1 /* Loop manipulation code for GNU compiler. 2 Copyright (C) 2002-2013 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "tm.h" 24 #include "rtl.h" 25 #include "basic-block.h" 26 #include "cfgloop.h" 27 #include "tree-flow.h" 28 #include "dumpfile.h" 29 30 static void copy_loops_to (struct loop **, int, 31 struct loop *); 32 static void loop_redirect_edge (edge, basic_block); 33 static void remove_bbs (basic_block *, int); 34 static bool rpe_enum_p (const_basic_block, const void *); 35 static int find_path (edge, basic_block **); 36 static void fix_loop_placements (struct loop *, bool *); 37 static bool fix_bb_placement (basic_block); 38 static void fix_bb_placements (basic_block, bool *, bitmap); 39 40 /* Checks whether basic block BB is dominated by DATA. */ 41 static bool 42 rpe_enum_p (const_basic_block bb, const void *data) 43 { 44 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data); 45 } 46 47 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */ 48 49 static void 50 remove_bbs (basic_block *bbs, int nbbs) 51 { 52 int i; 53 54 for (i = 0; i < nbbs; i++) 55 delete_basic_block (bbs[i]); 56 } 57 58 /* Find path -- i.e. the basic blocks dominated by edge E and put them 59 into array BBS, that will be allocated large enough to contain them. 60 E->dest must have exactly one predecessor for this to work (it is 61 easy to achieve and we do not put it here because we do not want to 62 alter anything by this function). The number of basic blocks in the 63 path is returned. */ 64 static int 65 find_path (edge e, basic_block **bbs) 66 { 67 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1); 68 69 /* Find bbs in the path. */ 70 *bbs = XNEWVEC (basic_block, n_basic_blocks); 71 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs, 72 n_basic_blocks, e->dest); 73 } 74 75 /* Fix placement of basic block BB inside loop hierarchy -- 76 Let L be a loop to that BB belongs. Then every successor of BB must either 77 1) belong to some superloop of loop L, or 78 2) be a header of loop K such that K->outer is superloop of L 79 Returns true if we had to move BB into other loop to enforce this condition, 80 false if the placement of BB was already correct (provided that placements 81 of its successors are correct). */ 82 static bool 83 fix_bb_placement (basic_block bb) 84 { 85 edge e; 86 edge_iterator ei; 87 struct loop *loop = current_loops->tree_root, *act; 88 89 FOR_EACH_EDGE (e, ei, bb->succs) 90 { 91 if (e->dest == EXIT_BLOCK_PTR) 92 continue; 93 94 act = e->dest->loop_father; 95 if (act->header == e->dest) 96 act = loop_outer (act); 97 98 if (flow_loop_nested_p (loop, act)) 99 loop = act; 100 } 101 102 if (loop == bb->loop_father) 103 return false; 104 105 remove_bb_from_loops (bb); 106 add_bb_to_loop (bb, loop); 107 108 return true; 109 } 110 111 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop 112 of LOOP to that leads at least one exit edge of LOOP, and set it 113 as the immediate superloop of LOOP. Return true if the immediate superloop 114 of LOOP changed. 115 116 IRRED_INVALIDATED is set to true if a change in the loop structures might 117 invalidate the information about irreducible regions. */ 118 119 static bool 120 fix_loop_placement (struct loop *loop, bool *irred_invalidated) 121 { 122 unsigned i; 123 edge e; 124 vec<edge> exits = get_loop_exit_edges (loop); 125 struct loop *father = current_loops->tree_root, *act; 126 bool ret = false; 127 128 FOR_EACH_VEC_ELT (exits, i, e) 129 { 130 act = find_common_loop (loop, e->dest->loop_father); 131 if (flow_loop_nested_p (father, act)) 132 father = act; 133 } 134 135 if (father != loop_outer (loop)) 136 { 137 for (act = loop_outer (loop); act != father; act = loop_outer (act)) 138 act->num_nodes -= loop->num_nodes; 139 flow_loop_tree_node_remove (loop); 140 flow_loop_tree_node_add (father, loop); 141 142 /* The exit edges of LOOP no longer exits its original immediate 143 superloops; remove them from the appropriate exit lists. */ 144 FOR_EACH_VEC_ELT (exits, i, e) 145 { 146 /* We may need to recompute irreducible loops. */ 147 if (e->flags & EDGE_IRREDUCIBLE_LOOP) 148 *irred_invalidated = true; 149 rescan_loop_exit (e, false, false); 150 } 151 152 ret = true; 153 } 154 155 exits.release (); 156 return ret; 157 } 158 159 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e. 160 enforce condition condition stated in description of fix_bb_placement. We 161 start from basic block FROM that had some of its successors removed, so that 162 his placement no longer has to be correct, and iteratively fix placement of 163 its predecessors that may change if placement of FROM changed. Also fix 164 placement of subloops of FROM->loop_father, that might also be altered due 165 to this change; the condition for them is similar, except that instead of 166 successors we consider edges coming out of the loops. 167 168 If the changes may invalidate the information about irreducible regions, 169 IRRED_INVALIDATED is set to true. 170 171 If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with 172 changed loop_father are collected there. */ 173 174 static void 175 fix_bb_placements (basic_block from, 176 bool *irred_invalidated, 177 bitmap loop_closed_ssa_invalidated) 178 { 179 sbitmap in_queue; 180 basic_block *queue, *qtop, *qbeg, *qend; 181 struct loop *base_loop, *target_loop; 182 edge e; 183 184 /* We pass through blocks back-reachable from FROM, testing whether some 185 of their successors moved to outer loop. It may be necessary to 186 iterate several times, but it is finite, as we stop unless we move 187 the basic block up the loop structure. The whole story is a bit 188 more complicated due to presence of subloops, those are moved using 189 fix_loop_placement. */ 190 191 base_loop = from->loop_father; 192 /* If we are already in the outermost loop, the basic blocks cannot be moved 193 outside of it. If FROM is the header of the base loop, it cannot be moved 194 outside of it, either. In both cases, we can end now. */ 195 if (base_loop == current_loops->tree_root 196 || from == base_loop->header) 197 return; 198 199 in_queue = sbitmap_alloc (last_basic_block); 200 bitmap_clear (in_queue); 201 bitmap_set_bit (in_queue, from->index); 202 /* Prevent us from going out of the base_loop. */ 203 bitmap_set_bit (in_queue, base_loop->header->index); 204 205 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1); 206 qtop = queue + base_loop->num_nodes + 1; 207 qbeg = queue; 208 qend = queue + 1; 209 *qbeg = from; 210 211 while (qbeg != qend) 212 { 213 edge_iterator ei; 214 from = *qbeg; 215 qbeg++; 216 if (qbeg == qtop) 217 qbeg = queue; 218 bitmap_clear_bit (in_queue, from->index); 219 220 if (from->loop_father->header == from) 221 { 222 /* Subloop header, maybe move the loop upward. */ 223 if (!fix_loop_placement (from->loop_father, irred_invalidated)) 224 continue; 225 target_loop = loop_outer (from->loop_father); 226 } 227 else 228 { 229 /* Ordinary basic block. */ 230 if (!fix_bb_placement (from)) 231 continue; 232 if (loop_closed_ssa_invalidated) 233 bitmap_set_bit (loop_closed_ssa_invalidated, from->index); 234 target_loop = from->loop_father; 235 } 236 237 FOR_EACH_EDGE (e, ei, from->succs) 238 { 239 if (e->flags & EDGE_IRREDUCIBLE_LOOP) 240 *irred_invalidated = true; 241 } 242 243 /* Something has changed, insert predecessors into queue. */ 244 FOR_EACH_EDGE (e, ei, from->preds) 245 { 246 basic_block pred = e->src; 247 struct loop *nca; 248 249 if (e->flags & EDGE_IRREDUCIBLE_LOOP) 250 *irred_invalidated = true; 251 252 if (bitmap_bit_p (in_queue, pred->index)) 253 continue; 254 255 /* If it is subloop, then it either was not moved, or 256 the path up the loop tree from base_loop do not contain 257 it. */ 258 nca = find_common_loop (pred->loop_father, base_loop); 259 if (pred->loop_father != base_loop 260 && (nca == base_loop 261 || nca != pred->loop_father)) 262 pred = pred->loop_father->header; 263 else if (!flow_loop_nested_p (target_loop, pred->loop_father)) 264 { 265 /* If PRED is already higher in the loop hierarchy than the 266 TARGET_LOOP to that we moved FROM, the change of the position 267 of FROM does not affect the position of PRED, so there is no 268 point in processing it. */ 269 continue; 270 } 271 272 if (bitmap_bit_p (in_queue, pred->index)) 273 continue; 274 275 /* Schedule the basic block. */ 276 *qend = pred; 277 qend++; 278 if (qend == qtop) 279 qend = queue; 280 bitmap_set_bit (in_queue, pred->index); 281 } 282 } 283 free (in_queue); 284 free (queue); 285 } 286 287 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E 288 and update loop structures and dominators. Return true if we were able 289 to remove the path, false otherwise (and nothing is affected then). */ 290 bool 291 remove_path (edge e) 292 { 293 edge ae; 294 basic_block *rem_bbs, *bord_bbs, from, bb; 295 vec<basic_block> dom_bbs; 296 int i, nrem, n_bord_bbs; 297 sbitmap seen; 298 bool irred_invalidated = false; 299 edge_iterator ei; 300 struct loop *l, *f; 301 302 if (!can_remove_branch_p (e)) 303 return false; 304 305 /* Keep track of whether we need to update information about irreducible 306 regions. This is the case if the removed area is a part of the 307 irreducible region, or if the set of basic blocks that belong to a loop 308 that is inside an irreducible region is changed, or if such a loop is 309 removed. */ 310 if (e->flags & EDGE_IRREDUCIBLE_LOOP) 311 irred_invalidated = true; 312 313 /* We need to check whether basic blocks are dominated by the edge 314 e, but we only have basic block dominators. This is easy to 315 fix -- when e->dest has exactly one predecessor, this corresponds 316 to blocks dominated by e->dest, if not, split the edge. */ 317 if (!single_pred_p (e->dest)) 318 e = single_pred_edge (split_edge (e)); 319 320 /* It may happen that by removing path we remove one or more loops 321 we belong to. In this case first unloop the loops, then proceed 322 normally. We may assume that e->dest is not a header of any loop, 323 as it now has exactly one predecessor. */ 324 for (l = e->src->loop_father; loop_outer (l); l = f) 325 { 326 f = loop_outer (l); 327 if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest)) 328 unloop (l, &irred_invalidated, NULL); 329 } 330 331 /* Identify the path. */ 332 nrem = find_path (e, &rem_bbs); 333 334 n_bord_bbs = 0; 335 bord_bbs = XNEWVEC (basic_block, n_basic_blocks); 336 seen = sbitmap_alloc (last_basic_block); 337 bitmap_clear (seen); 338 339 /* Find "border" hexes -- i.e. those with predecessor in removed path. */ 340 for (i = 0; i < nrem; i++) 341 bitmap_set_bit (seen, rem_bbs[i]->index); 342 if (!irred_invalidated) 343 FOR_EACH_EDGE (ae, ei, e->src->succs) 344 if (ae != e && ae->dest != EXIT_BLOCK_PTR && !bitmap_bit_p (seen, ae->dest->index) 345 && ae->flags & EDGE_IRREDUCIBLE_LOOP) 346 irred_invalidated = true; 347 for (i = 0; i < nrem; i++) 348 { 349 bb = rem_bbs[i]; 350 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs) 351 if (ae->dest != EXIT_BLOCK_PTR && !bitmap_bit_p (seen, ae->dest->index)) 352 { 353 bitmap_set_bit (seen, ae->dest->index); 354 bord_bbs[n_bord_bbs++] = ae->dest; 355 356 if (ae->flags & EDGE_IRREDUCIBLE_LOOP) 357 irred_invalidated = true; 358 } 359 } 360 361 /* Remove the path. */ 362 from = e->src; 363 remove_branch (e); 364 dom_bbs.create (0); 365 366 /* Cancel loops contained in the path. */ 367 for (i = 0; i < nrem; i++) 368 if (rem_bbs[i]->loop_father->header == rem_bbs[i]) 369 cancel_loop_tree (rem_bbs[i]->loop_father); 370 371 remove_bbs (rem_bbs, nrem); 372 free (rem_bbs); 373 374 /* Find blocks whose dominators may be affected. */ 375 bitmap_clear (seen); 376 for (i = 0; i < n_bord_bbs; i++) 377 { 378 basic_block ldom; 379 380 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]); 381 if (bitmap_bit_p (seen, bb->index)) 382 continue; 383 bitmap_set_bit (seen, bb->index); 384 385 for (ldom = first_dom_son (CDI_DOMINATORS, bb); 386 ldom; 387 ldom = next_dom_son (CDI_DOMINATORS, ldom)) 388 if (!dominated_by_p (CDI_DOMINATORS, from, ldom)) 389 dom_bbs.safe_push (ldom); 390 } 391 392 free (seen); 393 394 /* Recount dominators. */ 395 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true); 396 dom_bbs.release (); 397 free (bord_bbs); 398 399 /* Fix placements of basic blocks inside loops and the placement of 400 loops in the loop tree. */ 401 fix_bb_placements (from, &irred_invalidated, NULL); 402 fix_loop_placements (from->loop_father, &irred_invalidated); 403 404 if (irred_invalidated 405 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)) 406 mark_irreducible_loops (); 407 408 return true; 409 } 410 411 /* Creates place for a new LOOP in loops structure. */ 412 413 static void 414 place_new_loop (struct loop *loop) 415 { 416 loop->num = number_of_loops (); 417 vec_safe_push (current_loops->larray, loop); 418 } 419 420 /* Given LOOP structure with filled header and latch, find the body of the 421 corresponding loop and add it to loops tree. Insert the LOOP as a son of 422 outer. */ 423 424 void 425 add_loop (struct loop *loop, struct loop *outer) 426 { 427 basic_block *bbs; 428 int i, n; 429 struct loop *subloop; 430 edge e; 431 edge_iterator ei; 432 433 /* Add it to loop structure. */ 434 place_new_loop (loop); 435 flow_loop_tree_node_add (outer, loop); 436 437 /* Find its nodes. */ 438 bbs = XNEWVEC (basic_block, n_basic_blocks); 439 n = get_loop_body_with_size (loop, bbs, n_basic_blocks); 440 441 for (i = 0; i < n; i++) 442 { 443 if (bbs[i]->loop_father == outer) 444 { 445 remove_bb_from_loops (bbs[i]); 446 add_bb_to_loop (bbs[i], loop); 447 continue; 448 } 449 450 loop->num_nodes++; 451 452 /* If we find a direct subloop of OUTER, move it to LOOP. */ 453 subloop = bbs[i]->loop_father; 454 if (loop_outer (subloop) == outer 455 && subloop->header == bbs[i]) 456 { 457 flow_loop_tree_node_remove (subloop); 458 flow_loop_tree_node_add (loop, subloop); 459 } 460 } 461 462 /* Update the information about loop exit edges. */ 463 for (i = 0; i < n; i++) 464 { 465 FOR_EACH_EDGE (e, ei, bbs[i]->succs) 466 { 467 rescan_loop_exit (e, false, false); 468 } 469 } 470 471 free (bbs); 472 } 473 474 /* Multiply all frequencies in LOOP by NUM/DEN. */ 475 476 void 477 scale_loop_frequencies (struct loop *loop, int num, int den) 478 { 479 basic_block *bbs; 480 481 bbs = get_loop_body (loop); 482 scale_bbs_frequencies_int (bbs, loop->num_nodes, num, den); 483 free (bbs); 484 } 485 486 /* Multiply all frequencies in LOOP by SCALE/REG_BR_PROB_BASE. 487 If ITERATION_BOUND is non-zero, scale even further if loop is predicted 488 to iterate too many times. */ 489 490 void 491 scale_loop_profile (struct loop *loop, int scale, gcov_type iteration_bound) 492 { 493 gcov_type iterations = expected_loop_iterations_unbounded (loop); 494 edge e; 495 edge_iterator ei; 496 497 if (dump_file && (dump_flags & TDF_DETAILS)) 498 fprintf (dump_file, ";; Scaling loop %i with scale %f, " 499 "bounding iterations to %i from guessed %i\n", 500 loop->num, (double)scale / REG_BR_PROB_BASE, 501 (int)iteration_bound, (int)iterations); 502 503 /* See if loop is predicted to iterate too many times. */ 504 if (iteration_bound && iterations > 0 505 && RDIV (iterations * scale, REG_BR_PROB_BASE) > iteration_bound) 506 { 507 /* Fixing loop profile for different trip count is not trivial; the exit 508 probabilities has to be updated to match and frequencies propagated down 509 to the loop body. 510 511 We fully update only the simple case of loop with single exit that is 512 either from the latch or BB just before latch and leads from BB with 513 simple conditional jump. This is OK for use in vectorizer. */ 514 e = single_exit (loop); 515 if (e) 516 { 517 edge other_e; 518 int freq_delta; 519 gcov_type count_delta; 520 521 FOR_EACH_EDGE (other_e, ei, e->src->succs) 522 if (!(other_e->flags & (EDGE_ABNORMAL | EDGE_FAKE)) 523 && e != other_e) 524 break; 525 526 /* Probability of exit must be 1/iterations. */ 527 freq_delta = EDGE_FREQUENCY (e); 528 e->probability = REG_BR_PROB_BASE / iteration_bound; 529 other_e->probability = inverse_probability (e->probability); 530 freq_delta -= EDGE_FREQUENCY (e); 531 532 /* Adjust counts accordingly. */ 533 count_delta = e->count; 534 e->count = apply_probability (e->src->count, e->probability); 535 other_e->count = apply_probability (e->src->count, other_e->probability); 536 count_delta -= e->count; 537 538 /* If latch exists, change its frequency and count, since we changed 539 probability of exit. Theoretically we should update everything from 540 source of exit edge to latch, but for vectorizer this is enough. */ 541 if (loop->latch 542 && loop->latch != e->src) 543 { 544 loop->latch->frequency += freq_delta; 545 if (loop->latch->frequency < 0) 546 loop->latch->frequency = 0; 547 loop->latch->count += count_delta; 548 if (loop->latch->count < 0) 549 loop->latch->count = 0; 550 } 551 } 552 553 /* Roughly speaking we want to reduce the loop body profile by the 554 the difference of loop iterations. We however can do better if 555 we look at the actual profile, if it is available. */ 556 scale = RDIV (iteration_bound * scale, iterations); 557 if (loop->header->count) 558 { 559 gcov_type count_in = 0; 560 561 FOR_EACH_EDGE (e, ei, loop->header->preds) 562 if (e->src != loop->latch) 563 count_in += e->count; 564 565 if (count_in != 0) 566 scale = RDIV (count_in * iteration_bound * REG_BR_PROB_BASE, loop->header->count); 567 } 568 else if (loop->header->frequency) 569 { 570 int freq_in = 0; 571 572 FOR_EACH_EDGE (e, ei, loop->header->preds) 573 if (e->src != loop->latch) 574 freq_in += EDGE_FREQUENCY (e); 575 576 if (freq_in != 0) 577 scale = RDIV (freq_in * iteration_bound * REG_BR_PROB_BASE, loop->header->frequency); 578 } 579 if (!scale) 580 scale = 1; 581 } 582 583 if (scale == REG_BR_PROB_BASE) 584 return; 585 586 /* Scale the actual probabilities. */ 587 scale_loop_frequencies (loop, scale, REG_BR_PROB_BASE); 588 if (dump_file && (dump_flags & TDF_DETAILS)) 589 fprintf (dump_file, ";; guessed iterations are now %i\n", 590 (int)expected_loop_iterations_unbounded (loop)); 591 } 592 593 /* Recompute dominance information for basic blocks outside LOOP. */ 594 595 static void 596 update_dominators_in_loop (struct loop *loop) 597 { 598 vec<basic_block> dom_bbs = vNULL; 599 sbitmap seen; 600 basic_block *body; 601 unsigned i; 602 603 seen = sbitmap_alloc (last_basic_block); 604 bitmap_clear (seen); 605 body = get_loop_body (loop); 606 607 for (i = 0; i < loop->num_nodes; i++) 608 bitmap_set_bit (seen, body[i]->index); 609 610 for (i = 0; i < loop->num_nodes; i++) 611 { 612 basic_block ldom; 613 614 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]); 615 ldom; 616 ldom = next_dom_son (CDI_DOMINATORS, ldom)) 617 if (!bitmap_bit_p (seen, ldom->index)) 618 { 619 bitmap_set_bit (seen, ldom->index); 620 dom_bbs.safe_push (ldom); 621 } 622 } 623 624 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false); 625 free (body); 626 free (seen); 627 dom_bbs.release (); 628 } 629 630 /* Creates an if region as shown above. CONDITION is used to create 631 the test for the if. 632 633 | 634 | ------------- ------------- 635 | | pred_bb | | pred_bb | 636 | ------------- ------------- 637 | | | 638 | | | ENTRY_EDGE 639 | | ENTRY_EDGE V 640 | | ====> ------------- 641 | | | cond_bb | 642 | | | CONDITION | 643 | | ------------- 644 | V / \ 645 | ------------- e_false / \ e_true 646 | | succ_bb | V V 647 | ------------- ----------- ----------- 648 | | false_bb | | true_bb | 649 | ----------- ----------- 650 | \ / 651 | \ / 652 | V V 653 | ------------- 654 | | join_bb | 655 | ------------- 656 | | exit_edge (result) 657 | V 658 | ----------- 659 | | succ_bb | 660 | ----------- 661 | 662 */ 663 664 edge 665 create_empty_if_region_on_edge (edge entry_edge, tree condition) 666 { 667 668 basic_block cond_bb, true_bb, false_bb, join_bb; 669 edge e_true, e_false, exit_edge; 670 gimple cond_stmt; 671 tree simple_cond; 672 gimple_stmt_iterator gsi; 673 674 cond_bb = split_edge (entry_edge); 675 676 /* Insert condition in cond_bb. */ 677 gsi = gsi_last_bb (cond_bb); 678 simple_cond = 679 force_gimple_operand_gsi (&gsi, condition, true, NULL, 680 false, GSI_NEW_STMT); 681 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE); 682 gsi = gsi_last_bb (cond_bb); 683 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT); 684 685 join_bb = split_edge (single_succ_edge (cond_bb)); 686 687 e_true = single_succ_edge (cond_bb); 688 true_bb = split_edge (e_true); 689 690 e_false = make_edge (cond_bb, join_bb, 0); 691 false_bb = split_edge (e_false); 692 693 e_true->flags &= ~EDGE_FALLTHRU; 694 e_true->flags |= EDGE_TRUE_VALUE; 