wide as the destination here.   We
9365      do this by adjusting the MEM to wider mode for the sole
9366      purpose of the call to rtx_equal_for_field_assignment_p.   Also
9367      note this trick only works for MEMs.  */
9368   else if (GET_CODE (rhs) == AND
9369 	   && paradoxical_subreg_p (XEXP (rhs, 0))
9370 	   && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9371 	   && CONST_INT_P (XEXP (rhs, 1))
9372 	   && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9373 						dest, true))
9374     c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9375   else if (GET_CODE (lhs) == AND
9376 	   && CONST_INT_P (XEXP (lhs, 1))
9377 	   && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9378     c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9379   /* The second SUBREG that might get in the way is a paradoxical
9380      SUBREG around the first operand of the AND.  We want to
9381      pretend the operand is as wide as the destination here.   We
9382      do this by adjusting the MEM to wider mode for the sole
9383      purpose of the call to rtx_equal_for_field_assignment_p.   Also
9384      note this trick only works for MEMs.  */
9385   else if (GET_CODE (lhs) == AND
9386 	   && paradoxical_subreg_p (XEXP (lhs, 0))
9387 	   && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9388 	   && CONST_INT_P (XEXP (lhs, 1))
9389 	   && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9390 						dest, true))
9391     c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9392   else
9393     return x;
9394 
9395   pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9396   if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9397       || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9398       || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9399     return x;
9400 
9401   assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9402   if (assign == 0)
9403     return x;
9404 
9405   /* The mode to use for the source is the mode of the assignment, or of
9406      what is inside a possible STRICT_LOW_PART.  */
9407   mode = (GET_CODE (assign) == STRICT_LOW_PART
9408 	  ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9409 
9410   /* Shift OTHER right POS places and make it the source, restricting it
9411      to the proper length and mode.  */
9412 
9413   src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9414 						     GET_MODE (src),
9415 						     other, pos),
9416 			       dest);
9417   src = force_to_mode (src, mode,
9418 		       GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9419 		       ? ~(unsigned HOST_WIDE_INT) 0
9420 		       : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9421 		       0);
9422 
9423   /* If SRC is masked by an AND that does not make a difference in
9424      the value being stored, strip it.  */
9425   if (GET_CODE (assign) == ZERO_EXTRACT
9426       && CONST_INT_P (XEXP (assign, 1))
9427       && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9428       && GET_CODE (src) == AND
9429       && CONST_INT_P (XEXP (src, 1))
9430       && UINTVAL (XEXP (src, 1))
9431 	 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9432     src = XEXP (src, 0);
9433 
9434   return gen_rtx_SET (VOIDmode, assign, src);
9435 }
9436 
9437 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9438    if so.  */
9439 
9440 static rtx
9441 apply_distributive_law (rtx x)
9442 {
9443   enum rtx_code code = GET_CODE (x);
9444   enum rtx_code inner_code;
9445   rtx lhs, rhs, other;
9446   rtx tem;
9447 
9448   /* Distributivity is not true for floating point as it can change the
9449      value.  So we don't do it unless -funsafe-math-optimizations.  */
9450   if (FLOAT_MODE_P (GET_MODE (x))
9451       && ! flag_unsafe_math_optimizations)
9452     return x;
9453 
9454   /* The outer operation can only be one of the following:  */
9455   if (code != IOR && code != AND && code != XOR
9456       && code != PLUS && code != MINUS)
9457     return x;
9458 
9459   lhs = XEXP (x, 0);
9460   rhs = XEXP (x, 1);
9461 
9462   /* If either operand is a primitive we can't do anything, so get out
9463      fast.  */
9464   if (OBJECT_P (lhs) || OBJECT_P (rhs))
9465     return x;
9466 
9467   lhs = expand_compound_operation (lhs);
9468   rhs = expand_compound_operation (rhs);
9469   inner_code = GET_CODE (lhs);
9470   if (inner_code != GET_CODE (rhs))
9471     return x;
9472 
9473   /* See if the inner and outer operations distribute.  */
9474   switch (inner_code)
9475     {
9476     case LSHIFTRT:
9477     case ASHIFTRT:
9478     case AND:
9479     case IOR:
9480       /* These all distribute except over PLUS.  */
9481       if (code == PLUS || code == MINUS)
9482 	return x;
9483       break;
9484 
9485     case MULT:
9486       if (code != PLUS && code != MINUS)
9487 	return x;
9488       break;
9489 
9490     case ASHIFT:
9491       /* This is also a multiply, so it distributes over everything.  */
9492       break;
9493 
9494     /* This used to handle SUBREG, but this turned out to be counter-
9495        productive, since (subreg (op ...)) usually is not handled by
9496        insn patterns, and this "optimization" therefore transformed
9497        recognizable patterns into unrecognizable ones.  Therefore the
9498        SUBREG case was removed from here.
9499 
9500        It is possible that distributing SUBREG over arithmetic operations
9501        leads to an intermediate result than can then be optimized further,
9502        e.g. by moving the outer SUBREG to the other side of a SET as done
9503        in simplify_set.  This seems to have been the original intent of
9504        handling SUBREGs here.
9505 
9506        However, with current GCC this does not appear to actually happen,
9507        at least on major platforms.  If some case is found where removing
9508        the SUBREG case here prevents follow-on optimizations, distributing
9509        SUBREGs ought to be re-added at that place, e.g. in simplify_set.  */
9510 
9511     default:
9512       return x;
9513     }
9514 
9515   /* Set LHS and RHS to the inner operands (A and B in the example
9516      above) and set OTHER to the common operand (C in the example).
9517      There is only one way to do this unless the inner operation is
9518      commutative.  */
9519   if (COMMUTATIVE_ARITH_P (lhs)
9520       && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9521     other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9522   else if (COMMUTATIVE_ARITH_P (lhs)
9523 	   && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9524     other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9525   else if (COMMUTATIVE_ARITH_P (lhs)
9526 	   && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9527     other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9528   else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9529     other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9530   else
9531     return x;
9532 
9533   /* Form the new inner operation, seeing if it simplifies first.  */
9534   tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9535 
9536   /* There is one exception to the general way of distributing:
9537      (a | c) ^ (b | c) -> (a ^ b) & ~c  */
9538   if (code == XOR && inner_code == IOR)
9539     {
9540       inner_code = AND;
9541       other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9542     }
9543 
9544   /* We may be able to continuing distributing the result, so call
9545      ourselves recursively on the inner operation before forming the
9546      outer operation, which we return.  */
9547   return simplify_gen_binary (inner_code, GET_MODE (x),
9548 			      apply_distributive_law (tem), other);
9549 }
9550 
9551 /* See if X is of the form (* (+ A B) C), and if so convert to
9552    (+ (* A C) (* B C)) and try to simplify.
9553 
9554    Most of the time, this results in no change.  However, if some of
9555    the operands are the same or inverses of each other, simplifications
9556    will result.
9557 
9558    For example, (and (ior A B) (not B)) can occur as the result of
9559    expanding a bit field assignment.  When we apply the distributive
9560    law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9561    which then simplifies to (and (A (not B))).
9562 
9563    Note that no checks happen on the validity of applying the inverse
9564    distributive law.  This is pointless since we can do it in the
9565    few places where this routine is called.
9566 
9567    N is the index of the term that is decomposed (the arithmetic operation,
9568    i.e. (+ A B) in the first example above).  !N is the index of the term that
9569    is distributed, i.e. of C in the first example above.  */
9570 static rtx
9571 distribute_and_simplify_rtx (rtx x, int n)
9572 {
9573   machine_mode mode;
9574   enum rtx_code outer_code, inner_code;
9575   rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9576 
9577   /* Distributivity is not true for floating point as it can change the
9578      value.  So we don't do it unless -funsafe-math-optimizations.  */
9579   if (FLOAT_MODE_P (GET_MODE (x))
9580       && ! flag_unsafe_math_optimizations)
9581     return NULL_RTX;
9582 
9583   decomposed = XEXP (x, n);
9584   if (!ARITHMETIC_P (decomposed))
9585     return NULL_RTX;
9586 
9587   mode = GET_MODE (x);
9588   outer_code = GET_CODE (x);
9589   distributed = XEXP (x, !n);
9590 
9591   inner_code = GET_CODE (decomposed);
9592   inner_op0 = XEXP (decomposed, 0);
9593   inner_op1 = XEXP (decomposed, 1);
9594 
9595   /* Special case (and (xor B C) (not A)), which is equivalent to
9596      (xor (ior A B) (ior A C))  */
9597   if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9598     {
9599       distributed = XEXP (distributed, 0);
9600       outer_code = IOR;
9601     }
9602 
9603   if (n == 0)
9604     {
9605       /* Distribute the second term.  */
9606       new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9607       new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9608     }
9609   else
9610     {
9611       /* Distribute the first term.  */
9612       new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9613       new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9614     }
9615 
9616   tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9617 						     new_op0, new_op1));
9618   if (GET_CODE (tmp) != outer_code
9619       && (set_src_cost (tmp, optimize_this_for_speed_p)
9620 	  < set_src_cost (x, optimize_this_for_speed_p)))
9621     return tmp;
9622 
9623   return NULL_RTX;
9624 }
9625 
9626 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9627    in MODE.  Return an equivalent form, if different from (and VAROP
9628    (const_int CONSTOP)).  Otherwise, return NULL_RTX.  */
9629 
9630 static rtx
9631 simplify_and_const_int_1 (machine_mode mode, rtx varop,
9632 			  unsigned HOST_WIDE_INT constop)
9633 {
9634   unsigned HOST_WIDE_INT nonzero;
9635   unsigned HOST_WIDE_INT orig_constop;
9636   rtx orig_varop;
9637   int i;
9638 
9639   orig_varop = varop;
9640   orig_constop = constop;
9641   if (GET_CODE (varop) == CLOBBER)
9642     return NULL_RTX;
9643 
9644   /* Simplify VAROP knowing that we will be only looking at some of the
9645      bits in it.
9646 
9647      Note by passing in CONSTOP, we guarantee that the bits not set in
9648      CONSTOP are not significant and will never be examined.  We must
9649      ensure that is the case by explicitly masking out those bits
9650      before returning.  */
9651   varop = force_to_mode (varop, mode, constop, 0);
9652 
9653   /* If VAROP is a CLOBBER, we will fail so return it.  */
9654   if (GET_CODE (varop) == CLOBBER)
9655     return varop;
9656 
9657   /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9658      to VAROP and return the new constant.  */
9659   if (CONST_INT_P (varop))
9660     return gen_int_mode (INTVAL (varop) & constop, mode);
9661 
9662   /* See what bits may be nonzero in VAROP.  Unlike the general case of
9663      a call to nonzero_bits, here we don't care about bits outside
9664      MODE.  */
9665 
9666   nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9667 
9668   /* Turn off all bits in the constant that are known to already be zero.
9669      Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9670      which is tested below.  */
9671 
9672   constop &= nonzero;
9673 
9674   /* If we don't have any bits left, return zero.  */
9675   if (constop == 0)
9676     return const0_rtx;
9677 
9678   /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9679      a power of two, we can replace this with an ASHIFT.  */
9680   if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9681       && (i = exact_log2 (constop)) >= 0)
9682     return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9683 
9684   /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9685      or XOR, then try to apply the distributive law.  This may eliminate
9686      operations if either branch can be simplified because of the AND.
9687      It may also make some cases more complex, but those cases probably
9688      won't match a pattern either with or without this.  */
9689 
9690   if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9691     return
9692       gen_lowpart
9693 	(mode,
9694 	 apply_distributive_law
9695 	 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9696 			       simplify_and_const_int (NULL_RTX,
9697 						       GET_MODE (varop),
9698 						       XEXP (varop, 0),
9699 						       constop),
9700 			       simplify_and_const_int (NULL_RTX,
9701 						       GET_MODE (varop),
9702 						       XEXP (varop, 1),
9703 						       constop))));
9704 
9705   /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9706      the AND and see if one of the operands simplifies to zero.  If so, we
9707      may eliminate it.  */
9708 
9709   if (GET_CODE (varop) == PLUS
9710       && exact_log2 (constop + 1) >= 0)
9711     {
9712       rtx o0, o1;
9713 
9714       o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9715       o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9716       if (o0 == const0_rtx)
9717 	return o1;
9718       if (o1 == const0_rtx)
9719 	return o0;
9720     }
9721 
9722   /* Make a SUBREG if necessary.  If we can't make it, fail.  */
9723   varop = gen_lowpart (mode, varop);
9724   if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9725     return NULL_RTX;
9726 
9727   /* If we are only masking insignificant bits, return VAROP.  */
9728   if (constop == nonzero)
9729     return varop;
9730 
9731   if (varop == orig_varop && constop == orig_constop)
9732     return NULL_RTX;
9733 
9734   /* Otherwise, return an AND.  */
9735   return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9736 }
9737 
9738 
9739 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9740    in MODE.
9741 
9742    Return an equivalent form, if different from X.  Otherwise, return X.  If
9743    X is zero, we are to always construct the equivalent form.  */
9744 
9745 static rtx
9746 simplify_and_const_int (rtx x, machine_mode mode, rtx varop,
9747 			unsigned HOST_WIDE_INT constop)
9748 {
9749   rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9750   if (tem)
9751     return tem;
9752 
9753   if (!x)
9754     x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9755 			     gen_int_mode (constop, mode));
9756   if (GET_MODE (x) != mode)
9757     x = gen_lowpart (mode, x);
9758   return x;
9759 }
9760 
9761 /* Given a REG, X, compute which bits in X can be nonzero.
9762    We don't care about bits outside of those defined in MODE.
9763 
9764    For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9765    a shift, AND, or zero_extract, we can do better.  */
9766 
9767 static rtx
9768 reg_nonzero_bits_for_combine (const_rtx x, machine_mode mode,
9769 			      const_rtx known_x ATTRIBUTE_UNUSED,
9770 			      machine_mode known_mode ATTRIBUTE_UNUSED,
9771 			      unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9772 			      unsigned HOST_WIDE_INT *nonzero)
9773 {
9774   rtx tem;
9775   reg_stat_type *rsp;
9776 
9777   /* If X is a register whose nonzero bits value is current, use it.
9778      Otherwise, if X is a register whose value we can find, use that
9779      value.  Otherwise, use the previously-computed global nonzero bits
9780      for this register.  */
9781 
9782   rsp = &reg_stat[REGNO (x)];
9783   if (rsp->last_set_value != 0
9784       && (rsp->last_set_mode == mode
9785 	  || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9786 	      && GET_MODE_CLASS (mode) == MODE_INT))
9787       && ((rsp->last_set_label >= label_tick_ebb_start
9788 	   && rsp->last_set_label < label_tick)
9789 	  || (rsp->last_set_label == label_tick
9790               && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9791 	  || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9792 	      && REGNO (x) < reg_n_sets_max
9793 	      && REG_N_SETS (REGNO (x)) == 1
9794 	      && !REGNO_REG_SET_P
9795 		  (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9796 		   REGNO (x)))))
9797     {
9798       unsigned HOST_WIDE_INT mask = rsp->last_set_nonzero_bits;
9799 
9800       if (GET_MODE_PRECISION (rsp->last_set_mode) < GET_MODE_PRECISION (mode))
9801 	/* We don't know anything about the upper bits.  */
9802 	mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (rsp->last_set_mode);
9803 
9804       *nonzero &= mask;
9805       return NULL;
9806     }
9807 
9808   tem = get_last_value (x);
9809 
9810   if (tem)
9811     {
9812 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9813       /* If X is narrower than MODE and TEM is a non-negative
9814 	 constant that would appear negative in the mode of X,
9815 	 sign-extend it for use in reg_nonzero_bits because some
9816 	 machines (maybe most) will actually do the sign-extension
9817 	 and this is the conservative approach.
9818 
9819 	 ??? For 2.5, try to tighten up the MD files in this regard
9820 	 instead of this kludge.  */
9821 
9822       if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode)
9823 	  && CONST_INT_P (tem)
9824 	  && INTVAL (tem) > 0
9825 	  && val_signbit_known_set_p (GET_MODE (x), INTVAL (tem)))
9826 	tem = GEN_INT (INTVAL (tem) | ~GET_MODE_MASK (GET_MODE (x)));
9827 #endif
9828       return tem;
9829     }
9830   else if (nonzero_sign_valid && rsp->nonzero_bits)
9831     {
9832       unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9833 
9834       if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9835 	/* We don't know anything about the upper bits.  */
9836 	mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9837 
9838       *nonzero &= mask;
9839     }
9840 
9841   return NULL;
9842 }
9843 
9844 /* Return the number of bits at the high-order end of X that are known to
9845    be equal to the sign bit.  X will be used in mode MODE; if MODE is
9846    VOIDmode, X will be used in its own mode.  The returned value  will always
9847    be between 1 and the number of bits in MODE.  */
9848 
9849 static rtx
9850 reg_num_sign_bit_copies_for_combine (const_rtx x, machine_mode mode,
9851 				     const_rtx known_x ATTRIBUTE_UNUSED,
9852 				     machine_mode known_mode
9853 				     ATTRIBUTE_UNUSED,
9854 				     unsigned int known_ret ATTRIBUTE_UNUSED,
9855 				     unsigned int *result)
9856 {
9857   rtx tem;
9858   reg_stat_type *rsp;
9859 
9860   rsp = &reg_stat[REGNO (x)];
9861   if (rsp->last_set_value != 0
9862       && rsp->last_set_mode == mode
9863       && ((rsp->last_set_label >= label_tick_ebb_start
9864 	   && rsp->last_set_label < label_tick)
9865 	  || (rsp->last_set_label == label_tick
9866               && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9867 	  || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9868 	      && REGNO (x) < reg_n_sets_max
9869 	      && REG_N_SETS (REGNO (x)) == 1
9870 	      && !REGNO_REG_SET_P
9871 		  (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9872 		   REGNO (x)))))
9873     {
9874       *result = rsp->last_set_sign_bit_copies;
9875       return NULL;
9876     }
9877 
9878   tem = get_last_value (x);
9879   if (tem != 0)
9880     return tem;
9881 
9882   if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9883       && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9884     *result = rsp->sign_bit_copies;
9885 
9886   return NULL;
9887 }
9888 
9889 /* Return the number of "extended" bits there are in X, when interpreted
9890    as a quantity in MODE whose signedness is indicated by UNSIGNEDP.  For
9891    unsigned quantities, this is the number of high-order zero bits.
9892    For signed quantities, this is the number of copies of the sign bit
9893    minus 1.  In both case, this function returns the number of "spare"
9894    bits.  For example, if two quantities for which this function returns
9895    at least 1 are added, the addition is known not to overflow.
9896 
9897    This function will always return 0 unless called during combine, which
9898    implies that it must be called from a define_split.  */
9899 
9900 unsigned int
9901 extended_count (const_rtx x, machine_mode mode, int unsignedp)
9902 {
9903   if (nonzero_sign_valid == 0)
9904     return 0;
9905 
9906   return (unsignedp
9907 	  ? (HWI_COMPUTABLE_MODE_P (mode)
9908 	     ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9909 			       - floor_log2 (nonzero_bits (x, mode)))
9910 	     : 0)
9911 	  : num_sign_bit_copies (x, mode) - 1);
9912 }
9913 
9914 /* This function is called from `simplify_shift_const' to merge two
9915    outer operations.  Specifically, we have already found that we need
9916    to perform operation *POP0 with constant *PCONST0 at the outermost
9917    position.  We would now like to also perform OP1 with constant CONST1
9918    (with *POP0 being done last).
9919 
9920    Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9921    the resulting operation.  *PCOMP_P is set to 1 if we would need to
9922    complement the innermost operand, otherwise it is unchanged.
9923 
9924    MODE is the mode in which the operation will be done.  No bits outside
9925    the width of this mode matter.  It is assumed that the width of this mode
9926    is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9927 
9928    If *POP0 or OP1 are UNKNOWN, it means no operation is required.  Only NEG, PLUS,
9929    IOR, XOR, and AND are supported.  We may set *POP0 to SET if the proper
9930    result is simply *PCONST0.
9931 
9932    If the resulting operation cannot be expressed as one operation, we
9933    return 0 and do not change *POP0, *PCONST0, and *PCOMP_P.  */
9934 
9935 static int
9936 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
9937 {
9938   enum rtx_code op0 = *pop0;
9939   HOST_WIDE_INT const0 = *pconst0;
9940 
9941   const0 &= GET_MODE_MASK (mode);
9942   const1 &= GET_MODE_MASK (mode);
9943 
9944   /* If OP0 is an AND, clear unimportant bits in CONST1.  */
9945   if (op0 == AND)
9946     const1 &= const0;
9947 
9948   /* If OP0 or OP1 is UNKNOWN, this is easy.  Similarly if they are the same or
9949      if OP0 is SET.  */
9950 
9951   if (op1 == UNKNOWN || op0 == SET)
9952     return 1;
9953 
9954   else if (op0 == UNKNOWN)
9955     op0 = op1, const0 = const1;
9956 
9957   else if (op0 == op1)
9958     {
9959       switch (op0)
9960 	{
9961 	case AND:
9962 	  const0 &= const1;
9963 	  break;
9964 	case IOR:
9965 	  const0 |= const1;
9966 	  break;
9967 	case XOR:
9968 	  const0 ^= const1;
9969 	  break;
9970 	case PLUS:
9971 	  const0 += const1;
9972 	  break;
9973 	case NEG:
9974 	  op0 = UNKNOWN;
9975 	  break;
9976 	default:
9977 	  break;
9978 	}
9979     }
9980 
9981   /* Otherwise, if either is a PLUS or NEG, we can't do anything.  */
9982   else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9983     return 0;
9984 
9985   /* If the two constants aren't the same, we can't do anything.  The
9986      remaining six cases can all be done.  */
9987   else if (const0 != const1)
9988     return 0;
9989 
9990   else
9991     switch (op0)
9992       {
9993       case IOR:
9994 	if (op1 == AND)
9995 	  /* (a & b) | b == b */
9996 	  op0 = SET;
9997 	else /* op1 == XOR */
9998 	  /* (a ^ b) | b == a | b */
9999 	  {;}
10000 	break;
10001 
10002       case XOR:
10003 	if (op1 == AND)
10004 	  /* (a & b) ^ b == (~a) & b */
10005 	  op0 = AND, *pcomp_p = 1;
10006 	else /* op1 == IOR */
10007 	  /* (a | b) ^ b == a & ~b */
10008 	  op0 = AND, const0 = ~const0;
10009 	break;
10010 
10011       case AND:
10012 	if (op1 == IOR)
10013 	  /* (a | b) & b == b */
10014 	op0 = SET;
10015 	else /* op1 == XOR */
10016 	  /* (a ^ b) & b) == (~a) & b */
10017 	  *pcomp_p = 1;
10018 	break;
10019       default:
10020 	break;
10021       }
10022 
10023   /* Check for NO-OP cases.  */
10024   const0 &= GET_MODE_MASK (mode);
10025   if (const0 == 0
10026       && (op0 == IOR || op0 == XOR || op0 == PLUS))
10027     op0 = UNKNOWN;
10028   else if (const0 == 0 && op0 == AND)
10029     op0 = SET;
10030   else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10031 	   && op0 == AND)
10032     op0 = UNKNOWN;
10033 
10034   *pop0 = op0;
10035 
10036   /* ??? Slightly redundant with the above mask, but not entirely.
