1 /* Optimize by combining instructions for GNU compiler. 2 Copyright (C) 1987-2018 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 /* This module is essentially the "combiner" phase of the U. of Arizona 21 Portable Optimizer, but redone to work on our list-structured 22 representation for RTL instead of their string representation. 23 24 The LOG_LINKS of each insn identify the most recent assignment 25 to each REG used in the insn. It is a list of previous insns, 26 each of which contains a SET for a REG that is used in this insn 27 and not used or set in between. LOG_LINKs never cross basic blocks. 28 They were set up by the preceding pass (lifetime analysis). 29 30 We try to combine each pair of insns joined by a logical link. 31 We also try to combine triplets of insns A, B and C when C has 32 a link back to B and B has a link back to A. Likewise for a 33 small number of quadruplets of insns A, B, C and D for which 34 there's high likelihood of success. 35 36 LOG_LINKS does not have links for use of the CC0. They don't 37 need to, because the insn that sets the CC0 is always immediately 38 before the insn that tests it. So we always regard a branch 39 insn as having a logical link to the preceding insn. The same is true 40 for an insn explicitly using CC0. 41 42 We check (with modified_between_p) to avoid combining in such a way 43 as to move a computation to a place where its value would be different. 44 45 Combination is done by mathematically substituting the previous 46 insn(s) values for the regs they set into the expressions in 47 the later insns that refer to these regs. If the result is a valid insn 48 for our target machine, according to the machine description, 49 we install it, delete the earlier insns, and update the data flow 50 information (LOG_LINKS and REG_NOTES) for what we did. 51 52 There are a few exceptions where the dataflow information isn't 53 completely updated (however this is only a local issue since it is 54 regenerated before the next pass that uses it): 55 56 - reg_live_length is not updated 57 - reg_n_refs is not adjusted in the rare case when a register is 58 no longer required in a computation 59 - there are extremely rare cases (see distribute_notes) when a 60 REG_DEAD note is lost 61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be 62 removed because there is no way to know which register it was 63 linking 64 65 To simplify substitution, we combine only when the earlier insn(s) 66 consist of only a single assignment. To simplify updating afterward, 67 we never combine when a subroutine call appears in the middle. 68 69 Since we do not represent assignments to CC0 explicitly except when that 70 is all an insn does, there is no LOG_LINKS entry in an insn that uses 71 the condition code for the insn that set the condition code. 72 Fortunately, these two insns must be consecutive. 73 Therefore, every JUMP_INSN is taken to have an implicit logical link 74 to the preceding insn. This is not quite right, since non-jumps can 75 also use the condition code; but in practice such insns would not 76 combine anyway. */ 77 78 #include "config.h" 79 #include "system.h" 80 #include "coretypes.h" 81 #include "backend.h" 82 #include "target.h" 83 #include "rtl.h" 84 #include "tree.h" 85 #include "cfghooks.h" 86 #include "predict.h" 87 #include "df.h" 88 #include "memmodel.h" 89 #include "tm_p.h" 90 #include "optabs.h" 91 #include "regs.h" 92 #include "emit-rtl.h" 93 #include "recog.h" 94 #include "cgraph.h" 95 #include "stor-layout.h" 96 #include "cfgrtl.h" 97 #include "cfgcleanup.h" 98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */ 99 #include "explow.h" 100 #include "insn-attr.h" 101 #include "rtlhooks-def.h" 102 #include "params.h" 103 #include "tree-pass.h" 104 #include "valtrack.h" 105 #include "rtl-iter.h" 106 #include "print-rtl.h" 107 108 /* Number of attempts to combine instructions in this function. */ 109 110 static int combine_attempts; 111 112 /* Number of attempts that got as far as substitution in this function. */ 113 114 static int combine_merges; 115 116 /* Number of instructions combined with added SETs in this function. */ 117 118 static int combine_extras; 119 120 /* Number of instructions combined in this function. */ 121 122 static int combine_successes; 123 124 /* Totals over entire compilation. */ 125 126 static int total_attempts, total_merges, total_extras, total_successes; 127 128 /* combine_instructions may try to replace the right hand side of the 129 second instruction with the value of an associated REG_EQUAL note 130 before throwing it at try_combine. That is problematic when there 131 is a REG_DEAD note for a register used in the old right hand side 132 and can cause distribute_notes to do wrong things. This is the 133 second instruction if it has been so modified, null otherwise. */ 134 135 static rtx_insn *i2mod; 136 137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */ 138 139 static rtx i2mod_old_rhs; 140 141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */ 142 143 static rtx i2mod_new_rhs; 144 145 struct reg_stat_type { 146 /* Record last point of death of (hard or pseudo) register n. */ 147 rtx_insn *last_death; 148 149 /* Record last point of modification of (hard or pseudo) register n. */ 150 rtx_insn *last_set; 151 152 /* The next group of fields allows the recording of the last value assigned 153 to (hard or pseudo) register n. We use this information to see if an 154 operation being processed is redundant given a prior operation performed 155 on the register. For example, an `and' with a constant is redundant if 156 all the zero bits are already known to be turned off. 157 158 We use an approach similar to that used by cse, but change it in the 159 following ways: 160 161 (1) We do not want to reinitialize at each label. 162 (2) It is useful, but not critical, to know the actual value assigned 163 to a register. Often just its form is helpful. 164 165 Therefore, we maintain the following fields: 166 167 last_set_value the last value assigned 168 last_set_label records the value of label_tick when the 169 register was assigned 170 last_set_table_tick records the value of label_tick when a 171 value using the register is assigned 172 last_set_invalid set to nonzero when it is not valid 173 to use the value of this register in some 174 register's value 175 176 To understand the usage of these tables, it is important to understand 177 the distinction between the value in last_set_value being valid and 178 the register being validly contained in some other expression in the 179 table. 180 181 (The next two parameters are out of date). 182 183 reg_stat[i].last_set_value is valid if it is nonzero, and either 184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick. 185 186 Register I may validly appear in any expression returned for the value 187 of another register if reg_n_sets[i] is 1. It may also appear in the 188 value for register J if reg_stat[j].last_set_invalid is zero, or 189 reg_stat[i].last_set_label < reg_stat[j].last_set_label. 190 191 If an expression is found in the table containing a register which may 192 not validly appear in an expression, the register is replaced by 193 something that won't match, (clobber (const_int 0)). */ 194 195 /* Record last value assigned to (hard or pseudo) register n. */ 196 197 rtx last_set_value; 198 199 /* Record the value of label_tick when an expression involving register n 200 is placed in last_set_value. */ 201 202 int last_set_table_tick; 203 204 /* Record the value of label_tick when the value for register n is placed in 205 last_set_value. */ 206 207 int last_set_label; 208 209 /* These fields are maintained in parallel with last_set_value and are 210 used to store the mode in which the register was last set, the bits 211 that were known to be zero when it was last set, and the number of 212 sign bits copies it was known to have when it was last set. */ 213 214 unsigned HOST_WIDE_INT last_set_nonzero_bits; 215 char last_set_sign_bit_copies; 216 ENUM_BITFIELD(machine_mode) last_set_mode : 8; 217 218 /* Set nonzero if references to register n in expressions should not be 219 used. last_set_invalid is set nonzero when this register is being 220 assigned to and last_set_table_tick == label_tick. */ 221 222 char last_set_invalid; 223 224 /* Some registers that are set more than once and used in more than one 225 basic block are nevertheless always set in similar ways. For example, 226 a QImode register may be loaded from memory in two places on a machine 227 where byte loads zero extend. 228 229 We record in the following fields if a register has some leading bits 230 that are always equal to the sign bit, and what we know about the 231 nonzero bits of a register, specifically which bits are known to be 232 zero. 233 234 If an entry is zero, it means that we don't know anything special. */ 235 236 unsigned char sign_bit_copies; 237 238 unsigned HOST_WIDE_INT nonzero_bits; 239 240 /* Record the value of the label_tick when the last truncation 241 happened. The field truncated_to_mode is only valid if 242 truncation_label == label_tick. */ 243 244 int truncation_label; 245 246 /* Record the last truncation seen for this register. If truncation 247 is not a nop to this mode we might be able to save an explicit 248 truncation if we know that value already contains a truncated 249 value. */ 250 251 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8; 252 }; 253 254 255 static vec<reg_stat_type> reg_stat; 256 257 /* One plus the highest pseudo for which we track REG_N_SETS. 258 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once, 259 but during combine_split_insns new pseudos can be created. As we don't have 260 updated DF information in that case, it is hard to initialize the array 261 after growing. The combiner only cares about REG_N_SETS (regno) == 1, 262 so instead of growing the arrays, just assume all newly created pseudos 263 during combine might be set multiple times. */ 264 265 static unsigned int reg_n_sets_max; 266 267 /* Record the luid of the last insn that invalidated memory 268 (anything that writes memory, and subroutine calls, but not pushes). */ 269 270 static int mem_last_set; 271 272 /* Record the luid of the last CALL_INSN 273 so we can tell whether a potential combination crosses any calls. */ 274 275 static int last_call_luid; 276 277 /* When `subst' is called, this is the insn that is being modified 278 (by combining in a previous insn). The PATTERN of this insn 279 is still the old pattern partially modified and it should not be 280 looked at, but this may be used to examine the successors of the insn 281 to judge whether a simplification is valid. */ 282 283 static rtx_insn *subst_insn; 284 285 /* This is the lowest LUID that `subst' is currently dealing with. 286 get_last_value will not return a value if the register was set at or 287 after this LUID. If not for this mechanism, we could get confused if 288 I2 or I1 in try_combine were an insn that used the old value of a register 289 to obtain a new value. In that case, we might erroneously get the 290 new value of the register when we wanted the old one. */ 291 292 static int subst_low_luid; 293 294 /* This contains any hard registers that are used in newpat; reg_dead_at_p 295 must consider all these registers to be always live. */ 296 297 static HARD_REG_SET newpat_used_regs; 298 299 /* This is an insn to which a LOG_LINKS entry has been added. If this 300 insn is the earlier than I2 or I3, combine should rescan starting at 301 that location. */ 302 303 static rtx_insn *added_links_insn; 304 305 /* And similarly, for notes. */ 306 307 static rtx_insn *added_notes_insn; 308 309 /* Basic block in which we are performing combines. */ 310 static basic_block this_basic_block; 311 static bool optimize_this_for_speed_p; 312 313 314 /* Length of the currently allocated uid_insn_cost array. */ 315 316 static int max_uid_known; 317 318 /* The following array records the insn_cost for every insn 319 in the instruction stream. */ 320 321 static int *uid_insn_cost; 322 323 /* The following array records the LOG_LINKS for every insn in the 324 instruction stream as struct insn_link pointers. */ 325 326 struct insn_link { 327 rtx_insn *insn; 328 unsigned int regno; 329 struct insn_link *next; 330 }; 331 332 static struct insn_link **uid_log_links; 333 334 static inline int 335 insn_uid_check (const_rtx insn) 336 { 337 int uid = INSN_UID (insn); 338 gcc_checking_assert (uid <= max_uid_known); 339 return uid; 340 } 341 342 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)]) 343 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)]) 344 345 #define FOR_EACH_LOG_LINK(L, INSN) \ 346 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next) 347 348 /* Links for LOG_LINKS are allocated from this obstack. */ 349 350 static struct obstack insn_link_obstack; 351 352 /* Allocate a link. */ 353 354 static inline struct insn_link * 355 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next) 356 { 357 struct insn_link *l 358 = (struct insn_link *) obstack_alloc (&insn_link_obstack, 359 sizeof (struct insn_link)); 360 l->insn = insn; 361 l->regno = regno; 362 l->next = next; 363 return l; 364 } 365 366 /* Incremented for each basic block. */ 367 368 static int label_tick; 369 370 /* Reset to label_tick for each extended basic block in scanning order. */ 371 372 static int label_tick_ebb_start; 373 374 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the 375 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */ 376 377 static scalar_int_mode nonzero_bits_mode; 378 379 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can 380 be safely used. It is zero while computing them and after combine has 381 completed. This former test prevents propagating values based on 382 previously set values, which can be incorrect if a variable is modified 383 in a loop. */ 384 385 static int nonzero_sign_valid; 386 387 388 /* Record one modification to rtl structure 389 to be undone by storing old_contents into *where. */ 390 391 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS }; 392 393 struct undo 394 { 395 struct undo *next; 396 enum undo_kind kind; 397 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents; 398 union { rtx *r; int *i; struct insn_link **l; } where; 399 }; 400 401 /* Record a bunch of changes to be undone, up to MAX_UNDO of them. 402 num_undo says how many are currently recorded. 403 404 other_insn is nonzero if we have modified some other insn in the process 405 of working on subst_insn. It must be verified too. */ 406 407 struct undobuf 408 { 409 struct undo *undos; 410 struct undo *frees; 411 rtx_insn *other_insn; 412 }; 413 414 static struct undobuf undobuf; 415 416 /* Number of times the pseudo being substituted for 417 was found and replaced. */ 418 419 static int n_occurrences; 420 421 static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode, 422 scalar_int_mode, 423 unsigned HOST_WIDE_INT *); 424 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode, 425 scalar_int_mode, 426 unsigned int *); 427 static void do_SUBST (rtx *, rtx); 428 static void do_SUBST_INT (int *, int); 429 static void init_reg_last (void); 430 static void setup_incoming_promotions (rtx_insn *); 431 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *); 432 static int cant_combine_insn_p (rtx_insn *); 433 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *, 434 rtx_insn *, rtx_insn *, rtx *, rtx *); 435 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *); 436 static int contains_muldiv (rtx); 437 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *, 438 int *, rtx_insn *); 439 static void undo_all (void); 440 static void undo_commit (void); 441 static rtx *find_split_point (rtx *, rtx_insn *, bool); 442 static rtx subst (rtx, rtx, rtx, int, int, int); 443 static rtx combine_simplify_rtx (rtx, machine_mode, int, int); 444 static rtx simplify_if_then_else (rtx); 445 static rtx simplify_set (rtx); 446 static rtx simplify_logical (rtx); 447 static rtx expand_compound_operation (rtx); 448 static const_rtx expand_field_assignment (const_rtx); 449 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT, 450 rtx, unsigned HOST_WIDE_INT, int, int, int); 451 static int get_pos_from_mask (unsigned HOST_WIDE_INT, 452 unsigned HOST_WIDE_INT *); 453 static rtx canon_reg_for_combine (rtx, rtx); 454 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode, 455 scalar_int_mode, unsigned HOST_WIDE_INT, int); 456 static rtx force_to_mode (rtx, machine_mode, 457 unsigned HOST_WIDE_INT, int); 458 static rtx if_then_else_cond (rtx, rtx *, rtx *); 459 static rtx known_cond (rtx, enum rtx_code, rtx, rtx); 460 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false); 461 static rtx make_field_assignment (rtx); 462 static rtx apply_distributive_law (rtx); 463 static rtx distribute_and_simplify_rtx (rtx, int); 464 static rtx simplify_and_const_int_1 (scalar_int_mode, rtx, 465 unsigned HOST_WIDE_INT); 466 static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx, 467 unsigned HOST_WIDE_INT); 468 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code, 469 HOST_WIDE_INT, machine_mode, int *); 470 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int); 471 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx, 472 int); 473 static int recog_for_combine (rtx *, rtx_insn *, rtx *); 474 static rtx gen_lowpart_for_combine (machine_mode, rtx); 475 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode, 476 rtx, rtx *); 477 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *); 478 static void update_table_tick (rtx); 479 static void record_value_for_reg (rtx, rtx_insn *, rtx); 480 static void check_promoted_subreg (rtx_insn *, rtx); 481 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *); 482 static void record_dead_and_set_regs (rtx_insn *); 483 static int get_last_value_validate (rtx *, rtx_insn *, int, int); 484 static rtx get_last_value (const_rtx); 485 static void reg_dead_at_p_1 (rtx, const_rtx, void *); 486 static int reg_dead_at_p (rtx, rtx_insn *); 487 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *); 488 static int reg_bitfield_target_p (rtx, rtx); 489 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx); 490 static void distribute_links (struct insn_link *); 491 static void mark_used_regs_combine (rtx); 492 static void record_promoted_value (rtx_insn *, rtx); 493 static bool unmentioned_reg_p (rtx, rtx); 494 static void record_truncated_values (rtx *, void *); 495 static bool reg_truncated_to_mode (machine_mode, const_rtx); 496 static rtx gen_lowpart_or_truncate (machine_mode, rtx); 497 498 499 /* It is not safe to use ordinary gen_lowpart in combine. 500 See comments in gen_lowpart_for_combine. */ 501 #undef RTL_HOOKS_GEN_LOWPART 502 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine 503 504 /* Our implementation of gen_lowpart never emits a new pseudo. */ 505 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT 506 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine 507 508 #undef RTL_HOOKS_REG_NONZERO_REG_BITS 509 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine 510 511 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES 512 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine 513 514 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE 515 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode 516 517 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER; 518 519 520 /* Convenience wrapper for the canonicalize_comparison target hook. 521 Target hooks cannot use enum rtx_code. */ 522 static inline void 523 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1, 524 bool op0_preserve_value) 525 { 526 int code_int = (int)*code; 527 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value); 528 *code = (enum rtx_code)code_int; 529 } 530 531 /* Try to split PATTERN found in INSN. This returns NULL_RTX if 532 PATTERN can not be split. Otherwise, it returns an insn sequence. 533 This is a wrapper around split_insns which ensures that the 534 reg_stat vector is made larger if the splitter creates a new 535 register. */ 536 537 static rtx_insn * 538 combine_split_insns (rtx pattern, rtx_insn *insn) 539 { 540 rtx_insn *ret; 541 unsigned int nregs; 542 543 ret = split_insns (pattern, insn); 544 nregs = max_reg_num (); 545 if (nregs > reg_stat.length ()) 546 reg_stat.safe_grow_cleared (nregs); 547 return ret; 548 } 549 550 /* This is used by find_single_use to locate an rtx in LOC that 551 contains exactly one use of DEST, which is typically either a REG 552 or CC0. It returns a pointer to the innermost rtx expression 553 containing DEST. Appearances of DEST that are being used to 554 totally replace it are not counted. */ 555 556 static rtx * 557 find_single_use_1 (rtx dest, rtx *loc) 558 { 559 rtx x = *loc; 560 enum rtx_code code = GET_CODE (x); 561 rtx *result = NULL; 562 rtx *this_result; 563 int i; 564 const char *fmt; 565 566 switch (code) 567 { 568 case CONST: 569 case LABEL_REF: 570 case SYMBOL_REF: 571 CASE_CONST_ANY: 572 case CLOBBER: 573 return 0; 574 575 case SET: 576 /* If the destination is anything other than CC0, PC, a REG or a SUBREG 577 of a REG that occupies all of the REG, the insn uses DEST if 578 it is mentioned in the destination or the source. Otherwise, we 579 need just check the source. */ 580 if (GET_CODE (SET_DEST (x)) != CC0 581 && GET_CODE (SET_DEST (x)) != PC 582 && !REG_P (SET_DEST (x)) 583 && ! (GET_CODE (SET_DEST (x)) == SUBREG 584 && REG_P (SUBREG_REG (SET_DEST (x))) 585 && !read_modify_subreg_p (SET_DEST (x)))) 586 break; 587 588 return find_single_use_1 (dest, &SET_SRC (x)); 589 590 case MEM: 591 case SUBREG: 592 return find_single_use_1 (dest, &XEXP (x, 0)); 593 594 default: 595 break; 596 } 597 598 /* If it wasn't one of the common cases above, check each expression and 599 vector of this code. Look for a unique usage of DEST. */ 600 601 fmt = GET_RTX_FORMAT (code); 602 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 603 { 604 if (fmt[i] == 'e') 605 { 606 if (dest == XEXP (x, i) 607 || (REG_P (dest) && REG_P (XEXP (x, i)) 608 && REGNO (dest) == REGNO (XEXP (x, i)))) 609 this_result = loc; 610 else 611 this_result = find_single_use_1 (dest, &XEXP (x, i)); 612 613 if (result == NULL) 614 result = this_result; 615 else if (this_result) 616 /* Duplicate usage. */ 617 return NULL; 618 } 619 else if (fmt[i] == 'E') 620 { 621 int j; 622 623 for (j = XVECLEN (x, i) - 1; j >= 0; j--) 624 { 625 if (XVECEXP (x, i, j) == dest 626 || (REG_P (dest) 627 && REG_P (XVECEXP (x, i, j)) 628 && REGNO (XVECEXP (x, i, j)) == REGNO (dest))) 629 this_result = loc; 630 else 631 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j)); 632 633 if (result == NULL) 634 result = this_result; 635 else if (this_result) 636 return NULL; 637 } 638 } 639 } 640 641 return result; 642 } 643 644 645 /* See if DEST, produced in INSN, is used only a single time in the 646 sequel. If so, return a pointer to the innermost rtx expression in which 647 it is used. 648 649 If PLOC is nonzero, *PLOC is set to the insn containing the single use. 650 651 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't 652 care about REG_DEAD notes or LOG_LINKS. 653 654 Otherwise, we find the single use by finding an insn that has a 655 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is 656 only referenced once in that insn, we know that it must be the first 657 and last insn referencing DEST. */ 658 659 static rtx * 660 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc) 661 { 662 basic_block bb; 663 rtx_insn *next; 664 rtx *result; 665 struct insn_link *link; 666 667 if (dest == cc0_rtx) 668 { 669 next = NEXT_INSN (insn); 670 if (next == 0 671 || (!NONJUMP_INSN_P (next) && !JUMP_P (next))) 672 return 0; 673 674 result = find_single_use_1 (dest, &PATTERN (next)); 675 if (result && ploc) 676 *ploc = next; 677 return result; 678 } 679 680 if (!REG_P (dest)) 681 return 0; 682 683 bb = BLOCK_FOR_INSN (insn); 684 for (next = NEXT_INSN (insn); 685 next && BLOCK_FOR_INSN (next) == bb; 686 next = NEXT_INSN (next)) 687 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest)) 688 { 689 FOR_EACH_LOG_LINK (link, next) 690 if (link->insn == insn && link->regno == REGNO (dest)) 691 break; 692 693 if (link) 694 { 695 result = find_single_use_1 (dest, &PATTERN (next)); 696 if (ploc) 697 *ploc = next; 698 return result; 699 } 700 } 701 702 return 0; 703 } 704 705 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some 706 insn. The substitution can be undone by undo_all. If INTO is already 707 set to NEWVAL, do not record this change. Because computing NEWVAL might 708 also call SUBST, we have to compute it before we put anything into 709 the undo table. */ 710 711 static void 712 do_SUBST (rtx *into, rtx newval) 713 { 714 struct undo *buf; 715 rtx oldval = *into; 716 717 if (oldval == newval) 718 return; 719 720 /* We'd like to catch as many invalid transformations here as 721 possible. Unfortunately, there are way too many mode changes 722 that are perfectly valid, so we'd waste too much effort for 723 little gain doing the checks here. Focus on catching invalid 724 transformations involving integer constants. */ 725 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT 726 && CONST_INT_P (newval)) 727 { 728 /* Sanity check that we're replacing oldval with a CONST_INT 729 that is a valid sign-extension for the original mode. */ 730 gcc_assert (INTVAL (newval) 731 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval))); 732 733 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a 734 CONST_INT is not valid, because after the replacement, the 735 original mode would be gone. Unfortunately, we can't tell 736 when do_SUBST is called to replace the operand thereof, so we 737 perform this test on oldval instead, checking whether an 738 invalid replacement took place before we got here. */ 739 gcc_assert (!(GET_CODE (oldval) == SUBREG 740 && CONST_INT_P (SUBREG_REG (oldval)))); 741 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND 742 && CONST_INT_P (XEXP (oldval, 0)))); 743 } 744 745 if (undobuf.frees) 746 buf = undobuf.frees, undobuf.frees = buf->next; 747 else 748 buf = XNEW (struct undo); 749 750 buf->kind = UNDO_RTX; 751 buf->where.r = into; 752 buf->old_contents.r = oldval; 753 *into = newval; 754 755 buf->next = undobuf.undos, undobuf.undos = buf; 756 } 757 758 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL)) 759 760 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution 761 for the value of a HOST_WIDE_INT value (including CONST_INT) is 762 not safe. */ 763 764 static void 765 do_SUBST_INT (int *into, int newval) 766 { 767 struct undo *buf; 768 int oldval = *into; 769 770 if (oldval == newval) 771 return; 772 773 if (undobuf.frees) 774 buf = undobuf.frees, undobuf.frees = buf->next; 775 else 776 buf = XNEW (struct undo); 777 778 buf->kind = UNDO_INT; 779 buf->where.i = into; 780 buf->old_contents.i = oldval; 781 *into = newval; 782 783 buf->next = undobuf.undos, undobuf.undos = buf; 784 } 785 786 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL)) 787 788 /* Similar to SUBST, but just substitute the mode. This is used when 789 changing the mode of a pseudo-register, so that any other 790 references to the entry in the regno_reg_rtx array will change as 791 well. */ 792 793 static void 794 do_SUBST_MODE (rtx *into, machine_mode newval) 795 { 796 struct undo *buf; 797 machine_mode oldval = GET_MODE (*into); 798 799 if (oldval == newval) 800 return; 801 802 if (undobuf.frees) 803 buf = undobuf.frees, undobuf.frees = buf->next; 804 else 805 buf = XNEW (struct undo); 806 807 buf->kind = UNDO_MODE; 808 buf->where.r = into; 809 buf->old_contents.m = oldval; 810 adjust_reg_mode (*into, newval); 811 812 buf->next = undobuf.undos, undobuf.undos = buf; 813 } 814 815 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL)) 816 817 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */ 818 819 static void 820 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval) 821 { 822 struct undo *buf; 823 struct insn_link * oldval = *into; 824 825 if (oldval == newval) 826 return; 827 828 if (undobuf.frees) 829 buf = undobuf.frees, undobuf.frees = buf->next; 830 else 831 buf = XNEW (struct undo); 832 833 buf->kind = UNDO_LINKS; 834 buf->where.l = into; 835 buf->old_contents.l = oldval; 836 *into = newval; 837 838 buf->next = undobuf.undos, undobuf.undos = buf; 839 } 840 841 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval) 842 843 /* Subroutine of try_combine. Determine whether the replacement patterns 844 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost 845 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note 846 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and 847 undobuf.other_insn may also both be NULL_RTX. Return false if the cost 848 of all the instructions can be estimated and the replacements are more 849 expensive than the original sequence. */ 850 851 static bool 852 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3, 853 rtx newpat, rtx newi2pat, rtx newotherpat) 854 { 855 int i0_cost, i1_cost, i2_cost, i3_cost; 856 int new_i2_cost, new_i3_cost; 857 int old_cost, new_cost; 858 859 /* Lookup the original insn_costs. */ 860 i2_cost = INSN_COST (i2); 861 i3_cost = INSN_COST (i3); 862 863 if (i1) 864 { 865 i1_cost = INSN_COST (i1); 866 if (i0) 867 { 868 i0_cost = INSN_COST (i0); 869 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0 870 ? i0_cost + i1_cost + i2_cost + i3_cost : 0); 871 } 872 else 873 { 874 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0 875 ? i1_cost + i2_cost + i3_cost : 0); 876 i0_cost = 0; 877 } 878 } 879 else 880 { 881 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0; 882 i1_cost = i0_cost = 0; 883 } 884 885 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice; 886 correct that. */ 887 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2)) 888 old_cost -= i1_cost; 889 890 891 /* Calculate the replacement insn_costs. */ 892 rtx tmp = PATTERN (i3); 893 PATTERN (i3) = newpat; 894 int tmpi = INSN_CODE (i3); 895 INSN_CODE (i3) = -1; 896 new_i3_cost = insn_cost (i3, optimize_this_for_speed_p); 897 PATTERN (i3) = tmp; 898 INSN_CODE (i3) = tmpi; 899 if (newi2pat) 900 { 901 tmp = PATTERN (i2); 902 PATTERN (i2) = newi2pat; 903 tmpi = INSN_CODE (i2); 904 INSN_CODE (i2) = -1; 905 new_i2_cost = insn_cost (i2, optimize_this_for_speed_p); 906 PATTERN (i2) = tmp; 907 INSN_CODE (i2) = tmpi; 908 new_cost = (new_i2_cost > 0 && new_i3_cost > 0) 909 ? new_i2_cost + new_i3_cost : 0; 910 } 911 else 912 { 913 new_cost = new_i3_cost; 914 new_i2_cost = 0; 915 } 916 917 if (undobuf.other_insn) 918 { 919 int old_other_cost, new_other_cost; 920 921 old_other_cost = INSN_COST (undobuf.other_insn); 922 tmp = PATTERN (undobuf.other_insn); 923 PATTERN (undobuf.other_insn) = newotherpat; 924 tmpi = INSN_CODE (undobuf.other_insn); 925 INSN_CODE (undobuf.other_insn) = -1; 926 new_other_cost = insn_cost (undobuf.other_insn, 927 optimize_this_for_speed_p); 928 PATTERN (undobuf.other_insn) = tmp; 929 INSN_CODE (undobuf.other_insn) = tmpi; 930 if (old_other_cost > 0 && new_other_cost > 0) 931 { 932 old_cost += old_other_cost; 933 new_cost += new_other_cost; 934 } 935 else 936 old_cost = 0; 937 } 938 939 /* Disallow this combination if both new_cost and old_cost are greater than 940 zero, and new_cost is greater than old cost. */ 941 int reject = old_cost > 0 && new_cost > old_cost; 942 943 if (dump_file) 944 { 945 fprintf (dump_file, "%s combination of insns ", 946 reject ? "rejecting" : "allowing"); 947 if (i0) 948 fprintf (dump_file, "%d, ", INSN_UID (i0)); 949 if (i1 && INSN_UID (i1) != INSN_UID (i2)) 950 fprintf (dump_file, "%d, ", INSN_UID (i1)); 951 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3)); 952 953 fprintf (dump_file, "original costs "); 954 if (i0) 955 fprintf (dump_file, "%d + ", i0_cost); 956 if (i1 && INSN_UID (i1) != INSN_UID (i2)) 957 fprintf (dump_file, "%d + ", i1_cost); 958 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost); 959 960 if (newi2pat) 961 fprintf (dump_file, "replacement costs %d + %d = %d\n", 962 new_i2_cost, new_i3_cost, new_cost); 963 else 964 fprintf (dump_file, "replacement cost %d\n", new_cost); 965 } 966 967 if (reject) 968 return false; 969 970 /* Update the uid_insn_cost array with the replacement costs. */ 971 INSN_COST (i2) = new_i2_cost; 972 INSN_COST (i3) = new_i3_cost; 973 if (i1) 974 { 975 INSN_COST (i1) = 0; 976 if (i0) 977 INSN_COST (i0) = 0; 978 } 979 980 return true; 981 } 982 983 984 /* Delete any insns that copy a register to itself. 985 Return true if the CFG was changed. */ 986 987 static bool 988 delete_noop_moves (void) 989 { 990 rtx_insn *insn, *next; 991 basic_block bb; 992 993 bool edges_deleted = false; 994 995 FOR_EACH_BB_FN (bb, cfun) 996 { 997 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next) 998 { 999 next = NEXT_INSN (insn); 1000 if (INSN_P (insn) && noop_move_p (insn)) 1001 { 1002 if (dump_file) 1003 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn)); 1004 1005 edges_deleted |= delete_insn_and_edges (insn); 1006 } 1007 } 1008 } 1009 1010 return edges_deleted; 1011 } 1012 1013 1014 /* Return false if we do not want to (or cannot) combine DEF. */ 1015 static bool 1016 can_combine_def_p (df_ref def) 1017 { 1018 /* Do not consider if it is pre/post modification in MEM. */ 1019 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY) 1020 return false; 1021 1022 unsigned int regno = DF_REF_REGNO (def); 1023 1024 /* Do not combine frame pointer adjustments. */ 1025 if ((regno == FRAME_POINTER_REGNUM 1026 && (!reload_completed || frame_pointer_needed)) 1027 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER 1028 && regno == HARD_FRAME_POINTER_REGNUM 1029 && (!reload_completed || frame_pointer_needed)) 1030 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM 1031 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])) 1032 return false; 1033 1034 return true; 1035 } 1036 1037 /* Return false if we do not want to (or cannot) combine USE. */ 1038 static bool 1039 can_combine_use_p (df_ref use) 1040 { 1041 /* Do not consider the usage of the stack pointer by function call. */ 1042 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE) 1043 return false; 1044 1045 return true; 1046 } 1047 1048 /* Fill in log links field for all insns. */ 1049 1050 static void 1051 create_log_links (void) 1052 { 1053 basic_block bb; 1054 rtx_insn **next_use; 1055 rtx_insn *insn; 1056 df_ref def, use; 1057 1058 next_use = XCNEWVEC (rtx_insn *, max_reg_num ()); 1059 1060 /* Pass through each block from the end, recording the uses of each 1061 register and establishing log links when def is encountered. 1062 Note that we do not clear next_use array in order to save time, 1063 so we have to test whether the use is in the same basic block as def. 1064 1065 There are a few cases below when we do not consider the definition or 1066 usage -- these are taken from original flow.c did. Don't ask me why it is 1067 done this way; I don't know and if it works, I don't want to know. */ 1068 1069 FOR_EACH_BB_FN (bb, cfun) 1070 { 1071 FOR_BB_INSNS_REVERSE (bb, insn) 1072 { 1073 if (!NONDEBUG_INSN_P (insn)) 1074 continue; 1075 1076 /* Log links are created only once. */ 1077 gcc_assert (!LOG_LINKS (insn)); 1078 1079 FOR_EACH_INSN_DEF (def, insn) 1080 { 1081 unsigned int regno = DF_REF_REGNO (def); 1082 rtx_insn *use_insn; 1083 1084 if (!next_use[regno]) 1085 continue; 1086 1087 if (!can_combine_def_p (def)) 1088 continue; 1089 1090 use_insn = next_use[regno]; 1091 next_use[regno] = NULL; 1092 1093 if (BLOCK_FOR_INSN (use_insn) != bb) 1094 continue; 1095 1096 /* flow.c claimed: 1097 1098 We don't build a LOG_LINK for hard registers contained 1099 in ASM_OPERANDs. If these registers get replaced, 1100 we might wind up changing the semantics of the insn, 1101 even if reload can make what appear to be valid 1102 assignments later. */ 1103 if (regno < FIRST_PSEUDO_REGISTER 1104 && asm_noperands (PATTERN (use_insn)) >= 0) 1105 continue; 1106 1107 /* Don't add duplicate links between instructions. */ 1108 struct insn_link *links; 1109 FOR_EACH_LOG_LINK (links, use_insn) 1110 if (insn == links->insn && regno == links->regno) 1111 break; 1112 1113 if (!links) 1114 LOG_LINKS (use_insn) 1115 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn)); 1116 } 1117 1118 FOR_EACH_INSN_USE (use, insn) 1119 if (can_combine_use_p (use)) 1120 next_use[DF_REF_REGNO (use)] = insn; 1121 } 1122 } 1123 1124 free (next_use); 1125 } 1126 1127 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return 1128 true if we found a LOG_LINK that proves that A feeds B. This only works 1129 if there are no instructions between A and B which could have a link 1130 depending on A, since in that case we would not record a link for B. 1131 We also check the implicit dependency created by a cc0 setter/user 1132 pair. */ 1133 1134 static bool 1135 insn_a_feeds_b (rtx_insn *a, rtx_insn *b) 1136 { 1137 struct insn_link *links; 1138 FOR_EACH_LOG_LINK (links, b) 1139 if (links->insn == a) 1140 return true; 1141 if (HAVE_cc0 && sets_cc0_p (a)) 1142 return true; 1143 return false; 1144 } 1145 1146 /* Main entry point for combiner. F is the first insn of the function. 1147 NREGS is the first unused pseudo-reg number. 1148 1149 Return nonzero if the CFG was changed (e.g. if the combiner has 1150 turned an indirect jump instruction into a direct jump). */ 1151 static int 1152 combine_instructions (rtx_insn *f, unsigned int nregs) 1153 { 1154 rtx_insn *insn, *next; 1155 rtx_insn *prev; 1156 struct insn_link *links, *nextlinks; 1157 rtx_insn *first; 1158 basic_block last_bb; 1159 1160 int new_direct_jump_p = 0; 1161 1162 for (first = f; first && !NONDEBUG_INSN_P (first); ) 1163 first = NEXT_INSN (first); 1164 if (!first) 1165 return 0; 1166 1167 combine_attempts = 0; 1168 combine_merges = 0; 1169 combine_extras = 0; 1170 combine_successes = 0; 1171 1172 rtl_hooks = combine_rtl_hooks; 1173 1174 reg_stat.safe_grow_cleared (nregs); 1175 1176 init_recog_no_volatile (); 1177 1178 /* Allocate array for insn info. */ 1179 max_uid_known = get_max_uid (); 1180 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1); 1181 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1); 1182 gcc_obstack_init (&insn_link_obstack); 1183 1184 nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require (); 1185 1186 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause 1187 problems when, for example, we have j <<= 1 in a loop. */ 1188 1189 nonzero_sign_valid = 0; 1190 label_tick = label_tick_ebb_start = 1; 1191 1192 /* Scan all SETs and see if we can deduce anything about what 1193 bits are known to be zero for some registers and how many copies 1194 of the sign bit are known to exist for those registers. 1195 1196 Also set any known values so that we can use it while searching 1197 for what bits are known to be set. */ 1198 1199 setup_incoming_promotions (first); 1200 /* Allow the entry block and the first block to fall into the same EBB. 1201 Conceptually the incoming promotions are assigned to the entry block. */ 1202 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun); 1203 1204 create_log_links (); 1205 FOR_EACH_BB_FN (this_basic_block, cfun) 1206 { 1207 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block); 1208 last_call_luid = 0; 1209 mem_last_set = -1; 1210 1211 label_tick++; 1212 if (!single_pred_p (this_basic_block) 1213 || single_pred (this_basic_block) != last_bb) 1214 label_tick_ebb_start = label_tick; 1215 last_bb = this_basic_block; 1216 1217 FOR_BB_INSNS (this_basic_block, insn) 1218 if (INSN_P (insn) && BLOCK_FOR_INSN (insn)) 1219 { 1220 rtx links; 1221 1222 subst_low_luid = DF_INSN_LUID (insn); 1223 subst_insn = insn; 1224 1225 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies, 1226 insn); 1227 record_dead_and_set_regs (insn); 1228 1229 if (AUTO_INC_DEC) 1230 for (links = REG_NOTES (insn); links; links = XEXP (links, 1)) 1231 if (REG_NOTE_KIND (links) == REG_INC) 1232 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX, 1233 insn); 1234 1235 /* Record the current insn_cost of this instruction. */ 1236 if (NONJUMP_INSN_P (insn)) 1237 INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p); 1238 if (dump_file) 1239 { 1240 fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn)); 1241 dump_insn_slim (dump_file, insn); 1242 } 1243 } 1244 } 1245 1246 nonzero_sign_valid = 1; 1247 1248 /* Now scan all the insns in forward order. */ 1249 label_tick = label_tick_ebb_start = 1; 1250 init_reg_last (); 1251 setup_incoming_promotions (first); 1252 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun); 1253 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS); 1254 1255 FOR_EACH_BB_FN (this_basic_block, cfun) 1256 { 1257 rtx_insn *last_combined_insn = NULL; 1258 1259 /* Ignore instruction combination in basic blocks that are going to 1260 be removed as unreachable anyway. See PR82386. */ 1261 if (EDGE_COUNT (this_basic_block->preds) == 0) 1262 continue; 1263 1264 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block); 1265 last_call_luid = 0; 1266 mem_last_set = -1; 1267 1268 label_tick++; 1269 if (!single_pred_p (this_basic_block) 1270 || single_pred (this_basic_block) != last_bb) 1271 label_tick_ebb_start = label_tick; 1272 last_bb = this_basic_block; 1273 1274 rtl_profile_for_bb (this_basic_block); 1275 for (insn = BB_HEAD (this_basic_block); 1276 insn != NEXT_INSN (BB_END (this_basic_block)); 1277 insn = next ? next : NEXT_INSN (insn)) 1278 { 1279 next = 0; 1280 if (!NONDEBUG_INSN_P (insn)) 1281 continue; 1282 1283 while (last_combined_insn 1284 && (!NONDEBUG_INSN_P (last_combined_insn) 1285 || last_combined_insn->deleted ())) 1286 last_combined_insn = PREV_INSN (last_combined_insn); 1287 if (last_combined_insn == NULL_RTX 1288 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block 1289 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn)) 1290 last_combined_insn = insn; 1291 1292 /* See if we know about function return values before this 1293 insn based upon SUBREG flags. */ 1294 check_promoted_subreg (insn, PATTERN (insn)); 1295 1296 /* See if we can find hardregs and subreg of pseudos in 1297 narrower modes. This could help turning TRUNCATEs 1298 into SUBREGs. */ 1299 note_uses (&PATTERN (insn), record_truncated_values, NULL); 1300 1301 /* Try this insn with each insn it links back to. */ 1302 1303 FOR_EACH_LOG_LINK (links, insn) 1304 if ((next = try_combine (insn, links->insn, NULL, 1305 NULL, &new_direct_jump_p, 1306 last_combined_insn)) != 0) 1307 { 1308 statistics_counter_event (cfun, "two-insn combine", 1); 1309 goto retry; 1310 } 1311 1312 /* Try each sequence of three linked insns ending with this one. */ 1313 1314 if (max_combine >= 3) 1315 FOR_EACH_LOG_LINK (links, insn) 1316 { 1317 rtx_insn *link = links->insn; 1318 1319 /* If the linked insn has been replaced by a note, then there 1320 is no point in pursuing this chain any further. */ 1321 if (NOTE_P (link)) 1322 continue; 1323 1324 FOR_EACH_LOG_LINK (nextlinks, link) 1325 if ((next = try_combine (insn, link, nextlinks->insn, 1326 NULL, &new_direct_jump_p, 1327 last_combined_insn)) != 0) 1328 { 1329 statistics_counter_event (cfun, "three-insn combine", 1); 1330 goto retry; 1331 } 1332 } 1333 1334 /* Try to combine a jump insn that uses CC0 1335 with a preceding insn that sets CC0, and maybe with its 1336 logical predecessor as well. 1337 This is how we make decrement-and-branch insns. 1338 We need this special code because data flow connections 1339 via CC0 do not get entered in LOG_LINKS. */ 1340 1341 if (HAVE_cc0 1342 && JUMP_P (insn) 1343 && (prev = prev_nonnote_insn (insn)) != 0 1344 && NONJUMP_INSN_P (prev) 1345 && sets_cc0_p (PATTERN (prev))) 1346 { 1347 if ((next = try_combine (insn, prev, NULL, NULL, 1348 &new_direct_jump_p, 1349 last_combined_insn)) != 0) 1350 goto retry; 1351 1352 FOR_EACH_LOG_LINK (nextlinks, prev) 1353 if ((next = try_combine (insn, prev, nextlinks->insn, 1354 NULL, &new_direct_jump_p, 1355 last_combined_insn)) != 0) 1356 goto retry; 1357 } 1358 1359 /* Do the same for an insn that explicitly references CC0. */ 1360 if (HAVE_cc0 && NONJUMP_INSN_P (insn) 1361 && (prev = prev_nonnote_insn (insn)) != 0 1362 && NONJUMP_INSN_P (prev) 1363 && sets_cc0_p (PATTERN (prev)) 1364 && GET_CODE (PATTERN (insn)) == SET 1365 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn)))) 1366 { 1367 if ((next = try_combine (insn, prev, NULL, NULL, 1368 &new_direct_jump_p, 1369 last_combined_insn)) != 0) 1370 goto retry; 1371 1372 FOR_EACH_LOG_LINK (nextlinks, prev) 1373 if ((next = try_combine (insn, prev, nextlinks->insn, 1374 NULL, &new_direct_jump_p, 1375 last_combined_insn)) != 0) 1376 goto retry; 1377 } 1378 1379 /* Finally, see if any of the insns that this insn links to 1380 explicitly references CC0. If so, try this insn, that insn, 1381 and its predecessor if it sets CC0. */ 1382 if (HAVE_cc0) 1383 { 1384 FOR_EACH_LOG_LINK (links, insn) 1385 if (NONJUMP_INSN_P (links->insn) 1386 && GET_CODE (PATTERN (links->insn)) == SET 1387 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn))) 1388 && (prev = prev_nonnote_insn (links->insn)) != 0 1389 && NONJUMP_INSN_P (prev) 1390 && sets_cc0_p (PATTERN (prev)) 1391 && (next = try_combine (insn, links->insn, 1392 prev, NULL, &new_direct_jump_p, 1393 last_combined_insn)) != 0) 1394 goto retry; 1395 } 1396 1397 /* Try combining an insn with two different insns whose results it 1398 uses. */ 1399 if (max_combine >= 3) 1400 FOR_EACH_LOG_LINK (links, insn) 1401 for (nextlinks = links->next; nextlinks; 1402 nextlinks = nextlinks->next) 1403 if ((next = try_combine (insn, links->insn, 1404 nextlinks->insn, NULL, 1405 &new_direct_jump_p, 1406 last_combined_insn)) != 0) 1407 1408 { 1409 statistics_counter_event (cfun, "three-insn combine", 1); 1410 goto retry; 1411 } 1412 1413 /* Try four-instruction combinations. */ 1414 if (max_combine >= 4) 1415 FOR_EACH_LOG_LINK (links, insn) 1416 { 1417 struct insn_link *next1; 1418 rtx_insn *link = links->insn; 1419 1420 /* If the linked insn has been replaced by a note, then there 1421 is no point in pursuing this chain any further. */ 1422 if (NOTE_P (link)) 1423 continue; 1424 1425 FOR_EACH_LOG_LINK (next1, link) 1426 { 1427 rtx_insn *link1 = next1->insn; 1428 if (NOTE_P (link1)) 1429 continue; 1430 /* I0 -> I1 -> I2 -> I3. */ 1431 FOR_EACH_LOG_LINK (nextlinks, link1) 1432 if ((next = try_combine (insn, link, link1, 1433 nextlinks->insn, 1434 &new_direct_jump_p, 1435 last_combined_insn)) != 0) 1436 { 1437 statistics_counter_event (cfun, "four-insn combine", 1); 1438 goto retry; 1439 } 1440 /* I0, I1 -> I2, I2 -> I3. */ 1441 for (nextlinks = next1->next; nextlinks; 1442 nextlinks = nextlinks->next) 1443 if ((next = try_combine (insn, link, link1, 1444 nextlinks->insn, 1445 &new_direct_jump_p, 1446 last_combined_insn)) != 0) 1447 { 1448 statistics_counter_event (cfun, "four-insn combine", 1); 1449 goto retry; 1450 } 1451 } 1452 1453 for (next1 = links->next; next1; next1 = next1->next) 1454 { 1455 rtx_insn *link1 = next1->insn; 1456 if (NOTE_P (link1)) 1457 continue; 1458 /* I0 -> I2; I1, I2 -> I3. */ 1459 FOR_EACH_LOG_LINK (nextlinks, link) 1460 if ((next = try_combine (insn, link, link1, 1461 nextlinks->insn, 1462 &new_direct_jump_p, 1463 last_combined_insn)) != 0) 1464 { 1465 statistics_counter_event (cfun, "four-insn combine", 1); 1466 goto retry; 1467 } 1468 /* I0 -> I1; I1, I2 -> I3. */ 1469 FOR_EACH_LOG_LINK (nextlinks, link1) 1470 if ((next = try_combine (insn, link, link1, 1471 nextlinks->insn, 1472 &new_direct_jump_p, 1473 last_combined_insn)) != 0) 1474 { 1475 statistics_counter_event (cfun, "four-insn combine", 1); 1476 goto retry; 1477 } 1478 } 1479 } 1480 1481 /* Try this insn with each REG_EQUAL note it links back to. */ 1482 FOR_EACH_LOG_LINK (links, insn) 1483 { 1484 rtx set, note; 1485 rtx_insn *temp = links->insn; 1486 if ((set = single_set (temp)) != 0 1487 && (note = find_reg_equal_equiv_note (temp)) != 0 1488 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST 1489 /* Avoid using a register that may already been marked 1490 dead by an earlier instruction. */ 1491 && ! unmentioned_reg_p (note, SET_SRC (set)) 1492 && (GET_MODE (note) == VOIDmode 1493 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set))) 1494 : (GET_MODE (SET_DEST (set)) == GET_MODE (note) 1495 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT 1496 || (GET_MODE (XEXP (SET_DEST (set), 0)) 1497 == GET_MODE (note)))))) 1498 { 1499 /* Temporarily replace the set's source with the 1500 contents of the REG_EQUAL note. The insn will 1501 be deleted or recognized by try_combine. */ 1502 rtx orig_src = SET_SRC (set); 1503 rtx orig_dest = SET_DEST (set); 1504 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT) 1505 SET_DEST (set) = XEXP (SET_DEST (set), 0); 1506 SET_SRC (set) = note; 1507 i2mod = temp; 1508 i2mod_old_rhs = copy_rtx (orig_src); 1509 i2mod_new_rhs = copy_rtx (note); 1510 next = try_combine (insn, i2mod, NULL, NULL, 1511 &new_direct_jump_p, 1512 last_combined_insn); 1513 i2mod = NULL; 1514 if (next) 1515 { 1516 statistics_counter_event (cfun, "insn-with-note combine", 1); 1517 goto retry; 1518 } 1519 SET_SRC (set) = orig_src; 1520 SET_DEST (set) = orig_dest; 1521 } 1522 } 1523 1524 if (!NOTE_P (insn)) 1525 record_dead_and_set_regs (insn); 1526 1527 retry: 1528 ; 1529 } 1530 } 1531 1532 default_rtl_profile (); 1533 clear_bb_flags (); 1534 new_direct_jump_p |= purge_all_dead_edges (); 1535 new_direct_jump_p |= delete_noop_moves (); 1536 1537 /* Clean up. */ 1538 obstack_free (&insn_link_obstack, NULL); 1539 free (uid_log_links); 1540 free (uid_insn_cost); 1541 reg_stat.release (); 1542 1543 { 1544 struct undo *undo, *next; 1545 for (undo = undobuf.frees; undo; undo = next) 1546 { 1547 next = undo->next; 1548 free (undo); 1549 } 1550 undobuf.frees = 0; 1551 } 1552 1553 total_attempts += combine_attempts; 1554 total_merges += combine_merges; 1555 total_extras += combine_extras; 1556 total_successes += combine_successes; 1557 1558 nonzero_sign_valid = 0; 1559 rtl_hooks = general_rtl_hooks; 1560 1561 /* Make recognizer allow volatile MEMs again. */ 1562 init_recog (); 1563 1564 return new_direct_jump_p; 1565 } 1566 1567 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */ 1568 1569 static void 1570 init_reg_last (void) 1571 { 1572 unsigned int i; 1573 reg_stat_type *p; 1574 1575 FOR_EACH_VEC_ELT (reg_stat, i, p) 1576 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies)); 1577 } 1578 1579 /* Set up any promoted values for incoming argument registers. */ 1580 1581 static void 1582 setup_incoming_promotions (rtx_insn *first) 1583 { 1584 tree arg; 1585 bool strictly_local = false; 1586 1587 for (arg = DECL_ARGUMENTS (current_function_decl); arg; 1588 arg = DECL_CHAIN (arg)) 1589 { 1590 rtx x, reg = DECL_INCOMING_RTL (arg); 1591 int uns1, uns3; 1592 machine_mode mode1, mode2, mode3, mode4; 1593 1594 /* Only continue if the incoming argument is in a register. */ 1595 if (!REG_P (reg)) 1596 continue; 1597 1598 /* Determine, if possible, whether all call sites of the current 1599 function lie within the current compilation unit. (This does 1600 take into account the exporting of a function via taking its 1601 address, and so forth.) */ 1602 strictly_local = cgraph_node::local_info (current_function_decl)->local; 1603 1604 /* The mode and signedness of the argument before any promotions happen 1605 (equal to the mode of the pseudo holding it at that stage). */ 1606 mode1 = TYPE_MODE (TREE_TYPE (arg)); 1607 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg)); 1608 1609 /* The mode and signedness of the argument after any source language and 1610 TARGET_PROMOTE_PROTOTYPES-driven promotions. */ 1611 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg)); 1612 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg)); 1613 1614 /* The mode and signedness of the argument as it is actually passed, 1615 see assign_parm_setup_reg in function.c. */ 1616 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3, 1617 TREE_TYPE (cfun->decl), 0); 1618 1619 /* The mode of the register in which the argument is being passed. */ 1620 mode4 = GET_MODE (reg); 1621 1622 /* Eliminate sign extensions in the callee when: 1623 (a) A mode promotion has occurred; */ 1624 if (mode1 == mode3) 1625 continue; 1626 /* (b) The mode of the register is the same as the mode of 1627 the argument as it is passed; */ 1628 if (mode3 != mode4) 1629 continue; 1630 /* (c) There's no language level extension; */ 1631 if (mode1 == mode2) 1632 ; 1633 /* (c.1) All callers are from the current compilation unit. If that's 1634 the case we don't have to rely on an ABI, we only have to know 1635 what we're generating right now, and we know that we will do the 1636 mode1 to mode2 promotion with the given sign. */ 1637 else if (!strictly_local) 1638 continue; 1639 /* (c.2) The combination of the two promotions is useful. This is 1640 true when the signs match, or if the first promotion is unsigned. 1641 In the later case, (sign_extend (zero_extend x)) is the same as 1642 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */ 1643 else if (uns1) 1644 uns3 = true; 1645 else if (uns3) 1646 continue; 1647 1648 /* Record that the value was promoted from mode1 to mode3, 1649 so that any sign extension at the head of the current 1650 function may be eliminated. */ 1651 x = gen_rtx_CLOBBER (mode1, const0_rtx); 1652 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x); 1653 record_value_for_reg (reg, first, x); 1654 } 1655 } 1656 1657 /* If MODE has a precision lower than PREC and SRC is a non-negative constant 1658 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits 1659 because some machines (maybe most) will actually do the sign-extension and 1660 this is the conservative approach. 1661 1662 ??? For 2.5, try to tighten up the MD files in this regard instead of this 1663 kludge. */ 1664 1665 static rtx 1666 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec) 1667 { 1668 scalar_int_mode int_mode; 1669 if (CONST_INT_P (src) 1670 && is_a <scalar_int_mode> (mode, &int_mode) 1671 && GET_MODE_PRECISION (int_mode) < prec 1672 && INTVAL (src) > 0 1673 && val_signbit_known_set_p (int_mode, INTVAL (src))) 1674 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode)); 1675 1676 return src; 1677 } 1678 1679 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists) 1680 and SET. */ 1681 1682 static void 1683 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set, 1684 rtx x) 1685 { 1686 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX; 1687 unsigned HOST_WIDE_INT bits = 0; 1688 rtx reg_equal = NULL, src = SET_SRC (set); 1689 unsigned int num = 0; 1690 1691 if (reg_equal_note) 1692 reg_equal = XEXP (reg_equal_note, 0); 1693 1694 if (SHORT_IMMEDIATES_SIGN_EXTEND) 1695 { 1696 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD); 1697 if (reg_equal) 1698 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD); 1699 } 1700 1701 /* Don't call nonzero_bits if it cannot change anything. */ 1702 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U) 1703 { 1704 bits = nonzero_bits (src, nonzero_bits_mode); 1705 if (reg_equal && bits) 1706 bits &= nonzero_bits (reg_equal, nonzero_bits_mode); 1707 rsp->nonzero_bits |= bits; 1708 } 1709 1710 /* Don't call num_sign_bit_copies if it cannot change anything. */ 1711 if (rsp->sign_bit_copies != 1) 1712 { 1713 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x)); 1714 if (reg_equal && maybe_ne (num, GET_MODE_PRECISION (GET_MODE (x)))) 1715 { 1716 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x)); 1717 if (num == 0 || numeq > num) 1718 num = numeq; 1719 } 1720 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies) 1721 rsp->sign_bit_copies = num; 1722 } 1723 } 1724 1725 /* Called via note_stores. If X is a pseudo that is narrower than 1726 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero. 1727 1728 If we are setting only a portion of X and we can't figure out what 1729 portion, assume all bits will be used since we don't know what will 1730 be happening. 1731 1732 Similarly, set how many bits of X are known to be copies of the sign bit 1733 at all locations in the function. This is the smallest number implied 1734 by any set of X. */ 1735 1736 static void 1737 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data) 1738 { 1739 rtx_insn *insn = (rtx_insn *) data; 1740 scalar_int_mode mode; 1741 1742 if (REG_P (x) 1743 && REGNO (x) >= FIRST_PSEUDO_REGISTER 1744 /* If this register is undefined at the start of the file, we can't 1745 say what its contents were. */ 1746 && ! REGNO_REG_SET_P 1747 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x)) 1748 && is_a <scalar_int_mode> (GET_MODE (x), &mode) 1749 && HWI_COMPUTABLE_MODE_P (mode)) 1750 { 1751 reg_stat_type *rsp = ®_stat[REGNO (x)]; 1752 1753 if (set == 0 || GET_CODE (set) == CLOBBER) 1754 { 1755 rsp->nonzero_bits = GET_MODE_MASK (mode); 1756 rsp->sign_bit_copies = 1; 1757 return; 1758 } 1759 1760 /* If this register is being initialized using itself, and the 1761 register is uninitialized in this basic block, and there are 1762 no LOG_LINKS which set the register, then part of the 1763 register is uninitialized. In that case we can't assume 1764 anything about the number of nonzero bits. 1765 1766 ??? We could do better if we checked this in 1767 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we 1768 could avoid making assumptions about the insn which initially 1769 sets the register, while still using the information in other 1770 insns. We would have to be careful to check every insn 1771 involved in the combination. */ 1772 1773 if (insn 1774 && reg_referenced_p (x, PATTERN (insn)) 1775 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)), 1776 REGNO (x))) 1777 { 1778 struct insn_link *link; 1779 1780 FOR_EACH_LOG_LINK (link, insn) 1781 if (dead_or_set_p (link->insn, x)) 1782 break; 1783 if (!link) 1784 { 1785 rsp->nonzero_bits = GET_MODE_MASK (mode); 1786 rsp->sign_bit_copies = 1; 1787 return; 1788 } 1789 } 1790 1791 /* If this is a complex assignment, see if we can convert it into a 1792 simple assignment. */ 1793 set = expand_field_assignment (set); 1794 1795 /* If this is a simple assignment, or we have a paradoxical SUBREG, 1796 set what we know about X. */ 1797 1798 if (SET_DEST (set) == x 1799 || (paradoxical_subreg_p (SET_DEST (set)) 1800 && SUBREG_REG (SET_DEST (set)) == x)) 1801 update_rsp_from_reg_equal (rsp, insn, set, x); 1802 else 1803 { 1804 rsp->nonzero_bits = GET_MODE_MASK (mode); 1805 rsp->sign_bit_copies = 1; 1806 } 1807 } 1808 } 1809 1810 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are 1811 optionally insns that were previously combined into I3 or that will be 1812 combined into the merger of INSN and I3. The order is PRED, PRED2, 1813 INSN, SUCC, SUCC2, I3. 1814 1815 Return 0 if the combination is not allowed for any reason. 1816 1817 If the combination is allowed, *PDEST will be set to the single 1818 destination of INSN and *PSRC to the single source, and this function 1819 will return 1. */ 1820 1821 static int 1822 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED, 1823 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2, 1824 rtx *pdest, rtx *psrc) 1825 { 1826 int i; 1827 const_rtx set = 0; 1828 rtx src, dest; 1829 rtx_insn *p; 1830 rtx link; 1831 bool all_adjacent = true; 1832 int (*is_volatile_p) (const_rtx); 1833 1834 if (succ) 1835 { 1836 if (succ2) 1837 { 1838 if (next_active_insn (succ2) != i3) 1839 all_adjacent = false; 1840 if (next_active_insn (succ) != succ2) 1841 all_adjacent = false; 1842 } 1843 else if (next_active_insn (succ) != i3) 1844 all_adjacent = false; 1845 if (next_active_insn (insn) != succ) 1846 all_adjacent = false; 1847 } 1848 else if (next_active_insn (insn) != i3) 1849 all_adjacent = false; 1850 1851 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0. 1852 or a PARALLEL consisting of such a SET and CLOBBERs. 1853 1854 If INSN has CLOBBER parallel parts, ignore them for our processing. 1855 By definition, these happen during the execution of the insn. When it 1856 is merged with another insn, all bets are off. If they are, in fact, 1857 needed and aren't also supplied in I3, they may be added by 1858 recog_for_combine. Otherwise, it won't match. 1859 1860 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED 1861 note. 1862 1863 Get the source and destination of INSN. If more than one, can't 1864 combine. */ 1865 1866 if (GET_CODE (PATTERN (insn)) == SET) 1867 set = PATTERN (insn); 1868 else if (GET_CODE (PATTERN (insn)) == PARALLEL 1869 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET) 1870 { 1871 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++) 1872 { 1873 rtx elt = XVECEXP (PATTERN (insn), 0, i); 1874 1875 switch (GET_CODE (elt)) 1876 { 1877 /* This is important to combine floating point insns 1878 for the SH4 port. */ 1879 case USE: 1880 /* Combining an isolated USE doesn't make sense. 1881 We depend here on combinable_i3pat to reject them. */ 1882 /* The code below this loop only verifies that the inputs of 1883 the SET in INSN do not change. We call reg_set_between_p 1884 to verify that the REG in the USE does not change between 1885 I3 and INSN. 1886 If the USE in INSN was for a pseudo register, the matching 1887 insn pattern will likely match any register; combining this 1888 with any other USE would only be safe if we knew that the 1889 used registers have identical values, or if there was 1890 something to tell them apart, e.g. different modes. For 1891 now, we forgo such complicated tests and simply disallow 1892 combining of USES of pseudo registers with any other USE. */ 1893 if (REG_P (XEXP (elt, 0)) 1894 && GET_CODE (PATTERN (i3)) == PARALLEL) 1895 { 1896 rtx i3pat = PATTERN (i3); 1897 int i = XVECLEN (i3pat, 0) - 1; 1898 unsigned int regno = REGNO (XEXP (elt, 0)); 1899 1900 do 1901 { 1902 rtx i3elt = XVECEXP (i3pat, 0, i); 1903 1904 if (GET_CODE (i3elt) == USE 1905 && REG_P (XEXP (i3elt, 0)) 1906 && (REGNO (XEXP (i3elt, 0)) == regno 1907 ? reg_set_between_p (XEXP (elt, 0), 1908 PREV_INSN (insn), i3) 1909 : regno >= FIRST_PSEUDO_REGISTER)) 1910 return 0; 1911 } 1912 while (--i >= 0); 1913 } 1914 break; 1915 1916 /* We can ignore CLOBBERs. */ 1917 case CLOBBER: 1918 break; 1919 1920 case SET: 1921 /* Ignore SETs whose result isn't used but not those that 1922 have side-effects. */ 1923 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt)) 1924 && insn_nothrow_p (insn) 1925 && !side_effects_p (elt)) 1926 break; 1927 1928 /* If we have already found a SET, this is a second one and 1929 so we cannot combine with this insn. */ 1930 if (set) 1931 return 0; 1932 1933 set = elt; 1934 break; 1935 1936 default: 1937 /* Anything else means we can't combine. */ 1938 return 0; 1939 } 1940 } 1941 1942 if (set == 0 1943 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs, 1944 so don't do anything with it. */ 1945 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS) 1946 return 0; 1947 } 1948 else 1949 return 0; 1950 1951 if (set == 0) 1952 return 0; 1953 1954 /* The simplification in expand_field_assignment may call back to 1955 get_last_value, so set safe guard here. */ 1956 subst_low_luid = DF_INSN_LUID (insn); 1957 1958 set = expand_field_assignment (set); 1959 src = SET_SRC (set), dest = SET_DEST (set); 1960 1961 /* Do not eliminate user-specified register if it is in an 1962 asm input because we may break the register asm usage defined 1963 in GCC manual if allow to do so. 1964 Be aware that this may cover more cases than we expect but this 1965 should be harmless. */ 1966 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest) 1967 && extract_asm_operands (PATTERN (i3))) 1968 return 0; 1969 1970 /* Don't eliminate a store in the stack pointer. */ 1971 if (dest == stack_pointer_rtx 1972 /* Don't combine with an insn that sets a register to itself if it has 1973 a REG_EQUAL note. This may be part of a LIBCALL sequence. */ 1974 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX)) 1975 /* Can't merge an ASM_OPERANDS. */ 1976 || GET_CODE (src) == ASM_OPERANDS 1977 /* Can't merge a function call. */ 1978 || GET_CODE (src) == CALL 1979 /* Don't eliminate a function call argument. */ 1980 || (CALL_P (i3) 1981 && (find_reg_fusage (i3, USE, dest) 1982 || (REG_P (dest) 1983 && REGNO (dest) < FIRST_PSEUDO_REGISTER 1984 && global_regs[REGNO (dest)]))) 1985 /* Don't substitute into an incremented register. */ 1986 || FIND_REG_INC_NOTE (i3, dest) 1987 || (succ && FIND_REG_INC_NOTE (succ, dest)) 1988 || (succ2 && FIND_REG_INC_NOTE (succ2, dest)) 1989 /* Don't substitute into a non-local goto, this confuses CFG. */ 1990 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX)) 1991 /* Make sure that DEST is not used after INSN but before SUCC, or 1992 after SUCC and before SUCC2, or after SUCC2 but before I3. */ 1993 || (!all_adjacent 1994 && ((succ2 1995 && (reg_used_between_p (dest, succ2, i3) 1996 || reg_used_between_p (dest, succ, succ2))) 1997 || (!succ2 && succ && reg_used_between_p (dest, succ, i3)) 1998 || (!succ2 && !succ && reg_used_between_p (dest, insn, i3)) 1999 || (succ 2000 /* SUCC and SUCC2 can be split halves from a PARALLEL; in 2001 that case SUCC is not in the insn stream, so use SUCC2 2002 instead for this test. */ 2003 && reg_used_between_p (dest, insn, 2004 succ2 2005 && INSN_UID (succ) == INSN_UID (succ2) 2006 ? succ2 : succ)))) 2007 /* Make sure that the value that is to be substituted for the register 2008 does not use any registers whose values alter in between. However, 2009 If the insns are adjacent, a use can't cross a set even though we 2010 think it might (this can happen for a sequence of insns each setting 2011 the same destination; last_set of that register might point to 2012 a NOTE). If INSN has a REG_EQUIV note, the register is always 2013 equivalent to the memory so the substitution is valid even if there 2014 are intervening stores. Also, don't move a volatile asm or 2015 UNSPEC_VOLATILE across any other insns. */ 2016 || (! all_adjacent 2017 && (((!MEM_P (src) 2018 || ! find_reg_note (insn, REG_EQUIV, src)) 2019 && modified_between_p (src, insn, i3)) 2020 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src)) 2021 || GET_CODE (src) == UNSPEC_VOLATILE)) 2022 /* Don't combine across a CALL_INSN, because that would possibly 2023 change whether the life span of some REGs crosses calls or not, 2024 and it is a pain to update that information. 