695 e_false->flags &= ~EDGE_FALLTHRU; 696 e_false->flags |= EDGE_FALSE_VALUE; 697 698 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src); 699 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb); 700 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb); 701 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb); 702 703 exit_edge = single_succ_edge (join_bb); 704 705 if (single_pred_p (exit_edge->dest)) 706 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb); 707 708 return exit_edge; 709 } 710 711 /* create_empty_loop_on_edge 712 | 713 | - pred_bb - ------ pred_bb ------ 714 | | | | iv0 = initial_value | 715 | -----|----- ---------|----------- 716 | | ______ | entry_edge 717 | | entry_edge / | | 718 | | ====> | -V---V- loop_header ------------- 719 | V | | iv_before = phi (iv0, iv_after) | 720 | - succ_bb - | ---|----------------------------- 721 | | | | | 722 | ----------- | ---V--- loop_body --------------- 723 | | | iv_after = iv_before + stride | 724 | | | if (iv_before < upper_bound) | 725 | | ---|--------------\-------------- 726 | | | \ exit_e 727 | | V \ 728 | | - loop_latch - V- succ_bb - 729 | | | | | | 730 | | /------------- ----------- 731 | \ ___ / 732 733 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME 734 that is used before the increment of IV. IV_BEFORE should be used for 735 adding code to the body that uses the IV. OUTER is the outer loop in 736 which the new loop should be inserted. 737 738 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and 739 inserted on the loop entry edge. This implies that this function 740 should be used only when the UPPER_BOUND expression is a loop 741 invariant. */ 742 743 struct loop * 744 create_empty_loop_on_edge (edge entry_edge, 745 tree initial_value, 746 tree stride, tree upper_bound, 747 tree iv, 748 tree *iv_before, 749 tree *iv_after, 750 struct loop *outer) 751 { 752 basic_block loop_header, loop_latch, succ_bb, pred_bb; 753 struct loop *loop; 754 gimple_stmt_iterator gsi; 755 gimple_seq stmts; 756 gimple cond_expr; 757 tree exit_test; 758 edge exit_e; 759 int prob; 760 761 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv); 762 763 /* Create header, latch and wire up the loop. */ 764 pred_bb = entry_edge->src; 765 loop_header = split_edge (entry_edge); 766 loop_latch = split_edge (single_succ_edge (loop_header)); 767 succ_bb = single_succ (loop_latch); 768 make_edge (loop_header, succ_bb, 0); 769 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header); 770 771 /* Set immediate dominator information. */ 772 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb); 773 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header); 774 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header); 775 776 /* Initialize a loop structure and put it in a loop hierarchy. */ 777 loop = alloc_loop (); 778 loop->header = loop_header; 779 loop->latch = loop_latch; 780 add_loop (loop, outer); 781 782 /* TODO: Fix frequencies and counts. */ 783 prob = REG_BR_PROB_BASE / 2; 784 785 scale_loop_frequencies (loop, REG_BR_PROB_BASE - prob, REG_BR_PROB_BASE); 786 787 /* Update dominators. */ 788 update_dominators_in_loop (loop); 789 790 /* Modify edge flags. */ 791 exit_e = single_exit (loop); 792 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE; 793 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE; 794 795 /* Construct IV code in loop. */ 796 initial_value = force_gimple_operand (initial_value, &stmts, true, iv); 797 if (stmts) 798 { 799 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts); 800 gsi_commit_edge_inserts (); 801 } 802 803 upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL); 804 if (stmts) 805 { 806 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts); 807 gsi_commit_edge_inserts (); 808 } 809 810 gsi = gsi_last_bb (loop_header); 811 create_iv (initial_value, stride, iv, loop, &gsi, false, 812 iv_before, iv_after); 813 814 /* Insert loop exit condition. */ 815 cond_expr = gimple_build_cond 816 (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE); 817 818 exit_test = gimple_cond_lhs (cond_expr); 819 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL, 820 false, GSI_NEW_STMT); 821 gimple_cond_set_lhs (cond_expr, exit_test); 822 gsi = gsi_last_bb (exit_e->src); 823 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT); 824 825 split_block_after_labels (loop_header); 826 827 return loop; 828 } 829 830 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting 831 latch to header and update loop tree and dominators 832 accordingly. Everything between them plus LATCH_EDGE destination must 833 be dominated by HEADER_EDGE destination, and back-reachable from 834 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB, 835 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and 836 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE. 837 Returns the newly created loop. Frequencies and counts in the new loop 838 are scaled by FALSE_SCALE and in the old one by TRUE_SCALE. */ 839 840 struct loop * 841 loopify (edge latch_edge, edge header_edge, 842 basic_block switch_bb, edge true_edge, edge false_edge, 843 bool redirect_all_edges, unsigned true_scale, unsigned false_scale) 844 { 845 basic_block succ_bb = latch_edge->dest; 846 basic_block pred_bb = header_edge->src; 847 struct loop *loop = alloc_loop (); 848 struct loop *outer = loop_outer (succ_bb->loop_father); 849 int freq; 850 gcov_type cnt; 851 edge e; 852 edge_iterator ei; 853 854 loop->header = header_edge->dest; 855 loop->latch = latch_edge->src; 856 857 freq = EDGE_FREQUENCY (header_edge); 858 cnt = header_edge->count; 859 860 /* Redirect edges. */ 861 loop_redirect_edge (latch_edge, loop->header); 862 loop_redirect_edge (true_edge, succ_bb); 863 864 /* During loop versioning, one of the switch_bb edge is already properly 865 set. Do not redirect it again unless redirect_all_edges is true. */ 866 if (redirect_all_edges) 867 { 868 loop_redirect_edge (header_edge, switch_bb); 869 loop_redirect_edge (false_edge, loop->header); 870 871 /* Update dominators. */ 872 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb); 873 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb); 874 } 875 876 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb); 877 878 /* Compute new loop. */ 879 add_loop (loop, outer); 880 881 /* Add switch_bb to appropriate loop. */ 882 if (switch_bb->loop_father) 883 remove_bb_from_loops (switch_bb); 884 add_bb_to_loop (switch_bb, outer); 885 886 /* Fix frequencies. */ 887 if (redirect_all_edges) 888 { 889 switch_bb->frequency = freq; 890 switch_bb->count = cnt; 891 FOR_EACH_EDGE (e, ei, switch_bb->succs) 892 { 893 e->count = RDIV (switch_bb->count * e->probability, REG_BR_PROB_BASE); 894 } 895 } 896 scale_loop_frequencies (loop, false_scale, REG_BR_PROB_BASE); 897 scale_loop_frequencies (succ_bb->loop_father, true_scale, REG_BR_PROB_BASE); 898 update_dominators_in_loop (loop); 899 900 return loop; 901 } 902 903 /* Remove the latch edge of a LOOP and update loops to indicate that 904 the LOOP was removed. After this function, original loop latch will 905 have no successor, which caller is expected to fix somehow. 