10037      Moving this above means we'd have to sign-extend the mode mask
10038      for the final test.  */
10039   if (op0 != UNKNOWN && op0 != NEG)
10040     *pconst0 = trunc_int_for_mode (const0, mode);
10041 
10042   return 1;
10043 }
10044 
10045 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10046    the shift in.  The original shift operation CODE is performed on OP in
10047    ORIG_MODE.  Return the wider mode MODE if we can perform the operation
10048    in that mode.  Return ORIG_MODE otherwise.  We can also assume that the
10049    result of the shift is subject to operation OUTER_CODE with operand
10050    OUTER_CONST.  */
10051 
10052 static machine_mode
10053 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10054 		      machine_mode orig_mode, machine_mode mode,
10055 		      enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10056 {
10057   if (orig_mode == mode)
10058     return mode;
10059   gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10060 
10061   /* In general we can't perform in wider mode for right shift and rotate.  */
10062   switch (code)
10063     {
10064     case ASHIFTRT:
10065       /* We can still widen if the bits brought in from the left are identical
10066 	 to the sign bit of ORIG_MODE.  */
10067       if (num_sign_bit_copies (op, mode)
10068 	  > (unsigned) (GET_MODE_PRECISION (mode)
10069 			- GET_MODE_PRECISION (orig_mode)))
10070 	return mode;
10071       return orig_mode;
10072 
10073     case LSHIFTRT:
10074       /* Similarly here but with zero bits.  */
10075       if (HWI_COMPUTABLE_MODE_P (mode)
10076 	  && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10077 	return mode;
10078 
10079       /* We can also widen if the bits brought in will be masked off.  This
10080 	 operation is performed in ORIG_MODE.  */
10081       if (outer_code == AND)
10082 	{
10083 	  int care_bits = low_bitmask_len (orig_mode, outer_const);
10084 
10085 	  if (care_bits >= 0
10086 	      && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10087 	    return mode;
10088 	}
10089       /* fall through */
10090 
10091     case ROTATE:
10092       return orig_mode;
10093 
10094     case ROTATERT:
10095       gcc_unreachable ();
10096 
10097     default:
10098       return mode;
10099     }
10100 }
10101 
10102 /* Simplify a shift of VAROP by ORIG_COUNT bits.  CODE says what kind
10103    of shift.  The result of the shift is RESULT_MODE.  Return NULL_RTX
10104    if we cannot simplify it.  Otherwise, return a simplified value.
10105 
10106    The shift is normally computed in the widest mode we find in VAROP, as
10107    long as it isn't a different number of words than RESULT_MODE.  Exceptions
10108    are ASHIFTRT and ROTATE, which are always done in their original mode.  */
10109 
10110 static rtx
10111 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10112 			rtx varop, int orig_count)
10113 {
10114   enum rtx_code orig_code = code;
10115   rtx orig_varop = varop;
10116   int count;
10117   machine_mode mode = result_mode;
10118   machine_mode shift_mode, tmode;
10119   unsigned int mode_words
10120     = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10121   /* We form (outer_op (code varop count) (outer_const)).  */
10122   enum rtx_code outer_op = UNKNOWN;
10123   HOST_WIDE_INT outer_const = 0;
10124   int complement_p = 0;
10125   rtx new_rtx, x;
10126 
10127   /* Make sure and truncate the "natural" shift on the way in.  We don't
10128      want to do this inside the loop as it makes it more difficult to
10129      combine shifts.  */
10130   if (SHIFT_COUNT_TRUNCATED)
10131     orig_count &= GET_MODE_BITSIZE (mode) - 1;
10132 
10133   /* If we were given an invalid count, don't do anything except exactly
10134      what was requested.  */
10135 
10136   if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
10137     return NULL_RTX;
10138 
10139   count = orig_count;
10140 
10141   /* Unless one of the branches of the `if' in this loop does a `continue',
10142      we will `break' the loop after the `if'.  */
10143 
10144   while (count != 0)
10145     {
10146       /* If we have an operand of (clobber (const_int 0)), fail.  */
10147       if (GET_CODE (varop) == CLOBBER)
10148 	return NULL_RTX;
10149 
10150       /* Convert ROTATERT to ROTATE.  */
10151       if (code == ROTATERT)
10152 	{
10153 	  unsigned int bitsize = GET_MODE_PRECISION (result_mode);
10154 	  code = ROTATE;
10155 	  if (VECTOR_MODE_P (result_mode))
10156 	    count = bitsize / GET_MODE_NUNITS (result_mode) - count;
10157 	  else
10158 	    count = bitsize - count;
10159 	}
10160 
10161       shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
10162 					 mode, outer_op, outer_const);
10163 
10164       /* Handle cases where the count is greater than the size of the mode
10165 	 minus 1.  For ASHIFT, use the size minus one as the count (this can
10166 	 occur when simplifying (lshiftrt (ashiftrt ..))).  For rotates,
10167 	 take the count modulo the size.  For other shifts, the result is
10168 	 zero.
10169 
10170 	 Since these shifts are being produced by the compiler by combining
10171 	 multiple operations, each of which are defined, we know what the
10172 	 result is supposed to be.  */
10173 
10174       if (count > (GET_MODE_PRECISION (shift_mode) - 1))
10175 	{
10176 	  if (code == ASHIFTRT)
10177 	    count = GET_MODE_PRECISION (shift_mode) - 1;
10178 	  else if (code == ROTATE || code == ROTATERT)
10179 	    count %= GET_MODE_PRECISION (shift_mode);
10180 	  else
10181 	    {
10182 	      /* We can't simply return zero because there may be an
10183 		 outer op.  */
10184 	      varop = const0_rtx;
10185 	      count = 0;
10186 	      break;
10187 	    }
10188 	}
10189 
10190       /* If we discovered we had to complement VAROP, leave.  Making a NOT
10191 	 here would cause an infinite loop.  */
10192       if (complement_p)
10193 	break;
10194 
10195       /* An arithmetic right shift of a quantity known to be -1 or 0
10196 	 is a no-op.  */
10197       if (code == ASHIFTRT
10198 	  && (num_sign_bit_copies (varop, shift_mode)
10199 	      == GET_MODE_PRECISION (shift_mode)))
10200 	{
10201 	  count = 0;
10202 	  break;
10203 	}
10204 
10205       /* If we are doing an arithmetic right shift and discarding all but
10206 	 the sign bit copies, this is equivalent to doing a shift by the
10207 	 bitsize minus one.  Convert it into that shift because it will often
10208 	 allow other simplifications.  */
10209 
10210       if (code == ASHIFTRT
10211 	  && (count + num_sign_bit_copies (varop, shift_mode)
10212 	      >= GET_MODE_PRECISION (shift_mode)))
10213 	count = GET_MODE_PRECISION (shift_mode) - 1;
10214 
10215       /* We simplify the tests below and elsewhere by converting
10216 	 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10217 	 `make_compound_operation' will convert it to an ASHIFTRT for
10218 	 those machines (such as VAX) that don't have an LSHIFTRT.  */
10219       if (code == ASHIFTRT
10220 	  && val_signbit_known_clear_p (shift_mode,
10221 					nonzero_bits (varop, shift_mode)))
10222 	code = LSHIFTRT;
10223 
10224       if (((code == LSHIFTRT
10225 	    && HWI_COMPUTABLE_MODE_P (shift_mode)
10226 	    && !(nonzero_bits (varop, shift_mode) >> count))
10227 	   || (code == ASHIFT
10228 	       && HWI_COMPUTABLE_MODE_P (shift_mode)
10229 	       && !((nonzero_bits (varop, shift_mode) << count)
10230 		    & GET_MODE_MASK (shift_mode))))
10231 	  && !side_effects_p (varop))
10232 	varop = const0_rtx;
10233 
10234       switch (GET_CODE (varop))
10235 	{
10236 	case SIGN_EXTEND:
10237 	case ZERO_EXTEND:
10238 	case SIGN_EXTRACT:
10239 	case ZERO_EXTRACT:
10240 	  new_rtx = expand_compound_operation (varop);
10241 	  if (new_rtx != varop)
10242 	    {
10243 	      varop = new_rtx;
10244 	      continue;
10245 	    }
10246 	  break;
10247 
10248 	case MEM:
10249 	  /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10250 	     minus the width of a smaller mode, we can do this with a
10251 	     SIGN_EXTEND or ZERO_EXTEND from the narrower memory location.  */
10252 	  if ((code == ASHIFTRT || code == LSHIFTRT)
10253 	      && ! mode_dependent_address_p (XEXP (varop, 0),
10254 					     MEM_ADDR_SPACE (varop))
10255 	      && ! MEM_VOLATILE_P (varop)
10256 	      && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10257 					 MODE_INT, 1)) != BLKmode)
10258 	    {
10259 	      new_rtx = adjust_address_nv (varop, tmode,
10260 				       BYTES_BIG_ENDIAN ? 0
10261 				       : count / BITS_PER_UNIT);
10262 
10263 	      varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10264 				     : ZERO_EXTEND, mode, new_rtx);
10265 	      count = 0;
10266 	      continue;
10267 	    }
10268 	  break;
10269 
10270 	case SUBREG:
10271 	  /* If VAROP is a SUBREG, strip it as long as the inner operand has
10272 	     the same number of words as what we've seen so far.  Then store
10273 	     the widest mode in MODE.  */
10274 	  if (subreg_lowpart_p (varop)
10275 	      && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10276 		  > GET_MODE_SIZE (GET_MODE (varop)))
10277 	      && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10278 				  + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10279 		 == mode_words
10280 	      && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10281 	      && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10282 	    {
10283 	      varop = SUBREG_REG (varop);
10284 	      if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10285 		mode = GET_MODE (varop);
10286 	      continue;
10287 	    }
10288 	  break;
10289 
10290 	case MULT:
10291 	  /* Some machines use MULT instead of ASHIFT because MULT
10292 	     is cheaper.  But it is still better on those machines to
10293 	     merge two shifts into one.  */
10294 	  if (CONST_INT_P (XEXP (varop, 1))
10295 	      && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10296 	    {
10297 	      varop
10298 		= simplify_gen_binary (ASHIFT, GET_MODE (varop),
10299 				       XEXP (varop, 0),
10300 				       GEN_INT (exact_log2 (
10301 						UINTVAL (XEXP (varop, 1)))));
10302 	      continue;
10303 	    }
10304 	  break;
10305 
10306 	case UDIV:
10307 	  /* Similar, for when divides are cheaper.  */
10308 	  if (CONST_INT_P (XEXP (varop, 1))
10309 	      && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10310 	    {
10311 	      varop
10312 		= simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10313 				       XEXP (varop, 0),
10314 				       GEN_INT (exact_log2 (
10315 						UINTVAL (XEXP (varop, 1)))));
10316 	      continue;
10317 	    }
10318 	  break;
10319 
10320 	case ASHIFTRT:
10321 	  /* If we are extracting just the sign bit of an arithmetic
10322 	     right shift, that shift is not needed.  However, the sign
10323 	     bit of a wider mode may be different from what would be
10324 	     interpreted as the sign bit in a narrower mode, so, if
10325 	     the result is narrower, don't discard the shift.  */
10326 	  if (code == LSHIFTRT
10327 	      && count == (GET_MODE_BITSIZE (result_mode) - 1)
10328 	      && (GET_MODE_BITSIZE (result_mode)
10329 		  >= GET_MODE_BITSIZE (GET_MODE (varop))))
10330 	    {
10331 	      varop = XEXP (varop, 0);
10332 	      continue;
10333 	    }
10334 
10335 	  /* ... fall through ...  */
10336 
10337 	case LSHIFTRT:
10338 	case ASHIFT:
10339 	case ROTATE:
10340 	  /* Here we have two nested shifts.  The result is usually the
10341 	     AND of a new shift with a mask.  We compute the result below.  */
10342 	  if (CONST_INT_P (XEXP (varop, 1))
10343 	      && INTVAL (XEXP (varop, 1)) >= 0
10344 	      && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10345 	      && HWI_COMPUTABLE_MODE_P (result_mode)
10346 	      && HWI_COMPUTABLE_MODE_P (mode)
10347 	      && !VECTOR_MODE_P (result_mode))
10348 	    {
10349 	      enum rtx_code first_code = GET_CODE (varop);
10350 	      unsigned int first_count = INTVAL (XEXP (varop, 1));
10351 	      unsigned HOST_WIDE_INT mask;
10352 	      rtx mask_rtx;
10353 
10354 	      /* We have one common special case.  We can't do any merging if
10355 		 the inner code is an ASHIFTRT of a smaller mode.  However, if
10356 		 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10357 		 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10358 		 we can convert it to
10359 		 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10360 		 This simplifies certain SIGN_EXTEND operations.  */
10361 	      if (code == ASHIFT && first_code == ASHIFTRT
10362 		  && count == (GET_MODE_PRECISION (result_mode)
10363 			       - GET_MODE_PRECISION (GET_MODE (varop))))
10364 		{
10365 		  /* C3 has the low-order C1 bits zero.  */
10366 
10367 		  mask = GET_MODE_MASK (mode)
10368 			 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10369 
10370 		  varop = simplify_and_const_int (NULL_RTX, result_mode,
10371 						  XEXP (varop, 0), mask);
10372 		  varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10373 						varop, count);
10374 		  count = first_count;
10375 		  code = ASHIFTRT;
10376 		  continue;
10377 		}
10378 
10379 	      /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10380 		 than C1 high-order bits equal to the sign bit, we can convert
10381 		 this to either an ASHIFT or an ASHIFTRT depending on the
10382 		 two counts.
10383 
10384 		 We cannot do this if VAROP's mode is not SHIFT_MODE.  */
10385 
10386 	      if (code == ASHIFTRT && first_code == ASHIFT
10387 		  && GET_MODE (varop) == shift_mode
10388 		  && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10389 		      > first_count))
10390 		{
10391 		  varop = XEXP (varop, 0);
10392 		  count -= first_count;
10393 		  if (count < 0)
10394 		    {
10395 		      count = -count;
10396 		      code = ASHIFT;
10397 		    }
10398 
10399 		  continue;
10400 		}
10401 
10402 	      /* There are some cases we can't do.  If CODE is ASHIFTRT,
10403 		 we can only do this if FIRST_CODE is also ASHIFTRT.
10404 
10405 		 We can't do the case when CODE is ROTATE and FIRST_CODE is
10406 		 ASHIFTRT.
10407 
10408 		 If the mode of this shift is not the mode of the outer shift,
10409 		 we can't do this if either shift is a right shift or ROTATE.
10410 
10411 		 Finally, we can't do any of these if the mode is too wide
10412 		 unless the codes are the same.
10413 
10414 		 Handle the case where the shift codes are the same
10415 		 first.  */
10416 
10417 	      if (code == first_code)
10418 		{
10419 		  if (GET_MODE (varop) != result_mode
10420 		      && (code == ASHIFTRT || code == LSHIFTRT
10421 			  || code == ROTATE))
10422 		    break;
10423 
10424 		  count += first_count;
10425 		  varop = XEXP (varop, 0);
10426 		  continue;
10427 		}
10428 
10429 	      if (code == ASHIFTRT
10430 		  || (code == ROTATE && first_code == ASHIFTRT)
10431 		  || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10432 		  || (GET_MODE (varop) != result_mode
10433 		      && (first_code == ASHIFTRT || first_code == LSHIFTRT
10434 			  || first_code == ROTATE
10435 			  || code == ROTATE)))
10436 		break;
10437 
10438 	      /* To compute the mask to apply after the shift, shift the
10439 		 nonzero bits of the inner shift the same way the
10440 		 outer shift will.  */
10441 
10442 	      mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10443 				       result_mode);
10444 
10445 	      mask_rtx
10446 		= simplify_const_binary_operation (code, result_mode, mask_rtx,
10447 						   GEN_INT (count));
10448 
10449 	      /* Give up if we can't compute an outer operation to use.  */
10450 	      if (mask_rtx == 0
10451 		  || !CONST_INT_P (mask_rtx)
10452 		  || ! merge_outer_ops (&outer_op, &outer_const, AND,
10453 					INTVAL (mask_rtx),
10454 					result_mode, &complement_p))
10455 		break;
10456 
10457 	      /* If the shifts are in the same direction, we add the
10458 		 counts.  Otherwise, we subtract them.  */
10459 	      if ((code == ASHIFTRT || code == LSHIFTRT)
10460 		  == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10461 		count += first_count;
10462 	      else
10463 		count -= first_count;
10464 
10465 	      /* If COUNT is positive, the new shift is usually CODE,
10466 		 except for the two exceptions below, in which case it is
10467 		 FIRST_CODE.  If the count is negative, FIRST_CODE should
10468 		 always be used  */
10469 	      if (count > 0
10470 		  && ((first_code == ROTATE && code == ASHIFT)
10471 		      || (first_code == ASHIFTRT && code == LSHIFTRT)))
10472 		code = first_code;
10473 	      else if (count < 0)
10474 		code = first_code, count = -count;
10475 
10476 	      varop = XEXP (varop, 0);
10477 	      continue;
10478 	    }
10479 
10480 	  /* If we have (A << B << C) for any shift, we can convert this to
10481 	     (A << C << B).  This wins if A is a constant.  Only try this if
10482 	     B is not a constant.  */
10483 
10484 	  else if (GET_CODE (varop) == code
10485 		   && CONST_INT_P (XEXP (varop, 0))
10486 		   && !CONST_INT_P (XEXP (varop, 1)))
10487 	    {
10488 	      /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10489 		 sure the result will be masked.  See PR70222.  */
10490 	      if (code == LSHIFTRT
10491 		  && mode != result_mode
10492 		  && !merge_outer_ops (&outer_op, &outer_const, AND,
10493 				       GET_MODE_MASK (result_mode)
10494 				       >> orig_count, result_mode,
10495 				       &complement_p))
10496 		break;
10497 	      /* For ((int) (cstLL >> count)) >> cst2 just give up.  Queuing
10498 		 up outer sign extension (often left and right shift) is
10499 		 hardly more efficient than the original.  See PR70429.  */
10500 	      if (code == ASHIFTRT && mode != result_mode)
10501 		break;
10502 
10503 	      rtx new_rtx = simplify_const_binary_operation (code, mode,
10504 							     XEXP (varop, 0),
10505 							     GEN_INT (count));
10506 	      varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10507 	      count = 0;
10508 	      continue;
10509 	    }
10510 	  break;
10511 
10512 	case NOT:
10513 	  if (VECTOR_MODE_P (mode))
10514 	    break;
10515 
10516 	  /* Make this fit the case below.  */
10517 	  varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10518 	  continue;
10519 
10520 	case IOR:
10521 	case AND:
10522 	case XOR:
10523 	  /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10524 	     with C the size of VAROP - 1 and the shift is logical if
10525 	     STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10526 	     we have an (le X 0) operation.   If we have an arithmetic shift
10527 	     and STORE_FLAG_VALUE is 1 or we have a logical shift with
10528 	     STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation.  */
10529 
10530 	  if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10531 	      && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10532 	      && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10533 	      && (code == LSHIFTRT || code == ASHIFTRT)
10534 	      && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10535 	      && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10536 	    {
10537 	      count = 0;
10538 	      varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10539 				  const0_rtx);
10540 
10541 	      if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10542 		varop = gen_rtx_NEG (GET_MODE (varop), varop);
10543 
10544 	      continue;
10545 	    }
10546 
10547 	  /* If we have (shift (logical)), move the logical to the outside
10548 	     to allow it to possibly combine with another logical and the
10549 	     shift to combine with another shift.  This also canonicalizes to
10550 	     what a ZERO_EXTRACT looks like.  Also, some machines have
10551 	     (and (shift)) insns.  */
10552 
10553 	  if (CONST_INT_P (XEXP (varop, 1))
10554 	      /* We can't do this if we have (ashiftrt (xor))  and the
10555 		 constant has its sign bit set in shift_mode with shift_mode
10556 		 wider than result_mode.  */
10557 	      && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10558 		   && result_mode != shift_mode
10559 		   && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10560 					      shift_mode))
10561 	      && (new_rtx = simplify_const_binary_operation
10562 		  (code, result_mode,
10563 		   gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10564 		   GEN_INT (count))) != 0
10565 	      && CONST_INT_P (new_rtx)
10566 	      && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10567 				  INTVAL (new_rtx), result_mode, &complement_p))
10568 	    {
10569 	      varop = XEXP (varop, 0);
10570 	      continue;
10571 	    }
10572 
10573 	  /* If we can't do that, try to simplify the shift in each arm of the
10574 	     logical expression, make a new logical expression, and apply
10575 	     the inverse distributive law.  This also can't be done for
10576 	     (ashiftrt (xor)) where we've widened the shift and the constant
10577 	     changes the sign bit.  */
10578 	  if (CONST_INT_P (XEXP (varop, 1))
10579 	     && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10580 		  && result_mode != shift_mode
10581 		  && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10582 					     shift_mode)))
10583 	    {
10584 	      rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10585 					      XEXP (varop, 0), count);
10586 	      rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10587 					      XEXP (varop, 1), count);
10588 
10589 	      varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10590 					   lhs, rhs);
10591 	      varop = apply_distributive_law (varop);
10592 
10593 	      count = 0;
10594 	      continue;
10595 	    }
10596 	  break;
10597 
10598 	case EQ:
10599 	  /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10600 	     says that the sign bit can be tested, FOO has mode MODE, C is
10601 	     GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10602 	     that may be nonzero.  */
10603 	  if (code == LSHIFTRT
10604 	      && XEXP (varop, 1) == const0_rtx
10605 	      && GET_MODE (XEXP (varop, 0)) == result_mode
10606 	      && count == (GET_MODE_PRECISION (result_mode) - 1)
10607 	      && HWI_COMPUTABLE_MODE_P (result_mode)
10608 	      && STORE_FLAG_VALUE == -1
10609 	      && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10610 	      && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10611 				  &complement_p))
10612 	    {
10613 	      varop = XEXP (varop, 0);
10614 	      count = 0;
10615 	      continue;
10616 	    }
10617 	  break;
10618 
10619 	case NEG:
10620 	  /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10621 	     than the number of bits in the mode is equivalent to A.  */
10622 	  if (code == LSHIFTRT
10623 	      && count == (GET_MODE_PRECISION (result_mode) - 1)
10624 	      && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10625 	    {
10626 	      varop = XEXP (varop, 0);
10627 	      count = 0;
10628 	      continue;
10629 	    }
10630 
10631 	  /* NEG commutes with ASHIFT since it is multiplication.  Move the
10632 	     NEG outside to allow shifts to combine.  */
10633 	  if (code == ASHIFT
10634 	      && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10635 				  &complement_p))
10636 	    {
10637 	      varop = XEXP (varop, 0);
10638 	      continue;
10639 	    }
10640 	  break;
10641 
10642 	case PLUS:
10643 	  /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10644 	     is one less than the number of bits in the mode is
10645 	     equivalent to (xor A 1).  */
10646 	  if (code == LSHIFTRT
10647 	      && count == (GET_MODE_PRECISION (result_mode) - 1)
10648 	      && XEXP (varop, 1) == constm1_rtx
10649 	      && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10650 	      && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10651 				  &complement_p))
10652 	    {
10653 	      count = 0;
10654 	      varop = XEXP (varop, 0);
10655 	      continue;
10656 	    }
10657 
10658 	  /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10659 	     that might be nonzero in BAR are those being shifted out and those
10660 	     bits are known zero in FOO, we can replace the PLUS with FOO.