2025 Exception: if source is a constant, moving it later can't hurt. 2026 Accept that as a special case. */ 2027 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src))) 2028 return 0; 2029 2030 /* DEST must either be a REG or CC0. */ 2031 if (REG_P (dest)) 2032 { 2033 /* If register alignment is being enforced for multi-word items in all 2034 cases except for parameters, it is possible to have a register copy 2035 insn referencing a hard register that is not allowed to contain the 2036 mode being copied and which would not be valid as an operand of most 2037 insns. Eliminate this problem by not combining with such an insn. 2038 2039 Also, on some machines we don't want to extend the life of a hard 2040 register. */ 2041 2042 if (REG_P (src) 2043 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER 2044 && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest))) 2045 /* Don't extend the life of a hard register unless it is 2046 user variable (if we have few registers) or it can't 2047 fit into the desired register (meaning something special 2048 is going on). 2049 Also avoid substituting a return register into I3, because 2050 reload can't handle a conflict with constraints of other 2051 inputs. */ 2052 || (REGNO (src) < FIRST_PSEUDO_REGISTER 2053 && !targetm.hard_regno_mode_ok (REGNO (src), 2054 GET_MODE (src))))) 2055 return 0; 2056 } 2057 else if (GET_CODE (dest) != CC0) 2058 return 0; 2059 2060 2061 if (GET_CODE (PATTERN (i3)) == PARALLEL) 2062 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--) 2063 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER) 2064 { 2065 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0); 2066 2067 /* If the clobber represents an earlyclobber operand, we must not 2068 substitute an expression containing the clobbered register. 2069 As we do not analyze the constraint strings here, we have to 2070 make the conservative assumption. However, if the register is 2071 a fixed hard reg, the clobber cannot represent any operand; 2072 we leave it up to the machine description to either accept or 2073 reject use-and-clobber patterns. */ 2074 if (!REG_P (reg) 2075 || REGNO (reg) >= FIRST_PSEUDO_REGISTER 2076 || !fixed_regs[REGNO (reg)]) 2077 if (reg_overlap_mentioned_p (reg, src)) 2078 return 0; 2079 } 2080 2081 /* If INSN contains anything volatile, or is an `asm' (whether volatile 2082 or not), reject, unless nothing volatile comes between it and I3 */ 2083 2084 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src)) 2085 { 2086 /* Make sure neither succ nor succ2 contains a volatile reference. */ 2087 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2))) 2088 return 0; 2089 if (succ != 0 && volatile_refs_p (PATTERN (succ))) 2090 return 0; 2091 /* We'll check insns between INSN and I3 below. */ 2092 } 2093 2094 /* If INSN is an asm, and DEST is a hard register, reject, since it has 2095 to be an explicit register variable, and was chosen for a reason. */ 2096 2097 if (GET_CODE (src) == ASM_OPERANDS 2098 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER) 2099 return 0; 2100 2101 /* If INSN contains volatile references (specifically volatile MEMs), 2102 we cannot combine across any other volatile references. 2103 Even if INSN doesn't contain volatile references, any intervening 2104 volatile insn might affect machine state. */ 2105 2106 is_volatile_p = volatile_refs_p (PATTERN (insn)) 2107 ? volatile_refs_p 2108 : volatile_insn_p; 2109 2110 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p)) 2111 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p))) 2112 return 0; 2113 2114 /* If INSN contains an autoincrement or autodecrement, make sure that 2115 register is not used between there and I3, and not already used in 2116 I3 either. Neither must it be used in PRED or SUCC, if they exist. 2117 Also insist that I3 not be a jump; if it were one 2118 and the incremented register were spilled, we would lose. */ 2119 2120 if (AUTO_INC_DEC) 2121 for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) 2122 if (REG_NOTE_KIND (link) == REG_INC 2123 && (JUMP_P (i3) 2124 || reg_used_between_p (XEXP (link, 0), insn, i3) 2125 || (pred != NULL_RTX 2126 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred))) 2127 || (pred2 != NULL_RTX 2128 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2))) 2129 || (succ != NULL_RTX 2130 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ))) 2131 || (succ2 != NULL_RTX 2132 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2))) 2133 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3)))) 2134 return 0; 2135 2136 /* Don't combine an insn that follows a CC0-setting insn. 2137 An insn that uses CC0 must not be separated from the one that sets it. 2138 We do, however, allow I2 to follow a CC0-setting insn if that insn 2139 is passed as I1; in that case it will be deleted also. 2140 We also allow combining in this case if all the insns are adjacent 2141 because that would leave the two CC0 insns adjacent as well. 2142 It would be more logical to test whether CC0 occurs inside I1 or I2, 2143 but that would be much slower, and this ought to be equivalent. */ 2144 2145 if (HAVE_cc0) 2146 { 2147 p = prev_nonnote_insn (insn); 2148 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p)) 2149 && ! all_adjacent) 2150 return 0; 2151 } 2152 2153 /* If we get here, we have passed all the tests and the combination is 2154 to be allowed. */ 2155 2156 *pdest = dest; 2157 *psrc = src; 2158 2159 return 1; 2160 } 2161 2162 /* LOC is the location within I3 that contains its pattern or the component 2163 of a PARALLEL of the pattern. We validate that it is valid for combining. 2164 2165 One problem is if I3 modifies its output, as opposed to replacing it 2166 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as 2167 doing so would produce an insn that is not equivalent to the original insns. 2168 2169 Consider: 2170 2171 (set (reg:DI 101) (reg:DI 100)) 2172 (set (subreg:SI (reg:DI 101) 0) <foo>) 2173 2174 This is NOT equivalent to: 2175 2176 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>) 2177 (set (reg:DI 101) (reg:DI 100))]) 2178 2179 Not only does this modify 100 (in which case it might still be valid 2180 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100. 2181 2182 We can also run into a problem if I2 sets a register that I1 2183 uses and I1 gets directly substituted into I3 (not via I2). In that 2184 case, we would be getting the wrong value of I2DEST into I3, so we 2185 must reject the combination. This case occurs when I2 and I1 both 2186 feed into I3, rather than when I1 feeds into I2, which feeds into I3. 2187 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source 2188 of a SET must prevent combination from occurring. The same situation 2189 can occur for I0, in which case I0_NOT_IN_SRC is set. 2190 2191 Before doing the above check, we first try to expand a field assignment 2192 into a set of logical operations. 2193 2194 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which 2195 we place a register that is both set and used within I3. If more than one 2196 such register is detected, we fail. 2197 2198 Return 1 if the combination is valid, zero otherwise. */ 2199 2200 static int 2201 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest, 2202 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed) 2203 { 2204 rtx x = *loc; 2205 2206 if (GET_CODE (x) == SET) 2207 { 2208 rtx set = x ; 2209 rtx dest = SET_DEST (set); 2210 rtx src = SET_SRC (set); 2211 rtx inner_dest = dest; 2212 rtx subdest; 2213 2214 while (GET_CODE (inner_dest) == STRICT_LOW_PART 2215 || GET_CODE (inner_dest) == SUBREG 2216 || GET_CODE (inner_dest) == ZERO_EXTRACT) 2217 inner_dest = XEXP (inner_dest, 0); 2218 2219 /* Check for the case where I3 modifies its output, as discussed 2220 above. We don't want to prevent pseudos from being combined 2221 into the address of a MEM, so only prevent the combination if 2222 i1 or i2 set the same MEM. */ 2223 if ((inner_dest != dest && 2224 (!MEM_P (inner_dest) 2225 || rtx_equal_p (i2dest, inner_dest) 2226 || (i1dest && rtx_equal_p (i1dest, inner_dest)) 2227 || (i0dest && rtx_equal_p (i0dest, inner_dest))) 2228 && (reg_overlap_mentioned_p (i2dest, inner_dest) 2229 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest)) 2230 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest)))) 2231 2232 /* This is the same test done in can_combine_p except we can't test 2233 all_adjacent; we don't have to, since this instruction will stay 2234 in place, thus we are not considering increasing the lifetime of 2235 INNER_DEST. 2236 2237 Also, if this insn sets a function argument, combining it with 2238 something that might need a spill could clobber a previous 2239 function argument; the all_adjacent test in can_combine_p also 2240 checks this; here, we do a more specific test for this case. */ 2241 2242 || (REG_P (inner_dest) 2243 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER 2244 && !targetm.hard_regno_mode_ok (REGNO (inner_dest), 2245 GET_MODE (inner_dest))) 2246 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)) 2247 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src))) 2248 return 0; 2249 2250 /* If DEST is used in I3, it is being killed in this insn, so 2251 record that for later. We have to consider paradoxical 2252 subregs here, since they kill the whole register, but we 2253 ignore partial subregs, STRICT_LOW_PART, etc. 2254 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the 2255 STACK_POINTER_REGNUM, since these are always considered to be 2256 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */ 2257 subdest = dest; 2258 if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (subdest)) 2259 subdest = SUBREG_REG (subdest); 2260 if (pi3dest_killed 2261 && REG_P (subdest) 2262 && reg_referenced_p (subdest, PATTERN (i3)) 2263 && REGNO (subdest) != FRAME_POINTER_REGNUM 2264 && (HARD_FRAME_POINTER_IS_FRAME_POINTER 2265 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM) 2266 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM 2267 || (REGNO (subdest) != ARG_POINTER_REGNUM 2268 || ! fixed_regs [REGNO (subdest)])) 2269 && REGNO (subdest) != STACK_POINTER_REGNUM) 2270 { 2271 if (*pi3dest_killed) 2272 return 0; 2273 2274 *pi3dest_killed = subdest; 2275 } 2276 } 2277 2278 else if (GET_CODE (x) == PARALLEL) 2279 { 2280 int i; 2281 2282 for (i = 0; i < XVECLEN (x, 0); i++) 2283 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest, 2284 i1_not_in_src, i0_not_in_src, pi3dest_killed)) 2285 return 0; 2286 } 2287 2288 return 1; 2289 } 2290 2291 /* Return 1 if X is an arithmetic expression that contains a multiplication 2292 and division. We don't count multiplications by powers of two here. */ 2293 2294 static int 2295 contains_muldiv (rtx x) 2296 { 2297 switch (GET_CODE (x)) 2298 { 2299 case MOD: case DIV: case UMOD: case UDIV: 2300 return 1; 2301 2302 case MULT: 2303 return ! (CONST_INT_P (XEXP (x, 1)) 2304 && pow2p_hwi (UINTVAL (XEXP (x, 1)))); 2305 default: 2306 if (BINARY_P (x)) 2307 return contains_muldiv (XEXP (x, 0)) 2308 || contains_muldiv (XEXP (x, 1)); 2309 2310 if (UNARY_P (x)) 2311 return contains_muldiv (XEXP (x, 0)); 2312 2313 return 0; 2314 } 2315 } 2316 2317 /* Determine whether INSN can be used in a combination. Return nonzero if 2318 not. This is used in try_combine to detect early some cases where we 2319 can't perform combinations. */ 2320 2321 static int 2322 cant_combine_insn_p (rtx_insn *insn) 2323 { 2324 rtx set; 2325 rtx src, dest; 2326 2327 /* If this isn't really an insn, we can't do anything. 2328 This can occur when flow deletes an insn that it has merged into an 2329 auto-increment address. */ 2330 if (!NONDEBUG_INSN_P (insn)) 2331 return 1; 2332 2333 /* Never combine loads and stores involving hard regs that are likely 2334 to be spilled. The register allocator can usually handle such 2335 reg-reg moves by tying. If we allow the combiner to make 2336 substitutions of likely-spilled regs, reload might die. 2337 As an exception, we allow combinations involving fixed regs; these are 2338 not available to the register allocator so there's no risk involved. */ 2339 2340 set = single_set (insn); 2341 if (! set) 2342 return 0; 2343 src = SET_SRC (set); 2344 dest = SET_DEST (set); 2345 if (GET_CODE (src) == SUBREG) 2346 src = SUBREG_REG (src); 2347 if (GET_CODE (dest) == SUBREG) 2348 dest = SUBREG_REG (dest); 2349 if (REG_P (src) && REG_P (dest) 2350 && ((HARD_REGISTER_P (src) 2351 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src)) 2352 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src)))) 2353 || (HARD_REGISTER_P (dest) 2354 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest)) 2355 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest)))))) 2356 return 1; 2357 2358 return 0; 2359 } 2360 2361 struct likely_spilled_retval_info 2362 { 2363 unsigned regno, nregs; 2364 unsigned mask; 2365 }; 2366 2367 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask 2368 hard registers that are known to be written to / clobbered in full. */ 2369 static void 2370 likely_spilled_retval_1 (rtx x, const_rtx set, void *data) 2371 { 2372 struct likely_spilled_retval_info *const info = 2373 (struct likely_spilled_retval_info *) data; 2374 unsigned regno, nregs; 2375 unsigned new_mask; 2376 2377 if (!REG_P (XEXP (set, 0))) 2378 return; 2379 regno = REGNO (x); 2380 if (regno >= info->regno + info->nregs) 2381 return; 2382 nregs = REG_NREGS (x); 2383 if (regno + nregs <= info->regno) 2384 return; 2385 new_mask = (2U << (nregs - 1)) - 1; 2386 if (regno < info->regno) 2387 new_mask >>= info->regno - regno; 2388 else 2389 new_mask <<= regno - info->regno; 2390 info->mask &= ~new_mask; 2391 } 2392 2393 /* Return nonzero iff part of the return value is live during INSN, and 2394 it is likely spilled. This can happen when more than one insn is needed 2395 to copy the return value, e.g. when we consider to combine into the 2396 second copy insn for a complex value. */ 2397 2398 static int 2399 likely_spilled_retval_p (rtx_insn *insn) 2400 { 2401 rtx_insn *use = BB_END (this_basic_block); 2402 rtx reg; 2403 rtx_insn *p; 2404 unsigned regno, nregs; 2405 /* We assume here that no machine mode needs more than 2406 32 hard registers when the value overlaps with a register 2407 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */ 2408 unsigned mask; 2409 struct likely_spilled_retval_info info; 2410 2411 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use) 2412 return 0; 2413 reg = XEXP (PATTERN (use), 0); 2414 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg))) 2415 return 0; 2416 regno = REGNO (reg); 2417 nregs = REG_NREGS (reg); 2418 if (nregs == 1) 2419 return 0; 2420 mask = (2U << (nregs - 1)) - 1; 2421 2422 /* Disregard parts of the return value that are set later. */ 2423 info.regno = regno; 2424 info.nregs = nregs; 2425 info.mask = mask; 2426 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p)) 2427 if (INSN_P (p)) 2428 note_stores (PATTERN (p), likely_spilled_retval_1, &info); 2429 mask = info.mask; 2430 2431 /* Check if any of the (probably) live return value registers is 2432 likely spilled. */ 2433 nregs --; 2434 do 2435 { 2436 if ((mask & 1 << nregs) 2437 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs))) 2438 return 1; 2439 } while (nregs--); 2440 return 0; 2441 } 2442 2443 /* Adjust INSN after we made a change to its destination. 2444 2445 Changing the destination can invalidate notes that say something about 2446 the results of the insn and a LOG_LINK pointing to the insn. */ 2447 2448 static void 2449 adjust_for_new_dest (rtx_insn *insn) 2450 { 2451 /* For notes, be conservative and simply remove them. */ 2452 remove_reg_equal_equiv_notes (insn); 2453 2454 /* The new insn will have a destination that was previously the destination 2455 of an insn just above it. Call distribute_links to make a LOG_LINK from 2456 the next use of that destination. */ 2457 2458 rtx set = single_set (insn); 2459 gcc_assert (set); 2460 2461 rtx reg = SET_DEST (set); 2462 2463 while (GET_CODE (reg) == ZERO_EXTRACT 2464 || GET_CODE (reg) == STRICT_LOW_PART 2465 || GET_CODE (reg) == SUBREG) 2466 reg = XEXP (reg, 0); 2467 gcc_assert (REG_P (reg)); 2468 2469 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL)); 2470 2471 df_insn_rescan (insn); 2472 } 2473 2474 /* Return TRUE if combine can reuse reg X in mode MODE. 2475 ADDED_SETS is nonzero if the original set is still required. */ 2476 static bool 2477 can_change_dest_mode (rtx x, int added_sets, machine_mode mode) 2478 { 2479 unsigned int regno; 2480 2481 if (!REG_P (x)) 2482 return false; 2483 2484 /* Don't change between modes with different underlying register sizes, 2485 since this could lead to invalid subregs. */ 2486 if (maybe_ne (REGMODE_NATURAL_SIZE (mode), 2487 REGMODE_NATURAL_SIZE (GET_MODE (x)))) 2488 return false; 2489 2490 regno = REGNO (x); 2491 /* Allow hard registers if the new mode is legal, and occupies no more 2492 registers than the old mode. */ 2493 if (regno < FIRST_PSEUDO_REGISTER) 2494 return (targetm.hard_regno_mode_ok (regno, mode) 2495 && REG_NREGS (x) >= hard_regno_nregs (regno, mode)); 2496 2497 /* Or a pseudo that is only used once. */ 2498 return (regno < reg_n_sets_max 2499 && REG_N_SETS (regno) == 1 2500 && !added_sets 2501 && !REG_USERVAR_P (x)); 2502 } 2503 2504 2505 /* Check whether X, the destination of a set, refers to part of 2506 the register specified by REG. */ 2507 2508 static bool 2509 reg_subword_p (rtx x, rtx reg) 2510 { 2511 /* Check that reg is an integer mode register. */ 2512 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT) 2513 return false; 2514 2515 if (GET_CODE (x) == STRICT_LOW_PART 2516 || GET_CODE (x) == ZERO_EXTRACT) 2517 x = XEXP (x, 0); 2518 2519 return GET_CODE (x) == SUBREG 2520 && SUBREG_REG (x) == reg 2521 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT; 2522 } 2523 2524 /* Delete the unconditional jump INSN and adjust the CFG correspondingly. 2525 Note that the INSN should be deleted *after* removing dead edges, so 2526 that the kept edge is the fallthrough edge for a (set (pc) (pc)) 2527 but not for a (set (pc) (label_ref FOO)). */ 2528 2529 static void 2530 update_cfg_for_uncondjump (rtx_insn *insn) 2531 { 2532 basic_block bb = BLOCK_FOR_INSN (insn); 2533 gcc_assert (BB_END (bb) == insn); 2534 2535 purge_dead_edges (bb); 2536 2537 delete_insn (insn); 2538 if (EDGE_COUNT (bb->succs) == 1) 2539 { 2540 rtx_insn *insn; 2541 2542 single_succ_edge (bb)->flags |= EDGE_FALLTHRU; 2543 2544 /* Remove barriers from the footer if there are any. */ 2545 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn)) 2546 if (BARRIER_P (insn)) 2547 { 2548 if (PREV_INSN (insn)) 2549 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn); 2550 else 2551 BB_FOOTER (bb) = NEXT_INSN (insn); 2552 if (NEXT_INSN (insn)) 2553 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn); 2554 } 2555 else if (LABEL_P (insn)) 2556 break; 2557 } 2558 } 2559 2560 /* Return whether PAT is a PARALLEL of exactly N register SETs followed 2561 by an arbitrary number of CLOBBERs. */ 2562 static bool 2563 is_parallel_of_n_reg_sets (rtx pat, int n) 2564 { 2565 if (GET_CODE (pat) != PARALLEL) 2566 return false; 2567 2568 int len = XVECLEN (pat, 0); 2569 if (len < n) 2570 return false; 2571 2572 int i; 2573 for (i = 0; i < n; i++) 2574 if (GET_CODE (XVECEXP (pat, 0, i)) != SET 2575 || !REG_P (SET_DEST (XVECEXP (pat, 0, i)))) 2576 return false; 2577 for ( ; i < len; i++) 2578 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER 2579 || XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx) 2580 return false; 2581 2582 return true; 2583 } 2584 2585 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some 2586 CLOBBERs), can be split into individual SETs in that order, without 2587 changing semantics. */ 2588 static bool 2589 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n) 2590 { 2591 if (!insn_nothrow_p (insn)) 2592 return false; 2593 2594 rtx pat = PATTERN (insn); 2595 2596 int i, j; 2597 for (i = 0; i < n; i++) 2598 { 2599 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i)))) 2600 return false; 2601 2602 rtx reg = SET_DEST (XVECEXP (pat, 0, i)); 2603 2604 for (j = i + 1; j < n; j++) 2605 if (reg_referenced_p (reg, XVECEXP (pat, 0, j))) 2606 return false; 2607 } 2608 2609 return true; 2610 } 2611 2612 /* Try to combine the insns I0, I1 and I2 into I3. 2613 Here I0, I1 and I2 appear earlier than I3. 2614 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into 2615 I3. 2616 2617 If we are combining more than two insns and the resulting insn is not 2618 recognized, try splitting it into two insns. If that happens, I2 and I3 2619 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE. 2620 Otherwise, I0, I1 and I2 are pseudo-deleted. 2621 2622 Return 0 if the combination does not work. Then nothing is changed. 2623 If we did the combination, return the insn at which combine should 2624 resume scanning. 2625 2626 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a 2627 new direct jump instruction. 2628 2629 LAST_COMBINED_INSN is either I3, or some insn after I3 that has 2630 been I3 passed to an earlier try_combine within the same basic 2631 block. */ 2632 2633 static rtx_insn * 2634 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0, 2635 int *new_direct_jump_p, rtx_insn *last_combined_insn) 2636 { 2637 /* New patterns for I3 and I2, respectively. */ 2638 rtx newpat, newi2pat = 0; 2639 rtvec newpat_vec_with_clobbers = 0; 2640 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0; 2641 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not 2642 dead. */ 2643 int added_sets_0, added_sets_1, added_sets_2; 2644 /* Total number of SETs to put into I3. */ 2645 int total_sets; 2646 /* Nonzero if I2's or I1's body now appears in I3. */ 2647 int i2_is_used = 0, i1_is_used = 0; 2648 /* INSN_CODEs for new I3, new I2, and user of condition code. */ 2649 int insn_code_number, i2_code_number = 0, other_code_number = 0; 2650 /* Contains I3 if the destination of I3 is used in its source, which means 2651 that the old life of I3 is being killed. If that usage is placed into 2652 I2 and not in I3, a REG_DEAD note must be made. */ 2653 rtx i3dest_killed = 0; 2654 /* SET_DEST and SET_SRC of I2, I1 and I0. */ 2655 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0; 2656 /* Copy of SET_SRC of I1 and I0, if needed. */ 2657 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0; 2658 /* Set if I2DEST was reused as a scratch register. */ 2659 bool i2scratch = false; 2660 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */ 2661 rtx i0pat = 0, i1pat = 0, i2pat = 0; 2662 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */ 2663 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0; 2664 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0; 2665 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0; 2666 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0; 2667 /* Notes that must be added to REG_NOTES in I3 and I2. */ 2668 rtx new_i3_notes, new_i2_notes; 2669 /* Notes that we substituted I3 into I2 instead of the normal case. */ 2670 int i3_subst_into_i2 = 0; 2671 /* Notes that I1, I2 or I3 is a MULT operation. */ 2672 int have_mult = 0; 2673 int swap_i2i3 = 0; 2674 int split_i2i3 = 0; 2675 int changed_i3_dest = 0; 2676 2677 int maxreg; 2678 rtx_insn *temp_insn; 2679 rtx temp_expr; 2680 struct insn_link *link; 2681 rtx other_pat = 0; 2682 rtx new_other_notes; 2683 int i; 2684 scalar_int_mode dest_mode, temp_mode; 2685 2686 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can 2687 never be). */ 2688 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1)) 2689 return 0; 2690 2691 /* Only try four-insn combinations when there's high likelihood of 2692 success. Look for simple insns, such as loads of constants or 2693 binary operations involving a constant. */ 2694 if (i0) 2695 { 2696 int i; 2697 int ngood = 0; 2698 int nshift = 0; 2699 rtx set0, set3; 2700 2701 if (!flag_expensive_optimizations) 2702 return 0; 2703 2704 for (i = 0; i < 4; i++) 2705 { 2706 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3; 2707 rtx set = single_set (insn); 2708 rtx src; 2709 if (!set) 2710 continue; 2711 src = SET_SRC (set); 2712 if (CONSTANT_P (src)) 2713 { 2714 ngood += 2; 2715 break; 2716 } 2717 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1))) 2718 ngood++; 2719 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT 2720 || GET_CODE (src) == LSHIFTRT) 2721 nshift++; 2722 } 2723 2724 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2 2725 are likely manipulating its value. Ideally we'll be able to combine 2726 all four insns into a bitfield insertion of some kind. 2727 2728 Note the source in I0 might be inside a sign/zero extension and the 2729 memory modes in I0 and I3 might be different. So extract the address 2730 from the destination of I3 and search for it in the source of I0. 2731 2732 In the event that there's a match but the source/dest do not actually 2733 refer to the same memory, the worst that happens is we try some 2734 combinations that we wouldn't have otherwise. */ 2735 if ((set0 = single_set (i0)) 2736 /* Ensure the source of SET0 is a MEM, possibly buried inside 2737 an extension. */ 2738 && (GET_CODE (SET_SRC (set0)) == MEM 2739 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND 2740 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND) 2741 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM)) 2742 && (set3 = single_set (i3)) 2743 /* Ensure the destination of SET3 is a MEM. */ 2744 && GET_CODE (SET_DEST (set3)) == MEM 2745 /* Would it be better to extract the base address for the MEM 2746 in SET3 and look for that? I don't have cases where it matters 2747 but I could envision such cases. */ 2748 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0))) 2749 ngood += 2; 2750 2751 if (ngood < 2 && nshift < 2) 2752 return 0; 2753 } 2754 2755 /* Exit early if one of the insns involved can't be used for 2756 combinations. */ 2757 if (CALL_P (i2) 2758 || (i1 && CALL_P (i1)) 2759 || (i0 && CALL_P (i0)) 2760 || cant_combine_insn_p (i3) 2761 || cant_combine_insn_p (i2) 2762 || (i1 && cant_combine_insn_p (i1)) 2763 || (i0 && cant_combine_insn_p (i0)) 2764 || likely_spilled_retval_p (i3)) 2765 return 0; 2766 2767 combine_attempts++; 2768 undobuf.other_insn = 0; 2769 2770 /* Reset the hard register usage information. */ 2771 CLEAR_HARD_REG_SET (newpat_used_regs); 2772 2773 if (dump_file && (dump_flags & TDF_DETAILS)) 2774 { 2775 if (i0) 2776 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n", 2777 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3)); 2778 else if (i1) 2779 fprintf (dump_file, "\nTrying %d, %d -> %d:\n", 2780 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3)); 2781 else 2782 fprintf (dump_file, "\nTrying %d -> %d:\n", 2783 INSN_UID (i2), INSN_UID (i3)); 2784 2785 if (i0) 2786 dump_insn_slim (dump_file, i0); 2787 if (i1) 2788 dump_insn_slim (dump_file, i1); 2789 dump_insn_slim (dump_file, i2); 2790 dump_insn_slim (dump_file, i3); 2791 } 2792 2793 /* If multiple insns feed into one of I2 or I3, they can be in any 2794 order. To simplify the code below, reorder them in sequence. */ 2795 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2)) 2796 std::swap (i0, i2); 2797 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1)) 2798 std::swap (i0, i1); 2799 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2)) 2800 std::swap (i1, i2); 2801 2802 added_links_insn = 0; 2803 added_notes_insn = 0; 2804 2805 /* First check for one important special case that the code below will 2806 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL 2807 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case, 2808 we may be able to replace that destination with the destination of I3. 2809 This occurs in the common code where we compute both a quotient and 2810 remainder into a structure, in which case we want to do the computation 2811 directly into the structure to avoid register-register copies. 2812 2813 Note that this case handles both multiple sets in I2 and also cases 2814 where I2 has a number of CLOBBERs inside the PARALLEL. 2815 2816 We make very conservative checks below and only try to handle the 2817 most common cases of this. For example, we only handle the case 2818 where I2 and I3 are adjacent to avoid making difficult register 2819 usage tests. */ 2820 2821 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET 2822 && REG_P (SET_SRC (PATTERN (i3))) 2823 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER 2824 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3))) 2825 && GET_CODE (PATTERN (i2)) == PARALLEL 2826 && ! side_effects_p (SET_DEST (PATTERN (i3))) 2827 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code 2828 below would need to check what is inside (and reg_overlap_mentioned_p 2829 doesn't support those codes anyway). Don't allow those destinations; 2830 the resulting insn isn't likely to be recognized anyway. */ 2831 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT 2832 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART 2833 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)), 2834 SET_DEST (PATTERN (i3))) 2835 && next_active_insn (i2) == i3) 2836 { 2837 rtx p2 = PATTERN (i2); 2838 2839 /* Make sure that the destination of I3, 2840 which we are going to substitute into one output of I2, 2841 is not used within another output of I2. We must avoid making this: 2842 (parallel [(set (mem (reg 69)) ...) 2843 (set (reg 69) ...)]) 2844 which is not well-defined as to order of actions. 2845 (Besides, reload can't handle output reloads for this.) 2846 2847 The problem can also happen if the dest of I3 is a memory ref, 2848 if another dest in I2 is an indirect memory ref. 2849 2850 Neither can this PARALLEL be an asm. We do not allow combining 2851 that usually (see can_combine_p), so do not here either. */ 2852 bool ok = true; 2853 for (i = 0; ok && i < XVECLEN (p2, 0); i++) 2854 { 2855 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET 2856 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER) 2857 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)), 2858 SET_DEST (XVECEXP (p2, 0, i)))) 2859 ok = false; 2860 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET 2861 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS) 2862 ok = false; 2863 } 2864 2865 if (ok) 2866 for (i = 0; i < XVECLEN (p2, 0); i++) 2867 if (GET_CODE (XVECEXP (p2, 0, i)) == SET 2868 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3))) 2869 { 2870 combine_merges++; 2871 2872 subst_insn = i3; 2873 subst_low_luid = DF_INSN_LUID (i2); 2874 2875 added_sets_2 = added_sets_1 = added_sets_0 = 0; 2876 i2src = SET_SRC (XVECEXP (p2, 0, i)); 2877 i2dest = SET_DEST (XVECEXP (p2, 0, i)); 2878 i2dest_killed = dead_or_set_p (i2, i2dest); 2879 2880 /* Replace the dest in I2 with our dest and make the resulting 2881 insn the new pattern for I3. Then skip to where we validate 2882 the pattern. Everything was set up above. */ 2883 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3))); 2884 newpat = p2; 2885 i3_subst_into_i2 = 1; 2886 goto validate_replacement; 2887 } 2888 } 2889 2890 /* If I2 is setting a pseudo to a constant and I3 is setting some 2891 sub-part of it to another constant, merge them by making a new 2892 constant. */ 2893 if (i1 == 0 2894 && (temp_expr = single_set (i2)) != 0 2895 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode) 2896 && CONST_SCALAR_INT_P (SET_SRC (temp_expr)) 2897 && GET_CODE (PATTERN (i3)) == SET 2898 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3))) 2899 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr))) 2900 { 2901 rtx dest = SET_DEST (PATTERN (i3)); 2902 rtx temp_dest = SET_DEST (temp_expr); 2903 int offset = -1; 2904 int width = 0; 2905 2906 if (GET_CODE (dest) == ZERO_EXTRACT) 2907 { 2908 if (CONST_INT_P (XEXP (dest, 1)) 2909 && CONST_INT_P (XEXP (dest, 2)) 2910 && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)), 2911 &dest_mode)) 2912 { 2913 width = INTVAL (XEXP (dest, 1)); 2914 offset = INTVAL (XEXP (dest, 2)); 2915 dest = XEXP (dest, 0); 2916 if (BITS_BIG_ENDIAN) 2917 offset = GET_MODE_PRECISION (dest_mode) - width - offset; 2918 } 2919 } 2920 else 2921 { 2922 if (GET_CODE (dest) == STRICT_LOW_PART) 2923 dest = XEXP (dest, 0); 2924 if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode)) 2925 { 2926 width = GET_MODE_PRECISION (dest_mode); 2927 offset = 0; 2928 } 2929 } 2930 2931 if (offset >= 0) 2932 { 2933 /* If this is the low part, we're done. */ 2934 if (subreg_lowpart_p (dest)) 2935 ; 2936 /* Handle the case where inner is twice the size of outer. */ 2937 else if (GET_MODE_PRECISION (temp_mode) 2938 == 2 * GET_MODE_PRECISION (dest_mode)) 2939 offset += GET_MODE_PRECISION (dest_mode); 2940 /* Otherwise give up for now. */ 2941 else 2942 offset = -1; 2943 } 2944 2945 if (offset >= 0) 2946 { 2947 rtx inner = SET_SRC (PATTERN (i3)); 2948 rtx outer = SET_SRC (temp_expr); 2949 2950 wide_int o = wi::insert (rtx_mode_t (outer, temp_mode), 2951 rtx_mode_t (inner, dest_mode), 2952 offset, width); 2953 2954 combine_merges++; 2955 subst_insn = i3; 2956 subst_low_luid = DF_INSN_LUID (i2); 2957 added_sets_2 = added_sets_1 = added_sets_0 = 0; 2958 i2dest = temp_dest; 2959 i2dest_killed = dead_or_set_p (i2, i2dest); 2960 2961 /* Replace the source in I2 with the new constant and make the 2962 resulting insn the new pattern for I3. Then skip to where we 2963 validate the pattern. Everything was set up above. */ 2964 SUBST (SET_SRC (temp_expr), 2965 immed_wide_int_const (o, temp_mode)); 2966 2967 newpat = PATTERN (i2); 2968 2969 /* The dest of I3 has been replaced with the dest of I2. */ 2970 changed_i3_dest = 1; 2971 goto validate_replacement; 2972 } 2973 } 2974 2975 /* If we have no I1 and I2 looks like: 2976 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0))) 2977 (set Y OP)]) 2978 make up a dummy I1 that is 2979 (set Y OP) 2980 and change I2 to be 2981 (set (reg:CC X) (compare:CC Y (const_int 0))) 2982 2983 (We can ignore any trailing CLOBBERs.) 2984 2985 This undoes a previous combination and allows us to match a branch-and- 2986 decrement insn. */ 2987 2988 if (!HAVE_cc0 && i1 == 0 2989 && is_parallel_of_n_reg_sets (PATTERN (i2), 2) 2990 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)))) 2991 == MODE_CC) 2992 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE 2993 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx 2994 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0), 2995 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))) 2996 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3) 2997 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)) 2998 { 2999 /* We make I1 with the same INSN_UID as I2. This gives it 3000 the same DF_INSN_LUID for value tracking. Our fake I1 will 3001 never appear in the insn stream so giving it the same INSN_UID 3002 as I2 will not cause a problem. */ 3003 3004 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2), 3005 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2), 3006 -1, NULL_RTX); 3007 INSN_UID (i1) = INSN_UID (i2); 3008 3009 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0)); 3010 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0), 3011 SET_DEST (PATTERN (i1))); 3012 unsigned int regno = REGNO (SET_DEST (PATTERN (i1))); 3013 SUBST_LINK (LOG_LINKS (i2), 3014 alloc_insn_link (i1, regno, LOG_LINKS (i2))); 3015 } 3016 3017 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs), 3018 make those two SETs separate I1 and I2 insns, and make an I0 that is 3019 the original I1. */ 3020 if (!HAVE_cc0 && i0 == 0 3021 && is_parallel_of_n_reg_sets (PATTERN (i2), 2) 3022 && can_split_parallel_of_n_reg_sets (i2, 2) 3023 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3) 3024 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3) 3025 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3) 3026 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)) 3027 { 3028 /* If there is no I1, there is no I0 either. */ 3029 i0 = i1; 3030 3031 /* We make I1 with the same INSN_UID as I2. This gives it 3032 the same DF_INSN_LUID for value tracking. Our fake I1 will 3033 never appear in the insn stream so giving it the same INSN_UID 3034 as I2 will not cause a problem. */ 3035 3036 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2), 3037 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2), 3038 -1, NULL_RTX); 3039 INSN_UID (i1) = INSN_UID (i2); 3040 3041 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1)); 3042 } 3043 3044 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */ 3045 if (!can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)) 3046 { 3047 if (dump_file) 3048 fprintf (dump_file, "Can't combine i2 into i3\n"); 3049 undo_all (); 3050 return 0; 3051 } 3052 if (i1 && !can_combine_p (i1, i3, i0, NULL, i2, NULL, &i1dest, &i1src)) 3053 { 3054 if (dump_file) 3055 fprintf (dump_file, "Can't combine i1 into i3\n"); 3056 undo_all (); 3057 return 0; 3058 } 3059 if (i0 && !can_combine_p (i0, i3, NULL, NULL, i1, i2, &i0dest, &i0src)) 3060 { 3061 if (dump_file) 3062 fprintf (dump_file, "Can't combine i0 into i3\n"); 3063 undo_all (); 3064 return 0; 3065 } 3066 3067 /* Record whether I2DEST is used in I2SRC and similarly for the other 3068 cases. Knowing this will help in register status updating below. */ 3069 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src); 3070 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src); 3071 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src); 3072 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src); 3073 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src); 3074 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src); 3075 i2dest_killed = dead_or_set_p (i2, i2dest); 3076 i1dest_killed = i1 && dead_or_set_p (i1, i1dest); 3077 i0dest_killed = i0 && dead_or_set_p (i0, i0dest); 3078 3079 /* For the earlier insns, determine which of the subsequent ones they 3080 feed. */ 3081 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2); 3082 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1); 3083 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2) 3084 : (!reg_overlap_mentioned_p (i1dest, i0dest) 3085 && reg_overlap_mentioned_p (i0dest, i2src)))); 3086 3087 /* Ensure that I3's pattern can be the destination of combines. */ 3088 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest, 3089 i1 && i2dest_in_i1src && !i1_feeds_i2_n, 3090 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n) 3091 || (i1dest_in_i0src && !i0_feeds_i1_n)), 3092 &i3dest_killed)) 3093 { 3094 undo_all (); 3095 return 0; 3096 } 3097 3098 /* See if any of the insns is a MULT operation. Unless one is, we will 3099 reject a combination that is, since it must be slower. Be conservative 3100 here. */ 3101 if (GET_CODE (i2src) == MULT 3102 || (i1 != 0 && GET_CODE (i1src) == MULT) 3103 || (i0 != 0 && GET_CODE (i0src) == MULT) 3104 || (GET_CODE (PATTERN (i3)) == SET 3105 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT)) 3106 have_mult = 1; 3107 3108 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd. 3109 We used to do this EXCEPT in one case: I3 has a post-inc in an 3110 output operand. However, that exception can give rise to insns like 3111 mov r3,(r3)+ 3112 which is a famous insn on the PDP-11 where the value of r3 used as the 3113 source was model-dependent. Avoid this sort of thing. */ 3114 3115 #if 0 3116 if (!(GET_CODE (PATTERN (i3)) == SET 3117 && REG_P (SET_SRC (PATTERN (i3))) 3118 && MEM_P (SET_DEST (PATTERN (i3))) 3119 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC 3120 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC))) 3121 /* It's not the exception. */ 3122 #endif 3123 if (AUTO_INC_DEC) 3124 { 3125 rtx link; 3126 for (link = REG_NOTES (i3); link; link = XEXP (link, 1)) 3127 if (REG_NOTE_KIND (link) == REG_INC 3128 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2)) 3129 || (i1 != 0 3130 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1))))) 3131 { 3132 undo_all (); 3133 return 0; 3134 } 3135 } 3136 3137 /* See if the SETs in I1 or I2 need to be kept around in the merged 3138 instruction: whenever the value set there is still needed past I3. 3139 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3. 3140 3141 For the SET in I1, we have two cases: if I1 and I2 independently feed 3142 into I3, the set in I1 needs to be kept around unless I1DEST dies 3143 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set 3144 in I1 needs to be kept around unless I1DEST dies or is set in either 3145 I2 or I3. The same considerations apply to I0. */ 3146 3147 added_sets_2 = !dead_or_set_p (i3, i2dest); 3148 3149 if (i1) 3150 added_sets_1 = !(dead_or_set_p (i3, i1dest) 3151 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest))); 3152 else 3153 added_sets_1 = 0; 3154 3155 if (i0) 3156 added_sets_0 = !(dead_or_set_p (i3, i0dest) 3157 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)) 3158 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n)) 3159 && dead_or_set_p (i2, i0dest))); 3160 else 3161 added_sets_0 = 0; 3162 3163 /* We are about to copy insns for the case where they need to be kept 3164 around. Check that they can be copied in the merged instruction. */ 3165 3166 if (targetm.cannot_copy_insn_p 3167 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2)) 3168 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1)) 3169 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0)))) 3170 { 3171 undo_all (); 3172 return 0; 3173 } 3174 3175 /* If the set in I2 needs to be kept around, we must make a copy of 3176 PATTERN (I2), so that when we substitute I1SRC for I1DEST in 3177 PATTERN (I2), we are only substituting for the original I1DEST, not into 3178 an already-substituted copy. This also prevents making self-referential 3179 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to 3180 I2DEST. */ 3181 3182 if (added_sets_2) 3183 { 3184 if (GET_CODE (PATTERN (i2)) == PARALLEL) 3185 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src)); 3186 else 3187 i2pat = copy_rtx (PATTERN (i2)); 3188 } 3189 3190 if (added_sets_1) 3191 { 3192 if (GET_CODE (PATTERN (i1)) == PARALLEL) 3193 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src)); 3194 else 3195 i1pat = copy_rtx (PATTERN (i1)); 3196 } 3197 3198 if (added_sets_0) 3199 { 3200 if (GET_CODE (PATTERN (i0)) == PARALLEL) 3201 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src)); 3202 else 3203 i0pat = copy_rtx (PATTERN (i0)); 3204 } 3205 3206 combine_merges++; 3207 3208 /* Substitute in the latest insn for the regs set by the earlier ones. */ 3209 3210 maxreg = max_reg_num (); 3211 3212 subst_insn = i3; 3213 3214 /* Many machines that don't use CC0 have insns that can both perform an 3215 arithmetic operation and set the condition code. These operations will 3216 be represented as a PARALLEL with the first element of the vector 3217 being a COMPARE of an arithmetic operation with the constant zero. 3218 The second element of the vector will set some pseudo to the result 3219 of the same arithmetic operation. If we simplify the COMPARE, we won't 3220 match such a pattern and so will generate an extra insn. Here we test 3221 for this case, where both the comparison and the operation result are 3222 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with 3223 I2SRC. Later we will make the PARALLEL that contains I2. */ 3224 3225 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET 3226 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE 3227 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1)) 3228 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest)) 3229 { 3230 rtx newpat_dest; 3231 rtx *cc_use_loc = NULL; 3232 rtx_insn *cc_use_insn = NULL; 3233 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1); 3234 machine_mode compare_mode, orig_compare_mode; 3235 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN; 3236 scalar_int_mode mode; 3237 3238 newpat = PATTERN (i3); 3239 newpat_dest = SET_DEST (newpat); 3240 compare_mode = orig_compare_mode = GET_MODE (newpat_dest); 3241 3242 if (undobuf.other_insn == 0 3243 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3, 3244 &cc_use_insn))) 3245 { 3246 compare_code = orig_compare_code = GET_CODE (*cc_use_loc); 3247 if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode)) 3248 compare_code = simplify_compare_const (compare_code, mode, 3249 op0, &op1); 3250 target_canonicalize_comparison (&compare_code, &op0, &op1, 1); 3251 } 3252 3253 /* Do the rest only if op1 is const0_rtx, which may be the 3254 result of simplification. */ 3255 if (op1 == const0_rtx) 3256 { 3257 /* If a single use of the CC is found, prepare to modify it 3258 when SELECT_CC_MODE returns a new CC-class mode, or when 3259 the above simplify_compare_const() returned a new comparison 3260 operator. undobuf.other_insn is assigned the CC use insn 3261 when modifying it. */ 3262 if (cc_use_loc) 3263 { 3264 #ifdef SELECT_CC_MODE 3265 machine_mode new_mode 3266 = SELECT_CC_MODE (compare_code, op0, op1); 3267 if (new_mode != orig_compare_mode 3268 && can_change_dest_mode (SET_DEST (newpat), 3269 added_sets_2, new_mode)) 3270 { 3271 unsigned int regno = REGNO (newpat_dest); 3272 compare_mode = new_mode; 3273 if (regno < FIRST_PSEUDO_REGISTER) 3274 newpat_dest = gen_rtx_REG (compare_mode, regno); 3275 else 3276 { 3277 SUBST_MODE (regno_reg_rtx[regno], compare_mode); 3278 newpat_dest = regno_reg_rtx[regno]; 3279 } 3280 } 3281 #endif 3282 /* Cases for modifying the CC-using comparison. */ 3283 if (compare_code != orig_compare_code 3284 /* ??? Do we need to verify the zero rtx? */ 3285 && XEXP (*cc_use_loc, 1) == const0_rtx) 3286 { 3287 /* Replace cc_use_loc with entire new RTX. */ 3288 SUBST (*cc_use_loc, 3289 gen_rtx_fmt_ee (compare_code, compare_mode, 3290 newpat_dest, const0_rtx)); 3291 undobuf.other_insn = cc_use_insn; 3292 } 3293 else if (compare_mode != orig_compare_mode) 3294 { 3295 /* Just replace the CC reg with a new mode. */ 3296 SUBST (XEXP (*cc_use_loc, 0), newpat_dest); 3297 undobuf.other_insn = cc_use_insn; 3298 } 3299 } 3300 3301 /* Now we modify the current newpat: 3302 First, SET_DEST(newpat) is updated if the CC mode has been 3303 altered. For targets without SELECT_CC_MODE, this should be 3304 optimized away. */ 3305 if (compare_mode != orig_compare_mode) 3306 SUBST (SET_DEST (newpat), newpat_dest); 3307 /* This is always done to propagate i2src into newpat. */ 3308 SUBST (SET_SRC (newpat), 3309 gen_rtx_COMPARE (compare_mode, op0, op1)); 3310 /* Create new version of i2pat if needed; the below PARALLEL 3311 creation needs this to work correctly. */ 3312 if (! rtx_equal_p (i2src, op0)) 3313 i2pat = gen_rtx_SET (i2dest, op0); 3314 i2_is_used = 1; 3315 } 3316 } 3317 3318 if (i2_is_used == 0) 3319 { 3320 /* It is possible that the source of I2 or I1 may be performing 3321 an unneeded operation, such as a ZERO_EXTEND of something 3322 that is known to have the high part zero. Handle that case 3323 by letting subst look at the inner insns. 3324 3325 Another way to do this would be to have a function that tries 3326 to simplify a single insn instead of merging two or more 3327 insns. We don't do this because of the potential of infinite 3328 loops and because of the potential extra memory required. 3329 However, doing it the way we are is a bit of a kludge and 3330 doesn't catch all cases. 3331 3332 But only do this if -fexpensive-optimizations since it slows 3333 things down and doesn't usually win. 3334 3335 This is not done in the COMPARE case above because the 3336 unmodified I2PAT is used in the PARALLEL and so a pattern 3337 with a modified I2SRC would not match. */ 3338 3339 if (flag_expensive_optimizations) 3340 { 3341 /* Pass pc_rtx so no substitutions are done, just 3342 simplifications. */ 3343 if (i1) 3344 { 3345 subst_low_luid = DF_INSN_LUID (i1); 3346 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0); 3347 } 3348 3349 subst_low_luid = DF_INSN_LUID (i2); 3350 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0); 3351 } 3352 3353 n_occurrences = 0; /* `subst' counts here */ 3354 subst_low_luid = DF_INSN_LUID (i2); 3355 3356 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique 3357 copy of I2SRC each time we substitute it, in order to avoid creating 3358 self-referential RTL when we will be substituting I1SRC for I1DEST 3359 later. Likewise if I0 feeds into I2, either directly or indirectly 3360 through I1, and I0DEST is in I0SRC. */ 3361 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0, 3362 (i1_feeds_i2_n && i1dest_in_i1src) 3363 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n)) 3364 && i0dest_in_i0src)); 3365 substed_i2 = 1; 3366 3367 /* Record whether I2's body now appears within I3's body. */ 3368 i2_is_used = n_occurrences; 3369 } 3370 3371 /* If we already got a failure, don't try to do more. Otherwise, try to 3372 substitute I1 if we have it. */ 3373 3374 if (i1 && GET_CODE (newpat) != CLOBBER) 3375 { 3376 /* Check that an autoincrement side-effect on I1 has not been lost. 3377 This happens if I1DEST is mentioned in I2 and dies there, and 3378 has disappeared from the new pattern. */ 3379 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0 3380 && i1_feeds_i2_n 3381 && dead_or_set_p (i2, i1dest) 3382 && !reg_overlap_mentioned_p (i1dest, newpat)) 3383 /* Before we can do this substitution, we must redo the test done 3384 above (see detailed comments there) that ensures I1DEST isn't 3385 mentioned in any SETs in NEWPAT that are field assignments. */ 3386 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX, 3387 0, 0, 0)) 3388 { 3389 undo_all (); 3390 return 0; 3391 } 3392 3393 n_occurrences = 0; 3394 subst_low_luid = DF_INSN_LUID (i1); 3395 3396 /* If the following substitution will modify I1SRC, make a copy of it 3397 for the case where it is substituted for I1DEST in I2PAT later. */ 3398 if (added_sets_2 && i1_feeds_i2_n) 3399 i1src_copy = copy_rtx (i1src); 3400 3401 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique 3402 copy of I1SRC each time we substitute it, in order to avoid creating 3403 self-referential RTL when we will be substituting I0SRC for I0DEST 3404 later. */ 3405 newpat = subst (newpat, i1dest, i1src, 0, 0, 3406 i0_feeds_i1_n && i0dest_in_i0src); 3407 substed_i1 = 1; 3408 3409 /* Record whether I1's body now appears within I3's body. */ 3410 i1_is_used = n_occurrences; 3411 } 3412 3413 /* Likewise for I0 if we have it. */ 3414 3415 if (i0 && GET_CODE (newpat) != CLOBBER) 3416 { 3417 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0 3418 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest)) 3419 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))) 3420 && !reg_overlap_mentioned_p (i0dest, newpat)) 3421 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX, 3422 0, 0, 0)) 3423 { 3424 undo_all (); 3425 return 0; 3426 } 3427 3428 /* If the following substitution will modify I0SRC, make a copy of it 3429 for the case where it is substituted for I0DEST in I1PAT later. */ 3430 if (added_sets_1 && i0_feeds_i1_n) 3431 i0src_copy = copy_rtx (i0src); 3432 /* And a copy for I0DEST in I2PAT substitution. */ 3433 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n) 3434 || (i0_feeds_i2_n))) 3435 i0src_copy2 = copy_rtx (i0src); 3436 3437 n_occurrences = 0; 3438 subst_low_luid = DF_INSN_LUID (i0); 3439 newpat = subst (newpat, i0dest, i0src, 0, 0, 0); 3440 substed_i0 = 1; 3441 } 3442 3443 /* Fail if an autoincrement side-effect has been duplicated. Be careful 3444 to count all the ways that I2SRC and I1SRC can be used. */ 3445 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0 3446 && i2_is_used + added_sets_2 > 1) 3447 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0 3448 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n) 3449 > 1)) 3450 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0 3451 && (n_occurrences + added_sets_0 3452 + (added_sets_1 && i0_feeds_i1_n) 3453 + (added_sets_2 && i0_feeds_i2_n) 3454 > 1)) 3455 /* Fail if we tried to make a new register. */ 3456 || max_reg_num () != maxreg 3457 /* Fail if we couldn't do something and have a CLOBBER. */ 3458 || GET_CODE (newpat) == CLOBBER 3459 /* Fail if this new pattern is a MULT and we didn't have one before 3460 at the outer level. */ 3461 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT 3462 && ! have_mult)) 3463 { 3464 undo_all (); 3465 return 0; 3466 } 3467 3468 /* If the actions of the earlier insns must be kept 3469 in addition to substituting them into the latest one, 3470 we must make a new PARALLEL for the latest insn 3471 to hold additional the SETs. */ 3472 3473 if (added_sets_0 || added_sets_1 || added_sets_2) 3474 { 3475 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2; 3476 combine_extras++; 3477 3478 if (GET_CODE (newpat) == PARALLEL) 3479 { 3480 rtvec old = XVEC (newpat, 0); 3481 total_sets = XVECLEN (newpat, 0) + extra_sets; 3482 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets)); 3483 memcpy (XVEC (newpat, 0)->elem, &old->elem[0], 3484 sizeof (old->elem[0]) * old->num_elem); 3485 } 3486 else 3487 { 3488 rtx old = newpat; 3489 total_sets = 1 + extra_sets; 3490 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets)); 3491 XVECEXP (newpat, 0, 0) = old; 3492 } 3493 3494 if (added_sets_0) 3495 XVECEXP (newpat, 0, --total_sets) = i0pat; 3496 3497 if (added_sets_1) 3498 { 3499 rtx t = i1pat; 3500 if (i0_feeds_i1_n) 3501 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0); 3502 3503 XVECEXP (newpat, 0, --total_sets) = t; 3504 } 3505 if (added_sets_2) 3506 { 3507 rtx t = i2pat; 3508 if (i1_feeds_i2_n) 3509 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0, 3510 i0_feeds_i1_n && i0dest_in_i0src); 3511 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n) 3512 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0); 3513 3514 XVECEXP (newpat, 0, --total_sets) = t; 3515 } 3516 } 3517 3518 validate_replacement: 3519 3520 /* Note which hard regs this insn has as inputs. */ 3521 mark_used_regs_combine (newpat); 3522 3523 /* If recog_for_combine fails, it strips existing clobbers. If we'll 3524 consider splitting this pattern, we might need these clobbers. */ 3525 if (i1 && GET_CODE (newpat) == PARALLEL 3526 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER) 3527 { 3528 int len = XVECLEN (newpat, 0); 3529 3530 newpat_vec_with_clobbers = rtvec_alloc (len); 3531 for (i = 0; i < len; i++) 3532 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i); 3533 } 3534 3535 /* We have recognized nothing yet. */ 3536 insn_code_number = -1; 3537 3538 /* See if this is a PARALLEL of two SETs where one SET's destination is 3539 a register that is unused and this isn't marked as an instruction that 3540 might trap in an EH region. In that case, we just need the other SET. 3541 We prefer this over the PARALLEL. 3542 3543 This can occur when simplifying a divmod insn. We *must* test for this 3544 case here because the code below that splits two independent SETs doesn't 3545 handle this case correctly when it updates the register status. 3546 3547 It's pointless doing this if we originally had two sets, one from 3548 i3, and one from i2. Combining then splitting the parallel results 3549 in the original i2 again plus an invalid insn (which we delete). 3550 The net effect is only to move instructions around, which makes 3551 debug info less accurate. 3552 3553 If the remaining SET came from I2 its destination should not be used 3554 between I2 and I3. See PR82024. */ 3555 3556 if (!(added_sets_2 && i1 == 0) 3557 && is_parallel_of_n_reg_sets (newpat, 2) 3558 && asm_noperands (newpat) < 0) 3559 { 3560 rtx set0 = XVECEXP (newpat, 0, 0); 3561 rtx set1 = XVECEXP (newpat, 0, 1); 3562 rtx oldpat = newpat; 3563 3564 if (((REG_P (SET_DEST (set1)) 3565 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1))) 3566 || (GET_CODE (SET_DEST (set1)) == SUBREG 3567 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1))))) 3568 && insn_nothrow_p (i3) 3569 && !side_effects_p (SET_SRC (set1))) 3570 { 3571 newpat = set0; 3572 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes); 3573 } 3574 3575 else if (((REG_P (SET_DEST (set0)) 3576 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0))) 3577 || (GET_CODE (SET_DEST (set0)) == SUBREG 3578 && find_reg_note (i3, REG_UNUSED, 3579 SUBREG_REG (SET_DEST (set0))))) 3580 && insn_nothrow_p (i3) 3581 && !side_effects_p (SET_SRC (set0))) 3582 { 3583 rtx dest = SET_DEST (set1); 3584 if (GET_CODE (dest) == SUBREG) 3585 dest = SUBREG_REG (dest); 3586 if (!reg_used_between_p (dest, i2, i3)) 3587 { 3588 newpat = set1; 3589 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes); 3590 3591 if (insn_code_number >= 0) 3592 changed_i3_dest = 1; 3593 } 3594 } 3595 3596 if (insn_code_number < 0) 3597 newpat = oldpat; 3598 } 3599 3600 /* Is the result of combination a valid instruction? */ 3601 if (insn_code_number < 0) 3602 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes); 3603 3604 /* If we were combining three insns and the result is a simple SET 3605 with no ASM_OPERANDS that wasn't recognized, try to split it into two 3606 insns. There are two ways to do this. It can be split using a 3607 machine-specific method (like when you have an addition of a large 3608 constant) or by combine in the function find_split_point. */ 3609 3610 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET 3611 && asm_noperands (newpat) < 0) 3612 { 3613 rtx parallel, *split; 3614 rtx_insn *m_split_insn; 3615 3616 /* See if the MD file can split NEWPAT. If it can't, see if letting it 3617 use I2DEST as a scratch register will help. In the latter case, 3618 convert I2DEST to the mode of the source of NEWPAT if we can. */ 3619 3620 m_split_insn = combine_split_insns (newpat, i3); 3621 3622 /* We can only use I2DEST as a scratch reg if it doesn't overlap any 3623 inputs of NEWPAT. */ 3624 3625 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be 3626 possible to try that as a scratch reg. This would require adding 3627 more code to make it work though. */ 3628 3629 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat)) 3630 { 3631 machine_mode new_mode = GET_MODE (SET_DEST (newpat)); 3632 3633 /* ??? Reusing i2dest without resetting the reg_stat entry for it 3634 (temporarily, until we are committed to this instruction 3635 combination) does not work: for example, any call to nonzero_bits 3636 on the register (from a splitter in the MD file, for example) 3637 will get the old information, which is invalid. 3638 3639 Since nowadays we can create registers during combine just fine, 3640 we should just create a new one here, not reuse i2dest. */ 3641 3642 /* First try to split using the original register as a 3643 scratch register. */ 3644 parallel = gen_rtx_PARALLEL (VOIDmode, 3645 gen_rtvec (2, newpat, 3646 gen_rtx_CLOBBER (VOIDmode, 3647 i2dest))); 3648 m_split_insn = combine_split_insns (parallel, i3); 3649 3650 /* If that didn't work, try changing the mode of I2DEST if 3651 we can. */ 3652 if (m_split_insn == 0 3653 && new_mode != GET_MODE (i2dest) 3654 && new_mode != VOIDmode 3655 && can_change_dest_mode (i2dest, added_sets_2, new_mode)) 3656 { 3657 machine_mode old_mode = GET_MODE (i2dest); 3658 rtx ni2dest; 3659 3660 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER) 3661 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest)); 3662 else 3663 { 3664 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode); 3665 ni2dest = regno_reg_rtx[REGNO (i2dest)]; 3666 } 3667 3668 parallel = (gen_rtx_PARALLEL 3669 (VOIDmode, 3670 gen_rtvec (2, newpat, 3671 gen_rtx_CLOBBER (VOIDmode, 3672 ni2dest)))); 3673 m_split_insn = combine_split_insns (parallel, i3); 3674 3675 if (m_split_insn == 0 3676 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER) 3677 { 3678 struct undo *buf; 3679 3680 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode); 3681 buf = undobuf.undos; 3682 undobuf.undos = buf->next; 3683 buf->next = undobuf.frees; 3684 undobuf.frees = buf; 3685 } 3686 } 3687 3688 i2scratch = m_split_insn != 0; 3689 } 3690 3691 /* If recog_for_combine has discarded clobbers, try to use them 3692 again for the split. */ 3693 if (m_split_insn == 0 && newpat_vec_with_clobbers) 3694 { 3695 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers); 3696 m_split_insn = combine_split_insns (parallel, i3); 3697 } 3698 3699 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX) 3700 { 3701 rtx m_split_pat = PATTERN (m_split_insn); 3702 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes); 3703 if (insn_code_number >= 0) 3704 newpat = m_split_pat; 3705 } 3706 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX 3707 && (next_nonnote_nondebug_insn (i2) == i3 3708 || !modified_between_p (PATTERN (m_split_insn), i2, i3))) 3709 { 3710 rtx i2set, i3set; 3711 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn)); 3712 newi2pat = PATTERN (m_split_insn); 3713 3714 i3set = single_set (NEXT_INSN (m_split_insn)); 3715 i2set = single_set (m_split_insn); 3716 3717 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes); 3718 3719 /* If I2 or I3 has multiple SETs, we won't know how to track 3720 register status, so don't use these insns. If I2's destination 3721 is used between I2 and I3, we also can't use these insns. */ 3722 3723 if (i2_code_number >= 0 && i2set && i3set 3724 && (next_nonnote_nondebug_insn (i2) == i3 3725 || ! reg_used_between_p (SET_DEST (i2set), i2, i3))) 3726 insn_code_number = recog_for_combine (&newi3pat, i3, 3727 &new_i3_notes); 3728 if (insn_code_number >= 0) 3729 newpat = newi3pat; 3730 3731 /* It is possible that both insns now set the destination of I3. 