906 907 If this may cause the information about irreducible regions to become 908 invalid, IRRED_INVALIDATED is set to true. 909 910 LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store 911 basic blocks that had non-trivial update on their loop_father.*/ 912 913 void 914 unloop (struct loop *loop, bool *irred_invalidated, 915 bitmap loop_closed_ssa_invalidated) 916 { 917 basic_block *body; 918 struct loop *ploop; 919 unsigned i, n; 920 basic_block latch = loop->latch; 921 bool dummy = false; 922 923 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP) 924 *irred_invalidated = true; 925 926 /* This is relatively straightforward. The dominators are unchanged, as 927 loop header dominates loop latch, so the only thing we have to care of 928 is the placement of loops and basic blocks inside the loop tree. We 929 move them all to the loop->outer, and then let fix_bb_placements do 930 its work. */ 931 932 body = get_loop_body (loop); 933 n = loop->num_nodes; 934 for (i = 0; i < n; i++) 935 if (body[i]->loop_father == loop) 936 { 937 remove_bb_from_loops (body[i]); 938 add_bb_to_loop (body[i], loop_outer (loop)); 939 } 940 free(body); 941 942 while (loop->inner) 943 { 944 ploop = loop->inner; 945 flow_loop_tree_node_remove (ploop); 946 flow_loop_tree_node_add (loop_outer (loop), ploop); 947 } 948 949 /* Remove the loop and free its data. */ 950 delete_loop (loop); 951 952 remove_edge (single_succ_edge (latch)); 953 954 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if 955 there is an irreducible region inside the cancelled loop, the flags will 956 be still correct. */ 957 fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated); 958 } 959 960 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that 961 condition stated in description of fix_loop_placement holds for them. 962 It is used in case when we removed some edges coming out of LOOP, which 963 may cause the right placement of LOOP inside loop tree to change. 964 965 IRRED_INVALIDATED is set to true if a change in the loop structures might 966 invalidate the information about irreducible regions. */ 967 968 static void 969 fix_loop_placements (struct loop *loop, bool *irred_invalidated) 970 { 971 struct loop *outer; 972 973 while (loop_outer (loop)) 974 { 975 outer = loop_outer (loop); 976 if (!fix_loop_placement (loop, irred_invalidated)) 977 break; 978 979 /* Changing the placement of a loop in the loop tree may alter the 980 validity of condition 2) of the description of fix_bb_placement 981 for its preheader, because the successor is the header and belongs 982 to the loop. So call fix_bb_placements to fix up the placement 983 of the preheader and (possibly) of its predecessors. */ 984 fix_bb_placements (loop_preheader_edge (loop)->src, 985 irred_invalidated, NULL); 986 loop = outer; 987 } 988 } 989 990 /* Duplicate loop bounds and other information we store about 991 the loop into its duplicate. */ 992 993 void 994 copy_loop_info (struct loop *loop, struct loop *target) 995 { 996 gcc_checking_assert (!target->any_upper_bound && !target->any_estimate); 997 target->any_upper_bound = loop->any_upper_bound; 998 target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound; 999 target->any_estimate = loop->any_estimate; 1000 target->nb_iterations_estimate = loop->nb_iterations_estimate; 1001 target->estimate_state = loop->estimate_state; 1002 } 1003 1004 /* Copies copy of LOOP as subloop of TARGET loop, placing newly 1005 created loop into loops structure. */ 1006 struct loop * 1007 duplicate_loop (struct loop *loop, struct loop *target) 1008 { 1009 struct loop *cloop; 1010 cloop = alloc_loop (); 1011 place_new_loop (cloop); 1012 1013 copy_loop_info (loop, cloop); 1014 1015 /* Mark the new loop as copy of LOOP. */ 1016 set_loop_copy (loop, cloop); 1017 1018 /* Add it to target. */ 1019 flow_loop_tree_node_add (target, cloop); 1020 1021 return cloop; 1022 } 1023 1024 /* Copies structure of subloops of LOOP into TARGET loop, placing 1025 newly created loops into loop tree. */ 1026 void 1027 duplicate_subloops (struct loop *loop, struct loop *target) 1028 { 1029 struct loop *aloop, *cloop; 1030 1031 for (aloop = loop->inner; aloop; aloop = aloop->next) 1032 { 1033 cloop = duplicate_loop (aloop, target); 1034 duplicate_subloops (aloop, cloop); 1035 } 1036 } 1037 1038 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS, 1039 into TARGET loop, placing newly created loops into loop tree. */ 1040 static void 1041 copy_loops_to (struct loop **copied_loops, int n, struct loop *target) 1042 { 1043 struct loop *aloop; 1044 int i; 1045 1046 for (i = 0; i < n; i++) 1047 { 1048 aloop = duplicate_loop (copied_loops[i], target); 1049 duplicate_subloops (copied_loops[i], aloop); 1050 } 1051 } 1052 1053 /* Redirects edge E to basic block DEST. */ 1054 static void 1055 loop_redirect_edge (edge e, basic_block dest) 1056 { 1057 if (e->dest == dest) 1058 return; 1059 1060 redirect_edge_and_branch_force (e, dest); 1061 } 1062 1063 /* Check whether LOOP's body can be duplicated. */ 1064 bool 1065 can_duplicate_loop_p (const struct loop *loop) 1066 { 1067 int ret; 1068 basic_block *bbs = get_loop_body (loop); 1069 1070 ret = can_copy_bbs_p (bbs, loop->num_nodes); 1071 free (bbs); 1072 1073 return ret; 1074 } 1075 1076 /* Sets probability and count of edge E to zero. The probability and count 1077 is redistributed evenly to the remaining edges coming from E->src. */ 1078 1079 static void 1080 set_zero_probability (edge e) 1081 { 1082 basic_block bb = e->src; 1083 edge_iterator ei; 1084 edge ae, last = NULL; 1085 unsigned n = EDGE_COUNT (bb->succs); 1086 gcov_type cnt = e->count, cnt1; 1087 unsigned prob = e->probability, prob1; 1088 1089 gcc_assert (n > 1); 1090 cnt1 = cnt / (n - 1); 1091 prob1 = prob / (n - 1); 1092 1093 FOR_EACH_EDGE (ae, ei, bb->succs) 1094 { 1095 if (ae == e) 1096 continue; 1097 1098 ae->probability += prob1; 1099 ae->count += cnt1; 1100 last = ae; 1101 } 1102 1103 /* Move the rest to one of the edges. */ 1104 last->probability += prob % (n - 1); 1105 last->count += cnt % (n - 1); 1106 1107 e->probability = 0; 1108 e->count = 0; 1109 } 1110 1111 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating 1112 loop structure and dominators. E's destination must be LOOP header for 1113 this to work, i.e. it must be entry or latch edge of this loop; these are 1114 unique, as the loops must have preheaders for this function to work 1115 correctly (in case E is latch, the function unrolls the loop, if E is entry 1116 edge, it peels the loop). Store edges created by copying ORIG edge from 1117 copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to 1118 original LOOP body, the other copies are numbered in order given by control 1119 flow through them) into TO_REMOVE array. Returns false if duplication is 1120 impossible. */ 1121 1122 bool 1123 duplicate_loop_to_header_edge (struct loop *loop, edge e, 1124 unsigned int ndupl, sbitmap wont_exit, 1125 edge orig, vec<edge> *to_remove, 1126 int flags) 1127 { 1128 struct loop *target, *aloop; 1129 struct loop **orig_loops; 1130 unsigned n_orig_loops; 1131 basic_block header = loop->header, latch = loop->latch; 1132 basic_block *new_bbs, *bbs, *first_active; 1133 basic_block new_bb, bb, first_active_latch = NULL; 1134 edge ae, latch_edge; 1135 edge spec_edges[2], new_spec_edges[2]; 1136 #define SE_LATCH 0 1137 #define SE_ORIG 1 1138 unsigned i, j, n; 1139 int is_latch = (latch == e->src); 1140 int scale_act = 0, *scale_step = NULL, scale_main = 0; 1141 int scale_after_exit = 0; 1142 int p, freq_in, freq_le, freq_out_orig; 1143 int prob_pass_thru, prob_pass_wont_exit, prob_pass_main; 1144 int add_irreducible_flag; 1145 basic_block place_after; 1146 bitmap bbs_to_scale = NULL; 1147 bitmap_iterator bi; 1148 1149 gcc_assert (e->dest == loop->header); 1150 gcc_assert (ndupl > 0); 1151 1152 if (orig) 1153 { 1154 /* Orig must be edge out of the loop. */ 1155 gcc_assert (flow_bb_inside_loop_p (loop, orig->src)); 1156 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest)); 1157 } 1158 1159 n = loop->num_nodes; 1160 bbs = get_loop_body_in_dom_order (loop); 1161 gcc_assert (bbs[0] == loop->header); 1162 gcc_assert (bbs[n - 1] == loop->latch); 1163 1164 /* Check whether duplication is possible. */ 1165 if (!can_copy_bbs_p (bbs, loop->num_nodes)) 1166 { 1167 free (bbs); 1168 return false; 1169 } 1170 new_bbs = XNEWVEC (basic_block, loop->num_nodes); 1171 1172 /* In case we are doing loop peeling and the loop is in the middle of 1173 irreducible region, the peeled copies will be inside it too. */ 1174 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP; 1175 gcc_assert (!is_latch || !add_irreducible_flag); 1176 1177 /* Find edge from latch. */ 1178 latch_edge = loop_latch_edge (loop); 1179 1180 if (flags & DLTHE_FLAG_UPDATE_FREQ) 1181 { 1182 /* Calculate coefficients by that we have to scale frequencies 1183 of duplicated loop bodies. */ 1184 freq_in = header->frequency; 1185 freq_le = EDGE_FREQUENCY (latch_edge); 1186 if (freq_in == 0) 1187 freq_in = 1; 1188 if (freq_in < freq_le) 1189 freq_in = freq_le; 1190 freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le; 1191 if (freq_out_orig > freq_in - freq_le) 1192 freq_out_orig = freq_in - freq_le; 1193 prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in); 1194 prob_pass_wont_exit = 1195 RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in); 1196 1197 if (orig 1198 && REG_BR_PROB_BASE - orig->probability != 0) 1199 { 1200 /* The blocks that are dominated by a removed exit edge ORIG have 1201 frequencies scaled by this. */ 1202 scale_after_exit = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE, 1203 REG_BR_PROB_BASE - orig->probability); 1204 bbs_to_scale = BITMAP_ALLOC (NULL); 1205 for (i = 0; i < n; i++) 1206 { 1207 if (bbs[i] != orig->src 1208 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src)) 1209 bitmap_set_bit (bbs_to_scale, i); 1210 } 1211 } 1212 1213 scale_step = XNEWVEC (int, ndupl); 1214 1215 for (i = 1; i <= ndupl; i++) 1216 scale_step[i - 1] = bitmap_bit_p (wont_exit, i) 1217 ? prob_pass_wont_exit 1218 : prob_pass_thru; 1219 1220 /* Complete peeling is special as the probability of exit in last 1221 copy becomes 1. */ 1222 if (flags & DLTHE_FLAG_COMPLETTE_PEEL) 1223 { 1224 int wanted_freq = EDGE_FREQUENCY (e); 1225 1226 if (wanted_freq > freq_in) 1227 wanted_freq = freq_in; 1228 1229 gcc_assert (!is_latch); 1230 /* First copy has frequency of incoming edge. Each subsequent 1231 frequency should be reduced by prob_pass_wont_exit. Caller 1232 should've managed the flags so all except for original loop 1233 has won't exist set. */ 1234 scale_act = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in); 1235 /* Now simulate the duplication adjustments and compute header 1236 frequency of the last copy. */ 1237 for (i = 0; i < ndupl; i++) 1238 wanted_freq = RDIV (wanted_freq * scale_step[i], REG_BR_PROB_BASE); 1239 scale_main = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in); 1240 } 1241 else if (is_latch) 1242 { 1243 prob_pass_main = bitmap_bit_p (wont_exit, 0) 1244 ? prob_pass_wont_exit 1245 : prob_pass_thru; 1246 p = prob_pass_main; 1247 scale_main = REG_BR_PROB_BASE; 1248 for (i = 0; i < ndupl; i++) 1249 { 1250 scale_main += p; 1251 p = RDIV (p * scale_step[i], REG_BR_PROB_BASE); 1252 } 1253 scale_main = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE, scale_main); 1254 scale_act = RDIV (scale_main * prob_pass_main, REG_BR_PROB_BASE); 1255 } 1256 else 1257 { 1258 scale_main = REG_BR_PROB_BASE; 1259 for (i = 0; i < ndupl; i++) 1260 scale_main = RDIV (scale_main * scale_step[i], REG_BR_PROB_BASE); 1261 scale_act = REG_BR_PROB_BASE - prob_pass_thru; 1262 } 1263 for (i = 0; i < ndupl; i++) 1264 gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE); 1265 gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE 1266 && scale_act >= 0 && scale_act <= REG_BR_PROB_BASE); 1267 } 1268 1269 /* Loop the new bbs will belong to. */ 1270 target = e->src->loop_father; 1271 1272 /* Original loops. */ 1273 n_orig_loops = 0; 1274 for (aloop = loop->inner; aloop; aloop = aloop->next) 1275 n_orig_loops++; 1276 orig_loops = XNEWVEC (struct loop *, n_orig_loops); 1277 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++) 1278 orig_loops[i] = aloop; 1279 1280 set_loop_copy (loop, target); 1281 1282 first_active = XNEWVEC (basic_block, n); 1283 if (is_latch) 1284 { 1285 memcpy (first_active, bbs, n * sizeof (basic_block)); 1286 first_active_latch = latch; 1287 } 1288 1289 spec_edges[SE_ORIG] = orig; 1290 spec_edges[SE_LATCH] = latch_edge; 1291 1292 place_after = e->src; 1293 for (j = 0; j < ndupl; j++) 1294 { 1295 /* Copy loops. */ 1296 copy_loops_to (orig_loops, n_orig_loops, target); 1297 1298 /* Copy bbs. */ 1299 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop, 1300 place_after); 1301 place_after = new_spec_edges[SE_LATCH]->src; 1302 1303 if (flags & DLTHE_RECORD_COPY_NUMBER) 1304 for (i = 0; i < n; i++) 1305 { 1306 gcc_assert (!new_bbs[i]->aux); 1307 new_bbs[i]->aux = (void *)(size_t)(j + 1); 1308 } 1309 1310 /* Note whether the blocks and edges belong to an irreducible loop. */ 1311 if (add_irreducible_flag) 1312 { 1313 for (i = 0; i < n; i++) 1314 new_bbs[i]->flags |= BB_DUPLICATED; 1315 for (i = 0; i < n; i++) 1316 { 1317 edge_iterator ei; 1318 new_bb = new_bbs[i]; 1319 if (new_bb->loop_father == target) 1320 new_bb->flags |= BB_IRREDUCIBLE_LOOP; 1321 1322 FOR_EACH_EDGE (ae, ei, new_bb->succs) 1323 if ((ae->dest->flags & BB_DUPLICATED) 1324 && (ae->src->loop_father == target 1325 || ae->dest->loop_father == target)) 1326 ae->flags |= EDGE_IRREDUCIBLE_LOOP; 1327 } 1328 for (i = 0; i < n; i++) 1329 new_bbs[i]->flags &= ~BB_DUPLICATED; 1330 } 1331 1332 /* Redirect the special edges. */ 1333 if (is_latch) 1334 { 1335 redirect_edge_and_branch_force (latch_edge, new_bbs[0]); 1336 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH], 1337 loop->header); 1338 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch); 1339 latch = loop->latch = new_bbs[n - 1]; 1340 e = latch_edge = new_spec_edges[SE_LATCH]; 1341 } 1342 else 1343 { 1344 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH], 1345 loop->header); 1346 redirect_edge_and_branch_force (e, new_bbs[0]); 1347 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src); 1348 e = new_spec_edges[SE_LATCH]; 1349 } 1350 1351 /* Record exit edge in this copy. */ 1352 if (orig && bitmap_bit_p (wont_exit, j + 1)) 1353 { 1354 if (to_remove) 1355 to_remove->safe_push (new_spec_edges[SE_ORIG]); 1356 set_zero_probability (new_spec_edges[SE_ORIG]); 1357 1358 /* Scale the frequencies of the blocks dominated by the exit. */ 1359 if (bbs_to_scale) 1360 { 1361 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi) 1362 { 1363 scale_bbs_frequencies_int (new_bbs + i, 1, scale_after_exit, 1364 REG_BR_PROB_BASE); 1365 } 1366 } 1367 } 1368 1369 /* Record the first copy in the control flow order if it is not 1370 the original loop (i.e. in case of peeling). */ 1371 if (!first_active_latch) 1372 { 1373 memcpy (first_active, new_bbs, n * sizeof (basic_block)); 1374 first_active_latch = new_bbs[n - 1]; 1375 } 1376 1377 /* Set counts and frequencies. */ 1378 if (flags & DLTHE_FLAG_UPDATE_FREQ) 1379 { 1380 scale_bbs_frequencies_int (new_bbs, n, scale_act, REG_BR_PROB_BASE); 1381 scale_act = RDIV (scale_act * scale_step[j], REG_BR_PROB_BASE); 1382 } 1383 } 1384 free (new_bbs); 1385 free (orig_loops); 1386 1387 /* Record the exit edge in the original loop body, and update the frequencies. */ 1388 if (orig && bitmap_bit_p (wont_exit, 0)) 1389 { 1390 if (to_remove) 1391 to_remove->safe_push (orig); 1392 set_zero_probability (orig); 1393 1394 /* Scale the frequencies of the blocks dominated by the exit. */ 1395 if (bbs_to_scale) 1396 { 1397 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi) 1398 { 1399 scale_bbs_frequencies_int (bbs + i, 1, scale_after_exit, 1400 REG_BR_PROB_BASE); 1401 } 1402 } 1403 } 1404 1405 /* Update the original loop. */ 1406 if (!is_latch) 1407 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src); 1408 if (flags & DLTHE_FLAG_UPDATE_FREQ) 1409 { 1410 scale_bbs_frequencies_int (bbs, n, scale_main, REG_BR_PROB_BASE); 1411 free (scale_step); 1412 } 1413 1414 /* Update dominators of outer blocks if affected. */ 1415 for (i = 0; i < n; i++) 1416 { 1417 basic_block dominated, dom_bb; 1418 vec<basic_block> dom_bbs; 1419 unsigned j; 1420 1421 bb = bbs[i]; 1422 bb->aux = 0; 1423 1424 dom_bbs = get_dominated_by (CDI_DOMINATORS, bb); 1425 FOR_EACH_VEC_ELT (dom_bbs, j, dominated) 1426 { 1427 if (flow_bb_inside_loop_p (loop, dominated)) 1428 continue; 1429 dom_bb = nearest_common_dominator ( 1430 CDI_DOMINATORS, first_active[i], first_active_latch); 1431 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb); 1432 } 1433 dom_bbs.release (); 1434 } 1435 free (first_active); 1436 1437 free (bbs); 1438 BITMAP_FREE (bbs_to_scale); 1439 1440 return true; 1441 } 1442 1443 /* A callback for make_forwarder block, to redirect all edges except for 1444 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide 1445 whether to redirect it. */ 1446 1447 edge mfb_kj_edge; 1448 bool 1449 mfb_keep_just (edge e) 1450 { 1451 return e != mfb_kj_edge; 1452 } 1453 1454 /* True when a candidate preheader BLOCK has predecessors from LOOP. */ 1455 1456 static bool 1457 has_preds_from_loop (basic_block block, struct loop *loop) 1458 { 1459 edge e; 1460 edge_iterator ei; 1461 1462 FOR_EACH_EDGE (e, ei, block->preds) 1463 if (e->src->loop_father == loop) 1464 return true; 1465 return false; 1466 } 1467 1468 /* Creates a pre-header for a LOOP. Returns newly created block. Unless 1469 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single 1470 entry; otherwise we also force preheader block to have only one successor. 1471 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block 1472 to be a fallthru predecessor to the loop header and to have only 1473 predecessors from outside of the loop. 1474 The function also updates dominators. */ 1475 1476 basic_block 1477 create_preheader (struct loop *loop, int flags) 1478 { 1479 edge e, fallthru; 1480 basic_block dummy; 1481 int nentry = 0; 1482 bool irred = false; 1483 bool latch_edge_was_fallthru; 1484 edge one_succ_pred = NULL, single_entry = NULL; 1485 edge_iterator ei; 1486 1487 FOR_EACH_EDGE (e, ei, loop->header->preds) 1488 { 1489 if (e->src == loop->latch) 1490 continue; 1491 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0; 1492 nentry++; 1493 single_entry = e; 1494 if (single_succ_p (e->src)) 1495 one_succ_pred = e; 1496 } 1497 gcc_assert (nentry); 1498 if (nentry == 1) 1499 { 1500 bool need_forwarder_block = false; 1501 1502 /* We do not allow entry block to be the loop preheader, since we 1503 cannot emit code there. */ 1504 if (single_entry->src == ENTRY_BLOCK_PTR) 1505 need_forwarder_block = true; 1506 else 1507 { 1508 /* If we want simple preheaders, also force the preheader to have 1509 just a single successor. */ 1510 if ((flags & CP_SIMPLE_PREHEADERS) 1511 && !single_succ_p (single_entry->src)) 1512 need_forwarder_block = true; 1513 /* If we want fallthru preheaders, also create forwarder block when 1514 preheader ends with a jump or has predecessors from loop. */ 1515 else if ((flags & CP_FALLTHRU_PREHEADERS) 1516 && (JUMP_P (BB_END (single_entry->src)) 1517 || has_preds_from_loop (single_entry->src, loop))) 1518 need_forwarder_block = true; 1519 } 1520 if (! need_forwarder_block) 1521 return NULL; 1522 } 1523 1524 mfb_kj_edge = loop_latch_edge (loop); 1525 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0; 1526 fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL); 1527 dummy = fallthru->src; 1528 loop->header = fallthru->dest; 1529 1530 /* Try to be clever in placing the newly created preheader. The idea is to 1531 avoid breaking any "fallthruness" relationship between blocks. 