10661 	     Similarly in the other operand order.  This code occurs when
10662 	     we are computing the size of a variable-size array.  */
10663 
10664 	  if ((code == ASHIFTRT || code == LSHIFTRT)
10665 	      && count < HOST_BITS_PER_WIDE_INT
10666 	      && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10667 	      && (nonzero_bits (XEXP (varop, 1), result_mode)
10668 		  & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10669 	    {
10670 	      varop = XEXP (varop, 0);
10671 	      continue;
10672 	    }
10673 	  else if ((code == ASHIFTRT || code == LSHIFTRT)
10674 		   && count < HOST_BITS_PER_WIDE_INT
10675 		   && HWI_COMPUTABLE_MODE_P (result_mode)
10676 		   && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10677 			    >> count)
10678 		   && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10679 			    & nonzero_bits (XEXP (varop, 1),
10680 						 result_mode)))
10681 	    {
10682 	      varop = XEXP (varop, 1);
10683 	      continue;
10684 	    }
10685 
10686 	  /* (ashift (plus foo C) N) is (plus (ashift foo N) C').  */
10687 	  if (code == ASHIFT
10688 	      && CONST_INT_P (XEXP (varop, 1))
10689 	      && (new_rtx = simplify_const_binary_operation
10690 		  (ASHIFT, result_mode,
10691 		   gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10692 		   GEN_INT (count))) != 0
10693 	      && CONST_INT_P (new_rtx)
10694 	      && merge_outer_ops (&outer_op, &outer_const, PLUS,
10695 				  INTVAL (new_rtx), result_mode, &complement_p))
10696 	    {
10697 	      varop = XEXP (varop, 0);
10698 	      continue;
10699 	    }
10700 
10701 	  /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10702 	     signbit', and attempt to change the PLUS to an XOR and move it to
10703 	     the outer operation as is done above in the AND/IOR/XOR case
10704 	     leg for shift(logical). See details in logical handling above
10705 	     for reasoning in doing so.  */
10706 	  if (code == LSHIFTRT
10707 	      && CONST_INT_P (XEXP (varop, 1))
10708 	      && mode_signbit_p (result_mode, XEXP (varop, 1))
10709 	      && (new_rtx = simplify_const_binary_operation
10710 		  (code, result_mode,
10711 		   gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10712 		   GEN_INT (count))) != 0
10713 	      && CONST_INT_P (new_rtx)
10714 	      && merge_outer_ops (&outer_op, &outer_const, XOR,
10715 				  INTVAL (new_rtx), result_mode, &complement_p))
10716 	    {
10717 	      varop = XEXP (varop, 0);
10718 	      continue;
10719 	    }
10720 
10721 	  break;
10722 
10723 	case MINUS:
10724 	  /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10725 	     with C the size of VAROP - 1 and the shift is logical if
10726 	     STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10727 	     we have a (gt X 0) operation.  If the shift is arithmetic with
10728 	     STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10729 	     we have a (neg (gt X 0)) operation.  */
10730 
10731 	  if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10732 	      && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10733 	      && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10734 	      && (code == LSHIFTRT || code == ASHIFTRT)
10735 	      && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10736 	      && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10737 	      && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10738 	    {
10739 	      count = 0;
10740 	      varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10741 				  const0_rtx);
10742 
10743 	      if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10744 		varop = gen_rtx_NEG (GET_MODE (varop), varop);
10745 
10746 	      continue;
10747 	    }
10748 	  break;
10749 
10750 	case TRUNCATE:
10751 	  /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10752 	     if the truncate does not affect the value.  */
10753 	  if (code == LSHIFTRT
10754 	      && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10755 	      && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10756 	      && (INTVAL (XEXP (XEXP (varop, 0), 1))
10757 		  >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10758 		      - GET_MODE_PRECISION (GET_MODE (varop)))))
10759 	    {
10760 	      rtx varop_inner = XEXP (varop, 0);
10761 
10762 	      varop_inner
10763 		= gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10764 				    XEXP (varop_inner, 0),
10765 				    GEN_INT
10766 				    (count + INTVAL (XEXP (varop_inner, 1))));
10767 	      varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10768 	      count = 0;
10769 	      continue;
10770 	    }
10771 	  break;
10772 
10773 	default:
10774 	  break;
10775 	}
10776 
10777       break;
10778     }
10779 
10780   shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10781 				     outer_op, outer_const);
10782 
10783   /* We have now finished analyzing the shift.  The result should be
10784      a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places.  If
10785      OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10786      to the result of the shift.  OUTER_CONST is the relevant constant,
10787      but we must turn off all bits turned off in the shift.  */
10788 
10789   if (outer_op == UNKNOWN
10790       && orig_code == code && orig_count == count
10791       && varop == orig_varop
10792       && shift_mode == GET_MODE (varop))
10793     return NULL_RTX;
10794 
10795   /* Make a SUBREG if necessary.  If we can't make it, fail.  */
10796   varop = gen_lowpart (shift_mode, varop);
10797   if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10798     return NULL_RTX;
10799 
10800   /* If we have an outer operation and we just made a shift, it is
10801      possible that we could have simplified the shift were it not
10802      for the outer operation.  So try to do the simplification
10803      recursively.  */
10804 
10805   if (outer_op != UNKNOWN)
10806     x = simplify_shift_const_1 (code, shift_mode, varop, count);
10807   else
10808     x = NULL_RTX;
10809 
10810   if (x == NULL_RTX)
10811     x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10812 
10813   /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10814      turn off all the bits that the shift would have turned off.  */
10815   if (orig_code == LSHIFTRT && result_mode != shift_mode)
10816     x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10817 				GET_MODE_MASK (result_mode) >> orig_count);
10818 
10819   /* Do the remainder of the processing in RESULT_MODE.  */
10820   x = gen_lowpart_or_truncate (result_mode, x);
10821 
10822   /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10823      operation.  */
10824   if (complement_p)
10825     x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10826 
10827   if (outer_op != UNKNOWN)
10828     {
10829       if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10830 	  && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10831 	outer_const = trunc_int_for_mode (outer_const, result_mode);
10832 
10833       if (outer_op == AND)
10834 	x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10835       else if (outer_op == SET)
10836 	{
10837 	  /* This means that we have determined that the result is
10838 	     equivalent to a constant.  This should be rare.  */
10839 	  if (!side_effects_p (x))
10840 	    x = GEN_INT (outer_const);
10841 	}
10842       else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10843 	x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10844       else
10845 	x = simplify_gen_binary (outer_op, result_mode, x,
10846 				 GEN_INT (outer_const));
10847     }
10848 
10849   return x;
10850 }
10851 
10852 /* Simplify a shift of VAROP by COUNT bits.  CODE says what kind of shift.
10853    The result of the shift is RESULT_MODE.  If we cannot simplify it,
10854    return X or, if it is NULL, synthesize the expression with
10855    simplify_gen_binary.  Otherwise, return a simplified value.
10856 
10857    The shift is normally computed in the widest mode we find in VAROP, as
10858    long as it isn't a different number of words than RESULT_MODE.  Exceptions
10859    are ASHIFTRT and ROTATE, which are always done in their original mode.  */
10860 
10861 static rtx
10862 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
10863 		      rtx varop, int count)
10864 {
10865   rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10866   if (tem)
10867     return tem;
10868 
10869   if (!x)
10870     x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10871   if (GET_MODE (x) != result_mode)
10872     x = gen_lowpart (result_mode, x);
10873   return x;
10874 }
10875 
10876 
10877 /* Like recog, but we receive the address of a pointer to a new pattern.
10878    We try to match the rtx that the pointer points to.
10879    If that fails, we may try to modify or replace the pattern,
10880    storing the replacement into the same pointer object.
10881 
10882    Modifications include deletion or addition of CLOBBERs.
10883 
10884    PNOTES is a pointer to a location where any REG_UNUSED notes added for
10885    the CLOBBERs are placed.
10886 
10887    The value is the final insn code from the pattern ultimately matched,
10888    or -1.  */
10889 
10890 static int
10891 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
10892 {
10893   rtx pat = *pnewpat;
10894   rtx pat_without_clobbers;
10895   int insn_code_number;
10896   int num_clobbers_to_add = 0;
10897   int i;
10898   rtx notes = NULL_RTX;
10899   rtx old_notes, old_pat;
10900   int old_icode;
10901 
10902   /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10903      we use to indicate that something didn't match.  If we find such a
10904      thing, force rejection.  */
10905   if (GET_CODE (pat) == PARALLEL)
10906     for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10907       if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10908 	  && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10909 	return -1;
10910 
10911   old_pat = PATTERN (insn);
10912   old_notes = REG_NOTES (insn);
10913   PATTERN (insn) = pat;
10914   REG_NOTES (insn) = NULL_RTX;
10915 
10916   insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10917   if (dump_file && (dump_flags & TDF_DETAILS))
10918     {
10919       if (insn_code_number < 0)
10920 	fputs ("Failed to match this instruction:\n", dump_file);
10921       else
10922 	fputs ("Successfully matched this instruction:\n", dump_file);
10923       print_rtl_single (dump_file, pat);
10924     }
10925 
10926   /* If it isn't, there is the possibility that we previously had an insn
10927      that clobbered some register as a side effect, but the combined
10928      insn doesn't need to do that.  So try once more without the clobbers
10929      unless this represents an ASM insn.  */
10930 
10931   if (insn_code_number < 0 && ! check_asm_operands (pat)
10932       && GET_CODE (pat) == PARALLEL)
10933     {
10934       int pos;
10935 
10936       for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10937 	if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10938 	  {
10939 	    if (i != pos)
10940 	      SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10941 	    pos++;
10942 	  }
10943 
10944       SUBST_INT (XVECLEN (pat, 0), pos);
10945 
10946       if (pos == 1)
10947 	pat = XVECEXP (pat, 0, 0);
10948 
10949       PATTERN (insn) = pat;
10950       insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10951       if (dump_file && (dump_flags & TDF_DETAILS))
10952 	{
10953 	  if (insn_code_number < 0)
10954 	    fputs ("Failed to match this instruction:\n", dump_file);
10955 	  else
10956 	    fputs ("Successfully matched this instruction:\n", dump_file);
10957 	  print_rtl_single (dump_file, pat);
10958 	}
10959     }
10960 
10961   pat_without_clobbers = pat;
10962 
10963   PATTERN (insn) = old_pat;
10964   REG_NOTES (insn) = old_notes;
10965 
10966   /* Recognize all noop sets, these will be killed by followup pass.  */
10967   if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10968     insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10969 
10970   /* If we had any clobbers to add, make a new pattern than contains
10971      them.  Then check to make sure that all of them are dead.  */
10972   if (num_clobbers_to_add)
10973     {
10974       rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10975 				     rtvec_alloc (GET_CODE (pat) == PARALLEL
10976 						  ? (XVECLEN (pat, 0)
10977 						     + num_clobbers_to_add)
10978 						  : num_clobbers_to_add + 1));
10979 
10980       if (GET_CODE (pat) == PARALLEL)
10981 	for (i = 0; i < XVECLEN (pat, 0); i++)
10982 	  XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10983       else
10984 	XVECEXP (newpat, 0, 0) = pat;
10985 
10986       add_clobbers (newpat, insn_code_number);
10987 
10988       for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10989 	   i < XVECLEN (newpat, 0); i++)
10990 	{
10991 	  if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10992 	      && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10993 	    return -1;
10994 	  if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10995 	    {
10996 	      gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10997 	      notes = alloc_reg_note (REG_UNUSED,
10998 				      XEXP (XVECEXP (newpat, 0, i), 0), notes);
10999 	    }
11000 	}
11001       pat = newpat;
11002     }
11003 
11004   if (insn_code_number >= 0
11005       && insn_code_number != NOOP_MOVE_INSN_CODE)
11006     {
11007       old_pat = PATTERN (insn);
11008       old_notes = REG_NOTES (insn);
11009       old_icode = INSN_CODE (insn);
11010       PATTERN (insn) = pat;
11011       REG_NOTES (insn) = notes;
11012 
11013       /* Allow targets to reject combined insn.  */
11014       if (!targetm.legitimate_combined_insn (insn))
11015 	{
11016 	  if (dump_file && (dump_flags & TDF_DETAILS))
11017 	    fputs ("Instruction not appropriate for target.",
11018 		   dump_file);
11019 
11020 	  /* Callers expect recog_for_combine to strip
11021 	     clobbers from the pattern on failure.  */
11022 	  pat = pat_without_clobbers;
11023 	  notes = NULL_RTX;
11024 
11025 	  insn_code_number = -1;
11026 	}
11027 
11028       PATTERN (insn) = old_pat;
11029       REG_NOTES (insn) = old_notes;
11030       INSN_CODE (insn) = old_icode;
11031     }
11032 
11033   *pnewpat = pat;
11034   *pnotes = notes;
11035 
11036   return insn_code_number;
11037 }
11038 
11039 /* Like gen_lowpart_general but for use by combine.  In combine it
11040    is not possible to create any new pseudoregs.  However, it is
11041    safe to create invalid memory addresses, because combine will
11042    try to recognize them and all they will do is make the combine
11043    attempt fail.
11044 
11045    If for some reason this cannot do its job, an rtx
11046    (clobber (const_int 0)) is returned.
11047    An insn containing that will not be recognized.  */
11048 
11049 static rtx
11050 gen_lowpart_for_combine (machine_mode omode, rtx x)
11051 {
11052   machine_mode imode = GET_MODE (x);
11053   unsigned int osize = GET_MODE_SIZE (omode);
11054   unsigned int isize = GET_MODE_SIZE (imode);
11055   rtx result;
11056 
11057   if (omode == imode)
11058     return x;
11059 
11060   /* We can only support MODE being wider than a word if X is a
11061      constant integer or has a mode the same size.  */
11062   if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11063       && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11064     goto fail;
11065 
11066   /* X might be a paradoxical (subreg (mem)).  In that case, gen_lowpart
11067      won't know what to do.  So we will strip off the SUBREG here and
11068      process normally.  */
11069   if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11070     {
11071       x = SUBREG_REG (x);
11072 
11073       /* For use in case we fall down into the address adjustments
11074 	 further below, we need to adjust the known mode and size of
11075 	 x; imode and isize, since we just adjusted x.  */
11076       imode = GET_MODE (x);
11077 
11078       if (imode == omode)
11079 	return x;
11080 
11081       isize = GET_MODE_SIZE (imode);
11082     }
11083 
11084   result = gen_lowpart_common (omode, x);
11085 
11086   if (result)
11087     return result;
11088 
11089   if (MEM_P (x))
11090     {
11091       int offset = 0;
11092 
11093       /* Refuse to work on a volatile memory ref or one with a mode-dependent
11094 	 address.  */
11095       if (MEM_VOLATILE_P (x)
11096 	  || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11097 	goto fail;
11098 
11099       /* If we want to refer to something bigger than the original memref,
11100 	 generate a paradoxical subreg instead.  That will force a reload
11101 	 of the original memref X.  */
11102       if (isize < osize)
11103 	return gen_rtx_SUBREG (omode, x, 0);
11104 
11105       if (WORDS_BIG_ENDIAN)
11106 	offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
11107 
11108       /* Adjust the address so that the address-after-the-data is
11109 	 unchanged.  */
11110       if (BYTES_BIG_ENDIAN)
11111 	offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
11112 
11113       return adjust_address_nv (x, omode, offset);
11114     }
11115 
11116   /* If X is a comparison operator, rewrite it in a new mode.  This
11117      probably won't match, but may allow further simplifications.  */
11118   else if (COMPARISON_P (x))
11119     return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11120 
11121   /* If we couldn't simplify X any other way, just enclose it in a
11122      SUBREG.  Normally, this SUBREG won't match, but some patterns may
11123      include an explicit SUBREG or we may simplify it further in combine.  */
11124   else
11125     {
11126       int offset = 0;
11127       rtx res;
11128 
11129       offset = subreg_lowpart_offset (omode, imode);
11130       if (imode == VOIDmode)
11131 	{
11132 	  imode = int_mode_for_mode (omode);
11133 	  x = gen_lowpart_common (imode, x);
11134 	  if (x == NULL)
11135 	    goto fail;
11136 	}
11137       res = simplify_gen_subreg (omode, x, imode, offset);
11138       if (res)
11139 	return res;
11140     }
11141 
11142  fail:
11143   return gen_rtx_CLOBBER (omode, const0_rtx);
11144 }
11145 
11146 /* Try to simplify a comparison between OP0 and a constant OP1,
11147    where CODE is the comparison code that will be tested, into a
11148    (CODE OP0 const0_rtx) form.
11149 
11150    The result is a possibly different comparison code to use.
11151    *POP1 may be updated.  */
11152 
11153 static enum rtx_code
11154 simplify_compare_const (enum rtx_code code, machine_mode mode,
11155 			rtx op0, rtx *pop1)
11156 {
11157   unsigned int mode_width = GET_MODE_PRECISION (mode);
11158   HOST_WIDE_INT const_op = INTVAL (*pop1);
11159 
11160   /* Get the constant we are comparing against and turn off all bits
11161      not on in our mode.  */
11162   if (mode != VOIDmode)
11163     const_op = trunc_int_for_mode (const_op, mode);
11164 
11165   /* If we are comparing against a constant power of two and the value
11166      being compared can only have that single bit nonzero (e.g., it was
11167      `and'ed with that bit), we can replace this with a comparison
11168      with zero.  */
11169   if (const_op
11170       && (code == EQ || code == NE || code == GE || code == GEU
11171 	  || code == LT || code == LTU)
11172       && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11173       && exact_log2 (const_op & GET_MODE_MASK (mode)) >= 0
11174       && (nonzero_bits (op0, mode)
11175 	  == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
11176     {
11177       code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11178       const_op = 0;
11179     }
11180 
11181   /* Similarly, if we are comparing a value known to be either -1 or
11182      0 with -1, change it to the opposite comparison against zero.  */
11183   if (const_op == -1
11184       && (code == EQ || code == NE || code == GT || code == LE
11185 	  || code == GEU || code == LTU)
11186       && num_sign_bit_copies (op0, mode) == mode_width)
11187     {
11188       code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11189       const_op = 0;
11190     }
11191 
11192   /* Do some canonicalizations based on the comparison code.  We prefer
11193      comparisons against zero and then prefer equality comparisons.