3732 If so, we must show an extra use of it. */ 3733 3734 if (insn_code_number >= 0) 3735 { 3736 rtx new_i3_dest = SET_DEST (i3set); 3737 rtx new_i2_dest = SET_DEST (i2set); 3738 3739 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT 3740 || GET_CODE (new_i3_dest) == STRICT_LOW_PART 3741 || GET_CODE (new_i3_dest) == SUBREG) 3742 new_i3_dest = XEXP (new_i3_dest, 0); 3743 3744 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT 3745 || GET_CODE (new_i2_dest) == STRICT_LOW_PART 3746 || GET_CODE (new_i2_dest) == SUBREG) 3747 new_i2_dest = XEXP (new_i2_dest, 0); 3748 3749 if (REG_P (new_i3_dest) 3750 && REG_P (new_i2_dest) 3751 && REGNO (new_i3_dest) == REGNO (new_i2_dest) 3752 && REGNO (new_i2_dest) < reg_n_sets_max) 3753 INC_REG_N_SETS (REGNO (new_i2_dest), 1); 3754 } 3755 } 3756 3757 /* If we can split it and use I2DEST, go ahead and see if that 3758 helps things be recognized. Verify that none of the registers 3759 are set between I2 and I3. */ 3760 if (insn_code_number < 0 3761 && (split = find_split_point (&newpat, i3, false)) != 0 3762 && (!HAVE_cc0 || REG_P (i2dest)) 3763 /* We need I2DEST in the proper mode. If it is a hard register 3764 or the only use of a pseudo, we can change its mode. 3765 Make sure we don't change a hard register to have a mode that 3766 isn't valid for it, or change the number of registers. */ 3767 && (GET_MODE (*split) == GET_MODE (i2dest) 3768 || GET_MODE (*split) == VOIDmode 3769 || can_change_dest_mode (i2dest, added_sets_2, 3770 GET_MODE (*split))) 3771 && (next_nonnote_nondebug_insn (i2) == i3 3772 || !modified_between_p (*split, i2, i3)) 3773 /* We can't overwrite I2DEST if its value is still used by 3774 NEWPAT. */ 3775 && ! reg_referenced_p (i2dest, newpat)) 3776 { 3777 rtx newdest = i2dest; 3778 enum rtx_code split_code = GET_CODE (*split); 3779 machine_mode split_mode = GET_MODE (*split); 3780 bool subst_done = false; 3781 newi2pat = NULL_RTX; 3782 3783 i2scratch = true; 3784 3785 /* *SPLIT may be part of I2SRC, so make sure we have the 3786 original expression around for later debug processing. 3787 We should not need I2SRC any more in other cases. */ 3788 if (MAY_HAVE_DEBUG_BIND_INSNS) 3789 i2src = copy_rtx (i2src); 3790 else 3791 i2src = NULL; 3792 3793 /* Get NEWDEST as a register in the proper mode. We have already 3794 validated that we can do this. */ 3795 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode) 3796 { 3797 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER) 3798 newdest = gen_rtx_REG (split_mode, REGNO (i2dest)); 3799 else 3800 { 3801 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode); 3802 newdest = regno_reg_rtx[REGNO (i2dest)]; 3803 } 3804 } 3805 3806 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to 3807 an ASHIFT. This can occur if it was inside a PLUS and hence 3808 appeared to be a memory address. This is a kludge. */ 3809 if (split_code == MULT 3810 && CONST_INT_P (XEXP (*split, 1)) 3811 && INTVAL (XEXP (*split, 1)) > 0 3812 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0) 3813 { 3814 rtx i_rtx = gen_int_shift_amount (split_mode, i); 3815 SUBST (*split, gen_rtx_ASHIFT (split_mode, 3816 XEXP (*split, 0), i_rtx)); 3817 /* Update split_code because we may not have a multiply 3818 anymore. */ 3819 split_code = GET_CODE (*split); 3820 } 3821 3822 /* Similarly for (plus (mult FOO (const_int pow2))). */ 3823 if (split_code == PLUS 3824 && GET_CODE (XEXP (*split, 0)) == MULT 3825 && CONST_INT_P (XEXP (XEXP (*split, 0), 1)) 3826 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0 3827 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0) 3828 { 3829 rtx nsplit = XEXP (*split, 0); 3830 rtx i_rtx = gen_int_shift_amount (GET_MODE (nsplit), i); 3831 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit), 3832 XEXP (nsplit, 0), 3833 i_rtx)); 3834 /* Update split_code because we may not have a multiply 3835 anymore. */ 3836 split_code = GET_CODE (*split); 3837 } 3838 3839 #ifdef INSN_SCHEDULING 3840 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should 3841 be written as a ZERO_EXTEND. */ 3842 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split))) 3843 { 3844 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's 3845 what it really is. */ 3846 if (load_extend_op (GET_MODE (SUBREG_REG (*split))) 3847 == SIGN_EXTEND) 3848 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode, 3849 SUBREG_REG (*split))); 3850 else 3851 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode, 3852 SUBREG_REG (*split))); 3853 } 3854 #endif 3855 3856 /* Attempt to split binary operators using arithmetic identities. */ 3857 if (BINARY_P (SET_SRC (newpat)) 3858 && split_mode == GET_MODE (SET_SRC (newpat)) 3859 && ! side_effects_p (SET_SRC (newpat))) 3860 { 3861 rtx setsrc = SET_SRC (newpat); 3862 machine_mode mode = GET_MODE (setsrc); 3863 enum rtx_code code = GET_CODE (setsrc); 3864 rtx src_op0 = XEXP (setsrc, 0); 3865 rtx src_op1 = XEXP (setsrc, 1); 3866 3867 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */ 3868 if (rtx_equal_p (src_op0, src_op1)) 3869 { 3870 newi2pat = gen_rtx_SET (newdest, src_op0); 3871 SUBST (XEXP (setsrc, 0), newdest); 3872 SUBST (XEXP (setsrc, 1), newdest); 3873 subst_done = true; 3874 } 3875 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */ 3876 else if ((code == PLUS || code == MULT) 3877 && GET_CODE (src_op0) == code 3878 && GET_CODE (XEXP (src_op0, 0)) == code 3879 && (INTEGRAL_MODE_P (mode) 3880 || (FLOAT_MODE_P (mode) 3881 && flag_unsafe_math_optimizations))) 3882 { 3883 rtx p = XEXP (XEXP (src_op0, 0), 0); 3884 rtx q = XEXP (XEXP (src_op0, 0), 1); 3885 rtx r = XEXP (src_op0, 1); 3886 rtx s = src_op1; 3887 3888 /* Split both "((X op Y) op X) op Y" and 3889 "((X op Y) op Y) op X" as "T op T" where T is 3890 "X op Y". */ 3891 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s)) 3892 || (rtx_equal_p (p,s) && rtx_equal_p (q,r))) 3893 { 3894 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0)); 3895 SUBST (XEXP (setsrc, 0), newdest); 3896 SUBST (XEXP (setsrc, 1), newdest); 3897 subst_done = true; 3898 } 3899 /* Split "((X op X) op Y) op Y)" as "T op T" where 3900 T is "X op Y". */ 3901 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s)) 3902 { 3903 rtx tmp = simplify_gen_binary (code, mode, p, r); 3904 newi2pat = gen_rtx_SET (newdest, tmp); 3905 SUBST (XEXP (setsrc, 0), newdest); 3906 SUBST (XEXP (setsrc, 1), newdest); 3907 subst_done = true; 3908 } 3909 } 3910 } 3911 3912 if (!subst_done) 3913 { 3914 newi2pat = gen_rtx_SET (newdest, *split); 3915 SUBST (*split, newdest); 3916 } 3917 3918 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes); 3919 3920 /* recog_for_combine might have added CLOBBERs to newi2pat. 3921 Make sure NEWPAT does not depend on the clobbered regs. */ 3922 if (GET_CODE (newi2pat) == PARALLEL) 3923 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--) 3924 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER) 3925 { 3926 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0); 3927 if (reg_overlap_mentioned_p (reg, newpat)) 3928 { 3929 undo_all (); 3930 return 0; 3931 } 3932 } 3933 3934 /* If the split point was a MULT and we didn't have one before, 3935 don't use one now. */ 3936 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult)) 3937 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes); 3938 } 3939 } 3940 3941 /* Check for a case where we loaded from memory in a narrow mode and 3942 then sign extended it, but we need both registers. In that case, 3943 we have a PARALLEL with both loads from the same memory location. 3944 We can split this into a load from memory followed by a register-register 3945 copy. This saves at least one insn, more if register allocation can 3946 eliminate the copy. 3947 3948 We cannot do this if the destination of the first assignment is a 3949 condition code register or cc0. We eliminate this case by making sure 3950 the SET_DEST and SET_SRC have the same mode. 3951 3952 We cannot do this if the destination of the second assignment is 3953 a register that we have already assumed is zero-extended. Similarly 3954 for a SUBREG of such a register. */ 3955 3956 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0 3957 && GET_CODE (newpat) == PARALLEL 3958 && XVECLEN (newpat, 0) == 2 3959 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET 3960 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND 3961 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0))) 3962 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0)))) 3963 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET 3964 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)), 3965 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0)) 3966 && !modified_between_p (SET_SRC (XVECEXP (newpat, 0, 1)), i2, i3) 3967 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT 3968 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART 3969 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)), 3970 (REG_P (temp_expr) 3971 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0 3972 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)), 3973 BITS_PER_WORD) 3974 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)), 3975 HOST_BITS_PER_INT) 3976 && (reg_stat[REGNO (temp_expr)].nonzero_bits 3977 != GET_MODE_MASK (word_mode)))) 3978 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG 3979 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))), 3980 (REG_P (temp_expr) 3981 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0 3982 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)), 3983 BITS_PER_WORD) 3984 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)), 3985 HOST_BITS_PER_INT) 3986 && (reg_stat[REGNO (temp_expr)].nonzero_bits 3987 != GET_MODE_MASK (word_mode))))) 3988 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)), 3989 SET_SRC (XVECEXP (newpat, 0, 1))) 3990 && ! find_reg_note (i3, REG_UNUSED, 3991 SET_DEST (XVECEXP (newpat, 0, 0)))) 3992 { 3993 rtx ni2dest; 3994 3995 newi2pat = XVECEXP (newpat, 0, 0); 3996 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0)); 3997 newpat = XVECEXP (newpat, 0, 1); 3998 SUBST (SET_SRC (newpat), 3999 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest)); 4000 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes); 4001 4002 if (i2_code_number >= 0) 4003 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes); 4004 4005 if (insn_code_number >= 0) 4006 swap_i2i3 = 1; 4007 } 4008 4009 /* Similarly, check for a case where we have a PARALLEL of two independent 4010 SETs but we started with three insns. In this case, we can do the sets 4011 as two separate insns. This case occurs when some SET allows two 4012 other insns to combine, but the destination of that SET is still live. 4013 4014 Also do this if we started with two insns and (at least) one of the 4015 resulting sets is a noop; this noop will be deleted later. 4016 4017 Also do this if we started with two insns neither of which was a simple 4018 move. */ 4019 4020 else if (insn_code_number < 0 && asm_noperands (newpat) < 0 4021 && GET_CODE (newpat) == PARALLEL 4022 && XVECLEN (newpat, 0) == 2 4023 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET 4024 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET 4025 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0)) 4026 || set_noop_p (XVECEXP (newpat, 0, 1))) 4027 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT 4028 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART 4029 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT 4030 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART 4031 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)), 4032 XVECEXP (newpat, 0, 0)) 4033 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)), 4034 XVECEXP (newpat, 0, 1)) 4035 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0))) 4036 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1))))) 4037 { 4038 rtx set0 = XVECEXP (newpat, 0, 0); 4039 rtx set1 = XVECEXP (newpat, 0, 1); 4040 4041 /* Normally, it doesn't matter which of the two is done first, 4042 but the one that references cc0 can't be the second, and 4043 one which uses any regs/memory set in between i2 and i3 can't 4044 be first. The PARALLEL might also have been pre-existing in i3, 4045 so we need to make sure that we won't wrongly hoist a SET to i2 4046 that would conflict with a death note present in there, or would 4047 have its dest modified between i2 and i3. */ 4048 if (!modified_between_p (SET_SRC (set1), i2, i3) 4049 && !(REG_P (SET_DEST (set1)) 4050 && find_reg_note (i2, REG_DEAD, SET_DEST (set1))) 4051 && !(GET_CODE (SET_DEST (set1)) == SUBREG 4052 && find_reg_note (i2, REG_DEAD, 4053 SUBREG_REG (SET_DEST (set1)))) 4054 && !modified_between_p (SET_DEST (set1), i2, i3) 4055 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0)) 4056 /* If I3 is a jump, ensure that set0 is a jump so that 4057 we do not create invalid RTL. */ 4058 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx) 4059 ) 4060 { 4061 newi2pat = set1; 4062 newpat = set0; 4063 } 4064 else if (!modified_between_p (SET_SRC (set0), i2, i3) 4065 && !(REG_P (SET_DEST (set0)) 4066 && find_reg_note (i2, REG_DEAD, SET_DEST (set0))) 4067 && !(GET_CODE (SET_DEST (set0)) == SUBREG 4068 && find_reg_note (i2, REG_DEAD, 4069 SUBREG_REG (SET_DEST (set0)))) 4070 && !modified_between_p (SET_DEST (set0), i2, i3) 4071 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1)) 4072 /* If I3 is a jump, ensure that set1 is a jump so that 4073 we do not create invalid RTL. */ 4074 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx) 4075 ) 4076 { 4077 newi2pat = set0; 4078 newpat = set1; 4079 } 4080 else 4081 { 4082 undo_all (); 4083 return 0; 4084 } 4085 4086 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes); 4087 4088 if (i2_code_number >= 0) 4089 { 4090 /* recog_for_combine might have added CLOBBERs to newi2pat. 4091 Make sure NEWPAT does not depend on the clobbered regs. */ 4092 if (GET_CODE (newi2pat) == PARALLEL) 4093 { 4094 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--) 4095 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER) 4096 { 4097 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0); 4098 if (reg_overlap_mentioned_p (reg, newpat)) 4099 { 4100 undo_all (); 4101 return 0; 4102 } 4103 } 4104 } 4105 4106 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes); 4107 4108 if (insn_code_number >= 0) 4109 split_i2i3 = 1; 4110 } 4111 } 4112 4113 /* If it still isn't recognized, fail and change things back the way they 4114 were. */ 4115 if ((insn_code_number < 0 4116 /* Is the result a reasonable ASM_OPERANDS? */ 4117 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2))) 4118 { 4119 undo_all (); 4120 return 0; 4121 } 4122 4123 /* If we had to change another insn, make sure it is valid also. */ 4124 if (undobuf.other_insn) 4125 { 4126 CLEAR_HARD_REG_SET (newpat_used_regs); 4127 4128 other_pat = PATTERN (undobuf.other_insn); 4129 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn, 4130 &new_other_notes); 4131 4132 if (other_code_number < 0 && ! check_asm_operands (other_pat)) 4133 { 4134 undo_all (); 4135 return 0; 4136 } 4137 } 4138 4139 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether 4140 they are adjacent to each other or not. */ 4141 if (HAVE_cc0) 4142 { 4143 rtx_insn *p = prev_nonnote_insn (i3); 4144 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat 4145 && sets_cc0_p (newi2pat)) 4146 { 4147 undo_all (); 4148 return 0; 4149 } 4150 } 4151 4152 /* Only allow this combination if insn_cost reports that the 4153 replacement instructions are cheaper than the originals. */ 4154 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat)) 4155 { 4156 undo_all (); 4157 return 0; 4158 } 4159 4160 if (MAY_HAVE_DEBUG_BIND_INSNS) 4161 { 4162 struct undo *undo; 4163 4164 for (undo = undobuf.undos; undo; undo = undo->next) 4165 if (undo->kind == UNDO_MODE) 4166 { 4167 rtx reg = *undo->where.r; 4168 machine_mode new_mode = GET_MODE (reg); 4169 machine_mode old_mode = undo->old_contents.m; 4170 4171 /* Temporarily revert mode back. */ 4172 adjust_reg_mode (reg, old_mode); 4173 4174 if (reg == i2dest && i2scratch) 4175 { 4176 /* If we used i2dest as a scratch register with a 4177 different mode, substitute it for the original 4178 i2src while its original mode is temporarily 4179 restored, and then clear i2scratch so that we don't 4180 do it again later. */ 4181 propagate_for_debug (i2, last_combined_insn, reg, i2src, 4182 this_basic_block); 4183 i2scratch = false; 4184 /* Put back the new mode. */ 4185 adjust_reg_mode (reg, new_mode); 4186 } 4187 else 4188 { 4189 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg)); 4190 rtx_insn *first, *last; 4191 4192 if (reg == i2dest) 4193 { 4194 first = i2; 4195 last = last_combined_insn; 4196 } 4197 else 4198 { 4199 first = i3; 4200 last = undobuf.other_insn; 4201 gcc_assert (last); 4202 if (DF_INSN_LUID (last) 4203 < DF_INSN_LUID (last_combined_insn)) 4204 last = last_combined_insn; 4205 } 4206 4207 /* We're dealing with a reg that changed mode but not 4208 meaning, so we want to turn it into a subreg for 4209 the new mode. However, because of REG sharing and 4210 because its mode had already changed, we have to do 4211 it in two steps. First, replace any debug uses of 4212 reg, with its original mode temporarily restored, 4213 with this copy we have created; then, replace the 4214 copy with the SUBREG of the original shared reg, 4215 once again changed to the new mode. */ 4216 propagate_for_debug (first, last, reg, tempreg, 4217 this_basic_block); 4218 adjust_reg_mode (reg, new_mode); 4219 propagate_for_debug (first, last, tempreg, 4220 lowpart_subreg (old_mode, reg, new_mode), 4221 this_basic_block); 4222 } 4223 } 4224 } 4225 4226 /* If we will be able to accept this, we have made a 4227 change to the destination of I3. This requires us to 4228 do a few adjustments. */ 4229 4230 if (changed_i3_dest) 4231 { 4232 PATTERN (i3) = newpat; 4233 adjust_for_new_dest (i3); 4234 } 4235 4236 /* We now know that we can do this combination. Merge the insns and 4237 update the status of registers and LOG_LINKS. */ 4238 4239 if (undobuf.other_insn) 4240 { 4241 rtx note, next; 4242 4243 PATTERN (undobuf.other_insn) = other_pat; 4244 4245 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED, 4246 ensure that they are still valid. Then add any non-duplicate 4247 notes added by recog_for_combine. */ 4248 for (note = REG_NOTES (undobuf.other_insn); note; note = next) 4249 { 4250 next = XEXP (note, 1); 4251 4252 if ((REG_NOTE_KIND (note) == REG_DEAD 4253 && !reg_referenced_p (XEXP (note, 0), 4254 PATTERN (undobuf.other_insn))) 4255 ||(REG_NOTE_KIND (note) == REG_UNUSED 4256 && !reg_set_p (XEXP (note, 0), 4257 PATTERN (undobuf.other_insn))) 4258 /* Simply drop equal note since it may be no longer valid 4259 for other_insn. It may be possible to record that CC 4260 register is changed and only discard those notes, but 4261 in practice it's unnecessary complication and doesn't 4262 give any meaningful improvement. 4263 4264 See PR78559. */ 4265 || REG_NOTE_KIND (note) == REG_EQUAL 4266 || REG_NOTE_KIND (note) == REG_EQUIV) 4267 remove_note (undobuf.other_insn, note); 4268 } 4269 4270 distribute_notes (new_other_notes, undobuf.other_insn, 4271 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX, 4272 NULL_RTX); 4273 } 4274 4275 if (swap_i2i3) 4276 { 4277 /* I3 now uses what used to be its destination and which is now 4278 I2's destination. This requires us to do a few adjustments. */ 4279 PATTERN (i3) = newpat; 4280 adjust_for_new_dest (i3); 4281 } 4282 4283 if (swap_i2i3 || split_i2i3) 4284 { 4285 /* We might need a LOG_LINK from I3 to I2. But then we used to 4286 have one, so we still will. 4287 4288 However, some later insn might be using I2's dest and have 4289 a LOG_LINK pointing at I3. We should change it to point at 4290 I2 instead. */ 4291 4292 /* newi2pat is usually a SET here; however, recog_for_combine might 4293 have added some clobbers. */ 4294 rtx x = newi2pat; 4295 if (GET_CODE (x) == PARALLEL) 4296 x = XVECEXP (newi2pat, 0, 0); 4297 4298 /* It can only be a SET of a REG or of a SUBREG of a REG. */ 4299 unsigned int regno = reg_or_subregno (SET_DEST (x)); 4300 4301 bool done = false; 4302 for (rtx_insn *insn = NEXT_INSN (i3); 4303 !done 4304 && insn 4305 && NONDEBUG_INSN_P (insn) 4306 && BLOCK_FOR_INSN (insn) == this_basic_block; 4307 insn = NEXT_INSN (insn)) 4308 { 4309 struct insn_link *link; 4310 FOR_EACH_LOG_LINK (link, insn) 4311 if (link->insn == i3 && link->regno == regno) 4312 { 4313 link->insn = i2; 4314 done = true; 4315 break; 4316 } 4317 } 4318 } 4319 4320 { 4321 rtx i3notes, i2notes, i1notes = 0, i0notes = 0; 4322 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0; 4323 rtx midnotes = 0; 4324 int from_luid; 4325 /* Compute which registers we expect to eliminate. newi2pat may be setting 4326 either i3dest or i2dest, so we must check it. */ 4327 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat)) 4328 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src 4329 || !i2dest_killed 4330 ? 0 : i2dest); 4331 /* For i1, we need to compute both local elimination and global 4332 elimination information with respect to newi2pat because i1dest 4333 may be the same as i3dest, in which case newi2pat may be setting 4334 i1dest. Global information is used when distributing REG_DEAD 4335 note for i2 and i3, in which case it does matter if newi2pat sets 4336 i1dest or not. 4337 4338 Local information is used when distributing REG_DEAD note for i1, 4339 in which case it doesn't matter if newi2pat sets i1dest or not. 4340 See PR62151, if we have four insns combination: 4341 i0: r0 <- i0src 4342 i1: r1 <- i1src (using r0) 4343 REG_DEAD (r0) 4344 i2: r0 <- i2src (using r1) 4345 i3: r3 <- i3src (using r0) 4346 ix: using r0 4347 From i1's point of view, r0 is eliminated, no matter if it is set 4348 by newi2pat or not. In other words, REG_DEAD info for r0 in i1 4349 should be discarded. 4350 4351 Note local information only affects cases in forms like "I1->I2->I3", 4352 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like 4353 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or 4354 i0dest anyway. */ 4355 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src 4356 || !i1dest_killed 4357 ? 0 : i1dest); 4358 rtx elim_i1 = (local_elim_i1 == 0 4359 || (newi2pat && reg_set_p (i1dest, newi2pat)) 4360 ? 0 : i1dest); 4361 /* Same case as i1. */ 4362 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed 4363 ? 0 : i0dest); 4364 rtx elim_i0 = (local_elim_i0 == 0 4365 || (newi2pat && reg_set_p (i0dest, newi2pat)) 4366 ? 0 : i0dest); 4367 4368 /* Get the old REG_NOTES and LOG_LINKS from all our insns and 4369 clear them. */ 4370 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3); 4371 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2); 4372 if (i1) 4373 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1); 4374 if (i0) 4375 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0); 4376 4377 /* Ensure that we do not have something that should not be shared but 4378 occurs multiple times in the new insns. Check this by first 4379 resetting all the `used' flags and then copying anything is shared. */ 4380 4381 reset_used_flags (i3notes); 4382 reset_used_flags (i2notes); 4383 reset_used_flags (i1notes); 4384 reset_used_flags (i0notes); 4385 reset_used_flags (newpat); 4386 reset_used_flags (newi2pat); 4387 if (undobuf.other_insn) 4388 reset_used_flags (PATTERN (undobuf.other_insn)); 4389 4390 i3notes = copy_rtx_if_shared (i3notes); 4391 i2notes = copy_rtx_if_shared (i2notes); 4392 i1notes = copy_rtx_if_shared (i1notes); 4393 i0notes = copy_rtx_if_shared (i0notes); 4394 newpat = copy_rtx_if_shared (newpat); 4395 newi2pat = copy_rtx_if_shared (newi2pat); 4396 if (undobuf.other_insn) 4397 reset_used_flags (PATTERN (undobuf.other_insn)); 4398 4399 INSN_CODE (i3) = insn_code_number; 4400 PATTERN (i3) = newpat; 4401 4402 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3)) 4403 { 4404 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link; 4405 link = XEXP (link, 1)) 4406 { 4407 if (substed_i2) 4408 { 4409 /* I2SRC must still be meaningful at this point. Some 4410 splitting operations can invalidate I2SRC, but those 4411 operations do not apply to calls. */ 4412 gcc_assert (i2src); 4413 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0), 4414 i2dest, i2src); 4415 } 4416 if (substed_i1) 4417 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0), 4418 i1dest, i1src); 4419 if (substed_i0) 4420 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0), 4421 i0dest, i0src); 4422 } 4423 } 4424 4425 if (undobuf.other_insn) 4426 INSN_CODE (undobuf.other_insn) = other_code_number; 4427 4428 /* We had one special case above where I2 had more than one set and 4429 we replaced a destination of one of those sets with the destination 4430 of I3. In that case, we have to update LOG_LINKS of insns later 4431 in this basic block. Note that this (expensive) case is rare. 4432 4433 Also, in this case, we must pretend that all REG_NOTEs for I2 4434 actually came from I3, so that REG_UNUSED notes from I2 will be 4435 properly handled. */ 4436 4437 if (i3_subst_into_i2) 4438 { 4439 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++) 4440 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET 4441 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER) 4442 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) 4443 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest 4444 && ! find_reg_note (i2, REG_UNUSED, 4445 SET_DEST (XVECEXP (PATTERN (i2), 0, i)))) 4446 for (temp_insn = NEXT_INSN (i2); 4447 temp_insn 4448 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun) 4449 || BB_HEAD (this_basic_block) != temp_insn); 4450 temp_insn = NEXT_INSN (temp_insn)) 4451 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn)) 4452 FOR_EACH_LOG_LINK (link, temp_insn) 4453 if (link->insn == i2) 4454 link->insn = i3; 4455 4456 if (i3notes) 4457 { 4458 rtx link = i3notes; 4459 while (XEXP (link, 1)) 4460 link = XEXP (link, 1); 4461 XEXP (link, 1) = i2notes; 4462 } 4463 else 4464 i3notes = i2notes; 4465 i2notes = 0; 4466 } 4467 4468 LOG_LINKS (i3) = NULL; 4469 REG_NOTES (i3) = 0; 4470 LOG_LINKS (i2) = NULL; 4471 REG_NOTES (i2) = 0; 4472 4473 if (newi2pat) 4474 { 4475 if (MAY_HAVE_DEBUG_BIND_INSNS && i2scratch) 4476 propagate_for_debug (i2, last_combined_insn, i2dest, i2src, 4477 this_basic_block); 4478 INSN_CODE (i2) = i2_code_number; 4479 PATTERN (i2) = newi2pat; 4480 } 4481 else 4482 { 4483 if (MAY_HAVE_DEBUG_BIND_INSNS && i2src) 4484 propagate_for_debug (i2, last_combined_insn, i2dest, i2src, 4485 this_basic_block); 4486 SET_INSN_DELETED (i2); 4487 } 4488 4489 if (i1) 4490 { 4491 LOG_LINKS (i1) = NULL; 4492 REG_NOTES (i1) = 0; 4493 if (MAY_HAVE_DEBUG_BIND_INSNS) 4494 propagate_for_debug (i1, last_combined_insn, i1dest, i1src, 4495 this_basic_block); 4496 SET_INSN_DELETED (i1); 4497 } 4498 4499 if (i0) 4500 { 4501 LOG_LINKS (i0) = NULL; 4502 REG_NOTES (i0) = 0; 4503 if (MAY_HAVE_DEBUG_BIND_INSNS) 4504 propagate_for_debug (i0, last_combined_insn, i0dest, i0src, 4505 this_basic_block); 4506 SET_INSN_DELETED (i0); 4507 } 4508 4509 /* Get death notes for everything that is now used in either I3 or 4510 I2 and used to die in a previous insn. If we built two new 4511 patterns, move from I1 to I2 then I2 to I3 so that we get the 4512 proper movement on registers that I2 modifies. */ 4513 4514 if (i0) 4515 from_luid = DF_INSN_LUID (i0); 4516 else if (i1) 4517 from_luid = DF_INSN_LUID (i1); 4518 else 4519 from_luid = DF_INSN_LUID (i2); 4520 if (newi2pat) 4521 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes); 4522 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes); 4523 4524 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */ 4525 if (i3notes) 4526 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL, 4527 elim_i2, elim_i1, elim_i0); 4528 if (i2notes) 4529 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL, 4530 elim_i2, elim_i1, elim_i0); 4531 if (i1notes) 4532 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL, 4533 elim_i2, local_elim_i1, local_elim_i0); 4534 if (i0notes) 4535 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL, 4536 elim_i2, elim_i1, local_elim_i0); 4537 if (midnotes) 4538 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL, 4539 elim_i2, elim_i1, elim_i0); 4540 4541 /* Distribute any notes added to I2 or I3 by recog_for_combine. We 4542 know these are REG_UNUSED and want them to go to the desired insn, 4543 so we always pass it as i3. */ 4544 4545 if (newi2pat && new_i2_notes) 4546 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX, 4547 NULL_RTX); 4548 4549 if (new_i3_notes) 4550 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX, 4551 NULL_RTX); 4552 4553 /* If I3DEST was used in I3SRC, it really died in I3. We may need to 4554 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets 4555 I3DEST, the death must be somewhere before I2, not I3. If we passed I3 4556 in that case, it might delete I2. Similarly for I2 and I1. 4557 Show an additional death due to the REG_DEAD note we make here. If 4558 we discard it in distribute_notes, we will decrement it again. */ 4559 4560 if (i3dest_killed) 4561 { 4562 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX); 4563 if (newi2pat && reg_set_p (i3dest_killed, newi2pat)) 4564 distribute_notes (new_note, NULL, i2, NULL, elim_i2, 4565 elim_i1, elim_i0); 4566 else 4567 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL, 4568 elim_i2, elim_i1, elim_i0); 4569 } 4570 4571 if (i2dest_in_i2src) 4572 { 4573 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX); 4574 if (newi2pat && reg_set_p (i2dest, newi2pat)) 4575 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX, 4576 NULL_RTX, NULL_RTX); 4577 else 4578 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL, 4579 NULL_RTX, NULL_RTX, NULL_RTX); 4580 } 4581 4582 if (i1dest_in_i1src) 4583 { 4584 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX); 4585 if (newi2pat && reg_set_p (i1dest, newi2pat)) 4586 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX, 4587 NULL_RTX, NULL_RTX); 4588 else 4589 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL, 4590 NULL_RTX, NULL_RTX, NULL_RTX); 4591 } 4592 4593 if (i0dest_in_i0src) 4594 { 4595 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX); 4596 if (newi2pat && reg_set_p (i0dest, newi2pat)) 4597 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX, 4598 NULL_RTX, NULL_RTX); 4599 else 4600 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL, 4601 NULL_RTX, NULL_RTX, NULL_RTX); 4602 } 4603 4604 distribute_links (i3links); 4605 distribute_links (i2links); 4606 distribute_links (i1links); 4607 distribute_links (i0links); 4608 4609 if (REG_P (i2dest)) 4610 { 4611 struct insn_link *link; 4612 rtx_insn *i2_insn = 0; 4613 rtx i2_val = 0, set; 4614 4615 /* The insn that used to set this register doesn't exist, and 4616 this life of the register may not exist either. See if one of 4617 I3's links points to an insn that sets I2DEST. If it does, 4618 that is now the last known value for I2DEST. If we don't update 4619 this and I2 set the register to a value that depended on its old 4620 contents, we will get confused. If this insn is used, thing 4621 will be set correctly in combine_instructions. */ 4622 FOR_EACH_LOG_LINK (link, i3) 4623 if ((set = single_set (link->insn)) != 0 4624 && rtx_equal_p (i2dest, SET_DEST (set))) 4625 i2_insn = link->insn, i2_val = SET_SRC (set); 4626 4627 record_value_for_reg (i2dest, i2_insn, i2_val); 4628 4629 /* If the reg formerly set in I2 died only once and that was in I3, 4630 zero its use count so it won't make `reload' do any work. */ 4631 if (! added_sets_2 4632 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat)) 4633 && ! i2dest_in_i2src 4634 && REGNO (i2dest) < reg_n_sets_max) 4635 INC_REG_N_SETS (REGNO (i2dest), -1); 4636 } 4637 4638 if (i1 && REG_P (i1dest)) 4639 { 4640 struct insn_link *link; 4641 rtx_insn *i1_insn = 0; 4642 rtx i1_val = 0, set; 4643 4644 FOR_EACH_LOG_LINK (link, i3) 4645 if ((set = single_set (link->insn)) != 0 4646 && rtx_equal_p (i1dest, SET_DEST (set))) 4647 i1_insn = link->insn, i1_val = SET_SRC (set); 4648 4649 record_value_for_reg (i1dest, i1_insn, i1_val); 4650 4651 if (! added_sets_1 4652 && ! i1dest_in_i1src 4653 && REGNO (i1dest) < reg_n_sets_max) 4654 INC_REG_N_SETS (REGNO (i1dest), -1); 4655 } 4656 4657 if (i0 && REG_P (i0dest)) 4658 { 4659 struct insn_link *link; 4660 rtx_insn *i0_insn = 0; 4661 rtx i0_val = 0, set; 4662 4663 FOR_EACH_LOG_LINK (link, i3) 4664 if ((set = single_set (link->insn)) != 0 4665 && rtx_equal_p (i0dest, SET_DEST (set))) 4666 i0_insn = link->insn, i0_val = SET_SRC (set); 4667 4668 record_value_for_reg (i0dest, i0_insn, i0_val); 4669 4670 if (! added_sets_0 4671 && ! i0dest_in_i0src 4672 && REGNO (i0dest) < reg_n_sets_max) 4673 INC_REG_N_SETS (REGNO (i0dest), -1); 4674 } 4675 4676 /* Update reg_stat[].nonzero_bits et al for any changes that may have 4677 been made to this insn. The order is important, because newi2pat 4678 can affect nonzero_bits of newpat. */ 4679 if (newi2pat) 4680 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL); 4681 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL); 4682 } 4683 4684 if (undobuf.other_insn != NULL_RTX) 4685 { 4686 if (dump_file) 4687 { 4688 fprintf (dump_file, "modifying other_insn "); 4689 dump_insn_slim (dump_file, undobuf.other_insn); 4690 } 4691 df_insn_rescan (undobuf.other_insn); 4692 } 4693 4694 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED))) 4695 { 4696 if (dump_file) 4697 { 4698 fprintf (dump_file, "modifying insn i0 "); 4699 dump_insn_slim (dump_file, i0); 4700 } 4701 df_insn_rescan (i0); 4702 } 4703 4704 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED))) 4705 { 4706 if (dump_file) 4707 { 4708 fprintf (dump_file, "modifying insn i1 "); 4709 dump_insn_slim (dump_file, i1); 4710 } 4711 df_insn_rescan (i1); 4712 } 4713 4714 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED))) 4715 { 4716 if (dump_file) 4717 { 4718 fprintf (dump_file, "modifying insn i2 "); 4719 dump_insn_slim (dump_file, i2); 4720 } 4721 df_insn_rescan (i2); 4722 } 4723 4724 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED))) 4725 { 4726 if (dump_file) 4727 { 4728 fprintf (dump_file, "modifying insn i3 "); 4729 dump_insn_slim (dump_file, i3); 4730 } 4731 df_insn_rescan (i3); 4732 } 4733 4734 /* Set new_direct_jump_p if a new return or simple jump instruction 4735 has been created. Adjust the CFG accordingly. */ 4736 if (returnjump_p (i3) || any_uncondjump_p (i3)) 4737 { 4738 *new_direct_jump_p = 1; 4739 mark_jump_label (PATTERN (i3), i3, 0); 4740 update_cfg_for_uncondjump (i3); 4741 } 4742 4743 if (undobuf.other_insn != NULL_RTX 4744 && (returnjump_p (undobuf.other_insn) 4745 || any_uncondjump_p (undobuf.other_insn))) 4746 { 4747 *new_direct_jump_p = 1; 4748 update_cfg_for_uncondjump (undobuf.other_insn); 4749 } 4750 4751 if (GET_CODE (PATTERN (i3)) == TRAP_IF 4752 && XEXP (PATTERN (i3), 0) == const1_rtx) 4753 { 4754 basic_block bb = BLOCK_FOR_INSN (i3); 4755 gcc_assert (bb); 4756 remove_edge (split_block (bb, i3)); 4757 emit_barrier_after_bb (bb); 4758 *new_direct_jump_p = 1; 4759 } 4760 4761 if (undobuf.other_insn 4762 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF 4763 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx) 4764 { 4765 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn); 4766 gcc_assert (bb); 4767 remove_edge (split_block (bb, undobuf.other_insn)); 4768 emit_barrier_after_bb (bb); 4769 *new_direct_jump_p = 1; 4770 } 4771 4772 /* A noop might also need cleaning up of CFG, if it comes from the 4773 simplification of a jump. */ 4774 if (JUMP_P (i3) 4775 && GET_CODE (newpat) == SET 4776 && SET_SRC (newpat) == pc_rtx 4777 && SET_DEST (newpat) == pc_rtx) 4778 { 4779 *new_direct_jump_p = 1; 4780 update_cfg_for_uncondjump (i3); 4781 } 4782 4783 if (undobuf.other_insn != NULL_RTX 4784 && JUMP_P (undobuf.other_insn) 4785 && GET_CODE (PATTERN (undobuf.other_insn)) == SET 4786 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx 4787 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx) 4788 { 4789 *new_direct_jump_p = 1; 4790 update_cfg_for_uncondjump (undobuf.other_insn); 4791 } 4792 4793 combine_successes++; 4794 undo_commit (); 4795 4796 rtx_insn *ret = newi2pat ? i2 : i3; 4797 if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret)) 4798 ret = added_links_insn; 4799 if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret)) 4800 ret = added_notes_insn; 4801 4802 return ret; 4803 } 4804 4805 /* Get a marker for undoing to the current state. */ 4806 4807 static void * 4808 get_undo_marker (void) 4809 { 4810 return undobuf.undos; 4811 } 4812 4813 /* Undo the modifications up to the marker. */ 4814 4815 static void 4816 undo_to_marker (void *marker) 4817 { 4818 struct undo *undo, *next; 4819 4820 for (undo = undobuf.undos; undo != marker; undo = next) 4821 { 4822 gcc_assert (undo); 4823 4824 next = undo->next; 4825 switch (undo->kind) 4826 { 4827 case UNDO_RTX: 4828 *undo->where.r = undo->old_contents.r; 4829 break; 4830 case UNDO_INT: 4831 *undo->where.i = undo->old_contents.i; 4832 break; 4833 case UNDO_MODE: 4834 adjust_reg_mode (*undo->where.r, undo->old_contents.m); 4835 break; 4836 case UNDO_LINKS: 4837 *undo->where.l = undo->old_contents.l; 4838 break; 4839 default: 4840 gcc_unreachable (); 4841 } 4842 4843 undo->next = undobuf.frees; 4844 undobuf.frees = undo; 4845 } 4846 4847 undobuf.undos = (struct undo *) marker; 4848 } 4849 4850 /* Undo all the modifications recorded in undobuf. */ 4851 4852 static void 4853 undo_all (void) 4854 { 4855 undo_to_marker (0); 4856 } 4857 4858 /* We've committed to accepting the changes we made. Move all 4859 of the undos to the free list. */ 4860 4861 static void 4862 undo_commit (void) 4863 { 4864 struct undo *undo, *next; 4865 4866 for (undo = undobuf.undos; undo; undo = next) 4867 { 4868 next = undo->next; 4869 undo->next = undobuf.frees; 4870 undobuf.frees = undo; 4871 } 4872 undobuf.undos = 0; 4873 } 4874 4875 /* Find the innermost point within the rtx at LOC, possibly LOC itself, 4876 where we have an arithmetic expression and return that point. LOC will 4877 be inside INSN. 4878 4879 try_combine will call this function to see if an insn can be split into 4880 two insns. */ 4881 4882 static rtx * 4883 find_split_point (rtx *loc, rtx_insn *insn, bool set_src) 4884 { 4885 rtx x = *loc; 4886 enum rtx_code code = GET_CODE (x); 4887 rtx *split; 4888 unsigned HOST_WIDE_INT len = 0; 4889 HOST_WIDE_INT pos = 0; 4890 int unsignedp = 0; 4891 rtx inner = NULL_RTX; 4892 scalar_int_mode mode, inner_mode; 4893 4894 /* First special-case some codes. */ 4895 switch (code) 4896 { 4897 case SUBREG: 4898 #ifdef INSN_SCHEDULING 4899 /* If we are making a paradoxical SUBREG invalid, it becomes a split 4900 point. */ 4901 if (MEM_P (SUBREG_REG (x))) 4902 return loc; 4903 #endif 4904 return find_split_point (&SUBREG_REG (x), insn, false); 4905 4906 case MEM: 4907 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it 4908 using LO_SUM and HIGH. */ 4909 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST 4910 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)) 4911 { 4912 machine_mode address_mode = get_address_mode (x); 4913 4914 SUBST (XEXP (x, 0), 4915 gen_rtx_LO_SUM (address_mode, 4916 gen_rtx_HIGH (address_mode, XEXP (x, 0)), 4917 XEXP (x, 0))); 4918 return &XEXP (XEXP (x, 0), 0); 4919 } 4920 4921 /* If we have a PLUS whose second operand is a constant and the 4922 address is not valid, perhaps will can split it up using 4923 the machine-specific way to split large constants. We use 4924 the first pseudo-reg (one of the virtual regs) as a placeholder; 4925 it will not remain in the result. */ 4926 if (GET_CODE (XEXP (x, 0)) == PLUS 4927 && CONST_INT_P (XEXP (XEXP (x, 0), 1)) 4928 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0), 4929 MEM_ADDR_SPACE (x))) 4930 { 4931 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER]; 4932 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)), 4933 subst_insn); 4934 4935 /* This should have produced two insns, each of which sets our 4936 placeholder. If the source of the second is a valid address, 4937 we can make put both sources together and make a split point 4938 in the middle. */ 4939 4940 if (seq 4941 && NEXT_INSN (seq) != NULL_RTX 4942 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX 4943 && NONJUMP_INSN_P (seq) 4944 && GET_CODE (PATTERN (seq)) == SET 4945 && SET_DEST (PATTERN (seq)) == reg 4946 && ! reg_mentioned_p (reg, 4947 SET_SRC (PATTERN (seq))) 4948 && NONJUMP_INSN_P (NEXT_INSN (seq)) 4949 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET 4950 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg 4951 && memory_address_addr_space_p 4952 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))), 4953 MEM_ADDR_SPACE (x))) 4954 { 4955 rtx src1 = SET_SRC (PATTERN (seq)); 4956 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq))); 4957 4958 /* Replace the placeholder in SRC2 with SRC1. If we can 4959 find where in SRC2 it was placed, that can become our 4960 split point and we can replace this address with SRC2. 4961 Just try two obvious places. */ 4962 4963 src2 = replace_rtx (src2, reg, src1); 4964 split = 0; 4965 if (XEXP (src2, 0) == src1) 4966 split = &XEXP (src2, 0); 4967 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e' 4968 && XEXP (XEXP (src2, 0), 0) == src1) 4969 split = &XEXP (XEXP (src2, 0), 0); 4970 4971 if (split) 4972 { 4973 SUBST (XEXP (x, 0), src2); 4974 return split; 4975 } 4976 } 4977 4978 /* If that didn't work, perhaps the first operand is complex and 4979 needs to be computed separately, so make a split point there. 4980 This will occur on machines that just support REG + CONST 4981 and have a constant moved through some previous computation. */ 4982 4983 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0)) 4984 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG 4985 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0))))) 4986 return &XEXP (XEXP (x, 0), 0); 4987 } 4988 4989 /* If we have a PLUS whose first operand is complex, try computing it 4990 separately by making a split there. */ 4991 if (GET_CODE (XEXP (x, 0)) == PLUS 4992 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0), 4993 MEM_ADDR_SPACE (x)) 4994 && ! OBJECT_P (XEXP (XEXP (x, 0), 0)) 4995 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG 4996 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0))))) 4997 return &XEXP (XEXP (x, 0), 0); 4998 break; 4999 5000 case SET: 5001 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a 5002 ZERO_EXTRACT, the most likely reason why this doesn't match is that 5003 we need to put the operand into a register. So split at that 5004 point. */ 5005 5006 if (SET_DEST (x) == cc0_rtx 5007 && GET_CODE (SET_SRC (x)) != COMPARE 5008 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT 5009 && !OBJECT_P (SET_SRC (x)) 5010 && ! (GET_CODE (SET_SRC (x)) == SUBREG 5011 && OBJECT_P (SUBREG_REG (SET_SRC (x))))) 5012 return &SET_SRC (x); 5013 5014 /* See if we can split SET_SRC as it stands. */ 5015 split = find_split_point (&SET_SRC (x), insn, true); 5016 if (split && split != &SET_SRC (x)) 5017 return split; 5018 5019 /* See if we can split SET_DEST as it stands. */ 5020 split = find_split_point (&SET_DEST (x), insn, false); 5021 if (split && split != &SET_DEST (x)) 5022 return split; 5023 5024 /* See if this is a bitfield assignment with everything constant. If 5025 so, this is an IOR of an AND, so split it into that. */ 5026 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT 5027 && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)), 5028 &inner_mode) 5029 && HWI_COMPUTABLE_MODE_P (inner_mode) 5030 && CONST_INT_P (XEXP (SET_DEST (x), 1)) 5031 && CONST_INT_P (XEXP (SET_DEST (x), 2)) 5032 && CONST_INT_P (SET_SRC (x)) 5033 && ((INTVAL (XEXP (SET_DEST (x), 1)) 5034 + INTVAL (XEXP (SET_DEST (x), 2))) 5035 <= GET_MODE_PRECISION (inner_mode)) 5036 && ! side_effects_p (XEXP (SET_DEST (x), 0))) 5037 { 5038 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2)); 5039 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1)); 5040 rtx dest = XEXP (SET_DEST (x), 0); 5041 unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << len) - 1; 5042 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x)) & mask; 5043 rtx or_mask; 5044 5045 if (BITS_BIG_ENDIAN) 5046 pos = GET_MODE_PRECISION (inner_mode) - len - pos; 5047 5048 or_mask = gen_int_mode (src << pos, inner_mode); 5049 if (src == mask) 5050 SUBST (SET_SRC (x), 5051 simplify_gen_binary (IOR, inner_mode, dest, or_mask)); 5052 else 5053 { 5054 rtx negmask = gen_int_mode (~(mask << pos), inner_mode); 5055 SUBST (SET_SRC (x), 5056 simplify_gen_binary (IOR, inner_mode, 5057 simplify_gen_binary (AND, inner_mode, 5058 dest, negmask), 5059 or_mask)); 5060 } 5061 5062 SUBST (SET_DEST (x), dest); 5063 5064 split = find_split_point (&SET_SRC (x), insn, true); 5065 if (split && split != &SET_SRC (x)) 5066 return split; 5067 } 5068 5069 /* Otherwise, see if this is an operation that we can split into two. 5070 If so, try to split that. */ 5071 code = GET_CODE (SET_SRC (x)); 5072 5073 switch (code) 5074 { 5075 case AND: 5076 /* If we are AND'ing with a large constant that is only a single 5077 bit and the result is only being used in a context where we 5078 need to know if it is zero or nonzero, replace it with a bit 5079 extraction. This will avoid the large constant, which might 5080 have taken more than one insn to make. If the constant were 5081 not a valid argument to the AND but took only one insn to make, 5082 this is no worse, but if it took more than one insn, it will 5083 be better. */ 5084 5085 if (CONST_INT_P (XEXP (SET_SRC (x), 1)) 5086 && REG_P (XEXP (SET_SRC (x), 0)) 5087 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7 5088 && REG_P (SET_DEST (x)) 5089 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0 5090 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE) 5091 && XEXP (*split, 0) == SET_DEST (x) 5092 && XEXP (*split, 1) == const0_rtx) 5093 { 5094 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)), 5095 XEXP (SET_SRC (x), 0), 5096 pos, NULL_RTX, 1, 1, 0, 0); 5097 if (extraction != 0) 5098 { 5099 SUBST (SET_SRC (x), extraction); 5100 return find_split_point (loc, insn, false); 5101 } 5102 } 5103 break; 5104 5105 case NE: 5106 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X 5107 is known to be on, this can be converted into a NEG of a shift. */ 5108 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx 5109 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0)) 5110 && ((pos = exact_log2 (nonzero_bits (XEXP (SET_SRC (x), 0), 5111 GET_MODE (XEXP (SET_SRC (x), 5112 0))))) >= 1)) 5113 { 5114 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0)); 5115 rtx pos_rtx = gen_int_shift_amount (mode, pos); 5116 SUBST (SET_SRC (x), 5117 gen_rtx_NEG (mode, 5118 gen_rtx_LSHIFTRT (mode, 5119 XEXP (SET_SRC (x), 0), 5120 pos_rtx))); 5121 5122 split = find_split_point (&SET_SRC (x), insn, true); 5123 if (split && split != &SET_SRC (x)) 5124 return split; 5125 } 5126 break; 5127 5128 case SIGN_EXTEND: 5129 inner = XEXP (SET_SRC (x), 0); 5130 5131 /* We can't optimize if either mode is a partial integer 5132 mode as we don't know how many bits are significant 5133 in those modes. */ 5134 if (!is_int_mode (GET_MODE (inner), &inner_mode) 5135 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT) 5136 break; 5137 5138 pos = 0; 5139 len = GET_MODE_PRECISION (inner_mode); 5140 unsignedp = 0; 5141 break; 5142 5143 case SIGN_EXTRACT: 5144 case ZERO_EXTRACT: 5145 if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)), 5146 &inner_mode) 5147 && CONST_INT_P (XEXP (SET_SRC (x), 1)) 5148 && CONST_INT_P (XEXP (SET_SRC (x), 2))) 5149 { 5150 inner = XEXP (SET_SRC (x), 0); 5151 len = INTVAL (XEXP (SET_SRC (x), 1)); 5152 pos = INTVAL (XEXP (SET_SRC (x), 2)); 5153 5154 if (BITS_BIG_ENDIAN) 5155 pos = GET_MODE_PRECISION (inner_mode) - len - pos; 5156 unsignedp = (code == ZERO_EXTRACT); 5157 } 5158 break; 5159 5160 default: 5161 break; 5162 } 5163 5164 if (len 5165 && known_subrange_p (pos, len, 5166 0, GET_MODE_PRECISION (GET_MODE (inner))) 5167 && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode)) 5168 { 5169 /* For unsigned, we have a choice of a shift followed by an 5170 AND or two shifts. Use two shifts for field sizes where the 5171 constant might be too large. We assume here that we can 5172 always at least get 8-bit constants in an AND insn, which is 5173 true for every current RISC. */ 5174 5175 if (unsignedp && len <= 8) 5176 { 5177 unsigned HOST_WIDE_INT mask 5178 = (HOST_WIDE_INT_1U << len) - 1; 5179 rtx pos_rtx = gen_int_shift_amount (mode, pos); 5180 SUBST (SET_SRC (x), 5181 gen_rtx_AND (mode, 5182 gen_rtx_LSHIFTRT 5183 (mode, gen_lowpart (mode, inner), pos_rtx), 5184 gen_int_mode (mask, mode))); 5185 5186 split = find_split_point (&SET_SRC (x), insn, true); 5187 if (split && split != &SET_SRC (x)) 5188 return split; 5189 } 5190 else 5191 { 5192 int left_bits = GET_MODE_PRECISION (mode) - len - pos; 5193 int right_bits = GET_MODE_PRECISION (mode) - len; 5194 SUBST (SET_SRC (x), 5195 gen_rtx_fmt_ee 5196 (unsignedp ? LSHIFTRT : ASHIFTRT, mode, 5197 gen_rtx_ASHIFT (mode, 5198 gen_lowpart (mode, inner), 5199 gen_int_shift_amount (mode, left_bits)), 5200 gen_int_shift_amount (mode, right_bits))); 5201 5202 split = find_split_point (&SET_SRC (x), insn, true); 5203 if (split && split != &SET_SRC (x)) 5204 return split; 5205 } 5206 } 5207 5208 /* See if this is a simple operation with a constant as the second 5209 operand. It might be that this constant is out of range and hence 5210 could be used as a split point. */ 5211 if (BINARY_P (SET_SRC (x)) 5212 && CONSTANT_P (XEXP (SET_SRC (x), 1)) 5213 && (OBJECT_P (XEXP (SET_SRC (x), 0)) 5214 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG 5215 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0)))))) 5216 return &XEXP (SET_SRC (x), 1); 5217 5218 /* Finally, see if this is a simple operation with its first operand 5219 not in a register. The operation might require this operand in a 5220 register, so return it as a split point. We can always do this 5221 because if the first operand were another operation, we would have 5222 already found it as a split point. */ 5223 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x))) 5224 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode)) 5225 return &XEXP (SET_SRC (x), 0); 5226 5227 return 0; 5228 5229 case AND: 5230 case IOR: 5231 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR, 5232 it is better to write this as (not (ior A B)) so we can split it. 5233 Similarly for IOR. */ 5234 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT) 5235 { 5236 SUBST (*loc, 5237 gen_rtx_NOT (GET_MODE (x), 5238 gen_rtx_fmt_ee (code == IOR ? AND : IOR, 5239 GET_MODE (x), 5240 XEXP (XEXP (x, 0), 0), 5241 XEXP (XEXP (x, 1), 0)))); 5242 return find_split_point (loc, insn, set_src); 5243 } 5244 5245 /* Many RISC machines have a large set of logical insns. If the 5246 second operand is a NOT, put it first so we will try to split the 5247 other operand first. */ 5248 if (GET_CODE (XEXP (x, 1)) == NOT) 5249 { 5250 rtx tem = XEXP (x, 0); 5251 SUBST (XEXP (x, 0), XEXP (x, 1)); 5252 SUBST (XEXP (x, 1), tem); 5253 } 5254 break; 5255 5256 case PLUS: 5257 case MINUS: 5258 /* Canonicalization can produce (minus A (mult B C)), where C is a 5259 constant. It may be better to try splitting (plus (mult B -C) A) 5260 instead if this isn't a multiply by a power of two. */ 5261 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT 5262 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT 5263 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1)))) 5264 { 5265 machine_mode mode = GET_MODE (x); 5266 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1)); 5267 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode); 5268 SUBST (*loc, gen_rtx_PLUS (mode, 5269 gen_rtx_MULT (mode, 5270 XEXP (XEXP (x, 1), 0), 5271 gen_int_mode (other_int, 5272 mode)), 5273 XEXP (x, 0))); 5274 return find_split_point (loc, insn, set_src); 5275 } 5276 5277 /* Split at a multiply-accumulate instruction. However if this is 5278 the SET_SRC, we likely do not have such an instruction and it's 5279 worthless to try this split. */ 5280 if (!set_src 5281 && (GET_CODE (XEXP (x, 0)) == MULT 5282 || (GET_CODE (XEXP (x, 0)) == ASHIFT 5283 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT))) 5284 return loc; 5285 5286 default: 5287 break; 5288 } 5289 5290 /* Otherwise, select our actions depending on our rtx class. */ 5291 switch (GET_RTX_CLASS (code)) 5292 { 5293 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */ 5294 case RTX_TERNARY: 5295 split = find_split_point (&XEXP (x, 2), insn, false); 5296 if (split) 5297 return split; 5298 /* fall through */ 5299 case RTX_BIN_ARITH: 5300 case RTX_COMM_ARITH: 5301 case RTX_COMPARE: 5302 case RTX_COMM_COMPARE: 5303 split = find_split_point (&XEXP (x, 1), insn, false); 5304 if (split) 5305 return split; 5306 /* fall through */ 5307 case RTX_UNARY: 5308 /* Some machines have (and (shift ...) ...) insns. If X is not 5309 an AND, but XEXP (X, 0) is, use it as our split point. */ 5310 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND) 5311 return &XEXP (x, 0); 5312 5313 split = find_split_point (&XEXP (x, 0), insn, false); 5314 if (split) 5315 return split; 5316 return loc; 5317 5318 default: 5319 /* Otherwise, we don't have a split point. */ 5320 return 0; 5321 } 5322 } 5323 5324 /* Throughout X, replace FROM with TO, and return the result. 5325 The result is TO if X is FROM; 5326 otherwise the result is X, but its contents may have been modified. 5327 If they were modified, a record was made in undobuf so that 5328 undo_all will (among other things) return X to its original state. 5329 5330 If the number of changes necessary is too much to record to undo, 5331 the excess changes are not made, so the result is invalid. 5332 The changes already made can still be undone. 5333 undobuf.num_undo is incremented for such changes, so by testing that 5334 the caller can tell whether the result is valid. 5335 5336 `n_occurrences' is incremented each time FROM is replaced. 5337 5338 IN_DEST is nonzero if we are processing the SET_DEST of a SET. 5339 5340 IN_COND is nonzero if we are at the top level of a condition. 5341 5342 UNIQUE_COPY is nonzero if each substitution must be unique. We do this 5343 by copying if `n_occurrences' is nonzero. */ 5344 5345 static rtx 5346 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy) 5347 { 5348 enum rtx_code code = GET_CODE (x); 5349 machine_mode op0_mode = VOIDmode; 5350 const char *fmt; 5351 int len, i; 5352 rtx new_rtx; 5353 5354 /* Two expressions are equal if they are identical copies of a shared 5355 RTX or if they are both registers with the same register number 5356 and mode. */ 5357 5358 #define COMBINE_RTX_EQUAL_P(X,Y) \ 5359 ((X) == (Y) \ 5360 || (REG_P (X) && REG_P (Y) \ 5361 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y))) 5362 5363 /* Do not substitute into clobbers of regs -- this will never result in 5364 valid RTL. */ 5365 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0))) 5366 return x; 5367 5368 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from)) 5369 { 5370 n_occurrences++; 5371 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to); 5372 } 5373 5374 /* If X and FROM are the same register but different modes, they 5375 will not have been seen as equal above. However, the log links code 5376 will make a LOG_LINKS entry for that case. If we do nothing, we 5377 will try to rerecognize our original insn and, when it succeeds, 5378 we will delete the feeding insn, which is incorrect. 5379 5380 So force this insn not to match in this (rare) case. */ 5381 if (! in_dest && code == REG && REG_P (from) 5382 && reg_overlap_mentioned_p (x, from)) 5383 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx); 5384 5385 /* If this is an object, we are done unless it is a MEM or LO_SUM, both 5386 of which may contain things that can be combined. */ 5387 if (code != MEM && code != LO_SUM && OBJECT_P (x)) 5388 return x; 5389 5390 /* It is possible to have a subexpression appear twice in the insn. 5391 Suppose that FROM is a register that appears within TO. 5392 Then, after that subexpression has been scanned once by `subst', 5393 the second time it is scanned, TO may be found. If we were 5394 to scan TO here, we would find FROM within it and create a 5395 self-referent rtl structure which is completely wrong. */ 5396 if (COMBINE_RTX_EQUAL_P (x, to)) 5397 return to; 5398 5399 /* Parallel asm_operands need special attention because all of the 5400 inputs are shared across the arms. Furthermore, unsharing the 5401 rtl results in recognition failures. Failure to handle this case 5402 specially can result in circular rtl. 5403 5404 Solve this by doing a normal pass across the first entry of the 5405 parallel, and only processing the SET_DESTs of the subsequent 5406 entries. Ug. */ 5407 5408 if (code == PARALLEL 5409 && GET_CODE (XVECEXP (x, 0, 0)) == SET 5410 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS) 5411 { 5412 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy); 5413 5414 /* If this substitution failed, this whole thing fails. */ 5415 if (GET_CODE (new_rtx) == CLOBBER 5416 && XEXP (new_rtx, 0) == const0_rtx) 5417 return new_rtx; 5418 5419 SUBST (XVECEXP (x, 0, 0), new_rtx); 5420 5421 for (i = XVECLEN (x, 0) - 1; i >= 1; i--) 5422 { 5423 rtx dest = SET_DEST (XVECEXP (x, 0, i)); 5424 5425 if (!REG_P (dest) 5426 && GET_CODE (dest) != CC0 5427 && GET_CODE (dest) != PC) 5428 { 5429 new_rtx = subst (dest, from, to, 0, 0, unique_copy); 5430 5431 /* If this substitution failed, this whole thing fails. */ 5432 if (GET_CODE (new_rtx) == CLOBBER 5433 && XEXP (new_rtx, 0) == const0_rtx) 5434 return new_rtx; 5435 5436 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx); 5437 } 5438 } 5439 } 5440 else 5441 { 5442 len = GET_RTX_LENGTH (code); 5443 fmt = GET_RTX_FORMAT (code); 5444 5445 /* We don't need to process a SET_DEST that is a register, CC0, 5446 or PC, so set up to skip this common case. All other cases 5447 where we want to suppress replacing something inside a 5448 SET_SRC are handled via the IN_DEST operand. */ 5449 if (code == SET 5450 && (REG_P (SET_DEST (x)) 5451 || GET_CODE (SET_DEST (x)) == CC0 5452 || GET_CODE (SET_DEST (x)) == PC)) 5453 fmt = "ie"; 5454 5455 /* Trying to simplify the operands of a widening MULT is not likely 5456 to create RTL matching a machine insn. */ 5457 if (code == MULT 5458 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND 5459 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND) 5460 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND 5461 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND) 5462 && REG_P (XEXP (XEXP (x, 0), 0)) 5463 && REG_P (XEXP (XEXP (x, 1), 0)) 5464 && from == to) 5465 return x; 5466 5467 5468 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a 5469 constant. */ 5470 if (fmt[0] == 'e') 5471 op0_mode = GET_MODE (XEXP (x, 0)); 5472 5473 for (i = 0; i < len; i++) 5474 { 5475 if (fmt[i] == 'E') 5476 { 5477 int j; 5478 for (j = XVECLEN (x, i) - 1; j >= 0; j--) 5479 { 5480 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from)) 5481 { 5482 new_rtx = (unique_copy && n_occurrences 5483 ? copy_rtx (to) : to); 5484 n_occurrences++; 5485 } 5486 else 5487 { 5488 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0, 5489 unique_copy); 5490 5491 /* If this substitution failed, this whole thing 5492 fails. */ 5493 if (GET_CODE (new_rtx) == CLOBBER 5494 && XEXP (new_rtx, 0) == const0_rtx) 5495 return new_rtx; 5496 } 5497 5498 SUBST (XVECEXP (x, i, j), new_rtx); 5499 } 5500 } 5501 else if (fmt[i] == 'e') 5502 { 5503 /* If this is a register being set, ignore it. */ 5504 new_rtx = XEXP (x, i); 5505 if (in_dest 5506 && i == 0 5507 && (((code == SUBREG || code == ZERO_EXTRACT) 5508 && REG_P (new_rtx)) 5509 || code == STRICT_LOW_PART)) 5510 ; 5511 5512 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from)) 5513 { 5514 /* In general, don't install a subreg involving two 5515 modes not tieable. It can worsen register 5516 allocation, and can even make invalid reload 5517 insns, since the reg inside may need to be copied 5518 from in the outside mode, and that may be invalid 5519 if it is an fp reg copied in integer mode. 5520 5521 We allow two exceptions to this: It is valid if 5522 it is inside another SUBREG and the mode of that 5523 SUBREG and the mode of the inside of TO is 5524 tieable and it is valid if X is a SET that copies 5525 FROM to CC0. */ 5526 5527 if (GET_CODE (to) == SUBREG 5528 && !targetm.modes_tieable_p (GET_MODE (to), 5529 GET_MODE (SUBREG_REG (to))) 5530 && ! (code == SUBREG 5531 && (targetm.modes_tieable_p 5532 (GET_MODE (x), GET_MODE (SUBREG_REG (to))))) 5533 && (!HAVE_cc0 5534 || (! (code == SET 5535 && i == 1 5536 && XEXP (x, 0) == cc0_rtx)))) 5537 return gen_rtx_CLOBBER (VOIDmode, const0_rtx); 5538 5539 if (code == SUBREG 5540 && REG_P (to) 5541 && REGNO (to) < FIRST_PSEUDO_REGISTER 5542 && simplify_subreg_regno (REGNO (to), GET_MODE (to), 5543 SUBREG_BYTE (x), 5544 GET_MODE (x)) < 0) 5545 return gen_rtx_CLOBBER (VOIDmode, const0_rtx); 5546 5547 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to); 5548 n_occurrences++; 5549 } 5550 else 5551 /* If we are in a SET_DEST, suppress most cases unless we 5552 have gone inside a MEM, in which case we want to 5553 simplify the address. We assume here that things that 5554 are actually part of the destination have their inner 5555 parts in the first expression. This is true for SUBREG, 5556 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only 5557 things aside from REG and MEM that should appear in a 5558 SET_DEST. */ 5559 new_rtx = subst (XEXP (x, i), from, to, 5560 (((in_dest 5561 && (code == SUBREG || code == STRICT_LOW_PART 5562 || code == ZERO_EXTRACT)) 5563 || code == SET) 5564 && i == 0), 5565 code == IF_THEN_ELSE && i == 0, 5566 unique_copy); 5567 5568 /* If we found that we will have to reject this combination, 5569 indicate that by returning the CLOBBER ourselves, rather than 5570 an expression containing it. This will speed things up as 5571 well as prevent accidents where two CLOBBERs are considered 5572 to be equal, thus producing an incorrect simplification. */ 5573 5574 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx) 5575 return new_rtx; 5576 5577 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx)) 5578 { 5579 machine_mode mode = GET_MODE (x); 5580 5581 x = simplify_subreg (GET_MODE (x), new_rtx, 5582 GET_MODE (SUBREG_REG (x)), 5583 SUBREG_BYTE (x)); 5584 if (! x) 5585 x = gen_rtx_CLOBBER (mode, const0_rtx); 5586 } 5587 else if (CONST_SCALAR_INT_P (new_rtx) 5588 && (GET_CODE (x) == ZERO_EXTEND 5589 || GET_CODE (x) == FLOAT 5590 || GET_CODE (x) == UNSIGNED_FLOAT)) 5591 { 5592 x = simplify_unary_operation (GET_CODE (x), GET_MODE (x), 5593 new_rtx, 5594 GET_MODE (XEXP (x, 0))); 5595 if (!x) 5596 return gen_rtx_CLOBBER (VOIDmode, const0_rtx); 5597 } 5598 else 5599 SUBST (XEXP (x, i), new_rtx); 5600 } 5601 } 5602 } 5603 5604 /* Check if we are loading something from the constant pool via float 5605 extension; in this case we would undo compress_float_constant 5606 optimization and degenerate constant load to an immediate value. */ 5607 if (GET_CODE (x) == FLOAT_EXTEND 5608 && MEM_P (XEXP (x, 0)) 5609 && MEM_READONLY_P (XEXP (x, 0))) 5610 { 5611 rtx tmp = avoid_constant_pool_reference (x); 5612 if (x != tmp) 5613 return x; 5614 } 5615 5616 /* Try to simplify X. If the simplification changed the code, it is likely 5617 that further simplification will help, so loop, but limit the number 5618 of repetitions that will be performed. */ 5619 5620 for (i = 0; i < 4; i++) 5621 { 5622 /* If X is sufficiently simple, don't bother trying to do anything 5623 with it. */ 5624 if (code != CONST_INT && code != REG && code != CLOBBER) 5625 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond); 5626 5627 if (GET_CODE (x) == code) 5628 break; 5629 5630 code = GET_CODE (x); 5631 5632 /* We no longer know the original mode of operand 0 since we 5633 have changed the form of X) */ 5634 op0_mode = VOIDmode; 5635 } 5636 5637 return x; 5638 } 5639 5640 /* If X is a commutative operation whose operands are not in the canonical 5641 order, use substitutions to swap them. */ 5642 5643 static void 5644 maybe_swap_commutative_operands (rtx x) 5645 { 5646 if (COMMUTATIVE_ARITH_P (x) 5647 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1))) 5648 { 5649 rtx temp = XEXP (x, 0); 5650 SUBST (XEXP (x, 0), XEXP (x, 1)); 5651 SUBST (XEXP (x, 1), temp); 5652 } 5653 } 5654 5655 /* Simplify X, a piece of RTL. We just operate on the expression at the 5656 outer level; call `subst' to simplify recursively. Return the new 5657 expression. 