1532 1533 The preheader was created just before the header and all incoming edges 1534 to the header were redirected to the preheader, except the latch edge. 1535 So the only problematic case is when this latch edge was a fallthru 1536 edge: it is not anymore after the preheader creation so we have broken 1537 the fallthruness. We're therefore going to look for a better place. */ 1538 if (latch_edge_was_fallthru) 1539 { 1540 if (one_succ_pred) 1541 e = one_succ_pred; 1542 else 1543 e = EDGE_PRED (dummy, 0); 1544 1545 move_block_after (dummy, e->src); 1546 } 1547 1548 if (irred) 1549 { 1550 dummy->flags |= BB_IRREDUCIBLE_LOOP; 1551 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP; 1552 } 1553 1554 if (dump_file) 1555 fprintf (dump_file, "Created preheader block for loop %i\n", 1556 loop->num); 1557 1558 if (flags & CP_FALLTHRU_PREHEADERS) 1559 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU) 1560 && !JUMP_P (BB_END (dummy))); 1561 1562 return dummy; 1563 } 1564 1565 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */ 1566 1567 void 1568 create_preheaders (int flags) 1569 { 1570 loop_iterator li; 1571 struct loop *loop; 1572 1573 if (!current_loops) 1574 return; 1575 1576 FOR_EACH_LOOP (li, loop, 0) 1577 create_preheader (loop, flags); 1578 loops_state_set (LOOPS_HAVE_PREHEADERS); 1579 } 1580 1581 /* Forces all loop latches to have only single successor. */ 1582 1583 void 1584 force_single_succ_latches (void) 1585 { 1586 loop_iterator li; 1587 struct loop *loop; 1588 edge e; 1589 1590 FOR_EACH_LOOP (li, loop, 0) 1591 { 1592 if (loop->latch != loop->header && single_succ_p (loop->latch)) 1593 continue; 1594 1595 e = find_edge (loop->latch, loop->header); 1596 gcc_checking_assert (e != NULL); 1597 1598 split_edge (e); 1599 } 1600 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES); 1601 } 1602 1603 /* This function is called from loop_version. It splits the entry edge 1604 of the loop we want to version, adds the versioning condition, and 1605 adjust the edges to the two versions of the loop appropriately. 1606 e is an incoming edge. Returns the basic block containing the 1607 condition. 1608 1609 --- edge e ---- > [second_head] 1610 1611 Split it and insert new conditional expression and adjust edges. 1612 1613 --- edge e ---> [cond expr] ---> [first_head] 1614 | 1615 +---------> [second_head] 1616 1617 THEN_PROB is the probability of then branch of the condition. */ 1618 1619 static basic_block 1620 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head, 1621 edge e, void *cond_expr, unsigned then_prob) 1622 { 1623 basic_block new_head = NULL; 1624 edge e1; 1625 1626 gcc_assert (e->dest == second_head); 1627 1628 /* Split edge 'e'. This will create a new basic block, where we can 1629 insert conditional expr. */ 1630 new_head = split_edge (e); 1631 1632 lv_add_condition_to_bb (first_head, second_head, new_head, 1633 cond_expr); 1634 1635 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */ 1636 e = single_succ_edge (new_head); 1637 e1 = make_edge (new_head, first_head, 1638 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0); 1639 e1->probability = then_prob; 1640 e->probability = REG_BR_PROB_BASE - then_prob; 1641 e1->count = RDIV (e->count * e1->probability, REG_BR_PROB_BASE); 1642 e->count = RDIV (e->count * e->probability, REG_BR_PROB_BASE); 1643 1644 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head); 1645 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head); 1646 1647 /* Adjust loop header phi nodes. */ 1648 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1); 1649 1650 return new_head; 1651 } 1652 1653 /* Main entry point for Loop Versioning transformation. 1654 1655 This transformation given a condition and a loop, creates 1656 -if (condition) { loop_copy1 } else { loop_copy2 }, 1657 where loop_copy1 is the loop transformed in one way, and loop_copy2 1658 is the loop transformed in another way (or unchanged). 'condition' 1659 may be a run time test for things that were not resolved by static 1660 analysis (overlapping ranges (anti-aliasing), alignment, etc.). 1661 1662 THEN_PROB is the probability of the then edge of the if. THEN_SCALE 1663 is the ratio by that the frequencies in the original loop should 1664 be scaled. ELSE_SCALE is the ratio by that the frequencies in the 1665 new loop should be scaled. 1666 1667 If PLACE_AFTER is true, we place the new loop after LOOP in the 1668 instruction stream, otherwise it is placed before LOOP. */ 1669 1670 struct loop * 1671 loop_version (struct loop *loop, 1672 void *cond_expr, basic_block *condition_bb, 1673 unsigned then_prob, unsigned then_scale, unsigned else_scale, 1674 bool place_after) 1675 { 1676 basic_block first_head, second_head; 1677 edge entry, latch_edge, true_edge, false_edge; 1678 int irred_flag; 1679 struct loop *nloop; 1680 basic_block cond_bb; 1681 1682 /* Record entry and latch edges for the loop */ 1683 entry = loop_preheader_edge (loop); 1684 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP; 1685 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP; 1686 1687 /* Note down head of loop as first_head. */ 1688 first_head = entry->dest; 1689 1690 /* Duplicate loop. */ 1691 if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1, 1692 NULL, NULL, NULL, 0)) 1693 { 1694 entry->flags |= irred_flag; 1695 return NULL; 1696 } 1697 1698 /* After duplication entry edge now points to new loop head block. 1699 Note down new head as second_head. */ 1700 second_head = entry->dest; 1701 1702 /* Split loop entry edge and insert new block with cond expr. */ 1703 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head, 1704 entry, cond_expr, then_prob); 1705 if (condition_bb) 1706 *condition_bb = cond_bb; 1707 1708 if (!cond_bb) 1709 { 1710 entry->flags |= irred_flag; 1711 return NULL; 1712 } 1713 1714 latch_edge = single_succ_edge (get_bb_copy (loop->latch)); 1715 1716 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge); 1717 nloop = loopify (latch_edge, 1718 single_pred_edge (get_bb_copy (loop->header)), 1719 cond_bb, true_edge, false_edge, 1720 false /* Do not redirect all edges. */, 1721 then_scale, else_scale); 1722 1723 copy_loop_info (loop, nloop); 1724 1725 /* loopify redirected latch_edge. Update its PENDING_STMTS. */ 1726 lv_flush_pending_stmts (latch_edge); 1727 1728 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */ 1729 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge); 1730 lv_flush_pending_stmts (false_edge); 1731 /* Adjust irreducible flag. */ 1732 if (irred_flag) 1733 { 1734 cond_bb->flags |= BB_IRREDUCIBLE_LOOP; 1735 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP; 1736 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP; 1737 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP; 1738 } 1739 1740 if (place_after) 1741 { 1742 basic_block *bbs = get_loop_body_in_dom_order (nloop), after; 1743 unsigned i; 1744 1745 after = loop->latch; 1746 1747 for (i = 0; i < nloop->num_nodes; i++) 1748 { 1749 move_block_after (bbs[i], after); 1750 after = bbs[i]; 1751 } 1752 free (bbs); 1753 } 1754 1755 /* At this point condition_bb is loop preheader with two successors, 1756 first_head and second_head. Make sure that loop preheader has only 1757 one successor. */ 1758 split_edge (loop_preheader_edge (loop)); 1759 split_edge (loop_preheader_edge (nloop)); 1760 1761 return nloop; 1762 } 1763