11194      If we can reduce the size of a constant, we will do that too.  */
11195   switch (code)
11196     {
11197     case LT:
11198       /* < C is equivalent to <= (C - 1) */
11199       if (const_op > 0)
11200 	{
11201 	  const_op -= 1;
11202 	  code = LE;
11203 	  /* ... fall through to LE case below.  */
11204 	}
11205       else
11206 	break;
11207 
11208     case LE:
11209       /* <= C is equivalent to < (C + 1); we do this for C < 0  */
11210       if (const_op < 0)
11211 	{
11212 	  const_op += 1;
11213 	  code = LT;
11214 	}
11215 
11216       /* If we are doing a <= 0 comparison on a value known to have
11217 	 a zero sign bit, we can replace this with == 0.  */
11218       else if (const_op == 0
11219 	       && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11220 	       && (nonzero_bits (op0, mode)
11221 		   & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11222 	       == 0)
11223 	code = EQ;
11224       break;
11225 
11226     case GE:
11227       /* >= C is equivalent to > (C - 1).  */
11228       if (const_op > 0)
11229 	{
11230 	  const_op -= 1;
11231 	  code = GT;
11232 	  /* ... fall through to GT below.  */
11233 	}
11234       else
11235 	break;
11236 
11237     case GT:
11238       /* > C is equivalent to >= (C + 1); we do this for C < 0.  */
11239       if (const_op < 0)
11240 	{
11241 	  const_op += 1;
11242 	  code = GE;
11243 	}
11244 
11245       /* If we are doing a > 0 comparison on a value known to have
11246 	 a zero sign bit, we can replace this with != 0.  */
11247       else if (const_op == 0
11248 	       && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11249 	       && (nonzero_bits (op0, mode)
11250 		   & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11251 	       == 0)
11252 	code = NE;
11253       break;
11254 
11255     case LTU:
11256       /* < C is equivalent to <= (C - 1).  */
11257       if (const_op > 0)
11258 	{
11259 	  const_op -= 1;
11260 	  code = LEU;
11261 	  /* ... fall through ...  */
11262 	}
11263       /* (unsigned) < 0x80000000 is equivalent to >= 0.  */
11264       else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11265 	       && (unsigned HOST_WIDE_INT) const_op
11266 	       == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11267 	{
11268 	  const_op = 0;
11269 	  code = GE;
11270 	  break;
11271 	}
11272       else
11273 	break;
11274 
11275     case LEU:
11276       /* unsigned <= 0 is equivalent to == 0 */
11277       if (const_op == 0)
11278 	code = EQ;
11279       /* (unsigned) <= 0x7fffffff is equivalent to >= 0.  */
11280       else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11281 	       && (unsigned HOST_WIDE_INT) const_op
11282 	       == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11283 	{
11284 	  const_op = 0;
11285 	  code = GE;
11286 	}
11287       break;
11288 
11289     case GEU:
11290       /* >= C is equivalent to > (C - 1).  */
11291       if (const_op > 1)
11292 	{
11293 	  const_op -= 1;
11294 	  code = GTU;
11295 	  /* ... fall through ...  */
11296 	}
11297 
11298       /* (unsigned) >= 0x80000000 is equivalent to < 0.  */
11299       else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11300 	       && (unsigned HOST_WIDE_INT) const_op
11301 	       == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11302 	{
11303 	  const_op = 0;
11304 	  code = LT;
11305 	  break;
11306 	}
11307       else
11308 	break;
11309 
11310     case GTU:
11311       /* unsigned > 0 is equivalent to != 0 */
11312       if (const_op == 0)
11313 	code = NE;
11314       /* (unsigned) > 0x7fffffff is equivalent to < 0.  */
11315       else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11316 	       && (unsigned HOST_WIDE_INT) const_op
11317 	       == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11318 	{
11319 	  const_op = 0;
11320 	  code = LT;
11321 	}
11322       break;
11323 
11324     default:
11325       break;
11326     }
11327 
11328   *pop1 = GEN_INT (const_op);
11329   return code;
11330 }
11331 
11332 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11333    comparison code that will be tested.
11334 
11335    The result is a possibly different comparison code to use.  *POP0 and
11336    *POP1 may be updated.
11337 
11338    It is possible that we might detect that a comparison is either always
11339    true or always false.  However, we do not perform general constant
11340    folding in combine, so this knowledge isn't useful.  Such tautologies
11341    should have been detected earlier.  Hence we ignore all such cases.  */
11342 
11343 static enum rtx_code
11344 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11345 {
11346   rtx op0 = *pop0;
11347   rtx op1 = *pop1;
11348   rtx tem, tem1;
11349   int i;
11350   machine_mode mode, tmode;
11351 
11352   /* Try a few ways of applying the same transformation to both operands.  */
11353   while (1)
11354     {
11355 #ifndef WORD_REGISTER_OPERATIONS
11356       /* The test below this one won't handle SIGN_EXTENDs on these machines,
11357 	 so check specially.  */
11358       if (code != GTU && code != GEU && code != LTU && code != LEU
11359 	  && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11360 	  && GET_CODE (XEXP (op0, 0)) == ASHIFT
11361 	  && GET_CODE (XEXP (op1, 0)) == ASHIFT
11362 	  && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11363 	  && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11364 	  && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11365 	      == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11366 	  && CONST_INT_P (XEXP (op0, 1))
11367 	  && XEXP (op0, 1) == XEXP (op1, 1)
11368 	  && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11369 	  && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11370 	  && (INTVAL (XEXP (op0, 1))
11371 	      == (GET_MODE_PRECISION (GET_MODE (op0))
11372 		  - (GET_MODE_PRECISION
11373 		     (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11374 	{
11375 	  op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11376 	  op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11377 	}
11378 #endif
11379 
11380       /* If both operands are the same constant shift, see if we can ignore the
11381 	 shift.  We can if the shift is a rotate or if the bits shifted out of
11382 	 this shift are known to be zero for both inputs and if the type of
11383 	 comparison is compatible with the shift.  */
11384       if (GET_CODE (op0) == GET_CODE (op1)
11385 	  && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11386 	  && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11387 	      || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11388 		  && (code != GT && code != LT && code != GE && code != LE))
11389 	      || (GET_CODE (op0) == ASHIFTRT
11390 		  && (code != GTU && code != LTU
11391 		      && code != GEU && code != LEU)))
11392 	  && CONST_INT_P (XEXP (op0, 1))
11393 	  && INTVAL (XEXP (op0, 1)) >= 0
11394 	  && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11395 	  && XEXP (op0, 1) == XEXP (op1, 1))
11396 	{
11397 	  machine_mode mode = GET_MODE (op0);
11398 	  unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11399 	  int shift_count = INTVAL (XEXP (op0, 1));
11400 
11401 	  if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11402 	    mask &= (mask >> shift_count) << shift_count;
11403 	  else if (GET_CODE (op0) == ASHIFT)
11404 	    mask = (mask & (mask << shift_count)) >> shift_count;
11405 
11406 	  if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11407 	      && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11408 	    op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11409 	  else
11410 	    break;
11411 	}
11412 
11413       /* If both operands are AND's of a paradoxical SUBREG by constant, the
11414 	 SUBREGs are of the same mode, and, in both cases, the AND would
11415 	 be redundant if the comparison was done in the narrower mode,
11416 	 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11417 	 and the operand's possibly nonzero bits are 0xffffff01; in that case
11418 	 if we only care about QImode, we don't need the AND).  This case
11419 	 occurs if the output mode of an scc insn is not SImode and
11420 	 STORE_FLAG_VALUE == 1 (e.g., the 386).
11421 
11422 	 Similarly, check for a case where the AND's are ZERO_EXTEND
11423 	 operations from some narrower mode even though a SUBREG is not
11424 	 present.  */
11425 
11426       else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11427 	       && CONST_INT_P (XEXP (op0, 1))
11428 	       && CONST_INT_P (XEXP (op1, 1)))
11429 	{
11430 	  rtx inner_op0 = XEXP (op0, 0);
11431 	  rtx inner_op1 = XEXP (op1, 0);
11432 	  HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11433 	  HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11434 	  int changed = 0;
11435 
11436 	  if (paradoxical_subreg_p (inner_op0)
11437 	      && GET_CODE (inner_op1) == SUBREG
11438 	      && (GET_MODE (SUBREG_REG (inner_op0))
11439 		  == GET_MODE (SUBREG_REG (inner_op1)))
11440 	      && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11441 		  <= HOST_BITS_PER_WIDE_INT)
11442 	      && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11443 					     GET_MODE (SUBREG_REG (inner_op0)))))
11444 	      && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11445 					     GET_MODE (SUBREG_REG (inner_op1))))))
11446 	    {
11447 	      op0 = SUBREG_REG (inner_op0);
11448 	      op1 = SUBREG_REG (inner_op1);
11449 
11450 	      /* The resulting comparison is always unsigned since we masked
11451 		 off the original sign bit.  */
11452 	      code = unsigned_condition (code);
11453 
11454 	      changed = 1;
11455 	    }
11456 
11457 	  else if (c0 == c1)
11458 	    for (tmode = GET_CLASS_NARROWEST_MODE
11459 		 (GET_MODE_CLASS (GET_MODE (op0)));
11460 		 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11461 	      if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11462 		{
11463 		  op0 = gen_lowpart_or_truncate (tmode, inner_op0);
11464 		  op1 = gen_lowpart_or_truncate (tmode, inner_op1);
11465 		  code = unsigned_condition (code);
11466 		  changed = 1;
11467 		  break;
11468 		}
11469 
11470 	  if (! changed)
11471 	    break;
11472 	}
11473 
11474       /* If both operands are NOT, we can strip off the outer operation
11475 	 and adjust the comparison code for swapped operands; similarly for
11476 	 NEG, except that this must be an equality comparison.  */
11477       else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11478 	       || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11479 		   && (code == EQ || code == NE)))
11480 	op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11481 
11482       else
11483 	break;
11484     }
11485 
11486   /* If the first operand is a constant, swap the operands and adjust the
11487      comparison code appropriately, but don't do this if the second operand
11488      is already a constant integer.  */
11489   if (swap_commutative_operands_p (op0, op1))
11490     {
11491       tem = op0, op0 = op1, op1 = tem;
11492       code = swap_condition (code);
11493     }
11494 
11495   /* We now enter a loop during which we will try to simplify the comparison.
11496      For the most part, we only are concerned with comparisons with zero,
11497      but some things may really be comparisons with zero but not start
11498      out looking that way.  */
11499 
11500   while (CONST_INT_P (op1))
11501     {
11502       machine_mode mode = GET_MODE (op0);
11503       unsigned int mode_width = GET_MODE_PRECISION (mode);
11504       unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11505       int equality_comparison_p;
11506       int sign_bit_comparison_p;
11507       int unsigned_comparison_p;
11508       HOST_WIDE_INT const_op;
11509 
11510       /* We only want to handle integral modes.  This catches VOIDmode,
11511 	 CCmode, and the floating-point modes.  An exception is that we
11512 	 can handle VOIDmode if OP0 is a COMPARE or a comparison
11513 	 operation.  */
11514 
11515       if (GET_MODE_CLASS (mode) != MODE_INT
11516 	  && ! (mode == VOIDmode
11517 		&& (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11518 	break;
11519 
11520       /* Try to simplify the compare to constant, possibly changing the
11521 	 comparison op, and/or changing op1 to zero.  */
11522       code = simplify_compare_const (code, mode, op0, &op1);
11523       const_op = INTVAL (op1);
11524 
11525       /* Compute some predicates to simplify code below.  */
11526 
11527       equality_comparison_p = (code == EQ || code == NE);
11528       sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11529       unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11530 			       || code == GEU);
11531 
11532       /* If this is a sign bit comparison and we can do arithmetic in
11533 	 MODE, say that we will only be needing the sign bit of OP0.  */
11534       if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11535 	op0 = force_to_mode (op0, mode,
11536 			     (unsigned HOST_WIDE_INT) 1
11537 			     << (GET_MODE_PRECISION (mode) - 1),
11538 			     0);
11539 
11540       /* Now try cases based on the opcode of OP0.  If none of the cases
11541 	 does a "continue", we exit this loop immediately after the
11542 	 switch.  */
11543 
11544       switch (GET_CODE (op0))
11545 	{
11546 	case ZERO_EXTRACT:
11547 	  /* If we are extracting a single bit from a variable position in
11548 	     a constant that has only a single bit set and are comparing it
11549 	     with zero, we can convert this into an equality comparison
11550 	     between the position and the location of the single bit.  */
11551 	  /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11552 	     have already reduced the shift count modulo the word size.  */
11553 	  if (!SHIFT_COUNT_TRUNCATED
11554 	      && CONST_INT_P (XEXP (op0, 0))
11555 	      && XEXP (op0, 1) == const1_rtx
11556 	      && equality_comparison_p && const_op == 0
11557 	      && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11558 	    {
11559 	      if (BITS_BIG_ENDIAN)
11560 		i = BITS_PER_WORD - 1 - i;
11561 
11562 	      op0 = XEXP (op0, 2);
11563 	      op1 = GEN_INT (i);
11564 	      const_op = i;
11565 
11566 	      /* Result is nonzero iff shift count is equal to I.  */
11567 	      code = reverse_condition (code);
11568 	      continue;
11569 	    }
11570 
11571 	  /* ... fall through ...  */
11572 
11573 	case SIGN_EXTRACT:
11574 	  tem = expand_compound_operation (op0);
11575 	  if (tem != op0)
11576 	    {
11577 	      op0 = tem;
11578 	      continue;
11579 	    }
11580 	  break;
11581 
11582 	case NOT:
11583 	  /* If testing for equality, we can take the NOT of the constant.  */
11584 	  if (equality_comparison_p
11585 	      && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11586 	    {
11587 	      op0 = XEXP (op0, 0);
11588 	      op1 = tem;
11589 	      continue;
11590 	    }
11591 
11592 	  /* If just looking at the sign bit, reverse the sense of the
11593 	     comparison.  */
11594 	  if (sign_bit_comparison_p)
11595 	    {
11596 	      op0 = XEXP (op0, 0);
11597 	      code = (code == GE ? LT : GE);
11598 	      continue;
11599 	    }
11600 	  break;
11601 
11602 	case NEG:
11603 	  /* If testing for equality, we can take the NEG of the constant.  */
11604 	  if (equality_comparison_p
11605 	      && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11606 	    {
11607 	      op0 = XEXP (op0, 0);
11608 	      op1 = tem;
11609 	      continue;
11610 	    }
11611 
11612 	  /* The remaining cases only apply to comparisons with zero.  */
11613 	  if (const_op != 0)
11614 	    break;
11615 
11616 	  /* When X is ABS or is known positive,
11617 	     (neg X) is < 0 if and only if X != 0.  */
11618 
11619 	  if (sign_bit_comparison_p
11620 	      && (GET_CODE (XEXP (op0, 0)) == ABS
11621 		  || (mode_width <= HOST_BITS_PER_WIDE_INT
11622 		      && (nonzero_bits (XEXP (op0, 0), mode)
11623 			  & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11624 			 == 0)))
11625 	    {
11626 	      op0 = XEXP (op0, 0);
11627 	      code = (code == LT ? NE : EQ);
11628 	      continue;
11629 	    }
11630 
11631 	  /* If we have NEG of something whose two high-order bits are the
11632 	     same, we know that "(-a) < 0" is equivalent to "a > 0".  */
11633 	  if (num_sign_bit_copies (op0, mode) >= 2)
11634 	    {
11635 	      op0 = XEXP (op0, 0);
11636 	      code = swap_condition (code);
11637 	      continue;
11638 	    }
11639 	  break;
11640 
11641 	case ROTATE:
11642 	  /* If we are testing equality and our count is a constant, we
11643 	     can perform the inverse operation on our RHS.  */
11644 	  if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11645 	      && (tem = simplify_binary_operation (ROTATERT, mode,
11646 						   op1, XEXP (op0, 1))) != 0)
11647 	    {
11648 	      op0 = XEXP (op0, 0);
11649 	      op1 = tem;
11650 	      continue;
11651 	    }
11652 
11653 	  /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11654 	     a particular bit.  Convert it to an AND of a constant of that
11655 	     bit.  This will be converted into a ZERO_EXTRACT.  */
11656 	  if (const_op == 0 && sign_bit_comparison_p
11657 	      && CONST_INT_P (XEXP (op0, 1))
11658 	      && mode_width <= HOST_BITS_PER_WIDE_INT)
11659 	    {
11660 	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11661 					    ((unsigned HOST_WIDE_INT) 1
11662 					     << (mode_width - 1
11663 						 - INTVAL (XEXP (op0, 1)))));
11664 	      code = (code == LT ? NE : EQ);
11665 	      continue;
11666 	    }
11667 
11668 	  /* Fall through.  */
11669 
11670 	case ABS:
11671 	  /* ABS is ignorable inside an equality comparison with zero.  */
11672 	  if (const_op == 0 && equality_comparison_p)
11673 	    {
11674 	      op0 = XEXP (op0, 0);
11675 	      continue;
11676 	    }
11677 	  break;
11678 
11679 	case SIGN_EXTEND:
11680 	  /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11681 	     (compare FOO CONST) if CONST fits in FOO's mode and we
11682 	     are either testing inequality or have an unsigned
11683 	     comparison with ZERO_EXTEND or a signed comparison with
11684 	     SIGN_EXTEND.  But don't do it if we don't have a compare
11685 	     insn of the given mode, since we'd have to revert it
11686 	     later on, and then we wouldn't know whether to sign- or
11687 	     zero-extend.  */
11688 	  mode = GET_MODE (XEXP (op0, 0));
11689 	  if (GET_MODE_CLASS (mode) == MODE_INT
11690 	      && ! unsigned_comparison_p
11691 	      && HWI_COMPUTABLE_MODE_P (mode)
11692 	      && trunc_int_for_mode (const_op, mode) == const_op
11693 	      && have_insn_for (COMPARE, mode))
11694 	    {
11695 	      op0 = XEXP (op0, 0);
11696 	      continue;
11697 	    }
11698 	  break;
11699 
11700 	case SUBREG:
11701 	  /* Check for the case where we are comparing A - C1 with C2, that is
11702 
11703 	       (subreg:MODE (plus (A) (-C1))) op (C2)
11704 
11705 	     with C1 a constant, and try to lift the SUBREG, i.e. to do the
11706 	     comparison in the wider mode.  One of the following two conditions
11707 	     must be true in order for this to be valid:
11708 
11709 	       1. The mode extension results in the same bit pattern being added
11710 		  on both sides and the comparison is equality or unsigned.  As
11711 		  C2 has been truncated to fit in MODE, the pattern can only be
11712 		  all 0s or all 1s.
11713 
11714 	       2. The mode extension results in the sign bit being copied on
11715 		  each side.