5658 5659 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero 5660 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level 5661 of a condition. */ 5662 5663 static rtx 5664 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest, 5665 int in_cond) 5666 { 5667 enum rtx_code code = GET_CODE (x); 5668 machine_mode mode = GET_MODE (x); 5669 scalar_int_mode int_mode; 5670 rtx temp; 5671 int i; 5672 5673 /* If this is a commutative operation, put a constant last and a complex 5674 expression first. We don't need to do this for comparisons here. */ 5675 maybe_swap_commutative_operands (x); 5676 5677 /* Try to fold this expression in case we have constants that weren't 5678 present before. */ 5679 temp = 0; 5680 switch (GET_RTX_CLASS (code)) 5681 { 5682 case RTX_UNARY: 5683 if (op0_mode == VOIDmode) 5684 op0_mode = GET_MODE (XEXP (x, 0)); 5685 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode); 5686 break; 5687 case RTX_COMPARE: 5688 case RTX_COMM_COMPARE: 5689 { 5690 machine_mode cmp_mode = GET_MODE (XEXP (x, 0)); 5691 if (cmp_mode == VOIDmode) 5692 { 5693 cmp_mode = GET_MODE (XEXP (x, 1)); 5694 if (cmp_mode == VOIDmode) 5695 cmp_mode = op0_mode; 5696 } 5697 temp = simplify_relational_operation (code, mode, cmp_mode, 5698 XEXP (x, 0), XEXP (x, 1)); 5699 } 5700 break; 5701 case RTX_COMM_ARITH: 5702 case RTX_BIN_ARITH: 5703 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1)); 5704 break; 5705 case RTX_BITFIELD_OPS: 5706 case RTX_TERNARY: 5707 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0), 5708 XEXP (x, 1), XEXP (x, 2)); 5709 break; 5710 default: 5711 break; 5712 } 5713 5714 if (temp) 5715 { 5716 x = temp; 5717 code = GET_CODE (temp); 5718 op0_mode = VOIDmode; 5719 mode = GET_MODE (temp); 5720 } 5721 5722 /* If this is a simple operation applied to an IF_THEN_ELSE, try 5723 applying it to the arms of the IF_THEN_ELSE. This often simplifies 5724 things. Check for cases where both arms are testing the same 5725 condition. 5726 5727 Don't do anything if all operands are very simple. */ 5728 5729 if ((BINARY_P (x) 5730 && ((!OBJECT_P (XEXP (x, 0)) 5731 && ! (GET_CODE (XEXP (x, 0)) == SUBREG 5732 && OBJECT_P (SUBREG_REG (XEXP (x, 0))))) 5733 || (!OBJECT_P (XEXP (x, 1)) 5734 && ! (GET_CODE (XEXP (x, 1)) == SUBREG 5735 && OBJECT_P (SUBREG_REG (XEXP (x, 1))))))) 5736 || (UNARY_P (x) 5737 && (!OBJECT_P (XEXP (x, 0)) 5738 && ! (GET_CODE (XEXP (x, 0)) == SUBREG 5739 && OBJECT_P (SUBREG_REG (XEXP (x, 0))))))) 5740 { 5741 rtx cond, true_rtx, false_rtx; 5742 5743 cond = if_then_else_cond (x, &true_rtx, &false_rtx); 5744 if (cond != 0 5745 /* If everything is a comparison, what we have is highly unlikely 5746 to be simpler, so don't use it. */ 5747 && ! (COMPARISON_P (x) 5748 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))) 5749 /* Similarly, if we end up with one of the expressions the same 5750 as the original, it is certainly not simpler. */ 5751 && ! rtx_equal_p (x, true_rtx) 5752 && ! rtx_equal_p (x, false_rtx)) 5753 { 5754 rtx cop1 = const0_rtx; 5755 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1); 5756 5757 if (cond_code == NE && COMPARISON_P (cond)) 5758 return x; 5759 5760 /* Simplify the alternative arms; this may collapse the true and 5761 false arms to store-flag values. Be careful to use copy_rtx 5762 here since true_rtx or false_rtx might share RTL with x as a 5763 result of the if_then_else_cond call above. */ 5764 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0); 5765 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0); 5766 5767 /* If true_rtx and false_rtx are not general_operands, an if_then_else 5768 is unlikely to be simpler. */ 5769 if (general_operand (true_rtx, VOIDmode) 5770 && general_operand (false_rtx, VOIDmode)) 5771 { 5772 enum rtx_code reversed; 5773 5774 /* Restarting if we generate a store-flag expression will cause 5775 us to loop. Just drop through in this case. */ 5776 5777 /* If the result values are STORE_FLAG_VALUE and zero, we can 5778 just make the comparison operation. */ 5779 if (true_rtx == const_true_rtx && false_rtx == const0_rtx) 5780 x = simplify_gen_relational (cond_code, mode, VOIDmode, 5781 cond, cop1); 5782 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx 5783 && ((reversed = reversed_comparison_code_parts 5784 (cond_code, cond, cop1, NULL)) 5785 != UNKNOWN)) 5786 x = simplify_gen_relational (reversed, mode, VOIDmode, 5787 cond, cop1); 5788 5789 /* Likewise, we can make the negate of a comparison operation 5790 if the result values are - STORE_FLAG_VALUE and zero. */ 5791 else if (CONST_INT_P (true_rtx) 5792 && INTVAL (true_rtx) == - STORE_FLAG_VALUE 5793 && false_rtx == const0_rtx) 5794 x = simplify_gen_unary (NEG, mode, 5795 simplify_gen_relational (cond_code, 5796 mode, VOIDmode, 5797 cond, cop1), 5798 mode); 5799 else if (CONST_INT_P (false_rtx) 5800 && INTVAL (false_rtx) == - STORE_FLAG_VALUE 5801 && true_rtx == const0_rtx 5802 && ((reversed = reversed_comparison_code_parts 5803 (cond_code, cond, cop1, NULL)) 5804 != UNKNOWN)) 5805 x = simplify_gen_unary (NEG, mode, 5806 simplify_gen_relational (reversed, 5807 mode, VOIDmode, 5808 cond, cop1), 5809 mode); 5810 else 5811 return gen_rtx_IF_THEN_ELSE (mode, 5812 simplify_gen_relational (cond_code, 5813 mode, 5814 VOIDmode, 5815 cond, 5816 cop1), 5817 true_rtx, false_rtx); 5818 5819 code = GET_CODE (x); 5820 op0_mode = VOIDmode; 5821 } 5822 } 5823 } 5824 5825 /* First see if we can apply the inverse distributive law. */ 5826 if (code == PLUS || code == MINUS 5827 || code == AND || code == IOR || code == XOR) 5828 { 5829 x = apply_distributive_law (x); 5830 code = GET_CODE (x); 5831 op0_mode = VOIDmode; 5832 } 5833 5834 /* If CODE is an associative operation not otherwise handled, see if we 5835 can associate some operands. This can win if they are constants or 5836 if they are logically related (i.e. (a & b) & a). */ 5837 if ((code == PLUS || code == MINUS || code == MULT || code == DIV 5838 || code == AND || code == IOR || code == XOR 5839 || code == SMAX || code == SMIN || code == UMAX || code == UMIN) 5840 && ((INTEGRAL_MODE_P (mode) && code != DIV) 5841 || (flag_associative_math && FLOAT_MODE_P (mode)))) 5842 { 5843 if (GET_CODE (XEXP (x, 0)) == code) 5844 { 5845 rtx other = XEXP (XEXP (x, 0), 0); 5846 rtx inner_op0 = XEXP (XEXP (x, 0), 1); 5847 rtx inner_op1 = XEXP (x, 1); 5848 rtx inner; 5849 5850 /* Make sure we pass the constant operand if any as the second 5851 one if this is a commutative operation. */ 5852 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x)) 5853 std::swap (inner_op0, inner_op1); 5854 inner = simplify_binary_operation (code == MINUS ? PLUS 5855 : code == DIV ? MULT 5856 : code, 5857 mode, inner_op0, inner_op1); 5858 5859 /* For commutative operations, try the other pair if that one 5860 didn't simplify. */ 5861 if (inner == 0 && COMMUTATIVE_ARITH_P (x)) 5862 { 5863 other = XEXP (XEXP (x, 0), 1); 5864 inner = simplify_binary_operation (code, mode, 5865 XEXP (XEXP (x, 0), 0), 5866 XEXP (x, 1)); 5867 } 5868 5869 if (inner) 5870 return simplify_gen_binary (code, mode, other, inner); 5871 } 5872 } 5873 5874 /* A little bit of algebraic simplification here. */ 5875 switch (code) 5876 { 5877 case MEM: 5878 /* Ensure that our address has any ASHIFTs converted to MULT in case 5879 address-recognizing predicates are called later. */ 5880 temp = make_compound_operation (XEXP (x, 0), MEM); 5881 SUBST (XEXP (x, 0), temp); 5882 break; 5883 5884 case SUBREG: 5885 if (op0_mode == VOIDmode) 5886 op0_mode = GET_MODE (SUBREG_REG (x)); 5887 5888 /* See if this can be moved to simplify_subreg. */ 5889 if (CONSTANT_P (SUBREG_REG (x)) 5890 && known_eq (subreg_lowpart_offset (mode, op0_mode), SUBREG_BYTE (x)) 5891 /* Don't call gen_lowpart if the inner mode 5892 is VOIDmode and we cannot simplify it, as SUBREG without 5893 inner mode is invalid. */ 5894 && (GET_MODE (SUBREG_REG (x)) != VOIDmode 5895 || gen_lowpart_common (mode, SUBREG_REG (x)))) 5896 return gen_lowpart (mode, SUBREG_REG (x)); 5897 5898 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC) 5899 break; 5900 { 5901 rtx temp; 5902 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode, 5903 SUBREG_BYTE (x)); 5904 if (temp) 5905 return temp; 5906 5907 /* If op is known to have all lower bits zero, the result is zero. */ 5908 scalar_int_mode int_mode, int_op0_mode; 5909 if (!in_dest 5910 && is_a <scalar_int_mode> (mode, &int_mode) 5911 && is_a <scalar_int_mode> (op0_mode, &int_op0_mode) 5912 && (GET_MODE_PRECISION (int_mode) 5913 < GET_MODE_PRECISION (int_op0_mode)) 5914 && known_eq (subreg_lowpart_offset (int_mode, int_op0_mode), 5915 SUBREG_BYTE (x)) 5916 && HWI_COMPUTABLE_MODE_P (int_op0_mode) 5917 && ((nonzero_bits (SUBREG_REG (x), int_op0_mode) 5918 & GET_MODE_MASK (int_mode)) == 0) 5919 && !side_effects_p (SUBREG_REG (x))) 5920 return CONST0_RTX (int_mode); 5921 } 5922 5923 /* Don't change the mode of the MEM if that would change the meaning 5924 of the address. */ 5925 if (MEM_P (SUBREG_REG (x)) 5926 && (MEM_VOLATILE_P (SUBREG_REG (x)) 5927 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0), 5928 MEM_ADDR_SPACE (SUBREG_REG (x))))) 5929 return gen_rtx_CLOBBER (mode, const0_rtx); 5930 5931 /* Note that we cannot do any narrowing for non-constants since 5932 we might have been counting on using the fact that some bits were 5933 zero. We now do this in the SET. */ 5934 5935 break; 5936 5937 case NEG: 5938 temp = expand_compound_operation (XEXP (x, 0)); 5939 5940 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be 5941 replaced by (lshiftrt X C). This will convert 5942 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */ 5943 5944 if (GET_CODE (temp) == ASHIFTRT 5945 && CONST_INT_P (XEXP (temp, 1)) 5946 && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1) 5947 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0), 5948 INTVAL (XEXP (temp, 1))); 5949 5950 /* If X has only a single bit that might be nonzero, say, bit I, convert 5951 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of 5952 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to 5953 (sign_extract X 1 Y). But only do this if TEMP isn't a register 5954 or a SUBREG of one since we'd be making the expression more 5955 complex if it was just a register. */ 5956 5957 if (!REG_P (temp) 5958 && ! (GET_CODE (temp) == SUBREG 5959 && REG_P (SUBREG_REG (temp))) 5960 && is_a <scalar_int_mode> (mode, &int_mode) 5961 && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0) 5962 { 5963 rtx temp1 = simplify_shift_const 5964 (NULL_RTX, ASHIFTRT, int_mode, 5965 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp, 5966 GET_MODE_PRECISION (int_mode) - 1 - i), 5967 GET_MODE_PRECISION (int_mode) - 1 - i); 5968 5969 /* If all we did was surround TEMP with the two shifts, we 5970 haven't improved anything, so don't use it. Otherwise, 5971 we are better off with TEMP1. */ 5972 if (GET_CODE (temp1) != ASHIFTRT 5973 || GET_CODE (XEXP (temp1, 0)) != ASHIFT 5974 || XEXP (XEXP (temp1, 0), 0) != temp) 5975 return temp1; 5976 } 5977 break; 5978 5979 case TRUNCATE: 5980 /* We can't handle truncation to a partial integer mode here 5981 because we don't know the real bitsize of the partial 5982 integer mode. */ 5983 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT) 5984 break; 5985 5986 if (HWI_COMPUTABLE_MODE_P (mode)) 5987 SUBST (XEXP (x, 0), 5988 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)), 5989 GET_MODE_MASK (mode), 0)); 5990 5991 /* We can truncate a constant value and return it. */ 5992 if (CONST_INT_P (XEXP (x, 0))) 5993 return gen_int_mode (INTVAL (XEXP (x, 0)), mode); 5994 5995 /* Similarly to what we do in simplify-rtx.c, a truncate of a register 5996 whose value is a comparison can be replaced with a subreg if 5997 STORE_FLAG_VALUE permits. */ 5998 if (HWI_COMPUTABLE_MODE_P (mode) 5999 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0 6000 && (temp = get_last_value (XEXP (x, 0))) 6001 && COMPARISON_P (temp)) 6002 return gen_lowpart (mode, XEXP (x, 0)); 6003 break; 6004 6005 case CONST: 6006 /* (const (const X)) can become (const X). Do it this way rather than 6007 returning the inner CONST since CONST can be shared with a 6008 REG_EQUAL note. */ 6009 if (GET_CODE (XEXP (x, 0)) == CONST) 6010 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0)); 6011 break; 6012 6013 case LO_SUM: 6014 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we 6015 can add in an offset. find_split_point will split this address up 6016 again if it doesn't match. */ 6017 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH 6018 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1))) 6019 return XEXP (x, 1); 6020 break; 6021 6022 case PLUS: 6023 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>) 6024 when c is (const_int (pow2 + 1) / 2) is a sign extension of a 6025 bit-field and can be replaced by either a sign_extend or a 6026 sign_extract. The `and' may be a zero_extend and the two 6027 <c>, -<c> constants may be reversed. */ 6028 if (GET_CODE (XEXP (x, 0)) == XOR 6029 && is_a <scalar_int_mode> (mode, &int_mode) 6030 && CONST_INT_P (XEXP (x, 1)) 6031 && CONST_INT_P (XEXP (XEXP (x, 0), 1)) 6032 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1)) 6033 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0 6034 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0) 6035 && HWI_COMPUTABLE_MODE_P (int_mode) 6036 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND 6037 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1)) 6038 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1)) 6039 == (HOST_WIDE_INT_1U << (i + 1)) - 1)) 6040 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND 6041 && known_eq ((GET_MODE_PRECISION 6042 (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))), 6043 (unsigned int) i + 1)))) 6044 return simplify_shift_const 6045 (NULL_RTX, ASHIFTRT, int_mode, 6046 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, 6047 XEXP (XEXP (XEXP (x, 0), 0), 0), 6048 GET_MODE_PRECISION (int_mode) - (i + 1)), 6049 GET_MODE_PRECISION (int_mode) - (i + 1)); 6050 6051 /* If only the low-order bit of X is possibly nonzero, (plus x -1) 6052 can become (ashiftrt (ashift (xor x 1) C) C) where C is 6053 the bitsize of the mode - 1. This allows simplification of 6054 "a = (b & 8) == 0;" */ 6055 if (XEXP (x, 1) == constm1_rtx 6056 && !REG_P (XEXP (x, 0)) 6057 && ! (GET_CODE (XEXP (x, 0)) == SUBREG 6058 && REG_P (SUBREG_REG (XEXP (x, 0)))) 6059 && is_a <scalar_int_mode> (mode, &int_mode) 6060 && nonzero_bits (XEXP (x, 0), int_mode) == 1) 6061 return simplify_shift_const 6062 (NULL_RTX, ASHIFTRT, int_mode, 6063 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, 6064 gen_rtx_XOR (int_mode, XEXP (x, 0), 6065 const1_rtx), 6066 GET_MODE_PRECISION (int_mode) - 1), 6067 GET_MODE_PRECISION (int_mode) - 1); 6068 6069 /* If we are adding two things that have no bits in common, convert 6070 the addition into an IOR. This will often be further simplified, 6071 for example in cases like ((a & 1) + (a & 2)), which can 6072 become a & 3. */ 6073 6074 if (HWI_COMPUTABLE_MODE_P (mode) 6075 && (nonzero_bits (XEXP (x, 0), mode) 6076 & nonzero_bits (XEXP (x, 1), mode)) == 0) 6077 { 6078 /* Try to simplify the expression further. */ 6079 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1)); 6080 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0); 6081 6082 /* If we could, great. If not, do not go ahead with the IOR 6083 replacement, since PLUS appears in many special purpose 6084 address arithmetic instructions. */ 6085 if (GET_CODE (temp) != CLOBBER 6086 && (GET_CODE (temp) != IOR 6087 || ((XEXP (temp, 0) != XEXP (x, 0) 6088 || XEXP (temp, 1) != XEXP (x, 1)) 6089 && (XEXP (temp, 0) != XEXP (x, 1) 6090 || XEXP (temp, 1) != XEXP (x, 0))))) 6091 return temp; 6092 } 6093 6094 /* Canonicalize x + x into x << 1. */ 6095 if (GET_MODE_CLASS (mode) == MODE_INT 6096 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1)) 6097 && !side_effects_p (XEXP (x, 0))) 6098 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx); 6099 6100 break; 6101 6102 case MINUS: 6103 /* (minus <foo> (and <foo> (const_int -pow2))) becomes 6104 (and <foo> (const_int pow2-1)) */ 6105 if (is_a <scalar_int_mode> (mode, &int_mode) 6106 && GET_CODE (XEXP (x, 1)) == AND 6107 && CONST_INT_P (XEXP (XEXP (x, 1), 1)) 6108 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1))) 6109 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0))) 6110 return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0), 6111 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1); 6112 break; 6113 6114 case MULT: 6115 /* If we have (mult (plus A B) C), apply the distributive law and then 6116 the inverse distributive law to see if things simplify. This 6117 occurs mostly in addresses, often when unrolling loops. */ 6118 6119 if (GET_CODE (XEXP (x, 0)) == PLUS) 6120 { 6121 rtx result = distribute_and_simplify_rtx (x, 0); 6122 if (result) 6123 return result; 6124 } 6125 6126 /* Try simplify a*(b/c) as (a*b)/c. */ 6127 if (FLOAT_MODE_P (mode) && flag_associative_math 6128 && GET_CODE (XEXP (x, 0)) == DIV) 6129 { 6130 rtx tem = simplify_binary_operation (MULT, mode, 6131 XEXP (XEXP (x, 0), 0), 6132 XEXP (x, 1)); 6133 if (tem) 6134 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1)); 6135 } 6136 break; 6137 6138 case UDIV: 6139 /* If this is a divide by a power of two, treat it as a shift if 6140 its first operand is a shift. */ 6141 if (is_a <scalar_int_mode> (mode, &int_mode) 6142 && CONST_INT_P (XEXP (x, 1)) 6143 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0 6144 && (GET_CODE (XEXP (x, 0)) == ASHIFT 6145 || GET_CODE (XEXP (x, 0)) == LSHIFTRT 6146 || GET_CODE (XEXP (x, 0)) == ASHIFTRT 6147 || GET_CODE (XEXP (x, 0)) == ROTATE 6148 || GET_CODE (XEXP (x, 0)) == ROTATERT)) 6149 return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode, 6150 XEXP (x, 0), i); 6151 break; 6152 6153 case EQ: case NE: 6154 case GT: case GTU: case GE: case GEU: 6155 case LT: case LTU: case LE: case LEU: 6156 case UNEQ: case LTGT: 6157 case UNGT: case UNGE: 6158 case UNLT: case UNLE: 6159 case UNORDERED: case ORDERED: 6160 /* If the first operand is a condition code, we can't do anything 6161 with it. */ 6162 if (GET_CODE (XEXP (x, 0)) == COMPARE 6163 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC 6164 && ! CC0_P (XEXP (x, 0)))) 6165 { 6166 rtx op0 = XEXP (x, 0); 6167 rtx op1 = XEXP (x, 1); 6168 enum rtx_code new_code; 6169 6170 if (GET_CODE (op0) == COMPARE) 6171 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0); 6172 6173 /* Simplify our comparison, if possible. */ 6174 new_code = simplify_comparison (code, &op0, &op1); 6175 6176 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X 6177 if only the low-order bit is possibly nonzero in X (such as when 6178 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to 6179 (xor X 1) or (minus 1 X); we use the former. Finally, if X is 6180 known to be either 0 or -1, NE becomes a NEG and EQ becomes 6181 (plus X 1). 6182 6183 Remove any ZERO_EXTRACT we made when thinking this was a 6184 comparison. It may now be simpler to use, e.g., an AND. If a 6185 ZERO_EXTRACT is indeed appropriate, it will be placed back by 6186 the call to make_compound_operation in the SET case. 6187 6188 Don't apply these optimizations if the caller would 6189 prefer a comparison rather than a value. 6190 E.g., for the condition in an IF_THEN_ELSE most targets need 6191 an explicit comparison. */ 6192 6193 if (in_cond) 6194 ; 6195 6196 else if (STORE_FLAG_VALUE == 1 6197 && new_code == NE 6198 && is_int_mode (mode, &int_mode) 6199 && op1 == const0_rtx 6200 && int_mode == GET_MODE (op0) 6201 && nonzero_bits (op0, int_mode) == 1) 6202 return gen_lowpart (int_mode, 6203 expand_compound_operation (op0)); 6204 6205 else if (STORE_FLAG_VALUE == 1 6206 && new_code == NE 6207 && is_int_mode (mode, &int_mode) 6208 && op1 == const0_rtx 6209 && int_mode == GET_MODE (op0) 6210 && (num_sign_bit_copies (op0, int_mode) 6211 == GET_MODE_PRECISION (int_mode))) 6212 { 6213 op0 = expand_compound_operation (op0); 6214 return simplify_gen_unary (NEG, int_mode, 6215 gen_lowpart (int_mode, op0), 6216 int_mode); 6217 } 6218 6219 else if (STORE_FLAG_VALUE == 1 6220 && new_code == EQ 6221 && is_int_mode (mode, &int_mode) 6222 && op1 == const0_rtx 6223 && int_mode == GET_MODE (op0) 6224 && nonzero_bits (op0, int_mode) == 1) 6225 { 6226 op0 = expand_compound_operation (op0); 6227 return simplify_gen_binary (XOR, int_mode, 6228 gen_lowpart (int_mode, op0), 6229 const1_rtx); 6230 } 6231 6232 else if (STORE_FLAG_VALUE == 1 6233 && new_code == EQ 6234 && is_int_mode (mode, &int_mode) 6235 && op1 == const0_rtx 6236 && int_mode == GET_MODE (op0) 6237 && (num_sign_bit_copies (op0, int_mode) 6238 == GET_MODE_PRECISION (int_mode))) 6239 { 6240 op0 = expand_compound_operation (op0); 6241 return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1); 6242 } 6243 6244 /* If STORE_FLAG_VALUE is -1, we have cases similar to 6245 those above. */ 6246 if (in_cond) 6247 ; 6248 6249 else if (STORE_FLAG_VALUE == -1 6250 && new_code == NE 6251 && is_int_mode (mode, &int_mode) 6252 && op1 == const0_rtx 6253 && int_mode == GET_MODE (op0) 6254 && (num_sign_bit_copies (op0, int_mode) 6255 == GET_MODE_PRECISION (int_mode))) 6256 return gen_lowpart (int_mode, expand_compound_operation (op0)); 6257 6258 else if (STORE_FLAG_VALUE == -1 6259 && new_code == NE 6260 && is_int_mode (mode, &int_mode) 6261 && op1 == const0_rtx 6262 && int_mode == GET_MODE (op0) 6263 && nonzero_bits (op0, int_mode) == 1) 6264 { 6265 op0 = expand_compound_operation (op0); 6266 return simplify_gen_unary (NEG, int_mode, 6267 gen_lowpart (int_mode, op0), 6268 int_mode); 6269 } 6270 6271 else if (STORE_FLAG_VALUE == -1 6272 && new_code == EQ 6273 && is_int_mode (mode, &int_mode) 6274 && op1 == const0_rtx 6275 && int_mode == GET_MODE (op0) 6276 && (num_sign_bit_copies (op0, int_mode) 6277 == GET_MODE_PRECISION (int_mode))) 6278 { 6279 op0 = expand_compound_operation (op0); 6280 return simplify_gen_unary (NOT, int_mode, 6281 gen_lowpart (int_mode, op0), 6282 int_mode); 6283 } 6284 6285 /* If X is 0/1, (eq X 0) is X-1. */ 6286 else if (STORE_FLAG_VALUE == -1 6287 && new_code == EQ 6288 && is_int_mode (mode, &int_mode) 6289 && op1 == const0_rtx 6290 && int_mode == GET_MODE (op0) 6291 && nonzero_bits (op0, int_mode) == 1) 6292 { 6293 op0 = expand_compound_operation (op0); 6294 return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1); 6295 } 6296 6297 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just 6298 one bit that might be nonzero, we can convert (ne x 0) to 6299 (ashift x c) where C puts the bit in the sign bit. Remove any 6300 AND with STORE_FLAG_VALUE when we are done, since we are only 6301 going to test the sign bit. */ 6302 if (new_code == NE 6303 && is_int_mode (mode, &int_mode) 6304 && HWI_COMPUTABLE_MODE_P (int_mode) 6305 && val_signbit_p (int_mode, STORE_FLAG_VALUE) 6306 && op1 == const0_rtx 6307 && int_mode == GET_MODE (op0) 6308 && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0) 6309 { 6310 x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode, 6311 expand_compound_operation (op0), 6312 GET_MODE_PRECISION (int_mode) - 1 - i); 6313 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx) 6314 return XEXP (x, 0); 6315 else 6316 return x; 6317 } 6318 6319 /* If the code changed, return a whole new comparison. 6320 We also need to avoid using SUBST in cases where 6321 simplify_comparison has widened a comparison with a CONST_INT, 6322 since in that case the wider CONST_INT may fail the sanity 6323 checks in do_SUBST. */ 6324 if (new_code != code 6325 || (CONST_INT_P (op1) 6326 && GET_MODE (op0) != GET_MODE (XEXP (x, 0)) 6327 && GET_MODE (op0) != GET_MODE (XEXP (x, 1)))) 6328 return gen_rtx_fmt_ee (new_code, mode, op0, op1); 6329 6330 /* Otherwise, keep this operation, but maybe change its operands. 6331 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */ 6332 SUBST (XEXP (x, 0), op0); 6333 SUBST (XEXP (x, 1), op1); 6334 } 6335 break; 6336 6337 case IF_THEN_ELSE: 6338 return simplify_if_then_else (x); 6339 6340 case ZERO_EXTRACT: 6341 case SIGN_EXTRACT: 6342 case ZERO_EXTEND: 6343 case SIGN_EXTEND: 6344 /* If we are processing SET_DEST, we are done. */ 6345 if (in_dest) 6346 return x; 6347 6348 return expand_compound_operation (x); 6349 6350 case SET: 6351 return simplify_set (x); 6352 6353 case AND: 6354 case IOR: 6355 return simplify_logical (x); 6356 6357 case ASHIFT: 6358 case LSHIFTRT: 6359 case ASHIFTRT: 6360 case ROTATE: 6361 case ROTATERT: 6362 /* If this is a shift by a constant amount, simplify it. */ 6363 if (CONST_INT_P (XEXP (x, 1))) 6364 return simplify_shift_const (x, code, mode, XEXP (x, 0), 6365 INTVAL (XEXP (x, 1))); 6366 6367 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1))) 6368 SUBST (XEXP (x, 1), 6369 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)), 6370 (HOST_WIDE_INT_1U 6371 << exact_log2 (GET_MODE_UNIT_BITSIZE 6372 (GET_MODE (x)))) 6373 - 1, 6374 0)); 6375 break; 6376 6377 default: 6378 break; 6379 } 6380 6381 return x; 6382 } 6383 6384 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */ 6385 6386 static rtx 6387 simplify_if_then_else (rtx x) 6388 { 6389 machine_mode mode = GET_MODE (x); 6390 rtx cond = XEXP (x, 0); 6391 rtx true_rtx = XEXP (x, 1); 6392 rtx false_rtx = XEXP (x, 2); 6393 enum rtx_code true_code = GET_CODE (cond); 6394 int comparison_p = COMPARISON_P (cond); 6395 rtx temp; 6396 int i; 6397 enum rtx_code false_code; 6398 rtx reversed; 6399 scalar_int_mode int_mode, inner_mode; 6400 6401 /* Simplify storing of the truth value. */ 6402 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx) 6403 return simplify_gen_relational (true_code, mode, VOIDmode, 6404 XEXP (cond, 0), XEXP (cond, 1)); 6405 6406 /* Also when the truth value has to be reversed. */ 6407 if (comparison_p 6408 && true_rtx == const0_rtx && false_rtx == const_true_rtx 6409 && (reversed = reversed_comparison (cond, mode))) 6410 return reversed; 6411 6412 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used 6413 in it is being compared against certain values. Get the true and false 6414 comparisons and see if that says anything about the value of each arm. */ 6415 6416 if (comparison_p 6417 && ((false_code = reversed_comparison_code (cond, NULL)) 6418 != UNKNOWN) 6419 && REG_P (XEXP (cond, 0))) 6420 { 6421 HOST_WIDE_INT nzb; 6422 rtx from = XEXP (cond, 0); 6423 rtx true_val = XEXP (cond, 1); 6424 rtx false_val = true_val; 6425 int swapped = 0; 6426 6427 /* If FALSE_CODE is EQ, swap the codes and arms. */ 6428 6429 if (false_code == EQ) 6430 { 6431 swapped = 1, true_code = EQ, false_code = NE; 6432 std::swap (true_rtx, false_rtx); 6433 } 6434 6435 scalar_int_mode from_mode; 6436 if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode)) 6437 { 6438 /* If we are comparing against zero and the expression being 6439 tested has only a single bit that might be nonzero, that is 6440 its value when it is not equal to zero. Similarly if it is 6441 known to be -1 or 0. */ 6442 if (true_code == EQ 6443 && true_val == const0_rtx 6444 && pow2p_hwi (nzb = nonzero_bits (from, from_mode))) 6445 { 6446 false_code = EQ; 6447 false_val = gen_int_mode (nzb, from_mode); 6448 } 6449 else if (true_code == EQ 6450 && true_val == const0_rtx 6451 && (num_sign_bit_copies (from, from_mode) 6452 == GET_MODE_PRECISION (from_mode))) 6453 { 6454 false_code = EQ; 6455 false_val = constm1_rtx; 6456 } 6457 } 6458 6459 /* Now simplify an arm if we know the value of the register in the 6460 branch and it is used in the arm. Be careful due to the potential 6461 of locally-shared RTL. */ 6462 6463 if (reg_mentioned_p (from, true_rtx)) 6464 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code, 6465 from, true_val), 6466 pc_rtx, pc_rtx, 0, 0, 0); 6467 if (reg_mentioned_p (from, false_rtx)) 6468 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code, 6469 from, false_val), 6470 pc_rtx, pc_rtx, 0, 0, 0); 6471 6472 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx); 6473 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx); 6474 6475 true_rtx = XEXP (x, 1); 6476 false_rtx = XEXP (x, 2); 6477 true_code = GET_CODE (cond); 6478 } 6479 6480 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be 6481 reversed, do so to avoid needing two sets of patterns for 6482 subtract-and-branch insns. Similarly if we have a constant in the true 6483 arm, the false arm is the same as the first operand of the comparison, or 6484 the false arm is more complicated than the true arm. */ 6485 6486 if (comparison_p 6487 && reversed_comparison_code (cond, NULL) != UNKNOWN 6488 && (true_rtx == pc_rtx 6489 || (CONSTANT_P (true_rtx) 6490 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx) 6491 || true_rtx == const0_rtx 6492 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx)) 6493 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx)) 6494 && !OBJECT_P (false_rtx)) 6495 || reg_mentioned_p (true_rtx, false_rtx) 6496 || rtx_equal_p (false_rtx, XEXP (cond, 0)))) 6497 { 6498 true_code = reversed_comparison_code (cond, NULL); 6499 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond))); 6500 SUBST (XEXP (x, 1), false_rtx); 6501 SUBST (XEXP (x, 2), true_rtx); 6502 6503 std::swap (true_rtx, false_rtx); 6504 cond = XEXP (x, 0); 6505 6506 /* It is possible that the conditional has been simplified out. */ 6507 true_code = GET_CODE (cond); 6508 comparison_p = COMPARISON_P (cond); 6509 } 6510 6511 /* If the two arms are identical, we don't need the comparison. */ 6512 6513 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond)) 6514 return true_rtx; 6515 6516 /* Convert a == b ? b : a to "a". */ 6517 if (true_code == EQ && ! side_effects_p (cond) 6518 && !HONOR_NANS (mode) 6519 && rtx_equal_p (XEXP (cond, 0), false_rtx) 6520 && rtx_equal_p (XEXP (cond, 1), true_rtx)) 6521 return false_rtx; 6522 else if (true_code == NE && ! side_effects_p (cond) 6523 && !HONOR_NANS (mode) 6524 && rtx_equal_p (XEXP (cond, 0), true_rtx) 6525 && rtx_equal_p (XEXP (cond, 1), false_rtx)) 6526 return true_rtx; 6527 6528 /* Look for cases where we have (abs x) or (neg (abs X)). */ 6529 6530 if (GET_MODE_CLASS (mode) == MODE_INT 6531 && comparison_p 6532 && XEXP (cond, 1) == const0_rtx 6533 && GET_CODE (false_rtx) == NEG 6534 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0)) 6535 && rtx_equal_p (true_rtx, XEXP (cond, 0)) 6536 && ! side_effects_p (true_rtx)) 6537 switch (true_code) 6538 { 6539 case GT: 6540 case GE: 6541 return simplify_gen_unary (ABS, mode, true_rtx, mode); 6542 case LT: 6543 case LE: 6544 return 6545 simplify_gen_unary (NEG, mode, 6546 simplify_gen_unary (ABS, mode, true_rtx, mode), 6547 mode); 6548 default: 6549 break; 6550 } 6551 6552 /* Look for MIN or MAX. */ 6553 6554 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations) 6555 && comparison_p 6556 && rtx_equal_p (XEXP (cond, 0), true_rtx) 6557 && rtx_equal_p (XEXP (cond, 1), false_rtx) 6558 && ! side_effects_p (cond)) 6559 switch (true_code) 6560 { 6561 case GE: 6562 case GT: 6563 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx); 6564 case LE: 6565 case LT: 6566 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx); 6567 case GEU: 6568 case GTU: 6569 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx); 6570 case LEU: 6571 case LTU: 6572 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx); 6573 default: 6574 break; 6575 } 6576 6577 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its 6578 second operand is zero, this can be done as (OP Z (mult COND C2)) where 6579 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or 6580 SIGN_EXTEND as long as Z is already extended (so we don't destroy it). 6581 We can do this kind of thing in some cases when STORE_FLAG_VALUE is 6582 neither 1 or -1, but it isn't worth checking for. */ 6583 6584 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1) 6585 && comparison_p 6586 && is_int_mode (mode, &int_mode) 6587 && ! side_effects_p (x)) 6588 { 6589 rtx t = make_compound_operation (true_rtx, SET); 6590 rtx f = make_compound_operation (false_rtx, SET); 6591 rtx cond_op0 = XEXP (cond, 0); 6592 rtx cond_op1 = XEXP (cond, 1); 6593 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN; 6594 scalar_int_mode m = int_mode; 6595 rtx z = 0, c1 = NULL_RTX; 6596 6597 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS 6598 || GET_CODE (t) == IOR || GET_CODE (t) == XOR 6599 || GET_CODE (t) == ASHIFT 6600 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT) 6601 && rtx_equal_p (XEXP (t, 0), f)) 6602 c1 = XEXP (t, 1), op = GET_CODE (t), z = f; 6603 6604 /* If an identity-zero op is commutative, check whether there 6605 would be a match if we swapped the operands. */ 6606 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR 6607 || GET_CODE (t) == XOR) 6608 && rtx_equal_p (XEXP (t, 1), f)) 6609 c1 = XEXP (t, 0), op = GET_CODE (t), z = f; 6610 else if (GET_CODE (t) == SIGN_EXTEND 6611 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode) 6612 && (GET_CODE (XEXP (t, 0)) == PLUS 6613 || GET_CODE (XEXP (t, 0)) == MINUS 6614 || GET_CODE (XEXP (t, 0)) == IOR 6615 || GET_CODE (XEXP (t, 0)) == XOR 6616 || GET_CODE (XEXP (t, 0)) == ASHIFT 6617 || GET_CODE (XEXP (t, 0)) == LSHIFTRT 6618 || GET_CODE (XEXP (t, 0)) == ASHIFTRT) 6619 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG 6620 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0)) 6621 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f) 6622 && (num_sign_bit_copies (f, GET_MODE (f)) 6623 > (unsigned int) 6624 (GET_MODE_PRECISION (int_mode) 6625 - GET_MODE_PRECISION (inner_mode)))) 6626 { 6627 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0)); 6628 extend_op = SIGN_EXTEND; 6629 m = inner_mode; 6630 } 6631 else if (GET_CODE (t) == SIGN_EXTEND 6632 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode) 6633 && (GET_CODE (XEXP (t, 0)) == PLUS 6634 || GET_CODE (XEXP (t, 0)) == IOR 6635 || GET_CODE (XEXP (t, 0)) == XOR) 6636 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG 6637 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1)) 6638 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f) 6639 && (num_sign_bit_copies (f, GET_MODE (f)) 6640 > (unsigned int) 6641 (GET_MODE_PRECISION (int_mode) 6642 - GET_MODE_PRECISION (inner_mode)))) 6643 { 6644 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0)); 6645 extend_op = SIGN_EXTEND; 6646 m = inner_mode; 6647 } 6648 else if (GET_CODE (t) == ZERO_EXTEND 6649 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode) 6650 && (GET_CODE (XEXP (t, 0)) == PLUS 6651 || GET_CODE (XEXP (t, 0)) == MINUS 6652 || GET_CODE (XEXP (t, 0)) == IOR 6653 || GET_CODE (XEXP (t, 0)) == XOR 6654 || GET_CODE (XEXP (t, 0)) == ASHIFT 6655 || GET_CODE (XEXP (t, 0)) == LSHIFTRT 6656 || GET_CODE (XEXP (t, 0)) == ASHIFTRT) 6657 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG 6658 && HWI_COMPUTABLE_MODE_P (int_mode) 6659 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0)) 6660 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f) 6661 && ((nonzero_bits (f, GET_MODE (f)) 6662 & ~GET_MODE_MASK (inner_mode)) 6663 == 0)) 6664 { 6665 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0)); 6666 extend_op = ZERO_EXTEND; 6667 m = inner_mode; 6668 } 6669 else if (GET_CODE (t) == ZERO_EXTEND 6670 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode) 6671 && (GET_CODE (XEXP (t, 0)) == PLUS 6672 || GET_CODE (XEXP (t, 0)) == IOR 6673 || GET_CODE (XEXP (t, 0)) == XOR) 6674 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG 6675 && HWI_COMPUTABLE_MODE_P (int_mode) 6676 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1)) 6677 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f) 6678 && ((nonzero_bits (f, GET_MODE (f)) 6679 & ~GET_MODE_MASK (inner_mode)) 6680 == 0)) 6681 { 6682 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0)); 6683 extend_op = ZERO_EXTEND; 6684 m = inner_mode; 6685 } 6686 6687 if (z) 6688 { 6689 machine_mode cm = m; 6690 if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT) 6691 && GET_MODE (c1) != VOIDmode) 6692 cm = GET_MODE (c1); 6693 temp = subst (simplify_gen_relational (true_code, cm, VOIDmode, 6694 cond_op0, cond_op1), 6695 pc_rtx, pc_rtx, 0, 0, 0); 6696 temp = simplify_gen_binary (MULT, cm, temp, 6697 simplify_gen_binary (MULT, cm, c1, 6698 const_true_rtx)); 6699 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0); 6700 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp); 6701 6702 if (extend_op != UNKNOWN) 6703 temp = simplify_gen_unary (extend_op, int_mode, temp, m); 6704 6705 return temp; 6706 } 6707 } 6708 6709 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or 6710 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the 6711 negation of a single bit, we can convert this operation to a shift. We 6712 can actually do this more generally, but it doesn't seem worth it. */ 6713 6714 if (true_code == NE 6715 && is_a <scalar_int_mode> (mode, &int_mode) 6716 && XEXP (cond, 1) == const0_rtx 6717 && false_rtx == const0_rtx 6718 && CONST_INT_P (true_rtx) 6719 && ((nonzero_bits (XEXP (cond, 0), int_mode) == 1 6720 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0) 6721 || ((num_sign_bit_copies (XEXP (cond, 0), int_mode) 6722 == GET_MODE_PRECISION (int_mode)) 6723 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0))) 6724 return 6725 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, 6726 gen_lowpart (int_mode, XEXP (cond, 0)), i); 6727 6728 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only 6729 non-zero bit in A is C1. */ 6730 if (true_code == NE && XEXP (cond, 1) == const0_rtx 6731 && false_rtx == const0_rtx && CONST_INT_P (true_rtx) 6732 && is_a <scalar_int_mode> (mode, &int_mode) 6733 && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode) 6734 && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode)) 6735 == nonzero_bits (XEXP (cond, 0), inner_mode) 6736 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0) 6737 { 6738 rtx val = XEXP (cond, 0); 6739 if (inner_mode == int_mode) 6740 return val; 6741 else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode)) 6742 return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode); 6743 } 6744 6745 return x; 6746 } 6747 6748 /* Simplify X, a SET expression. Return the new expression. */ 6749 6750 static rtx 6751 simplify_set (rtx x) 6752 { 6753 rtx src = SET_SRC (x); 6754 rtx dest = SET_DEST (x); 6755 machine_mode mode 6756 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest); 6757 rtx_insn *other_insn; 6758 rtx *cc_use; 6759 scalar_int_mode int_mode; 6760 6761 /* (set (pc) (return)) gets written as (return). */ 6762 if (GET_CODE (dest) == PC && ANY_RETURN_P (src)) 6763 return src; 6764 6765 /* Now that we know for sure which bits of SRC we are using, see if we can 6766 simplify the expression for the object knowing that we only need the 6767 low-order bits. */ 6768 6769 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode)) 6770 { 6771 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0); 6772 SUBST (SET_SRC (x), src); 6773 } 6774 6775 /* If we are setting CC0 or if the source is a COMPARE, look for the use of 6776 the comparison result and try to simplify it unless we already have used 6777 undobuf.other_insn. */ 6778 if ((GET_MODE_CLASS (mode) == MODE_CC 6779 || GET_CODE (src) == COMPARE 6780 || CC0_P (dest)) 6781 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0 6782 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn) 6783 && COMPARISON_P (*cc_use) 6784 && rtx_equal_p (XEXP (*cc_use, 0), dest)) 6785 { 6786 enum rtx_code old_code = GET_CODE (*cc_use); 6787 enum rtx_code new_code; 6788 rtx op0, op1, tmp; 6789 int other_changed = 0; 6790 rtx inner_compare = NULL_RTX; 6791 machine_mode compare_mode = GET_MODE (dest); 6792 6793 if (GET_CODE (src) == COMPARE) 6794 { 6795 op0 = XEXP (src, 0), op1 = XEXP (src, 1); 6796 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx) 6797 { 6798 inner_compare = op0; 6799 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1); 6800 } 6801 } 6802 else 6803 op0 = src, op1 = CONST0_RTX (GET_MODE (src)); 6804 6805 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode, 6806 op0, op1); 6807 if (!tmp) 6808 new_code = old_code; 6809 else if (!CONSTANT_P (tmp)) 6810 { 6811 new_code = GET_CODE (tmp); 6812 op0 = XEXP (tmp, 0); 6813 op1 = XEXP (tmp, 1); 6814 } 6815 else 6816 { 6817 rtx pat = PATTERN (other_insn); 6818 undobuf.other_insn = other_insn; 6819 SUBST (*cc_use, tmp); 6820 6821 /* Attempt to simplify CC user. */ 6822 if (GET_CODE (pat) == SET) 6823 { 6824 rtx new_rtx = simplify_rtx (SET_SRC (pat)); 6825 if (new_rtx != NULL_RTX) 6826 SUBST (SET_SRC (pat), new_rtx); 6827 } 6828 6829 /* Convert X into a no-op move. */ 6830 SUBST (SET_DEST (x), pc_rtx); 6831 SUBST (SET_SRC (x), pc_rtx); 6832 return x; 6833 } 6834 6835 /* Simplify our comparison, if possible. */ 6836 new_code = simplify_comparison (new_code, &op0, &op1); 6837 6838 #ifdef SELECT_CC_MODE 6839 /* If this machine has CC modes other than CCmode, check to see if we 6840 need to use a different CC mode here. */ 6841 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC) 6842 compare_mode = GET_MODE (op0); 6843 else if (inner_compare 6844 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC 6845 && new_code == old_code 6846 && op0 == XEXP (inner_compare, 0) 6847 && op1 == XEXP (inner_compare, 1)) 6848 compare_mode = GET_MODE (inner_compare); 6849 else 6850 compare_mode = SELECT_CC_MODE (new_code, op0, op1); 6851 6852 /* If the mode changed, we have to change SET_DEST, the mode in the 6853 compare, and the mode in the place SET_DEST is used. If SET_DEST is 6854 a hard register, just build new versions with the proper mode. If it 6855 is a pseudo, we lose unless it is only time we set the pseudo, in 6856 which case we can safely change its mode. */ 6857 if (!HAVE_cc0 && compare_mode != GET_MODE (dest)) 6858 { 6859 if (can_change_dest_mode (dest, 0, compare_mode)) 6860 { 6861 unsigned int regno = REGNO (dest); 6862 rtx new_dest; 6863 6864 if (regno < FIRST_PSEUDO_REGISTER) 6865 new_dest = gen_rtx_REG (compare_mode, regno); 6866 else 6867 { 6868 SUBST_MODE (regno_reg_rtx[regno], compare_mode); 6869 new_dest = regno_reg_rtx[regno]; 6870 } 6871 6872 SUBST (SET_DEST (x), new_dest); 6873 SUBST (XEXP (*cc_use, 0), new_dest); 6874 other_changed = 1; 6875 6876 dest = new_dest; 6877 } 6878 } 6879 #endif /* SELECT_CC_MODE */ 6880 6881 /* If the code changed, we have to build a new comparison in 6882 undobuf.other_insn. */ 6883 if (new_code != old_code) 6884 { 6885 int other_changed_previously = other_changed; 6886 unsigned HOST_WIDE_INT mask; 6887 rtx old_cc_use = *cc_use; 6888 6889 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use), 6890 dest, const0_rtx)); 6891 other_changed = 1; 6892 6893 /* If the only change we made was to change an EQ into an NE or 6894 vice versa, OP0 has only one bit that might be nonzero, and OP1 6895 is zero, check if changing the user of the condition code will 6896 produce a valid insn. If it won't, we can keep the original code 6897 in that insn by surrounding our operation with an XOR. */ 6898 6899 if (((old_code == NE && new_code == EQ) 6900 || (old_code == EQ && new_code == NE)) 6901 && ! other_changed_previously && op1 == const0_rtx 6902 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0)) 6903 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0)))) 6904 { 6905 rtx pat = PATTERN (other_insn), note = 0; 6906 6907 if ((recog_for_combine (&pat, other_insn, ¬e) < 0 6908 && ! check_asm_operands (pat))) 6909 { 6910 *cc_use = old_cc_use; 6911 other_changed = 0; 6912 6913 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0, 6914 gen_int_mode (mask, 6915 GET_MODE (op0))); 6916 } 6917 } 6918 } 6919 6920 if (other_changed) 6921 undobuf.other_insn = other_insn; 6922 6923 /* Don't generate a compare of a CC with 0, just use that CC. */ 6924 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx) 6925 { 6926 SUBST (SET_SRC (x), op0); 6927 src = SET_SRC (x); 6928 } 6929 /* Otherwise, if we didn't previously have the same COMPARE we 6930 want, create it from scratch. */ 6931 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode 6932 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1) 6933 { 6934 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1)); 6935 src = SET_SRC (x); 6936 } 6937 } 6938 else 6939 { 6940 /* Get SET_SRC in a form where we have placed back any 6941 compound expressions. Then do the checks below. */ 6942 src = make_compound_operation (src, SET); 6943 SUBST (SET_SRC (x), src); 6944 } 6945 6946 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation, 6947 and X being a REG or (subreg (reg)), we may be able to convert this to 6948 (set (subreg:m2 x) (op)). 6949 6950 We can always do this if M1 is narrower than M2 because that means that 6951 we only care about the low bits of the result. 6952 6953 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot 6954 perform a narrower operation than requested since the high-order bits will 6955 be undefined. On machine where it is defined, this transformation is safe 6956 as long as M1 and M2 have the same number of words. */ 6957 6958 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src) 6959 && !OBJECT_P (SUBREG_REG (src)) 6960 && (known_equal_after_align_up 6961 (GET_MODE_SIZE (GET_MODE (src)), 6962 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))), 6963 UNITS_PER_WORD)) 6964 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src)) 6965 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER 6966 && !REG_CAN_CHANGE_MODE_P (REGNO (dest), 6967 GET_MODE (SUBREG_REG (src)), 6968 GET_MODE (src))) 6969 && (REG_P (dest) 6970 || (GET_CODE (dest) == SUBREG 6971 && REG_P (SUBREG_REG (dest))))) 6972 { 6973 SUBST (SET_DEST (x), 6974 gen_lowpart (GET_MODE (SUBREG_REG (src)), 6975 dest)); 6976 SUBST (SET_SRC (x), SUBREG_REG (src)); 6977 6978 src = SET_SRC (x), dest = SET_DEST (x); 6979 } 6980 6981 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg 6982 in SRC. */ 6983 if (dest == cc0_rtx 6984 && partial_subreg_p (src) 6985 && subreg_lowpart_p (src)) 6986 { 6987 rtx inner = SUBREG_REG (src); 6988 machine_mode inner_mode = GET_MODE (inner); 6989 6990 /* Here we make sure that we don't have a sign bit on. */ 6991 if (val_signbit_known_clear_p (GET_MODE (src), 6992 nonzero_bits (inner, inner_mode))) 6993 { 6994 SUBST (SET_SRC (x), inner); 6995 src = SET_SRC (x); 6996 } 6997 } 6998 6999 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this 7000 would require a paradoxical subreg. Replace the subreg with a 7001 zero_extend to avoid the reload that would otherwise be required. 7002 Don't do this unless we have a scalar integer mode, otherwise the 7003 transformation is incorrect. */ 7004 7005 enum rtx_code extend_op; 7006 if (paradoxical_subreg_p (src) 7007 && MEM_P (SUBREG_REG (src)) 7008 && SCALAR_INT_MODE_P (GET_MODE (src)) 7009 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN) 7010 { 7011 SUBST (SET_SRC (x), 7012 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src))); 7013 7014 src = SET_SRC (x); 7015 } 7016 7017 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we 7018 are comparing an item known to be 0 or -1 against 0, use a logical 7019 operation instead. Check for one of the arms being an IOR of the other 7020 arm with some value. We compute three terms to be IOR'ed together. In 7021 practice, at most two will be nonzero. Then we do the IOR's. */ 7022 7023 if (GET_CODE (dest) != PC 7024 && GET_CODE (src) == IF_THEN_ELSE 7025 && is_int_mode (GET_MODE (src), &int_mode) 7026 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE) 7027 && XEXP (XEXP (src, 0), 1) == const0_rtx 7028 && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0)) 7029 && (!HAVE_conditional_move 7030 || ! can_conditionally_move_p (int_mode)) 7031 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode) 7032 == GET_MODE_PRECISION (int_mode)) 7033 && ! side_effects_p (src)) 7034 { 7035 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE 7036 ? XEXP (src, 1) : XEXP (src, 2)); 7037 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE 7038 ? XEXP (src, 2) : XEXP (src, 1)); 7039 rtx term1 = const0_rtx, term2, term3; 7040 7041 if (GET_CODE (true_rtx) == IOR 7042 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx)) 7043 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx; 7044 else if (GET_CODE (true_rtx) == IOR 7045 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx)) 7046 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx; 7047 else if (GET_CODE (false_rtx) == IOR 7048 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx)) 7049 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx; 7050 else if (GET_CODE (false_rtx) == IOR 7051 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx)) 7052 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx; 7053 7054 term2 = simplify_gen_binary (AND, int_mode, 7055 XEXP (XEXP (src, 0), 0), true_rtx); 7056 term3 = simplify_gen_binary (AND, int_mode, 7057 simplify_gen_unary (NOT, int_mode, 7058 XEXP (XEXP (src, 0), 0), 7059 int_mode), 7060 false_rtx); 7061 7062 SUBST (SET_SRC (x), 7063 simplify_gen_binary (IOR, int_mode, 7064 simplify_gen_binary (IOR, int_mode, 7065 term1, term2), 7066 term3)); 7067 7068 src = SET_SRC (x); 7069 } 7070 7071 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this 7072 whole thing fail. */ 7073 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx) 7074 return src; 7075 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx) 7076 return dest; 7077 else 7078 /* Convert this into a field assignment operation, if possible. */ 7079 return make_field_assignment (x); 7080 } 7081 7082 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified 7083 result. */ 7084 7085 static rtx 7086 simplify_logical (rtx x) 7087 { 7088 rtx op0 = XEXP (x, 0); 7089 rtx op1 = XEXP (x, 1); 7090 scalar_int_mode mode; 7091 7092 switch (GET_CODE (x)) 7093 { 7094 case AND: 7095 /* We can call simplify_and_const_int only if we don't lose 7096 any (sign) bits when converting INTVAL (op1) to 7097 "unsigned HOST_WIDE_INT". */ 7098 if (is_a <scalar_int_mode> (GET_MODE (x), &mode) 7099 && CONST_INT_P (op1) 7100 && (HWI_COMPUTABLE_MODE_P (mode) 7101 || INTVAL (op1) > 0)) 7102 { 7103 x = simplify_and_const_int (x, mode, op0, INTVAL (op1)); 7104 if (GET_CODE (x) != AND) 7105 return x; 7106 7107 op0 = XEXP (x, 0); 7108 op1 = XEXP (x, 1); 7109 } 7110 7111 /* If we have any of (and (ior A B) C) or (and (xor A B) C), 7112 apply the distributive law and then the inverse distributive 7113 law to see if things simplify. */ 7114 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR) 7115 { 7116 rtx result = distribute_and_simplify_rtx (x, 0); 7117 if (result) 7118 return result; 7119 } 7120 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR) 7121 { 7122 rtx result = distribute_and_simplify_rtx (x, 1); 7123 if (result) 7124 return result; 7125 } 7126 break; 7127 7128 case IOR: 7129 /* If we have (ior (and A B) C), apply the distributive law and then 7130 the inverse distributive law to see if things simplify. */ 7131 7132 if (GET_CODE (op0) == AND) 7133 { 7134 rtx result = distribute_and_simplify_rtx (x, 0); 7135 if (result) 7136 return result; 7137 } 7138 7139 if (GET_CODE (op1) == AND) 7140 { 7141 rtx result = distribute_and_simplify_rtx (x, 1); 7142 if (result) 7143 return result; 7144 } 7145 break; 7146 7147 default: 7148 gcc_unreachable (); 7149 } 7150 7151 return x; 7152 } 7153 7154 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound 7155 operations" because they can be replaced with two more basic operations. 7156 ZERO_EXTEND is also considered "compound" because it can be replaced with 7157 an AND operation, which is simpler, though only one operation. 7158 7159 The function expand_compound_operation is called with an rtx expression 7160 and will convert it to the appropriate shifts and AND operations, 7161 simplifying at each stage. 7162 7163 The function make_compound_operation is called to convert an expression 7164 consisting of shifts and ANDs into the equivalent compound expression. 7165 It is the inverse of this function, loosely speaking. */ 7166 7167 static rtx 7168 expand_compound_operation (rtx x) 7169 { 7170 unsigned HOST_WIDE_INT pos = 0, len; 7171 int unsignedp = 0; 7172 unsigned int modewidth; 7173 rtx tem; 7174 scalar_int_mode inner_mode; 7175 7176 switch (GET_CODE (x)) 7177 { 7178 case ZERO_EXTEND: 7179 unsignedp = 1; 7180 /* FALLTHRU */ 7181 case SIGN_EXTEND: 7182 /* We can't necessarily use a const_int for a multiword mode; 7183 it depends on implicitly extending the value. 7184 Since we don't know the right way to extend it, 7185 we can't tell whether the implicit way is right. 7186 7187 Even for a mode that is no wider than a const_int, 7188 we can't win, because we need to sign extend one of its bits through 7189 the rest of it, and we don't know which bit. */ 7190 if (CONST_INT_P (XEXP (x, 0))) 7191 return x; 7192 7193 /* Reject modes that aren't scalar integers because turning vector 7194 or complex modes into shifts causes problems. */ 7195 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)) 7196 return x; 7197 7198 /* Return if (subreg:MODE FROM 0) is not a safe replacement for 7199 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM 7200 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be 7201 reloaded. If not for that, MEM's would very rarely be safe. 7202 7203 Reject modes bigger than a word, because we might not be able 7204 to reference a two-register group starting with an arbitrary register 7205 (and currently gen_lowpart might crash for a SUBREG). */ 7206 7207 if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD) 7208 return x; 7209 7210 len = GET_MODE_PRECISION (inner_mode); 7211 /* If the inner object has VOIDmode (the only way this can happen 7212 is if it is an ASM_OPERANDS), we can't do anything since we don't 7213 know how much masking to do. */ 7214 if (len == 0) 7215 return x; 7216 7217 break; 7218 7219 case ZERO_EXTRACT: 7220 unsignedp = 1; 7221 7222 /* fall through */ 7223 7224 case SIGN_EXTRACT: 7225 /* If the operand is a CLOBBER, just return it. */ 7226 if (GET_CODE (XEXP (x, 0)) == CLOBBER) 7227 return XEXP (x, 0); 7228 7229 if (!CONST_INT_P (XEXP (x, 1)) 7230 || !CONST_INT_P (XEXP (x, 2))) 7231 return x; 7232 7233 /* Reject modes that aren't scalar integers because turning vector 7234 or complex modes into shifts causes problems. */ 7235 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)) 7236 return x; 7237 7238 len = INTVAL (XEXP (x, 1)); 7239 pos = INTVAL (XEXP (x, 2)); 7240 7241 /* This should stay within the object being extracted, fail otherwise. */ 7242 if (len + pos > GET_MODE_PRECISION (inner_mode)) 7243 return x; 7244 7245 if (BITS_BIG_ENDIAN) 7246 pos = GET_MODE_PRECISION (inner_mode) - len - pos; 7247 7248 break; 7249 7250 default: 7251 return x; 7252 } 7253 7254 /* We've rejected non-scalar operations by now. */ 7255 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x)); 7256 7257 /* Convert sign extension to zero extension, if we know that the high 7258 bit is not set, as this is easier to optimize. It will be converted 7259 back to cheaper alternative in make_extraction. */ 7260 if (GET_CODE (x) == SIGN_EXTEND 7261 && HWI_COMPUTABLE_MODE_P (mode) 7262 && ((nonzero_bits (XEXP (x, 0), inner_mode) 7263 & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1)) 7264 == 0)) 7265 { 7266 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0)); 7267 rtx temp2 = expand_compound_operation (temp); 7268 7269 /* Make sure this is a profitable operation. */ 7270 if (set_src_cost (x, mode, optimize_this_for_speed_p) 7271 > set_src_cost (temp2, mode, optimize_this_for_speed_p)) 7272 return temp2; 7273 else if (set_src_cost (x, mode, optimize_this_for_speed_p) 7274 > set_src_cost (temp, mode, optimize_this_for_speed_p)) 7275 return temp; 7276 else 7277 return x; 7278 } 7279 7280 /* We can optimize some special cases of ZERO_EXTEND. */ 7281 if (GET_CODE (x) == ZERO_EXTEND) 7282 { 7283 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we 7284 know that the last value didn't have any inappropriate bits 7285 set. */ 7286 if (GET_CODE (XEXP (x, 0)) == TRUNCATE 7287 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode 7288 && HWI_COMPUTABLE_MODE_P (mode) 7289 && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode) 7290 & ~GET_MODE_MASK (inner_mode)) == 0) 7291 return XEXP (XEXP (x, 0), 0); 7292 7293 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */ 7294 if (GET_CODE (XEXP (x, 0)) == SUBREG 7295 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode 7296 && subreg_lowpart_p (XEXP (x, 0)) 7297 && HWI_COMPUTABLE_MODE_P (mode) 7298 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode) 7299 & ~GET_MODE_MASK (inner_mode)) == 0) 7300 return SUBREG_REG (XEXP (x, 0)); 7301 7302 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo 7303 is a comparison and STORE_FLAG_VALUE permits. This is like 7304 the first case, but it works even when MODE is larger 7305 than HOST_WIDE_INT. */ 7306 if (GET_CODE (XEXP (x, 0)) == TRUNCATE 7307 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode 7308 && COMPARISON_P (XEXP (XEXP (x, 0), 0)) 7309 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT 7310 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0) 7311 return XEXP (XEXP (x, 0), 0); 7312 7313 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */ 7314 if (GET_CODE (XEXP (x, 0)) == SUBREG 7315 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode 7316 && subreg_lowpart_p (XEXP (x, 0)) 7317 && COMPARISON_P (SUBREG_REG (XEXP (x, 0))) 7318 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT 7319 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0) 7320 return SUBREG_REG (XEXP (x, 0)); 7321 7322 } 7323 7324 /* If we reach here, we want to return a pair of shifts. The inner 7325 shift is a left shift of BITSIZE - POS - LEN bits. The outer 7326 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or 7327 logical depending on the value of UNSIGNEDP. 7328 7329 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be 7330 converted into an AND of a shift. 7331 7332 We must check for the case where the left shift would have a negative 7333 count. This can happen in a case like (x >> 31) & 255 on machines 7334 that can't shift by a constant. On those machines, we would first 7335 combine the shift with the AND to produce a variable-position 7336 extraction. Then the constant of 31 would be substituted in 7337 to produce such a position. */ 7338 7339 modewidth = GET_MODE_PRECISION (mode); 7340 if (modewidth >= pos + len) 7341 { 7342 tem = gen_lowpart (mode, XEXP (x, 0)); 7343 if (!tem || GET_CODE (tem) == CLOBBER) 7344 return x; 7345 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode, 7346 tem, modewidth - pos - len); 7347 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT, 7348 mode, tem, modewidth - len); 7349 } 7350 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT) 7351 tem = simplify_and_const_int (NULL_RTX, mode, 7352 simplify_shift_const (NULL_RTX, LSHIFTRT, 7353 mode, XEXP (x, 0), 7354 pos), 7355 (HOST_WIDE_INT_1U << len) - 1); 7356 else 7357 /* Any other cases we can't handle. */ 7358 return x; 7359 7360 /* If we couldn't do this for some reason, return the original 7361 expression. */ 7362 if (GET_CODE (tem) == CLOBBER) 7363 return x; 7364 7365 return tem; 7366 } 7367 7368 /* X is a SET which contains an assignment of one object into 7369 a part of another (such as a bit-field assignment, STRICT_LOW_PART, 7370 or certain SUBREGS). If possible, convert it into a series of 7371 logical operations. 7372 7373 We half-heartedly support variable positions, but do not at all 7374 support variable lengths. */ 7375 7376 static const_rtx 7377 expand_field_assignment (const_rtx x) 7378 { 7379 rtx inner; 7380 rtx pos; /* Always counts from low bit. */ 7381 int len, inner_len; 7382 rtx mask, cleared, masked; 7383 scalar_int_mode compute_mode; 7384 7385 /* Loop until we find something we can't simplify. */ 7386 while (1) 7387 { 7388 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART 7389 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG) 7390 { 7391 rtx x0 = XEXP (SET_DEST (x), 0); 7392 if (!GET_MODE_PRECISION (GET_MODE (x0)).is_constant (&len)) 7393 break; 7394 inner = SUBREG_REG (XEXP (SET_DEST (x), 0)); 7395 pos = gen_int_mode (subreg_lsb (XEXP (SET_DEST (x), 0)), 7396 MAX_MODE_INT); 7397 } 7398 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT 7399 && CONST_INT_P (XEXP (SET_DEST (x), 1))) 7400 { 7401 inner = XEXP (SET_DEST (x), 0); 7402 if (!GET_MODE_PRECISION (GET_MODE (inner)).is_constant (&inner_len)) 7403 break; 7404 7405 len = INTVAL (XEXP (SET_DEST (x), 1)); 7406 pos = XEXP (SET_DEST (x), 2); 7407 7408 /* A constant position should stay within the width of INNER. */ 7409 if (CONST_INT_P (pos) && INTVAL (pos) + len > inner_len) 7410 break; 7411 7412 if (BITS_BIG_ENDIAN) 7413 { 7414 if (CONST_INT_P (pos)) 7415 pos = GEN_INT (inner_len - len - INTVAL (pos)); 7416 else if (GET_CODE (pos) == MINUS 7417 && CONST_INT_P (XEXP (pos, 1)) 7418 && INTVAL (XEXP (pos, 1)) == inner_len - len) 7419 /* If position is ADJUST - X, new position is X. */ 7420 pos = XEXP (pos, 0); 7421 else 7422 pos = simplify_gen_binary (MINUS, GET_MODE (pos), 7423 gen_int_mode (inner_len - len, 7424 GET_MODE (pos)), 7425 pos); 7426 } 7427 } 7428 7429 /* If the destination is a subreg that overwrites the whole of the inner 7430 register, we can move the subreg to the source. */ 7431 else if (GET_CODE (SET_DEST (x)) == SUBREG 7432 /* We need SUBREGs to compute nonzero_bits properly. */ 7433 && nonzero_sign_valid 7434 && !read_modify_subreg_p (SET_DEST (x))) 7435 { 7436 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)), 7437 gen_lowpart 7438 (GET_MODE (SUBREG_REG (SET_DEST (x))), 7439 SET_SRC (x))); 7440 continue; 7441 } 7442 else 7443 break; 7444 7445 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner)) 7446 inner = SUBREG_REG (inner); 7447 7448 /* Don't attempt bitwise arithmetic on non scalar integer modes. */ 7449 if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode)) 7450 { 7451 /* Don't do anything for vector or complex integral types. */ 7452 if (! FLOAT_MODE_P (GET_MODE (inner))) 7453 break; 7454 7455 /* Try to find an integral mode to pun with. */ 7456 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0) 7457 .exists (&compute_mode)) 7458 break; 7459 7460 inner = gen_lowpart (compute_mode, inner); 7461 } 7462 7463 /* Compute a mask of LEN bits, if we can do this on the host machine. */ 7464 if (len >= HOST_BITS_PER_WIDE_INT) 7465 break; 7466 7467 /* Don't try to compute in too wide unsupported modes. */ 7468 if (!targetm.scalar_mode_supported_p (compute_mode)) 7469 break; 7470 7471 /* Now compute the equivalent expression. Make a copy of INNER 7472 for the SET_DEST in case it is a MEM into which we will substitute; 7473 we don't want shared RTL in that case. */ 7474 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1, 7475 compute_mode); 7476 cleared = simplify_gen_binary (AND, compute_mode, 7477 simplify_gen_unary (NOT, compute_mode, 7478 simplify_gen_binary (ASHIFT, 7479 compute_mode, 7480 mask, pos), 7481 compute_mode), 7482 inner); 7483 masked = simplify_gen_binary (ASHIFT, compute_mode, 7484 simplify_gen_binary ( 7485 AND, compute_mode, 7486 gen_lowpart (compute_mode, SET_SRC (x)), 7487 mask), 7488 pos); 7489 7490 x = gen_rtx_SET (copy_rtx (inner), 7491 simplify_gen_binary (IOR, compute_mode, 7492 cleared, masked)); 7493 } 7494 7495 return x; 7496 } 7497 7498 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero, 7499 it is an RTX that represents the (variable) starting position; otherwise, 7500 POS is the (constant) starting bit position. Both are counted from the LSB. 7501 7502 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one. 7503 7504 IN_DEST is nonzero if this is a reference in the destination of a SET. 7505 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero, 7506 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will 7507 be used. 7508 7509 IN_COMPARE is nonzero if we are in a COMPARE. This means that a 7510 ZERO_EXTRACT should be built even for bits starting at bit 0. 