11716 
11717 	     The difficulty here is that we have predicates for A but not for
11718 	     (A - C1) so we need to check that C1 is within proper bounds so
11719 	     as to perturbate A as little as possible.  */
11720 
11721 	  if (mode_width <= HOST_BITS_PER_WIDE_INT
11722 	      && subreg_lowpart_p (op0)
11723 	      && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11724 	      && GET_CODE (SUBREG_REG (op0)) == PLUS
11725 	      && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11726 	    {
11727 	      machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11728 	      rtx a = XEXP (SUBREG_REG (op0), 0);
11729 	      HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11730 
11731 	      if ((c1 > 0
11732 		   && (unsigned HOST_WIDE_INT) c1
11733 		       < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11734 		   && (equality_comparison_p || unsigned_comparison_p)
11735 		   /* (A - C1) zero-extends if it is positive and sign-extends
11736 		      if it is negative, C2 both zero- and sign-extends.  */
11737 		   && ((0 == (nonzero_bits (a, inner_mode)
11738 			      & ~GET_MODE_MASK (mode))
11739 			&& const_op >= 0)
11740 		       /* (A - C1) sign-extends if it is positive and 1-extends
11741 			  if it is negative, C2 both sign- and 1-extends.  */
11742 		       || (num_sign_bit_copies (a, inner_mode)
11743 			   > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11744 					     - mode_width)
11745 			   && const_op < 0)))
11746 		  || ((unsigned HOST_WIDE_INT) c1
11747 		       < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11748 		      /* (A - C1) always sign-extends, like C2.  */
11749 		      && num_sign_bit_copies (a, inner_mode)
11750 			 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11751 					   - (mode_width - 1))))
11752 		{
11753 		  op0 = SUBREG_REG (op0);
11754 		  continue;
11755 		}
11756 	    }
11757 
11758 	  /* If the inner mode is narrower and we are extracting the low part,
11759 	     we can treat the SUBREG as if it were a ZERO_EXTEND.  */
11760 	  if (subreg_lowpart_p (op0)
11761 	      && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11762 	    /* Fall through */ ;
11763 	  else
11764 	    break;
11765 
11766 	  /* ... fall through ...  */
11767 
11768 	case ZERO_EXTEND:
11769 	  mode = GET_MODE (XEXP (op0, 0));
11770 	  if (GET_MODE_CLASS (mode) == MODE_INT
11771 	      && (unsigned_comparison_p || equality_comparison_p)
11772 	      && HWI_COMPUTABLE_MODE_P (mode)
11773 	      && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
11774 	      && const_op >= 0
11775 	      && have_insn_for (COMPARE, mode))
11776 	    {
11777 	      op0 = XEXP (op0, 0);
11778 	      continue;
11779 	    }
11780 	  break;
11781 
11782 	case PLUS:
11783 	  /* (eq (plus X A) B) -> (eq X (minus B A)).  We can only do
11784 	     this for equality comparisons due to pathological cases involving
11785 	     overflows.  */
11786 	  if (equality_comparison_p
11787 	      && 0 != (tem = simplify_binary_operation (MINUS, mode,
11788 							op1, XEXP (op0, 1))))
11789 	    {
11790 	      op0 = XEXP (op0, 0);
11791 	      op1 = tem;
11792 	      continue;
11793 	    }
11794 
11795 	  /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0.  */
11796 	  if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11797 	      && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11798 	    {
11799 	      op0 = XEXP (XEXP (op0, 0), 0);
11800 	      code = (code == LT ? EQ : NE);
11801 	      continue;
11802 	    }
11803 	  break;
11804 
11805 	case MINUS:
11806 	  /* We used to optimize signed comparisons against zero, but that
11807 	     was incorrect.  Unsigned comparisons against zero (GTU, LEU)
11808 	     arrive here as equality comparisons, or (GEU, LTU) are
11809 	     optimized away.  No need to special-case them.  */
11810 
11811 	  /* (eq (minus A B) C) -> (eq A (plus B C)) or
11812 	     (eq B (minus A C)), whichever simplifies.  We can only do
11813 	     this for equality comparisons due to pathological cases involving
11814 	     overflows.  */
11815 	  if (equality_comparison_p
11816 	      && 0 != (tem = simplify_binary_operation (PLUS, mode,
11817 							XEXP (op0, 1), op1)))
11818 	    {
11819 	      op0 = XEXP (op0, 0);
11820 	      op1 = tem;
11821 	      continue;
11822 	    }
11823 
11824 	  if (equality_comparison_p
11825 	      && 0 != (tem = simplify_binary_operation (MINUS, mode,
11826 							XEXP (op0, 0), op1)))
11827 	    {
11828 	      op0 = XEXP (op0, 1);
11829 	      op1 = tem;
11830 	      continue;
11831 	    }
11832 
11833 	  /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11834 	     of bits in X minus 1, is one iff X > 0.  */
11835 	  if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11836 	      && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11837 	      && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11838 	      && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11839 	    {
11840 	      op0 = XEXP (op0, 1);
11841 	      code = (code == GE ? LE : GT);
11842 	      continue;
11843 	    }
11844 	  break;
11845 
11846 	case XOR:
11847 	  /* (eq (xor A B) C) -> (eq A (xor B C)).  This is a simplification
11848 	     if C is zero or B is a constant.  */
11849 	  if (equality_comparison_p
11850 	      && 0 != (tem = simplify_binary_operation (XOR, mode,
11851 							XEXP (op0, 1), op1)))
11852 	    {
11853 	      op0 = XEXP (op0, 0);
11854 	      op1 = tem;
11855 	      continue;
11856 	    }
11857 	  break;
11858 
11859 	case EQ:  case NE:
11860 	case UNEQ:  case LTGT:
11861 	case LT:  case LTU:  case UNLT:  case LE:  case LEU:  case UNLE:
11862 	case GT:  case GTU:  case UNGT:  case GE:  case GEU:  case UNGE:
11863 	case UNORDERED: case ORDERED:
11864 	  /* We can't do anything if OP0 is a condition code value, rather
11865 	     than an actual data value.  */
11866 	  if (const_op != 0
11867 	      || CC0_P (XEXP (op0, 0))
11868 	      || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11869 	    break;
11870 
11871 	  /* Get the two operands being compared.  */
11872 	  if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11873 	    tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11874 	  else
11875 	    tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11876 
11877 	  /* Check for the cases where we simply want the result of the
11878 	     earlier test or the opposite of that result.  */
11879 	  if (code == NE || code == EQ
11880 	      || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
11881 		  && (code == LT || code == GE)))
11882 	    {
11883 	      enum rtx_code new_code;
11884 	      if (code == LT || code == NE)
11885 		new_code = GET_CODE (op0);
11886 	      else
11887 		new_code = reversed_comparison_code (op0, NULL);
11888 
11889 	      if (new_code != UNKNOWN)
11890 		{
11891 		  code = new_code;
11892 		  op0 = tem;
11893 		  op1 = tem1;
11894 		  continue;
11895 		}
11896 	    }
11897 	  break;
11898 
11899 	case IOR:
11900 	  /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11901 	     iff X <= 0.  */
11902 	  if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11903 	      && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11904 	      && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11905 	    {
11906 	      op0 = XEXP (op0, 1);
11907 	      code = (code == GE ? GT : LE);
11908 	      continue;
11909 	    }
11910 	  break;
11911 
11912 	case AND:
11913 	  /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1).  This
11914 	     will be converted to a ZERO_EXTRACT later.  */
11915 	  if (const_op == 0 && equality_comparison_p
11916 	      && GET_CODE (XEXP (op0, 0)) == ASHIFT
11917 	      && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11918 	    {
11919 	      op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
11920 				      XEXP (XEXP (op0, 0), 1));
11921 	      op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11922 	      continue;
11923 	    }
11924 
11925 	  /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11926 	     zero and X is a comparison and C1 and C2 describe only bits set
11927 	     in STORE_FLAG_VALUE, we can compare with X.  */
11928 	  if (const_op == 0 && equality_comparison_p
11929 	      && mode_width <= HOST_BITS_PER_WIDE_INT
11930 	      && CONST_INT_P (XEXP (op0, 1))
11931 	      && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11932 	      && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11933 	      && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11934 	      && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11935 	    {
11936 	      mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11937 		      << INTVAL (XEXP (XEXP (op0, 0), 1)));
11938 	      if ((~STORE_FLAG_VALUE & mask) == 0
11939 		  && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11940 		      || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11941 			  && COMPARISON_P (tem))))
11942 		{
11943 		  op0 = XEXP (XEXP (op0, 0), 0);
11944 		  continue;
11945 		}
11946 	    }
11947 
11948 	  /* If we are doing an equality comparison of an AND of a bit equal
11949 	     to the sign bit, replace this with a LT or GE comparison of
11950 	     the underlying value.  */
11951 	  if (equality_comparison_p
11952 	      && const_op == 0
11953 	      && CONST_INT_P (XEXP (op0, 1))
11954 	      && mode_width <= HOST_BITS_PER_WIDE_INT
11955 	      && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11956 		  == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11957 	    {
11958 	      op0 = XEXP (op0, 0);
11959 	      code = (code == EQ ? GE : LT);
11960 	      continue;
11961 	    }
11962 
11963 	  /* If this AND operation is really a ZERO_EXTEND from a narrower
11964 	     mode, the constant fits within that mode, and this is either an
11965 	     equality or unsigned comparison, try to do this comparison in
11966 	     the narrower mode.
11967 
11968 	     Note that in:
11969 
11970 	     (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11971 	     -> (ne:DI (reg:SI 4) (const_int 0))
11972 
11973 	     unless TRULY_NOOP_TRUNCATION allows it or the register is
11974 	     known to hold a value of the required mode the
11975 	     transformation is invalid.  */
11976 	  if ((equality_comparison_p || unsigned_comparison_p)
11977 	      && CONST_INT_P (XEXP (op0, 1))
11978 	      && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
11979 				   & GET_MODE_MASK (mode))
11980 				  + 1)) >= 0
11981 	      && const_op >> i == 0
11982 	      && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
11983 	    {
11984 	      op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
11985 	      continue;
11986 	    }
11987 
11988 	  /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
11989 	     fits in both M1 and M2 and the SUBREG is either paradoxical
11990 	     or represents the low part, permute the SUBREG and the AND
11991 	     and try again.  */
11992 	  if (GET_CODE (XEXP (op0, 0)) == SUBREG
11993 	      && CONST_INT_P (XEXP (op0, 1)))
11994 	    {
11995 	      tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11996 	      unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
11997 	      /* Require an integral mode, to avoid creating something like
11998 		 (AND:SF ...).  */
11999 	      if (SCALAR_INT_MODE_P (tmode)
12000 		  /* It is unsafe to commute the AND into the SUBREG if the
12001 		     SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12002 		     not defined.  As originally written the upper bits
12003 		     have a defined value due to the AND operation.
12004 		     However, if we commute the AND inside the SUBREG then
12005 		     they no longer have defined values and the meaning of
12006 		     the code has been changed.
12007 		     Also C1 should not change value in the smaller mode,
12008 		     see PR67028 (a positive C1 can become negative in the
12009 		     smaller mode, so that the AND does no longer mask the
12010 		     upper bits).  */
12011 		  && (0
12012 #ifdef WORD_REGISTER_OPERATIONS
12013 		      || (mode_width > GET_MODE_PRECISION (tmode)
12014 			  && mode_width <= BITS_PER_WORD
12015 			  && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12016 #endif
12017 		      || (mode_width <= GET_MODE_PRECISION (tmode)
12018 			  && subreg_lowpart_p (XEXP (op0, 0))))
12019 		  && mode_width <= HOST_BITS_PER_WIDE_INT
12020 		  && HWI_COMPUTABLE_MODE_P (tmode)
12021 		  && (c1 & ~mask) == 0
12022 		  && (c1 & ~GET_MODE_MASK (tmode)) == 0
12023 		  && c1 != mask
12024 		  && c1 != GET_MODE_MASK (tmode))
12025 		{
12026 		  op0 = simplify_gen_binary (AND, tmode,
12027 					     SUBREG_REG (XEXP (op0, 0)),
12028 					     gen_int_mode (c1, tmode));
12029 		  op0 = gen_lowpart (mode, op0);
12030 		  continue;
12031 		}
12032 	    }
12033 
12034 	  /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0).  */
12035 	  if (const_op == 0 && equality_comparison_p
12036 	      && XEXP (op0, 1) == const1_rtx
12037 	      && GET_CODE (XEXP (op0, 0)) == NOT)
12038 	    {
12039 	      op0 = simplify_and_const_int (NULL_RTX, mode,
12040 					    XEXP (XEXP (op0, 0), 0), 1);
12041 	      code = (code == NE ? EQ : NE);
12042 	      continue;
12043 	    }
12044 
12045 	  /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12046 	     (eq (and (lshiftrt X) 1) 0).
12047 	     Also handle the case where (not X) is expressed using xor.  */
12048 	  if (const_op == 0 && equality_comparison_p
12049 	      && XEXP (op0, 1) == const1_rtx
12050 	      && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12051 	    {
12052 	      rtx shift_op = XEXP (XEXP (op0, 0), 0);
12053 	      rtx shift_count = XEXP (XEXP (op0, 0), 1);
12054 
12055 	      if (GET_CODE (shift_op) == NOT
12056 		  || (GET_CODE (shift_op) == XOR
12057 		      && CONST_INT_P (XEXP (shift_op, 1))
12058 		      && CONST_INT_P (shift_count)
12059 		      && HWI_COMPUTABLE_MODE_P (mode)
12060 		      && (UINTVAL (XEXP (shift_op, 1))
12061 			  == (unsigned HOST_WIDE_INT) 1
12062 			       << INTVAL (shift_count))))
12063 		{
12064 		  op0
12065 		    = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12066 		  op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12067 		  code = (code == NE ? EQ : NE);
12068 		  continue;
12069 		}
12070 	    }
12071 	  break;
12072 
12073 	case ASHIFT:
12074 	  /* If we have (compare (ashift FOO N) (const_int C)) and
12075 	     the high order N bits of FOO (N+1 if an inequality comparison)
12076 	     are known to be zero, we can do this by comparing FOO with C
12077 	     shifted right N bits so long as the low-order N bits of C are
12078 	     zero.  */
12079 	  if (CONST_INT_P (XEXP (op0, 1))
12080 	      && INTVAL (XEXP (op0, 1)) >= 0
12081 	      && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12082 		  < HOST_BITS_PER_WIDE_INT)
12083 	      && (((unsigned HOST_WIDE_INT) const_op
12084 		   & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
12085 		      - 1)) == 0)
12086 	      && mode_width <= HOST_BITS_PER_WIDE_INT
12087 	      && (nonzero_bits (XEXP (op0, 0), mode)
12088 		  & ~(mask >> (INTVAL (XEXP (op0, 1))
12089 			       + ! equality_comparison_p))) == 0)
12090 	    {
12091 	      /* We must perform a logical shift, not an arithmetic one,
12092 		 as we want the top N bits of C to be zero.  */
12093 	      unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12094 
12095 	      temp >>= INTVAL (XEXP (op0, 1));
12096 	      op1 = gen_int_mode (temp, mode);
12097 	      op0 = XEXP (op0, 0);
12098 	      continue;
12099 	    }
12100 
12101 	  /* If we are doing a sign bit comparison, it means we are testing
12102 	     a particular bit.  Convert it to the appropriate AND.  */
12103 	  if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12104 	      && mode_width <= HOST_BITS_PER_WIDE_INT)
12105 	    {
12106 	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12107 					    ((unsigned HOST_WIDE_INT) 1
12108 					     << (mode_width - 1
12109 						 - INTVAL (XEXP (op0, 1)))));
12110 	      code = (code == LT ? NE : EQ);
12111 	      continue;
12112 	    }
12113 
12114 	  /* If this an equality comparison with zero and we are shifting
12115 	     the low bit to the sign bit, we can convert this to an AND of the
12116 	     low-order bit.  */
12117 	  if (const_op == 0 && equality_comparison_p
12118 	      && CONST_INT_P (XEXP (op0, 1))
12119 	      && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12120 	    {
12121 	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12122 	      continue;
12123 	    }
12124 	  break;
12125 
12126 	case ASHIFTRT:
12127 	  /* If this is an equality comparison with zero, we can do this
12128 	     as a logical shift, which might be much simpler.  */
12129 	  if (equality_comparison_p && const_op == 0
12130 	      && CONST_INT_P (XEXP (op0, 1)))
12131 	    {
12132 	      op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12133 					  XEXP (op0, 0),
12134 					  INTVAL (XEXP (op0, 1)));
12135 	      continue;
12136 	    }
12137 
12138 	  /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12139 	     do the comparison in a narrower mode.  */
12140 	  if (! unsigned_comparison_p
12141 	      && CONST_INT_P (XEXP (op0, 1))
12142 	      && GET_CODE (XEXP (op0, 0)) == ASHIFT
12143 	      && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12144 	      && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12145 					 MODE_INT, 1)) != BLKmode
12146 	      && (((unsigned HOST_WIDE_INT) const_op
12147 		   + (GET_MODE_MASK (tmode) >> 1) + 1)
12148 		  <= GET_MODE_MASK (tmode)))
12149 	    {
12150 	      op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12151 	      continue;
12152 	    }
12153 
12154 	  /* Likewise if OP0 is a PLUS of a sign extension with a
12155 	     constant, which is usually represented with the PLUS
12156 	     between the shifts.  */
12157 	  if (! unsigned_comparison_p
12158 	      && CONST_INT_P (XEXP (op0, 1))
12159 	      && GET_CODE (XEXP (op0, 0)) == PLUS
12160 	      && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12161 	      && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12162 	      && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12163 	      && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12164 					 MODE_INT, 1)) != BLKmode
12165 	      && (((unsigned HOST_WIDE_INT) const_op
12166 		   + (GET_MODE_MASK (tmode) >> 1) + 1)
12167 		  <= GET_MODE_MASK (tmode)))
12168 	    {
12169 	      rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12170 	      rtx add_const = XEXP (XEXP (op0, 0), 1);
12171 	      rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
12172 						   add_const, XEXP (op0, 1));
12173 
12174 	      op0 = simplify_gen_binary (PLUS, tmode,
12175 					 gen_lowpart (tmode, inner),
12176 					 new_const);
12177 	      continue;
12178 	    }
12179 
12180 	  /* ... fall through ...  */
12181 	case LSHIFTRT:
12182 	  /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12183 	     the low order N bits of FOO are known to be zero, we can do this
12184 	     by comparing FOO with C shifted left N bits so long as no
12185 	     overflow occurs.  Even if the low order N bits of FOO aren't known
12186 	     to be zero, if the comparison is >= or < we can use the same
12187 	     optimization and for > or <= by setting all the low
12188 	     order N bits in the comparison constant.  */
12189 	  if (CONST_INT_P (XEXP (op0, 1))
12190 	      && INTVAL (XEXP (op0, 1)) > 0
12191 	      && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12192 	      && mode_width <= HOST_BITS_PER_WIDE_INT
12193 	      && (((unsigned HOST_WIDE_INT) const_op
12194 		   + (GET_CODE (op0) != LSHIFTRT
12195 		      ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12196 			 + 1)
12197 		      : 0))
12198 		  <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12199 	    {
12200 	      unsigned HOST_WIDE_INT low_bits
12201 		= (nonzero_bits (XEXP (op0, 0), mode)
12202 		   & (((unsigned HOST_WIDE_INT) 1
12203 		       << INTVAL (XEXP (op0, 1))) - 1));
12204 	      if (low_bits == 0 || !equality_comparison_p)
12205 		{
12206 		  /* If the shift was logical, then we must make the condition
12207 		     unsigned.  */
12208 		  if (GET_CODE (op0) == LSHIFTRT)
12209 		    code = unsigned_condition (code);
12210 
12211 		  const_op <<= INTVAL (XEXP (op0, 1));
12212 		  if (low_bits != 0
12213 		      && (code == GT || code == GTU
12214 			  || code == LE || code == LEU))
12215 		    const_op
12216 		      |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
12217 		  op1 = GEN_INT (const_op);
12218 		  op0 = XEXP (op0, 0);
12219 		  continue;
12220 		}
12221 	    }
12222 
12223 	  /* If we are using this shift to extract just the sign bit, we
12224 	     can replace this with an LT or GE comparison.  */
12225 	  if (const_op == 0
12226 	      && (equality_comparison_p || sign_bit_comparison_p)
12227 	      && CONST_INT_P (XEXP (op0, 1))
12228 	      && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12229 	    {
12230 	      op0 = XEXP (op0, 0);
12231 	      code = (code == NE || code == GT ? LT : GE);
12232 	      continue;
12233 	    }
12234 	  break;
12235 
12236 	default:
12237 	  break;
12238 	}
12239 
12240       break;
12241     }
12242 
12243   /* Now make any compound operations involved in this comparison.  Then,
12244      check for an outmost SUBREG on OP0 that is not doing anything or is
12245      paradoxical.  The latter transformation must only be performed when
12246      it is known that the "extra" bits will be the same in op0 and op1 or
12247      that they don't matter.  There are three cases to consider:
12248 
12249      1. SUBREG_REG (op0) is a register.  In this case the bits are don't
12250      care bits and we can assume they have any convenient value.  So
12251      making the transformation is safe.
12252 
12253      2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
12254      In this case the upper bits of op0 are undefined.  We should not make
12255      the simplification in that case as we do not know the contents of
12256      those bits.
12257 
12258      3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
12259      UNKNOWN.  In that case we know those bits are zeros or ones.  We must
12260      also be sure that they are the same as the upper bits of op1.
12261 
12262      We can never remove a SUBREG for a non-equality comparison because
12263      the sign bit is in a different place in the underlying object.  */
12264 
12265   rtx_code op0_mco_code = SET;
12266   if (op1 == const0_rtx)
12267     op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12268 
12269   op0 = make_compound_operation (op0, op0_mco_code);
12270   op1 = make_compound_operation (op1, SET);
12271 
12272   if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12273       && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12274       && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12275       && (code == NE || code == EQ))
12276     {
12277       if (paradoxical_subreg_p (op0))
12278 	{
12279 	  /* For paradoxical subregs, allow case 1 as above.  Case 3 isn't
12280 	     implemented.  */
12281 	  if (REG_P (SUBREG_REG (op0)))
12282 	    {
12283 	      op0 = SUBREG_REG (op0);
12284 	      op1 = gen_lowpart (GET_MODE (op0), op1);
12285 	    }
12286 	}
12287       else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12288 		<= HOST_BITS_PER_WIDE_INT)
12289 	       && (nonzero_bits (SUBREG_REG (op0),
12290 				 GET_MODE (SUBREG_REG (op0)))
12291 		   & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12292 	{
12293 	  tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12294 
12295 	  if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12296 	       & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12297 	    op0 = SUBREG_REG (op0), op1 = tem;
12298 	}
12299     }
12300 
12301   /* We now do the opposite procedure: Some machines don't have compare
12302      insns in all modes.  If OP0's mode is an integer mode smaller than a
12303      word and we can't do a compare in that mode, see if there is a larger
12304      mode for which we can do the compare.  There are a number of cases in
12305      which we can use the wider mode.  */
12306 
12307   mode = GET_MODE (op0);
12308   if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12309       && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12310       && ! have_insn_for (COMPARE, mode))
12311     for (tmode = GET_MODE_WIDER_MODE (mode);
12312 	 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12313 	 tmode = GET_MODE_WIDER_MODE (tmode))
12314       if (have_insn_for (COMPARE, tmode))
12315 	{
12316 	  int zero_extended;
12317 
12318 	  /* If this is a test for negative, we can make an explicit
12319 	     test of the sign bit.  Test this first so we can use
12320 	     a paradoxical subreg to extend OP0.  */
12321 
12322 	  if (op1 == const0_rtx && (code == LT || code == GE)
12323 	      && HWI_COMPUTABLE_MODE_P (mode))
12324 	    {
12325 	      unsigned HOST_WIDE_INT sign
12326 		= (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1);
12327 	      op0 = simplify_gen_binary (AND, tmode,
12328 					 gen_lowpart (tmode, op0),
12329 					 gen_int_mode (sign, tmode));
12330 	      code = (code == LT) ? NE : EQ;
12331 	      break;
12332 	    }
12333 
12334 	  /* If the only nonzero bits in OP0 and OP1 are those in the
12335 	     narrower mode and this is an equality or unsigned comparison,
12336 	     we can use the wider mode.  Similarly for sign-extended
12337 	     values, in which case it is true for all comparisons.  */
12338 	  zero_extended = ((code == EQ || code == NE
12339 			    || code == GEU || code == GTU
12340 			    || code == LEU || code == LTU)
12341 			   && (nonzero_bits (op0, tmode)
12342 			       & ~GET_MODE_MASK (mode)) == 0
12343 			   && ((CONST_INT_P (op1)
12344 				|| (nonzero_bits (op1, tmode)
12345 				    & ~GET_MODE_MASK (mode)) == 0)));
12346 
12347 	  if (zero_extended
12348 	      || ((num_sign_bit_copies (op0, tmode)
12349 		   > (unsigned int) (GET_MODE_PRECISION (tmode)
12350 				     - GET_MODE_PRECISION (mode)))
12351 		  && (num_sign_bit_copies (op1, tmode)
12352 		      > (unsigned int) (GET_MODE_PRECISION (tmode)
12353 					- GET_MODE_PRECISION (mode)))))
12354 	    {
12355 	      /* If OP0 is an AND and we don't have an AND in MODE either,
12356 		 make a new AND in the proper mode.  */
12357 	      if (GET_CODE (op0) == AND
12358 		  && !have_insn_for (AND, mode))
12359 		op0 = simplify_gen_binary (AND, tmode,
12360 					   gen_lowpart (tmode,
12361 							XEXP (op0, 0)),
12362 					   gen_lowpart (tmode,
12363 							XEXP (op0, 1)));
12364 	      else
12365 		{
12366 		  if (zero_extended)
12367 		    {
12368 		      op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12369 		      op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12370 		    }
12371 		  else
12372 		    {
12373 		      op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12374 		      op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12375 		    }
12376 		  break;
12377 		}
12378 	    }
12379 	}
12380 
12381   /* We may have changed the comparison operands.  Re-canonicalize.  */
12382   if (swap_commutative_operands_p (op0, op1))
12383     {
12384       tem = op0, op0 = op1, op1 = tem;
12385       code = swap_condition (code);
12386     }
12387 
12388   /* If this machine only supports a subset of valid comparisons, see if we
12389      can convert an unsupported one into a supported one.  */
12390   target_canonicalize_comparison (&code, &op0, &op1, 0);
12391 
12392   *pop0 = op0;
12393   *pop1 = op1;
12394 
12395   return code;
12396 }
12397 
12398 /* Utility function for record_value_for_reg.  Count number of
12399    rtxs in X.  */
12400 static int
12401 count_rtxs (rtx x)
12402 {
12403   enum rtx_code code = GET_CODE (x);
12404   const char *fmt;
12405   int i, j, ret = 1;
12406 
12407   if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12408       || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12409     {
12410       rtx x0 = XEXP (x, 0);
12411       rtx x1 = XEXP (x, 1);
12412 
12413       if (x0 == x1)
12414 	return 1 + 2 * count_rtxs (x0);
12415 
12416       if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12417 	   || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12418 	  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12419 	return 2 + 2 * count_rtxs (x0)
12420 	       + count_rtxs (x == XEXP (x1, 0)
12421 			     ? XEXP (x1, 1) : XEXP (x1, 0));
12422 
12423       if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12424 	   || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12425 	  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12426 	return 2 + 2 * count_rtxs (x1)
12427 	       + count_rtxs (x == XEXP (x0, 0)
12428 			     ? XEXP (x0, 1) : XEXP (x0, 0));
12429     }
12430 
12431   fmt = GET_RTX_FORMAT (code);
12432   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12433     if (fmt[i] == 'e')
12434       ret += count_rtxs (XEXP (x, i));
12435     else if (fmt[i] == 'E')
12436       for (j = 0; j < XVECLEN (x, i); j++)
12437 	ret += count_rtxs (XVECEXP (x, i, j));
12438 
12439   return ret;
12440 }
12441 
12442 /* Utility function for following routine.  Called when X is part of a value
12443    being stored into last_set_value.  Sets last_set_table_tick
12444    for each register mentioned.  Similar to mention_regs in cse.c  */
12445 
12446 static void
12447 update_table_tick (rtx x)
12448 {
12449   enum rtx_code code = GET_CODE (x);
12450   const char *fmt = GET_RTX_FORMAT (code);
12451   int i, j;
12452 
12453   if (code == REG)
12454     {
12455       unsigned int regno = REGNO (x);
12456       unsigned int endregno = END_REGNO (x);
12457       unsigned int r;
12458 
12459       for (r = regno; r < endregno; r++)
12460 	{
12461 	  reg_stat_type *rsp = &reg_stat[r];
12462 	  rsp->last_set_table_tick = label_tick;
12463 	}
12464 
12465       return;
12466     }
12467 
12468   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12469     if (fmt[i] == 'e')
12470       {
12471 	/* Check for identical subexpressions.  If x contains
12472 	   identical subexpression we only have to traverse one of
12473 	   them.  */
12474 	if (i == 0 && ARITHMETIC_P (x))
12475 	  {
12476 	    /* Note that at this point x1 has already been
12477 	       processed.  */
12478 	    rtx x0 = XEXP (x, 0);
12479 	    rtx x1 = XEXP (x, 1);
12480 
12481 	    /* If x0 and x1 are identical then there is no need to
12482 	       process x0.  */
12483 	    if (x0 == x1)
12484 	      break;
12485 
12486 	    /* If x0 is identical to a subexpression of x1 then while
12487 	       processing x1, x0 has already been processed.  Thus we
12488 	       are done with x.  */
12489 	    if (ARITHMETIC_P (x1)
12490 		&& (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12491 	      break;
12492 
12493 	    /* If x1 is identical to a subexpression of x0 then we
12494 	       still have to process the rest of x0.  */
12495 	    if (ARITHMETIC_P (x0)
12496 		&& (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12497 	      {
12498 		update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12499 		break;
12500 	      }
12501 	  }
12502 
12503 	update_table_tick (XEXP (x, i));
12504       }
12505     else if (fmt[i] == 'E')
12506       for (j = 0; j < XVECLEN (x, i); j++)
12507 	update_table_tick (XVECEXP (x, i, j));
12508 }
12509 
12510 /* Record that REG is set to VALUE in insn INSN.  If VALUE is zero, we
12511    are saying that the register is clobbered and we no longer know its
12512    value.  If INSN is zero, don't update reg_stat[].last_set; this is
12513    only permitted with VALUE also zero and is used to invalidate the
12514    register.  */
12515 
12516 static void
12517 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
12518 {
12519   unsigned int regno = REGNO (reg);
12520   unsigned int endregno = END_REGNO (reg);
12521   unsigned int i;
12522   reg_stat_type *rsp;
12523 
12524   /* If VALUE contains REG and we have a previous value for REG, substitute
12525      the previous value.  */
12526   if (value && insn && reg_overlap_mentioned_p (reg, value))
12527     {
12528       rtx tem;
12529 
12530       /* Set things up so get_last_value is allowed to see anything set up to
12531 	 our insn.  */
12532       subst_low_luid = DF_INSN_LUID (insn);
12533       tem = get_last_value (reg);
12534 
12535       /* If TEM is simply a binary operation with two CLOBBERs as operands,
12536 	 it isn't going to be useful and will take a lot of time to process,
12537 	 so just use the CLOBBER.  */
12538 
12539       if (tem)
12540 	{
12541 	  if (ARITHMETIC_P (tem)
12542 	      && GET_CODE (XEXP (tem, 0)) == CLOBBER
12543 	      && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12544 	    tem = XEXP (tem, 0);
12545 	  else if (count_occurrences (value, reg, 1) >= 2)
12546 	    {
12547 	      /* If there are two or more occurrences of REG in VALUE,
12548 		 prevent the value from growing too much.  */
12549 	      if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12550 		tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12551 	    }
12552 
12553 	  value = replace_rtx (copy_rtx (value), reg, tem);
12554 	}
12555     }
12556 
12557   /* For each register modified, show we don't know its value, that
12558      we don't know about its bitwise content, that its value has been
12559      updated, and that we don't know the location of the death of the
12560      register.  */
12561   for (i = regno; i < endregno; i++)
12562     {
12563       rsp = &reg_stat[i];
12564 
12565       if (insn)
12566 	rsp->last_set = insn;
12567 
12568       rsp->last_set_value = 0;
12569       rsp->last_set_mode = VOIDmode;
12570       rsp->last_set_nonzero_bits = 0;
12571       rsp->last_set_sign_bit_copies = 0;
12572       rsp->last_death = 0;
12573       rsp->truncated_to_mode = VOIDmode;
12574     }
12575 
12576   /* Mark registers that are being referenced in this value.  */
12577   if (value)
12578     update_table_tick (value);
12579 
12580   /* Now update the status of each register being set.
12581      If someone is using this register in this block, set this register
12582      to invalid since we will get confused between the two lives in this
12583      basic block.  This makes using this register always invalid.  In cse, we
12584      scan the table to invalidate all entries using this register, but this
12585      is too much work for us.  */
12586 
12587   for (i = regno; i < endregno; i++)
12588     {
12589       rsp = &reg_stat[i];
12590       rsp->last_set_label = label_tick;
12591       if (!insn
12592 	  || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12593 	rsp->last_set_invalid = 1;
12594       else
12595 	rsp->last_set_invalid = 0;
12596     }
12597 
12598   /* The value being assigned might refer to X (like in "x++;").  In that
12599      case, we must replace it with (clobber (const_int 0)) to prevent
12600      infinite loops.  */
12601   rsp = &reg_stat[regno];
12602   if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12603     {
12604       value = copy_rtx (value);
12605       if (!get_last_value_validate (&value, insn, label_tick, 1))
12606 	value = 0;
12607     }
12608 
12609   /* For the main register being modified, update the value, the mode, the
12610      nonzero bits, and the number of sign bit copies.  */
12611 
12612   rsp->last_set_value = value;
12613 
12614   if (value)
12615     {
12616       machine_mode mode = GET_MODE (reg);
12617       subst_low_luid = DF_INSN_LUID (insn);
12618       rsp->last_set_mode = mode;
12619       if (GET_MODE_CLASS (mode) == MODE_INT
12620 	  && HWI_COMPUTABLE_MODE_P (mode))
12621 	mode = nonzero_bits_mode;
12622       rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12623       rsp->last_set_sign_bit_copies
12624 	= num_sign_bit_copies (value, GET_MODE (reg));
12625     }
12626 }
12627 
12628 /* Called via note_stores from record_dead_and_set_regs to handle one
12629    SET or CLOBBER in an insn.  DATA is the instruction in which the
12630    set is occurring.  */
12631 
12632 static void
12633 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12634 {
12635   rtx_insn *record_dead_insn = (rtx_insn *) data;
12636 
12637   if (GET_CODE (dest) == SUBREG)
12638     dest = SUBREG_REG (dest);
12639 
12640   if (!record_dead_insn)
12641     {
12642       if (REG_P (dest))
12643 	record_value_for_reg (dest, NULL, NULL_RTX);
12644       return;
12645     }
12646 
12647   if (REG_P (dest))
12648     {
12649       /* If we are setting the whole register, we know its value.  Otherwise
12650 	 show that we don't know the value.  We can handle SUBREG in
12651 	 some cases.  */
12652       if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12653 	record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12654       else if (GET_CODE (setter) == SET
12655 	       && GET_CODE (SET_DEST (setter)) == SUBREG
12656 	       && SUBREG_REG (SET_DEST (setter)) == dest
12657 	       && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12658 	       && subreg_lowpart_p (SET_DEST (setter)))
12659 	record_value_for_reg (dest, record_dead_insn,
12660 			      gen_lowpart (GET_MODE (dest),
12661 						       SET_SRC (setter)));
12662       else
12663 	record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12664     }
12665   else if (MEM_P (dest)
12666 	   /* Ignore pushes, they clobber nothing.  */
12667 	   && ! push_operand (dest, GET_MODE (dest)))
12668     mem_last_set = DF_INSN_LUID (record_dead_insn);
12669 }
12670 
12671 /* Update the records of when each REG was most recently set or killed
12672    for the things done by INSN.  This is the last thing done in processing
12673    INSN in the combiner loop.
12674 
12675    We update reg_stat[], in particular fields last_set, last_set_value,
12676    last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12677    last_death, and also the similar information mem_last_set (which insn
12678    most recently modified memory) and last_call_luid (which insn was the
12679    most recent subroutine call).  */
12680 
12681 static void
12682 record_dead_and_set_regs (rtx_insn *insn)
12683 {
12684   rtx link;
12685   unsigned int i;
12686 
12687   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12688     {
12689       if (REG_NOTE_KIND (link) == REG_DEAD
12690 	  && REG_P (XEXP (link, 0)))
12691 	{
12692 	  unsigned int regno = REGNO (XEXP (link, 0));
12693 	  unsigned int endregno = END_REGNO (XEXP (link, 0));
12694 
12695 	  for (i = regno; i < endregno; i++)
12696 	    {
12697 	      reg_stat_type *rsp;
12698 
12699 	      rsp = &reg_stat[i];
12700 	      rsp->last_death = insn;
12701 	    }
12702 	}
12703       else if (REG_NOTE_KIND (link) == REG_INC)
12704 	record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12705     }
12706 
12707   if (CALL_P (insn))
12708     {
12709       hard_reg_set_iterator hrsi;
12710       EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
12711 	{
12712 	  reg_stat_type *rsp;
12713 
12714 	  rsp = &reg_stat[i];
12715 	  rsp->last_set_invalid = 1;
12716 	  rsp->last_set = insn;
12717 	  rsp->last_set_value = 0;
12718 	  rsp->last_set_mode = VOIDmode;
12719 	  rsp->last_set_nonzero_bits = 0;
12720 	  rsp->last_set_sign_bit_copies = 0;
12721 	  rsp->last_death = 0;
12722 	  rsp->truncated_to_mode = VOIDmode;
12723 	}
12724 
12725       last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12726 
12727       /* We can't combine into a call pattern.  Remember, though, that
12728 	 the return value register is set at this LUID.  We could
12729 	 still replace a register with the return value from the
12730 	 wrong subroutine call!  */
12731       note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12732     }
12733   else
12734     note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12735 }
12736 
12737 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12738    register present in the SUBREG, so for each such SUBREG go back and
12739    adjust nonzero and sign bit information of the registers that are
12740    known to have some zero/sign bits set.
12741 
12742    This is needed because when combine blows the SUBREGs away, the
12743    information on zero/sign bits is lost and further combines can be
12744    missed because of that.  */
12745 
12746 static void
12747 record_promoted_value (rtx_insn *insn, rtx subreg)
12748 {
12749   struct insn_link *links;
12750   rtx set;
12751   unsigned int regno = REGNO (SUBREG_REG (subreg));
12752   machine_mode mode = GET_MODE (subreg);
12753 
12754   if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12755     return;
12756 
12757   for (links = LOG_LINKS (insn); links;)
12758     {
12759       reg_stat_type *rsp;
12760 
12761       insn = links->insn;
12762       set = single_set (insn);
12763 
12764       if (! set || !REG_P (SET_DEST (set))
12765 	  || REGNO (SET_DEST (set)) != regno
12766 	  || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12767 	{
12768 	  links = links->next;
12769 	  continue;
12770 	}
12771 
12772       rsp = &reg_stat[regno];
12773       if (rsp->last_set == insn)
12774 	{
12775 	  if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
12776 	    rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12777 	}
12778 
12779       if (REG_P (SET_SRC (set)))
12780 	{
12781 	  regno = REGNO (SET_SRC (set));
12782 	  links = LOG_LINKS (insn);
12783 	}
12784       else
12785 	break;
12786     }
12787 }
12788 
12789 /* Check if X, a register, is known to contain a value already
12790    truncated to MODE.  In this case we can use a subreg to refer to
12791    the truncated value even though in the generic case we would need
12792    an explicit truncation.  */
12793 
12794 static bool
12795 reg_truncated_to_mode (machine_mode mode, const_rtx x)
12796 {
12797   reg_stat_type *rsp = &reg_stat[REGNO (x)];
12798   machine_mode truncated = rsp->truncated_to_mode;
12799 
12800   if (truncated == 0
12801       || rsp->truncation_label < label_tick_ebb_start)
12802     return false;
12803   if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12804     return true;
12805   if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12806     return true;
12807   return false;
12808 }
12809 
12810 /* If X is a hard reg or a subreg record the mode that the register is
12811    accessed in.  For non-TRULY_NOOP_TRUNCATION targets we might be able
12812    to turn a truncate into a subreg using this information.  Return true
12813    if traversing X is complete.  */
12814 
12815 static bool
12816 record_truncated_value (rtx x)
12817 {
12818   machine_mode truncated_mode;
12819   reg_stat_type *rsp;
12820 
12821   if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12822     {
12823       machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12824       truncated_mode = GET_MODE (x);
12825 
12826       if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12827 	return true;
12828 
12829       if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12830 	return true;
12831 
12832       x = SUBREG_REG (x);
12833     }
12834   /* ??? For hard-regs we now record everything.  We might be able to
12835      optimize this using last_set_mode.  */
12836   else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12837     truncated_mode = GET_MODE (x);
12838   else
12839     return false;
12840 
12841   rsp = &reg_stat[REGNO (x)];
12842   if (rsp->truncated_to_mode == 0
12843       || rsp->truncation_label < label_tick_ebb_start
12844       || (GET_MODE_SIZE (truncated_mode)
12845 	  < GET_MODE_SIZE (rsp->truncated_to_mode)))
12846     {
12847       rsp->truncated_to_mode = truncated_mode;
12848       rsp->truncation_label = label_tick;
12849     }
12850 
12851   return true;
12852 }
12853 
12854 /* Callback for note_uses.  Find hardregs and subregs of pseudos and
12855    the modes they are used in.  This can help truning TRUNCATEs into
12856    SUBREGs.  */
12857 
12858 static void
12859 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
12860 {
12861   subrtx_var_iterator::array_type array;
12862   FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
12863     if (record_truncated_value (*iter))
12864       iter.skip_subrtxes ();
12865 }
12866 
12867 /* Scan X for promoted SUBREGs.  For each one found,
12868    note what it implies to the registers used in it.  */
12869 
12870 static void
12871 check_promoted_subreg (rtx_insn *insn, rtx x)
12872 {
12873   if (GET_CODE (x) == SUBREG
12874       && SUBREG_PROMOTED_VAR_P (x)
12875       && REG_P (SUBREG_REG (x)))
12876     record_promoted_value (insn, x);
12877   else
12878     {
12879       const char *format = GET_RTX_FORMAT (GET_CODE (x));
12880       int i, j;
12881 
12882       for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12883 	switch (format[i])
12884 	  {
12885 	  case 'e':
12886 	    check_promoted_subreg (insn, XEXP (x, i));
12887 	    break;
12888 	  case 'V':
12889 	  case 'E':
12890 	    if (XVEC (x, i) != 0)
12891 	      for (j = 0; j < XVECLEN (x, i); j++)
12892 		check_promoted_subreg (insn, XVECEXP (x, i, j));
12893 	    break;
12894 	  }
12895     }
12896 }
12897 
12898 /* Verify that all the registers and memory references mentioned in *LOC are
12899    still valid.  *LOC was part of a value set in INSN when label_tick was
12900    equal to TICK.  Return 0 if some are not.  If REPLACE is nonzero, replace
12901    the invalid references with (clobber (const_int 0)) and return 1.  This
12902    replacement is useful because we often can get useful information about
12903    the form of a value (e.g., if it was produced by a shift that always
12904    produces -1 or 0) even though we don't know exactly what registers it
12905    was produced from.  */
12906 
12907 static int
12908 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
12909 {
12910   rtx x = *loc;
12911   const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12912   int len = GET_RTX_LENGTH (GET_CODE (x));
12913   int i, j;
12914 
12915   if (REG_P (x))
12916     {
12917       unsigned int regno = REGNO (x);
12918       unsigned int endregno = END_REGNO (x);
12919       unsigned int j;
12920 
12921       for (j = regno; j < endregno; j++)
12922 	{
12923 	  reg_stat_type *rsp = &reg_stat[j];
12924 	  if (rsp->last_set_invalid
12925 	      /* If this is a pseudo-register that was only set once and not
12926 		 live at the beginning of the function, it is always valid.  */
12927 	      || (! (regno >= FIRST_PSEUDO_REGISTER
12928 		     && regno < reg_n_sets_max
12929 		     && REG_N_SETS (regno) == 1
12930 		     && (!REGNO_REG_SET_P
12931 			 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
12932 			  regno)))
12933 		  && rsp->last_set_label > tick))
12934 	  {
12935 	    if (replace)
12936 	      *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12937 	    return replace;
12938 	  }
12939 	}
12940 
12941       return 1;
12942     }
12943   /* If this is a memory reference, make sure that there were no stores after
12944      it that might have clobbered the value.  We don't have alias info, so we
12945      assume any store invalidates it.  Moreover, we only have local UIDs, so
12946      we also assume that there were stores in the intervening basic blocks.  */
12947   else if (MEM_P (x) && !MEM_READONLY_P (x)
12948 	   && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12949     {
12950       if (replace)
12951 	*loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12952       return replace;
12953     }
12954 
12955   for (i = 0; i < len; i++)
12956     {
12957       if (fmt[i] == 'e')
12958 	{
12959 	  /* Check for identical subexpressions.  If x contains
12960 	     identical subexpression we only have to traverse one of
12961 	     them.  */
12962 	  if (i == 1 && ARITHMETIC_P (x))
12963 	    {
12964 	      /* Note that at this point x0 has already been checked
12965 		 and found valid.  */
12966 	      rtx x0 = XEXP (x, 0);
12967 	      rtx x1 = XEXP (x, 1);
12968 
12969 	      /* If x0 and x1 are identical then x is also valid.  */
12970 	      if (x0 == x1)
12971 		return 1;
12972 
12973 	      /* If x1 is identical to a subexpression of x0 then
12974 		 while checking x0, x1 has already been checked.  Thus
12975 		 it is valid and so as x.  */
12976 	      if (ARITHMETIC_P (x0)
12977 		  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12978 		return 1;
12979 
12980 	      /* If x0 is identical to a subexpression of x1 then x is
12981 		 valid iff the rest of x1 is valid.  */
12982 	      if (ARITHMETIC_P (x1)
12983 		  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12984 		return
12985 		  get_last_value_validate (&XEXP (x1,
12986 						  x0 == XEXP (x1, 0) ? 1 : 0),
12987 					   insn, tick, replace);
12988 	    }
12989 
12990 	  if (get_last_value_validate (&XEXP (x, i), insn, tick,
12991 				       replace) == 0)
12992 	    return 0;
12993 	}
12994       else if (fmt[i] == 'E')
12995 	for (j = 0; j < XVECLEN (x, i); j++)
12996 	  if (get_last_value_validate (&XVECEXP (x, i, j),
12997 				       insn, tick, replace) == 0)
12998 	    return 0;
12999     }
13000 
13001   /* If we haven't found a reason for it to be invalid, it is valid.  */
13002   return 1;
13003 }
13004 
13005 /* Get the last value assigned to X, if known.  Some registers
13006    in the value may be replaced with (clobber (const_int 0)) if their value
13007    is known longer known reliably.  */
13008 
13009 static rtx
13010 get_last_value (const_rtx x)
13011 {
13012   unsigned int regno;
13013   rtx value;
13014   reg_stat_type *rsp;
13015 
13016   /* If this is a non-paradoxical SUBREG, get the value of its operand and
13017      then convert it to the desired mode.  If this is a paradoxical SUBREG,
13018      we cannot predict what values the "extra" bits might have.  */
13019   if (GET_CODE (x) == SUBREG
13020       && subreg_lowpart_p (x)
13021       && !paradoxical_subreg_p (x)
13022       && (value = get_last_value (SUBREG_REG (x))) != 0)
13023     return gen_lowpart (GET_MODE (x), value);
13024 
13025   if (!REG_P (x))
13026     return 0;
13027 
13028   regno = REGNO (x);
13029   rsp = &reg_stat[regno];
13030   value = rsp->last_set_value;
13031 
13032   /* If we don't have a value, or if it isn't for this basic block and
13033      it's either a hard register, set more than once, or it's a live
13034      at the beginning of the function, return 0.