7511 7512 MODE is the desired mode of the result (if IN_DEST == 0). 7513 7514 The result is an RTX for the extraction or NULL_RTX if the target 7515 can't handle it. */ 7516 7517 static rtx 7518 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos, 7519 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp, 7520 int in_dest, int in_compare) 7521 { 7522 /* This mode describes the size of the storage area 7523 to fetch the overall value from. Within that, we 7524 ignore the POS lowest bits, etc. */ 7525 machine_mode is_mode = GET_MODE (inner); 7526 machine_mode inner_mode; 7527 scalar_int_mode wanted_inner_mode; 7528 scalar_int_mode wanted_inner_reg_mode = word_mode; 7529 scalar_int_mode pos_mode = word_mode; 7530 machine_mode extraction_mode = word_mode; 7531 rtx new_rtx = 0; 7532 rtx orig_pos_rtx = pos_rtx; 7533 HOST_WIDE_INT orig_pos; 7534 7535 if (pos_rtx && CONST_INT_P (pos_rtx)) 7536 pos = INTVAL (pos_rtx), pos_rtx = 0; 7537 7538 if (GET_CODE (inner) == SUBREG 7539 && subreg_lowpart_p (inner) 7540 && (paradoxical_subreg_p (inner) 7541 /* If trying or potentionally trying to extract 7542 bits outside of is_mode, don't look through 7543 non-paradoxical SUBREGs. See PR82192. */ 7544 || (pos_rtx == NULL_RTX 7545 && known_le (pos + len, GET_MODE_PRECISION (is_mode))))) 7546 { 7547 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...), 7548 consider just the QI as the memory to extract from. 7549 The subreg adds or removes high bits; its mode is 7550 irrelevant to the meaning of this extraction, 7551 since POS and LEN count from the lsb. */ 7552 if (MEM_P (SUBREG_REG (inner))) 7553 is_mode = GET_MODE (SUBREG_REG (inner)); 7554 inner = SUBREG_REG (inner); 7555 } 7556 else if (GET_CODE (inner) == ASHIFT 7557 && CONST_INT_P (XEXP (inner, 1)) 7558 && pos_rtx == 0 && pos == 0 7559 && len > UINTVAL (XEXP (inner, 1))) 7560 { 7561 /* We're extracting the least significant bits of an rtx 7562 (ashift X (const_int C)), where LEN > C. Extract the 7563 least significant (LEN - C) bits of X, giving an rtx 7564 whose mode is MODE, then shift it left C times. */ 7565 new_rtx = make_extraction (mode, XEXP (inner, 0), 7566 0, 0, len - INTVAL (XEXP (inner, 1)), 7567 unsignedp, in_dest, in_compare); 7568 if (new_rtx != 0) 7569 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1)); 7570 } 7571 else if (GET_CODE (inner) == TRUNCATE 7572 /* If trying or potentionally trying to extract 7573 bits outside of is_mode, don't look through 7574 TRUNCATE. See PR82192. */ 7575 && pos_rtx == NULL_RTX 7576 && known_le (pos + len, GET_MODE_PRECISION (is_mode))) 7577 inner = XEXP (inner, 0); 7578 7579 inner_mode = GET_MODE (inner); 7580 7581 /* See if this can be done without an extraction. We never can if the 7582 width of the field is not the same as that of some integer mode. For 7583 registers, we can only avoid the extraction if the position is at the 7584 low-order bit and this is either not in the destination or we have the 7585 appropriate STRICT_LOW_PART operation available. 7586 7587 For MEM, we can avoid an extract if the field starts on an appropriate 7588 boundary and we can change the mode of the memory reference. */ 7589 7590 scalar_int_mode tmode; 7591 if (int_mode_for_size (len, 1).exists (&tmode) 7592 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0 7593 && !MEM_P (inner) 7594 && (pos == 0 || REG_P (inner)) 7595 && (inner_mode == tmode 7596 || !REG_P (inner) 7597 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode) 7598 || reg_truncated_to_mode (tmode, inner)) 7599 && (! in_dest 7600 || (REG_P (inner) 7601 && have_insn_for (STRICT_LOW_PART, tmode)))) 7602 || (MEM_P (inner) && pos_rtx == 0 7603 && (pos 7604 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode) 7605 : BITS_PER_UNIT)) == 0 7606 /* We can't do this if we are widening INNER_MODE (it 7607 may not be aligned, for one thing). */ 7608 && !paradoxical_subreg_p (tmode, inner_mode) 7609 && known_le (pos + len, GET_MODE_PRECISION (is_mode)) 7610 && (inner_mode == tmode 7611 || (! mode_dependent_address_p (XEXP (inner, 0), 7612 MEM_ADDR_SPACE (inner)) 7613 && ! MEM_VOLATILE_P (inner)))))) 7614 { 7615 /* If INNER is a MEM, make a new MEM that encompasses just the desired 7616 field. If the original and current mode are the same, we need not 7617 adjust the offset. Otherwise, we do if bytes big endian. 7618 7619 If INNER is not a MEM, get a piece consisting of just the field 7620 of interest (in this case POS % BITS_PER_WORD must be 0). */ 7621 7622 if (MEM_P (inner)) 7623 { 7624 poly_int64 offset; 7625 7626 /* POS counts from lsb, but make OFFSET count in memory order. */ 7627 if (BYTES_BIG_ENDIAN) 7628 offset = bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode) 7629 - len - pos); 7630 else 7631 offset = pos / BITS_PER_UNIT; 7632 7633 new_rtx = adjust_address_nv (inner, tmode, offset); 7634 } 7635 else if (REG_P (inner)) 7636 { 7637 if (tmode != inner_mode) 7638 { 7639 /* We can't call gen_lowpart in a DEST since we 7640 always want a SUBREG (see below) and it would sometimes 7641 return a new hard register. */ 7642 if (pos || in_dest) 7643 { 7644 poly_uint64 offset 7645 = subreg_offset_from_lsb (tmode, inner_mode, pos); 7646 7647 /* Avoid creating invalid subregs, for example when 7648 simplifying (x>>32)&255. */ 7649 if (!validate_subreg (tmode, inner_mode, inner, offset)) 7650 return NULL_RTX; 7651 7652 new_rtx = gen_rtx_SUBREG (tmode, inner, offset); 7653 } 7654 else 7655 new_rtx = gen_lowpart (tmode, inner); 7656 } 7657 else 7658 new_rtx = inner; 7659 } 7660 else 7661 new_rtx = force_to_mode (inner, tmode, 7662 len >= HOST_BITS_PER_WIDE_INT 7663 ? HOST_WIDE_INT_M1U 7664 : (HOST_WIDE_INT_1U << len) - 1, 0); 7665 7666 /* If this extraction is going into the destination of a SET, 7667 make a STRICT_LOW_PART unless we made a MEM. */ 7668 7669 if (in_dest) 7670 return (MEM_P (new_rtx) ? new_rtx 7671 : (GET_CODE (new_rtx) != SUBREG 7672 ? gen_rtx_CLOBBER (tmode, const0_rtx) 7673 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx))); 7674 7675 if (mode == tmode) 7676 return new_rtx; 7677 7678 if (CONST_SCALAR_INT_P (new_rtx)) 7679 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, 7680 mode, new_rtx, tmode); 7681 7682 /* If we know that no extraneous bits are set, and that the high 7683 bit is not set, convert the extraction to the cheaper of 7684 sign and zero extension, that are equivalent in these cases. */ 7685 if (flag_expensive_optimizations 7686 && (HWI_COMPUTABLE_MODE_P (tmode) 7687 && ((nonzero_bits (new_rtx, tmode) 7688 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1)) 7689 == 0))) 7690 { 7691 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx); 7692 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx); 7693 7694 /* Prefer ZERO_EXTENSION, since it gives more information to 7695 backends. */ 7696 if (set_src_cost (temp, mode, optimize_this_for_speed_p) 7697 <= set_src_cost (temp1, mode, optimize_this_for_speed_p)) 7698 return temp; 7699 return temp1; 7700 } 7701 7702 /* Otherwise, sign- or zero-extend unless we already are in the 7703 proper mode. */ 7704 7705 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, 7706 mode, new_rtx)); 7707 } 7708 7709 /* Unless this is a COMPARE or we have a funny memory reference, 7710 don't do anything with zero-extending field extracts starting at 7711 the low-order bit since they are simple AND operations. */ 7712 if (pos_rtx == 0 && pos == 0 && ! in_dest 7713 && ! in_compare && unsignedp) 7714 return 0; 7715 7716 /* Unless INNER is not MEM, reject this if we would be spanning bytes or 7717 if the position is not a constant and the length is not 1. In all 7718 other cases, we would only be going outside our object in cases when 7719 an original shift would have been undefined. */ 7720 if (MEM_P (inner) 7721 && ((pos_rtx == 0 && maybe_gt (pos + len, GET_MODE_PRECISION (is_mode))) 7722 || (pos_rtx != 0 && len != 1))) 7723 return 0; 7724 7725 enum extraction_pattern pattern = (in_dest ? EP_insv 7726 : unsignedp ? EP_extzv : EP_extv); 7727 7728 /* If INNER is not from memory, we want it to have the mode of a register 7729 extraction pattern's structure operand, or word_mode if there is no 7730 such pattern. The same applies to extraction_mode and pos_mode 7731 and their respective operands. 7732 7733 For memory, assume that the desired extraction_mode and pos_mode 7734 are the same as for a register operation, since at present we don't 7735 have named patterns for aligned memory structures. */ 7736 struct extraction_insn insn; 7737 unsigned int inner_size; 7738 if (GET_MODE_BITSIZE (inner_mode).is_constant (&inner_size) 7739 && get_best_reg_extraction_insn (&insn, pattern, inner_size, mode)) 7740 { 7741 wanted_inner_reg_mode = insn.struct_mode.require (); 7742 pos_mode = insn.pos_mode; 7743 extraction_mode = insn.field_mode; 7744 } 7745 7746 /* Never narrow an object, since that might not be safe. */ 7747 7748 if (mode != VOIDmode 7749 && partial_subreg_p (extraction_mode, mode)) 7750 extraction_mode = mode; 7751 7752 /* Punt if len is too large for extraction_mode. */ 7753 if (maybe_gt (len, GET_MODE_PRECISION (extraction_mode))) 7754 return NULL_RTX; 7755 7756 if (!MEM_P (inner)) 7757 wanted_inner_mode = wanted_inner_reg_mode; 7758 else 7759 { 7760 /* Be careful not to go beyond the extracted object and maintain the 7761 natural alignment of the memory. */ 7762 wanted_inner_mode = smallest_int_mode_for_size (len); 7763 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len 7764 > GET_MODE_BITSIZE (wanted_inner_mode)) 7765 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require (); 7766 } 7767 7768 orig_pos = pos; 7769 7770 if (BITS_BIG_ENDIAN) 7771 { 7772 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to 7773 BITS_BIG_ENDIAN style. If position is constant, compute new 7774 position. Otherwise, build subtraction. 7775 Note that POS is relative to the mode of the original argument. 7776 If it's a MEM we need to recompute POS relative to that. 7777 However, if we're extracting from (or inserting into) a register, 7778 we want to recompute POS relative to wanted_inner_mode. */ 7779 int width; 7780 if (!MEM_P (inner)) 7781 width = GET_MODE_BITSIZE (wanted_inner_mode); 7782 else if (!GET_MODE_BITSIZE (is_mode).is_constant (&width)) 7783 return NULL_RTX; 7784 7785 if (pos_rtx == 0) 7786 pos = width - len - pos; 7787 else 7788 pos_rtx 7789 = gen_rtx_MINUS (GET_MODE (pos_rtx), 7790 gen_int_mode (width - len, GET_MODE (pos_rtx)), 7791 pos_rtx); 7792 /* POS may be less than 0 now, but we check for that below. 7793 Note that it can only be less than 0 if !MEM_P (inner). */ 7794 } 7795 7796 /* If INNER has a wider mode, and this is a constant extraction, try to 7797 make it smaller and adjust the byte to point to the byte containing 7798 the value. */ 7799 if (wanted_inner_mode != VOIDmode 7800 && inner_mode != wanted_inner_mode 7801 && ! pos_rtx 7802 && partial_subreg_p (wanted_inner_mode, is_mode) 7803 && MEM_P (inner) 7804 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner)) 7805 && ! MEM_VOLATILE_P (inner)) 7806 { 7807 poly_int64 offset = 0; 7808 7809 /* The computations below will be correct if the machine is big 7810 endian in both bits and bytes or little endian in bits and bytes. 7811 If it is mixed, we must adjust. */ 7812 7813 /* If bytes are big endian and we had a paradoxical SUBREG, we must 7814 adjust OFFSET to compensate. */ 7815 if (BYTES_BIG_ENDIAN 7816 && paradoxical_subreg_p (is_mode, inner_mode)) 7817 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode); 7818 7819 /* We can now move to the desired byte. */ 7820 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode)) 7821 * GET_MODE_SIZE (wanted_inner_mode); 7822 pos %= GET_MODE_BITSIZE (wanted_inner_mode); 7823 7824 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN 7825 && is_mode != wanted_inner_mode) 7826 offset = (GET_MODE_SIZE (is_mode) 7827 - GET_MODE_SIZE (wanted_inner_mode) - offset); 7828 7829 inner = adjust_address_nv (inner, wanted_inner_mode, offset); 7830 } 7831 7832 /* If INNER is not memory, get it into the proper mode. If we are changing 7833 its mode, POS must be a constant and smaller than the size of the new 7834 mode. */ 7835 else if (!MEM_P (inner)) 7836 { 7837 /* On the LHS, don't create paradoxical subregs implicitely truncating 7838 the register unless TARGET_TRULY_NOOP_TRUNCATION. */ 7839 if (in_dest 7840 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner), 7841 wanted_inner_mode)) 7842 return NULL_RTX; 7843 7844 if (GET_MODE (inner) != wanted_inner_mode 7845 && (pos_rtx != 0 7846 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode))) 7847 return NULL_RTX; 7848 7849 if (orig_pos < 0) 7850 return NULL_RTX; 7851 7852 inner = force_to_mode (inner, wanted_inner_mode, 7853 pos_rtx 7854 || len + orig_pos >= HOST_BITS_PER_WIDE_INT 7855 ? HOST_WIDE_INT_M1U 7856 : (((HOST_WIDE_INT_1U << len) - 1) 7857 << orig_pos), 7858 0); 7859 } 7860 7861 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we 7862 have to zero extend. Otherwise, we can just use a SUBREG. 7863 7864 We dealt with constant rtxes earlier, so pos_rtx cannot 7865 have VOIDmode at this point. */ 7866 if (pos_rtx != 0 7867 && (GET_MODE_SIZE (pos_mode) 7868 > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx))))) 7869 { 7870 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx, 7871 GET_MODE (pos_rtx)); 7872 7873 /* If we know that no extraneous bits are set, and that the high 7874 bit is not set, convert extraction to cheaper one - either 7875 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these 7876 cases. */ 7877 if (flag_expensive_optimizations 7878 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx)) 7879 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx)) 7880 & ~(((unsigned HOST_WIDE_INT) 7881 GET_MODE_MASK (GET_MODE (pos_rtx))) 7882 >> 1)) 7883 == 0))) 7884 { 7885 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx, 7886 GET_MODE (pos_rtx)); 7887 7888 /* Prefer ZERO_EXTENSION, since it gives more information to 7889 backends. */ 7890 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p) 7891 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p)) 7892 temp = temp1; 7893 } 7894 pos_rtx = temp; 7895 } 7896 7897 /* Make POS_RTX unless we already have it and it is correct. If we don't 7898 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must 7899 be a CONST_INT. */ 7900 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos) 7901 pos_rtx = orig_pos_rtx; 7902 7903 else if (pos_rtx == 0) 7904 pos_rtx = GEN_INT (pos); 7905 7906 /* Make the required operation. See if we can use existing rtx. */ 7907 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT, 7908 extraction_mode, inner, GEN_INT (len), pos_rtx); 7909 if (! in_dest) 7910 new_rtx = gen_lowpart (mode, new_rtx); 7911 7912 return new_rtx; 7913 } 7914 7915 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that 7916 can be commuted with any other operations in X. Return X without 7917 that shift if so. */ 7918 7919 static rtx 7920 extract_left_shift (scalar_int_mode mode, rtx x, int count) 7921 { 7922 enum rtx_code code = GET_CODE (x); 7923 rtx tem; 7924 7925 switch (code) 7926 { 7927 case ASHIFT: 7928 /* This is the shift itself. If it is wide enough, we will return 7929 either the value being shifted if the shift count is equal to 7930 COUNT or a shift for the difference. */ 7931 if (CONST_INT_P (XEXP (x, 1)) 7932 && INTVAL (XEXP (x, 1)) >= count) 7933 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0), 7934 INTVAL (XEXP (x, 1)) - count); 7935 break; 7936 7937 case NEG: case NOT: 7938 if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0) 7939 return simplify_gen_unary (code, mode, tem, mode); 7940 7941 break; 7942 7943 case PLUS: case IOR: case XOR: case AND: 7944 /* If we can safely shift this constant and we find the inner shift, 7945 make a new operation. */ 7946 if (CONST_INT_P (XEXP (x, 1)) 7947 && (UINTVAL (XEXP (x, 1)) 7948 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0 7949 && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0) 7950 { 7951 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count; 7952 return simplify_gen_binary (code, mode, tem, 7953 gen_int_mode (val, mode)); 7954 } 7955 break; 7956 7957 default: 7958 break; 7959 } 7960 7961 return 0; 7962 } 7963 7964 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current 7965 level of the expression and MODE is its mode. IN_CODE is as for 7966 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE 7967 that should be used when recursing on operands of *X_PTR. 7968 7969 There are two possible actions: 7970 7971 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE 7972 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value. 7973 7974 - Return a new rtx, which the caller returns directly. */ 7975 7976 static rtx 7977 make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr, 7978 enum rtx_code in_code, 7979 enum rtx_code *next_code_ptr) 7980 { 7981 rtx x = *x_ptr; 7982 enum rtx_code next_code = *next_code_ptr; 7983 enum rtx_code code = GET_CODE (x); 7984 int mode_width = GET_MODE_PRECISION (mode); 7985 rtx rhs, lhs; 7986 rtx new_rtx = 0; 7987 int i; 7988 rtx tem; 7989 scalar_int_mode inner_mode; 7990 bool equality_comparison = false; 7991 7992 if (in_code == EQ) 7993 { 7994 equality_comparison = true; 7995 in_code = COMPARE; 7996 } 7997 7998 /* Process depending on the code of this operation. If NEW is set 7999 nonzero, it will be returned. */ 8000 8001 switch (code) 8002 { 8003 case ASHIFT: 8004 /* Convert shifts by constants into multiplications if inside 8005 an address. */ 8006 if (in_code == MEM && CONST_INT_P (XEXP (x, 1)) 8007 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT 8008 && INTVAL (XEXP (x, 1)) >= 0) 8009 { 8010 HOST_WIDE_INT count = INTVAL (XEXP (x, 1)); 8011 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count; 8012 8013 new_rtx = make_compound_operation (XEXP (x, 0), next_code); 8014 if (GET_CODE (new_rtx) == NEG) 8015 { 8016 new_rtx = XEXP (new_rtx, 0); 8017 multval = -multval; 8018 } 8019 multval = trunc_int_for_mode (multval, mode); 8020 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode)); 8021 } 8022 break; 8023 8024 case PLUS: 8025 lhs = XEXP (x, 0); 8026 rhs = XEXP (x, 1); 8027 lhs = make_compound_operation (lhs, next_code); 8028 rhs = make_compound_operation (rhs, next_code); 8029 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG) 8030 { 8031 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0), 8032 XEXP (lhs, 1)); 8033 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem); 8034 } 8035 else if (GET_CODE (lhs) == MULT 8036 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0)) 8037 { 8038 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0), 8039 simplify_gen_unary (NEG, mode, 8040 XEXP (lhs, 1), 8041 mode)); 8042 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem); 8043 } 8044 else 8045 { 8046 SUBST (XEXP (x, 0), lhs); 8047 SUBST (XEXP (x, 1), rhs); 8048 } 8049 maybe_swap_commutative_operands (x); 8050 return x; 8051 8052 case MINUS: 8053 lhs = XEXP (x, 0); 8054 rhs = XEXP (x, 1); 8055 lhs = make_compound_operation (lhs, next_code); 8056 rhs = make_compound_operation (rhs, next_code); 8057 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG) 8058 { 8059 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0), 8060 XEXP (rhs, 1)); 8061 return simplify_gen_binary (PLUS, mode, tem, lhs); 8062 } 8063 else if (GET_CODE (rhs) == MULT 8064 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0)) 8065 { 8066 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0), 8067 simplify_gen_unary (NEG, mode, 8068 XEXP (rhs, 1), 8069 mode)); 8070 return simplify_gen_binary (PLUS, mode, tem, lhs); 8071 } 8072 else 8073 { 8074 SUBST (XEXP (x, 0), lhs); 8075 SUBST (XEXP (x, 1), rhs); 8076 return x; 8077 } 8078 8079 case AND: 8080 /* If the second operand is not a constant, we can't do anything 8081 with it. */ 8082 if (!CONST_INT_P (XEXP (x, 1))) 8083 break; 8084 8085 /* If the constant is a power of two minus one and the first operand 8086 is a logical right shift, make an extraction. */ 8087 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT 8088 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0) 8089 { 8090 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code); 8091 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), 8092 i, 1, 0, in_code == COMPARE); 8093 } 8094 8095 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */ 8096 else if (GET_CODE (XEXP (x, 0)) == SUBREG 8097 && subreg_lowpart_p (XEXP (x, 0)) 8098 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))), 8099 &inner_mode) 8100 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT 8101 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0) 8102 { 8103 rtx inner_x0 = SUBREG_REG (XEXP (x, 0)); 8104 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code); 8105 new_rtx = make_extraction (inner_mode, new_rtx, 0, 8106 XEXP (inner_x0, 1), 8107 i, 1, 0, in_code == COMPARE); 8108 8109 /* If we narrowed the mode when dropping the subreg, then we lose. */ 8110 if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode)) 8111 new_rtx = NULL; 8112 8113 /* If that didn't give anything, see if the AND simplifies on 8114 its own. */ 8115 if (!new_rtx && i >= 0) 8116 { 8117 new_rtx = make_compound_operation (XEXP (x, 0), next_code); 8118 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1, 8119 0, in_code == COMPARE); 8120 } 8121 } 8122 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */ 8123 else if ((GET_CODE (XEXP (x, 0)) == XOR 8124 || GET_CODE (XEXP (x, 0)) == IOR) 8125 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT 8126 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT 8127 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0) 8128 { 8129 /* Apply the distributive law, and then try to make extractions. */ 8130 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode, 8131 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0), 8132 XEXP (x, 1)), 8133 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1), 8134 XEXP (x, 1))); 8135 new_rtx = make_compound_operation (new_rtx, in_code); 8136 } 8137 8138 /* If we are have (and (rotate X C) M) and C is larger than the number 8139 of bits in M, this is an extraction. */ 8140 8141 else if (GET_CODE (XEXP (x, 0)) == ROTATE 8142 && CONST_INT_P (XEXP (XEXP (x, 0), 1)) 8143 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0 8144 && i <= INTVAL (XEXP (XEXP (x, 0), 1))) 8145 { 8146 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code); 8147 new_rtx = make_extraction (mode, new_rtx, 8148 (GET_MODE_PRECISION (mode) 8149 - INTVAL (XEXP (XEXP (x, 0), 1))), 8150 NULL_RTX, i, 1, 0, in_code == COMPARE); 8151 } 8152 8153 /* On machines without logical shifts, if the operand of the AND is 8154 a logical shift and our mask turns off all the propagated sign 8155 bits, we can replace the logical shift with an arithmetic shift. */ 8156 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT 8157 && !have_insn_for (LSHIFTRT, mode) 8158 && have_insn_for (ASHIFTRT, mode) 8159 && CONST_INT_P (XEXP (XEXP (x, 0), 1)) 8160 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0 8161 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT 8162 && mode_width <= HOST_BITS_PER_WIDE_INT) 8163 { 8164 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode); 8165 8166 mask >>= INTVAL (XEXP (XEXP (x, 0), 1)); 8167 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0) 8168 SUBST (XEXP (x, 0), 8169 gen_rtx_ASHIFTRT (mode, 8170 make_compound_operation (XEXP (XEXP (x, 8171 0), 8172 0), 8173 next_code), 8174 XEXP (XEXP (x, 0), 1))); 8175 } 8176 8177 /* If the constant is one less than a power of two, this might be 8178 representable by an extraction even if no shift is present. 8179 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless 8180 we are in a COMPARE. */ 8181 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0) 8182 new_rtx = make_extraction (mode, 8183 make_compound_operation (XEXP (x, 0), 8184 next_code), 8185 0, NULL_RTX, i, 1, 0, in_code == COMPARE); 8186 8187 /* If we are in a comparison and this is an AND with a power of two, 8188 convert this into the appropriate bit extract. */ 8189 else if (in_code == COMPARE 8190 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0 8191 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1)) 8192 new_rtx = make_extraction (mode, 8193 make_compound_operation (XEXP (x, 0), 8194 next_code), 8195 i, NULL_RTX, 1, 1, 0, 1); 8196 8197 /* If the one operand is a paradoxical subreg of a register or memory and 8198 the constant (limited to the smaller mode) has only zero bits where 8199 the sub expression has known zero bits, this can be expressed as 8200 a zero_extend. */ 8201 else if (GET_CODE (XEXP (x, 0)) == SUBREG) 8202 { 8203 rtx sub; 8204 8205 sub = XEXP (XEXP (x, 0), 0); 8206 machine_mode sub_mode = GET_MODE (sub); 8207 int sub_width; 8208 if ((REG_P (sub) || MEM_P (sub)) 8209 && GET_MODE_PRECISION (sub_mode).is_constant (&sub_width) 8210 && sub_width < mode_width) 8211 { 8212 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode); 8213 unsigned HOST_WIDE_INT mask; 8214 8215 /* original AND constant with all the known zero bits set */ 8216 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode)); 8217 if ((mask & mode_mask) == mode_mask) 8218 { 8219 new_rtx = make_compound_operation (sub, next_code); 8220 new_rtx = make_extraction (mode, new_rtx, 0, 0, sub_width, 8221 1, 0, in_code == COMPARE); 8222 } 8223 } 8224 } 8225 8226 break; 8227 8228 case LSHIFTRT: 8229 /* If the sign bit is known to be zero, replace this with an 8230 arithmetic shift. */ 8231 if (have_insn_for (ASHIFTRT, mode) 8232 && ! have_insn_for (LSHIFTRT, mode) 8233 && mode_width <= HOST_BITS_PER_WIDE_INT 8234 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0) 8235 { 8236 new_rtx = gen_rtx_ASHIFTRT (mode, 8237 make_compound_operation (XEXP (x, 0), 8238 next_code), 8239 XEXP (x, 1)); 8240 break; 8241 } 8242 8243 /* fall through */ 8244 8245 case ASHIFTRT: 8246 lhs = XEXP (x, 0); 8247 rhs = XEXP (x, 1); 8248 8249 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1, 8250 this is a SIGN_EXTRACT. */ 8251 if (CONST_INT_P (rhs) 8252 && GET_CODE (lhs) == ASHIFT 8253 && CONST_INT_P (XEXP (lhs, 1)) 8254 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)) 8255 && INTVAL (XEXP (lhs, 1)) >= 0 8256 && INTVAL (rhs) < mode_width) 8257 { 8258 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code); 8259 new_rtx = make_extraction (mode, new_rtx, 8260 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)), 8261 NULL_RTX, mode_width - INTVAL (rhs), 8262 code == LSHIFTRT, 0, in_code == COMPARE); 8263 break; 8264 } 8265 8266 /* See if we have operations between an ASHIFTRT and an ASHIFT. 8267 If so, try to merge the shifts into a SIGN_EXTEND. We could 8268 also do this for some cases of SIGN_EXTRACT, but it doesn't 8269 seem worth the effort; the case checked for occurs on Alpha. */ 8270 8271 if (!OBJECT_P (lhs) 8272 && ! (GET_CODE (lhs) == SUBREG 8273 && (OBJECT_P (SUBREG_REG (lhs)))) 8274 && CONST_INT_P (rhs) 8275 && INTVAL (rhs) >= 0 8276 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT 8277 && INTVAL (rhs) < mode_width 8278 && (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0) 8279 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, 8280 next_code), 8281 0, NULL_RTX, mode_width - INTVAL (rhs), 8282 code == LSHIFTRT, 0, in_code == COMPARE); 8283 8284 break; 8285 8286 case SUBREG: 8287 /* Call ourselves recursively on the inner expression. If we are 8288 narrowing the object and it has a different RTL code from 8289 what it originally did, do this SUBREG as a force_to_mode. */ 8290 { 8291 rtx inner = SUBREG_REG (x), simplified; 8292 enum rtx_code subreg_code = in_code; 8293 8294 /* If the SUBREG is masking of a logical right shift, 8295 make an extraction. */ 8296 if (GET_CODE (inner) == LSHIFTRT 8297 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode) 8298 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode) 8299 && CONST_INT_P (XEXP (inner, 1)) 8300 && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode) 8301 && subreg_lowpart_p (x)) 8302 { 8303 new_rtx = make_compound_operation (XEXP (inner, 0), next_code); 8304 int width = GET_MODE_PRECISION (inner_mode) 8305 - INTVAL (XEXP (inner, 1)); 8306 if (width > mode_width) 8307 width = mode_width; 8308 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1), 8309 width, 1, 0, in_code == COMPARE); 8310 break; 8311 } 8312 8313 /* If in_code is COMPARE, it isn't always safe to pass it through 8314 to the recursive make_compound_operation call. */ 8315 if (subreg_code == COMPARE 8316 && (!subreg_lowpart_p (x) 8317 || GET_CODE (inner) == SUBREG 8318 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0) 8319 is (const_int 0), rather than 8320 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). 8321 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0) 8322 for non-equality comparisons against 0 is not equivalent 8323 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */ 8324 || (GET_CODE (inner) == AND 8325 && CONST_INT_P (XEXP (inner, 1)) 8326 && partial_subreg_p (x) 8327 && exact_log2 (UINTVAL (XEXP (inner, 1))) 8328 >= GET_MODE_BITSIZE (mode) - 1))) 8329 subreg_code = SET; 8330 8331 tem = make_compound_operation (inner, subreg_code); 8332 8333 simplified 8334 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x)); 8335 if (simplified) 8336 tem = simplified; 8337 8338 if (GET_CODE (tem) != GET_CODE (inner) 8339 && partial_subreg_p (x) 8340 && subreg_lowpart_p (x)) 8341 { 8342 rtx newer 8343 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0); 8344 8345 /* If we have something other than a SUBREG, we might have 8346 done an expansion, so rerun ourselves. */ 8347 if (GET_CODE (newer) != SUBREG) 8348 newer = make_compound_operation (newer, in_code); 8349 8350 /* force_to_mode can expand compounds. If it just re-expanded 8351 the compound, use gen_lowpart to convert to the desired 8352 mode. */ 8353 if (rtx_equal_p (newer, x) 8354 /* Likewise if it re-expanded the compound only partially. 8355 This happens for SUBREG of ZERO_EXTRACT if they extract 8356 the same number of bits. */ 8357 || (GET_CODE (newer) == SUBREG 8358 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT 8359 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT) 8360 && GET_CODE (inner) == AND 8361 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0)))) 8362 return gen_lowpart (GET_MODE (x), tem); 8363 8364 return newer; 8365 } 8366 8367 if (simplified) 8368 return tem; 8369 } 8370 break; 8371 8372 default: 8373 break; 8374 } 8375 8376 if (new_rtx) 8377 *x_ptr = gen_lowpart (mode, new_rtx); 8378 *next_code_ptr = next_code; 8379 return NULL_RTX; 8380 } 8381 8382 /* Look at the expression rooted at X. Look for expressions 8383 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND. 8384 Form these expressions. 8385 8386 Return the new rtx, usually just X. 8387 8388 Also, for machines like the VAX that don't have logical shift insns, 8389 try to convert logical to arithmetic shift operations in cases where 8390 they are equivalent. This undoes the canonicalizations to logical 8391 shifts done elsewhere. 8392 8393 We try, as much as possible, to re-use rtl expressions to save memory. 8394 8395 IN_CODE says what kind of expression we are processing. Normally, it is 8396 SET. In a memory address it is MEM. When processing the arguments of 8397 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more 8398 precisely it is an equality comparison against zero. */ 8399 8400 rtx 8401 make_compound_operation (rtx x, enum rtx_code in_code) 8402 { 8403 enum rtx_code code = GET_CODE (x); 8404 const char *fmt; 8405 int i, j; 8406 enum rtx_code next_code; 8407 rtx new_rtx, tem; 8408 8409 /* Select the code to be used in recursive calls. Once we are inside an 8410 address, we stay there. If we have a comparison, set to COMPARE, 8411 but once inside, go back to our default of SET. */ 8412 8413 next_code = (code == MEM ? MEM 8414 : ((code == COMPARE || COMPARISON_P (x)) 8415 && XEXP (x, 1) == const0_rtx) ? COMPARE 8416 : in_code == COMPARE || in_code == EQ ? SET : in_code); 8417 8418 scalar_int_mode mode; 8419 if (is_a <scalar_int_mode> (GET_MODE (x), &mode)) 8420 { 8421 rtx new_rtx = make_compound_operation_int (mode, &x, in_code, 8422 &next_code); 8423 if (new_rtx) 8424 return new_rtx; 8425 code = GET_CODE (x); 8426 } 8427 8428 /* Now recursively process each operand of this operation. We need to 8429 handle ZERO_EXTEND specially so that we don't lose track of the 8430 inner mode. */ 8431 if (code == ZERO_EXTEND) 8432 { 8433 new_rtx = make_compound_operation (XEXP (x, 0), next_code); 8434 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x), 8435 new_rtx, GET_MODE (XEXP (x, 0))); 8436 if (tem) 8437 return tem; 8438 SUBST (XEXP (x, 0), new_rtx); 8439 return x; 8440 } 8441 8442 fmt = GET_RTX_FORMAT (code); 8443 for (i = 0; i < GET_RTX_LENGTH (code); i++) 8444 if (fmt[i] == 'e') 8445 { 8446 new_rtx = make_compound_operation (XEXP (x, i), next_code); 8447 SUBST (XEXP (x, i), new_rtx); 8448 } 8449 else if (fmt[i] == 'E') 8450 for (j = 0; j < XVECLEN (x, i); j++) 8451 { 8452 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code); 8453 SUBST (XVECEXP (x, i, j), new_rtx); 8454 } 8455 8456 maybe_swap_commutative_operands (x); 8457 return x; 8458 } 8459 8460 /* Given M see if it is a value that would select a field of bits 8461 within an item, but not the entire word. Return -1 if not. 8462 Otherwise, return the starting position of the field, where 0 is the 8463 low-order bit. 8464 8465 *PLEN is set to the length of the field. */ 8466 8467 static int 8468 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen) 8469 { 8470 /* Get the bit number of the first 1 bit from the right, -1 if none. */ 8471 int pos = m ? ctz_hwi (m) : -1; 8472 int len = 0; 8473 8474 if (pos >= 0) 8475 /* Now shift off the low-order zero bits and see if we have a 8476 power of two minus 1. */ 8477 len = exact_log2 ((m >> pos) + 1); 8478 8479 if (len <= 0) 8480 pos = -1; 8481 8482 *plen = len; 8483 return pos; 8484 } 8485 8486 /* If X refers to a register that equals REG in value, replace these 8487 references with REG. */ 8488 static rtx 8489 canon_reg_for_combine (rtx x, rtx reg) 8490 { 8491 rtx op0, op1, op2; 8492 const char *fmt; 8493 int i; 8494 bool copied; 8495 8496 enum rtx_code code = GET_CODE (x); 8497 switch (GET_RTX_CLASS (code)) 8498 { 8499 case RTX_UNARY: 8500 op0 = canon_reg_for_combine (XEXP (x, 0), reg); 8501 if (op0 != XEXP (x, 0)) 8502 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0, 8503 GET_MODE (reg)); 8504 break; 8505 8506 case RTX_BIN_ARITH: 8507 case RTX_COMM_ARITH: 8508 op0 = canon_reg_for_combine (XEXP (x, 0), reg); 8509 op1 = canon_reg_for_combine (XEXP (x, 1), reg); 8510 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1)) 8511 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1); 8512 break; 8513 8514 case RTX_COMPARE: 8515 case RTX_COMM_COMPARE: 8516 op0 = canon_reg_for_combine (XEXP (x, 0), reg); 8517 op1 = canon_reg_for_combine (XEXP (x, 1), reg); 8518 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1)) 8519 return simplify_gen_relational (GET_CODE (x), GET_MODE (x), 8520 GET_MODE (op0), op0, op1); 8521 break; 8522 8523 case RTX_TERNARY: 8524 case RTX_BITFIELD_OPS: 8525 op0 = canon_reg_for_combine (XEXP (x, 0), reg); 8526 op1 = canon_reg_for_combine (XEXP (x, 1), reg); 8527 op2 = canon_reg_for_combine (XEXP (x, 2), reg); 8528 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2)) 8529 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x), 8530 GET_MODE (op0), op0, op1, op2); 8531 /* FALLTHRU */ 8532 8533 case RTX_OBJ: 8534 if (REG_P (x)) 8535 { 8536 if (rtx_equal_p (get_last_value (reg), x) 8537 || rtx_equal_p (reg, get_last_value (x))) 8538 return reg; 8539 else 8540 break; 8541 } 8542 8543 /* fall through */ 8544 8545 default: 8546 fmt = GET_RTX_FORMAT (code); 8547 copied = false; 8548 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 8549 if (fmt[i] == 'e') 8550 { 8551 rtx op = canon_reg_for_combine (XEXP (x, i), reg); 8552 if (op != XEXP (x, i)) 8553 { 8554 if (!copied) 8555 { 8556 copied = true; 8557 x = copy_rtx (x); 8558 } 8559 XEXP (x, i) = op; 8560 } 8561 } 8562 else if (fmt[i] == 'E') 8563 { 8564 int j; 8565 for (j = 0; j < XVECLEN (x, i); j++) 8566 { 8567 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg); 8568 if (op != XVECEXP (x, i, j)) 8569 { 8570 if (!copied) 8571 { 8572 copied = true; 8573 x = copy_rtx (x); 8574 } 8575 XVECEXP (x, i, j) = op; 8576 } 8577 } 8578 } 8579 8580 break; 8581 } 8582 8583 return x; 8584 } 8585 8586 /* Return X converted to MODE. If the value is already truncated to 8587 MODE we can just return a subreg even though in the general case we 8588 would need an explicit truncation. */ 8589 8590 static rtx 8591 gen_lowpart_or_truncate (machine_mode mode, rtx x) 8592 { 8593 if (!CONST_INT_P (x) 8594 && partial_subreg_p (mode, GET_MODE (x)) 8595 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x)) 8596 && !(REG_P (x) && reg_truncated_to_mode (mode, x))) 8597 { 8598 /* Bit-cast X into an integer mode. */ 8599 if (!SCALAR_INT_MODE_P (GET_MODE (x))) 8600 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x); 8601 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (), 8602 x, GET_MODE (x)); 8603 } 8604 8605 return gen_lowpart (mode, x); 8606 } 8607 8608 /* See if X can be simplified knowing that we will only refer to it in 8609 MODE and will only refer to those bits that are nonzero in MASK. 8610 If other bits are being computed or if masking operations are done 8611 that select a superset of the bits in MASK, they can sometimes be 8612 ignored. 8613 8614 Return a possibly simplified expression, but always convert X to 8615 MODE. If X is a CONST_INT, AND the CONST_INT with MASK. 8616 8617 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK 8618 are all off in X. This is used when X will be complemented, by either 8619 NOT, NEG, or XOR. */ 8620 8621 static rtx 8622 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask, 8623 int just_select) 8624 { 8625 enum rtx_code code = GET_CODE (x); 8626 int next_select = just_select || code == XOR || code == NOT || code == NEG; 8627 machine_mode op_mode; 8628 unsigned HOST_WIDE_INT nonzero; 8629 8630 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the 8631 code below will do the wrong thing since the mode of such an 8632 expression is VOIDmode. 8633 8634 Also do nothing if X is a CLOBBER; this can happen if X was 8635 the return value from a call to gen_lowpart. */ 8636 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER) 8637 return x; 8638 8639 /* We want to perform the operation in its present mode unless we know 8640 that the operation is valid in MODE, in which case we do the operation 8641 in MODE. */ 8642 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x)) 8643 && have_insn_for (code, mode)) 8644 ? mode : GET_MODE (x)); 8645 8646 /* It is not valid to do a right-shift in a narrower mode 8647 than the one it came in with. */ 8648 if ((code == LSHIFTRT || code == ASHIFTRT) 8649 && partial_subreg_p (mode, GET_MODE (x))) 8650 op_mode = GET_MODE (x); 8651 8652 /* Truncate MASK to fit OP_MODE. */ 8653 if (op_mode) 8654 mask &= GET_MODE_MASK (op_mode); 8655 8656 /* Determine what bits of X are guaranteed to be (non)zero. */ 8657 nonzero = nonzero_bits (x, mode); 8658 8659 /* If none of the bits in X are needed, return a zero. */ 8660 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x)) 8661 x = const0_rtx; 8662 8663 /* If X is a CONST_INT, return a new one. Do this here since the 8664 test below will fail. */ 8665 if (CONST_INT_P (x)) 8666 { 8667 if (SCALAR_INT_MODE_P (mode)) 8668 return gen_int_mode (INTVAL (x) & mask, mode); 8669 else 8670 { 8671 x = GEN_INT (INTVAL (x) & mask); 8672 return gen_lowpart_common (mode, x); 8673 } 8674 } 8675 8676 /* If X is narrower than MODE and we want all the bits in X's mode, just 8677 get X in the proper mode. */ 8678 if (paradoxical_subreg_p (mode, GET_MODE (x)) 8679 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0) 8680 return gen_lowpart (mode, x); 8681 8682 /* We can ignore the effect of a SUBREG if it narrows the mode or 8683 if the constant masks to zero all the bits the mode doesn't have. */ 8684 if (GET_CODE (x) == SUBREG 8685 && subreg_lowpart_p (x) 8686 && (partial_subreg_p (x) 8687 || (mask 8688 & GET_MODE_MASK (GET_MODE (x)) 8689 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0)) 8690 return force_to_mode (SUBREG_REG (x), mode, mask, next_select); 8691 8692 scalar_int_mode int_mode, xmode; 8693 if (is_a <scalar_int_mode> (mode, &int_mode) 8694 && is_a <scalar_int_mode> (GET_MODE (x), &xmode)) 8695 /* OP_MODE is either MODE or XMODE, so it must be a scalar 8696 integer too. */ 8697 return force_int_to_mode (x, int_mode, xmode, 8698 as_a <scalar_int_mode> (op_mode), 8699 mask, just_select); 8700 8701 return gen_lowpart_or_truncate (mode, x); 8702 } 8703 8704 /* Subroutine of force_to_mode that handles cases in which both X and 8705 the result are scalar integers. MODE is the mode of the result, 8706 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE 8707 is preferred for simplified versions of X. The other arguments 8708 are as for force_to_mode. */ 8709 8710 static rtx 8711 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode, 8712 scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask, 8713 int just_select) 8714 { 8715 enum rtx_code code = GET_CODE (x); 8716 int next_select = just_select || code == XOR || code == NOT || code == NEG; 8717 unsigned HOST_WIDE_INT fuller_mask; 8718 rtx op0, op1, temp; 8719 8720 /* When we have an arithmetic operation, or a shift whose count we 8721 do not know, we need to assume that all bits up to the highest-order 8722 bit in MASK will be needed. This is how we form such a mask. */ 8723 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1))) 8724 fuller_mask = HOST_WIDE_INT_M1U; 8725 else 8726 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1)) 8727 - 1); 8728 8729 switch (code) 8730 { 8731 case CLOBBER: 8732 /* If X is a (clobber (const_int)), return it since we know we are 8733 generating something that won't match. */ 8734 return x; 8735 8736 case SIGN_EXTEND: 8737 case ZERO_EXTEND: 8738 case ZERO_EXTRACT: 8739 case SIGN_EXTRACT: 8740 x = expand_compound_operation (x); 8741 if (GET_CODE (x) != code) 8742 return force_to_mode (x, mode, mask, next_select); 8743 break; 8744 8745 case TRUNCATE: 8746 /* Similarly for a truncate. */ 8747 return force_to_mode (XEXP (x, 0), mode, mask, next_select); 8748 8749 case AND: 8750 /* If this is an AND with a constant, convert it into an AND 8751 whose constant is the AND of that constant with MASK. If it 8752 remains an AND of MASK, delete it since it is redundant. */ 8753 8754 if (CONST_INT_P (XEXP (x, 1))) 8755 { 8756 x = simplify_and_const_int (x, op_mode, XEXP (x, 0), 8757 mask & INTVAL (XEXP (x, 1))); 8758 xmode = op_mode; 8759 8760 /* If X is still an AND, see if it is an AND with a mask that 8761 is just some low-order bits. If so, and it is MASK, we don't 8762 need it. */ 8763 8764 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)) 8765 && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask) 8766 x = XEXP (x, 0); 8767 8768 /* If it remains an AND, try making another AND with the bits 8769 in the mode mask that aren't in MASK turned on. If the 8770 constant in the AND is wide enough, this might make a 8771 cheaper constant. */ 8772 8773 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)) 8774 && GET_MODE_MASK (xmode) != mask 8775 && HWI_COMPUTABLE_MODE_P (xmode)) 8776 { 8777 unsigned HOST_WIDE_INT cval 8778 = UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask); 8779 rtx y; 8780 8781 y = simplify_gen_binary (AND, xmode, XEXP (x, 0), 8782 gen_int_mode (cval, xmode)); 8783 if (set_src_cost (y, xmode, optimize_this_for_speed_p) 8784 < set_src_cost (x, xmode, optimize_this_for_speed_p)) 8785 x = y; 8786 } 8787 8788 break; 8789 } 8790 8791 goto binop; 8792 8793 case PLUS: 8794 /* In (and (plus FOO C1) M), if M is a mask that just turns off 8795 low-order bits (as in an alignment operation) and FOO is already 8796 aligned to that boundary, mask C1 to that boundary as well. 8797 This may eliminate that PLUS and, later, the AND. */ 8798 8799 { 8800 unsigned int width = GET_MODE_PRECISION (mode); 8801 unsigned HOST_WIDE_INT smask = mask; 8802 8803 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative 8804 number, sign extend it. */ 8805 8806 if (width < HOST_BITS_PER_WIDE_INT 8807 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0) 8808 smask |= HOST_WIDE_INT_M1U << width; 8809 8810 if (CONST_INT_P (XEXP (x, 1)) 8811 && pow2p_hwi (- smask) 8812 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0 8813 && (INTVAL (XEXP (x, 1)) & ~smask) != 0) 8814 return force_to_mode (plus_constant (xmode, XEXP (x, 0), 8815 (INTVAL (XEXP (x, 1)) & smask)), 8816 mode, smask, next_select); 8817 } 8818 8819 /* fall through */ 8820 8821 case MULT: 8822 /* Substituting into the operands of a widening MULT is not likely to 8823 create RTL matching a machine insn. */ 8824 if (code == MULT 8825 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND 8826 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND) 8827 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND 8828 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND) 8829 && REG_P (XEXP (XEXP (x, 0), 0)) 8830 && REG_P (XEXP (XEXP (x, 1), 0))) 8831 return gen_lowpart_or_truncate (mode, x); 8832 8833 /* For PLUS, MINUS and MULT, we need any bits less significant than the 8834 most significant bit in MASK since carries from those bits will 8835 affect the bits we are interested in. */ 8836 mask = fuller_mask; 8837 goto binop; 8838 8839 case MINUS: 8840 /* If X is (minus C Y) where C's least set bit is larger than any bit 8841 in the mask, then we may replace with (neg Y). */ 8842 if (CONST_INT_P (XEXP (x, 0)) 8843 && least_bit_hwi (UINTVAL (XEXP (x, 0))) > mask) 8844 { 8845 x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode); 8846 return force_to_mode (x, mode, mask, next_select); 8847 } 8848 8849 /* Similarly, if C contains every bit in the fuller_mask, then we may 8850 replace with (not Y). */ 8851 if (CONST_INT_P (XEXP (x, 0)) 8852 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0)))) 8853 { 8854 x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode); 8855 return force_to_mode (x, mode, mask, next_select); 8856 } 8857 8858 mask = fuller_mask; 8859 goto binop; 8860 8861 case IOR: 8862 case XOR: 8863 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and 8864 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...) 8865 operation which may be a bitfield extraction. Ensure that the 8866 constant we form is not wider than the mode of X. */ 8867 8868 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT 8869 && CONST_INT_P (XEXP (XEXP (x, 0), 1)) 8870 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0 8871 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT 8872 && CONST_INT_P (XEXP (x, 1)) 8873 && ((INTVAL (XEXP (XEXP (x, 0), 1)) 8874 + floor_log2 (INTVAL (XEXP (x, 1)))) 8875 < GET_MODE_PRECISION (xmode)) 8876 && (UINTVAL (XEXP (x, 1)) 8877 & ~nonzero_bits (XEXP (x, 0), xmode)) == 0) 8878 { 8879 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask) 8880 << INTVAL (XEXP (XEXP (x, 0), 1)), 8881 xmode); 8882 temp = simplify_gen_binary (GET_CODE (x), xmode, 8883 XEXP (XEXP (x, 0), 0), temp); 8884 x = simplify_gen_binary (LSHIFTRT, xmode, temp, 8885 XEXP (XEXP (x, 0), 1)); 8886 return force_to_mode (x, mode, mask, next_select); 8887 } 8888 8889 binop: 8890 /* For most binary operations, just propagate into the operation and 8891 change the mode if we have an operation of that mode. */ 8892 8893 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select); 8894 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select); 8895 8896 /* If we ended up truncating both operands, truncate the result of the 8897 operation instead. */ 8898 if (GET_CODE (op0) == TRUNCATE 8899 && GET_CODE (op1) == TRUNCATE) 8900 { 8901 op0 = XEXP (op0, 0); 8902 op1 = XEXP (op1, 0); 8903 } 8904 8905 op0 = gen_lowpart_or_truncate (op_mode, op0); 8906 op1 = gen_lowpart_or_truncate (op_mode, op1); 8907 8908 if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1)) 8909 { 8910 x = simplify_gen_binary (code, op_mode, op0, op1); 8911 xmode = op_mode; 8912 } 8913 break; 8914 8915 case ASHIFT: 8916 /* For left shifts, do the same, but just for the first operand. 8917 However, we cannot do anything with shifts where we cannot 8918 guarantee that the counts are smaller than the size of the mode 8919 because such a count will have a different meaning in a 8920 wider mode. */ 8921 8922 if (! (CONST_INT_P (XEXP (x, 1)) 8923 && INTVAL (XEXP (x, 1)) >= 0 8924 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode)) 8925 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode 8926 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1))) 8927 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode)))) 8928 break; 8929 8930 /* If the shift count is a constant and we can do arithmetic in 8931 the mode of the shift, refine which bits we need. Otherwise, use the 8932 conservative form of the mask. */ 8933 if (CONST_INT_P (XEXP (x, 1)) 8934 && INTVAL (XEXP (x, 1)) >= 0 8935 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode) 8936 && HWI_COMPUTABLE_MODE_P (op_mode)) 8937 mask >>= INTVAL (XEXP (x, 1)); 8938 else 8939 mask = fuller_mask; 8940 8941 op0 = gen_lowpart_or_truncate (op_mode, 8942 force_to_mode (XEXP (x, 0), mode, 8943 mask, next_select)); 8944 8945 if (op_mode != xmode || op0 != XEXP (x, 0)) 8946 { 8947 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1)); 8948 xmode = op_mode; 8949 } 8950 break; 8951 8952 case LSHIFTRT: 8953 /* Here we can only do something if the shift count is a constant, 8954 this shift constant is valid for the host, and we can do arithmetic 8955 in OP_MODE. */ 8956 8957 if (CONST_INT_P (XEXP (x, 1)) 8958 && INTVAL (XEXP (x, 1)) >= 0 8959 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT 8960 && HWI_COMPUTABLE_MODE_P (op_mode)) 8961 { 8962 rtx inner = XEXP (x, 0); 8963 unsigned HOST_WIDE_INT inner_mask; 8964 8965 /* Select the mask of the bits we need for the shift operand. */ 8966 inner_mask = mask << INTVAL (XEXP (x, 1)); 8967 8968 /* We can only change the mode of the shift if we can do arithmetic 8969 in the mode of the shift and INNER_MASK is no wider than the 8970 width of X's mode. */ 8971 if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0) 8972 op_mode = xmode; 8973 8974 inner = force_to_mode (inner, op_mode, inner_mask, next_select); 8975 8976 if (xmode != op_mode || inner != XEXP (x, 0)) 8977 { 8978 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1)); 8979 xmode = op_mode; 8980 } 8981 } 8982 8983 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the 8984 shift and AND produces only copies of the sign bit (C2 is one less 8985 than a power of two), we can do this with just a shift. */ 8986 8987 if (GET_CODE (x) == LSHIFTRT 8988 && CONST_INT_P (XEXP (x, 1)) 8989 /* The shift puts one of the sign bit copies in the least significant 8990 bit. */ 8991 && ((INTVAL (XEXP (x, 1)) 8992 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))) 8993 >= GET_MODE_PRECISION (xmode)) 8994 && pow2p_hwi (mask + 1) 8995 /* Number of bits left after the shift must be more than the mask 8996 needs. */ 8997 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1)) 8998 <= GET_MODE_PRECISION (xmode)) 8999 /* Must be more sign bit copies than the mask needs. */ 9000 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))) 9001 >= exact_log2 (mask + 1))) 9002 { 9003 int nbits = GET_MODE_PRECISION (xmode) - exact_log2 (mask + 1); 9004 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), 9005 gen_int_shift_amount (xmode, nbits)); 9006 } 9007 goto shiftrt; 9008 9009 case ASHIFTRT: 9010 /* If we are just looking for the sign bit, we don't need this shift at 9011 all, even if it has a variable count. */ 9012 if (val_signbit_p (xmode, mask)) 9013 return force_to_mode (XEXP (x, 0), mode, mask, next_select); 9014 9015 /* If this is a shift by a constant, get a mask that contains those bits 9016 that are not copies of the sign bit. We then have two cases: If 9017 MASK only includes those bits, this can be a logical shift, which may 9018 allow simplifications. If MASK is a single-bit field not within 9019 those bits, we are requesting a copy of the sign bit and hence can 9020 shift the sign bit to the appropriate location. */ 9021 9022 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0 9023 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT) 9024 { 9025 unsigned HOST_WIDE_INT nonzero; 9026 int i; 9027 9028 /* If the considered data is wider than HOST_WIDE_INT, we can't 9029 represent a mask for all its bits in a single scalar. 9030 But we only care about the lower bits, so calculate these. */ 9031 9032 if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT) 9033 { 9034 nonzero = HOST_WIDE_INT_M1U; 9035 9036 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1)) 9037 is the number of bits a full-width mask would have set. 9038 We need only shift if these are fewer than nonzero can 9039 hold. If not, we must keep all bits set in nonzero. */ 9040 9041 if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1)) 9042 < HOST_BITS_PER_WIDE_INT) 9043 nonzero >>= INTVAL (XEXP (x, 1)) 9044 + HOST_BITS_PER_WIDE_INT 9045 - GET_MODE_PRECISION (xmode); 9046 } 9047 else 9048 { 9049 nonzero = GET_MODE_MASK (xmode); 9050 nonzero >>= INTVAL (XEXP (x, 1)); 9051 } 9052 9053 if ((mask & ~nonzero) == 0) 9054 { 9055 x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode, 9056 XEXP (x, 0), INTVAL (XEXP (x, 1))); 9057 if (GET_CODE (x) != ASHIFTRT) 9058 return force_to_mode (x, mode, mask, next_select); 9059 } 9060 9061 else if ((i = exact_log2 (mask)) >= 0) 9062 { 9063 x = simplify_shift_const 9064 (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0), 9065 GET_MODE_PRECISION (xmode) - 1 - i); 9066 9067 if (GET_CODE (x) != ASHIFTRT) 9068 return force_to_mode (x, mode, mask, next_select); 9069 } 9070 } 9071 9072 /* If MASK is 1, convert this to an LSHIFTRT. This can be done 9073 even if the shift count isn't a constant. */ 9074 if (mask == 1) 9075 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1)); 9076 9077 shiftrt: 9078 9079 /* If this is a zero- or sign-extension operation that just affects bits 9080 we don't care about, remove it. Be sure the call above returned 9081 something that is still a shift. */ 9082 9083 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT) 9084 && CONST_INT_P (XEXP (x, 1)) 9085 && INTVAL (XEXP (x, 1)) >= 0 9086 && (INTVAL (XEXP (x, 1)) 9087 <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1)) 9088 && GET_CODE (XEXP (x, 0)) == ASHIFT 9089 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1)) 9090 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask, 9091 next_select); 9092 9093 break; 9094 9095 case ROTATE: 9096 case ROTATERT: 9097 /* If the shift count is constant and we can do computations 9098 in the mode of X, compute where the bits we care about are. 9099 Otherwise, we can't do anything. Don't change the mode of 9100 the shift or propagate MODE into the shift, though. */ 9101 if (CONST_INT_P (XEXP (x, 1)) 9102 && INTVAL (XEXP (x, 1)) >= 0) 9103 { 9104 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE, 9105 xmode, gen_int_mode (mask, xmode), 9106 XEXP (x, 1)); 9107 if (temp && CONST_INT_P (temp)) 9108 x = simplify_gen_binary (code, xmode, 9109 force_to_mode (XEXP (x, 0), xmode, 9110 INTVAL (temp), next_select), 9111 XEXP (x, 1)); 9112 } 9113 break; 9114 9115 case NEG: 9116 /* If we just want the low-order bit, the NEG isn't needed since it 9117 won't change the low-order bit. */ 9118 if (mask == 1) 9119 return force_to_mode (XEXP (x, 0), mode, mask, just_select); 9120 9121 /* We need any bits less significant than the most significant bit in 9122 MASK since carries from those bits will affect the bits we are 9123 interested in. */ 9124 mask = fuller_mask; 9125 goto unop; 9126 9127 case NOT: 9128 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the 9129 same as the XOR case above. Ensure that the constant we form is not 9130 wider than the mode of X. */ 9131 9132 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT 9133 && CONST_INT_P (XEXP (XEXP (x, 0), 1)) 9134 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0 9135 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask) 9136 < GET_MODE_PRECISION (xmode)) 9137 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT) 9138 { 9139 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode); 9140 temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp); 9141 x = simplify_gen_binary (LSHIFTRT, xmode, 9142 temp, XEXP (XEXP (x, 0), 1)); 9143 9144 return force_to_mode (x, mode, mask, next_select); 9145 } 9146 9147 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must 9148 use the full mask inside the NOT. */ 9149 mask = fuller_mask; 9150 9151 unop: 9152 op0 = gen_lowpart_or_truncate (op_mode, 9153 force_to_mode (XEXP (x, 0), mode, mask, 9154 next_select)); 9155 if (op_mode != xmode || op0 != XEXP (x, 0)) 9156 { 9157 x = simplify_gen_unary (code, op_mode, op0, op_mode); 9158 xmode = op_mode; 9159 } 9160 break; 9161 9162 case NE: 9163 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included 9164 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero, 9165 which is equal to STORE_FLAG_VALUE. */ 9166 if ((mask & ~STORE_FLAG_VALUE) == 0 9167 && XEXP (x, 1) == const0_rtx 9168 && GET_MODE (XEXP (x, 0)) == mode 9169 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode)) 9170 && (nonzero_bits (XEXP (x, 0), mode) 9171 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE)) 9172 return force_to_mode (XEXP (x, 0), mode, mask, next_select); 9173 9174 break; 9175 9176 case IF_THEN_ELSE: 9177 /* We have no way of knowing if the IF_THEN_ELSE can itself be 9178 written in a narrower mode. We play it safe and do not do so. */ 9179 9180 op0 = gen_lowpart_or_truncate (xmode, 9181 force_to_mode (XEXP (x, 1), mode, 9182 mask, next_select)); 9183 op1 = gen_lowpart_or_truncate (xmode, 9184 force_to_mode (XEXP (x, 2), mode, 9185 mask, next_select)); 9186 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2)) 9187 x = simplify_gen_ternary (IF_THEN_ELSE, xmode, 9188 GET_MODE (XEXP (x, 0)), XEXP (x, 0), 9189 op0, op1); 9190 break; 9191 9192 default: 9193 break; 9194 } 9195 9196 /* Ensure we return a value of the proper mode. */ 9197 return gen_lowpart_or_truncate (mode, x); 9198 } 9199 9200 /* Return nonzero if X is an expression that has one of two values depending on 9201 whether some other value is zero or nonzero. In that case, we return the 9202 value that is being tested, *PTRUE is set to the value if the rtx being 9203 returned has a nonzero value, and *PFALSE is set to the other alternative. 