13035 
13036      Because if it's not live at the beginning of the function then the reg
13037      is always set before being used (is never used without being set).
13038      And, if it's set only once, and it's always set before use, then all
13039      uses must have the same last value, even if it's not from this basic
13040      block.  */
13041 
13042   if (value == 0
13043       || (rsp->last_set_label < label_tick_ebb_start
13044 	  && (regno < FIRST_PSEUDO_REGISTER
13045 	      || regno >= reg_n_sets_max
13046 	      || REG_N_SETS (regno) != 1
13047 	      || REGNO_REG_SET_P
13048 		 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13049     return 0;
13050 
13051   /* If the value was set in a later insn than the ones we are processing,
13052      we can't use it even if the register was only set once.  */
13053   if (rsp->last_set_label == label_tick
13054       && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13055     return 0;
13056 
13057   /* If fewer bits were set than what we are asked for now, we cannot use
13058      the value.  */
13059   if (GET_MODE_PRECISION (rsp->last_set_mode)
13060       < GET_MODE_PRECISION (GET_MODE (x)))
13061     return 0;
13062 
13063   /* If the value has all its registers valid, return it.  */
13064   if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13065     return value;
13066 
13067   /* Otherwise, make a copy and replace any invalid register with
13068      (clobber (const_int 0)).  If that fails for some reason, return 0.  */
13069 
13070   value = copy_rtx (value);
13071   if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13072     return value;
13073 
13074   return 0;
13075 }
13076 
13077 /* Return nonzero if expression X refers to a REG or to memory
13078    that is set in an instruction more recent than FROM_LUID.  */
13079 
13080 static int
13081 use_crosses_set_p (const_rtx x, int from_luid)
13082 {
13083   const char *fmt;
13084   int i;
13085   enum rtx_code code = GET_CODE (x);
13086 
13087   if (code == REG)
13088     {
13089       unsigned int regno = REGNO (x);
13090       unsigned endreg = END_REGNO (x);
13091 
13092 #ifdef PUSH_ROUNDING
13093       /* Don't allow uses of the stack pointer to be moved,
13094 	 because we don't know whether the move crosses a push insn.  */
13095       if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13096 	return 1;
13097 #endif
13098       for (; regno < endreg; regno++)
13099 	{
13100 	  reg_stat_type *rsp = &reg_stat[regno];
13101 	  if (rsp->last_set
13102 	      && rsp->last_set_label == label_tick
13103 	      && DF_INSN_LUID (rsp->last_set) > from_luid)
13104 	    return 1;
13105 	}
13106       return 0;
13107     }
13108 
13109   if (code == MEM && mem_last_set > from_luid)
13110     return 1;
13111 
13112   fmt = GET_RTX_FORMAT (code);
13113 
13114   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13115     {
13116       if (fmt[i] == 'E')
13117 	{
13118 	  int j;
13119 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13120 	    if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13121 	      return 1;
13122 	}
13123       else if (fmt[i] == 'e'
13124 	       && use_crosses_set_p (XEXP (x, i), from_luid))
13125 	return 1;
13126     }
13127   return 0;
13128 }
13129 
13130 /* Define three variables used for communication between the following
13131    routines.  */
13132 
13133 static unsigned int reg_dead_regno, reg_dead_endregno;
13134 static int reg_dead_flag;
13135 
13136 /* Function called via note_stores from reg_dead_at_p.
13137 
13138    If DEST is within [reg_dead_regno, reg_dead_endregno), set
13139    reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET.  */
13140 
13141 static void
13142 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13143 {
13144   unsigned int regno, endregno;
13145 
13146   if (!REG_P (dest))
13147     return;
13148 
13149   regno = REGNO (dest);
13150   endregno = END_REGNO (dest);
13151   if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13152     reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13153 }
13154 
13155 /* Return nonzero if REG is known to be dead at INSN.
13156 
13157    We scan backwards from INSN.  If we hit a REG_DEAD note or a CLOBBER
13158    referencing REG, it is dead.  If we hit a SET referencing REG, it is
13159    live.  Otherwise, see if it is live or dead at the start of the basic
13160    block we are in.  Hard regs marked as being live in NEWPAT_USED_REGS
13161    must be assumed to be always live.  */
13162 
13163 static int
13164 reg_dead_at_p (rtx reg, rtx_insn *insn)
13165 {
13166   basic_block block;
13167   unsigned int i;
13168 
13169   /* Set variables for reg_dead_at_p_1.  */
13170   reg_dead_regno = REGNO (reg);
13171   reg_dead_endregno = END_REGNO (reg);
13172 
13173   reg_dead_flag = 0;
13174 
13175   /* Check that reg isn't mentioned in NEWPAT_USED_REGS.  For fixed registers
13176      we allow the machine description to decide whether use-and-clobber
13177      patterns are OK.  */
13178   if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13179     {
13180       for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13181 	if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13182 	  return 0;
13183     }
13184 
13185   /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13186      beginning of basic block.  */
13187   block = BLOCK_FOR_INSN (insn);
13188   for (;;)
13189     {
13190       if (INSN_P (insn))
13191         {
13192 	  if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13193 	    return 1;
13194 
13195 	  note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13196 	  if (reg_dead_flag)
13197 	    return reg_dead_flag == 1 ? 1 : 0;
13198 
13199 	  if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13200 	    return 1;
13201         }
13202 
13203       if (insn == BB_HEAD (block))
13204 	break;
13205 
13206       insn = PREV_INSN (insn);
13207     }
13208 
13209   /* Look at live-in sets for the basic block that we were in.  */
13210   for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13211     if (REGNO_REG_SET_P (df_get_live_in (block), i))
13212       return 0;
13213 
13214   return 1;
13215 }
13216 
13217 /* Note hard registers in X that are used.  */
13218 
13219 static void
13220 mark_used_regs_combine (rtx x)
13221 {
13222   RTX_CODE code = GET_CODE (x);
13223   unsigned int regno;
13224   int i;
13225 
13226   switch (code)
13227     {
13228     case LABEL_REF:
13229     case SYMBOL_REF:
13230     case CONST:
13231     CASE_CONST_ANY:
13232     case PC:
13233     case ADDR_VEC:
13234     case ADDR_DIFF_VEC:
13235     case ASM_INPUT:
13236 #ifdef HAVE_cc0
13237     /* CC0 must die in the insn after it is set, so we don't need to take
13238        special note of it here.  */
13239     case CC0:
13240 #endif
13241       return;
13242 
13243     case CLOBBER:
13244       /* If we are clobbering a MEM, mark any hard registers inside the
13245 	 address as used.  */
13246       if (MEM_P (XEXP (x, 0)))
13247 	mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13248       return;
13249 
13250     case REG:
13251       regno = REGNO (x);
13252       /* A hard reg in a wide mode may really be multiple registers.
13253 	 If so, mark all of them just like the first.  */
13254       if (regno < FIRST_PSEUDO_REGISTER)
13255 	{
13256 	  /* None of this applies to the stack, frame or arg pointers.  */
13257 	  if (regno == STACK_POINTER_REGNUM
13258 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
13259 	      || regno == HARD_FRAME_POINTER_REGNUM
13260 #endif
13261 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13262 	      || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13263 #endif
13264 	      || regno == FRAME_POINTER_REGNUM)
13265 	    return;
13266 
13267 	  add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13268 	}
13269       return;
13270 
13271     case SET:
13272       {
13273 	/* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13274 	   the address.  */
13275 	rtx testreg = SET_DEST (x);
13276 
13277 	while (GET_CODE (testreg) == SUBREG
13278 	       || GET_CODE (testreg) == ZERO_EXTRACT
13279 	       || GET_CODE (testreg) == STRICT_LOW_PART)
13280 	  testreg = XEXP (testreg, 0);
13281 
13282 	if (MEM_P (testreg))
13283 	  mark_used_regs_combine (XEXP (testreg, 0));
13284 
13285 	mark_used_regs_combine (SET_SRC (x));
13286       }
13287       return;
13288 
13289     default:
13290       break;
13291     }
13292 
13293   /* Recursively scan the operands of this expression.  */
13294 
13295   {
13296     const char *fmt = GET_RTX_FORMAT (code);
13297 
13298     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13299       {
13300 	if (fmt[i] == 'e')
13301 	  mark_used_regs_combine (XEXP (x, i));
13302 	else if (fmt[i] == 'E')
13303 	  {
13304 	    int j;
13305 
13306 	    for (j = 0; j < XVECLEN (x, i); j++)
13307 	      mark_used_regs_combine (XVECEXP (x, i, j));
13308 	  }
13309       }
13310   }
13311 }
13312 
13313 /* Remove register number REGNO from the dead registers list of INSN.
13314 
13315    Return the note used to record the death, if there was one.  */
13316 
13317 rtx
13318 remove_death (unsigned int regno, rtx_insn *insn)
13319 {
13320   rtx note = find_regno_note (insn, REG_DEAD, regno);
13321 
13322   if (note)
13323     remove_note (insn, note);
13324 
13325   return note;
13326 }
13327 
13328 /* For each register (hardware or pseudo) used within expression X, if its
13329    death is in an instruction with luid between FROM_LUID (inclusive) and
13330    TO_INSN (exclusive), put a REG_DEAD note for that register in the
13331    list headed by PNOTES.
13332 
13333    That said, don't move registers killed by maybe_kill_insn.
13334 
13335    This is done when X is being merged by combination into TO_INSN.  These
13336    notes will then be distributed as needed.  */
13337 
13338 static void
13339 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13340 	     rtx *pnotes)
13341 {
13342   const char *fmt;
13343   int len, i;
13344   enum rtx_code code = GET_CODE (x);
13345 
13346   if (code == REG)
13347     {
13348       unsigned int regno = REGNO (x);
13349       rtx_insn *where_dead = reg_stat[regno].last_death;
13350 
13351       /* Don't move the register if it gets killed in between from and to.  */
13352       if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13353 	  && ! reg_referenced_p (x, maybe_kill_insn))
13354 	return;
13355 
13356       if (where_dead
13357 	  && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13358 	  && DF_INSN_LUID (where_dead) >= from_luid
13359 	  && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13360 	{
13361 	  rtx note = remove_death (regno, where_dead);
13362 
13363 	  /* It is possible for the call above to return 0.  This can occur
13364 	     when last_death points to I2 or I1 that we combined with.
13365 	     In that case make a new note.
13366 
13367 	     We must also check for the case where X is a hard register
13368 	     and NOTE is a death note for a range of hard registers
13369 	     including X.  In that case, we must put REG_DEAD notes for
13370 	     the remaining registers in place of NOTE.  */
13371 
13372 	  if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13373 	      && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13374 		  > GET_MODE_SIZE (GET_MODE (x))))
13375 	    {
13376 	      unsigned int deadregno = REGNO (XEXP (note, 0));
13377 	      unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
13378 	      unsigned int ourend = END_HARD_REGNO (x);
13379 	      unsigned int i;
13380 
13381 	      for (i = deadregno; i < deadend; i++)
13382 		if (i < regno || i >= ourend)
13383 		  add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13384 	    }
13385 
13386 	  /* If we didn't find any note, or if we found a REG_DEAD note that
13387 	     covers only part of the given reg, and we have a multi-reg hard
13388 	     register, then to be safe we must check for REG_DEAD notes
13389 	     for each register other than the first.  They could have
13390 	     their own REG_DEAD notes lying around.  */
13391 	  else if ((note == 0
13392 		    || (note != 0
13393 			&& (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13394 			    < GET_MODE_SIZE (GET_MODE (x)))))
13395 		   && regno < FIRST_PSEUDO_REGISTER
13396 		   && hard_regno_nregs[regno][GET_MODE (x)] > 1)
13397 	    {
13398 	      unsigned int ourend = END_HARD_REGNO (x);
13399 	      unsigned int i, offset;
13400 	      rtx oldnotes = 0;
13401 
13402 	      if (note)
13403 		offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13404 	      else
13405 		offset = 1;
13406 
13407 	      for (i = regno + offset; i < ourend; i++)
13408 		move_deaths (regno_reg_rtx[i],
13409 			     maybe_kill_insn, from_luid, to_insn, &oldnotes);
13410 	    }
13411 
13412 	  if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13413 	    {
13414 	      XEXP (note, 1) = *pnotes;
13415 	      *pnotes = note;
13416 	    }
13417 	  else
13418 	    *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13419 	}
13420 
13421       return;
13422     }
13423 
13424   else if (GET_CODE (x) == SET)
13425     {
13426       rtx dest = SET_DEST (x);
13427 
13428       move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13429 
13430       /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13431 	 that accesses one word of a multi-word item, some
13432 	 piece of everything register in the expression is used by
13433 	 this insn, so remove any old death.  */
13434       /* ??? So why do we test for equality of the sizes?  */
13435 
13436       if (GET_CODE (dest) == ZERO_EXTRACT
13437 	  || GET_CODE (dest) == STRICT_LOW_PART
13438 	  || (GET_CODE (dest) == SUBREG
13439 	      && (((GET_MODE_SIZE (GET_MODE (dest))
13440 		    + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13441 		  == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13442 		       + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13443 	{
13444 	  move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13445 	  return;
13446 	}
13447 
13448       /* If this is some other SUBREG, we know it replaces the entire
13449 	 value, so use that as the destination.  */
13450       if (GET_CODE (dest) == SUBREG)
13451 	dest = SUBREG_REG (dest);
13452 
13453       /* If this is a MEM, adjust deaths of anything used in the address.
13454 	 For a REG (the only other possibility), the entire value is
13455 	 being replaced so the old value is not used in this insn.  */
13456 
13457       if (MEM_P (dest))
13458 	move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13459 		     to_insn, pnotes);
13460       return;
13461     }
13462 
13463   else if (GET_CODE (x) == CLOBBER)
13464     return;
13465 
13466   len = GET_RTX_LENGTH (code);
13467   fmt = GET_RTX_FORMAT (code);
13468 
13469   for (i = 0; i < len; i++)
13470     {
13471       if (fmt[i] == 'E')
13472 	{
13473 	  int j;
13474 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13475 	    move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13476 			 to_insn, pnotes);
13477 	}
13478       else if (fmt[i] == 'e')
13479 	move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13480     }
13481 }
13482 
13483 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13484    pattern of an insn.  X must be a REG.  */
13485 
13486 static int
13487 reg_bitfield_target_p (rtx x, rtx body)
13488 {
13489   int i;
13490 
13491   if (GET_CODE (body) == SET)
13492     {
13493       rtx dest = SET_DEST (body);
13494       rtx target;
13495       unsigned int regno, tregno, endregno, endtregno;
13496 
13497       if (GET_CODE (dest) == ZERO_EXTRACT)
13498 	target = XEXP (dest, 0);
13499       else if (GET_CODE (dest) == STRICT_LOW_PART)
13500 	target = SUBREG_REG (XEXP (dest, 0));
13501       else
13502 	return 0;
13503 
13504       if (GET_CODE (target) == SUBREG)
13505 	target = SUBREG_REG (target);
13506 
13507       if (!REG_P (target))
13508 	return 0;
13509 
13510       tregno = REGNO (target), regno = REGNO (x);
13511       if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13512 	return target == x;
13513 
13514       endtregno = end_hard_regno (GET_MODE (target), tregno);
13515       endregno = end_hard_regno (GET_MODE (x), regno);
13516 
13517       return endregno > tregno && regno < endtregno;
13518     }
13519 
13520   else if (GET_CODE (body) == PARALLEL)
13521     for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13522       if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13523 	return 1;
13524 
13525   return 0;
13526 }
13527 
13528 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13529    as appropriate.  I3 and I2 are the insns resulting from the combination
13530    insns including FROM (I2 may be zero).
13531 
13532    ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13533    not need REG_DEAD notes because they are being substituted for.  This
13534    saves searching in the most common cases.
13535 
13536    Each note in the list is either ignored or placed on some insns, depending
13537    on the type of note.  */
13538 
13539 static void
13540 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
13541 		  rtx elim_i2, rtx elim_i1, rtx elim_i0)
13542 {
13543   rtx note, next_note;
13544   rtx tem_note;
13545   rtx_insn *tem_insn;
13546 
13547   for (note = notes; note; note = next_note)
13548     {
13549       rtx_insn *place = 0, *place2 = 0;
13550 
13551       next_note = XEXP (note, 1);
13552       switch (REG_NOTE_KIND (note))
13553 	{
13554 	case REG_BR_PROB:
13555 	case REG_BR_PRED:
13556 	  /* Doesn't matter much where we put this, as long as it's somewhere.
13557 	     It is preferable to keep these notes on branches, which is most
13558 	     likely to be i3.  */
13559 	  place = i3;
13560 	  break;
13561 
13562 	case REG_NON_LOCAL_GOTO:
13563 	  if (JUMP_P (i3))
13564 	    place = i3;
13565 	  else
13566 	    {
13567 	      gcc_assert (i2 && JUMP_P (i2));
13568 	      place = i2;
13569 	    }
13570 	  break;
13571 
13572 	case REG_EH_REGION:
13573 	  /* These notes must remain with the call or trapping instruction.  */
13574 	  if (CALL_P (i3))
13575 	    place = i3;
13576 	  else if (i2 && CALL_P (i2))
13577 	    place = i2;
13578 	  else
13579 	    {
13580 	      gcc_assert (cfun->can_throw_non_call_exceptions);
13581 	      if (may_trap_p (i3))
13582 		place = i3;
13583 	      else if (i2 && may_trap_p (i2))
13584 		place = i2;
13585 	      /* ??? Otherwise assume we've combined things such that we
13586 		 can now prove that the instructions can't trap.  Drop the
13587 		 note in this case.  */
13588 	    }
13589 	  break;
13590 
13591 	case REG_ARGS_SIZE:
13592 	  /* ??? How to distribute between i3-i1.  Assume i3 contains the
13593 	     entire adjustment.  Assert i3 contains at least some adjust.  */
13594 	  if (!noop_move_p (i3))
13595 	    {
13596 	      int old_size, args_size = INTVAL (XEXP (note, 0));
13597 	      /* fixup_args_size_notes looks at REG_NORETURN note,
13598 		 so ensure the note is placed there first.  */
13599 	      if (CALL_P (i3))
13600 		{
13601 		  rtx *np;
13602 		  for (np = &next_note; *np; np = &XEXP (*np, 1))
13603 		    if (REG_NOTE_KIND (*np) == REG_NORETURN)
13604 		      {
13605 			rtx n = *np;
13606 			*np = XEXP (n, 1);
13607 			XEXP (n, 1) = REG_NOTES (i3);
13608 			REG_NOTES (i3) = n;
13609 			break;
13610 		      }
13611 		}
13612 	      old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13613 	      /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13614 		 REG_ARGS_SIZE note to all noreturn calls, allow that here.  */
13615 	      gcc_assert (old_size != args_size
13616 			  || (CALL_P (i3)
13617 			      && !ACCUMULATE_OUTGOING_ARGS
13618 			      && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13619 	    }
13620 	  break;
13621 
13622 	case REG_NORETURN:
13623 	case REG_SETJMP:
13624 	case REG_TM:
13625 	case REG_CALL_DECL:
13626 	  /* These notes must remain with the call.  It should not be
13627 	     possible for both I2 and I3 to be a call.  */
13628 	  if (CALL_P (i3))
13629 	    place = i3;
13630 	  else
13631 	    {
13632 	      gcc_assert (i2 && CALL_P (i2));
13633 	      place = i2;
13634 	    }
13635 	  break;
13636 
13637 	case REG_UNUSED:
13638 	  /* Any clobbers for i3 may still exist, and so we must process
13639 	     REG_UNUSED notes from that insn.
13640 
13641 	     Any clobbers from i2 or i1 can only exist if they were added by
13642 	     recog_for_combine.  In that case, recog_for_combine created the
13643 	     necessary REG_UNUSED notes.  Trying to keep any original
13644 	     REG_UNUSED notes from these insns can cause incorrect output
13645 	     if it is for the same register as the original i3 dest.
13646 	     In that case, we will notice that the register is set in i3,
13647 	     and then add a REG_UNUSED note for the destination of i3, which
13648 	     is wrong.  However, it is possible to have REG_UNUSED notes from
13649 	     i2 or i1 for register which were both used and clobbered, so
13650 	     we keep notes from i2 or i1 if they will turn into REG_DEAD
13651 	     notes.  */
13652 
13653 	  /* If this register is set or clobbered in I3, put the note there
13654 	     unless there is one already.  */
13655 	  if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13656 	    {
13657 	      if (from_insn != i3)
13658 		break;
13659 
13660 	      if (! (REG_P (XEXP (note, 0))
13661 		     ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13662 		     : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13663 		place = i3;
13664 	    }
13665 	  /* Otherwise, if this register is used by I3, then this register
13666 	     now dies here, so we must put a REG_DEAD note here unless there
13667 	     is one already.  */
13668 	  else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13669 		   && ! (REG_P (XEXP (note, 0))
13670 			 ? find_regno_note (i3, REG_DEAD,
13671 					    REGNO (XEXP (note, 0)))
13672 			 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13673 	    {
13674 	      PUT_REG_NOTE_KIND (note, REG_DEAD);
13675 	      place = i3;
13676 	    }
13677 	  break;
13678 
13679 	case REG_EQUAL:
13680 	case REG_EQUIV:
13681 	case REG_NOALIAS:
13682 	  /* These notes say something about results of an insn.  We can
13683 	     only support them if they used to be on I3 in which case they
13684 	     remain on I3.  Otherwise they are ignored.