9204 9205 If we return zero, we set *PTRUE and *PFALSE to X. */ 9206 9207 static rtx 9208 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse) 9209 { 9210 machine_mode mode = GET_MODE (x); 9211 enum rtx_code code = GET_CODE (x); 9212 rtx cond0, cond1, true0, true1, false0, false1; 9213 unsigned HOST_WIDE_INT nz; 9214 scalar_int_mode int_mode; 9215 9216 /* If we are comparing a value against zero, we are done. */ 9217 if ((code == NE || code == EQ) 9218 && XEXP (x, 1) == const0_rtx) 9219 { 9220 *ptrue = (code == NE) ? const_true_rtx : const0_rtx; 9221 *pfalse = (code == NE) ? const0_rtx : const_true_rtx; 9222 return XEXP (x, 0); 9223 } 9224 9225 /* If this is a unary operation whose operand has one of two values, apply 9226 our opcode to compute those values. */ 9227 else if (UNARY_P (x) 9228 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0) 9229 { 9230 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0))); 9231 *pfalse = simplify_gen_unary (code, mode, false0, 9232 GET_MODE (XEXP (x, 0))); 9233 return cond0; 9234 } 9235 9236 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would 9237 make can't possibly match and would suppress other optimizations. */ 9238 else if (code == COMPARE) 9239 ; 9240 9241 /* If this is a binary operation, see if either side has only one of two 9242 values. If either one does or if both do and they are conditional on 9243 the same value, compute the new true and false values. */ 9244 else if (BINARY_P (x)) 9245 { 9246 rtx op0 = XEXP (x, 0); 9247 rtx op1 = XEXP (x, 1); 9248 cond0 = if_then_else_cond (op0, &true0, &false0); 9249 cond1 = if_then_else_cond (op1, &true1, &false1); 9250 9251 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)) 9252 && (REG_P (op0) || REG_P (op1))) 9253 { 9254 /* Try to enable a simplification by undoing work done by 9255 if_then_else_cond if it converted a REG into something more 9256 complex. */ 9257 if (REG_P (op0)) 9258 { 9259 cond0 = 0; 9260 true0 = false0 = op0; 9261 } 9262 else 9263 { 9264 cond1 = 0; 9265 true1 = false1 = op1; 9266 } 9267 } 9268 9269 if ((cond0 != 0 || cond1 != 0) 9270 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))) 9271 { 9272 /* If if_then_else_cond returned zero, then true/false are the 9273 same rtl. We must copy one of them to prevent invalid rtl 9274 sharing. */ 9275 if (cond0 == 0) 9276 true0 = copy_rtx (true0); 9277 else if (cond1 == 0) 9278 true1 = copy_rtx (true1); 9279 9280 if (COMPARISON_P (x)) 9281 { 9282 *ptrue = simplify_gen_relational (code, mode, VOIDmode, 9283 true0, true1); 9284 *pfalse = simplify_gen_relational (code, mode, VOIDmode, 9285 false0, false1); 9286 } 9287 else 9288 { 9289 *ptrue = simplify_gen_binary (code, mode, true0, true1); 9290 *pfalse = simplify_gen_binary (code, mode, false0, false1); 9291 } 9292 9293 return cond0 ? cond0 : cond1; 9294 } 9295 9296 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the 9297 operands is zero when the other is nonzero, and vice-versa, 9298 and STORE_FLAG_VALUE is 1 or -1. */ 9299 9300 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1) 9301 && (code == PLUS || code == IOR || code == XOR || code == MINUS 9302 || code == UMAX) 9303 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT) 9304 { 9305 rtx op0 = XEXP (XEXP (x, 0), 1); 9306 rtx op1 = XEXP (XEXP (x, 1), 1); 9307 9308 cond0 = XEXP (XEXP (x, 0), 0); 9309 cond1 = XEXP (XEXP (x, 1), 0); 9310 9311 if (COMPARISON_P (cond0) 9312 && COMPARISON_P (cond1) 9313 && SCALAR_INT_MODE_P (mode) 9314 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL) 9315 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0)) 9316 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1))) 9317 || ((swap_condition (GET_CODE (cond0)) 9318 == reversed_comparison_code (cond1, NULL)) 9319 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1)) 9320 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0)))) 9321 && ! side_effects_p (x)) 9322 { 9323 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx); 9324 *pfalse = simplify_gen_binary (MULT, mode, 9325 (code == MINUS 9326 ? simplify_gen_unary (NEG, mode, 9327 op1, mode) 9328 : op1), 9329 const_true_rtx); 9330 return cond0; 9331 } 9332 } 9333 9334 /* Similarly for MULT, AND and UMIN, except that for these the result 9335 is always zero. */ 9336 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1) 9337 && (code == MULT || code == AND || code == UMIN) 9338 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT) 9339 { 9340 cond0 = XEXP (XEXP (x, 0), 0); 9341 cond1 = XEXP (XEXP (x, 1), 0); 9342 9343 if (COMPARISON_P (cond0) 9344 && COMPARISON_P (cond1) 9345 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL) 9346 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0)) 9347 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1))) 9348 || ((swap_condition (GET_CODE (cond0)) 9349 == reversed_comparison_code (cond1, NULL)) 9350 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1)) 9351 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0)))) 9352 && ! side_effects_p (x)) 9353 { 9354 *ptrue = *pfalse = const0_rtx; 9355 return cond0; 9356 } 9357 } 9358 } 9359 9360 else if (code == IF_THEN_ELSE) 9361 { 9362 /* If we have IF_THEN_ELSE already, extract the condition and 9363 canonicalize it if it is NE or EQ. */ 9364 cond0 = XEXP (x, 0); 9365 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2); 9366 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx) 9367 return XEXP (cond0, 0); 9368 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx) 9369 { 9370 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1); 9371 return XEXP (cond0, 0); 9372 } 9373 else 9374 return cond0; 9375 } 9376 9377 /* If X is a SUBREG, we can narrow both the true and false values 9378 if the inner expression, if there is a condition. */ 9379 else if (code == SUBREG 9380 && (cond0 = if_then_else_cond (SUBREG_REG (x), &true0, 9381 &false0)) != 0) 9382 { 9383 true0 = simplify_gen_subreg (mode, true0, 9384 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x)); 9385 false0 = simplify_gen_subreg (mode, false0, 9386 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x)); 9387 if (true0 && false0) 9388 { 9389 *ptrue = true0; 9390 *pfalse = false0; 9391 return cond0; 9392 } 9393 } 9394 9395 /* If X is a constant, this isn't special and will cause confusions 9396 if we treat it as such. Likewise if it is equivalent to a constant. */ 9397 else if (CONSTANT_P (x) 9398 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0))) 9399 ; 9400 9401 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that 9402 will be least confusing to the rest of the compiler. */ 9403 else if (mode == BImode) 9404 { 9405 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx; 9406 return x; 9407 } 9408 9409 /* If X is known to be either 0 or -1, those are the true and 9410 false values when testing X. */ 9411 else if (x == constm1_rtx || x == const0_rtx 9412 || (is_a <scalar_int_mode> (mode, &int_mode) 9413 && (num_sign_bit_copies (x, int_mode) 9414 == GET_MODE_PRECISION (int_mode)))) 9415 { 9416 *ptrue = constm1_rtx, *pfalse = const0_rtx; 9417 return x; 9418 } 9419 9420 /* Likewise for 0 or a single bit. */ 9421 else if (HWI_COMPUTABLE_MODE_P (mode) 9422 && pow2p_hwi (nz = nonzero_bits (x, mode))) 9423 { 9424 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx; 9425 return x; 9426 } 9427 9428 /* Otherwise fail; show no condition with true and false values the same. */ 9429 *ptrue = *pfalse = x; 9430 return 0; 9431 } 9432 9433 /* Return the value of expression X given the fact that condition COND 9434 is known to be true when applied to REG as its first operand and VAL 9435 as its second. X is known to not be shared and so can be modified in 9436 place. 9437 9438 We only handle the simplest cases, and specifically those cases that 9439 arise with IF_THEN_ELSE expressions. */ 9440 9441 static rtx 9442 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val) 9443 { 9444 enum rtx_code code = GET_CODE (x); 9445 const char *fmt; 9446 int i, j; 9447 9448 if (side_effects_p (x)) 9449 return x; 9450 9451 /* If either operand of the condition is a floating point value, 9452 then we have to avoid collapsing an EQ comparison. */ 9453 if (cond == EQ 9454 && rtx_equal_p (x, reg) 9455 && ! FLOAT_MODE_P (GET_MODE (x)) 9456 && ! FLOAT_MODE_P (GET_MODE (val))) 9457 return val; 9458 9459 if (cond == UNEQ && rtx_equal_p (x, reg)) 9460 return val; 9461 9462 /* If X is (abs REG) and we know something about REG's relationship 9463 with zero, we may be able to simplify this. */ 9464 9465 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx) 9466 switch (cond) 9467 { 9468 case GE: case GT: case EQ: 9469 return XEXP (x, 0); 9470 case LT: case LE: 9471 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)), 9472 XEXP (x, 0), 9473 GET_MODE (XEXP (x, 0))); 9474 default: 9475 break; 9476 } 9477 9478 /* The only other cases we handle are MIN, MAX, and comparisons if the 9479 operands are the same as REG and VAL. */ 9480 9481 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x)) 9482 { 9483 if (rtx_equal_p (XEXP (x, 0), val)) 9484 { 9485 std::swap (val, reg); 9486 cond = swap_condition (cond); 9487 } 9488 9489 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val)) 9490 { 9491 if (COMPARISON_P (x)) 9492 { 9493 if (comparison_dominates_p (cond, code)) 9494 return VECTOR_MODE_P (GET_MODE (x)) ? x : const_true_rtx; 9495 9496 code = reversed_comparison_code (x, NULL); 9497 if (code != UNKNOWN 9498 && comparison_dominates_p (cond, code)) 9499 return CONST0_RTX (GET_MODE (x)); 9500 else 9501 return x; 9502 } 9503 else if (code == SMAX || code == SMIN 9504 || code == UMIN || code == UMAX) 9505 { 9506 int unsignedp = (code == UMIN || code == UMAX); 9507 9508 /* Do not reverse the condition when it is NE or EQ. 9509 This is because we cannot conclude anything about 9510 the value of 'SMAX (x, y)' when x is not equal to y, 9511 but we can when x equals y. */ 9512 if ((code == SMAX || code == UMAX) 9513 && ! (cond == EQ || cond == NE)) 9514 cond = reverse_condition (cond); 9515 9516 switch (cond) 9517 { 9518 case GE: case GT: 9519 return unsignedp ? x : XEXP (x, 1); 9520 case LE: case LT: 9521 return unsignedp ? x : XEXP (x, 0); 9522 case GEU: case GTU: 9523 return unsignedp ? XEXP (x, 1) : x; 9524 case LEU: case LTU: 9525 return unsignedp ? XEXP (x, 0) : x; 9526 default: 9527 break; 9528 } 9529 } 9530 } 9531 } 9532 else if (code == SUBREG) 9533 { 9534 machine_mode inner_mode = GET_MODE (SUBREG_REG (x)); 9535 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val); 9536 9537 if (SUBREG_REG (x) != r) 9538 { 9539 /* We must simplify subreg here, before we lose track of the 9540 original inner_mode. */ 9541 new_rtx = simplify_subreg (GET_MODE (x), r, 9542 inner_mode, SUBREG_BYTE (x)); 9543 if (new_rtx) 9544 return new_rtx; 9545 else 9546 SUBST (SUBREG_REG (x), r); 9547 } 9548 9549 return x; 9550 } 9551 /* We don't have to handle SIGN_EXTEND here, because even in the 9552 case of replacing something with a modeless CONST_INT, a 9553 CONST_INT is already (supposed to be) a valid sign extension for 9554 its narrower mode, which implies it's already properly 9555 sign-extended for the wider mode. Now, for ZERO_EXTEND, the 9556 story is different. */ 9557 else if (code == ZERO_EXTEND) 9558 { 9559 machine_mode inner_mode = GET_MODE (XEXP (x, 0)); 9560 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val); 9561 9562 if (XEXP (x, 0) != r) 9563 { 9564 /* We must simplify the zero_extend here, before we lose 9565 track of the original inner_mode. */ 9566 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x), 9567 r, inner_mode); 9568 if (new_rtx) 9569 return new_rtx; 9570 else 9571 SUBST (XEXP (x, 0), r); 9572 } 9573 9574 return x; 9575 } 9576 9577 fmt = GET_RTX_FORMAT (code); 9578 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 9579 { 9580 if (fmt[i] == 'e') 9581 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val)); 9582 else if (fmt[i] == 'E') 9583 for (j = XVECLEN (x, i) - 1; j >= 0; j--) 9584 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j), 9585 cond, reg, val)); 9586 } 9587 9588 return x; 9589 } 9590 9591 /* See if X and Y are equal for the purposes of seeing if we can rewrite an 9592 assignment as a field assignment. */ 9593 9594 static int 9595 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x) 9596 { 9597 if (widen_x && GET_MODE (x) != GET_MODE (y)) 9598 { 9599 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y))) 9600 return 0; 9601 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN) 9602 return 0; 9603 x = adjust_address_nv (x, GET_MODE (y), 9604 byte_lowpart_offset (GET_MODE (y), 9605 GET_MODE (x))); 9606 } 9607 9608 if (x == y || rtx_equal_p (x, y)) 9609 return 1; 9610 9611 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y)) 9612 return 0; 9613 9614 /* Check for a paradoxical SUBREG of a MEM compared with the MEM. 9615 Note that all SUBREGs of MEM are paradoxical; otherwise they 9616 would have been rewritten. */ 9617 if (MEM_P (x) && GET_CODE (y) == SUBREG 9618 && MEM_P (SUBREG_REG (y)) 9619 && rtx_equal_p (SUBREG_REG (y), 9620 gen_lowpart (GET_MODE (SUBREG_REG (y)), x))) 9621 return 1; 9622 9623 if (MEM_P (y) && GET_CODE (x) == SUBREG 9624 && MEM_P (SUBREG_REG (x)) 9625 && rtx_equal_p (SUBREG_REG (x), 9626 gen_lowpart (GET_MODE (SUBREG_REG (x)), y))) 9627 return 1; 9628 9629 /* We used to see if get_last_value of X and Y were the same but that's 9630 not correct. In one direction, we'll cause the assignment to have 9631 the wrong destination and in the case, we'll import a register into this 9632 insn that might have already have been dead. So fail if none of the 9633 above cases are true. */ 9634 return 0; 9635 } 9636 9637 /* See if X, a SET operation, can be rewritten as a bit-field assignment. 9638 Return that assignment if so. 9639 9640 We only handle the most common cases. */ 9641 9642 static rtx 9643 make_field_assignment (rtx x) 9644 { 9645 rtx dest = SET_DEST (x); 9646 rtx src = SET_SRC (x); 9647 rtx assign; 9648 rtx rhs, lhs; 9649 HOST_WIDE_INT c1; 9650 HOST_WIDE_INT pos; 9651 unsigned HOST_WIDE_INT len; 9652 rtx other; 9653 9654 /* All the rules in this function are specific to scalar integers. */ 9655 scalar_int_mode mode; 9656 if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode)) 9657 return x; 9658 9659 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is 9660 a clear of a one-bit field. We will have changed it to 9661 (and (rotate (const_int -2) POS) DEST), so check for that. Also check 9662 for a SUBREG. */ 9663 9664 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE 9665 && CONST_INT_P (XEXP (XEXP (src, 0), 0)) 9666 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2 9667 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1))) 9668 { 9669 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1), 9670 1, 1, 1, 0); 9671 if (assign != 0) 9672 return gen_rtx_SET (assign, const0_rtx); 9673 return x; 9674 } 9675 9676 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG 9677 && subreg_lowpart_p (XEXP (src, 0)) 9678 && partial_subreg_p (XEXP (src, 0)) 9679 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE 9680 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) 9681 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2 9682 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1))) 9683 { 9684 assign = make_extraction (VOIDmode, dest, 0, 9685 XEXP (SUBREG_REG (XEXP (src, 0)), 1), 9686 1, 1, 1, 0); 9687 if (assign != 0) 9688 return gen_rtx_SET (assign, const0_rtx); 9689 return x; 9690 } 9691 9692 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a 9693 one-bit field. */ 9694 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT 9695 && XEXP (XEXP (src, 0), 0) == const1_rtx 9696 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1))) 9697 { 9698 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1), 9699 1, 1, 1, 0); 9700 if (assign != 0) 9701 return gen_rtx_SET (assign, const1_rtx); 9702 return x; 9703 } 9704 9705 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the 9706 SRC is an AND with all bits of that field set, then we can discard 9707 the AND. */ 9708 if (GET_CODE (dest) == ZERO_EXTRACT 9709 && CONST_INT_P (XEXP (dest, 1)) 9710 && GET_CODE (src) == AND 9711 && CONST_INT_P (XEXP (src, 1))) 9712 { 9713 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1)); 9714 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1)); 9715 unsigned HOST_WIDE_INT ze_mask; 9716 9717 if (width >= HOST_BITS_PER_WIDE_INT) 9718 ze_mask = -1; 9719 else 9720 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1; 9721 9722 /* Complete overlap. We can remove the source AND. */ 9723 if ((and_mask & ze_mask) == ze_mask) 9724 return gen_rtx_SET (dest, XEXP (src, 0)); 9725 9726 /* Partial overlap. We can reduce the source AND. */ 9727 if ((and_mask & ze_mask) != and_mask) 9728 { 9729 src = gen_rtx_AND (mode, XEXP (src, 0), 9730 gen_int_mode (and_mask & ze_mask, mode)); 9731 return gen_rtx_SET (dest, src); 9732 } 9733 } 9734 9735 /* The other case we handle is assignments into a constant-position 9736 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents 9737 a mask that has all one bits except for a group of zero bits and 9738 OTHER is known to have zeros where C1 has ones, this is such an 9739 assignment. Compute the position and length from C1. Shift OTHER 9740 to the appropriate position, force it to the required mode, and 9741 make the extraction. Check for the AND in both operands. */ 9742 9743 /* One or more SUBREGs might obscure the constant-position field 9744 assignment. The first one we are likely to encounter is an outer 9745 narrowing SUBREG, which we can just strip for the purposes of 9746 identifying the constant-field assignment. */ 9747 scalar_int_mode src_mode = mode; 9748 if (GET_CODE (src) == SUBREG 9749 && subreg_lowpart_p (src) 9750 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode)) 9751 src = SUBREG_REG (src); 9752 9753 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR) 9754 return x; 9755 9756 rhs = expand_compound_operation (XEXP (src, 0)); 9757 lhs = expand_compound_operation (XEXP (src, 1)); 9758 9759 if (GET_CODE (rhs) == AND 9760 && CONST_INT_P (XEXP (rhs, 1)) 9761 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest)) 9762 c1 = INTVAL (XEXP (rhs, 1)), other = lhs; 9763 /* The second SUBREG that might get in the way is a paradoxical 9764 SUBREG around the first operand of the AND. We want to 9765 pretend the operand is as wide as the destination here. We 9766 do this by adjusting the MEM to wider mode for the sole 9767 purpose of the call to rtx_equal_for_field_assignment_p. Also 9768 note this trick only works for MEMs. */ 9769 else if (GET_CODE (rhs) == AND 9770 && paradoxical_subreg_p (XEXP (rhs, 0)) 9771 && MEM_P (SUBREG_REG (XEXP (rhs, 0))) 9772 && CONST_INT_P (XEXP (rhs, 1)) 9773 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)), 9774 dest, true)) 9775 c1 = INTVAL (XEXP (rhs, 1)), other = lhs; 9776 else if (GET_CODE (lhs) == AND 9777 && CONST_INT_P (XEXP (lhs, 1)) 9778 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest)) 9779 c1 = INTVAL (XEXP (lhs, 1)), other = rhs; 9780 /* The second SUBREG that might get in the way is a paradoxical 9781 SUBREG around the first operand of the AND. We want to 9782 pretend the operand is as wide as the destination here. We 9783 do this by adjusting the MEM to wider mode for the sole 9784 purpose of the call to rtx_equal_for_field_assignment_p. Also 9785 note this trick only works for MEMs. */ 9786 else if (GET_CODE (lhs) == AND 9787 && paradoxical_subreg_p (XEXP (lhs, 0)) 9788 && MEM_P (SUBREG_REG (XEXP (lhs, 0))) 9789 && CONST_INT_P (XEXP (lhs, 1)) 9790 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)), 9791 dest, true)) 9792 c1 = INTVAL (XEXP (lhs, 1)), other = rhs; 9793 else 9794 return x; 9795 9796 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len); 9797 if (pos < 0 9798 || pos + len > GET_MODE_PRECISION (mode) 9799 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT 9800 || (c1 & nonzero_bits (other, mode)) != 0) 9801 return x; 9802 9803 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0); 9804 if (assign == 0) 9805 return x; 9806 9807 /* The mode to use for the source is the mode of the assignment, or of 9808 what is inside a possible STRICT_LOW_PART. */ 9809 machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART 9810 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign)); 9811 9812 /* Shift OTHER right POS places and make it the source, restricting it 9813 to the proper length and mode. */ 9814 9815 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT, 9816 src_mode, other, pos), 9817 dest); 9818 src = force_to_mode (src, new_mode, 9819 len >= HOST_BITS_PER_WIDE_INT 9820 ? HOST_WIDE_INT_M1U 9821 : (HOST_WIDE_INT_1U << len) - 1, 9822 0); 9823 9824 /* If SRC is masked by an AND that does not make a difference in 9825 the value being stored, strip it. */ 9826 if (GET_CODE (assign) == ZERO_EXTRACT 9827 && CONST_INT_P (XEXP (assign, 1)) 9828 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT 9829 && GET_CODE (src) == AND 9830 && CONST_INT_P (XEXP (src, 1)) 9831 && UINTVAL (XEXP (src, 1)) 9832 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1) 9833 src = XEXP (src, 0); 9834 9835 return gen_rtx_SET (assign, src); 9836 } 9837 9838 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c) 9839 if so. */ 9840 9841 static rtx 9842 apply_distributive_law (rtx x) 9843 { 9844 enum rtx_code code = GET_CODE (x); 9845 enum rtx_code inner_code; 9846 rtx lhs, rhs, other; 9847 rtx tem; 9848 9849 /* Distributivity is not true for floating point as it can change the 9850 value. So we don't do it unless -funsafe-math-optimizations. */ 9851 if (FLOAT_MODE_P (GET_MODE (x)) 9852 && ! flag_unsafe_math_optimizations) 9853 return x; 9854 9855 /* The outer operation can only be one of the following: */ 9856 if (code != IOR && code != AND && code != XOR 9857 && code != PLUS && code != MINUS) 9858 return x; 9859 9860 lhs = XEXP (x, 0); 9861 rhs = XEXP (x, 1); 9862 9863 /* If either operand is a primitive we can't do anything, so get out 9864 fast. */ 9865 if (OBJECT_P (lhs) || OBJECT_P (rhs)) 9866 return x; 9867 9868 lhs = expand_compound_operation (lhs); 9869 rhs = expand_compound_operation (rhs); 9870 inner_code = GET_CODE (lhs); 9871 if (inner_code != GET_CODE (rhs)) 9872 return x; 9873 9874 /* See if the inner and outer operations distribute. */ 9875 switch (inner_code) 9876 { 9877 case LSHIFTRT: 9878 case ASHIFTRT: 9879 case AND: 9880 case IOR: 9881 /* These all distribute except over PLUS. */ 9882 if (code == PLUS || code == MINUS) 9883 return x; 9884 break; 9885 9886 case MULT: 9887 if (code != PLUS && code != MINUS) 9888 return x; 9889 break; 9890 9891 case ASHIFT: 9892 /* This is also a multiply, so it distributes over everything. */ 9893 break; 9894 9895 /* This used to handle SUBREG, but this turned out to be counter- 9896 productive, since (subreg (op ...)) usually is not handled by 9897 insn patterns, and this "optimization" therefore transformed 9898 recognizable patterns into unrecognizable ones. Therefore the 9899 SUBREG case was removed from here. 9900 9901 It is possible that distributing SUBREG over arithmetic operations 9902 leads to an intermediate result than can then be optimized further, 9903 e.g. by moving the outer SUBREG to the other side of a SET as done 9904 in simplify_set. This seems to have been the original intent of 9905 handling SUBREGs here. 9906 9907 However, with current GCC this does not appear to actually happen, 9908 at least on major platforms. If some case is found where removing 9909 the SUBREG case here prevents follow-on optimizations, distributing 9910 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */ 9911 9912 default: 9913 return x; 9914 } 9915 9916 /* Set LHS and RHS to the inner operands (A and B in the example 9917 above) and set OTHER to the common operand (C in the example). 9918 There is only one way to do this unless the inner operation is 9919 commutative. */ 9920 if (COMMUTATIVE_ARITH_P (lhs) 9921 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0))) 9922 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1); 9923 else if (COMMUTATIVE_ARITH_P (lhs) 9924 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1))) 9925 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0); 9926 else if (COMMUTATIVE_ARITH_P (lhs) 9927 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0))) 9928 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1); 9929 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1))) 9930 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0); 9931 else 9932 return x; 9933 9934 /* Form the new inner operation, seeing if it simplifies first. */ 9935 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs); 9936 9937 /* There is one exception to the general way of distributing: 9938 (a | c) ^ (b | c) -> (a ^ b) & ~c */ 9939 if (code == XOR && inner_code == IOR) 9940 { 9941 inner_code = AND; 9942 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x)); 9943 } 9944 9945 /* We may be able to continuing distributing the result, so call 9946 ourselves recursively on the inner operation before forming the 9947 outer operation, which we return. */ 9948 return simplify_gen_binary (inner_code, GET_MODE (x), 9949 apply_distributive_law (tem), other); 9950 } 9951 9952 /* See if X is of the form (* (+ A B) C), and if so convert to 9953 (+ (* A C) (* B C)) and try to simplify. 9954 9955 Most of the time, this results in no change. However, if some of 9956 the operands are the same or inverses of each other, simplifications 9957 will result. 9958 9959 For example, (and (ior A B) (not B)) can occur as the result of 9960 expanding a bit field assignment. When we apply the distributive 9961 law to this, we get (ior (and (A (not B))) (and (B (not B)))), 9962 which then simplifies to (and (A (not B))). 9963 9964 Note that no checks happen on the validity of applying the inverse 9965 distributive law. This is pointless since we can do it in the 9966 few places where this routine is called. 9967 9968 N is the index of the term that is decomposed (the arithmetic operation, 9969 i.e. (+ A B) in the first example above). !N is the index of the term that 9970 is distributed, i.e. of C in the first example above. */ 9971 static rtx 9972 distribute_and_simplify_rtx (rtx x, int n) 9973 { 9974 machine_mode mode; 9975 enum rtx_code outer_code, inner_code; 9976 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp; 9977 9978 /* Distributivity is not true for floating point as it can change the 9979 value. So we don't do it unless -funsafe-math-optimizations. */ 9980 if (FLOAT_MODE_P (GET_MODE (x)) 9981 && ! flag_unsafe_math_optimizations) 9982 return NULL_RTX; 9983 9984 decomposed = XEXP (x, n); 9985 if (!ARITHMETIC_P (decomposed)) 9986 return NULL_RTX; 9987 9988 mode = GET_MODE (x); 9989 outer_code = GET_CODE (x); 9990 distributed = XEXP (x, !n); 9991 9992 inner_code = GET_CODE (decomposed); 9993 inner_op0 = XEXP (decomposed, 0); 9994 inner_op1 = XEXP (decomposed, 1); 9995 9996 /* Special case (and (xor B C) (not A)), which is equivalent to 9997 (xor (ior A B) (ior A C)) */ 9998 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT) 9999 { 10000 distributed = XEXP (distributed, 0); 10001 outer_code = IOR; 10002 } 10003 10004 if (n == 0) 10005 { 10006 /* Distribute the second term. */ 10007 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed); 10008 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed); 10009 } 10010 else 10011 { 10012 /* Distribute the first term. */ 10013 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0); 10014 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1); 10015 } 10016 10017 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode, 10018 new_op0, new_op1)); 10019 if (GET_CODE (tmp) != outer_code 10020 && (set_src_cost (tmp, mode, optimize_this_for_speed_p) 10021 < set_src_cost (x, mode, optimize_this_for_speed_p))) 10022 return tmp; 10023 10024 return NULL_RTX; 10025 } 10026 10027 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done 10028 in MODE. Return an equivalent form, if different from (and VAROP 10029 (const_int CONSTOP)). Otherwise, return NULL_RTX. */ 10030 10031 static rtx 10032 simplify_and_const_int_1 (scalar_int_mode mode, rtx varop, 10033 unsigned HOST_WIDE_INT constop) 10034 { 10035 unsigned HOST_WIDE_INT nonzero; 10036 unsigned HOST_WIDE_INT orig_constop; 10037 rtx orig_varop; 10038 int i; 10039 10040 orig_varop = varop; 10041 orig_constop = constop; 10042 if (GET_CODE (varop) == CLOBBER) 10043 return NULL_RTX; 10044 10045 /* Simplify VAROP knowing that we will be only looking at some of the 10046 bits in it. 10047 10048 Note by passing in CONSTOP, we guarantee that the bits not set in 10049 CONSTOP are not significant and will never be examined. We must 10050 ensure that is the case by explicitly masking out those bits 10051 before returning. */ 10052 varop = force_to_mode (varop, mode, constop, 0); 10053 10054 /* If VAROP is a CLOBBER, we will fail so return it. */ 10055 if (GET_CODE (varop) == CLOBBER) 10056 return varop; 10057 10058 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP 10059 to VAROP and return the new constant. */ 10060 if (CONST_INT_P (varop)) 10061 return gen_int_mode (INTVAL (varop) & constop, mode); 10062 10063 /* See what bits may be nonzero in VAROP. Unlike the general case of 10064 a call to nonzero_bits, here we don't care about bits outside 10065 MODE. */ 10066 10067 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode); 10068 10069 /* Turn off all bits in the constant that are known to already be zero. 10070 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS 10071 which is tested below. */ 10072 10073 constop &= nonzero; 10074 10075 /* If we don't have any bits left, return zero. */ 10076 if (constop == 0) 10077 return const0_rtx; 10078 10079 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is 10080 a power of two, we can replace this with an ASHIFT. */ 10081 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1 10082 && (i = exact_log2 (constop)) >= 0) 10083 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i); 10084 10085 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR 10086 or XOR, then try to apply the distributive law. This may eliminate 10087 operations if either branch can be simplified because of the AND. 10088 It may also make some cases more complex, but those cases probably 10089 won't match a pattern either with or without this. */ 10090 10091 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR) 10092 { 10093 scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop)); 10094 return 10095 gen_lowpart 10096 (mode, 10097 apply_distributive_law 10098 (simplify_gen_binary (GET_CODE (varop), varop_mode, 10099 simplify_and_const_int (NULL_RTX, varop_mode, 10100 XEXP (varop, 0), 10101 constop), 10102 simplify_and_const_int (NULL_RTX, varop_mode, 10103 XEXP (varop, 1), 10104 constop)))); 10105 } 10106 10107 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute 10108 the AND and see if one of the operands simplifies to zero. If so, we 10109 may eliminate it. */ 10110 10111 if (GET_CODE (varop) == PLUS 10112 && pow2p_hwi (constop + 1)) 10113 { 10114 rtx o0, o1; 10115 10116 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop); 10117 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop); 10118 if (o0 == const0_rtx) 10119 return o1; 10120 if (o1 == const0_rtx) 10121 return o0; 10122 } 10123 10124 /* Make a SUBREG if necessary. If we can't make it, fail. */ 10125 varop = gen_lowpart (mode, varop); 10126 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER) 10127 return NULL_RTX; 10128 10129 /* If we are only masking insignificant bits, return VAROP. */ 10130 if (constop == nonzero) 10131 return varop; 10132 10133 if (varop == orig_varop && constop == orig_constop) 10134 return NULL_RTX; 10135 10136 /* Otherwise, return an AND. */ 10137 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode)); 10138 } 10139 10140 10141 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done 10142 in MODE. 10143 10144 Return an equivalent form, if different from X. Otherwise, return X. If 10145 X is zero, we are to always construct the equivalent form. */ 10146 10147 static rtx 10148 simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop, 10149 unsigned HOST_WIDE_INT constop) 10150 { 10151 rtx tem = simplify_and_const_int_1 (mode, varop, constop); 10152 if (tem) 10153 return tem; 10154 10155 if (!x) 10156 x = simplify_gen_binary (AND, GET_MODE (varop), varop, 10157 gen_int_mode (constop, mode)); 10158 if (GET_MODE (x) != mode) 10159 x = gen_lowpart (mode, x); 10160 return x; 10161 } 10162 10163 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero. 10164 We don't care about bits outside of those defined in MODE. 10165 10166 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is 10167 a shift, AND, or zero_extract, we can do better. */ 10168 10169 static rtx 10170 reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode, 10171 scalar_int_mode mode, 10172 unsigned HOST_WIDE_INT *nonzero) 10173 { 10174 rtx tem; 10175 reg_stat_type *rsp; 10176 10177 /* If X is a register whose nonzero bits value is current, use it. 10178 Otherwise, if X is a register whose value we can find, use that 10179 value. Otherwise, use the previously-computed global nonzero bits 10180 for this register. */ 10181 10182 rsp = ®_stat[REGNO (x)]; 10183 if (rsp->last_set_value != 0 10184 && (rsp->last_set_mode == mode 10185 || (REGNO (x) >= FIRST_PSEUDO_REGISTER 10186 && GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT 10187 && GET_MODE_CLASS (mode) == MODE_INT)) 10188 && ((rsp->last_set_label >= label_tick_ebb_start 10189 && rsp->last_set_label < label_tick) 10190 || (rsp->last_set_label == label_tick 10191 && DF_INSN_LUID (rsp->last_set) < subst_low_luid) 10192 || (REGNO (x) >= FIRST_PSEUDO_REGISTER 10193 && REGNO (x) < reg_n_sets_max 10194 && REG_N_SETS (REGNO (x)) == 1 10195 && !REGNO_REG_SET_P 10196 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), 10197 REGNO (x))))) 10198 { 10199 /* Note that, even if the precision of last_set_mode is lower than that 10200 of mode, record_value_for_reg invoked nonzero_bits on the register 10201 with nonzero_bits_mode (because last_set_mode is necessarily integral 10202 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode 10203 are all valid, hence in mode too since nonzero_bits_mode is defined 10204 to the largest HWI_COMPUTABLE_MODE_P mode. */ 10205 *nonzero &= rsp->last_set_nonzero_bits; 10206 return NULL; 10207 } 10208 10209 tem = get_last_value (x); 10210 if (tem) 10211 { 10212 if (SHORT_IMMEDIATES_SIGN_EXTEND) 10213 tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode)); 10214 10215 return tem; 10216 } 10217 10218 if (nonzero_sign_valid && rsp->nonzero_bits) 10219 { 10220 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits; 10221 10222 if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode)) 10223 /* We don't know anything about the upper bits. */ 10224 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode); 10225 10226 *nonzero &= mask; 10227 } 10228 10229 return NULL; 10230 } 10231 10232 /* Given a reg X of mode XMODE, return the number of bits at the high-order 10233 end of X that are known to be equal to the sign bit. X will be used 10234 in mode MODE; the returned value will always be between 1 and the 10235 number of bits in MODE. */ 10236 10237 static rtx 10238 reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode, 10239 scalar_int_mode mode, 10240 unsigned int *result) 10241 { 10242 rtx tem; 10243 reg_stat_type *rsp; 10244 10245 rsp = ®_stat[REGNO (x)]; 10246 if (rsp->last_set_value != 0 10247 && rsp->last_set_mode == mode 10248 && ((rsp->last_set_label >= label_tick_ebb_start 10249 && rsp->last_set_label < label_tick) 10250 || (rsp->last_set_label == label_tick 10251 && DF_INSN_LUID (rsp->last_set) < subst_low_luid) 10252 || (REGNO (x) >= FIRST_PSEUDO_REGISTER 10253 && REGNO (x) < reg_n_sets_max 10254 && REG_N_SETS (REGNO (x)) == 1 10255 && !REGNO_REG_SET_P 10256 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), 10257 REGNO (x))))) 10258 { 10259 *result = rsp->last_set_sign_bit_copies; 10260 return NULL; 10261 } 10262 10263 tem = get_last_value (x); 10264 if (tem != 0) 10265 return tem; 10266 10267 if (nonzero_sign_valid && rsp->sign_bit_copies != 0 10268 && GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode)) 10269 *result = rsp->sign_bit_copies; 10270 10271 return NULL; 10272 } 10273 10274 /* Return the number of "extended" bits there are in X, when interpreted 10275 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For 10276 unsigned quantities, this is the number of high-order zero bits. 10277 For signed quantities, this is the number of copies of the sign bit 10278 minus 1. In both case, this function returns the number of "spare" 10279 bits. For example, if two quantities for which this function returns 10280 at least 1 are added, the addition is known not to overflow. 10281 10282 This function will always return 0 unless called during combine, which 10283 implies that it must be called from a define_split. */ 10284 10285 unsigned int 10286 extended_count (const_rtx x, machine_mode mode, int unsignedp) 10287 { 10288 if (nonzero_sign_valid == 0) 10289 return 0; 10290 10291 scalar_int_mode int_mode; 10292 return (unsignedp 10293 ? (is_a <scalar_int_mode> (mode, &int_mode) 10294 && HWI_COMPUTABLE_MODE_P (int_mode) 10295 ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1 10296 - floor_log2 (nonzero_bits (x, int_mode))) 10297 : 0) 10298 : num_sign_bit_copies (x, mode) - 1); 10299 } 10300 10301 /* This function is called from `simplify_shift_const' to merge two 10302 outer operations. Specifically, we have already found that we need 10303 to perform operation *POP0 with constant *PCONST0 at the outermost 10304 position. We would now like to also perform OP1 with constant CONST1 10305 (with *POP0 being done last). 10306 10307 Return 1 if we can do the operation and update *POP0 and *PCONST0 with 10308 the resulting operation. *PCOMP_P is set to 1 if we would need to 10309 complement the innermost operand, otherwise it is unchanged. 10310 10311 MODE is the mode in which the operation will be done. No bits outside 10312 the width of this mode matter. It is assumed that the width of this mode 10313 is smaller than or equal to HOST_BITS_PER_WIDE_INT. 10314 10315 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS, 10316 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper 10317 result is simply *PCONST0. 10318 10319 If the resulting operation cannot be expressed as one operation, we 10320 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */ 10321 10322 static int 10323 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p) 10324 { 10325 enum rtx_code op0 = *pop0; 10326 HOST_WIDE_INT const0 = *pconst0; 10327 10328 const0 &= GET_MODE_MASK (mode); 10329 const1 &= GET_MODE_MASK (mode); 10330 10331 /* If OP0 is an AND, clear unimportant bits in CONST1. */ 10332 if (op0 == AND) 10333 const1 &= const0; 10334 10335 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or 10336 if OP0 is SET. */ 10337 10338 if (op1 == UNKNOWN || op0 == SET) 10339 return 1; 10340 10341 else if (op0 == UNKNOWN) 10342 op0 = op1, const0 = const1; 10343 10344 else if (op0 == op1) 10345 { 10346 switch (op0) 10347 { 10348 case AND: 10349 const0 &= const1; 10350 break; 10351 case IOR: 10352 const0 |= const1; 10353 break; 10354 case XOR: 10355 const0 ^= const1; 10356 break; 10357 case PLUS: 10358 const0 += const1; 10359 break; 10360 case NEG: 10361 op0 = UNKNOWN; 10362 break; 10363 default: 10364 break; 10365 } 10366 } 10367 10368 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */ 10369 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG) 10370 return 0; 10371 10372 /* If the two constants aren't the same, we can't do anything. The 10373 remaining six cases can all be done. */ 10374 else if (const0 != const1) 10375 return 0; 10376 10377 else 10378 switch (op0) 10379 { 10380 case IOR: 10381 if (op1 == AND) 10382 /* (a & b) | b == b */ 10383 op0 = SET; 10384 else /* op1 == XOR */ 10385 /* (a ^ b) | b == a | b */ 10386 {;} 10387 break; 10388 10389 case XOR: 10390 if (op1 == AND) 10391 /* (a & b) ^ b == (~a) & b */ 10392 op0 = AND, *pcomp_p = 1; 10393 else /* op1 == IOR */ 10394 /* (a | b) ^ b == a & ~b */ 10395 op0 = AND, const0 = ~const0; 10396 break; 10397 10398 case AND: 10399 if (op1 == IOR) 10400 /* (a | b) & b == b */ 10401 op0 = SET; 10402 else /* op1 == XOR */ 10403 /* (a ^ b) & b) == (~a) & b */ 10404 *pcomp_p = 1; 10405 break; 10406 default: 10407 break; 10408 } 10409 10410 /* Check for NO-OP cases. */ 10411 const0 &= GET_MODE_MASK (mode); 10412 if (const0 == 0 10413 && (op0 == IOR || op0 == XOR || op0 == PLUS)) 10414 op0 = UNKNOWN; 10415 else if (const0 == 0 && op0 == AND) 10416 op0 = SET; 10417 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode) 10418 && op0 == AND) 10419 op0 = UNKNOWN; 10420 10421 *pop0 = op0; 10422 10423 /* ??? Slightly redundant with the above mask, but not entirely. 10424 Moving this above means we'd have to sign-extend the mode mask 10425 for the final test. */ 10426 if (op0 != UNKNOWN && op0 != NEG) 10427 *pconst0 = trunc_int_for_mode (const0, mode); 10428 10429 return 1; 10430 } 10431 10432 /* A helper to simplify_shift_const_1 to determine the mode we can perform 10433 the shift in. The original shift operation CODE is performed on OP in 10434 ORIG_MODE. Return the wider mode MODE if we can perform the operation 10435 in that mode. Return ORIG_MODE otherwise. We can also assume that the 10436 result of the shift is subject to operation OUTER_CODE with operand 10437 OUTER_CONST. */ 10438 10439 static scalar_int_mode 10440 try_widen_shift_mode (enum rtx_code code, rtx op, int count, 10441 scalar_int_mode orig_mode, scalar_int_mode mode, 10442 enum rtx_code outer_code, HOST_WIDE_INT outer_const) 10443 { 10444 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode)); 10445 10446 /* In general we can't perform in wider mode for right shift and rotate. */ 10447 switch (code) 10448 { 10449 case ASHIFTRT: 10450 /* We can still widen if the bits brought in from the left are identical 10451 to the sign bit of ORIG_MODE. */ 10452 if (num_sign_bit_copies (op, mode) 10453 > (unsigned) (GET_MODE_PRECISION (mode) 10454 - GET_MODE_PRECISION (orig_mode))) 10455 return mode; 10456 return orig_mode; 10457 10458 case LSHIFTRT: 10459 /* Similarly here but with zero bits. */ 10460 if (HWI_COMPUTABLE_MODE_P (mode) 10461 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0) 10462 return mode; 10463 10464 /* We can also widen if the bits brought in will be masked off. This 10465 operation is performed in ORIG_MODE. */ 10466 if (outer_code == AND) 10467 { 10468 int care_bits = low_bitmask_len (orig_mode, outer_const); 10469 10470 if (care_bits >= 0 10471 && GET_MODE_PRECISION (orig_mode) - care_bits >= count) 10472 return mode; 10473 } 10474 /* fall through */ 10475 10476 case ROTATE: 10477 return orig_mode; 10478 10479 case ROTATERT: 10480 gcc_unreachable (); 10481 10482 default: 10483 return mode; 10484 } 10485 } 10486 10487 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind 10488 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX 10489 if we cannot simplify it. Otherwise, return a simplified value. 10490 10491 The shift is normally computed in the widest mode we find in VAROP, as 10492 long as it isn't a different number of words than RESULT_MODE. Exceptions 10493 are ASHIFTRT and ROTATE, which are always done in their original mode. */ 10494 10495 static rtx 10496 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode, 10497 rtx varop, int orig_count) 10498 { 10499 enum rtx_code orig_code = code; 10500 rtx orig_varop = varop; 10501 int count, log2; 10502 machine_mode mode = result_mode; 10503 machine_mode shift_mode; 10504 scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode; 10505 /* We form (outer_op (code varop count) (outer_const)). */ 10506 enum rtx_code outer_op = UNKNOWN; 10507 HOST_WIDE_INT outer_const = 0; 10508 int complement_p = 0; 10509 rtx new_rtx, x; 10510 10511 /* Make sure and truncate the "natural" shift on the way in. We don't 10512 want to do this inside the loop as it makes it more difficult to 10513 combine shifts. */ 10514 if (SHIFT_COUNT_TRUNCATED) 10515 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1; 10516 10517 /* If we were given an invalid count, don't do anything except exactly 10518 what was requested. */ 10519 10520 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode)) 10521 return NULL_RTX; 10522 10523 count = orig_count; 10524 10525 /* Unless one of the branches of the `if' in this loop does a `continue', 10526 we will `break' the loop after the `if'. */ 10527 10528 while (count != 0) 10529 { 10530 /* If we have an operand of (clobber (const_int 0)), fail. */ 10531 if (GET_CODE (varop) == CLOBBER) 10532 return NULL_RTX; 10533 10534 /* Convert ROTATERT to ROTATE. */ 10535 if (code == ROTATERT) 10536 { 10537 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode); 10538 code = ROTATE; 10539 count = bitsize - count; 10540 } 10541 10542 shift_mode = result_mode; 10543 if (shift_mode != mode) 10544 { 10545 /* We only change the modes of scalar shifts. */ 10546 int_mode = as_a <scalar_int_mode> (mode); 10547 int_result_mode = as_a <scalar_int_mode> (result_mode); 10548 shift_mode = try_widen_shift_mode (code, varop, count, 10549 int_result_mode, int_mode, 10550 outer_op, outer_const); 10551 } 10552 10553 scalar_int_mode shift_unit_mode 10554 = as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode)); 10555 10556 /* Handle cases where the count is greater than the size of the mode 10557 minus 1. For ASHIFT, use the size minus one as the count (this can 10558 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates, 10559 take the count modulo the size. For other shifts, the result is 10560 zero. 10561 10562 Since these shifts are being produced by the compiler by combining 10563 multiple operations, each of which are defined, we know what the 10564 result is supposed to be. */ 10565 10566 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1)) 10567 { 10568 if (code == ASHIFTRT) 10569 count = GET_MODE_PRECISION (shift_unit_mode) - 1; 10570 else if (code == ROTATE || code == ROTATERT) 10571 count %= GET_MODE_PRECISION (shift_unit_mode); 10572 else 10573 { 10574 /* We can't simply return zero because there may be an 10575 outer op. */ 10576 varop = const0_rtx; 10577 count = 0; 10578 break; 10579 } 10580 } 10581 10582 /* If we discovered we had to complement VAROP, leave. Making a NOT 10583 here would cause an infinite loop. */ 10584 if (complement_p) 10585 break; 10586 10587 if (shift_mode == shift_unit_mode) 10588 { 10589 /* An arithmetic right shift of a quantity known to be -1 or 0 10590 is a no-op. */ 10591 if (code == ASHIFTRT 10592 && (num_sign_bit_copies (varop, shift_unit_mode) 10593 == GET_MODE_PRECISION (shift_unit_mode))) 10594 { 10595 count = 0; 10596 break; 10597 } 10598 10599 /* If we are doing an arithmetic right shift and discarding all but 10600 the sign bit copies, this is equivalent to doing a shift by the 10601 bitsize minus one. Convert it into that shift because it will 10602 often allow other simplifications. */ 10603 10604 if (code == ASHIFTRT 10605 && (count + num_sign_bit_copies (varop, shift_unit_mode) 10606 >= GET_MODE_PRECISION (shift_unit_mode))) 10607 count = GET_MODE_PRECISION (shift_unit_mode) - 1; 10608 10609 /* We simplify the tests below and elsewhere by converting 10610 ASHIFTRT to LSHIFTRT if we know the sign bit is clear. 10611 `make_compound_operation' will convert it to an ASHIFTRT for 10612 those machines (such as VAX) that don't have an LSHIFTRT. */ 10613 if (code == ASHIFTRT 10614 && HWI_COMPUTABLE_MODE_P (shift_unit_mode) 10615 && val_signbit_known_clear_p (shift_unit_mode, 10616 nonzero_bits (varop, 10617 shift_unit_mode))) 10618 code = LSHIFTRT; 10619 10620 if (((code == LSHIFTRT 10621 && HWI_COMPUTABLE_MODE_P (shift_unit_mode) 10622 && !(nonzero_bits (varop, shift_unit_mode) >> count)) 10623 || (code == ASHIFT 10624 && HWI_COMPUTABLE_MODE_P (shift_unit_mode) 10625 && !((nonzero_bits (varop, shift_unit_mode) << count) 10626 & GET_MODE_MASK (shift_unit_mode)))) 10627 && !side_effects_p (varop)) 10628 varop = const0_rtx; 10629 } 10630 10631 switch (GET_CODE (varop)) 10632 { 10633 case SIGN_EXTEND: 10634 case ZERO_EXTEND: 10635 case SIGN_EXTRACT: 10636 case ZERO_EXTRACT: 10637 new_rtx = expand_compound_operation (varop); 10638 if (new_rtx != varop) 10639 { 10640 varop = new_rtx; 10641 continue; 10642 } 10643 break; 10644 10645 case MEM: 10646 /* The following rules apply only to scalars. */ 10647 if (shift_mode != shift_unit_mode) 10648 break; 10649 int_mode = as_a <scalar_int_mode> (mode); 10650 10651 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH 10652 minus the width of a smaller mode, we can do this with a 10653 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */ 10654 if ((code == ASHIFTRT || code == LSHIFTRT) 10655 && ! mode_dependent_address_p (XEXP (varop, 0), 10656 MEM_ADDR_SPACE (varop)) 10657 && ! MEM_VOLATILE_P (varop) 10658 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1) 10659 .exists (&tmode))) 10660 { 10661 new_rtx = adjust_address_nv (varop, tmode, 10662 BYTES_BIG_ENDIAN ? 0 10663 : count / BITS_PER_UNIT); 10664 10665 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND 10666 : ZERO_EXTEND, int_mode, new_rtx); 10667 count = 0; 10668 continue; 10669 } 10670 break; 10671 10672 case SUBREG: 10673 /* The following rules apply only to scalars. */ 10674 if (shift_mode != shift_unit_mode) 10675 break; 10676 int_mode = as_a <scalar_int_mode> (mode); 10677 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop)); 10678 10679 /* If VAROP is a SUBREG, strip it as long as the inner operand has 10680 the same number of words as what we've seen so far. Then store 10681 the widest mode in MODE. */ 10682 if (subreg_lowpart_p (varop) 10683 && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode) 10684 && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode) 10685 && (CEIL (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD) 10686 == CEIL (GET_MODE_SIZE (int_mode), UNITS_PER_WORD)) 10687 && GET_MODE_CLASS (int_varop_mode) == MODE_INT) 10688 { 10689 varop = SUBREG_REG (varop); 10690 if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode)) 10691 mode = inner_mode; 10692 continue; 10693 } 10694 break; 10695 10696 case MULT: 10697 /* Some machines use MULT instead of ASHIFT because MULT 10698 is cheaper. But it is still better on those machines to 10699 merge two shifts into one. */ 10700 if (CONST_INT_P (XEXP (varop, 1)) 10701 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0) 10702 { 10703 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2); 10704 varop = simplify_gen_binary (ASHIFT, GET_MODE (varop), 10705 XEXP (varop, 0), log2_rtx); 10706 continue; 10707 } 10708 break; 10709 10710 case UDIV: 10711 /* Similar, for when divides are cheaper. */ 10712 if (CONST_INT_P (XEXP (varop, 1)) 10713 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0) 10714 { 10715 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2); 10716 varop = simplify_gen_binary (LSHIFTRT, GET_MODE (varop), 10717 XEXP (varop, 0), log2_rtx); 10718 continue; 10719 } 10720 break; 10721 10722 case ASHIFTRT: 10723 /* If we are extracting just the sign bit of an arithmetic 10724 right shift, that shift is not needed. However, the sign 10725 bit of a wider mode may be different from what would be 10726 interpreted as the sign bit in a narrower mode, so, if 10727 the result is narrower, don't discard the shift. */ 10728 if (code == LSHIFTRT 10729 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1) 10730 && (GET_MODE_UNIT_BITSIZE (result_mode) 10731 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop)))) 10732 { 10733 varop = XEXP (varop, 0); 10734 continue; 10735 } 10736 10737 /* fall through */ 10738 10739 case LSHIFTRT: 10740 case ASHIFT: 10741 case ROTATE: 10742 /* The following rules apply only to scalars. */ 10743 if (shift_mode != shift_unit_mode) 10744 break; 10745 int_mode = as_a <scalar_int_mode> (mode); 10746 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop)); 10747 int_result_mode = as_a <scalar_int_mode> (result_mode); 10748 10749 /* Here we have two nested shifts. The result is usually the 10750 AND of a new shift with a mask. We compute the result below. */ 10751 if (CONST_INT_P (XEXP (varop, 1)) 10752 && INTVAL (XEXP (varop, 1)) >= 0 10753 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode) 10754 && HWI_COMPUTABLE_MODE_P (int_result_mode) 10755 && HWI_COMPUTABLE_MODE_P (int_mode)) 10756 { 10757 enum rtx_code first_code = GET_CODE (varop); 10758 unsigned int first_count = INTVAL (XEXP (varop, 1)); 10759 unsigned HOST_WIDE_INT mask; 10760 rtx mask_rtx; 10761 10762 /* We have one common special case. We can't do any merging if 10763 the inner code is an ASHIFTRT of a smaller mode. However, if 10764 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2) 10765 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2), 10766 we can convert it to 10767 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1). 10768 This simplifies certain SIGN_EXTEND operations. */ 10769 if (code == ASHIFT && first_code == ASHIFTRT 10770 && count == (GET_MODE_PRECISION (int_result_mode) 10771 - GET_MODE_PRECISION (int_varop_mode))) 10772 { 10773 /* C3 has the low-order C1 bits zero. */ 10774 10775 mask = GET_MODE_MASK (int_mode) 10776 & ~((HOST_WIDE_INT_1U << first_count) - 1); 10777 10778 varop = simplify_and_const_int (NULL_RTX, int_result_mode, 10779 XEXP (varop, 0), mask); 10780 varop = simplify_shift_const (NULL_RTX, ASHIFT, 10781 int_result_mode, varop, count); 10782 count = first_count; 10783 code = ASHIFTRT; 10784 continue; 10785 } 10786 10787 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more 10788 than C1 high-order bits equal to the sign bit, we can convert 10789 this to either an ASHIFT or an ASHIFTRT depending on the 10790 two counts. 10791 10792 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */ 10793 10794 if (code == ASHIFTRT && first_code == ASHIFT 10795 && int_varop_mode == shift_unit_mode 10796 && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode) 10797 > first_count)) 10798 { 10799 varop = XEXP (varop, 0); 10800 count -= first_count; 10801 if (count < 0) 10802 { 10803 count = -count; 10804 code = ASHIFT; 10805 } 10806 10807 continue; 10808 } 10809 10810 /* There are some cases we can't do. If CODE is ASHIFTRT, 10811 we can only do this if FIRST_CODE is also ASHIFTRT. 10812 10813 We can't do the case when CODE is ROTATE and FIRST_CODE is 10814 ASHIFTRT. 10815 10816 If the mode of this shift is not the mode of the outer shift, 10817 we can't do this if either shift is a right shift or ROTATE. 10818 10819 Finally, we can't do any of these if the mode is too wide 10820 unless the codes are the same. 10821 10822 Handle the case where the shift codes are the same 10823 first. */ 10824 10825 if (code == first_code) 10826 { 10827 if (int_varop_mode != int_result_mode 10828 && (code == ASHIFTRT || code == LSHIFTRT 10829 || code == ROTATE)) 10830 break; 10831 10832 count += first_count; 10833 varop = XEXP (varop, 0); 10834 continue; 10835 } 10836 10837 if (code == ASHIFTRT 10838 || (code == ROTATE && first_code == ASHIFTRT) 10839 || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT 10840 || (int_varop_mode != int_result_mode 10841 && (first_code == ASHIFTRT || first_code == LSHIFTRT 10842 || first_code == ROTATE 10843 || code == ROTATE))) 10844 break; 10845 10846 /* To compute the mask to apply after the shift, shift the 10847 nonzero bits of the inner shift the same way the 10848 outer shift will. */ 10849 10850 mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode), 10851 int_result_mode); 10852 rtx count_rtx = gen_int_shift_amount (int_result_mode, count); 10853 mask_rtx 10854 = simplify_const_binary_operation (code, int_result_mode, 10855 mask_rtx, count_rtx); 10856 10857 /* Give up if we can't compute an outer operation to use. */ 10858 if (mask_rtx == 0 10859 || !CONST_INT_P (mask_rtx) 10860 || ! merge_outer_ops (&outer_op, &outer_const, AND, 10861 INTVAL (mask_rtx), 10862 int_result_mode, &complement_p)) 10863 break; 10864 10865 /* If the shifts are in the same direction, we add the 10866 counts. Otherwise, we subtract them. */ 10867 if ((code == ASHIFTRT || code == LSHIFTRT) 10868 == (first_code == ASHIFTRT || first_code == LSHIFTRT)) 10869 count += first_count; 10870 else 10871 count -= first_count; 10872 10873 /* If COUNT is positive, the new shift is usually CODE, 10874 except for the two exceptions below, in which case it is 10875 FIRST_CODE. If the count is negative, FIRST_CODE should 10876 always be used */ 10877 if (count > 0 10878 && ((first_code == ROTATE && code == ASHIFT) 10879 || (first_code == ASHIFTRT && code == LSHIFTRT))) 10880 code = first_code; 10881 else if (count < 0) 10882 code = first_code, count = -count; 10883 10884 varop = XEXP (varop, 0); 10885 continue; 10886 } 10887 10888 /* If we have (A << B << C) for any shift, we can convert this to 10889 (A << C << B). This wins if A is a constant. Only try this if 10890 B is not a constant. */ 10891 10892 else if (GET_CODE (varop) == code 10893 && CONST_INT_P (XEXP (varop, 0)) 10894 && !CONST_INT_P (XEXP (varop, 1))) 10895 { 10896 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make 10897 sure the result will be masked. See PR70222. */ 10898 if (code == LSHIFTRT 10899 && int_mode != int_result_mode 10900 && !merge_outer_ops (&outer_op, &outer_const, AND, 10901 GET_MODE_MASK (int_result_mode) 10902 >> orig_count, int_result_mode, 10903 &complement_p)) 10904 break; 10905 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing 10906 up outer sign extension (often left and right shift) is 10907 hardly more efficient than the original. See PR70429. */ 10908 if (code == ASHIFTRT && int_mode != int_result_mode) 10909 break; 10910 10911 rtx count_rtx = gen_int_shift_amount (int_result_mode, count); 10912 rtx new_rtx = simplify_const_binary_operation (code, int_mode, 10913 XEXP (varop, 0), 10914 count_rtx); 10915 varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1)); 10916 count = 0; 10917 continue; 10918 } 10919 break; 10920 10921 case NOT: 10922 /* The following rules apply only to scalars. */ 10923 if (shift_mode != shift_unit_mode) 10924 break; 10925 10926 /* Make this fit the case below. */ 10927 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx); 10928 continue; 10929 10930 case IOR: 10931 case AND: 10932 case XOR: 10933 /* The following rules apply only to scalars. */ 10934 if (shift_mode != shift_unit_mode) 10935 break; 10936 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop)); 10937 int_result_mode = as_a <scalar_int_mode> (result_mode); 10938 10939 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C) 10940 with C the size of VAROP - 1 and the shift is logical if 10941 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1, 10942 we have an (le X 0) operation. If we have an arithmetic shift 10943 and STORE_FLAG_VALUE is 1 or we have a logical shift with 10944 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */ 10945 10946 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS 10947 && XEXP (XEXP (varop, 0), 1) == constm1_rtx 10948 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1) 10949 && (code == LSHIFTRT || code == ASHIFTRT) 10950 && count == (GET_MODE_PRECISION (int_varop_mode) - 1) 10951 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1))) 10952 { 10953 count = 0; 10954 varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1), 10955 const0_rtx); 10956 10957 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT) 10958 varop = gen_rtx_NEG (int_varop_mode, varop); 10959 10960 continue; 10961 } 10962 10963 /* If we have (shift (logical)), move the logical to the outside 10964 to allow it to possibly combine with another logical and the 10965 shift to combine with another shift. This also canonicalizes to 10966 what a ZERO_EXTRACT looks like. Also, some machines have 10967 (and (shift)) insns. */ 10968 10969 if (CONST_INT_P (XEXP (varop, 1)) 10970 /* We can't do this if we have (ashiftrt (xor)) and the 10971 constant has its sign bit set in shift_unit_mode with 10972 shift_unit_mode wider than result_mode. */ 10973 && !(code == ASHIFTRT && GET_CODE (varop) == XOR 10974 && int_result_mode != shift_unit_mode 10975 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)), 10976 shift_unit_mode) < 0) 10977 && (new_rtx = simplify_const_binary_operation 10978 (code, int_result_mode, 10979 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode), 10980 gen_int_shift_amount (int_result_mode, count))) != 0 10981 && CONST_INT_P (new_rtx) 10982 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop), 10983 INTVAL (new_rtx), int_result_mode, 10984 &complement_p)) 10985 { 10986 varop = XEXP (varop, 0); 10987 continue; 10988 } 10989 10990 /* If we can't do that, try to simplify the shift in each arm of the 10991 logical expression, make a new logical expression, and apply 10992 the inverse distributive law. This also can't be done for 10993 (ashiftrt (xor)) where we've widened the shift and the constant 10994 changes the sign bit. */ 10995 if (CONST_INT_P (XEXP (varop, 1)) 10996 && !(code == ASHIFTRT && GET_CODE (varop) == XOR 10997 && int_result_mode != shift_unit_mode 10998 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)), 10999 shift_unit_mode) < 0)) 11000 { 11001 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode, 11002 XEXP (varop, 0), count); 11003 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode, 11004 XEXP (varop, 1), count); 11005 11006 varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode, 11007 lhs, rhs); 11008 varop = apply_distributive_law (varop); 11009 11010 count = 0; 11011 continue; 11012 } 11013 break; 11014 11015 case EQ: 11016 /* The following rules apply only to scalars. */ 11017 if (shift_mode != shift_unit_mode) 11018 break; 11019 int_result_mode = as_a <scalar_int_mode> (result_mode); 11020 11021 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE 11022 says that the sign bit can be tested, FOO has mode MODE, C is 11023 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit 11024 that may be nonzero. */ 11025 if (code == LSHIFTRT 11026 && XEXP (varop, 1) == const0_rtx 11027 && GET_MODE (XEXP (varop, 0)) == int_result_mode 11028 && count == (GET_MODE_PRECISION (int_result_mode) - 1) 11029 && HWI_COMPUTABLE_MODE_P (int_result_mode) 11030 && STORE_FLAG_VALUE == -1 11031 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1 11032 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, 11033 int_result_mode, &complement_p)) 11034 { 11035 varop = XEXP (varop, 0); 11036 count = 0; 11037 continue; 11038 } 11039 break; 11040 11041 case NEG: 11042 /* The following rules apply only to scalars. */ 11043 if (shift_mode != shift_unit_mode) 11044 break; 11045 int_result_mode = as_a <scalar_int_mode> (result_mode); 11046 11047 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less 11048 than the number of bits in the mode is equivalent to A. */ 11049 if (code == LSHIFTRT 11050 && count == (GET_MODE_PRECISION (int_result_mode) - 1) 11051 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1) 11052 { 11053 varop = XEXP (varop, 0); 11054 count = 0; 11055 continue; 11056 } 11057 11058 /* NEG commutes with ASHIFT since it is multiplication. Move the 11059 NEG outside to allow shifts to combine. */ 11060 if (code == ASHIFT 11061 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, 11062 int_result_mode, &complement_p)) 11063 { 11064 varop = XEXP (varop, 0); 11065 continue; 11066 } 11067 break; 11068 11069 case PLUS: 11070 /* The following rules apply only to scalars. */ 11071 if (shift_mode != shift_unit_mode) 11072 break; 11073 int_result_mode = as_a <scalar_int_mode> (result_mode); 11074 11075 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C 11076 is one less than the number of bits in the mode is 11077 equivalent to (xor A 1). */ 11078 if (code == LSHIFTRT 11079 && count == (GET_MODE_PRECISION (int_result_mode) - 1) 11080 && XEXP (varop, 1) == constm1_rtx 11081 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1 11082 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, 11083 int_result_mode, &complement_p)) 11084 { 11085 count = 0; 11086 varop = XEXP (varop, 0); 11087 continue; 11088 } 11089 11090 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits 11091 that might be nonzero in BAR are those being shifted out and those 11092 bits are known zero in FOO, we can replace the PLUS with FOO. 11093 Similarly in the other operand order. This code occurs when 11094 we are computing the size of a variable-size array. */ 11095 11096 if ((code == ASHIFTRT || code == LSHIFTRT) 11097 && count < HOST_BITS_PER_WIDE_INT 11098 && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0 11099 && (nonzero_bits (XEXP (varop, 1), int_result_mode) 11100 & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0) 11101 { 11102 varop = XEXP (varop, 0); 11103 continue; 11104 } 11105 else if ((code == ASHIFTRT || code == LSHIFTRT) 11106 && count < HOST_BITS_PER_WIDE_INT 11107 && HWI_COMPUTABLE_MODE_P (int_result_mode) 11108 && (nonzero_bits (XEXP (varop, 0), int_result_mode) 11109 >> count) == 0 11110 && (nonzero_bits (XEXP (varop, 0), int_result_mode) 11111 & nonzero_bits (XEXP (varop, 1), int_result_mode)) == 0) 11112 { 11113 varop = XEXP (varop, 1); 11114 continue; 11115 } 11116 11117 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */ 11118 if (code == ASHIFT 11119 && CONST_INT_P (XEXP (varop, 1)) 11120 && (new_rtx = simplify_const_binary_operation 11121 (ASHIFT, int_result_mode, 11122 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode), 11123 gen_int_shift_amount (int_result_mode, count))) != 0 11124 && CONST_INT_P (new_rtx) 11125 && merge_outer_ops (&outer_op, &outer_const, PLUS, 11126 INTVAL (new_rtx), int_result_mode, 11127 &complement_p)) 11128 { 11129 varop = XEXP (varop, 0); 11130 continue; 11131 } 11132 11133 /* Check for 'PLUS signbit', which is the canonical form of 'XOR 11134 signbit', and attempt to change the PLUS to an XOR and move it to 11135 the outer operation as is done above in the AND/IOR/XOR case 11136 leg for shift(logical). See details in logical handling above 11137 for reasoning in doing so. */ 11138 if (code == LSHIFTRT 11139 && CONST_INT_P (XEXP (varop, 1)) 11140 && mode_signbit_p (int_result_mode, XEXP (varop, 1)) 11141 && (new_rtx = simplify_const_binary_operation 11142 (code, int_result_mode, 11143 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode), 11144 gen_int_shift_amount (int_result_mode, count))) != 0 11145 && CONST_INT_P (new_rtx) 11146 && merge_outer_ops (&outer_op, &outer_const, XOR, 11147 INTVAL (new_rtx), int_result_mode, 11148 &complement_p)) 11149 { 11150 varop = XEXP (varop, 0); 11151 continue; 11152 } 11153 11154 break; 11155 11156 case MINUS: 11157 /* The following rules apply only to scalars. */ 11158 if (shift_mode != shift_unit_mode) 11159 break; 11160 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop)); 11161 11162 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C) 11163 with C the size of VAROP - 1 and the shift is logical if 11164 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1, 11165 we have a (gt X 0) operation. If the shift is arithmetic with 11166 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1, 11167 we have a (neg (gt X 0)) operation. */ 11168 11169 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1) 11170 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT 11171 && count == (GET_MODE_PRECISION (int_varop_mode) - 1) 11172 && (code == LSHIFTRT || code == ASHIFTRT) 11173 && CONST_INT_P (XEXP (XEXP (varop, 0), 1)) 11174 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count 11175 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1))) 11176 { 11177 count = 0; 11178 varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1), 11179 const0_rtx); 11180 11181 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT) 11182 varop = gen_rtx_NEG (int_varop_mode, varop); 11183 11184 continue; 11185 } 11186 break; 11187 11188 case TRUNCATE: 11189 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt)) 11190 if the truncate does not affect the value. */ 11191 if (code == LSHIFTRT 11192 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT 11193 && CONST_INT_P (XEXP (XEXP (varop, 0), 1)) 11194 && (INTVAL (XEXP (XEXP (varop, 0), 1)) 11195 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0))) 11196 - GET_MODE_UNIT_PRECISION (GET_MODE (varop))))) 11197 { 11198 rtx varop_inner = XEXP (varop, 0); 11199 int new_count = count + INTVAL (XEXP (varop_inner, 1)); 11200 rtx new_count_rtx = gen_int_shift_amount (GET_MODE (varop_inner), 11201 new_count); 11202 varop_inner = gen_rtx_LSHIFTRT (GET_MODE (varop_inner), 11203 XEXP (varop_inner, 0), 11204 new_count_rtx); 11205 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner); 11206 count = 0; 11207 continue; 11208 } 11209 break; 11210 11211 default: 11212 break; 11213 } 11214 11215 break; 11216 } 11217 11218 shift_mode = result_mode; 11219 if (shift_mode != mode) 11220 { 11221 /* We only change the modes of scalar shifts. */ 11222 int_mode = as_a <scalar_int_mode> (mode); 11223 int_result_mode = as_a <scalar_int_mode> (result_mode); 11224 shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode, 11225 int_mode, outer_op, outer_const); 11226 } 11227 11228 /* We have now finished analyzing the shift. The result should be 11229 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If 11230 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied 11231 to the result of the shift. OUTER_CONST is the relevant constant, 11232 but we must turn off all bits turned off in the shift. */ 11233 11234 if (outer_op == UNKNOWN 11235 && orig_code == code && orig_count == count 11236 && varop == orig_varop 11237 && shift_mode == GET_MODE (varop)) 11238 return NULL_RTX; 11239 11240 /* Make a SUBREG if necessary. If we can't make it, fail. */ 11241 varop = gen_lowpart (shift_mode, varop); 11242 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER) 11243 return NULL_RTX; 11244 11245 /* If we have an outer operation and we just made a shift, it is 11246 possible that we could have simplified the shift were it not 11247 for the outer operation. So try to do the simplification 11248 recursively. */ 11249 11250 if (outer_op != UNKNOWN) 11251 x = simplify_shift_const_1 (code, shift_mode, varop, count); 11252 else 11253 x = NULL_RTX; 11254 11255 if (x == NULL_RTX) 11256 x = simplify_gen_binary (code, shift_mode, varop, 11257 gen_int_shift_amount (shift_mode, count)); 11258 11259 /* If we were doing an LSHIFTRT in a wider mode than it was originally, 11260 turn off all the bits that the shift would have turned off. */ 11261 if (orig_code == LSHIFTRT && result_mode != shift_mode) 11262 /* We only change the modes of scalar shifts. */ 11263 x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode), 11264 x, GET_MODE_MASK (result_mode) >> orig_count); 11265 11266 /* Do the remainder of the processing in RESULT_MODE. */ 11267 x = gen_lowpart_or_truncate (result_mode, x); 11268 11269 /* If COMPLEMENT_P is set, we have to complement X before doing the outer 11270 operation. */ 11271 if (complement_p) 11272 x = simplify_gen_unary (NOT, result_mode, x, result_mode); 11273 11274 if (outer_op != UNKNOWN) 11275 { 11276 int_result_mode = as_a <scalar_int_mode> (result_mode); 11277 11278 if (GET_RTX_CLASS (outer_op) != RTX_UNARY 11279 && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT) 11280 outer_const = trunc_int_for_mode (outer_const, int_result_mode); 11281 11282 if (outer_op == AND) 11283 x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const); 11284 else if (outer_op == SET) 11285 { 11286 /* This means that we have determined that the result is 11287 equivalent to a constant. This should be rare. */ 11288 if (!side_effects_p (x)) 11289 x = GEN_INT (outer_const); 11290 } 11291 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY) 11292 x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode); 11293 else 11294 x = simplify_gen_binary (outer_op, int_result_mode, x, 11295 GEN_INT (outer_const)); 11296 } 11297 11298 return x; 11299 } 11300 11301 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift. 11302 The result of the shift is RESULT_MODE. If we cannot simplify it, 11303 return X or, if it is NULL, synthesize the expression with 11304 simplify_gen_binary. Otherwise, return a simplified value. 11305 11306 The shift is normally computed in the widest mode we find in VAROP, as 11307 long as it isn't a different number of words than RESULT_MODE. Exceptions 11308 are ASHIFTRT and ROTATE, which are always done in their original mode. */ 11309 11310 static rtx 11311 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode, 11312 rtx varop, int count) 11313 { 11314 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count); 11315 if (tem) 11316 return tem; 11317 11318 if (!x) 11319 x = simplify_gen_binary (code, GET_MODE (varop), varop, 11320 gen_int_shift_amount (GET_MODE (varop), count)); 11321 if (GET_MODE (x) != result_mode) 11322 x = gen_lowpart (result_mode, x); 11323 return x; 11324 } 11325 11326 11327 /* A subroutine of recog_for_combine. See there for arguments and 11328 return value. */ 11329 11330 static int 11331 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes) 11332 { 11333 rtx pat = *pnewpat; 11334 rtx pat_without_clobbers; 11335 int insn_code_number; 11336 int num_clobbers_to_add = 0; 11337 int i; 11338 rtx notes = NULL_RTX; 11339 rtx old_notes, old_pat; 11340 int old_icode; 11341 11342 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER 11343 we use to indicate that something didn't match. If we find such a 11344 thing, force rejection. */ 11345 if (GET_CODE (pat) == PARALLEL) 11346 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--) 11347 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER 11348 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx) 11349 return -1; 11350 11351 old_pat = PATTERN (insn); 11352 old_notes = REG_NOTES (insn); 11353 PATTERN (insn) = pat; 11354 REG_NOTES (insn) = NULL_RTX; 11355 11356 insn_code_number = recog (pat, insn, &num_clobbers_to_add); 11357 if (dump_file && (dump_flags & TDF_DETAILS)) 11358 { 11359 if (insn_code_number < 0) 11360 fputs ("Failed to match this instruction:\n", dump_file); 11361 else 11362 fputs ("Successfully matched this instruction:\n", dump_file); 11363 print_rtl_single (dump_file, pat); 11364 } 11365 11366 /* If it isn't, there is the possibility that we previously had an insn 11367 that clobbered some register as a side effect, but the combined 11368 insn doesn't need to do that. So try once more without the clobbers 11369 unless this represents an ASM insn. */ 11370 11371 if (insn_code_number < 0 && ! check_asm_operands (pat) 11372 && GET_CODE (pat) == PARALLEL) 11373 { 11374 int pos; 11375 11376 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++) 11377 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER) 11378 { 11379 if (i != pos) 11380 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i)); 11381 pos++; 11382 } 11383 11384 SUBST_INT (XVECLEN (pat, 0), pos); 11385 11386 if (pos == 1) 11387 pat = XVECEXP (pat, 0, 0); 11388 11389 PATTERN (insn) = pat; 11390 insn_code_number = recog (pat, insn, &num_clobbers_to_add); 11391 if (dump_file && (dump_flags & TDF_DETAILS)) 11392 { 11393 if (insn_code_number < 0) 11394 fputs ("Failed to match this instruction:\n", dump_file); 11395 else 11396 fputs ("Successfully matched this instruction:\n", dump_file); 11397 print_rtl_single (dump_file, pat); 11398 } 11399 } 11400 11401 pat_without_clobbers = pat; 11402 11403 PATTERN (insn) = old_pat; 11404 REG_NOTES (insn) = old_notes; 11405 11406 /* Recognize all noop sets, these will be killed by followup pass. */ 11407 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat)) 11408 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0; 11409 11410 /* If we had any clobbers to add, make a new pattern than contains 11411 them. Then check to make sure that all of them are dead. */ 11412 if (num_clobbers_to_add) 11413 { 11414 rtx newpat = gen_rtx_PARALLEL (VOIDmode, 11415 rtvec_alloc (GET_CODE (pat) == PARALLEL 11416 ? (XVECLEN (pat, 0) 11417 + num_clobbers_to_add) 11418 : num_clobbers_to_add + 1)); 11419 11420 if (GET_CODE (pat) == PARALLEL) 11421 for (i = 0; i < XVECLEN (pat, 0); i++) 11422 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i); 11423 else 11424 XVECEXP (newpat, 0, 0) = pat; 11425 11426 add_clobbers (newpat, insn_code_number); 11427 11428 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add; 11429 i < XVECLEN (newpat, 0); i++) 11430 { 11431 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)) 11432 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn)) 11433 return -1; 11434 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH) 11435 { 11436 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))); 11437 notes = alloc_reg_note (REG_UNUSED, 11438 XEXP (XVECEXP (newpat, 0, i), 0), notes); 11439 } 11440 } 11441 pat = newpat; 11442 } 11443 11444 if (insn_code_number >= 0 11445 && insn_code_number != NOOP_MOVE_INSN_CODE) 11446 { 11447 old_pat = PATTERN (insn); 11448 old_notes = REG_NOTES (insn); 11449 old_icode = INSN_CODE (insn); 11450 PATTERN (insn) = pat; 11451 REG_NOTES (insn) = notes; 11452 INSN_CODE (insn) = insn_code_number; 11453 11454 /* Allow targets to reject combined insn. */ 11455 if (!targetm.legitimate_combined_insn (insn)) 11456 { 11457 if (dump_file && (dump_flags & TDF_DETAILS)) 11458 fputs ("Instruction not appropriate for target.", 11459 dump_file); 11460 11461 /* Callers expect recog_for_combine to strip 11462 clobbers from the pattern on failure. */ 11463 pat = pat_without_clobbers; 11464 notes = NULL_RTX; 11465 11466 insn_code_number = -1; 11467 } 11468 11469 PATTERN (insn) = old_pat; 11470 REG_NOTES (insn) = old_notes; 11471 INSN_CODE (insn) = old_icode; 11472 } 11473 11474 *pnewpat = pat; 11475 *pnotes = notes; 11476 11477 return insn_code_number; 11478 } 11479 11480 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be 11481 expressed as an AND and maybe an LSHIFTRT, to that formulation. 11482 Return whether anything was so changed. */ 11483 11484 static bool 11485 change_zero_ext (rtx pat) 11486 { 11487 bool changed = false; 11488 rtx *src = &SET_SRC (pat); 11489 11490 subrtx_ptr_iterator::array_type array; 11491 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST) 11492 { 11493 rtx x = **iter; 11494 scalar_int_mode mode, inner_mode; 11495 if (!is_a <scalar_int_mode> (GET_MODE (x), &mode)) 11496 continue; 11497 int size; 11498 11499 if (GET_CODE (x) == ZERO_EXTRACT 11500 && CONST_INT_P (XEXP (x, 1)) 11501 && CONST_INT_P (XEXP (x, 2)) 11502 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode) 11503 && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode)) 11504 { 11505 size = INTVAL (XEXP (x, 1)); 11506 11507 int start = INTVAL (XEXP (x, 2)); 11508 if (BITS_BIG_ENDIAN) 11509 start = GET_MODE_PRECISION (inner_mode) - size - start; 11510 11511 if (start != 0) 11512 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0), 11513 gen_int_shift_amount (inner_mode, start)); 11514 else 11515 x = XEXP (x, 0); 11516 11517 if (mode != inner_mode) 11518 { 11519 if (REG_P (x) && HARD_REGISTER_P (x) 11520 && !can_change_dest_mode (x, 0, mode)) 11521 continue; 11522 11523 x = gen_lowpart_SUBREG (mode, x); 11524 } 11525 } 11526 else if (GET_CODE (x) == ZERO_EXTEND 11527 && GET_CODE (XEXP (x, 0)) == SUBREG 11528 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0)))) 11529 && !paradoxical_subreg_p (XEXP (x, 0)) 11530 && subreg_lowpart_p (XEXP (x, 0))) 11531 { 11532 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0))); 11533 size = GET_MODE_PRECISION (inner_mode); 11534 x = SUBREG_REG (XEXP (x, 0)); 11535 if (GET_MODE (x) != mode) 11536 { 11537 if (REG_P (x) && HARD_REGISTER_P (x) 11538 && !can_change_dest_mode (x, 0, mode)) 11539 continue; 11540 11541 x = gen_lowpart_SUBREG (mode, x); 11542 } 11543 } 11544 else if (GET_CODE (x) == ZERO_EXTEND 11545 && REG_P (XEXP (x, 0)) 11546 && HARD_REGISTER_P (XEXP (x, 0)) 11547 && can_change_dest_mode (XEXP (x, 0), 0, mode)) 11548 { 11549 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0))); 11550 size = GET_MODE_PRECISION (inner_mode); 11551 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0))); 11552 } 11553 else 11554 continue; 11555 11556 if (!(GET_CODE (x) == LSHIFTRT 11557 && CONST_INT_P (XEXP (x, 1)) 11558 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode))) 11559 { 11560 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode)); 11561 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode)); 11562 } 11563 11564 SUBST (**iter, x); 11565 changed = true; 11566 } 11567 11568 if (changed) 11569 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST) 11570 maybe_swap_commutative_operands (**iter); 11571 11572 rtx *dst = &SET_DEST (pat); 11573 scalar_int_mode mode; 11574 if (GET_CODE (*dst) == ZERO_EXTRACT 11575 && REG_P (XEXP (*dst, 0)) 11576 && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode) 11577 && CONST_INT_P (XEXP (*dst, 1)) 11578 && CONST_INT_P (XEXP (*dst, 2))) 11579 { 11580 rtx reg = XEXP (*dst, 0); 11581 int width = INTVAL (XEXP (*dst, 1)); 11582 int offset = INTVAL (XEXP (*dst, 2)); 11583 int reg_width = GET_MODE_PRECISION (mode); 11584 if (BITS_BIG_ENDIAN) 11585 offset = reg_width - width - offset; 11586 11587 rtx x, y, z, w; 11588 wide_int mask = wi::shifted_mask (offset, width, true, reg_width); 11589 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width); 11590 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode)); 11591 if (offset) 11592 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset)); 11593 else 11594 y = SET_SRC (pat); 11595 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode)); 11596 w = gen_rtx_IOR (mode, x, z); 11597 SUBST (SET_DEST (pat), reg); 11598 SUBST (SET_SRC (pat), w); 11599 11600 changed = true; 11601 } 11602 11603 return changed; 11604 } 11605 11606 /* Like recog, but we receive the address of a pointer to a new pattern. 11607 We try to match the rtx that the pointer points to. 11608 If that fails, we may try to modify or replace the pattern, 11609 storing the replacement into the same pointer object. 11610 11611 Modifications include deletion or addition of CLOBBERs. If the 11612 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT 11613 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that 11614 (and undo if that fails). 11615 11616 PNOTES is a pointer to a location where any REG_UNUSED notes added for 11617 the CLOBBERs are placed. 11618 11619 The value is the final insn code from the pattern ultimately matched, 11620 or -1. */ 11621 11622 static int 11623 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes) 11624 { 11625 rtx pat = *pnewpat; 11626 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes); 11627 if (insn_code_number >= 0 || check_asm_operands (pat)) 11628 return insn_code_number; 11629 11630 void *marker = get_undo_marker (); 11631 bool changed = false; 11632 11633 if (GET_CODE (pat) == SET) 11634 changed = change_zero_ext (pat); 11635 else if (GET_CODE (pat) == PARALLEL) 11636 { 11637 int i; 11638 for (i = 0; i < XVECLEN (pat, 0); i++) 11639 { 11640 rtx set = XVECEXP (pat, 0, i); 11641 if (GET_CODE (set) == SET) 11642 changed |= change_zero_ext (set); 11643 } 11644 } 11645 11646 if (changed) 11647 { 11648 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes); 11649 11650 if (insn_code_number < 0) 11651 undo_to_marker (marker); 11652 } 11653 11654 return insn_code_number; 11655 } 11656 11657 /* Like gen_lowpart_general but for use by combine. In combine it 11658 is not possible to create any new pseudoregs. However, it is 11659 safe to create invalid memory addresses, because combine will 11660 try to recognize them and all they will do is make the combine 11661 attempt fail. 11662 11663 If for some reason this cannot do its job, an rtx 11664 (clobber (const_int 0)) is returned. 11665 An insn containing that will not be recognized. */ 11666 11667 static rtx 11668 gen_lowpart_for_combine (machine_mode omode, rtx x) 11669 { 11670 machine_mode imode = GET_MODE (x); 11671 rtx result; 11672 11673 if (omode == imode) 11674 return x; 11675 11676 /* We can only support MODE being wider than a word if X is a 11677 constant integer or has a mode the same size. */ 11678 if (maybe_gt (GET_MODE_SIZE (omode), UNITS_PER_WORD) 11679 && ! (CONST_SCALAR_INT_P (x) 11680 || known_eq (GET_MODE_SIZE (imode), GET_MODE_SIZE (omode)))) 11681 goto fail; 11682 11683 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart 11684 won't know what to do. So we will strip off the SUBREG here and 11685 process normally. */ 11686 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x))) 11687 { 11688 x = SUBREG_REG (x); 11689 11690 /* For use in case we fall down into the address adjustments 11691 further below, we need to adjust the known mode and size of 11692 x; imode and isize, since we just adjusted x. */ 11693 imode = GET_MODE (x); 11694 11695 if (imode == omode) 11696 return x; 11697 } 11698 11699 result = gen_lowpart_common (omode, x); 11700 11701 if (result) 11702 return result; 11703 11704 if (MEM_P (x)) 11705 { 11706 /* Refuse to work on a volatile memory ref or one with a mode-dependent 11707 address. */ 11708 if (MEM_VOLATILE_P (x) 11709 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x))) 11710 goto fail; 11711 11712 /* If we want to refer to something bigger than the original memref, 11713 generate a paradoxical subreg instead. That will force a reload 11714 of the original memref X. */ 11715 if (paradoxical_subreg_p (omode, imode)) 11716 return gen_rtx_SUBREG (omode, x, 0); 11717 11718 poly_int64 offset = byte_lowpart_offset (omode, imode); 11719 return adjust_address_nv (x, omode, offset); 11720 } 11721 11722 /* If X is a comparison operator, rewrite it in a new mode. This 11723 probably won't match, but may allow further simplifications. */ 11724 else if (COMPARISON_P (x)) 11725 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1)); 11726 11727 /* If we couldn't simplify X any other way, just enclose it in a 11728 SUBREG. Normally, this SUBREG won't match, but some patterns may 11729 include an explicit SUBREG or we may simplify it further in combine. */ 11730 else 11731 { 11732 rtx res; 11733 11734 if (imode == VOIDmode) 11735 { 11736 imode = int_mode_for_mode (omode).require (); 11737 x = gen_lowpart_common (imode, x); 11738 if (x == NULL) 11739 goto fail; 11740 } 11741 res = lowpart_subreg (omode, x, imode); 11742 if (res) 11743 return res; 11744 } 11745 11746 fail: 11747 return gen_rtx_CLOBBER (omode, const0_rtx); 11748 } 11749 11750 /* Try to simplify a comparison between OP0 and a constant OP1, 11751 where CODE is the comparison code that will be tested, into a 11752 (CODE OP0 const0_rtx) form. 11753 11754 The result is a possibly different comparison code to use. 11755 *POP1 may be updated. */ 11756 11757 static enum rtx_code 11758 simplify_compare_const (enum rtx_code code, machine_mode mode, 11759 rtx op0, rtx *pop1) 11760 { 11761 scalar_int_mode int_mode; 11762 HOST_WIDE_INT const_op = INTVAL (*pop1); 11763 11764 /* Get the constant we are comparing against and turn off all bits 11765 not on in our mode. */ 11766 if (mode != VOIDmode) 11767 const_op = trunc_int_for_mode (const_op, mode); 11768 11769 /* If we are comparing against a constant power of two and the value 11770 being compared can only have that single bit nonzero (e.g., it was 11771 `and'ed with that bit), we can replace this with a comparison 11772 with zero. */ 11773 if (const_op 11774 && (code == EQ || code == NE || code == GE || code == GEU 11775 || code == LT || code == LTU) 11776 && is_a <scalar_int_mode> (mode, &int_mode) 11777 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT 11778 && pow2p_hwi (const_op & GET_MODE_MASK (int_mode)) 11779 && (nonzero_bits (op0, int_mode) 11780 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode)))) 11781 { 11782 code = (code == EQ || code == GE || code == GEU ? NE : EQ); 11783 const_op = 0; 11784 } 11785 11786 /* Similarly, if we are comparing a value known to be either -1 or 11787 0 with -1, change it to the opposite comparison against zero. */ 11788 if (const_op == -1 11789 && (code == EQ || code == NE || code == GT || code == LE 11790 || code == GEU || code == LTU) 11791 && is_a <scalar_int_mode> (mode, &int_mode) 11792 && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode)) 11793 { 11794 code = (code == EQ || code == LE || code == GEU ? NE : EQ); 11795 const_op = 0; 11796 } 11797 11798 /* Do some canonicalizations based on the comparison code. We prefer 11799 comparisons against zero and then prefer equality comparisons. 11800 If we can reduce the size of a constant, we will do that too. */ 11801 switch (code) 11802 { 11803 case LT: 11804 /* < C is equivalent to <= (C - 1) */ 11805 if (const_op > 0) 11806 { 11807 const_op -= 1; 11808 code = LE; 11809 /* ... fall through to LE case below. */ 11810 gcc_fallthrough (); 11811 } 11812 else 11813 break; 11814 11815 case LE: 11816 /* <= C is equivalent to < (C + 1); we do this for C < 0 */ 11817 if (const_op < 0) 11818 { 11819 const_op += 1; 11820 code = LT; 11821 } 11822 11823 /* If we are doing a <= 0 comparison on a value known to have 11824 a zero sign bit, we can replace this with == 0. */ 11825 else if (const_op == 0 11826 && is_a <scalar_int_mode> (mode, &int_mode) 11827 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT 11828 && (nonzero_bits (op0, int_mode) 11829 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1))) 11830 == 0) 11831 code = EQ; 11832 break; 11833 11834 case GE: 11835 /* >= C is equivalent to > (C - 1). */ 11836 if (const_op > 0) 11837 { 11838 const_op -= 1; 11839 code = GT; 11840 /* ... fall through to GT below. */ 11841 gcc_fallthrough (); 11842 } 11843 else 11844 break; 11845 11846 case GT: 11847 /* > C is equivalent to >= (C + 1); we do this for C < 0. */ 11848 if (const_op < 0) 11849 { 11850 const_op += 1; 11851 code = GE; 11852 } 11853 11854 /* If we are doing a > 0 comparison on a value known to have 11855 a zero sign bit, we can replace this with != 0. */ 11856 else if (const_op == 0 11857 && is_a <scalar_int_mode> (mode, &int_mode) 11858 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT 11859 && (nonzero_bits (op0, int_mode) 11860 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1))) 11861 == 0) 11862 code = NE; 11863 break; 11864 11865 case LTU: 11866 /* < C is equivalent to <= (C - 1). */ 11867 if (const_op > 0) 11868 { 11869 const_op -= 1; 11870 code = LEU; 11871 /* ... fall through ... */ 11872 gcc_fallthrough (); 11873 } 11874 /* (unsigned) < 0x80000000 is equivalent to >= 0. */ 11875 else if (is_a <scalar_int_mode> (mode, &int_mode) 11876 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT 11877 && ((unsigned HOST_WIDE_INT) const_op 11878 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1))) 11879 { 11880 const_op = 0; 11881 code = GE; 11882 break; 11883 } 11884 else 11885 break; 11886 11887 case LEU: 11888 /* unsigned <= 0 is equivalent to == 0 */ 11889 if (const_op == 0) 11890 code = EQ; 11891 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */ 11892 else if (is_a <scalar_int_mode> (mode, &int_mode) 11893 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT 11894 && ((unsigned HOST_WIDE_INT) const_op 11895 == ((HOST_WIDE_INT_1U 11896 << (GET_MODE_PRECISION (int_mode) - 1)) - 1))) 11897 { 11898 const_op = 0; 11899 code = GE; 11900 } 11901 break; 11902 11903 case GEU: 11904 /* >= C is equivalent to > (C - 1). */ 11905 if (const_op > 1) 11906 { 11907 const_op -= 1; 11908 code = GTU; 11909 /* ... fall through ... */ 11910 gcc_fallthrough (); 11911 } 11912 11913 /* (unsigned) >= 0x80000000 is equivalent to < 0. */ 11914 else if (is_a <scalar_int_mode> (mode, &int_mode) 11915 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT 11916 && ((unsigned HOST_WIDE_INT) const_op 11917 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1))) 11918 { 11919 const_op = 0; 11920 code = LT; 11921 break; 11922 } 11923 else 11924 break; 11925 11926 case GTU: 11927 /* unsigned > 0 is equivalent to != 0 */ 11928 if (const_op == 0) 11929 code = NE; 11930 /* (unsigned) > 0x7fffffff is equivalent to < 0. */ 11931 else if (is_a <scalar_int_mode> (mode, &int_mode) 11932 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT 11933 && ((unsigned HOST_WIDE_INT) const_op 11934 == (HOST_WIDE_INT_1U 11935 << (GET_MODE_PRECISION (int_mode) - 1)) - 1)) 11936 { 11937 const_op = 0; 11938 code = LT; 11939 } 11940 break; 11941 11942 default: 11943 break; 11944 } 11945 11946 *pop1 = GEN_INT (const_op); 11947 return code; 11948 } 11949 11950 /* Simplify a comparison between *POP0 and *POP1 where CODE is the 11951 comparison code that will be tested. 11952 11953 The result is a possibly different comparison code to use. *POP0 and 11954 *POP1 may be updated. 11955 11956 It is possible that we might detect that a comparison is either always 11957 true or always false. However, we do not perform general constant 11958 folding in combine, so this knowledge isn't useful. Such tautologies 11959 should have been detected earlier. Hence we ignore all such cases. */ 11960 11961 static enum rtx_code 11962 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1) 11963 { 11964 rtx op0 = *pop0; 11965 rtx op1 = *pop1; 11966 rtx tem, tem1; 11967 int i; 11968 scalar_int_mode mode, inner_mode, tmode; 11969 opt_scalar_int_mode tmode_iter; 11970 11971 /* Try a few ways of applying the same transformation to both operands. */ 11972 while (1) 11973 { 11974 /* The test below this one won't handle SIGN_EXTENDs on these machines, 11975 so check specially. */ 11976 if (!WORD_REGISTER_OPERATIONS 11977 && code != GTU && code != GEU && code != LTU && code != LEU 11978 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT 11979 && GET_CODE (XEXP (op0, 0)) == ASHIFT 11980 && GET_CODE (XEXP (op1, 0)) == ASHIFT 11981 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG 11982 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG 11983 && is_a <scalar_int_mode> (GET_MODE (op0), &mode) 11984 && (is_a <scalar_int_mode> 11985 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode)) 11986 && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))) 11987 && CONST_INT_P (XEXP (op0, 1)) 11988 && XEXP (op0, 1) == XEXP (op1, 1) 11989 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1) 11990 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1) 11991 && (INTVAL (XEXP (op0, 1)) 11992 == (GET_MODE_PRECISION (mode) 11993 - GET_MODE_PRECISION (inner_mode)))) 11994 { 11995 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0)); 11996 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0)); 11997 } 11998 11999 /* If both operands are the same constant shift, see if we can ignore the 12000 shift. We can if the shift is a rotate or if the bits shifted out of 12001 this shift are known to be zero for both inputs and if the type of 12002 comparison is compatible with the shift. */ 12003 if (GET_CODE (op0) == GET_CODE (op1) 12004 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0)) 12005 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ)) 12006 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT) 12007 && (code != GT && code != LT && code != GE && code != LE)) 12008 || (GET_CODE (op0) == ASHIFTRT 12009 && (code != GTU && code != LTU 12010 && code != GEU && code != LEU))) 12011 && CONST_INT_P (XEXP (op0, 1)) 12012 && INTVAL (XEXP (op0, 1)) >= 0 12013 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT 12014 && XEXP (op0, 1) == XEXP (op1, 1)) 12015 { 12016 machine_mode mode = GET_MODE (op0); 12017 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode); 12018 int shift_count = INTVAL (XEXP (op0, 1)); 12019 12020 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT) 12021 mask &= (mask >> shift_count) << shift_count; 12022 else if (GET_CODE (op0) == ASHIFT) 12023 mask = (mask & (mask << shift_count)) >> shift_count; 12024 12025 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0 12026 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0) 12027 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0); 12028 else 12029 break; 12030 } 12031 12032 /* If both operands are AND's of a paradoxical SUBREG by constant, the 12033 SUBREGs are of the same mode, and, in both cases, the AND would 12034 be redundant if the comparison was done in the narrower mode, 12035 do the comparison in the narrower mode (e.g., we are AND'ing with 1 12036 and the operand's possibly nonzero bits are 0xffffff01; in that case 12037 if we only care about QImode, we don't need the AND). This case 12038 occurs if the output mode of an scc insn is not SImode and 12039 STORE_FLAG_VALUE == 1 (e.g., the 386). 12040 12041 Similarly, check for a case where the AND's are ZERO_EXTEND 12042 operations from some narrower mode even though a SUBREG is not 12043 present. */ 12044 12045 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND 12046 && CONST_INT_P (XEXP (op0, 1)) 12047 && CONST_INT_P (XEXP (op1, 1))) 12048 { 12049 rtx inner_op0 = XEXP (op0, 0); 12050 rtx inner_op1 = XEXP (op1, 0); 12051 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1)); 12052 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1)); 12053 int changed = 0; 12054 12055 if (paradoxical_subreg_p (inner_op0) 12056 && GET_CODE (inner_op1) == SUBREG 12057 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0))) 12058 && (GET_MODE (SUBREG_REG (inner_op0)) 12059 == GET_MODE (SUBREG_REG (inner_op1))) 12060 && ((~c0) & nonzero_bits (SUBREG_REG (inner_op0), 12061 GET_MODE (SUBREG_REG (inner_op0)))) == 0 12062 && ((~c1) & nonzero_bits (SUBREG_REG (inner_op1), 12063 GET_MODE (SUBREG_REG (inner_op1)))) == 0) 12064 { 12065 op0 = SUBREG_REG (inner_op0); 12066 op1 = SUBREG_REG (inner_op1); 12067 12068 /* The resulting comparison is always unsigned since we masked 12069 off the original sign bit. */ 12070 code = unsigned_condition (code); 12071 12072 changed = 1; 12073 } 12074 12075 else if (c0 == c1) 12076 FOR_EACH_MODE_UNTIL (tmode, 12077 as_a <scalar_int_mode> (GET_MODE (op0))) 12078 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode)) 12079 { 12080 op0 = gen_lowpart_or_truncate (tmode, inner_op0); 12081 op1 = gen_lowpart_or_truncate (tmode, inner_op1); 12082 code = unsigned_condition (code); 12083 changed = 1; 12084 break; 12085 } 12086 12087 if (! changed) 12088 break; 12089 } 12090 12091 /* If both operands are NOT, we can strip off the outer operation 12092 and adjust the comparison code for swapped operands; similarly for 12093 NEG, except that this must be an equality comparison. */ 12094 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT) 12095 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG 12096 && (code == EQ || code == NE))) 12097 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code); 12098 12099 else 12100 break; 12101 } 12102 12103 /* If the first operand is a constant, swap the operands and adjust the 12104 comparison code appropriately, but don't do this if the second operand 12105 is already a constant integer. */ 12106 if (swap_commutative_operands_p (op0, op1)) 12107 { 12108 std::swap (op0, op1); 12109 code = swap_condition (code); 12110 } 12111 12112 /* We now enter a loop during which we will try to simplify the comparison. 12113 For the most part, we only are concerned with comparisons with zero, 12114 but some things may really be comparisons with zero but not start 12115 out looking that way. */ 12116 12117 while (CONST_INT_P (op1)) 12118 { 12119 machine_mode raw_mode = GET_MODE (op0); 12120 scalar_int_mode int_mode; 12121 int equality_comparison_p; 12122 int sign_bit_comparison_p; 12123 int unsigned_comparison_p; 12124 HOST_WIDE_INT const_op; 12125 12126 /* We only want to handle integral modes. This catches VOIDmode, 12127 CCmode, and the floating-point modes. An exception is that we 12128 can handle VOIDmode if OP0 is a COMPARE or a comparison 12129 operation. */ 12130 12131 if (GET_MODE_CLASS (raw_mode) != MODE_INT 12132 && ! (raw_mode == VOIDmode 12133 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0)))) 12134 break; 12135 12136 /* Try to simplify the compare to constant, possibly changing the 12137 comparison op, and/or changing op1 to zero. */ 12138 code = simplify_compare_const (code, raw_mode, op0, &op1); 12139 const_op = INTVAL (op1); 12140 12141 /* Compute some predicates to simplify code below. */ 12142 12143 equality_comparison_p = (code == EQ || code == NE); 12144 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0); 12145 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU 12146 || code == GEU); 12147 12148 /* If this is a sign bit comparison and we can do arithmetic in 12149 MODE, say that we will only be needing the sign bit of OP0. */ 12150 if (sign_bit_comparison_p 12151 && is_a <scalar_int_mode> (raw_mode, &int_mode) 12152 && HWI_COMPUTABLE_MODE_P (int_mode)) 12153 op0 = force_to_mode (op0, int_mode, 12154 HOST_WIDE_INT_1U 12155 << (GET_MODE_PRECISION (int_mode) - 1), 12156 0); 12157 12158 if (COMPARISON_P (op0)) 12159 { 12160 /* We can't do anything if OP0 is a condition code value, rather 12161 than an actual data value. */ 12162 if (const_op != 0 12163 || CC0_P (XEXP (op0, 0)) 12164 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC) 12165 break; 12166 12167 /* Get the two operands being compared. */ 12168 if (GET_CODE (XEXP (op0, 0)) == COMPARE) 12169 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1); 12170 else 12171 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1); 12172 12173 /* Check for the cases where we simply want the result of the 12174 earlier test or the opposite of that result. */ 12175 if (code == NE || code == EQ 12176 || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE) 12177 && (code == LT || code == GE))) 12178 { 12179 enum rtx_code new_code; 12180 if (code == LT || code == NE) 12181 new_code = GET_CODE (op0); 12182 else 12183 new_code = reversed_comparison_code (op0, NULL); 12184 12185 if (new_code != UNKNOWN) 12186 { 12187 code = new_code; 12188 op0 = tem; 12189 op1 = tem1; 12190 continue; 12191 } 12192 } 12193 break; 12194 } 12195 12196 if (raw_mode == VOIDmode) 12197 break; 12198 scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode); 12199 12200 /* Now try cases based on the opcode of OP0. If none of the cases 12201 does a "continue", we exit this loop immediately after the 12202 switch. */ 12203 12204 unsigned int mode_width = GET_MODE_PRECISION (mode); 12205 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode); 12206 switch (GET_CODE (op0)) 12207 { 12208 case ZERO_EXTRACT: 12209 /* If we are extracting a single bit from a variable position in 12210 a constant that has only a single bit set and are comparing it 12211 with zero, we can convert this into an equality comparison 12212 between the position and the location of the single bit. */ 12213 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might 12214 have already reduced the shift count modulo the word size. */ 12215 if (!SHIFT_COUNT_TRUNCATED 12216 && CONST_INT_P (XEXP (op0, 0)) 12217 && XEXP (op0, 1) == const1_rtx 12218 && equality_comparison_p && const_op == 0 12219 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0) 12220 { 12221 if (BITS_BIG_ENDIAN) 12222 i = BITS_PER_WORD - 1 - i; 12223 12224 op0 = XEXP (op0, 2); 12225 op1 = GEN_INT (i); 12226 const_op = i; 12227 12228 /* Result is nonzero iff shift count is equal to I. */ 12229 code = reverse_condition (code); 12230 continue; 12231 } 12232 12233 /* fall through */ 12234 12235 case SIGN_EXTRACT: 12236 tem = expand_compound_operation (op0); 12237 if (tem != op0) 12238 { 12239 op0 = tem; 12240 continue; 12241 } 12242 break; 12243 12244 case NOT: 12245 /* If testing for equality, we can take the NOT of the constant. */ 12246 if (equality_comparison_p 12247 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0) 12248 { 12249 op0 = XEXP (op0, 0); 12250 op1 = tem; 12251 continue; 12252 } 12253 12254 /* If just looking at the sign bit, reverse the sense of the 12255 comparison. */ 12256 if (sign_bit_comparison_p) 12257 { 12258 op0 = XEXP (op0, 0); 12259 code = (code == GE ? LT : GE); 12260 continue; 12261 } 12262 break; 12263 12264 case NEG: 12265 /* If testing for equality, we can take the NEG of the constant. */ 12266 if (equality_comparison_p 12267 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0) 12268 { 12269 op0 = XEXP (op0, 0); 12270 op1 = tem; 12271 continue; 12272 } 12273 12274 /* The remaining cases only apply to comparisons with zero. */ 12275 if (const_op != 0) 12276 break; 12277 12278 /* When X is ABS or is known positive, 12279 (neg X) is < 0 if and only if X != 0. */ 12280 12281 if (sign_bit_comparison_p 12282 && (GET_CODE (XEXP (op0, 0)) == ABS 12283 || (mode_width <= HOST_BITS_PER_WIDE_INT 12284 && (nonzero_bits (XEXP (op0, 0), mode) 12285 & (HOST_WIDE_INT_1U << (mode_width - 1))) 12286 == 0))) 12287 { 12288 op0 = XEXP (op0, 0); 12289 code = (code == LT ? NE : EQ); 12290 continue; 12291 } 12292 12293 /* If we have NEG of something whose two high-order bits are the 12294 same, we know that "(-a) < 0" is equivalent to "a > 0". */ 12295 if (num_sign_bit_copies (op0, mode) >= 2) 12296 { 12297 op0 = XEXP (op0, 0); 12298 code = swap_condition (code); 12299 continue; 12300 } 12301 break; 12302 12303 case ROTATE: 12304 /* If we are testing equality and our count is a constant, we 12305 can perform the inverse operation on our RHS. */ 12306 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1)) 12307 && (tem = simplify_binary_operation (ROTATERT, mode, 12308 op1, XEXP (op0, 1))) != 0) 12309 { 12310 op0 = XEXP (op0, 0); 12311 op1 = tem; 12312 continue; 12313 } 12314 12315 /* If we are doing a < 0 or >= 0 comparison, it means we are testing 12316 a particular bit. Convert it to an AND of a constant of that 12317 bit. This will be converted into a ZERO_EXTRACT. */ 12318 if (const_op == 0 && sign_bit_comparison_p 12319 && CONST_INT_P (XEXP (op0, 1)) 12320 && mode_width <= HOST_BITS_PER_WIDE_INT 12321 && UINTVAL (XEXP (op0, 1)) < mode_width) 12322 { 12323 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 12324 (HOST_WIDE_INT_1U 12325 << (mode_width - 1 12326 - INTVAL (XEXP (op0, 1))))); 12327 code = (code == LT ? NE : EQ); 12328 continue; 12329 } 12330 12331 /* Fall through. */ 12332 12333 case ABS: 12334 /* ABS is ignorable inside an equality comparison with zero. */ 12335 if (const_op == 0 && equality_comparison_p) 12336 { 12337 op0 = XEXP (op0, 0); 12338 continue; 12339 } 12340 break; 12341 12342 case SIGN_EXTEND: 12343 /* Can simplify (compare (zero/sign_extend FOO) CONST) to 12344 (compare FOO CONST) if CONST fits in FOO's mode and we 12345 are either testing inequality or have an unsigned 12346 comparison with ZERO_EXTEND or a signed comparison with 12347 SIGN_EXTEND. But don't do it if we don't have a compare 12348 insn of the given mode, since we'd have to revert it 12349 later on, and then we wouldn't know whether to sign- or 12350 zero-extend. */ 12351 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode) 12352 && ! unsigned_comparison_p 12353 && HWI_COMPUTABLE_MODE_P (mode) 12354 && trunc_int_for_mode (const_op, mode) == const_op 12355 && have_insn_for (COMPARE, mode)) 12356 { 12357 op0 = XEXP (op0, 0); 12358 continue; 12359 } 12360 break; 12361 12362 case SUBREG: 12363 /* Check for the case where we are comparing A - C1 with C2, that is 12364 12365 (subreg:MODE (plus (A) (-C1))) op (C2) 12366 12367 with C1 a constant, and try to lift the SUBREG, i.e. to do the 12368 comparison in the wider mode. One of the following two conditions 12369 must be true in order for this to be valid: 12370 12371 1. The mode extension results in the same bit pattern being added 12372 on both sides and the comparison is equality or unsigned. As 12373 C2 has been truncated to fit in MODE, the pattern can only be 12374 all 0s or all 1s. 12375 12376 2. The mode extension results in the sign bit being copied on 12377 each side. 12378 12379 The difficulty here is that we have predicates for A but not for 12380 (A - C1) so we need to check that C1 is within proper bounds so 12381 as to perturbate A as little as possible. */ 12382 12383 if (mode_width <= HOST_BITS_PER_WIDE_INT 12384 && subreg_lowpart_p (op0) 12385 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)), 12386 &inner_mode) 12387 && GET_MODE_PRECISION (inner_mode) > mode_width 12388 && GET_CODE (SUBREG_REG (op0)) == PLUS 12389 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1))) 12390 { 12391 rtx a = XEXP (SUBREG_REG (op0), 0); 12392 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1)); 12393 12394 if ((c1 > 0 12395 && (unsigned HOST_WIDE_INT) c1 12396 < HOST_WIDE_INT_1U << (mode_width - 1) 12397 && (equality_comparison_p || unsigned_comparison_p) 12398 /* (A - C1) zero-extends if it is positive and sign-extends 12399 if it is negative, C2 both zero- and sign-extends. */ 12400 && (((nonzero_bits (a, inner_mode) 12401 & ~GET_MODE_MASK (mode)) == 0 12402 && const_op >= 0) 12403 /* (A - C1) sign-extends if it is positive and 1-extends 12404 if it is negative, C2 both sign- and 1-extends. */ 12405 || (num_sign_bit_copies (a, inner_mode) 12406 > (unsigned int) (GET_MODE_PRECISION (inner_mode) 12407 - mode_width) 12408 && const_op < 0))) 12409 || ((unsigned HOST_WIDE_INT) c1 12410 < HOST_WIDE_INT_1U << (mode_width - 2) 12411 /* (A - C1) always sign-extends, like C2. */ 12412 && num_sign_bit_copies (a, inner_mode) 12413 > (unsigned int) (GET_MODE_PRECISION (inner_mode) 12414 - (mode_width - 1)))) 12415 { 12416 op0 = SUBREG_REG (op0); 12417 continue; 12418 } 12419 } 12420 12421 /* If the inner mode is narrower and we are extracting the low part, 12422 we can treat the SUBREG as if it were a ZERO_EXTEND. */ 12423 if (paradoxical_subreg_p (op0)) 12424 ; 12425 else if (subreg_lowpart_p (op0) 12426 && GET_MODE_CLASS (mode) == MODE_INT 12427 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode) 12428 && (code == NE || code == EQ) 12429 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT 12430 && !paradoxical_subreg_p (op0) 12431 && (nonzero_bits (SUBREG_REG (op0), inner_mode) 12432 & ~GET_MODE_MASK (mode)) == 0) 12433 { 12434 /* Remove outer subregs that don't do anything. */ 12435 tem = gen_lowpart (inner_mode, op1); 12436 12437 if ((nonzero_bits (tem, inner_mode) 12438 & ~GET_MODE_MASK (mode)) == 0) 12439 { 12440 op0 = SUBREG_REG (op0); 12441 op1 = tem; 12442 continue; 12443 } 12444 break; 12445 } 12446 else 12447 break; 12448 12449 /* FALLTHROUGH */ 12450 12451 case ZERO_EXTEND: 12452 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode) 12453 && (unsigned_comparison_p || equality_comparison_p) 12454 && HWI_COMPUTABLE_MODE_P (mode) 12455 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode) 12456 && const_op >= 0 12457 && have_insn_for (COMPARE, mode)) 12458 { 12459 op0 = XEXP (op0, 0); 12460 continue; 12461 } 12462 break; 12463 12464 case PLUS: 12465 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do 12466 this for equality comparisons due to pathological cases involving 12467 overflows. */ 12468 if (equality_comparison_p 12469 && (tem = simplify_binary_operation (MINUS, mode, 12470 op1, XEXP (op0, 1))) != 0) 12471 { 12472 op0 = XEXP (op0, 0); 12473 op1 = tem; 12474 continue; 12475 } 12476 12477 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */ 12478 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx 12479 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p) 12480 { 12481 op0 = XEXP (XEXP (op0, 0), 0); 12482 code = (code == LT ? EQ : NE); 12483 continue; 12484 } 12485 break; 12486 12487 case MINUS: 12488 /* We used to optimize signed comparisons against zero, but that 12489 was incorrect. Unsigned comparisons against zero (GTU, LEU) 12490 arrive here as equality comparisons, or (GEU, LTU) are 12491 optimized away. No need to special-case them. */ 12492 12493 /* (eq (minus A B) C) -> (eq A (plus B C)) or 12494 (eq B (minus A C)), whichever simplifies. We can only do 12495 this for equality comparisons due to pathological cases involving 12496 overflows. */ 12497 if (equality_comparison_p 12498 && (tem = simplify_binary_operation (PLUS, mode, 12499 XEXP (op0, 1), op1)) != 0) 12500 { 12501 op0 = XEXP (op0, 0); 12502 op1 = tem; 12503 continue; 12504 } 12505 12506 if (equality_comparison_p 12507 && (tem = simplify_binary_operation (MINUS, mode, 12508 XEXP (op0, 0), op1)) != 0) 12509 { 12510 op0 = XEXP (op0, 1); 12511 op1 = tem; 12512 continue; 12513 } 12514 12515 /* The sign bit of (minus (ashiftrt X C) X), where C is the number 12516 of bits in X minus 1, is one iff X > 0. */ 12517 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT 12518 && CONST_INT_P (XEXP (XEXP (op0, 0), 1)) 12519 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1 12520 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1))) 12521 { 12522 op0 = XEXP (op0, 1); 12523 code = (code == GE ? LE : GT); 12524 continue; 12525 } 12526 break; 12527 12528 case XOR: 12529 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification 12530 if C is zero or B is a constant. */ 12531 if (equality_comparison_p 12532 && (tem = simplify_binary_operation (XOR, mode, 12533 XEXP (op0, 1), op1)) != 0) 12534 { 12535 op0 = XEXP (op0, 0); 12536 op1 = tem; 12537 continue; 12538 } 12539 break; 12540 12541 12542 case IOR: 12543 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero 12544 iff X <= 0. */ 12545 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS 12546 && XEXP (XEXP (op0, 0), 1) == constm1_rtx 12547 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1))) 12548 { 12549 op0 = XEXP (op0, 1); 12550 code = (code == GE ? GT : LE); 12551 continue; 12552 } 12553 break; 12554 12555 case AND: 12556 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This 12557 will be converted to a ZERO_EXTRACT later. */ 12558 if (const_op == 0 && equality_comparison_p 12559 && GET_CODE (XEXP (op0, 0)) == ASHIFT 12560 && XEXP (XEXP (op0, 0), 0) == const1_rtx) 12561 { 12562 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1), 12563 XEXP (XEXP (op0, 0), 1)); 12564 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1); 12565 continue; 12566 } 12567 12568 /* If we are comparing (and (lshiftrt X C1) C2) for equality with 12569 zero and X is a comparison and C1 and C2 describe only bits set 12570 in STORE_FLAG_VALUE, we can compare with X. */ 12571 if (const_op == 0 && equality_comparison_p 12572 && mode_width <= HOST_BITS_PER_WIDE_INT 12573 && CONST_INT_P (XEXP (op0, 1)) 12574 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT 12575 && CONST_INT_P (XEXP (XEXP (op0, 0), 1)) 12576 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0 12577 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT) 12578 { 12579 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode)) 12580 << INTVAL (XEXP (XEXP (op0, 0), 1))); 12581 if ((~STORE_FLAG_VALUE & mask) == 0 12582 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0)) 12583 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0 12584 && COMPARISON_P (tem)))) 12585 { 12586 op0 = XEXP (XEXP (op0, 0), 0); 12587 continue; 12588 } 12589 } 12590 12591 /* If we are doing an equality comparison of an AND of a bit equal 12592 to the sign bit, replace this with a LT or GE comparison of 12593 the underlying value. */ 12594 if (equality_comparison_p 12595 && const_op == 0 12596 && CONST_INT_P (XEXP (op0, 1)) 12597 && mode_width <= HOST_BITS_PER_WIDE_INT 12598 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode)) 12599 == HOST_WIDE_INT_1U << (mode_width - 1))) 12600 { 12601 op0 = XEXP (op0, 0); 12602 code = (code == EQ ? GE : LT); 12603 continue; 12604 } 12605 12606 /* If this AND operation is really a ZERO_EXTEND from a narrower 12607 mode, the constant fits within that mode, and this is either an 12608 equality or unsigned comparison, try to do this comparison in 12609 the narrower mode. 12610 12611 Note that in: 12612 12613 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0)) 12614 -> (ne:DI (reg:SI 4) (const_int 0)) 12615 12616 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is 12617 known to hold a value of the required mode the 12618 transformation is invalid. */ 12619 if ((equality_comparison_p || unsigned_comparison_p) 12620 && CONST_INT_P (XEXP (op0, 1)) 12621 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1)) 12622 & GET_MODE_MASK (mode)) 12623 + 1)) >= 0 12624 && const_op >> i == 0 12625 && int_mode_for_size (i, 1).exists (&tmode)) 12626 { 12627 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0)); 12628 continue; 12629 } 12630 12631 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1 12632 fits in both M1 and M2 and the SUBREG is either paradoxical 12633 or represents the low part, permute the SUBREG and the AND 12634 and try again. */ 12635 if (GET_CODE (XEXP (op0, 0)) == SUBREG 12636 && CONST_INT_P (XEXP (op0, 1))) 12637 { 12638 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1)); 12639 /* Require an integral mode, to avoid creating something like 12640 (AND:SF ...). */ 12641 if ((is_a <scalar_int_mode> 12642 (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode)) 12643 /* It is unsafe to commute the AND into the SUBREG if the 12644 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is 12645 not defined. As originally written the upper bits 12646 have a defined value due to the AND operation. 12647 However, if we commute the AND inside the SUBREG then 12648 they no longer have defined values and the meaning of 12649 the code has been changed. 12650 Also C1 should not change value in the smaller mode, 12651 see PR67028 (a positive C1 can become negative in the 12652 smaller mode, so that the AND does no longer mask the 12653 upper bits). */ 12654 && ((WORD_REGISTER_OPERATIONS 12655 && mode_width > GET_MODE_PRECISION (tmode) 12656 && mode_width <= BITS_PER_WORD 12657 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1) 12658 || (mode_width <= GET_MODE_PRECISION (tmode) 12659 && subreg_lowpart_p (XEXP (op0, 0)))) 12660 && mode_width <= HOST_BITS_PER_WIDE_INT 12661 && HWI_COMPUTABLE_MODE_P (tmode) 12662 && (c1 & ~mask) == 0 12663 && (c1 & ~GET_MODE_MASK (tmode)) == 0 12664 && c1 != mask 12665 && c1 != GET_MODE_MASK (tmode)) 12666 { 12667 op0 = simplify_gen_binary (AND, tmode, 12668 SUBREG_REG (XEXP (op0, 0)), 12669 gen_int_mode (c1, tmode)); 12670 op0 = gen_lowpart (mode, op0); 12671 continue; 12672 } 12673 } 12674 12675 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */ 12676 if (const_op == 0 && equality_comparison_p 12677 && XEXP (op0, 1) == const1_rtx 12678 && GET_CODE (XEXP (op0, 0)) == NOT) 12679 { 12680 op0 = simplify_and_const_int (NULL_RTX, mode, 12681 XEXP (XEXP (op0, 0), 0), 1); 12682 code = (code == NE ? EQ : NE); 12683 continue; 12684 } 12685 12686 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to 12687 (eq (and (lshiftrt X) 1) 0). 12688 Also handle the case where (not X) is expressed using xor. */ 12689 if (const_op == 0 && equality_comparison_p 12690 && XEXP (op0, 1) == const1_rtx 12691 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT) 12692 { 12693 rtx shift_op = XEXP (XEXP (op0, 0), 0); 12694 rtx shift_count = XEXP (XEXP (op0, 0), 1); 12695 12696 if (GET_CODE (shift_op) == NOT 12697 || (GET_CODE (shift_op) == XOR 12698 && CONST_INT_P (XEXP (shift_op, 1)) 12699 && CONST_INT_P (shift_count) 12700 && HWI_COMPUTABLE_MODE_P (mode) 12701 && (UINTVAL (XEXP (shift_op, 1)) 12702 == HOST_WIDE_INT_1U 12703 << INTVAL (shift_count)))) 12704 { 12705 op0 12706 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count); 12707 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1); 12708 code = (code == NE ? EQ : NE); 12709 continue; 12710 } 12711 } 12712 break; 12713 12714 case ASHIFT: 12715 /* If we have (compare (ashift FOO N) (const_int C)) and 12716 the high order N bits of FOO (N+1 if an inequality comparison) 12717 are known to be zero, we can do this by comparing FOO with C 12718 shifted right N bits so long as the low-order N bits of C are 12719 zero. */ 12720 if (CONST_INT_P (XEXP (op0, 1)) 12721 && INTVAL (XEXP (op0, 1)) >= 0 12722 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p) 12723 < HOST_BITS_PER_WIDE_INT) 12724 && (((unsigned HOST_WIDE_INT) const_op 12725 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1))) 12726 - 1)) == 0) 12727 && mode_width <= HOST_BITS_PER_WIDE_INT 12728 && (nonzero_bits (XEXP (op0, 0), mode) 12729 & ~(mask >> (INTVAL (XEXP (op0, 1)) 12730 + ! equality_comparison_p))) == 0) 12731 { 12732 /* We must perform a logical shift, not an arithmetic one, 12733 as we want the top N bits of C to be zero. */ 12734 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode); 12735 12736 temp >>= INTVAL (XEXP (op0, 1)); 12737 op1 = gen_int_mode (temp, mode); 12738 op0 = XEXP (op0, 0); 12739 continue; 12740 } 12741 12742 /* If we are doing a sign bit comparison, it means we are testing 12743 a particular bit. Convert it to the appropriate AND. */ 12744 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1)) 12745 && mode_width <= HOST_BITS_PER_WIDE_INT) 12746 { 12747 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 12748 (HOST_WIDE_INT_1U 12749 << (mode_width - 1 12750 - INTVAL (XEXP (op0, 1))))); 12751 code = (code == LT ? NE : EQ); 12752 continue; 12753 } 12754 12755 /* If this an equality comparison with zero and we are shifting 12756 the low bit to the sign bit, we can convert this to an AND of the 12757 low-order bit. */ 12758 if (const_op == 0 && equality_comparison_p 12759 && CONST_INT_P (XEXP (op0, 1)) 12760 && UINTVAL (XEXP (op0, 1)) == mode_width - 1) 12761 { 12762 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1); 12763 continue; 12764 } 12765 break; 12766 12767 case ASHIFTRT: 12768 /* If this is an equality comparison with zero, we can do this 12769 as a logical shift, which might be much simpler. */ 12770 if (equality_comparison_p && const_op == 0 12771 && CONST_INT_P (XEXP (op0, 1))) 12772 { 12773 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode, 12774 XEXP (op0, 0), 12775 INTVAL (XEXP (op0, 1))); 12776 continue; 12777 } 12778 12779 /* If OP0 is a sign extension and CODE is not an unsigned comparison, 12780 do the comparison in a narrower mode. */ 12781 if (! unsigned_comparison_p 12782 && CONST_INT_P (XEXP (op0, 1)) 12783 && GET_CODE (XEXP (op0, 0)) == ASHIFT 12784 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1) 12785 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1) 12786 .exists (&tmode)) 12787 && (((unsigned HOST_WIDE_INT) const_op 12788 + (GET_MODE_MASK (tmode) >> 1) + 1) 12789 <= GET_MODE_MASK (tmode))) 12790 { 12791 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0)); 12792 continue; 12793 } 12794 12795 /* Likewise if OP0 is a PLUS of a sign extension with a 12796 constant, which is usually represented with the PLUS 12797 between the shifts. */ 12798 if (! unsigned_comparison_p 12799 && CONST_INT_P (XEXP (op0, 1)) 12800 && GET_CODE (XEXP (op0, 0)) == PLUS 12801 && CONST_INT_P (XEXP (XEXP (op0, 0), 1)) 12802 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT 12803 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1) 12804 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1) 12805 .exists (&tmode)) 12806 && (((unsigned HOST_WIDE_INT) const_op 12807 + (GET_MODE_MASK (tmode) >> 1) + 1) 12808 <= GET_MODE_MASK (tmode))) 12809 { 12810 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0); 12811 rtx add_const = XEXP (XEXP (op0, 0), 1); 12812 rtx new_const = simplify_gen_binary (ASHIFTRT, mode, 12813 add_const, XEXP (op0, 1)); 12814 12815 op0 = simplify_gen_binary (PLUS, tmode, 12816 gen_lowpart (tmode, inner), 12817 new_const); 12818 continue; 12819 } 12820 12821 /* FALLTHROUGH */ 12822 case LSHIFTRT: 12823 /* If we have (compare (xshiftrt FOO N) (const_int C)) and 12824 the low order N bits of FOO are known to be zero, we can do this 12825 by comparing FOO with C shifted left N bits so long as no 12826 overflow occurs. Even if the low order N bits of FOO aren't known 12827 to be zero, if the comparison is >= or < we can use the same 12828 optimization and for > or <= by setting all the low 12829 order N bits in the comparison constant. */ 12830 if (CONST_INT_P (XEXP (op0, 1)) 12831 && INTVAL (XEXP (op0, 1)) > 0 12832 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT 12833 && mode_width <= HOST_BITS_PER_WIDE_INT 12834 && (((unsigned HOST_WIDE_INT) const_op 12835 + (GET_CODE (op0) != LSHIFTRT 12836 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1) 12837 + 1) 12838 : 0)) 12839 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)))) 12840 { 12841 unsigned HOST_WIDE_INT low_bits 12842 = (nonzero_bits (XEXP (op0, 0), mode) 12843 & ((HOST_WIDE_INT_1U 12844 << INTVAL (XEXP (op0, 1))) - 1)); 12845 if (low_bits == 0 || !equality_comparison_p) 12846 { 12847 /* If the shift was logical, then we must make the condition 12848 unsigned. */ 12849 if (GET_CODE (op0) == LSHIFTRT) 12850 code = unsigned_condition (code); 12851 12852 const_op = (unsigned HOST_WIDE_INT) const_op 12853 << INTVAL (XEXP (op0, 1)); 12854 if (low_bits != 0 12855 && (code == GT || code == GTU 12856 || code == LE || code == LEU)) 12857 const_op 12858 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1); 12859 op1 = GEN_INT (const_op); 12860 op0 = XEXP (op0, 0); 12861 continue; 12862 } 12863 } 12864 12865 /* If we are using this shift to extract just the sign bit, we 12866 can replace this with an LT or GE comparison. */ 12867 if (const_op == 0 12868 && (equality_comparison_p || sign_bit_comparison_p) 12869 && CONST_INT_P (XEXP (op0, 1)) 12870 && UINTVAL (XEXP (op0, 1)) == mode_width - 1) 12871 { 12872 op0 = XEXP (op0, 0); 12873 code = (code == NE || code == GT ? LT : GE); 12874 continue; 12875 } 12876 break; 12877 12878 default: 12879 break; 12880 } 12881 12882 break; 12883 } 12884 12885 /* Now make any compound operations involved in this comparison. Then, 12886 check for an outmost SUBREG on OP0 that is not doing anything or is 12887 paradoxical. The latter transformation must only be performed when 12888 it is known that the "extra" bits will be the same in op0 and op1 or 12889 that they don't matter. There are three cases to consider: 12890 12891 1. SUBREG_REG (op0) is a register. In this case the bits are don't 12892 care bits and we can assume they have any convenient value. So 12893 making the transformation is safe. 12894 12895 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN. 12896 In this case the upper bits of op0 are undefined. We should not make 12897 the simplification in that case as we do not know the contents of 12898 those bits. 12899 12900 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN. 12901 In that case we know those bits are zeros or ones. We must also be 12902 sure that they are the same as the upper bits of op1. 