13685 
13686 	     If the note refers to an expression that is not a constant, we
13687 	     must also ignore the note since we cannot tell whether the
13688 	     equivalence is still true.  It might be possible to do
13689 	     slightly better than this (we only have a problem if I2DEST
13690 	     or I1DEST is present in the expression), but it doesn't
13691 	     seem worth the trouble.  */
13692 
13693 	  if (from_insn == i3
13694 	      && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13695 	    place = i3;
13696 	  break;
13697 
13698 	case REG_INC:
13699 	  /* These notes say something about how a register is used.  They must
13700 	     be present on any use of the register in I2 or I3.  */
13701 	  if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13702 	    place = i3;
13703 
13704 	  if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13705 	    {
13706 	      if (place)
13707 		place2 = i2;
13708 	      else
13709 		place = i2;
13710 	    }
13711 	  break;
13712 
13713 	case REG_LABEL_TARGET:
13714 	case REG_LABEL_OPERAND:
13715 	  /* This can show up in several ways -- either directly in the
13716 	     pattern, or hidden off in the constant pool with (or without?)
13717 	     a REG_EQUAL note.  */
13718 	  /* ??? Ignore the without-reg_equal-note problem for now.  */
13719 	  if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13720 	      || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13721 		  && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13722 		  && LABEL_REF_LABEL (XEXP (tem_note, 0)) == XEXP (note, 0)))
13723 	    place = i3;
13724 
13725 	  if (i2
13726 	      && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13727 		  || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13728 		      && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13729 		      && LABEL_REF_LABEL (XEXP (tem_note, 0)) == XEXP (note, 0))))
13730 	    {
13731 	      if (place)
13732 		place2 = i2;
13733 	      else
13734 		place = i2;
13735 	    }
13736 
13737 	  /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13738 	     as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13739 	     there.  */
13740 	  if (place && JUMP_P (place)
13741 	      && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13742 	      && (JUMP_LABEL (place) == NULL
13743 		  || JUMP_LABEL (place) == XEXP (note, 0)))
13744 	    {
13745 	      rtx label = JUMP_LABEL (place);
13746 
13747 	      if (!label)
13748 		JUMP_LABEL (place) = XEXP (note, 0);
13749 	      else if (LABEL_P (label))
13750 		LABEL_NUSES (label)--;
13751 	    }
13752 
13753 	  if (place2 && JUMP_P (place2)
13754 	      && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13755 	      && (JUMP_LABEL (place2) == NULL
13756 		  || JUMP_LABEL (place2) == XEXP (note, 0)))
13757 	    {
13758 	      rtx label = JUMP_LABEL (place2);
13759 
13760 	      if (!label)
13761 		JUMP_LABEL (place2) = XEXP (note, 0);
13762 	      else if (LABEL_P (label))
13763 		LABEL_NUSES (label)--;
13764 	      place2 = 0;
13765 	    }
13766 	  break;
13767 
13768 	case REG_NONNEG:
13769 	  /* This note says something about the value of a register prior
13770 	     to the execution of an insn.  It is too much trouble to see
13771 	     if the note is still correct in all situations.  It is better
13772 	     to simply delete it.  */
13773 	  break;
13774 
13775 	case REG_DEAD:
13776 	  /* If we replaced the right hand side of FROM_INSN with a
13777 	     REG_EQUAL note, the original use of the dying register
13778 	     will not have been combined into I3 and I2.  In such cases,
13779 	     FROM_INSN is guaranteed to be the first of the combined
13780 	     instructions, so we simply need to search back before
13781 	     FROM_INSN for the previous use or set of this register,
13782 	     then alter the notes there appropriately.
13783 
13784 	     If the register is used as an input in I3, it dies there.
13785 	     Similarly for I2, if it is nonzero and adjacent to I3.
13786 
13787 	     If the register is not used as an input in either I3 or I2
13788 	     and it is not one of the registers we were supposed to eliminate,
13789 	     there are two possibilities.  We might have a non-adjacent I2
13790 	     or we might have somehow eliminated an additional register
13791 	     from a computation.  For example, we might have had A & B where
13792 	     we discover that B will always be zero.  In this case we will
13793 	     eliminate the reference to A.
13794 
13795 	     In both cases, we must search to see if we can find a previous
13796 	     use of A and put the death note there.  */
13797 
13798 	  if (from_insn
13799 	      && from_insn == i2mod
13800 	      && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13801 	    tem_insn = from_insn;
13802 	  else
13803 	    {
13804 	      if (from_insn
13805 		  && CALL_P (from_insn)
13806 		  && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13807 		place = from_insn;
13808 	      else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13809 		place = i3;
13810 	      else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13811 		       && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13812 		place = i2;
13813 	      else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13814 			&& !(i2mod
13815 			     && reg_overlap_mentioned_p (XEXP (note, 0),
13816 							 i2mod_old_rhs)))
13817 		       || rtx_equal_p (XEXP (note, 0), elim_i1)
13818 		       || rtx_equal_p (XEXP (note, 0), elim_i0))
13819 		break;
13820 	      tem_insn = i3;
13821 	      /* If the new I2 sets the same register that is marked dead
13822 		 in the note, we do not know where to put the note.
13823 		 Give up.  */
13824 	      if (i2 != 0 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
13825 		break;
13826 	    }
13827 
13828 	  if (place == 0)
13829 	    {
13830 	      basic_block bb = this_basic_block;
13831 
13832 	      for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
13833 		{
13834 		  if (!NONDEBUG_INSN_P (tem_insn))
13835 		    {
13836 		      if (tem_insn == BB_HEAD (bb))
13837 			break;
13838 		      continue;
13839 		    }
13840 
13841 		  /* If the register is being set at TEM_INSN, see if that is all
13842 		     TEM_INSN is doing.  If so, delete TEM_INSN.  Otherwise, make this
13843 		     into a REG_UNUSED note instead. Don't delete sets to
13844 		     global register vars.  */
13845 		  if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13846 		       || !global_regs[REGNO (XEXP (note, 0))])
13847 		      && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
13848 		    {
13849 		      rtx set = single_set (tem_insn);
13850 		      rtx inner_dest = 0;
13851 #ifdef HAVE_cc0
13852 		      rtx_insn *cc0_setter = NULL;
13853 #endif
13854 
13855 		      if (set != 0)
13856 			for (inner_dest = SET_DEST (set);
13857 			     (GET_CODE (inner_dest) == STRICT_LOW_PART
13858 			      || GET_CODE (inner_dest) == SUBREG
13859 			      || GET_CODE (inner_dest) == ZERO_EXTRACT);
13860 			     inner_dest = XEXP (inner_dest, 0))
13861 			  ;
13862 
13863 		      /* Verify that it was the set, and not a clobber that
13864 			 modified the register.
13865 
13866 			 CC0 targets must be careful to maintain setter/user
13867 			 pairs.  If we cannot delete the setter due to side
13868 			 effects, mark the user with an UNUSED note instead
13869 			 of deleting it.  */
13870 
13871 		      if (set != 0 && ! side_effects_p (SET_SRC (set))
13872 			  && rtx_equal_p (XEXP (note, 0), inner_dest)
13873 #ifdef HAVE_cc0
13874 			  && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13875 			      || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
13876 				  && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13877 #endif
13878 			  )
13879 			{
13880 			  /* Move the notes and links of TEM_INSN elsewhere.
13881 			     This might delete other dead insns recursively.
13882 			     First set the pattern to something that won't use
13883 			     any register.  */
13884 			  rtx old_notes = REG_NOTES (tem_insn);
13885 
13886 			  PATTERN (tem_insn) = pc_rtx;
13887 			  REG_NOTES (tem_insn) = NULL;
13888 
13889 			  distribute_notes (old_notes, tem_insn, tem_insn, NULL,
13890 					    NULL_RTX, NULL_RTX, NULL_RTX);
13891 			  distribute_links (LOG_LINKS (tem_insn));
13892 
13893 			  SET_INSN_DELETED (tem_insn);
13894 			  if (tem_insn == i2)
13895 			    i2 = NULL;
13896 
13897 #ifdef HAVE_cc0
13898 			  /* Delete the setter too.  */
13899 			  if (cc0_setter)
13900 			    {
13901 			      PATTERN (cc0_setter) = pc_rtx;
13902 			      old_notes = REG_NOTES (cc0_setter);
13903 			      REG_NOTES (cc0_setter) = NULL;
13904 
13905 			      distribute_notes (old_notes, cc0_setter,
13906 						cc0_setter, NULL,
13907 						NULL_RTX, NULL_RTX, NULL_RTX);
13908 			      distribute_links (LOG_LINKS (cc0_setter));
13909 
13910 			      SET_INSN_DELETED (cc0_setter);
13911 			      if (cc0_setter == i2)
13912 				i2 = NULL;
13913 			    }
13914 #endif
13915 			}
13916 		      else
13917 			{
13918 			  PUT_REG_NOTE_KIND (note, REG_UNUSED);
13919 
13920 			  /*  If there isn't already a REG_UNUSED note, put one
13921 			      here.  Do not place a REG_DEAD note, even if
13922 			      the register is also used here; that would not
13923 			      match the algorithm used in lifetime analysis
13924 			      and can cause the consistency check in the
13925 			      scheduler to fail.  */
13926 			  if (! find_regno_note (tem_insn, REG_UNUSED,
13927 						 REGNO (XEXP (note, 0))))
13928 			    place = tem_insn;
13929 			  break;
13930 			}
13931 		    }
13932 		  else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
13933 			   || (CALL_P (tem_insn)
13934 			       && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
13935 		    {
13936 		      place = tem_insn;
13937 
13938 		      /* If we are doing a 3->2 combination, and we have a
13939 			 register which formerly died in i3 and was not used
13940 			 by i2, which now no longer dies in i3 and is used in
13941 			 i2 but does not die in i2, and place is between i2
13942 			 and i3, then we may need to move a link from place to
13943 			 i2.  */
13944 		      if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13945 			  && from_insn
13946 			  && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13947 			  && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13948 			{
13949 			  struct insn_link *links = LOG_LINKS (place);
13950 			  LOG_LINKS (place) = NULL;
13951 			  distribute_links (links);
13952 			}
13953 		      break;
13954 		    }
13955 
13956 		  if (tem_insn == BB_HEAD (bb))
13957 		    break;
13958 		}
13959 
13960 	    }
13961 
13962 	  /* If the register is set or already dead at PLACE, we needn't do
13963 	     anything with this note if it is still a REG_DEAD note.
13964 	     We check here if it is set at all, not if is it totally replaced,
13965 	     which is what `dead_or_set_p' checks, so also check for it being
13966 	     set partially.  */
13967 
13968 	  if (place && REG_NOTE_KIND (note) == REG_DEAD)
13969 	    {
13970 	      unsigned int regno = REGNO (XEXP (note, 0));
13971 	      reg_stat_type *rsp = &reg_stat[regno];
13972 
13973 	      if (dead_or_set_p (place, XEXP (note, 0))
13974 		  || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13975 		{
13976 		  /* Unless the register previously died in PLACE, clear
13977 		     last_death.  [I no longer understand why this is
13978 		     being done.] */
13979 		  if (rsp->last_death != place)
13980 		    rsp->last_death = 0;
13981 		  place = 0;
13982 		}
13983 	      else
13984 		rsp->last_death = place;
13985 
13986 	      /* If this is a death note for a hard reg that is occupying
13987 		 multiple registers, ensure that we are still using all
13988 		 parts of the object.  If we find a piece of the object
13989 		 that is unused, we must arrange for an appropriate REG_DEAD
13990 		 note to be added for it.  However, we can't just emit a USE
13991 		 and tag the note to it, since the register might actually
13992 		 be dead; so we recourse, and the recursive call then finds
13993 		 the previous insn that used this register.  */
13994 
13995 	      if (place && regno < FIRST_PSEUDO_REGISTER
13996 		  && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13997 		{
13998 		  unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13999 		  bool all_used = true;
14000 		  unsigned int i;
14001 
14002 		  for (i = regno; i < endregno; i++)
14003 		    if ((! refers_to_regno_p (i, PATTERN (place))
14004 			 && ! find_regno_fusage (place, USE, i))
14005 			|| dead_or_set_regno_p (place, i))
14006 		      {
14007 			all_used = false;
14008 			break;
14009 		      }
14010 
14011 		  if (! all_used)
14012 		    {
14013 		      /* Put only REG_DEAD notes for pieces that are
14014 			 not already dead or set.  */
14015 
14016 		      for (i = regno; i < endregno;
14017 			   i += hard_regno_nregs[i][reg_raw_mode[i]])
14018 			{
14019 			  rtx piece = regno_reg_rtx[i];
14020 			  basic_block bb = this_basic_block;
14021 
14022 			  if (! dead_or_set_p (place, piece)
14023 			      && ! reg_bitfield_target_p (piece,
14024 							  PATTERN (place)))
14025 			    {
14026 			      rtx new_note = alloc_reg_note (REG_DEAD, piece,
14027 							     NULL_RTX);
14028 
14029 			      distribute_notes (new_note, place, place,
14030 						NULL, NULL_RTX, NULL_RTX,
14031 						NULL_RTX);
14032 			    }
14033 			  else if (! refers_to_regno_p (i, PATTERN (place))
14034 				   && ! find_regno_fusage (place, USE, i))
14035 			    for (tem_insn = PREV_INSN (place); ;
14036 				 tem_insn = PREV_INSN (tem_insn))
14037 			      {
14038 				if (!NONDEBUG_INSN_P (tem_insn))
14039 				  {
14040 				    if (tem_insn == BB_HEAD (bb))
14041 			 	      break;
14042 				    continue;
14043 				  }
14044 				if (dead_or_set_p (tem_insn, piece)
14045 				    || reg_bitfield_target_p (piece,
14046 							      PATTERN (tem_insn)))
14047 				  {
14048 				    add_reg_note (tem_insn, REG_UNUSED, piece);
14049 				    break;
14050 				  }
14051 			      }
14052 			}
14053 
14054 		      place = 0;
14055 		    }
14056 		}
14057 	    }
14058 	  break;
14059 
14060 	default:
14061 	  /* Any other notes should not be present at this point in the
14062 	     compilation.  */
14063 	  gcc_unreachable ();
14064 	}
14065 
14066       if (place)
14067 	{
14068 	  XEXP (note, 1) = REG_NOTES (place);
14069 	  REG_NOTES (place) = note;
14070 	}
14071 
14072       if (place2)
14073 	add_shallow_copy_of_reg_note (place2, note);
14074     }
14075 }
14076 
14077 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14078    I3, I2, and I1 to new locations.  This is also called to add a link
14079    pointing at I3 when I3's destination is changed.  */
14080 
14081 static void
14082 distribute_links (struct insn_link *links)
14083 {
14084   struct insn_link *link, *next_link;
14085 
14086   for (link = links; link; link = next_link)
14087     {
14088       rtx_insn *place = 0;
14089       rtx_insn *insn;
14090       rtx set, reg;
14091 
14092       next_link = link->next;
14093 
14094       /* If the insn that this link points to is a NOTE, ignore it.  */
14095       if (NOTE_P (link->insn))
14096 	continue;
14097 
14098       set = 0;
14099       rtx pat = PATTERN (link->insn);
14100       if (GET_CODE (pat) == SET)
14101 	set = pat;
14102       else if (GET_CODE (pat) == PARALLEL)
14103 	{
14104 	  int i;
14105 	  for (i = 0; i < XVECLEN (pat, 0); i++)
14106 	    {
14107 	      set = XVECEXP (pat, 0, i);
14108 	      if (GET_CODE (set) != SET)
14109 		continue;
14110 
14111 	      reg = SET_DEST (set);
14112 	      while (GET_CODE (reg) == ZERO_EXTRACT
14113 		     || GET_CODE (reg) == STRICT_LOW_PART
14114 		     || GET_CODE (reg) == SUBREG)
14115 		reg = XEXP (reg, 0);
14116 
14117 	      if (!REG_P (reg))
14118 		continue;
14119 
14120 	      if (REGNO (reg) == link->regno)
14121 		break;
14122 	    }
14123 	  if (i == XVECLEN (pat, 0))
14124 	    continue;
14125 	}
14126       else
14127 	continue;
14128 
14129       reg = SET_DEST (set);
14130 
14131       while (GET_CODE (reg) == ZERO_EXTRACT
14132 	     || GET_CODE (reg) == STRICT_LOW_PART
14133 	     || GET_CODE (reg) == SUBREG)
14134 	reg = XEXP (reg, 0);
14135 
14136       /* A LOG_LINK is defined as being placed on the first insn that uses
14137 	 a register and points to the insn that sets the register.  Start
14138 	 searching at the next insn after the target of the link and stop
14139 	 when we reach a set of the register or the end of the basic block.
14140 
14141 	 Note that this correctly handles the link that used to point from
14142 	 I3 to I2.  Also note that not much searching is typically done here
14143 	 since most links don't point very far away.  */
14144 
14145       for (insn = NEXT_INSN (link->insn);
14146 	   (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14147 		     || BB_HEAD (this_basic_block->next_bb) != insn));
14148 	   insn = NEXT_INSN (insn))
14149 	if (DEBUG_INSN_P (insn))
14150 	  continue;
14151 	else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14152 	  {
14153 	    if (reg_referenced_p (reg, PATTERN (insn)))
14154 	      place = insn;
14155 	    break;
14156 	  }
14157 	else if (CALL_P (insn)
14158 		 && find_reg_fusage (insn, USE, reg))
14159 	  {
14160 	    place = insn;
14161 	    break;
14162 	  }
14163 	else if (INSN_P (insn) && reg_set_p (reg, insn))
14164 	  break;
14165 
14166       /* If we found a place to put the link, place it there unless there
14167 	 is already a link to the same insn as LINK at that point.  */
14168 
14169       if (place)
14170 	{
14171 	  struct insn_link *link2;
14172 
14173 	  FOR_EACH_LOG_LINK (link2, place)
14174 	    if (link2->insn == link->insn && link2->regno == link->regno)
14175 	      break;
14176 
14177 	  if (link2 == NULL)
14178 	    {
14179 	      link->next = LOG_LINKS (place);
14180 	      LOG_LINKS (place) = link;
14181 
14182 	      /* Set added_links_insn to the earliest insn we added a
14183 		 link to.  */
14184 	      if (added_links_insn == 0
14185 		  || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14186 		added_links_insn = place;
14187 	    }
14188 	}
14189     }
14190 }
14191 
14192 /* Check for any register or memory mentioned in EQUIV that is not
14193    mentioned in EXPR.  This is used to restrict EQUIV to "specializations"
14194    of EXPR where some registers may have been replaced by constants.  */
14195 
14196 static bool
14197 unmentioned_reg_p (rtx equiv, rtx expr)
14198 {
14199   subrtx_iterator::array_type array;
14200   FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14201     {
14202       const_rtx x = *iter;
14203       if ((REG_P (x) || MEM_P (x))
14204 	  && !reg_mentioned_p (x, expr))
14205 	return true;
14206     }
14207   return false;
14208 }
14209 
14210 DEBUG_FUNCTION void
14211 dump_combine_stats (FILE *file)
14212 {
14213   fprintf
14214     (file,
14215      ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14216      combine_attempts, combine_merges, combine_extras, combine_successes);
14217 }
14218 
14219 void
14220 dump_combine_total_stats (FILE *file)
14221 {
14222   fprintf
14223     (file,
14224      "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14225      total_attempts, total_merges, total_extras, total_successes);
14226 }
14227 
14228 /* Try combining insns through substitution.  */
14229 static unsigned int
14230 rest_of_handle_combine (void)
14231 {
14232   int rebuild_jump_labels_after_combine;
14233 
14234   df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14235   df_note_add_problem ();
14236   df_analyze ();
14237 
14238   regstat_init_n_sets_and_refs ();
14239   reg_n_sets_max = max_reg_num ();
14240 
14241   rebuild_jump_labels_after_combine
14242     = combine_instructions (get_insns (), max_reg_num ());
14243 
14244   /* Combining insns may have turned an indirect jump into a
14245      direct jump.  Rebuild the JUMP_LABEL fields of jumping
14246      instructions.  */
14247   if (rebuild_jump_labels_after_combine)
14248     {
14249       timevar_push (TV_JUMP);
14250       rebuild_jump_labels (get_insns ());
14251       cleanup_cfg (0);
14252       timevar_pop (TV_JUMP);
14253     }
14254 
14255   regstat_free_n_sets_and_refs ();
14256   return 0;
14257 }
14258 
14259 namespace {
14260 
14261 const pass_data pass_data_combine =
14262 {
14263   RTL_PASS, /* type */
14264   "combine", /* name */
14265   OPTGROUP_NONE, /* optinfo_flags */
14266   TV_COMBINE, /* tv_id */
14267   PROP_cfglayout, /* properties_required */
14268   0, /* properties_provided */
14269   0, /* properties_destroyed */
14270   0, /* todo_flags_start */
14271   TODO_df_finish, /* todo_flags_finish */
14272 };
14273 
14274 class pass_combine : public rtl_opt_pass
14275 {
14276 public:
14277   pass_combine (gcc::context *ctxt)
14278     : rtl_opt_pass (pass_data_combine, ctxt)
14279   {}
14280 
14281   /* opt_pass methods: */
14282   virtual bool gate (function *) { return (optimize > 0); }
14283   virtual unsigned int execute (function *)
14284     {
14285       return rest_of_handle_combine ();
14286     }
14287 
14288 }; // class pass_combine
14289 
14290 } // anon namespace
14291 
14292 rtl_opt_pass *
14293 make_pass_combine (gcc::context *ctxt)
14294 {
14295   return new pass_combine (ctxt);
14296 }
14297