12903 12904 We can never remove a SUBREG for a non-equality comparison because 12905 the sign bit is in a different place in the underlying object. */ 12906 12907 rtx_code op0_mco_code = SET; 12908 if (op1 == const0_rtx) 12909 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE; 12910 12911 op0 = make_compound_operation (op0, op0_mco_code); 12912 op1 = make_compound_operation (op1, SET); 12913 12914 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0) 12915 && is_int_mode (GET_MODE (op0), &mode) 12916 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode) 12917 && (code == NE || code == EQ)) 12918 { 12919 if (paradoxical_subreg_p (op0)) 12920 { 12921 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't 12922 implemented. */ 12923 if (REG_P (SUBREG_REG (op0))) 12924 { 12925 op0 = SUBREG_REG (op0); 12926 op1 = gen_lowpart (inner_mode, op1); 12927 } 12928 } 12929 else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT 12930 && (nonzero_bits (SUBREG_REG (op0), inner_mode) 12931 & ~GET_MODE_MASK (mode)) == 0) 12932 { 12933 tem = gen_lowpart (inner_mode, op1); 12934 12935 if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0) 12936 op0 = SUBREG_REG (op0), op1 = tem; 12937 } 12938 } 12939 12940 /* We now do the opposite procedure: Some machines don't have compare 12941 insns in all modes. If OP0's mode is an integer mode smaller than a 12942 word and we can't do a compare in that mode, see if there is a larger 12943 mode for which we can do the compare. There are a number of cases in 12944 which we can use the wider mode. */ 12945 12946 if (is_int_mode (GET_MODE (op0), &mode) 12947 && GET_MODE_SIZE (mode) < UNITS_PER_WORD 12948 && ! have_insn_for (COMPARE, mode)) 12949 FOR_EACH_WIDER_MODE (tmode_iter, mode) 12950 { 12951 tmode = tmode_iter.require (); 12952 if (!HWI_COMPUTABLE_MODE_P (tmode)) 12953 break; 12954 if (have_insn_for (COMPARE, tmode)) 12955 { 12956 int zero_extended; 12957 12958 /* If this is a test for negative, we can make an explicit 12959 test of the sign bit. Test this first so we can use 12960 a paradoxical subreg to extend OP0. */ 12961 12962 if (op1 == const0_rtx && (code == LT || code == GE) 12963 && HWI_COMPUTABLE_MODE_P (mode)) 12964 { 12965 unsigned HOST_WIDE_INT sign 12966 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1); 12967 op0 = simplify_gen_binary (AND, tmode, 12968 gen_lowpart (tmode, op0), 12969 gen_int_mode (sign, tmode)); 12970 code = (code == LT) ? NE : EQ; 12971 break; 12972 } 12973 12974 /* If the only nonzero bits in OP0 and OP1 are those in the 12975 narrower mode and this is an equality or unsigned comparison, 12976 we can use the wider mode. Similarly for sign-extended 12977 values, in which case it is true for all comparisons. */ 12978 zero_extended = ((code == EQ || code == NE 12979 || code == GEU || code == GTU 12980 || code == LEU || code == LTU) 12981 && (nonzero_bits (op0, tmode) 12982 & ~GET_MODE_MASK (mode)) == 0 12983 && ((CONST_INT_P (op1) 12984 || (nonzero_bits (op1, tmode) 12985 & ~GET_MODE_MASK (mode)) == 0))); 12986 12987 if (zero_extended 12988 || ((num_sign_bit_copies (op0, tmode) 12989 > (unsigned int) (GET_MODE_PRECISION (tmode) 12990 - GET_MODE_PRECISION (mode))) 12991 && (num_sign_bit_copies (op1, tmode) 12992 > (unsigned int) (GET_MODE_PRECISION (tmode) 12993 - GET_MODE_PRECISION (mode))))) 12994 { 12995 /* If OP0 is an AND and we don't have an AND in MODE either, 12996 make a new AND in the proper mode. */ 12997 if (GET_CODE (op0) == AND 12998 && !have_insn_for (AND, mode)) 12999 op0 = simplify_gen_binary (AND, tmode, 13000 gen_lowpart (tmode, 13001 XEXP (op0, 0)), 13002 gen_lowpart (tmode, 13003 XEXP (op0, 1))); 13004 else 13005 { 13006 if (zero_extended) 13007 { 13008 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, 13009 op0, mode); 13010 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, 13011 op1, mode); 13012 } 13013 else 13014 { 13015 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, 13016 op0, mode); 13017 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, 13018 op1, mode); 13019 } 13020 break; 13021 } 13022 } 13023 } 13024 } 13025 13026 /* We may have changed the comparison operands. Re-canonicalize. */ 13027 if (swap_commutative_operands_p (op0, op1)) 13028 { 13029 std::swap (op0, op1); 13030 code = swap_condition (code); 13031 } 13032 13033 /* If this machine only supports a subset of valid comparisons, see if we 13034 can convert an unsupported one into a supported one. */ 13035 target_canonicalize_comparison (&code, &op0, &op1, 0); 13036 13037 *pop0 = op0; 13038 *pop1 = op1; 13039 13040 return code; 13041 } 13042 13043 /* Utility function for record_value_for_reg. Count number of 13044 rtxs in X. */ 13045 static int 13046 count_rtxs (rtx x) 13047 { 13048 enum rtx_code code = GET_CODE (x); 13049 const char *fmt; 13050 int i, j, ret = 1; 13051 13052 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH 13053 || GET_RTX_CLASS (code) == RTX_COMM_ARITH) 13054 { 13055 rtx x0 = XEXP (x, 0); 13056 rtx x1 = XEXP (x, 1); 13057 13058 if (x0 == x1) 13059 return 1 + 2 * count_rtxs (x0); 13060 13061 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH 13062 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH) 13063 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1))) 13064 return 2 + 2 * count_rtxs (x0) 13065 + count_rtxs (x == XEXP (x1, 0) 13066 ? XEXP (x1, 1) : XEXP (x1, 0)); 13067 13068 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH 13069 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH) 13070 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1))) 13071 return 2 + 2 * count_rtxs (x1) 13072 + count_rtxs (x == XEXP (x0, 0) 13073 ? XEXP (x0, 1) : XEXP (x0, 0)); 13074 } 13075 13076 fmt = GET_RTX_FORMAT (code); 13077 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 13078 if (fmt[i] == 'e') 13079 ret += count_rtxs (XEXP (x, i)); 13080 else if (fmt[i] == 'E') 13081 for (j = 0; j < XVECLEN (x, i); j++) 13082 ret += count_rtxs (XVECEXP (x, i, j)); 13083 13084 return ret; 13085 } 13086 13087 /* Utility function for following routine. Called when X is part of a value 13088 being stored into last_set_value. Sets last_set_table_tick 13089 for each register mentioned. Similar to mention_regs in cse.c */ 13090 13091 static void 13092 update_table_tick (rtx x) 13093 { 13094 enum rtx_code code = GET_CODE (x); 13095 const char *fmt = GET_RTX_FORMAT (code); 13096 int i, j; 13097 13098 if (code == REG) 13099 { 13100 unsigned int regno = REGNO (x); 13101 unsigned int endregno = END_REGNO (x); 13102 unsigned int r; 13103 13104 for (r = regno; r < endregno; r++) 13105 { 13106 reg_stat_type *rsp = ®_stat[r]; 13107 rsp->last_set_table_tick = label_tick; 13108 } 13109 13110 return; 13111 } 13112 13113 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 13114 if (fmt[i] == 'e') 13115 { 13116 /* Check for identical subexpressions. If x contains 13117 identical subexpression we only have to traverse one of 13118 them. */ 13119 if (i == 0 && ARITHMETIC_P (x)) 13120 { 13121 /* Note that at this point x1 has already been 13122 processed. */ 13123 rtx x0 = XEXP (x, 0); 13124 rtx x1 = XEXP (x, 1); 13125 13126 /* If x0 and x1 are identical then there is no need to 13127 process x0. */ 13128 if (x0 == x1) 13129 break; 13130 13131 /* If x0 is identical to a subexpression of x1 then while 13132 processing x1, x0 has already been processed. Thus we 13133 are done with x. */ 13134 if (ARITHMETIC_P (x1) 13135 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1))) 13136 break; 13137 13138 /* If x1 is identical to a subexpression of x0 then we 13139 still have to process the rest of x0. */ 13140 if (ARITHMETIC_P (x0) 13141 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1))) 13142 { 13143 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0)); 13144 break; 13145 } 13146 } 13147 13148 update_table_tick (XEXP (x, i)); 13149 } 13150 else if (fmt[i] == 'E') 13151 for (j = 0; j < XVECLEN (x, i); j++) 13152 update_table_tick (XVECEXP (x, i, j)); 13153 } 13154 13155 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we 13156 are saying that the register is clobbered and we no longer know its 13157 value. If INSN is zero, don't update reg_stat[].last_set; this is 13158 only permitted with VALUE also zero and is used to invalidate the 13159 register. */ 13160 13161 static void 13162 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value) 13163 { 13164 unsigned int regno = REGNO (reg); 13165 unsigned int endregno = END_REGNO (reg); 13166 unsigned int i; 13167 reg_stat_type *rsp; 13168 13169 /* If VALUE contains REG and we have a previous value for REG, substitute 13170 the previous value. */ 13171 if (value && insn && reg_overlap_mentioned_p (reg, value)) 13172 { 13173 rtx tem; 13174 13175 /* Set things up so get_last_value is allowed to see anything set up to 13176 our insn. */ 13177 subst_low_luid = DF_INSN_LUID (insn); 13178 tem = get_last_value (reg); 13179 13180 /* If TEM is simply a binary operation with two CLOBBERs as operands, 13181 it isn't going to be useful and will take a lot of time to process, 13182 so just use the CLOBBER. */ 13183 13184 if (tem) 13185 { 13186 if (ARITHMETIC_P (tem) 13187 && GET_CODE (XEXP (tem, 0)) == CLOBBER 13188 && GET_CODE (XEXP (tem, 1)) == CLOBBER) 13189 tem = XEXP (tem, 0); 13190 else if (count_occurrences (value, reg, 1) >= 2) 13191 { 13192 /* If there are two or more occurrences of REG in VALUE, 13193 prevent the value from growing too much. */ 13194 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL) 13195 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx); 13196 } 13197 13198 value = replace_rtx (copy_rtx (value), reg, tem); 13199 } 13200 } 13201 13202 /* For each register modified, show we don't know its value, that 13203 we don't know about its bitwise content, that its value has been 13204 updated, and that we don't know the location of the death of the 13205 register. */ 13206 for (i = regno; i < endregno; i++) 13207 { 13208 rsp = ®_stat[i]; 13209 13210 if (insn) 13211 rsp->last_set = insn; 13212 13213 rsp->last_set_value = 0; 13214 rsp->last_set_mode = VOIDmode; 13215 rsp->last_set_nonzero_bits = 0; 13216 rsp->last_set_sign_bit_copies = 0; 13217 rsp->last_death = 0; 13218 rsp->truncated_to_mode = VOIDmode; 13219 } 13220 13221 /* Mark registers that are being referenced in this value. */ 13222 if (value) 13223 update_table_tick (value); 13224 13225 /* Now update the status of each register being set. 13226 If someone is using this register in this block, set this register 13227 to invalid since we will get confused between the two lives in this 13228 basic block. This makes using this register always invalid. In cse, we 13229 scan the table to invalidate all entries using this register, but this 13230 is too much work for us. */ 13231 13232 for (i = regno; i < endregno; i++) 13233 { 13234 rsp = ®_stat[i]; 13235 rsp->last_set_label = label_tick; 13236 if (!insn 13237 || (value && rsp->last_set_table_tick >= label_tick_ebb_start)) 13238 rsp->last_set_invalid = 1; 13239 else 13240 rsp->last_set_invalid = 0; 13241 } 13242 13243 /* The value being assigned might refer to X (like in "x++;"). In that 13244 case, we must replace it with (clobber (const_int 0)) to prevent 13245 infinite loops. */ 13246 rsp = ®_stat[regno]; 13247 if (value && !get_last_value_validate (&value, insn, label_tick, 0)) 13248 { 13249 value = copy_rtx (value); 13250 if (!get_last_value_validate (&value, insn, label_tick, 1)) 13251 value = 0; 13252 } 13253 13254 /* For the main register being modified, update the value, the mode, the 13255 nonzero bits, and the number of sign bit copies. */ 13256 13257 rsp->last_set_value = value; 13258 13259 if (value) 13260 { 13261 machine_mode mode = GET_MODE (reg); 13262 subst_low_luid = DF_INSN_LUID (insn); 13263 rsp->last_set_mode = mode; 13264 if (GET_MODE_CLASS (mode) == MODE_INT 13265 && HWI_COMPUTABLE_MODE_P (mode)) 13266 mode = nonzero_bits_mode; 13267 rsp->last_set_nonzero_bits = nonzero_bits (value, mode); 13268 rsp->last_set_sign_bit_copies 13269 = num_sign_bit_copies (value, GET_MODE (reg)); 13270 } 13271 } 13272 13273 /* Called via note_stores from record_dead_and_set_regs to handle one 13274 SET or CLOBBER in an insn. DATA is the instruction in which the 13275 set is occurring. */ 13276 13277 static void 13278 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data) 13279 { 13280 rtx_insn *record_dead_insn = (rtx_insn *) data; 13281 13282 if (GET_CODE (dest) == SUBREG) 13283 dest = SUBREG_REG (dest); 13284 13285 if (!record_dead_insn) 13286 { 13287 if (REG_P (dest)) 13288 record_value_for_reg (dest, NULL, NULL_RTX); 13289 return; 13290 } 13291 13292 if (REG_P (dest)) 13293 { 13294 /* If we are setting the whole register, we know its value. Otherwise 13295 show that we don't know the value. We can handle a SUBREG if it's 13296 the low part, but we must be careful with paradoxical SUBREGs on 13297 RISC architectures because we cannot strip e.g. an extension around 13298 a load and record the naked load since the RTL middle-end considers 13299 that the upper bits are defined according to LOAD_EXTEND_OP. */ 13300 if (GET_CODE (setter) == SET && dest == SET_DEST (setter)) 13301 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter)); 13302 else if (GET_CODE (setter) == SET 13303 && GET_CODE (SET_DEST (setter)) == SUBREG 13304 && SUBREG_REG (SET_DEST (setter)) == dest 13305 && known_le (GET_MODE_PRECISION (GET_MODE (dest)), 13306 BITS_PER_WORD) 13307 && subreg_lowpart_p (SET_DEST (setter))) 13308 record_value_for_reg (dest, record_dead_insn, 13309 WORD_REGISTER_OPERATIONS 13310 && word_register_operation_p (SET_SRC (setter)) 13311 && paradoxical_subreg_p (SET_DEST (setter)) 13312 ? SET_SRC (setter) 13313 : gen_lowpart (GET_MODE (dest), 13314 SET_SRC (setter))); 13315 else 13316 record_value_for_reg (dest, record_dead_insn, NULL_RTX); 13317 } 13318 else if (MEM_P (dest) 13319 /* Ignore pushes, they clobber nothing. */ 13320 && ! push_operand (dest, GET_MODE (dest))) 13321 mem_last_set = DF_INSN_LUID (record_dead_insn); 13322 } 13323 13324 /* Update the records of when each REG was most recently set or killed 13325 for the things done by INSN. This is the last thing done in processing 13326 INSN in the combiner loop. 13327 13328 We update reg_stat[], in particular fields last_set, last_set_value, 13329 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies, 13330 last_death, and also the similar information mem_last_set (which insn 13331 most recently modified memory) and last_call_luid (which insn was the 13332 most recent subroutine call). */ 13333 13334 static void 13335 record_dead_and_set_regs (rtx_insn *insn) 13336 { 13337 rtx link; 13338 unsigned int i; 13339 13340 for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) 13341 { 13342 if (REG_NOTE_KIND (link) == REG_DEAD 13343 && REG_P (XEXP (link, 0))) 13344 { 13345 unsigned int regno = REGNO (XEXP (link, 0)); 13346 unsigned int endregno = END_REGNO (XEXP (link, 0)); 13347 13348 for (i = regno; i < endregno; i++) 13349 { 13350 reg_stat_type *rsp; 13351 13352 rsp = ®_stat[i]; 13353 rsp->last_death = insn; 13354 } 13355 } 13356 else if (REG_NOTE_KIND (link) == REG_INC) 13357 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX); 13358 } 13359 13360 if (CALL_P (insn)) 13361 { 13362 hard_reg_set_iterator hrsi; 13363 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi) 13364 { 13365 reg_stat_type *rsp; 13366 13367 rsp = ®_stat[i]; 13368 rsp->last_set_invalid = 1; 13369 rsp->last_set = insn; 13370 rsp->last_set_value = 0; 13371 rsp->last_set_mode = VOIDmode; 13372 rsp->last_set_nonzero_bits = 0; 13373 rsp->last_set_sign_bit_copies = 0; 13374 rsp->last_death = 0; 13375 rsp->truncated_to_mode = VOIDmode; 13376 } 13377 13378 last_call_luid = mem_last_set = DF_INSN_LUID (insn); 13379 13380 /* We can't combine into a call pattern. Remember, though, that 13381 the return value register is set at this LUID. We could 13382 still replace a register with the return value from the 13383 wrong subroutine call! */ 13384 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX); 13385 } 13386 else 13387 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn); 13388 } 13389 13390 /* If a SUBREG has the promoted bit set, it is in fact a property of the 13391 register present in the SUBREG, so for each such SUBREG go back and 13392 adjust nonzero and sign bit information of the registers that are 13393 known to have some zero/sign bits set. 13394 13395 This is needed because when combine blows the SUBREGs away, the 13396 information on zero/sign bits is lost and further combines can be 13397 missed because of that. */ 13398 13399 static void 13400 record_promoted_value (rtx_insn *insn, rtx subreg) 13401 { 13402 struct insn_link *links; 13403 rtx set; 13404 unsigned int regno = REGNO (SUBREG_REG (subreg)); 13405 machine_mode mode = GET_MODE (subreg); 13406 13407 if (!HWI_COMPUTABLE_MODE_P (mode)) 13408 return; 13409 13410 for (links = LOG_LINKS (insn); links;) 13411 { 13412 reg_stat_type *rsp; 13413 13414 insn = links->insn; 13415 set = single_set (insn); 13416 13417 if (! set || !REG_P (SET_DEST (set)) 13418 || REGNO (SET_DEST (set)) != regno 13419 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg))) 13420 { 13421 links = links->next; 13422 continue; 13423 } 13424 13425 rsp = ®_stat[regno]; 13426 if (rsp->last_set == insn) 13427 { 13428 if (SUBREG_PROMOTED_UNSIGNED_P (subreg)) 13429 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode); 13430 } 13431 13432 if (REG_P (SET_SRC (set))) 13433 { 13434 regno = REGNO (SET_SRC (set)); 13435 links = LOG_LINKS (insn); 13436 } 13437 else 13438 break; 13439 } 13440 } 13441 13442 /* Check if X, a register, is known to contain a value already 13443 truncated to MODE. In this case we can use a subreg to refer to 13444 the truncated value even though in the generic case we would need 13445 an explicit truncation. */ 13446 13447 static bool 13448 reg_truncated_to_mode (machine_mode mode, const_rtx x) 13449 { 13450 reg_stat_type *rsp = ®_stat[REGNO (x)]; 13451 machine_mode truncated = rsp->truncated_to_mode; 13452 13453 if (truncated == 0 13454 || rsp->truncation_label < label_tick_ebb_start) 13455 return false; 13456 if (!partial_subreg_p (mode, truncated)) 13457 return true; 13458 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated)) 13459 return true; 13460 return false; 13461 } 13462 13463 /* If X is a hard reg or a subreg record the mode that the register is 13464 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be 13465 able to turn a truncate into a subreg using this information. Return true 13466 if traversing X is complete. */ 13467 13468 static bool 13469 record_truncated_value (rtx x) 13470 { 13471 machine_mode truncated_mode; 13472 reg_stat_type *rsp; 13473 13474 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))) 13475 { 13476 machine_mode original_mode = GET_MODE (SUBREG_REG (x)); 13477 truncated_mode = GET_MODE (x); 13478 13479 if (!partial_subreg_p (truncated_mode, original_mode)) 13480 return true; 13481 13482 truncated_mode = GET_MODE (x); 13483 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode)) 13484 return true; 13485 13486 x = SUBREG_REG (x); 13487 } 13488 /* ??? For hard-regs we now record everything. We might be able to 13489 optimize this using last_set_mode. */ 13490 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER) 13491 truncated_mode = GET_MODE (x); 13492 else 13493 return false; 13494 13495 rsp = ®_stat[REGNO (x)]; 13496 if (rsp->truncated_to_mode == 0 13497 || rsp->truncation_label < label_tick_ebb_start 13498 || partial_subreg_p (truncated_mode, rsp->truncated_to_mode)) 13499 { 13500 rsp->truncated_to_mode = truncated_mode; 13501 rsp->truncation_label = label_tick; 13502 } 13503 13504 return true; 13505 } 13506 13507 /* Callback for note_uses. Find hardregs and subregs of pseudos and 13508 the modes they are used in. This can help truning TRUNCATEs into 13509 SUBREGs. */ 13510 13511 static void 13512 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED) 13513 { 13514 subrtx_var_iterator::array_type array; 13515 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST) 13516 if (record_truncated_value (*iter)) 13517 iter.skip_subrtxes (); 13518 } 13519 13520 /* Scan X for promoted SUBREGs. For each one found, 13521 note what it implies to the registers used in it. */ 13522 13523 static void 13524 check_promoted_subreg (rtx_insn *insn, rtx x) 13525 { 13526 if (GET_CODE (x) == SUBREG 13527 && SUBREG_PROMOTED_VAR_P (x) 13528 && REG_P (SUBREG_REG (x))) 13529 record_promoted_value (insn, x); 13530 else 13531 { 13532 const char *format = GET_RTX_FORMAT (GET_CODE (x)); 13533 int i, j; 13534 13535 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++) 13536 switch (format[i]) 13537 { 13538 case 'e': 13539 check_promoted_subreg (insn, XEXP (x, i)); 13540 break; 13541 case 'V': 13542 case 'E': 13543 if (XVEC (x, i) != 0) 13544 for (j = 0; j < XVECLEN (x, i); j++) 13545 check_promoted_subreg (insn, XVECEXP (x, i, j)); 13546 break; 13547 } 13548 } 13549 } 13550 13551 /* Verify that all the registers and memory references mentioned in *LOC are 13552 still valid. *LOC was part of a value set in INSN when label_tick was 13553 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace 13554 the invalid references with (clobber (const_int 0)) and return 1. This 13555 replacement is useful because we often can get useful information about 13556 the form of a value (e.g., if it was produced by a shift that always 13557 produces -1 or 0) even though we don't know exactly what registers it 13558 was produced from. */ 13559 13560 static int 13561 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace) 13562 { 13563 rtx x = *loc; 13564 const char *fmt = GET_RTX_FORMAT (GET_CODE (x)); 13565 int len = GET_RTX_LENGTH (GET_CODE (x)); 13566 int i, j; 13567 13568 if (REG_P (x)) 13569 { 13570 unsigned int regno = REGNO (x); 13571 unsigned int endregno = END_REGNO (x); 13572 unsigned int j; 13573 13574 for (j = regno; j < endregno; j++) 13575 { 13576 reg_stat_type *rsp = ®_stat[j]; 13577 if (rsp->last_set_invalid 13578 /* If this is a pseudo-register that was only set once and not 13579 live at the beginning of the function, it is always valid. */ 13580 || (! (regno >= FIRST_PSEUDO_REGISTER 13581 && regno < reg_n_sets_max 13582 && REG_N_SETS (regno) == 1 13583 && (!REGNO_REG_SET_P 13584 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), 13585 regno))) 13586 && rsp->last_set_label > tick)) 13587 { 13588 if (replace) 13589 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx); 13590 return replace; 13591 } 13592 } 13593 13594 return 1; 13595 } 13596 /* If this is a memory reference, make sure that there were no stores after 13597 it that might have clobbered the value. We don't have alias info, so we 13598 assume any store invalidates it. Moreover, we only have local UIDs, so 13599 we also assume that there were stores in the intervening basic blocks. */ 13600 else if (MEM_P (x) && !MEM_READONLY_P (x) 13601 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set)) 13602 { 13603 if (replace) 13604 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx); 13605 return replace; 13606 } 13607 13608 for (i = 0; i < len; i++) 13609 { 13610 if (fmt[i] == 'e') 13611 { 13612 /* Check for identical subexpressions. If x contains 13613 identical subexpression we only have to traverse one of 13614 them. */ 13615 if (i == 1 && ARITHMETIC_P (x)) 13616 { 13617 /* Note that at this point x0 has already been checked 13618 and found valid. */ 13619 rtx x0 = XEXP (x, 0); 13620 rtx x1 = XEXP (x, 1); 13621 13622 /* If x0 and x1 are identical then x is also valid. */ 13623 if (x0 == x1) 13624 return 1; 13625 13626 /* If x1 is identical to a subexpression of x0 then 13627 while checking x0, x1 has already been checked. Thus 13628 it is valid and so as x. */ 13629 if (ARITHMETIC_P (x0) 13630 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1))) 13631 return 1; 13632 13633 /* If x0 is identical to a subexpression of x1 then x is 13634 valid iff the rest of x1 is valid. */ 13635 if (ARITHMETIC_P (x1) 13636 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1))) 13637 return 13638 get_last_value_validate (&XEXP (x1, 13639 x0 == XEXP (x1, 0) ? 1 : 0), 13640 insn, tick, replace); 13641 } 13642 13643 if (get_last_value_validate (&XEXP (x, i), insn, tick, 13644 replace) == 0) 13645 return 0; 13646 } 13647 else if (fmt[i] == 'E') 13648 for (j = 0; j < XVECLEN (x, i); j++) 13649 if (get_last_value_validate (&XVECEXP (x, i, j), 13650 insn, tick, replace) == 0) 13651 return 0; 13652 } 13653 13654 /* If we haven't found a reason for it to be invalid, it is valid. */ 13655 return 1; 13656 } 13657 13658 /* Get the last value assigned to X, if known. Some registers 13659 in the value may be replaced with (clobber (const_int 0)) if their value 13660 is known longer known reliably. */ 13661 13662 static rtx 13663 get_last_value (const_rtx x) 13664 { 13665 unsigned int regno; 13666 rtx value; 13667 reg_stat_type *rsp; 13668 13669 /* If this is a non-paradoxical SUBREG, get the value of its operand and 13670 then convert it to the desired mode. If this is a paradoxical SUBREG, 13671 we cannot predict what values the "extra" bits might have. */ 13672 if (GET_CODE (x) == SUBREG 13673 && subreg_lowpart_p (x) 13674 && !paradoxical_subreg_p (x) 13675 && (value = get_last_value (SUBREG_REG (x))) != 0) 13676 return gen_lowpart (GET_MODE (x), value); 13677 13678 if (!REG_P (x)) 13679 return 0; 13680 13681 regno = REGNO (x); 13682 rsp = ®_stat[regno]; 13683 value = rsp->last_set_value; 13684 13685 /* If we don't have a value, or if it isn't for this basic block and 13686 it's either a hard register, set more than once, or it's a live 13687 at the beginning of the function, return 0. 13688 13689 Because if it's not live at the beginning of the function then the reg 13690 is always set before being used (is never used without being set). 13691 And, if it's set only once, and it's always set before use, then all 13692 uses must have the same last value, even if it's not from this basic 13693 block. */ 13694 13695 if (value == 0 13696 || (rsp->last_set_label < label_tick_ebb_start 13697 && (regno < FIRST_PSEUDO_REGISTER 13698 || regno >= reg_n_sets_max 13699 || REG_N_SETS (regno) != 1 13700 || REGNO_REG_SET_P 13701 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno)))) 13702 return 0; 13703 13704 /* If the value was set in a later insn than the ones we are processing, 13705 we can't use it even if the register was only set once. */ 13706 if (rsp->last_set_label == label_tick 13707 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid) 13708 return 0; 13709 13710 /* If fewer bits were set than what we are asked for now, we cannot use 13711 the value. */ 13712 if (maybe_lt (GET_MODE_PRECISION (rsp->last_set_mode), 13713 GET_MODE_PRECISION (GET_MODE (x)))) 13714 return 0; 13715 13716 /* If the value has all its registers valid, return it. */ 13717 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0)) 13718 return value; 13719 13720 /* Otherwise, make a copy and replace any invalid register with 13721 (clobber (const_int 0)). If that fails for some reason, return 0. */ 13722 13723 value = copy_rtx (value); 13724 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1)) 13725 return value; 13726 13727 return 0; 13728 } 13729 13730 /* Define three variables used for communication between the following 13731 routines. */ 13732 13733 static unsigned int reg_dead_regno, reg_dead_endregno; 13734 static int reg_dead_flag; 13735 13736 /* Function called via note_stores from reg_dead_at_p. 13737 13738 If DEST is within [reg_dead_regno, reg_dead_endregno), set 13739 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */ 13740 13741 static void 13742 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED) 13743 { 13744 unsigned int regno, endregno; 13745 13746 if (!REG_P (dest)) 13747 return; 13748 13749 regno = REGNO (dest); 13750 endregno = END_REGNO (dest); 13751 if (reg_dead_endregno > regno && reg_dead_regno < endregno) 13752 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1; 13753 } 13754 13755 /* Return nonzero if REG is known to be dead at INSN. 13756 13757 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER 13758 referencing REG, it is dead. If we hit a SET referencing REG, it is 13759 live. Otherwise, see if it is live or dead at the start of the basic 13760 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS 13761 must be assumed to be always live. */ 13762 13763 static int 13764 reg_dead_at_p (rtx reg, rtx_insn *insn) 13765 { 13766 basic_block block; 13767 unsigned int i; 13768 13769 /* Set variables for reg_dead_at_p_1. */ 13770 reg_dead_regno = REGNO (reg); 13771 reg_dead_endregno = END_REGNO (reg); 13772 13773 reg_dead_flag = 0; 13774 13775 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers 13776 we allow the machine description to decide whether use-and-clobber 13777 patterns are OK. */ 13778 if (reg_dead_regno < FIRST_PSEUDO_REGISTER) 13779 { 13780 for (i = reg_dead_regno; i < reg_dead_endregno; i++) 13781 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i)) 13782 return 0; 13783 } 13784 13785 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or 13786 beginning of basic block. */ 13787 block = BLOCK_FOR_INSN (insn); 13788 for (;;) 13789 { 13790 if (INSN_P (insn)) 13791 { 13792 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno)) 13793 return 1; 13794 13795 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL); 13796 if (reg_dead_flag) 13797 return reg_dead_flag == 1 ? 1 : 0; 13798 13799 if (find_regno_note (insn, REG_DEAD, reg_dead_regno)) 13800 return 1; 13801 } 13802 13803 if (insn == BB_HEAD (block)) 13804 break; 13805 13806 insn = PREV_INSN (insn); 13807 } 13808 13809 /* Look at live-in sets for the basic block that we were in. */ 13810 for (i = reg_dead_regno; i < reg_dead_endregno; i++) 13811 if (REGNO_REG_SET_P (df_get_live_in (block), i)) 13812 return 0; 13813 13814 return 1; 13815 } 13816 13817 /* Note hard registers in X that are used. */ 13818 13819 static void 13820 mark_used_regs_combine (rtx x) 13821 { 13822 RTX_CODE code = GET_CODE (x); 13823 unsigned int regno; 13824 int i; 13825 13826 switch (code) 13827 { 13828 case LABEL_REF: 13829 case SYMBOL_REF: 13830 case CONST: 13831 CASE_CONST_ANY: 13832 case PC: 13833 case ADDR_VEC: 13834 case ADDR_DIFF_VEC: 13835 case ASM_INPUT: 13836 /* CC0 must die in the insn after it is set, so we don't need to take 13837 special note of it here. */ 13838 case CC0: 13839 return; 13840 13841 case CLOBBER: 13842 /* If we are clobbering a MEM, mark any hard registers inside the 13843 address as used. */ 13844 if (MEM_P (XEXP (x, 0))) 13845 mark_used_regs_combine (XEXP (XEXP (x, 0), 0)); 13846 return; 13847 13848 case REG: 13849 regno = REGNO (x); 13850 /* A hard reg in a wide mode may really be multiple registers. 13851 If so, mark all of them just like the first. */ 13852 if (regno < FIRST_PSEUDO_REGISTER) 13853 { 13854 /* None of this applies to the stack, frame or arg pointers. */ 13855 if (regno == STACK_POINTER_REGNUM 13856 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER 13857 && regno == HARD_FRAME_POINTER_REGNUM) 13858 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM 13859 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]) 13860 || regno == FRAME_POINTER_REGNUM) 13861 return; 13862 13863 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno); 13864 } 13865 return; 13866 13867 case SET: 13868 { 13869 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in 13870 the address. */ 13871 rtx testreg = SET_DEST (x); 13872 13873 while (GET_CODE (testreg) == SUBREG 13874 || GET_CODE (testreg) == ZERO_EXTRACT 13875 || GET_CODE (testreg) == STRICT_LOW_PART) 13876 testreg = XEXP (testreg, 0); 13877 13878 if (MEM_P (testreg)) 13879 mark_used_regs_combine (XEXP (testreg, 0)); 13880 13881 mark_used_regs_combine (SET_SRC (x)); 13882 } 13883 return; 13884 13885 default: 13886 break; 13887 } 13888 13889 /* Recursively scan the operands of this expression. */ 13890 13891 { 13892 const char *fmt = GET_RTX_FORMAT (code); 13893 13894 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 13895 { 13896 if (fmt[i] == 'e') 13897 mark_used_regs_combine (XEXP (x, i)); 13898 else if (fmt[i] == 'E') 13899 { 13900 int j; 13901 13902 for (j = 0; j < XVECLEN (x, i); j++) 13903 mark_used_regs_combine (XVECEXP (x, i, j)); 13904 } 13905 } 13906 } 13907 } 13908 13909 /* Remove register number REGNO from the dead registers list of INSN. 13910 13911 Return the note used to record the death, if there was one. */ 13912 13913 rtx 13914 remove_death (unsigned int regno, rtx_insn *insn) 13915 { 13916 rtx note = find_regno_note (insn, REG_DEAD, regno); 13917 13918 if (note) 13919 remove_note (insn, note); 13920 13921 return note; 13922 } 13923 13924 /* For each register (hardware or pseudo) used within expression X, if its 13925 death is in an instruction with luid between FROM_LUID (inclusive) and 13926 TO_INSN (exclusive), put a REG_DEAD note for that register in the 13927 list headed by PNOTES. 13928 13929 That said, don't move registers killed by maybe_kill_insn. 13930 13931 This is done when X is being merged by combination into TO_INSN. These 13932 notes will then be distributed as needed. */ 13933 13934 static void 13935 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn, 13936 rtx *pnotes) 13937 { 13938 const char *fmt; 13939 int len, i; 13940 enum rtx_code code = GET_CODE (x); 13941 13942 if (code == REG) 13943 { 13944 unsigned int regno = REGNO (x); 13945 rtx_insn *where_dead = reg_stat[regno].last_death; 13946 13947 /* If we do not know where the register died, it may still die between 13948 FROM_LUID and TO_INSN. If so, find it. This is PR83304. */ 13949 if (!where_dead || DF_INSN_LUID (where_dead) >= DF_INSN_LUID (to_insn)) 13950 { 13951 rtx_insn *insn = prev_real_nondebug_insn (to_insn); 13952 while (insn 13953 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (to_insn) 13954 && DF_INSN_LUID (insn) >= from_luid) 13955 { 13956 if (dead_or_set_regno_p (insn, regno)) 13957 { 13958 if (find_regno_note (insn, REG_DEAD, regno)) 13959 where_dead = insn; 13960 break; 13961 } 13962 13963 insn = prev_real_nondebug_insn (insn); 13964 } 13965 } 13966 13967 /* Don't move the register if it gets killed in between from and to. */ 13968 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn) 13969 && ! reg_referenced_p (x, maybe_kill_insn)) 13970 return; 13971 13972 if (where_dead 13973 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn) 13974 && DF_INSN_LUID (where_dead) >= from_luid 13975 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn)) 13976 { 13977 rtx note = remove_death (regno, where_dead); 13978 13979 /* It is possible for the call above to return 0. This can occur 13980 when last_death points to I2 or I1 that we combined with. 13981 In that case make a new note. 13982 13983 We must also check for the case where X is a hard register 13984 and NOTE is a death note for a range of hard registers 13985 including X. In that case, we must put REG_DEAD notes for 13986 the remaining registers in place of NOTE. */ 13987 13988 if (note != 0 && regno < FIRST_PSEUDO_REGISTER 13989 && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0)))) 13990 { 13991 unsigned int deadregno = REGNO (XEXP (note, 0)); 13992 unsigned int deadend = END_REGNO (XEXP (note, 0)); 13993 unsigned int ourend = END_REGNO (x); 13994 unsigned int i; 13995 13996 for (i = deadregno; i < deadend; i++) 13997 if (i < regno || i >= ourend) 13998 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]); 13999 } 14000 14001 /* If we didn't find any note, or if we found a REG_DEAD note that 14002 covers only part of the given reg, and we have a multi-reg hard 14003 register, then to be safe we must check for REG_DEAD notes 14004 for each register other than the first. They could have 14005 their own REG_DEAD notes lying around. */ 14006 else if ((note == 0 14007 || (note != 0 14008 && partial_subreg_p (GET_MODE (XEXP (note, 0)), 14009 GET_MODE (x)))) 14010 && regno < FIRST_PSEUDO_REGISTER 14011 && REG_NREGS (x) > 1) 14012 { 14013 unsigned int ourend = END_REGNO (x); 14014 unsigned int i, offset; 14015 rtx oldnotes = 0; 14016 14017 if (note) 14018 offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0))); 14019 else 14020 offset = 1; 14021 14022 for (i = regno + offset; i < ourend; i++) 14023 move_deaths (regno_reg_rtx[i], 14024 maybe_kill_insn, from_luid, to_insn, &oldnotes); 14025 } 14026 14027 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x)) 14028 { 14029 XEXP (note, 1) = *pnotes; 14030 *pnotes = note; 14031 } 14032 else 14033 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes); 14034 } 14035 14036 return; 14037 } 14038 14039 else if (GET_CODE (x) == SET) 14040 { 14041 rtx dest = SET_DEST (x); 14042 14043 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes); 14044 14045 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG 14046 that accesses one word of a multi-word item, some 14047 piece of everything register in the expression is used by 14048 this insn, so remove any old death. */ 14049 /* ??? So why do we test for equality of the sizes? */ 14050 14051 if (GET_CODE (dest) == ZERO_EXTRACT 14052 || GET_CODE (dest) == STRICT_LOW_PART 14053 || (GET_CODE (dest) == SUBREG 14054 && !read_modify_subreg_p (dest))) 14055 { 14056 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes); 14057 return; 14058 } 14059 14060 /* If this is some other SUBREG, we know it replaces the entire 14061 value, so use that as the destination. */ 14062 if (GET_CODE (dest) == SUBREG) 14063 dest = SUBREG_REG (dest); 14064 14065 /* If this is a MEM, adjust deaths of anything used in the address. 14066 For a REG (the only other possibility), the entire value is 14067 being replaced so the old value is not used in this insn. */ 14068 14069 if (MEM_P (dest)) 14070 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid, 14071 to_insn, pnotes); 14072 return; 14073 } 14074 14075 else if (GET_CODE (x) == CLOBBER) 14076 return; 14077 14078 len = GET_RTX_LENGTH (code); 14079 fmt = GET_RTX_FORMAT (code); 14080 14081 for (i = 0; i < len; i++) 14082 { 14083 if (fmt[i] == 'E') 14084 { 14085 int j; 14086 for (j = XVECLEN (x, i) - 1; j >= 0; j--) 14087 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid, 14088 to_insn, pnotes); 14089 } 14090 else if (fmt[i] == 'e') 14091 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes); 14092 } 14093 } 14094 14095 /* Return 1 if X is the target of a bit-field assignment in BODY, the 14096 pattern of an insn. X must be a REG. */ 14097 14098 static int 14099 reg_bitfield_target_p (rtx x, rtx body) 14100 { 14101 int i; 14102 14103 if (GET_CODE (body) == SET) 14104 { 14105 rtx dest = SET_DEST (body); 14106 rtx target; 14107 unsigned int regno, tregno, endregno, endtregno; 14108 14109 if (GET_CODE (dest) == ZERO_EXTRACT) 14110 target = XEXP (dest, 0); 14111 else if (GET_CODE (dest) == STRICT_LOW_PART) 14112 target = SUBREG_REG (XEXP (dest, 0)); 14113 else 14114 return 0; 14115 14116 if (GET_CODE (target) == SUBREG) 14117 target = SUBREG_REG (target); 14118 14119 if (!REG_P (target)) 14120 return 0; 14121 14122 tregno = REGNO (target), regno = REGNO (x); 14123 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER) 14124 return target == x; 14125 14126 endtregno = end_hard_regno (GET_MODE (target), tregno); 14127 endregno = end_hard_regno (GET_MODE (x), regno); 14128 14129 return endregno > tregno && regno < endtregno; 14130 } 14131 14132 else if (GET_CODE (body) == PARALLEL) 14133 for (i = XVECLEN (body, 0) - 1; i >= 0; i--) 14134 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i))) 14135 return 1; 14136 14137 return 0; 14138 } 14139 14140 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them 14141 as appropriate. I3 and I2 are the insns resulting from the combination 14142 insns including FROM (I2 may be zero). 14143 14144 ELIM_I2 and ELIM_I1 are either zero or registers that we know will 14145 not need REG_DEAD notes because they are being substituted for. This 14146 saves searching in the most common cases. 14147 14148 Each note in the list is either ignored or placed on some insns, depending 14149 on the type of note. */ 14150 14151 static void 14152 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2, 14153 rtx elim_i2, rtx elim_i1, rtx elim_i0) 14154 { 14155 rtx note, next_note; 14156 rtx tem_note; 14157 rtx_insn *tem_insn; 14158 14159 for (note = notes; note; note = next_note) 14160 { 14161 rtx_insn *place = 0, *place2 = 0; 14162 14163 next_note = XEXP (note, 1); 14164 switch (REG_NOTE_KIND (note)) 14165 { 14166 case REG_BR_PROB: 14167 case REG_BR_PRED: 14168 /* Doesn't matter much where we put this, as long as it's somewhere. 14169 It is preferable to keep these notes on branches, which is most 14170 likely to be i3. */ 14171 place = i3; 14172 break; 14173 14174 case REG_NON_LOCAL_GOTO: 14175 if (JUMP_P (i3)) 14176 place = i3; 14177 else 14178 { 14179 gcc_assert (i2 && JUMP_P (i2)); 14180 place = i2; 14181 } 14182 break; 14183 14184 case REG_EH_REGION: 14185 /* These notes must remain with the call or trapping instruction. */ 14186 if (CALL_P (i3)) 14187 place = i3; 14188 else if (i2 && CALL_P (i2)) 14189 place = i2; 14190 else 14191 { 14192 gcc_assert (cfun->can_throw_non_call_exceptions); 14193 if (may_trap_p (i3)) 14194 place = i3; 14195 else if (i2 && may_trap_p (i2)) 14196 place = i2; 14197 /* ??? Otherwise assume we've combined things such that we 14198 can now prove that the instructions can't trap. Drop the 14199 note in this case. */ 14200 } 14201 break; 14202 14203 case REG_ARGS_SIZE: 14204 /* ??? How to distribute between i3-i1. Assume i3 contains the 14205 entire adjustment. Assert i3 contains at least some adjust. */ 14206 if (!noop_move_p (i3)) 14207 { 14208 poly_int64 old_size, args_size = get_args_size (note); 14209 /* fixup_args_size_notes looks at REG_NORETURN note, 14210 so ensure the note is placed there first. */ 14211 if (CALL_P (i3)) 14212 { 14213 rtx *np; 14214 for (np = &next_note; *np; np = &XEXP (*np, 1)) 14215 if (REG_NOTE_KIND (*np) == REG_NORETURN) 14216 { 14217 rtx n = *np; 14218 *np = XEXP (n, 1); 14219 XEXP (n, 1) = REG_NOTES (i3); 14220 REG_NOTES (i3) = n; 14221 break; 14222 } 14223 } 14224 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size); 14225 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS 14226 REG_ARGS_SIZE note to all noreturn calls, allow that here. */ 14227 gcc_assert (maybe_ne (old_size, args_size) 14228 || (CALL_P (i3) 14229 && !ACCUMULATE_OUTGOING_ARGS 14230 && find_reg_note (i3, REG_NORETURN, NULL_RTX))); 14231 } 14232 break; 14233 14234 case REG_NORETURN: 14235 case REG_SETJMP: 14236 case REG_TM: 14237 case REG_CALL_DECL: 14238 case REG_CALL_NOCF_CHECK: 14239 /* These notes must remain with the call. It should not be 14240 possible for both I2 and I3 to be a call. */ 14241 if (CALL_P (i3)) 14242 place = i3; 14243 else 14244 { 14245 gcc_assert (i2 && CALL_P (i2)); 14246 place = i2; 14247 } 14248 break; 14249 14250 case REG_UNUSED: 14251 /* Any clobbers for i3 may still exist, and so we must process 14252 REG_UNUSED notes from that insn. 14253 14254 Any clobbers from i2 or i1 can only exist if they were added by 14255 recog_for_combine. In that case, recog_for_combine created the 14256 necessary REG_UNUSED notes. Trying to keep any original 14257 REG_UNUSED notes from these insns can cause incorrect output 14258 if it is for the same register as the original i3 dest. 14259 In that case, we will notice that the register is set in i3, 14260 and then add a REG_UNUSED note for the destination of i3, which 14261 is wrong. However, it is possible to have REG_UNUSED notes from 14262 i2 or i1 for register which were both used and clobbered, so 14263 we keep notes from i2 or i1 if they will turn into REG_DEAD 14264 notes. */ 14265 14266 /* If this register is set or clobbered in I3, put the note there 14267 unless there is one already. */ 14268 if (reg_set_p (XEXP (note, 0), PATTERN (i3))) 14269 { 14270 if (from_insn != i3) 14271 break; 14272 14273 if (! (REG_P (XEXP (note, 0)) 14274 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0))) 14275 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0)))) 14276 place = i3; 14277 } 14278 /* Otherwise, if this register is used by I3, then this register 14279 now dies here, so we must put a REG_DEAD note here unless there 14280 is one already. */ 14281 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)) 14282 && ! (REG_P (XEXP (note, 0)) 14283 ? find_regno_note (i3, REG_DEAD, 14284 REGNO (XEXP (note, 0))) 14285 : find_reg_note (i3, REG_DEAD, XEXP (note, 0)))) 14286 { 14287 PUT_REG_NOTE_KIND (note, REG_DEAD); 14288 place = i3; 14289 } 14290 14291 /* A SET or CLOBBER of the REG_UNUSED reg has been removed, 14292 but we can't tell which at this point. We must reset any 14293 expectations we had about the value that was previously 14294 stored in the reg. ??? Ideally, we'd adjust REG_N_SETS 14295 and, if appropriate, restore its previous value, but we 14296 don't have enough information for that at this point. */ 14297 else 14298 { 14299 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX); 14300 14301 /* Otherwise, if this register is now referenced in i2 14302 then the register used to be modified in one of the 14303 original insns. If it was i3 (say, in an unused 14304 parallel), it's now completely gone, so the note can 14305 be discarded. But if it was modified in i2, i1 or i0 14306 and we still reference it in i2, then we're 14307 referencing the previous value, and since the 14308 register was modified and REG_UNUSED, we know that 14309 the previous value is now dead. So, if we only 14310 reference the register in i2, we change the note to 14311 REG_DEAD, to reflect the previous value. However, if 14312 we're also setting or clobbering the register as 14313 scratch, we know (because the register was not 14314 referenced in i3) that it's unused, just as it was 14315 unused before, and we place the note in i2. */ 14316 if (from_insn != i3 && i2 && INSN_P (i2) 14317 && reg_referenced_p (XEXP (note, 0), PATTERN (i2))) 14318 { 14319 if (!reg_set_p (XEXP (note, 0), PATTERN (i2))) 14320 PUT_REG_NOTE_KIND (note, REG_DEAD); 14321 if (! (REG_P (XEXP (note, 0)) 14322 ? find_regno_note (i2, REG_NOTE_KIND (note), 14323 REGNO (XEXP (note, 0))) 14324 : find_reg_note (i2, REG_NOTE_KIND (note), 14325 XEXP (note, 0)))) 14326 place = i2; 14327 } 14328 } 14329 14330 break; 14331 14332 case REG_EQUAL: 14333 case REG_EQUIV: 14334 case REG_NOALIAS: 14335 /* These notes say something about results of an insn. We can 14336 only support them if they used to be on I3 in which case they 14337 remain on I3. Otherwise they are ignored. 14338 14339 If the note refers to an expression that is not a constant, we 14340 must also ignore the note since we cannot tell whether the 14341 equivalence is still true. It might be possible to do 14342 slightly better than this (we only have a problem if I2DEST 14343 or I1DEST is present in the expression), but it doesn't 14344 seem worth the trouble. */ 14345 14346 if (from_insn == i3 14347 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0)))) 14348 place = i3; 14349 break; 14350 14351 case REG_INC: 14352 /* These notes say something about how a register is used. They must 14353 be present on any use of the register in I2 or I3. */ 14354 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))) 14355 place = i3; 14356 14357 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2))) 14358 { 14359 if (place) 14360 place2 = i2; 14361 else 14362 place = i2; 14363 } 14364 break; 14365 14366 case REG_LABEL_TARGET: 14367 case REG_LABEL_OPERAND: 14368 /* This can show up in several ways -- either directly in the 14369 pattern, or hidden off in the constant pool with (or without?) 14370 a REG_EQUAL note. */ 14371 /* ??? Ignore the without-reg_equal-note problem for now. */ 14372 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)) 14373 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX)) 14374 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF 14375 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))) 14376 place = i3; 14377 14378 if (i2 14379 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2)) 14380 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX)) 14381 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF 14382 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))) 14383 { 14384 if (place) 14385 place2 = i2; 14386 else 14387 place = i2; 14388 } 14389 14390 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note 14391 as a JUMP_LABEL or decrement LABEL_NUSES if it's already 14392 there. */ 14393 if (place && JUMP_P (place) 14394 && REG_NOTE_KIND (note) == REG_LABEL_TARGET 14395 && (JUMP_LABEL (place) == NULL 14396 || JUMP_LABEL (place) == XEXP (note, 0))) 14397 { 14398 rtx label = JUMP_LABEL (place); 14399 14400 if (!label) 14401 JUMP_LABEL (place) = XEXP (note, 0); 14402 else if (LABEL_P (label)) 14403 LABEL_NUSES (label)--; 14404 } 14405 14406 if (place2 && JUMP_P (place2) 14407 && REG_NOTE_KIND (note) == REG_LABEL_TARGET 14408 && (JUMP_LABEL (place2) == NULL 14409 || JUMP_LABEL (place2) == XEXP (note, 0))) 14410 { 14411 rtx label = JUMP_LABEL (place2); 14412 14413 if (!label) 14414 JUMP_LABEL (place2) = XEXP (note, 0); 14415 else if (LABEL_P (label)) 14416 LABEL_NUSES (label)--; 14417 place2 = 0; 14418 } 14419 break; 14420 14421 case REG_NONNEG: 14422 /* This note says something about the value of a register prior 14423 to the execution of an insn. It is too much trouble to see 14424 if the note is still correct in all situations. It is better 14425 to simply delete it. */ 14426 break; 14427 14428 case REG_DEAD: 14429 /* If we replaced the right hand side of FROM_INSN with a 14430 REG_EQUAL note, the original use of the dying register 14431 will not have been combined into I3 and I2. In such cases, 14432 FROM_INSN is guaranteed to be the first of the combined 14433 instructions, so we simply need to search back before 14434 FROM_INSN for the previous use or set of this register, 14435 then alter the notes there appropriately. 14436 14437 If the register is used as an input in I3, it dies there. 14438 Similarly for I2, if it is nonzero and adjacent to I3. 14439 14440 If the register is not used as an input in either I3 or I2 14441 and it is not one of the registers we were supposed to eliminate, 14442 there are two possibilities. We might have a non-adjacent I2 14443 or we might have somehow eliminated an additional register 14444 from a computation. For example, we might have had A & B where 14445 we discover that B will always be zero. In this case we will 14446 eliminate the reference to A. 14447 14448 In both cases, we must search to see if we can find a previous 14449 use of A and put the death note there. */ 14450 14451 if (from_insn 14452 && from_insn == i2mod 14453 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs)) 14454 tem_insn = from_insn; 14455 else 14456 { 14457 if (from_insn 14458 && CALL_P (from_insn) 14459 && find_reg_fusage (from_insn, USE, XEXP (note, 0))) 14460 place = from_insn; 14461 else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2))) 14462 { 14463 /* If the new I2 sets the same register that is marked 14464 dead in the note, we do not in general know where to 14465 put the note. One important case we _can_ handle is 14466 when the note comes from I3. */ 14467 if (from_insn == i3) 14468 place = i3; 14469 else 14470 break; 14471 } 14472 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))) 14473 place = i3; 14474 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3 14475 && reg_referenced_p (XEXP (note, 0), PATTERN (i2))) 14476 place = i2; 14477 else if ((rtx_equal_p (XEXP (note, 0), elim_i2) 14478 && !(i2mod 14479 && reg_overlap_mentioned_p (XEXP (note, 0), 14480 i2mod_old_rhs))) 14481 || rtx_equal_p (XEXP (note, 0), elim_i1) 14482 || rtx_equal_p (XEXP (note, 0), elim_i0)) 14483 break; 14484 tem_insn = i3; 14485 } 14486 14487 if (place == 0) 14488 { 14489 basic_block bb = this_basic_block; 14490 14491 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn)) 14492 { 14493 if (!NONDEBUG_INSN_P (tem_insn)) 14494 { 14495 if (tem_insn == BB_HEAD (bb)) 14496 break; 14497 continue; 14498 } 14499 14500 /* If the register is being set at TEM_INSN, see if that is all 14501 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this 14502 into a REG_UNUSED note instead. Don't delete sets to 14503 global register vars. */ 14504 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER 14505 || !global_regs[REGNO (XEXP (note, 0))]) 14506 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn))) 14507 { 14508 rtx set = single_set (tem_insn); 14509 rtx inner_dest = 0; 14510 rtx_insn *cc0_setter = NULL; 14511 14512 if (set != 0) 14513 for (inner_dest = SET_DEST (set); 14514 (GET_CODE (inner_dest) == STRICT_LOW_PART 14515 || GET_CODE (inner_dest) == SUBREG 14516 || GET_CODE (inner_dest) == ZERO_EXTRACT); 14517 inner_dest = XEXP (inner_dest, 0)) 14518 ; 14519 14520 /* Verify that it was the set, and not a clobber that 14521 modified the register. 14522 14523 CC0 targets must be careful to maintain setter/user 14524 pairs. If we cannot delete the setter due to side 14525 effects, mark the user with an UNUSED note instead 14526 of deleting it. */ 14527 14528 if (set != 0 && ! side_effects_p (SET_SRC (set)) 14529 && rtx_equal_p (XEXP (note, 0), inner_dest) 14530 && (!HAVE_cc0 14531 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set)) 14532 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL 14533 && sets_cc0_p (PATTERN (cc0_setter)) > 0)))) 14534 { 14535 /* Move the notes and links of TEM_INSN elsewhere. 14536 This might delete other dead insns recursively. 14537 First set the pattern to something that won't use 14538 any register. */ 14539 rtx old_notes = REG_NOTES (tem_insn); 14540 14541 PATTERN (tem_insn) = pc_rtx; 14542 REG_NOTES (tem_insn) = NULL; 14543 14544 distribute_notes (old_notes, tem_insn, tem_insn, NULL, 14545 NULL_RTX, NULL_RTX, NULL_RTX); 14546 distribute_links (LOG_LINKS (tem_insn)); 14547 14548 unsigned int regno = REGNO (XEXP (note, 0)); 14549 reg_stat_type *rsp = ®_stat[regno]; 14550 if (rsp->last_set == tem_insn) 14551 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX); 14552 14553 SET_INSN_DELETED (tem_insn); 14554 if (tem_insn == i2) 14555 i2 = NULL; 14556 14557 /* Delete the setter too. */ 14558 if (cc0_setter) 14559 { 14560 PATTERN (cc0_setter) = pc_rtx; 14561 old_notes = REG_NOTES (cc0_setter); 14562 REG_NOTES (cc0_setter) = NULL; 14563 14564 distribute_notes (old_notes, cc0_setter, 14565 cc0_setter, NULL, 14566 NULL_RTX, NULL_RTX, NULL_RTX); 14567 distribute_links (LOG_LINKS (cc0_setter)); 14568 14569 SET_INSN_DELETED (cc0_setter); 14570 if (cc0_setter == i2) 14571 i2 = NULL; 14572 } 14573 } 14574 else 14575 { 14576 PUT_REG_NOTE_KIND (note, REG_UNUSED); 14577 14578 /* If there isn't already a REG_UNUSED note, put one 14579 here. Do not place a REG_DEAD note, even if 14580 the register is also used here; that would not 14581 match the algorithm used in lifetime analysis 14582 and can cause the consistency check in the 14583 scheduler to fail. */ 14584 if (! find_regno_note (tem_insn, REG_UNUSED, 14585 REGNO (XEXP (note, 0)))) 14586 place = tem_insn; 14587 break; 14588 } 14589 } 14590 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn)) 14591 || (CALL_P (tem_insn) 14592 && find_reg_fusage (tem_insn, USE, XEXP (note, 0)))) 14593 { 14594 place = tem_insn; 14595 14596 /* If we are doing a 3->2 combination, and we have a 14597 register which formerly died in i3 and was not used 14598 by i2, which now no longer dies in i3 and is used in 14599 i2 but does not die in i2, and place is between i2 14600 and i3, then we may need to move a link from place to 14601 i2. */ 14602 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2) 14603 && from_insn 14604 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2) 14605 && reg_referenced_p (XEXP (note, 0), PATTERN (i2))) 14606 { 14607 struct insn_link *links = LOG_LINKS (place); 14608 LOG_LINKS (place) = NULL; 14609 distribute_links (links); 14610 } 14611 break; 14612 } 14613 14614 if (tem_insn == BB_HEAD (bb)) 14615 break; 14616 } 14617 14618 } 14619 14620 /* If the register is set or already dead at PLACE, we needn't do 14621 anything with this note if it is still a REG_DEAD note. 14622 We check here if it is set at all, not if is it totally replaced, 14623 which is what `dead_or_set_p' checks, so also check for it being 14624 set partially. */ 14625 14626 if (place && REG_NOTE_KIND (note) == REG_DEAD) 14627 { 14628 unsigned int regno = REGNO (XEXP (note, 0)); 14629 reg_stat_type *rsp = ®_stat[regno]; 14630 14631 if (dead_or_set_p (place, XEXP (note, 0)) 14632 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place))) 14633 { 14634 /* Unless the register previously died in PLACE, clear 14635 last_death. [I no longer understand why this is 14636 being done.] */ 14637 if (rsp->last_death != place) 14638 rsp->last_death = 0; 14639 place = 0; 14640 } 14641 else 14642 rsp->last_death = place; 14643 14644 /* If this is a death note for a hard reg that is occupying 14645 multiple registers, ensure that we are still using all 14646 parts of the object. If we find a piece of the object 14647 that is unused, we must arrange for an appropriate REG_DEAD 14648 note to be added for it. However, we can't just emit a USE 14649 and tag the note to it, since the register might actually 14650 be dead; so we recourse, and the recursive call then finds 14651 the previous insn that used this register. */ 14652 14653 if (place && REG_NREGS (XEXP (note, 0)) > 1) 14654 { 14655 unsigned int endregno = END_REGNO (XEXP (note, 0)); 14656 bool all_used = true; 14657 unsigned int i; 14658 14659 for (i = regno; i < endregno; i++) 14660 if ((! refers_to_regno_p (i, PATTERN (place)) 14661 && ! find_regno_fusage (place, USE, i)) 14662 || dead_or_set_regno_p (place, i)) 14663 { 14664 all_used = false; 14665 break; 14666 } 14667 14668 if (! all_used) 14669 { 14670 /* Put only REG_DEAD notes for pieces that are 14671 not already dead or set. */ 14672 14673 for (i = regno; i < endregno; 14674 i += hard_regno_nregs (i, reg_raw_mode[i])) 14675 { 14676 rtx piece = regno_reg_rtx[i]; 14677 basic_block bb = this_basic_block; 14678 14679 if (! dead_or_set_p (place, piece) 14680 && ! reg_bitfield_target_p (piece, 14681 PATTERN (place))) 14682 { 14683 rtx new_note = alloc_reg_note (REG_DEAD, piece, 14684 NULL_RTX); 14685 14686 distribute_notes (new_note, place, place, 14687 NULL, NULL_RTX, NULL_RTX, 14688 NULL_RTX); 14689 } 14690 else if (! refers_to_regno_p (i, PATTERN (place)) 14691 && ! find_regno_fusage (place, USE, i)) 14692 for (tem_insn = PREV_INSN (place); ; 14693 tem_insn = PREV_INSN (tem_insn)) 14694 { 14695 if (!NONDEBUG_INSN_P (tem_insn)) 14696 { 14697 if (tem_insn == BB_HEAD (bb)) 14698 break; 14699 continue; 14700 } 14701 if (dead_or_set_p (tem_insn, piece) 14702 || reg_bitfield_target_p (piece, 14703 PATTERN (tem_insn))) 14704 { 14705 add_reg_note (tem_insn, REG_UNUSED, piece); 14706 break; 14707 } 14708 } 14709 } 14710 14711 place = 0; 14712 } 14713 } 14714 } 14715 break; 14716 14717 default: 14718 /* Any other notes should not be present at this point in the 14719 compilation. */ 14720 gcc_unreachable (); 14721 } 14722 14723 if (place) 14724 { 14725 XEXP (note, 1) = REG_NOTES (place); 14726 REG_NOTES (place) = note; 14727 14728 /* Set added_notes_insn to the earliest insn we added a note to. */ 14729 if (added_notes_insn == 0 14730 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place)) 14731 added_notes_insn = place; 14732 } 14733 14734 if (place2) 14735 { 14736 add_shallow_copy_of_reg_note (place2, note); 14737 14738 /* Set added_notes_insn to the earliest insn we added a note to. */ 14739 if (added_notes_insn == 0 14740 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2)) 14741 added_notes_insn = place2; 14742 } 14743 } 14744 } 14745 14746 /* Similarly to above, distribute the LOG_LINKS that used to be present on 14747 I3, I2, and I1 to new locations. This is also called to add a link 14748 pointing at I3 when I3's destination is changed. */ 14749 14750 static void 14751 distribute_links (struct insn_link *links) 14752 { 14753 struct insn_link *link, *next_link; 14754 14755 for (link = links; link; link = next_link) 14756 { 14757 rtx_insn *place = 0; 14758 rtx_insn *insn; 14759 rtx set, reg; 14760 14761 next_link = link->next; 14762 14763 /* If the insn that this link points to is a NOTE, ignore it. */ 14764 if (NOTE_P (link->insn)) 14765 continue; 14766 14767 set = 0; 14768 rtx pat = PATTERN (link->insn); 14769 if (GET_CODE (pat) == SET) 14770 set = pat; 14771 else if (GET_CODE (pat) == PARALLEL) 14772 { 14773 int i; 14774 for (i = 0; i < XVECLEN (pat, 0); i++) 14775 { 14776 set = XVECEXP (pat, 0, i); 14777 if (GET_CODE (set) != SET) 14778 continue; 14779 14780 reg = SET_DEST (set); 14781 while (GET_CODE (reg) == ZERO_EXTRACT 14782 || GET_CODE (reg) == STRICT_LOW_PART 14783 || GET_CODE (reg) == SUBREG) 14784 reg = XEXP (reg, 0); 14785 14786 if (!REG_P (reg)) 14787 continue; 14788 14789 if (REGNO (reg) == link->regno) 14790 break; 14791 } 14792 if (i == XVECLEN (pat, 0)) 14793 continue; 14794 } 14795 else 14796 continue; 14797 14798 reg = SET_DEST (set); 14799 14800 while (GET_CODE (reg) == ZERO_EXTRACT 14801 || GET_CODE (reg) == STRICT_LOW_PART 14802 || GET_CODE (reg) == SUBREG) 14803 reg = XEXP (reg, 0); 14804 14805 if (reg == pc_rtx) 14806 continue; 14807 14808 /* A LOG_LINK is defined as being placed on the first insn that uses 14809 a register and points to the insn that sets the register. Start 14810 searching at the next insn after the target of the link and stop 14811 when we reach a set of the register or the end of the basic block. 14812 14813 Note that this correctly handles the link that used to point from 14814 I3 to I2. Also note that not much searching is typically done here 14815 since most links don't point very far away. */ 14816 14817 for (insn = NEXT_INSN (link->insn); 14818 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun) 14819 || BB_HEAD (this_basic_block->next_bb) != insn)); 14820 insn = NEXT_INSN (insn)) 14821 if (DEBUG_INSN_P (insn)) 14822 continue; 14823 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn))) 14824 { 14825 if (reg_referenced_p (reg, PATTERN (insn))) 14826 place = insn; 14827 break; 14828 } 14829 else if (CALL_P (insn) 14830 && find_reg_fusage (insn, USE, reg)) 14831 { 14832 place = insn; 14833 break; 14834 } 14835 else if (INSN_P (insn) && reg_set_p (reg, insn)) 14836 break; 14837 14838 /* If we found a place to put the link, place it there unless there 14839 is already a link to the same insn as LINK at that point. */ 14840 14841 if (place) 14842 { 14843 struct insn_link *link2; 14844 14845 FOR_EACH_LOG_LINK (link2, place) 14846 if (link2->insn == link->insn && link2->regno == link->regno) 14847 break; 14848 14849 if (link2 == NULL) 14850 { 14851 link->next = LOG_LINKS (place); 14852 LOG_LINKS (place) = link; 14853 14854 /* Set added_links_insn to the earliest insn we added a 14855 link to. */ 14856 if (added_links_insn == 0 14857 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place)) 14858 added_links_insn = place; 14859 } 14860 } 14861 } 14862 } 14863 14864 /* Check for any register or memory mentioned in EQUIV that is not 14865 mentioned in EXPR. This is used to restrict EQUIV to "specializations" 14866 of EXPR where some registers may have been replaced by constants. */ 14867 14868 static bool 14869 unmentioned_reg_p (rtx equiv, rtx expr) 14870 { 14871 subrtx_iterator::array_type array; 14872 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST) 14873 { 14874 const_rtx x = *iter; 14875 if ((REG_P (x) || MEM_P (x)) 14876 && !reg_mentioned_p (x, expr)) 14877 return true; 14878 } 14879 return false; 14880 } 14881 14882 DEBUG_FUNCTION void 14883 dump_combine_stats (FILE *file) 14884 { 14885 fprintf 14886 (file, 14887 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n", 14888 combine_attempts, combine_merges, combine_extras, combine_successes); 14889 } 14890 14891 void 14892 dump_combine_total_stats (FILE *file) 14893 { 14894 fprintf 14895 (file, 14896 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n", 14897 total_attempts, total_merges, total_extras, total_successes); 14898 } 14899 14900 /* Try combining insns through substitution. */ 14901 static unsigned int 14902 rest_of_handle_combine (void) 14903 { 14904 int rebuild_jump_labels_after_combine; 14905 14906 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN); 14907 df_note_add_problem (); 14908 df_analyze (); 14909 14910 regstat_init_n_sets_and_refs (); 14911 reg_n_sets_max = max_reg_num (); 14912 14913 rebuild_jump_labels_after_combine 14914 = combine_instructions (get_insns (), max_reg_num ()); 14915 14916 /* Combining insns may have turned an indirect jump into a 14917 direct jump. Rebuild the JUMP_LABEL fields of jumping 14918 instructions. */ 14919 if (rebuild_jump_labels_after_combine) 14920 { 14921 if (dom_info_available_p (CDI_DOMINATORS)) 14922 free_dominance_info (CDI_DOMINATORS); 14923 timevar_push (TV_JUMP); 14924 rebuild_jump_labels (get_insns ()); 14925 cleanup_cfg (0); 14926 timevar_pop (TV_JUMP); 14927 } 14928 14929 regstat_free_n_sets_and_refs (); 14930 return 0; 14931 } 14932 14933 namespace { 14934 14935 const pass_data pass_data_combine = 14936 { 14937 RTL_PASS, /* type */ 14938 "combine", /* name */ 14939 OPTGROUP_NONE, /* optinfo_flags */ 14940 TV_COMBINE, /* tv_id */ 14941 PROP_cfglayout, /* properties_required */ 14942 0, /* properties_provided */ 14943 0, /* properties_destroyed */ 14944 0, /* todo_flags_start */ 14945 TODO_df_finish, /* todo_flags_finish */ 14946 }; 14947 14948 class pass_combine : public rtl_opt_pass 14949 { 14950 public: 14951 pass_combine (gcc::context *ctxt) 14952 : rtl_opt_pass (pass_data_combine, ctxt) 14953 {} 14954 14955 /* opt_pass methods: */ 14956 virtual bool gate (function *) { return (optimize > 0); } 14957 virtual unsigned int execute (function *) 14958 { 14959 return rest_of_handle_combine (); 14960 } 14961 14962 }; // class pass_combine 14963 14964 } // anon namespace 14965 14966 rtl_opt_pass * 14967 make_pass_combine (gcc::context *ctxt) 14968 { 14969 return new pass_combine (ctxt); 14970 } 14971